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Typographic signals carry strong semantic connotations, e.g., they may convey excite-

ment, anger or even sweetness, which empowers them to affect almost any aspect of life,

from perception of an email, to the perceived sweetness of a cup of coffee. This thesis

explores some of the possibilities that can be offered by computational approaches to

support users in understanding and taking advantage of this impact. More specifically,

the focus is on learning font semantics from crowdsourced and Web data, and using

this information to facilitate font search and recommendation. Among the novel contri-

butions are the use of CNN-based embeddings to represent fonts in attribute learning,

leveraging emotion theories and lexical relations to infer font semantics, a multimodal

font search method that allows specifying a reference font together with the target se-

mantic additions, enabled by a cross-modal representation of fonts and words, and the

proposal of affect-aware word clouds that let users specify a target emotion, which is

used to recommend fonts and color palettes with congruent affective connotations.
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Chapter 1

Introduction

Typographical decisions, such as the choice of font and of stylistic features, determine

the specific means through which a textual message is conveyed. They have the power

to weaken, strengthen, or even alter the message being communicated. This chapter

discusses our motivation to computationally analyze and apply font semantics, and

provides an overview of the thesis together with main contributions.

1.1 Motivation

Paralinguistic signals are additions to the language units and structures that can mod-

ulate the meaning in many ways [1]. For example, a particular tone of voice could

dramatically alter the underlying conceptual meaning of a sentence [2]. Typically asso-

ciated with verbal language, paralinguistic phenomena also occur with written language

[1; 3]. Emoji, font, color, and animation [4] are examples of textual paralinguistic sig-

nals [5]. The following two sentences convey different affective meanings using the

same linguistic elements but different paralinguistic elements: “John is back in town

:)”, “John is back in town :(” [1].

As a paralinguistic signal, typography received a significant interest from psychology

and marketing research over the years [6; 7; 7–19]. The choice of font has been shown to

affect the perception of the text as well as of the author or of the brand being advertised

[13; 14]. It is widely agreed that different typefaces possess different personas in terms

of their perceived associations and connotations [20–22]. These range from perceptions

of attractiveness to evoked affective states such as happiness all the way to associations

with confidence or even laziness. Understanding these latent semantic connections is a

crucial precondition to using fonts adequately and effectively.
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Having an important role in human communication, typography has not yet received

adequate interest from the computer science community. To date, most software tools

do not provide additional support for font selection. Among the tens of thousands

of fonts available today, users are expected to go through each font to pick the one

that serves their use case best. It is not uncommon for people to spend several minutes

looking for the right font, but finally ending up using the default one [23]. Furthermore,

as the number of available fonts keeps increasing, the task of font selection is becoming

more challenging, especially for graphic designers, as their profession calls for such

decisions to be made on a regular basis.

This thesis aims to contribute to the literature by developing methods to compu-

tationally analyze textual paralinguistic signals and by improving the user experience

through the integration of these methods to the applications, with a special focus on

fonts. Specifically of interest is the semantics of these signals rather than aesthetics

[24] or readability [25], although sometimes these concepts are also explored as a part

of the semantics (for example the attributes “clumsy” and "legible" in [21]).

1.2 Challenges and Contributions

This section discusses the challenges that are tackled in the scope of this thesis, and

presents our contributions proposed to overcome these challenges.

1.2.1 Learning Font Semantics

The following discusses the challenges and the contributions associated with learning

font semantics from existing font–tag connections.

Challenges. Existing methods use machine learning to learn models that can

predict font semantics. Crowdsourcing [21], surveys [22], and Web data crawling [26]

are currently used as primary methods to obtain a reference dataset that labels fonts

with regard to semantic attributes such as happy, thanksgiving, or pixel. The challenges

associated with learning from these different datasets vary. Crowdsourcing and surveys

yield datasets that are clean and complete (a fairly accurate labeling of every font with



3

regard to every attribute) but small (tens-to-hundreds of fonts, tens of attributes). In

contrast, crawled Web data is large (thousands of fonts, thousands of attributes) but

noisy (missing many font–attribute connections).

Contributions. Learning font semantics is an important focus of this thesis that

is addressed in all technical chapters. In Chapters 3 and 4, we propose using a non-

parametric learning algorithm, namely k-nearest neighbors (k–NN), to learn from small

but high-quality crowdsourced data. In these chapters, for the first time in the litera-

ture, we use font embeddings extracted using pretrained CNN networks, and pretrained

word embeddings to learn font semantics. In Chapter 5, we create, for the first time,

a cross-modal representation of fonts and words, which helps overcome the challenges

associated with large Web datasets that suffer from missing font–tag connections. As

we discuss in the following section, the cross-modal representation also enables a set of

novel interaction mechanisms with the fonts. In addition to using machine learning, in

Chapters 4 and 6, we propose novel methods to infer font semantics by making use of

emotion theories and lexical relations. As an example, in Chapter 4, we obtain values

for the tag optimism, based on the font’s existing connections with the tags anticipation

and joy following Plutchik’s Wheel of Emotion [27].

1.2.2 Font Search

The following outlines the challenges of searching for fonts using semantic tags, and

discusses the contributions of the thesis on this topic.

Challenges. Users typically search fonts using semantic tags [28; 29]. A limited

tag vocabulary and missing font–tag associations are primary challenges associated

with this task. Even with a sufficiently large vocabulary and complete tags, users still

need to spend significant time to find a font that meets their needs, and which is also

unique, something necessary to better differentiate their design product from those of

competitors. Users report that most of the time they find fonts that are very close to

their ideal font, but ”slightly off” in certain characteristics [30].

Contributions. In all chapters, our methods that are proposed to learn font se-

mantics eventually target improving semantic font retrieval by learning more font–tag
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connections from existing ones. Beyond this general contribution, in Chapter 5, we

propose a novel multimodal font discovery method that allows searching for fonts using

a reference font and the targeted modifications to reach an ideal font. It aims to satisfy

users’ need to slightly modify a font to reach the ideal one. This is enabled by the

cross-modal representation of fonts with words. The cross-modal representation en-

ables other creative ways to discover fonts as well, such as using multiple semantic tags

at once. The challenge to work with a limited vocabulary is also tackled by enabling

search using any keyword(s) that are in the word embedding dictionary, which typi-

cally includes millions of words. All these improvements and supporting mechanisms

together make it easier to deal with a vast number of fonts, increasing the chance to

discover fonts that meet users’ need and that are also unique.

1.2.3 Font Recommendation

The challenges associated with making successful typographical recommendations, and

the contributions of this thesis to facilitate such choices are discussed below.

Challenges. Applications used for design, such as word processing and graphic

design tools, require typographical choices but provide very limited built-in support.

This leaves users alone with figuring out which font to choose, which can be a big

challenge especially for non-expert users whom might not be aware of the impact of

such choices, nor possess the knowledge required to make the right ones.

Contributions. We show that integrated recommendation mechanisms in end-

user tools can facilitate the tasks that involve typographical choices. In Chapter 4, we

recommend fonts for an English lexicon through crowdsourced emotion connections of

words, and the connections of fonts to this small set of emotions. We illustrate how

this font lexicon can be integrated into a poster-design tool to support font selection.

As another application area, in Chapter 6, we develop a tool that matches congruent

fonts and colors for word clouds based on the user-specified target emotions.
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1.3 Publications

Following is a list of the publications that this thesis research is based on.

Kulahcioglu, Tugba, de Melo, Gerard. Predicting Semantic Signatures of Fonts. In

Proceedings of the 12th IEEE International Conference on Semantic Computing (ICSC

2018), pp. 115–122.

Kulahcioglu, Tugba, de Melo, Gerard. FontLex: A typographical lexicon based on

affective associations. In Proceedings of the 11th International Conference on Language

Resources and Evaluation (LREC 2018). European Language Resources Association

(ELRA).

Kulahcioglu, Tugba, de Melo, Gerard. Semantics-aware typographical choices via

affective associations. Language Resources and Evaluation, (2020). Springer.

Kulahcioglu, Tugba, de Melo, Gerard. Paralinguistic Recommendations for Affective

Word Clouds. In Proceedings of the 24th ACM International Conference on Intelligent

User Interfaces (IUI 2019), pp. 132–143.

Kulahcioglu, Tugba, de Melo, Gerard. Affect-Aware Word Clouds. ACM Transactions

on Interactive Intelligent Systems (2020).

Kulahcioglu, Tugba, de Melo, Gerard. Fonts Like This but Happier: A New Way to

Discover Fonts. In Proceedings of the 28th ACM International Conference on Multime-

dia, (MM 2020).

1.4 Summary

Chapter 2 discusses related work, and then the following chapters proceed to present

the aforementioned contributions of this thesis in detail. More specifically, in Chapter

3, we analyze a crowdsourced font semantics dataset and learn a method to predict font

semantics for a much larger dataset. In Chapter 4, we use word embedding similari-

ties and emotion-based connections to infer font semantics for an English lexicon, and

demonstrate a potential use of the lexicon for a poster-design application. In Chapter 5,
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we obtain cross-modal representation for fonts and words that is used to propose a new

multimodal font discovery method. In Chapter 6, we present an affect-aware font and

color palette selection methodology for word clouds that aims to facilitate congruent

typographical choices. Finally, Chapter 7 concludes the thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide background information on typography, and review related

work on the impact of typographical signals and on font semantics. The related work

on color semantics and word clouds are discussed in Chapter 6, as the discussed studies

are not directly tied to font semantics, which is our main focus.

2.1 Typography

The written communication of humankind is thought to have started with pictographs

that are basic images representing objects such as a house. Ideographs expanded upon

this by associating images with ideas, or abstract concepts in general (e.g a skull rep-

resenting danger). Then came alphabets that use symbols to represent the sounds of

speech instead of ideas or objects [31].

Type refers to any specifically shaped reproducible such symbol [32], and conse-

quently, typography is the art and technique of arranging type to optimally communicate

the intended message. The arrangement of type involves typeface selection, and spec-

ification of its attributes such as point sizes, line lengths, line spacing, letter spacing,

and kerning [33].

A typeface represents a specific design for a set of symbols from an alphabet [31].

Typefaces are usually classified into categories based on their shared visual characteris-

tics. Two of the most common such categories are serif and sans-serif. Serif typefaces

have a small stroke attached to the end of larger lines in a character. Sans-serif type-

faces, in contrast, do not have such small lines, as demonstrated in Figure 2.1a. Another

distinct category of typefaces are handwriting typefaces, also referred to as script, which

use handwriting-like fluid lines. Figure 2.1b shows a monospace typeface, in which each
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(a) Sans-serif (1st) and serif (2nd and 3rd)
typefaces. Figure obtained from [34].

(b) Proportional and monospace typefaces
compared. Figure obtained from [35].

(c) Sample dingbat fonts: ”Journal Dingbats 2” (top row) and ”Journal
Dingbats 4” (bottom row).

Figure 2.1: Examples of font categories sans-serif, serif, monospace and dingbat.

symbol occupies the same amount of horizontal space. Display typefaces are designed

to be decorative and attention-grabbing, hence result in a low level of legibility when

used for body text. They are frequently used for headlines [32]. Finally, dingbat fonts

are fonts that consist entirely of symbols instead of alphabetical or numerical characters

(examples in Figure 2.1c). They are used for decorative or symbolic purposes.

An important point to note is the difference between a typeface and a font. While

a typeface refers to a specific design, font refers to the actual file delivered to the user,

possibly with certain stylistic effects, such as italic or bold. As these style differences

can impact the semantics of a typeface, in this thesis we mostly focus on fonts rather

than typefaces.

2.2 Impact of Typographical Signals

From marketing to human-computer interaction, an extensive set of studies show that

fonts have a profound impact on customers’ or users’ perception. These studies can be

clustered in two groups: Stroop-style studies and survey-style studies.
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2.2.1 Stroop-Style Studies

Stoop-style studies ask users to respond to a given task both correctly and as quickly

as possible, while measuring the response time. An example of such a study is the

one by Lewis & Walker [6], in which users in one task are requested to press the left

hand key if the words slow or heavy appear, and the right one if fast or light appears.

They repeat such tasks with congruent (matching the underlying meaning or theme)

and incongruent fonts, finding that congruent fonts significantly reduce the response

times. Hazlett et al. [7] asked users to assess whether a displayed word is positive or

negative. The results show that congruent font types result in faster responses to such

tasks, similar to the Stroop-Effect caused by colors [36].

2.2.2 Survey-Style Studies

Survey-style experiments gather user ratings for semantic measures aiming to under-

stand the impact of font characteristics on perception. These studies mostly focus on

two areas: perception of text documents, and product packaging.

Text Documents. Juni & Gross [8] present two New York Times articles with

two different fonts and solicit ratings from users. The results reveal that the same

text is perceived as being funnier or angrier when read in a certain font compared to

another. Shaikh [9] presents documents in three different fonts (congruent, incongruent,

neutral), asking users to assess the personality of the document (e.g., exciting) and the

personality of the author (e.g., trustworthy). The findings show strong effects for all

three categories of fonts on the perceived personality of documents, whereas congruent

and neutral fonts created similar perceptions of the authors’ respective personalities.

Hazlett et al. [7] displayed the same page with different fonts for 0.7 seconds each,

asking users to describe the emotional tone of the page. They found that the latter is

strongly influenced by the font type.

Shaikh et al. [10] investigate the effect of fonts on the perception of email and find

that fonts with low congruency result in different perceptions of the email than when

higher congruency fonts are invoked. A similar study on the perception of a company
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website [11] reveals that neutral/low congruency fonts negatively affect company’s per-

ception in terms of professionalism, believability, trust, and intent to act. Promotions

advertised with right-slanted fonts have found to increase consumers’ click through rates

in email promotions, as well as retailer visit and purchase intentions [12].

Mobile Text Messaging. Choi et al. [37] investigate the impact of angry and

happy typefaces on the perception of text messages, and compare this impact with

the impact of using emoji or emotion words. Their findings reveal that, when used

in congruency with the emotion of the text, text messages with happy fonts make the

sender seem genuinely happy. An interesting comment from the users is that with a

happy emoji at the end of the message, the receiver feels that the sender smiles after

saying the words. In contrast, they feel that using the fonts the sender communicates

the message with a happy voice all along. For the angry messages, some participants

reported that they would not use a specific font or emoji if they were really in a very

negative mood. All participants also agreed that negative words evoke stronger feelings

than negative emoji or typeface. Finally, another user study using incongruent signals

between text and font reveal that this situation is usually interpreted as humor or

sarcasm.

Branding. Many studies in marketing analyze font effects, especially in packaging

design. Fligner [13] shows that fonts associated with the attribute natural increase

the perception of products with respect to healthfulness when used in their packaging,

especially if the products’ intrinsic (e.g., fat-free) and extrinsic cues (e.g., sold at Whole

Foods Market) also support this. The experiments by Childers and Jass [14] show that

semantic attributes of fonts affect user perception for both high and low engagement

levels; and the effect of a font on the recall performance increases when other factors

such as the picture used is consistent with the font. Through experiments using bottled

water of a fictional brand, Van Rompay and Pruyn [15] as well found that the congruence

between fonts and other design elements influence the perception of brand credibility,

aesthetics, and perceived value. By means of three experimental studies, Giese and

Parkman [38] find that brand personality perceptions, such as sincerity, sophistication

and competence, are effected by the font used to display the brand name. The study
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also reveals that the impact of the font color on brand perception is independent of the

impact of the font type itself.

Several studies investigated the cross–modal correspondence between taste and font

shape. In [16], the participants are asked to rate their expectation on the sweetness and

sourness of a product based on the presented packaging designs. The results support

an association between sweetness and rounded fonts and sourness and angular fonts.

Supporting these results, in [17], an association between sweet taste and rounded fonts

are found, in addition to the association between bitter, salty, and sour tastes and

angular fonts. A study on the perception of specialty coffee evaluated amateur con-

sumers’ expectation and experience on coffee acidity, sweetness, and their liking and

purchase intent [18]. Their expectation was based on package labels with different fonts,

and the experience after actually tasting the coffee. Fonts with angular characteristics

were found to increase both the expectation and the experience of acidity and purchase

intent. The study did not find an association between sweetness and round fonts as

suggested by aforementioned studies. Another study conducted using different fonts on

beer labels found a stronger association between sour and angular fonts, compared to

rounded ones for both taste expectations and perceived taste [19]. A study on chocolate

choices found that 75% of the customers choose the chocolate box with a congruent font

rather than the box with an incongruent one [39]. The same study found similar effect

on other product categories such as car rental and soft drinks.

Overall, these studies show that selecting congruent fonts has significant import on

how the content, its authors, and associated entities such as products are perceived.

Hence, it is crucial to develop techniques that aid in determining the semantic congru-

ency of fonts.

2.3 Learning Font Semantics

There has been growing interest in computational approaches to analyzing fonts not

just visually but with regard to their semantic associations. These approaches mainly

make use of two data sources: crowdsourced/survey data and web data.
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2.3.1 Crowdsourced and Survey Data

Through a crowdsourced study, O’Donovan et al. [21] associate 200 diverse fonts with 37

semantic attributes (e.g., happy). Specifically, they request participants to pick one of

two presented fonts for a given attribute, and then aggregate these choices to assign fonts

a series of scores for each attribute. The authors also learn semantic attributes for new

fonts based on this crowdsourced data. An online survey [22] assesses the characteristics

of 20 fonts with respect to 15 adjective-based scales (e.g., stable–unstable). Another

survey study [40] learns font semantics using a CNN. Their training data consists of

emotion values of 171 Japanese fonts for 12 emotion-representing adjective pairs that

is collected based on the answers of the participants.

2.3.2 Web Data

Many font-focused websites [28; 29] allow contributors to tag fonts with attributes,

some of which are more semantic than visual. Recent studies collect data from these

resources to obtain a larger scale dataset. Chen et al. [26] use a Web dataset of 18.8K

fonts and 2K tags and propose a generative feature learning algorithm together with an

attention mechanism to infer font–tag connections used for font retrieval. The authors

use rendered images of each character individually to train the network, as opposed to

using a text with multiple characters, claiming that the global structure of a text image

does not provide extra information for font retrieval purposes. Choi et al. work on Web

data consisting of 9.3K fonts and 3.7K tags [41]. They allow font querying with any

input word by mapping the input words to the predefined tag dictionary with the help

of word-embedding based similarities.

2.4 Interaction with Fonts

In this section we provide the methods that are currently available to users to interact

with the fonts, or proposed by academic research as useful potential tools. We exclude

the extensively researched image-processing topic of font recognition [42–46] and focus
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on font search, recommendation and design methods as they are related to the semantics

of the fonts.

2.4.1 Font Search

We survey the main methods to discover fonts: name/category based search, keyword

based search, and similarity based search.

Search by Name/Category. Most of the available word processing and graphic

design tools allow users to search the fonts only by their names (e.g., Times New

Roman), or via a predefined narrow set of categories (e.g., monospace) with a few

semantic ones (e.g., fun). Users, thus, frequently consult external resources, such as the

web-sites discussed below, to find fonts that meet their needs.

Attribute-based Search. Many web-sites provide tag-based font search powered

by the font–tag associations provided by their users. Most of the time the designer of

a font also enters tags when they upload a new font to Web. Although useful, these

resources are limited by the tag vocabulary that is being used, and not every font

is necessarily tagged with a sufficient number of tags. To overcome these challenges,

several academic studies work on the problem of attribute-based retrieval of fonts [21;

26; 41; 47]. Most of these studies work with a limited tag vocabulary but extend the

tag associations to new fonts [21; 26], while, through the use of word embeddings, in

[41] the search space is extended to further words as well. In [48], the authors develop

an inspiration tool that provides unexpected but useful font images or concept words

in response to a user query.

Similarity Search. O’Donovan et al. [21] proposed a similarity-based font search

in which users look for a font that is similar to a reference font. It is demonstrated in

their study that human perception of similarity is closer to the semantic similarities of

the fonts than the visual similarities, although both aspects contribute to the similar-

ity perception. Wang et al. [44] propose a deep convolutional neural network (CNN)

approach to help users identify the fonts employed in a photographic image, which is

also proposed as a method to obtain font embeddings that can help assess font simi-

larities. Lim et al. [47] present a font matching approach that retrieves fonts similar
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to a reference font for which users can decide the weights for three different similarity

metrics: usage, personality, and shape. Qiu et al. [49] propose a method to map Latin

and Japanese fonts that share similar semantic profiles.

Sketch-based Search. Ishibashi et al. [50] propose a sketch-based font retrieval

method, which retrieves fonts similar to the sketch specified by the user. To avoid the

need to draw the sketches from scratch, their method allows editing an existing font to

search for fonts that are closer to the user’s target font.

2.4.2 Font Recommendation

In this section we provide studies that seek to recommend fonts based on a specified

text, image, or a font to be paired.

Text-Based Font Recommendation. Kawaguchi and Suzuki presents a system

that recommends fonts, as well as colors, for book covers based on the content of the

book [40]. The recommendation is enabled through an emotion vector that is obtained

for both the fonts and the book text. Similarly, Chou and Lin [51] recommend Chinese

fonts for emotion-bearing sentences based on the determined emotion of the text. In a

recent study, a series of deep neural network models are explored to assess a short input

text and to perform multi-label classification that select the best-fitting ones among 10

different display fonts [52].

Image-Based Font Recommendation. FontMatcher [53] recommends fonts for

image captions, using a color–font mapping in the soft–strong and warm–cool dimen-

sions, using a crowdsourced dataset [21]. Evaluated by a user study. the author found

that their system outperform novice users. Similarly, in [41], a query-by-image approach

is proposed for font selection. Zhao et al. [54] predict font typeface, color and size for

web-design, by learning such connections using web-page screenshots and associated

font metadata. Their neural network architecture also makes use of font embeddings

generated using an autoencoder.

Emotion-Based Font Recommendation. Choi et al. [37] develop a messenger

application prototype that lets the users specify an emotion before sending the message,
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giving them the option to use a font congruent with the selected emotion, which can

be happiness or anger.

Font Pairing. In graphic design products, fonts are often used in pairs. These pairs

have specific properties, e.g., share an overarching theme but have a pleasing contrast.

This knowledge is rooted in graphic design principles and not easily available to novice

users. An interesting font interaction method proposed is to search for a font pair given

a specific reference font. FontJoy [55] is an online tool that uses deep convolutional

font embeddings to achieve font pairing. Jiang et al. [56] present a font-pairing method

based on font-pair data crawled from PDF documents on the Web.

Font Design. Recently, Wang et al. [57] proposed a computational font design

method where the fonts are computationally designed and generated based on the user-

specified attributes. Using both typographic and semantic attributes [21], their model

is trained to achieve style transfer between two fonts conditioned on their corresponding

attribute values. Other studies partially automate the design process by transferring

the user’s font style from a few input glyphs to a complete typeface [58; 59].



16

Chapter 3

Predicting Semantic Signatures of Fonts

In this chapter, we aim to induce semantic signatures that characterize the semantic

attributes of large numbers of fonts.

One way to assess a wider range of fonts is to draw more general conclusions by

unearthing connections and trends that apply broadly at a higher level, as in the study

that found an association between sweet taste and round typefaces [16]. To this end, we

first analyze the relationships of font categories and font styles with semantic attributes

to determine to what extent simple correlations may exist. We find that certain at-

tributes are indeed manifested most predominantly in specific categories and styles of

fonts. However, this does not hold in general, as the interactions of visual features and

semantic attributes are not always straightforward. and thus, this generic approach is

not always feasible.

As a second step, overcoming the aforementioned challenges, we develop a semi-

automatic computational approach to predict semantic signatures of fonts based on

a small set of seed data. With this method, we extend crowdsourced data for 200

fonts to a large dataset, currently covering 1,883 fonts, which we make available online.

Figure 3.1 presents the attributes used in this study, visualized using the fonts found to

be most congruent by the extended dataset, excluding the ones from the crowdsourced

seed data.1

We then proceed to analyze the resulting semantic resource, with the aim of assessing

its quality as well as to derive insights regarding the potential of fonts to exhibit desired

semantic attributes. The interactive visualization used to carry out this analysis is also

made available online.

1The attribute attention-grabbing is shortened as attention.
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Figure 3.1: Attributes used in this study, visualized using the font that is predicted to
have the highest congruency2.

The chapter is organized as follows. In Section 3.1, we analyze the semantic signa-

tures of fonts based on font categories and styles. In Section 3.2, we present the method

we use to induce signatures for an extended set of fonts, and evaluate its performance.

Following this, in Section 3.3, we analyze the resulting dataset. We provide a discussion

in Section 6.7 and then conclude in Section 6.8.

3.1 Semantic Signatures of Font Categories and Styles

Our first goal is to expose general associations between font categories or styles [32]

and semantic attributes. As a starting point, we consider the crowdsourced data by

O’Donovan et al. [21], which associates 200 fonts with 37 semantic attributes (e.g.,

happy, formal). We normalize their ratings to the [0,1] range, and derive attributes at

the level of font categories, as well as for italic emphasis and font weights, to analyze

their relationship with different attributes3. The results of this process are depicted in

Figures 3.2, 3.3, 3.4, and 3.5. These plots are taken from an interactive visualization

that we have established for the analysis of this data and made available online4.

2Aiming to showcase different fonts, we used the next most congruent font if the most congruent
font is already used for another attribute.

3We exclude 6 typographic attributes and use the remaining 31 attributes.
4Supplementary material can be accessed via http://gerard.demelo.org/fonts/
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Average Max Min
Category Count Avg. SD Avg. Att. Avg. Att.
display 45 0.56 0.18 0.80 fresh 0.37 delicate
handwriting 18 0.63 0.15 0.84 gentle 0.29 boring
monospace 8 0.48 0.16 0.81 gentle 0.29 modern
sans-serif 85 0.49 0.14 0.87 gentle 0.24 clumsy
serif 44 0.53 0.16 0.89 gentle 0.19 bad

Table 3.1: Summary of statistics for the font categories. (SD: Standard Deviation, Att:

Attribute, Avg: Average)

3.1.1 Font Categories

We begin by analyzing the relationship of five coarse-grained font categories.5 Table

3.1 provides a high-level summary of these categories. Although both the averages and

maximum scores appear to be close, and the scores of the respective attributes with

the maximum average as well, a cursory glance at Figures 3.2 to 3.5 reveals that the

distributions diverge significantly between particular font categories.

Display. Following the highlighted (yellow) lines in Figure 3.2, we observe that the

display category appears to have the most scattered attribute scores. Across nearly all

considered attributes, we find that its scores lie in a high range. This is also reflected in

the summary table with a relatively high standard deviation value of attribute averages.

Handwriting. Figure 3.2 reveals that handwriting fonts appear to show a trend

rather different from those of other font categories, especially for the attributes artistic,

charming, complex, dramatic, modern, and playful, they score higher than others. The

category also has strong associations for the attributes fresh, friendly, and gentle, which

accords with the general trend. For boring and strong, in contrast, it has particularly

low scores.

5These categories reflect historical origins and typographic properties. Handwriting typefaces are
designed to create the impression of being hand-rendered. The characters of monospace typefaces
occupy equal horizontal space. Serif typefaces have small lines attached to the end of the strokes in its
characters, whereas sans-serif denotes typefaces lacking those attached lines. Display typefaces do not
share typical typographic qualities other than a low level of legibility when used for body text, so they
are reserved mostly for headings and other kinds of display purposes.
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Figure 3.2: Semantic signature of the font categories display and handwriting. This
shows the font association values for semantic attributes, and font categories and styles.
Each line is colored based on the font categories (display: yellow, handwriting: green).

Figure 3.3: Semantic signature of the font categories serif and sans-serif. This shows
the font values for the semantic attributes, and font categories and styles. Each line is
colored based on the font categories (sans-serif : blue, serif : pink).

Monospace. Monospace fonts make up a very small number of instances in the

data, only 8 out of 200. Their curve follows the general trend for fresh and gentle and

calm, while having atypically high values for boring.

Sans-serif. This is the largest category in the dataset, with 85 members. The

distribution of attributes can be analyzed in detail in Figure 3.3. We observe high

association scores for calm, formal, fresh, friendly, gentle, legible, and soft, whereas for

bad, clumsy, disorderly, playful, and artistic, we encounter lower values. The strongest

association is for the attribute gentle, while the lowest score is seen for clumsy.

Serif. The serif font category has 44 samples in the dataset, and follows a similar

pattern as sans-serif, except for showing slightly higher associations for formal, gentle,

friendly, happy, and sharp, and slightly lower values for bad. Its highest score is for the

attribute gentle, just as for sans-serif, while its lowest is for the attribute bad.
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Figure 3.4: Semantic signature of the font style italic. This shows the font values for
the semantic attributes, and font categories and styles. Each line is colored based on
the italic emphasis of the fonts (italic: green, regular : pink).

Average Max Min
Style Count Avg. SD Avg. Att. Avg. Att.
italic 42 0.56 0.16 0.87 gentle 0.26 bad
regular 158 0.52 0.18 0.84 gentle 0.32 bad
bold 59 0.52 0.15 0.86 fresh 0.27 disorderly
normal 127 0.54 0.18 0.85 gentle 0.31 bad
light 14 0.44 0.11 0.91 soft 0.14 pretentious

Table 3.2: Summary of statistics for the font styles. (SD: Standard Deviation, Att.:

Attribute, Avg.: Average)

3.1.2 Font Styles

Table 3.2 summarizes statistics for the font style properties that we analyze: italic

emphasis and weight. With the exception of the light font weight style, the values are

very similar across all styles.

Figure 3.4 plots the distributions for fonts with regular (158 samples) and italic (42

samples) styles. For the attributes artistic, complex, disorderly, dramatic, and playful,

italic seems to have mid-range values, whereas the regular style constitutes the high

and low peaks. They both seem to peak for those attributes that also exhibit a general

trend of having high values for the fonts in our data, such as calm, fresh, gentle, and

legible. We found that among the font categories, serif fonts suffer the greatest impact

when this style property is applied. The most charming, attractive, and happy serif

fonts, for example, all use italic forms.
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Figure 3.5: Semantic signature of the font style weight. This shows the font values for
the semantic attributes, and font categories and styles. Each line is colored based on
the weights of the fonts (light: green, normal: blue, bold: purple).

Figure 3.5 plots the distributions for fonts with different weights. Weights below

400 are considered light (14 samples), whereas the ones above 400 are considered bold

(59 samples). The normal weight is assumed as 400 and consists of 127 samples for

our data. The attributes thin, soft, and calm appear to have high values for fonts in a

light style. Similarly, the attribute warm correlates with the bold style. They all seem

to have peaks for the attributes legible and gentle. The least happy fonts are those that

are light. Further analysis reveals that sans-serif shows strong interactions with weight,

e.g., the calmest and softest sans-serif fonts use light forms, whereas warm and legible

fonts use bold forms.

3.2 Large-Scale Semantic Signature Induction

We now proceed to produce a much larger-scale database of semantic signatures.

3.2.1 Method

We assume as input a set of fonts F described in terms of a set of font attributes A.

For this, we again rely on the previously used crowdsourced data by O’Donovan et al.

[21], which describes a small set of 200 fonts. For a given font f ∈ F , it provides scores

in [0, 100] for each attribute a ∈ A. From this data, we derive |A|-dimensional vectors

~f ∈ [0, 1]|A| for each f ∈ F , by transforming the dataset to consider the attributes for

a given font while normalizing scores to [0, 1].
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Our aim is to predict ~f ′ for fonts f ′ /∈ F . To achieve this, we use k-nearest neighbors

(k–NN) regression. The distance between two fonts, denoted as d(fi, fj) is calculated

using one of the similarity metrics described in the following subsection.

The unweighted k–NN approach uses the following formula, where ~f1 to ~fk are

attribute vectors for the closest k fonts in F according to a similarity metric.

~f = 1
k

k∑
i=1

~fi (3.1)

The weighted k–NN approach generates weights using the following equation.

wi = 1
k − 1

k∑
j=1
i 6=j

d(f ′, fj)

k∑
j=1

d(f ′, fj)
(3.2)

Subsequently, the weighted values are generated as follows:

~f =
k∑
i=1

wi ~fi (3.3)

3.2.2 Similarity Measures

To compute nearest neighbors, we consider four similarity metrics as alternatives.

The first option is to use typographic properties, obtained by parsing a font’s glyph

outlines to extract italics, thickness, size, area, orientation, stroke width, and spacing.

We rely on existing data for this [21]. For some of these features, the data provides an

average for all the characters, whereas for others, only selected characters are used.

The second option is to use a deep Convolutional Neural Network (CNN) to induce

a font embedding space that captures font similarity [60]. For this, we rely on a model6

that creates images by rendering a set of selected letters (L,a,s,e,g,d,h,u,m,H,l,o,i,v) in

a grid, and then feeds them through a pretrained deep convolutional network. Finally,

PCA is used for dimensionality reduction to obtain vectors that are compared in terms

of cosine similarity. The dataset contains embeddings for 1,883 fonts.

6https://github.com/Jack000/fontjoy
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Figure 3.6: Error plots of four method–similarity measure combinations using different
k values.

We consider two further alternative similarity measures that effectively restrict the

candidate spaces of the above two measures to fonts having the same category as the

input font. For example, for an input handwriting font, these measures regard all

non-handwriting fonts as having a similarity of zero.

3.2.3 Evaluation

To evaluate this, for each f in F7, we predict ~f using F \ f . We replicate the tests four

times, for combinations of similarity measures and methods (weighted, unweighted).

Comparing predicted ~f with the ground-truth ~f ′, an |A|-dimensional vector ~e is calcu-

lated as:

~e = ~f ′ − ~f. (3.4)

For each attribute, we then generate an error value e by averaging the absolute values

of errors in ~e. The test results are summarized in Figure 3.6. The error scores reported

here are averages over e values across all a ∈ A. The CNN embedding similarity metric

results in a lower e for both the weighted and unweighted methods. Category based

similarities led to slightly improved results for visual features, whereas they did not

7We use the 161 fonts that are common to all datasets.
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show any improvements for the embeddings. The lowest error is obtained when k = 4

for the weighted version.8

attribute e attribute e attribute e

fresh 0.051 strong 0.086 boring 0.097
gentle 0.051 attention 0.086 playful 0.098
delicate 0.057 bad 0.087 formal 0.099
wide 0.059 modern 0.089 warm 0.101
charming 0.062 legible 0.091 thin 0.101
friendly 0.063 disorderly 0.094 sharp 0.106
calm 0.072 attractive 0.095 angular 0.107
soft 0.076 dramatic 0.095 complex 0.108
graceful 0.077 pretentious 0.096 technical 0.111
sloppy 0.081 artistic 0.097
happy 0.082 clumsy 0.097

Table 3.3: Error averages for each attribute.

Table 3.3 lists the e value for each a ∈ A using the weighted embedding method

where k = 4. The most successful predictions are made for fresh, whereas the least

successful ones are for technical. The error scores lie in the narrow range between

0.05 and 0.11, whereas the full value range is between [0,1]. Analyzing these attribute-

based error values together with the interactive visualization introduced in the previous

section reveals that attributes with lower ranges have a lower degree of error, whereas

attributes with high ranges tend to have greater levels. Another factor that appears to

have an impact is the distribution of attribute values among different font categories.

High-ranged values for which different sub-ranges are dense in certain categories seem

to be associated with a lower error than ones with mixed such distributions.

Figure 3.7 shows how e changes with respect to d(f ′, f). The likelihood of an error

increases with increasing distance. However, there are also many cases in which the

error is low despite high distances. It is also clear that certain font categories are easier

to predict (such as serif and sans-serif ) than others (such as display). Figures 3.8a

and 3.8b show font samples with the highest and lowest e, respectively.

8We attempted to compare the error distribution of the typographical features against the CNN
approach to explore to what extent these two metrics might provide complementary signals. However,
they both seem to share a similar error pattern. Hence, it was not possible to obtain a significant
improvement through a hybrid use of these metrics.
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Figure 3.7: Scatter plot of the results relating distances of the samples and correspond-
ing error values.

(a) Fonts with the lowest error averages. (b) Fonts with the highest error averages.

Figure 3.8: Examples of fonts with the lowest and highest error averages.

Figure 3.9: Distance distribution of the generated dataset.
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Figure 3.10: The semantic signatures of the fonts as generated by our method. This
shows the distribution of the font values for the semantic attributes used. Each line is
colored based on the distance value of the corresponding font.

3.2.4 Attribute Prediction

Finally, we predict ~f for all fonts covered by the CNN embeddings, using the weighted

method with k = 4. Figure 3.9 plots average distance distributions, which have the

potential to serve as an indicator for the success of the method, since, based on the

previous analysis, the error is found to be low for low distances.

3.3 Semantics at a Larger Scale

Next, we analyze the potential of the resulting dataset. This analysis centers around

the semantic signatures provided in Figures 3.10, 3.11, and 3.12, and is made available

online.

3.3.1 Expressive Potential for Attributes

Figure 3.10 reveals the potential of the included fonts to represent different semantic

attributes adequately. For a given attribute, the existence of high-scoring fonts entails a

potential to convey that particular attribute effectively. In contrast, a narrower range of

values limits this capability. Based on these considerations, we consider three categories

of attributes.

High Potential. Attributes in this category are associated with fonts with a wide

range of association scores, encompassing both very high (>0.8) and very low (<0.2)

values. This is a high potential scenario because a well-chosen font can easily distinguish

itself from the remaining fonts and may reflect the attribute more strongly. Based on the
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analysis in Figure 3.10, the attributes in this category are angular, artistic, attention-

grabbing, attractive, boring, complex, dramatic, happy, modern, playful, sloppy, strong,

and thin.

Moderate Potential. These attributes possess a high average value, which, at

first glance, might be taken as implying a high potential. Yet, this also suggests a

potential challenge in emphasizing the attribute more markedly. Still, creating a strong

representation may be possible if fonts for other attributes (perhaps opposite attributes)

exist in the same context. For this reason, we consider the following attributes as

moderate potential ones: calm, charming, formal, fresh, friendly, gentle, graceful, legible,

sharp, soft, and warm.

Low Potential. We consider the attributes in this category as having low potential

due to an absence of fonts with very high values (>0.8) for them. Specifically, the at-

tributes in this category are bad, clumsy, delicate, disorderly, pretentious, and technical.

Despite being categorized as showing limited promise, these attributes might still prove

informative as to which attributes to explore as potential candidates for the moderate

potential category (e.g., opposites of these attributes).

3.3.2 Quality

We use the nearest neighbor distances to further assess the quality of the dataset.

As discussed in the previous section, our algorithm uses the most similar four fonts

to determine the values for a new font. The success of the algorithm increases when

the average distance to these similar fonts decrease. For this reason, the distance value

may be interpreted as a confidence value (inverse relationship), although the evaluations

reveal that in some cases it is still possible to have a successful prediction with a high

distance value.

Figure 3.11 depicts a filtered plot considering only fonts with a low distance value

(lower than ∼0.27) and thus in the highest confidence bracket. The interesting finding

here is that many of the fonts at the high or low end of the range that determine the

category of a given attribute remain. In other words, these are the fonts that possess
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Figure 3.11: Semantic signatures of the lowest distance (highest confidence) fonts, as
filtered from the visualization in Figure 3.10

Figure 3.12: Semantic signatures of the highest distance (lowest confidence) fonts, as
filtered from the visualization in Figure 3.10

an important relationship with the attribute, and, in the case of being at the high end,

are the strongest candidates to be selected.

Figure 3.12 depicts a filtered plot considering only fonts with a high distance value

(higher than ∼0.7) and thus in the lowest confidence bracket. The results, again, appear

favorable, as these fonts have scores that lie mostly closer to the middle of the respective

ranges for each attribute. Thus, they have a smaller chance of being selected to represent

those attributes. Nevertheless, this does not preclude the possibility of them in reality

having values closer to the ones at the ends of these ranges, which would mean that we

might be overlooking a font that could be a good candidate to represent an attribute.

Taken together, this suggests that the categorical organization of the attributes

provided above is overall fairly reliable. In conjunction with the finding from Section

3.3 that most fonts have low-to-mid range distances, the fonts in our dataset, especially

when picked from the ends of the ranges, tend to have very representative attribute

values (see Figure 3.1).
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3.4 Discussion

We now review and discuss the findings of this chapter, starting with the analysis in

Section 3.1. Although there are some general trends in the data (such as high values for

gentle), fonts appear to show characteristic biases. This is expected, as font categories

are defined based on combinations of certain design metrics (contrast, x-height, etc.),

which give rise to a particular perception with shared semantic characteristics. This is

also confirmed by the scattered distribution of the font category display, since it is the

only one among these categories with a very wide range of characteristics, complying

with general design knowledge. Our results are also in line with the previous user study

by Shaik et al. [22]. Both studies find serif to be formal, monospace to be boring, and

handwriting to be happy.

Despite being able to reflect these category-based biases, the crowdsourced dataset

is not large enough and the correlations not sufficiently clear to give rise to generalized

metrics or models. To overcome this challenge, in Section 3.2, we use a k–NN approach.

Our evaluation shows that this method has very low error rates for the font attribute

prediction problem at hand. Another interesting point here is that the CNN embeddings

are found to be a better similarity measure for attribute prediction compared to the

typographical features.

Section 3.3 attempts to approximate the quality of the generated dataset, and makes

predictions about the potential of the fonts to represent these semantic attributes. A

point that should be noted is that all attributes have values growing away from the

center (0.5). This is important because it shows that there is a high risk to uninten-

tionally represent these attributes at different levels (high or low) if the font selection

process does not consider these associations.

3.5 Conclusion

Starting with a crowdsourced dataset, we first analyzed the relationship between font

categories/styles and semantic attributes, and reported a series of novel findings. We

published an interactive online visualization that provides further insights from the



30

dataset. Secondly, we induced a large-scale repository of semantic signatures for nearly

2,000 fonts, based on a weighted k-NN approach via a CNN embedding based similarity

measure. Finally, we analyzed the resulting data to assess its quality, and provided an

interactive visualization to allow for exploring it. We also characterized the potential of

these fonts to represent different groups of semantic attributes. The work presented in

this chapter was published in the proceedings of the 12th IEEE International Conference

on Semantic Computing [61].
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Chapter 4

FontLex: An Affective Font Lexicon

Towards the aim of supporting the development of font recommendation tools based on

the textual content and the associated affect of the message, in this chapter, we develop

methods to induce associations between words and fonts. We rely on word–emotion and

font–emotion associations to connect words with fonts via their affective associations

[62]. With these techniques, we induce a typographical lexicon called FontLex, which

maps 6.7K words to a set of around 2K fonts. We further extend the resulting lexicon

using the following approaches: 1) Using the dyads from Plutchik’s Wheel of Emo-

tion, in Section 4.3.1 we present a method to infer font vectors for complex emotions.

2) In Section 4.4, we extend the font set from 200 to around 2K using font embed-

dings following the approach from Chapter 3. 3) In Section 4.3.3, we demonstrate a

sample poster design application which makes use of FontLex to achieve semantic font

recommendation.

The rest of this chapter is organized as follows. Section 4.1 presents our method

to predict emotion–font scores and evaluates it through a user study1. Section 4.2

presents our method to predict word–font scores using the previously obtained emotion–

font scores, and evaluates it through a further user study. Subsequently, Section 4.3

describes the extensions we propose for the dataset to increase its accuracy and to

expand its coverage to more words and fonts. In Section 6.7, we provide discussions on

FontLex and its potential applications. Finally, Section 4.6 concludes the chapter and

outlines plans for future work.

1All studies in this chapter received IRB approval.
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Figure 4.1: Overview of our approach to obtain FontLex, where fi are fonts, ai are font
attributes, and wi are words.

4.1 Basic Emotion Mapping

In this section, we describe the Basic Emotion Mapping, i.e., our method to obtain

associations between fonts and emotional attributes. These will later, in the following

section on the Lexical Mapping process, be used to obtain associations between fonts

and words via their respective emotional associations. Figure 4.1 provides an overview

of this process.

4.1.1 Method

Our method assumes as input a set of fonts F that are described in terms of a set of

font attributes A. For this, we rely on the same crowdsourced data [21] leveraged in

Chapter 3, which for a given font f ∈ F provides scores in [0, 100] for each attribute

a ∈ A. From this data, we derive |F|-dimensional vectors ~a ∈ [0, 1]|F| for each font

attribute a ∈ A. For this, we simply transform the dataset to consider the fonts for a

given font attribute, normalizing scores to [0, 1].

Then, to induce FontLex, we first generate |F|-dimensional font vectors for a set of

emotion attributes E . Subsequently, using existing word–emotion associations, we will

infer |F|-dimensional font vectors for words such that each component of such a vector

quantifies the strength of the association between a word and a font.
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As the set of emotions E , we consider the ten emotion attributes used in EmoLex

[63]. Our first step is to map these e ∈ E to vectors ~e ∈ R|F| that characterize their

association with fonts f ∈ F in our data.

index emotion 1 2 3
1 anger ¬calm clumsy capitals
2 anticipation fresh formal dramatic
3 disgust clumsy bad sloppy
4 fear bad capitals ¬calm
5 joy happy playful graceful
6 negative bad strong sharp
7 positive strong ¬bad happy
8 sadness ¬happy gentle ¬graceful
9 surprise dramatic happy ¬sharp
10 trust strong calm ¬bad

Table 4.1: Top three closest attributes for the basic emotions, where ¬ indicates at-

tributes that are negated.

To achieve this, we proceed as follows. For each emotion e ∈ E , we determine the

k = 3 most similar font attributes a ∈ A, as shown in Table 6.1. To decide on this

value, we have carried out leave-one-out tests on the crowdsourced seed dataset [21].

Although the average overall success of the method in terms of the mean error was

slightly higher for higher k than 3, we found that for k = 3 the most attributes attained

their highest scores. Also considering the complexity of the negation decisions as will

be described shortly, we opted to use the closest k = 3 neighbors.

We rely on word2vec [64] distances d(e, a), using cosine distances on the standard

word2vec Google News pretrained model2, to determine similarity scores sim(e, a) be-

tween emotion names and font attribute names as below:

sim(e, ai) = 1
k − 1

k∑
j=1
i 6=j

d(e, aj)

k∑
j=1

d(e, aj)
(4.1)

One aspect that needs to be addressed, however, is the widely known fact that

distributional models of semantics tend to conflate synonyms with antonyms. Hence,

2https://code.google.com/archive/p/word2vec/
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Figure 4.2: Emotion attributes rendered using the three most congruent fonts as pre-
dicted by our method. The renderings on the first line uses the fonts ranked 1st, the
second line uses fonts ranked 2nd, and the third line uses fonts ranked 3rd.

Figure 4.3: Emotion attributes rendered using the neutral fonts as predicted by our
method. The renderings on the first line use the fonts ranked 99th, the second line uses
fonts ranked 100th, and the third line uses fonts ranked 101st.

we first define

~µ(e, a) =


~1− ~a if a is assessed as an antonym of e

~a otherwise,
(4.2)

where ~1 is an |F|-dimensional vector of ones. Thus, for those words that are assessed

as antonyms, we do not use the regular font vector ~a, but instead consider an inverted

vector, in which we subtract each value from the maximum value of 1. The assessment

is performed manually. For relationships such as between anger and calm, determining

antonym relationships was straightforward. However, for some more challenging deci-

sions, such as negative and sharp, we evaluated both options and discussed the obtained

results with a graphic designer before making the final decision. In Table 6.1, attributes

labelled as antonyms are marked with a “¬” symbol.

To obtain font vectors ~e for emotions e ∈ E , we compute

~e =
k∑
i=1

sim(e, ai) ~µ(e, ai) (4.3)

where the ai are the k most similar attributes, as described above. Thus, the font vectors

are a weighted average of the vectors for related attributes, after possibly inverting their

respective vectors.
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Figure 4.4: Emotion attributes using the three most incongruent fonts as predicted by
our method. The renderings on the first line use the fonts ranked 198th, the second
line uses fonts ranked 199th, and the third line uses fonts ranked 200th.

4.1.2 Results

Figure 4.2 depicts the top 3 fonts that are most strongly associated with the ten emotion

attributes, whereas Figure 4.3 shows sample fonts that are predicted to be neutral in

terms of the respective emotion. Figure 4.4 shows the three fonts for each emotion

that are found to have the weakest associations. More specifically, the neutral fonts for

emotion e are defined as those that are in the middle of the ranked font vector ~er of

size n, namely ~eri for i ∈ {n2 −1, n2 ,
n
2 +1}, where ~er1 has the strongest association with

the emotion, and ~ern has the weakest association. In all figures, the emotion names are

rendered using the corresponding fonts.

The fonts that are strongly associated with emotions share some special charac-

teristics. For instance, for joy, we encounter handwriting-style typefaces, whereas for

disgust, we find display fonts with salient stylization. It should also be noted that

not all fonts that share these characteristics are strongly associated with these emo-

tions, since the relationships between emotion attributes and font characteristics are

not straightforward.

4.1.3 Evaluation

To assess the quality of the obtained emotion font score predictions, we carry out a

user study.

User Study. For each of the ten emotion attributes, we generated four tasks with

different random font choices. An example is given in Figure 4.5. Each task includes 5

fonts, two congruent fonts selected randomly among the top-scoring 10 fonts for that

emotion, two incongruent fonts selected randomly among the lowest-scoring 10 fonts



36

Figure 4.5: An example task for positive. The second and fifth fonts are congruent, the
third and fourth is incongruent and the first is neutral.

for that emotion, and one neutral font selected randomly among the ten fonts that are

in the middle of the ranked list of fonts. In each task, the user is requested to select

a single image that best reflects the semantics of the word. As described above, the

available options include the same word presented using five different fonts.

Each task is carried out by 30 participants via Mechanical Turk, all from the United

States, with at least 5,000 approved hits and an overall approval rating of 97% or more.

We used counterbalancing, i.e., half of the users received the tasks in the reverse order

from the other half. We also used three validation tasks, and eliminated results of three

participants who incorrectly answered all three of them.

Figure 4.6: Results (in %) for the user study evaluating the obtained emotion-font
associations. With uniformly random selections, congruent, neutral and incongruent
options have a 40%, 20%, or 40% chance of being selected, respectively.

Emotion X2(2) p

anger 52.803 < .001
anticipation 14.654 < .001

disgust 39.534 < .001
fear 65.519 < .001
joy 114.53 < .001

negative 17.069 < .001
positive 26.143 < .001
sadness 1.8413 .3983
surprise 44.726 < .001
trust 26.553 < .001

Table 4.2: Chi-square goodness of fit test results for the user study from Section 4.1.3.
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Evaluation Results. Figure 4.6 summarizes the results of this user study. The

congruent bars represent the percentages of selections in which the congruent fonts

(those in the top 10 for that word) are preferred. Similarly, the neutral and incongruent

bars represent the percentages of choices of neutral and incongruent fonts, respectively.

The average is 64% for congruent font preferences. Compared to the expected value

of 40%, this shows a strong trend toward the fonts predicted to be congruent, hence

validating our results in general. Similarly, the preferences for the fonts that are found

to be incongruent by our method was much lower than the expected value, with an

average of only 20%.

In Table 4.2, we provide statistical analysis for the user study results using chi-

square goodness of fit test. This test compares observed sample distribution with

the expected probability distribution to check whether there is a significant difference

between the two. In this study, the expected probabilities are 0.4, 0.2, and 0.4 for the

categories congruent, neutral, and incongruent, respectively. Results for all emotions

except anticipation and sadness support our method based on a significance level set at

0.05. The emotion sadness has a p value above the significance level, and the emotion

anticipation was significant but in an unexpected direction. This suggests that different

emotions may differ in how saliently and uniquely they are associated with visual font

characteristics (cf. Section sec:discussion).

4.2 Lexical Mapping

The next phase involves computing font vectors for words that reflect the degree of

association between words and potential fonts. As shown earlier in Figure 4.1, we rely

on the results of the Basic Emotion Mapping from Section 4.1 as our input, along with

data from a word–emotion lexicon, to induce our FontLex resource.

4.2.1 Method

EmoLex [63] provides binary emotion association indicators between words and the

emotion attributes e ∈ E listed in Table 6.1. There are 6,468 words with at least one
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Figure 4.7: Selected words rendered using the three most congruent fonts as predicted
by our method. The renderings on the first line uses the fonts ranked 1st, the second
line uses fonts ranked 2nd and the third line uses fonts ranked 3rd.

Figure 4.8: Selected words rendered using the three fonts from the middle of the ranked
list as predicted by our method. The renderings on the first line uses the fonts ranked
99th, the second line uses fonts ranked 100th and the third line uses fonts ranked 101st.

Figure 4.9: Selected words rendered using the three most incongruent fonts as predicted
by our method. The renderings on the first line uses the fonts ranked 198th, the second
line uses fonts ranked 199th and the third line uses fonts ranked 200th.



39

emotion association in their data. For words w in this set, we consider their data as

providing vectors ~wE ∈ [0, 1]|E|.

To generate a font vector ~wF for a word w, we compute

~wF = 1
‖~wE‖1

ME ~wE (4.4)

where ‖~wE‖1 denotes the `1 norm of ~wE and ME = [~e1 . . . ~e|E|], i.e., a matrix with

columns that capture the font vectors for the emotions e ∈ E (in the same order as

captured in ~wE).

4.2.2 Results

Figure 4.7 shows the top three congruent fonts associated with ten sample words, Fig-

ure 4.8 shows sample fonts that are predicted to be neutral for the respective words, and

Figure 4.9 shows the most incongruent three fonts for the same words. In all images,

the words are rendered using the corresponding fonts. These words are among those

used in the evaluation user study in the following section.

Figure 4.10: An example task for the word certify. The second and fifth fonts are
congruent, the first and third is incongruent, and the fourth is neutral.

4.2.3 Evaluation

We evaluate the dataset through a user study. In the following, we provide details on

the design and the results of this study.

User Study. For our study, we consider 25 words randomly selected from the

set of words with at least one salient font association. For this purpose, we consider

any of the 3,882 words that have a score of 0.75 or higher in any of the components

of their respective font vectors. For each of the random 25 words, we generated two

tasks with different random font choices. We have reduced the number of tasks to two,
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compared to the four tasks used in the previous section, to keep the total number of

tasks reasonable for each participant.

An example task for the word certify is given in Figure 4.10. Each task includes

5 fonts, two congruent fonts selected randomly among the top-scoring 5 fonts for that

word, two incongruent fonts selected randomly among the lowest-scoring 5 fonts for that

word, and one neutral font selected randomly among the three fonts that are in the

middle of the ranked list of fonts for the word. The decision to use 5 fonts as opposed

to 10 is again based on considerations regarding the workload per user.

Each task involves a user being requested to select the image that best represents the

word. As described above, the available options include the same word presented using

five different fonts. Each task is carried out by 30 participants in Mechanical Turk, all

from the United States, with at least 5,000 approved hits and an overall approval rating

of 97% or more. We used counterbalancing and eliminated results of one participant

that accidentally completed both of the original and reversed task sessions. We have also

used three validation tasks, and eliminated results of one participant that incorrectly

answered both of the two validation tasks.

Figure 4.11: Results (in %) for the user study evaluating the obtained word-font asso-
ciations.
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AG AN D F J N P SA SU T
appreciation 0 0 0 0 1 0 1 0 0 1
cab 0 0 0 0 0 0 1 0 0 0
certify 0 0 0 0 0 0 0 0 0 1
conformance 0 0 0 0 0 0 1 0 0 0
congenial 0 0 0 0 0 0 1 0 0 0
daughter 0 0 0 0 1 0 1 0 0 0
elegance 0 1 0 0 1 0 1 0 0 1
guiilty 1 0 0 0 0 1 0 1 0 0
instruct 0 0 0 0 0 0 1 0 0 1
kill 0 0 0 1 0 1 0 1 0 0
lifeless 0 0 0 1 0 1 0 1 0 0
loyalty 0 0 0 0 0 0 1 0 0 1
massacre 1 0 1 1 0 1 0 1 0 0
medley 0 0 0 0 0 0 1 0 0 0
murky 0 0 1 0 0 1 0 1 0 0
noble 0 0 0 0 0 0 1 0 0 1
oracle 0 1 0 0 0 0 1 0 0 1
outcome 0 0 0 0 0 0 1 0 0 0
peaceful 0 1 0 0 1 0 1 0 1 1
persistent 0 0 0 0 0 0 1 0 0 0
precedence 0 0 0 0 0 0 1 0 0 1
resign 1 0 1 1 0 1 0 1 0 0
shameful 0 0 0 0 0 1 0 1 0 0
tickle 0 1 0 0 1 0 1 0 1 1
verified 0 0 0 0 0 0 1 0 0 1

Table 4.4: Emotion associations for the words from the user study. (AG: Anger, AN:

Anticipation, D: Disgust, F: Fear, J: Joy, N: Negative, P: Positive, SA: Sadness, SU:

Surprise, T: Trust)

Evaluation Results. Figure 4.11 summarizes the evaluation results for the 25 ran-

domly selected words as described above. The congruent bars represent the percentages

of selections in which the congruent fonts (those in the top 5 for that word) are pre-

ferred. Similarly, the neutral and incongruent bars show the percentages of choices of

neutral and incongruent fonts, respectively.

The average is 59% for congruent font preferences, which shows that the consensus

between our data and the users were strong. The strongest preference is obtained for

the word murky, with a value of 82%, whereas the lowest is for the word resign with

20%. Similarly, the average for the incongruent preferences was only 23%, bearing

further witness to the quality of the results. Only two out of twenty-five words, namely

lifeless and resign, received congruent preferences that are less than the expected value
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of 40%. Such results are expected, given that different words may differ in the strength

and uniqueness of their associations (cf. Section 6.7).

Table 4.4 displays the corresponding emotions for the words used in the evaluation,

allowing us to analyze the relationship between the success of the two datasets. In some

cases, words associated with the same set of emotions obtained similar user ratings, such

as instruct, noble, precedence, and verified. Whereas in some cases, words with the same

emotion set obtained quite divergent ratings: massacre and resign.

4.3 Extensions to FontLex

In this section, we present methods to extend the dataset and increase its accuracy.

4.3.1 Complex Emotion Mapping

We propose using Plutchik’s Wheel of Emotion [27] to infer font scores for complex

emotions (e.g., hope). Plutchik’s theory suggests that complex emotions are indeed

combinations of basic ones, referred to as dyads. For instance, the theory posits that

hope is a superposition of the more basic emotions anticipation and trust. Relying

on the font vectors ~e obtained in Section 4.1, we compute font vectors ~c for complex

emotions c ∈ C as

~c = 1
2(~ei + ~e(j)),

where the ei and ej are the underlying basic emotions for c, and i and j are their indices

from Table 6.1.

Figure 4.12 provides dyads for all c ∈ C, while rendering the words for each basic

and complex emotion with the most congruent font as inferred by our study. As an

example, the first entry suggests that anticipation and joy together evoke the feeling

of optimism. The font determined as most congruent for optimism appears to combine

visual characteristics of both its underlying basic emotions, namely anticipation and

joy.



43

Figure 4.12: Emotion combinations (dyads) from Plutchik’s Wheel of Emotion, ren-
dered using the congruent fonts as determined by our study.
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basic emotions sentiment
aggressive anger, fear negative
anxiety anger, anticipation, fear, sadness negative
awe – –
contempt anger, disgust, fear negative
curiosity anticipation, surprise positive
cynic – –
delight anticipation, joy positive
despair anger, disgust, fear, sadness negative
disapproval sadness negative
dominance – –
envious – negative
guilt disgust, sadness negative
hope anticipation, joy, surprise, trust positive
love joy positive
morbid sadness negative
optimisim anticipation, joy, surprise, trust positive
outrage anger, disgust negative
pessimism anger, fear, sadness negative
pride joy positive
remorse sadness negative
sentimentality – positive
shame disgust, fear, sadness negative
submission – –
unbelief – negative

Table 4.5: Basic emotion and sentiment associations of complex emotions as suggested

by EmoLex.

The obtained font scores for complex emotions serve two purposes. The first is that,

similar to the basic emotions, they could be used as seed information to infer higher-

quality font vectors for arbitrary words. A second purpose is to override font vectors

for the complex emotion words in FontLex, potentially improving its accuracy.

To explore this more, we assess how the complex emotions described by Plutchik’s

Theory are annotated in EmoLex [63]. For these complex emotion words, Table 4.5

lists the corresponding basic emotions as given by EmoLex. The most notable problem

is that 7 of the 24 complex emotions are not associated with any basic emotions. This

might stem from issues of ambiguity, e.g., for submission. However, 3 of these 7 words

with missing emotions are actually assigned a sentiment, which reduces the likelihood

of such issues for these entries. Indeed, none of these associations are exact matches to

their corresponding dyads. In total, 11 complex emotions have emotions assigned but

miss at least one of the dyad emotions (e.g., love, guilt). Out of these, five complex

emotions have only one basic emotion associated. In addition, 6 complex emotions
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Figure 4.13: Examples of synonyms retrieved form WordNet for the attributes boring,
dominance, joy, wide and sharp; rendered using congruent fonts.

have the two emotions from the dyad defined by Plutchik, but also additional ones

(e.g., optimism, hope).

Overall, we conclude that EmoLex is incomplete in its description of complex emo-

tion words, and that relying on Plutchik’s theory can yield better font associations.

4.3.2 Semantic Relationships

We extend the dataset and increase its accuracy by accounting for semantic relationships

given by WordNet [65]. For all attribute words in A ∪ E ∪ C, in total 71 attributes (37

original font attributes from [21], 10 basic emotion attributes as computed in Section 4.1,

and 24 complex emotion attributes as computed in Section 4.3.1), we gather synonyms.

For the original font attributes, we gather the set of words that share a common synset

with the attribute names (such as the words deadening, dull, ho-hum, irksome, slow,

tedious, tiresome and wearisome for the font attribute boring). We then go through this

list manually to exclude any synonyms with an irrelevant meaning (such as the word

building complex for the font attribute complex). For the basic and complex emotion

attributes, we pick the sense describing an emotion, and then use the synonyms from

these synsets. These synonyms are assigned the font vectors of the corresponding words

in A∪E∪C. This results in 464 additional word-font assignments, 166 of which override

the ones from the methods in Sections 4.1 and 4.2 While small in number, these provide

for particularly salient associations (examples provided in Figure 4.13).
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Figure 4.14: Basic emotions rendered using the three most congruent fonts from the
extended font set (excluding 200 fonts from the original dataset) as predicted by our
method.

4.3.3 More Fonts

Our study relies on the data from [21], which connects 200 fonts with 37 attributes. In

the previous sections, we extend its attribute set and connect it with the words from

EmoLex, keeping the font set the same. We now proceed to extend our lexicon to use

further fonts following the method proposed by ? ].

Our goal is to predict font vectors ~f ′ for fonts f ′ /∈ F . To achieve this, we use

weighted k-nearest neighbors (k–NN) regression using 4 neighbors. The weighted k–

NN approach generates weights using the following equation.

wi = 1
3

4∑
j=1
i 6=j

d(f ′, fj)

4∑
j=1

d(f ′, fj)
(4.5)

The distance between two fonts, denoted as d(fi, fj) is computed using Convolu-

tional Neural Network (CNN) embeddings from (author?) [55]. For each font, an

image is generated rendering the letters (L,a,s,e,g,d,h,u,m,H,l,o,i,v) on a grid. These

images are processed by the CNN and the obtained representations can be regarded as

visual font embeddings. The visual distance between two fonts can then be computed

as the Euclidean distance of their visual font embeddings.

Subsequently, the weighted values are generated as follows:

~f =
4∑
i=1

wi ~fi (4.6)

Using the above approach and aforementioned embeddings, we extend our dataset

from 200 to 1,922 fonts, while each font vector include scores for every word in A∪E∪C.
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Figure 4.15: A word cloud of complex emotions rendered using fonts from the extended
font set (excluding 200 fonts from the original dataset) that are inferred to be congruent
by our method.

Figure 4.14 presents basic emotions using the most congruent three attributes from the

extended dataset. We exclude the fonts from the original dataset to be able to portray

results from just the extension.

Finally, the word cloud in Figure 4.15 provides complex emotions rendered with

corresponding high-scoring fonts from the extended font set.

4.4 Application Example

In this section, we introduce a proof of concept Poster Design application for which

FontLex could prove useful. In this example, the tool provides two types of support.

In the first scenario, the tool recommends a font for a poster based on the words it

includes. We compute a font vector ~p for a poster P as follows:

~p = 1
n

n∑
i=1

~wi (4.7)

where ~wi are the font vectors for the words wi in poster P . We omit the words

for which no font vector is found in FontLex. A sample is provided in Figure 4.16. In

this example, the image on the left shows the poster with the default font, whereas the

image on the right makes use of the recommended font (the font with the highest score

in ~p).

In the second scenario, each word is assigned a different font. For proof of concept

purposes, we focus on semantic congruence, and ignore other important design concerns

such as the harmony of different fonts. For a word wi in P , the fonts with the highest
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Figure 4.16: A poster design example where the congruent font recommendations for
the poster is generated using FontLex.

Figure 4.17: A poster design example where a congruent font is individually recom-
mended for each word using FontLex.

values in ~wi are considered as candidate fonts and one of them is selected randomly.

Figure 4.17 provides an example, in which different fonts are assigned to the words in

the poster. The poster on the left uses the default font, whereas the poster on the right

makes use of the recommended fonts.

4.5 Discussion

In this section, we discuss our results and potential applications of FontLex and of

dyads as a means of inferring complex emotions.
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4.5.1 Results

We have introduced two datasets that connect emotions and words with fonts in terms of

real-valued scores. Besides showing strong support for the datasets, the user evaluations

also revealed that the performance varies for different emotions and words. Below, we

discuss the potential sources for these differences.

For the emotion–font dataset, one reason for the differences between results could

be the varying potential of fonts to represent or evoke different emotions. This could

be observed in the results for anticipation, for which determining a font type may prove

difficult even for an experienced graphic designer. It is also observed that emotions with

higher arousal, namely anger, disgust, fear, joy, and surprise, received higher congruent

user preferences compared to other emotions, which may be a direction that merits

further analysis.

The second reason may be a lack of appropriate similar attributes in the crowd-

sourced seed dataset. Looking at Table 6.1, it could be argued that joy has semantically

close neighbors in the dataset, whereas this is not the case for anticipation.

For the word–font dataset, assessing the underlying emotion connections in Table 4.5

may shed some light on the differences. Recalling that the lowest performing emotion–

font scores are for anticipation and sadness, one might expect that words associated

with these emotions are prone to showing fewer user preferences that are congruent.

The words associated with anticipation, namely elegance, oracle, peaceful, and tickle,

do not seem to possess the same difficulty, as the lowest preference for these words is

52% (for outcome), which shows a strong preference.

On the other hand, among the words associated with sadness, the words lifeless and

resign do not show such strong preferences. One might conjecture that this stems from

low-performing emotion–font associations. However, looking at this in more detail, we

find that kill and massacre have the same underlying emotion associations as lifeless

and resign, respectively. The fact that the fonts for kill and massacre received strong

support from users suggests that the word–emotion associations might have played a

role. Some words may have inaccurate or missing emotion associations, while other
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words may have weaker emotional associations than others, which is not reflected in

the binary scheme used by EmoLex. Using a dataset with real-valued scores instead of

binary associations might help to capture the latter case.

Fortunately, overall, both datasets have received strong support from users, with

around 60% and 64% of the average user preferences towards the fonts found to be

congruent by our datasets. Only for two words out of twenty-five, incongruent fonts

are preferred more frequently than chance would predict, i.e., 2
5 = 40%. In contrast,

for 23 words, congruent fonts are preferred more frequently than chance would predict.

Despite the subjective nature of font preferences and associations, we observe that there

is a clear correspondence between the fonts chosen by our method and those assessed

as appropriate by the human participants.

4.5.2 Application Areas

The main use cases we foresee for FontLex are font search and font recommendation.

Semantic Font Search. Currently, content creation tools that heavily rely on text,

such as word processors or graphic design tools, use traditional search methods for font

search. [21] propose semantic attribute based font search as a step towards sufficient

user support. We believe FontLex can help taking semantic search one step further by

providing search using any keyword instead of a predefined small set of attributes. This

could help users make use of a large number of fonts which is otherwise hard to achieve.

Its flexibility would also allow users to be more creative.

Font Recommendation. Font–emotion mappings and FontLex could be utilized

to enable semantic font recommendation, and we demonstrate such usage in Section 4.4.

In addition to the support described in the example, FontLex could be utilized to

provide more advanced support using some of its attributes (e.g., legible for readability,

artistic for aesthetics) as filtering options. For instance, in our poster design application

example, fonts could be filtered to pick only the display ones.
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4.5.3 Emotion Combinations (Dyads)

In this study, we use combinations of basic emotions to calculate scores for the complex

emotions based on the dyads provided by [27]. Based on our qualitative analysis, it is

a powerful method to infer complex emotions, which is otherwise a challenging task.

To the best of our knowledge, dyads have not been utilized before to infer complex

emotions of content. Thus, a similar approach could be applied to other domains, such

as for text and image.

4.5.4 Personal and Demographic Differences

Fonts are strongly tied to cultural elements, and hence may bear associations with

various concepts, such as historical epochs, brands, or even music genres. Although we

do not explicitly explore these connections, we believe the seed dataset that we rely on

[21] accounts for such associations implicity, as it is a crowdsourced dataset and the

emotional ratings that users provide are affected by such connections. At the same

time, there are also differences between users, especially based on their demographics,

such as culture, gender, and age. These personal and demographic differences of font

semantics remain to be explored.

4.6 Conclusions

Our study aims to support the development of font recommendation tools. Following

this aim, we have created FontLex, a dataset that maps 6.7K words to 1,922 fonts.

These derive mainly from the affective associations between words and fonts. The work

presented in this chapter was published in the proceedings of the 11th International

Conference on Language Resources and Evaluation [66] and in Language Resources

and Evaluation [67].
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Chapter 5

Multimodal Font Discovery

Given that thousands of fonts are now freely available online, selecting among them is

typically carried out via associated semantic and typographic tags. However, supporting

users in deciding which fonts to pick is challenging when this is based only on such

tagging. The ability of users to explore the different fonts is limited both by the

incompleteness of the tagging and the limited tag inventory. If the tag inventory grows,

the risk of missing tags for fonts increases. Even in an ideal scenario with a large tag

inventory and in the absence of any missing tag associations, users would still suffer

from the large number of fonts they would need to browse through to eventually find

the ideal font for their use case.

In a recent user study, Wu et al. interviewed design practitioners regarding their font

selection process and the challenges they faced [30]. Unsurprisingly, one of the main

difficulties reported by the participants was identifying fonts that match a particular

semantic profile. One participant reported this as follows:

“When I’m looking for a particular font, [I] know what feeling [I] want the

font to have. But I just spent so much time browsing and browsing, and

still couldn’t find the one.”

This suggests the need for systems that support a more open-ended form of font dis-

covery, allowing users to search for arbitrary attribute query words, including ones that

are not present as tags in the data at all.

In the same user study, the participants also expressed their desire to slightly modify

fonts that otherwise partially fulfilled their needs but were “just a little bit off” [30].
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Figure 5.1: An example font search using the proposed multimodal querying strategy.

They further emphasized the need for unique fonts, so as to avoid very popular fonts

and better differentiate their design product from those of competitors.

In this chapter, we propose a new multimodal font discovery method in which users

provide a reference font that is visually similar to what they are seeking but only

partially fulfills their needs, along with the changes they would like to obtain to get

closer to their ideal font. In our proposed method, the changes are specified using

keywords. Focusing on a similar problem, Ishibashi1 et al. [50] allow users to specify

the stylistic changes they want to see by modifying the sketch of the reference font.

Laenen et al. [68], on the other hand, propose a form of multimodal search that involves

specifying keywords together with the reference item, but for the fashion domain.

Figure 6.1 shows an example of our proposed approach. If the user likes the style

of a certain font, but needs a happier version of it, they can provide that font as a

reference and indicate the change(s) they wish to have.

Using this mechanism, the users not only satisfy their need to slightly modify a font,

but also have the ability to explore niche sections of the available font inventory to

find a unique font, without spending their effort on reviewing fonts that are far from

what they need. We enable this form of search strategy by embedding fonts and words

into a joint cross–modal representation space, enabling the use of multimodal vector

arithmetic.
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Figure 5.2: Sample font ”Mountains of Christmas” with the tags: serif, christmas,
bouncy, staggered, curly, cute, playful, casual, warm, fun, handwritten, text, google web.

The above technique not only enables novel font discovery methods, but also helps

overcome other semantic challenges, specifically, the challenges of limited tag inventories

and of missing font–tag connections. Users obtain access to the entire vocabulary that

the language (in our case English) provides, and a font need not be tagged with the

specific words that users associate them with, since the method is able to infer such

connections.

The rest of the chapter is organized as follows. Section 5.1 describes our data

acquisition process to procure a large tagged font collection. In Section 5.2, we introduce

our method to induce cross–modal vector representations. Section 5.3 then presents how

we can use our method to search for fonts based on an arbitrary desired attribute, while

Section 5.4 describes how we can invoke it to estimate font similarity, so as to find fonts

based on a reference font. These are the two key building blocks of our multimodal

search strategy, which is presented in Section 5.5. We conclude the chapter in Section

6.8 with a brief summary and discussion of our results.

5.1 Font Tagging Data

Our study assumes a large collection of fonts along with substantial (yet incomplete)

social tagging. In the following, we describe how we procure such a dataset.

5.1.1 Data Crawling

We collected font–tag associations from www.1001fonts.com, a website that catalogs

font files along with user-assigned tags. In Figure 5.2, a sample font name is shown

together with its associated tags. As for most such Web resources, font families are

tagged as a whole, e.g., the italic or bold versions of a typeface are not tagged sepa-

rately. Similar to previous work [26], we adopt the ”regular” version of a font family for
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Figure 5.3: Histograms analyzing tag frequencies. (a) Distribution of tag frequencies
across the entire dataset. (b) Distribution of tag counts per individual fonts.

Figure 5.4: Tags digital, hairline, bouncy, playful, futuristic, halloween, graffiti, hand-
written, and children rendered using examples of fonts tagged accordingly in the dataset.

use in our dataset. Unlike previous studies, however, we apply a series of data cleaning

steps to reduce the noise to the extent possible.

5.1.2 Data Cleaning

We filter out irrelevant fonts and tags as an attempt to clean otherwise noisy Web data.

Filtering Out Fonts. Dingbat fonts are fonts that consist entirely of symbols in-

stead of alphabetical or numerical characters. They are used for decorative or symbolic

purposes. As they are not relevant in rendering text, we discard all fonts assigned the

dingbat tag in the data, which accounts for around 600 fonts.
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Figure 5.5: Sample emotion-expressing attributes rendered using fonts tagged accord-
ingly in the dataset.

Filtering Out Attributes. As we are interested in tags that describe semantic

attributes of fonts and enable font discovery along such attributes (e.g., “happier”), we

eliminate around 100 tags that merely denote font families (e.g., serif, sans-serif, slab

serif ) or other types of information (e.g., google web, 10pt, 12pt) that are not directly

related to font semantics. We also eliminate a few tags that are not in English. We

retain typographical tags that have the potential to provide semantic connections, such

as wide, handwritten, gothic, poster, and outlined.

As a concrete example, for the font given in Figure 5.2, the tags serif, text, google

web, and medium are eliminated, leaving the font with the tags christmas, bouncy,

staggered, curly, cute, playful, casual, warm, fun, handwritten, and light.

5.1.3 Dataset Summary

After the above filtering, the resulting dataset contains around 10.4K fonts, 2.6K tags,

and 54K font–tag assignments, with an average of 5 tags per font. Figure 5.3 shows the

distributions of (a) overall tag frequencies and (b) tag counts per font. Most tags are

used to tag fewer than a hundred fonts, and most fonts have fewer than 10 tags. Figure

5.4 displays three font examples for nine selected tags from the dataset, aiming to give

a feeling of the range of the semantic connections. Figure 5.5 provides examples of

fonts for sample emotion-expressing attributes. Figure 5.8 in Section 5.3 also provides

examples of fonts for the ten most frequent attributes.
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Figure 5.6: Overview of the proposed cross–modal representation induction method.

5.2 Cross–Modal Representation Learning

In order to facilitate identifying fonts that are similar to a given input font but differ

along a particular attribute (“like this but happier”), we induce a cross–modal vector

representation space. This not only allows us to jointly embed both fonts and query

words in a single vector space, but also allows us to conduct vector arithmetic to locate

fonts that better match a given semantic profile.

Our vector space induction method is summarized in Figure 5.6. We induce font

embeddings using a deep convolutional neural network, and induce word embeddings

by modifying pretrained distributed word embeddings to better satisfy antonymy and

synonymy constraints. The final step is to connect the aforementioned font and word

embeddings in a single cross–modal vector space.

Our method assumes as input a set F of fonts, which are associated with a set A

of font attributes via a Boolean font–attribute matrix M ∈ {0, 1}|F|×|A| based on the

data described in Section 5.1.
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5.2.1 Font Embedding Induction

Our first goal is obtain a font embedding matrix F ∈ R|F|×d that in its rows provides

a d-dimensional vector representation vf ∈ Rd for each font f ∈ F .

These vector representations are expected to reflect visual similarity, i.e., fonts f ,

f ′ that are visually similar ought to have similar vectors vf , vf ′ . To achieve this, for

each font f ∈ F , we generate an image rendering a fixed set of 14 different letters from

the alphabet using that font so as to demonstrate its visual characteristics.

We then feed these images into a deep convolutional neural network with residual

connections, specifically a ResNet-18 [69] model pre-trained on ImageNet [70]. For each

font, we extract the resulting 512-dimensional latent representation from the average

pooling layer of the model.

Finally, for dimensionality reduction to d = 300 dimensions, we apply Principal

Component Analysis (PCA) and project every latent font representation into the space

spanned by the first d principal components in order to obtain the desired matrix F

with d-dimensional vectors vf ∈ Rd for fonts f ∈ F .

5.2.2 Word Embedding Induction

Our next goal is to induce vector representations of tags. We start out with the widely

used 300-dimensional word2vec vectors pretrained on a large Google News dataset [71],

which provides a word embedding matrix W ∈ R|V|×d for a large vocabulary V of

English words. The vectors are based on contextual information and the corresponding

vector similarities reflect distributional similarity.

However, distributional similarity in general and word2vec word vectors in particular

tend to give similar representations to words with opposite meaning such as formal

and informal [72]. To alleviate this issue, we apply the Counter-fitting algorithm [73]

to transform the original word embedding matrix W into a new embedding matrix

W′ subject to antonymy constraints A and synonymy constraints S. The algorithm

minimizes the loss function
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`(W,W′) =
∑

(u,w)∈A
1− d(v′u,v′w)

+
∑

(u,w)∈S
d(v′u,v′w)

+
∑
w∈V

∑
u∈N(w)

max(0, d(v′u,v′w)− d(vu,vw)), (5.1a)

where the notation vw denotes the vector for w in W, v′w denotes the vector for w in

W′, and N(w) denotes the set of nearest neighbors of w in W′ with cosine similarity

≥ τ = 0.8. For the setting of τ as well as the constraint sets A and S, which are

extracted from PPDB [74] and WordNet [75], we follow the original study [73].

The resulting output embeddings W′ are of the same dimensionality as the input

embeddings, i.e., 300-dimensional.

5.2.3 Cross–Modal Font–Word Representations

Finally, we induce a cross–modal vector space that jointly embeds both fonts and words.

We start out with the font embedding matrix F from Section 5.2.1 and the modified

word embedding matrix W′ from Section 5.2.2.

In order to be able to connect these two spaces, we draw on the font–attribute matrix

M ∈ {0, 1}|F|×|A| based on the tagging data described in Section 5.1, from which we

enumerate a set of pairs

M =
{

(i, j)
∣∣∣ wj ∈ V, i ∈I⊂{i|mij>0},|I|≤k

∑
i∈I

1∑
j′ mij′

}
. (5.2)

Thus, for each tag wj in our word embedding vocabulary V, we retain the top-k fonts

ranked in terms of the inverse of the number of tags those fonts have. The intuition of

this filtering is that fonts with fewer non-zero entries mij′ in M tend to more specifi-

cally represent their tags compared to fonts that have numerous different tags. In our

experiments, we consider different choices of k.

We construct new font and word alignment matrices F0, W0, such that the n-th row

contains the font embedding from a normalized version of F for the font in the n-th entry

in M , or the word embedding from a normalized version of W′ for the tag mentioned
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in that entry, respectively. For this normalization of F and W′, we first normalize

each row to have a length of 1, then apply column-wise mean centering, and thereafter

re-normalize each row to again have unit length [76]. To facilitate a mapping between

the font and word representations, we follow a framework originally proposed for cross-

lingual alignment [77]. We apply a variant of Mahalanobis whitening by computing

F1 = F0(FF
0 0)−

1
2 , W1 = W0(WW

0 0)−
1
2 so as to decorrelate different columns, as this

simplifies the cross–modal mapping.

To learn a mapping, we solve what is known as the Procrustes problem, which, fol-

lowing Schönemann (1966) [78], can be achieved by computing a singular value decom-

position (SVD) of FW
1 1 as UΣV = FW

1 1 to obtain orthogonal projection matrices U,

V of the two spaces into a single target space. We apply this mapping as F2 = F1UΣ
1
2

and W2 = W1VΣ
1
2 , where Σ

1
2 is incorporated for a symmetric reweighting of the

columns in both matrices according to their cross-correlation. Subsequently, we ap-

ply a coloring operation that reverses the aforementioned Mahalanobis whitening, by

computing F3 = F2U(FF
0 0)

1
2 U and W3 = W2V(WW

0 0)
1
2 V.

The final cross–modal output embedding matrix E provides vectors for fonts f ∈ F

taken from F3 in its first |F| rows and subsequently provides vectors for words w ∈ V

taken from W3.

5.3 Zero-Shot Attribute-Based Retrieval

In this section, we describe and evaluate how our cross–modal embeddings enable zero-

shot support for novel attributes. The goal is to be able to retrieve suitable fonts for

a new attribute a that does not at all occur in the font–tag dataset used to induce the

embeddings. In light of the incompleteness of social tags, this is an important task for

the font domain. Additionally, it is also important as an indicator of the potential of

our proposed multimodal discovery method, for which it serves as a key building block.
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5.3.1 Method

We first obtain a cross–modal embedding matrix E following the three steps of our

technique as described in Section 5.2. To predict the fonts associated with an attribute

a ∈ V, even if a /∈ A, we can consult E to obtain the cross–modal embedding ea for a

as well as the cross–modal embedding vectors ef for fonts f , and simply select those

fonts f ∈ F that maximize
ee
f a

||ef ||2 ||ea||2
, (5.3)

i.e., the ones most similar to a in terms of cosine similarity.

5.3.2 Evaluation

To evaluate this, we apply the above method for the 100 most frequent attributes a in

A using leave-one-out cross-validation. Thus, for each target attribute a, we separately

induce a different cross–modal embedding matrix E based only on the data for A \ a,

i.e., excluding a completely from M. The above method is used to retrieve suitable

fonts for attribute a without it having observed any annotations of this attribute at all.

Figure 5.8 shows top three fonts as predicted by this method for the most fre-

quent ten attributes. As an example, for the attribute handwritten, representations

are induced on the data excluding any tagging of fonts with the tag handwritten. The

three fonts presented for handwritten are fonts with font vectors of the highest cosine

similarity to our vector representation of the word handwritten.

The check marks next to the fonts indicate that the font is tagged with the corre-

sponding attribute in the Web dataset, and hence the prediction is deemed accurate.

The second font for handwritten has this symbol, confirming its accuracy. Nonetheless,

as the Web dataset is known to have missing tag annotations, the lack of an association

in the dataset does not necessarily mean that the prediction is inaccurate. In the case

of handwritten, all of the three predicted fonts appear to represent the attribute, thus

being accurate predictions.

To quantitatively evaluate the results in this setting, precision and recall are not

well-suited, due to the incomplete tag annotations. Instead, in Table 5.1 we report
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Top 10 Top 50 Top 100
Unconstrained representations 0.31 0.33 0.22
Full method – k = 1 Filtering 0.46 0.30 0.19
Full method – k = 10 Filtering 0.46 0.35 0.23
Full method – k = 50 Filtering 0.54 0.46 0.33
Full method – k = 100 Filtering 0.45 0.40 0.28
Full method – k =∞ (No Filtering) 0.49 0.34 0.23

Table 5.1: Mean reciprocal rank results for the 10, 50, and 100 most frequent attributes.
Unconstrained representations: cross–modal embeddings based on the original uncon-
strained word vectors. Full method: cross–modal embeddings obtained based on mod-
ified word vectors, connected to fonts using different font filtering thresholds k.

Figure 5.7: Top three fonts for the attributes narrow and wide as predicted by cross–
modal embeddings based on unconstrained original word vectors (without our modifi-
cation, k =∞).

the mean reciprocal rank for the top 10, top 50, and top 100 most frequent attributes,

which is based on the rank of the first predicted font for an attribute that is also

tagged as such in the Web dataset. This gives us a lower bound on the performance

of our method. In addition to the results for our full method, for comparison, we also

evaluate a variant of our method that omits the constraint procedure from Section

5.2.2 and instead projects regular word2vec embeddings into a common space with font

embeddings, without filtering (k =∞).

5.3.3 Results

Based on the results, our method retrieves fonts that are tagged with the corresponding

tag in the Web dataset in very early positions of the ranked list; i.e., approximately the

2nd result for the top 50 attributes, and the 3rd result for the top 100 most frequent

attributes when using top k = 50 fonts for training (Section 5.2.3).
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Figure 5.8: Top three fonts for the most frequent ten attributes as predicted by our
zero-shot attribute-based retrieval method. The check marks represent results that are
also tagged with the corresponding attribute in the Web dataset.

Our full cross–modal induction procedure results in better performance compared

to the unconstrained variant, as the latter is more likely to conflate attributes with

different meanings. Figure 5.7 shows the top three predictions for the attributes wide

and narrow using the unconstrained variant. The fonts seem to represent attributes that

are antonyms of the intended attributes. This explains the difference in performance

between the two approaches.

In Figure 5.8, we observe that, in certain instances, the intended meaning of an

attribute is different in the Web dataset compared to the word vectors. For example,

the word black as a font tag is typically used to represent very thick typefaces, while

based on the word vectors, it appears to be interpreted as a dark and pessimist concept

in zero-shot attribute-based prediction. Note that this issue can easily be avoided if we

move away from the zero-shot setting and instead incorporate a few instances of the

tag into our training.

Another interesting observation is that ambiguity may affect the results in some

cases. The tag light, for instance, is commonly used to characterize fonts with thin lines.

However, in our case, the top three most similar fonts show other kinds of characteristics

that may creatively exemplify being light in the sense of not being heavy, or perhaps are

associated with light in the sense of lighting. Technically, distributional word vectors

encode a linear superposition of all observed senses of a word [79]. Similarly, tags in

social tagging platforms are often used in ambiguous ways [80].
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5.4 Zero-Shot Font Similarity

We proceed to show how our cross–modal representations enable the prediction of font

similarity scores in a zero-shot setting, i.e., for fonts for which we do not possess any

social tag annotations. This as well is a useful building block for many font-related

tasks, including our proposed multimodal discovery method.

For evaluation, we draw on a crowdsourced dataset from O’Donovan et al. [21]. In

their study, in each task, a user was given a reference font and asked to select one out

of two provided font options that are most similar to the reference font. The dataset

(which will be referred to as T ) contains 2,340 such questions using 200 fonts, and a

total of 35,287 user responses. In our experiments, we exclude questions and responses

related to one single specific font for which we were not able to obtain the font file.

5.4.1 Method

We first train a cross–modal embedding matrix E as described in Section 5.2. For a

question with a reference font fr, and possibly similar font options fa and fb, we consult

E to obtain the corresponding vectors efr , efa , efb and simply select the font

f =f∈{fa,fb}
ee
f fr

||ef || ||efr ||
. (5.4)

User Agreement
≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.9 =1

Font 70.20 73.05 77.06 81.20 86.48 90.64
Unconstr. 70.50 73.36 77.51 81.80 87.14 90.68
Full (k =∞) 70.85 73.77 77.94 82.31 87.70 91.55
Full (k = 50) 70.89 73.86 78.07 82.44 88.03 91.78
Oracle 81.29 85.23 89.51 93.53 97.26 100.00

Table 5.2: Individual user choice based experiment results for different user agreement

levels. The column for the 0.5 agreement shows the results for the entire dataset, as

the agreement cannot be lower than 0.5. Oracle shows the maximum possible accuracy,

as users don’t always agree.
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Figure 5.9: Sample high user-agreement questions that our method also agrees with
(i.e., all users and our method pick the highlighted options).

Figure 5.10: Sample high user-agreement questions that are answered differently by our
method (i.e., all users select the highlighted options, whereas our method selects the
others).

User Agreement
≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.9 =1

Font 77.39 79.25 82.68 84.97 88.21 90.43
Unconstr. 77.78 79.45 83.10 85.67 89.08 90.61
Full (k =∞) 78.26 80.00 83.58 86.21 89.63 91.48
Full (k = 50) 78.00 80.05 83.71 86.29 89.96 91.65

Table 5.3: Majority-choice based experiment results for different user agreement levels.

The column for the 0.5 agreement shows the results for the entire dataset, as the

agreement cannot be lower than 0.5. The maximum accuracy in each column is 100%,

as for each question, the option with the majority of the votes is considered as the user

choice.

5.4.2 Evaluation

We ensure a zero-shot evaluation setting by obtaining a new cross–modal embedding

matrix E based on training data M that includes only tag associations for fonts f ∈

F \T , i.e., fonts not considered in the evaluation data. For each question in the referred

dataset, we can then predict the answer for the similarity question and compare it

against the answers provided by the human annotators.
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For some questions, users have strong agreement (e.g., all users that answered the

question select the same option), whereas for others the agreement is lower (e.g., 8

users selecting option A, 7 users selecting option B). We thus analyze the performance

of our method for different user agreement levels. Figures 5.9 and 5.10 show examples

of questions with high user agreement, where our method agrees with the users on the

examples from Figure 5.9 and disagrees with them for the ones in Figure 5.10.

We provide quantitative results in Tables 5.2 and 5.3. The results in Table 5.2

consider each user response for a question as a separate data point, and report the

percentage of agreement between our method and user responses for different user

agreement thresholds. In contrast, the results in Table 5.3 consider each question as a

data point, and assume that the option with the majority of the user votes is deemed

the correct response for that question.

5.4.3 Results

In both tables, results are compared for our original font embeddings F (“Font”), un-

constrained (“Unconstr.”) cross–modal embeddings obtained using original word2vec

word vectors without the constraint-based modification from Section 5.2.2 and with

k = ∞, and our full-fledged method to obtain the cross–modal embedding matrix E

(“Full”).

Overall, for all user agreement levels, the best results are obtained using our full

method. In all but one cases, our method obtains the best results when filtering top

k = 50 fonts as described in Section 5.2.3, compared to using all available data for

training.

This shows that our method of incorporating semantic information into the visual

font embeddings via cross–modal alignment yields a representation that is slightly closer

to human perception.

We find that as the user agreement increases, the accuracy of our method also

increases. Analyzing the disagreements, one of the insights is that users very rarely

rate an all-caps font as similar to a mixed-case font, whereas our method is likely to
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do so, such as for the question on the left in Figure 5.10. Such preferences could be

learned using a supervised font similarity method.

Our unsupervised results come fairly close to the supervised results of O’Donovan

et al. [21], who were able to reach an overall individual user choice accuracy of 76.04%

(where the oracle upper bound is 80.79%) on the same evaluation dataset, except for

the one missing font in our experiments. Their method, however, is a supervised one

that learns a similarity metric on a training fold of this evaluation dataset, and also

uses a complete labeling of a set of semantic attributes of the fonts, whereas our method

is completely unsupervised with regard to font similarity, and, as mentioned above, we

also completely omit any available tag information about the tested fonts in order to

make it a zero-shot experiment.

5.5 Multimodal Font Discovery

At this point, the results from Section 5.4 show how our cross–modal representations

allow us to find similar fonts based on a reference font, while earlier, in Section 5.3, we

saw how we can find fonts matching a desired attribute specification.

In this section, we show how these two notions can be combined to enable a novel

form of multimodal font discovery, and demonstrate its results through sample queries.

5.5.1 Method

We create the cross–modal embedding matrix E as described in Section 5.2 using the

Web font–tag dataset detailed in Section 5.1. For a given font f ∈ F and any suitable

word w ∈ V, our goal is to find fonts f ′ ∈ F that are similar to f and, at the same

time, represent the attribute w. Note that this word w need not have occurred as a tag

in our tagging dataset.

We first lookup in E the cross–modal representations of f and w as ef , ew, respec-

tively, and then compute a target cross–modal representation

et = ef + ew. (5.5)
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Figure 5.11: Multimodal query samples with top-1 results.
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Figure 5.12: A multimodal query providing alternative directions in the top-3 results.

Given this target, we select the fonts f ′ ∈ F that maximize

ee
t f ′

||et|| ||ef ′ ||
. (5.6)

5.5.2 Examples

We demonstrate our method using results for sample queries. Figure 5.11 showcases

sample queries that yield potentially relevant fonts as the top-1 result. The samples

cover the query attributes futuristic, confident, elegant, fun, and professional, together

with reference fonts with strong profiles. The multimodal queries are able to achieve the

modifications mandated by the specified attributes while retaining the visual aesthetics

of the reference fonts. In another example given in Figure 5.12, the second result

appears to be significantly different from the first and third results. Yet, all results

seem relevant to the query. This variety enables users to navigate in different directions

in their intended search space. The examples from Figure 5.13 show that it is also

possible to expand our method to include multiple attributes. This is particularly

useful when the user does not have any particular reference font as a starting point but

instead simply starts from a neutral default one.

Limitations. As observed in the experiments from Section 5.4, in some cases,

users’ perception of similarity can diverge from the embedding’s notion of similarity.

The top query in Figure 5.14 shows a case where an outlined reference font yields a first

result that is not an outlined font. Despite the similarity between the reference font
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Figure 5.13: Multimodal query sample with two attributes used to modify the reference
font.

Figure 5.14: Multimodal query samples with top-2 results.

and the first result, user experiments are needed to assess to what extent users would

agree. Another issue is that for reference fonts that already strongly incorporate the

specified attribute, the results may not seem as strong, as e.g., for the second query

in Figure 5.14. Thus, further research is necessary to evaluate how users perceive the

query results for reference fonts depending on how strongly the reference already reflects

the specified attribute (e.g., strongly reflects, weakly reflects, does not reflect it).
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5.6 Conclusion

In this chapter, we develop a cross–modal representation for fonts and words, and

use it to enable zero-shot attribute-based font retrieval as well as similarity-based font

retrieval. Our experiments provide insights on properties of cross–modal embeddings

for fonts and words. Tag-based retrieval requires an accurate representation space that

properly reflects contrasts between different attributes. Accordingly, our full method

based on semantic constraints and top-k training data filtering shows improved results

compared to the unconstrained baseline.

We further show that font and attribute-based retrieval can be combined by propos-

ing a novel multimodal font searching strategy that allows the user to specify a reference

font together with the changes they wish to solicit. This allows users to quickly locate

new fonts that may better satisfy their design requirements.

In terms of future work, one observation, discussed in Section 5.3, is that for ambigu-

ous words, the distribution of meanings may differ between the typographical tags and

the general word embeddings. We focus mostly on semantic attributes in this study,

rather than typographic ones, and see the interaction between the context of the two

as a direction for future work. The work presented in this chapter was published in the

proceedings of the 28th ACM International Conference on Multimedia [81].
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Chapter 6

Affect-Aware Word Clouds

While word clouds have certain drawbacks as an analytical tool [82; 83], they are

widely adopted by people of all ages and occupations for non-analytic purposes, such

as preparing a gift, or introducing a topic [84]. Viegas et al. focus on a specific type

of word cloud, namely those generated by Wordle, finding that a key reason for the

tool’s greater success in comparison with alternative word cloud tools is the “emotional

impact” it creates through the tight layout it applies, and the font and color palette

options it provides [84]. This is exemplified by user comments from the study that

emphasize the importance of these signals, e.g.:

“Wordles have more emotional emphasis, colors, and layouts to enhance the

meaning” [84]

“Wordles are colorful, more visually interesting, more of an emotional re-

sponse and connection with the viewer than the tag clouds.” [84]

For some use cases, the primary purpose of the cloud is to convey the sentiment of its

input, e.g., when visualizing restaurant reviews. In such cases, the affective perception

of the cloud plays a critical role. Affect, thus, is a key factor to be considered in the

design of word clouds. Typography and color are two important aspects that may

influence the affect evoked by a word cloud. Figure 6.1 demonstrates how different

choices of fonts and colors may give rise to quite diverse affective associations.

The congruency between the textual content and the selected font has shown to have

a pronounced impact on the affective interpretation of the text [9; 21]. For instance,

different typefaces may result in distinct ratings for the same textual content with

respect to its perceived excitingness. It has been observed that the response times of
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Figure 6.1: Word cloud examples using fonts (first row) and color palettes (second row)
that are congruent with their message. Instead of randomly picking these paralinguistic
signals as current tools do, in this study we determine their congruency with a set of
eight affects, and propose a word cloud tool that helps users make congruent choices.

users decrease when fonts that are congruent with the message are used [6; 7]. Similar

ties have also been observed for individual colors [85–87] and color palettes [88].

Designers routinely expend significant effort in making typographical choices that

accord with the message that visual material is intended to convey. Thus, a word cloud

produced by a designer would typically incorporate colors and fonts that are congruent

with the message of the cloud. On the contrary, this may not be the case for non–

professional users, for a variety of reasons, including a lack of such awareness, or simply

an unwillingness to put in the time and effort. Despite the established relationship be-

tween typographic signals and affect, and the known impact of their congruency, word

cloud tools thus far neglect to support the users in making semantically informed typo-

graphical choices. Hence the impact of automatic means of improving the congruency

of fonts and colors in word cloud tools has remained under-explored. Towards the aim

of enabling such support, our contributions in this study are as follows:

1. Previous studies use human annotations to solicit font–attribute ratings. We

propose computational methods to obtain affective relationships based on other

ratings (Section 6.2).
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2. Through three user studies1, in Sections 6.3, 6.4, and 6.5, we show that congruent

fonts and color palettes, respectively, better reflect word clouds with affective

content, for a range of different affects.2

3. We find that fonts and color palettes have complementary strengths in conveying

affects, and for the majority of the considered affects, it is important to include

congruent signals using both the color palette and the font.

4. Existing word cloud generators choose fonts and colors based solely on aesthet-

ics or even randomly, neglecting their congruency with the intended affect. We

instead show how they can be utilized to make typographical recommendations

based on user-specified affects.

5. We further discuss a number of promising new directions for future research.

6.1 Related Work

Before describing the details of our method, we review related work on word clouds,

and color palettes.

6.1.1 Word Clouds

Word clouds have been of substantial interest to the academic community, especially

with regard to the employed layout algorithms [89; 90]. Several studies [91–93] focus

on semantic relationships of the words, e.g., placing semantically similar words closer

to each other. There are also studies aiming to create comparison clouds by combining

visualizations for multiple texts [94; 95].

Wordle [96] is a widely appreciated word cloud generation tool that aims to create

more pleasing word clouds (“wordles”) by adopting tighter layouts, e.g., allowing a

tiny word to appear within a character from a larger word, with several font and color

palette options. Through a user survey and analysis of resources on the Web, Viegas

1All studies in this chapter received IRB approval.
2Specifically, we consider the affective attributes calm, exciting, positive, negative, playful, serious,

disturbing, and trustworthy
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et al. [84] analyze the users and common use cases of wordles. The results show that

it attracts people of all ages, most of whom are educators or students (29%), with no

other occupation accounting for more than 6%. The main reason for the tool’s broad

appeal is found to be the its power to create an emotional impact by means of fonts,

colors, and layouts. Two other important factors are the attention-grabbing nature

and the organic non-linear layout of the generated word clouds. The use cases vary

from education (e.g., using Wordle to aid in introducing a topic to students) to gift-

giving (e.g., creating a wordle from wedding vows), and even guess the cloud games3.

Another insightful result of this analysis was that 88% of the users reported that they

feel creative when using Wordle.

ManiWordle [97] enables custom manipulations in a word cloud, based on changes

with regard to fonts, colors, and the layout, both at the cloud and word level. For

example, one may alter the color of a selected word so as to emphasize it. Although

this provides more control, users did not report feeling a strong difference in terms

of creativity compared to the regular Wordle tool. WordlePlus [98] further extends

ManiWordle to allow natural interaction on pen and touch-enabled tablets. EdWordle

[99] facilitates multi-word editing, while preserving the neighborhood, i.e., keeping non-

edited words close to their original locations. It applies a local re-wordle algorithm that

re-arranges the words to close gaps.

We are not aware of detailed studies on the use of fonts or colors in text visualization

from a semantic congruency perspective. A related study [100] uses font attributes,

such as underlining or small caps, to distinguish set membership in set visualizations,

including for emotions. Wecker et al. [101] propose using font properties such as size

and color to highlight the sentiment polarity of text passages. However, they do not

consider typefaces or their semantic connotations.

3http://guessthewordle.weebly.com/
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Table 6.1: Affective attributes associated with fonts

Index Attribute Name Index Attribute Name
1 calm 5 playful
2 exciting 6 serious
3 positive 7 trustworthy
4 negative 8 disturbing

6.1.2 Color Palettes

The impact of color has been studied extensively [85; 86]. Certain colors have been tied

to specific forms of impact on cognitive tasks, although their effect may vary between

tasks [102]. For instance, a choice of red has been found to be beneficial for detail-

oriented tasks, but it does not have the same effect on creative tasks. Similar to fonts,

colors have also been of special interest in marketing research [103; 104].

In contrast, the use of multiple colors together as a palette has not been studied to

the same extent, as explained by Bartram et al. [88]. To address this, they conducted

a study of color palette choices for a set of eight affects, which is also the source of

the color palettes in our work. The study establishes several relationships between

affects and perceptual color properties (hue, chroma, and lightness). As an example,

the attributes calm, playful, and positive are found to be associated with the lightest

colors. Among the core affects, calm is found to evoke the strongest color preferences.

Other notable findings include that highly saturated light colors are not a good fit for

serious, trustworthy, or calm, and that light colors, in general, are not very successful

in conveying a negative sentiment.

6.2 Affective Fonts

In this section, we present our method to computationally obtain font attribute asso-

ciations using crowdsourced seed data, and we evaluate that method through a user

study.

6.2.1 Method

Our goal is to compute font attribute vectors va ∈ R|F | which, for a given affective

attribute a ∈ A, reflect the perception of fonts f ∈ F with respect to the affect. The
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Figure 6.2: Top five congruent fonts obtained for each of the eight affects used in this
chapter.

set of affective attributes A is given in Table 6.1 and was chosen because it includes

the core affects in the PAD emotional state model [105] and is used in a previous study

on color [88], allowing us to compare the impact of fonts and color palettes. Given

the indices i from Table 6.1, we denote each affective attribute as ai and also use the

notation vi as a shorthand for vai , e.g., v1 as the vector for the affective attribute calm.

Each dimension of a particular va reflects the congruency of attribute a with respect

to a different font f ∈ F .

Similar to chapters 3 and 4, in this chapter, the set F consists of 200 different fonts,

taken from the aforementioned study by O’Donovan et al. [21], due to it being the

largest of its sort available for download. Their data provides us with |F |-dimensional

vectors xt for a set of 31 font traits t ∈ T , providing the scores for that trait over all fonts

in F . The set T of 31 traits they consider includes visual ones such as thin, angular,

but also more subjective ones. We rely on the following multi-pronged procedure to

obtain the desired vectors va for affective attributes a ∈ A from this data.

Scores for “calm”, “playful”: Fortunately, the crowdsourced data already in-

cludes two of our eight considered affective attributes. Thus, we directly obtain v1 and

v5 by selecting the relevant xt.

Scores for “positive”: We obtain scores for the attribute positive by clustering

all emotional traits included in the data crowdsourced by O’Donovan et al. [21]. For

this, we manually filter the set of font traits t ∈ T so as to retain only the ones of a

strong emotional nature. Then we apply k-means clustering and obtain the following

three clusters:

• C1: bad, boring
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• C2: happy, playful, attractive

• C3: calm, charming, fresh, friendly, gentle, graceful, soft, warm

The first observation about these clusters is that C1 contains traits with a negative

connotation, while the other two each contain positive traits. A detailed analysis reveals

that C2 includes high-arousal positive emotions, whereas C3 includes low-arousal ones.

We compute score vectors xC for each positive cluster C ∈ C = {C2, C3} as

xC =
∑
t∈C

sim(C, t) xt, (6.1)

where the weight of each trait is calculated as

sim(C, t) = 1
|C| − 1

∑
t′∈C
t6=t′

d(C,xt′)

∑
t′∈C

d(C,xt′)
. (6.2)

with d(C,x) corresponding to the distance between the cluster centroid and a trait-

specific vector x.

Using these two cluster centers, the scores for the target attribute positive is obtained

as:

v3 = 1
|C |

∑
C∈C

xC (6.3)

Scores for “exciting”, “serious”, and “negative”: For the attributes exciting,

serious, and negative, we take advantage of the antonymy relationships and use scores

for calm, playful, and positive, respectively, as:

vi = 1− vα(i), (6.4)

where 1 ∈ R|F | is a vector of ones, i = 2, 4, 6 are indices from Table 6.1, and α(i)

denotes the respective antonym of affective attribute i. We follow this method based

on the observation that a font that is least representative of an attribute is a candidate

to best represent the opposite attribute. However, this method assumes that a font

cannot be a good representative for each of the two opposing attributes, which may not

always hold, given different contexts the fonts could be used in.

Scores for “trustworthy” and “disturbing”: The PAD model [105] posits that

complex emotions are composed of more basic ones. Following Bartram et al. [88],
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trustworthy can be defined as positive + calm. To obtain font-specific scores, we ac-

cordingly average the values for positive and calm as v7 = 1
2(v3 + v1). We performed

an analogous derivation to obtain values for disturbing using negative and exciting, i.e.,

v8 = 1
2(v4 + v2).

6.2.2 Results

The top five congruent fonts for each affect in Table 6.1, as determined by the above

process, are depicted in Figure 6.2. The top fonts for a particular affect appear to

have similar visual characteristics, except for exciting and negative. To investigate this,

Figure 6.3 plots the distribution of fonts based on the positive and exciting attribute

scores. These attributes correspond to the opposites of negative and calm. For instance,

the fonts that correspond to the lower end of the positive scale are the fonts assessed as

highly negative. We find that the top fonts for the exciting and negative attributes have

a wide range of values in the respective other scale. For example, fonts with the highest

scores for exciting exhibit a large degree of variance with regard to their scores for the

attribute positive. The same applies for negative, i.e., fonts with the lowest scores for

positive have a wide range of scores for exciting. This can explain why for these two

attributes, fonts with the highest congruency exhibit different visual characteristics.

The top fonts for other attributes, on the other hand, are found to reside in a smaller

area in the chart, i.e., have a narrower range of scores in the other scale. As an example,

fonts with the highest scores for positive are concentrated in a region with low scores

for exciting (between 10 and 25). This analysis is further expanded and validated in

Section 6.6, where we group the top negative and positive fonts based on their scores

for calm and exciting.

Overall, the majority of fonts considered are deemed highly positive and calm. Fig-

ure 6.3 also provides the categories to which the fonts belong. Handwriting typefaces are

designed to give the impression of being hand-rendered. The characters of monospace

typefaces occupy equal horizontal space. Serif typefaces have small lines attached to

the end of the strokes in their characters, whereas sans-serif ones lack such attached

lines. Display typefaces do not share typical typographic properties other than a lower
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Figure 6.3: Scatter plot of the resulting font scores based on the positive and exciting
attributes (scaled to [0, 100] range).

Figure 6.4: A sample task from User Study I. For this sample task, the third and fifth
images are generated using incongruent fonts, the second one uses a neutral font, and
the first and fourth images use congruent fonts.

degree of legibility when used for body text, so they are reserved mostly for headings

and other kinds of display purposes.

When we analyze the score distributions in conjunction with their font categories,

we find that Serif fonts appear to have higher positive scores compared to sans-serif

fonts. Display fonts are found to be exciting, which accords with their decorative nature.

With significantly fewer instances in the dataset, monospace and handwriting fonts are

scattered along a wide range of different values.

6.2.3 Evaluation (User Study I)

We evaluate the above font score computations through a user study, in which we

collect user preferences among congruent, incongruent, and neutral fonts for affective

word clouds.
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Figure 6.5: A sample task from User Study I. For this sample task, the third and fifth
images are generated using incongruent fonts, the second one uses a neutral font, and
the first and fourth images use congruent fonts.

Figure 6.6: Results of User Study I, evaluating the font scores with respect to renderings
of single words. The user preferences for congruent, neutral, and incongruent font
choices are compared for each of the 8 affective attributes. With uniformly random
selections, these, respectively, have a 40%, 20%, or 40% chance of being selected, since
two out of five options are congruent or incongruent, while one option out of five uses
a neutral font.
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Hypothesis. Fonts with higher congruency scores for a given attribute are assessed

as better representing that attribute than fonts with lower scores.

Participants and Method. We recruited 40 participants via Mechanical Turk, all

from the United States, with at least 50 approved HITs and an overall approval rating

of 90% or more. Participants were paid $0.01 for each task. We rely on a within-subject

design, and perform counterbalancing by reversing the order of the tasks for half of the

participants. The study involves 50 tasks for each participant, consisting of 6 tasks for

each of the 8 affective attributes, and 2 additional validation tasks. Each task presents

the name of the affective attribute using 5 different fonts, as exemplified in Figures 6.4

and 6.5. To allow for comparison with the color palette study by Bartram et al. [88],

we select two congruent, two incongruent, and a neutral font. The congruent ones are

selected randomly amongst the six most congruent fonts for the corresponding affect,

while the two incongruent fonts are selected randomly among the least congruent six

fonts. The fifth font is selected randomly among the three fonts that are in the middle

of the ranked font list for each affect. The order of fonts with different congruencies

are selected randomly for each task. The validation tasks include words written with 1

congruent font and 4 incongruent fonts. Participants were instructed to “Pick the image

that best represents the word”, with an additional detailed version given as “Select the

image that you think best reflects the meaning of the word shown in the images.”.

Results and Analysis. The results of our study are summarized in Figure 6.6.

Across all attributes, the options with fonts determined to be congruent are frequently

selected by the participants, according with our hypothesis, while the options with fonts

determined to be incongruent are less frequently selected. We conducted χ2 goodness

of fit tests of user preferences for each affect based on the three font category choices

(congruent, neutral, and incongruent fonts). We set significance level to 0.05. Table 6.2

provides results of these analyses, which are found to be statistically significant for each

of the eight affects.

Given that the scores for calm and playful were obtained via crowd-sourcing, in our

analysis, they may serve as ground truth benchmarks as to what range of scores we

are to expect from high-quality human-provided ratings. Fonts rated strongly as calm



83

Study I Study II Study III Study IV
(Section 6.2.3) (Section 6.3.1) (Section 6.4.2) (Section 6.5.1)

i Attribute X2(2) p < X2(2) p < X2(2) p < X2(2) p

1 calm 56.79 .001 54.14 .001 121.84 .001 48.20 < .001
2 exciting 56.33 .001 16.80 .001 44.96 .001 46.25 < .001
3 positive 48.10 .001 43.78 .001 43.13 .001 48.65 < .001
4 negative 29.03 .001 51.17 .001 89.54 .001 1.80 .4066
5 playful 195.07 .001 70.15 .001 115.02 .001 54.60 < .001
6 serious 180.03 .001 142.06 .001 43.09 .001 0.60 .7408
7 trustworthy 149.29 .001 86.68 .001 20.79 .001 14.60 < .001
8 disturbing 38.94 .001 126.69 .001 76.75 .001 27.95 < .001

Table 6.2: Chi-square goodness of fit test results for the four user studies presented in
this chapter. Each affective attribute is represented by the corresponding index (i) as
defined in Table 6.1. For the first three experiments, expected values are specified as
0.4, 0.2, and 0.4 for the categories congruent, neutral, and incongruent, respectively. For
the last experiment expected values are specified as 1/3 for each of the three options.
The significance level is set as 0.05 for all experiments. Results for each affective
attribute in the first three user studies are found to be statistically significant, as for
each analysis p < .001. For the last user study, all affects except serious and negative
received statistically significant results. Discussions on the results can be found in the
respective sections.

appear to be less preferred than those for playful, possibly owing to the fact that even

regular fonts may also have a tendency to be perceived as calm. Indeed, the median

congruency score in our data for calm was 76.3%, while for playful, it was 34.5%,

confirming that neutral fonts are more likely perceived as calm.

Both exciting and serious acquire similar results to the baselines, which suggests

that our method of computing their scores as reversed opposites suffices to select fonts

perceived as congruent. The clustering approach used for positive, from which in turn

scores for negative are derived as well, appears to yield reasonable but not overly strong

ratings. While this might stem from inaccuracies in the automatic clustering, it may

also be the case that it is less trivial to convey positive and negative sentiment than

to convey attributes such playful and exciting. The most peculiar finding is that fonts

with high scores for the attribute trustworthy manifest stronger preferences than those

for the attributes used to compute its values (namely positive and calm). Despite being

computed analogously, the ratings for disturbing do not exceed those for negative and

exciting.
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Figure 6.7: A sample task from User Study II for the affect positive. The third and
fifth images use congruent fonts, the first uses a neutral font, and the second and fourth
ones use incongruent fonts. The participants are asked to pick the image that best
represents the words in the word cloud.

6.3 Affective Fonts in Word Clouds

Using the font scores obtained in the preceding section, we seek to understand the

impact of the affective nature of fonts on affective word clouds. In particular, we shall

determine to what extent users may prefer fonts that accord with the content of a word

cloud with regard to affect.

6.3.1 User Study II

Through a user study on Mechanical Turk, we evaluate the impact of fonts on word

clouds with affective content.

Hypothesis. Word clouds using fonts determined to be congruent are assessed

as being more representative of pertinent affect-evoking words than word clouds using

fonts determined as neutral or incongruent.

Participants and Method. The details of the participants and method of evalua-

tion are as in Study I (Section 6.2.3), except that the displayed renderings here include

words clouds instead of single words. Sample tasks are given in Figures 6.7 and 6.12.

For each affective attribute, we created word clouds of 10 words, one of which is the

affective attribute name itself, coupled with 9 further semantically related words to

avoid confounding effects potentially caused by irrelevant words. For the same reason

as earlier, each task includes 5 word clouds with the same content and layout, just

using a different font. As earlier, we randomly select two congruent fonts, two incon-

gruent ones, and a neutral one, following the procedure for Study I. Figure 6.1 provides

samples of word clouds with congruent fonts from this user study.
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Figure 6.8: A sample task from User Study II for the affect disturbing. The first and
fifth images use congruent fonts, the third uses a neutral font, and the second and
fourth ones use incongruent fonts. The participants are asked to pick the image that
best represents the words in the word cloud.

6.3.2 Results and Analysis

The frequencies of participant responses are visually presented in Figure 6.9, and chi-

square goodness of fit test results are given in Table 6.2. Similar to Study I, results for

each of the eight affective attributes are found to be statistically significant.

The results are in general consistent with those from the first study, as both show

strong support for congruency with serious and trustworthy. Although the differences

are less pronounced than earlier, across all attributes, the options with congruent fonts

were chosen notably more frequently than incongruent ones, and the options with in-

congruent fonts were chosen less frequently than chance would predict, i.e., 2
5 = 40%.

It is observed that the congruent font options are more frequently selected for complex

affects compared to core affects.

For calm and positive, neutral fonts were also chosen in many cases. As explained

for Study I, and shown in Figure 6.3, larger numbers of fonts might appear somewhat

calm or positive, and hence fonts in the middle of the ranked lists, which we assumed

as neutral, may be more congruent.

Interestingly, disturbing received higher scores in this experiment compared to Study

I. This may result from the layout of the word cloud, which mixes horizontal and

vertical orientations, different font sizes, and different alignments, and, hence, in itself

may already embody an appearance congruent with the notion of being disturbing. This

circumstance may also explain the comparably lower scores for congruence with calm in

comparison with Study I. We conclude that, in addition to the layout, font congruency

as well merits significant consideration when designing word clouds.
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Figure 6.9: Results of User Study II, providing percentages of user responses for congru-
ent, incongruent, and neutral font choices in the word clouds. With uniformly random
selections, the expected values for the congruent and incongruent options are 40%, while
for neutral it is 20%.

Figure 6.10: Congruent color palette samples from Bartram et al. [88].

6.4 Affective Color Palettes in Word Clouds

Apart from the choice of font, we further wish to understand the impact of affective

color palettes on affective word clouds, specifically, to what extent users prefer color

palettes that match the content of the word cloud affectively. To achieve this, we rely

on the data from Bartram et al. [88] and carry out a user study using these palettes to

create affective word clouds.

6.4.1 Data

The Bartram et al. study considers the same affect categories as this study, and their

methodology to obtain the color palettes is as follows. First, 8,608 images tagged with

one of the eight affective categories are analyzed to find the most common colors for
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Figure 6.11: A sample task from User Study III for the affect positive. The second and
fifth images are generated using incongruent color palettes, the fourth one uses a mixed
color palette, and the first and the third images use congruent color palettes. The users
are asked to pick the image that best represents the words in the word cloud.

each category. Then, with the support from a visualization color expert, a set of 41

colors is determined, which combines the most representative colors for all eight affects.

Using this set of colors, a user study is carried out requesting participants to design

color palettes for one of the affect categories to be used in either a bar chart or a

map visualization. The frequencies from this user study reveal the preferred colors for

each affect, which are then used to create weights to come up with a palette weight

concept. A weight for a palette is determined using the frequencies of the colors used

in the palette. Finally, another user study is carried out to verify the results of the

previous one, by generating palettes of different weights, and asking users to pick the

best one. The results suggest that these weights indeed can be a good predictor of user

preferences towards the color palettes.

We use color palettes from the second user study in their paper, which reveals the

most preferred colors for each affect. Specifically, we rely on the palettes in Figure

7 from the paper [88] to determine the colors. Figure 6.10 a congruent color palette

sample for each of the eight affect categories. The color palettes for complex affects

appear to follow a pattern based on their underlying core affects. As an example, the

colors for disturbing seem to be a combination of colors for negative and exciting.

6.4.2 User Study III

Through a user study carried out on Mechanical Turk, we evaluate the impact of color

palettes on word clouds with affective content.
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Figure 6.12: A sample task from User Study III for the affect disturbing. The first and
third images are generated using incongruent color palettes, the fifth one uses a mixed
color palette, and the second and the fourth images use congruent color palettes. The
users are asked to pick the image that best represents the words in the word cloud.

Hypothesis. Word clouds using colors determined to be congruent are assessed

as being more representative of pertinent affect-evoking words than word clouds using

mixed or incongruent color palettes.

Participants and Method. The participant and method details are as in Study I

and II (Sections 6.2.3 and 6.3.1), except that in this study, we use different color palettes

in each option of the tasks, while keeping other signals, namely font and layout, the

same across the presented choices. Sample tasks are shown in Figures 6.11 and 6.12.

Two of the color palettes used in a task are congruent, two of them incongruent, and

one is neutral. The procedure to create the color palettes is as follows. We use Bartram

et al.’s Figure 7 [88] to obtain a list of congruent colors, referred to as Bi, for each

attribute i as defined in Table 6.1. To generate a congruent color palette for attribute

i, we randomly pick five colors from Bi. Figure 6.1 provides samples of word clouds

with congruent color palettes from this user study. To generate an incongruent color

palette for attribute i, we randomly pick five colors from Bj , where j is the index of the

opposite attribute. We use exciting vs. calm, negative vs. positive, serious vs. playful,

and disturbing vs. trustworthy as opposite pairs. The color palette for exciting, e.g.,

provides incongruent colors for calm. To generate a neutral palette, we randomly pick

two colors from Bi, two other colors from Bj , and one more color from Bi ∩Bj .

6.4.3 Results and Analysis

As summarized in Figure 6.13, and in Table 6.2, the results are consistent with our

hypothesis: Similar to the results of our previous two user studies, results for each of
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Figure 6.13: Results of User Study III, providing percentages of user preferences for
congruent, incongruent, and neutral color palette choices in the word clouds. For uni-
formly random selections, the respective expected values for the congruent, incongruent,
and neutral options are 40%, 40%, and 20%.

the eight affective attributes are found to be statistically significant. This is particularly

pronounced for calm, negative, and playful for User Study III, while the results appear

comparably less strong for exciting, serious, positive, and trustworthy. These findings

mirror those from Bartram et al. [88], in which trustworthy and serious were not strongly

associated with specific colors, whereas the palettes for calm and playful had highly

weighted colors, reflecting a strong preference for their respective affects.

6.5 Affective Fonts and Color Palettes in Word Clouds

In Section 6.3 and Section 6.4, we carried out user studies to understand the effect of

fonts and color palettes, respectively, on the affective impact of word clouds. Now we

proceed to understand the relative affective power of fonts and color palettes on word

clouds, and to what extent users prefer to combine these signals to create the intended

affect in the word cloud. We use the same font and color datasets as described in the

previous sections.

6.5.1 User Study IV

We carry out a user study on Mechanical Turk, with details similar to previous user

studies. The main difference in this study is that this time we do not intend to test an

hypothesis. Rather, the goal is to determine user preferences.



90

Participants and Method. We recruited 40 participants via Mechanical Turk,

all from the United States, with at least 50 approved HITs and an overall approval

rating of 95% or more. Participants were paid $0.02 for each task. We rely on a within-

subject design and perform counterbalancing by creating two identical assignments with

a reversed task order and invoking the reversed task order for half of the participants.

The study involves 27 tasks for each participant, consisting of 3 tasks for each of the

8 affective attributes, and 3 additional validation tasks (see Figure 6.16). Each task

includes 3 word clouds with the same content (10 affect-related words as described

earlier) and layout.

Sample tasks are given in Figures 6.14 and 6.15. Each task includes the following

three options to choose from:

• A word cloud with a congruent color palette and a neutral font (referred to as the

option with the congruent color)

• A black-and-white word cloud with a congruent font (referred to as the option

with the congruent font)

• A word cloud with a congruent color palette and a congruent font (referred to as

the option with the congruent color and font)

The order of these options are determined randomly for each task. For the details of

font and color palette selection, please see Section 6.3.1 and Section 6.4.2, respectively.

Participants were instructed to “Choose the image that best represents the words in

the word cloud.”, with an additional detailed version given as “Select the image that

you think best reflects the meaning of the words shown in the visualization..”. From the

original data, we excluded data from three participants who incorrectly answered all

three validation tasks, as well as from two further participants who did not complete

all tasks and incorrectly answered their validation questions. We recruited additional

participants to extend the number of considered participants to 40 as planned.
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Figure 6.14: A sample task from User Study IV for the affect exciting. The first option
shows a word cloud with a congruent color palette and a neutral font. The second
options shows a black-and-white word cloud with a congruent font. The third word
cloud adopts the congruent color palette from the first option, and the congruent font
from the second option.

Figure 6.15: A sample task from User Study IV for the affect negative. The first option
shows a word cloud with a congruent color palette and a neutral font. The second
options shows a black-and-white word cloud with a congruent font. The third word
cloud adopts the congruent color palette from the first option, and the congruent font
from the second option.

Figure 6.16: A sample validation task from User Study IV. Different from the regular
tasks in the experiment, this task uses an incongruent font in two of the options, leaving
the option with just the congruent color palette as the only valid choice.
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Figure 6.17: Results of User Study IV, providing percentages of user preferences for
congruent color with neutral font, black-and-white with congruent font, and congruent
color palette with congruent font choices in the word clouds. For uniformly random
selections, the expected value for each option is 1

3 .

6.5.2 Results and Analysis

The results are summarized in Figure 6.17 and in Table 6.2. Based on the results of the

previous studies, one may reasonably expect the option with a congruent color palette

and a congruent font (Option 3 ) to receive higher preference over the other two options,

in which only one of these two signals are intentionally selected as congruent with the

affect. The results for calm, exciting, positive, playful, trustworthy and disturbing seem

to follow this pattern. Based on the χ2 goodness of fit analysis summarized in Table 6.2,

for negative and serious, the results do not meet the significance threshold 0.05, and

are thus not considered statistically significant. This may stem from the association of

the neutral font with these affects (leading users to select the option with the congruent

color), as can be observed in Figure 6.15. Additionally, black-and-white colors might be

a good fit for these affects (leading to users selecting the option with the congruent font).

For all affects except negative, serious, and disturbing, the option with the congruent

color was more frequently selected than the option with the congruent font. This may

be interpreted as the difference between a congruent color palette and black-and-white

colors having a stronger bearing on the affect of a word cloud compared to the difference

between the neutral font and the congruent ones.
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Figure 6.18: A screenshot of our prototype Affect-Aware Word Cloud tool, visualizing
an artificial placeholder text to show the affective power of fonts and colors.

6.6 Affect-Aware Word Cloud Prototype

In this section, we present our prototype tool that incorporates affects into the word

cloud generation process by enabling the user to specify the intended affects such that

congruent font and color palette options can be recommended. A screenshot of the tool

is provided in Figure 6.18.

6.6.1 Implementation Details

User Input (Figure 6.18 Part a). The tool takes as input a text, as well as the

desired affective preferences. When no preference is provided, the input is considered

to be neutral.

In the above user studies, we used a set of words that are synonymous with the

affect word to prevent any confounding impact on the evaluation. However, on real-

world data, multiple affects may be evoked within a single text. Hence, one challenge

in font selection is to cope with such cases.

To overcome this, we introduce restrictions on possible combinations of the affects

as follows. We group the affects in two groups: core affects (calm, exciting, positive,
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negative) and complex affects (playful, serious, trustworthy, disturbing). Using these

groups, we only allow the following selections:

1. A single complex affect.

2. A single core affect

3. Two core affects, except for opposite pairs (positive and negative, calm and excit-

ing)

Font Selection (Figure 6.18 Part b). In this part, we describe how we handle

font selections for the different affect choices listed above. When a complex affect is

chosen, we use the fonts that have the highest scores for that complex affect. When

just a single core affect is selected, the system as well seeks out fonts that convey that

affect. However, it makes the additional assumption that since the user did not select

additional affects, the user presumably does not wish to convey those other affects. As

an example, when only positive is selected, the intended affect is presumably one that

does not encompass calm or exciting. As seen in Figure 6.3, a positive font could be

calm or exciting, so simply using fonts with high positive values may not be an optimal

solution. Thus, when only one core affect is selected, we filter fonts so as to only retain

those that exhibit neutral behavior in the unspecified affect direction. Figure 6.19

shows some examples for the affect positive, which includes cases where neither calm nor

exciting is selected along with it, or one of them is selected. Figure 6.20 provides similar

examples for negative. Analyzing these figures in conjunction with Figure 6.2 reveals

that the fonts that are congruent with multiple affects tend to combine characteristics

of fonts for each of the participating affects. We also see that while having diverse visual

characteristics in Figure 6.2, the top fonts for negative tend to be more similar when

grouped by their scores for the unspecified affect dimension, as shown in Figure 6.20.

The same is also true for exciting.

The final scenario is that of two core affects being selected. In such cases, for

each font, we ensure that the values for each of the selected affects is above a certain

threshold (e.g., 50%). If they are, then we use the average of these scores to determine



95

Figure 6.19: Samples of fonts with high scores for positive alone, and for its combinations
with other core affects calm and exciting.

Figure 6.20: Samples of fonts with high scores for negative alone, and for its combina-
tions with other core affects calm and exciting. The visual characteristics of the fonts
are similar in a combination, whereas they are somewhat more diverse between different
combinations.

the congruence of the font for this affect combination. Otherwise, we use the minimum

of the affect values. This technique ensures that a high congruency score is indeed

reflective of a font exhibiting characteristics of both selected affects. If instead one were

to generally consider the average, one could easily obtain fonts that reflect only one

of the two affects very strongly, while having only a weak association with the other

affect.

The actual font that is recommended by the tool is selected randomly among the top

candidates using the above logic. The Select menu in the user interface, as marked by

Part b in Figure 6.18, provides a list of recommended fonts to the user. Upon selecting

a font, one may press the Update button to update the visualization to use the selected

font. This facilitates exploring different designs for a specific affect.

Color Selection (Figure 6.18 Part c). Similar to the font selection methodology

described above, in this part we explain how we handle color selections for the different

affect choices. If only one affect is chosen, irrespective of whether it is a core affect

or a complex one, we simply apply the corresponding color palette. If multiple core
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Figure 6.21: Word clouds visualizing two restaurant reviews. The colorful cloud on the
left visualizes a five-star review using a positive font and color palette, whereas the two
star review on the right uses negative ones.

affects are selected, we use the corresponding complex affect, which is based on the

relationships of emotions. Specifically, we use trustworthy for calm and positive, serious

for calm and negative, disturbing for exciting and negative, and playful for exciting and

positive. Reviewing Figure 7 from Bartram et al. [88] reveals that the color palettes

for complex emotions are indeed very close to the combination of color palettes of their

underlying core affects. Users can try different colors using the palettes provided in the

user interface as marked by Part c in Figure 6.18.

Visualization (Figure 6.18 Part d). We preprocess the input to remove punc-

tuation etc. as well as to obtain lemmatized versions of the words. To generate the

word cloud, we rely on an external library4 that is developed using the D3 framework5.

The library allows for specifying preferred angle options for the words. It also allows

for specifying a scale with which the sizes of the words are determined based on their

distributions from the input. Based on the affect choices described earlier, we gener-

ate a word cloud with the automatically recommended font and color palette choices.

Users have the option of trying further recommendations, or they can simply select any

preferred fonts or colors.

Cloud Comparison (Figure 6.18 Part e). Our tool aims to encourage experi-

mentation with different affective signals, as well as with different options for a specific

affect. To facilitate this process, we provide the option to save a visualization in a panel

4https://www.jasondavies.com/wordcloud/
5https://d3js.org/
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Figure 6.22: Word clouds visualizing two songs. The cloud on the left visualizes the
lyrics of the song Happy by Pharrell Williams using the positive option. The word
cloud on the right provides a visualization for the song I hate everything about you by
Three Days Grace, using negative and exciting options.

on the right side of the user interface. This option obviates the need to try to remember

previous designs, or save them to disk. Instead, one can rely on the comparison panel

to observe the differences. In the screenshot provided in Figure 6.18, the comparison

panel includes playful, serious, and disturbing versions of the input, respectively, from

top to bottom. The rendering in the Visualization panel (Part d) shows the current

visualization, which in this case uses trustworthy signals to visualize the same content.

6.6.2 Output Samples

We showcase outputs of our prototype tool using data from several domains, while

demonstrating the importance of affective visualizations for these domains.

Visualizing Restaurant Reviews. Word clouds are commonly used to visualize

user-written reviews, such as of restaurants. A Google web search using keywords

”restaurant review” and ”word cloud” yields around eighteen thousand results, including

academic papers [106]. Since a central goal of reviews is to convey the sentiment of a

customer with respect to products or experiences, the affective perception of the word

cloud is significant. Figure 6.21 portrays two word clouds generated by our tool. Based

on the sentiment in the reviews, the input affects are specified as positive and negative,

respectively, resulting in corresponding affective visualizations. These clouds also reflect

the results of our font selection method when there is only one specified affect, i.e., the

input is neither calm nor exciting.
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Figure 6.23: Word clouds visualizing two movies. The colorful cloud on the left visual-
izes the animation movie Smurfs: The Lost Village (2017), using a playful font and color
palette. The word cloud on the right is for the movie Scream (1996), and, reflecting
the movie’s genre (horror), it is visualized using the affects exciting and negative.

Visualizing Songs. Word clouds are frequently used to visualize songs [107]. The

web query song and ”word cloud” yields 2.1 million search results. There have also been

games, such as guess the song ones, using word clouds as their medium. Figure 6.22

provides visualizations of two songs with different affects. The word cloud on the left

seeks to evoke an uplifting feeling as the original song does, whereas the one on the

right aims at a negative and exciting feeling.

For song lyrics visualization, typographic signals may be particularly important due

to the additional affective signals provided by the music. The words from the lyrics

sometimes cannot directly be used to elicit these type of signals. The word cloud for

the song I hate everything about you from Figure 6.22 includes the words love and

hate with a similar frequency. Hence, the sentiment of the song is not clear when

solely considering the words. Fonts and color palettes, thus, may be used to evoke an

appropriate set of affects in such cases. This also applies to any other form of input

carrying additional affective signals beyond those in the text.

Visualizing Movies. Movies are another frequent type of word cloud content.

A web search using keywords movie and ”word cloud” yields 2.7 million results, which

suggests substantial interest in such visualizations. Naturally associated with emotions,

movies benefit from congruent typographic signals in their visualizations. Figure 6.23
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Figure 6.24: Word cloud for the United Nations using typographic signals assessed as
trustworthy.

shows two movie word clouds created by our tool6. The animation/comedy movie on

the left uses playful options, whereas the horror movie uses exciting and negative ones.

It may even be possible to guess the genres of these movies just in light of the font and

color choices.

Visualizing Trustworthy Content. Another type of word clouds we wish to

specifically analyze here are trustworthy ones. Word clouds are frequently used to

describe the values of a corporation. Searches in web sites providing professional design

products, such as ShutterStock7, return hundreds of word clouds specifically designed

to reflect core values of corporations. A common goal of these corporations is to be

perceived as trustworthy, which can be accounted for in their visualizations. Figure 6.24

provides a sample output of our tool using text8 related to the United Nations, visualized

using the affective attribute trustworthy.

6The input texts are movie summaries obtained from IMDB.
7https://www.shutterstock.com
8The text is obtained from the Wikipedia page for the United Nations.
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6.7 Discussion

We discuss our results, their implications for users and use cases, and other potential

research directions.

Affective Strengths of Fonts and Color Palettes. Across all experiments and

attributes, congruent font and color palette choices were preferred by a plurality or

majority, while incongruent choices were dispreferred by a majority of responses. The

findings in the first two user studies have shed light on the relationship between affective

responses and fonts. For attributes such as serious and trustworthy, this relationship

is found to be particularly strong. Interpreting these results together with the third

user study, we observe that different signals exhibit different strengths in terms of their

affective impact. Based on our experiments, color palettes prove particularly powerful

for calm, negative, and playful. Thus, a serious or trustworthy perception appears easier

to evoke with fonts, whereas a calm or negative appearance can arise from appropriate

color palettes. For the remaining attributes, to achieve a more pronounced effect, a

combination of both fonts and colors may be a compelling option.

Supporting Creativity. In a survey [84], 88% of users reported feeling creative

when using Wordle, due to the use of font and color palette options that can be explored.

81% of users reported they were trying it for fun. Hence, providing a medium in which

users can feel creative ought to be an important aim of word cloud tools. We believe

that allowing users to try applying different affects, or to try different options for the

same affect, would substantially increase the creative potential to be explored by them,

especially if they are given the chance to explore font and color palette options that

are congruent with the affect(s) they specified. Nonetheless, a user study is needed to

verify this hypothesis, since the users’ sense of creativity is known to be hard to predict

[99].

Word Clouds for Sentiment Analysis. Our output samples show that affective-

aware choices of fonts are crucial for data from several domains. The same is more

generally true of word clouds for sentiment analysis. There are many online resources,
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presentations, and academic papers [108; 109] that make use of word clouds for senti-

ment analysis, showcasing affective words that are used in the text. Most of them use

a different word cloud for each emotion, or they use a comparison cloud to compare

their intensities. In both cases, typographic signals could prove helpful to facilitate the

perception of different emotions in sentiment visualizations.

Other Paralinguistic Signals and Visualizations. We have explored the affec-

tive usage of fonts and color palettes in word clouds. However, there are further affective

signals to be explored in word clouds, as well as other text visualization methods to

be investigated with respect to their incorporation of paralinguistic signals. For word

clouds, one other such signal is the layout. We suspect that this could prove powerful,

especially for attributes such as disturbing and playful. Again, this needs to be veri-

fied through a user study as well. In our experiments, in contrast, we keep the layout

identical between different word cloud options to reduce the potential for confounding

effects.

There are also several other visualizations that could benefit from an affect-aware

approach. One line of such visualizations, as mentioned earlier, are visualization tools

used for sentiment analysis. However, the list is not limited to this task. A tree map

visualization, for instance, already conveys affect, since it relies on color palettes, and

hence should perhaps be made affect-aware. In fact, for any visualization that makes

use of fonts or color palettes, one may consider enabling such choices to be made more

carefully and deliberately, in light of the affective nature of these signals.

Other Semantic Connections. Our study could be considered as a starting

point towards exploring the connections between the semantics of the input and word

clouds, or more generally, any visualization technique using the considered signals. More

specific associations exist between fonts and semantic attributes [21], and these could

be drawn upon to create word clouds with an even better thematic fit to the input. An

example is using fonts found to be technical for technical content. Other more specific

connections also exist between color and words, such as invoking the color red for the

word strawberry, or blue for a word cloud relating to the Smurfs.
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Regional and Cultural Differences. Previous studies reveal that regional and

cultural differences affect color choices [110; 111]. A potential research direction is to

enhance the word cloud tool to account for such differences based on user demographics.

This might entail investigating whether such differences exist for font choices as well,

especially with regard to the affective connections. Currently, in our tool, we provide

users the opportunity to change the font and color choices without any restrictions, so

that arbitrary personal preferences can be accommodated.

Input Sentiment Detection. Incorporating an automated sentiment detection

method [112] or an emotion detection model [113; 114] into our tool could be a useful

future direction. However, as discussed earlier, typographical signals are particularly

useful for word clouds whose input include additional modalities apart from text, such

as music. Typographical signals help encode the affective nature of these additional

input signals. In light of this, detecting the sentiment of a word cloud input using

only its text may not be an optimal solution. This problem can perhaps be observed

in the automated sentiment detection for the movie Smurfs. The genre of the movie

is animation, and in general it has a playful nature (e.g., as easily revealed by its

music). However, looking at its plot summary text in isolation may lead to inaccurate

predictions, especially in the absence of further background information about the movie

and animation series. Hence, for the case of affect-aware word clouds, obtaining affect

preferences from users, or building a tool that accepts additional inputs based on the

domain of interest (e.g., music for songs, the genre for movies, ratings for restaurant

reviews) could be better solutions.

6.8 Conclusion

In this chapter, we studied the affective connections of fonts and color palettes, specifi-

cally in the domain of word clouds. We have invoked a set of techniques to obtain font

congruency values for several affective attributes based on a crowdsourced seed set.

The results of our studies establish that such semi-automatically acquired font scores

accord with human assessments of congruence, similar to previous studies that relied

on human-chosen fonts.
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Our findings reveal that both fonts and color palettes are potent signals in creating

affective word clouds. Moreover, their respective strengths turn out to be complemen-

tary. Our last user study revealed that these signals should be used in conjunction to

yield a stronger impact. Based on this work, we can conclude that fonts may be used

as an additional dimension in visualizations to intentionally encode affect, and not only

designers but also developers of computational tools need to account for the possibilities

afforded by font and color associations with affective attributes. The work presented in

this chapter was published in proceedings of the 24th International Conference on Intel-

ligent User Interfaces [115] and in ACM Transactions on Interactive Intelligent Systems

[116].
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Chapter 7

Conclusion

This thesis presented computational approaches to overcome the challenges associated

with learning font semantics, searching fonts, and providing typographical recommen-

dations.

In all studies presented in this thesis, we explored methods to learn font semantics

using existing font–tag associations. A common theme surfaced is the successful use of

CNN-based font embeddings and distributional word embeddings to capture font se-

mantics. Using these embeddings, we created cross-modal font-word embeddings, which

enabled the use of vector arithmetic for font discovery. Emotion-theoretic and lexical

relationships have also been proven as useful tools to infer additional font semantics.

In Chapter 5, we proposed a multimodal font search method made possible by

the cross-modal font and word embeddings. In that method, we suggested searching

for a font using the similarity of a reference font together with the desired semantic

direction to be added. Although it needs to be investigated through user studies, we

expect this method to accelerate font discovery process. As a future direction, the

proposed multimodal search approach could also be explored to improve search on

other typographical signals, such as colors or color palettes, e.g., a color (palette) like

this but warmer.

In Chapter 4, we recommended fonts for all the words in an English lexicon through

shared affective connections between the words and the fonts. Our user study indi-

cated that this is a promising direction, but its success is sensitive to the strength of

the connections between the words and the emotions. We have also shown how two

applications, namely poster design, and word cloud design, can benefit from semantic

font recommendations.
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Current text visualization approaches do not explicitly benefit from the semantic

connotations of the fonts. Our work, specifically Chapter 6, is also important with its

message that word clouds could make use of font semantics to help users better reflect

their messages. This takes us to the conclusion that the field of visualization needs

to take into account the semantic impact of typographical signals, which could enable

improvements over existing visualization approaches, potentially leading the way to the

development of brand-new ones.

Although this thesis focused solely on semantics, aesthetics and semantics work

together in design products. Thus, a natural future direction is to create models that

combine semantics with aesthetics [24; 117] to enable a more advanced level of user

support and automation in design tools, such as for the poster design application we

explored.

From short text messages to long emails, from a coffee label to huge billboard signs,

from individual words to word clouds, typography impacts how people and products

are perceived in every usage of text. In this thesis research, we explored some of

the possibilities that can be offered by computational approaches to support users in

understanding and taking advantage of this impact, concluding that it is possible to

develop tools that help people better express their messages to the world.
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