Staff View
Summertime post-cold-frontal marine stratocumulus transition processes over the eastern North Atlantic

Descriptive

TitleInfo
Title
Summertime post-cold-frontal marine stratocumulus transition processes over the eastern North Atlantic
Name (type = personal)
NamePart (type = family)
Kazemi Rad
NamePart (type = given)
Melissa
NamePart (type = date)
1989-
DisplayForm
Melissa Kazemi Rad
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Miller
NamePart (type = given)
Mark M.
DisplayForm
Mark M. Miller
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Lintner
NamePart (type = given)
Benjamin R.
DisplayForm
Benjamin R. Lintner
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Miller
NamePart (type = given)
James R.
DisplayForm
James R. Miller
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Booth
NamePart (type = given)
James F.
DisplayForm
James F. Booth
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The Marine stratocumulus cloud system is a major component of the Earth’s energy budget. Mid-latitude stratocumulus are known to transition from a single, continuous cloud layer to a hybrid configuration that includes both stratocumulus and cumulus, and eventually to trade cumulus toward the tropics. Stratocumulus transitions are often observed in the wake of cold air outbreaks in the mid-latitude summertime marine boundary layer (MBL). Cloud morphology associated with two summertime cold fronts over the Eastern North Atlantic (ENA) is investigated using high resolution simulations from the Weather Research and Forecasting (WRF) model and observations from the Atmospheric Radiation Measurement (ARM) ENA Climate Research Facility. Lagrangian trajectories are used to study the evolution of post-cold-frontal MBL clouds from solid stratocumulus to broken cumulus. Clouds within specified domains in the vicinity of transitions are classified according to their degree of decoupling, and cloud-base and cloud-top breakup processes are evaluated. The Lagrangian derivative of the surface latent heat flux is found to be strongly correlated with that of the cloud fraction at cloud base in the simulations. Cloud-top entrainment instability (CTEI) is shown to operate only in the decoupled MBL. A new indicator of inversion strength at cloud top that employs the vertical gradients of equivalent potential temperature and saturation equivalent potential temperature, which can be computed directly from soundings, is proposed as alternative to CTEI. Overall results suggest that the deepening-warming hypothesis suggested by Bretherton and Wyant explains many of the characteristics of the summertime post-frontal MBL evolution of cloud structure over the ENA, thereby widening the phase space over which the hypothesis may be applied. A subset of the deepening-warming hypothesis involving warming initially dominating over moistening is proposed. It is postulated that changes in climate-change induced modifications in cold frontal structure over the ENA may be accompanied by coincident changes in the location and timing of MBL cloud transitions in the post-cold-frontal environment.
Subject (authority = local)
Topic
Marine stratocumulus
Subject (authority = RUETD)
Topic
Atmospheric Science
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11080
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xvi, 158 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-h91j-mb73
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kazemi Rad
GivenName
Melissa
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-08-07 15:59:39
AssociatedEntity
Name
Melissa Kazemi Rad
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-08-19T20:26:26
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-08-19T20:26:26
ApplicationName
pdfTeX-1.40.20
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024