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ABSTRACT OF THE THESIS

E-ASSOC: Enhanced Energy Efficient User ASSOCiation

Algorithm for Future Cellular Networks

By MAREESH KUMAR ISSAR

Thesis Director:

Dipankar Raychaudhuri

Future cellular networks need to reduce their carbon footprint in view of rapidly increas-

ing data traffic from emerging applications including Augmented Reality (AR)/ Virtual

Reality (VR), autonomous vehicles and Internet of Things (IoT). A potential solution

is the addition of small base stations, overlaid upon the macro base station, installed

at locations encountering traffic hotspot or a coverage gap. However, the addition of

base stations leads to an increase in the overall static network power consumption.

Algorithms for energy efficiency aim to strike a balance between network throughput

and power consumption. In this work, we evaluate several existing optimization based

user association algorithms focusing on load balancing and power minimization metrics.

Verification of the performance for all user association algorithms is carried out using

MATLAB based system level simulator for a network topology comprising of one macro

and four pico base stations considering static users. Motivated by the gains demon-

strated using optimization based schemes, we consider the design of a lower complexity

class of heuristic user association algorithms with comparable performance. The pro-

posed E-ASSOC algorithm utilizes load at each base station and the difference amongst
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the two best Signal to Noise Ratios (SNRs) for each user as its threshold metrics. Sim-

ulation results demonstrate a gain of 41.26% in the total system throughput along

with reduction of 32.96% in the system power consumption. Eventually indicating

an increase of 87.83% in energy efficiency over the baseline max-SNR based associa-

tion algorithm along with decrease of 7.2% for load balancing algorithm and 10.13%

for power minimization algorithm. Fairness of the algorithms examined using Jain’s

Fairness Index (JFI) also shows marked improvement over the baseline scheme.
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Chapter 1

Introduction

The long-term trend of ever-increasing data demand often follows Cooper’s law, where

the traffic doubles every two-and-a-half year. According to Ericsson’s Mobility Report

[1], by 2025 5G networks will carry about 45% of the world’s mobile data traffic and

have around 2.6 billion subscriptions covering up to 65% of world’s population. A wide

range of upcoming applications like autonomous vehicles, Internet of Things (IoT), and

edge computing all contribute to a substantial data rate and bandwidth requirement.

Fulfillment of the increasing data demands for current as well as emerging cellular

networks is often associated with a surge in network-wide energy consumption. The

2015 report [2] estimates that 1.15% (242 TWh) of the total electricity grid supply

globally was consumed by telecom networks which also resulted in 0.53% (169 Mt) of

the global carbon emissions (energy related). Air conditioning and signal processing

circuits consume about 60% of power dissipated at the base stations [3]. Putting the

base stations with no load into sleep mode helps in saving power consumed by the

network [4]. To reduce power consumption at the base station, 5G New Radio (NR)

takes advantage of base station sleep mode and traffic activity pattern. Other solutions

include the use of energy-saving software and operating site infrastructure proactively

using Artificial Intelligence (AI) [5, 6].

To improve the cellular energy efficiency, without sacrificing Quality-of-Service (QoS)

at the users, the network topology could be densified to enable higher spatial reuse. This

is achieved by overlaying a layer of Small Cell Access points (SCAs) to offload traffic

from macro cells, exploiting the fact that most data traffic is localized. Recent deploy-

ment of city-scale programmable testbeds like COSMOS [7] have enabled researchers
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to deploy and test their applications and algorithms (pertaining to future wireless net-

works) on such emerging topics in a real-world environment.

The upcoming 5G cellular network is expected to support the following require-

ments:

• Increased demand for data.

• Improved QoS.

• Reduced Energy Consumption.

Key technologies proposed to accomplish these objectives are heterogeneous network

[8], mmWave [9], massive MIMO (Multiple Input and Multiple Output) [10], and Cen-

tralized Radio Access Network (C-RAN). Heterogeneous network (HetNet) consists of

low complexity small cells like picocell, femtocell and relay, deployed inside the macro-

cell coverage region, transmitting at power lower than the macro. These small cells

help to offload traffic and improve the spectral efficiency. Owing to their small size,

they are generally easier to install, run and maintain.

User association refers to the process which determines the base station to which

a user will associate before the data transmission begins. Liu et al. in [11] have

extensively analyzed existing user association algorithms and their impact on various

upcoming technologies for 5G. Traditional user association algorithms tend to attach

users to the base station from which they receive the strongest signal [12]. This approach

works adequately for a homogeneous network with a small number of users. But such

a scheme overlooks the possibility of load balancing across lightly loaded neighbouring

base stations. The problem is further intensified in a heterogeneous scenario [13]. The

user association problem morphs itself into the re-association and handover problem

when the users in the system are mobile [14].

In a HetNet scenario, maximum signal strength based association scheme leads to

underutilization of the small cells as most of the users tend to attach to the macro

cell (due to its large transmit power). I. Guvenc [15] proposes the use of biased user

association as a solution to the problem. This technique changes the power received
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from the pico base station by adding a fixed bias [16]. Okino et al. [17] showed the

importance of an adaptive bias factor for different load scenarios. A major drawback

of this scheme is that users attached to the small cell (using the bias approach) tend

to experience interference from neighbouring macrocell [18]. The issue of interference

can be alleviated using 3GPP enhanced intercell interference coordination (eICIC) via

almost blank subframes (ABSs) [19].

3GPP Release 8/9 Long-Term Evolution (LTE) HetNet [20] analyzed two schemes,

first with open access picocells and the second with closed access femtocell. They

showed that a single picocell can double the area spectral efficiency without impacting

the macro tier whereas femtocell leads to deterioration of performance in both macro

and femto users. Their simulation results was based on actual behaviour of Physical

Downlink Shared Channel (PDSCH) rather than Shannon capacity formula.

In cellular networks we often deal with improving metrics like energy efficiency,

system throughput, reducing latency etc. Often these metrics are inter-related to one

another i.e. if one improves then the other might deteriorate. Reference [21] describes

the frameworks for handling the trade offs amongst such conflicting metrics. As the

demand for data rises so does the energy consumption of the network. Recently, green

communication techniques have been proposed in order to tackle the issue of the in-

creased power consumption [22]. The term energy efficiency (bits/Joule) can be defined

as the ratio of the total system level throughput to the system level power consumption

[23].

In order to maximize the linear sum of user throughput, the base stations should

serve the users who get the best signal because other users with poor signal quantity

tend to consume more network resources [24]. Thus another important metric while

designing user association algorithm is fairness. Jain’s fairness index is a widely used

metric for fairness evaluation [25]. Reference [24] examined the problem of network-

wide proportional fairness (balancing system throughput while maintaining fairness) by

focusing on a generalized objective function.

Cellular system optimizations are generally modelled as utility maximization prob-

lem with corresponding resource constraints such as QoS constraints, load constraints
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at base stations etc. The assumption that a user can be associated to only one base

station tends to make the problem combinatorial in nature, which is often NP-Hard. A

widely used method to tackle this issue is by treating the user association variable for

each user to be a real value in the interval [0,1] rather than a binary variable [26].

3GPP release 12 focuses on dual connectivity techniques [27] for improving the

performance related to a mobile user. In dual connectivity, a user receives constant

signalling messages from a macro base station. Simulation and investigation of the

impact of several user association schemes in the presence of dual connectivity has

been presented in [28].

The impact of user mobility in HetNets has been studied in [29] and the results

showed an improvement in the overall network performance using a speed-dependent

bias factor. Authors in [30] proposed a distributed user association algorithm based

on an online reinforcement learning based approach for implementing load balancing in

vehicular networks using spatial-temporal traffic pattern.

Recent work like [31] focus on ultra reliable and low latency communication (URLLC)

in HetNet solving jointly the issue of user offloading and resource optimization. Base

station sleeping strategy based on traffic estimated at the base station using machine

learning techniques has been analyzed in [32].

1.1 Problem Statement

User association algorithms have been widely studied [11] for their pivotal role in im-

proving the spectrum efficiency, load balancing and energy efficiency of networks. En-

ergy efficiency is defined as the ratio of total network throughput to total network

power consumption. Several works have proposed and analyzed optimization based

approaches for increasing the network throughput (while maintaining fairness) [26] and

reducing the network level power consumption (while maintaining QoS) [33]. A major

drawback of such approaches is the computational complexity and large time duration

spent on computing the near-optimal values. Thus, the goal of this work is to improve

the energy efficiency for cellular networks by designing a low-complexity heuristic based
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Figure 1.1: System Model

Categories Value

Scope HetNets

Model Combinatorial optimization

Control Centralized

Metric Energy efficiency

Table 1.1: Taxonomy metrics for user association algorithm

algorithm incorporating the intuition behind existing optimization based approaches.

Figure 1.1 describes the overall system model used throughout this work.

Using the framework for existing user association algorithms provided in [11], our

approach can be categorized in table 1.1 as follows:

The main aim of this work is to provide a centralized low-complexity heuristic

based association algorithm. Table 3.1 highlights the specific categories along with

their corresponding values (based on taxonomy structure introduced in Fig. 3. in [11])

for the user association algorithm presented in this thesis.
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1.2 Main Contributions

The major contributions of this work are as follows:

• Comparison of the performance of several existing optimization based user asso-

ciation algorithms with the baseline max-SNR based association algorithm.

• Design and implementation of a low-complexity centralized heuristic based asso-

ciation scheme to improve the system level energy efficiency.

This work aims to evaluate the performance of optimization based association

algorithms for comparison with the max-SNR based association algorithm. We

present a heuristic based association algorithm derived from the insights obtained

from the optimization based schemes. Detailed MATLAB simulations were carried

out to study the performance of all the user association algorithms and their

impact on the system level performance using metrics like system level energy

efficiency, throughput, power consumption, load at each base station, mean user

throughput and JFI.



7

Chapter 2

Cellular System Background

2.1 Homogeneous Networks

Homogeneous network refers to a cellular network comprising of base stations having

similar capabilities. Cell planning tools often use the concept of frequency reuse for

their effective deployment. The base stations are usually deployed on a standalone

tower or a building rooftop. They usually have a three sector coverage region, with

each sector covering 120◦. In order to meet the rising data traffic demands, cellular

networks utilize several enhancements over homogeneous networks. In this thesis, we

focus our attention on one such enhancement - HetNet.

2.2 Heterogeneous Networks

Traditional networks comprised of macro base stations using a single access technology.

HetNet on the other hand uses a tiered approach where low-power, low-complexity small

base stations are overlaid inside the macro base station’s coverage area. Small base sta-

tions help in addressing the issue of traffic hot spots and coverage gaps while improving

the spectral efficiency and facilitating network infrastructure scaling. Operators usually

tend to deploy small base stations in hot spot locations like schools, stadiums or malls.

The operator is also responsible for providing the necessary backhaul for them.

The different tiers of base station deployment are distinguished primarily based on

their transmit powers [34]. The transmit power for macro base station typically lies in

the range of 5W - 40W. Small cells can be classified into the following types:

• Low power outdoor nodes (250mW – 2W).
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– Pico base station: These are typically operator owned. They have a smaller

coverage area and lower load capacity as compared to macro base stations.

– Relay node: They are used to enhance the network coverage [35].

• Femto base station: These are suitable for environments where there is a small

variation in the user density, for example in indoor office (with home Digital

Subscriber Line (DSL) or cable modem as their backhaul) and have transmit

power in the range (≤100mW). They can be configured with the following types

of restricted access schemes:

– Open access: In this access scheme any user can connect to the femto base

station.

– Closed access: In this access scheme only registered users can connect to the

femto base station.

– Hybrid access: In this access scheme any user can connect to the femto base

station but registered users will have a higher priority.

In co-channel HetNet deployments (macro and small base stations transmitting at

the same frequency) interference coordination techniques are required. Interference

might also arise from the femto base stations which allow only registered users to

connect to them. Thus macro/small base stations need resource partitioning across

them to mitigate these effects. The resource partitioning is done primarily in the time

domain (best suited in case of limited spectrum), frequency domain (used primarily for

asynchronous networks) or the spatial domain (present in case of Coordinated Multi

Point). For the time domain resource partitioning macro base stations transmits certain

ABS, during which pico base stations transmit. These are primarily decided based on

either the load at the pico base station or the data rate requirement of the users.

An important point to note here is that the macro base station transmits the common

control signals even during ABS. Other slow adaptive interference mitigation techniques

work at a timescale much larger than the scheduling intervals by regulating the transmit

power of the base stations for maximizing the total network utility while satisfying the

Quality of Service (QoS) constraints of the users.
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2.3 User Association

The process by which a user attaches/connects to a cell tower (macro base station or

small base station) before it starts receiving data is called user association.

Conventional user association mechanisms usually focus on signal strength as their

deciding parameter i.e. the user will attach itself to the base station from which it

receives the strongest signal [36]. A major drawback of this approach is that since

the macro base station transmits at a power that is much higher than the small base

station, we can usually see an unbalanced amount of load (number of users attached to

a base station) on the macro base station in comparison to the small base station. This

imbalance is responsible for hampering the quality of experience for the users connected

to macro base station as it leads to degradation in their received data rates because the

users are now competing for the fixed resource (bandwidth) at the base station. It also

leads to underutilization of resources at the small base station, since they are powered

up and running far below their maximum load capacity.

To mitigate this issue 3GPP suggests a technique called Cell Range Expansion

(CRE). Utilizing this technique the small cell base stations can increase their Reference

Signal Receive Power (RSRP) value such that they are more attractive (in terms of

signal strength) than the macro base station for their nearby users. Finding the exact

value for this bias is not a straightforward task as the bias value changes with various

system parameters like load at base station and distance between the user and the base

station [26].

Depending on the implementation, user association algorithms can be categorised

as follows:

Centralized user association algorithms: Requires a central controller (often

co-located with macro base station) that has the complete overview of a large region

comprising of macro as well as small base stations. A centralized static framework

to study the relation of user association and resource allocation in HetNet (focusing

on global proportional fairness metric) was proposed in [37]. Co-channel deployment,

orthogonal deployment and partially shared/overlap deployment (shown in table 2.1)
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Channel Allocation Scheme Overview

Co-Channel Deployment (CCD) In this scheme all the avail-
able M sub-channels are used
by the macro as well as pico
base stations.

Orthogonal Deployment (OD) In this scheme the pico base
station uses k sub-channels,
while the macro base station
uses M-k sub-channels.

Partial Overlap Deployment (POD) In this scheme the macro
base station shares k sub-
channels with the pico base
station while transmitting at
a lower power in the shared
sub-channels to reduce inter-
ference. Remaining M-k sub-
channels are used solely by the
macro base station.

Table 2.1: Types of channel allocation schemes

were considered as three channel allocation strategies for a comparative analysis. A

drawback of the centralized scheme is the presence of a single point of failure (central

controller) that can lead to the disruption of load balancing for the overall system.

Distributed user association algorithms: Often runs independently at each

base station (macro or pico) in a distributed manner i.e. each base station is respon-

sible for deciding which users it wants to serve. These association schemes usually

encounter a large amount of information exchange due to their distributed and iter-

ative nature. They are also highly susceptible to minute changes in the base station

load. A distributed algorithm for user association focusing on load balancing in Het-

Net, optimizing a logarithmic utility function (for network-wide proportional fairness)

of long term rate for each user was provided in [26].

On the basis of run time granularity, user association algorithms can be classified

into following two categories:

Online user association algorithm [30]: These set of algorithms solve the user

association problem in a dynamic environment i.e. in the presence of spatial-temporal

variation in user signal strength. They can further be subdivided into:
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• Periodic online user association algorithms - These algorithms run periodically

after a fixed period of time.

• Trigger-based online user association algorithms - These algorithms run only when

a certain predefined event has occurred.

Offline user association algorithm [37]: These algorithms solve the user asso-

ciation problem in a static environment considering a snapshot (for a particular time

instance) of the overall system.

Formulating and solving user association problems using convex optimization tech-

niques for networks with modest size and complexity becomes computationally intensive

especially for their real time implementation. Thus a low-complexity heuristic based

association scheme [33] (showing performance close to optimal schemes) is preferable

for deployment in a real-world scenario.

2.4 Energy Efficiency

Energy efficiency of a cellular network is often described by the ratio of system level

throughput to system level power consumption. Two prominent technologies that aid in

enhancing the energy efficiency are small cells and massive MIMO. Small cells improve

the performance of the network by reducing the distance between the base station and

the user, thereby improving the SNR and energy efficiency [38]. We often face a trade-

off while deploying small cells as adding more small cells increases the static part of

power consumption which is not in our control, thus we aim to reduce the dynamic

part (load dependent) by as much as possible. Power consumption can also be reduced

by switching some of the small cells to sleep mode. Massive MIMO improves the

energy efficiency by adding more antennas at the base station and using sophisticated

techniques like beamforming allowing spatial multiplexing of users and/or higher SNR.

Recent works like [39] have studied the impact of base station equipped with re-

newable energy supply in a HetNet environment. Such base stations are often focused

on using the harvested energy to the fullest rather than the traditional on-grid power

supply. A low complexity centralized green energy aware user association scheme that
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offloads users from base stations having low green energy to ones having larger green

energy (without violating the minimum data rate for each user) was presented in [33].
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Chapter 3

System Model

3.1 System Assumptions

We make the following assumptions for our system model:

• Analysis is done on the downlink signal because a macro base station, uses 87%

of its total power consumption for downlink communication but only 13% is used

for uplink [40].

• All the users are stationary (when the snapshot of the system is observed) and

automatically attach to the macro base station when pico base stations are fully

loaded or in sleep/turned off mode.

• Macro base station and pico base stations (with non-overlapping coverage area)

transmit at different frequencies to avoid cross-tier interference.

• For simplification purpose, perfect backhaul and channel conditions (in the ab-

sence of fast fading) are assumed for the duration of the algorithm.

• All the base stations are considered to be active/switched on. They are transmit-

ting at all times with their maximum transmit power (fixed and known a priori).

• Macro base station cannot be overloaded i.e. it can support all the users present

in the system. The maximum load capacity for the pico base station is assumed

to be 1/macro pico load factor [41, 42].

• A user can only be associated to a single base station and each base station divides

its allocated bandwidth equally among its users.
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Figure 3.1: Simulation network topology

3.2 System Model

Limitations of the ns-3 simulator platform for studying end-to-end simulations of cel-

lular networks has been studied extensively [43]. P. Alvarez et al. [44] provides a

comparative analysis of the existing dense small cell network simulators. Based on

these works, we selected MATLAB as our simulation environment for evaluating the

performance of various user association algorithms. Some of the important character-

istics of our simulation model include macro base station as well as pico base stations

(open-access) having omnidirectional antenna. The coverage area for macro base sta-

tion is assumed to be circular with 500m radius. Slow fading is modelled as log normal

shadowing. Small scale fading parameters have been neglected as the user association

schemes analysed here are assumed to be running on a larger timescale and on averaged

(instead of instantaneous) channel state information.

Figure 3.1 depicts the network topology used for our simulation for a random single

run. A similar topology is used throughout the project for analyzing the performance

of various user association algorithms for 200 simulation runs each.
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Algorithm 1 SNR Calculation Algorithm

1: Input: P BS, dista, shadowFadingBS, shadowFadingRealizations, noiseFlo-
ordBm Macro, P SC, shadowFadingSC, noiseFloordBm SC

2: Output: SNR
3: for k in each user do
4: for j in each base station do
5: if j equals 1 then
6: SNR(j,k) = P BS - (128.1+37.6*log10(dista(j)) + shadowFadingBS *shad-

owFadingRealizations(j,k,iter) ) - noiseFloordBm Macro
7: else
8: SNR(j,k) = P SC - (140.7+36.7*log10(dista(j)) + shadowFadingSC *shad-

owFadingRealizations(j,k,iter) ) - noiseFloordBm SC
9: end if

10: end for
11: end for=0

The system consists of 60 users randomly distributed across the coverage region

(red circle) of the macro base station. Base stations are denoted by red triangles with

macro base station represented by triangle having number 1 (located at the center of

red circle) with coverage radius of R = 500m. Pico base stations are represented by

triangles having numbers 2, 3, 4 and 5. They are located at a distance of R/1.414 from

the macro base station. For all the simulation runs, we have considered the positions of

the base stations to be fixed and the users to be static (for each individual run). Table

3.1 summarizes the simulation parameters [45, 46].

Algorithm 1 shows the SNR calculation algorithm that we have used to calculate

the SNR for each user in our simulation. In the algorithm, Kr denotes the total number

of users in the system and Kt denotes the total number of base stations in the system.

For each user, we calculate its distance from all the base stations, which is stored in the

array - dista. The statement j equals 1 refers to the condition for computing the SNR

between a specific user and the macro base station. We have used P BS to represent the

maximum transmit power of the macro base station, and P SC represents the maximum

transmit power of the pico base station. Other parameters related to their respective

path loss model and log normal shadowing have been taken from [45] and [46]. After

calculating the SNR, Shannon-Hartley theorem is used to get the maximum possible

data rate for communication between the user and a base station.
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ATTRIBUTE VALUE

Users 60

Simulation iterations 200

Macro BS 1

Pico BS 4

Macro BS radius 500 m

Transmit power (Macro BS) 46 dBm

Transmit power (Pico BS) 30 dBm

Bandwidth (Macro BS) 10 MHz (50 RB)

Bandwidth (Pico BS) 20 MHz (100 RB)

Antenna model Isotropic

Noise floor (Macro BS) -99 dBm

Noise floor (Pico BS) -95.9897 dBm

Path loss model (Macro BS) 128.1+37.6*log10(R) R in km

Path loss model (Pico BS) 140.7+36.7*log10(R) R in km

Shadow fading Macro BS (Log normal shadowing) 8 dB (Standard deviation)

Shadow fading Pico BS (Log normal shadowing) 8 dB (Standard deviation)

Minimum distance between user and Macro BS 35 m

Minimum distance between user and Pico BS 10 m

Carrier frequency (Macro BS) 2 GHz

Carrier frequency (Pico BS) 3.5 GHz

macro pico load factor (Lf) 5

Table 3.1: Simulation parameters. Legend: BS = Base Station, RB = Resource Blocks

3.3 Performance Evaluation Metrics

In this section, we provide explanation for some of the frequently used performance

evaluation metrics.

3.3.1 Fairness

Fairness is an important metric which comes up often while performing system level

analysis. In its usual sense fairness ensures that the users involved in the system are

receiving a fair share of total available system resources. Fairness can be described and

evaluated using the following measurement metrics:

Jain’s Fairness Index: Jain’s fairness index is a popular metric used to define
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and measure fairness. It is defined as:

J (R1, ...Rn, ...RN ) =

(
N∑

n=1
Rn

)2

N

(
N∑

n=1
(Rn)2

) (3.1)

where,

N −Number of users

Rn − Throughput ofn-th user

According to the equation 3.1, the index value lies in the range 1/N (worst case) to

1 (best case). When the value of the index is close to 1, it signifies that all the users

in the system are getting equal throughput. A major drawback with this index is that

even if all the users are getting equal rate there might be several users whose demand

is less than the rate they are receiving. This leads to decline of system resources.

User Requirement Satisfaction (URS): In this approach if the network is able

to meet each users demand then the network is said to be fair to all the users. For

implementation purposes we could bin different data demands into predefined categories

of video traffic, VoIP traffic etc. Another variation to this can be the approach where

the network decides and provides each user with a predetermined minimum data rate.

Max-min fairness: The main idea behind max-min fairness is to first fulfill the

demand of the user with the minimum requirement of resources, then fulfill subsequent

demands (arranged in increasing order of their requirement). For example, if the re-

quirements for 4 users are: [2, 2.5, 4, 5] and the total available resources are 10, the

max-min fairness would allocate resources in the following way:

Iteration 1: [2.5, 2.5, 2.5, 2.5]

Iteration 2: [2, 2.66, 2.66, 2.66]

Iteration 3: [2, 2.66, 2.7, 2.7]

3.3.2 System Throughput

A trivial approach, for increasing the total system throughput, is to drop the users with

the lowest signal strength (users near the edge of the network coverage) since they are
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Figure 3.2: Power consumption Vs relative RF output power for macro and pico base
station (based on values from table 3.3)

utilizing resources of the base station which could have been given to another user with

better signal strength. But this approach will not be fair to the users with lowest signal

strength. In order to be fair to all the users we can divide the resources (bandwidth at

the base station) equally amongst all of them but that would not result in the maximum

system throughput. A potential solution to this issue is to maximize the logarithmic

utility function [24, 26] instead of linear utility function due to its concave nature and

load balancing properties. It also helps in achieving network-wide proportional fairness

by providing more resources to users with lower signal strength than those who receive

a good signal.

3.3.3 System Power Consumption

From figure 3.2, we observe that the power consumption for a macro base station is

much larger in comparison to a pico base station [3, 47]. This is because a major chunk

of macro base station’s power consumption comes from the power amplifier. However,

for the pico base station, baseband processing is the largest power consuming entity.

Active cooling is required only in the case of macro base station, pico base stations use

natural air circulation as a cooling mechanism. A linear trend in power consumption is

more prominent in the case of macro/micro base stations [48]. For a pico base station,
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NOTATIONS DEFINITION

NTRX Number of transceiver chains (i.e. transmit/receive antennas per site)

Pmax Maximum RF output power at maximum load

P0 Power consumption at the minimum non - zero output power

∆p Slope of load dependent power consumption

Pout Base station RF output power

Pin Base station power consumption

Psleep Sleep mode power consumption

Table 3.2: Notations used in equation 3.2

Parameters Macro base station Pico base station

NTRX 1 1

P0 130 W 6.8 W

∆p 4.7 4.0

Pmax 39.8 W (46 dBm) 1.0 W (30 dBm)

Table 3.3: Power consumption model parameter values for base stations

we find that the power consumption can be considered as almost constant. The total

transmit power consumption for a base station comprises of two parts, the first part is

the static part which depends on transceiver hardware and the second is the dynamic

part which depends on the transmitted signal and number of antennas at the base

station (number of Tx-Rx chains). Therefore, the overall system power consumption

also depends on the optimal count and the placement of these base stations. The

following equation models the linear relation between base station power consumption

and base station Radio Frequency (RF) output power:

Pin =

 NTRX. (P0 + ∆p.Pout) 0 < Pout ≤ Pmax

NTRX.Psleep Pout = 0

 (3.2)

Recent works [33] on reducing the system power consumption focus on reducing the

on-grid power consumption in cellular networks by using green energy i.e. equipping

the base stations with solar panels. By reducing the on-grid power consumption de-

pendency, they help in reducing CO2 emissions (which is often a major contributor for

global warming). The authors propose a heuristic based association algorithm to of-

fload users from base stations having lower green energy to base stations with excessive



20

Value Macro base station Pico base station

Minimum power consumption (1% load) 131.87 W 6.84 W

Maximum power consumption (100% load) 317.06 W 10.8 W

Table 3.4: Energy consumption range for base stations

green energy, since solving the optimization problem formulated by them to obtain the

optimal user association was NP-Hard.
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Chapter 4

User Association Algorithms

4.1 Max-SNR based User Association Algorithm

The previous chapter explains the procedure for calculating the SNR’s between all the

base stations and user pairs, now we implement our baseline user association algorithm,

max-SNR based association. In this scheme, a user is associated to the base station

from which it receives the highest SNR i.e. the user attaches itself to the base station

from which it receives the strongest signal. Algorithm 2 describes the detailed steps for

its implementation.

Algorithm 2 Max-SNR based user association algorithm

1: Input: SNR, SNR first, curr load max SNR, max load
2: Output: x
3: for i in each user do
4: for j in each base station do
5: if SNR(j,i) equals SNR first(1,i) and current base station’s load < maximum

load then
6: x(j,i) = 1
7: curr load max SNR(j) = curr load max SNR(j) + 1
8: else if SNR(j,i) equals SNR first(1,i) and current base station’s load >= max-

imum load then
9: x(1,i) = 1

10: curr load max SNR(1) = curr load max SNR(1) + 1
11: else
12: x(j,i) = 0
13: end if
14: end for
15: end for=0

The array SNR first stores the maximum SNR value for each user (amongst all its

received SNR’s from all the base stations). The variable x denotes the user association

matrix, curr load max SNR array stores the current load (number of users attached)
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at each base station and max load stores the maximum permissible load for each base

station.

Going through all the possible SNR’s for a particular user, if any particular SNR

matches with the maximum SNR for that user and the current load at base station

is less than its maximum load, we set the association matrix as 1 for that particular

user base station pair. If the base station having the best SNR is fully loaded then

we attach the user to the macro base station. Otherwise, we set the association value

as 0 for that user and base station pair. After obtaining the user association matrix

(considering all the users) we use Shannon’s capacity formula to calculate each user’s

maximum throughput.

4.2 Load Balancing based User Association Algorithm

Several association schemes for HetNet are represented by Fig. 2. in [26]. It highlights

the challenges faced using a max-SNR (similar to max-SINR scheme depicted in the

figure) based association scheme. From the figure, we observe that this scheme leads

to a heavily loaded macro base station (shown in the figure by the point from where all

the blue lines originate). This leads to the following major issues:

• Underutilization of resources at the pico base stations because most of the users

are attached to the macro base station (even the users within the range of pico

base station).

• Degradation in the QoS of the users attached to the macro base station because

the bandwidth at the macro base station is fixed and an increase in the number

of users leads to more users competing for it. This leads to a reduction in the

share of bandwidth allocated to each attached user.

The above drawbacks motivated the need for designing a load balancing based user

association algorithm that tries to balance load amongst macro and pico base stations

by shifting users from macro base station to pico base stations. This scheme would also

lead to an increase in the overall system throughput because with the reduction of load

at the macro, users attached to it will experience a throughput gain. Also, the shifted
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NOTATIONS DEFINITION

Rij Maximum throughput of user i attached to base station j

Bj Bandwidth of the base station j

Rij min Minimum throughput supported by user i attached to base station j

SNRij Signal-to-Noise Ratio of user i attached to base station j

NTRX Number of transceiver chains (i.e. transmit/receive antennas per site)

Pout Base station RF output power

Pin Base station power consumption

Psleep Sleep mode power consumption

Pmax Maximum RF output power at maximum load

∆p Slope of load dependent power consumption

P0 Power consumption at the minimum non - zero output power

U Set of all users {U1, U2, ...}
B Set of all base stations {M,S1, S2, ...}
xij User association matrix

Kr Total number of users in the system

Kt Total number of base stations in the system

Lf

(
Maximum load capacity of macro base station
Maximum load capacity of pico base station

)
Table 4.1: Notations used throughout the thesis

users might experience a gain in their throughput as they are now attached to the pico

base station having larger bandwidth than macro thus leading to an efficient use of the

available system resources.

To implement the load balancing scheme [26], we formulate the following optimiza-

tion equation.

maxx

(∑
i∈U

∑
j∈B

xij log

(
Rij∑

k∈U
xkj

))
subject to

∑
j∈B

xij = 1, ∀i ∈ U

0 ≤ xij ≤ 1, ∀i ∈ U, and ∀j ∈ B∑
k∈U

xkj ≤
(
Kr
Lf

)
, ∀j ∈ B\M

where,

Rij = Bj log2 (1 + SNRij)

(4.1)

Table 4.1 describes the notations along with their definitions used in this thesis.

In equation 4.1, the term
∑
k∈U

xkj signifies the load at base station j. Here, the load
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is measured by the number of users attached to a base station.

The first constraint ensures that a user can only be connected to a single base

station.

The second constraint is a relaxed association constraint where 0 signifies no as-

sociation and 1 signifies full association. Ideally, the association variable should be

a binary variable. But the association problem becomes combinatorial in nature due

to this binary association variable. Its complexity for the brute force association al-

gorithm is Θ
(

(Kt)
Kr

)
[26]. Solving this computation becomes nearly impossible for

even a modest-sized network. Further, the exact optimization problem with binary

association constraint is NP-hard. Thus, in order to mitigate this issue, [26] uses the

relaxation which allows the association variable to take any real value from 0 to 1. The

physical significance of this relaxation is that it allows the users to be attached to more

than one base station, i.e. “Fractional User Association”. After solving the convex

optimization equation 4.1 using the CVX [49], we can get the final user association

matrix by rounding up the values to either 0 or 1.

The last constraint is regarding the maximum load capacity of the pico base stations

(maximum number of users that can be attached to the pico base station).

4.3 Power Minimization based User Association Algorithm

From figure 13 in [47], we observe that the power consumption for macro base station

is much larger as compared to the pico base station. The total energy distribution for

macro base station, indicates that its power consumption can be modelled using a linear

equation. Similar equations can also be used for pico but the power consumption for

pico base station is almost constant [47].

The following equation models the linear power consumption behaviour of a base

station [48].

Pin =

 NTRX. (P0 + ∆p.Pout) 0 < Pout ≤ Pmax

NTRX.Psleep Pout = 0

 (4.2)
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Parameters Macro base station Pico base station

NTRX 1 1

P0 130 W 6.8 W

∆p 4.7 4.0

Pmax 39.8 W (46 dBm) 1.0 W (30 dBm)

Table 4.2: Power consumption model parameter values for base stations

From table 4.2, we can infer that reducing the load on the macro base station by

shifting users from macro to pico base station, would result in a large reduction in the

total system level power consumption. The ratio of the base station RF output power

to the maximum RF output power is a measure of the load of a base station.

Load at base station
Maximum load at base station = Pout

Pmax
(4.3)

Thus the final equation for power consumption minimization can be given as follows:

maxx −
∑
j∈B

(( ∑
i∈U

xij

Kr
Pmaxj∆pj

)
+ P0j

)
subject to 0 ≤ xij ≤ 1, ∀i ∈ U, and ∀j ∈ B∑

j∈B
xij = 1, ∀i ∈ U∑

j∈B
xijRij ≥ Rij min, ∀i ∈ U∑

k∈U
xkj ≤

(
Kr
Lf

)
, ∀j ∈ B\M

(4.4)

Note, for the above mentioned optimization equation we maximize the negative sum

of the power consumption for all the base stations, which is the same as minimizing the

total system level power consumption.

The first constraint is a relaxed association constraint where 0 signifies no associa-

tion and 1 signifies full association. The second constraint ensures that a user can be

connected only to a single base station. The third constraint ensures that each user

in the system gets a minimum predetermined data rate. This constraint is necessary

because without it the solution of the equation might attach all users to the pico base

stations (to reduce power consumption even if a user’s data rate is severely impacted).
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The last constraint guarantees that none of the pico base stations is overloaded.

4.4 E-ASSOC User Association Algorithm

In this section, we focus on improving the system level energy efficiency. User associa-

tion algorithms maximizing the system throughput (log objective function for propor-

tional fairness) with load balancing while transmitting at full power on the allocated

sub-channels and implementing user association constraints have been extensively stud-

ied in [37]. Association schemes minimizing the power consumption of the system while

satisfying QoS requirements of each user, power constraints at the base stations and

user association constraints have been considered in [10, 33].

From the analysis of load balancing based association scheme and the power mini-

mization based association scheme, we find that in order to achieve the above metrics

(to improve energy efficiency) we need to offload users from macro base station to pico

base station.

The equation below represents the optimization equation used for improving energy

efficiency.

maxx


∑
i∈U

∑
j∈B

xij log

(
Rij∑

k∈U
xkj

)

−
∑
j∈B

(( ∑
i∈U

xij

Kr
Pmaxj ∆pj

)
+P0j

)


subject to 0 ≤ xij ≤ 1, ∀i ∈ U, and ∀j ∈ B∑
j∈B

xij = 1, ∀i ∈ U∑
j∈B

xijRij ≥ Rij min, ∀i ∈ U∑
k∈U

xkj ≤
(
Kr
Lf

)
, ∀j ∈ B\M

where,

Rij = Bj log2 (1 + SNRij)

(4.5)

The previous association schemes, we know how to solve the numerator and the de-

nominator separately. Figure 4.1 shows some of the existing approaches used for solving

such problem. Amongst all the mentioned approaches, we focus on the heuristic based
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Figure 4.1: Summary of approaches used for solving optimization equation

solution (by traversing the highlighted path) due to its low computation complexity.

Based on our understanding from previous association schemes, in order to improve

the performance of the system we need to shift users from the macro to the pico base

station. Thus, users whose performance doesn’t degrade severely after shifting from

macro to pico base station are the best candidate for offloading. Using the above

mentioned information, algorithm 3 describes the details of our proposed E-ASSOC

algorithm.

In this association scheme, a user attaches itself to the base station providing the

second best SNR if the difference between the best and the second best SNR is less

than a pre-determined threshold value. The array SNR first stores the maximum SNR

value (amongst its received SNR’s from all the neighboring base stations) for each user.

The array SNR second stores the second maximum SNR value for each user.

Going through all the possible SNR’s for a particular user, if the difference between

best two SNR values lies below our threshold and current SNR value is the second-best

SNR value then we set the association matrix entry as 1 for that user base station pair.

Else if, the difference between top two SNR values is greater than the threshold and the
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current SNR value is best SNR value, we set the association matrix as 1. Otherwise,

we set the value to be zero.

Algorithm 3 E-ASSOC user association algorithm

1: Input: SNR, SNR first, SNR second, curr load heur, max load, threshold val
2: Output: x
3: for i in each user do
4: for j in each base station do
5: if SNR(j,i) equals SNR first(1,i) and current base station’s load < maximum

load and j is pico base station then
6: x(j,i) = 1
7: curr load heur(j) = curr load heur(j) + 1
8: else if SNR(j,i) equals SNR first(1,i) and current base station’s load >= max-

imum load and j is pico base station then
9: x(1,i) = 1

10: curr load heur(1) = curr load heur(1) + 1
11: else if SNR(j,i) equals SNR second(1,i) and current base station’s load < max-

imum load and j is pico base station and (SNR first(1,i) - SNR second(1,i))
<= threshold val then

12: x(j,i) = 1
13: curr load heur(j) = curr load heur(j) + 1
14: else if SNR(j,i) equals SNR second(1,i) and current base station’s load

>= maximum load and j is pico base station and (SNR first(1,i) -
SNR second(1,i)) <= threshold val then

15: x(1,i) = 1
16: curr load heur(1) = curr load heur(1) + 1
17: else if SNR(j,i) equals SNR first(1,i) and j is macro base station and

(SNR first(1,i) - SNR second(1,i)) > threshold val then
18: x(1,i) = 1
19: curr load heur(1) = curr load heur(1) + 1
20: else
21: x(j,i) = 0
22: end if
23: end for
24: end for=0
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Chapter 5

Evaluation Results

In this section, we investigate the results obtained from the implementation of user

association algorithms described in the previous chapter.

Max-SNR
algorithm

Load balancing
algorithm

Power minimization
algorithm with QoS
requirements
(Rij min = 100 Mbps)

System throughput (Mbps) 630.0245 849.989 798.817

System power consumption (W) 339.234 227.288 207.9399

Energy efficiency (Mbit/Joule) 1.857 3.739 3.8415

Table 5.1: Max-SNR Vs Load balancing Vs Power minimization user association algo-
rithms

Table 5.1 provides us with an average results of different system level metrics for

three user association algorithms averaged over 200 simulation runs.

Load balancing scheme provides a higher system throughput (improvement of 34.91%)

than the max-SNR scheme. Power minimization schemes also performs better than the

max-SNR scheme in terms of total system throughput. Amongst all the implemented

association schemes, it has the least system power consumption (63.14% reduction in

comparison to baseline max-SNR scheme) because the main objective for this scheme

was minimizing the system level power consumption. For evaluation purposes, we have

assumed Rij min to be 100 Mbps. This value is calculated by allocating the total band-

width available at respective base station prior to any association.

Table 5.2 shows a comparison between the baseline max-SNR scheme and our pro-

posed E-ASSOC association scheme. We have selected the value of threshold to be 30

dB. This particular value for the threshold was selected to achieve system throughput

comparable to load balancing scheme. We can clearly notice a gain of 41.26% in the
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Max-SNR
algorithm

E-ASSOC algorithm
(threshold val = 30 dB)

System throughput (Mbps) 630.0245 889.965

System power consumption (W) 339.234 255.134

Energy efficiency (Mbit/Joule) 1.857 3.488

Table 5.2: Max-SNR Vs E-ASSOC user association algorithm

Figure 5.1: Load at each base station after execution of user association algorithms

system throughput as well as a reduction of 32.96% in the system power consumption.

These results can be attributed to the fact that our heuristic based E-ASSOC scheme

was designed to reduce the load at the macro base station and increase the utiliza-

tion of pico base stations by offload users from macro to pico base station. Another

key observation is that the results from E-ASSOC association scheme lies somewhere

between the results obtained from max-SNR association scheme and the other optimiza-

tion equation based association schemes. This reinforces that fact that E-ASSOC user

association scheme is not as good as the optimal scheme but shows similar performance

enhancement. Ultimately, a gain of 87.83% in energy efficiency was obtained over the

baseline max-SNR scheme.

Figure 5.1 shows the final load at each base station (after execution of association
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Figure 5.2: Comparison of average user throughput for all user association algorithms
considering 200 simulation runs (60 users per run)

Max-SNR
algorithm

Load balancing
algorithm

Power minimization
algorithm

Mean user throughput (Mbps) 10.50 14.17 13.31

Jain’s Fairness Index (JFI) 0.90756 0.99906 0.99873

Table 5.3: Mean user throughput and JFI analysis for Max-SNR Vs Load balancing Vs
Power minimization user association algorithms

algorithm) for all the user association schemes. We notice a large spike in the load at

macro base station for the max-SNR scheme since most of the users receive a strong

signal from the macro base station (due to its high transmit power). Load balancing

and power minimization schemes show a much more balanced load distribution. This is

because both the schemes optimize metrics that are benefited from macro to pico base

station user offloading. E-ASSOC scheme also shows load balancing results similar to

optimization based schemes as it has the concept of user offloading baked into it.

Figure 5.2 depicts the Cumulative Distribution Function (CDF) of user throughput

for all the schemes. From the plot, we find that all three schemes (except max-SNR

scheme) perform better than our baseline max-SNR scheme since more than 50% of

users in the other schemes have a higher throughput in comparison to max-SNR scheme.
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Max-SNR algorithm E-ASSOC algorithm

Mean user throughput (Mbps) 10.50 14.83

Jain’s Fairness Index 0.90756 0.99738

Table 5.4: Mean user throughput and JFI analysis for Max-SNR vs E-ASSOC user
association algorithms

From Table 5.3, observing the JFI values for all the different schemes, we find that

the load balancing scheme has the best JFI value. This means that the load balancing

scheme allocates the system resources most fairly amongst all the other schemes as it

uses network-wide proportional fairness as its optimization metric. Power minimization

scheme is not as good as the load balancing scheme in terms of fairness but has a very

close value. Max-SNR scheme is the least fair amongst all the schemes. In terms of mean

user throughput, load balancing and power minimization algorithms show significant

improvement over the baseline max-SNR based association algorithm.

A comparative study of the E-ASSOC scheme and the baseline max-SNR scheme is

shown in table 5.4. The values indicate superior performance of the E-ASSOC scheme

over the max-SNR scheme for both mean user throughput as well as overall network-

wide fairness.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we proposed and evaluated a centralized heuristic based user association

algorithm (E-ASSOC) to enhance the energy efficiency of HetNet over the existing

baseline max-SNR association algorithm. Design of our algorithm was based on the

insights obtained from existing optimization based association schemes. Results show

that the proposed E-ASSOC scheme achieves a gain of 87.83% in energy efficiency

(bits/Joule) relative to baseline scheme.

6.2 Future Work

This sections emphasises on some of future areas for further exploration.

• Mobile users: All the association schemes analysed in this work were based on

a snapshot of the network i.e. considering static user positions. However, there is

a need to evaluate the schemes with mobile users taking interference into account.

• Linear Fractional Programming: The heuristic scheme proposed in this

work is often considered as a non-mathematical solution. It would be interest-

ing to compare its performance with the final optimization equation (for energy

efficiency) using a more rigorous mathematical approach.

• Evaluation for 5G systems: The simulation environment considered through-

out this work utilized path loss models from 3GPP LTE specification. With

rapidly emerging 5G standards, it becomes important to asses the performance

of these algorithms on the latest standards.
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