SUPPLY CHAIN OPTIMIZATION AND MODULAR PROCESS DESIGN USING MACHINE
LEARNINBASED FRAMEWORKS

By
ATHARV BHOSEKAR
A dissertation submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partialfulfillment of the requirements
For the degree of
Doctor of Philosophy
Graduate Program in Chemical and Biochemical Engineering
Written under the direction of
Marianthi lerapetritou

And approved by

New Brunswick, New Jersey

October 2@0
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Globalization and the sudden increase in the exchange of information, trade, and capital all
around the world, driven byechnological innovation, has given rise to complex global supply
chain networksSince optimally designing such networks can yield significant profits in the long
run, supply chain optimization is an area of active interest. The motivation for the problem
considered in this work is twinld. First, in a modern supply chain network, data plays an
important role. However, since traditional optimization solvers cannot readily make use of this
data, there is a need for frameworks that can utilize data to matmal decisions in such
networks. Second, there is a growing interest in considering multiple levels of decisions while
designing the supply chain. However, due to differences in scale, level of details, and
computational expense of the resulting intetgd model, the problem of integrated decision
making is challenging. This work aims to propose machine leabaised frameworks that

address these challenges.

The problem of optimal inventory allocation is first solved in a multienterprise supply chain
network where the supply chain model is available in the form of a complex simulation. Further,
historical data of the process or data generated from process simulations is used to design the

process while simultaneously considering the total cost of tlee@ss as well as the flexibility of



the design obtained. The framework is applied to modular processes. It is shown that using
machine learningpased frameworks, processvel details can be incorporated at the supply chain
design stage. This approach alk quantitatively assessing the benefits of modular processes
such as design standardization, reduced transportation cost due to decentralized manufacturing,
and optimal production facility location. Finally, the study is extended to address the problem of
multiperiod supply chain optimization under product demand uncertainty. The results
demonstrate the efficacy of the machine learnibgsed optimization framework proposed in this
work and yields a set of solutions that minimize the risk as well as thectegbtotal cost of the

supply chain network.
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1 Introduction

1.1 Supply chain optimization

Globalization and the sudden increase in the exchange of information, trade, and capital all
around the world, driven by technological innovation, has given rise to complex global supply
chainnetworks.Since optimally designing such networks can yield significant profits in the long
run, supply chain optimization is an area of active interA&stopposed to traditional supply chain
networks, modern supply chain networks consist of entities thesually belong to different
enterprises andare even spread geographicallgince entities in such supply chain networks
operate based on their individual goals as opposed to a common goal in centralized networks,
there is agrowing interesttowards devebping new optimization frameworks that take into
account different goals and operating policies of different entities in a supply ¢hpibinder

such networks, the problem of optimal inventory allocation is known to have a significant impact
on the service level and the total cost of the supply chain and thereby impacting thé {braifi

an individual enterprise would makg]. However, there are challenges associated with modeling

and optimization of complex supply chain networks.

The first challenge to address this problem is related to modeling a complex netioek.
modeling approaches ithe existing literaturecan be broadly classified as analytiapproaches

and simulatiorbasedapproachesAnalyticamethods formulate the problem as a mixed integer
linear or nonlinear programming problem and solve using stdtthe-art optimization solvers.
Even though these approaches benefit from efficient optimization techniques, modeling complex
interactions in a network with the help of equatidtased models is not always possible. To
overcome these shortcomings, simulatibasel approaches utilize a detailed simulation model

that capturesdetailsof the supply chain networl echniques such as agerdsed modelingllow



a bottom-up approach towards building a simulati¢dj[4] and have been found useful in supply

chain networks in various areas.

The second challenge is related to optimization using simulation mofidelsvhich there is a
growing need for thelevelopment of novel optimization frameworkSmulations are often built
using commercial softwarevhere theinformation about the underlying network is not available

in closed form As the simulation models aim for more accurgtye computational expense of
running the simulation increaseand numerical evaluation of derivatives to guide the search
towards optimumbecomes difficult As a result, traditional optimization techniques cannot be
used to solve this problemTo overcome this challenge, derivatifree optimization (DFO)
methods are usedDFOalgorithmsrely only on the data from simulation models or physical
experiments and do not require a closéatm expression of the problen® common strategy to
achieve this is to build a machine learningsed model or a surrogateadel that approximates

the simulation using a limited amount of data. The models are then iteratively updated as more
data is collected. It has been shown that for an effective optimization algorithm, the choice of the
surrogate model plays an important leo Another challenge in DFO is thatany available
algorithms and software packages rely on the assumption of continuity of the resginse.the
response may not be continuouis some applications, especially for the case of supply chain
networks where the objective function is dependent on several discrete decisibns.this

reason, optimization of problems with discontinuous response needs special attention.

In this dissertation, the aim is to review several machine learbagpd models along wittheir

use in DFO algorithms. Using suitable models, for the problem of multienterprise supply chain
optimization, this dissertation aims to propose a DFO framework that addresses discontinuity of
the response.Throughout the dissertation, the terms machifearningbased models, data

driven models and surrogate models are interchangeably used for models that address the



problems related to regressidipredicting a real/alued response}-or the classification problem,

the terms classifier or machine leangibased classifier are used.

1.2 Modular processupply chain optimization

Globalization and increasing market competition have been a significant impetus for changing the
pace and nature of businesses and innovation around the worlskeMind more customer
orientated productsare driving change in many industries, and product cycles are becoming
shorter [5]. Modularization, process intensification, and design standardization are increasingly
being recognized as critical factors to reduce the time to market forodumt [6]. With a wide

range of appliations in the areas of gas conversion, solid conversion ammonia synthesis, CO
conversion, water purification, renewable energy, power generation, and chemical processing
along with growing industrial interest, modular manufacturing provides a promisipgavevard

for the process engineerir@][8].

Modular design involves the use of small and standardized modules of fixed size in a production
process. Multiple identical devicesay be assembled to achieve the desired production. Modular
and distributed processes may not only contribute to decreases in distribution costs but also
provide an alternative to overcome several manufacturing challenges. Small devices offer
inherent saéty and can be used for eslemand and ossite production of hazardous materials

[9]. They provide a fast path to commercialization since challenges related to the scaling up of
chemical processes are not substantial. Moreover, the time for construction of manufacturing
facilities may be reduced, since modules can be me@mbled in a shop and are not subject to
delays related to weather and esite inspections. Because of standardized units, the process of
numbering up as a part of plant expansion becomes faster. Economically, as the standardized

units or small modular pigs are numbered up, vendors, as well as process engineers, gain



experience. As a result of the learning curve, the vendors may be able to sell the equipment for a
lower price and process engineers can reduce the titnanarket. All these factors contribute to

a relatively lower risk of investment related to small modular designs.

However,ensuring the feasibility of th@rocessdesignedusing a limited set of standardized
modules is an important problem. In the presence of analytical equations for the underlying
process, this problem is straightforward and can be solved using existing nonlinear or linear
programming approaches. Howevéar,many cases, the only available infation is in the form

of historical dataor simulation modelsin such cases, bladdox or machine learninbased
feasibility analysis methods are used. Bfaok feasibility analysimethods rely on building a
datadriven approximation of the feasible regi10]. There are twosignificantchallenges in
solvingthe blackbox feasibility anlysis problem. Firstpf process feasibility analystlag existing
literature relies on treating the whole process as a black Adwsapproach does not utilize
feasibility information for individualinits. Moreover, when designing the process based on
several optios for each module, the problem of process feasibility analysis may require a large
number of surrogate modelsThe gcond challenge is related to flexibility analysis to hedge
against exceptional realizations of process paraméidis In the presence o&n equation
oriented model, the problem of flexibility analysis has been explored for over three decades and
is still an active area of reseaf&R][13]. In the absence of closddrm expressions, however, the
existing literature is limited to feasibility analysiBhis dissertation intends to address the
challengesrelated to process feasibility analysis and flexipilgnalysisby usingproposing

machine learningdbased feasibility analysisamework

Even thoughhe benefits of modular desigrare weltknown, quantifying their economic viability
andtheir overall effect on the supply chain is a relatively underexplored prob&nte process

feasibility analysis can be carried out for modular processegeralexcting problems can be



addressed for supply chains with modular processifigis disseraition aims to propose an
integrated design and supply chain optimization framework usimachine learningpbased
feasibility analysito ensurethe feasibility of the process his way, the cost savings due to design
standardization can be quantifieoreover, the tradeoff between centralized and distributed
manufacturing can be assessé&ahally, this dissertation aims to extend the proposed framework
for modular supply chain optimization to the problem of optimization under product demand

uncertainty.

It should be noted thatn the context of this work, modular designs refer to the design and
construction of smaller chemical process units or even entire processes of fixed production
capacities[14]. It is important to note that this definition includes the possibility of process
intensification[15], transpotable processing unitgl6], standardization of equipment modules

[17], and even integrated or customized unit operati¢8k

1.3 Outline of the dissertation

This dissertation is organized as follows. Machine learbaswpd methods for regression,
classificationand background on the specific problems of optimization and feasibility analysis is
provided in ChapteP. Chapter 3 proposes a framework to solve the optimal inventory allocation
problem forasimulationbased optimization problem for a multienterprise supply chain. Chapter
4-6 are aimed at solvinthe supply chain optimization problem for modular processing with a
simultaneous consideration for procedssign Chapter 4 first solvate designoptimization of a
modular processin doing so, historical data of the process or data generated from process
simulations is used to design the process while simultaneously considering the total cost of the
process as well as the flexibility of the desigibtained. Chapter 5 integrates supply chain

optimization with process design optimizatiol.is shown that using machine learnibgsed



frameworks, procestevel details can be incorporated at the supply chain design stage. This
approach allows quantitately assessing the benefits of modular processes such as design
standardization, reduced transportation cost due to decentralized manufacturing, and optimal
production facility location. The problem of supply chain optimization is further extended to
address the problem of multiperiod supply chain optimization under product demand uncertainty
in Chapter 6. Finally, Chapter 7 provides a summary of the work and potential future directions

for the research.



2 Machine learningpased methods

In this chapter,a background on machine learnifsed methods is provided. Specific details
related to the methods used in the dissertation are provided. In se@itya review on machine
learningbased regression models, or surrogate models is provifledtion2.2 described support
vector machines. Sectio® 3 provides a comprehensive reviev derivativefree optimization.
Section2.4and secibn 2.5offer a detailed overview of feasibility analysis and flexibility analysis
respectively. Sectio.6reviews adaptive sampling approaches in the existing literature. Section

2.7 describedhe validationmetrics used in this work to validate machine leardagsed models.

2.1 Surrogate models

In this section, frequently used approaches for obtaining the surro§ade are discussed with a

focus on the recent advances. The models that are designed to yibidaed predictions at the
sampled data are referred to as interpolation models, whereas models that are built by
minimizing the error between given data and model prediction under a certain criterion are
referred to as regression models. In this sectimgression models such as linear regression,
support vector regression are discussed followed by interpolation models such as RBF and Kriging.
Finally, approaches utilizing more than one of these surrogates are discussed. With their ability to
provide a gantitative measure of uncertainty in prediction, RBF and Kriging surrogates are the
most popular choices for optimization and feasibility analysis. Therefore, special emphasis is given

on these surrogates.

2.1.1 Linear regression

This is a commonly usexpproach where a surrogate is represented as a linear combination of

the input variables as given by Ef). (



/s x Dx 1)

where @is a \ector of sizé ‘Qis the number of variables] is the vector of lengtfQ p. To
obtain the weight vectorsum of squared errors between the actual data and the surrogate

predicted value is minimized’he unconstrained minimization problem can be formulated as

given by Eq.2).

I E®O G 2
where®is a matrix of sizé by Q+1 wheret is the number of sample points and all elements in
the first column oftd are 1 and columns 2 througR p correspond to the input vectorpis a
vector of siz& that represents function values at sample points. For the case of ordinary least
squares,solution in analytical form ig @ ® & « When one or more of independent
variables are perfectly correlated, the matrix & becomes near singular. As a result, the
coefficientsd are not uniquely defined. This kind of rank deficiency can daduigh dimensional
problems where the number of data points is less than the number of variables. This is usually
addressed by reducing number of variables by screening or by utilizing regularization techniques.
As the number of variables (d) in this ptem increases, either inherently from the problem or
from a combination of existing variables, this system is suscpetible to produce high variance. Even
though addition of extra variables leads to low bias on the data points used for building the model,
high variance makes it difficult to have better predictions on new data points. This phenomenon
is known as overfitting. To avoid this issue, the effect of unnecessary variables is either removed
using subset selection or suppressed using regularizatiomse$iselection and regularization

strategies are explained below.

Subset selection



Subset selection refers to addressing the tradEbetween prediction error and the regression
model complexity by selecting a subset of variables. This step is followed by least squares
regression for determining coefficients of the regression modele@&approaches for subset
selection exist in the literature that are classified here as exhaustive search methods, heuristic
methods, methods based on integer programming, methods relying on model fithess measures,
Bayesian variable selection methods, anethods based on analyzing correlations between input

variables and the output.

Exhaustive search methods try to exhaustively explore all possible subsets of features and select
the subset with minimum prediction error. Advantage of exhaustive searttaisa number of
regression models are obtained with comparable prediction accuracy. Even though these
methods guarantee the selection of best possible model, computational complexity of exhaustive
search increases rapidly as the number of subsets incsedgeimplementation of this approach

is the leaps and bounds algoritHi8].

Heuristic methods try to overcome this drawback by using greedy approaches such as forward
stepwise regression, backwastepwise regression, and forwasdagewise regression. In
forward-stepwise regression, variable selection starts fram empty set of variables and
proceeds by sequentially adding a variable that improves the fit by largest magnitude.
Improvement in the fit is usually measured by using tketefistic. Using sum squared error, F
statistic quantifies the improvement achied by addition of a new variable. Backwantgpwise
regression is an opposite approach that starts from including all variables and sequentially
removes variables that have least impact on the fit. Forwstedjewise regression is similar to
forward-stepwise regression. However, in this case, only the coefficient of the newly added

variable is adjusted keeping other coefficients constant.
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Approaches that use integer programming for subset selection formulate the subset selection
problem as an optimization pblem. In these formulations, an error measure (EM) is minimized
subject constraints that ensure subset selection. One way to impose such a constraint is by having
an upper bound on the number of nonzero entri@®]. In addition to limiting the number of
nonzero entities, these formulations can be adapted to ensure statistigaperties such as
robustness, selective and general sparsity of the m{zi¥jl These approaches, however, need a
prespecified value for number of variables that might not be known a priori. Review of these
approaches can be fodrninLiu and Motodf1]. For a known number of variables to be selected,

an example of problem formulation for these problems is given by3s)[22].

i Edo- 3)

@B a 0 (4)
06 0 0 Gl pMH 5)
af ip K phB FO (6)

where,& is a binary variable for selection of variabl&is the number of subsets to be selected:;
for the coefficient) in the regression model, and0 represent the lower and upper bounds
respectively. Eq4j limits the number of nonzero coefficients used in the mo#el. 6) imposes

bounds ond andforcesy to be 0 wheny is 0.

Methods utilizing model fitness measures tackle the issue of prespecifying number of selected
variables by including a penalty for number of nonzero variables. This way these matluvess

the tradeoff between model complexity and prediction accuracy. Several fithess measures exist
in literature. One such measure is mean absolute error (MAE). An algorithm to minimize MAE is
proposed and used for finding subset of variaggj® h G KSNJ & dzOK Y S| & dzNB &

[24], Akaike information criterion (Al2p], Bayesian information criterion (BI2P], the Hannan

Ay



11

Quinn information criterion (HQIQ27], the risk inflation criterion (RI38], and mean squared
error (MSE). These measures are showhable2-1. These fitness measurearcbe used as EM

in Eg. 8) to form a mixed integer quadratic prograf29], [30]. AIC is based on the idea of
minimizing discrepancy between the original distribution of the data and the distribution given by
linear regression model. A wédhown discrepancy measure called Kullbaekbler divergence is
used. Other discrepancy meassrinclude Kolmogoresmirnov and Hellinger discrepanf31].

I ) #epresents correction term added to ) fér finite sample size§32]. 6 simply tries to
minimize prediction error where mean squared error is the error measure sB&Rs to maximize
approximate posterior probabilitythese metrics are tabulated ifigble2-1) where,j Qs the

number of coefficients) is the number of samptepoints,, is an estimate of the error variance

Table2-1: Model fithess measures

Model fitness measure  definition

Al Ol 'I'§ ®w QU Q) M
6 n p
HQIC ) o
61 i § o o cfl Tici @
BIG B & &O .. ..
loT G
RIC B & & o
¢l 1'Q
G B W QU L
¢h 0

Bayesian approach models the uncertainty over unknowns in a surrogate model using probability
theory assuming those as random véi@s. The probability distribution that represents this

uncertainty before obtaining samples is referred to as prior distribution and that after obtaining
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samples is referred to as posterior distribution. Suppose that there are M models under
considerationwhere " model is represented b¥2and unknowns corresponding to each model

are represented as—. The aim is to select a model with highest posterior probability, which is

given by Eq.7).

o 0@ 00Q
00Q & ; (7)
B 0@'QO0O0Q

where,

0@ Q 0 G —hAQ 0 O—"Q Q—

and @ is sampled data set— represents unknowns in surrogate mod&l Bayesian variable
selection problem is usually considered as a special case of the model selection problem where
each model consists of a subset of variables. It should be noted that for comparison between two
candidate models, the denominator on the righand side of Eq.7] is the same and therefore,

only numerator is usually considered for comparison. Finding the model vgtiesi posterior

probability is the fundamental motivation behind BIC.

Another class of subset selection approaches is the one that relies on learning the correlation
between input variables and the output. One such method is sure independence scredB8ing (S
Sure independence screening (SIS) relies on learning ranks of input variables according to their
marginal correlation with outputa After standardizing columns of matdx where each column
corresponds to each input variable, a vectorwis oltained which directly signifies marginal
correlations of input variables with the output. With this method, input variables having least
impact on the output can be filtered out. Another famous approach involving a similar strategy of
assessing impact adn input variable by monitoring correlation with output is least angles

regressior{33]. In this approach, coefficients are added in a similar fashion to forsiuivise
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regression. However, instead of obtaining a least squares solution, correlation withitjeat s

monitored and new variables are added sequentially.

Finally, subset selection is extremely important especially whemumber of input variables is

much higher than the size of available data set. Few of the approaches to address this class of
problems include Dantzig select®4], adaptive lasso and sure independence screef8bl) For

high dimensional problem§adima eal.[36] review heuristic algorithms for subset selection. An

extension of BIC for high dimensional problems known as extended BIC is pr¢®oised
Regularizatio

Subset selection methods lead to a discrete decision of either accepting or discarding a certain
variable. This leads to high variance in prediction and does not reduce the prediction error of the
regression model. Regularization leads to a continuowtucton of the regression model

coefficients.

Regularization penalizes magnitude of regression coefficiertts modify the problem given in

Eq. @) to the form given irEq. B) [38].

| EToh0 &  #9Ds (8)

where,

SURS 0 9)

and# is the parameter that decides magnitude of regularization. 8qjis(the expression af
norm. Value of ghas a significant effect on properties of thegressiormodel. Values 1 and 2

represent two commonly used variants of regularization known as lasso and ridge regression
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respectivel\f39]. In contrast to ridge regression, lasso has the ability to set regression coefficients
exactly to 0. Values of q between 1 and 2 descabuix between properties of lasso and ridge
regression. Another approach to obtain a similar mix is known as etadtiegression where a

linear combination of lasso and ridge regression penalty terms is used.

| ET0 a8 # |0 p | Ds (10)

where,| is a tuning parameter. Other extensions of Lasso include adaptive [l sehere the

penalty term is a weighted summation where the weight depends on magnitude of the coefficient
itself. Another for reducing the absolute value of regression coefficients uses -aeyative
garrotte estimator[41]. This estimator is obtained by scaling coefficients of least squared
regression. A penalty is associated with the scaling parameters and the problem is to find these
scaling parameters. In this case, a closed form expression for these parameters is available as a

function of coefficients obtained using ordinary least squares.
2.1.2 Support vector regression
The Support Vector Regression (SVR) surrogates are representegl @sitfinted sum of basis
functions added to a constant term. A general form of SVR surrogate is given1d)Eq. (
Qe 01 O (12)
Assuming a simpleasisfunctionf 8 @, the surrogate can be written as per EtR)
Qv * 0 ® 12

This form of thesurrogateis similar to that of RBF as well as Kriging. However, the way to calculate

unknown parameters for this surrogate differs significantly from that of RBF and Kriging
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surrogates. The unknown parametersand 0 in the model are otained by formulating a

mathematical optimization problem given by E4346).

i E -EL oS #g S (13)
€:¢]

08 o 1, (14)

“w v& ‘T (15

, h n (16)

Eq. (4) and Eq.15) allow the sample points to lie withinT deviation from the value at sampled
points without affecting the surrogate model. This band of allowed deviation is referredito as
insensitive tube.Slack variables and, ensure feasibility of the problem by allowing
outliers that do not fall within insensitive tube. Tradeff between model complexity and fit is
achieved by penalizing outliers by a ffefined constan## 1. Combined conthution of the

model complexity and the penalty for outliers (Et@)] is minimized.

The abovementioned formulation is obtained under the assumption of a linear asiction.
Using a different basis function might require determining additional hyjaeameters
associated with that specific basis function. Details and mathematical derivations related to SVR

can be found inthe work bySmolaand Scholkopf{42].

Finally, SVR is shown to achieve comparable accuracy with that of other surr¢4ajeSVR
models are accurate as well as fast in prediction; however, the time required to build this model
is high because finding the unknown parameters requires solving a quadratic programming

problem. This added complexity hinders the popularity of BMR
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2.1.3 Radial basis functions

Giveng distinct sample points, RBF surrogates can be represented as given17)Eq. (

"0 % ®S Qo 17

where_ /8 h_{ "dre the weights to be determineg®sis the Euclidean norn¥%o8 is the basis

function. There are several options for choosing the basis funés@as shown irrable2-2.

Table2-2: Commonly used basis functions

Type Function%o. 8

Linear %ol i
Cubic %ol i
Thin plate spline %i 1111
Multi-quadratic %ol o
Gaussian %ol Q

In the case of mukguadratic and Gaussian basis functions, mhand| is a positive constant.
There is no solid conclusion in literature that decisively concludes one of these basis functions is
better than others. However, use of cubic basis function with linear tail has been found to be

successfulds]. It can be represented by EQ.8].

"6 %o 0 B O (19)

The weights_, cand®in Eq. {8) can be deterntied uniquely by solving the system of equations

given by Eq.109).
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(19)
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Anextension of RBF for the purposes of global optimization using a function called the bumpiness
function (described in sectioB.6.2) is proposed[46]. Several variations of this approach are

discussedn section2.6[45], [47].

2.1.4 Kiriging

Kriging surrogate modghlso known as Gaussian Process regressimnesents the underlying
simulation or unknown function as a realization of a stochastcgsg10]. A Kriging surrogate

can be formulated as given in §0).

"Qw I Qw T (20)

where"Q @ ared known independent basis functions that define the trend of mean prediction
at locationayt are unknown parameter$; w is anormally distributedandom error atocation

« TheKriging predictohas the form shown ikq.(21).
MO MO o’ (21)
where,"Qw QB RQ & ;I °isthe vector of generalized leastjuare estimates gf

Y BH ‘1 ® is the correlation vector of sizex 1 betweeri ® and] & .1 “and[ * are

given in Eq(22) and Eq(23) respectively.
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> Y w "Q° (23)
where,"Y is the covariance matrix of sizex ¢ where "6iQ element is the correlation between

f o andf ® ;"0 Qo MBHRQ® is€ x& matrix; ®are observations at available data.

Having a random error term allows Kriging surrogates to provide an estimate of uncertainty in
addition to the predicted value at a specific locati®nediction variance can be computed with

the help of Eq.24).
i o , p 1Y i (24
where,, -®w O Y w Of

Severalcorrelation modet can beused for obtainingY and i as shown inTable 2-3.The
correlation modelsdepend on a set of unknowns also known as hypemameters. The hyper
parameters are estimatedy maximizing the likelihood estimat{viL). For convenience, the log

ML estimate (Eq26)) is often used.

11-GJ Tiick 1 RADS U &> 25 U & Ik (25)

Variants ofKriging

Depending on the basis function (usually constant or polynomial of first or second degree) and

the correlation modelTable2-3) used,several structures of th&riging model could be used.

Table2-3 Commonly used correlation models in Kriging surrogates

Name Mathematicalexpression

Exponential AgDPB —a& it ¢
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Squared exponential AGDB —&

Linear i Aglp B —s s

Spherical p p® ™, h [ EpB —s
Matern B — g O —dt s

Krigingsurrogate shownn Eq. 20) consists of regression component givenBby I "Q @ and
correlation component implied Hy. Several choices for both tifese components are proposed

in literature combinations of which lead to multiple variants of Kriging.

Correlation models

The random variablgs w in a Kriging surrogate are assumed to be correlated according to a
correlation model. For a deterministand continuous function, if two samples are close to each
other, their predicted values are close. As a result, the correlation between random variables is
high. Correlation models consider the effect that the correlation decreases as the distance
between two distinct samples increas€ommonly used correlation models are depictedatle

2-3 where & is the distance between two points:-and | are hyperparameters; d is the
number of dimensions of the original problerin case of Matern correlation moded, is the
Gamma function,0 is the modified Bessel function of order. The parametet T provides
control over the differentiability of correlation model with respect to input variablieand
therefore that of the Kriging predicto€hen et al[48] compare some of these correlation models
and their results show that the squared exponential correlation performs worse than the
exponential correlation. Howevei is important to note that the generalized exponential
correlation model has aighernumber of hypefparameters ¢Q as opposed td2in case of
squared exponential correlation. They also suggest choosing Matern correlation mabkdX-3)

as an alternative to exponential correlation model. Diffarability of this correlation model can
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be controlled by choosing an appropriate valué oFor example, p - or ¢ -make

sure that there are 1 or 2 derivatives of the correlation model respectively.

Regression models

Based on the choice dfie meanprediction model'Qw T (given in Eq.20)) there are several
variants of Kriging such as simple Kriging, ordinary Kriging, and universal Kriging (also known as
Kriging with a trend). Simple Kriging assumes the t&® | to be a known constant, ordinary
Kriging assumes it to be an unknown constant, and universal Kriging as§iinés be any other
prespecified function ofa In universal Kriging, usualiQ® takes form of a lower order
polynomial regression. However, specifying a trend or a value for the mean when the underlying
function is unknown may lead to inaccuracy in prediction. To avoid this problem blind Kriging is
used[49]. In blind Kriging, the unknown trend is identified using a Bayesian vasatdetion
technique. From a given set of candidate models, Bayesian approach tries to select models that
have maximum posterior probability (sectioR.1.1). Severalother approaches for variable
selection exist in the literature for blind Kriging. For exampleang and Chefb0] propose a

metric knownas generalized degrees of freedom which is an estimator of mean squared error.

Variable selection is done by trying to minimize this estimator.

There are a few strategies developed based on penalized likelihood function for variable selection
in Kriging werethe idea of adding a penalty term in regularizatiaiis¢ussed in sectioR.1.]) is
implemented in the context of likelihood functionfs1]. Unlike penalized least squares
approaches discussed in sectid. ], algorithms involving penalized likelihood functions involve
operations with covariance matrix which is of a size of the order of size of sampled data set
(discussed in sectiof.1.4). As this problem occurs frequently in building Kriging surrogates,

efficient optimization algorithms are developed specifically for this pro&2h[53][54] [55].
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By having different combinations of mean prediction teff2& and correlation models used for
random errorf w, multiple Kriging models can be obtained. One such comparison between
Kriging models was made @hen et al[48]. For regression terms, their results reveal that adding
complex regression terms to Kriging might not be of advantage over ordinary Kriging in terms of
prediction accuracy. Moreover, adding these complex terms might result in multimddal

function, thus adding an extra computational expense (se@idm).

Nugget effect

Kriging by its fundamental probleformulationis an exact interpolation technique. This means
that Kriging surrogate predicted value matches exactly with the underlying-btackunction at

the sample points used to build the Kriging model. This nature of Kriging might lead to highly
oscillating behvior of the prediction. To suppress this, Kriging regression is an approach that

attempts to add a regression component to Kriging.

In this approach, the covariance matrix is augmented by a term known as the nugget. The effect
of this added term on Krigg surrogates is known as nugget effect. Mathematically, the

correlation matrix obtained after adding the nugget terns shown in Eq26).

Y Y T) (26)
Because of this modification, distancebetween two points approaches zero, the correlation no
longer equals 1. A singular orgthnditioned covariance matrix occurs when two of the sample
locations are very close to eaother or hyperparameters in the covariance model are near zero
[56]. Incorporating nugget effect in such cases helps in maintaining conditioning of covariance

matrix. The remainder of the procedure to obtain Kriging predictor remains the same as before.

Computational aspects of Kriging



22

A few key computational aspects of Kriging need to be understood before choosing Kriging
surrogate for the problem at hand. First, obtaining a Kriging surrogate involves inversion of a
covariance matrix. The size of this mattepends on th@umberof samples and thus its inversion
may become computationally demanding as the number of samples grows. Second, to obtain
hyperparameters of the correlation model, Kriging maximum likelihood (ML) estimator is
optimized. This ML estiator is highly norconvex and has a strong dependence onitherseof

the covariancematrix. The norconvex nature of this function demands multiple evaluations to
search for global optima. Couple of approaches are proposed to tackle this problem with
likelihood maximizatiofb7, 58] From the equations, one can observe that getting stuck at a local
optimum affects Kriging surrogate prediction as well as quantified uncertainty at unsampled
locations. However, with simple covariance functions, expegeshows that getting stuck at local
optimum is not a serious problem and often there is no point in finding the minimizer with great

accuracy{59], [60].

The nonconvex and computationally intensive nature of ML estimator becomes a bigdaepro

as the dimensionality of the problem increases. It can be observed frable 2-3, that
irrespective of the correlation model choseghe numberof hyperparameters depends on the
dimensionality of the problem. To reduce the number of hyparametersBouhlel et al[61] use
partial least squaresThis way they address problems up to 100 dimensions more efficiently than
other existing approaches. Another way to optimizgérparameters is to useross validation
instead of maximum likelihood. Use of crasdidation is found to be more robust with respect

to correlation model misspecification compared to using maximum likelihood. However, the

variance obtained by Krigirsyirrogates employingross validatioris larger{62].

For the problem with large humber of data points, there are several successful applications of

Kriging in the literatureOne way to do this is by representing covariance matrix in terms of small
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matrices of size, wherei is the number of basiginctions used63]. Similar approach of reducing

size of covariance matrix from number of sample points (n) to a smaller numiseused by
Nychka et al[64], andBanerjee et al[65]. Another approach is using covariance tapering, where

a sparse covariance matrix is obtained by setting majority of the insignificant elements to zero.
Sparse matrix inversion techniques are then used to achieve attractive computational complexity
[54]. Another way is to choose only a subset of data for building Kriging rié@lellhere exists

a large amount of literature for using Kriging on large datasets by combination of the-above

mentioned approachefs7], [68] or by other framework$69].

Finally, even though inversion of covariance matrix is a computationally intensiveptesstiye
definitenessof the covariancematrix helps current software implementations reduce the
computational complexitypy a significant factor. For obtaining maximum likelihood within a
limited number of function evaluations, some software implementationake use of DFO

algorithms.

2.1.5 Mixture of surrogates

Realizing the fact that no single type of surrogates outperformethér types for all types of
problems, choosing the best type of surrogate for the problem at hand is a challenging task. It is
not always possible to try multiple choices of surrogate models and choose the surrogate model
that shows the best performance. This motivates approaches utilizing @ambination of

surrogates. In general, prediction using a mixture of surrogates can belgiveq. 27).

QW 0 Qe (27)
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where,0 @ is the weight associated with ti@ surrogate at design poird Finally, summation
of weights issettoonB 0  p. This implies that if all surrogate predictic@w are equal,

the weighted mixture will predict the same value.

Different approaches to determine the weighis are used in the literature. For exampigrpa

et al.[70] use amixture of surrogates to optimize alkalirgurfactantpolymer flooding processes.
They use a weighted combination of KrigjilRBF and polynomial regression where weights are
determined based on the variance of individual surrogates. Weights can also be determined using
a global cross validation metric called PRESS (discussed in 2e6fioh]. Another approach for
identifying weights is by weighing the surrogates with the help of an error metric proposed by
MullerandPich€[72]. They assign probability to surrogates with the help of an error metric. These
probability assignments are then used to determine weights. A variant of efficient global
optimization utilizes mixture of surrogat¢g3]. They propose multiple surrogagdficient global
optimization approach that is able add multiple candidate points for global optimization in a single
iteration. Use of multiplesurrogates, in genergbrovides a flexibility to emphasize more on good

surrogates and put less emphasis @aulsurrogates as per the need.

2.2 Machine learningpased classification

2.2.1 Support vector machines

Support vectors machindSVM)are motivated by the idea of finding a hyperplane that creates
the biggest margin between two training classes. The theory of sup@ators classifiewas
explored a long time ago for linearly separable data[74], [75]. Given & pairs
(whdo hohd Bhohd withona @~  pip , we define a hyperplane Bo [ &

[ where §s p. If the data is separable, we can find the valugs ahd such that:

ra ot plof  p (28)
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It can be shown that the problem of finding such a separating hyperplane is solved by minimizing
the squared norm df as showrby Eq. 29)
lfEe

@& ol T pH Q@ pB R

(29)

where,® is the input data ad w are the classification labels in the input datds a set ot data

points,| andl are parameters of the linear support vectarjs the number of samples.

Suppose the data has some overlapping points or outliers that cannot be separated using a
hyperplane, the problem is addressed by allowing some points to be on the wrong side of the
margin with the help of slack variables. We define slack variabland modify the constraint
given in Eq.29) and reformulate as shown in EGO[

jfEe

G o T p ,AQ piBR (30)
A

where , are slack variables for allowgrmisclassification and the second constraint in BQ) (
puts a bound on the total number of misclassifications. From a computational point of view, we

find it convenient to reexpress the problem given by E§1)

4$§$$ 5
(31)
Gy or [ p RO pBR

) Tt

where, 0 is thepenalty for misclassification.

By deriving the Lagrangeaiithis problem, we obtain the dual function.
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I Ag |
(32

n | #
The solution of this problem leads to findingto obtain the separating hyperplane. The

expressions far andf are shown by Eq38) and Eq.34)

r | O (33

L2 6 e (34)

where, 0 represents the number of support vectors, which is the same as the number of data

points that lie on the separating hyperplane.

However, most realistic process engineering problems will lead to data that is not linearly
separable. In such a case, SVMgiilhbe used by transforming the data into a higher dimensional
space where it becomes linearly separable. The transformation functions, in this case, are referred

to as nonlinear kernel functions. Commonly used kernel functions are displayatbleR-4.

Table2-4 Kernels used for sepaiag datausing SVM

Kernel =Lt ofe expression

d" degree polynomial p  ofo

Radial basis Aob” v ws
sigmoid OATE® ww 1

Where, ", Q, and'Q are hyperparameters of the kernel function.
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By using the values pfandi from Eq. 83) and Eqg.34), and using the kernel functions, the final

predictor'Qw can be expressed as shown in B) (

Qo OECT® U dw 39

where,0 8 is the kernel function.

The methodology can be extended taulticlass classificatiofy6]. The implementation used in

this work ifrom scikitlearn python toolbox77], where the quadratic optimization problem given

by Eq. 82) is solved. One algorithm to solve the optimization problem is given by Chan{éi.al.

The kernel function used in this work is the most popularly ua€él basis kernatith the value

of [ is chosen to be the inverse of the number ofighles. In practice, the choice of a kernel
function in SVM is usually made by the user based on her experience or by trying out multiple
kernel functions. However, more rigorous approaches for this choiig eand the reader is
referred to Jebardg78]. All inputs are standardized to have zero mean and unit variaefted

training the SVM model.

2.3 Derivativefree optimization and surrogates

The optimization problems for which function derivative information is not symbolically or
numerically available are classified as DFO problems. There are twaagwories in algahms
addressing DFO problems, one is local search (referred to as local DFO) algorithms and the other
is global search algorithms (referred to as global DFO). Local search algorithms are effective in
refining the solution or reaching a local optimum fr@m initial guess. Global searalyorithms,

on the other handhave a component that allows escaping fromoaal minimum. For the
purposes of thighapter, it is convenient to classify DFO algorithms as algorithms that do not use

surrogate models anthodd-basedalgorithms.A majorclass of local DFO algorithms that do not



28

rely on surrogate models is direct search algorithms. Direct search algorithms sequentially
examine candidate points generated by a certain strategy sometimes recognizing geometric
patterns. Well known examples of theirect search are Hooke and@/S S @I§ofitam [79] and

simplex method80]. Model-basedapproaches, as the name suggests, rely on surrogate models

to guide thesearch For the case of global DFO algorithms, the majority of theridthgns that do

not use surrogate models use an approach such as partitioning of the feasible space or a stochastic
approach.An exampleof partitioning algorithm iDlvidingRECTangles (DIRECT) algor{@ih
Examples of stochastic algorithms include several aggves such as simulated annealing or
genetic algorithms. For details on advances in DFO and an extensive comparative study on box

bounded problems, the readers are referredth® review work by Rios and Sahinif2].

As modelbased search algorithms have been shown to display superior performance compared
to these algorithms, it is important to discuss the role of surrogate models in the context of DFO.
A major class of modddased local DFO methods kmo as trustregion methods is discussed

followed by modebased global DFO methods.

2.3.1 Modetbased local DFO

Trustregion methods are local search methods that rely on a surrogate model in a neighborhood
of a given sample location. This neighborhood is dalketrust region and the model is presumed

to be accurate within trust regioThe sizeof the trust region is defined with the help of radius
which is adjusted based on a measure ofadleeuracyof the surrogate. The sufficiently small value

of trust-regon radius usually indicates termination. Because of the general nature ofregiin
framework, several surrogates have been used in the literature to achieve local approximation.
For examplePowell[83] use linear interpolation models to approximate objective and constraint

functions in the algorithm COBYLA (Constrained Optimization BY Linear Approxinhatiea).
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Interpolating surrogates are easy to construct but these surrogates face difficulty in capturing
curvature of the original problem. Use of quadratic models of the form given in36y.iq

proposed[84].

Qe i e 0 gi oy (36)

where, Qcorresponds to iteratioQ & is the current iterate;Qf 2 , ( is a matrix of of size d
by d. Uniquely determining and( requires———— sample points. This number becomes

significantly high ashe number of dimensions increase. For example, for a 30 dimensional
problem, this number becomes nearly 500. To avoid this high sampling requirelRtmne]|[85]
proposed underdeterminedjuadratic interpolation models. These models are proven to attain
stationary local optimum and thus are called locally convergent. Fubeuyvrayand Bierlaire

[86] use RBF interpolation models with cubic basis functions and a linear tail. With modifications
to the set of points used for building RBF mod#¥lsld et al.[87] proposed Optimization by RBF
Interpolation in Trustegions (ORBIT) algorithm. This algorithm was later extended to handle
constrained optimization problemi8]. RBF based trust region algorithms are proven to be
globally convergeni89]. A simila strategy was used recently where Kriging based efficient global

optimization (EGO) where Kriging surrogate was used insidergg&in framewori90].

2.3.2 Modelbased global DFO

One of the reasons surrogates are promisimghe context of global DFO is the progress made in
the area of global optimization algorithms in the past decfaild, [92]. With the help of these
algorithms, norconvex surrogates can be optimized and used to guidesearch. For global DFO,

a surrogate model is generated over the entire feasible space or multiple parts of the feasible
space. For example, in the algorithm E[B8), Kriging surrogate is built over thatee feasible

space. With the help of expected improvement (El) function (discussed in secdly, the
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surrogate is updated. In thisase,a balance betweerokal search and global search is achieved

by maximizing the EI function. A similar balance is achieved for RBF surrogates using a measure
called bumpiness function (E@2)) [46]. Minimizing the bumpiness function for a givtarget

value can be used to focus on global and local search. This property of the bumpiness function is
exploited for global DF(®4]. Elfunction, as well abumpiness functionare discussed in more

detail in sectior?.6. Another approach using RBF surrogate relies on optimization and sequential
updating of RBF surrogate over the feasible sg86¢ Finally, global search is also achieved by
conducting local search starting from multiple starting points obtained usgggtainstrategy. A
complete restart strategy is ppmsed that suggests starting from a new sample design if algorithm
gets stuck in a local minimufd7]. A morerecent example of successful use of surrogates to
address constrained global DFO probleimsshown by Boukouvala and Floud&6]. They
developed a framework for constrainegtey box optimization named Algorithms for Global
Optimization of coNstrAined greyox compUTationgroblems (ARGONAUT) that was shown to
address a difficult class of problems successfully. In this frameworkuthegateis chosen from

a set containing linear, general quadratic, sigmoidal, RBF and Kriging models based on the

accuracy of prediction.

2.4 Feasibility analysis

A processis said to be feasible dll the relevant constraintsare satisfied.Feasibility analysis
relates to identifying conditions under which the process is feastifece identifying the optimal
design requires the user to enguthat the design satisfies the constraints and meets the desired
demand for products, feasibility analysis plays an important role in this work. A precise estimation
of feasibility is crucial for conducting a systematic study of multiple design altezsatind

achieve objectives such as maximizing profit.
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Feasibility is quantified with the help of a measure known as the feasibility functi@in— as

given in Eq.37). A positive value of the feasibility function implies that the design is infefisijle

e 1 ET A mOitR— 37)

where Qand & represent design variables and control variables respectively, boundsane
written as@M @ addy & & ;—represents uncertain parametersN Y —g— —

— ;'Q Oh— represents constraints. The problem is to check if all constriduan be satisfied
for a given desigiby adjusting the control variablgs Thus] ‘Oh— mimplies one or more
constraints are violated and ‘Oh— 1t implies the boundary of thefeasible regionin the
presence of analytical equations for the constraiifisthe problem of feasibility analysis can be
handled using an equatieoriented optimization solverHowever,the feasibility analysis of
simulation model®ften requires subsntial computational effortdecause of the unavailability
of the closed form. In such a case, the literature relies on the HiamoKeasibility analyis. Several
approaches for blackox feasibility analysis exist in the literature based on the typattdriven
approximation or a surrogate model used. Previous techniques have used Koigji¢®], RBF
[99], HDMR[100], and CRS for approximating the feasibility fumcti ‘Oh— over the entire

domain.

As described in sectio.6, quality of surrogates has a strong dependence on the required
quantity and qualityof sampling set. Increasing sample size may lead to a better prediction but it
will result in increased sampling cost. For feasibility analysis problems, sampling requirement is
higher than that of single objective prediction due to the presence of caimgsy. To control the
sampling cost, approaches employing adaptive sampling are used. Kriging surrogates and a

modified version of El function given in E8g)(for adaptive samptig is proposed101].
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where%) w is the modified’ function value aty wis the surrogate model predictor; s is the

standard error of the predictofs. 8 is the normal probability distribution function.

There is a difference betweensaarchfor global optimization and that for feasibility analysis. For
feasibility analysighe problem is to find a surface defining the boundary of the feasible space
within the box bounded design space as opposed to finding a single optimum in global
optimization[97]. This problem is addressed with the help of Kriging varianceretric to ensure
exploration. To guide the search towards better defining the boundary of feasible space, the
product of feasibility function values of nearby sampissused Samples on the same side of
feasible boundary result in a positive product. Moeeently,Wang and lerapetrito{99] used an
adaptive sampling strategy based BBF surrogates. They used bumpiness measure (explained
in section2.6.2) to obtain prediction error. Substituting this prediction errof4r) function and
maximizing?d  with respect tow they chose new sample points for evaluation. Their results

show that accuracy obtained from both Kriging and RBF is comparable.

2.5 Flexibility analysis

Uncertainty in process parametecan haveasigniicantimpact onthe feasibility ofadesign. The
ability of aprocessto remain feasible when subject to deviations of uncertain parameters is
referred to as process flexibility. Process flexibility is quantified by solving the flexibility test
problem whih checks if feasibility function ‘Oh— is nonpositive over the entire range of
uncertain parameters— The flexibility test problem is usually represented as a-maxmax

problem, as representedby Eq. 89) [12].
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...Q indicates if the design is feasible over the entire range of uncertain parametaegative
value of...”Q indicates that the design is feasible over the entire range of uncertain parameters,
and a positive value indicates that the design is not feasible over the entire range. However, it is
often important to quantify the actual range over which the desigfe&sible. For this reason,
flexibility index[102] is used as a quantitative measure. The problem for finding flexibility is
formulated as shown by Eqt@).
O | A
GB.Q | ADET A@OEH— n
(40)
41 —&4— 13— — — 13—
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where,—,3—,3— N"'Y ;] N'Y ;a is the number of uncertain parameters: are nominal
values for uncertain parameters:— and3— represent the expected deviations in negative and
positive directions respectively;quantifies the amount of uncertainty denoted by the parameter
set”Y] ; "Ois the flexibility index. A value of 1 f@indicates that the design has flexibilitysju

enough to satisfy all the process constraints over the range of uncertain parameters.

2.6 Sampling

The processf generating data points to be able to build surrogates is referred to as sampling.
The performance of surrogate models depends strongly on the quality as well as the number of
samples. However, as generating data demands evaluation of the true funaEnpling
contributes towardssignificantcomputational cost. To maintain thgality of surrogates without

incurring excessive sampling cost, studying sampling strategies is of immense importance.
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Sampling strategies are broadly classified as adaptivapliag and stationary sampling.
Stationary sampling consists of methods that rely on geometry or pattern such as grid sampling,
full and half factorial designs, methods that were derived from tiesign of experiments
literature such as orthogonal sampling, full and half factorial designsBBbrken design. Some

of the widely used stationary sampling strategies are Latin Hypercube SamplinfLQ3j5obol
[104]sampling and Halton sampling. LHS is a stratified sampling strategy where a sample is drawn
from each stratum once. To provide better spdidlng properties, LHS is done subject to
projection filters. Sobol andHalton sampling are quasandom strategies where samples are

drawn from Sobol and Halton lediscrepancy sequences respectively.

In adaptiv sampling, starting from a limited number of samples that are generally obtained from
stationary sampling, new sample locations are decided sequentially. This strab®gyto
minimize sampling requirement by obtaining more samples that benefit the guafitthe
surrogate. Most of the new adaptive sampling strategies rely on some criteria to tackle the trade
off between exploring the most unexplored region (exploration) and refining the region near
existing samples for better understanding (exploitatiofflis approach is most common in the
context of global optimization where exploration is required to escape local optima and
exploitation is required to improve available optimum. For Kriging surrogates, a popular approach
is making the use of El functioRor RBF surrogates samilarquantitative measure is obtained
using a function known as bumpiness function. Other approaches employing adaptive sampling
make use of different strategies to address this trade In general, these methods have been

shownto achieve better accuracy with fewer samp[&85].
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2.6.1 Expected improvement function

One commonly used approachhandling exploratia and exploitations by using El function (Eq.

(42)) as used bio3].

. R T o 7> S o N oY
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where, 8 represents the standard normal density functidss8 represents the probability
distribution function; Qis the surrogate model predictoi) is the current minimum function
value andi is the standard deviatior)w represents the expected improvement at sample
locationa The function increases with decreasifigo that corresponds to the predicted value
and increasing standard deviatii . Achieving loiQw and highi correspond to exploration and
exploitation, respectively. As both contribute positively towards EIl function, the iodfde
between exploration and exploitation is addressed by maximizing the EIl function. The Birfunct

exhibits multiple local optima that might cause numerical problems.

2.6.2 Bumpiness function

A similar approach of having a single function to balance exploration and exploitation was
proposed byGutmann[46] for RBF surrogates. This relies on thet that the RBF surrogate that

is obtained by solving theystem of equations given by Ed.9) is the one that minimizes

bumpiness. A quantitative measure of bumpiness is given by bumpiness functiod2)Eg. (

i EDR p C W0 "3 RO oo Feo (42

where,wis an unsampled poinf§d is the target value¢t is a constant whose value depends on
the basis function used (1 for cubic and thin plate splines, 0O for linear andanaltiratic and-1

for Gaussian);  is the coefficient of the new ter S0 o8 in the surrogatéQ w if an
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unsampled pointois added. It is calculated as th& element of vectoi), andu is calulcated by

solving the system of equations given by B@).(

oo p 43
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Minimizing the bumpiness function emphasizes exploration as well as exploitation depending on
"Q. A large negative value & makes the search global and focuses on exploration whereas, a
value close to current optimal solution makes the search local and focuses on exploitation.
Evaluation of bumpiness function is computationally expensive because obtainimg solving

the system given by Eq4®) isand € operation. However, the cost of this step can be improved

by exploiting the structure of after which the operation becomas ¢ [45].

2.6.3 Other approaches

The problem of adaptive sampling can be formulated as a DFO probldmthveitobjective
function being the difference between the true function and the surrod@@. The objective
function is given in Eg44)

.. Q. Qo .. L

where, "Qm is the surrogate;Qw is the true function, andv and @ are the bounds within

which error is to be maximized.

Some approaches rely on ranking the exploration and exploitation and weighing both as per need.
One such approach was recently proposed3ayud et al[106]. They propose a metric consisting

of two sepaate measures for exploration and exploitation. For exploration, they useauheof
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squares of the distance a new sample from all the previous samples. For exploitation, the impact
of new sample added near an already sampled location is quantified withelpeof a departure

function.

O QO QY Y (45)
where,"Quw is the surrogate built using all points in the sampled¥é® w is the surrogate built
using all points except poiff Estimating the prediction variance of surrogate model using a
technique called jackknifingzason and CremasdiiOo7] propose an adaptive sampling strategy.
They use thistrategy with a surrogate model built using ANN and choose samples locations that
have high prediction variance. Advantage of this type of adaptive sampling is that it is not specific
to the choice of surrogate modeA study of space filling sequentidésign methodss conducted
by Crombecq et al[108]. They propose a set of sequentiasamplingmethods that shows

comparable performance with stationaoy oneshot experimental design

2.7 Validationmethods

2.7.1 Surrogate models

Assessing the reliability of surrogate model is one of the major concerns because having an
inaccurate surrogate model can lead to waste of resources and have a bad effect on optimization,
prediction or feasibility analysis. Surrogate model validationhis process of assessing the
reliability of thesurrogatemodel. In addition to assessing accuracy, validation techniques can be
used to select aurrogatemodel from a set of candidate models and to tune hyparameters

(such as correlation model paranees in Kriging). For problems of lower dimensiongisaal
comparison between predictions and true value is possible. However, the difficulty in having
enough data for visual comparison and inability to visualize predictions for problems over two

dimensbons necessitates more sophisticated approaches. As surrogate models cannot be
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validated on the same data with which those were built, surrogate models are built with the help
of only a part of the available data. The remaining part of the data is uséekting the accuracy.

The data set on which the model is built is referred to as training set and the set on which the
model is tested is referred to as test set. The metrics used for quantifying the error on test set are

referred to as validation metrics.

One possible approach tacklingthis is using resampling strategies suclcesss validatiorand
bootstrapping. Incrossvalidation available data is divideihto k blocks containing aequal
numberof data points. Data from {k) blocks are used asining set and data from the remaining
block are used as a test set. The process is repeated for all possible combinatich} lbgks.
Finally, areppropriatemetric to quantify the error on test set such as themof squared errors

is evaluated baskon the accuracy of the model on test data that can act as an indicator of model
adequacy. However, with limited data available, using part of the data for building the surrogate
is not always possible. One such approach known as leave oreasst validtion was used by
Jones et al[93]. In this approach, thaumberof subsets k equals the number of data points or
observations, thus leaving only one data point each time a surrogate is Auslimpling geis
considered inadequate to build a quality surrogate if removal of one data point significantly
affects thenewmaodel. A similar approach, but with allowing repeated samples in the training set
is known as bootstrapping. By allowing repeated samplésiset used to build models, one can
have a training set of the size equal to the size of actual data. Usuaihherof subsets lchosen

for bootstrapping is much higher than that forss validationDetails on resampling methods for

validation of surogatesare provided by Bischl et §L09].

Validation metrics that are commonly used to quantify the error using the abosetioned
resampling strategies are the explained variance score, the mean absolute error, the mean

squared errorthe median absoluteerror, the 'Y score, the relative absolute error, and the
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relative maximum absolute error. These metrics with their respective mathematical equations are
shown inTable2-5 wherew @ € , andwdenote true value, surrogate predicted value,
number of samples and mean predicted value, respectiielative maximum absolute error
indicates error in one part of feasible space. However, it is not a good indicator of the overall
performance. Explained variance score equ#lsscore if mean of prediction error is zero.
Kersting et al. [110] use naomalized mean squared error as well as average Negative Log
estimated Predictive Density (NLPD) for heteroscedastic Gaussian process regression that
penalizes oveconfident as well as underconfident predictions. In the same aBeakouvalas

and Cornford[111] use Mahalanobis error that utilizes full predictive covariance avoiding the
assumption of ancorrelated errorsYin et al[112] use mean absolute error as well as maximum
absolute error for validation. For the case of multiple surrogatéana et al.[113] used
prediction sum of squares (PRESS) as an estimator of root mean square error (RMSE) to pick the
best surrogate. Their computational results reveal that PRESS becomes more and more useful for
identifying the best suogate as thenumber of sample points increases. PRESS vé&@srthe

vector of errors obtained from carrying leave one out cross validation. RMSE is predicted using

Eq. 46).

02 %3 T (46)

Table2-5: Commonly used surrogate validation metrics

Validation metric Formula

Explained variance score WO O
P how

Mean absolute error 0
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Mean squared error
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2.7.2 Machine learningpased classification models

Before incorporating the classifier into an optimization problem, it is important to verify the
quality of the classifier. The metrics explained here are previously used by Dias and lerapetritou
[114]. The goal is having a comprehensive guantitative measure of the prediction of the feasible
region, the infeasible region as well as the prediction accuracy. This is achieved by dividing the
dataset into four parts named CF (correct feasible), CIF (correct infeasible), ICF (incorrect feasible),
and ICIF (incorrect infeasible). Correct or incorretgrs to the prediction by the model whereas
feasible or infeasible is based on the true data. For example, correct feasible refers to points that
are feasible and that are correctly identified as feasible. Based on this division of model
predictions, fou metrics are proposed that are CF%, CIF%, NC%, and Total Error. Expressions for

calculating these metrics are shown in Et)(

v 5 # &
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Of these metrics, CF% and CIF% represent how well the model represents the feasible region as

well as the infeasible region. The metN€% represents the overprediction of the feasible region.
Total Error quantifies the percentage of total misclassifications. Validation in this way provides a
true picture of the model quality because all metrics combined can detect special cases such as
imbalanced data where the Total Error will be low, but one of the CIF% or CF% will also be low
indicating inadequacy of the model. A good quality model has high values of CF% and CIF% and
low values for NC% and Total Error. For validating models in this W data is randomly
divided into training and test data sets with a split of 80% and 20%, respectively. The training data

set is used for building the model, whereas the test dataset was used to assess the performance.
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3 Supply chain optimization

Abstrad

Supply chain simulation models are widely used for assessing supply chain performance and
analyzing supply chain decisions. In combination with derivditee optimization algorithms,
simulation models have shown great potential in effective decisiaking. Most of the
derivativefree optimization algorithms, however, assume continuity of the response, which may
not be true in some practical applications. In this work, a supply chain inventory optimization
problem is addressed that results in a discontius objective function. A derivativfece
optimization framework is proposed that addresses the discontinuities in the objective function.
The framework employs a sparse grid sampling and support vector machines for identification of
discontinuities. Computational comparisons presented show that addressing discontinuity leads

to more costeffective decisions over existing approaches.

3.1 Introduction

Globalization and the sudden increase in the exchange of information, trade, and capital all
around the world,driven by technological innovation, has given rise to complex global supply
chain networks. Under such networks, the problem of optimal inventory allocation is known to
have a significant impacin the service level and the total cost of the supply cheia thereby
impacting the profit that an individual enterprise would mgRg This work considers the optimal
inventory allocation problem for multienterprise supply chain networks. The methodology
proposed in this work is motivated by three factors. First, theitghdf simulation models to
represent a complex system accurately. Second, recent advancements in the use of derivative
free optimization for decisioimaking based on the simulations. Third, the observation that the

objective function of such a system, whenodeled as a derivativieee optimization problem,
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may lead to a discontinuous response. Relevant literature from supply chain optimization,
derivativefree optimization, and discontinuous optimization that motivates the framework
presented in this workare presented in the remainder of this section followed by a brief

description of the problem addressed.

Modern supply chain networks consist of entities that usually belong to different enterprises and
operate based on their individual goals leading tteaentralized network. Sinearlierstrategies

in the supply chain optimization literature focused mainly on the centralized netwitr is a
growing interesttowards developingnew optimization frameworks that take into account
different goals and perating policies of different entities in a supply ch@lj. Competition
between buyers and sellers, conflicting interests between different entities, and game theoretic
models that describe these interactions are some of the considerations in modeling such
frameworks based on the supply chain network under consiiflen. The optimization
approaches for decentralized networks can be broadly classified as analytical approaches and
simulationtbased approachesAnalytical approaches formulate the supply chain model as an
equationbased mixed integer linear monlinearprogramming problemRyuet al.[115] present

a bilevel programming framework to capture conflicting interests as well as imbalances in the
available information at different levels such as distribution network planning and production
planning. Zamarripa et al.[116] propose a multobjective optimizationformulation for
cooperative or competitive supply chain¥ehet al.[117] use bilevel optimization for supply
allocation using &ackelberggamewhich are two player turn based games with a leader and a
follower. Both haveda SLJF N} 6S 2062S00A@Sa FyR KIFE@S | 02 YL} !
information. More recentlyYue & Yol118] discuss the optimizationf noncooperative supply
chains under stackelberg game using mixed integer bilevel programing. Florensg 1694l

address capacity planning problemfoymulatingit as a trilevel optimization probleito capture
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the dynamics of aduopolistic market Even though these approaches benefit from efficient
optimization techniques, modeling complex interactions in a network with the help of equation
based models is not always possible. As a result, the assumptions necessary for analytical models
lead to salitions that are not applicable for real world scenari@®0][121]. Moreover, even the
simplified models used in the analytical approaches are computationally expensive for large

networks[122].

To overcome these shortcomings, another approach towards addressing the problem of multi
enterprise supply chain optimizatiois using a simlation model that capturesletails of the
supply chain networkTechniques such as agdmsed modelingllow a bottom-up approach
towards building a simulatiof8], [4] and have been found useful in supmyain networks in
various areasSwaminatharet al.[123] describe a framework for developing supply chain models
using a modular approachee & Kinj124]review modeling techniques for muttigent systems.

For supply chains in th@ocessndustry,GarciaFlores & Wan{fl25] study information flow with

the help of agenbased simulation. Using an agdrdased frameworkJulkaet al.[126] show an
application where the framework works as a decision support system in a refinery application
[127]. Even though ageftiased modeling is popular for building accurate simal#, its utility

is not limited to analyzing a complex system. Adesmded simulations have also been used for
optimization using derivativfree or simulatiorbased optimizationSinghet al. [128] study a
biorefinery supply chain network with agebased modeling and use genetic algorithms to
identify the location and capacityf each biorefinery in the networlSahay & lerapetritofi129]
consider a supply chain network consisting of entities from mel&piterprises. They consider an
auction mechanism where enterprises adapt their strategy based on the outcome of the auction.
As opposed to a small network consisting of a single enterprise, a centralized decision cannot be

imposed on these type of mulénterprise networks.Ye & Yoyl21] propose an optimization
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framework for reducing theotal cost of the supply chain under demand uncertainty whane
agentbased simulation model is used to represent the inventory systBatause of their
flexibility to adapt to different networks structures and demonstrated success in the existing
literature, this work uses an agebaised simulation model details of which are provided in section

3.2

With the increasedcomplexity of simulation models, obtaining a closed form expression or a
mathematical model becomes difficult which limits the use of conventional algorithms. For this
purpose,derivative-free optimization algorithms are usefd0]. Even though a vast amount of
literature exists on derivativdree optimization, a majority of the available algorithms and
software packages rely on the assumption of continuity of the respdrtgs.may not be the case

in some applications, especially for the case of supply chain networksewther objective
function is dependent on several discrete decisions. For this reason, optimization of problems
with discontinuous response needs special attention. Previous works on addressing
discontinuities majorly focus on modeling a discontinuous raspolhe problem of identifying
discontinuities using 8ayesiarmodeling approach is thoroughbnalysedby Anderson[130].
Gorodetsky & Marzoukl31] propose an approach for identifying discontinuities and refining
themin an adaptive manner. They make use of support vector machines and uncertainty sampling
to adaptively sample new points near discontinuitgkemaret al.[132] use an adaptive sparse

grid approach where new samples are generated at the locations whatscartinuity is
suspected using polynomiahnihilation a technique for estimating the size of discontinuities.
This approach is later used for medlement collocation133]. Archibaldet al. [134] discuss
polynomial annihilation method for detecting discontinuities and extend it to higher dimensional
problems suclas stochastic partial differential equations. Caiado & Gold§i&is]use aBayesian

approach to address discontinuities. They use a separate surrogate model for each continuous
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region for nodeling purposes. For optimization, Moreau & Aejdi86] propose the use of
semigradientfor optimization of dscontinuous functionsVicente & Custodi¢l37] analysethe
properties of direct search methodsof optimizing piecewise continuous functions in the
presence of constraints. Recently, a framework for optimizing in the presence of discontinuities
to address a structural optimization problem is propo§t88]. They propose a frameworkhere
continuousregions are clustered together after identification using polynomial annihilation.
These regions are then classified using support vector machines. The discontinuity identification
framework proposed in this work is inspired by adaptive spgrig algorithm by @keman et al.

[132]. Although the framework follows a similar flow to that of previous work where discontinuity
identification step is followed by classification, there are several differences between. First, the
objective of the previous work is modeling disdonities accurately whereas this work considers

an optimization problem where discontinuity identification is a subproblem. Secondly,
discontinuity identification in the previous works encompasses the entire feasible or search space
whereas in this work iis confined to several local searches. A global surrogate model is used in
this work instead which guides the search towards promising local search regions, Rigpiyse

grid is used even for the refinement step wherehs previous wor132]Jusest&  samples

for refinement

This work addresses the problem of optimal inventory allocation using a derivetive
optimization framework. An agentbased model is considered that consists of a supply chain
network where entities belong to multiplenterprises. Enterprises interact with each other
through an auction mechanism. The problem of deciding optimal warehouse inventory is found
to display a discontinuous behavior. To that end, the optimization framework proposed in this
work can handle discontinuousbfective functions. The framework iteratively uses a Kriging

model for the global search followed by a local search followed that includes discontinuity
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detection. It uses sparse grid sampling and support vectors classification for identifying

discontinuiies.

The remainder of thighapteris organized as follows. Secti8t2 describes the details of the
simulation model. Sectior8.3 describes the optimization framework in detail. Secti8rt
compares theperformanceof the proposed framewrk on test problems as well as on the supply

chain simulation. Finally, summary and future directions are discussed in sgdion

3.2 Supply chaisimulation and the problem definition

For modeling a system where each component has an autonomous behavior, a natural choice is
a bottom-up approach. This being one of the central ideas behind agased simulation, it is a
suitable approach for modelirg supply chain network. Broad categories of agents considered in
the supply chain simulation in this work are raw material suppliers, production sites, warehouses,
retailers, and auctioneer. Each agent has a set of rules according to which it behavedifogsm

its behavior. Based on the tasks performed, each agent has a cost associated with it. This cost
could be transportation cost, inventory cost, production cost or a combination of these costs.
Additionally, for retailer agents, a penalty for unmetngend is considered. The total cost for an
enterprise is the combined cost of all entities that belong to that enterprise. There can be multiple
agents of the same category (for example, warehouses) and each agent may belong to a different
enterprise. Javgrogramming language is used to build agentbasedsimulation. A typical
schematic of such a supply chain is depicteHiin3-1. The simulation model used in thisrk is

an extension of the model proposed [8ahay & lerapetrito139] where more details are

provided regarding the simulatiomodel. A brief description of each agent is provided below.
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Fig.3-1 An example of gupplychain network

Retailer

Demand originates at the retailer agent. Tasks associated with this agent are conveying
information regarding demands to the auctioneer and submitting the bid to buy products from
the warehouse. A bid consists of maximum price that the retailer is wilbingay and the
maximum quantity that the retailer is willing to buy. Retailers from different enterprises compete
in the form of auctions to receive product from a warehouse. New demand is incurred at the
beginning of each period. Based on the resultshef auction in thepreviousperiod, theretailer

may satisfy the demand fully or partially. Unfulfilled demand is considered lost and a penalty cost
is enforced. Costs associated with this agent gperaltyfor unmet demand and transportation

cost from waehouse to retailer.

Warehouse

Warehouse agents responsible foistoring inventory, submitting its asks to the auctioneer
sending material to the retailer, and ordering material from the production sites for replenishing
inventory.Ask from a warehous@acludes the minimum price at which it is willing to sell a product
and the maximum quantity of that product it can deliver. Warehoteseeivesa responsefrom

the auctioneer agent witlthe amount ofproductthat is to be delivered to aetailer. It updates
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the inventory based on reorddevel reorderamount policywith continuous review. After
sending the product to aetailer, it requests product from production sites and updaiés
inventory. Costs associated with this agent are inventory cost and tramation cost.Inventory

costmay be different for eacproduct.

Production site

Production site agent stores product and raw material inventory. It recedwvesrder from
warehouses and sends shipment accordingly.production sites and warehouses arswased

to belongto the same enterprise, production sites aim satisfy maximum demand from a
warehouse.lt producesa product using its own replenishment policy for maintaining a product
inventory.Similarly, it maintains eaw materialinventory by ordering raw materiafsom the raw
material supplierA bill of material relationship is used to express the conversion of rawmaés

to products.Costs associated with this agent are production cost, transportation cost, and storage

cost.

Raw material supplier

Raw material supplier supplies raw materials to the production sites according to demand. There
are no costs associatanith this agent. It is assumed that the inventory of raw material supplier

has no limits.

Auctioneer

Multiple enterprises communicate with each other through aurction mechanism. Auctioneer
agent is responsible for conducting auctions. It receives bids asks from retailers and

warehouses respectively. Using this information about asks and bids, auctioneer performs the
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matching and communicates the final trade quantities and prices to warehouses and retailers

respectively. It is assumed that there iseust associated with this agent.

Auction mechanism

In each planning period, multiple rounds of auctions take place. In each round of auction, a
warehouse enters as a seller and multiple retailers enter as buyers. The auction mechanism
considered in this wd consists of two steps that are matching and arbitratidd0]. The
matching step starts with the warehouse submitting its ask and retailers submitting their bids. An
ask or a bicconsiss of price and quantity. Warehouse asks and retailer bids depend on a certain
bidding strategy adapted fron$teiglitzet al. [141]. This strategy allows thevarehouseand
retailers toadapt their asks to learn from their previous experience. Minimum acceptable price
for a warehouse depends on available product amount and its bid in the previous planning period.

This relation is given by E48].

AERA 0o p" A& (48)

where,
6@ pg (49)
x¢) E1O (50)

OAOEIA®AT O1 OU
whereE T @is the product inventory that each warehouse has at the start of planning périod
A Ed\is the price that warehouse bids in the planning peripd 6 p is the bid price by the

warehouse in the previous planning period.

Finally, warehouse bid naot be lower than a product value to makeeofit. The product value
is determined by including all costs for transportation, production, and holding costs before

making the product available at the warehouse. Retailers adjust their bid based on tlegtrad
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price in the previous planning period. The extent to which retailers adjust their bids depends on
the learningfactor. Value 1.0 of thiearningfactor means that the bid will be equal to the trading
price of the previous period. The maximum acceptadplentity for retailers is the demand,
whereas for the warehouses, it is the maximum quantity that it can deliver equals the available

inventory.

After receiving bids and asks from retailers and the warehouse respectively, the auctioneer
matches the warehouse to one retailer by calculating the maximum possible payoff that can be
achieved by trading with a retailefhe @yoff for a warehouse (Eg51)) is the revenue that it

receives by selling a product. For retailers, the payoff is the profit gained by selling a product (Eq.

(52)).

“ 0 4# 1 (51
where,“  represents payoff of a warehouse Eby trading with the retailei ; 0 is the
trading price; 1 is the quantity of product supplied to the retailed #; is the

transportation cost for delivery of product from warehouse wh to retailer r. Maximum possible
payoff for the warehouse is wheb is the maximum acceptable price by the retailer and
1 is the maximum possible shipment quantity which could be maximum quantity that

warehouse can supply or the maximum quantity that a retailer needs.

: 0 0 1 (52

where,* is the payoff of a retailer by trading with a warehou8e; is the selling price and

0 is the trading pricel is the trading quantity.

Matching step is followed by the arbitration stejm the arbitration step, the actual price and

guantity at which the tradewill take placeare decided. With the help of Nash bargaining
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mechanism, a faitrade price and quantity are decided. Status quo point for the warehouse is the
maximum payoff that it can achieve by trading with any other retailer. Statiaspoint for the
retaileris zerolt is natural to assume here that tminimumacceptable price for a warehouse is
less than the maximum acceptable price for the retailer. If this does not hold, the retailer is

eliminated in the matching ste.heproblem is formulated using equatiois3-57).

i Eh A AT (53)
B A (54)
AT (55)

0 0 0 (56)

m o1 1 (57)

where,0 is the minimum acceptable price for the warehou8e; is the maximum acceptable
price for the retailer;l is the maximum trade quantity. As payoff of warehouse and retailer
depend on trade price and trade quantity from Band Eq52respectively, solving the problem

Eq.63-57) gives the trade quantity and price based at which the trade takes place.

A simple demonstration of this mechanism is provided-ig. 3-2 where a round of auction
between two buyers and one seller is display@tie forizontal axis represents prices and the
vertical axis represents price. For each buyer and sellegtangularegion marked by price and
guantity represents the region in which thmuyer or seller is willing to trade. Thus, trade can
happen only in overlapping regions between a buyer and a sell&iglB8-2, buyer 1 and seller

can trade within regions A and C whereas buyer 2 and seller can trade within region B and C. Since
there is only one seller, auctioneer calculates the maximum payoff that the seller can achieve by

trading with each buyer. The buyer for which the payoff is maximum wins the trade.
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Fig.3-2 Auction mechanism demonstration

Problem definition

The problem of minimizing the total cost of a supply ch@étwork is considered. The total cost

is obtained from the simulation. For the simulation, demand is assumed to be deterministic.
Information about warehouse and production site inventories are externally provided to the
simulation. Inventory of warehouses well as production sites are determined by formulating a
problem as described in E8) where Bound constraints on warehouse and production site

inventories are considered.
i EOT @AIOO (58)
@81 Ay ET G OA | BxoH x &7 (
1A ET ¢ OA; 'bxoHb® 3

wherethe total cost isgiven by Eq.50)

O1 GAIGO | 0y | Of | O | 05 (59)
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The total cost in Eq59) isobtained from the simulation and it is treummation of individual
costs associated witeachagentover the planning horizofQ| 0,1 0,0 0 5, and

| 0 j represent transportation cost, production cost, inventory cost, and unmet demand
penalty cost respectively for an agebtind planning period. I A4 andO A& are the lower and
upper bounds on the inventorgf productr) at the warehouseor production siteQE 1 Os the
capacity to store product p at the warehouse production siteCand total cost depends on it;

7 ( is the set of all warehouse8; 3s the set of all production sites;is the set of all agent§), is

the set of all products; is cost per unit of product, is the quantity of the product. Inventories

at production sites as well as warehouses for each product are the decision lgariabthe
problem given by Eq58) and Eq.%9). Given that different Maes are allowed for product

inventories at each warehouse and production site, number of decision variables in the the
problem are G4q U4 0y where, 0 qis the number of warehouses,, ;is the number of
production sites, and ; is the numberf products. In the context of analytical approaches, it is

important to note that the problem defined by E&8) and Eq.59) does not include any integer

variables since simulation handles such decisions internally.
Characterstics d the problem

In the supply chain network considered in this work, discrete decisions are involved at every stage.
These decisions include the choice gbraductionsite for delivering product to a warehouse,
choice within goroductionsite on the product to produce i priority, and the matching step in

the auction As warehouse inventory plays a significant role in auctions, changing warehouse
inventory results in different decisions. To illustrate how auction results could change with a
change in warehouse inventgryhe matching step in a single round of auctions with one

warehouse and two retailers is considered as shownFig. 3-2. It is assumed that the
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transportation cost ® both retailers is the sam&hemaximum possible payoff for the seller by
trading with both warehouses is observed as the seller inventory increases. The dottedHige in
3-3(a) illustrates the new bid by the seller after increasing seller inventory. It is assumed that in
the current state, buyer 2 wins the auction. Since in the current state, buyer 1 is willing to buy
more amount than that offered by the sellemadreasing seller inventory will increase the
maximum potential payoff for the seller can achieve by trading with buyer 1. However, since the
seller is satisfied tdulfill the demand for buyer 2 in the existing scenario, increasing seller
inventory will nd affect the maximum possible payoff the seller can achieve by trading with buyer
2. Therefore, there could be a point where payoff by trading with buyer 1 will surpass that of
buyer 2. As a result, buyer 1 will be matched with the seller. On the othet, lthe bid after
decreasing the seller inventory is illustratedrig.3-3(b). It is assumed that in the current state,
buyer 1 wins the auction. As the inventory decreases, buyer 1 cannot enter auctions because it is
eliminated in the matching step. As a result, buyer 2 will be matched with the seller. As
transportation cost, nventory holding cost is different from all warehouses asithilarly,
production costs are different at production sites, it is reasonable to expect a discontinuity in the
total cost. Moreover, from Eq50) one can observe that individual components of the total cost
such as transportation cost, inventory cost, production cost and penalty cost for unmet demand
depend linearly on the quantity of product. Since, warehouse (ids 48), Eq. 49), and Eq.50))

and reorder amount are continuous functions of warehouse inventory, whenever total cost is
continuous, it is safe to assume that it will also be linearly dependent on the warehouse inventory.
Therefore, fi the discrete decisions mentioned above do not change, the objective function is
continuous and linear. Finally, because of the need to solve optimization subproblems such as the
one given by EQ.58) ¢ Eq. 67) multiple times in each simulation run, the simulation is

computationally expensivesig 3-4 is obtained from a problem containing two warehouses and
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two products where theinventory of only one warehouse for one product is varied. It is a
demonstration of thetypicalbehavior of theobjective function considered where discontinuities
can be observed. However, in the continuous parts of the objective function, linear behavior can
be observedBecause othese two properties, it is usually observed that the optimum lies at the
boundary of the feasible region or at the boundary of th@ntinuous region near the
discontinuity. Tie framework proposed in sectioni8 developed to addresthese important

problem characteristics.

Max quantity Max quantity
by buyer 1 by buyer 1

Max quantity Max quantity
by seller by seller

Quantity
>
Quantity
>

Max quantity|
by buyer 2

Max quantity
by buyer 2

C B c B

Min price  Max price  Max price

by seller by buyerl by buyer 2 Min price Max price  Max price

by seller by buyer1 by buyer 2

Price Price

(@) (b)

Fig. 3-3 Auction mechanism decision change demonstration (a) increasing seller inventory (b)
decreasing seller inventory
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Fig.3-4 Dependence of total cost on warehouse inventory

3.3 Optimization framework and algorithmic details

The framework presented in this section consists of three phases. The first phase involves a global
search where promising regions for local optimization amnitdied. The second phase consists

of discontinuity identification. In this phase, information about discontinuities is obtaifiegl.

third phase consists of lacalsearch where discontinuity information from the second phase is
utilized to guide the saah toward a local optimum. These phases are iteratively carried out as
shown inFig.3-5 until a budget of maximum function evaluations is reached or maximizing
prediction variance fails to obtain an unsampled point. In this section, each phase in the
framework is presented in detail followed by methodological details that include Kriging surrogate

model, sparse grids, and support vector machines.
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Fig.3-5: Iterative optimization framework flowchart

Phase 1 (global searchilobal search relies on a Kriging surrogate model built using ‘et

points that is initialized using Latin Hypercube Design (LHD) with maximizing minimum distance
criterion in the initial sampling phasg42] and iteratively updated. A squared exponential
correlation model with a constant regression term is used for building the model. Details
regarding the Kriging model are provided in sectibh.4 Since the problemsinonconvex in

nature, the resulting Kriging model is nonconvex as well. Local optima of the Kriging model decide
promising regions for further exploration. To obtain more than one local optima, a multistart local

search is used. In this work, MATLAB fangty WYFYAy 02y Q A& dzaSR 6AGK
t NEANI YYAYIQ 6{vtO &2t FSNI 2LIA2yd | FGSNI ARSY (A

out on a box centered at each of the optima and having a size smaller than the feasible region of
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the whole problem. After completion of phase 2 and phase 3 in an iteration, an exploratory
sample is collected by maximizing the Kriging prediction variance. This helps the framework in
identifying new local optima that are discovered as the framework progressesmarelsamples

are collected. With improving the Kriging model in every iteration, the local minima that were
initially missed because of initial guesses in the optimization subproblem can be found in the
subsequent iterations making sure that the solutoumality is not affected. It is important to note

that as opposed to traditional expected improvement maximization, not all points are used for
building the Kriging model. As described in sectbh.4 Kriging predictor depends on the
correlation matrixY and elements ofY depend on the correlation models describedriable2-3.

Since all the correlation models are distance based, two samples close to each other are highly
correlated. In the presence of discontinuities, this correlation can be misleading. As a result,
guality of the Kriging model after the optimization of hyparameters may not be reliable. To
avoid this issue, the sétof points used to build the model is maintained separately. Only the
points that are farther away by a certain distance from all the existing pointgire included to

the set™Y Moreover,the set™Yis updated at two steps in the algorithm. First, the local optima of

the Kriging model and second, exploratory samples.

Algorithm 1: global search

Initialize parametersm,] ,7,"Y

Build a Kriging surrogate model using the available data it¥set

Create a set D using LHD of size m in the search space.

Conduct docalsearch on Kriging surrogate model starting from points in the set D.
Obtain set P of the local optima.

Filter set Ro contain points away from each other at least by the distange of
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Create a set B of boxes with bounds [ #,== # for all points p in the set P whesdsf ¥ Y
If any box is partly outside the search space, adjust the bounds of the box to nfieksilile
UseAlgorithm 2 to conductalocal search

Maximize prediction variance of the Kriging model to obtain an exploratory sample

Phase 2 (discontinuity identification)n the second phase, discontinuity identification is carried

out in each local region starting from a region that has the lowest prediction in Phase 1. For
discontinuity identification, an adaptive sparse grid (sec8od.l) of the userspecifiedlevel is
generated. For all the samples and their neighbors, discontinuity detection is carried out to assess
the possible presence ofdiscontinuity This is done in heuristic way as follows. A simplex of
points is sampled in a small neighborhood at two different locations in the feasible space. Slopes
between the points in the simplex are calculated. It is assumed that the maximum value from the
calculated slopes prades a reliable estimate of the slope in continuous regions and hence, it is
usedasa threshold. Given two points, if the absolute value of the slope of the line joining those
points exceeds the threshold, a discontinuity is considered to exatdidontinuity is present,

the spaces further divided by creating another sparse grid in a hypetangle centered at the
midpoint of two samples that need refinement. This procedure is repeated until no pair of
neighboring points exists that has points segiad by a distance greater than a predefined
tolerance and have a discontinuity between them. Available samples are then labeled based on
the continuous region they belong to. For labeling, each sample and its neighboring samples are
assessed for discontility. Neighboring samples with no discontinuity between them are labeled
the same whereas samples with a discontinuity between them are labeled differently. If there is
no pair of neighboring points with a possible discontinuity, a line search basedstarah is

triggered according to Algorithm 3. Support vector machines (SVM) is trained using the labels for
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available data (sectioB.2.]). This classifier is uséd represent theboundariesof a continuous

region. Details of Phase 2 are described in Algorithm 2.

Algorithm 2: Discontinuity identification

Initialize parameters box Bj
Createa sparse grid of level 2 inside box B.
Evaluate the objective function at the grid points.
Identify the set N of pairs of neighboring points.
Initialize] to be the minimum distance between all the pairs in N.
whilef T and0 %o
For each paip in set N containing points andr) , conduct discontinuity identification tes
If discontinuityis not present, remove p from N.
If discontinuityis present
LetQ be the dimension along which the points are neighbors.
Leta be the midpoint of two points in p.
Create a hyperectangle H centered at
Let] ,1 as the maximum distance to ighbor dong dimensionA from rj andn
respectively.
Defing | AD h
ForQ Q the bounds for H are settob&[ | ,& 1 1.
Create a sparse grid of level 2 in H.
Evaluate the objective function at the grid points.
Remove pair p from the set N.

Identify the neighboring points in H and add to the set N.
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End

End

Label all points such that any given pair of neighboring points should $ewe labels if
discontinuityis not present. It should have differelatbels,if discontinuityis present.

Let thebest samplegoint belong to label a. Label all points that da have label a to label &

Train SVM using obtained labels.

A demonstration of the steps mentioned in Algorithm 2 is provideBig3-6 and Fig.3-7. The

problem considered in this demonstration is taken frdakeman et al132] and given by Eq.
(60).

06 1th () 1 (60)

ph T OEAOxEOA

4 4 4

(@) (b) (€)

Fig. 3-6: Demonstration of sparse grid adaptive sampling (a) shows initial grid (b) shows
refinementbetween a pair of points (c) shows all samples at the end of the adaptive sampling

step
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Fig.3-7: Sample (a) labeling and (b)prediction using classifier in phase 2 of the framework

Threshold slope of 0 is assumed to be known a priori. Each sample is displayeBim3ttewith

a cross. The algorithm starts with sampling a level 2 grid in the local region. Two points are called
neighbors if they differ only in one dimension and have no point sampled between them. All such
pairs of neighboring points are collected. The slgpevaluated, and it is checked if the slope is
higher than the known threshold of zero. Each pair is refined by creating another sparse grid of
level 2 and evaluating the function at grid points. Refinement of one of the pairs (0,0) aty (O,

is shownin the second figure. Neighboring points along the dimensioof the point (0, 0) are-(

1, 0) and (1, 0) which sets the hypectangle width to 1. Similarly, Neighboring points along the
dimensionw are (0, 1) which sets the hypegctangle lengtha 1. This refinement is iteratively
carried out until no such pair of neighboring points exists that has discontinuity between the
points in it or the distance between two points in the pair is larger than a predefined tolerance.
The final set of sampledojnts are shown irfig.3-6 (¢). As one can see, the framework samples
more points near the boundary of discontinuity. Following this step, labeling is carried out by
chedking all pairs of neighboring points. If the points have a discontinuity between them, they are
given separate labels. Whereas, when no discontinuity is detected, they are labelled the same.
Since there are two continuous regions in the problem, two setpdabels are obtained which

are shown irFig.3-7 (a). Finally, SVM model is trained using these samples and used for future

prediction. SVM predictions for this problesgme shown irFig.3-7(b).
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Phase 3 (local searchin the third phase, starting from the sample having the lowest objective
function value, a line search is employed.determine the direction of descent for line search, a
simplex gradient is used that generates (d + 1) samples in a d dimensional space and determines
the descent direction. Support vectors classifier developeghimse? is used to make sure that

the line search stays in the same continuous region. Finally, the best objective function value
among all available samples is reported. These steps are schematically shown in Algorithm 3. Line
search stops when either small step sizes are reachednaxamumnumber of failed evaluations

is reached or if the search is stuck at the boundary ofcthinuousregion.

Algorithm 3: local search

Initialize parameters] ,’Q,Q
Starting from the best available sample, create a simplex within distantefrom w
Evaluate the objective function at the simplex
Evaluate simplex gradient
Initialize a step siz&@ Q.
While"(<"Q
w w n8Q
if SVM{@ 36 -w
reduceQ
else
evaluate the objective functiofat w .
If"Qw "Qw
IncreaseéQ

W
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Else

ReduceQ

End

End

End

Details regarding specific details of the proposed approach including the kriging model, sparse
grid, and support vectors classificaticare provided in Section2.1.4 3.3.1, and 2.2.],

respectively.

3.3.1 Sparse grids

Sparse grids is a discretization method often used in the literature as part of solving differential
and integral equation§143] due to their ability to scale well with mumber of dimensions and
reduce the curse of dimensionality. For interpolation purposes, sparse grids have been shown to
provide a good approximation. Detailed analysis of erromuasuusing interpolation models built

from sparse grids has been studied in the literat(itd4]. With their ability to form a grid
structure without exponentially increasing the sampling requirement, it has been applied in
multiple other application aras. Recently, sparse grids were used for Blamk optimization

[145]. Since the objective function is computationally expensive in the #dagloptimization, full

grids where the ampling requirement grows exponentially with the dimensionality of the
problem are impractical. This makes the use of sparse grids more attractive. The typical sampling
requirements for forming sparse grids for a given dimension of input space and feeralgvel

of userspecified discretization level are shownTiable3-1.
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Table3-1 Number of samples with respect to thdimensionalityof the problem and level of
discretization

No. of Level 1 Level 2 Level 3 Level 4 Level 5
variables

2 1 5 17 49 129

4 1 9 49 209 769

6 1 13 97 545 2561

8 1 17 161 1121 6401

In this work,sparse grid sampling is used for identification of discontinuities and for adaptive
sampling to better approximate discontinuities in the feasible space. Several types of sparse grids
exist in the literature. However, since achieving a good interpolasiort the goal of this work,
equidistant or trapezoidal sparse grids are used. The samples collected by adaptively sampling

inside the local region, are used for training support vector machines.

3.4 Reslults

In this section, the proposed algorithm is appltedsarious supply chain optimization problems.
The aim is to demonstrate thatosteffective solutions can be achieved with the proposed
approach. A comparative study with the existing derivafie® optimization algorithms is
provided for the optimal warehouse inventory allocation for three supply chain networks. The
application is further extended to find the optimal inventory allocation for the combined

warehouse and production site inventory.

For the frst comparison, a supply chain network with two warehouses, two products, two
markets,andthree warehouses is considered as showRim3-8. It is assumed that the inventory

at production sites has been decided a priori and inventory allocated for both products at the
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warehouses is the same. For three different sets of values of parameters such as transport cost,
inventory cost, and theenaty for unmet demand, three scenarios are generated, and the results
are compared. Three other derivatifieee optimization solvers are chosen for the comparison.

The solvers and their underlying algorithms are presentéelhinle3-2.

Table3-2 Description of solverssed for comparison against the proposed framework

Solver name  Algorithm Reference

NOMAD Nonlinear meskadaptive search (direc [146] [147]Z WRA HitADAG]E Q
pattern search or moddbased)
ISRES Stochastic ranking evolution strategy [149]> nlogt(J150]

EGO Efficient global optimization Wa dzNNE 3+ JISH[93f 2 2 |

The algorithms depicted in Table 5 were selected to represent a variety of different approaches
that can be used for simulatiebased optimization. Existing derivatifree optimization
algorithms can be classified as deterministic algorithms which inatunidelbased and direct
algorithms and stochastic algorithms. Choice of the solvers under comparison was based on
choosing one solver from each category. Out of the solvers presentable3-2, EGO is a model

based algorithm that makes use of a global Kriging model, NOMAD is a direct search algorithm,
and ISRES is an evolutionary algorithm. Solvers that need a starting point were initiated starting
from the center ofthe boxbounded feasible region. A Latin Hypercube design was provided for

EGO algorithm.
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Fig.3-8 Supply chain considered for comparison

A limit of 1500 function evaluations was given to all the soMearsase of early termination by a
solver, the best value found until the termination is reported. Bounds of 400 units and 600 units
are imposed on the warehouse capacities. For the proposed frameworknédian value is
reported starting from 5 differentnitial sampling designd.able3-3 displays the optimal total

cost value reported by solvers under comparison for all scenarios in 500 function evaluations.
Respective values for 1000 and 1500 evaluations are shoWabie3-4 andTable3-5. The results
demonstrate that the proposed algorithm provides thest objective function value for all three

scenarios and under varied computational budget.

Table 3-3 Comparison of the objective function value provided by DFO solvers for different
scenariosn 500 evaluatins

Solver Total Cos{(million $)

scenario A scenario B scenario C
NOMAD 4.8233 47222 4.8336
ISRES 4.8826 4.6250 4.8617
EGO 4.8261 4.6014 4.8698
Proposed 4.7892 45821 4,7988
framework

Table 3-4: Comparison of the objective function value provided by DFO solvers for different
scenarios irL000 evaluations

Solver Total Cos{million $)
scenario A scenario B scenario C
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NOMAD 4.8233 4,7222 4.8336
ISRES 4.,8826 4.6024 4.8583
EGO 4.8261 4.6014 4.8575
Proposed 4.7802 4.5821 4.7988
framework

Table 3-5: Comparison of the objective function value provided by DFO solvers for different
scenarios ir1500 evaluations

Solver Total Cos{(million $)

scenario A scenario B scenario C
NOMAD 4.8233 4.7222 4.8336
ISRES 4.8375 4.6024 4.8407
EGO 4.8105 4.6014 4.8575
Proposed 4.7802 45821 4.7913
framework

In addition to the objective function value, it is also essential to assess the suggested solution to
make sure that the superiority in the objective function value is not because of local refinement.
To ensure that, suggested warehouse inventories bypitoposed framework as well as ISRES,
EGO, and NOMAD are reportedig.3-9, Fig.3-10, andFig.3-11. For all scenarios A, B, and C as
shown inFig.3-9, Fig.3-10, andFig.3-11 the solution suggested by the proposed framework is
different from that suggsted by the other algorithms. For scenario B as showkigr8-10, the
solution is different for 500 evaluations. For higher computational budget, EGi@diag a
solution close to the one suggested by the proposed framework. However, Tedste3-4 and

Table 3-5, it can be concluded that the better solution is because of the better refinement
achieved by the proposed framework. For scenario C as shotuig.8+11, For 500 evaluations,

the solution is different for all algorithms for 500 evaluations. Given a budget of 1000 evaluations,

ISRES converges to the same solution as EGO. The solution is different from tharoptsed
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framework but very close. Here, the difference could be attributed to the local refinement
achieved by the proposed framework based on the lower objective function value obtained as
shown inTable3-5. Finally, the proposed framework suggests a better optimal objective function
value for all the cases under consideration. This highlights the success achieved by the
discontinuity identification stp in the local search. The computations are carried out on a PC with
Intel® Xeon® CPU-E520 v2 @ 3.70GHz and 16.0 GB RAM, running a Windows 7 Professional,
64-bit operating system. The computational time for one simulation run for the network shown

in Fig. 3-8 is 26.71 seconds. The computational time for a bigger network consisting of 10
warehouses, 10 retailers, 7 production sites, and 10 produétsiigd to be 282.76 seconds. These
computational times are significantly large for an optimization probl8mce the simulation run

is the most computationally expensive part of the algorithm, the number of simulation runs is

usually considered to be ardtt indicator of computational expense.

40 450 0 0 4 440 450 461 0 0 4 440 450 461
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Fig.3-9: Solution reported by the algorithms under comparison for scenario A (a) 500 evaluations
(b) 1000 evaluations (c) 15@@aluations
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Fig.3-10: Solution reported by the algorithms under comparison for scenario B (a) 500 evaluations
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Fig.3-11:Solution reported by the algorithms under comparison for scen@aga) 500 evaluations
(b) 1000 evaluations (c) 1500 evaluations

An example of improvement in the objective function values achieved thighnumber of
simulation runs using the proposed framework is showfi@i3-12. The simulation finds the best
objective function value and continues dapng the unexplored regions until the computational
budget of 1500 simulation runs is exhausted which explains the plateau after a certain number of
simulation runs. For the same example, number of discontinuities were studied. The algorithm
carried outphase 2 and phase 3 27 number of times and the combined number of continuous
regions in the local search regions explored is 109 which is also the same as the number of

discontinuities.
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Fig.3-12: Best objective function vs number of simulation calls for Scenario B

In the next comparison, the same network is considered. However, more decisions are made with
varying production site capacities in addition to warehaus@&d allowing each warehouse and
production site to hold alifferent amount of inventory for each product. The lower and upper
bound on the production site capacities is 180 units and 220 units, respectively. Since the problem
has two production sites, tee warehouses, and two products, it results in a-tkmensional
problem. The problem is solved for scenario A. The optimal total cost reported is $4,743,655 with
a computational budget of 1500 evaluations. Suggested warehouse and production site
inventories are reported ifTable3-6. Comparing it with the previously obtained total cost for

scenario A, including more decision variables leads to a caseefficientsupply chain network.

Table3-6 Optimal solution returned by the proposed framework

Unit Production Production Production Warehouse  Warehouse
site 1 site 2 site 3 1 2

Product 1 210 204 187 573 503
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Product 2 212 204 210 425 501

3.5 Summary

In this work, a multenterprise supply chain inventory optimization problem is considered. An
agentbased simulation is used to model complex cooperative and competitive interactions
between different enterprises. An auction mechanism is presented througich different
enterprises interact with each other. It is observed that the problem of minimizing total cost with
respect to inventory, has discontinuousobjective function Since many existing approaches
assume continuity of the response, a novelidative-free optimization framework is proposed

that can address discontinuous objective function by identifying and modeling discontinuities. The
framework broadly consists of three phases that are global search, discontinuity identification,
and local sarch. To save computational cost and to be able to handle problems of larger size, the
framework makes use of adaptive sparse grid refinement. For discontinuity identification and
local search, the framework makes use of certain problem characteristibsasumearity of the
objective function incontinuousregions to save computational cost. A comparison with three
other existing derivativdree optimization solvers is made for supply chain networks. Results
show that the proposed framework outperforms other existing algorithms in terms of the
objective valie and offers a solution that may be different from and superior to that obtained
from other solvers. Finally, the framework is successfully applied to a higher dimensional problem
where production site inventory is considered in as a decision variallédition to warehouse
inventory. The performance of the proposed framework is demonstrated on the resulting ten
dimensional problem. This work highlights the need to assess possible discontinuities prior to
choosing a derivativéree method. Even though ihis work discontinuities are identified for the
purposes of optimization, the approach used in this work for approximating continuous regions

with a classifier is more general. It is trivial to generalize this for use in modeling a discontinuous
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responsein other applications. Finally, a more general discontinuity identification technique
based on the data and with theoretical guarantees will be a valuable contribution to the literature

on derivativefree optimization.
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4 Modular design optimization

Abstract
Recent studies on modular and distributed manufacturing have introduced a new angle to the

traditional economies of scale that claim that large plants exhibit better efficiencies and lower
costs. A modular design has several advantages, including highkiaility of decisions, lower
investment costs, shorter timto-market, and adaptability to market conditions. While design
flexibility is a widely studied concept in the process design, modular design provides an interesting
new opportunity to the desigmptimization problem under demand variability. In this work, a
framework for modular design under demand variability is proposed. The framework consists of
two steps. First, the feasible region for each module is represented analytically with the help of
the historical data or the data from a simulation using a classification technique. In the second
step, the optimal design choice is obtained by integrating the classifier models built in the first
step as constraints in the design optimization probleme dhsign optimization problem is first
solved considering a single objective, i.e., minimizing the total cost or maximizing the flexibility.
These two objectives are then addressed simultaneously using a multiobjective optimization
framework that considersthe tradeoff between maximizing the flexibility of design and
minimizing the cost. Computational studies conducted using a case study of an air separation
plant, demonstrate the efficacy of the proposed framework. Several advantages of using a
modular defgn, as well as datdriven methods in the decisiemaking process in the design step,

are discussed.

4.1 Introduction
For years, the design of chemical process facilities has followed a traditional cost reduction
paradigm relying on the economy of sc{8¢ The 2/3 power law implies that as chemical plants

grow bigger (scalap), the capital cost increases following a 2/3 power low. However, large plants
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may exhibit better efficiencies and lower costs due to more efficient process integration. Recent
studies on modulaand distributed manufacturing have introduced a new angle to the economy
of scale[11]. While large plants have better efficiency, due to their centralized nature, all raw
materials havdo be transported to the plant and similarly, all products have to be distributed
from the plant. In the usual case where the source of raw materials, as well as the demand, is not
geographically close to the large plant, there are significant transgortatosts involved. With
smaller scale modular plants, one can effectively distribute manufacturing which leads to reduced
transportation costs. While large plants demand a large investment at the beginning, small plants
require a relatively smaller invesent and this significantly reduces the risk for the investors
[152]. Finally, construction times for large plants are longer than those for a small pidnt a

therefore, timeto-market is less for a small plant, again, reducing the risk.

Modular design involves the use of small and standardized modules of fixed size in a production
process. Multiple identical devices may be assembled to achieve the desieattion. Modular

and distributed processes may not only contribute to decreases in distribution costs but also
provide an alternative to overcome several manufacturing challenges. Small devices offer
inherent safety and can be used for-demand and orsite production of hazardous materials

[9]. They provide a fast patto commercialization since challenges related to the scaling up of
chemical processes are not substantial. Moreover, the time for construction of manufacturing
facilities may be reduced, since modules can be preassembled in a shop and are not subject to
delays related to weather and esite inspections. Because of standardized units, the process of
numbering up as a part of plant expansion becomes faster. Economically, as the standardized
units or small modular plants are numbered up, vendors, as wellr@seps engineers, gain
experience. As a result of the learning curve, the vendors may be able to sell the equipment for a

cheaper price and process engineers can reduce the-tovaarket. All these factors contribute
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to a relatively lower risk of investmérelated to small modular designs. Recent work on modular
design quantitatively demonstrates some of these advantages. Arora dté@l.study the
economy of numbers and equipment standardization for capital cost reduction. Yang and You
[153] compare modular methanol manufacturing with and without module relocation, and4arge
scale methanol manufacturing based on the economic as well as the environmental impact.
Sancheand Martin[154]assess the modularization of ammopiants as the production capacity

is varied. Modular processes can also provide additional flexibility to production processes when
compared to largescale plants. With small and flexible modules, business units can carry out
production plans and introduce@ew products independent of each other. The flexibility of
modular plants has been investigated by Lier et[8#h2], who demonstrated how to adapt
capacit by starting up or shutting down the operation of certain modules according to different
market developments. While large plants require highestment decisions, modular plants
provide managers with alternatives that are lower in investment costs ancadapt according

to better forecasts. While a centralized plant can make use of customized designs, modular plants
rely on available standardized modules. Therefore, the-dkggstion in modular design then
becomes to define a process based on a limitechber of different module$155]. In the context

of this work, modular designs refer to the design and construction of smaller chemical process
units or even entire processes of fixed production capacjfid$ It is important to note that this
definition includes the possibility of process intensificatj@B], transportable processing units

[16], standardization of equipment moduldd7], and even integrated or customized unit
operations[8]. Finally, the modularization of a process depends on the process knowledge and

expertise of the engineer.

In addition to flexibility with respect to management decisions and market conditions, it is also

important to have flexibility with respect to uncertainties. During conceptual design, there are
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often process parameters that are not well known, such astkirrate constants, demand, or
product and feedstock prices. Understanding the operability characteristics of a process is
therefore crucial at the design stage. It is addressed in the literature under the name of feasibility
analysis, flexibility analysiand operability analysi$56][157]. Analyzing the flexibility of a design

is a fundamental concept in process design amdfiérs to quantifying the ability of a process to
maintain feasible operation under variability due to uncertain paramef&d$ Ensuring flexible
designs allows one to systematically hedge against exceptional realizations of process parameters
[11]. The work on flexibility analysis started over three decades ago and it is still an active area of
research[12][13]. This work can be broadly classified in static flexibilitglygis and resiliency
which deals with dynamic flexibility analysis. Some of the theoretical advances in flexibility
analysis started with proposing a quantitative measure of flexibility known afietkibility index

[102]. Initial formulations for obtaining the flexibility index involved solving the problem as a
multilevel optimization problem. Later resedr focused on reducing the computational
complexity of this problem with the help of methods such as vertex enumer#iid8], active
constraint strategy159], parametric programmingL60], and as a global optimization problem
[161]for nonconvex casedore recently, Zhao &dl.[13] presented a method of space projection

for quantification of flexibility Goyal and lerapetritofil62] propose a simplicial approximation
approach for obtaining operating envelopes within which a design is feaBillEpher and Zavala
[163] propose a mixed integer conic formulation for computing the flexibility index when the
uncertainty is chareterized using multivariate Gaussian random variatdefioa and Grossmann
distinguish uncertain parameters as measured and unmeasured uncertain parameters. They
propose MINLP reformulations for the resulting multilevel optimization problgifd]. Instead

of representing the uncertainty by a hyperrectangle, thereapproaches for obtaining flexibility

by considering probability distribution functions. Relevant work in this area proptses
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stochastic flexibility indekL65] or expected stochastic flexibilif66]. Flexibility analysis also has

a wide range of applications ranging from product degitfi7], process design and synthesis
[168][169] to supply chain desigii70]. For the dynamic systems, Dimitriadis and Pistikopoulos
[171] propose a dynamic flexibility index. Thextended the flexibility analysis to consider time
varying uncertain parameters and, thus, the feasible region. Moreover, since the dynamic
behavior of a system is greatly influenced by the installed control system, resilient designs are
proposed to simuhneously consider operational aspects as well as the steady state or economic
aspects[172]. Palazaoglu and ArkufiL73] address this problem by formulating it as a
multiobjective optimization problem. Luyben and Floudag4] translate this problem as an
MINLP problem where alternatives for the process also vary in the control system, thus also
addressing controllability. Later approaches for integration of design and control utilized
computational advanceand proposed dynamic optimization frameworks. These frameworks
broadly consist of an iterative procedure implementing dynamic flexibility and feasibility analysis.
SanchefSancheandRicardezSandovaj175] propose arMINLP framework that simultaneously
considers dynamic flexibility and feasibility in a single optimization formulation. Swartz and
Kawajiri[176] review the applications of dynamic optimization for analyzing the interaction
between design and dynamic performance. For a more detailed review on integration of process
design and control, threaders are referred to relevant teXts77]]178][179] [180]. Even though
integration of design and process control is an interesting problem, the scope of this work is
restricted to steadystate processesA review of flexibity analysis andesiliency igprovided by
Grossmann et al[181]. While flexibility analysis tries to determine the maximum disturbance
from the nominal point in uncertain parameters that can be handled by a design, a similar but not
identical concept known as operability aims at finding if the desired outpuersnogn be achieved

by the controller in the presence of disturbances within the available input spiGé].
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Operability is quantified with the help of operability index and dynamic operability index. In the
dynamic operability index, the assessment is done by solving an optimal control problem to find
the shortest time for a process to respond to a disturbance and move to a new operating point.
However, the optimal control problem has a solution only when there is at least one feasible
solution to the final time constraints at steady stfi82]. As a result, the feasibility and flexibility
methodologies presented in this work also play an important role in considering further
extensions to the problem of operdity index or dynamic operability index. For more details on
dynamic operability, an interested reader is referred to the relevant review pg@a]. Fnally,
Mohideen et al.[183] propose a way to simultaneously consider flexibility analysis and

controllability as well as operabilifg84].

These research works rely on the closed form expression of the simulation model. A common
problem arises when thprocess information is not available in a closed form, but it is available
in the form of data or a computationally expensive simulation. In such cases, the literature is
limited to feasibility analysis where the aim is to identify the feasible regiorrevaiéthe relevant
constraints are satisfied. Feasibility analysis when a closed form expression of the problem is not
available is referred to as blatlox feasibility analysis. These methods rely on building a-data
driven approximation or a surrogate rdel using the data generated from the complex simulation
[10]. Banerjee and lerapetdu [167] use high dimensional model representation (HDMR)
surrogate malel to determine the feasible region. Using a Kriging surrogate model based
approach, Boukouvala and lerapetrit¢®7] approximate the feasibility function, a metric for
feasibility. Zhang et a]185] propose a convex region surrogate fepresenting a nonlineaand
nonconvex feasible region by a combination of convex regionsy @pproximatethe cost
function foreach region by a linear apprioxation. Adi et al.[186] use a random line search for

detecting boundary points of the feasible regidiith their ability to utilize process data coupled
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with recent developments in machine learning software, ddteven methods are continually

finding new applications for various problems in process systems engin¢t8infL88].

The problem of process synthesis and design optimization has been widely studied in the process
systems engineering literature. The process synthesis problem refers to synthesizing processing
systems via simultaneous structural and parameter optimizatinrthe structural optimization

part, the aim is to select a configuration or a topology from available alternatives. In the
parameter optimization part, the aim is to choose equipment sizes and operating conditions
[189]. Conceptually, this problem leads to an MINLP problem where binary variables refer to the
potentialexistence of units, and continuous variables refer to process operating conditions, flows,
pressures, and equipment sizd90]. For the structural optimization, process synthesis problem
may consider different technogies and different connections in the possible set of alternatives.

In the design optimization, however, the problem usually refers to optimizing a design after the
technology is chosen. In this work, the optimization problem considered addresses tHemrob

of selection between several available designs, and the problem is referred to as a design
optimization problem. Even though this problem achieves simultaneous optimization of the
structure and operating conditions, mathematical complexity of the tegybptimization model
imposes a limitation on its applicability on a laigmale problem. In an attempt to reduce
computational complexity, datdriven models were used for addressing these problems. Henao
and Maraveliag191] propose a superstructure optimization framework where instead of a
detailed process model, a surrogate model is utilized. Wang dtL8R] replace first principle
models in a refinery hydrogen network with surrogate models and solve the problem of finding
an optimal hydrogen networlRafieiand RicardezSandova]193] highlight the potential of novel
artificial intelligence (Al) and Mhased techniques such as artificial neural networks (ANN) for

utilizing big data in the process of decisioraking. For the feasibility analysis of a process flow
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sheet, the curret literature relies on building approximations considering the entire flow sheet
as a single unitL94]. A limitation of this approach is that since the majority of the staft¢he-

art surrogate models handle continuous input and output variables. As a reselh thi problem
involves discrete decisions, one needs to build a separate surrogate model for each combination
of discrete variables. This is computationally impractical and difficult to utilize in an optimization
framework. Another common aspect in the@le-mentioned approaches is that the analysis is
done after the process or product design is available and the design decision is not directly
dependent on the flexibility. In other words, other considerations in the design optimization step
such as cost mimization or profit maximization are addressed separately from the flexibility
analysis problem. As correctly highlighted in a recent sfi@g], there is a growing need to
address multiple interconnected objectives at the design stage. Modidaign provides an
interesting new opportunity in the design optimization problem under demand variability in this
context since the feasibility analysis for each module can be conducted beforehand, and a

simultaneous design optimization and flexibilityaduation can be performed.

In this work, a framework for modular design under demand variability is presented. It is assumed
that several module options for different equipment are available, that equipment are arranged
in a sequential process, and thite sequence of equipment is known and fixed. Then, given a
certain demand space, the goal is to determine the optimal selection of module options that
minimize investment costs, maximize flexibility, or both while ensuring that the desired demand
space ca be covered. The framework consists of two basic steps: first, the feasible region of
different module options is determined using a datdven approach. Then, the simultaneous
design optimization and flexibility evaluation problem is formulated as atiomjgctive
optimization problem and solved to optimality. With the help of traditional process synthesis

literature, the design optimization problem considered in this work can be easily extended to
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handle the problem of several process alternatives a& ttases where the sequence of the
process modules is not unique. This extension also encompasses the possibility of having a module
obtained using process intensification. In the comparisons presented in this work, however, the
scope is not limited to pragss synthesis. Therefore, for clarity, the applications demonstrated in
this work do not include factors such as process alternatives and process intensification.
Moreover, a single series of modular processing equipment is considered since the poss$ibility
numbering up of equipment exists to meet the product demand, and this will not affect the
process feasibility or flexibility. Modular designs that rely on process intensification may pose
challenges due to the loss of degrees of freedom for corjfplSome of the key operational
challenges in this context arise disecoordination between modules and, therefore, cooperative
control strategies, discrete decisions in numbering up or numbering down of equipment, a sudden
change in operating conditions requiring coordination between scheduling and control. These

interesting problems motivate further research in the area of process control for modular designs.

This work proposes a novel approach for the flexibility analysis problem with the help of classifier
models and provides an extension to the feasibility analysisagut proposed by Dias and
lerapetritou [195]. The multiobjective design optimization framework, as well as the flexibility
analysis, take advantage of the modutesign of the process by analyzing the feasibility of each
module separately. In doing so, this work proposes a novel way to combine classifiers for the
feasibility of individual modules such that process constraints such as mass and energy balances
areimplicitly handled. The design optimization framework is generic and can be easily adapted to
new classification techniques and different definitions of flexibility. The framework can take
advantage of the large amounts of historical data collected bgraarprise and use it to build

better models and address the problem of large size.
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Thechapteris organized as follows. In sectidr®, a detailed description ofeeh component of

the proposed framework is provided. The problem addressed in this work is defined along with
the specific steps of the proposed framework in Sectloh Sectiord.5 provides an illustrative
example of the framework and demonstrates the results on a small problem of a process
containing a reactor and a separat@ection4.6 presents a case study of an air separation unit
(ASU) and resulting optimal design choices using the proposed framework. Finally, the conclusions

are provided in sectior.7.

4.2 Background

In this section, a background is provided on some of the key steps in the proposed framework.
More specifically, atate-of-the-art literature review is provided on the concepts of feasibility and
flexibility analysis, machine learning classificati@sed feasibility analysis and on quality
assessment of the classifier for feasibility analysis. This review is not hoela@ exhaustive but
intends to highlight some of the key differences between existing methods and the proposed
framework. In doing so, detailed mathematical formulations for the relevant subproblems are

provided.

4.2.1 Feasibility Analysis

This work deviateBom the previous worksentioned in sectior2.4and extends a relatively new
approach for the feasibility problem recently proposed by Dias and lerapetfit®s] to the
problem of design optimization. In this approach, the feasibility problem is treated as a
classification problem. This way, machine learning algorithmglssification can be used to
identify the feasible region of a system. Key advantages of this interpretation are the ability to
handle large amounts of process data both in size (number of data points) and dimensions

(number of features), and the avdiléity of the sophisticated machine learning software tools.
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In the design optimization problem considered, feasibility analysis for each module is conducted
using the historical data that contains information about flow rates, temperatures, product
demands, and quality requirements as input variables and feasibility labels of the process as the
output. The classifier built from the historical data aims to accurately represent the region in the
design space for which the module is feasible. It is importanbte that historical data naturally
contains a larger number of feasible data points and a small number of infeasible data points. This
problem is known as the problem of imbalanced classes and has been widely studied in the field
of machine learning196][197]. However, since one of the ways to tackle this problem is by having
more samples from the minority or, in this cag#geasible class, simulation models may be used.
Moreover, one can increase the number of infeasible data points using process knowledge. The
feasibility of the entire process is ensured by assessing the feasibility of classifiers for all the

individual modiles

4.2.2 Flexibility analysis

Several approachdsr solving the flexibility index problem aawailable in the literaturas shown

in section2.5. In this work, vertex solution methodd 58] is used wherdt is assumed that critical
points correspond to vertices of extreme values of the parametet$&. In a general case, the
problem is solved by first obtaining flexibility index in the direction of each vertex and then

representing flexibility indeas the minimum of all indices. This procedure is shown below:
Step 1: For each vertex directi@@ solve the problem given by Egflj and obtan O .
O | Aw
E&BQOuh— 1 (62)

— I 1=
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Where,3— represents the expected deviation in the direction of veri@x
Step 2: Flexibility indeXis calculated as the minimum offall.

O | ETO (62)
However, such an iterative procedure cannot be incorporated into a single optimization problem.
This problem is addressed by including a separate constraint for each vertex. This way, the
optimization problem naturally selects the minimum value™©f as the flexibility index. The

constraints for flexibility index are shown by B&)(and Eq.&4)

Qoh— 1Yo (63)
— J 110 (64

where, V is the set of all vertices.

4.2.3 Feasibility analysis using support vector machine

Theoutput of Eqg. 85) is binary where in the context of this work, a valuebtorresponds to
infeasible points whereas a value of +1 corresponds to the feasible pélotgever, since the
output of Eqg. 85) is not smooth and the sign operator may lead to computational difficulties in
the optimization step, the expression given loy B5) is used instead while modeling SVM models
as constraints in the optimization problem. The only difference between3sgaad Eq.q5) is

the absence 00 E @ loperator. Since a value of +1 féXc in Eq. 85) corresponds to a feasible
point, a positive value 6tbe in Eq.65) represents a feasible point. Similagjnce a value ofL

for "Qc in Eq. 85) corresponds to an infedse point, a negative value 6fd® in Eq.65)

represents an infeasible point.

"B O 0 o T (65)
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4.3 Pmocess design optimization

4.3.1 Single objective optimization
In general, the deterministic process design optimization problem involving the selection of
process units and their interconnection, as well as the evaluation of the design and operating
variables, esults in a mixed integer nonlinear programming (MINLP) prol&®. The problem
is formulated as shown by E§6)
i E® oo
GEUD
CUo n
Uv mip hav 2

(66)

where, ware binary variables that represent inclusion or exclusion of units with values 1 and 0
respectivelypare continuous variables which corresponds to process variables such as flow rate,
composition, and temperatured ofto is the objective function’Qufto represent equality
constraints andQahw represent inequality constraints. Usually, for the design optimization

problem, the objective function considered is the total cost of the process.

Often, at thedesignstage, a number of data, external to within the process, may not be fully
determined or known with certainty. For example, external conditions such as product demands,
economic data, and environmental parameters could typically only be forecasted, given by a
range of possible values orree probability distributional formTherefore, it is clear that some
degree of flexibility must be intrduced at the design stage to ensure that the pla#il be able

to handle uncerain parameters during operatiohere are several approaches to addrdss
problem based on the description of uncertainty. One of the proposed procedures is the

deterministic approach, where the description of uncertainty is provided by specific bounds or via
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a finite number of fixed parameter values. An alternative apploia a stochastic approach where

uncertainty is described by probability distribution functions.

Since the uncertainty considered in this work mainly arises from the product demand for which
the range of demand variability is known, a deterministic applhos used. Uncertain range of
parameters is bounded by box constraints, i.e., the lower and upper bounds for each demand
define the demand variability t&hastic uncertaintgan be addressed usistpchastic flexibility
analysis, which requires modifiembst objectiveand data sampling. However, it is worth noting
that for the cases when the uncertainty is present in the process parameters, considering a
deterministic uncertainty may lead to a conservative de$id#8]. This motivates an interesting
extension of the present work for incorporating stochastic flexibility index, and it will be

considered in future work.

4.3.2 Multiobjective gtimization
In addition to achieving an objective such as minimizing the total cost, it is often of interest to
assess other aspects of the optimal design, such as robustness or flexibility. One way to address
this tradeoff is to penalize the objective fction with the other objective$199]. However, such
optimization leads to only one solutionna the solution is dependent on the penalty function.
Therefore, such an approach does not explore the tradeoff between several objectives
systematically. To achieve that, a multiobjective optimization problem should be solved. A vast
amount of literatureis available on multiobjective optimization, and a review can be faand
Marler and Arorg200]. This work uses tHe- constraint method, and the problem formulation is
represented by Eq6()
I ER®
GBED X

(67)
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CUg mn
where,®N 'Y oy 1dp  wheren is the number of continuous variables afds the number of
binary variables’Q and "Q are the two objectives to be minimized in the probleffcito
represent equality constraints, ari@ufto represent inequality constraintdn this workthe
objectives considered are the total annualized cost and the flexibility index. Since bigger units are
feasible over a wider range, they exhibit higher flexibility. On the downside, these umitscae
expensive. Therefore, a multiobjective formulation is used to handle the todideetween cost

and flexibility.

4.4 Problem definition and the proposed framework

4.4.1 Problem definition

The motivation for the problem considered in this work stems fromgbeeral concept that the
development of standardized designs considering the customer demand space can lead to
significant economic savings. The relevance of the work can be appreciated from the fact that
developing modular designs would be substantialigaper for a manufacturer than developing
customized designs, and beneficial for the customer because various design alternatives would

be available to choose from.

This work aims to find the optimal design for a modular process where several standardized
options for the process module are available. It is assumed that several module options for
different equipment are available, that equipment are arranged in a sequential process, and that
the sequence of equipment is known and fixed. For each moduleytiens are different from

each other based on the definition. As an example, if the reactor module is defined based on the

reactor volume, the options for the reactor module will include reactors of different volumes.
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Moreover, based on the variables asfated with options, each option has a feasible range of
operation. If an option is selected, it is important to make sure that the solution is feasible for that
option. It is assumed that the historical information of the process feasibility data iglaleain

the form of process variables and their corresponding feasibility labels. To write it forgally,
instances in the space of process varialles'Y and corresponding labets™  pfp (-1 for
infeasible and 1 for feasible) are available¢as whoho B fv] and® @ o hd M8 Fo

where,n is the dimension of the problem, argdis the number of labeled instances.

Based on the objective considered, three different problem formulations can be used. First, the
optimal design is obtaid for a given demand for products in order to minimize the total cost of
the process. In the second case, given the hominal demand and the variability from the nominal
values, the objective is to find the design that maximizes flexibility with respeatietademand
variability. In most cases, however, both of these objectives of minimizing cost and maximizing
flexibility will be of interest. The third problem considers both the objectives and aims to find a
number of solutions (pareto) that balance thosgo objectives. Moreover, since quantitative
information is available regarding the feasibility and flexibility of the chosen optimal designs, it

will facilitate steadystate and dynamic operability analysis.

4.4.2 Framework for optimization
The framework for modular design under demand variability consists of five steps, as shown in
Figure4-1. First, the historical process data for feasibility is obtained. The data is split between
training data Y who hoho Bho o and testing data "Y

whd hohd Bho o where™pand”X are the number of instares in the training set
and the testing set, respectivelidsing the training dataset, a classifier is built that will attempt

to act as an accurate representation of the unlabeled data. The performance of the classifier is



91

tested on the testing data, andhé predicted labels are compared against the true labels in the
data. For comparison, four metrics are usé@ddetailed explanation of the validation metrics is
provided in sectior2.7.2 The process is repeated for evaluating fleasible regions for each
module option is evaluated. Finally, algebraic expression for the classifier is obtained, and the
equation is incorporated in the process design optimization probl& typical way to add the

classifier as a constraint is shown below

#& O - p U (69)

where6™O s the classifier for optioa of moduled ; @ is a binary variable for the selection of
option € for moduled ; U is a positive constant for the blg type of constraint. Since the positive
value of the classifier indicates feasibility, the constraint makes sure that ifs 1,0'0 ©

L

The feasibility analysis approach used here is proposed by Dias apett@ou [114] for the
integration ofplanning and scheduling problen&uchanapproachhelps inobtainingan algebraic
equation of the feasible production region without the use of detailed dynamic modéis.
combination of modules and respective feasible regions generates the overitllésaduction
space of a set of module options. It should be noted that the purpose of this work is not to provide
a comparative study between several classifiers from the machine learning literature but to
provide a framework for optimization. As SVMshshown a good predictive ability from the
analysis of Dias and lerapetritpli 4], SVM is the classifier used in the rest of this work. For the
flexibility analysis, this work limits itself to vertex enumeration strategies. However, as the
number of uncertain parameters increases, a more cotagonally efficient activeconstraint

strategy can be utilized.
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s ™
Step 1: Collect the process data

Historical data containing relevant features and corresponding
feasibility labels for each medule

14

Step 2: Build a classifier using the data
e.g. SYM. ANN, decision-trees etc.

4

Step 3: Assess the performance of the classifier
Performance measures such as CF, CIF, NC using confusion
matrix

il

Step 4: Ohtain algebraic equation of the predictor
Modify the predictor to obtain a real valued output for the use
in optimization

4

Step 5! Incorporate the classifier in the process design
optimization problem
Incorporate all classifiers to represent the feasibility of the
process

.

vy

Figured-1: Summary of the proposed framework for design optimization

4.5 |lllustrative Example

To better illustrate the idea, an example of aopess consisting of a continuously stirred tank
reactor in series with an ideal separator is chosen. It is assumed that the feasibility of the ideal
separator depends only on the inlet flow rate range. The aim is to convert raw material A into
two finished products B and E as shownhigure4-2. An isothermal liquicbhase reaction is
considered following the kinetic mechanism as described in the previous studies ndéyRaod

Biegler[198] and Goyal and lerapetritofi69]. The model equations for the process are shown

by Eq. §9).

(69)
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where,w, ®, w, @, andw represent the mole fraction of components A, B, C, D, and E,
respectively;"Q are the rate constantsgo is the volume of the reactorf) is the inlet
concentrdion of A;| is the recycle fraction of stream A and Bis the recycle fraction of D and
E; Qs the molar flow rate at the outlet of the reactd®) is the molar flow rate at the inlet of the

reactor. The nominal values of the kinetic constant®d® TBIoXxQ T8Ip W

™ip g0 ] X mgdQ T8I @p

[P 3
F X xe ky
Fo (L e
g
\—.
(@) (b)

Figure 4-2: Reactor separator illustrative example (a) process flow diagram (b) reaction
mechanism

The overall annualized cost of the process consists of the capital cost of the reactor as well as the
capital cost of the separator. It is assumed that four reactor design options are available based on
their volume. Different separator design options d&sed on the inlet flow rate. The available

options and the respective costs for the reactor and the separator are shoWebile4-1.

Table4-1: Design options for reactor and separator

Options Reactor (m) Fr (k$) Separator Fv(k$)
(5= mol/h)

Option 1 20 400 40-60 100

Option 2 25 550 50-70 150

Option 3 30 700 60-80 200
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Option 4 35 850 80-100 250

Three scenarios for the nominal demand are considered in this work as shovabled-2. The
deviations from the nominal demand are 30 mol/h for the product B and 1i8nfar the product

E.

Table4-2: Three scenarios based on the nominal demands for the products B and E

Scenario NominalDemand B NominalDemand E
(mol/h) (mol/h)

Scenario A 50 35

Scenario B 55 30

Scenario C 45 35

There are three problems considered in this work. In the first problem, the aim is to identify a
reactor design and a separator design that can satisfy the known product demand and minimizes
the annualized total cost. The second probleiffieds from the first problem in the objective which

is to maximize the flexibility index for the second problem. Finally, both objectives are
simultaneously considered in the third problem. A design is considered feasible if certain nominal
product demands satisfied by the design. The flexibility of a design quantifies the deviations in
the product demand from the nominal demand for which the chosen design is feasible. The design
optimization problem intends to find a set of optimal module designs basethe respective
objectives of the three problems. Since the first four steps of the framework presentédtne

4-1 are the same for all three problems, the stegdtte framework are explained next.
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Step 1 The first step is to collect the historic feasibility data or data from process simulation. In
this example, the data is obtained by running the simulation of the reactor, as shown B9EQ. (
The simulation is developed in GARE2.0and solved as a nonlinear program using Baron global
optimization solver versiord9.7.13 Inputs for the simulation includes four variables that are
reactor volume,; O , "O, and™O. The output includes labelsi( for infeasible and 1 for feasible)
that indicate if the set of inputs leads to a feasible process. For each option of the reactor a grid
based sampling approach is used and 1000 data pdib® samples in eacld , 'O, "O) are

generated, and the output labels are collected.

Step 2 In this step, we train a classifier for each option using the data generated in step 1. In this
work, SVM is the chosen classifier and SVM models amettdor the reactor as described in
section4.2.3 Scikitlearn python toolbox is used with default options for training the SVM models.
Please note that since theparator is ideal and its feasibility depends only on the flow rate, there

is no need to build a classifier for the separator.

Step 3:In this stepthe model quality is assessed using the test dataset.

Table4-3: SVM model validation for the reactasing RBF kernel

Option CF% CIF% NC% Total Eror
Option 1 100 98.27 0.7 0.5
Option 2 100 93.94 1.18 1

Option 3 99.45 94.44 0.55 1

Option 4 98.89 95 0.56 1.5

Table4-4: Confusion matrix for the reactor using RBF kernel

Option tn fp fn tp
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Option 1 57 1 0 142
Option 2 31 2 0 167
Option 3 17 1 1 181
Option 4 19 1 2 178

The SVM performance resultsTiable4-3 show that all SVM models have CF% and CIF% greater
than 90%, and NC% and Total Error are less than 5%. This indicates that the models have
acceptable quality for prediction of the feasible i@g and we can move to step 4. In the machine
learning literature, confusion matrix is a more commonly used metric that quantifies the number

of true negatives (tn), false positives (fp), false negatives (fn), and true positives (tp). These metrics
are slown inTable4-4, Table4-6, andTabled-8. It is highlighted that the metrics shown in section
2.7.2quantify the quality of classifiers better in the conteftfeasibility analysis, where metrics

such as NC% are useful.

Table4-5: SVM model validation for the reactor using a linear kernel

Option CF% CIF% NC% Total Error
Option 1 98.59 89.65 4.11 4
Option 2 100 100 0 0
Option 3 100 100 0 0
Option 4 100 100 0 0

Table4-6: Confusion matrix for the reactor using a linear kernel

Option tn fp fn tp
Option 1 52 6 2 140
Option 2 33 0 0 167

Option 3 18 0 0 182
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Option 4 20 0 0 180

Table4-7: SVM model validation for the reactor usiagigmoidkernel

Option CF% CIF% NC% Total Error
Option 1 94.36 77.59 8.84 10.5
Option 2 96.41 60.61 7.47 9.5

Option 3 95.42 52 6.70 10

Option 4 95.55 45 6.01 9.5

Table4-8: Confusion matrix for the reactor using a sigmoid kernel

Option tn fp fn tp

Option 1 45 13 8 134
Option 2 20 13 6 161
Option 3 13 12 8 167
Option 4 9 11 8 172

For understanding the effect of classifier parameters such as the choice of kernel functions, we
train SVM models using linear and sigmoid kernel functions. It can be seerT &bled-5 and
Table4-7 that SVM model with the sigmoid kernel function demonstrates the worst performance
for all the options. Moreover, as seen fronable4-4 and Table4-6, SVM models using linear
kernel function show a comparable perfoamce for options 2, 3, and 4. Whereas, for option 1,
RBF kernel function shows superior performance. Because of this performance and because of
the general practice that RBF kernels are better at classifying nonlinear data, this work
implements RBF kernil solving the optimization problem using steps 4 and 5. It should be noted
that if the models in this step do not meet the desired quality, the model performance should be

improved by going back to step 1, choosing different SVM choices such as the afhiceceel
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function, choice of the penalty for misclassification, or choosing a different classification

technique such as ANN or decision trees.

Step 4 In this step, we obtain an algebraic equation for the SVM model. This is done by obtaining
the intercept and support vectors from the trained classifier from step 3. Since this is the only

information required for Eq.65), algebraic expression ftine classifier can be obtained.

Step 5 This is the final step of the framework where the classifier is incorporated into the

optimization problem.

The problem formulation for cost minimization is shown by Hj).(
i Edw 6w
BBYD e 0 p w!ivymo
W ®w 0p wlivy
®w 0w 0p wlivy
O 6w Op wlivvy (70)

W O 0p Olivvy

where, 6 and 6 are the vectors of the cost coefficients for the reactor and the separator,
respectivelyw andw are the binary variables for the selection of readtand the separatot
respectively;Y® 8 represents the SVM model for the optiorfor the reactor;0 and0 are

the big constantsp is the volume of the reactor optioin, 'Y and“Yare the sets of all reactor and
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separator options respectivelgto ando are the upper and lower bounds 6@ for the option

i of the separator.

For the problem of minimizing the total cost, 3600 scenarios are considered by varying the
product demands. The MINLP problem is solved using in G28/80and solved using Baron
version19.7.13with the time limit of 1000 seconds on a PC with Intel® Xeon® QRWMAE @
3.80GHz and 32.0 GB RAM, running a Windows 10 Enterprib#,d@Erating systemThe results

are shown irFigure4-3. Since the problem only considers capital cost, the total cost for an option
is the same for all demand scenarios. The total ctis¢esefore, are shown ifTable4-9. Each data

point inFigured-3 corresponds to a demand scenario for product B and the product E. The optimal
choice of the option is abbreviated using the following convention. If the first option for the
reactor is choseand the first option for the separator is chosen, the optimal choice will represent
option 11. The region shaded in the red color corresponds to all scenarios for which the option 11
was optimal. Similarly, the region shaded in the blue color represertsi#mand scenarios for
which option 24 was optimal. Since the problem is solved to optimality, it can be concluded that
the options that are not chosen are either infeasible or more -@tatEnsive than the ones selected

by the optimization framework. Theesults shown inFigure 4-3 are as expected since the
framework chooses option 11 for the lower demands, and as the demand increases, it chooses
more expensive optionsrém Table4-9, it can be observed that the cost for the option 11 is the
least and that of option 24 is the highest. The results demonstrate the proposed formulation

favors the cheapest feasible option.

Table 4-9: Total costs for the optimal options for minimizing the total cost for the reactor
separator system

Option 11 12 13 14 23 24

Cost (k$) 500 550 600 650 750 800
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Figure4-3: Feasible regions of the optimal design choices proposed by the framework for
minimizing the total cost of the reactor separator system

The second problem we consider aims to find a design tlaatmaximum flexibility given the
nominal demand and the deviation from the nominal demand. The problem formulation for
maximizing the flexibility index is shown by EA{)(
i A
(BBYD e 13 ! 0 p OlivMQo

W o 0p wliny

w W LPp Ww!'NY (71)
O 6O O p wlinvy
w 0 0p @linvvy

w p
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w p
e 13 1 [ MEN+
e 13 ' C“I"HEw~ +

where] is the flexibility indexg is the vector of deviation of product demand from the nominal
values in the direction of verteQof the inscribed hyperectangle;0 is the set of all vertices of
the inscribed hyperectangle for the feasibilitys is a vector containing variables "O , "O, and

"O where"O andO are flow rates of the products andOrespectively] ‘&hd”l "ldre the vectors
of lower and upper bounds for the variablesdnAll the remaining variables follow the same

convention as that of the presus problem for cost minimization.

Three scenarios for the nominal demand as shownaible4-2 are considered for addressing the
problem of maximum flexibility. The MLP problem is solved using GAMS/Baron with a time limit
of 1000 seconds. For each demand scenario, the optimal choice proposed by the framework is

shown along with the flexibility index obtained for the optimal choice are display&dhte4-10.

Table4-10: Results for maximizing flexibility for three demand scenarios

Scenario Demand B Demand E Flexibility Index  Optimal Choice
(mol/h) (mol/h)

Scenario A 50 35 1.15 44

Scenario B 55 30 15 44

Scenario C 45 35 1.15 44
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It can be observed frorable4-10that for all the scenarios, the framework finds a solution that
has a flexibility index greater than one, indicating that the optimal design is able to satisfy the
expected deviations from th@ominal demand. It is important to note that when there are
multiple designs with the same flexibility index, this formulation for maximizing the flexibility does
not use any other criteria to prefer one design option over the other design options. To
demonstrate this, the maximum flexibility indices are shownFigure4-4 for all the feasible
options. Two important observations can be derived fiBigured-4. First, it can be observed that
option 24, 34, 44, and 43 all have the same flexibility index that is greater than one. Moreover,
option 33 also has a flexibility index greater than one. Sécoption 12 is the cheapest feasible
option and it has the least value of the flexibility index. These two observations motivate the need

for a framework to address these two objectives together.

Flexibility Index for all design options

Flexibility Index
© o o o =P
N EaN (e} [e0] = N AN

o

12 21 13 22 41 31 23 14 32 42 33 24 34 44
Design Options

Figure4-4: Flexibility Indices for all design options for demand scenario A

This tradeoff can be better visualized usiriggure4-5, where both the objectives are plotted
agdnst each other for each design option. Since we want to minimize the total cost and maximize

the flexibility index, options 12, 13, 14, and 24 are the Pareto optimal designs.
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Cost vs Flexibility Pareto Plot
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Figure4-5: Cost vs FlexibijitPareto plot for scenario A
The third problem is a multiobjective problem where the problem of minimizing the total cost as
well as maximizing the flexibility is addressed. The problem formulation for multiobjective

optimization is shown by Eq4.3).

i Ed o 6w (72a)

BB T (24b)

Y e 13 | D p @wlivmwo (249
W © 0p @linvy (244)

W ® 0p linvy (24¢)

w 60 0 p wlivvy (241)

w ® 0p olivvy (249)

® P (24h)

W p (24))
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e 13 1 T MHEN+ (24)

e 13 ' IHE™ + (24K

TheT -constraint method is used fanultiobjective optimization where one of the objectives is
expressed as a constraint, as shown by Eq. (24b). Additionally, if an option is selected for the
reactor or separator, the SVM prediction should ensure feasibility. This is imposed with the help
of constraints given by Eq. (24c). The solution obtained by solving the optimization problem
should satisfy the operability ranges for the options selected for the reactor and separator. Since
the option for the reactor is based on the volume, it is giveiy(24d) and Eq. (24€). The options

for the separator are based on the flow rate ranges and it is ensured by the constraints given by
Eq. (24f) and Eg249). Finallyonly one option must be selected for the reactor as well as the
separator, as given by Eq. (24h) and Eq. (24i) and the flexibility of the demand should be within

the known bounds for the demand for products B and E as given by Eq. (24j) and Eq.(24k).

For the multiobjective optimization problem, the nominal demand of 50 mol/h for product B and
35 mol/h for the product E, as shown in scenario Aale4-10. Flexibility is modeled in the
optimization problem with the help ¢f-constraint method as shown by Eq. (24ihen the value

off is 0, the framework leads to minimization of the cost. Howevetha \alue of is increased,
flexibility constraint becomes strict, and as a result, the framework selects options that are more
flexible.The MINLP problem is solved using GAMS/Baron with a time limit of 1000 setbrds.
results for the cost and the optimal design @®are shown ifable4-11. It can be verified from
Figure 4-5 that the optimal choices proposed by the multiobjective optimization framework

correspond belong to the designs on the Pareto optimal curve.
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Table 4-11: Optimal choices for the system of reactor and separator using multitibgec
optimization

! Cost(k$) Reactor Separator
0 550 1 2
0.5 650 1 4
1 800 2 4
11 800 2 4
1.15 800 2 4

4.6 Air separation unit case study

4.6.1 Processind modebkescription

In this section, e problem of processdesignoptimization and flexibility evaluation of an air
separation unit (ASU3} considered The processhown inFigure4-6 consists 6 separatingthe
feedair into oxygennitrogen, and argor{201]. This is achieved throudiiquefaction with the help

of products and waste streams in the main heat exchanger. Part of the compressed air stream is
withdrawn from the heat exchanger at an intermediate location and passed through the turbine,
followed by dow-pressure distillation column. The rest of the compressed air traverses the entire
length of the heat exchanger and is fed to the hpghssure column. The columns operate at a
pressure that enables heat integration with a common system of a rebagitbaaondenser. The

ASU model used in this work is based on the previous work of DiadE¥%land Sirdeshpande

et al. [202]. The reader is referred to previous works in the literature for more details on the
simulation mode[203]204]205]206][207]. More recently, Caspari et 4§208] worked on the
design and optimization of a flexible ASU as well as on optimal operation using economic model

predictive contro[209]. The models considered in this work are steathte models, and a stard
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alone simulation is developed for each unit operatiorbrief description of the mathematical

models describing the behavior of unit operations of the ASU process is provided below.

E'D_-:@_—I )
e Lﬁ"-“ ]

NP

<

Figured-6: Air separation unit case study

Distillation column modelA double olumn system is considered for the distillation of which high
pressure column (HPC) operates at a pressure of 6.5 bar whereas the low pressure column (LPC)
operates at a pressure of 1.5 barhe compressed and cooled air streams passed to the
distillation columns Thesecolumns share a common condenser/reboiler system, and the
operatingpressure®f the columns are chosen accordingijtemain air MA) enters the bottom

of the HPC as a saturated vapanereas the turbine air is expanded to the pressafeéhe LPC

and is fed to the LPC.

Integrated reboiler/condenser modeThe steadystate model for the integrated reboiler/
condenser is adapted from the work Dias and lerapetritoil 95]. This model consists of two
parts, one of which is for the condenser side and one for the reboilerBigeoxygesrich stream
at the bottom of the distillation column is expanded through a valve to 2.5 bar to proceiokng

(via JouleThomson effect) to the condensérhe reboiler is modeled as additionalequilibrium
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stage The equivalent of condenser heat duty is added as an additional input to the energy balance

for the reboiler.

Heat exchanger modeTheair steams MA and EA are cooled ii@zed platefin multistream

heat exchangerThe main air traverses the entire length of the heat exchanger, whereas the TA
is partially cooled and withdrawn at an intermediate location. Based on the location at which TA
iswithdrawn, the heat exchanger model is divided into two zones. The remainder of the air, which
is MA, is taken out at the outlet of zone 2. As a result, zone 1 corresponds to sensible heat removal
from the air stream, whereas zone 2 corresponds to thenateat removal.The first zone is
discretized into 50 segments, while tke@ergy balance is carried out over teecond zon&s a

single unitto simplify the phase transformation calculations. The geometry of the channels within
each segment is accountédr when calculatinghe energy accumulation of each stream in each

finite volume.

CompressotlUrbine model Feedair is compressed to a pressure of ®ar using the compressor
followed by which the air is split and passed to the heat exchanger. Patteoait that is
withdrawn at an intermediate location from the heat exchanger is expanded in the turbine

expander to produce a cold exhaust and mechanical work.

4.6.2 Process modularization

Based on the unit operations mentionedyis process may be modularizétto the four basic
operations of heat exchange, expansion, distillation, and compreqgi@2]. Gven different
module options for eackequipment varyingin size and process specification (e.g., number of
columns, pressure, etc.), the goal is to define a set of options that can achieve product
specifications at a minimum investment cost whilesenng that the operation remains flexible

and thedesireddemard is met The options for the heat exchanger and the distillation column
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are based on the same parameters. The set of available options for each module, together with
the capital cost of didtation and heat exchanger options, are showiabled-12andTable4-13,
respectively. The options for compressor and turbine modules depend on the input fles; et
shown inTable4-14 and Table4-15, respectively. It is important to notéhat the costs for the
compressor module and the turbine module includes the compressor and turbine as well as their
respective auxiliary units. Frofable4-12, Table4-13, Table4-14, and Table4-15, it can be
observed that a convention is followed that the lower option number represents a smaller unit
and lower capital cost. It is important to note that, however, a smaller unit need not have a lower
capital cost because of several process interaifion strategieg210][15][211]. The proposed
framework for multiobjective optimization can readily handle sachalternative in the design

optimization stage.

(@)

(b)

(c) (d)

Figure4-7: ASU modules (a) heat exchanger (b) distillation column (c) compressor (d) turbine
































































































































































































































































































