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Dissertation Director:

Dr. Xiang Liu

Americans take 11 billion trips annually on public transportation, a 40 percent
increase since 1995 (American Public Transportation Association 2016). The $61 billion
American public transportation industry faces an ongoing challenge of transit hub
accessibility — how travelers get to nearby transit hubs. This challenge is also known as the
“first-mile” bottleneck. In the United States, many transit riders either drive their own
vehicles or take taxis or other emerging mobility services (e.g. Uber and Lyft) to nearby
transit hubs. However, uncoordinated traveling does not fully utilize the empty seatsin a
car. This increases traffic congestion, fuel consumption, emissions, and parking demands.
Ridesharing is an effective transportation mode to provide first-mile accessibility to public
transit and low-cost, environment-friendly and sustainable mobility service. A key issue is
to incentivize passengers for ridesharing participation. This dissertation addresses this
problem using Mechanism Design Theory. “Mechanism design” is a field in economics
and game theory that designs economic incentives toward desired states by reconciling

players’ objectives and has been applied in transportation research fields recently.
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This dissertation accounts for passengers’ personalized requirements for
inconvenience attributes in optimizing the vehicle-passenger matching and vehicle routing
as well as designing incentive prices for both scheduled and on-demand first-mile
ridesharing services. The basic problem studied in the dissertation is that if the designed
incentive is able to compensate for the inconvenience cost caused by ridesharing
considering passengers’ personalized requirements. This dissertation considers multiple
incentive objectives to achieve the ultimate goal of maximizing the total social welfare.
These incentive objective includes 1) promoting passengers’ collaboration to participate in
the service (i.e. individual rationality), 2) incentivizing passengers to truthfully report their
personalized information (e.g. the maximum willing-to-pay price bidden for the service
and personalized requirements on inconvenience attributes) (i.e. incentive compatibility),
and 3) incentivizing the service provider to be financially sustainable. In order to obtain
the mechanism results for large-scale problems for both scheduled and on-demand service,
I develop a novel heuristic algorithm called Solution Pooling Approach (SPA) to optimize
the vehicle-passenger matching and vehicle routing plan as well as to calculate the prices.
It is proved that SPA is able to sustain the properties of “individual rationality” and
“incentive compatibility”. Based on the experimental results, | find that SPA is much more
efficientinsolvinglarge-scale problems comparedwith the commercial solver (e.g. Branch
and Bound) and traditional heuristic algorithms (e.g. hybrid simulated annealing and tabu

search) from the literature.
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CHAPTER 1 INTRODUCTION

1.1 Background

Americans take 11 billion trips annually on public transportation, a 40 percent
increase since 1995 (American Public Transportation Association 2016). The $61 billion
American public transportation industry faces an ongoing challenge of transit hub
accessibility — how travelers get to nearby transit hubs. This challenge is also known as the
“first-mile” bottleneck. Several studies have found that travelers’ choice of public
transportation is significantly affected by the accessibility to transit hubs (Krygsman et al.
2004, Rietveld 2000). In the United States, many transit riders either drive their own
vehicles or take taxis or other emerging mobility services (e.g. Uber and Lyft) to nearby
transit hubs. However, uncoordinated traveling does not fully utilize the empty seats in a
car. This increases traffic congestion, emissions, and parking demands.

Ridesharing is a potential solution to address first- or last-mile transit accessibility,
and to provide low-cost, environment-friendly and sustainable mobility service (Furuhata
et al. 2013, Cici et al. 2014, Kuhr et al. 2017). There are various types of ridesharing
services. Furuhata et al. (2013) classified ridesharing into three categories,
carpooling/vanpooling, long-distance ride-match,and dynamic real-time ridesharing based
on target markets. Furuhata et al. (2013) indicated that carpooling usually targets on
commuters and that users can schedule the service. Long-distance ride-match provides
intercity or interstate trips. This service usually requires passengers to schedule the service
in advance. Real-time dynamic ridesharing provides an automated process of ride-

matching between drivers and passengers on very short notice or even en-route. Thus,



2
based on the user type, ridesharing can be categorized as scheduled and on-demand
services. For scheduled service, passengers send requests early enough (e.g. at least 30
minutes) before they need the service. The system can pre-optimize the matching and
routing plan and pre-determine the prices before the service is approaching. For on-demand
service, passengers send spontaneous requests when they need the service. The system
needs to optimize the matching and routing plan and determine the prices in real time, so
that vehicles can be dispatched to serve passengers within a very short time. Ridesharing
can also be categorized as targeted and untargeted services. Targeted ridesharing provides
the service for specific type of passengers (e.g. commuters, transit riders, etc.). Passengers
taking targeted ridesharing service usually have the same destinations (e.g. companies,
transit hubs, etc.). Untargeted ridesharing providesthe service for any passenger who sends
a request. Passengers taking untargeted ridesharing service usually have different
destinations. In this dissertation, we focus on scheduled, on-demand, and mixed scheduled
and on-demand first-mile ridesharing to the transit hub accounting for its characteristics.

The prior literature has recognized the trend of integrating first-mile ridesharing
with public transportation. For example, Shaheen and Chan (2016) discussed that mobile
technology and public policy continue to evolve to integrate shared mobility with public
transit and future automated vehicles. Masoud et al. (2017a) developed a mobile
application with an innovative ride-matching algorithm as a decision support tool that
suggests transit-rideshare connection. Stiglic et al. (2018)’s study showed that the
integration of a ridesharing system and a public transit system can significantly en hance
mobility and increase the use of public transport. Ma (2017) proposed a dynamic bi-modal

vehicle dispatching and routing algorithm to address the real-time operating policy of



ridesharing (feeder) services in coordination with the presence of existing public
transportation networks. In addition, there is potentially a high demand for the first-mile
ridesharing service in transit-intensive metropolitan areas. For example, based on the NYC
taxicab data (New York City Taxi, & Limousine Commission 2018), there were 3,122,731
taxi trips to the Pennsylvania Station in New York City in 2017. An average of 8555 taxis
traveled to this station every day. Among 3,122,731 taxi trips, 2,189,467 trips (70.1%) had
only one passenger per trip. Among these one-passenger trips, approximately 1,509,580
(68.95%) taxi trips are within the same pickup zone and their pickup times are within 10
minutes. These trips might potentially be combined under certain incentive mechanisms
for ridesharing. Ridesharing emerges as an efficient way to better coordinate the travels in
order to reduce vehicle-miles to the transit hub. Also, ridesharing service providers (e.g.
Uber and Lyft) have already added public transportation to their apps, allowing for
seamless transfers from theirridesharing to the public transit services for convenient multi-
modal journeys (Shelton 2016, Smartrail world 2016 and 2018) in New York, Boston, Los
Angeles, and other metropolitan cities around the world. This market of emerging multi-
modal first-mile ridesharing service inspires us to design mechanisms to incentivize more

passengers for ridesharing participation.

1.2 Methodology

Mechanism design theory (Hurwicz and Reiter 2006) is a field in economics and
game theory that designs economic mechanisms or incentives toward desired objectives.
The ridesharing mechanism design consists of three major elements: 1) Passengers’

personalized mobility information (6); 2) Transportation modeling function (d), and 3)
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Incentive function (t) (Figure 1.1). Let P; denote the ith request, which may have one or
multiple passengers. The information of each request (&) includes the location (l;), the
public transit to take (DL, a deadline of arriving at the transit hub imposed by the public
transit schedule), non-inconvenience values NIV; (the maximum willing-to-pay price for
direct transport without inconvenience), inconvenience disvalues 1DV; (reduced maximum
willing-to-pay prices due to detour, extra waiting time, etc.). We say a decision rule d
(passenger matching and vehicle routing) is efficientif the social welfare is maximized
(Parkes et al. 2001). The social welfare for first-mile ridesharing is passengers’ cumulative
values and the service provider’s value (Parkes et al. 2001). A passenger request’s value V,
is represented by her maximum willing-to-pay price. The service provider’s value can be
defined asthe transportation costthatneeds to be covered. Let X=d(6) representan optimal
vehicle-passenger matching and routing obtained by the efficient decision rule X = argmax

Ziepvi —TC, where TC is the service provider’s transportation cost. The third element is

the incentive function. Let p; = tj(X, 6) denote the function of incentives provided to a
specific passenger request. In practice, the incentive typically takes the form of customized
pricing discount. In addition, other types of incentives (e.g., free trips, bonus points, and
credits) can also be used to promote ridesharing. In this research, I will primarily focus
on pricing as the main form of incentive function due to its ease of implementation. In

the future, I will consider other non-monetary incentives.



Passengers’

Reported Output
Information Mechanism X = d(6)
0, . - p: =t(X, 0)
—> Decision d (vehicle-passenger —
0, »|| matching and vehicle routing plan) || P2~ to(X, 6)
0, I p3 = t3(X, 0)
Incentive function t;
0, (e.g. customized pricing) P, = (X, 0)
e —

Figure 1.1. Ridesharing Mechanism Design Illustration

The proposed dissertation consists of two basic layers, which are the
transportation network modeling layer (layer 1) and the incentive design layer (layer
2). The incentive design layer interacts with transportation network modeling, pi =ti(X, 6);
thus, price “p;” is determined by the optimization results X = d(6), where 6 is passengers’
reported information regarding their individual mobility preferences and needs. The
interaction between the two layers elicits the property of “customizability.” For instance,
if a passenger increases the service requirement (e.qg., less detour), the system will adjust
the matching and routing plan so that she will have higher-quality service with a higher
price, and vice versa.

Layer 1- Transportation Network Modeling

The transportation network modeling layer is implemented to solve the Vehicle
Routing Problem with Time Constraints (VRPTC) based on the inputinformation, such
as passenger locations, requested times, the kind of public transit hub and schedule,
maximum willing-to-pay price for direct transport, maximum tolerable detours and extra

waiting time, vehicle locations, etc.



Let P denote the locations of passenger requests, V represent the set of real-time

vehicle locations, and H denote the location of transit hub(s). Let PV = P{J V and PT = P

UH. Let Xilj (keV,iePV,jePT)and yi (k eV,ieP)represent decision variables.
If vehicle k travels from location i to location j, Xi? =1, otherwise, Xi? =0. If vehicle &

picks up passenger(s) in request i, y =1, otherwise, Y =0. Let.X denote the collection

of all decision variables, representing a vehicle-passenger matching and vehicle routing
plan. For transportation network modeling, the objective function can maximize the total

social welfare, which is the summation of all passengers’ values minus the transportation

cost that the service provider covers: max f(X) = ZiePVi (X)-TC(X), where V{(X) is

Passenger(s) i’s value and TC(X) is the service provider’s transportation cost given the
matching and routing plan X. The constraints include:

1) Vehicle capacity, in which the number ofriders in a vehicle should not exceed

its capacity: ziep yiknpi <Q, forallk eV | wherenp; is the number of passengers in

request i and Qs vehicle k’s capacity.
2) Passenger deadlines: the matching and routing plan should ensure that the
vehicle can arrive at the transit hub before the deadline, which should be some time before

the transit departure time (for example, arriving at the transit hub 10 minutes earlier for

ticket purchase): Ziepv ZjepT Xil;tij + Ziep Yy pt, <RT , forallkeV , where t;j 1s the travel

time from location i to location j and p#; is pickup time for Passenger(s) i, and RT is the
remaining time to the deadline.
3) Vehicle flow constraints: one passenger should be served by at most one vehicle,

and other constraints such as flow-in and flow-out should be balanced, sub-tour should be



eliminated, etc.

Layer 2 —Incentive Design

In achievinga lower cost, long-term sustainable, and valuable first-mile ridesharing
service, a special emphasis of my framework in achieving certain objectives is on (i)
promoting shared trips, (ii) incentivizing truthfully reported information, (iii) incentivizing
the service provider to be financially sustainable. Incentive design is used to promote
cooperative behavior between passengers and the ridesharing service.

Incentive 1: Promoting shared trips. The designed pricing scheme provides

incentives to promote the cooperation of passengers to share trips. The incentive (e.g. price
discount) should be able to compensate for passengers’ disvalues of inconvenience factors
(e.g. detour and extra waiting time) caused by ridesharing. This induces the property of
“individual rationality” — passengers’ prices should not be greater than their maximum
willing-to-pay prices, Ug = V4 — pg> 0, where Uy is Passenger(s) g’s non-negative utility
(defined as the difference between the maximum willing-to-pay price and the actual paid
price, Kamar and Horvitz 2009), V, is Passenger(s) g’s value (maximum willing-to-pay
price), and py is the actual price.

Incentive 2: Incentivizing to truthfully report information. Passengers may

manipulate the system to maximize their utility by misreporting their mobility preference
information on purpose. For example, misreporting a low maximum willing-to-pay price
on purpose in order to have a low price will impair the optimization of the matchingand
routing plan and the service provider’s benefit. The designed mechanism will incentivize
the truthful solicitation of passenger information. This induces the property of “incentive

compatibility” — where truthfully reporting the personalized mobility preference is



passengers’ optimal strategy. I give an example of incentive compatible pricing. Consider
Passenger(s) g: if the price is given by pg =g(Xg-") — (f(X*) — V4(X®)), and then Passenger(s)
g’s utility is defined as Ug = Vy4(X") — pg = f(X*) — g(Xy-"), where X is the optimal solution
of the efficient decision (X* = d(d), when the social welfare is maximized) in the
transportation network modeling layer and f(.) is an objective function of the decision rule,
Xy~ 1s the optimal solution of a model (denoted as model M) that is independent of
Passenger(s) g’s report, and g(.) is the objective function of the model. This can ensure that
the mechanism is incentive compatible. Regardless of what Passenger(s) g reports, g(Xy-)
remains constant, because g(Xgy.") is independent of Passenger(s) g’s report. If she
misreports herinformation, X*may no longer be efficient, indicating that the social welfare
f(X™) will suffer from a decrease caused by her misreporting. Thus, her utility Uy = f(X") —
g(Xg-") will decrease as well. Therefore, truthful reporting is passengers’ optimal strategy.
Other properties can also be considered when designing the models M. For example, if the
condition g(Xgy.") < f(X") is always satisfied, the mechanism is also individual rational for
all passengers.

Incentive 3: Incentivizing the service provider to be financially sustainable.

The designed mechanism needs to incentivize the service provider to continually provide
the service without a financial deficit. The collected prices from passengers should be able

to cover the service providers’ transportation cost, including the fuel consumption cost,

driver labor cost, etc. Mathematically, the condition dep P, —TC(XJ) >0 should be

satisfied.



1.3 Contents of this Dissertation

The remaining content of the dissertation is summarized as follows

Chapter 2. This chapter reviews related work on mechanism design for ridesharing.
Based on the reviewed references, | identify the knowledge gaps and introdu ce the intended
contributions of this dissertation.

Chapter 3. This chapter designs a mechanism for the first-mile ridesharing service.
The mechanism accounts for passengers’ personalized requirements on different
inconvenience attributes (e.g. the number of co-riders, extra in-vehicle travel time, and
extra waiting time in the transit hub) of the service in determining the optimal vehicle-
passenger matchingand vehicleroutingplanand customizedpricingscheme. The proposed
mechanism is proved to be individual rational, incentive compatible, and price non-
negative. The three properties respectively indicate that passengers are willing to
participate in the service, that honestly reporting personalized requirements is the optimal
strategy, and thatthe service provider is guaranteed to receive revenue from the participants.
A case study is proposed to interpret the mechanism and to demonstrate the generality of
the personalized-requirement-based mechanism that can be adapted into differentscenarios.

Chapter 4. In order to address the computational challenge of obtaining the
mechanism for large-scale transportation networks, this chapter developsa novel heuristic
algorithm, called the Solution Pooling Approach (SPA) for efficiently solving large-scale
mechanism design problems in the first-mile ridesharing context. This chapter also extends
the SPA to solve generalized mechanismdesign problems,analyzes specific circumstances
under which SPA can sustain the game-theoretic properties, including “individual

rationality” and “incentive compatibility”, and identifies its limitation. For the particular
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application in the first-mile ridesharing, SPA maintains the properties of “individual
rationality” and “incentive compatibility”. SPA is computationally efficient because it
simultaneously solves vehicle-passenger matching and vehicle routing problem and
calculates the prices for all individuals. Numerical experimental results show that SPA can
address the complex first-mile ridesharing service mechanism design problem in a
computationally viable and efficient manner.

Chapter5. This chapter studies the mechanismdesign problem for on-demand first-
mile ridesharing and proposes a novel mechanism, namely “Mobility -Preference-Based
Mechanism with Baseline Price Control” (MPMBPC), which adapts the traditional
Vickrey-Clarke-Groves (VCG) mechanism and incorporates a baseline price control
component. MPMBPC is proved to satisfy several importantmechanism design properties,
including “individual rationality”, “incentive compatibility”, “price controllability”, and
“detour discounting reasonability”. In comparison with the traditional general-purpose
VCG mechanism, MPMBPC can avoid unreasonably low prices and prevent carriers’
deficits. A computationally efficient heuristic algorithm called Solution Pooling Approach
(SPA) is developed to solve large-scale ridesharing mechanism design problems.
Numerical examples are developed to demonstrate that SPA can solve large-scale
ridesharing mechanism design problems in a computationally efficient way, with
satisfactory solution qualities.

Chapter 6. This chapter draws the conclusions of the dissertation and introduces the

potential future work.
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CHAPTER 2 LITERATURE REVIEW

2.1 Existing Work

Much prior work has focused on the optimization of vehicle-passenger matching
and vehicle routing for ridesharing service. Different models and algorithms (e.g. mixed
integer programming, Lagrangian column generation, genetic heuristic algorithm, particle
swarm optimization) were developed for the optimization of matching and/or routing plans
for scheduled services (Baldacci et al., 2004; Calvo et al., 2004; Yan and Chen, 2011;
Armant and Brown, 2014; Huang et al., 2015,2017,2018; Chou et al., 2016; Fan et al.,
2018; Jiau etal., 2018; Hou etal., 2018). In addition, optimization of dynamic ridesharing
services has also been studied (Ma, 2017; Agatz etal., 2011; Wang et al., 2017; Ghoseiri et
al., 2011; Jungetal., 2016; Di Febbraro et al., 2013; Masoud and Jayakrishnan, 2017a,b;
Bian and Liu, 2017) using re-optimization algorithms (e.g., insertion heuristic and rolling
horizon strategy) to dynamically adjust the matching and routing plan in real time, based
on updated information.

While the transportation community has focused on transportation network
modeling of ridesharing, economists have focused more on incentive mechanism design
for promotion of passengers’ and/or drivers’ cooperation. There exist many mechanisms in
the literature, such as supply-demand-balance mechanisms, fair cost-sharing mechanisms,
optimization mechanisms, etc. The supply-demand-balance mechanism, which is widely
used in taxi service (Yang et al., 2002; Zhang and Ukkusuri, 2016; Qian and Ukkusuri,
2017), adjusts the price to balance the supply and demand. Witt et al. (2015), Banerjee et
al. (2015), Fang etal. (2016), Liu and Li (2017) applied and modified this pricing strategy

to adapt into ridesharing service. When customers’ demand exceeds supply, the price is
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increased to re-balance the demand and supply, and vice versa. Ridesharing companies,
such as Uber and Lyft, use this pricing framework to incentivize drivers to move to
undersupplied locations (Hall et al., 2015). Fair cost-sharing mechanism fairly allocates
costsamong participants based on different travel attributes, such as travel distance, detour,
and waiting time (Lu, 2014; Bistaffa et al., 2015; Gopalakrishnan et al., 2016; Li et al.,
2016; Wangetal.,2018;Chenetal.,2018; Bianand Liu, 2018a). Optimization mechanisms
optimize passengers’ prices and matching and routing plan simultaneously to achieve
certain objectives, such as maximizing the total profit, minimizing passengers’ total travel
cost, and maximizing the total saved travel mileage (Cheng et al., 2012; Biswas et al.,
2017a,b; Santos and Xavier, 2015; Qian etal., 2017). These mechanisms do not consider
different passengers’ valuations of the service when there is a shortage of vehicle fleet size
in the on-demand scenario so that not necessarily all passengers can be served within a
short time.

The auction-based mechanisms, which are more related to the scope of this
dissertation, aim to maximize the society’s overall welfare, which is usually defined as
riders’ cumulative values minus the service provider’s total cost (Ma et al., 2018), by
incentivizing participants to truthfully report their valuations (e.g. maximum willing-to-
pay price) of the service. The VCG mechanism is one widely used mechanism of this type
(Vickrey, 1961; Clarke, 1971; Groves, 1973). Several researchers developed VCG-based
mechanismsforscheduled ridesharingservice, inwhichriders bookthe service in advance.
For example, Zhao et al. (2014) developed an incentive mechanism for scheduled
ridesharing service with a deficit control. Zhao et al. (2015) considered the uncertainty,

whether passengers would undertake the trip after sendingrequests, in their mechanism for
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ridesharing organization. Nguyen (2013) and Cheng et al. (2014) proposed multiple
auction-based mechanisms for the last-mile ridesharing service. Zheng et al. (2019)
proposed a greedy and a ranking approach to the order dispatch and pricing strategies to
achieve their individual rational and truthful auction-based mechanism. Hsieh et al. (2019)
proposed a driver-passenger double side auction mechanism for carpooling systems and
developed a particle swarm optimization algorithm to solve the problem. Auction-based
mechanisms for on-demand (dynamic) ridesharing have also been studied by several
researchers. For example, Kleiner et al. (2011) proposed a parallel auction-based
mechanism for real-time ridesharing service, but the mechanism is limited to a single
passenger assignment per vehicle. Kamar and Horvitz (2009) determined the local VCG
payments among the agents that share the same vehicle instead of all agents requesting the
service. Luo (2019) proposed a two-stage approach to ridesharing assignment and auction
in a crowdsourcing collaborative transportation platform. The auction-based mechanisms
proposed by Zhangetal. (2017 and 2018) are truthful, budget balanced (i.e. the payment
offsets the cost), computationally efficient, and individual rational (passengers are willing
to participate in the service and pay the prices). Asghari et al. (2016) and Asghari and
Shahabi (2017) developed driver-bidding auction-based mechanisms for real-time
ridesharing. Karamanis et al. (2019) developed a passenger-driver double-side auction
mechanism to dynamically determine the assignment and pricing plan of shared rides in
ride-sourcing. Zhang et al. (2016), Masoud and Lloret-Batlle (2016), Lloret-Batlle et al.
(2017), and Masoud et al. (2017b) developed mechanisms for peer-to-peer dynamic

ridesharing to promote ridership and user permanence. Shen et al. (2016) developed an
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online mechanism for ridesharing in autonomous mobility -on-demand systems. Ma et al.

(2018) proposed a spatio-temporal pricing mechanism for dynamic ridesharing platforms.

All existingwork is summarized in Table 2.1.

Table 2.1 Existing Work

Mechanisms

References

Optimization of vehicle-
passenger matching and

vehicle routing

Baldacci et al., 2004; Calvo et al., 2004; Yan and Chen,
2011; Armant and Brown, 2014; Huang et al., 2015, 2017,
2018; Chou et al., 2016; Fan et al., 2018; Jiau et al., 2018;
Hou et al., 2018; Ma, 2017; Agatz etal., 2011; Wanget al.,
2017; Ghoseirietal., 2011; Jungetal., 2016; Di Febbraro et
al., 2013; Masoud and Jayakrishnan, 2017a,b; Bian and Liu,

2017

Supply-demand-balance

mechanisms

Witt etal., 2015; Banerjeeetal., 2015; Fang et al., 2016; Liu

and Li, 2017

Fair cost-sharing

mechanism

Lu, 2014; Bistaffaetal., 2015; Gopalakrishnan et al., 2016;
Li et al., 2016; Wang et al., 2018; Chen et al., 2018; Bian

and Liu, 2018a

Pricing optimization

mechanisms

Chengetal., 2012; Biswas et al., 2017a; Santos and Xavier,

2015; Qianetal., 2017

Auction-based

mechanisms

Zhao etal., 2014; Zhaoetal., 2015; Nguyen, 2013; Cheng et
al., 2014; Hsieh etal., 2018; Kleiner etal., 2011; Kamar and

Horvitz, 2009; Zhang et al., 2017; Zhang et al., 2018;
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Asghari et al., 2016; Asghari and Shahabi, 2017; Zhang et
al., 2016; Masoud and Lloret-Batlle, 2016; Lloret-Batlle et
al., 2017; Masoud etal., 2017b; Shen etal., 2016; Ma etal.,

2018

2.2 Knowledge gaps

To our knowledge, very little prior research addressed the incentive mechanism
design for first-mile ridesharing with respect to public transit accessibility. First-mile
ridesharing has four characteristics. 1) All passengers have the same destination (i.e., the
transit hub); 2) Passengers may have a strict deadline for arriving at the transit hub; 3)
Passengers can schedule the first-mile ridesharing service in advance if they know their
transit schedules (particularly for commuters);

Very limited prior research accounted for passengers’ personalized requirements
on inconvenience factors (e.g. detour) caused by ridesharing in optimizing the vehicle-
passenger matching and vehicle routing plan as well as designing customized incentive
price simultaneously. The interactive relationship among passengers’ personalized
requirements, optimizationof matchingand routingplan, and incentive pricingscheme has
not been well studied in the literature. In summary, the problem if the designed incentive
is able to offset the inconvenience caused by ridesharing is rarely considered in the
literature.

Existing research developed algorithms to solve small-scale or simplified
mechanism design to circumvent the computational complexity. Very little research has

addressed large-scale complex dynamic ridesharing mechanism design problems with
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solution algorithms that is computationally efficient and can simultaneously satisfy
importantabove-mentioned mechanism design properties (e.g. “individual rationality” and

“incentive compatibility”).

2.3 Intended Contributions

Based on the identified knowledge gaps, this dissertation brings the following
contributions.

o This dissertation is first to account for passengers’ personalized requirements for
inconvenience attributes in optimizing the vehicle-passenger matching and vehicle routing
as well as designing incentive prices for both scheduled and on-demand first-mile
ridesharing services.

o This dissertation considers multiple incentive objectives to achieve the ultimate
goal of maximizing the total social welfare in this dissertation, which is defined as the
passengers’ cumulative value minus the service provider’s transportation cost. These
incentive objective includes 1) promoting passengers’ collaboration to participate the
service, 2) incentivizing passengers to truthfully report their personalized information (e.g.
the maximum willing-to-pay price bidden for the service and personalized requirements on
inconvenience attributes), 3) incentivizing the service provider to be financial sustainable.

eIn order to obtain the mechanism results for large-scale problems, | develop a
novel heuristic algorithm called Solution Pooling Approach (SPA) to optimize the vehicle-
passenger matching and vehicle routing plan as well as to calculate the prices for both
scheduled and on-demand service. Itis proved that SPA is able to sustain the properties of

“individual rationality” and “incentive compatibility”.
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CHAPTER 3 MECHANISM DESIGN FOR SCHEDULED FIRST-

MILE RIDESHARING

3.1 Introduction

The proposed mechanism includes an optimal vehicle-passenger matching and
vehicle routing plan and a customized pricing strategy. The matching and routing plan
determines each passenger’s personalized first-mile ridesharing service. The customized
pricing strategy provides passengers with economic incentives to participate in ridesharing
by offsetting the inconvenience caused by ridesharing. Our designed mechanism allows
passengers to detail their personalized requirements on the following so-called
“inconvenience factors”, 1) extra in-vehicle travel time (for example, detour to pick up
other passengers), 2) the number of co-riders sharing the vehicle, and 3) extra waiting time
in the transit hub due to possible early arrival. Previous studies (Golledge et al. 1994, Ben-
Akiva and Lerman 1985, Arentze 2013) recognized that travelers’ choice of transportation
mode is not only influenced by price but also by these “inconvenience” attributes. The
methodology can be adapted to account for additional factors in future research. The
proposed mechanism can promote passengers’ participation by ensuring an important
property, “individual rationality”, which indicates that passengers’ maximum willing -to-
pay prices will never be exceeded by the actual paid prices. In addition, rational passengers
may misreport their personalized requirements in order to maximize their utilities if the
mechanism cannot prevent this. Thus, the designed mechanism needs to ensure another
importantproperty, namely “incentive compatibility”, representing that truthfully reporting
the requirement is each passenger’s optimal strategy that maximizes the utility. This

property can prevent passengers from misreporting their personalized requirements.
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Moreover, the price is non-negative so that the service provider can gain revenue from

passengers. Finally, a case study is proposed to interpretthe mechanism and to demonstrate
the effectiveness of the proposed mechanism.

This chapter is structured as follows. We identify knowledge gaps and research

needsin Section 3.2. Then, we introduce our designed mechanism in Section 3.3. In Section

3.4, a case study is proposed to interpret the potential application of the proposed

mechanism. Concluding remarks are made in Section 3.5.

3.2 Knowledge Gaps and Intended Contributions

To our knowledge, very little prior research addressed the incentive mechanism
design for first-mile ridesharing with respect to public transit accessibility. First-mile
ridesharing has four characteristics. 1) All passengers have the same destination (i.e., the
transit hub); 2) Passengers may have a strict deadline for arriving at the transit hub; 3)
Passengers can schedule the first-mile ridesharing service in advance if they know their
transit schedules (particularly forcommuters); 4) In addition to the number of shared riders
and extra in-vehicle travel time, the first-mile ridesharing imposes passengers another
potential inconvenience factor, extra waiting time at the transit hub due to early arrival, if
passengers served by the same vehicle have different arrival deadlines.

Very limited prior research accounted for passengers’ personalized requirements
on inconvenience factors (e.g. extra in-vehicle travel time, number of shared riders, and
additional waiting time) caused by ridesharing in optimizing the vehicle-passenger
matching and vehicle routing plan as well as designing customized incentive price

simultaneously. The interactive relationship among passengers’ personalized requirements,
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optimization of matching and routing plan, and incentive pricing scheme has not been well
studied in the literature.

This chapter intends to make the following contributions.

e This chapter identifies some potential inconvenience factors of scheduled
first-mile ridesharing service, including the number of shared riders, extra in-vehicle
travel time due to detour, and extra waiting time at the transit hub due to early arrival.

e We present the first work to design an incentive mechanism based on
passengers’ personalized requirements on these inconvenience attributes by
simultaneously optimizing the vehicle-passenger matching and vehicle routing plan
and designing a corresponding customized pricing scheme. As Figure 3.1 shows, this
designed mechanism accounts for the interactive relationship among passengers’
personalized requirements, optimization of matchingand routing plan, and incentive
pricing scheme. Passengers’ personalized requirements affect the values of the
inconvenience factors in optimizing the matching and routing plan. Customized
incentive pricing scheme, which is determined by the matching and routing plan,
promotes passengers’ participation by offsettingtheir inconvenienceand truthful report
of their personalized requirements.

e The incentive mechanism is proved to have the properties of “individual
rationality” and “incentive compatibility”. It indicates that the mechanism is able to
promote rational passengers’ participation willingness and also to prevent passengers

from manipulating the algorithm.
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Passengers’
personalized
requirements

Vehicle-
Customized | Determine passenger
incentive pricing | matching and
vehicle routing

Figure 3.1 Inhenrent Mechansim

3.3 Mechanism Design Model

This section introduces a ridesharing incentive mechanism based on passengers’
personalized requirements. Subsection 3.3.1 introduces the problem statement, 3.3.2
analyzes passengers’ value and utility when they participate in the service, 3.3.3 clarifies
the objective of the proposed mechanism using an optimization model, 3.3.4 introduces

how the mechanism is obtained, and 3.3.5 gives the proofs of the propositions.

3.3.1 Problem Statement

Passengers can schedule the first-mile ridesharing service in advance. All
passengers have the same destination (i.e. the transit hub) to catch their next transit mode
(e.g. trains). The service provider, which can be the transit agency or a ridesharing service
provider collaborating with the transit agency, has sufficient available vehicles that can
provide the first-mile accessibility service. Individual passengers may have different

preferred times of arrival. Some people may prefer to arrive much earlier than the



21
scheduled train departure time, while others enjoy arriving right on time to catch a train.
Thus, our mechanism allows passengers to specify their preferred arrival deadlines at the
transit hub. Passengers with close arrival deadlines are likely to share a ride. Vehicles must
drive these passengers to the transit hub before the specified deadlines. For example, if
Mike wants to take the train with the departure time of 9:00 am, and the train that John will
take departs at 9:10 AM. Mike wants to arrive at the transit hub on time and thus he
specifies 8:50 AM as his arrival deadline. John wants to arrive at the transit hub 25 minutes
earlier for breakfast and his arrival deadline is 8:45 AM. If John and Mike share the ride,
the vehicle must arrive at the transit hub before 8:45 AM.

We use Figure 3.2 to demonstrate the operation ofthe first-mile ridesharing service.
The system consolidates passengers’ requests with close arrival deadlines. When a
passenger schedules the service, he/she is notified of an estimated time window for pickup
and arange of trip fare. The time window can be estimated based on passengers’ reported
arrival deadlines and personalized requirements on extra in-vehicle travel time and extra
waiting time at the transit hub. For example, suppose that a passenger’s arrival deadline is
DL, the shortest time for driving this passenger to the transit hub is tjo. Then the latest
pickup time is DL; — tjo. If this passenger’s maximum tolerable extra in-vehicle travel time
and extra waiting time at the transit hub are «;'VT and o;VT, respectively, then the earliest
pickup time is DL; —tijp — 0;;VT— a;WT. The range of'the trip fare can be estimated by historical
prices as Uber does. The interface can also show the real-time taxi price in the market. The
final price will never exceed this taxi price. When the service is approaching (at time tS in
Figure 3.2), the system optimizes the vehicle-passenger matchingand vehicle routingplan,

and calculates the customized prices. The request processing time point(ts) should be early
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enough so that all passengers can be driven to the transit hub before their arrival deadlines.
After the requests are processed, each passenger will be notified of the vehicle that will
serve him, the exact pickup time, and the exact price, which are determined by our
mechanism (the matching and routing plan and the pricing scheme). The drivers will be
directed to pick up passengers in a specified order and drive them to the transit hub before

the earliest arrival deadline.

Time to optimize matching and routing plan,
calculate the price of each request, and then notify
each passenger of the pickup time and the price

Receiving .
Passenger scheduled requests > Time ts Time horizon
request 1~~~ = oo o m oo Qpacprae = bvar =
Passenger time . deadline
request2 T TTTTTT T A E Qeicapime 2= il
time . = eadline

Passenger e ‘|A

""""""""""" N T V5 1) 7
request 3 Requesting Pickup time deadline
Passenger time e '|
request 4 Requesting -Pj,_c__kup time - ot &gﬂﬁi[e
Passenger time ~ Potee
requests W@ I = SonT Tt Amrival

Requesting Pickup time .
time deadline

Figure 3.2 Operation of the First-Mile Ridesharing Service

In addition to the passengers’ pickup locations and preferred arrival deadlines,
passengers are allowed to report their personalized mobility requirements on different
inconvenience factors. In this chapter, “inconvenience factors” include 1) the number of
co-riders, 2) extrain-vehicle travel time beyond the direct shipmenttime due to detour, and
3) extra waiting time at the transit hub due to possible early arrival. Golledge et al. (1994),
Ben-Akiva and Lerman (1985), and Arentze (2013) recognized that travelers’ choice of

transportation mode is influenced not only by price but also by these “inconvenience”
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attributes. After the system receives the passengers’ information, an optimal vehicle-
passenger matching and vehicle routing plan is generated based on the personalized
requirements. The price is then obtained based on the plan and passengers’ reported
personalized requirements. Passengers will finally receive a personalized service and
customized price. The personalized service is tailored to satisfy passengers’requirements
on the inconvenience attributes of the first-mile trip and the customized price is used to
incentivize them to participate in the first-mile ridesharing service.

In this chapter, it is assumed that each passenger’s objective is to maximize their
own utility (defined as the difference between the maximum willing-to-pay price and the
actual paid price). It is possible that passengers may misreport their requirements on
inconvenience factors if lying is more beneficial for them. A desirable property of the
pricing mechanism is that expressing the true requirements is the passenger’s “best’
strategy (i.e. the utility is maximized) regardless of what other passengers report. This
property is called “incentive compatibility” in the literature (Myerson 1979). Passengers’
behavioral rationality also implies that if the price is higher than their maximum willing-
to-pay price, they are unlikely to participate in the ridesharing service. Thus, another
indispensable property, “individual rationality”, is that each passenger should always
receive non-negative utility with respect to the price charged. This property aims to
ultimately incentivize more travelers to participate in the ridesharing service. Moreover,
the service provider must receive payment from each passenger (i.e. the price is non-
negative). In summary, the proposed mechanism needs to have the three important

9% ¢

properties, “incentive compatibility”, “individual rationality” and “price non-negativity”.
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Based on the problem background, we will determine the mechanism, denoted as
M(X, p), consisting of a vehicle-passenger matching and vehicle routing plan X and all
passengers’ customized prices p= {p1, P2, -+ » Pu}-
The following assumptions are made, in line with the scope of the study.

1)  We focus on a static case where passengers’ information is known in
advance. The ridesharing market has placed demand on pre-scheduled optimization.
For example, Uber and Lyft have developed APPs that allow passengers to send pre-
scheduled request for car usage. In this chapter, we only optimize the vehicle task
execution plan for the passengers who send request before vehicles start to execute the
task. In a dynamic scenario, passengers are likely to send requests after the static
optimization process is finished, the system can re-optimize all decisions to
accommodate spontaneous demands. However, the dynamic scenario for spontaneous
passengers is beyond the scope of this study but will be considered in our future
research.

2)  The travel time between two locations is assumed to be deterministic.
Future research will incorporate travel time reliability in the optimization analysis.

3)  The fleet size is sufficientto serve all passengers who send requests in
advance, and all passengers who send requests will receive the service. The number of
passengers in each request does not exceed the seat capacity of a vehicle. Future
research will consider fleetshortage given an extraordinarily large ridesharingdemand.

4)  We assume that passengers will not misreport other travel information
such as the departure locations, the destination (the transithub) and the arrival deadlines.

Before we detail the mathematical formulation of the mechanism design, we will
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use a simple hypothetical example to explain the goal of the research. In this illustrative
example, three passengers, named “John”, “Peter” and “Alice”, in three different locations,
book the ridesharing serviceto getto the train station. The transportation costand the travel
time between each two locations as well as the pickup time span ateach location are known
in advance. For illustration convenience, the transportation cost (c;;) between two locations
is defined as the Euclidean distance (d;; ) with one dollar per mile. The travel time (#;)
between two locations is three times the Euclidean distance #; = 3d;. Note that this
illustrative example uses Euclidean distance only for simplification in order to demonstrate
how the mechanism is obtained. Our mechanism design model does not assume that the
travel distance between two locations should be Euclidean distance. After the vehicle
reaches each passenger ’s location, the vehicle needs some time to pick up the passenger(s).
We set the pickup time span as two minutes (pu; =2) in this example. The coordinate of the
transit hub location is set to be (0, 0). The arrival deadlines are determined by the selected
train they will catch at the transit hub. We also introduce the taxi service (direct shipment
without shared riders) for passengers’ alternative first-mile travel mode. The price of the
taxiserviceis $5 forthe first mile and increases $1.5per each additional mile. The available

information based on the problem setting is listed in Table 3.1.

Table 3.1 Information for the Illustrative Example

Passengers
Parameters
John Peter Alice
Location coordinates (2,2) (2.6,2.3) (3,2.8)

V! =5+1.5xmax(d, -1, 0) (taxiprice, in 7.74 8.71 9.66

max
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dollars)
Time of direct shipment (t,, =3xd.,,) 8.485 10.414 12.311
Arrival deadlines 13:00pm  13:10pm  13:00 pm

Passengers can report their personalized requirements. In this example, we assume
thatthey can reportthe maximum in-vehicle travel time, the maximum number of co-riders,
and the maximum waiting time at the transit hub that they can tolerate. Suppose that their

real requirements are given in Table 3.2.

Table 3.2 Passengers’ Personalized Requirements

Passengers
Tolerances
John Peter Alice

Maximum in-vehicle travel time

10 15 20
(minutes)
Maximum number of shared riders 3 3 2
Maximum waiting time at the transit

10 15 8

hub (minutes)

The problem is how to determine the matching and routing plan and price for each
passenger, accounting for passengers’ personalized mobility requirements. The proposed
mechanism shouldbe able to incentivize passengers to participatein the ridesharing service
instead of taking taxi service. Besides, the designed mechanism should force passenger to

truthfully report their preferences instead of lying. The results of the mechanism for this
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example will be displayed in Subsection 3.3 4.

3.3.2. Passengers’ Value Function and Utility Function

The value function, which reflects passengers’ maximum willing-to-pay prices, is

used to model passengers’ participating willingness considering their personalized

requirements on inconvenience attributes. The utility is defined as the net value, which is

the maximum willing-pay price minus the actual paid price. This chapter assumes that

rational passengers’objective is to maximize their utilities. Before introducing the value

and utility functions, we list the notations in Table 3.3.

Table 3.3 Notations in the Value Function and Utility Function

Notations | Descriptions
Index of passenger requests. There can be more than one passenger in
i each request. For denotation convenience, we let “passenger(s) i’
represent the passenger(s) in request i.
NR; Number of co-riders with passenger(s) i.
VT; Passenger(s) i’s in-vehicle travel time.
Passenger(s) i’s extra waiting time at the transit hub, i.e. the time interval
WT;
between the arrival time and the deadline DL; (see Table 3.4).
Passenger(s) i’s personalized requirements on the number of shared
aNR a/VT | riders, extra in-vehicle travel time that exceeds the direct shipment time,
and o7 and extra waiting time at the transit hub, respectively. The three
parameters are obtained from passengers’ reported information.
C/CN Passenger(s) i’s inconvenience cost caused by ridesharing. The
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inconvenience costis measuredas each passenger’s acce ptable minimum

reduced price with the specific degree of inconvenience factors.

X A vehicle-passenger matching and vehicle routing plan.
Passenger(s) i’s value gained from the ridesharing service given aplan X.
V,(X) V; can also be interpreted as the maximum price that this passenger is
willing to pay.
The value gained by passenger(s) i when transported from the origin to
v the transit hub directly without any inconvenience (i.e. NR; = 0, IVT; =
t0, where t; is passenger(s) i’s direct shipment time, and W7; = 0).
y (X ) Passenger(s) i’s utility given a vehicle-passenger matching and vehicle
ALY

routing plan X'and a price p;.

In the context of this research, a passenger’s value is defined as the maximum price

that he/she is willing to pay, in line with the prior research (Zou et al. 2015, Zhao et al.

2015, Kamar and Horvitz 2009). This subsection proposes a generalized value function

that establishes the relationship between a passenger’s value and a given set of

inconvenience attributes as well as this passenger’s personalized requirements. The

personalized requirements, represented by o'k, o,/T and a;"7, on the three inconvenience

attributes (number of shared riders, extra in-vehicle travel time that exceeds the direct

shipment time due to detour, and extra waiting time at the transit hub due to early arrival)

can be any form, as long as the three parameters o', /T and o, can convey passengers’

different tolerances for the inconvenience attributes.

Kamar and Horvitz (2009) proposed a passengers’ value function based on
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inconvenience cost. We incorporate the parameters o'k, o,//7 and o7 as passengers’

personalized requirements into the value function.

Vi(X) =V =G/ (NR (X), IVT, (X).WT, (X), &%, ", ") (1)

We list three reasonable assumptions of the parameters in the value function, which
are used in the proof of the properties of the proposed mechanism.

1)  C/“Nisamonotone increasing function of NR;, IVT;, and WT;. We assume that
when people share the trip with more people, stay in the vehicle for longer time or wait at

the transit hub for longer extra time, the passengers’ inconvenience cost will never decrease.

2)  We define Vn:ax as the price charged by the taxi when this passenger takes

this taxi directly to the transit hub without other shared riders. If a passenger participates
in the ridesharing service butreceives a directshipment service withoutother sharedriders,
the service is treated as taxi service. The maximum willing-to-pay price is equal to the taxi
price, because if the price is higher than the taxi price, the customer is unwilling to
participate into the ridesharing service and will choose the taxi service. Thus, when NR; =

0, IVT; = t;p, and WT; = 0, the inconvenience cost equals zero. That is

C/™(NR, =0, IVT, =, WT, = 0,0, &, ) =0 2)

This assumption is easy to understand because when NR; =0, IVT; = t,o, and WT; =

0, the service is the same as taxi service — direct shipment for passenger(s) i.
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3) It is assumed that taxi always makes profit. That is the taxi price is always

greater than the transportation cost:

Viosc, (3)
Passenger’s utility (the difference between the maximum willing-to-pay price and the
actual price paid) is given in Formula (4), which is also defined in the literature (Zou et al.

2015, Zhao etal. 2015, Kamar and Horvitz 2009).

U (X, p)=Vi(X)-p, (4)

We use an illustrative example of the value function for better understanding. This
value function will be used in the example in Subsection 3.3.4 to illustrate how the
mechanism is obtained. In this example, if one passenger shares the ride with others, the
maximum willing-to-pay price is set to be the taxi price multiplied by a discountrate (4;,
here we set the discount rate as 4; = 0.85) if the service satisfies the passenger’s
requirements. Note that the discount rate /; can be other values, which is also reported by
passengers. If the passengers’ requirements are not satisfied, the passenger is unwilling to

pay anything. Based on this assumption, the value function is defined as:

V..., direct shipment
V, =40, ridesharing, requirements are not satisfied
AV! . ridesharing, requirements are satisfied

1" max !
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The inconvenience cost is thus defined as:

0, direct shipment

C/*N =1V, ridesharing, requirements are not satisfied

1-2)V;

max !

ridesharing, requirements are satisfied
Let us return to the example in Subsection 3.3.1, John’s value function is as follows.

ohn

7.74, T, =t,, NR,, =0, WT,,, =0
Vi =40, IVT,,,, >10, NR,,, >3 or WT,,, >10
A x1.74, otherwise

Note that the example above is just an illustrative example. The value function can
take a generalized form that is adapted to any reasonable scenarios. Developing specific
value functions and designing an interface thatallows users to report their requirements are
beyond the scope of this chapter but will be considered in future research.

3.3.3 Optimization of Vehicle-Passenger Matching and Routing

We consider the ridesharing service provider (the agency) and passengers (the users)
as a system to optimize the vehicle-passenger matching and routing plan. The agency and
the users are two indispensable components of a system, and both the agency cost and the
user cost are often considered collaboratively in the literature (Kim et al. 2015, Hajibabai
et al. 2014, Amirgholy and Gonzales2016). The objective of the proposed mechanism is
to minimize the agency’s transportation cost (e.g. vehicle dispatch cost, energy
consumptioncost, driver labor cost, and emission) and the users’ inconvenience cost caused

by ridesharing associated with their personalized requirements. This formulates an
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optimization problem to determine an optimal vehicle-passenger matching and vehicle

routing plan.

Table 3.4 Additional Notations of Variables and Parameters in the Optimization

Model

Sets

P Set of passenger requests, P={1,2, ... ,n}

V Set of vehicles, V'=1{1,2, ... ,m}

H Set of the transit hub, H= {0}
Variables

1, if vehicle k travels to location j after picking up passenger(s) in location i

Xy =1 immediately

0, otherwise

ieP,jePUH keV

1, if vehicle k is dispatched to pick up passenger(s) in locationi
ik = ieP keV

0, otherwise

X = {xy1, yu | ieP, je PUH, keV} can represent a vehicle-passenger matching and

vehicle routing plan.

ieP, ke

|1, if passenger(s) in location i is the first to be picked up by vehicle k
* 10, otherwise

e

NR; Number of co-riders with passenger(s) i.

T, Passenger(s) i’s in-vehicle travel time.

WT; Passenger(s) i’s extra waiting time at the transit hub
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C/eN Passenger(s) i’s inconvenience cost caused by ridesharing.
Parameters

np; Number of passengers in request i.
Passenger(s) i’s preferred deadline before which he/she/they must arrive

DL,
at the transit hub.
The travel time from node i to node j, i and je Pl H. The pickup time is
included in #;. We assume a triangle inequality assumption #; < t;; + #4;
for any i, j and g, which will be used to guarantee non-negative prices

tj (Subsection 3.3.5 Proposition 4). This is a reasonable assumption

because the nonstop travel time is unlikely longer than the vehicle’s
travel time to detour to pick up another passenger plus an additional
pickup time.
The transportation cost from node i to node, i and je PU H. We assume

C;

J cij < cig T cgj, forany i, j and g for the same purpose.
0 The seat capacity of a vehicle, excluding the driver.

The problem can be formulated as the following Integer Programming (/P). For the

notations, please refer to Table 3.3 and Table 3.4.

Z =min Y C/™(NR, IVT WT,, &, &"", ") + TC(X) (5)

ieP

where TC(X) is the transportation cost of the vehicle-passenger matching and



vehicle routing plan: TC(X)=>">" > x,¢;

keV ieP jePUH\i

Subject to

Dy =1 forallieP

keVv

> yinp, <Q, forallk eV

ieP

W, + Z X = Yj forallkeV, jeP

icP\j

D> Xy =Y forallkeV,ieP

jePUH\i

> w, <1, forallk eV

ieP

VT, =" > % (IVT; +t), forall ieP

keV jeHUP\i

IVT. >0, forall ieP

WT. = DL, —njlipn{M (1—Zyjkyikj+ DLJ},for all ieP

keV

NR = > > v, yunp;, forallieP

jeP\i kev

Xiter Yirer W e{O,l}, foralli,jePUH,keV
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(6)

(7)

(8)

)

(10)

(1

(12)

(13)

(14)

(15)

Formula (5) is the objective function that minimizes both the passengers’

inconvenience cost and the agency’s transportation cost. One passenger’s inconvenience

costis a function of the number of co-riders, in-vehicle travel time, and extra waiting time

at the transit hub. Formulas (6) ensures that all passengers will be picked up by one vehicle
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and only be served once. Formula (7) represents the maximum capacity of each vehicle
should not be exceeded. Formulas (8) and (9) ensure the balanced flow from and out of
each passenger location. Formula (10) ensures that each vehicle can only be dispatched
once at most. Formula (11) gets all passengers’ in-vehicle travel times. Formula (12) is to
ensure the non-negativity of all passengers’ in-vehicle travel times. Formulas (13) and (14)
get all passengers’ extra waiting time at the transit hub and the number of shared riders,
respectively. Formulas (15) signifies thatx;, y;i, and wj are binary variables.

We do not use constraints to formulate passengers’ requirements because we
already use the inconvenience cost functionto represent the passengers’requirements. Thus,
adding constraints to represent passengers’ requirements is redundant and unnecessary. In
the example in Subsection 3.3.2, we prove that adding such inconvenience cost function
into the objective function can ensure that passenger(s) i’s (for all i e P) personalized
requirements can be always satisfied.

Proof:

Suppose that X™is the optimal solution of model /P and passenger(s) i’s requirement

is not satisfied given the optimal matching and routing plan X". Thus, passenger(s) i’s

i
max *

inconvenience costis C/N(X™) = V! . Let Z(X") represent the objective function value of

model /P (Formula 5). If passenger(s) i does not participate in the first-mile ridesharing

service, the optimal objective function value is assumed to be Z;.. It is easy to understand

that Z. < Z(X") — C/°N(X*) = Z(X") — V!, because extra transportation cost is needed for

max *
a vehicle to serve passenger(s) . Now consider a solution X; in which passenger(s) i is
shipped to the transit hub directly without shared riders, and matching and routing plan is

optimized for other passengers. Thus, Z(X;) = Z,. + C/N(X;) + c;. Since passenger(s) i is
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shipped to the transit hub directly without shared riders in X;, passenger(s) i does not have

inconvenience cost (C/N(X;) = 0), and thus Z(X;) = Z.. + cjo. Zi. = ZX;) — cio < X —

V i

max ?

then Z(X*) — Z(X;) > V. — ci. Based on Formula (3), V! - c; > 0. Thus Z(X*) >

Z(X;). Since X; is a feasible solution of model /P, the optimality of solution X" is violated.

Thus, passengers’ requirements can be always satisfied in the optimal solution X* of model

IP.

3.3.4 Customized Incentive Pricing Scheme

This subsection introduces the pricing scheme. This pricing framework is
calculated by designing and solving a series of models, including one model IP; and n
models IPq (forall g € P). Model IPg should be equivalentto the original model IP proposed
in Subsection 3.3.3. Each model IPy is used to calculate the price only and does not have
practical meaning. Both models 1Py and I1P4 use passengers’ reported information as input
data. Both models IPy and IP; have maximizing objective functions. Then the pricing

scheme is given by

Pg=g(X ") = (F(X™7) = Vg( X)) (16)

X'™" is the optimal solution of model IP, with the maximizing objective function

f(.), which includes summation of all passengers’ values.
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f(X) = DV, (X)+h(X) (16-a)

ieP

where h(X) is used to make the model 1P, equivalent to the original model IP

proposed in Subsection 3.3.3.

X '" is the optimal solution of model IPy, and g(.) is the maximizing objective function
of the model.
This pricing scheme makes the mechanism “individual rational” if the following

condition is always satisfied

g( X" <f( X (16-b)

This is because passenger(s) g’s utility is Uy = Vg( X ") —py = f(X ") —g(X "*")
> 0, if the condition above is satisfied. A direct idea to satisfy this condition is to design
the model IP4 that makes the objective function g(X) identical with f(X) and let the feasible

regions of models IPy (for all g) be included in the feasible region of model IPo. That is

9(X) = f(X) (16-c)

CS, =CSy, (16-d)

where the CS,Pg and CS,; are the feasible regions of models IPy and IP,,

respectively.
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If model IPg is independent of passenger(s) g’s report, then the mechanism is
“incentive compatible™.

If passenger(s) g misreports the requirement, then we assume that the optimal
solution of model IP, changes from X'®" to Y™™, g(X'"™") remains constant because

g( X"™") is independent of passenger(s) g’s report, and f( X ") changes to

FroY™) = D V(Y ™)+ (Y ) +h(Y ™) (16-¢)

ieP,i=g

Then, the price becomes

P, =g (X)) —(f(Y"™) v, (v*)) = g(X"*) —( > V(Y ) +h(Y >j (16-f)

ieP,i#g

Then passenger(s) g’s utility becomes

U, =V, (Y™ -p; = [Zvi(Y'P°*)+h(Y'P°*)j—g(x'Pg*) = f(Y"™)-g(X"™") (16-9)

ieP

Y™ may no longer be optimal for model IP, indicatingthat the objective function

of model IPg, f(.), will suffer froma decrease caused by her misreporting. Thus, her utility

Ug = f(X™") — g( X"™") will decrease as well if she misreports her personalized
requirement. Therefore, truthful reporting is passengers’ optimal strategy.

This chapter utilizes this individual rational and incentive compatible pricing
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scheme in Formula (16). The designed models IPg and IPy (for all g e P) are summarized

in Table 3.5.

Table 3.5 Mathematical Models for Obtainment of the Mechanism

Optimal
Model Objective Optimal
Constraints objective
denotations functions solution
function value
f(X): Formula CS, X" = )
1P, Z
(17) Formulas (18) {Xi;EO Vi }
IP, forall  g(X): Formula CS”‘_}g X" = X
IP*  IP* ZIPQ
geP (17) Formulas (18, 19) {Xi,-kg Vi }
Model IP, :
Objective function:
max Z,(X) =Y V,(X)-TC(X) (17)

ieP

where TC(X) is the transportation cost of the routing plan X.

TCX)=22 2. %Gy

keV ieP jePUH\I

Constraints:
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X eCS,p, (18)

The constraintset CS,, consists of Formulas (6)-(15).

IP, is mathematically equivalent to the original optimization model (/P) in
Subsection 3.3.3. First, /Py and /P have identical constraints. Second, the objective

functions of the two models are equivalent implied by Formulas (1), (5) and (17). Thus,

X ™" is also the optimal solution of the original optimization model (ZP) in Subsection
3.3.3. The optimal vehicle-passenger matching and routing plan can also be obtained by
the model /Py,. The model /P, is proposed for direct calculation of prices (please see
Formula (20) below).

Models IPg4 (Along with 1Py, IPyis to calculate each passenger’s price ifhe/she/they
participates in the first-mile ridesharing service):
Objective function: Formula (17).

Constraints (CS;, ): Formulas (18) and (19)

NR, =0 (19)

These models do nothave practical meaningbutare used to calculateall prices. Each model
optimizes all passengers’ values minus the transportation cost in the system given that
passenger(s) g is transported to the transithub directly without any shared riders (see Figure

3.3).
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Passenger g
included

. Transit hub ‘ Other passengers

Figure 3.3 An Optimal Solution of IP,

The mechanism is denoted as M (X'P"*,p). X ™" is the optimal vehicle-

passenger matchingand vehicle routing plan. All passengers’ pricesare p = { P Pyiseens pn} ,

in which each price is calculated by

Py = erg _(ZTPO _Vg (X IPO*)) (20)

Note that model /P, and IP4 have identical objective function (Formula 17), and
that the feasible region of model IPy is included in the feasible region of model /P, because
model IP4 has an additional constraint (Formula 19) compared with model /P,. Thus, the
mechanism is “individual rational” based on Formulas (16-c) and (16-d). Moreover, the
optimal solution of model IPy is independent of passenger(s) g’s report of the parameters

of /"R, a/'T and o, because passenger(s) g’s inconvenience cost is zero and the value is



42
aconstant(V' )if the passenger(s) is transported to the transithub directly without shared
riders, no matter whatvalues of a"%, a,/'T and o,/ the passenger(s) reports. This can ensure
“incentive compatibility” based on Formulas (16-¢)—(16-g). The mechanism has another
important property, “price non-negativity”, that ensures that the service provider can

receive revenue from passengers. The detailed proof of these three properties are given in

Subsection 3.3.5.

Algorithm 1 shows how the mechanism is obtained.

Algorithm 1 obtaining the pricing mechanism

Input all parameters;

Solve the optimization model IPy and get the optimal solution X ™", the optimal
objective function value Z,*F,0 , and each passenger’s value Vg (X 'P"*) in X'
Forg=1:n

Solve the optimization model IPg, and get the optimal objective function value

*

ZIPg ;

Calculate passenger(s) g’s price p, = Z,*,,g —(Z,’kPo -V, (x ”’o*));
End for

Outputthe mechanism M (X"™",p).

Let us return to the simple example proposed in Subsection 3.3.1 to show how the

mechanism is obtained. The three passengers John, Peter and Alice are numbered as “1”,
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“2” and “3”, and the transit hub is numbered as “0”. We use the value function in the

example proposed in Subsection 3.3.2. We firstly optimize the model /P, to get the optimal

solution X'™" ofmodel /P, which is a vehicle-passenger matching and vehicle routing

plan: “Alice-Peter-John-Transit hub” (3-2-1-0, Figure 3.4). The total transportation cost of
this routing plan (TC ( X 'PO*) ) is 4.140 dollars. The optimization results are summarized in

Table 3.6.

Locations
3 Alice
A
Peter‘/.

= John

2
1.5

1 .

Transit

0.5 hub

6 >
—0.5_0_5 1 0.5 1 1.5 2 2.5 3 3.5

Figure 3.4 Optimal Routing Plan of the Example

Table 3.6 Optimization Results of 7P

Passengers
Optimization results

John Peter Alice

Total travel time (minutes) 8.5 12.5 16.4
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Extra waiting time at the

0 10 0
transit hub (minutes)
Number of shared riders 2 2 2
Values V(X 'Po*) (dollars) 6.58 7.40 8.21

Notation: V, (X 'P°*), passenger i’s value given the optimal plan X ™", i.e. the maximum

willing-to-pay price.

Then we consider the three models /P, IP, and IP; ( IP,, g = 1,2 and 3. John: I,

Peter: 2, Alice: 3). The optimization results are listed in Table 3.7.

Table 3.7 Optimization Results of 1P,

Models (/Pg)

]Pl [P2 1P3
Optimal solution X" (3-2-0, 1-0) X" (3-1-0, 2-0) X% (2-1-0, 3-0)
Total Transportation
N 6.94 7.58 7.60
cost (TC (X '"™"))
Passenger indexes
1 2 3 1 2 3 1 2 3
(i)
Travel time
8.49 1041 1434 | 849 1041 1433 849 1250 12.31
(minutes)
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Waiting time at

transit hub (minutes)

Number of shared

riders

Vi(X'Pg*) (dollars) 7.74 740 821 | 658 871 821 | 658 7.40 9.66

Notation: V, (X ng*) , passenger i’s (i=1, 2, 3) value (i.e. the maximum willing-to-pay price) given

the optimal solution ( X ") of the model IP,. (3-2-0, 1-0), a vehicle-passenger matching and

vehicle routing plan, two vehicles are used (Vehicle 1: 3-2-0, Vehicle 2: 1-0).

Take John as an example to show how his price is calculated. John’s price is

calculated by Formula (20):
b, =(v1(x B4V, (X )4V, (X ) -TC (X “°l*))—(v2 (X)+v, (X 7)-TC (X “’o*))
= (7.743 +7.401 +8.207 — 6.940) — (7.401 +8.207 — 4.140) = 4.94 (dollars).

Others’ prices are calculated in the same method. The result of the mechanism is

given in Table 3.8.

Table 3.8 The Result of Customized Pricing Mechanism

Optimal routing plan Alice->Peter->John->the transit hub
Passengers John Peter Alice
Taxi price (V. , in dollars) 7.74 8.71 9.65

Maximum willing-to-pay price 6.58 7.40 8.21




46

(A xV! . in dollars)

max ?

Actual payment (dollars) 4.94 5.27 6.21

Utility (WTP price — actual
1.64 2.13 2.00

payment, in dollars)

All of the three passengers have positive utilities, indicating that they are willing to
participate in the ridesharing service.

We then take Alice as an example to show why truthfully reporting the requirements
is the optimal strategy. She has three strategies, 1) taking a taxi to achieve direct shipment,
2) participating in the ridesharing service and truthfully reporting her requirement
(ai'VT =20, aiNR =2, and aiWT =8, the maximum in-vehicle travel time, the maximum
number of co-riders and the maximum extra waiting time at the transit hub that the
passenger can tolerate are 20 minutes, 2, and 8 minutes, respectively); and 3) participating

in the ridesharing service and misreporting her requirements ( " =15 , which is a

misreported value, ¢"=2, «;'"=8). Table 3.9 shows the results of the three strategies.

We can see that when Alice misreports her requirement (she lies and reports that she does
not want to stay in the vehicle for more than 15 minutes but in fact she is able to tolerate
this), the system changes the plan from “Alice-Peter-John-the transit hub” to “Alice-Peter-
the transit hub” & “John-the transithub” because ofthe stricter requirement. From the table,
the price increases from 6.21 to 7.85, and her utility decreases from 2.00 to 0.36. This table
also demonstrates that participating in the ridesharing service and telling the truth is the

optimal strategy for this passenger (the bold number “2.00” is the maximum utility).
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Table 3.9 Three Strategies and the Corresponding Results

Strategies

Alice’s service attributes Direct shipment  Ridesharing, Ridesharing,

(take taxi) telling the truth misreport

Optimal routing plan

(3-0,2-0,1-0) (3-2-1-0) (3-2-0, 1-0)
generated by the system
Actual value (dollars) 9.66 8.21 8.21
Price (dollars) 9.66 6.21 7.85
Utility (dollars) 0 2.00 0.36

3.3.5 Theoretical Analysis

This subsection presents the properties of the proposed mechanism and gives brief
proofs of these properties. There are three important properties, “individual rationality”,
“incentive compatibility” and “price non-negativity”. Individual rationality is to guarantee
all passengers are willing to participate in the service. More passengers will be incentivized
to participate in the ridesharing service if the mechanism is individual rational. Incentive
compatibility ensures that passengers are willing to truthfully report their personalized
requirements. If the mechanism is not incentive compatible, passengers may manipulate
the algorithm by misreporting their requirements and the overall cost of the system may
not be minimized. Finally, the service provider must receive payment from each passenger

and thus prices should be non-negative.
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Proposition 1: Individual Rationality

As long as a passenger participates in the service system, the mechanism
M (X 'PO*,p) ensures that each passenger’s utility (U, (X IR” pg) ) received from the

ridesharing service is always non-negative (aka. individual rationality)

Ug(X'P°*,pg):Vg(X'PO*)—pg20, forany g eP 1)

Proof:

Ug (X IPO*’ pg):Vg (X IPO*)_ pg
=V, (X"®")-2p, +(z,’;0 -V, (X ”’o*))

* *

= ZIPO - Zng
=Z - Z,(X"™)
The first part of the formula above is the optimal objective function value of 7P,

X ™" is a feasible solution of 7Py, and thus the second part of the formula is not necessarily

the optimal objective function value of /P,. Thus,

U, (X", p,) =21 ~Zo(X"™)20

Proposition 2: Incentive Compatibility

Telling the truth is always the optimal reporting strategy for each passenger who
participates in the service under the mechanism M (X R p) regardless of other

passengers’ reporting strategies (aka. incentive compatibility, Nisan et al. 2007).

Proof:
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We assume thatpassenger(s) g misreports the requirements on the number of shared

riders, extra in-vehicle travel time, and extra waiting time (a,"%, o,/'7 and a;'T), respectively.

We define V/'(X) =V, —C'™ (NR(X), IVT (X); WT,(X), B, B, B ) , where
LNR BT and BT are passenger(s) i’s misreported values of oMk, o7 and a7,

respectively.

The optimization problem IP, becomes IPO':

*

Z,. =max Z,)(X)= ié;gvi (X)+V, (X)-TC(X),s.t. X eCS,,

Note that model IP, uses all passengers’ reported personalized requirements as
input data, in which passenger(s) g’s personalized requirement is misreported. Other
passengers’ values (Vi(X), for all i # g) are calculated based on their reported

personalized requirements no matter if these passengers’ reports are truthful or not. The

only difference of 7P, from IPO' is that model /P, uses passenger(s) g’s truthful report as

an input data. We assume that X "™ is the optimal solution of IPO' . Optimization model

IP, does not change, because problem /P, is independent of passenger(s) g’s report. More

i
max

precisely, passenger(s) g’s value always equals V__ (implied from Formulas 1 and 2)

because the passenger(s) is directly transported to the transit hub without shared riders in
IP,.

Then, the price charged for passenger(s) g is:
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’ * * 4 IR, *
pg = leg —(ZIPO, _Vg (X ))

The utility that passenger(s) g can receive is:
u, (x R p;)zvg (x "’o’*)— o
=V, (X 'Po'*)—(z,’;g —(szo, -V, (X 'P)))
-V, (x 'Po'*){z,’;g —[iepzi;gvi (x 'Po'*)+vg’ (x 'Po'*)—TC (x 'Po'*)—vg’ (x 'P)J]
=S, (x “’o’*)—TC(x 'Po'*)—z;;g

ieP

_2,(x")-2;

X' isnot necessarily the optimal solution of /Py, thus
Z, (X IPO’*) <27, (X IPO*)
Thus, we have

0, (K2, ()2, <2025, U, (X,

where U, (X " pg) is the passenger(s) g’s utility and X" is the optimal

solution of model /P, when he reports the true values of @M%, o,/ and o,"7. X " and
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X ™" are respectively the optimal solutions of models IPO' and /P, regardless of other

passengers’ reporting strategies. This indicates that telling the truth is always the best

strategy for each passenger regardless of other passengers’ reporting strategies.

Then, we introduce the definition of “transition solution” and analyze its property
(Proposition 3). The definition of “transition solution” will be used to demonstrate that the
mechanism has the property of “price non-negativity” (Subsection 3.3.5 Proposition 4).

Definition 1 Y, = TRS,(X) is the gt transition solution from a feasible solution X of
the model /P, to the corresponding feasible solution Y, of the model /P, if the transition

process is given by Algorithm 2.

Algorithm 2 Obtain the transition solutions Y, = TRS,(X)

Input a solution X= {x;t, Vir};
Let Y, = X;
If NR, >0
Find k thatyg =1, and let yq = 0;

Let another vehicle k' without tasks to pick up passenger(s) g, Yy =1 and

=1;

Xgok’

Find thatx,; = 1, and let x4 = 0;
Find i thatx;s = 1, and let x;q = 0;

Let x;=1;
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End if

Output Y.

Figure 3.5 shows an example of transition solution generation. Passenger(s) g goes
to the transit hub directly without any other shared passengers, and the broken links are re-

connected.

Get the transition

solution
—)
Brokerts  Broken Re-ccl)ir:]rllected
link link
Passenger(s) g " Passenger(s) g
.Transit hub .Passengers .Transit hub .Passengers

Figure 3.5 Example of the Transition Solution Obtainment

Proposition 3 For any passenger(s) i, V, (Yg ) >V, (X ) for any solution X, where
Y, =TRS,(X) forany g e P. This proposition will be used in the proof of the “price non-

negativity” proposition (Subsection 3.3.5 Proposition 4)

Proof:
If i=0, Vi(Y,)=Vae thus Vi(Y,)2V(X).

max >

If passengers in requests i and g are served by the same vehicle, we have
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IVT, (Y, ) < IVT, (X ), NR (Y, ) <NR (X ), and WT,(Y,)<WT,(X). Since the passengers’
value function is a monotone decreasing function of NR;, IVT, and WT,, we have
Vi(Y, )2V (X).

If passenger(s) i and g are served by different vehicles, V; (Y, )=V; (X ), because

passenger(s) i’s matching and routing plan is the same in Y, asin X.

Thus, for any passenger(s) 7, we have V, (Yg ) >V, (X ) for any transition solution

Proposition 4: Price Non-Negativity
If two preconditions are satisfied: 1) the transportation costand travel time between

two locations comply with the triangle inequality ¢;; <c;, + ¢4 and t;; < t;; + t5 forany i, j
and g, and 2) V! >c, (Formula 3), the service provider can always receive revenue

from each passenger under the mechanism M (X R, p) (aka. price non-negativity).

*

pg = erg _(leo _Vg (X IPO*)) 20 (22)

Let Y, =TRS, (X"™")={x¢,y¢fieP, je PUH,keV} (seeDefinition 1). Since

Y, is a feasible solution of /P; and X' is the optimal solution of /P,, we have

Z, (X |Pg*) >Z, (Yg ) . Thus,
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o =Zo (X" )= (2, =V, (X ™)) 224 (Y, )~ (23, -V, (X))

Sincein solution Y, passenger(s) g is transported to transithub without shared riders,

V, (Y, ) =V, - Thus

ZO(Yg):ZVi(Yg)_ZZ 2 Xi?kciﬁ(vn?ax_CQO)

ieP\g keV ieP\g jePUH\i,g

From Formula (3), we have

ZO(Y9)>ZVi(Yg)—ZZ PIRRAE

ieP\g keV ieP\g jePUH\i,g

From Proposition 3, we have

2 Vi(Y)z 2 v(X™)

ieP\g ieP\g

Thus

Z,(Y,)> 2U(X™)-2 > X K

ieP\g keV ieP\g jePUH\i,g



55
g . . . .
zkev Ziep\g Z jepuHg XiikCi 18 the transportation cost excluding the transportation

cost that is related to passenger(s) g in solution Y. It is easily proved smaller than or equal

to the total transportation cost in solution X' (D > > oo X; C; ) because of

the triangle equality. Thus

Z,(Yy)> 2 Vi(X®)=D 3wt =Zp -V, (X™)

ieP,i=g keV ieP jePUH\I

Thus

P, > Z, (Y, )—(Z,*PO -V, (X 'Po*)) >0

3.4 Case Study
3.4.1 Data Setting

This section presents a case study to visualize the results ofthe designed mechanism
and its theoretical properties. In the following case, we select ten locations near the New
Brunswick Train Station (New Jersey, in the United States) on the Google Maps. The
addresses of the ten locations are listed in Table 3.10 and are identified in Figure 3.6 on the
map. The travel times between two locations are estimated by Google Maps at 12:30 pm
on July 13 2017. The travel distance between two locations is obtained based on the actual

routes using the information from Google Maps. For clarification convenience, the
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transportation cost is set to be proportional to the travel distance. The taxi price (V! ) is

$5 for the first mile and $1.5 foreach additional mile, V! =5+1.5xmax(d,, —1, 0) . Each

location has one passenger sending the request for the service. We assume that each
passenger catches one of the three trains in New Brunswick Station. Passengers’ train
schedule informationis listed in Table 3.11. In our case study, for simplicity and illustrative
convenience, all the passengers’ preferred arrival deadlines are set to be ten minutes before
their train departure times. Our model can also handle the problems when their preferred
arrival deadlines are different. A fleet of cars with seat capacity of “4” will be dispatched
to pick up all the passengers and transport them to the transit hub before the specified

deadlines.

MER f
< RWJ University Hospital

New Brunswick ®

Figure 3.6 Selected Locations near New Brunswick Station

Table 3.10 Addresses of the Ten Selected Locations

Passengers Addresses Passengers Addresses




458 Ralph St, Somerset,

NJ

16 King Rd, Somerset,

NJ

58 Arden St, Somerset,

NJ

235 Hampshire Court,

Piscataway Township, NJ

375 Lancaster Ct,

Piscataway Township, NJ

10

Rockafeller Road,

Piscataway Township, NJ

227 Hilton St, Highland

Park, NJ

121 S 11th Ave, Highland

Park, NJ

109 S 8th Ave, Highland

Park, NJ

219 S 7th Ave, Highland

Park, NJ

Table 3.11 Trains in New Brunswick Station Selected by the Ten Passengers

Passengers Train  Train departure  Passengers Train  Train departure
indexes (7) numbers times indexes (7) numbers times

1 Q3846 1:20 pm 6 Q3846 1:20 pm

2 Q3846 1:20 pm 7 Q3843 1:35 pm

3 Q3848 1:36 pm 8 Q3843 1:35 pm

4 Q3848 1:36 pm 9 Q3843 1:35 pm

5 Q3843 1:35 pm 10 Q3848 1:36 pm

The case study uses two types of value functions and passengers’ report methods in

order to show that the generalized mechanism can be adapted into difference scenarios. In
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the first scenario, passengers can report the maximum extra in-vehicle travel time,
maximum number of shared riders and maximum extra waiting time at the transit hub (see
Table 3.12) as the example in Section 3.3. Passengers’ value function is as that of the

example in Subsection 3.3.2:

V..., direct shipment
V, =10, ridesharing, requirements are not satisfied
0.85V!

max !

ridesharing, requirements are satisfied

Passengers’ reporting methods and the value function are only used for illustration,

and the method can be adapted to any specific form.

Table 3.12 Passengers’ Personalized Requirements in the First Scenario

Personalized Passenger indexes
requirements 1 2 3 4 5 6 7 8 9 10
o NR 3 3 3 4 4 3 4 4 4 4

o/'T (minutes) 10 15 15 10 6 8 7 15 10 10

o;"T (minutes) 20 20 5 10 10 20 10 5 10 15

0;"R: the maximum number of shared riders that the passenger i can tolerate.
0;/"T: the maximum extra in-vehicle travel time that the passenger i can tolerate.

a;"T: the maximum extra waiting time at the transit hub that the passenger i can tolerate.

In the first scenario, passengers can directly report their personized requirements.
The interactive system is straightforward for users to manipulate. However, the system has

one limitation: as long as one passenger’s requirements are satisfied, the value (maximum
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i
max >

willing-to-pay price) is assumed to be a constant, 0.85V_ , even though the service has

different degrees of inconvenience attributes. In the example of Section 3.3, John’s
maximum willing-to-pay price is assumed to be always 6.58 with the in-vehicle travel time
increasing from 8.5 minutes to 10 minutes.

In other scenarios, the maximum willing-to-pay price may decrease as the
inconvenience degree increases. Thus, we adapt the mechanism into the second scenario,
in which passengers’ maximum willing-to-pay prices decrease as the inconvenience degree
increases. In the second scenario, passengers can report the reduction rate of maximum
willing-to-pay price in terms of the three inconvenience attributes. For example, if a
passenger reports ¢ =0.5, it indicates that each time when the number of co-riders

increases by one, the maximum willing-to-pay price decreases by 0.5 dollar. Similarly,

""" =0.5means thateach time when the extra in-vehicle travel time increases by 5 minutes,

the maximum willing-to-pay price decreases by 0.5 dollar; o'’ =0.5 means that each

time when the extra waiting time at the transit hub increases by 5 minutes, the maximum
willing-to-pay price decreases by 0.5 dollar. Thus, the three parameters a,"%, o,/ and o/'"

represent the strictness of the requirements. The values of oV, ;T and a;’T are given in

Table 3.13.

Table 3.13 Passengers’ Personalized Requirements in the Second Scenario

Personalized Passenger indexes
requirements 1 2 3 4 5 6 7 8 9 10
aNR 0.12 0.29 0.41 0.35 0.18 0 0.10 1.00 0.19 0.20

o' 030 040 0.51 044 0.82 166 062 1.89 032 1.20
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o’ 0.10 0.10 1.52 1.79 0.83 0.03 0.76 0.88 1.25 2.00

0.;VR (dollars per co-rider): reduction rate of maximum willing-to-pay price in terms of the number
of co-riders.

o/"T (dollars every 5 minutes): reduction rate of maximum willing-to-pay price in terms of the
extra in-vehicle travel time.

o;"T (dollars every 5 minutes): reduction rate of maximum willing-to-pay price in terms of the extra

waiting time at the transit hub.

The hypothetical value function is naturally presented by Formula (23).

. M(IVT, ~t,)  a™WT,
V, =V, —a™NR -2 (5' o) 2 QNT (23)

This value function achieves a more reasonable mechanism in which the maximum
willing-to-pay price decreases as the inconvenience degrees increase. Note that we use this
hypothetical function just to show that our mechanism can be adapted into generalized
scenarios. This form of the value function in the second scenario is less straightforward
than that in the first scenario, and the reporting method may be more complex for

passengers.

3.4.2 The Meachanism Results
We solve the model /P, to get the optimal matching and routing plans for the first
and second scenarios, (2-3-1-0, 8-7-9-10-0, 4-5-6-0) and (2-3-1-0, 4-5-6-0, 9-10-0, 7-8-0),

shown in Figure 3.7 (a) and (b), respectively. Passengers’ values gained from the service,
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the actual prices charged by the service provider, and the utilities are presented in Table
3.14 (a) and Table 3.14 (b) for the two scenarios, respectively. The prices are all positive
in both of the scenarios, indicating that the service provider receives revenue from the
participants. Moreover, as long as participants share the trip with other riders, they pay less
than the taxiprice. All passengers’ utilities are non-negative in both of the two scenarios.
This indicates that all passengers are willing to participate in the ridesharing service under
the proposed mechanism. Furthermore, we take the 7t passenger as an example to show
the property of “incentive compatibility”. Figure 3.7 (a) and (b) are straightforward
demonstrations of “incentive compatibility” in the two scenarios, respectively. If the
passenger truthfully reports the requirements on the inconvenience attributes, he will
receive no smaller utility than that if he misreports the requirements. In Figure 3.8 (a), we
assume that the maximum extra in-vehicle travel time that Passenger 7 can tolerate is 7
minutes. If the passenger truthfully reports the “7 minutes” (the red dash line), he receives
the maximum utility ($0.47) from the service. If he misreports this value (the black dash
line), his utility is no larger than $0.47. Similarly, in Figure 3.8 (b), truthfully reporting the
reduction rate ($0.6 every five minutes) of the maximum willing-to-pay price in terms of
the extra in-vehicle travel time is the optimal strategy for Passenger 7. Note that Figure 3.8
only presents one inconvenience attribute — extra in-vehicle travel time — as an example,
and we can draw the same conclusion for the other inconvenience attributes. Finally,
several previous studies (Zhao et al. 2014, Biswas et al. 2017) considered whether the
payment collected from participants can cover the transportation cost. From the results of

the mechanism, the profit (the summation of all prices minus the transportation cost,

>0 b —TC(X™"))is $40.74 in the first scenario and $46.08 in the second scenario, both
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of which are positive. This property will be tested by a group of numerical examples with

various numbers of passengers in Chapter 4.
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Figure 3.7 (a) Optimal Vehicle-Passenger Matching and Vehicle Routing Plan in the
First Scenario (b) Optimal Vehicle-Passenger Matching and Vehicle Routing Plan in

the Second Scenario

Table 3.14 (a) Results of the Mechanism in the First Scenario (b) Results of the

Mechanism in the Second Scenario

()

Passenger indexes (7)
Results

1 2 3 4 5 6 7 8 9 10

Vni]ax(indollars) 7.25 860 &15 10.55 10.70 830 6.20 6.05 5.75 5.90

Vi (in dollars) 6.16 7.31 693 897 9.10 7.06 527 514 489 5.02
pi (in dollars) 495 6.01 563 6.05 620 540 480 455 435 4.50

Ui (in dollars) .21 130 130 292 290 1.66 0.47 0.59 054 0.52

(b)

Passenger indexes (i)
Results

1 2 3 4 5 6 7 8 9 10

Vi(indollars) 6.69 6.98 6.82 9.15 9.52 820 585 505 525 5.70
pi(indollars)  6.56 6.53 6.14 6.40 6.81 696 570 496 5.02 5.49

Ui(indollars) 0.13 045 0.68 275 271 1.24 0.15 0.09 0.23 0.21

Vni]aX : the taxi price. Vi: passenger i’s value, i.e. the maximum willing-to-pay price. p;: passenger

i’sreal price. Ui: passenger i’s utility, U; = Vi —pi.
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Figure 3.8 (a) “Incentive Compatibility” in the First Scenario (b) “Incentive

Compatibility” in the Second Scenario

3.4.3 Sensitivity Analysis

Sensitivity analysis aims to investigate the dynamic process of vehicle-passenger
matching and vehicle routing plan and the prices as passengers change their requirements.
We increase the strictness of one passenger’s requirement on one of the three inconvenience
attributes by fixing his requirements on the other two inconvenience attributes and all the
other passengers’ requirements. Figure 3.9 (a), (b) and (c) present how prices change due
to decreasing the maximum degree of the three inconvenienceattributes thatthe passengers
can tolerate in the first scenario. Figure 3.10 (a), (b) and (c) show the changing process of
the prices in the second scenario caused by increasing the reduction rate of maximum
willing-to-pay price in terms of the increased degrees of three inconvenience attributes,
respectively.

Different passengers have different price lines, because they have different travel
information (e.g. departure location, arrival deadline, travel distance and time, etc.) and
thus they have different utility functions. In Figure 3.9, when the maximum degree of the
three inconvenience attributes that the passengers can tolerate decreases, each passenger’s
price either remains constant or increases. The price remains constant because passengers’
changed tolerance does not impact the optimal solution of the optimization model /P, and
the optimal vehicle-passenger matching and vehicle routing plan does not change. If the
optimal matching and routing plan changes due to tightening the tolerance for the

inconvenience attributes, the passengers’ receives better-quality services and the price



66

increases. Take Passenger 6 in Figure 3.9 (a) as an example, when the maximum number
of co-riders she can tolerate decreases from 3 to 2, the optimal vehicle-passenger matching
and vehicle routing plan (Vehicle 1: 2-3-1-0; Vehicle 2: 4-5-6-0; Vehicle 3: 7-8-9-10-0)
does not change and the price remains constant. When the maximum number of co-riders
tolerated decreases from 2 to 1, the optimal vehicle-passenger matchingand vehicle routing
plan changes to “Vehicle 1: 2-3-1-0; Vehicle 2: 5-4-0; Vehicle 3: 6-0; Vehicle 4: 7-8-9-10-
0 and the price increases due to the better-quality service. Similar conclusions are drawn
from Figure 3.9 (b) and (¢). Likewise, in Figure 3.10 (a), when Passenger 6 increases the
reduction rate of maximum willing-to-pay price in terms of number of co-riders from $0.4
per co-rider to $0.6 per co-rider, the optimal vehicle-passenger matching and vehicle
routing plan (Vehicle 1: 2-3-1-0; Vehicle 2: 4-5-6-0; Vehicle 3: 7-8-0; Vehicle 4: 9-10-0)
and the price remain constant. When the reduction rate of the maximum willing-to-pay
price in terms of number of co-riders is increased from $0.6 per co-rider to $0.8 per co-
rider, the optimal vehicle-passenger matching and vehicle routing plan changes to “Vehicle
1: 2-3-1-0; Vehicle 2: 5-4-0; Vehicle 3: 6-0; Vehicle 4: 7-8-0; Vehicle 5: 9-10-0"" and the
price increases accordingly. The sensitivity analysis implies that passengers can receive
higher-quality service with higher price by placing stricter requirements on the

corresponding inconvenience factors based on their preferences.
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Figure 3.9 (a) Price Changing Caused by Tightening the Tolerance for the Number

of Co-Riders in the First Scenario (b) Price Changing Caused by Tightening the

Tolerance for Extra In-Vehicle Travel Time in the First Scenario (¢) Price Changing

Caused by Tightening the Tolerance for Extra Waiting Time in the First Scenario
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Figure 3.10 (a) Price Changing Caused by Tightening the Tolerance for the Number

of Co-Riders in the Second Scenario (b) Price Changing Caused by Tightening the

Tolerance for Extra In-Vehicle Travel Time in the Second Scenario (c¢) Price

Changing Caused by Tightening for Extra Waiting Time in the Second Scenario
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3.4.4 Summary

This section proposed a case study in two scenarios. The first scenario is more
straightforward. Passengers can directly report their lowest tolerance for the three
inconvenience attributes. However, the firstscenario has a limitation for the value function:
it assumes thatas long as one passenger’s requirements are satisfied, the maximum willing-
to-pay price is constant. In the second scenario, the strictness of passengers’ requirements
is reflected in the reduction rate of the maximum willing-to-pay price in terms of the three
inconvenience attributes. The value function shows that passengers’ maximum willing-to-
pay price decreases as the degree of any inconvenience attribute increases. We adopt these
two scenarios to demonstrate the generality of the proposed mechanism that is flexible to
be adapted into different scenarios. This case study straightforwardly shows the three
properties, “individual rationality”, “incentive compatibility” and “price non-negativity”
of the mechanism in the two different scenarios. Moreover, the prices collected from
participants can cover the transportation cost in this case. Chapter 4 will show the service
provider’s profit in more cases with various numbers of participants. The sensitivity
analysis demonstrates that if passengers place stricter requirements on the inconvenience
attributes, they may receive higher-quality service with a higher price.

In this case study, we only use one example in two specific scenarios to interpret
the results ofthe mechanism. The scale ofthe problem is small because only ten passengers
are involved. Thus, this example lacks generality and is incapable to test effectiveness of
the potential algorithms in obtaining the mechanism for generalized large-scale problems.

Chapter 4 will develop an efficient algorithm and test the performance of this algorithm

using numerical examples with different scales.
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3.5 Conclusions

This chapter considered passengers’ personalized requirements when passengers
use a first-mile ridesharing service. We design a mechanism to incentivize passengers to
participate in the ridesharing service based on their personalized requirements. This
mechanism simultaneously optimizes the vehicle-passenger matching and vehicle routing
plan and determines each participant’s incentive price. Passengers will receive a
personalized service and a customized price based on their reported personalized
requirements on the inconvenience attributes (e.g. number of co-riders, extra in-vehicle
travel time, extra waiting time at the transit hub). We proved that the proposed mechanism
is individual rational, incentive compatible, and price non-negative. A case study is given

to demonstrate the generality of the mechanism to different scenarios.



72
CHAPTER 4 SOLUTION ALGORITHM FOR LARGE-SCALE

PROBLEMS

4.1 Introduction

In order to incentivize more travelers to participate in the first-mile ridesharing
service, the last chapter proposed an incentive mechanism based on passengers’
personalized requirements on inconvenience attributes, including number of shared co -
riders, extra in-vehicle travel time due to detour, and extra waiting time at the transit hub
due to early arrival. It is proved that the mechanism has the properties of “individual
rationality” and “incentive compatibility”, respectively indicating that passengers’actual
paid prices will never exceed their maximum willing-to-pay prices and truthfully reporting
the personalized requirements is passengers’ optimal strategy, ifthe mechanism is obtained
by exactalgorithms. The mechanism needs to solve one optimization problem to obtain the
optimal vehicle-passenger matching and vehicle routing plan, as well as to solve n (the
number of requests sent from passengers) different optimization models for calculating n
prices for all passenger requests. All optimization models in the mechanism are extensions
of vehicle routing problem and thus are NP hard (Lenstra and Kan 1981), which cannot be
solved exactly within polynomial time. Thus, obtaining the desired mechanism has to
address highly challenging computational complexity. Previous studies on truth-inducing
mechanisms (Kamar and Horvitz 2009, Cheng et al. 2014, Zhao et al. 2014, Zhao et al.
2015, Asghari et al. 2016, Asghari and Shahabi 2017, Shen et al. 2016, Nguyen 2013,
Zhang et al. 2016, Kleiner et al. 2011, Lloret-Batlle et al. 2017, Masoud et al. 2017b,
Masoud and Lloret-Batlle 2016, Ma et al. 2018) for ridesharing organization have not

developed effective solution algorithms that can handle large-scale, complex, NP-hard,
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mechanism design models (particularly Vickrey-Clarke-Groves (VCG, Vickrey 1961,
Clarke 1971, Groves 1973) prices). Thus, this chapter aims at addressing the challenging
computational issue of mechanism obtainment.

When the scale of the problem is large, approximation or heuristic algorithms are
more applicable to obtain the mechanism. However, VCG-based mechanisms obtained by
regular approximation or heuristic algorithms may no longer be able to sustain the game
theoretic properties, “individual rationality” and “incentive compatibility” (Nisan and
Ronen 2007), and our mechanism is no exception. Several researchers developed some
special approximation or heuristic algorithms to maintain “individual rationality” and/or
“incentive compatibility” in obtaining their mechanisms. For example, Lehmann et al.
(2002) proposed an approximately efficient mechanism for combinatorial auctions using a
greedy algorithm; Mu’Alem and Nisan (2008), Parkes and Ungar (2001), and Dobzinski et
al. (2010) developed approximation mechanisms that are incentive compatible for
combinatorial auctions; Nisan and Ronen (2007) proposed a second chance mechanism to
circumvent the problem, upon which participants can do no better than be truthful.
Nevertheless, all of the methods are designedspecifically for combinatorial auctions. These
algorithms have never been adapted to solve generalized mechanism design models.

Based on the discussion of the knowledge gap, this chapter contributes to
addressing these challenges by developing a computationally efficient heuristic alg orithm
called Solution Pooling Approach (SPA). The application of SPA is not limited to the
mechanism design problem for first-mile ridesharing, but also can be spread to solve
general mechanism design problems. Firstly, this chapter introduces the basic idea of SPA

to solve generalized mechanism design problems, and analyzes specific circumstances
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under which SPA is able to sustain the game-theoretic properties, including “individual
rationality” and “incentive compatibility”. The limitation of SPA is identified: if SPA needs
to sustain “incentive compatibility”, it may sacrifice solution quality more significantly
than traditional heuristic algorithms compared with exact algorithms. Then, this chapter
designs a specific SPA to obtain the personalized-requirement-based mechanism for the
scheduled first-mile ridesharing service. We prove that the mechanism obtained by SPA is
still “individual rational” and “incentive compatible”. Moreover, SPA can reduce the
computational time by simultaneously handling all models in this specific mechanism and
does not need to solve all NP-hard problems one by one to obtain the mechanism.
Numerical examples shows that the SPA is more efficient than the conventional heuristic
algorithms (e.g. Hybrid Simulated Annealing—Tabu Search Algorithm and Hybrid Genetic
Algorithm) with a tiny sacrifice of solution quality.

This chapter is structured as follows. Section 4.2 briefly introduces the basic idea
of SPA to solve generalized mechanism design problems. Section 4.3 applies the SPA
algorithm to solve the mechanism design problem for first-mile ridesharing based on
passengers’ personalized requirements. In Section 4.4, numerical examples are provided to

verify the effectiveness of SPA. Concluding remarks are made in Section 4.5.

4.2 Basic Idea of SPA to Solve Generalized Mechanism Design Problems
4.2.1 Generalized Mechanism Design Problems

The market maker wants to design a mechanism to incentivize participants’
collaboration to achieve a desirable objective (e.g. minimizing cost and maximizing the
social welfare). Participants are allowed to report their personalized information to the

system. Let 6 = {6, 6, ... , 6,} denote all participants’ reported information. Based on
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participants’ reported information, the mechanism needs to determine a plan (X = O(6))
and an incentive function (/;). The plan (e.g. resource allocating plan, vehicle routing plan,
matching plan, etc.) aims to achieve the desirable objective usually by solving an
optimization model. We denote this optimization model as /P. Then the market maker will
design an incentive function, which is denoted as p; = Ii(X, 6), for individuals’ participation
based on the plan and participant’s reported information. Incentive function has various
forms, such as discounts, bonus points, credits, free service, etc. This chapter typically uses
customized pricing as an incentive form.
4.2.2 A Generalized Individual Rational and Incentive Compatible Mechanism

In order to achieve the market maker’s objective, the mechanism should 1) ensure
that the participants are willing to collaborate with each other and 2) prevent them
manipulating the mechanism by misreporting their personalized information on purpose.
These two considerations necessitate the properties of “individual rationality” and
“incentive compatibility”. “Individual rationality” indicates that the actual paid price will
never exceed participants’ maximum willing-to-pay price. “Incentive compatibility”
requires that participants’ utility (defined as the difference between the maximum willing-
to-pay price and the actual paid price) can be maximized if they truthfully report their
personalized information. This section proposes a generalized individual rational and
incentive compatible mechanism. The optimal plan is obtained by solving the model /P.
The pricingframework is calculated by designingand solvingaseries of models, including
one model IPy and n models IPy (corresponding to participant g). Model 1P, should be
equivalent to the original optimization model IP and thus the optimal solutions of models

IP and 1P, are identical. Models Py are used to calculate the prices only and do not have
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practical meaning. Both models IPy and IPy use participants’ reported information (6) as

inputdataand both have maximizingobjective functions. Then the pricingscheme is given

by

Pg=0g(X ") = (F(X™) = Vg(X 7)) 1)

pg is participant g’s price. X' is the optimal solution of model IPg, and g(.) is
the maximizing objective function of the model. X™" is the optimal solution of model
IPo with the maximizing objective function f(.). Vy4(X) is participant g’s value, which is
defined as participant g’s maximum willing-to-pay price in this chapter, given the plan X.

The objective function f(.) includes summation of all participants’ values.

f(X) = > Vi(X)+h(X) (2)

ieP
where h(X) is used to make the model 1P, equivalent to the original model IP.

This pricing scheme makes the mechanism “individual rational” if the following

condition is always satisfied

g( X" ) <f(X™") (3)

This is because participant g’s utility is Ug = Vg( X"®") —pg = f(X"*") —g(X"™") >

0, if the condition above is satisfied. A direct idea to satisfy this condition is to design the
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model IPy that makes the objective function g(X) identical with f(X) and let the feasible

regions of models 1Py (for all g) be included in the feasible region of model IP,. That is

g(x) = f(X) (4)

CSp, =CSp, ()

where the CS,, and CS, are the feasible regions of models 1Py and 1Py,

respectively.
If model IPy is independent of participant g’s report, then the mechanism is
“incentive compatible”.

If participant g misreports the personalized information, then we assume that the
optimal solution of model 1P, changes from X™" to Y™, g(X"™") remains constant

because g( X ™) is independent of participant g’s report, and f( X ") changes to

PO = 30 V(Y ™) 4V (YT +h(y )

ieP,i=g

Then, the price becomes

=00 ) (10 )0y ) =90 )=| 3 veryoner )|

ieP,i=g

Then participant g’s utility becomes
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U, =V, (Y™ -p; = [Zvi(Y'P°*)+h(Y'P°*)j—g(x'Pg*) = f(Y®)-g(x"™)

ieP

Y™ may no longer be optimal for model IPy, indicating that the objective function
of model 1Py, f(.), will suffer froma decrease caused by her misreporting. Thus, her utility

Uy = f(X™") — g( X"™") may decrease as well if she misreports her personalized

requirement. Therefore, truthful reporting is participants’ optimal strategy:
' IR,* 1P, * IRy* IP*y _
Uj = F(r™)-g(X ™) < (X ™) - g(X ") =U, (6)

The famous Vickrey-Clarke-Groves (Vickrey 1961, Clarke 1971, Groves 1973)
mechanism, which is widely applied in various research fields (Friedman and Parkes 2003,
Kamar and Horvitz 2009, Samadi et al. 2012, etc.), belongs to this category and thus has
the properties of “individual rationality” and “incentive compatibility”.

4.2.3 SPAto the Individual Rational and Incentive Compatible Mechanism

If the optimization models in the mechanism are NP hard, they are difficult to be
solved exactly within reasonable amount of time when the problem scale is large. Many
researchers (Wang et al. 2016, Lin et al. 2016, Gupta et al. 2017, Chao et al. 2017, etc.)
sought heuristic or approximation algorithms to find a high-quality solution to their
optimization problems instead of an exact one. However, applying traditional heuristic or
approximationalgorithmsmay lose the properties of “individual rationality” and “incentive

compatibility”. Let us return to the generalized mechanism in Subsection 4.2.2. The
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mechanism is individual rational if the condition g( X ") <f( X '®") (Formula 3) is always
satisfied. However, if the solution X'™" is obtained by a heuristic or approximation
algorithm, the optimality of X ™" cannot necessarily be guaranteed, and thus it is possible
that f( X"™") < g( X "™") and Ug < 0. The property “individual rationality” is thus possibly
violated. Similarly, the mechanism obtained by heuristic orapproximation algorithms may

not be incentive compatible as well. Suppose that X' is the optimal solution of model
1P, if participant g truthfully reports his personalized information and the solution becomes
Y™ (notnecessarily optimal) if participant g misreports the information. If heuristic or
approximation algorithms are used to solve the model, it is possible that f(Y '?") > f( X '?7),
because the optimality of X' cannot be guaranteed. Thus, implied from Formula (6),
participants’ utilities may not be maximized even though they tell the truth. Similar
conclusions have already been drawn by other researchers (Mu’Alem and Nisan 2008,
Parkes 2001, Dobzinski etal. 2010, Nisan and Ronen 2007).

Therefore, this chapter proposes a special heuristic algorithm, namely Solution
Pooling Approach (SPA), to obtain the mechanism, sustaining the properties of “individual
rationality” and “incentive compatibility” under specific circumstances. The SPA is
inspired from the work of Bent and Hentenryck (2004)’s multiple plan approach and
Gendreau et al. (1999)’s tabu search algorithm organized around multiple solutions and an
adaptive memory. The basic idea of SPA can be described asfollows. Firstly, the algorithm
generates high-quality solutions of models /P, and /P, (for all participants g) as solution
pools. Then, the solutions of corresponding models with highest qualities are selected from

IIPO

the solution pools. Let Xpoo and Xpoolng denote the solution pools of model 1P,
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and IP,, respectively. Let X™" and X'™" denote the optimal solutions in the pools
Xpool™ and Xpool™, respectively. Then, X' isadopted as the matching and routing
plan, and the pricing scheme still adopts Formula (1).

When generating solution pools, if the condition g( X ") <f(X'®") (Formula 3) is
still satisfied, the mechanism is “individual rational”. If we use Formulas (4) and (5) to
satisfy Formula (3), SPA can easily guarantee “individual rationality” by the following
approach. Since the feasible regions of models 1Py (for all g) are included in the feasible

region of model 1Py, feasible solutions of model IP, are feasible to model 1P, as well.
Solutions in pools XpooI'Pg can be integrated into the solution pool Xpool ™ . After the
algorithm generatesall of the solution pools Xpool "™ , all solutions in each pool Xpool "
are combined into the solution pool Xpool™ (i.e. Xpool ™ = Xpool™ | forany g). Then,
the optimal solution ( X ") is selected from Xpool'™ andeach X" is selected from
Xpool ™ . Since we have X' e Xpool"™ < Xpool™ and X™" is the optimal solution
in Xpool "™ with maximized objective A.), f( X'*") < f( X"™"). Based on Formula (4),

g( X" ) =f( X ™) <f( X"®"), and then “individual rationality” can be guaranteed.
The property “incentive compatibility” is naturally guaranteed as long as the
generation of solution pools of model /P, (for any participant g) is independent of

participantg’s reportand the solution pool of model IPgis pre-generated beforeparticipants’

personalized information is revealed. Both X'™" and Y™ in Formula (6) are selected

from the pre-generated pool Xpool™ . Since X'™" is the optimal solution in Xpool ™

while Y™" isnot necessarily the optimalin Xpool ™ f(Y™") < f(X"™®") in Formula (6)
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can always be satisfied. Thus, the mechanism obtained by SPA is incentive compatible.
SPA is an efficient heuristic algorithm that can sustain the properties of “individual
rationality” and “incentive compatibility” under specific circumstances analyzed above,
but it still has limitations. SPA needs to pre-generate the solution pools for models /P, and
IP, before participants report their personalized information to sustain “incentive
compatibility”, leading to possible more significant sacrifice of solution quality than
traditional heuristic algorithms. SPA has to significantly increase the number of solutions
in the pool in order to improve the solution quality, but this will consume more computer
memory. In Section 4.4, our numerical examples are designed to test how much SPA will

sacrifice the solution quality in obtaining the mechanism for first-mile ridesharing service.

4.3 Application of SPA to Solve the Mechanism Design Problem for First-Mile
Ridesharing

This section designs a detailed solution pooling approach to solve the mechanism
design problem for the scheduled first-mile ridesharing service proposed in our last chapter.
4.3.1 Mechanism Design Problem for First-Mile Ridesharing Based on Personalized
Requirements

This subsection reviews the personalized-requirement-based mechanism design
problem for a first-mile ridesharing service. Passengers near the transit hub book the first-
mile ridesharing service in advance. The service provider dispatches a fleet of vehicles to
execute the pickup and drop-off tasks. Each request specifies a deadline before which
passenger(s) must arrive at the transit hub. In addition to the passengers’ pickup locations

and the arrival deadlines, passengers are allowed to report their personalized requirements
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on three inconvenience factors, the number of co-riders, extra in-vehicle travel time, and
extra waiting time at the transit hub. Before vehicles are dispatched, the system will
determine an optimal vehicle-passenger matching and vehicle routing plan X* and all
passengers’ customized prices p= {p1, p2, ... , Pu}, Which form the mechanism M(X", p).
The optimal matching and routing plan X™ is obtained by solving an optimization model
(denoted as /P) with the objective of minimizing passengers’ inconvenience cost and the
service provider’s transportation cost. The model /P is the formulated by in Chapter 3. The
pricing scheme is obtained by solving a series of optimization models, including one model
IPy and n models /P, for all g € P, which are summarized in Table 4.1. For the notations

and formulas, please refer to Chapter 3.

Table 4.1 Mathematical Models for Obtainment of the Mechanism

Optimal
Model Objective Optimal
Constraints objective
denotations functions solution
function value
AX): Formula (A- CSp,
1Py 2) Formulas (A-3) — (A- X' ZTPO
Max Zy(X) 12)
g(X): Formula (A- CSp,
1P, forall
2) Formulas (A-3)— (A- X'’ Ze,
geP
Max Z(X) 13)

Note that model /P, is equivalent to model /P, and thus the optimal solutions of
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models /P, and IP are identical ( X "= X*). The mechanism is denoted as M (X R* p) ,

where X™" represents the optimal vehicle-passenger matching and routing plan, and

passengers’ prices p = { Py Pyireens pn} are calculated by

Py =Zi, ~(Zin, ~V (X ™)) (7)

Note that models /P, and IPg have identical objective function, and that the feasible
region of model IPy is included in the feasible region of model /P, because model IPg has
an additional constraint (Formula A-13) compared with model /P,. Thus, the mechanism
is “individual rational” based on Formulas (4) and (5). Moreover, the optimal solution is
independent on passenger(s) g’s report of the parameters of a*%, /T and o, because

passenger(s) g’s inconvenience cost is zero and the value is a constant (V. ) if the

passenger(s) is transported to the transit hub directly without shared riders, no matter what
values of @R, a,/'T and a,;"7 the passenger(s) reports. Thus, the mechanism is “incentive
compatible”. For detailed proof of these two properties, please refer to our last chapter.
4.3.2 Identified Challenges to Obtain the Mechanism

The optimization models in the mechanism, including /Py and IP, (g € P), are
extensions of the classical vehicle routing problem and thus are NP hard (Lenstra and Kan
1981). When the scale of the problem is large, exact algorithms are difficult to obtain the
optimal solution within reasonable amount of time. Heuristic algorithms are more

applicable for large-scale problems. When passengers send n requests, the mechanism

M (X 'P"*,p) includes n+1 NP hard optimization models, including one optimization
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model /P, used to determine the optimal vehicle-passenger matching and vehicle routing
plan X'™" and » optimization models 1P, (g=1, 2, ... , n) that are used to calculate all
prices. Regular heuristic algorithms (e.g. Simulated Annealing and Genetic Algorithm) are
still time-consuming in solving these models one by one. Moreover, as analyzed in

Subsection 4.2.3, if traditional heuristic algorithms are used to obtain the mechanism
M (X R p), the properties of “individual rationality” and “incentive compatibility” are

not necessarily guaranteed.

To overcome these challenges, we propose a novel heuristic algorithm called

Solution Pooling Approach (SPA) to obtain the mechanism M (X 'P°*,p). As we will

show later, the method may not obtain exact results but can ensure the validity of game-

theoretic properties, “individual rationality” and “incentive compatibility”. This method
can simultaneously handle all models in M (X R p) and does not need to solve all NP-

hard problems one by one to obtain the mechanism because the n+1 models have very
similar form. Thus, it is much more time-efficient than regular heuristic algorithms.
4.3.3 Solution Pooling Approach to Mechanism Design

The main idea of the SPA is to select the highest-quality solutions that are all
feasible to the corresponding models from pre-generated solution pools to obtain a vehicle-

passenger matching and vehicle routing plan and to calculate all passengers’ prices. We

IIP0

denote the solution pools of /P, and IP, as Xpool ™ and Xpool ™ | respectively. The

generation of Xpool ™ and Xpool™ can be described as follows. First, SPA generates

aninitial solution poolin which all solutions are feasible to the optimization model /P, (see

Algorithm 1). We denote it as Xpool. Then solution pools of models IP; (g =1, 2, ... , n)
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are obtained based on Xpool. We design a transition solution generation algorithm (see

Algorithm 2) to generate solution pools Xpool™  of models IP,. All solutions in
Xpool " forall g=1,2,...,nare combined into the initial pool Xpool and a new solution
pool Xpool™ ofmodel P, is generated. Finally, the optimal solutions are selected from
corresponding solution pools Xpool'™ and Xpool " The matching and routing plan

adopts the optimal solution selected from the pool Xpool'™ . All passengers’ prices are
calculated based on Formula (7).

The initial solution pool Xpool should be pre-generated and passengers’ reported
personalized requirements (a/V%, /T and a;7, see notations in Table 3.3 in Chapter 3) on
the three inconvenience attributes do not influence the generation of the solution pool so
that the mechanism obtained by SPA is still incentive compatible (please refer to the proof
of the incentive compatibility proposition of the SPA in Subsection 4.3.4). Thus, we
propose two strategies to improve the quality of the selected solution from the obtained
solution pool of /Py: 1) generate a large enough number of solutions in the solution pool
Xpool and select the best solutions from the pool; 2) randomly and periodically simulate
virtual personalized requirements parameters (a/V%, a7 and a;”T) that are used to direct to
generate the solutions in a wide range and the quality of the optimal solution can be
guaranteed. A meta-heuristic algorithm, tabu search (TS) plays the role of solution
generator. TSis able to avoid repeated the generation ofidentical solutions usinga me mory
function (Gendreau et al. 1994). Algorithm 1 gives the pseudocode of the solution pool

generation algorithm.
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Algorithm 1 Generation of solution pool Xpool

Input the total number of iterations (NI), number of iterations in each period (NIP) for
updating values aiNR, o;'VT and «;%T, number of candidate solutions (CN), number of
solutions (NS) assigned into the solution pool for each iteration, and all other parameters
of the problem;
Initialize afeasible solution Xqto the model IPg as the currentsolution Xeyrrent, the virtual
values of ¢;iNR, ¢;VTand a;WT, it =0 (currentnumber of iterations), pit=0 (currentnumber
of iterations in one period), and the empty solution pool Xpool;
Do while it < NI
If pit> NIP
pit =0;
Use the uniform distribution to re-generate the values of o;NR, ;'VT and o;WT;
End if
Generate CN candidate solutions {X1, Xa,..., Xcn} Of Xeurrent 'S NE€IghbOTrS;
Calculate {AZo(X1), AZo(X2),..., AZo(Xen)} (AZo(Xi) = Zo (Xi) — Zo (Xeurrenr)) and
record the subscript opt, where AZy(Xopt) = Max{AZo(X1), AZo(Xz2), ..., AZo(Xcn)}
Randomly select NS solutions from CN candidate solutions {Xi, Xa,..., Xcn} and
put them into the solution pool Xpool;
Do while Xy is in tabu list
Select the suboptimal solution as Xop from {Xz, Xo, ..., Xcn};
End do

Xeurrent = Xopt;

Update the tabu list;
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it=it+1;
pit = pit+ 1;
End do

Output Xpool.

Then we introduce the definition of the “transition solution”, which is also defined
in our last chapter. “Transition solution” will be used to obtain solution pools Xpool " of
model /P, forallg=1,2, ..., nin the SPA algorithm. Let ¥, = TRS,(X) be the g transition
solution from a feasible solution X of the model /P,. The transition process is generated as
follows. Let passenger(s) g go to the transit hub directly without any other shared riders,
and let the broken routes be re-connect. In Y,, since passenger(s) g is transported to the
transit hub directly without shared riders, Formula (A-13) is satisfied and Y, is a feasible
solution of model /P,.

Figure 4.1 shows an example of transition solution generation. Algorithm 2 shows

how to get the transition solution.

Get the transition
solution
—)

Re-connected
link

Broken®s
links

links
Passenger(s) é" Passenger(s) g
[l transit hub @Passengers [l transit hub @)Passengers
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Figure 4.1 Example of the Transition Solution

Algorithm 2 Obtain the transition solutions Y, = TRS(X)

Input a solution X= {x;it, vit};
Let Y, = X;
If NR,>0
Find k thatyg = 1, and let yg = 0;

Let another vehicle k' without tasks to pick up passenger(s) g, Y, =1 and

Find j that xz; = 1, and let x4 = 0;
Find i thatx;s = 1, and let x;q = 0;
Letx;=1;

End if

Output Y.

Finally we use Algorithm 3 to get the mechanism, including the optimal matching

and routing plan and all passengers’ prices. Figure 4.2 is the flow chart of SPA.

Algorithm 3 SPA to the mechanism

Input the solution pool Xpool obtained by Algorithm 1 and all parameters of the
problem;

Forg=1:n
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Use Algorithm 2 to get the transition solutions of all the solutions in Xpoo!

as the solution pool of IP,, Xpool iR

Xpool ™ = {Y.'Pg

Y™ =TRS, (X,), forall X, e Xpool};
End for
Let Xpool™ = {Xpool, Xpool ™ (for all g e P)};
Select the solution X' from Xpool™ that X' =argmaxZ,(X) X e Xpool';
Let Zp, =Z,(X™);
Forg=1:n
Select the solution X" from Xpool™ that X" =argmaxZ,(X )
X e Xpool "™ ;
Let Zy, :zo(x'Pg*);
Calculate the prices:
Py =Zp —(z;;o -V, (X 'Po*));
End for

Output the optimal solution of IP; ( X ") and all passengers’ prices

P={P, P Py} -




90

Select the optimal
solution for 1P,

-7 N Selectthe \
e 1Ry N
/ Xpool™ _ =3y optimal &
/ | .0 0.\\\ solution for IPg, ’ \
)/ ’ CCTER
/ transmon 2 \ ” ‘\
. ] // solutions of \ | |
Imltl?I feasflﬁlae . Xpool for _ \\ I lI
solution o |
0 l/o..::o..\ each 1P, ?...:.\\ | | ‘. [ Calculate the
® Use Tabu |\ Xpool,/ \ X°po:,|lpg/ ! I ! prices

Searchto | ~~~- \\_E | | :
generatea \ 9= I : [
solution pool ! o~ ] | '
/0 @ 0\ / | |
(Xpool) ;:3..0.0\ / :. ]

\ n/ / ! ]

\ Q(pool \\ |

\ 3 // \ |

N 9=3, -

\\\ j /// I‘.//

Figure 4.2 Flow Chart of SPA in Obtaining the Mechanism

4.3.4 Theoretical Analysis of SPA

The propositions of this mechanism including “individual rationality” and

“incentive compatibility” are still valid if SPA is used to obtain the mechanism M ( L p) .

Before giving the proof of the propositions, we re-formulate the problems based on SPA.
In Algorithm 3, X' is the optimal solution selected from the solution pool
Xpool™, and thus X™" is also the optimal solution of the optimization model below

(Formulas 8 and 9). We denote this model as IPpool, .

Zl*P0 =max Z,(X) (8)

Subject to,
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X e Xpool "™ 9)

Similarly, X' is the optimal solution of the optimization model below, which is
used for calculation of passenger(s) g’s customized price. We denote this model as

IPpool, (Formulas 10 and 11)

Zp, =maxZ,(X) (10)

Subject to,

X e Xpool (11)

Proposition 1: Individual Rationality

If X" and X"™  are the optimal solutions of IPpool, and IPpool, ,

respectively, the mechanism M (X " p) is individual rational, i.e. the utility

Ug(X'PO*,pg):Vg(X'P°*)—pg20, foranygeP (12)

Proof:

X" is the optimal solution of the model IPpool,, and thus Z, (X 'P‘J*) >Z,(X)
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forany X e Xpool™. Since X" e Xpool™ < Xpool™, X" is a feasible solution of

IPpool,. Thus Z,(X'"®")>Z,(Xx ™).

U, (X py) =V, (X™)-p,
v, (XY= 2y (X ) (2o (X) -V, (X))

=Z(X"™)-Z,(x"™")=0

This implies that the participants can always receive non-negative utility from the

first-mile ridesharing service

Proposition 2

The mechanism M (X i p) is incentive compatible if the optimal matching and

routing plan X" and the prices p are obtained by SPA.

Proof:
Suppose that passenger(s) g misreports the requirements on the number of shared

riders, extra in-vehicle travel time and extra waiting time (o', o,/'7 and o,,"7), respectively.
We  define  V/(X) =V, —C'™(NR (X), IVT (X), WT,(X), 5™, 5", A" )

regardless of other passenger’s reporting strategy, where SV, 5,/"Tand ;"7 are passenger(s)

i’s misreported values of oMk, o,/ T and a;"7, respectively.

IIPO

Since Xpoo and Xp00|IPg are all generated independently on all passengers’
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report of their personalized requirements, the solution pools Xpool'™ and XpoolIPg

remain constant no matter how passengers report their requirements. Thus, the constraints
of IPpool, and IPpool, remain constant regardless of passengers’ reporting strategy. If

passenger(s) g misreports the requirements, the optimization model /Ppool, becomes

IPpool, :

Z,, =maxZy(X)= PZ Vi (X)+V, (X)=TC(X),s.t. X e Xpool™
ieP,izg
Other passengers’values are calculated based on their actual report of personalized

requirements regardless of the truthfulness. The optimal solution (denoted by X ") of

IPpool, is still feasible for IPpool,. We have Z, ( X 'P"*) 27, ( X 'P°'*) because X' is

the optimal solution of IPpool, while X'™" is a feasible solution of 1Ppool, .
Moreover, the model IPpool; never changes no matter what passenger(s) g reports. This
is because 1) the constraints of IPpool, remains constant no matter how passengers

reporttheir requirements and 2) the objective functionvalue is independent of passenger(s)

g’s report. Thus the passenger(s) g’s price is
pg' - ZrPg B (ZI*PO' _Vg’ ( X IPO,*))

The utility that passenger(s) g can receive is:
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)

|
=V, (x 'F’o'*)—{z;g _(iégv‘ (X vy (X7 )=Te (X )=y, X Ipm
=TV, (x 'PO'*)—TC(X 'P°V*)‘erg

*

which indicates that the passenger receives largest utility when telling the truth
regardless of other passengers’ reporting strategy. Therefore the mechanism is incentive
compatible.
O
Note that it is very difficult to develop approximate or heuristic algorithms to
simultaneously guarantee “price non-negativity” as well as “individual rationality” and
“incentive compatibility”. The SPA algorithm is proved to be individual rational and
incentive compatible but may not guarantee the property of “price non-negativity”.
However, the numerical experimental results in Section 4.4 show that SPA never obtains

negative prices.
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4.4 Numerical Experiment
4.4.1 Design of Numerical Examples
In Chapter 3, we developed a case study to interpret the results of the mechanism.
However, it does not have generality because it only contains two specific scenarios, in
which passengers have two different reporting methods and two types of value functions.
Moreover, the scale of the problem in the case study is small: only ten passenger requests
are involved. Thus it is not possible to test the effectiveness of the proposed algorithm in
obtaining the large-scale generalized mechanism. In this chapter, we develop thirteen

numerical examples to test the proposed algorithm in obtaining the mechanism

M (X R p) . In order to show the trend of experimental results with the scale of problems

increasing, the number of passenger requests involved in the system increases from 4 to 52
by the interval of 4. Both horizontal and vertical coordinates (x;, y;) of all passenger
locations in numerical examples are generated uniformly from the interval [6, 12]. All
coordinates of the transit hubs are set to be (9, 9), approximately located in the center of
all passengers. For convenience but without losing generality, the transportation cost

between two locations is proportional to the Euclidean distance: ¢;; = 2d;;, where dj; is the

distance between two locations. We determine that V' =3+3d,,. The traveling time

max

between two locations is not necessarily proportional to the distance. Thus, we use a
differentmethod to generate the travel time between two locations. Virtual coordinates (xv;,

yvi) of locations are generated, which satisfy: Xxv,=X+& and yv,=y,+&. € 18

normally distributed with the mean of “0” and varianceof*“0.1”. & israndomly generated

by the computer. The travel time between i and j is set to be
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t, = 3\/(xvi — XV; )2 +(yvi — YV, )2 :

Passengers’ personalized requirements ("%, o,/'7, and &7, in any form) on the
three inconvenience attributes can be processed into an interval [0, 1], representing the
strictness of the requirements. Since the passengers’ personalized requirements are
processed, we cannot use the value functions proposed in Chapter 3 because the values of
MR, a"T, and ;T are no longer compatible with the value functions in Chapter 3. Thus,
we propose another illustrative value function (Formula 13), which is compatible with the
processed values of a Mk, a,/'T, and ;"7, and will be used in numerical examples to test the

algorithm.

a"NR " (IVT, -t,)  a""WT, (VL —Cp
! 1 + 4 i max i (13)

V, =V — +
Q-np, t, MD

MD is the maximum difference among passengers’ arrival deadlines. Here MD=

miagf(DLi — DLj) = 15, indicating that we only optimize the matching and routing plan
i,je

connecting to train schedules in which differences in passengers’ arrival deadlines do not
exceed 15 minutes. We set the default values of aM®, o,/'7, and «;"7 to 0.1. In other words,
if the passengers do not report their requirements, the system will adopt the default values.
We set half of the values V%, o,/'7, and ;’7 to 0.1 as the default values, indicating that
half of passengers do not open the interface to place stricter personalized requirements for
the ridesharing service. The other half of the values a/"%, a,/'7, and a;/T are randomly

generated from the uniform distribution interval [0, 1]. Formula (13) builds on the
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assumption that passengers are willing to pay a price at least equal to the minimum
transportation cost (c;o) if they are transported to the transit hub within the minimum travel
time t;0 (V; > cio, if IVT; = t;). This is a reasonable assumption because if passengers drive
themselves to the transit hub, they have to bear the direct shipment cost (c;). Note that we
use this hypothetical function just to test the algorithm and the accuracy of this value
function hasnotbeen verified through practical survey. We willuse another value function,
in which passengers’ attitude towards the price is stricter, in the sensitivity analysis to
demonstrate the robustness of the proposed algorithm in obtaining the mechanism under
different conditions.
4.4.2 Testing Method and Criteria

This subsection compares the solution pooling approach (SPA) with an exact
algorithm, commercial solvers, and selected state-of-the-art heuristic algorithms. We use
the enumeration algorithm (EA) as a representative of the exact algorithm to solve small-
scale problems (numerical examples with 4 and 8 passenger requests). Effective exact
algorithms (e.g. branch and bound) are not developed in this chapter because they are
difficult to adapt to generalized models with different objective functions. We use seven
commercial solvers, ANTIGONE, ALPHAECP, BARON, COUENNE, LINDOGLOBAL,
SBB, and SCIP (https://neos-server.org/neos/solvers/index.html), which are all able to
solve mixed integer non-linear programming (MINLP) models (Bussieck and Vigerske
2010) to obtain the mechanism results. For all the solvers, the maximum computing time
in solving one MINLP model is set to 3600 seconds. Among the seven solvers,

ANTIGONE has the highest performance both in terms of solution quality and computing

speed. The possible reason is that ANTIGONE implements a spatial branch -and-bound
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algorithm that utilizes MIPs for bounding. The MIP relaxation is generated from a
reformulation of the MINLP. It employs a large collection of convexification and bound
tightening techniques (Bussieck and Vigerske 2010). For conciseness, we select
ANTIGONE to compare with the proposed SPA algorithm, but we attach the results of all
seven solvers in Appendix A. Finally, it is difficult to test all state-of-the-art heuristic
algorithms in the literature, but we select two representative heuristic algorithms for
comparison with our proposed SPA. We select Hybrid Simulated Annealing - Tabu Search
algorithm (HSATS) as a representative of local-search-based heuristic algorithms and
select Hybrid Genetic and Local Search algorithm (HGLS) as a representative of swarm
evolutionary heuristic algorithms. Both HSATS (Lin et al. 2016) and HGLS (Wang 2014)
are effective for solving the classic Traveling Salesman Problem (TSP). We modify the
mutation structures (e.g. neighborhood structure and crossover structure) to adapt the
algorithms to the first-mile ridesharing matching and routing problem. The algorithm
comparison is based on the following criteria:

1) Objective function values. We compare the performances of EA, ANTIGONE,
HSATS, HGLS, and SPA in terms of the objective function values of /P, for all numerical
examples.

2) Computing time. Computing time is used to measure the efficiency of an
algorithm. This chapter will compare the computing time of ANTIGONE, HSATS, HGLS,
and SPA in solving the optimization model /P, and calculating the prices.

3) Mechanism properties. We will show the reliabilities of these algorithms to
sustain two properties “individual rationality” and “price non-negativity”. The property

“incentive compatibility” is difficult to test and thus is not included in the comparison.
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4) Service provider profitability. The experiment results will show if the price
collected from passengers can cover the transportation cost.
4.4.3 Running Conditions
The algorithms, EA, HSATS, HGLS, and SPA, are programmed in Matlab R2014a.
The commercial solvers are implemented on the website of NEOS Solvers (https:/neos-

server.org/neos/solvers/index.html). All algorithms are implemented on a Dell computer

with processor Intel(R) Core(TM) 17-4790 CPU @ 3.60GHz and 8 GB RAM.
4.4.4 Experiment Results

We first compare five solution approaches, EA, ANTIGONE, HSATS, HGLS, and
SPA, in terms of objective function values in solving model /P,. Table 4.2 presents the
comparison results. The numerical examples are denoted by “N_X", where “x” is number
of passenger requests.

EA is able to solve only two small-scale problems (N 4 and N_8). When the
number of passenger requests reaches “12”, the computer registers a shortage of memory.

The solver ANTIGONE can return a solution, not necessarily optimal, within one
hour (3600 seconds) for numerical examples with the numbers of passengers ranging from
4 to 28. The solution qualities obtained by ANTIGONE are very close to the heuristic
algorithms, HGLS, HSATS, and SPA, in solving the numerical examples with passengers
fewer than or equal to 24. When the number of passengers reaches “28”, the quality of the
solution obtained by ANTIGONE is much lower than those obtained by the heuristic
algorithms: the objective function value obtained by ANTIGONE is 159.28, much lower
than 186.47 of HGLS, HSATS, and SPA. When the number of passengers is larger than 28,

ANTIGONE is unable to return a solution.


https://neos-server.org/neos/solvers/index.html
https://neos-server.org/neos/solvers/index.html
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All of the three heuristic algorithms HSATS, HGLS, and SPA are able to find
solutions for all numerical examples. They obtain the exact optimal solutions of numerical
examples N 4 and N_8 as EA does. With the scale of the problem increasing, the solution
qualities of HSATS and HGLS are slightly higher than those of SPA in general. However,
the differences between SPA and HSATS and between SPA and HGLS are negligible. The

maximum difference between SPA and HSATS/HGLS is only 1.55% (N_36).

Table 4.2 Objective Function Values Obtained by EA, ANTIGONE, HSATS, HGLS,

and SPA
SPA
Numerical Objective  Difference Difference
EA ANTIGONE HSATS HGLS

examples function from HSATS from HGLS
values (%) (%)
N_4 24.56 24.56 24.56 24.56 24.56 0.00 0.00
N_8 58.00 58.00 58.00 58.00 58.00 0.00 0.00
N_12 81.52 81.52 81.52 81.52 0.00 0.00
N_16 119.98 119.98 119.98 119.45 0.44 0.44
N_20 139.89 139.89 139.89 139.86 0.02 0.02
N_24 152.58 152.58 152.71 152.58 0.00 0.09
N_28 159.28 186.47 186.47 186.47 0.00 0.00
N_32 200.08 200.08 200.03 0.02 0.02
N_36 259.67 259.67 255.71 1.55 1.55
N_40 289.98 289.98 289.54 0.15 0.15

N_44 302.17 302.17 301.28 0.30 0.30



101

N_48 349.51 349.54 346.98 0.73 0.74

N_52 380.77 379.63 377.70 0.81 0.51

Note: the table only presents the data when the computer memory is sufficient and the

computing time is less than or equal to one hour (3600 seconds).

Table 4.3 shows the computing time for obtaining an optimal matching and routing
plan and calculating prices, as well as the total computing time spent by ANTIGONE,
HSATS, HGLS, and SPA. The commercial solver ANTIGONE is much more time-
consuming than the three heuristic algorithms HSATS, HGLS, and SPA in getting the
mechanism results for numerical examples with more than 12 passengers. HSATS needs
more than 3000 seconds (50 minutes) to obtain the mechanism for the largest-scale
numerical example (N_52), and HGLS is unable to obtain the mechanism for the largest-
scale numerical example within one hour. In contrast, SPA is able to obtain the mechanism
for all numerical examples within 3 minutes. This is because both HSATS and HGLS need
to solve n similar optimization models one by one to calculate the prices given that the
number of passenger requests is 7, while SPA is able to solve these similar models
simultaneously. Moreover, itcan be inferred from Figure 4.3 thatthe computing complexity
of SPA is lower than those of HSATS and HGLS. With the scale of problems continuously

increasing, the computing times of HSATS and HGLS increase faster than that of SPA.

Table 4.3 Computing Time (in Seconds) of ANTIGONE, HSATS, HGLS, and SPA

Numerical ANTIGONE HSATS HGLS SPA

examples TO TP TT TO TP TT TO TP TT TO TP TT

N_4 0.09 0.34 043 0.11 0.42 0.53 0.09 0.34 0.43 0.14 0.00 0.14




102

N_8 1.95 5.46 741 123 894 10.17 0.73 5.87 6.60 147 035 1.82
N_12 2278.09 >3600 =>3600 3.70 42.47  46.17 2.61 3134 33.95 479 124 6.03
N_16 3600.00 >3600 =>3600 12.27 193.15 205.42 11.61 177.59 189.20 14.89 5.03 19.92
N_20 3600.00 >3600 =>3600 16.86 298.28 315.14 20.57 380.14 400.71 19.93 7.15 27.08
N_24 3600.00 >3600 >3600 19.98 474.04 494.02 38.68 910.37 949.05 2438 9.44 33.82
N_28 3600.00 >3600 >3600 26.82 694.69 721.51 66.40 1724.21 1790.61 35.32 12.22 47.54
N_32 32.02 877.13 909.15 86.35 2665.13 2751.48 39.30 18.82 58.12
N_36 32.33 1227.69 1260.02 101.23 3553.58 3654.81 46.83 25.43 72.26
N_40 39.94 1646.68 1686.62 118.06 >3600 >3600 56.70 31.78 88.48
N_44 45.18 2032.65 2077.83 141.86 >3600 >3600 66.88 37.94 104.82
N_48 53.85 2652.70 2706.55 173.49 >3600 >3600 71.00 43.98 114.98
N_52 59.37 3063.98 3123.35 189.85 >3600 >3600 89.96 59.70 149.66

Annotation: TO, computing time in obtaining the optimal routing plan; TP, computing time

in calculating the prices; TT, the total computing time.
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Figure 4.3 Computing Time of HSATS, HGLS, and SPA for Different Numerical
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Examples

The mechanism obtained by the exact algorithm was proven, in Chapter 3, to have
three properties: “individual rationality”, “incentive compatibility”, and “price non-
negativity”. We compare the ability of the four algorithms (EA, HSATS, HGLS, and SPA)
in maintaining these properties. ANTIGONE is not presented here because it is very time-
consuming. Table 4.4 presents the percentages of individual rational and non-negative
prices in the total number of prices using four algorithms for all numerical examples. If the
properties “individual rationality” and “price non-negativity” are strictly proved, the table
cell shows “proved”. Otherwise, only a percentage is shown in the table. Table 4.4 shows
that the mechanism obtained by both HSATS and HGLS are possibly not “individual
rational”. In numerical examples N_24 and N _48, at least one passenger’s utility is
negative in the mechanism obtained by HSATS (the bold numbers are less than 100%). In
the numerical example N_32, at least one passenger’s utility is negative in the mechanism
obtained by HGLS. Negative utilities indicate that these passengers are unwilling to pay
the prices. Chapter 3 and this chapter respectively proved that the mechanisms obtained by
EA and SPA are always individual rational, and thus all passengers’ utilities are non-
negative. Although we cannot strictly prove that the mechanisms obtained by HSATS,
HGLS, and SPA have the property of “price non-negativity”, the prices obtained via the
three algorithms are all non-negative in these numerical examples. The property “incentive
compatibility” is not tested because it is impossible to enumerate all combinations of
passengers’ reported requirements, but the mechanism obtained by SPA has been proved to

be incentive compatible (Proposition 2), while the mechanism obtained by other heuristics
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(e.g. HSATS and HGLS ) is notincentive compatible based on the discussionin Subsection

4.2.3.

Table 4.4 Comparison Results of the Properties of “Individual Rationality” and

“Price Non-Negativity”

Numerical Percentage of “individual rational” prices Percentage of non-negative prices

examples EA HSATS HGLS SPA EA HSATS HGLS SPA

N_ 4  Proved (100) 100 100 Proved(100) Proved (100) 100 100 100

N_8  Proved (100) 100 100 Proved (100) Proved (100) 100 100 100

N_12 Proved 100 100 Proved (100) Proved 100 100 100
N_16 Proved 100 100 Proved (100) Proved 100 100 100
N_20 Proved 100 100 Proved (100) Proved 100 100 100
N_24 Proved 91.7 100 Proved (100) Proved 100 100 100
N_28 Proved 100 100 Proved (100) Proved 100 100 100
N_32 Proved 100 96.9 Proved (100) Proved 100 100 100
N_36 Proved 100 100 Proved (100) Proved 100 100 100
N_40 Proved 100 Proved (100) Proved 100 100
N_44 Proved 100 Proved (100) Proved 100 100
N_48 Proved 97.9 Proved (100) Proved 100 100
N_52 Proved 100 Proved (100) Proved 100 100

Note: the table only presents the data when the computer memory is sufficient and the

computing time is less than one hour (3600 seconds).

Table 4.5 shows thatthe profits (total price collected minus total transportation cost)

are positive forall numerical examples in the mechanismsobtainedby EA, HSATS, HGLS,
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and SPA. The mechanisms obtained by EA, HSATS, HGLS, and SPA are all profitable for

the service provider in all of the numerical examples.

Table 4.5 Profit Made by the Ridesharing Service Provider

Profit made by the service provider (total price minus total

Numerical
transportation cost)

examples
EA HSATS HGLS SPA
N_4 19.9 19.9 19.9 19.2
N_8 35.2 35.2 35.2 35.2
N_12 59.4 59.4 59.4
N_16 79.8 79.8 80.8
N_20 94.4 94.4 94.2
N 24 1135 112.7 106.9
N_28 136.7 136.4 1341
N_32 145.0 147.8 144.4
N_36 169.1 158.3 160.3
N_40 194.7 191.2
N_44 207.4 186.0
N_48 239.1 227.0
N_52 236.1 234.7

Note: the table only presents the results when the computer memory is sufficient and the

computing time is less than one hour (3600 seconds).
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4.4.5 Sensitivity Analysis

Sensitivity analysis focuses on two aspects: 1) change of passengers’ value
functions and 2) change of the strictness of passengers’ requirements on inconvenience
factors. The first aspect aims at testing the effectiveness of the mechanism under different
conditions, in which passengers have stricter attitudes towards the price. The second aspect
is to study the changing process of the matching and routing plan and the price when a
passenger in one location places stricter requirement on the inconvenience factors.

1) Change of the value function

Passengers’ attitudes towards the price are reflected by the value function. We use
a different hypothetical value function (Formula 14) instead of Formula (13) to represent
passengers’ stricter attitudes towards the price. Formula (14) assumes that passengers’
lowest maximum willing-to-pay price is zero if they are transported to the transit hub

directly, i.e. V;> 0, if IVT; = ).

V, =

mi

| MNR oV (IVT —t,) @V WT, |V
V'ax—(a' NR, & (IVTi—to) a"WT, }V,

(Q-np,) t, MD r;ax (14

We will test the mechanism using the same algorithms. The experiment results are
listed in Table 4.6, Table 4.7, Table 4.8, and Table 4.9. The numerical examples are denoted
as “N2 x”, where x represents the number of requests sent by passengers. Yet again,
ANTIGONE is not presented in Table 4.6, Table 4.7, Table 4.8, and Table 4.9 due to its

unreasonably long computing time.

Table 4.6 Objective Function Values of /Py Obtained by EA, HSATS, HGLS, and



SPA (Value function: Formula 14)
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SPA
Numerical
EA HSATS HGLS Objective  Difference from Difference from
examples
functionvalues  HSATS (%) HGLS (%)

N2_4 26.17 26.17 26.17 26.17 0.00 0.00
N2_8 48.00 48.00 48.00 48.00 0.00 0.00
N2_12 71.21 71.21 71.21 0.00 0.00
N2_16 98.56 98.56 98.56 0.00 0.00
N2_20 130.83  130.83 130.75 0.06 0.06
N2_24 169.09  169.09 168.44 0.39 0.39
N2_28 181.21 181.21 176.32 2.77 2.77
N2_32 199.44  199.38 197.86 0.80 0.77
N2_36 248.52  248.52 245.43 1.26 1.26
N2_40 253.24  252.88 246.61 2.69 2.54
N2_44 260.08  260.08 256.26 1.49 1.49
N2_48 314.25 314.54 311.52 0.88 0.97
N2_52 336.39 335.58 333.83 0.77 0.52

Table 4.7 Computing Time of HSATS, HGLS, and SPA (Value Function: Formula

14)
Numerical HSATS HGLS SPA
examples TO(G) TP(s) TT(S) TO(G) TP(s) TT(S) TOGB) TP(s) TT(s)
N2_4 0.10 0.42 0.52 0.09 0.33 0.42 0.13 0.01 0.14
N2_8 1.14 7.98 9.12 0.72 5.65 6.37 1.44 0.31 1.75
N2_12 3.65 40.59 4424 243 29.55 31.98 4.79 1.26 6.05




108

N2_16
N2_20
N2_24
N2_28
N2_32
N2_36
N2_40
N2_44
N2_48

N2_52

10.34

14.00

17.94

23.92

27.93

35.77

40.68

46.43

53.84

58.74

159.98

271.03

441.51

628.69

907.01

1266.50

1411.74

2090.88

2274 .47

2620.70

170.32

285.03

459.45

652.61

934.94

1302.27

1452.42

2137.31

2328.31

2679.44

1147 17275
19.46  360.47
3744 901.17

66.91 1729.90
85.38 2612.03
94.75 3635.89
109.55 >3600
13143 >3600
157.79  >3600

18250 >3600

184.22

379.93

938.61

1796.81

2697.41

3730.64

>3600

>3600

>3600

>3600

13.96

17.89

22.84

29.70

34.11

42.20

51.65

55.80

71.03

89.79

3.50

6.96

9.64

14.24

16.96

23.88

25.36

36.93

47.81

53.69

17.46

24.85

32.48

43.94

51.07

66.08

77.01

92.73

118.84

143.48

Table 4.8 Comparison Results of the Property of “Individual Rationality” and

“Price Non-Negativity” (Value Function: Formula 14)

Numerical Percentage of“individual rational” prices Percentage of non-negative prices

examples EA HSATS HGLS SPA EA HSATS HGLS SPA
N2_4 Proved(100) 100.0 100.0 Proved(100) Proved(100) 100.0 100.0 100.0
N2_8 Proved(100) 1000 100.0 Proved(100) Proved(100) 100.0 100.0 100.0
N2_12 Proved 100.0 100.0 Proved(100) Proved 100.0 100.0 100.0
N2_16 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0
N2_20 Proved 100.0 100.0 Proved (100) Proved 1000 100.0 100.0
N2_24 Proved 100.0 100.0 Proved(100) Proved 100.0 100.0 100.0
N2_28 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0
N2_32 Proved 1000 84.4  Proved (100) Proved 100.0 100.0 100.0
N2_36 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0
N2_40 Proved 100.0 Proved (100) Proved 100.0 100.0
N2_44 Proved 100.0 Proved (100) Proved 100.0 100.0
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N2_48 Proved 95.8 Proved (100) Proved 100.0 100.0

N2_52 Proved 100.0 Proved (100) Proved 100.0 100.0

Note: the table only presents the data when the computer memory is sufficient and the

computing time is less than one hour (3600 seconds).

Table 4.9 Profit Made by the Ridesharing Service Provider (Value Function:

Formula 14)

Profit made by the service provider (total price minus total transportation

Numerical
cost)
examples
EA HSATS HGLS SPA

N2_4 22.30 22.30 22.30 22.30
N2_8 41.20 41.20 41.20 41.20
N2_12 59.50 59.50 59.40
N2_16 72.60 72.60 67.10
N2_20 96.00 96.00 92.80
N2 24 117.90 118.10 113.20
N2_28 141.40 141.40 115.80
N2_32 153.60 155.00 141.90
N2_36 173.90 172.70 143.10
N2_40 192.00 149.20
N2_44 200.80 186.50
N2_48 247.90 209.50

N2_52 242.40 147.60
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Note: the table only presents the data when the computer memory is sufficient and the

computing time is less than one hour (3600 seconds).

Table 4.6 and Table 4.7 present the comparison results in terms of the objective
function value and computing time. SPA can still obtain satisfactory vehicle-passenger
matching and routing plans within a reasonable time when passengers’ value functions
change. The results show that when the scale of the problem is small, HSATS, HGLS, and
SPA are able to obtain the exact optimal solution. With the scale of the problem increasing,
the solution qualities of HSATS and HGLS are slightly higher than those of SPA, but the
differences between SPA and HSATS and between SPA and HGLS are still negligible. The
largest difference between SPA and HSATS/HGLS in terms of the objective function value
is only 2.77%. The total computing time of SPA is less than 3 minutes, significantly less
than those of HSATS and HGLS. In Table 4.8, HSATS and HGLS may generate
mechanisms that are not individual rational (numerical examples N2 48 and N2 32 with
bold numbers). All ofthe prices obtained by HSATS, HGLS, and SPA are still non-negative
even though passengers’ attitudes towards prices becomes stricter. Table 4.9 shows the
profits of all numerical examples based on the mechanism obtained by HSATS, HGLS, and
SPA. All profits are positive, indicating that even though the passengers have stricter
attitudes towards the price, the mechanism is still profitable for the service provider. The
experimental results demonstratethe robustness of SPA even ifpassengers’attitude towards
the prices changes.

2) Change of passengers’ tolerance towards inconvenience factors

This sensitivity analysis studies the impact of changing passenger’s requirements
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on prices and routing plans. We state that the changing process of the mechanism

IP,* . . . . .
M (X 0 ,p) is reasonable if the passenger receives no worse service and the price does

not decrease when the requirement becomes stricter. Figure 4.4 shows an example of a

reasonable changing process of one passenger’s (this passenger is highlighted by the red

circle in the figure) mechanism M (X ", ) There are three stages of the changing

process in Figure 4.4. The price and the matching and routing plan do not change within
each stage. As the passenger’s requirements continue to grow stricter, the stage will
transition to the next stage, and the passenger will receive higher-quality service and the
price increases. The reasonable changing process is important because it avoids the
following counter-situation: a passenger places a stricter requirement on an inconvenience
attribute, but has to tolerate an increased degree of the corresponding inconvenience
attribute and pay less money.

In the sensitivity analysis, the values of oV, a,/'T, and o,;”T are all increased from
0.1to 1 by 0.1 each time for each passenger. We solve the mechanism M (X ® p) each

time a/ R, o,/'7, and o7 increase. We record the number of passenger requests whose
mechanism changing processes are reasonable and calculate the percentage of this number

in the total number of passenger requests for each numerical example.
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Table 4.10 shows the percentages of the number of passenger requests, whose
changing process ofthe mechanism is reasonable,in the totalnumber of passenger requests.
When the scale of the problems is small, all algorithms can ensure 100% reasonable
changing processes. However, as the scale of problems increases, these p ercentages of
regular heuristic algorithms, including HSATS and HGLS, decrease sharply (see Figure
4.5). Thus, when the scale of the problem is large, even though passengers’ requirements
become stricter, the routing plan is likely to become less convenient for such passengers
and the price will decrease, which counteracts the mechanism design objective. For
example, if a passenger places stricter requirement on the extra in-vehicle travel time, the
system is likely to let her stay in the vehicle for a longer time and the price is likely to
decrease by using HSATS or HGLS. In contrast, from the testing result, it seems that SPA
can always ensure a reasonable changing process of the mechanism for all passengers

(100%) in all of the numerical examples.

Table 4.10 Percentages of Reasonable Changing Processes

Numerical Percentages of reasonable changing processes

examples EA HSATS HGLS SPA
N_4 100 100.0 100.0 100.0
N_8 100 100.0 100.0 100.0
N_12 100.0 100.0 100.0
N_16 100.0 100.0 100.0
N_20 100.0 90.0 100.0

N_24 16.7 25.0 100.0
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N_28
N_32
N_36
N_40
N_44
N_48
N_52
N2_4
N2_8

N2_12

N2_16

N2_20

N2_24

N2_28

N2_32

N2_36

N2_40

N2_44

N2_48

N2_52

14.3

18.8

0.0

12.5

6.8

6.3

0.0

100 100.0

100 100.0

100.0

100.0

95.0

66.7

96.4

15.6

19.4

30.0

27.3

0.0

3.8

14.3

18.8

0.0

100.0

100.0

100.0

100.0

100.0

54.2

89.3

25.0

16.7

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

Note: the table only presents the data when the computer memory is sufficient and the

computing time is less than one hour (3600 seconds).
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4.5 Conclusions
This chapter proposed a novel heuristic algorithm, Solution Pooling Approach
(SPA), to obtain the mechanism proposed in our last chapter. The SPA is able to ensure two
important properties, “individual rationality” and “incentive compatibility”. The
experimental results on the numerical example show that SPA can significantly decrease
the computational complexity with a tiny sacrifice of solution quality, compared with
traditional heuristic methods, suchas Hybrid Simulated Annealing—Tabu Search Algorithm
and Hybrid Genetic Algorithm. From the sensitivity analysis, we can conclude that SPA is
robust to efficiently obtain the mechanism without sacrificing too much accuracy and to
maintain some other nice properties, including price non-negativity and service provider
profitability based on the numerical examples. The sensitivity analysis also implies that
passengers can receive a higher-quality service by placing stricter requirements on
corresponding inconvenience factors based on their mobility preferences, and
correspondingly, they are charged a higher price when participating in ridesharing. SPA
can be adapted to solve generalized mechanism design problems. We analyze the specific
circumstances under which SPA can sustain the game-theoretic properties, including
“individual rationality” and “incentive compatibility”, and identifies its limitation in
solving generalized mechanism design problems. Our future work will apply the solution

pooling approach to solve other mechanism design problems and test its effectiveness.

Appendix A
This appendix presents the performance of seven commercial solvers, ANTIGONE

(Algorithms for coNTinuous/Integer Global Optimization), ALPHAECP (a-Extended
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Cutting Plane), BARON (Branch-And-Reduce Optimization Navigator), COUENNE
(Convex Over and Under ENvelopes for Nonlinear Estimation), LINDOGLOBAL, SBB
(Simple Branch-and-Bound) and SCIP (Solving Constraint Integer Programs), in terms of
the objective function values and the computingtime in solving the non-convex mix integer
non-linear programming model /Py. Among these sevensolvers, ANTIGONE, COUENNE,
LINDOGLOBAL, and SCIP can guarantee the global optimal solutions for non-convex
MINLP models if the solvers are terminated normally, while ALPHAECP, BARON, and
SBB cannot ensure the global optimality (Bussieck and Vigerske 2010). The results are
shownin Table 4.11 and Table 4.12. The two tables do notshow the result when the solvers

are unable to return a solution.

Table 4.11 Objective Function Values of Model 7Py Obtained by Seven Solvers

Obijective function values (dollars)
Numerical

ANTI-  ALPHA- LINDO-
examples BARON COUENNE SBB SCIP
GONE ECP GLOBAL

N_4 24.56 24.56 24.56 24.56 24.56 24.56 24.56
N_8 58.00 58.00 58.00 58.00 58.00 55.30 58.00

N_12 81.52 81.52 81.52 81.11 81.52 78.44 81.52

N_16 119.98 115.36 117.57 116.79
N_20 139.89 134.13 131.11 136.51
N_24 152.58 139.59 140.73 133.72

N_28 159.28 147.18
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Table 4.12 Computing Times of Seven Solvers in Solving Model 7P,

Computing time (seconds)

Numerical
ANTI-  ALPHA- LINDO-
examples BARON COUENNE SBB SCIP
GONE ECP GLOBAL
N_4 0.09 8.07 0.15 0.87 0.28 0.17 0.20
N_8 1.95 423.69 8.55 139.39 21.46 12.36 5.37
N_12 2278.09  3600.00 3600.00 3600.00 3600.00 441.02 3600.00
N_16 3600.00 3600.00 3600.00 3600.00
N_20 3600.00 3600.00 3600.00 3600.00
N_24 3600.00 3600.00 3600.00 3600.00

N_28 3600.00

3600.00
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CHAPTER 5 MECHANISM DESIGN FOR ON-DEMAND FIRST-

MILE RIDESHARING

5.1 Introduction

This chapter designs a mechanism for the on-demand first-mile ridesharing, a
service that arranges real-time shared rides on a very short notice to bring passengers to
the nearby transit hub (Amey et al. 2011). The mechanism provides an incentive pricing
scheme along with an optimization solution to the vehicle-passenger matching and vehicle
routing based on real-time information of passenger requests and available vehicles near
the transit hub.

The on-demand first-mile ridesharing service has three additional considerations
compared with the scheduled service.

1)  On-demand first-mile ridesharing requires that the service should be quickly
responsive so that vehicles can be dispatched promptly to drive passengers to the transit
hub in time. It also requires prompt decision of vehicle-passenger matching and vehicle
routing as well as pricing. This indicates that the algorithm should be efficient to quickly
obtain the mechanism design results.

2)  The system needs to capture real-time locations of available vehicles, which
is the input information for the optimization of the vehicle-passenger matching and vehicle
routing.

3) It is possible that in the on-demand scenario, not necessarily all passengers
can be served to reach the transit hub before specified deadlines because of limited vehicle
resources and/or limited time. Thus, an auction-based mechanism that allows passengers

to bid for the service is preferred.



120

This chapter addresses passengers’ mobility preferences in designing the
mechanism because travelers’ choice of transportation mode is significantly influenced by
these mobility preferences (Golledge et al., 1994; Ben-Akiva and Lerman, 1985; Arentze,
2013; Biswas et al., 2017a; BBC news, 2016). First, the designed mechanism allows
passengers to report personalized arrival deadlines since they need to catch the next transit
mode at the transit hub in time. Second, in the on-demand scenario, available vehicles may
notbe sufficientto drive all passengers to the transithub before the arrival deadlines. Some
passengers may not be served. Thus, the mechanism is auction-based, in which passengers
can bid for the service by reporting their maximum willing-to-pay prices. Third, we
consider the problem if the incentive is able to offset different passengers’ inconvenience
costinduced by the detour due to ridesharing. The mechanism allows passengers to report
their personalized detour tolerances (details will be in Section 3), which is the input in our
algorithm to determine the matching and routing plan and passengers’ corresponding
customized prices.

Our proposed mechanism design mechanism is improved upon the classical
Vickrey -Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973).
The VCG is a widely-used auction-based mechanism that maximizes the total social
welfare with two important properties — “individual rationality” (passengers are willing to
participate in the service) and “incentive compatibility” (truthful reporting is a passenger’s
best strategy) (Parkes et al., 2001). As a starting point, we apply the traditional VCG
mechanism to solve our on-demand first-mile ridesharing problem. The rolling horizon
planning, an efficient approach to handle dynamic ridesharing optimization problems

(Agatz et al., 2010; Agatzet al., 2011), is developed to implement the mechanism. The
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rolling horizon planning approach automatically determines time slices, within which
newly arrived passenger requests are processed until the end ofthis time slice (Montemanni
et al., 2005).

As the following analyses of this chapter will show that, the traditional VCG
mechanism has its inherent limitations in this first-mile ridesharing application. We found
that some prices derived from the VCG mechanism are unreasonably low and the
cumulative prices may not be able to offset the service provider’s transportation cost. This
is probably because the general-purpose VCG mechanism simply charges passengers by
the marginal benefit that they contribute to the service system, but lacks a baseline price
control strategy, which is also important for financially sustainable ridesharing services.

To address the identified limitations of the VCG mechanism, this chapter proposes
a novel mechanism named Mobility-Preference-Based Mechanism with Baseline Price
Control (MPMBPC). MPMBPC consists of two pricing layers — a baseline pricing layer
and a mobility-preference-based pricing layer. The baseline pricing layer aims to avoid
passengers’ unreasonably low prices and prevent service provider’s deficit based on an
important property, named as “price controllability”. This property ensures that served
passengers’ prices are no lower than the baseline prices. We suggest that the baseline price
can be determined by the shortesttravel distance from passenger location to the transithub.
The mobility-preference-based pricing layer promotes passengers’ collaboration and
prevents passengers from misreporting their mobility preferences by guaranteeing the
properties of “individual rationality” and “incentive compatibility”, respectively. Another
important property, “detour-discounting reasonability” is theoretically proved to

demonstrate that passengers can have their customized services depending on their
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tolerance of possible detours. For instance, if a passenger is less tolerant of detour, she will
have higher-quality service with less detour but pays a higher price.

In order to obtain the mechanism results, a series of mixed integer nonlinear
programming models need to be solved to obtain an optimal matching and routing plan as
well as to calculate prices of all passenger requests. This chapter develops two solution
approaches for small-scale and large-scale problems, respectively. The first solution
approach is to reformulate mixed integer nonlinear models as mixed integer linear
programming and then use a commercial solver (CPLEX) to solve these models exactly.
The second solution approach is developing an efficient heuristic algorithm, named
“solution pooling approach (SPA)” thatcan quickly obtain the mechanismresults for large-
scale problems. It will be theoretically proved that SPA is able to sustain the properties of
“individual rationality”, “incentive compatibility”, and “detour-discounting reasonability”.

The following analyses will show that both the CPLEX solver and our proposed
SPA algorithm can exactly obtain the mechanism results very quickly for small-scale
numerical examples. The MPMBPC will be compared with the classical VCG mechanism,
demonstrating its superiority in reasonability and practicability. Further, we design a series
of large-scale numerical examples to test the performance of SPA. We find that the SPA is
able to efficiently solve the mechanism design problem for all numerical examples with
high solution quality. We select another efficient heuristic algorithm, Hybrid Simulated
Annealing—Tabu Search Algorithm (HSATS, Lin et al., 2016), as a representative of the
latest heuristic algorithms to compare with SPA. The comparison result demonstrates that

SPA is much faster than HSATS. Also, SPA sustains the three proved properties, whereas

HSATS cannot.
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The remainder of the chapter is organized as follows. Section 5.2 summarizes
contributions of the chapter. The mechanism design problem for the on-demand first-mile
ridesharing is explained in Section 5.3. Section 5.4 introduces the application of the
traditional VCG mechanism in the on-demand first-mile ridesharing and identifies its
limitations. Section 5.5 proposes a novel mobility-preference-based mechanism with
baseline price control. Section 5.6 introduces the solution approaches for solving large-
scale ridesharing mechanism design problems. Section 5.7 designs numerical examples to

interpretthe results and test the proposed algorithms. Conclusions are drawn in Section 5.8.

5.2 Intended Contributions

In summary this chapter aims to bring the following contributions.

oTo our best knowledge, this is the first research that accounts for passengers’
personalized mobility preferences in designing an auction-based mechanism for on-
demand (dynamic) first-mile ridesharing service. We identify the limitations in
reasonability and practicability ofusing the traditional VCG mechanism — some passengers’
prices may be unreasonably low and the service provider may havea deficit. Therefore, we
design a novel mechanism, called mobility-preference-based mechanism with baseline
price control (MPMBPC), to overcome the limitations of the traditional VCG mechanism.
MPMBPC consists of a baseline pricing layer and a mobility-preference-based pricing
layer. The baseline pricinglayer can avoid passengers’ unreasonably low prices and service
provider’s deficit via an important property,namedas “price controllability”. This property
ensures served passengers’ prices greater than or equalto the baseline prices. The mobility-

preference-based pricing layer also simultaneously ensures “individual rationality” and
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“incentive compatibility”. Moreover, the MPMBPC mechanism has another important
property, named as “detour-discounting reasonability”. It means that if passengers are less
tolerant of detour, they may have higher-quality service with less extra in-vehicle travel

time but pay higher prices if they are served.

eTo solve the proposed ridesharing mechanism design problem in a
computationally efficient manner, we develop a new heuristic algorithm, called solution
pooling approach (SPA) that can quickly obtain the mechanism results of large-scale
problems, which cannot be solved by the solver CPLEX within a reasonable amount of
time. It is theoretically proved that SPA is able to sustain the properties of “individual

b 1Y

rationality”, “incentive compatibility”, and “detour-discounting reasonability”.

5.3 Problem Description

Passengers near the transit hub continuously send on-demand requests for pick-up
from their locations and drop-off at the transit hub. The service provider, which can either
be the transitagency oraridesharing service provider collaborating with the transitagency,
has a fleet of vehicles to provide the first-mile accessibility service.

We use the rolling horizon planning approach (Agatz et al., 2010, 2011) to
implement the mechanism for on-demand first-mile ridesharing as shown in Figure 5.1.
After a passenger sends a request (e.g. typically via a smartphone application program),
the system needs to respond to this request within a certain time (e.g. 1 or 2 minutes). This
chapter defines this duration as a “time slice”. When the response deadline is approaching,
the system simultaneously consolidates and processes all of the requests sent within a time

slice. At the end of a time slice, the system uses GPS to capture the locations of available



125
vehicles. There are two types of available vehicles. The first type of vehicle is empty and
can be dispatched immediately at the end of the time slice. The second type of vehicle has
not finished the current service at the end of the time slice but is about to finish soon. The
time when and the locations where these vehicles will be available to provide the first-mile
service can be estimated. Then, the system determines a vehicle-passenger matching and
vehicle routing plan, as well as the price corresponding to each passenger request. In the
example in Figure 5.1, Passenger 6 is the first to send a request. This passenger has a
response deadline, before which the estimated pickup time and price must be sent to him.
The time between Passenger 6’s requesting time and the response deadline is defined as
“time slice”. Within the time slice, two other passengers (Passengers 4 and 5) send requests
as well, whose response deadlines are later than Passenger 6’s response deadline. When
Passenger 6’s response deadline is approaching, the system consolidates the three
passengers’ requests, optimizes the matching and routing plan, and calculates the prices.
Then a new time slice begins when the next passenger (Passenger 3 in Figure 5.1) sends a
request. The system conducts the same calculation cyclically to continuously process
passengers’ requests.

The length of time slice can be determined based on passengers’ urgency. For
example, when the current time is close to the train departure time, the mechanism can set
a close response deadline for these urgent passengers after they send the requests since they
cannot wait too long to be responded. Thus, the time slice will be short. On the contrary,
the mechanism can set a relatively later response time for those passengers with late train
departure times, because they have enough time to wait for pickup. The time slice is thus

longer and the system can consolidate more passenger requests to ensure a higher vehicle
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occupancy. The mechanism is always feasible regardless of the length of a time slice.

However, unreasonable length of a time slice has the following impacts on the mechanism

results. If the time slice is too long, some passengers may be impatient to wait or they may

arrive at the destination late but they could have arrived in time if the time slice had been

shortand they had been responded soon. Ifthe time slice is too short, the vehicle occupancy

may be low because there is no enough time to consolidate more passenger requests.

After the mechanism results are obtained, passengers will be notified ofthe vehicles

serving them, the estimated pickup times, the routing plans, and the prices. Drivers will be

notified of the pickup task and will be strictly directed by the navigation system to pick up

passengers in a specified sequence.
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Figure 5.1 The Rolling Horizon Planning Approach for On-Demand First-Mile

Ridesharing

There exist popular ridesourcing services in the market, such as Uber and Lyft
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(Wang and Yang, 2019). We summarize some differences between these ridesourcing
services and our studied first-mile ridesharing service.

Uber/Lyft service mainly targets generalized ridesharing service while our
mechanism is more specific to the particular first-mile ridesharing service and aims to
promote more passengers to use the public transit service. Compared with Uber/Lyft, our
proposed mechanism is more human-centric, interactive, and personalized by satisfying
passengers’ mobility preferences (e.g. personalized arrival deadline, maximum willing-to-
pay price, and detour tolerance), because travelers’ choice of transportation mode is
significantly influenced by these mobility preferences (Golledge et al., 1994; Ben-Akiva
and Lerman, 1985; Arentze, 2013; Biswas etal., 2017a; BBC news, 2016).

1. In our designed mechanism, passengers can specify the arrival deadlines since
they need to catch the next transit mode at the transit hub in time. This is inspired by the
industrial trend: some news on the website (SMARTRAIL, 2018) stated that Uber would
add public transportation to its app, providing multi-modal ridesharing-public transit
mobility service in New York, Boston, Los Angeles, and other cities around the world.
Users have the option to book and display transit tickets in the app, allowing for seamless
transfers from ride-sharing to public transit service for convenient multi-modal journeys.
This indicates that passengers can specify which train they will catch, and thus should be
able to key in their arrival deadlines in the application program. In contrast, the current
Uber/Lyft service does not have the function for passengers to key in the arrival deadlines.
The interface only shows an estimated latest arrival time after a passenger keys in the
destination. Some passengers, therefore, may be unable to arrive at the transit hub before

their arrival deadlines if they take the current Uber or Lyft ridesourcing service, and thus
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may miss the next transit mode.

2. In the first-mile ridesharing service, some passengers may be more eager to be
served in time since they do not want to miss the next transit mode. These passengers may
be willing to pay a higher price for the first-mile service because of the importance of the
nexttransit mode. Therefore, the designed mechanism in this chapteris an “auction-based”
mechanism, in which passengers are allowed to “bid” for the service by reporting their
maximum willing-to-pay prices. The service can ensure that the actual paid prices will
never be higher than their willing-to-pay prices if they are served. Basically, the higher
maximum willing-to-pay price reported, the passenger has a higher priority to be served.
In the literature, many researchers haverealized the importance of passengers’ personalized
values (Nguyen, 2013; Lam, 2016; Asghari etal., 2016; Zhangetal., 2017,2018; Zheng et
al., 2019), and thus proposed auction-based mechanisms. In order to guide passengers to
quantify their maximum willing-to-pay prices, we can set default prices for reference. If
the passenger does not key in the maximum willing-to-pay price, the system will adopt the
default reference price as his maximum willing-to-pay price. This reference price can be
the ridesharing price in the market (e.g. Uberpool price). Passengers can estimate their
maximum willing-to-pay prices compared with the reference prices. The interface can also
indicate a message that the passenger will definitely be rejected if he reports a maximum
willing-to-pay price lower than the baseline price. Given this information, passengers can
have their own maximum willing-to-pay prices in mind and reportto the system. In contrast,
current Uber and Lyft service directly determines the prices based on passengers’
destinations. Upon reviewing the information, passengers are able to choose to accept or

reject the offer.
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3. “Detour” is a commonly aware inconvenience factor in the ridesharing service
(Biswas et al., 2017a; Pelzer et al., 2015; BBC news, 2016). Our designed mechanism
allows passengers to report their detour tolerances in order to satisfy different passengers’
personalized requirements. In the designed mechanism, the price is also influenced by
detour, which is defined as the “extra in-vehicle travel time” beyond the direct shipment
time. Generally, the longer extra in-vehicle travel time that a passenger needs to tolerate,
the lower price the passenger needs to pay. Accordingly, we use the following value
function (Nguyen 2013) to formulate the passengers’ maximum willing-to-pay prices

considering their detour tolerances.

V™ —a. x EIVT, (X), if passenger(s) i is served
VA(X)={ ) (1)

0, if passenger(s) i is not served

where VAi(X) is passenger(s) i’s value (i.e. maximum willing-to-pay price) given a
matching and routing plan X, V;m# is passenger(s) i’s maximum willing-to-pay price of
direct shipment service without detour (i.e. non-detour value). Passenger(s) i’s detour
disvalue (i.e. reduced maximum willing-to-pay price caused by detour) is determined by ¢;
x EIVT;. Particularly, detour is measured by the extra in-vehicle travel time EIVT; beyond
direct shipmenttime. o; is passenger(s) i’s detour tolerance parameter, for example, detour
discounting rate. The maximum willing-to-pay price decreases a; dollars if the extra in-
vehicle travel time increases per minute. For example, a passenger reports that the
maximum willing-to-pay price of direct shipment service is $10, and the acceptable detour

discounting rate is $0.5 per minute. If the routing plan X imposes him 4 minutes of extra
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in-vehicle travel time, his maximum willing-to-pay price is $10 — 4 x $0.5 = $8. In order
to guide passengers to quantify their acceptable detour discounting rate, we can set a
reference as the default value as well. The default detour discounting rate can be set to a
value that is acceptable for most people (e.g. $1 per extra five-minute in-vehicle travel
time). This reference value can be obtained by a practical survey. If the passenger does not
change it, the platform will adopt the default value. We can also design a drop-down list
with some alternative options (e.g. $0.5,$1, $1.5, $2.0, etc. per 5 minutes) for passengers
to choose. Passengers who are less tolerant of detour can choose a higher detour
discounting rate and who are more tolerant of detour can choose a lower detour discounting
rate. Note that we use this value function as an example for passengers to clarify their
detour tolerances, and the value function can change to other forms. For example,
passengers can simply report their maximum tolerable extra in-vehicle travel time along
with their maximum willing-to-pay prices (Bianand Liu, 2019a). Such detour-based value
functions can also prevent drivers from detouring deliberately and thus reduce passengers’
complaints about drivers’ deliberate detour, because detour cannot increase passengers’
payments but increases drivers’ transportation cost under this mechanism. Current Uber
and Lyft service does not allow passengers to report their detour tolerances, and the price
may increase with longer detour under normal circumstances, possibly leading to some
drivers’ deliberate detour and passengers’ complaints (BBC news, 2016).

We should notice that passengers’ mobility preference input is not mandatory but
is an option designed for passengers to have a personalized service in the mechanism. The
mobility preference input is an additional benefit rather than a burden for passengers.

Passengers can opt to rather than be forced to key in their mobility preferences if they
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indeed have specific requirements. They can opt not to key in these inputs and the system
will adopt the default values.

Due to the additional achieved functions, the events’ sequence of the studied first-
mile ridesharing service is different from thatofthe Uber/Lyft service, unless the passenger
does not key in the mobility preferences and the system adopts the default values. In lieu
of considering ridesharing service as a simple “take or not” option, we consider mobility
as a human-centric service in interaction with passengers’ personalized preferences. In our
studied first-mile ridesharing service, after a passenger keys in the mobility preferences,
the request is sent to the system, and finally the passenger is notified of the matching and
routing plan as well as the price information. In comparison, Uber/Lyft service directly
shows the price and the latest arrival time after a passenger keys in the destination, and the
passenger can choose to accept or reject the offer before the request is sent.

In summary, this chapter aims to solve the mechanism design problem, how to
satisfy passengers’ personalized mobility preferences, by developing an optimization
approach for matching and routing and designing an incentive pricing scheme.

We make the following assumptions:

eThe travel time between two locations is set to be deterministic. The existing
navigation apps (e.g. Google Maps) can accurately predictthe travel time based on the real-
time traffic condition (Wang and Xu, 2011; Amirian et al., 2016). The travel time
uncertainty of the on-demand first-mile ridesharing service may be less significant with
these advanced navigation apps, and the deterministic treatment might be reasonable for
this problem.

e We assume that the change of travel time caused by assignment of first-mile
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ridesharing vehicles to differentroadsin the network is negligible. For the time being, first-
mile mobility service accounts for only a small portion ofthe whole transportation network.
We deem thatthe number ofridesharing vehicles maynotbe sufficientto be the main factor
contributing to road congestion, and thus the travel time will not be significantly impacted
as long as first-mile ridesharing vehicles are reasonably assigned to different roads.

o[t is assumed that passengers are rational with the objective of maximizing their
own utilities, which is defined as the maximum willing-to-pay prices minus the actual paid
prices, when deciding the reporting strategies (truthful reporting versus misreporting).

eWe assume that passengers will not misreport the departure location and the

destination (the transit hub).

5.4 VCG Mechanism in the On-Demand First-Mile Ridesharing Service

As a starting point, we introduce the classical VCG mechanism, which is originally
proposed by Vickrey (1961),Clarke (1971),and Groves (1973). VCG mechanism has been
widely used in transportation (Xu et al., 2014; Lam, 2016; Zou et al., 2015) to promote
individuals’ participationand truthful report of their mobility preferences via two important
properties, “individual rationality” and “incentive compatibility”.

“Individual rationality” means that participants are all willing to participate in the
service. This property also indicates that participants’ actual payments are no greater than
their maximum willing-to-pay prices. Another property “incentive compatibility” indicates
that truthfully reporting their preferences is the optimal strategy regardless of other
participants’ reporting. The matching and routing optimization and pricing for on-demand

first-mile ridesharing service are essentially a mechanism design problem. We firstly use
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the VCG mechanism due to its important properties. The general VCG payment can be

expressed as:
pi=(TV.)" -1V, (2)

pi is agent i’s payment. (TV.)" is the optimal total social welfare when agent i does
not participate. 70" is all exceptagent i’s social welfare of the optimal allocation plan
involving all agents’ participation (i.e. TV*;=TV* — VA;, where VA; is agent i’s value). The
VCG mechanism is also named as Generalized Vickrey Auction (GVA) when there is a
single seller or sell-side aggregation (Parkes et al., 2001). The GVA is budget balanced
because the auctioneer (the transit agency) simply collects the total payment made by the
buyers (passengers) and passes iton to the seller (the service provider) (Parkes etal.,2001).

The objective of VCG is to maximize the social welfare, which has various
definitions (e.g. cumulative maximum willing-to-pay prices or summations of reduced
costs, etc.) in various applications. In the on-demand first-mile ridesharing application, the
social welfare includes passengers’ values and the service provider’s value. A passenger’s
value is defined as his/her maximum willing-to-pay price. The service provider’s value can
be defined as the transportation cost that needs to be covered (Ma et al., 2018). Thus, the

objective can be represented by Formula (3).

TV" =max Y VA (X)-TC(X) (3)

where VA4(X) is passenger request g’s value and 7C(X) is the total transportation



134
cost given the matching and routing plan X. Let X =arg mr’:lXZgVAg (X)-TC(X)
denote the optimal matching and routing plan. Let (TV,, )* = max Z:g;&iVAg (X)=TC(X)

and X_ =argmax ZgﬂVAQ (X)-TC(X). We use Figure 5.2 to demonstrate how the

VCG payment is calculated. Take Passenger 1 as an example. Passenger 1’s price is

VAZ(xj1)+VA3(xfl)—Tc(le)—(VA2(x*)+VA3(x*)—Tc(x*))= 6+5-35-(6+5

-4)=$0.5.
The optimal
matching and
routing plan )
Optimal solution X cgﬁ“ff;’fﬂgz .
VA;=5
VA2 =6
/»/./'.\. p1=(6+5-35)—
‘ (6+5—4)=$0.5
X" Transportation cost:
* 1.5+1+1=35
VA;=5
Used to
p=(9+5-38)—
calculate—
prices (8+5-4)=%1.2
. Transportation cost:
X2 1+1.8+1=38
VAZ =6.5 .
VA =9 ps=(9+6.5-3.6)
\_ - (8+6-4)=%$1.9
X5 Transportation cost:
1+1+1.6=3.6

AVehicIes ‘ Passengers . Transit hub

Figure 5.2 A Simple Example to Calculate VCG Prices

From Figure 5.2, we see the limitations of VCG mechanism in the application of
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on-demand first-mile ridesharing service. The VCG prices collected from all passengers
may not be able to cover the service provider’s transportation cost. As the example in
Figure 5.2 shows, the total price collected from three passengersis only $0.5 +$1.2+$1.9
= $3.6, unable to cover the $4 transportation cost.

Moreover, the VCG price can sometimes be unreasonably low. For example, in
Figure 5.2, Passenger | is the farthest away from the transit hub, but his/her price is the
cheapest, only $0.5. In practice, almost no service providers are willing to charge such a
low price that is even difficult to cover the fuel cost. The VCG mechanism has these
limitations because it simply charges players by the marginal benefit that they contribute
to the service system, but does not have a mechanism for price control to ensure service
provider’ financial sustainability. Based on the above discussions, Section 5 proposes a
series of new strategies to overcome the limitations of the application of VCG mechanism

in on-demand first-mile ridesharing service.

5.5 Proposed Mobility-Preference-Based Mechanism with Baseline Price Control
(MPMBPC)

We propose a mechanism with two pricing layers, which are baseline pricing layer
and mobility-preference-based pricing layer (Figure 5.3). The baseline price reflects the
minimum price that the service provider wants to earn from a served passenger request. It
can be flexibly determined based on passenger locations, relationship between supply and
demand, and other factors. The mobility -preference-based pricing layer is determined by
three inputs mutually: 1) the matching and routing plan, 2) passengers’ mobility

preferences (e.g. arrival deadline, maximum willing-to-pay price, and detour tolerance),
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and 3) the baseline pricing layer. The detail will be introduced in Section 5.2.

and demand locations information preferences
I [ ] I I
v

Vehicle-passenger
matching and
vehicle routing plan

Baseline pricing
layer

Mobility-preference-
based pricing layer

Figure 5.3 Schematic Framework of MPMBPC

5.5.1 Baseline Pricing Layer

In MPMBPC, baseline price control component places a minimum threshold for
the actual price so that the price will never be unreasonably low: p; > PC;, where p; is
passenger(s)i’s price, and PC;is the controlled baseline price for passenger(s) i. We suggest
that the baseline price rule can apply the widely-used taxi pricing scheme in the market

(Taxi calculator, 2018), including a constant initial fee (cf) and the direct shipment distance

(dio) multiplied by a distance rate (dr) (Formula 4).

PC;=cf+ drx dy 4)

The initial fee and distance rate in the baseline price can be flexibly adjusted based

on the service provider’s requirement, the transit agency’s policy, and the relationship
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between supply and demand (e.g. Uber’s surging price, Hall et al., 2015). We give the
mechanism designers freedom to be able to flexibly set the baseline price. However,
modeling these factors in determining the baseline price is beyond the scope of this chapter

and is not considered in our mechanism.

5.5.2 Mobility-Preference-Based Pricing Layer

This section introduces the mobility-preference-based pricing layer. In Section
5.2.1, the matching and routing plan is optimized based on the vehicles’ and passengers’
information. Section 5.2.2 gives the pricing scheme.
5.2.1 The optimal vehicle-passenger matching and vehicle routing plan
In this mechanism, we build an optimization model, denoted as Md,, for vehicle-passenger
matching and vehicle routing, considering the baseline price control component, in each
time slice. The optimization model is given by Formulas (5-15). For the notation, please

referto Table 5.1.

Table 5.1 Notation of the Optimization Model

Sets
P Set of n passenger requests, P={1,2, ..., n}, sentin a time slice
Set of m available vehicles, V={n+ 1,n+2,...,n+m }, attheend ofa
g time slice

H Set of the transit hub, H= {0}

Variables

= 1 if vehicle k travels from passenger location i to passenger location j
" |0 otherwise
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I,jeP;keV

= keV,ieP

« _ |1 ifvehicle k picks up passenger(s) of request i
0 otherwise

k= eV,ieP

« _ |1 if passenger(s) in request i is the first to be served by vehicle k K
0 otherwise

1 if vehicle k travels to the transit hub immediately after serving passenger(s)

W, =4 inrequest i
0 otherwise
keV,ieP

X={x;% v zk wk | i,je P, ke V} is the collection of all of the decision variables,

representing a vehicle-passenger matching and vehicle routing plan.

IVT; | Passenger(s) i’s in-vehicle travel time.

VA; Passenger(s) i’s value (i.e. maximum willing-to-pay price).

Parameters

Number of passengers of request i. For denotation convenience, we let

np;
“passenger(s) i” represent the passenger(s) in request i.

ATy, The time when vehicle k is available.

DL; | Passenger(s) i’s arrival deadline.

cij The transportation cost from node i to node j, i€ PU Vand je PU H

The travel time from node i to nodej, i€ PU V and j€ PU H. The pickup

time for passenger(s)j is included in ;.

0 The seat capacity of a vehicle, excluding the driver.

o, Passenger(s) i’s detour discounting rate. The maximum willing-to-pay price
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decreases a; dollars if the extra in-vehicle travel time increases per minute.

Passenger(s) i’s non-detour value. Passenger(s) i’s maximum willing-to-pay
pmax | price is V" if he is driven to the transit hub without any extra in-vehicle

travel time.

PC; | Passenger(s) i’s baseline price.

Objective function:

max f (X)=>"VA (X)-TC(X)+>_PC, (1—Zyikj (5)

ieP ieP kev

where
TC(X) =D > xicy + 2> zic + ). D wic,
keV ieP jeP keV ieP keV ieP
Subject to
zjk+§xi'j:y'j‘ forallkeV,jeP (6)
vvik+j;x5:yik forallkeV,ieP (7)
> zf<1l forallkeV (8)

ieP
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dy<1 forallieP 9)

kev

Synp <Q  forallkev (10)

ieP

DX+ Y 2+ > Wity <y (DL - AT )+(1-yf )M forallieP,keV (11)

ieP jeP ieP ieP

IVT, =33 % (IVT, +t; )+ wit, forall ieP (12)
keV jeP kev
IVT, >0 forall ieP (13)
VA =(V™ —a,-(IVT, =) Dy forallieP (14)
keV
X, yE, zi,wi e {01} foralli,jePkeV (15)

The objective function integrates three parts, including passengers’ cumulative
values, the service provider’s transportation cost, and the baselineprice control component.
The first two parts, passengers’ values and the negative transportation cost, are defined as
“social welfare” (Ma et al., 2018). The objective includes maximization of the total social
welfare instead of profit maximization because of the following reason. In our research,
we consider ridesharing as a means to bridge the first-mile gap to public transit. We design
a mechanism to incentivize more passengers to take the ridesharing service. In the long run,
this not only makes the ridesharing serve more people but also probably encourages more
people to use “ridesharing plus public transportation” in lieu of driving alone to the
destinations. We anticipate that a smooth, integrated multimodal connection will have
significant societal benefits (e.g. reduced congestion, emission, and energy use). With this

goal in mind, we will need to consider passengers’ values (in order to incentivize more
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passengers to take ridesharing). Additionally, we also consider transportation cost so that
theridesharing service can be financially sustainable (even if the profitis notthe maximal).
The objective of maximizing profit has been widely studied in other studies (Biswas et al.,
2017a,b; Asghariet al., 2016). The maximum profit goal may not necessarily encourage
people to have low-costaccess to public transitnorachieve the societal goals as considered
in this chapter. The third part of the objective function is the baseline price control
component. Under normal circumstances, the service provider has a minimum baseline
price threshold (PC;, i € P) to serve passenger(s) in one location. In order to ensure
passenger(s) i’s payment p; greater than or equal to PC; given this passenger(s) being served,
his value must be greater than or equal to PC; if the mechanism is individual rational (see
Definition 1). Thatis if p; > PC;, the condition VA4; > PC; must be satisfied; otherwise, the
mechanism is not individual rational.

Proposition 1 Adding the baseline price control component in the objective
function can ensure that if any passenger(s) i’s request is accepted, his value will never be
smaller than PC;; otherwise, this passenger request will be rejected (for the detailed proof,
please see Appendix A).

The objective function (Formula 5) has another more straightforward interpretation

after equivalent reformulation.

)= VA (X)-TeX)+3pe 13y |

ieP ieP keVv

=Y VA (X)-TC(X)+> PC,=> PC> y!

ieP ieP ieP keVv
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where Ziep PC, is a constantand can be removed from the objective function.

Then Formula (5) is equivalent to

max Y VA (X)-TC(X)-> PC > yf

ieP ieP keVv

Based on Formula (14), VA = (Vimax —a; (IVT, _tio))ZkeV y , when Zkev yi =0,
VA; =0, and when Zkev y& =1, VA; = V;max — g (IVT; — t,0). Thus, the objective function is

equivalent to Formula (16) below.

max » VA Yy —=TC(X)-D_PC >y

ieP keVv ieP kev (16)

< max Y (VA -PC)> y-TC(X)

ieP keVv

where (VA; — PC;) can be interpreted as passenger(s) i’s “surplus value” beyond the
baseline price. The baseline price plays the role of reserve price defined in the literature
(McAfee, 1993; Jehiel, 1999; Hartline and Roughgarden, 2009). In the auction design
theory, buyers bid for a good with a price starting from the reserve price, which is set by
the seller. In fact, the social welfare in the auction with reserve prices is buys’accumulative
surplus value beyond the reserve price (McAfee, 1993; Jehiel, 1999; Hartline and
Roughgarden, 2009). Thus, this objective function (Formula 16) can be interpreted as the
“surplus social welfare”, which is defined as passengers’ cumulative surplus values minus

the service provider’s transportation cost. We have the following reason to use this
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objective function.

The baseline price (PC;) in the objective function of “surplus social welfare”
maximization plays an importantrole in differentiating passenger requests with identical
maximum willing-to-pay prices but in different locations and/or with different numbers of
passengers in the requests. For example, two passengers in two different locations send
two requests. They have identical maximum willing-to-pay prices (VA; = VA,). The first
passenger’s location is farther away from the transit hub than the second passenger’s
location. Thus, the first passenger’s baseline price is greater than the second passenger’s
baseline price (PC; > PC,). Intuitively, the second passenger ismore valuable than the first
passenger. This can be reflected by passengers’ surplus values: we have VA; — PC; < VA;
— PC,, indicatingthat the second passenger hasa larger surplus value and ismore valuable.
Similarly, passenger requests in the same location with identical maximum willing-to-pay
prices but with different numbers of passengers in the requests are treated as differently
valuable requests. For example, in the same location, the first request has one passenger
(np1=1),andthe second requesthas two passengers (np,=2). The mechanism can set PC,
< PC; since the second request has one more passenger. Then, we have VA; — PC; > VA,
— PC,, indicating that the first request has a larger surplus value and is more valuable.

Formulas (6-15) are the constraints of model Md,. Formula (6) ensures that if
passenger(s) j is picked up by vehicle &, vehicle £ must come from one location, either the
vehicle departure location or the last passenger(s) location. Formula (7) demonstrates that
if passenger(s) i is picked up by vehicle &, vehicle £ must travel to the next location, either
the destination (transit hub) or the location of the next passenger(s). Formula (8) ensures

that each vehicle should be dispatched at most once in each time slice. Formula (9)
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represents that each passenger(s) will either be picked up by one vehicle or not be served
by any vehicles. Formula (10) is the vehicle capacity constraint. Constrained by Formula
(11), in which “M” is a large enough number, each vehicle, after it is available, must be
able to arrive at the transit hub before arrival deadlines of all passengers served by this
vehicle. Formula (12) formulates all passengers’ in-vehicle travel times, as well as prohibits
illegal sub-tours. Formula (13) guarantees the non-negativity of each passenger’s in-
vehicle travel time. Formula (14) obtains all passengers’ values. If passenger(s) i is served
by a vehicle, the value equals Vi — o,(IVT; — t;0). Otherwise, the passenger’s value is zero.
Formula (15) means that x;#, y/, z/#, are w are binary variables.

In this model, only the Formulas (12) and (14) are nonlinear, which can be

reformulated as linear constraints.

For Formula (12), we introduce a new variable u:} . We use Formulas (17) and

(18) to ensure that Ui =X IVT, forall i,jeP,keV.

O<ug <IVT, forall i,jeP,keV (17)

IVT, —(1-x)M <ui <xM, forall i, jeP,keV (18)

where “M” is an enough large positive number.

Then Formula (12) can be linearized to Formula (19).

IVT, =5 (ug + Xt )+ > wit, forallie P (19)

keV jeP keVv

Formula (14) can be reformulated as Formulas (20) and (21), because zkev yik is
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equal to either 0 or 1 for all ie P based on Formula (9).

0<VA <V,™ —g,-(IVT, —t,) forall ieP (20)

V™ — ;- (IVT, —tio)—(Vimax+aitio)(1—2yikj <VA < V™ v forall ieP(21)

kev kev

Formulas (20) and (21) ensure that if passenger(s) i is served (ZkEV yik =1), his

value equals V™ — o,(IVT; — t,0); otherwise, his value equals 0.

After reformulation, the constraints are Formulas (6-11, 13, 15, 17-21). Then
optimization model Md, is a mixed integer linear programming, which can be exactly
solved by a commercial solver CPLEX using a branch and bound algorithm.

5.2.2 The pricing scheme

Before introducing the pricing scheme, we newly define a set of optimization
models, Md,, g€ P. Note that models Md, (g€ P) are used to calculate the prices, and do
not affect the matching and routing plan.

Objective function:

Formula (5): max f(X) =) VA (X)-TC(X)+>_PC, [1—2 yikj

ieP ieP keVv
Constraints:

Formulas (6-11, 13, 15, 17-21) and Formula (22)

y£=0, forallkeV (22)
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The practicalmeaning of model Md, is that passenger(s) gisrejected by the service
and the remaining passengers’ matching and routing plan is optimized with the same
objective function of model Md.

Let fX) denote the objective function of models Md, and Md,. Let X;Ado and

X :,,dg denote the optimal solutions of models Md,, and Md,, respectively. The price is given

by

Py = T (X, )= F (Xu, ) +VA, (X0,) (23)

In practice, the price is determined when the passenger’s request is accepted and
will not change if there is no deliberate detour. However, if the driver deliberately detours,

the price will decrease. After the matching and routing plan is determined, the first two

partsin Formula (23)“ f ( X ,f,,dg ) —f ( X :,ldo ) ” are determined and willnotchangeany more.

The third part “VA, (X :/ldu )”, which is the passenger’s value, is determined by the actual

routing and may change due to extra detour. Therefore, in practice, the pricing scheme can

*

be formulated as p, = f (XMdg )— f (Xh*,ldO )+VAg (Xactual) , where X,,. is the actual
route adopted by all dispatched vehicles. If all dispatched vehicles implement the routing
plan exactly as specified by X ;‘;'do ,then X, . = X,t,ldo and all passengers’ prices will not

change after the plan is determined. However, if the vehicle serving passenger(s) g

deliberately detours, causing extra in-vehicle travel time for the passenger, passenger(s) g’s

value will decrease: VA, (Xactual ) <VA, (X:,ldo) , and the price decreases as well. This
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indicates that the driver will lose money due to deliberate detour. Thus, this mechanism
can prevent drivers’ deliberate detour.

Figure 5.4 uses the same example in Figure 5.2 to demonstrate the pricing scheme

of the MPMBPC mechanism. Take Passenger 1 as an example. Passenger 1’s price is
PC, +VA, (X3 ) VA (X5, )=TC (X3 ) =(VA, (X3, ) +VA (X3, )-TC (X )) = PC

+6+5-35-(6+5-4)=PC,+0.5.

The optimal
matching and
routing plan

Transportation
cost: 1+1+1+1=4

The optimal solution of Md,

VA; =5

VA, =6
/>/'./"\. p1=(PCi+6+5-35)—
. (6+5—-4)=PC;+$0.5

PC, The optimal solution of Md, Transportation cost:

15+1+1=35
VA, =5
PC,
Used to
calculate— p,=(PC,+9+5-3.8)—
prices (8+5-4)=PC;+$1.2

. . Transportation cost:
The optimal solution of Md, 1+1.8+1=3.8

VA, =6.5 P.C3
VA, =9 p:=(PC3+9+6.5-23.6)
\_ _ —(8+6-4)=PC;+%1.9
The optimal solution of Md, 1ransportation cost:

1+1+1.6=3.6

AVehicIes . Passengers . Transit hub

Figure 5.4 A Simple Example to Calculate MPMBPC Prices

Note that this pricing scheme is not simply the VCG price plus the baseline price.

We use another example to show the difference between the proposed pricing scheme and
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the VCG price plus the baseline price and to demonstrate the advantage of the proposed

mechanism (Appendix B.1)

Finally, Algorithm 1 presents the pseudocode to obtain the MPMBPC mechanism

design solutions.

Algorithm 1 obtaining the MPMBPC mechanismM(X:,.do,p)

Input all parameters.

Solve the optimization model Mdg and get the optimal solution X;,,do , the optimal

objective function value f (X;do ) , and each passenger’s value VA, (X :/ldu ) .
Forg=1:n
Solve the optimization model Md,, and get the optimal objective function

value f(X:,,dg).

*

Calculate passenger(s) g’s price p, = f (XMdg )— f (X:Ado)+VAg (Xh*,|do )
End for

Outputthe mechanism M Xy, ).

5.5.3 Theoretical Analysis
Theoretical analysis is used to prove that the proposed MPMBPC mechanism can
ensure important mechanism design properties, including “individual rationality”,

“incentive compatibility”, “price controllability”, and “detour-discounting reasonability”.
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Definition 1. Individual rationality. A mechanism is individual rational if all
passengers’ values are greater than or equal to the actual price paid (the utility is always
non-negative, Formula 24).

Ug=VA; —po>0forany ge P (24)

Proposition 2 The mechanism M(X :,,do , p) 1s individual rational.

U, ( Md, » pg) =VA, ( )— p, 20 forany passenger(s) g€ P

Proof:

Uy (X, Py ) =VA, (X, )= P
= £ (Xa, )= f (X2, )

Compared with model Md,, the model Md, has one more constraint (Formula 22).
Thus the constraints of model Md, are stricter than those of model Md,, and thus the
optimal objective function value of model Md| is greater than or equal to that of Md,. That

i
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Thus,

U (X, Pg ) =VA, (Xug, )= g 20

Definition 2. Incentive compatibility. A mechanism is incentive compatible if
truthfully reporting the arrival deadline, non-detour value, and detour discounting rate is

optimal for any passenger regardless of other passengers’ reporting strategies.

U, <U,, forany ge P (25)

where U g' is passenger(s) g’s utility if he misreports DL, V;™*, and/or a,, and U,

is passenger(s) g’s utility if he truthfully reports DL,, V™, and a,.

Proposition 3 The mechanism M(X ;do , p) is incentive compatible.

Proof:
We assume that if any passenger(s) g misreports DL, V,”*, and/or ay, the optimal

vehicle-passenger matching and vehicle routing plan (i.e. the optimal solution of model
Md,) becomes Y,;do . The system will mistake passenger(s) g’s actual value (VA, (Yh;dO ))
for VA, (Y,\’,:dO ) . Note thatthe system uses all passengers’reported informationas input data

to calculate the prices regardless of the truthfulness.

It can be easily proved that the optimal solution X;,ldg of model Md, remains
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constant no matter what passenger(s) g reports. This is because in model Md,, passenger(s)
g 1s not served by any vehicle, and thus the model Md, is independent of passenger(s) g’s

reported values. Then the price is

Py = (Xos, )= ' (Yo, ) +VA (Yo, )

where /(Yo )= > VA (Yuq J*VA; (Yug, )+ D PC [1— A j ~TC (Y, )-

ieP,iz=g ieP keVv
We discuss two subcases:

1) Passenger(s) g is unable to arrive at the transit hub before the actual arrival
deadline given the matching and routing plan Y,;,do . Thus, passenger(s) g’s requirement is
not satisfied while he could have arrived at the transit hub in time if he had truthfully

reported the deadline. Truthful report is the best strategy for this case.

2) Passenger(s) g can arrive at the transit hub before the actual arrival deadline

given the plan Y,J,do . For this case, Yh;do is a feasible solution of model Md,. Given the

misreported information, passenger(s) g’s utility is

Ug( Mdofpg) VAg( Mdo)
= f'(YMdO )_VAg; (YMd0 )+VA9 (Y’\;do )_ f (x:"dg )
= 1 (Yo, )~ F (X0, )

In this case, Yh;do is a feasible solution but not necessarily the optimal solution of
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model Md, while X ;,ldo is the optimal solution of model Md,, if passenger(s) g truthfully

reports his value. Thus,

Thus, we have
LG(Y@MPJ)=f(Y@%)—f<X;d)Sf(X;%)—f(XQd)=Ug(XQ%,m)

This indicates that truthfully reporting the mobility preference is passenger(s) g’s

weakly dominant strategy regardless of other passengers’ reporting strategies.

Definition 3. Price controllability. A mechanism is price controllable if the
following condition is satisfied. If any passenger(s) g is served by a vehicle, the price is
greater than or equal to the baseline price PC,; otherwise, the price is zero.

=0, if passenger(s) g is not served
g (26)

> PC,, if passenger(s) g is served

Before proving that the mechanism has the property of price controllability, we
define the concept of “transition solution”, which will be used in the proof of price

controllability.
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Definition 4. Transition solution. Y, = 7S, (X) is the g'" transition solution from a
feasible solution X of the model Md) to the corresponding feasible solution Y, of the model

Md,, if the transition process is given by Algorithm 2.

Algorithm 2 Obtain the transition solutions Y, = 7S, (X)

Inputa solution X= {x;/, y£, z/, wt};

Let Y, =X,

If Zkev y; =1
Find k thatyf=1;
IfzF=0o0rwg =0
If z,f =
Findj thatx,* =1 and let x,/*=0;
Letzf=1;
Else
If wgk =
Find i thatx;, =1 and let x;/f= 0;
Let wr=1;
Else
Find i thatx;,* = 1 and let x;/*=0;
Findj thatx,* =1 and let x,/*=0;

Let x;*=1;
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End if
End if
Let yot=0,z5 =0, wek = 0;
End if

Output Y.

Transition solution can be described as follows. If passenger(s) g is not served by
any vehicle in solution X, the gth transition solution of X is identical with X. If passenge(s)
gis served by avehicle in solution X(shown in Figure 5.5), in the transition solution 7:S,(X),

the vehicle gets rid of passenger(s) g and the remaining routing plan keeps unchanged.

Passenger(s) Passenger(s) g

. . Transition solution (TSy(X)) of X, which
A feasible solution X of model Md, is feasible to model Md,

. Transit hub ‘ Served passengers

AVehicIes ‘ Unserved passengers

Figure 5.5 An Example of Transition Solution

Proposition 4 If Y, = 7S, (X), for any g€ P, the transportation cost 7C(Y,) < TC(X).

The proofis shown in Appendix A.
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Proposition 4 will be used in the proof of Proposition 6.
Proposition 5 If Y, = TS, (X), for any ge P, Ziep\gVA (X)<>. VA (Yg ) .

The proof'is presented in Appendix A.
Proposition 5 will be used in the proof of Proposition 6.
Proposition 6 The proposed mechanism is price controllable.

Proof:

If passenger(s) g is not served in the plan X :/'do , VA, (X,T,ld0 ) =0 and it is obvious

that Xy, = Xyq, . Then

Py = (Xag, )= T (Xou, ) +VA, (Xis, ) =0

Now we consider that passenger(s) g is served in the plan X ,f,ldo . Let Y," be the gth
transition solution of X , i.e. Y, =TS, (X:,,d0 ) . Since Y,* is a feasible solution of model

Md, while X :Adg is the optimal solution of model Md,, we have f ( Md ) > f (Yg*) )

Py = (X, )= f (X, )+ VA, (Xi,)
> £y )= (Xhg, )+ VA (Xig,)

:PC9+(ZVA(Y) > VA (X )]( C(Xq,)-TC(Y;))

ieP ieP\g

Based on Propositions 4 and 5, respectively, we have
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*

Tc(deo )—Tc (v

*

)>0

and

Y VA (Y, )= D VA (X, ) 20.

ieP ieP\g

Thus, we have

p, =2 PC,.
]

Definition 5. Detour-discounting reasonable. The mechanism is detour-
discounting reasonable if the following condition is satisfied. If passenger(s) g (for any g
€ P) places a stricterrequirement on detour (i.e. a, is increased), as long as this passenger(s)
is still served by a vehicle, then

1) this passenger(s)’ extra in-vehicle travel time will either remain constant or
decrease, and

2) the price will either remain constant or increase.

Using mathematical expression: when a, = a4, the optimal vehicle-passenger
matching and vehicle routing plan is X~ and the price is p-, and when a, =a,", the optimal

vehicle-passenger matching and vehicle routing plan is X* and the price is p*. If a,* > a,

EIVT(X") > EIVT,(X*) and p- <p*.
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Proposition 7 The mechanism M(X ;do , p) is detour-discounting reasonable

Proof:

There exists aset {ay!, ... ,a5k, ..., 0,5}, where oK > ak!1 > ... > qa,! are transition
points of passenger(s) g’s detour discounting rate o, through which the optimal matching
and routing plan changes (Note that we only consider the situation in which passengers are
still served by one vehicle according to Definition 5). When a, is varying within the range
[agk, a l1] for any k, the optimal plan of model Md, does not change. When a, is varying
beyond the range [a,f, a,5"!], the optimal plan changes.

Assume that passenger(s) g (for any g€ P) increases a, from a, to a,". We only
need to prove two sub-propositions below, and then Proposition 7 can be proved.

1) Ifboth a," and a,~belong to [agk, a '], forany k=1,2, ..., K— 1, passenger(s)
g’s extra in-vehicle travel time and price do not change.

2)Ifa, €lal !, al] and a," € [af, a 1], forany k=2, ..., K—1, passenger(s) g’s
extra in-vehicle travel time is non-increasing and his price is non-decreasing.

For the first situation, since the optimal matching and routing plan does not change,

passenger(s) g’s extra in-vehicle travel time does not change as well. In the price

*

calculation p, = f (X,’:,,dg )— f (X,’;ldO )+VAg (X,’:,ldo) , f (XMdg ) is independent of
passenger(s) g’s reported detour discounting rate ag. Thus f (X,;dg ) remains constant.
Moreover, f (X,t,,do ) —VA, (X,’\’,,d0 ) = Ziep\gVA -TC+ Ziep PC, (1— Zkev yik) also remains
constant because all other elements do not change due to the constant of the optimal plan.

Thus, the price remains constant.

Let us prove the second situation. Let F(a,) = X", a,) denote the objective
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function value of model Md, given that X~ is the optimal plan when o, = a5€ [0, agf].
Let F*(ag) = AAX"", ag) denote the objective function value of model Md, given that X** is
the optimal plan when a, = og" € [0g%, ag'!]. Both F(ag) and F*(a,) are denoted as

functions of a,. Based on Formulas (1) and (5), we have

dF- )
9 @) _ evir(xY. and
ag
dF .
9F @) _ e x
da

9

Let o™ = agk + Aog (Aag > 0). Then

F(ag") = F (0t + Aag) = Fr(ag) — AagEIVT,(X™)

F(ag") = F(a+ Aag) = F(0g) — AaEIVT(X™)

Since

Fiag ) =X, ag") 2 X, ag") = F(a")

thus,

F(agh) — AagEIVT(X+*) > F(agX) — AaEIVT(X)
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Itis obvious that F*(a,’) = F(a,’) because a,tis the transition point of passenger(s)
g’s detour discounting rate a,, through which the optimal matching and routing plan

changes. Thus
ElVT(X™) S EIVT(X)
Let pf* represent passenger g’s price when his detour discounting rate a, = o and
the optimal plan is X**. Since when a," belongs to [aF, a"!], the price, denoted as p,*,

remains constant if the optimal plan X** does not change as we proved in the first situation,

then

P =Py = (Xug, )= F (X p) +VA (X )

Let p '~ represent passenger g’s price when his detour discounting rate a, = a,* and
the optimal plan is X~*. Since when a,~ belongs to [a,F!, at], the price, denoted as pg,

remains constant if the optimal plan X~ does not change, then

p, = p* = f(x;dg)— F(X 7 af)+VA (X" al)

Based on Formula (1), VA, (X TLa, ) <VA, ( X", ay ) since EIVT(X™*) < EIVT (X~

*). Moreover, it is obvious that f (X TLa, ) =f (X Ty ) . Thus,
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* *

b = (X, )= F (X7 af)+VA (X7 ab)2 £ (X, )= F (X ey ) +VA (X7 af) = p,
m]
Finally, our mechanism can ensure that different requests with identical mobility
preferences (i.e. arrival deadlines, non-detour values, and detour disvalues) sent from the
same location within the same time slice can have the same service and are charged with
identical prices if they are all served by the same vehicle. This property can be
mathematically represented by Proposition 8.
Proposition 8 We have p; = p; for any two passengers 7 and j, satisfying that DL, =
DL, Vimax = Ymax g, = q;, L; = L;, and rt; and rt;e TS), and there exists a vehicle & that y*
=y =1, where L; and L; are passengers i’s and j s locations, respectively, 7¢; and rt,,
passengers i’s and j s request times, are within the same time slice 7.5},
The proof'is presented in Appendix A.
However, we cannot easily tell whether two passengers in the same origin with
different mobility preferences will be charged with the same or different prices. We use

two examples for demonstration (see Appendix B.2).

5.6 Solution Approaches

This section proposes solutionapproaches for small-scaleand large-scale problems,
respectively. The optimization models, including Md, and Md,, for all ge P, have already
been reformulated as mixed integer linear programming (MILP). When the problem scale
is small, the models can be solved exactly by the commercial solver “CPLEX” in the
software AIMMS using a Branch and Bound algorithm.

However, because these models are all NP-hard, exact algorithms are unable to
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solve these models in polynomial time. Thus, we design an efficient heuristic algorithm,
solution pooling approach (SPA), to solve large-scale on-demand ridesharing problems.
SPA is originally proposed by our previous work (Bian and Liu, 2019b) for solving the
scheduled ridesharing mechanism design problem. In this chapter, we adapt the original
SPA algorithm to the on-demand scenario. We will theoretically prove that SPA is able to
sustain the properties of “individual rationality”, “incentive compatibility”, and “detour-
discounting reasonability” in the following sections. In comparison, other traditional
heuristic algorithms may not sustain these properties. Note that SPA can simultaneously
handle the n+1 optimization models (one model Md, and » models Md,) in the designed
mechanism, where n is the number of passenger requests in a time slice, whereas traditional
heuristic algorithms have to solve these models one by one. Therefore, it is expected that
the SPA is more computationally efficient than traditional heuristic algorithms.

The basic idea of SPA is to pre-generate solution pools for the corresponding

models and select the best solution from each solution pool. We denote the solution pools

of models Mdoand Md,as Xpooly,, and XpOOl,\,Idg , respectively. The methodto generate

solutionpools Xpool,,, and XpOOl,\,Idg canbedescribed as follows. First, SPA generates

an initial solution pool Xpoo! for the optimization model Md (see Algorithm 3). Second,
Algorithm 2 is used to generate gth (for all ge P) transition solutions of each solution in

Xpool. These transition solutions form the solution pool Xp00|Mdg for each ge P. Finally,
all solutions in XpOOIMdg for all g P are combined into the initial pool Xpoo/to form a

new solution pool Xpool,,, of model Md.

All solution pools should be pre-generated and passengers’ reported arrival deadlines (DL)),
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non-detour values V;"*, and detour discounting rates a; do not influence the generation of
the solution pools. Accordingly, the generation of solution pools XpoolMdg (forall ge P)

and Xpool,, isindependent of passenger(s) g’s report of the mobility preference. In this

way, the mechanism obtained by SPA is incentive compatible (please refer to the proof of
the incentive compatibility proposition, Proposition 10, of the SPA). The generated
solutions in each solution pool can satisfy all constraints except the arrival deadline
constraint (Formula 11) since we do not use passengers’ reported arrival deadlines as input

data. The generated solutions may be infeasible to their corresponding models. Thus, we

select the best feasible solution XP,JldO from Xpool,,, which is adopted as the matching
and routing plan. Similarly, the best feasible solutions XP,\’:,dg are then selected from the

solution pools Xpool,,, forall ge P to calculate all passengers’ prices (Formula 27).
dg p

Figure 5.6 shows the logic flow of the SPA to obtain the mechanism.

0, {f (XP“’;dg )— f (XP&%)+VAg (XP@dO),passenger(s) g is served o7

0, passenger(s) g's request is rejected
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Figure 5.6 Flow Chart of SPA in Obtaining the Mechanism

We propose two strategies to improve the quality of the selected solution from the
obtained solution pool of Md,: 1) generate a large enough number of solutions in the
solution pool Xpool; 2) randomly and periodically simulate virtual parameters (DL;, V",
and «;) that are used to direct wide-range generation of the solutions. This simulation
strategy is inspired by our previous work (Bian and Liu, 2018b). Algorithm 3 gives the

pseudocode of the solution pool generation algorithm.

Algorithm 3 Generation of solution pool Xpool

Input the total number of iterations (NI), number of iterations in each period (NIP)

for updating DL;, Vi™> and «j, number of candidate solutions (CN), number of
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solutions (NS) assigned into the solution pool for each iteration, and all other

parameters of the problem;

Initialize a feasible solution Xqto the model Mdg as the current solution Xcyrrent, the

virtual values of DL;, Vi" and q;, it = 0 (current number of iterations), pit = 0

(current number of iterations in one period), and the empty solution pool Xpool,;
Do while it < NI
If pit>NIP
pit =0;
Randomly re-generate virtual values of DL;, Vi", and «;;
End if

Generate CN candidate solutions {Xi, Xa,..., Xcn} OF Xeurrent 'S N€IghbOTrS;

Calculate {Af(Xy1), Af(X2),..., Af(Xcn)} (AFQX) = £ (Xi) — f (Xaurrent)) @and record the

subscript opt, where Af(Xopt) = max{Af(X1), Af(Xy), ... , Af(Xcn)}

Randomly select NS solutions from CN candidate solutions {X1, X,,..., Xcn} and

put them into the solution pool Xpool;
Do while Xy is in tabu list
Select the suboptimal solution as Xop from {Xz, Xo, ..., Xcn};
End do
Xeurrent = Xopt;
Update the tabu list;
it=it+1;
pit = pit + 1;

End do
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Output Xpool.

Finally, we use Algorithm 4 to get the mechanism, including the optimal matching

and routing plan and all passengers’ prices.

Algorithm 4 SPA to the mechanism

Input the solution pool Xpoo!/ obtained by Algorithm 3 and all parameters of the
problem;
Forg=1:n
Use Algorithm 2 to get the gth transition solutions of all the solutions in Xpool
as the solution pool of Md,, XpoolMdg .
Xpooly, = {Yg Y, =TRS, (X;), forall X; e Xpool} ;
End for
Put all XpoolMdg into Xpooly,, : Xpooly, = {Xpool, XpoolMdg (forallg e P)} ;
Select the best feasible solution XF’,\;dO from Xpool,, that

XP,:;IdO =argmax f (X), X e Xpool,,, and satisfying arrival deadline constraint
(Formula 11);
Forg=1:n

Select the best feasible solution XF’;,:dg from Xpool,\,Idg that

XPM*dg =argmax f (X), X € Xpool,,, and satisfying arrival deadline

constraint (Formula 11);
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If DY =0
Pe=0;
else
Py = f (XPa, )= T (X, )+VA, (XPyy, ):
End if
End for

Output the optimal solution XP,\’,:do and all passengers’prices p = { P Py pn} .

Before conducting the theoretical analysis for SPA, we do the following

reformulation for the SPA algorithm.

XP,\’,:do is the best feasible solution selected from the solution pool Xpool,,, , and

thus XP,\;]do can be defined as the optimal solution of the optimization model below. We

denote this model as Mdp,.

Objective function: Formula (5):

max £(X) = VA (X)- T+ 3PC [ 1- X |

ieP ieP keVv
Subject to constraints: Formulas (6-11, 13, 15, 17-21) and Formula (28):

X € Xpool,,, (28)
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We denote the region constrained by Formulas (6-11,13, 15, 17-21) as Cy. Thus, a
feasible solution X of model Mdp, can be represented by X € C, () Xpool,q -

Similarly, XP,\’:Idg is the best feasible solution selected from XpOOI,\,Idg . It can be

defined as the optimal solution of the model below (Mdp,).

Objective function: Formula (5):

max f (X) =D VA (X)-TC(X)+>_PC, (1—Zyikj

ieP ieP keVv
Subject to constraints: Formulas (6-11, 13, 15, 17-22), and Formula (29):

X € Xpool,, (29)

We denote the region constrained by Formulas (6-11,13, 15, 17-22) as C,. Thus, a

feasible solution X of model Mdp, can be represented by X €C, N XpOOIMdg )

Proposition 9 The mechanism M( Xl:’h;]do , p) obtained by SPA is individual rational.
The proof'is presented in Appendix A.
Proposition 10 The mechanism M( XP,JldO , p) obtained by SPA is incentive

compatible.

The proof'is presented in Appendix A.
Proposition 11 The mechanism M( XPM*do , p) obtained by SPA is detour-

discounting reasonable.
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The proof'is presented in Appendix A.

If the mechanismis obtained by SPA, the price may be lower than the baselineprice.
The property “price controllability” may not necessarily be true for the SPA algorithm, and
we use mathematical deduction to show the reason.

From the proof of Proposition 6 (price controllability), we can summarize that the

proposition is valid because three conditions are satisfied: 1) f (X,T,ldg ) > f (Yg*) , Where
X;,ldg Is the optimal solution of model Mdg and Y;" is the gth transition solution of X,;do :
Yg* =TS, (X,’f,,d0 ) ; 2) Proposition 4; and 3) Proposition 5. Proposition 4 and Proposition 5

are generalized and are always true, but the first condition is not necessarily valid if the

mechanism is obtained by SPA. Let XP“’:,dg denote the optimal solution of model Mdpy
obtained by SPA, and YR} =TS (XPy, ), where XPy, isthe optimal solution of model
Mdp, obtained by SPA. The inequality f(XP@dg)z f(YP,) is not necessarily true,
because although XP“’,*,dg is the best feasible solution selected from solution pool
XpoolMdg , YPg* IS not necessarily in the solution pool XpoolMdg . Thus we cannot
guarantee that XPM*% IS superior to YPg*. Even so, it can be easily proved that
p,=PC, +f (XP,:;,dg )— f (YPg*) . Generally, evenif f (XP,:;,dg )— f (YPg*) is possible to be

negative, it is very close to zero, and the price will not be significantly smaller than the
baseline price, as shown in Section 7 via the numerical examples.
We use a simple example to straightforwardly show why the price controllability

may not hold (see Appendix B.3).
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5.7 Numerical Examples
5.7.1 Experimental Setup

We use the solver CPLEX in the software of AIMMS (https://aimms.com/english/

developers/resources/solvers/) to solve the mixed integer linear programming. The
CPLEX solver uses the branch and bound algorithm to solve mixed integer linear
programming. [tcan obtain the exactsolution when the problem scale is small. We also use
our developed SPA to solve both small- and large-scale problems and compare the results
with CPLEX.

Besides CPLEX, we also compare SPA with another heuristic algorithms, Hybrid
Simulated Annealing and Tabu Search (HSATS), which has been shown to outperform
many other heuristic algorithms (e.g. simulated annealing, tabu search, genetic algorithm,
ant colony optimization, and particle swarm optimization), for solving routing problems
(Lin etal., 2016). The numerical analysis is run on a Dell computer with processor Intel(R)
Core(TM) 17-4790 CPU @ 3.60GHz and 8 GB RAM.

5.7.2 An Illustrative Example

This section develops an illustrative example via computer simulation to interpret
the mechanism results.
7.2.1 Data setting

Since the rolling horizon planning approach continually processes passengers’
requests, we use one hour (e.g. from 8:00 am to 9:00 am) to present mechanism design
results. In this numerical example, we start to simulate 60 passengers’ requests after 8:00

am. The locations of all passenger requests are randomly and uniformly generated in an
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annular region. The radius of inner circle of the annular region is set to one mile, » = 1,
indicating a walking distance. The radius of outer circle of the annular region is set to 6
miles. Passengers’ requesting times are uniformly generated between 8:00 am and DL; — ty
— pt — 20 minutes, where DL; is passenger i’s arrival deadline, # is the shortest travel time
to the transit hub, pt is the anticipated pickup time span, and the “20 minutes” is a buffer
time within which passengers are waiting to be picked up (Figure 5.7). Passengers’ arrival
deadlines are randomly and uniformly simulated within the time interval from 8:40 am to
9:00 am. The maximum response time span is set to 2 minutes. Note that these values are

used for illustrative purpose. They can be adapted to different practical scenarios.

Estimated pickup time The arrival
span (pt " 2 minutes) deadline (DL,)

mme- | 11 S }---

Passengers’ requesting [ The buffer time within T T The shortest travel time ] Time horizon

time, randomly and Whi_Ch passengers are to the transit hub (z,)
uniformly simulated waiting to be picked up
(set to 20 minutes)

Figure 5.7 Set of Passengers’ Requests

After the simulation of passengers’ requests, the rolling horizon planning approach
determines 9 time slices automatically based on the occurrence ofthese passenger requests.
The information of the 9 time slices is presented in Table 5.2. The number of available
vehicles (m) at the end of each time slice is randomly generated from a uniform distribution
within the interval [2, 6]. The vehicle locations are randomly and uniformly generated in
the same annular region as well. Note that the mechanism is not based on the assumption

that available vehicles are randomly distributed. Only in the numerical example, we use
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simulation to randomly generate the available vehicles in order to demonstrate that our

mechanism can determine the matching and routing plan as well as the prices wherever the
available vehicles are. Among the m vehicles, (rand x1/3x m1 vehicles are not available

immediately, but will be available 10 x rand minutes after the end of each time slice, where

“rand” is a number uniformly distributed within (0, 1), and the bracket “ |_ —| ” gets the

minimum integer greater than or equal to the number in this bracket. The restofthe vehicles

are available immediately at the end of the time slice.

Table 5.2 Time Slice Information

The information of Time slices

each time slice 1 2 3 4 5 6 7 8 9

Start time 8:00:10 8:02:18 8:04:54 8:06:57 8:09:10 8:11:39 &8:13:49 8:15:49 &:18:32

End time 8:02:10 8:04:18 8:06:54 8:08:57 8:11:10 8:13:39 8:15:49 8:17:49 8:20:32

Number of
7 10 6 9 4 6 6 5 7
passenger requests
Number of
4 5 6 4 3 6 2 6 5
available vehicles

The coordinate of the transit hub is (0, 0), located in the center. For convenience
but without losing generality, the travel distance between two locations is set to the
Euclidean distance in miles. The transportation cost between two locations is proportional
to the Euclidean distance (c¢; = 0.5d;;, i€ PUV and je PU H). Note that this numerical

example uses Euclidean distance only for illustrative simplification in order to illustrate
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how the mechanism is obtained. Our mechanism design model is suitable for any type of
distance, which does not depend on the Euclidean distance assumption.

The travel time between two locations isnotnecessarily proportional to the distance.
Thus, we use a different method to generate travel time between two locations. Virtual
coordinates (xv;, yv;) of locations are generated, which satisfy xv,=x;+¢and yv,=y;+ ¢,
where (x;, y;) is the real coordinates of passenger locations, vehiclelocations,and the transit
hub. & is normally distributed with the mean of “0” and variance of “0.1”. ¢ 1is

randomly generated by the computer. The travel time between i and j is set to

2

2
tij=2.5\/(XVi—XVj) +(yVi—ij) + 2. “2.5” represents that the vehicle needs

approximately 2.5 minutes to travel per mile. The pickup time span, which is set to 2
minutes, is included in the travel time, and thus the travel time is added by “2”.

For simplicity, we assume that each request has only one passenger (np;=1, for all
i€ P). All vehicles can pick up atmost4 passengers(Q=4). Passengers’ maximumwilling-

to-pay prices for direct shipment (non-detour values) are determined by V"™ =2¢,0+ ¢,
where &, is randomly generated from a normal distribution with the mean of “4” and

variance of “1”. Passengers’ detour discounting rate o; is randomly generated from a
uniform distribution within the range of [0, 0.5]. The constant initial fee in the baseline
price (PC;) is setto 1.5 dollars (¢f= $1.5), and the distance rate is 0.5 dollar per mile (dr =
0.5 dollar/mile), so PC; = 1.5+ 0.5 x d;y. Note that our methodology is not limited to the
input data of this numerical example, and other values can be used as well.

7.2.2 Results of the mechanism

Table 5.3 presents the results of the three solution approaches, CPLEX, HSATS,
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and SPA. The results of the mechanism obtained by HSATS and SPA are entirely identical
with those obtained by the exact solver CPLEX, including the optimal matching and
routing plan (identical objective functions values of model Md,) and all passengers’ prices,
for the initial small-scale problem.

Table 5.4 presents the computing times of CPLEX, HSATS, and SPA. Except for
the second time slice with the relatively largest-scale problem (10 passengers and 5
vehicles), CPLEX can solve the mechanism design problem very fast because the scales of
all these problems are small. SPA and HSATS do not have superiority over the commercial
solver CPLEX in solving small-scale problems in terms of computational efficiency.
However, as we will show in Section 7.3, the SPA can solve large-scale problems much

faster than the CPLEX solver and HSATS.

Table 5.3 Results of CPLEX (Branch and Bound Algorithm), HSATS, and SPA, for

Small-Scale Problem

Percentages of identical prices,

Objective function values of model Mdo compared with CPLEX branch
Time
and bound results
slices
CPLEX (branch SPA (our SPA (our
HSATS HSATS
and bound) algorithm) algorithm)
1 38.00 38.00 38.00 100% 100%
2 59.35 59.35 59.35 100% 100%
3 31.13 31.13 31.13 100% 100%
4 60.00 60.00 60.00 100% 100%

5 17.38 17.38 17.38 100% 100%
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6 28.69 28.69 28.69 100% 100%
7 32.86 32.86 32.86 100% 100%
8 25.39 25.39 25.39 100% 100%
9 32.23 32.23 32.23 100% 100%

Percentages of identical prices: Percentage of the number of prices obtained by HSATS and SPA

identical with those obtained by CPLEX in the total number of passenger requests.

Table 5.4 Computing Time of CPLEX, HSATS, and SPA

Totalcomputingtime, including optimizationtime and price
Problemsscales
Time calculatingtime (seconds)

slices Number of Number of

CPLEX HSATS SPA (ouralgorithm)
passengers vehicles
1 7 4 1.94 4.73 1.17
2 10 5 24.62 9.23 1.73
3 6 6 1.82 4.04 1.15
4 9 4 247 7.38 1.39
5 4 3 <0.01 1.65 0.50
6 6 6 1.69 4.30 1.14
7 6 2 <0.01 2.55 0.57
8 5 6 0.01 3.51 0.97
9 7 5 2.29 5.17 1.18

Figure 5.8 presents the results of the mechanism, including optimal vehicle-
passenger matching and vehicle routing plans and passengers’ prices, for the nine time
slices. There exist two phenomena in these figures that need to be explained.

1)  Most passengers are served by vehicles, with only a few passengers being

rejected by the service. There are three possible reasons for service rejection: a) the
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passenger’s value (maximum willingness-to-pay price) is so low that the passenger is
unwilling to pay the charged price if he is served by any vehicle; b) available vehicles
might be so far away from the passenger location so that there is no enough time for any
vehicle to drive the passenger to the transit hub before the arrival deadline; and c) there are
no enough available vehicles to drive all passengers to the transit hub and thus some
passengers have to be rejected. We use Figure 5.8 (f) (time slice 6) to demonstrate the first
reason. For example, if Passenger 6 is served by Vehicle 6, his price will be $8.41 based
on Formula (23) (pg = PCs + ce6+ co0=4.10+ 1.71 + 2.60 = $8.41), greater than his
maximum willing-to-pay price $8.26. Thus, he is unwilling to pay the price and is rejected
to have the service. Figure 5.8 (h) (time slice 8) can illustrate the second reason. The closest
available vehicle to Passenger 3 is Vehicle 5. Vehicle 5 can drive Passenger 3 to the transit
hub by 8:49 pm as earliest, but Passenger 3’s preferred arrival deadline is 8:47 pm. Thus,
available vehicles do not have enough time to drive Passenger 3 to the transit hub before
his arrival deadline and the passenger is rejected to take the service. The third reason can
be inferred from Figure 5.8 (d). Passenger 1 is not served because no vehicles are available
to drive him to the transit hub. In practice, these unserved passenger’ requests can be
transmitted into the next time slice for re-matching and some vehicles may be available to
serve them.

2) There exist some cross routes that do not achieve the minimization of
transportation cost. This is because passengers’ detour tolerances (a;) affect the
optimization of vehicle routing. Take Figure 5.8 (b) as an example. The route of Vehicle 5

is “Vehicle 5 — Passenger 8 — Passenger 1 — the transit hub”, in which “Vehicle 5

— Passenger 8” crosses over “Passenger 1 — the transit hub”. It is obvious that another
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route “Vehicle 5 — Passenger 1 — Passenger 8 — the transit hub” is shorter and thus

has less transportation cost (in our numerical example, the transportation cost is
proportional to the travel distance). Vehicle 5 does not adopt the route with less
transportation cost because Passenger 1 dislikes detour much more than Passengers 8 does

(a0 = 0.40, ag = 0.16). The increased passengers’ total value can compensate for the

increased transportation cost when adopting the longer routing plan (Vehicle 5 —
Passenger 8 — Passenger 1 — the transit hub) instead of the shorter routing plan

(Vehicle 5 — Passenger 1 — Passenger 8 — the transit hub).
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Figure 5.8 The Vehicle-Passenger Matching, Vehicle Routing Plan, and the Prices for

All Time Slices

Table 5.5 summarizes the results of the mechanism. Only 26 vehicles are dispatched
to drive 52 passengers to the transit hub. The total transportation costis $93.07. In total,
239.58 dollars are collected from 52 passengers. On average, a passenger pays 239.58/52
= $4.61 and one vehicle collects 239.58/26 = $9.21. If all passengers take the taxi service
without sharing the ride with others, 52 vehicles should be dispatched to drive the 52
passengers to the transit hub (assuming that each vehicle picks up one passenger). The
ridesharing can save half of the vehicles dispatched. The total price collected from all

passengers $239.58 can well cover the $93.07 transportation cost.

Table 5.5 Summary of the Mechanism Results

Time slices 1 2 3 4 5 6 7 8 9 Total
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Number of passenger

requests

Number of served

passengers

Number of vehicle

trips
Social welfare ($) 38.01 59.35 26.68 56.06 17.38 24.59 25.39 21.17 26.36 294.99

Total transportation
9.93 1520 9.20 19.63 7.81 9.56 7.08 5.88 8.78 93.07
cost ($)

Total collected price

3)

27.49 39.73 24.07 44.24 19.77 22.86 18.89 15.97 26.56 239.58

The net profit($) 17.56 24.53 14.87 24.61 11.96 13.30 11.81 10.09 17.79 146.52

Note that if we consider the vehicle availability dynamics and occurrence of
potential passenger requests in our mechanism, we anticipate that the system will serve
more passengers, provide passengers with more incentive, and achieve larger social welfare.
We use an example (Appendix B.4) for demonstration.

Figure 5.9 presents served passengers’ maximum willing-to-pay prices without
detour (V7*), actual maximum wiling-to-pay prices (VA4;) given the optimal vehicle-
passenger matching and vehicle routing plan, the actual paid prices (p;), and the baseline
prices (PC;). In Proposition 2, we already proved that the mechanism is individual rational.
This is reflected in Figure 5.9. The red line is below the blue line, indicating that all

passengers’ actual paid prices are lower than or equal to their maximum willing -to-pay
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prices. Recall that Proposition 6 indicates that passengers’ actual prices are always greater
than or equal to the baseline prices if the passengers are served (for price control purpose

to avoid service deficit). Figure 5.9 canalso validate this (actual price versus baseline price).
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Figure 5.9 All Served Passengers’ Non-Detour Values, Actual Values, Actual Paid

Prices, and the Baseline Prices

Figure 5.10 demonstrates the property of “incentive compatibility” (Definition 2).
We select Passenger 9 in time slice 2 as an example (Figure 5.10a) to show that truthfully
report non-detour value and detour discounting rate is a passenger’s best strategy.
Passenger 9’s truthful non-detour value is $7.42 (Voma = 7.42) and his truthful detour
discounting rate is 0.46 (a9 =0.46). If he intentionally decreases the non-detour value, his
utility initially remains constant and then decreases to zero. This is because initially the
price does notchange, and then the passengerisrejected by the service and the utility drops

to zero when the non-detour value decreases to an enough low value. Similarly, Passenger
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9’s truthful acceptable detour discounting rate is 0.46 (a9 = 0.46). If he intentionally
increases the detour discounting rate, his utility initially remains constant and then
decreases. Initially the price does not change. When the detour discounting rate increases
to large enough, Passenger 9 has less detour and thus the price increases, leading to the
decrease of his utility. In Figure 5.10(b), we take Passenger 1 in time slice 9 as an example
to show that truthfully reporting the arrival deadline is also a passenger’s best strategy. If
Passenger 1 misreports an earlier arrival deadline (< 8:40 am) instead of the true one (8:40
am), the price will either remain constant or increase, and thus his utility either remains
constant or decreases. When the passenger misreports a very early arrival deadline, there
is no enough time for any vehicle to drive him to the transithub. The request will be rejected
and his utility drops to zero, but he could have been served if he had truthfully reported the
arrival deadline. If the misreported arrival deadline is later than the true one (> 8:40 am),
the passenger may be unable to arrive at the transit hub before his actual arrival deadline.
We deem that the passenger’s maximum willing-to-pay price is zero if his requirement is
not satisfied, but he still has to pay a positive price. Thus, his utility is negative. Therefore,
misreporting can never help this passenger to obtain a larger utility than the truthful

reporting. This property is valid for all of the other passengers as proved in Proposition 3.
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Figure 5.11 and Figure 5.12 demonstrate “detour-discounting reasonability”
property (Definition 5). We use time slice 2 (the largest scale among the nine time slices)
as an example to show this property. As passengers are less tolerant of detour (i.e. they
increase the detour discountingrate a,), all passengers’in-vehicle travel times either remain
constantordecrease as their a, increase. Figure 5.12 shows that passengers’ prices are non-
decreasing as the passengers are less tolerant of detouring. Note that Passengers 3 and 5

are rejected by the service as their a, increase to large enough, causing their prices to drop

to zero.

14 T T

—E— Passenger 1

2 —#— Passenger 2

Passenger 3

i
S
]

—A— passenger 4

©
]

Passenger 5

—<&— Passenger 6

)
]
—O

i —&— Passenger 7

4 —*— Passenger 8

Extra in-vehicle travel time (EIVTg )

—*— Passenger 9

Passenger 10

o “‘.6.%.‘-““.‘ ‘.A‘n.‘n“‘..‘“‘nAl‘n.‘“‘n.‘ ‘n.‘n.‘-“-‘n.‘-i.‘-nj‘“é“-‘.mi.‘-n“-‘.; il nx.;z
Served passengers' detour discounting rate (ag)

Figure 5.11 Changing Extra In-Vehicle Travel Time as Passengers Become Less

Tolerable of Detour



184

8 T T T T T T T T T T T

—O— Passenger 1

—#— Passenger 2

Passenger 3
—A— passenger 4

Passenger 5

—<4— Passenger 6

Prices (dollars)

—o— Passenger 7
—¥— Passenger 8

—*— Passenger 9

1 Passenger 10
0 [ [ ‘f I I I I I I [ [
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 22 2.4

Served passengers' detour discounting rate (ag)

Figure 5.12 Changing Prices as Passengers Become Less Tolerable of Detour

7.2.3 Comparison of MPMBPC with traditional VCG mechanism

This section makes a comparison between the traditional VCG mechanism and the
proposed MPMBPC mechanism. Table 5.6 presents the comparison results using the
designed numerical example.

eFrom the results, VCG mechanism serves 55 passengers, slightly more than the
MPMBPC mechanism does (52 passengers). In VCG mechanism, as long as a passenger
can contribute to the increase of social welfare (summation of passengers’ values minus
the service provider’s transportation cost), this passenger will be served. In contrast, with
the baseline price control component, some passengers with unreasonably low values can

be rejected by the MPMBPC mechanism.

eThe VCG mechanism dispatches 28 vehicles and the MPMBPC mechanism

dispatches 26 vehicles. The transportation cost of the VCG mechanism is $102.97, which
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is slightly larger than that of the MPMBPC mechanism ($93.07). This result indicates that
MPMBPC may reduce transportation cost for the service provider and dispatch fewer
vehicles to the transit hub compared with the VCG mechanism.

eThe VCG mechanism can only receive 90.07 dollars from all 55 passengers,
leading to a $12.90 deficit. In contrast, the collected prices ($239.58) in MPMBPC
mechanism can cover the cost($93.07),indicatingthat MPMBPC mechanism is financially
sustainable without external investment due to the incorporation of baseline pricing
component.

eSince the MPMBPC mechanism includes a baseline price control component in
the objective function, it is not necessarily efficient (i.e. the social welfare may not be
maximized). The last row in Table 5.6 compares the social welfare of the MPMBPC
mechanism with thatofthe VCG mechanism. The largest gap between MPMBPC and VCG
among the nine time slices is 13.84% (time slice 6). The average gap for the nine time

slicesis 1 —294.99/304.30 =3.06%.

Table 5.6 Comparison between VCG Mechanism and MPMBPC Mechanism

Timesslices 1 2 3 4 5 6 7 8 9 Total
Number of passenger requests 7 10 6 9 4 6 6 5 7 60
Numberofserved VCG 7 10 6 8 4 6 4 4 6 55
passengers MPMBPC 7 10 5 8 4 5 4 4 5 52
Number of vehicle VCG 3 4 4 4 2 4 2 2 3 28
trips MPMBPC 3 4 3 4 2 3 2 2 3 26
Totaltransportation VCG 9.93 15.20 14.35 19.63 7.81 13.87 7.08 5.88 9.22 102.97
cost ($) MPMBPC 9.93 15.20 9.20 19.63 7.81 9.56 7.08 5.88 8.78 93.07

VCG 6.09 6.48 12.19 14.03 5.77 11.77 9.67 4.16 19.91 90.07
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Totalcollected price

$)

MPMBPC 27.49 39.73 24.07 44.24 19.77 22.86 18.89 15.97 26.56 239.58

VCG -3.84 -8.72 -2.16 -560 -2.04 -2.10 259 -1.72 10.69-12.90
The net profit ($)
MPMBPC 17.56 24.53 14.87 24.61 11.96 13.30 11.81 10.0917.79146.52

VCG 38.01 59.35 29.30 56.06 17.38 28.54 25.39 21.17 29.10304.30
Socialwelfare ($)
MPMBPC 38.01 59.35 26.68 56.06 17.38 24.59 25.39 21.17 26.36 294.99

Figure 5.13 compares the VCG mechanism with MPMBPC mechanism. The
MPMBPC mechanism can avoid unreasonable low prices because of the baseline prices
(the prices in the brackets in the figure, which are calculated by Formula 4). Note that the
matching and routing plan of VCG is not necessarily always identical with that of

MPMBPC in all scenarios and Figure 5.13 just shows a coincidence.
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Figure 5.13 The Matching and Routing Plan and the Prices of the VCG Mechanism

and the MPMBPC Mechanism (Time Slice 1)
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5.7.3 Large-Scale Numerical Examples

In this section, we extend the numerical analysis to a larger scale with more
passengers and vehicles. In some regions with high population density (e.g. Manhattan in
New York City), it is possible that many passengers will send requests for the first-mile
ridesharing service within a short time interval in peak hours (e.g. 8:00 am - 9:00 am on
weekdays). The mechanism design problem in each time slice is similar, so we only show
the result of one time slice for illustrative convenience.

The basic rule of parameter setting is to generate the parameters as randomly as
possible so that the results can demonstrate the adaptability of the proposed mechanism in
a variety of real-world scenarios. We design eight numerical examples with the number of
passenger requests increasing from 15 to 50 by the interval of 5. It is based on the NYC
taxi data that we determine the example with 50 passengers as the largest scale. We find
that an average of 8555 taxis traveled to the New York Penn Station (one of the busiest
stations in the U.S.) every day. If there are 4 peak hours in one day and we assume that all
taxis traveling to the Penn Station are within the peak hours, then there are 36 trips to the
Penn Station on average within each minute. Considering fluctuation of the trip number,
we set 50 passengers as the largest scale. In order to simulate the short supply of vehicles
in practice, the number of available vehicles is set to half of the number of passenger
requests. We use “N_x_y” to denote a numerical example, where “x” is the number of
passenger requests and “y” is the number of vehicles. In real-world scenarios, it is possible
that passengers’ and vehicles’ locations are distributed near the transit hub with high
randomness. Thus, in this experiment, both passengers’ and vehicles’ locations are

randomly and uniformly generated in an annular region with a one-mile-radius inner circle
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and a 7-mile-radius outer circle. All vehicles are available at the end of the time slice. The
remaining time for driving all passengers to the transit hub is set to 30 minutes for all
numerical examples, which is reasonably long for passengers to achieve the first-mile
travel after sending the requests. The methods of generating other data, including the
location of'the transithub, travel distance, travel time, transportation cost, vehicle capacity,
passengers’ non-detour values and detour discounting rates, and baseline pricing, are
identical with those in the small-scale numerical example in Section 7.2. Some of these
parameters are randomly generated to demonstrate that the mechanism can be adapted for
any random scenario in practice.

We apply the three solution approaches, CPLEX solver, HSATS, and SPA to solve
the mechanism design problems. CPLEX solver can only solve the problemofthe smallest-
scale numerical example, N_15 8. The computing times to obtain the optimal matching
and routing plan and to calculate all passengers’ prices are 8.37 seconds and 109.84 seconds,
respectively. The objective function value of model Mdy obtained by CPLEX is 95.82,
identical with those obtained by HSATS and SPA. However, the CPLEX solver is unable
to solve larger-scale problems within a reasonable amount of time. Thus, Table 5.7 and
Table 5.8 do not present the result of the CPLEX solver, and only present those of HSATS
and SPA.

Table 5.7 compares the performances of HSATS and SPA in solving the matching
and routing problem (model Mdy) and in sustaining the properties of “individual
rationality”, “detour-discounting reasonability”, and “price controllability”. Table 5.7
shows that when the problem scale is relatively small, the solution qualities obtained by

HSATS and SPA are identical (numerical examples N 15 8 and N 20 10). When the
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problem scale increases, the solution qualities of HSATS are slightly higher than those of
SPA, except the numerical example “N_45 23”. The largest difference between SPA and
HSATS in solution quality among the eight numerical examples is only 1.69% (N_50 25).

We use the optimal social welfare produced by the VCG mechanism as a benchmark
to compare with that produced by the MPMBPC mechanism obtained by SPA. The
comparison result is also presented in Table 5.7. The largest gap of the social welfare
between MPMBPC and VCG among the eight numerical examples is 8.18% (example
N_20 10). The average gap of the social welfare for the eight numerical examples is only
1.86%. The small difference in social welfare between VCG and MPMBPC obtained by
SPA indicates the effectiveness of the SPA in sustaining high social welfare for large-scale
problems.

In orderto compare the performance ofthe two algorithms in sustaining “individual
rationality”, Table 5.7 shows the percentages of the number of passenger requests with non-
negative utilities. It shows that HSATS cannot ensure that all passengers’ utilities are non-
negative (see numerical examples N 25 13, N 40 20,N_45 23,andN_50 25 as counter
cases), indicating that some passengers are unwilling to pay the prices. Thus, the
mechanism obtained by HSATS is not necessarily individual rational. In Section 6, we
already proved that the mechanism obtained by SPA is always individual rational, and
thus all passengers’ utilities are non-negative, which has also been verified in Table 5.7 as
well.

Table 5.7 also compares the performance of the two algorithms in sustaining “price
controllability”. Neither HSATS nor SPA holds the property of “price controllability” and

thus is able to ensure that the price is 100% controllable. Table 5.7 shows the percentages
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of the number of served passengers whose prices are greater than or equal to the baseline
prices in the total number of served passengers. SPA shows only two non-100%
percentages, 82.35%and 91.84%, while HSATS shows six non-100% percentages. We also
calculate the maximum difference betweenthe baseline priceand the actual paid price (max
(PC; — p))). In the mechanism results obtained by SPA, we find that the largest difference
between the baseline price and the actual paid price is only $0.81 (occurred in the numerical
example “N_50 25”) among all of the numerical examples. Except another numerical
“N_20_10” with the positive value of max (PC; — p;) = $0.38, all of the other numerical
examples do not show any counter cases violating the property “price controllability”,
demonstrated by the result that the maximum differences between the baseline prices and
the actual paid prices are all negative (max (PC; — p;) < 0). In the mechanism results
obtained by HSATS, we find more positive values of “max (PC; — p;)”. The largest “max
(PC; — p;)” is $2.38, much more than that obtained by SPA. Based on the results, we can
conclude that the SPA has a stronger ability to sustain “price controllability” than HSATS
does.

The “detour-discounting reasonability” is compared via the following method.
Each time, a passenger’s detour-discounting rate ¢; is increased from 0.1 to 1 by 0.1. Other
passengers’ detour-discounting rates are unchanged. We obtain the mechanism results each
time when o; increases. We record the number of passenger requests whose mechanism
changing processes are “reasonable”, which means that the extra in-vehicle travel time is
non-increasing and the price is non-decreasing. Then we calculate the percentage of this
number in the total number of passenger requests. As shown in Table 5.7, HSATS cannot

sustain “detour-discounting reasonability”, indicating that if a passenger places a stricter
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requirement on detour, he may have to stay in the vehicle for longer extra time and the

price may decrease, which is counter-intuitive. By contrast, the SPA is able to ensure

detour-discounting reasonability. This property of the SPA has been proved in Section 6.

Note that the property “incentive compatibility” is not tested here because it is impossible

to enumerate all combinations of passengers’ reported values. However, the mechanism

obtained by SPAhasbeen proved to be incentive compatible (Proposition 10) while truthful

mechanisms obtained by traditional heuristic algorithms are not necessarily incentive

compatible (Nisan etal., 2007).

Table 5.7 Comparison between SPA and HSATS in Obtaining the MPMBPC

Mechanism

Objective

Numerical function values of Social welfare

Individual

Price

controllability

Max (PC; - pi) Detour-discounting

rationality (%) %) reasonability (%)
examples model Mdo (%)
HSATS SPA VCG SPA HSATS SPA  HSATS SPA HSATS SPA HSATS SPA
100 100
N_15_8 95.82 95.82 91.00 91.00 100.00 92.86 100.00 0.55 <0 73.33
(proved) (proved)
100 100
N_20_10 114.19 114.19 112.45 103.25 100.00 100.00 82.35 <0 0.38 45.00
(proved) (proved)
100 100
N_25_13 165.38 164.05 160.92 159.12 96.00 95.83 100.00 0.20 <0 52.00
(proved) (proved)
100 100
N_30_15 193.10 189.88 185.65 181.71 100.00 76.92 100.00 1.03 <0 6.67
(proved) (proved)
100 100
N_35_18 228.44 227.23 228.44 227.23 100.00 96.97 100.00 059 <O 8.57
(proved) (proved)
100 100
N_40_20 268.97 267.35 269.68 267.35 97.50 82.50 100.00 172 <0 0.00
(proved) (proved)
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100 100
N_45_23 300.29 300.52 302.42 300.52 35.56 100.00 100.00 <0 <0 0.00
(proved) (proved)
100 100
N_50_25 350.16 344.24 346.61 341.62 96.00 68.00 91.84 238 0.81 0.00
(proved) (proved)

Mechanism design performance evaluation criteria:

1) Obijective functionvalue: Formula (5);

2) Socialwelfare: summation of passengers’ cumulative values minusthe transportation cost;

3) Individualrationality: percentage of the number of passenger requests with non-negative utilities;

4) Price controllability: percentage of the number of served passengers whose prices are greater than or
equalto thebaseline prices in the total number of served passengers;

5) Max (PCi-pi): the maximum difference between thebaseline price and the actual price;

6) Detour-discountingreasonability: percentage of number of passenger requests with reasonable changing

processes in the total number of passenger requests.

Table 5.8 presents the computing time of HSATS and SPA. Before running the two
algorithms, we adjust the parameters of the two algorithms so that the computing time in
solving the matching and routing problem (model Md)) is less than 10 seconds for all
numerical examples because the on-demand ridesharing service requires prompt
determination of the matching and routing plan. Then, we record the computing time of
HSATS and SPA to calculate prices and the total computing time to obtain the mechanism.

We find that the SPA is much faster than HSATS in calculating the prices. SPA
needs less than 20 seconds to obtain the mechanism for allnumerical examples. In contrast,
HSATS needs more than 20 seconds for even the smallest-scale numerical example
(N_15 _8) and even more than 400 seconds for the largest-scale numerical example
(N_50_25). From Figure 5.14, we observe that the computing time of HSATS increases

much faster than that of SPA as the problem scale increases. Figure 5.15 shows the
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mechanism results for the largest-scale numerical example (N_50 25), which is obtained
by the SPA within a reasonable amount of time (19.84 seconds). The computational time
can be further substantially reduced using parallel computation or better computational

hardware.

Table 5.8 Computing Time of HSATS and SPA

Computing time to obtain

Computing time to Total computing
Numerical  optimal matching and
calculate prices (seconds) time (seconds)

examples routing plan (seconds)
HSATS SPA HSATS SPA HSATS SPA
N_15 8 1.53 1.74 21.94 1.11 23.47 2.85
N_20_10 1.99 2.31 34.14 1.87 36.13 4.18
N_25 13 2.78 3.37 72.51 2.87 75.29 6.24
N_30_15 3.80 4.49 113.07 4.07 116.87 8.56
N_35 18 4.65 5.28 151.97 5.45 156.62 10.73
N_40_20 5.55 6.40 199.46 7.38 205.01 13.78
N_45 23 6.79 7.91 310.04 8.63 316.83 16.54

N_50_25 8.04 9.48 397.14 10.36 405.18 19.84
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Figure 5.15 The Vehicle-Passenger Matching, Vehicle Routing Plan, and the Prices

of the MPMBPC Mechanism Obtained by SPA (N_50_25)

Finally, we design a sufficiently large-scale numerical example with 300 passengers
and 150 vehicles (denotedasN 300 150)to demonstrate the effectiveness ofthe proposed

SPA algorithm. For the results, please see Appendix B.5.

5.8 Conclusions

This chapter studies the mechanism design problem for on-demand first-mile
ridesharing. The traditional general-purpose VCG mechanism may sustain a financial
deficit for ridesharing service providers. To address this challenge, we integrate a baseline
price control component into the VCG mechanism, and propose a novel mobility -
preference-based mechanism with baseline price control (MPMBPC). We prove an
important property, named as “price controllability”, which means that the served
passengers’ prices will never be lower than the baseline prices, enabling to avoid some
passengers’ unreasonably low prices and to prevent the service provider’s deficit. Besides,
the MPMBPC is proved to have the properties of “individual rationality” and “incentive
compatibility”. The “individual rationality” property ensures that all passengers will gain
non-negative utilities and thus are willing to participate in the ridesharing service. The
“incentive compatibility” property ensures that truthfully reporting one’s mobility
preference is the passenger’s optimal strategy regardless of other passengers’ reporting
strategies. Another proved property, “detour-discounting reasonability”, demonstrates that

passengers can have customizedmobility services: if passengersare lesstolerantof detour,
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they will have decreasing extra in-vehicle travel time but need to pay an increasing price if
they are still served. Compared with the traditional VCG mechanism, our proposed
MPMBPC mechanism can financially sustain the service without external investment. An
efficient heuristic algorithm called Solution Pooling Approach (SPA) is developed to solve
large-scale dynamic ridesharing problems. The SPA is theoretically proved to sustain the
properties of “individual rationality”, “incentive compatibility”, and “detour discounting
reasonability”. Large-scale numerical examples show that SPA can quickly obtain the
mechanism results with overall high-quality solutions. The theoretical modeling and the

computational algorithms developed in this chapter might be useful for a variety of other

relevant mechanism design problems in innovative shared mobility systems.

Appendix A. Proofs of Propositions

Proposition 1 Adding the baseline price control component in the objective
function can ensure that if any passenger(s) i’s request is accepted, his value will never be
smaller than PC;; otherwise, this passenger request will be rejected.

Proof of Proposition 1:

Let g represent any passenger request accepted by the service. Let X :,ldo represent
the optimal matching and routing plan (the optimal solution of model Mdy) and Y," =

TSg( X ::/ldo ) represent the gth transition solution (see Definition 4) of X ::/'do .

Based on Propositions 4 and 5, we have TC(Y,") < TC( X:,,do ) and

3 VA (X ) <, VA (%) Then
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f(Y))=> VA (Yg*)—TC(Yg*)+Z PC. (1—2 er

ieP ieP kev
2 Z VA (X:/Ido )_TC(X:AdO )+Z PC, (1_ z Yikj
ieP\g ieP kev

Sincein X ;/'do , passenger request g is served, 1— Zkev y; =0.Then

f(Xng,) = 2VA (Xug, ) ~TC (X3 )+ > PC, [1—zyrj

ieP ieP\g kev
Since Y," is not necessarily the optimal solution of model Md,, we have

f(Xug,) = TYg)

Then
f(Xng,) = 2 VA (Xug, ) ~TC(Xpq, )+ > PC, (1—2 y}
ieP ieP\g kev
> f(Y,)
> 3" VA (Xug, ) =TC(Xp, )+ PC, (1—2 yi"j
ieP\g ieP kev
Thus

*

VAQ(XMdU)Z PC,
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Proposition 4 If Y, = 7S, (X), for any g€ P, the transportation cost 7C(Y,) < TC(X).

Proof of Proposition 4:

If Zkev yg =0in X, Y, = X, and thus

TC(Y,) = TC(X).

If Zkev yg =1lin X, assume that we find & that v¢°=1. Then we discuss the four

cases:

1) If we find i andj that x;.*= 1 and x,*= 1, then TC(X) — TC(Y,) = Cig + Coj— €5 >
0 based on the triangle inequality.

2)If we find wgf =1 and find i that x;f = 1, then TC(X) — TC(Yg) = cig+ co0 — Cio >
0 based on the triangle inequality.

3) If we find z,* = 1 and find j that x./* = 1, then TC(X) — TC(Yy) = cig + cgi— i =0
based on the triangle inequality.

4) If we find z/F = 1 and wgt= 1, then TC(X) — TC(Y,) = cig + cq0 > 0.

Thus,

TC(Y,) < TC(X).
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Proposition 5 If Y, = 7S, (X), forany g€ P, 3" VA(X)<>" VA(Y,).

Proof of Proposition 5:

If Zkev y; =0, Y, =X ZiePVA (X)= ziePVA (Yg) and VA,(X) = 0. Thus

ZieP\gVA (X ) = ZiePVA (Yg )

If Zkev yg =1 in X, we assume that passenger(s) g is picked up by vehicle %, i.e.

v/ =1. We only need to compare the values of passengers served by vehicle &, because
other vehicles’ routing plans do not change and the same passengers have identical values
in Xand Y,. Since the passenger(s) gisnotservedin Y, (see Figure 5.5), the extra in-vehicle
travel times of other passengers served by vehicle k& either decrease or remain constant.
Thatis EIVT(Y,) < EIVT{(X) for any passenger(s) i served by vehicle k. Based on Formula

(1), we have VA(Y,) > VA«(X), for any passenger(s) i served by vehicle k. Thus we have

3 VA ()< T, VA ().

Proposition 8 We have p; = p; for any two passengers 7 and j, satisfying that DL; =
DL;, Vimax = max g, = o, L; = L, rt; and rt;e TS, and there exists a vehicle & that y* = y/#
=1, where L; and L; are passengers i’s and; s locations, respectively, 7¢; and rt;, passengers
i’s and j’s request times, are within the same time slice 7.

Proof of Proposition 8:
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In the optimal matching and routing plan X ;‘;'do , it is deemed that passengers i and

Jj are picked up at the same time (¢; = 0) because they are waiting at the same location (L;
= L; ) ready to be picked up. Thus, they have identical extra in-vehicle time travel time

EIVT; = EIVT;. In addition, V& = J;ma_Based on the value function (Formula 1), we have

VA (X,’:,,d0 ) =VA, (X,f,,do) . Moreover, the optimal solutions of models Md,; and Md; are

entirely the same because requests i and j have identical parameters (DL; = DL;, V& =
Vma g, = a;, PC; = PCj, and L; = L;). Thus, we have f (X,’f,,di ) = f (X,f,ldj ) Then, based

on Formula (23), we have

*

P = f(XMdi)_ f (X;d0)+VA1 (X:/Ido): f (X:”dj )_ f (X:"do)_'_VAi (XMdo): P;

Thus, the two passengers i and j have identical prices.

Proposition 9 The mechanism M( XF’Qdo , p) obtained by SPA is individual rational.

Proof of Proposition 9:
Based on Formula (27), if passenger(s) g’s request is rejected, his price is “0” and

his utility is “0” as well. If passenger(s) g is served, his price is given by

oy = £ (XBG, )~( (XBi )V (%P5 )
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Then passenger(s) g’s utility is

u, (XP;%, pg)=VAg (XP,\;%)— P,
= (XPy, ) (xp;;dg)

Based on Proposition 12 (see Appendix A), since XP,\’,]dg is a feasible solution of

model Mdp,, it is a feasible solution of model Mdp, as well. XF’,\;dO is the optimal solution

of model Mdp,. Thus, we have

Uy (XPi, Py )= f(XPig, )= f (XPa, )20

Proposition 10 The mechanism M( XP,:;Ido , p) obtained by SPA is incentive

compatible.
Proof of Proposition 10:

We assume that if passenger(s) g misreports DL, V", and/or a,, the optimal plan

will be YP,;do instead of XP,\:dO. The system will mistake passenger(s) g’s actual value
(VA, (YP,;do )) for VA, (YP,\’,:do ) . Passenger(s) g is charged with the price p; instead of p,.

We discuss three cases.

1) Passenger(s) g’s request is rejected by the service in the plan YP,:,:do . Then,

VA, (YR;, )=0 and p, =0 based on Formula (27), and Ug (YPs, . Py )= VA, (YPy, )
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—p, = 0. Based on Proposition9, U, ( XP,\;do ' Py ) >0 ifpassenger(s) g tells the truth. Thus,

wehave U, (YR, Py ) <U, (XPyg,. b, ).
2) Passenger(s) g is served but is unable to arrive at the transit hub before the actual

arrival deadline given the matching and routing plan YP,;do . Thus, passenger(s) g’s

requirement is not satisfied while he could have arrived at the transit hub in time given the

plan XP,:,:do if he had truthfully reported the deadline. Truthful report is the best strategy

for this case.

3) Passenger(s) g is served and he can arrive at the transit hub before the actual

arrival deadline given the plan YP,;dO . Since the generation of solution pool XpoolMdg is

independent of passenger(s) g’s report based on the SPA algorithm, the constraint of
Formula (29) of model Mdp, remains constant. In model Mdp,, the constraints of Formulas
(6-10, 13, 15, 17-22) are always constant regardless of passenger(s) g’s report because
these constraints do notinvolve any mobility preferences. Only Formula (11) has an arrival
deadline constraint for model Mdp,. However, in model Mdp,, passenger(s) g’s value is
always zero regardless of passenger(s) g’s reportbecause he isnotserved based on Formula
(22). Thus, the constraint region C, (Formulas 6-11, 13, 15, 17-22) is always constant

regardless of passenger(s) g’s report.

Thus, the feasible region (C, N XpoolMdg ) of model Mdp, is constant. Moreover,

the objective function of model Mdp, is independent of passenger(s) g’s report. In

conclusion, model Mdp, and the optimal objective function value of model Mdp,

(f (XPH’,]dg )) remain constant regardless of passenger(s) g’s report. Thus, for this case,
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passenger(s) g’s price is

py = (X, = (YR, ) +VA; (YPi, )

where

t'(YRo, )= 2 VA (YR, JFVA; (YPo, )+ 2 PC, (1— >yr j ~TC (YR, )
ieP,izg ieP keVv

For this case, YP,\;dO is a feasible solution of model Mdp, because passenger(s) g

can arrive at the transit hub before the actual arrival deadline and YP,::IdO 1s selected from

the pool Xpool,,, : YF’,:,]0|0 € C, M Xpooly, . Given the misreported information,

passenger(s) g’s utility is

Uy (YR, Py ) =VA, (YR, ) - P}
= /(YR}y, ) ~VA, (YR, ) +VA, (YRs, ) - T (XP;;C,Q )
= £ (YR, ) T (XP;% )

YP,:,:do is not necessarily the optimal solution of model Mdp, while XF’Q% is the

optimal solution of model Mdp, if passenger(s) g truthfully reports his value. Thus,

F(YPa, )< f(XPay, )



204

Thus, we have
Uq (YR, Py ) =T (YPyg, ) - f (XP;,,‘dg)s f(XPy, ) (xa’;%)=ug(xa’;%, D, )

From the results of the three cases, we can conclude that the mechanism obtained

by SPA is incentive compatible.

Proposition 11 The mechanism M( XPM*do , p) obtained by SPA is detour-

discounting reasonable.
Proof Proposition 11:

Similarly, we only need to prove the two sub-propositions in Proposition 7.

For the first situation, the optimal matching and routing plan XP,\;]do does not
change, and thus passenger(s) g’s extra in-vehicle travel time does not change. In the price
caleulation p, = T (XPy )= (f (X, )-VA (XP,)) » (XPy,) remains constant
because model Md, does not change regardless of passenger(s) g’s reported a,. Moreover,

f (XP';dO )_VAg ( XP';dO ) - Z‘4ieF’\gV'A‘ (XP'\;do ) -T1C ( XPM*do )+ ZieP I:)Ci (1_ Zkev yik ) also

remains constant because all other elements do not change due to the constant of the

optimal plan. Thus, the price remains constant.

For the second proposition, the detailed proof is entirely identical with that in

Proposition 6.
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Proposition 12 If X'is a feasible solution of model Mdp,, then X must be a feasible
solution of model Mdp, as well.

Proof of Proposition 12:

Based on Algorithm 4, Xpool,\,Idg < Xpooly, , for all g e P. Moreover, the

constraint set C, has one more constraint (Formula 22) compared with the constraint set

Co. Therefore, Cg cC,. Let X be any one feasible solution of model Mdp,,
XeC, N Xpooly, . Since Xpooly, < Xpool,, , X eXpooly, . Similarly, since
C,=C,y, X eC,. Then, forany X eC 1 Xpool,, , we have X eC,(1Xpool,, as

well. Thus, Xis a feasible solution of model Mdp, as well.

Appendix B. Additional demonstration of the MPMBPC mechanism and the SPA
algorithm
B.1 Demonstration of the Difference between the MPMBPC Price and the VCG Price
Plus the Baseline Price

Figure 5.16 shows the difference between the proposed MPMBPC pricing scheme
and the VCG price plus the baseline price and demonstrates the advantage ofthe MPMBPC
mechanism. If the price equals VCG price plus baseline price, the important property
“individual rationality” no longer holds. Figure 5.16 (a) is the optimal plan for the VCG
mechanism with the price equaling VCG price plus baseline price. We find that both

Passengers 2 and 3’s prices ($9 and $2) exceed their maximum willing-to-pay prices ($6
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and $0). Thus, the property “individual rationality” does not hold. MPMBPC mechanism
is proved to hold the property of “individual rationality”; thus both Passengers 2 and 3’s
prices ($0 and $4) do not exceed their maximum willing-to-pay prices ($0 and $5), as

shown in Figure 5.16 (b).

VA; = $15

VA; = $0 Transportation
PCy=$2 cost = $2

=PCy + Proga = $9 > VA Prega = $0
p2 2% Pucg2 = $ *ps=PCy + Pucga = $2 > VA3

(a) Optimal plan for VCG mechanism

VA, = $15

VA, = $0 VA; = $5 Transportation
PC,=$4 PC; = $2 cost = $2
p2=$0 = VA, Ps = $4 < VA,

(b) Optimal plan for MPMBPC mechanism

Figure 5.16 The Difference between the MPMBPC Price and the VCG Price Plus the

Baseline Price

B.2 Prices of Passengers in the Same Origin with Different Mobility Preferences

We cannot easily tell whether two passengers in the same origin with different
mobility preferences will be charged with the same or different prices. We use two
examples for demonstration.

Let us see the first example in Figure 5.17, demonstrating that riders are charged
with the same price even if the mobility preferences are different. Passenger 1 and

Passenger 2 are in the same origin, but they have different mobility preferences. Passenger
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1’s value (non-detour value — detour disvalue) is $8, higher than Passenger 2’s value ($6).
In the optimal routing plan, Passenger 1 and Passenger 2 share the ride and are picked up
at the same time. Then we calculate the two passengers’ prices: p; = PC; + 0.2 and p; =
PC,+0.2. Since the two passengers are in the same origin, the baseline prices are identical:

PC, = PC,. Thus, the two passengers’ prices are the same: p; =p».

VA, =8

The optimal VA3 =5
matching and
routing plan Transportation

VA; =6 ‘3
The optimal solution of Md, cost:

PC,

- =’ p1=(PCy+6+5-28)—
(6+5-3)=PC, +$0.2
- Transportation
Used to VA.=6 cost: 2.8
calculate — The optimal solution of Md;
prices VA, = 8
VA; =5
- p2=(PC,+8+5-2.8)—
(8+5-3)=PC, +$0.2
~ PC, Transportation

X X cost: 2.8
The optimal solution of Md,

AVehicIes ‘ Passengers . Transit hub

Figure 5.17 Riders in the Same Origin Charged with the Same Price

Let us see the second example in Figure 5.18, demonstrating that riders are charged
with different prices when the mobility preferences are different. Passenger 1 and
Passenger 2 are in the same origin. Passenger 2’s arrival deadline is much earlier than
Passenger 1. If Passenger 2 waits for Vehicle 1 to pick him up, he will arrive at the transit
hub later than the deadline. Thus, a closer vehicle (Vehicle 2) is dispatched to pick up

Passenger 2 and drive him to the transit hub directly. At this time, Passenger 1 is charged
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with PC, + 0.8 and Passenger 2 is charged with PC, + 2. Since PC; = PC,, then p, = PC,

+ 0.8 <p,=PC, + 2. The prices are different.

The optimal

matching and

routing plan

Used to
calculate —
prices

VA; =8

VA, =7 Transportation

The optimal solution of Md, cost: 5

VA; =85

- Transportation
VA, =7
2 cost: 4.7

The optimal solution of Md;

VA;=8
VA =7

A PC Transportation

2 cost: 3
The optimal solution of Md,

AVehicIes . Passengers . Transit hub

p1=(PCy +85+7-4.7)
—(8+7-5)=PC, +$0.8

p2=(PC,+8+7-3)—
(8+7-5)=PC,+$2

Figure 5.18 Riders in the Same Origin Charged with Different Prices

B.3 Demonstration of SPA Violating the Property of “Price Controllability”

We use a simple example (Figure 5.19) to straightforwardly show why the price

controllability may not hold. In Figure 5.19, XP@dl is the best solution selected from the

pool Xpool,,, and YP;" is the transition solution of XPh;dO (the best solution in

Xpool,,, ). If the condition f(XPy, )= f(YR") can be satisfied, the property holds.

However, we find that the objective function value of XP{A’dl (14.6) is smaller than that of

YP," (15.3). This is because YP;" is not in the pool Xpool,,

. Due to this reason

f (XPy,, )< f(YR"), the final price is less than the baseline price: p; =PCy— 0.4 <PC;.
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If X;dl is the exactoptimal solution of the model Mdj, itis impossiblethatf(XK,,dl)
<f(Y1") , where Y;" is the transition solution of X;’,,do (the exact optimal solution of model
Mdo). This is because Y,* is a just feasible solution of model Md; while X;dl is the

optimal solution of model Md;. Thus, if we use an exact algorithm to obtain X:,Idl, the

property of “price controllability” can always hold, but SPA cannot guarantee the

optimality of XPh;dl and thus is possible to violate the property.

VA; =5 VA;=5

VA; =6

The best solution
in the pool Xpool,,

Transportation
* Objective cost: 5
XPMdO function value: 19

VA;=4.8 VA,=5

VA2 5.7 P =(PC,+5.7+48+5
The best solution A -49)-(6+5+5-5)=
in the pool Xpool,, . PC,-$0.4

Transportation

PC,=4 XP" Objective function cost: 4.9

Md;  value: 14.6
VA3 =5 VA, =5

VA, =6
The 1st transition K‘./‘\./.l
solution of XPy, .

Transportation
- — . .
PC,=4 Objective function cost: 4.7
Ypl value: 15.3

AVehicIes . Passengers . Transit hub

Figure 5.19 A Counter Case Violating the Property “Price Controllability”
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B.4 Potential Impact of Considering the Vehicle Availability Dynamics and Predicting
Occurrence of Passenger Requests

If we consider the vehicle availability dynamics and occurrence of potential
passenger requests in our mechanism, we anticipate that the system will serve more
passengers, provide passengers with more incentive, and achieve larger social welfare. We
use the following example (Figure 5.20) for demonstration. As Figure 5.20(a) shows, if we
do not consider potential passengers in the next several minutes, the optimal matching and
routing plan is “Vehicle 1 — Passenger 1 — Passenger 2 — Passenger 3 — the transit
hub”. However, if we can predict that Passengers 4 and 5 (e.g. commuters taking
ridesharing service routinely) will have a very large probability to send requests (Figure
5.20b), then the previous matching and routing plan is no longer optimal. This is because
Vehicle 1 is no longer available if itis dispatched, Vehicle 2 is too far away to serve these
two passengers, and thus these two passengers may not be served in time if no other
vehicles become available nearby within the next few minutes. The mechanism thus can
dispatch Vehicle 2 to serve Passengers 1, 2, and 3, and let Vehicle 1 wait to serve
Passengers 4 and 5, as Figure 5.20(c) shows. We can achieve better optimization by
predicting available vehicle locations and potential passenger requests in the next few
minutes based on historical data. However, designing such more advanced mechanisms
needs plenty of historical data to predict where and when vehicles will be available and
where, when, and how likely potential passenger requests will occur. We may consider this

in our future work.
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— P P =
@ @ I,'—’(,,
(@) (b) ©)
. Existing £, Potential . .
AVehches passengers (\ _passengers Transit hub

Figure 5.20 Optimization of Matching and Routing Considering Vehicle Availability

Dynamics and Potential Passenger Occurrence

B.5 Mechanism Results for the Large-Scale Example N_300 150

We use the SPA to solve the mechanism design problem for the numerical example

N_300_150. Table 5.9 and Figure 5.21 show the results of the SPA algorithm.

Table 5.9 The Output Results of the SPA Algorithm for N_300_150

Output performances Values
Objective function value (SPA) 2095.71
Objective function value (HSATS) 2182.16

The gap of SPA from HSATS in objective functionvalue  3.96%

Total collected prices (3$) 1366.35
Total transportation cost ($) 396.71
Total profit ($) 969.64
Price controllability (%) 100%
Number of passengers served 300
Number of vehicles dispatched 118

Vehicle occupancy rate 63.56%
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Computing time (seconds) 148.92

Figure 5.21 The Vehicle-Passenger Matching, Vehicle Routing Plan, and the Prices

of the MPMBPC Mechanism Obtained by SPA (N_300_150)

From the results presented in Table 5.9 and Figure 5.21, we can conclude that the
SPA algorithm still has a high performance in solving the extremely large-scale problem.
The gap of SPA from HSATS in the objective function value is only 3.96%. The total
collected price is $1366.35, which can cover the 396.71-dollar transportation cost. The
profit made by the service provider is $969.64. In this example, the SPA sustains the
property of price controllability (100% of the prices are no less than the baseline prices).
All passengers are served. The number of dispatched vehicles is 118 with the vehicle seat
occupancy rate of 63.56%.

We admit that the computing time (148.92 seconds = 2.48 minutes) of the SPA
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algorithm for the numerical example N_300 150 is not prompt enough for on-demand
ridesharing. However, our SPA algorithm can be implemented for parallel computation
and the computer hardware is notso advanced. Thus, the computational time can be further
substantially reduced using parallel computation and better computer hardware. Our future
work will improve the SPA algorithm by seekingthe tradeoff amongvalidity of mechanism

design properties, solution qualities, and computational speed.
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CHAPTER 6 CONCLUSIONSAND FUTURE WORK

6.1 Conclusions

This dissertation studies the mechanism problem for both scheduled and on-demand
ridesharing service. The designed mechanisms aim to optimize the passenger-vehicle
matching and vehicle routing as well as to design a pricing scheme with multiple incentive
objectives. The designed mechanisms are able to promote passengers to participate in the
ridesharing service by satisfying their mobility preferences via the property of “individual
rationality”, promote passengers to truthfully report their mobility preference via the
property of “individual rationality”, and incentivize the service provider to provide the
service via the properties like “price controllability”. In addition, the mechanisms can also
offset passengers’ inconvenience cost considering their mobility preferences or
requirements, and can prevent drivers from deliberately detouring. In order to obtain the
mechanism results for large-scale problems, this dissertation develops an efficient heuristic
algorithm, called Solution Pooling Approach (SPA). The SPA algorithm is successfully
used to solve the mechanism design problemsfor both scheduled andon-demand first-mile
ridesharing. The SPA can sustain the two mechanism design properties, “individual
rationality” and “incentive compatibility”. From the experimental results, SPA is much
more efficient in solving large-scale problems compared with the commercial solver (e.g.
Branch and Bound) and traditional heuristic algorithms (e.g. hybrid simulated annealing
and tabu search) from the literature. The designed mechanisms and the SPA algorithm can

be adapted for similar problems in shared mobility.
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6.2 Future Work

Upon completingthis dissertation, I find a lotof future work can be studied in depth.

eIn our current mechanism, once the vehicle-passenger matching, vehicle routing
plan, and passengers’ payments are determined, the plan and payments will not change. In
the future, we will develop an online mechanism allowing to change the vehicle-passenger
matching, vehicle routing, and pricing in real time.

¢Qur future work will study how taking vehicle dynamics into consideration can
achieve better optimization of matching and routing plan by predicting vehicle locations in
the next few minutes based on historical data.

o] will consider developing another incentive mechanism that aims to direct
vehicles to undersupplied locations.

eFurthermore, in this dissertation, the travel time between two locations are
assumed to be deterministic. Travel time uncertainty and reliability will be considered for
the mechanism design in our future work.

e Also, in the future if more people use the first-mile ridesharing service, which will
accountforalarge portion ofthe transportation network, we will use game-theoretic model
to determine the travel time depending on the assignment of ridesharing vehicles to
different roads in equilibrium.

o] will design mechanisms for on-demand first-mile ridesharing system involving
multiple transit hubs instead of one hub.

eMixed scheduled and on-demand passenger requests will be considered in the
future. I will develop a hybrid mechanism for this mixed scheduled and on-demand first-

mile ridesharing to incentivize passengers to early schedule the service.
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e[ast but not least, I will adapt the designed mechanism to other shared mobility

modes, including carsharing, bikesharing, vanpooling, etc.
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