SPATI AL AND VOLUMETRI C DI STRI BUTI ON OF OF

URBAN TI DAL MARSH SEDI MENTS

By

JULI E BLUM

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of

I n partial fulfill ment of the r e

For the degree of

Master of Science

Graduate Program in Ecology & Evo

Written under the direction of

Ri chard G. Lat hrop

And approved by

New Brunswi ck, New Jer sey

October 2020



ABSTRACT OF THE THESI S
SPATI AL AND VOLUMETRI C DI STRI BUTI ON OF OF

URBAN TI DAL MARSH SEDI MENTS
by JULIE BLUM
Thesis Director:

Ri chard G. Lat hrop

Ti dal mar shes are i mportant habitats for w
ecosystem services, one of the most | mport
sequestration. Studying and modeling carbo

to the highly variable, highly site-specif

t hem. Many studies attempt to understand t
storage in tidal mar shes, but few assess m
therefore, this study seeks to understand

|l ocation, elevation, vegetation/sedi ment t
carbon stored throughout the entire depth
to refusal i n a small ur ban tidal mar sh, a
density were assessed along the full <core

and carbon storage were generated to estim

per unit volume were similar to those coll
across the entire vertical profile, total
than the assessment that relied solely on

While studies that only assess the top met



mar sh sedi ments could be key to gauging th

and storing carbon. Trajectories of percen
suggested that the | andward portion of the
unusual, as seaward marshes are generally
sea | evel rise. The | andward portion of th
ri parian wetland, while the seaward portio
sea | evel ri se and tidal regi mes; as sea |
study site transitioned into a tidal mar s h

creek showed no relationship to organic ma
organic matter and organic carbon density

sedi ment type. Percent organic matter was

Sparting hpaat ane ®hragment ed Hayr sthreal iresear ch
clarify the relationship between tidal mar
such as sea | evel, tidal regi mes, vegetat:i
ot her factors that may add to the compl exi
better understand the true depth of tidal

factors may have i mpacted organic matter s
better able to predict how changing enviro
potenti al i n the future. Now more than eve
i mportant blue carbon systems so that we ¢

the face of global <c¢climate chang
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Ti dal mar shes, wetland environments 1in
are highly productive coastal systems tha
mar shes are i mportant habitats for a vari
threatened and endangered; in the United

habitat for over 75 percent of commerci al
protect coastal communities from flooding
million in storm damage was prevented by

(Narayan 2017)
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sequestration and storage. Tidal mar sh sy

at mosphere much more efficiently than eve

(Mcl eod et al . 2011) . Ti dal mar sh vegetat.
i n a manner similar to that of forests; h
causes the decomposing biomass to build u
can serve as long-term carbon storage for
type of Ablue carbonodo is an essenti al t oo
al . 2011) ; understanding the dynamics of
environments wil |l help to guide managemen
Ti dal mar shes, especially those in hig
Ssubjected to a variety of human I mpacts t
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| ocated along the western, eastern, and so
was domi nat ed alryt itnaal lawlifttadrr mmi fxleRdr agr a ti cnhae sp ad fe
an@i stichlina apeaataf slightly higher el eve
mosquito ditches. A few smal/l l ocations wi
veget at i Bbonl bsouscchh oaesnus mari ti mus

Based on a visual assessment of avail ab

the area surrounding Lemon Creek was spars

early-to-mid 20th century. I n the 1970s, r
increase until mostly |l eveling off to its
study site is predominantly surrounded by
the exception of the northeastern corner,
2016) .

According to the National Wetland I nven

western portions of the study site are cl a

i rregul arly f | ooPdherda, g naintde sd BauEsktarPaeld sblye s o ut

eastern portions of the study site are cl a
irregularly flooded, dominated by persiste
(E2EM1Pd). The USDA Web Soi l Survey (NRCS
mucky peat, 0-2 percent sl opes, and very f
Sedi ment Core Coll ection

Sedi ment cores were collected to assess

matter content to determine the carbon sto
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New York

Elizabeth

Staten
Island

* Raritan Bay

New Jersey

Figurleermon Creek Marsh study site | ocated i
boundary (|l abeled as AOlI) outlined in cyan



Core Descriptions, Sampling, and LOI

All sedi ment cores were visually described
organic fragments; Muddy Peat = > 50% orga
25% organic fragments; Mud = < 25% organic
Brown, Orange Brown, Dark Gray, etc.), gra
matters (fibers vs. coherent fragments of
such as |l arge rhizomes, cedar pieces, and

4, 5, 7, 10, 11, 12, 13, 16) were sampled

mat erial was determined to be | ow enough t
remaining cores (3, 6, 8, 9, 14, 15) were
variable peat | ayers and 25 ¢cm resolution
sampling, the top few mm of sedi ments with
any contaminated material on® wadeesuefaiceve
gently inserting a 5 mL plastic syringe wi
or cutting any surrounding material, and h
prevent compaction. Samples were inserted

dried for %2 imowr anudtf | 05 urnace. Using a p
AE160 analytical bal ance), crucibles were

and 3) with the dry samples to determine t
to °6500r 4 hours and weighed again to meas:
l gnition, LOI). The LOI3uwsailnuge ensatsa bcloinsvheerd er
bet ween organic matter and organic carbon

Hol mqui st et al ., 2018). Samples were drie

crucibles were wiped clean of sedi ment and
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Post-Hoc tests (where applicable) were per:
significant differences (U = 0.05) when gr

density by vegetation type and sedi ment ty

Resul ts

Stratigraphy

The stratigraphy indicated by the coll e
as follows (from marsh surface to depth):

a) a thick | ayer of interspersed brown,

top of the cores,

b) smaller | ayers of brown muddy peat d

| ower portions of peat,

c) a rapid transition to a smal/l br own

d) a thick | ayer of dark gray mud, and

e) thin | ayers of dark gray sand at ref
Some cores reached refusal (i .e., greatest
|l ayer (3, 4, 5, 9, 10, 11, 14, 16), whil e
wood chips (7) or other unknown dense mat e
Table 2). Some core sections were not <col |l

14) or difficulty with extraction (4, 12).
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Percent organic matter and organic carbon

The average percent organic matter acr o
28.89 N 19.08%. Organic carbon density acr
at 0.028 N 0.008 (Table 1, Figure 8). I n
and carbon density values were higher than
depths below 1 meter were similar to the o
density showed a slight negative | inear tr

increased? (Fi0g®2r2é639; R

Tabl eAvleerage organic matter and organic car
sampl es.

Overalll 27.89 19. 08

Organi c | matotperl met er 30. 23 12.7
( %) Bel ow 1| meter 27. 20 20.
Organic |carOwvemr al |l 0.028 0.008
densityfP|(glloprm meter 0.034 0.00
Bel ow 1| meter 0.027 0.0

Percent organic matter varied greatly r
core (Figure 9). Overall, the peat and mud
organic matter, while the peaty mud and mu

were grouped together to elucidate differi

occurred in different spati al | ocations (F
grouped together when their spatial | ocat i
near the | andward end, Groups C and D in t

(Figure 10) . Group A cores (2, 4) show hig
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Tabl @@errer al i nformation coll ected at each c
Sur f alcki nal
Coreg Coll e tiLoaq I_OnEIeva iCom 6 Reason ([f ®omi nalnt
Number Dat e m abpDeptlh Refusall Vegetaltion
NAVDS88)(cm
1 10/ 12 40.51 -74.2 0.849 410 Unknowr Spartina
Ref usa patenfs
Short ¢ Phragmfjites
2 10/ 3/ 40.52 -74.2 3.438 170 fefusa austrdlis
3 10/ 15 40.52 -74.2 0.93! 770 Sand (8! "hragmites
austraglis
4 10/ 24 40.52 -74.2 0.83C 500 Sand Phragmites
australis
5 10/ 24 40.52 -74.2 0.904 530 Sand Phragmites
australis
6 11/6/ 40.51 -74.2 0.67: 333 Unknowr Spartina
Ref usal alternfi flora
7 11/9/ 40.51 -74.2 0.623 450 Wood ch oPartina
patenis
. Unknowt Spartina
8 11/14 40.5:-74.2 0.754 330 " "0 SN it ora
Unknowt Spartina
9 11/14 40.51 -74.2 0.740 410 - ' batenls
10 11/14 40.51 -74.2 0.823 530 Sand Spartina
patenfs
Bol boschoenus
11 11/16 40.52 -74.2 0.689 630 Sand maritioho.
Unknowt Spartina
12 11/16 40.52 -74.2 0.927 335 L ) batenls
Unknowt Spartina
13 11/16 40.52 -74.2 0.817 700 Refusa alterniflora
14 11/21 40.51 -74.2 0.950 430 Sand Spartina
patenfs
15 11/21 40.52 -74.2 0.93: 490 Unknowi Spartina
Ref usa patenifs
16 11/21 40.52 -74.2 0.867 570 Sand Spartina
patenfs
According to the nested ANOVA, organic
on the dominant surface vegR.t amarointr iompehe h
analysis due to smal | p aiemmpet e osuinzde ,t os ibtee ssiwg
higher in percent oPgamuscs(timadliesr3;t hRing n ¢ ®
Only the top 50 cm of data were included i
were unlikely to be influenced by the curr
showed | ittle evidence of influence on the
within the complete core nor within the to
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sedi ment type, however, potential dependen
and post-hoc showed significant difference
organic matter and organic carbon density
hi ghest organic matter and carbon density;
became more dominated by mud and sand (Fig
organic matter also dramatically decreased
to pure mud, although this trend was | ess
di stance of each core site from the main c¢
percent organic matter or organic carbon d

core depth showing any apparent dependenci
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Tabl eMi3x.ed model nested ANOVA (analysis of

the variation in organic matter and carbon
sedi ment type. (Significance codes: 0 = =*=*
Organi ( ¢% Car bon
F-v al p-v al F-v al p-v al
3.5 0.0313 * 0.0 0.9
Mul ti ple Comparisons of Means: T
Organic matter ( %)
S. al tiP. au 0. 5¢
SpatiP. au 0.00363 **
S. aloiS. p 0. 3¢
Organi c Carbon
F-v a l p-v a l F-v al p-v a l
3.5 <.00010. 0 0.9
Mul ti ple Comparisons of Means: T
Organic matter ( %)
Muddy i Mu <0. 0600041
Pe il Mu <0.086001
Peat yil Mu <0.060600%1
Sarn Mu <0. 0606001
PeiMuddy <0. 06060001
Peat yiMuddy <0. 06060004
SanMuddy <0.0606000%1
Peat yiPe <0.060600%1
SarnPe <0. 060601
SarnPeaty <0.060600%1

Mul tiple Comparisons
densi ty}(
Muddy i Mu
Pe il Mu
PeaMu i Mu
SanMu
PeiMuddy
PeatyiMuddy
SanMuddy
Peat yiPe
SalnPe
SarnPeaty

oo

O-
o|lo|Oo|o|o|o|o|©|o|o
o|Oo|l0o|o|o|o|o|F|o|o

N|ININIAN|NININO|IANIAN
Vi RV ) e e NI Y S

OO |O|0|0|0|0]
L I L L L Ll

E| k| k| k| k| k| ¥| F| k| *

¥l | %[ *| *| *| *
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Textures Colors
N
&\\ Peat Yellow Brown

Orange / Orange Brown

o

Peaty

- Mud - Red Brown
- Mud - Light Brown
Sand - Brown
Wood/ - Dark Brown
Cedar
- Gray Brown
Light Gray / Gray
- Dark Gray

FigumMex2ure and color symbols representing
each depth within all/l coll ected sedi ment c
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Upland

sampled cores 2,
adj acency
Bl ack sections i

See Figure 2
Bar width rep

sedi ments are si
ated by sl oped box
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Upland 12 13 11 Creek
- N
50 \\
C \\\\\\\\\
“_ 100
130} \\
— 150
170: \
o 200 \
250 \
- 285 \
290:_300 \\\ \
a0 N \
— 350 335 &\\\
370+
: 400 DN\
Figur®tdatigraphy of sampled cores 11, 12,
to east with indication of adjacency wupl an
sample was collected. See Figure 2 for 1| eg
surface in centimeters. Bar width represen
sedi ments. All other sediments are silty m
grain size) is indicated by sl oped boxes.


















































































































