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ABSTRACT OF THE DISSERTATION

Advances in Complex Data Analysis

by CHENCHENG CAI

Dissertation Director: Rong Chen

With the increasing availability of big data, it is challenging to analyze complex data

that is high dimensional; high volume but heterogeneous; or imposed with constraints. My

dissertation compiles researches from three different areas to address the solutions to those

challenging problems in complex data analysis.

In Part I, we first solve the constrained sampling problem in state space models, which

is usually difficult due to potential strong constraints (Lin et al., 2010). The proposed Se-

quential Monte Carlo with constraints (SMCc) algorithm provides a general framework to

sample efficiently from a state space model with constraints. An optimal priority score used

in the resampling step of sequential Monte Carlo (SMC) is introduced as a compromise be-

tween accuracy and computation. Several computationally efficient ways of approximating

the optimal priority are presented.

The second half of Part I focuses on utilizing state space models and SMC to solve high

dimensional optimization problems, in which traditional optimization algorithms usually

have their limitations. We propose to first reformulate the optimization problem into the

likelihood function of an artificially designed state space model (the emulation step) and

then find the optimal solution through a novel simulated annealing algorithm for state space

models (the annealed SMC step). The procedure is demonstrated with several canonical

statistical examples.

In Part II, we propose an individualized group learning (iGroup) framework, lying at

the intersection fusion learning and individualized inference, to provide a more concrete

statistical inference on a particular individual of interest, by aggregating information of

ii



similar individuals from a potentially heterogeneous population. The optimality of such a

methodology is shown under the asymptotic setting that the population size approaches

infinity while each individual has a finite number of observations. The improvement of

iGroup over individual level estimate and the population level estimate (as in traditional

fusion learning) are demonstrated with simulations and real data examples.

In Part III, we consider the family of KoPA approaches, which approximate a high

dimensional matrix with one or more Kronecker products. Using Kronecker product instead

of vector outer product introduces much higher flexibility in choosing the configuration (sizes

of the two smaller matrices), while it gives rise to the problem of choosing the optimal

one. An extended information criterion is proposed to automatically select the optimal

configuration. Consistency of the configuration selection is provided with rigorous analysis.

In addition, the KoPA approach can be extended to matrix completion problems as well

with a superior performance over traditional SVD as demonstrated in Part III with a real

image example.
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CHAPTER 1

Introduction

With the massive data readily available in the era of big data, advanced statistical method-

ologies for analyzing complex data are in high demand. Big data is often characterized by

high volume, high velocity and high variety. New challenges arise when analyzing such data.

For example, (a) in the area of Monte Carlo methods, it is usually difficult to draw samples

efficiently from a high dimensional distribution with constraints (Durham and Gallant, 2002;

Lin et al., 2010). (b) In the area of optimization, some traditional algorithms (Bertsekas,

1997; Anandkumar et al., 2014; Arora et al., 2012) does not perform well on high dimen-

sional optimization problems because it is either difficult to estimate a high dimensional

gradient or too expensive to search the parameter space exhaustively. (c) In fusion learning

studies where results from different sources are combined to make a coherent conclusion,

it is challenging to determine what to combine and how to combine when the population

is potentially heterogeneity and when only one study instead of the overall population is

particular interest (Shen et al., 2019). (d) In the field of high dimensional data analysis,

studies have been focusing on replacing the low rank singular value decomposition (SVD)

with the Kronecker product in certain engineering problems (Werner et al., 2008; Duarte

and Baraniuk, 2012; Kamm and Nagy, 1998). The problem of the determining the dimen-

sions of the two smaller matrices that compose the Kronecker product in an automatic way

remains open and needs theoretical foundation. There also exist tons of other challenges

involving data quantity and quality in addition to the aforementioned examples.

In this dissertation, researches on three areas of study will provide the answers to the

aforementioned four challenges. Specifically, Part I focuses on the State Space Model and
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the Sequential Monte Carlo methods. A Sequential Monte Carlo with constraints (SMCc)

algorithm is proposed to draw samples efficiently from a constrained state space model. The

general principle of state space emulation will be discussed to reformulate high dimensional

optimization problems to most likely path problems within state space model frameworks.

A novel, SMC-based simulated annealing approach will be presented to solve the most likely

path problems in state space model numerically.

In Part II, we propose the framework of iGroup, short for individualized group learning,

to address the individualized inference problem within a potential heterogeneous popula-

tion with a modified fusion learning approach. Theoretical guarantee of optimality is also

provided.

Part III introduces a family of Kronecker otimes Product Approximation (KoPA) meth-

ods that aims to approximate high dimensional matrix with one or more Kronecker products.

In addition to the flexibility brought by the Kronecker product, we provide a theoretical

foundation of consistent configuration estimation to the KoPA model.

1.1 Motivation

1.1.1 Part I: Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a class of Monte Carlo methods that is often widely used

to draw samples efficiently and sequentially from a state space model, which describes the

dynamics of a sequence of observations with the help of an additional sequence of latent

variables. SMC along with state space models is widely used in statistics, economics and

engineering to make statistical inference in a numerical way, when the dynamics or the

likelihood functions are high-dimensional and are infeasible.

The traditional SMC approaches aim to sample from a state space model with frequent

observations (Doucet et al., 2001; Liu and Chen, 1998). Increasing amount of constrained

problems require for a more efficient SMC algorithm to draw samples from the constrained

state space models as the traditional SMC does perform well with strong constraints. See

Lin et al. (2010) for the diffusion bridge problem where traditional SMC algorithms have

their limitations.
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Motivated by the needs for a general SMC framework for the constrained sampling

problem, we proposed a new SMC framework named “SMCc”. In SMCc, we formulate

the constrained sampling problem and provide a general framework to sample from the

constrained systems with a specifically designed resampling strategy. An optimal priority

score used in the resampling step is involved and three different approaches to approximate

it through either parametric method or sampling method.

In addition to the constrained sampling problem, we notice that many high dimensional

optimization problems are equivalent to state space models after certain re-phasing of like-

lihood functions. The gradient descent based optimization algorithms often suffer from an

inaccurate estimation of gradient when the dimension is high. Non-convex optimization

algorithms usually turns out to be an exhaustive search over the space, which results in a

huge computational cost for high dimensional problems. Therefore, in the second half of

Part I, we consider the reverse: in the first step, an optimization problem is transformed

into the most likely path problem of an artificially designed state space model; in the sec-

ond step, an annealing algorithm based on SMC is proposed to find the most likely path

numerically. We call the first step state space emulation and name the algorithm in second

step “annealed SMC”.

1.1.2 Part II: Individualized Group Learning

It is widely recognized that aggregate information from different sources or independent

studies helps to provide a stronger conclusion as more data is fused together. Meta analysis

or fusion learning is the area of research in statistics that investigate the optimal way of

data fusion (Chen and Xie, 2014; Liu et al., 2014, 2015; Yang et al., 2016). In the fusion

learning, it is often assumed that the parameter of interest from different studies/sources

are exactly the same. The assumption is usually satisfied when the objectives of the studies

are the same or when each source is a subset of data from the same database. However,

if the population of studies is heterogeneous, that is, different studies/sources may poten-

tially have different parameters of interest, the aggregation may yield invalid results. In

addition, when the population is heterogeneous, one is often more interest in the parameter

of a particular individual in the population instead of the population-level average such as
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in precision medicine (Insel, 2009; Hamburg and Collins, 2010; Qian and Murphy, 2011)

and individualized inference (Liu and Meng, 2016). Motivated by the potential population

heterogeneity in fusion learning problems and the increasing need for individualized infer-

ence, Part II focuses on a new fusion learning based individualized inference approach called

iGroup. Particularly, iGroup aims to make an individualized inference for a target individ-

ual of interest by only aggregating similar individuals. A previous work Shen et al. (2019)

aims to provide the individualized fusion learning approach with the same goal under the

asymptotic setting that the population size is limited but the number of observations for

each individual approaches infinity. iGroup considers a different asymptotic setting, which

assumes the population size approaches infinity while each individual has a limited number

of observations. The bias problem is more significant under the iGroup setting. A complete

theoretical analysis is provided to show that the proposed iGroup method is optimal under

the corresponding asymptotic setting.

1.1.3 Part III: Automatic Kronecker Product Approximation

With the increasing availability of high dimensional matrix/tensor data, it is a challenge

to store, represent and model such data. Sparsity is often assumed for high dimensional

matrices such that the data matrix may have a limited number of non-zero entries (sparsity

in observations), or have limited number of non-zero Fourier components (sparsity in fre-

quencies), or have a limited number of non-zero singular values (sparsity in the spectrum).

Especially the low rank assumption (sparsity in the spectrum) is pretty common as in factor

analysis where the covariance matrix is represented with a sum of several rank-1 matrices,

each of which is an outer product of two vectors.

Instead of low rank assumptions, we observe that the Kronecker product is another

mathematical construction of large matrices in statistics and engineering. The dimensions

of the two smaller matrices in the Kronecker product is called the configuration. It has

been investigated to approximate a large matrix with given configuration (Van Loan and

Pitsianis, 1993). For a given matrix, there usually exists more than one way to represent

it with Kronecker products, corresponding to different configurations. However, it remains

open to determine the configuration when it is unknown. Motivated by the flexibility of
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Kronecker product approximation and its potential applications in a variety of research

areas, in Part III, we focus on approximating a high-dimensional matrix with one or more

Kronecker products as in (1.1).

YYY ≈
K∑︂

k=1
AAAk⊗BBBk, (1.1)

where ⊗ stands for the Kronecker product, and the configuration of each Kronecker product

is unknown.

The (original) KoPA assumes the k-components in (1.1) have the same unknown config-

uration. We show that the configuration can be determined through an extended version of

information criteria. Theoretical foundation is established the consistency of configuration

determination in KoPA problems.

One extension is the hybrid KoPA (hKoPA), where the configurations for the K terms

in (1.1) can be different. We provide an alternating least square algorithm to estimate AAAk

and BBBk when the configurations are known and a greedy iterative algorithm to estimate AAAk

and BBBk as well as their configuration when the configurations are unknown.

Another extension is the matrix completion problem (MC-KoPA), where only partial

entries of YYY are observed, under the same assumption of the original KoPA model. In MC-

KoPA, the unknown common configuration can be determined through a modified version

of the information criteria that was used in KoPA model.

All the original KoPA model and its variations are presented with simulations and real

examples in image processing.

1.2 Dissertation Outline

This dissertation is divided into three parts according to the topic of research: part I: Se-

quential Monte Carlo (SMC); part II: Individualized Group Learning (iGroup); part III:

Automated Kronecker Product Approximation (KoPA). The hierarchical structure of chap-

ters is depicted in Figure 1.1.

Part I consists of four chapters. Chapter 2 provides a review on state space models and

the sequential Monte Carlo framework. In Chapter 3, the constrained sampling problems
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Figure 1.1: Hierarchical Structure of Thesis.

are discussed and the proposed algorithm SMCc is demonstrated with simulations and

examples. Chapter 4 provides the details of state space emulation with several examples

and Chapter 5 introduces the annealed SMC algorithm that optimizes the emulated state

space models resulting from Chapter 4.

Part II four chapters in the main content. Chapter 6 reviews the history of fusion learn-

ing and individualized inference. Chapter 7 gives the main framework of individualized

group learning. Detailed theoretical analysis is represented in Section 7.2 with the corre-

sponding rigorous proofs in Appendix A. Varies of simulations and real data examples of

iGroup are demonstrated in Section 7.3.

Part III discusses the family of KoPA approaches. The preliminary knowledge of Kro-

necker product is introduced in Chapter 8. The methodology, theoretical analysis and

examples of KoPA model are given in Chapter 9. Two extensions, the hybrid-KoPA and

the KoPA for matrix completion problems are introduced in Chapter 10 and Chapter 11.

Theorem proofs are given in Appendix B.



PART I

Sequential Monte Carlo for Constrained

Problems and High Dimensional

Optimizations
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CHAPTER 2

Preliminary: Sequential Monte Carlo

2.1 State Space Model

2.1.1 Stochastic Dynamic Systems

Stochastic dynamic systems are often used to model the dynamic behavior of random vari-

ables with a wide range of applications in physics, finance, engineering and other fields.

Denote the random variable of interest as xt, where the subscript t is used to emphasize

the time dependence. As t is allowed to take any value of non-negative real numbers, the

dynamics of xt is often modeled by a stochastic differential equation (SDE). For example, in

mathematical finance, the stock price Xt is assumed to follow a geometric Brownian motion

(Hull, 2015)

dxt = µxtdt+σxtdWt, (2.1)

where µ is the drift, σ is the volatility and Wt is a standard Brownian motion.

Although the stochastic differential equations as in (2.1) provide a precise description,

one is often interested in the discretized version of the SDE. On the one hand, from the

perspective of simulation and numerical analysis, it is impractical to simulate the complete

process {xt : 0 ⩽ t⩽ T} at every t. Instead, it is a common practice to simulate the discrete

path {xt : t = 0, δ,2δ, . . . ,Kδ = T} with a time resolution δ and let δ→ 0 to approximate

the continuous-time process. On the other hand, the stochastic process data are usually

collected/observed at only a finite/countable number of time points. For example, the

historical stock price is usually recorded on a daily base, and the national gross domestic
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product (GDP) data is calculated every quarter. In this circumstance, it is more reasonable

to model them as discrete-time stochastic processes.

Without loss of generality, we assume the data collection or observation occurs in a

periodic manner such that the corresponding times are t= kδ for k = 0,1, . . . and δ > 0. To

ease our notation, we use δ as one unit of time and the time points of observation can be

simply to t= 0,1,2, . . . .

With above time notations, the SDE for the stock price in (2.1) can be rewritten as

logxt+1 = logxt +
[︃
µ+ 1

2σ
2
]︃
δ+σϵt+1,

where δ is the time step and ϵt+1 ∼N(0, δ).

2.1.2 State Space Model

State space model (SSM) is a widely-used discrete-time stochastic model (Doucet et al.,

2001; West and Harrison, 1998; Liu and Chen, 1998). Specifically, in the state space model,

we assume that there exists a sequence of latent random variables, whose dynamics are

governed by an initial state distribution f0(x0) and a forward propagation distribution ft(xt |

x0:t−1), which is often called the “state equations”. In addition, we assume at each time t,

a random variable yt is generated independently according to the conditional distribution

gt(yt | xt). In many applications, y1:T = (y1, . . . ,yT ) is interpreted as observations. Hence,

the conditional distribution gt is often referred as the “observation equations”.

We summarize the dynamics of the state space model in (2.2) and (2.3).

state equation: p(xt | x0:t−1) = ft(xt | x0:t−1), (2.2)

observation equation: p(yt | xt) = gt(yt | xt), (2.3)

where p(·) is the general notation for probabilities.

The state equation ft(·) in (2.2) and the observation distribution gt(·) in (2.3) are often

assumed to be known exactly or up to an unknown parameter of interest θ. Especially

when the state space model is a discretized version of a continuous-time stochastic process,
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the state equation ft(·) can be obtained from the stochastic differential equation of the

stochastic process. For instance, the state equation for the stock price example in Section

2.1.1 is known except the parameter θ = (µ,σ2).

The dynamics of (2.2) and (2.3) reveals the dependence structure of the state space

model. On the one hand, the distribution of xt only depends on all previous states x0:t−1,

which preserves causality of the underlying latent stochastic process {xt : t ∈ Z+}. On the

other hand, the observations y1:T are conditionally independent given the values of latent

variables x1:T . For a better demonstration of the dependence between the variables, we

demonstrate the diagram in Figure 2.1, where each arrow represents a conditional distribu-

tion and one arrow is independent from the other.

y1 y2 yt yT −1 yT

x0 x1 x2 · · · xt · · · xT −1 xT

Figure 2.1: Diagram of State Space Model

When the distribution of xt depends only on xt−1 such that p(xt | x0:t−1) = ft(xt | xt−1),

the system is called Markovian. When both state equations and observation equations are

time-independent, the system is time-homogeneous. If a state space model is Markovian and

time-homogeneous, and in addition xt takes values in a common support of finite elements,

such a model is often called “hidden Markov model” (HMM) (Stratonovich, 1965; Baum

and Petrie, 1966). The hidden Markov model has been extensively investigated in statistics,

computer science and engineering (Juang and Rabiner, 1991; Bishop and Thompson, 1986;

Ghahramani and Jordan, 1996; Baum and Eagon, 1967). Compared to hidden Markov

model, the state space model has a more general setting, which allows for continuous latent

variables xt and allows for non-Markovian processes.

2.1.3 Statistical Inference for State Space Models

When the state and observation equations are known up to an unknown parameter of

interest θ, we denote them by ft(xt | x0:t−1;θ) and gt(yt | xt;θ) to emphasize the dependence.
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The joint probability of x0:T and y1:T is given by

p(x0:T ,y1:T | θ) = f0(x0;θ)
T∏︂

t=1
ft(xt | x0:t−1;θ)gt(yt | xt;θ).

Then the likelihood function of θ given the observations y1:T can be obtained by integrating

out the latent variables x0:T such that

L(θ) = p(y1:T | θ) =
∫︂
f0(x0;θ)

T∏︂
t=1

ft(xt | x0:t−1;θ)gt(yt | xt;θ)dx0:T . (2.4)

A maximum likelihood estimator of θ can be calculated by maximizing L(θ).

When the sequence of latent variables x0:T are of primary interest, the systems can be

interpreted under Bayesian framework. Specifically, we assume the state and observation

equations are exactly known. The following distribution of x0:T , which can be measured

before observation y1:T , is viewed as the prior distribution of x0:T .

π(x0:T ) = f0(x0)
T∏︂

t=1
ft(xt | x0:t−1). (2.5)

The corresponding likelihood function is given by

p(y1:T | x0:T ) =
T∏︂

t=1
gt(yt | xt). (2.6)

Therefore, the posterior of x1:T given y1:T is

π(x0:T | y1:T )∝ f0(x0)
T∏︂

t=1
ft(xt | x0:t−1)gt(yt | xt). (2.7)

Note that the likelihood function in (2.6) is different from the one in (2.4) because the

parameters of interest are different in these two problems.

Maximizing the posterior in (2.7) gives the most likely values of x0:T , which is known as

the most likely path (MLP) problem. Such an inference problem of the latent variables is

common in hidden Markov models. For example, in speech recognition (Juang and Rabiner,

1991), the goal is to recover the true words (xt’s) given the audio data y1:T .
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The most likely path problem can be viewed as a special case of the smoothing problem,

where one is particularly interested in the conditional distribution p(xs | y1:t) for some s < t.

In contrast to the smoothing problem, where most current observations y1:t are used to

estimate a past state xs, s < t, the filtering problem uses the same information to estimate

the most current state, that is p(xt | y1:t).

The filtering problem is closely related to the estimation of the likelihood function (2.4).

It can be seen from the following relationship between the filtering distribution p(xt | y1:t)

and the conditional likelihood p(yt+1 | y1:t,θ).

p(yt+1 | y1:t,θ) =
∫︂∫︂

p(xt | y1:t;θ)ft+1(xt+1 | xt;θ)gt+1(yt+1 | xt+1;θ)dxtdxt+1.

2.2 Sequential Monte Carlo Framework

Sequential Monte Carlo (SMC) is a class of numeric algorithms belonging to the family of

Monte Carlo methodology. Example of SMC literature and applications includes Kong et al.

(1994); Avitzour (1995); Liu and Chen (1995); Kitagawa (1996); Kim et al. (1998); Pitt and

Shephard (1999); Chen et al. (2000); Doucet et al. (2001); Fong et al. (2002); Godsill et al.

(2004) among many others. Sequential Monte Carlo methods conduct statistical inference

based on a set of Monte Carlo samples which are drawn efficiently in a sequential fashion

from the posterior distribution in (2.7) of a state space model. The technical details of

varies sequential Monte Carlo algorithms will be reviewed in this section. The core idea of

SMC algorithms is to generate Monte Carlo samples {x(j)
0:t}nj=1 from those at the previous

time stamp {x(j)
0:t−1}nj=1 such that the set of Monte Carlo samples grows sequentially as the

time evolves.

Sequential Monte Carlo has an old name “particle filter”, which is misleading in the way

that the word “filter” gives the impression of solving filtering problems (see Section 2.1.3).

Although SMC or particle filter is a powerful tool in dealing with the filtering needs, the

methodology is also applied to the smoothing and other more advanced problems in modern

applications, which will be discussed in this chapter.
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2.2.1 Principle of Importance Sampling

In Monte Carlo methods, if the parameter of interest θ can be written as the expectation

of a random variable h(x) under a probability measure µ on x such that

θ = Eµ[h(x)] =
∫︂
h(x)dµ(x)<∞,

then a Monte Carlo estimator of θ can be obtained by the sample average

θ̂N =N−1
N∑︂

j=1
h(x(j)),

where {x(j)}Nj=1 are drawn i.i.d. from the probability measure µ. By the central limit

theorem, the asymptotic distribution of the Monte Carlo estimator is

√
n(θ̂n−θ)

D−−→N (0,V ), (2.8)

where V =
∫︁
h2(x)dµ(x)−θ2 assuming h2(x) integrable under µ.

In importance sampling, the distribution µ is called the target distribution and the

samples {x(j)}Nj=1 can be drawn from another distribution ν(x), which is known as the

sampling distribution or proposal distribution. In addition, each sample x(j) is equipped

with a non-negative weight w(j) = dµ(x(j))/dν(x(j)), which is the Radon-Nikodym derivative

between the target and the proposal probability measures. When µ and ν are continuous

measures with corresponding densities fµ and fν , the weight function is simply w(x) =

fµ(x)/fν(x), which requires fν(x) to be 0 whenever fµ(x) is 0. The condition is often

expressed as “µ is absolutely continuous with respect to ν”.

The weighted sample set {(x(j),w(j))}Nj=1 is said to be properly weighted to the distri-

bution µ if for any measurable function h(·) we have

θ̃N =
∑︁N

j=1w
(j)h(x(j))∑︁N

j=1w
(j)

P−−→ Eµ[h(x)] = θ. (2.9)
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The Radon-Nikodym derivative weight function ensures (2.9) since

N−1
N∑︂

j=1
w(j)h(x(j)) P−−→

∫︂
dµ(x)
dν(x)h(x)dν(x) = θ,

N−1
N∑︂

j=1
w(j) P−−→

∫︂
dµ(x)
dν(x)dν(x) = 1,

by law of large numbers. Similar to (2.8), we have the asymptotic distribution for θ̃n as

√
n(θ̃n−θ)

D−−→N (0, Ṽ ), (2.10)

where

Ṽ =
∫︂ (︃

dµ(x)
dν(x)h(x)

)︃2
dν(x)−θ2 ⩾

[
∫︁
|h(x)|dµ(x)]2∫︁

dν(x) −θ2 =
[︃∫︂
|h(x)|dµ(x)

]︃2
−θ2,

where the inequality is a direct consequence of Cauchy-Schwartz inequality. By Jensen’s

inequality, we have Ṽ ⩽ V . The optimal variance is obtained when dν(x)/dµ(x)∝ |h(x)|.

When the function h(·), whose expectation under µ is the estimand, is not specified, it

is common to look into the χ2 divergence between µ and ν. Specifically, the χ2 divergence

Dχ2(µ||ν) is defined as

Dχ2(µ||ν) =
∫︂ [︄(︃

dµ(x)
dν(x)

)︃2
−1
]︄
dν(x) =

∫︂
w2(x)dν(x)−1,

which is an increasing function of Eν [w2] =
∫︁
w2(x)dν(x). Consequently, the concept of

effective sample size arises for finite sample sets. A finite sample estimate for Eν [w2] is

N−1∑︁N
j=1

[︂
w(j)

]︂2
, which is 1 when w(j) ≡ 1 and greater than 1 otherwise. Accordingly, we

define the effective sample size (ESS) as follows

ESS =

[︂∑︁N
j=1w

(j)
]︂2

∑︁N
j=1

[︁
w(j)]︁2 , (2.11)

which takes the maximum at N when the weights are evenly distributed. A larger effective

sample size indicates a smaller χ2-divergence between the sampling distribution and the
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target distribution.

As a summary, the benefit of importance sampling is twofold. On the one hand, when

the target distribution µ(x) is difficult to sample from, sampling according to an arbitrary

proposal distribution ν(x) is relatively easy. For instance, one can choose ν(x) to be Gaus-

sian. On the other hand, by comparing the asymptotic variance of θ̂n and θ̃n in (2.8) and

(2.10), the constant weight is usually not optimal in estimating θ. By choosing the optimal

proposal distribution, the asymptotic variance of the (weighted) mean estimator is reduced.

2.2.2 Sequential Importance Sampling

The principle of importance sampling can be utilized to draw sample trajectories {x(i)
0:T }Ni=1

from the posterior distribution (2.7) in a sequential way. Specifically, let q0(x0), q1(x1 |

x0), . . . , qT (xT | x0:T −1) be a sequence of proposal distributions of arbitrary choices as long

as the target distribution (2.7) is absolutely continuous with respect to the joint proposal

distribution q0(x0)
∏︁T

t=1 qt(xt | x0:t−1). According to the principle of importance sampling,

the proper weight at time T should be

wT (x0:T )∝ f0(x0)
∏︁T

t=1 ft(xt | x0:t−1)gt(yt | xt)
q0(x0)

∏︁T
t=1 qt(xt | x0:t−1)

= f0(x0)
q0(x0)

T∏︂
t=1

ft(xt | x0:t−1)gt(yt | xt)
qt(xt | x0:t−1) , (2.12)

which has a sequential structure with the weight increment term

ft(xt | x0:t−1)gt(yt | xt)
qt(xt | x0:t−1) .

Note that the relation in (2.12) is in a proportional form, where the value of the right-hand

side is feasible. With rigorous calculation, the missing term in (2.12) is 1/p(y1:T ), which is

infeasible but constant for any x0:T .

With both proposal distribution and weight function in a sequential form, the pro-

posal sampling and weight adjustment can therefore be conducted sequentially at ev-

ery time t = 1, . . . ,T instead of deferring all weight calculation to time T . The proce-

dure is known as sequential importance sampling (SIS), which is depicted in Algorithm 1.
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Algorithm 1: Sequential Importance Sampling

1 Draw {x(i)
0 }Ni=1 from q0(x0);

2 Set w(i)
0 ← 1 for i= 1, . . . ,N ;

3 for t= 1, . . . ,T do

4 for i= 1, . . . ,N do

5 Draw x
(i)
t from qt(xt | x(i)

0:t−1);

6 Set

w
(i)
t ← w

(i)
t−1

ft(x(i)
t | x

(i)
0:t−1)gt(yt | x(i)

t )
qt(x(i)

t | x
(i)
0:t−1)

; (2.13)

7 end

8 end

9 return {(x(i)
0:T ,w

(i)
T )}Ni=1.

Because of the proportion form in (2.12), the weight update step in (2.13) misses a

constant term p(yt | y1:t−1) as well. This helps in estimating the likelihood function in the

way that

p̂(ys+1:t | y0:s) =
∑︁N

i=1w
(i)
t∑︁N

i=1w
(i)
s

,

provides a Monte Carlo estimate of the conditional likelihood p(ys+1:t | y0:s) with 0< s < t.

2.2.3 Sequential Importance Sampling with Resampling

A common issue encountered in the sequential importance sampling algorithm in Algo-

rithm 1 is weight collapse. As an extreme example, when at time t the majority of weight is

assigned to one sample x(1)
0:t , then at time t+1, only one useful value for xt+1 is obtained —

x
(1)
t+1, as all other samples have negligible weights. This weight collapse reduces the diversity

and representativity of Monte Carlo samples.

Resampling alleviates this issue by reproducing samples with higher weights and elim-

inating samples with lower weights. For the aforementioned extreme example, one can

reproduce the sample x(1)
0:t N times such that the new sample set {x̃(i)

0:t = x
(1)
0:t }Ni=1 are now

assigned with equal weights. As a result, at time t+1, N new values of xt+1 are generated
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verses only one value without reproduction.

The resampling step in sequential Monte Carlo embraces a stochastic algorithm. Sup-

pose at time t, {(x(i)
0:t,w

(i)
t )}Ni=1 is the properly-weighted sample set. A resampling step is

redeemed by first generating j1, . . . , jN identically distributed to the probability

P [ji = k] = βk for k = 1, . . . ,N, (2.14)

and then assigning

x
(i)
0:t← x

(ji)
0:t ,

w
(i)
t ← w

(ji)
t /βji ,

for all i ∈ [N ]. The resampling probability in (2.14) employs the multinomial distribution

with probabilities (β1, . . . ,βN ), which are known as the priority scores. The priority scores

indicate the re-sampler’s preference over different samples — samples with higher priority

scores are more likely to be reproduced. A common choice of the priority score is the weight

such that βk = w
(k)
t . But the choice of priority score is arbitrary, and after resampling the

weighted sample set remains properly-weighted.

The sequential importance sampling algorithm with the extra resampling step is known

as sequential importance sampling with resampling (SISR), which is demonstrated in Algo-

rithm 2.

The index set {j1, . . . , jN} for new samples in the resampling step can be generated with

multinomial distribution random number generators. More advanced schemes to reduce

variation introduced by the resampling step include residual resampling (Liu and Chen,

1998) and stratified resampling (Carpenter et al., 1999).

The resampling step is not necessary to each time t as it introduces extra variation.

A fixed schedule conducts the resampling step every K timestamps for some K > 1. An

adaptive schedule checks the effective sample size defined in (2.11) at each time and conducts

resampling only when the effective sample size drops below a threshold, for example 0.3N .

Without other specification, in the subsequent content of this thesis, the sequential
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Algorithm 2: Sequential Importance Sampling with Resampling
1 Draw {x(i)

0 }Ni=1 from q0(x0);
2 Set w(i)

0 ← 1 for i= 1, . . . ,N ;
3 for t= 1, . . . ,T do
4 for i= 1, . . . ,N do
5 Draw x

(i)
t from qt(xt | x(i)

0:t−1);
6 Set

w
(i)
t ← w

(i)
t−1

ft(x(i)
t | x

(i)
0:t−1)gt(yt | x(i)

t )
qt(x(i)

t | x
(i)
0:t−1)

; (2.15)

7 end
8 if Resampling then
9 Draw j1, . . . , jN from [N ] with probability P [ji = k] = βk;

10 Set
x

(i)
0:t← x

(ji)
0:t , w

(i)
t ← w

(ji)
t /βji .

11 end
12 end
13 return {(x(i)

0:T ,w
(i)
T )}Ni=1.

Monte Carlo algorithm refers to the sequential importance sampling with resampling (SISR)

shown in Algorithm 2.

2.2.4 Existing SMC Algorithms

Algorithm 2 provides the general framework of sequential Monte Carlo as the user has the

flexibility in choosing arbitrary proposal distributions qt used in importance sampling and

arbitrary priority scores β used in resampling. In this section, I will list and discuss several

well-known existing SMC algorithms and their choices of proposal distributions and priority

scores.

The bootstrap particle filter (or Bayesian particle filter) (Kitagawa, 1996) uses the state

equation as the proposal distribution such that qt(xt | x0:t−1) = ft(xt | x0:t−1). The weight

increment is therefore gt(yt | xt). It comes from the Bayesian interpretation of the system

by viewing the state equations as “prior” and the observation equation as “likelihood”. This

setting of proposal distributions works well when the observations are noisy, or equivalently,

when the state equation is less volatile.

The independent particle filter (Lin et al., 2005) sets the observation equation as the
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proposal distribution such that qt(xt | x0:t−1) ∝ gt(yt | xt). The correspondingly weight

increment is proportional to ft(xt | x0:t−1). This choice of proposal distribution is suitable

for the cases when the observations are accurate compared with the state equations.

As a compromise between the bootstrap particle filter and the independent particle

filter, Kong et al. (1994); Liu and Chen (1998) proposed to adopt qt(xt | x0:t−1) ∝ ft(xt |

x0:t−1)gt(yt | xt) to reduce the χ2-divergence between sampling distribution and the target

distribution.

The auxiliary particle filter (Pitt and Shephard, 1999) suggests first conduct resampling

with priority scores βt ∝ wtp(yt:t+∆ | x0:t−1) for a certain number of lookahead steps ∆> 0

at time t, then drawing samples of xt with proposal distribution q(xt | x0:t−1) = p(xt |

x0:t−1,yt:t+∆).

Extensions to the auxiliary particle filter are investigated as incorporating future ob-

servations improves the quality of SMC samples. For example, the twisted particle filter

proposed by Whiteley and Lee (2014), the block sampling method in Doucet et al. (2006)

and the family of look-ahead strategies reviewed in Lin et al. (2013). Specifically, the con-

strained SMC discussed in Chapter 3 can be viewed as a special case of the auxiliary particle

filter as well, but with an estimated optimal priority score.
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CHAPTER 3

Constrained Sequential Monte Carlo

3.1 Constrained Problems

3.1.1 Introduction

Stochastic dynamic systems often come with external observable information, including

direct/indirect measurements, constraints and others. For example, in many physics and

financial applications, one is often interested in the distribution of all possible paths of a

given diffusion process with fixed starting and ending points (known as diffusion bridge)

(Pedersen, 1995; Durham and Gallant, 2002; Lin et al., 2010). In protein structure studies,

the properties of self-loops are often studied, where a self-loop is defined as a strand of

proteins that forms a spatial loop by a chemical bond. Samples from the distribution of

self-avoiding walks on a 3-D lattice with the same starting and ending points are often

studied as a proxy of protein loops (Zhang et al., 2009; Lin et al., 2008a). The observations

y1:T in the state space model discussed in Chapter 2 is another example.

In this section, we reformulate the constraints as an extension to the state space model

defined by (2.2) and (2.3) such that more general constraints are considered. For example,

some observations yt can be missing from the state space model. The constraints can be any

event in the corresponding sigma field of xt such as xT > c for some constant c. In addition,

the singular observation equation is allowed. For instance, gT (yT | xT ) = δ(yT −xT ) with

observed yT corresponds to the fixed end-point constraint on xT .
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3.1.2 Stochastic Dynamic System with Constraints

Similar to the state space model, we assume x0:T is a sequence of unobserved random states,

whose dynamics are governed by the state equations in (2.2). Instead of assuming a point

observation yt for each time t, we introduce the following general notation for external

information/constraints. Let It be a piece of new information at time t, and Ft be the

cumulative information imposed on the latent states up to time t. Hence, F0⊃F1⊃ ·· · ⊃FT

forms a sequence of monotonically non-increasing events, where Ft =Ft−1∩It. When there

is no additional information at time t, we have Ft = Ft−1.

The posterior distribution (2.7) from the state space model is reformulated to

p(x0:T | FT )∝ p(x0,F0)
T∏︂

t=1
p(xt,Ft | x0:t−1,Ft−1), (3.1)

where p(xt,Ft | x0:t−1,Ft−1), t= 1, . . . ,T, are specified by the system.

In the constrained sampling problems, some “strong” constraints are of particular in-

terest. We define the strength of the cumulative constraints between t and t+d with the

χ2-divergence measure

G(t, t+d) =Dχ2

(︂
p(x0:t+d | Ft+d) ∥ p(x0:t+d | Ft−1)

)︂
:=
∫︂
p2(x0:t+d | Ft+d)
p(x0:t | Ft−1) dx0:t+d−1 (3.2)

for t > 0 and d ⩾ 0. A large value of G(t, t+d) reflects a strong impact of the constraints

imposed between t and t+d (inclusive).

3.1.3 Special Cases

Several special cases of the constrained system will be discussed in this section.

Case 1: Frequent and weak constraints: The traditional state space model with a

noisy observation yt for each time t belongs to this special constrained system. Suppose

the observation at time t has the following random mapping representation yt = g̃t(xt,νt),

where νt is a random variable that used to match the conditional distribution gt(yt | xt). The

constraint is in the form It = {yt = g̃t(xt,νt)} and the event Ft = {g̃s(xs,νs) = ys,s= 0, . . . , t}
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for t= 0, · · · ,T . In this case,

p(xt,Ft | x0:t−1,Ft−1) = ft(xt | xt−1)gt(yt | xt),

where ft and gt are the state equation and observation equation from (2.2) and (2.3) corre-

spondingly. The frequent observations continuously provide information about the under-

lying process x0:T . The conventional sequential Monte Carlo depicted in Algorithm 2 has

been extensively studied to solve this frequent and weak constraints case.

Case 2: Rare and strong constraints: The diffusion bridge problems (Lin et al., 2010)

fall into this case, where the problem is to generate paths that connect two fixed endpoints

x0 = a and x0 = b. The corresponding constraint events are F0 = · · ·=FT −1 = {x0 = a} and

FT = {x0 = a,xT = b}. The constraint at time T , IT = {xT = b}, is extremely strong as the

strength are

G(1,T ) = · · ·=G(T −1,T ) =∞.

Case 3: Periodic and intermediate constraints: When there are noisy measurements

of the latent states x0:T periodically, we assume that T =KM , and yk is a noisy measure-

ment of xkM for k = 1, · · · ,K. The intermediate observations split the whole path into K

segments as shown in Figure 3.1. This system can be viewed as a sequence of connected

diffusion bridge problems. Specifically, The segment (x0, · · · ,xM ,yt) is the first diffusion

bridge problem, where the state equations are known and the endpoints x0 and y1 are fixed.

Any subsequent segments are imposed with fixed endpoint constraints as well, since yk is

viewed as the fixed point, p(yk | xkM ) is treated as the state equation of the last step and

p(x(k−1)M | y1:k−1) obtained from previous segment is the initial distribution of x(k−1)M .

The samples of this periodic strong constraints can be drawn in a segment-wise fashion.

x0 · · · xM · · · x2M · · · x(K−1)M · · · xT

y1 y2 yK−1 yK

Segment 1 Segment 2 Segment K

Figure 3.1: Segmentation of a stochastic process with intermediate observations.

Case 4: Multilevel constraints: In some applications, there may exist multiple levels
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of constraints, including those with a hierarchical structure, such as one level of weak

but frequent constraints and another level of strong but rare constraints (a hybrid setting

of Case 1 and Case 2). A special case is a standard state space model with two fixed

endpoint constraints x0 = a and xT = b. The target posterior distribution is now p(x0:T |

x0 = a,y1:T −1,xT = b). The routine observations y1, · · · ,yT −1 can be viewed as a layer of

weak constraints and the fixed point constraints are viewed as a layer of strong constraints.

3.2 Existing SMC-based Approaches

In this section, several existing SMC algorithms designed for the diffusion bridge problem

are reviewed. The diffusion bridge problem (Durham and Gallant, 2002; Lin et al., 2010)

imposes two fixed endpoint constraints x0 = a and xT = b to an underlying diffusion process.

The constraint is strong when the two distributions, p(x1:T −1 | x0 = a) and p(x1:T −1 | x0 =

a,xT = b) have a large divergence, or equivalently, a large value of G(T −1,T ).

Pedersen (1995) proposed to generate the samples through the underlying diffusion

process without considering the endpoint constraint and then force the samples to connect

with the fixed endpoint at the end. It works when G(T −1,T ) is small as in the last step,

the forced connection does not reduce effective sample size significantly. However, when

the constraint is strong, it may not be efficient due to the large deviation of the end of the

forward paths from the enforced end point.

To avoid the potential large deviation at the endpoint, Durham and Gallant (2002)

proposed to employ importance sampling to guide the sample paths to the fixed endpoint

proactively. Specifically, the proposal distribution at each time t is a modified version of the

underlying diffusion process by adding a drift term, (b−x(i)
t−1)∆t/(T − t+1), where x(i)

t−1 is

the current value of state and ∆t is the time step in the discretization. The proposal

distribution with a linear interpolation drift term turns the joint proposal distribution∏︁T −1
t=1 qt(xt | xt−1) to a linear diffusion process, where the drift term is a linear function of

the current state xt. Although the sample paths generated using linear diffusion proposal

distributions are weighted properly using SMC, it breaks the underlying dynamics when

the state equations ft(xt | x0:t−1) are nonlinear. In other words, the sample paths may not
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be representative and efficient. See the discussion of Lin et al. (2010).

Lin et al. (2010) proposed a resampling strategy that keeps the underlying dynamics

of the latent process and at the same time adjust the samples proactively according to

the fixed endpoint constraint. Specifically, Lin et al. (2010) suggests to use the dynamics

ft(xt | xt−1) as the proposal distribution, preserving any potential nonlinear properties. In

the resampling step, the priority score is designed to incorporate future information —

the endpoint constraint. The priority score proposed by Lin et al. (2010) for the diffusion

bridge problems is βt ∝ wtp(xT = b | xt), which measures the probability of current state

reaching the fixed endpoint. A backward pilot procedure is conducted as a pre-processing

step to estimate the priority scores. The backward pilot resampling strategy achieves good

efficiency. It improves the forward sampling by bringing future information and constraints

with minimum additional computational costs.

3.3 Constrained Sequential Monte Carlo

3.3.1 Distributions in SMC

In this section, we discuss several important distributions used in SMC and re-state the

SMC concepts in Chapter 2 with the distributions.

Let Q0(x0),Q1(x0:1), · · · ,QT (x0:T ) be the sequence of forward propagation distributions

such that at each time t, the SMC samples {(x(i)
0:t,w

(i)
t )}Ni=1 are properly weighted with

respect to Qt(x0:t). For the SMC algorithm in Algorithm 2, Qt(x0:t) = f0(x0)
∏︁T

t=1 ft(xt |

x0:t−1). The weight update step (2.15) can be rewritten to

w
(i)
t ← w

(i)
t−1

Qt(x(i)
0:t)

Qt−1(x(i)
0:t−1)qt(x(i)

t | x
(i)
0:t−1)

. (3.3)

The formula (3.3) is more general in the sense that the SISR algorithm is still valid as long

as the sequence of distributions Qt are defined even when yt is not observed.

Conventional SMC approaches (Gordon et al., 1993; Liu and Chen, 1998) set the forward
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propagation distributions Qt(x0:t) to

P0
t (x0:t) = p(x0:t | Ft), t= 0,1, . . . ,T, (3.4)

using all information up to time t. As discussed in Section 3.2, using P0
t as the forward

propagation works well for frequent and weak constraints, but is not efficient when strong

constraints exist (for example, the diffusion bridge case).

Since P0
t ignores all future information, it is natural to consider another extreme — the

forward propagation distribution that incorporates ALL future information. Specifically,

we define such a distribution by

Pt(x0:t) = p(x0:t | FT ) = p(x0 | FT )
t∏︂

s=1
p(xs | x0:s−1,FT ), (3.5)

for t = 0,1, . . . ,T . It is the most efficient algorithm if one was able to sample from the

conditional posterior distribution p(xs | x0:s−1,FT ) exactly. However, in most cases, p(xs |

x0:s−1,FT ) is infeasible and is difficult to sample from as it involves a high-dimensional

integral

p(xs | x0:s−1,FT )∝
∫︂
· · ·
∫︂ T∏︂

s=t

p(xs,Fs | x0:s−1,Fs−1)dxt+1 · · ·dxT . (3.6)

As a compromise between the optimality of Pt in (3.5) and the feasibility of P0
t in (3.4),

we propose to adopt the following forward propagation measure

P∗
t (x0:t) = p(x0:t | Ft+), t= 0,1, . . . ,T, (3.7)

where t+ ⩾ t is the next time when a strong constraint is imposed after time t (inclusive), or

the cumulative strength of the constraint G(t, t+) defined in (3.2) exceeds certain threshold.

In practice, the selection of t+ could depend on specific problems and be user-defined. For

instance, in the diffusion bridge sampling problem, we use t+ = T . In the conventional state

space model with frequent observations at every time, we may use t+ = min{t+ d,T} for

some constant delay d as in the delayed SMC algorithm (Lin et al., 2013). In the periodic

observation case (Case 3 in Section 3.1.3), t+ is where we insert yk in the process.
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By observing the fact that in most cases the next available strong constraint plays an

important role in shaping the path distribution, the proposed forward propagation distri-

bution P∗
t works as a proxy of Pt but is more feasible as we will discuss later.

3.3.2 Forward Propagation using P∗
t

As discussed in the previous section, the compromised distribution P∗
t (x0:t) balances the use

of future constraints and the computational efficiency. To use P∗
t (x1:t) as the propagation

distribution Qt(x1:T ) in SMC, it is ideal to draw samples from the exact distribution such

that qt(xt | x0:t−1) = P∗
t (xt | x0:t−1) = p(xt | x0:t−1,Ft+). However, it is usually difficult,

especially when t+ is far away from t, since it involves a high dimensional integral similar

to (3.6). On the other hand, P0
t is often easier to work with, with proposal distributions

equal or close to P0
t (xt | x0:t=1) = p(xt | x0:t−1,Ft). Notice that

P∗
t (x0:t)∝ P0

t (x0:t)p(Ft+ | x0:t,Ft),

where (Ft+ | x0:t,Ft) is the Radon-Nikodym derivative between P∗
t and P0

t up to a constant.

Therefore, a properly weighted sample set under the distribution P0
t can be easily changed

to sample set properly weighted with respect to P∗
t by multiplying the weights obtained

under P0
t by a factor p(Ft+ | x0:t,Ft).

Based on the above observations, instead of propagate SMC samples with respect to the

infeasible distribution p(xt | x0:t−1,Ft+), we proposed to propagate with respect to P0
t and

then resample with priority score

β
(i)
t = w

(i)
t p(Ft+ | x

(i)
0:t,Ft) (3.8)

to adjust the distribution of samples. β
(i)
t in (3.8) is called the optimal priority score

because the samples will approximately follow P∗
t after resampling. A heatmap of the term

p(Ft+ | x
(i)
0:t,Ft) in a Markovian nonlinear process as a function of time t and the state value

xt is plotted in Figure 3.2.

Not only does incorporating P∗
t in the priority score make the propagation step possible
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Figure 3.2: Illustration of the resampling step at time t = 10 in SMCc. The left side
shows several forward paths x(i)

0:t to be resampled, and the right side shows the heatmap of
p(Ft+ |x0:t,Ft).

using P0
t , but also avoids computation of the exact value of the probability p(Ft+ | x

(i)
0:t,Ft) in

the weight update step. As mentioned in Chapter 2, the choice of priority score is arbitrary

and the weighted samples are still properly weighted even when the optimal priority score

(3.8) is replaced with an approximated value. We refer to this method as the sequential

Monte Carlo with constraints (SMCc) method. The details of the algorithm are depicted in

Algorithm 3, where p̂(Ft+ | x
(i)
0:t,Ft) is the approximated value of p(Ft+ | x

(i)
0:t,Ft). We will

discuss how to approximate it in the next section.

3.4 Estimation of the Optimal Priority Score

In this section, we omit the trivial case that t+ = t, in which p(Ft+ | x0:t,Ft) = 1, and focus

on the case that t+ > t. Then the second term in the optimal priority score (3.8) can be

written as

p(Ft+ | x0:t,Ft) =
∫︂
· · ·
∫︂ t+∏︂

s=t+1
p(xs,Fs | x0:s−1,Fs−1)dxt+1 · · ·dxt+ , (3.9)

which often does not have a closed-form solution. In this section, three methods to approxi-

mate p(Ft+ | x0:t,Ft) are presented: the parametric approach (SMCc-PA), the forward pilot
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Algorithm 3: Sequential Monte Carlo with Constraints (SMCc)

1 Draw {x(i)
0 }Ni=1 from q0(x0);

2 Set w(i)
0 ← 1 for i= 1, . . . ,N ;

3 for t= 1, . . . ,T do
4 for i= 1, . . . ,N do
5 Draw x

(i)
t from qt(xt | x(i)

0:t−1);
6 Set

w
(i)
t ← w

(i)
t−1

p(x(i)
t ,Ft | x(i)

0:t−1,Ft−1)
qt(x(i)

t | x
(i)
0:t−1)

;

7 end
8 (Optional) Resampling with priority score

β
(i)
t ∝ w

(i)
t p̂(Ft+ | x

(i)
0:t,Ft).

9 end
10 return {(x(i)

0:T ,w
(i)
T )}Ni=1.

approach (SMCc-FP) and the backward pilot approach (SMCc-BP).

Note that we focus on the cases with rare and strong constraints. We assume a pre-fixed

time stamps of the constraints: 0 = T0 < T1 < · · ·< TK = T . Then t+ = Tk if Tk−1 < t⩽ Tk.

3.4.1 Parametric Approximation

One may assume a parametric form for p(Ft+ | x0:t,Ft) based on some prior knowledge. For

example, Zhang et al. (2007); Lin et al. (2008b) used SMCc approach with t+ =T to generate

protein conformation samples with certian distance constraints, where p(FT | x0:t,Ft) is

approximated with parametric functions based on the distance between xt and xT .

Scharth and Kohn (2016) proposed the particle efficient importance sampling (PEIS)

method, which approximates p(xt | x0:t−1,FT ) and the optimal priority score βt within

parametric families though an iterative local optimization routine. For simplicity, assume

the system is Markovian such that p(xt,Ft | x0:t−1,Ft−1) = p(xt,Ft | xt−1,Ft−1) for all t.

PEIS assumes

q(xt | xt−1;θt) = ψt(xt,xt−1;θt)/χt(xt−1;θt),
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where ψt(xt,xt−1;θt) is in a parametric family with parameter θt, and

χt(xt−1;θt) =
∫︂
ψt(xt,xt−1;θt)dxt

is the normalizing term. With these notations, the importance weight at time T becomes

wT (x0:T ) = p(x0:T |FT )
q(x0;θ0)

∏︁T
t=1 q(xt |xt−1;θt)

∝p(x0,F0)
∏︁T

t=1 p(xt,Ft |xt−1,Ft−1)
q(x0;θ0)

∏︁T
t=1 q(xt |xt−1;θt)

(3.10)

∝p(x0,F0)χ1(x0;θ1)
ψ0(x0;θ0)

[︄
T −1∏︂
t=1

p(xt,Ft |xt−1,Ft−1)χt+1(xt;θt+1)
ψt(xt,xt−1;θt)

]︄
p(xT ,FT |xT −1,FT −1)
ψT (xT ,xT −1;θT ) ,

where the initial ϕ0(x0;θ0) is also restricted to a parametric family. Note that wT is linked

to the effective sample size defined in (2.11). Minimizing the variation of wT in (3.10) can

be done through a backward iterative optimization procedure.

We start with an optimal θT that minimizes the variation of the term

p(xT ,FT |xT −1,FT −1)
ψT (xT ,xT −1;θT ) .

Then going backward recursively for t= T −1, . . . ,1, we find θt that minimizes the variation

of
p(xt,Ft |xt−1,Ft−1)χt+1(xt;θt+1)

ψt(xt,xt−1;θt)
.

The PEIS method can be easily adapted to our setting to approximate p(Ft+ | xt,Ft)

as shown in Algorithm 4. The optimization procedure is repeated for each time interval

from Tk−1 + 1 to Tk. The normalizing term χt+1(xt;θt+1) is used as an approximation of

p(Ft+ | x0:t,Ft) = p(Ft+ | xt,Ft). The performance of this method greatly depends on the

chioce of the parametric family.

3.4.2 Approximation Based on Forward Pilots

When there does not exist appropriate parametric families that can approximate p(xt,Ft |

x0:t−1,Ft−1), non-parametric and Monte Carlo approaches should be considered instead.
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Algorithm 4: PEIS Parameter Optimization
1 for k = 1, . . . ,K do
2 Initialize the parameters θ[0]

t for t= Tk−1 +1, · · · ,Tk;
3 repeat
4 Generate samples x(j)

Tk−1:Tk
, j = 1, · · · ,m, from the proposal distribution

q(xTk−1)
Tk∏︂

t=Tk−1+1

ψt(xt,xt−1;θ[l−1]
t )

χt(xt−1;θ[l−1]
t )

,

where q(xTk−1) is a distribution close to p(xTk−1 |FTk−1);
5 Calculate the weights

w
(j)
Tk

=
p(ITk−1 |x

(j)
Tk−1

)

q(x(j)
Tk−1

)

Tk∏︂
t=Tk−1+1

p(x(j)
t |x

(j)
t−1)p(It |x(j)

t )
q(x(j)

t |x
(j)
t−1;θ[l−1]

t )
.

6 for t= Tk,Tk−1, · · · ,Tk−1 +1 do
7 solve the minimization problem

(θ[l]
t ,γ

[l]
t ) = argmin

θ,γ

m∑︂
j=1

w
(j)
Tk

{︂
log
[︁
p(x(j)

t |x
(j)
t−1)p(It |x(j)

t )χt+1(x(j)
t ;θ[l]

t+1)
]︁

−γ− log
[︁
ψt(x(j)

t ,x
(j)
t−1;θ)

]︁}︂2
,

where χt+1(xt;θt+1) is set to a constant when t= TK ;
8 end
9 until convergence;

10 end
11 Let θ∗

t , t= Tk−1 +1, · · · ,Tk, be the converged parameters;
12 return the estimated functions{︂ˆ︁p(Ft+ |x0:t,Ft) = χt+1(xt;θ∗

t+1)
}︂

t=Tk−1+1,··· ,Tk−1;k=1,··· ,K

One of the approaches is to send out forward pilot samples, which has been proposed by

Wang et al. (2002); Zhang and Liu (2002) and is used for delayed estimation in Lin et al.

(2013).

Suppose that at time t we have samples {(x(i)
0:t,w

(i)
t )}Ni=1 properly weighted with re-

spect to P0
t . In the traditional way of forward pilot sampling, the pilot samples x̃(i,j)

t+1:t+ =

(x̃(i,j)
t+1 , · · · , x̃

(i,j)
t+ ), j = 1, · · · ,J are generated for each sample x(i)

0:t from a (joint) proposal dis-
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tribution
∏︁t+

s=t+1φ(xs | x(i)
0:t,xt+1:s−1) and are weighted by U (i,j)

t =
∏︁t+

s=t+1u
(i,j)
s with

u(i,j)
s =

p(˜︁x(i,j)
s ,Fs | x(i)

0:t, ˜︁x(i,j)
t+1:s−1)

φ(˜︁x(i,j)
s | x(i)

0:t, ˜︁x(i,j)
t+1:s−1)

.

By observing E[U (i,j)
t | x(i)

0:t] = p(Ft+ | x
(i)
0:t,Ft), the latter can therefore be approximated by

J−1∑︁J
j=1U

(i,j)
t . The computational burden of the traditional forward pilot methods is high

as it requires the generation of pilot samples for every path x
(i)
0:t at every time t.

Here we propose a new forward pilot approach to significantly reduce the computational

cost using nonparametric smoothing technique. In addition, we suppose there exists a low

dimensional statistics S(x0:t) that summarizes x0:t in the way that

p(xt:t+d,Ft+d | x0:t−1,Ft−1) = p(xt:t+d,Ft | S(x0:t−1),Ft−1)

for all t and d = 0,1, . . . , and suppose there exists a function ϕ(·) such that S(x0:t) =

ϕ(S(x0:t−1),xt). Then we can work on a low dimensional space such that p(Ft+ | x0:t,Ft) =

p(Ft+ | S(x0:t),Ft) is a function of S(x0:t). The algorithm is presented in Algorithm 5.

Note that for U (j)
t =

∏︁Tk
s=t+1 ũ

(j)
s defined in Algorithm 5, we have

E[U (j)
t | S(j)

t = S] = p(Ft+ | S(x0:t) = S,Ft)

for all t. Therefore, p(Ft+ | S(x0:t,Ft) can be estimated by {(U (j)
t ,S

(j)
t )}Mj=1 nonparametri-

cally. Algorithm 5 choose to use the histogram method instead of kernel smoothing method

in order to control the computational cost. Compared with the traditional pilot sampling

method in Wang et al. (2002), Algorithm 5 only need to be conducted once to obtain

p̂(F+ | S(x0:t),Ft) for all t.

The proposal distribution φ(·) is crucial to the accuracy of Algorithm 5 because the

forward pilot samples need to comply with the constraint ITk
finally. It is suggested to

incorporate ITk
into φ(·) such that the pilot samples have a reasonable large probability to

satisfy the constraint ITk
.
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Algorithm 5: Forward Pilot Smoothing
1 for k = 1, . . . ,K do
2 for j = 1, . . . ,M do
3 Draw samples S(j)

Tk−1
from a proposal distribution φ(S) that covers the

support of S(x0:Tk−1);
4 end
5 for t= Tk−1 +1, · · · ,Tk do
6 for j = 1, . . . ,M do
7 Generate samples ˜︁x(j)

t from a proposal distribution φ(˜︁xt | S(j)
t−1);

8 Calculate S(j)
t = ϕ(S(j)

t−1, ˜︁x(j)
t );

9 Calculate the incremental weights

˜︁u(j)
t =

p(˜︁x(j)
t ,Ft | S(˜︁x(j)

0:t−1) = S
(j)
t−1,Ft−1)

φ(˜︁x(j)
t | S

(j)
t−1)

,

10 end
11 end
12 for t= Tk−1 +1, · · · ,Tk do
13 for j = 1, . . . ,M do
14 Compute U (j)

t =
∏︁Tk

s=t+1 ˜︁u(j)
s ;

15 end
16 Let S1∪·· ·∪SD be a partition of the support of S(x0:t);
17 Estimate p(Ft+ |x0:t,Ft) = p(Ft+ |S(x0:t),Ft) by

ht(S(x0:t)) =
D∑︂

d=1
ξt,dI

(︁
S(x0:t) ∈ Sd

)︁
with

ξt,k =
∑︁m

j=1U
(j)
t I

(︁
S

(j)
t ∈ Sd

)︁
∑︁m

j=1 I
(︁
S

(j)
t ∈ Sd

)︁ ,

where I(·) is the indicator function;
18 end
19 end
20 return the estimated functions{︂ˆ︁p(Ft+ | x0:t,Ft) = ht(S(x0:t))

}︂
t=Tk−1+1,··· ,Tk−1;k=1,··· ,K
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3.4.3 Approximation Based on Backward Pilots

As discussed in the previous section, the new forward pilot approach still requires a careful

design of the proposal distribution used in sampling the pilot especially when the constraint

is strong. It is nature to consider the opposite direction — sampling backwards from the

time Tk so that the constraint ITK
is enforced at the very beginning. In order to sampling

pilots in a backward direction, we often require the sampling of xTk−1 conditioned on xTk

does not depend on the earlier states x0:Tk−2. Therefore, we assume the underlying dynamic

system is Markovian such that

p(xt,It | x0:t−1,Ft−1) = p(xt,It | xt−1)

for all t. Consequently, p(Ft+ | x0:t,Ft) = p(It+1:t+ | xt) is a function of xt and does not

depend on the past information before time t. Here It+1:t+ denotes the cumulative con-

straints imposed between time t+1 and t+. Here we generalize the backward pilot strategy

in Lin et al. (2010) to the constrained problem of interest. The algorithm is presented in

Algorithm 6.

The importance weight for the backward pilot x̃t:t+ in Algorithm 6 is

˜︁wt =
p(˜︁xt+1:t+ ,It+1:t+ | ˜︁xt)

r(˜︁xt:t+) ,

where r(x̃t:t+) is the joint proposal distribution to generate the backward pilots. By taking

expectation conditioned on x̃t, we have

E( ˜︁wt | ˜︁xt) =
∫︂
· · ·
∫︂
p(˜︁xt+1:t+ ,It+1:t+ | ˜︁xt)

r(˜︁xt, ˜︁xt+1:t+) r(˜︁xt+1:t+ | ˜︁xt)d˜︁xt+1:t+

= p(It+1:t+|˜︁xt)/r(˜︁xt),

where r(˜︁xt+1:t+ | ˜︁xt) and r(˜︁xt) are the conditional distribution and the marginal distribution

induced from r(˜︁xt:t+), respectively. Therefore,

p(It+1:t+|˜︁xt) = r(˜︁xt)E( ˜︁wt | ˜︁xt),



34

Algorithm 6: Backward Pilot Smoothing
1 for k = 1, . . . ,K do
2 for j = 1, . . . ,M do
3 Draw samples x̃(j)

Tk
from a proposal distribution r(xTk

) approximately
proportional to p(ITk

| xTk
);

4 Set w̃(j)
Tk
← 1/r(x̃(j)

Tk
);

5 end
6 for t= Tk−1, · · · ,Tk−1 +1 do
7 for j = 1, . . . ,M do
8 Generate samples x̃(j)

t from a proposal distribution r(x̃t | x̃(j)
t+1);

9 Calculate the incremental weights

˜︁u(j)
t =

p(x̃(j)
t+1,It+1 | x̃(j)

t )
r(x̃(j)

t | x̃
(j)
t+1)

,

10 end
11 Let X1∪·· ·∪XD be a partition of the support of xt;
12 Estimate p(Ft+ | x0:t,Ft) = p(It+1:t+ | xt) by

ht(xt) =
D∑︂

d=1
ηt,dI

(︁
xt ∈ Xd

)︁
,

where

ηt,d = 1
m|Xd|

m∑︂
j=1

˜︁w(j)
t I(˜︁x(j)

t ∈ Xd),

and |Xd| denotes the volume of the subset Xd;
13 end
14 end
15 return the estimated functions

{︂ˆ︁p(Ft+ | x0:t,Ft) = ht(xt)
}︂

t=Tk−1+1,··· ,Tk−1;k=1,··· ,K
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which can be estimated by the nonparametric density estimator of {(x̃(j)
t , w̃

(j)
t )}Mj=1 at any

x̃t.

Compared with the forward pilot method, the backward pilots are generated backwards,

starting from the constrained time point Tk. Since the strong constraint ITk
is automati-

cally incorporated in the proposal distribution to generate x̃Tk
at the beginning, it is often

expected to have a more accurate approximation estimation of p(It+1:t+ | xt). However, it

requires the system to be Markovian.

3.5 Example: System with Intermediate Observations

In this example, we consider a diffusion process {Xλ}0≤λ≤90 governed by the following

stochastic differential equation as discussed in (Beskos et al., 2006)

dXλ = sin(Xλ−π)dλ+dWλ,

where Wλ is a standard Brownian motion. By inserting states xt at the time points λt = tν,

t = 0,1, · · · ,T with T = 90/ν, the continuous-time diffusion process {Xλ}0≤λ≤90 can be

approximated by the discrete-time process {x0,x1, · · · ,xT }. We adopt the Euler-Maruyama

approximation and the discretized version of the continuous-time diffusion process can be

now written as

xt = xt−1 +ν sin(xt−1−π)+εt, (3.11)

where εt ∼N(0,ν). We take ν = 0.1 in this example.

In this simulation study, we assume two noisy observations of Xλ are made at times

λ= 30 and λ= 60. That is,

Y30 ∼N(X30,σ
2) and Y60 ∼N(X60,σ

2),

where σ2 is the noisy level which controls the accuracy of these two observations. In

addition, we also fix the two endpoints at X0 = a and X90 = b. The discretized time points

T0 = 0, T1 = 30/ν, T2 = 60/ν and T3 = 90/ν are considered to have strong constraints. The
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SMCc-BP method is applied to generate sample paths of x0:T conditional on the constraints

(X0,Y30,Y60,X90). That is, we utilize Algorithm 3 to generate samples, and the backward

pilot smoothing algorithm in Algorithm 6 is used to compute the approximated optimal

resampling priority scores. The state dynamics equation (3.11) is used as the proposal

distribution in generating forward paths. The backward pilots are generated according

to Algorithm 6 with the proposal distribution r(˜︁xt | ˜︁xt+1) ∼ N
(︁˜︁xt+1− ν sin(˜︁xt+1− π),ν

)︁
.

Resampling is conducted dynamically when ESSt defined in (2.11) is less than 0.3n. In

this example, the time line is split into three segments. The segmental sampling procedure

is demonstrated in Figure 3.3.

XXX0 · · · XXX30 · · · X60 · · · X90

YYY 30 Y60

XXX0 · · · XXX30 · · · XXX60 · · · X90

Y30 YYY 60

XXX0 · · · XXX30 · · · XXX60 · · · XXX90

Y30 Y60

Figure 3.3: Illustration of the segmental sampling procedure.

In the first experiment, we set X0 = 0, Y30 = 1.49, Y60 =−5.91 and X90 =−1.17. Note

that the underlying stochastic process shows a jump behavior among the stable levels at

Xλ = 2kπ, k = 0,±1,±2, · · · (Lin et al., 2010). The four observations correspond to the
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stable levels 0, 0, −2π and 0 accordingly. The process is likely to fluctuate around the

stable level 0 during the first period. Then, it jumps to stable level −2π in the second

period and eventually jumps back to stable level 0 in the third period.

Three levels of measurement errors in the observations Y30 and Y60 are investigated:

σ = 0.01 for very accurate observations, σ = 1.0 for moderate accurate observations and

σ = 2.0 for untrusted observations. Note that in this experiment we fix the observations Y30

and Y60 but change the underlying assumption of their distributions to reflect the strength

and accuracy of the observations. A total number of 1,000 forward paths are generated,

and 300 backward pilots are used to estimate the resampling priority scores. Figure 3.4

plots the generated sample paths before weight adjustment for each level of error. Figure

3.5 shows the histogram of the marginal samples of X60 = x60/ν before weight adjustment,

which is obtained from the generated sample set {x(i)
0:T }ni=1 without considering the weights.

It can be seen that when the observations are accurate (σ = 0.01), the two observations

act like fixed-point constraints that force all sample paths to pass through the observations.

When the observation error is large (σ = 2), a high proportion of sample paths remain

at the original stable level while only a small proportion of paths are drawn towards the

observations. The moderate error case (σ= 1) is a compromise between these two cases. The

marginal distributions of X60 show clear differences in the above three cases. Samples from

all three levels of error retain the jumping nature of underlying process and the SMCc-BP

approach is capable of dealing with different levels of observational errors.

Next, we use the same setting as above except that setting Y30 = 6.49. Now the four

observations X0 = 0, Y30 = 6.49, Y60 =−5.91 and X90 =−1.17 correspond to the stable levels

0, 2π, −2π and 0, respectively. Since Y30 and Y60 differ by a gap of two stable levels, this is

a very rare event. In this case, the Monte Carlo sample size is increased to 5,000 in order to

overcome the degeneracy and to capture the rare event. Sample paths and histograms of the

X60 samples before weight adjustment for different levels of error are shown in Figures 3.6

and Figures 3.7, respectively. In the large error case (σ= 2), most samples are concentrated

around the stable level 0. As the error level decreases, the observation induced constraints

become stronger, hence more sample paths are drawn towards the observations. Those

figures provide the evidence that the priority scores estimated by the backward pilots are
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Figure 3.4: Sampled paths before weight adjustment for σ = 0.01 (top panel), σ = 1.0
(middle panel) and σ = 2.0 (bottom panel) when X0 = 0, Y30 = 1.49, Y60 = −5.91 and
X90 =−1.17

Figure 3.5: Histogram of the marginal samples of X60 before weight adjustment for σ= 0.01
(top panel), σ = 1.0 (middle panel) and σ = 2.0 (bottom panel) when X0 = 0, Y30 = 1.49,
Y60 =−5.91 and X90 =−1.17.
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effective for different error levels under this extreme setting.

Figure 3.6: Sampled paths before weight adjustment for σ = 0.01 (top panel), σ = 1.0
(middle panel) and σ = 2.0 (bottom panel) when X0 = 0, Y30 = 6.49, Y60 = −5.91 and
X90 =−1.17.

3.6 Example: Optimal Trading Path

In asset portfolio management, the optimal trading path problem is a class of optimization

problems which typically maximizes certain utility function of the trading path (Markowitz,

1959). The optimization problem is often complicated, especially when trading costs are

considered. Kolm and Ritter (2015) turned such an optimization problem into a state space

model and explored Monte Carlo methods to numerically solve it. Such a procedure is

called state space emulation. More details on the emulation will be discussed in Chapter 4.

More specifically, let x0:T = (x0,x1, . . . ,xT ) be a trading path where xt represents the

holding position of an asset in shares at time t. In practice, a starting position x0 and

a target end position xT are often imposed for optimal execution of a large order with

minimum market impact. Without loss of generality, we impose two endpoints at x0 = 0

and xT = 0, respectively. Then it becomes an optimization problem to maximize the utility

function

u(x0:T ) =−
T∑︂

t=1
ct(xt−xt−1)−

T −1∑︂
t=1

ht(yt−xt) (3.12)
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Figure 3.7: Histogram of the marginal samples of X60 before weight adjustment for σ= 0.01
(top panel), σ = 1.0 (middle panel) and σ = 2.0 (bottom panel) when X0 = 0, Y30 = 6.49,
Y60 =−5.91 and X90 =−1.17.

given x0 = 0 and xT = 0, where (y1,y1, . . . ,yT −1) is a predetermined optimal trading path

in an ideal world without trading costs, typically obtained by maximizing the risk-adjusted

expected return under the Markowitz mean-variance theory (Markowitz, 1959).

Here ct(·) is the trading cost function and ht(·) stands for the utility loss due to the

departure of the realized path from the ideal path. An emulating state space model can be

implemented with the state equation p(xt |xt−1)∝ exp{−ct(xt−xt−1)} and the observation

equation p(yt |xt)∝ exp{−ht(yt−xt)}. The joint posterior distribution of such a state space

model is

p(x1:T −1 | x0,y1:T −1,xT )∝
T∏︂

t=1
p(xt | xt−1)

T −1∏︂
t=1

p(yt | xt)

∝ exp
{︄
−
[︄

T∑︂
t=1

ct(xt−xt−1)+
T −1∑︂
t=1

ht(yt−xt)
]︄}︄

. (3.13)

Thus, it is a state space model with fixed endpoint constraints, which belongs to the mul-

tilevel constraint case, where the ideal path y1:T works as the periodic observations (weak

constraint) and the holding position requirements at time 0 and T work as the strong

constraints.

Following Kolm and Ritter (2015), we set T = 20. The ideal trading path is given directly
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by

yt = 25exp{−(t+1)/8}−40exp{−(t+1)/4}.

The trading cost function and the utility loss due to tracking error are set to

ct(xt−xt−1) = 1
2σ2

x

[︁
(xt−xt−1)2 +2α|xt−xt−1|

]︁
and ht(yt−xt) = 1

2σ2
y

(yt−xt)2, (3.14)

respectively, where σ2
x = 0.25 and σ2

y = 1. Here the trading cost is assumed to be a quadratic

function of the trade size |xt−xt−1|, and α is a non-negative constant related to volatility

and liquidity of the asset (Kyle and Obizhaeva, 2011), which we will specify in the following.

It can be seen that maximizing the utility function (3.12) is equivalent to find the

maximize-a-posterior (MAP) path of distribution (3.13). We use the two-step method pro-

posed in Godsill et al. (2001) to find the optimal trading path. First, we draw samples from

the highly constrained conditional distribution (3.13) with the setting specified in (3.14).

Then we discretize the space of xt, t = 1, · · · ,T − 1, based on the generated sample paths,

and apply the Viterbi algorithm (Viterbi, 1967) to find an optimal path that maximizes the

utility function (3.12) within the discretized state spaces. In general, the closer the gen-

erated sample paths are to the optimal one, the better trading path the Viterbi algorithm

will produce. Section 5.4 will have a more detailed discussion on the Viterbi algorithm with

SMC samples.

We investigate two cases of α in (3.14): α = 0 and α = 0.5. In both cases, we com-

pare the performance of SMCc-BP with a standard SMC. The state equation p(xt |xt−1)∝

exp{−ct(xt− xt−1)} is used to generate forward paths in both methods. However, the

standard SMC uses β(i)
t = w

(i)
t as the resampling priority scores, but SMCc-BP uses β(i)

t =

w
(i)
t ˆ︁p(yt+1:T −1,xT |x(i)

t ) estimated by the backward pilot method in Algorithm 6 for resam-

pling, which takes the future information into account. The backward pilots are generated

from the proposal distribution

r(˜︁xt|˜︁xt+1)∝ exp
{︃
− 1

2σ2
x

[︁
(˜︁xt− ˜︁xt+1)2 +2α|˜︁xt− ˜︁xt+1|

]︁}︃
.

We use m = 300 backward pilots and generate n = 2,000 forward sample paths from
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SMCc-BP. For the purpose of comparison, the standard SMC draws n = 2,300 forward

paths such that both methods have a similar computational cost. In both methods, a

resampling step is conducted when the ESSt is less than 0.3n.

3.6.1 Case 1: α = 0

It can be seen that the state space model is linear and Gaussian when α = 0. Hence, the

Kalman filter (Kalman, 1960) can be applied to obtain an exact optimal solution. The

sample paths generated from the standard SMC and SMCc-BP before weight adjustment,

along with the exact optimal path and the 95% point-wise confidence intervals obtained

by the Kalman filter are plotted in Figure 3.8. The samples from the standard SMC in

the left panel have a much larger variance and most of them lie outside the 95% confidence

region, while most samples from SMCc-BP in the right panel stay within the 95% confidence

region. In SMCc-BP, the backward pilots bring the information about the future and guide

the forward sample paths by resampling. On the other hand, without using any future

information, the standard SMC sampler propagates blindly and suffers a large divergence

between the sampling distribution and the target distribution at the end.

Figure 3.8: Sample paths from the standard SMC method (left panel) and from the SMCc-
BP method (right panel) before weight adjustment when α= 0.

Figure 3.9 shows the marginal densities of the samples generated by the standard SMC

and SMCc-BP before weight adjustment (left column) and after weight adjustment (right

column) at time t = 4,12,19. Both methods produce properly weighted samples, as the

marginal densities for the samples after weight adjustment are close to the true one. How-
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Figure 3.9: Marginal densities of the samples generated by SMC and SMCc-BP before
weight adjustment (left column) and after weight adjustment (right column) at time t= 4
(row 1), t= 12 (row 2) and t= 19 (row 3) when α= 0.

ever, the sampling distribution for x19 before weight adjustment under the standard SMC

method has a large divergence from the true distribution, which results in a low efficiency

for inference.

Figure 3.10 reports the mean squared errors (MSE) defined by

MSE(t) = 1
L

L∑︂
l=1

[︂ ˆ︁E[l](xt |x0,y1:T −1,xT )−E(xt |x0,y1:T −1,xT )
]︂2
,
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where E(xt |x0,y1:T −1,xT ) is the true conditional mean obtained from the Kalman filter,

and ˆ︁E[l](xt |x0,y1:T −1,xT ) is the conditional mean estimated by SMC or SMCc-BP in the

l-th replication. We use L = 1,000 replications to compute the MSE’s. It shows that in

the period 8 ⩽ t⩽ 17 where the fixed points have limited impact, SMC and SMCc-BP have

similar performance. But in the period 1 ⩽ t ⩽ 7 where the observation yt changes over

time dramatically, SMCc-BP results in a smaller MSE than SMC as the future information

is incorporated in its resampling step. In the period t = 18 and 19 where the end point

constraint takes effect, the SMCc-BP approach also has a smaller MSE.

Figure 3.10: Mean squared error curves for SMC and SMCc-BP when α= 0.

3.6.2 Case 2: α = 0.5

When α = 0.5, the state space model is non-Gaussian, hence there is no analytic solution

to maximize the utility function (3.12). In this case, we run a standard SMC sampling

with n = 1,000,000 sample paths to obtain the most likely sample path, the sample path

with the largest likelihood value, together with 95% point-wise confidence intervals. The

sample paths generated by SMC and SMCc-BP before weight adjustment, along with the

most likely path and the 95% confidence region are plotted in Figure 3.11. Guided by the

priority scores with future information, most samples generated by the SMCc-BP method

stay within the 95% confidence region.

Figure 3.12 plots the marginal densities of the sample paths before weight adjustment
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Figure 3.11: Sample paths from the standard SMC method (left panel) and from the SMCc-
BP method (right panel) before weight adjustment when α= 0.5.

(left column) and after weight adjustment (right column). The true marginal posterior

distribution p(xt | x0,y1:T −1,xT ) is estimated from the same n = 1,000,000 SMC sample

paths. At time t = 19, the distribution of SMCc-BP samples is much closer to the target

one than that of SMC samples. Figure 3.13 plots the MSE’s defined in (3.6.1). The results

suggest that SMCc-BP reduces MSE at most times, especially in the periods 1 ⩽ t⩽ 7 and

13 ⩽ t⩽ 19.

3.6.3 Optimizing the Utility Function

The Viterbi algorithm (Viterbi, 1967) is a dynamic programming algorithm to find the

most likely trajectory in a finite-state hidden Markov model. In this example, we discretize

the state space based on the generated Monte Carlo state samples to utilize the Viterbi

algorithm to find the optimal path and the optimal value of the utility function u(x0:T ) in

(3.12). Specifically, given Xt = {x(i)
t }i=1,··· ,n being the collection of samples of xt generated

by SMC or SMCc-BP, the optimal path (x̂1, · · · , x̂T −1) is found by solving the following

optimization problem

(x̂1, · · · , x̂T −1) = argmax
x1∈X1,...,xT −1∈XT −1

u(x0:T )

with the Viterbi algorithm.

In this experiment, we use m= 300 backward pilots and generate n= 500 Monte Carlo

forward samples from SMCc-BP. For comparison, n= 800 samples are generated from the
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Figure 3.12: Marginal densities of the samples generated by SMC and SMCc-BP before
weight adjustment (left column) and after weight adjustment (right column) at time t= 4
(row 1), t= 12 (row 2) and t= 19 (row 3) when α= 0.5.
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Figure 3.13: Mean squared error curves for SMC and SMCc-BP when α= 0.5.

standard SMC method. The experiment is replicated 1,000 times. The optimal values of the

utility function (up to a constant) solved by the Viterbi algorithm based on SMC samples

and SMCc-BP samples respectively are reported in the boxplots in Figure 3.14. The true

optimal value is marked by the horizontal lines. When α = 0.0, the true optimal value is

obtained by the Kalman filter. When α= 0.5, the “true” optimal value is computed by the

Viterbi algorithm based on a large number (n = 10,000) of SMC samples. Compared to

the standard SMC method, the SMCc-BP method generates more samples around the true

optimal path in the same amount of computation time by incorporating future information

through resampling, hence it creates a better discrete state space for the Viterbi algorithm.

As a result, the Viterbi algorithm based on SMCc-BP samples can produce trading paths

with larger utility function values for both α= 0 and α= 0.5 cases.
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Figure 3.14: Boxplots of optimal values of utility function (3.12) solved by the Viterbi
algorithm based on SMC samples and SMCc-BP samples when α = 0 (left panel) and
α= 0.5 (right panel). The horizontal lines are the true optimal values.
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CHAPTER 4

State Space Emulation

High dimensional global optimization algorithms are being widely investigated since more

and more applications involve high dimensional complex data nowadays. The gradient

descent algorithm and its variations (Bertsekas, 1997) require the objective function to be

convex or uni-modal so that the found local optimal is global. Recent research in machine

learning involves many non-convex optimization problems (Anandkumar et al., 2014; Arora

et al., 2012; Netrapalli et al., 2014; Agarwal et al., 2014). However, many non-convex

problems remain NP-hard and the theory is only available for their convex relaxations (Jain

et al., 2017). Deterministic optimization algorithms (Hooke and Jeeves, 1961; Nelder and

Mead, 1965; Land and Doig, 1960) may result in certain types of exhaustive search, which

is computationally expensive in a high dimensional space. As an alternative, stochastic

optimization algorithms utilize Monte Carlo simulations to explore the parameter space in

a stochastic and often more efficient way (Kiefer et al., 1952; Kirkpatrick et al., 1983; Mei

et al., 2018).

In this chapter, we focus on an emulation approach, which reformulates a high dimen-

sional optimization problem into the problem of finding the most likely state path problem

in a state space model. The most likely path problem as discussed in Section 2.1.3 is to

equivalent to a high-dimensional optimization problem that maximizes the posterior (2.7).

The emulation does the reverse: an optimization problem is rewritten in an equivalent form

of (2.7). The optimization problem is then solved under the emulated state space model

based on the Monte Carlo samples drawn with SMC techniques.

This chapter will mainly focus on transforming high-dimensional optimization problems
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into proper state space models. The proposed SMC method (annealed SMC) to solve the

most likely path problem for a state space model is postponed to next chapter.

4.1 Previous Work on Emulation

There exist several heuristic approaches that use the idea of emulation.

Cai et al. (2009) considers the variable selection problem in high dimensional regression

analysis. Each of the p-dimensional variables x1, . . . ,xp takes value in {0,1}, where xk = 1

indicates the k− th covariate is included in the regression model. A variable selection prob-

lem is now equivalent to optimize a criterion function over (x1, . . . ,xp) ∈ {0,1}p. Exhaust

search of all 2p possibilities is expense. Cai et al. (2009) reconstructed the objective function

to the posterior function of a state space model by setting x1, . . . ,xp as the latent variables

and the observations as y1:p, even though the p covariates have no chronological order in

nature. Cai et al. (2009)’s algorithm in finding the most likely path is a combination of

sequential Monte Carlo and dynamic programming, which strongly depends on the fact

that the common support of all latent variables, {0,1}, is finite. Therefore, it is difficult to

generalize the algorithm to a continuous space.

As mentioned in the example of Section 3.6, the utility function of a portfolio optimiza-

tion problem is reformulated such that the emulated state space model holds an equivalent

likelihood/posterior function and therefore can be solved under the context of the state

space model. Such a transformation was first proposed by Kolm and Ritter (2015) and

in their original paper, a Viterbi algorithm is applied to the Monte Carlo samples to find

the optimal trading path as shown in Section 3.6. Similarly, Irie and West (2016) relates

the multi-period portfolio optimization problem to the log-likelihood of a mixture of linear

Gaussian dynamic systems such that the Kalman filter (Kalman, 1960) is used to find the

optimal solution of each component system and EM algorithm (Dempster et al., 1977) is

applied to find the most likely path of the overall emulated state space model. In above

two emulation works, the Viterbi algorithm requires the dynamic system to be Markovian

and non-singular. And the combination of the Kalman filter and EM algorithm proposed

in Irie and West (2016) works only when the underlying distribution can be represented as
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a mixture of Gaussian distributions.

4.2 Principle of Emulation

Suppose the original optimization problem is

min
x∈X d

f(x),

where f : X d → R is the objective function to be minimized. Let ξ : R→ [0,+∞) be a

monotone decreasing function. Then minimizing f(x) is equivalent to maximizing ϕ(x) :=

ξ(f(x)) such that

argmin
x∈X d

f(x) = argmax
x∈X d

ϕ(x),

when the “argmin” exists and is unique.

Furthermore, if there exists a state space model whose posterior function (2.7) is pro-

portional to ϕ(x) such that

π(x1:T | y1:T )∝ ϕ(x1:T ) = ξ(f(x1:T )) (4.1)

with artificially designed state equations {ft(·)}Tt=1 and observation equations {gt(·)}Tt=1, we

call the state space model an “emulated” state space model. The observations y1:T can be

either certain observations involving in the original optimization problem (e.g. the observed

points in the smoothing spline problem in Section 4.3.1) or artificially designed. Note that,

in (4.1), we ignore x0 and set T = d even when the index does not have any chronological

meaning.

When ϕ(·) is integrable with respect to Lebesgue measure on X T and bounded, there

always exist a trivial emulated state space model such that

ϕ(x1:T ) = ϕ1(x1)
T∏︂

t=2
ϕt(xt | x1:t−1),

where

ϕ1(x1) =
∫︂

X T −1
ϕ(x1:T )dx2 · · ·dxT
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and

ϕt(xt | x1:t−1) =
∫︁

X T −t ϕ(x1:T )dxt+1 · · ·dxT∫︁
X T −t+1 ϕ(x1:T )dxt · · ·dxT

.

Often such a series of conditional distribution is difficult to sample from or to be evaluated.

However, in certain problems as our examples shown later, it is possible to reformulate the

conditional distribution to ϕt(xt | x1:t−1) = ft(xt | x1:t−1)gt(yt | xt), in which ft(xt | x1:t−1) is

easy to generate samples from and gt(yt | xt) is easy to be evaluated, for some designed yt.

Minimizing the objective function f is then the same as finding the most likely path for the

emulated state space model.

A common choice for the function ξ(·) is the Boltzmann distribution function

ξ(s) = e−κs, (4.2)

where κ is a positive constant that relates to the temperature in statistical physics. In

statistics, the Boltzmann function in (4.2) links the least square method to the maximum

likelihood approach with i.i.d. Gaussian noise. In addition, with this choice of ξ(·), the

system has a physical interpretation: The objective function f(·) is regarded as the possi-

ble energy levels in a non-quantum thermodynamic system. Assuming no interactions, the

number of particles at the energy f(x) follows the Boltzmann distribution under thermody-

namic equilibrium. The integrability of ϕ(x) ensures the existence of the canonical partition

function such that this physical canonical system is valid. The minimization of f(·) is now

equivalent to find the base energy level, which inspires the use of simulated annealing of

this thermodynamic system. More details will be discussed in Chapter 5.

4.3 Emulation Examples

4.3.1 Cubic Smoothing Spline

Consider a nonparametric regression model

yt =m(xt)+ ϵt
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with equally spaced xt. Without loss of generality, let xt = t and treat it as time.

The cubic smoothing spline method (Green and Silverman, 1993) estimates a continuous

function m(t) by minimizing

T∑︂
t=1

(yt−m(t))2 +λ

∫︂ [︁
m′′(t)

]︁2
dt. (4.3)

The first term in (4.3) is the total squared tracking errors at the observation times and the

second term is the penalty term on the smoothness of the latent function m(·), where λ

controls the regularization strength. Given the values of m(1), . . . ,m(T ), the minimizer of

the second term is a natural cubic spline that interpolates m(1), . . . ,m(T ) (see Green and

Silverman (1993)). Hence, the solution to minimize (4.3) is a natural cubic spline, which is

second-order continuously differentiable and is a cubic polynomial in all intervals [t, t+ 1]

for t= 1, . . . ,T −1 and is linear outside [1,T ].

Define the derivatives of m(t) at each observation at time t as

at =m(t), bt =m′(t), ct =m′′(t)/2, dt = lim
s→t−

m′′′(s)/6.

By the constraints of natural cubic spline, we have the following recursive relationships:

at+1 = at + bt + ct +dt+1,

bt+1 = bt +2ct +3dt+1,

ct+1 = ct +3dt+1,

with c1 = cT = 0. Furthermore, by substituting dt+1 with (ct+1−ct)/3 in the expressions of

at and bt, we have

at+1 = at + bt +(ct+1 +2ct)/3, (4.4)

bt+1 = bt + ct + ct+1. (4.5)

We will use the recursive relationships in (4.4) and (4.5) for the construction of state space
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emulation. With this notation, the second term in (4.3) can be expended as

λ

∫︂ [︁
m′′(t)

]︁2
dt= λ

T −1∑︂
t=1

∫︂ t+1

t
[6(s− t)dt+1 +2ct]2 ds= 4

3λ
T −1∑︂
t=1

(c2
t + ctct+1 + c2

t+1).

In this case, the original optimization problem (4.3) over all second order differentiable

functions becomes minimizing

f(x1:T ) =
T∑︂

t=1
(yt−at)2 + 4

3λ
T −1∑︂
t=1

(c2
t + ctct+1 + c2

t+1), (4.6)

where x1:T = {(at, bt, ct)}t=1,...,T satisfies the recursive relationships (4.4) and (4.5) and the

boundary condition c1 = cT = 0. Note that x1:T completely defines the cubic smoothing

spline solution m̂(t).

With a positive inverted temperature κ, an emulated state space model is one such that

whose likelihood of x1:T conditioned on y1, . . . ,yT is π(x1:T | y1:T ) ∝ e−κf(x1:T ), with f(·)

defined in (4.6). One possible way to decompose π(x1:T | y1:T ) into the likelihood of a state

space model is the following.

π(x1:T | y1:T )∝ exp(−κf(x1:T ))

= exp
(︄
−κ

T∑︂
t=1

(yt−at)2− 4λκ
3 (

T −1∑︂
t=1

(c2
t + ctct+1 + c2

t+1)
)︄

=
(︄

T∏︂
t=1

e−κ(yt−at)2
)︄⎛⎜⎜⎝ T∏︂

t=2
e

−
2λκ

3(2−
√

3)
(ct+(2−

√
3)ct−1)2

⎞⎟⎟⎠ , (4.7)

where κ, the “temperature” parameter, controls the shape of the distribution.

The second term of (4.7) provides a construction of a first order vector auto-regressive

process on {xt = (at, bt, ct)}t=1,...,T as the state equation

⎡⎢⎢⎢⎢⎢⎣
at

bt

ct

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1

√
3/3

0 1
√

3−1

0 0 −(2−
√

3)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
at−1

bt−1

ct−1

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
1/3

1

1

⎤⎥⎥⎥⎥⎥⎦ηt, (4.8)
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with ηt ∼ N (0,σ2
b ), σ2

b = 3(2−
√

3)
4λκ . The first term of (4.7) provides the construction of

the observation equation

yt =
[︃
1 0 0

]︃
⎡⎢⎢⎢⎢⎢⎣
at

bt

ct

⎤⎥⎥⎥⎥⎥⎦+εt, (4.9)

with εt ∼N (0,σ2
y), σ2

y = 1/(2κ), and the initial values

a1 ∼N (y1,σ
2
y), b1 ∼ 1 and c1 = 0.

4.3.2 Regularized Linear Regression

LASSO (Tibshirani, 1996) is a widely-used regularized linear regression estimation proce-

dure that can perform variable selection and parameter estimation at the same time.

Consider the regression model

YYY =
p∑︂

j=1
βjZZZj +ηηη

where ZZZ1, . . . ,ZZZp ∈ Rn are the p covariates that are used to model the dependent variable

YYY ∈ Rn and ηηη ∼N (0,σ2
yIn). A LASSO estimator of (β1, . . . ,βp) is the minimizer of

f(β1, . . . ,βp) = ∥YYY −β1ZZZ1−·· ·−βpZZZp∥22 +λ
p∑︂

j=1
|βj |. (4.10)

For a fixed set of (β1, . . . ,βp), for t= 1, . . . ,p, define the partial residual ϵϵϵt as

ϵϵϵt = YYY −
t∑︂

l=1
βlZZZ l (4.11)

and ϵϵϵ0 = YYY . Since

∥ϵϵϵt∥22 = ∥ϵϵϵt−1−βtZZZt∥22 = ∥ϵϵϵt−1∥22 +∥ZZZt∥22

(︄
βt−

ϵϵϵ′t−1ZZZt

∥XXXt∥22

)︄2

−
(︁
ϵϵϵ′t−1XXXt

)︁2
∥ZZZj∥22

,
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we have

f(β1, . . . ,βp) = ∥ϵϵϵp∥22 +λ
p∑︂

t=1
|βt|= ∥YYY ∥22 +

p∑︂
t=1

⎧⎨⎩∥ZZZt∥22

(︄
βt−

ϵϵϵ′t−1ZZZt

∥ZZZt∥22

)︄2

−
(︁
ϵϵϵ′t−1ZZZt

)︁2
∥ZZZt∥22

+λ|βt|

⎫⎬⎭ .
(4.12)

Let xt = βt and x1:t = (β1, . . . ,βt). An emulated state space model can be designed so that

π(x1:p)∝ exp{−κf(x1:p)}

∝
p∏︂

t=1
exp

⎧⎨⎩−κ∥ZZZt∥22

(︄
xt−

ϵϵϵ′t−1ZZZt

∥ZZZt∥22

)︄2
⎫⎬⎭×

p∏︂
t=1

exp
{︄
−κλ|xt|+κ

(ϵϵϵ′t−1ZZZt)2

∥ZZZt∥22

}︄
. (4.13)

The first term of (4.13) leads to the state equation

ft(xt | x1:t−1)∝ exp

⎧⎨⎩−κ∥ZZZt∥22

(︄
xt−

ϵϵϵ′t−1ZZZt

∥ZZZt∥22

)︄2
⎫⎬⎭ , (4.14)

and the second term leads to the observation equation

gt(wt | xt)∝ αt exp{−αtwt}, (4.15)

where

αt = exp
{︄
−κλ|xt|+κ

(ϵϵϵ′t−1ZZZt)2

∥ZZZt∥22

}︄
,

with observation wt = 0 for all t.

Note that ϵϵϵt−1 is a function of x1:t−1 as defined in (4.11) and is available at time t. The

observation equation gt and the observation value wt = 0 are imposed to incorporate αt

in π(x1:p). The emulation for LASSO can be extended to other penalized regression with

different penalty terms by changing αt accordingly.

4.3.3 Optimal Trading Path

Here we recap the optimal trading path problem demonstrated in Section 3.6.

Specifically, the optimal trading path problem is a class of optimization problems which

typically maximizes certain utility function of the trading path (Markowitz, 1959). Kolm

and Ritter (2015) and Irie and West (2016) proposed to turn such an optimization problem
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to an emulated state space model. To be more specific, let x0:T = (x0, . . . ,xT ) be a trading

path in which xt represents the position held at time t. Kolm and Ritter (2015) propose to

maximize the following utility function.

u(x0:T ) =−
T∑︂

t=1
ct(xt−xt−1)−

T∑︂
t=0

ht(yt−xt), (4.16)

where (y0, . . . ,yT ) is a predetermined optimal trading path in an ideal world without trad-

ing costs, typically obtained by maximizing the risk-adjusted expected return under the

Markowitz mean-variance theory (Markowitz, 1959). Kolm and Ritter (2015) provides a

construction of (y0, . . . ,yT ) based on the term structure of the underlying asset’s alpha

(the excess expected return relative to the market). Let ct(·) represent the transaction cost

which is often assumed to be a quadratic function of the absolute position change |xt−xt−1|.

Without loss of generality, we parametrize it as

ct(|xt−xt−1|) = 1
2σ2

x

(︂
|xt−xt−1|2 +2α|xt−xt−1|+α2

)︂
,

where α is a non-negative constant related to the volatility and liquidity of the asset (Kyle

and Obizhaeva, 2011). Let ht(·) be the utility loss due to the departure of the realized path

from the ideal path. We use the squared loss

ht(yt−xt) = 1
2σ2

y

(yt−xt)2.

Then the objective function is

π(x0:T | y1:T )∝ e−κu(x1:T ) ∝
T∏︂

t=1
exp

(︄
−κ(|xt−xt−1|+α)2

2σ2
x

)︄
T∏︂

t=1
exp

(︄
−κ(yt−xt)2

2σ2
y

)︄
.

Taking the position constraint x0 = xT = 0 into consideration as discussed in Section 3.6,

an emulated state space model can therefore be constructed as

ft(xt | xt−1)∝ exp
(︄
−κ(|xt−xt−1|+α)2

2σ2
x

)︄
, (4.17)
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gt(yt | xt)∝ exp
(︄
−κ(yt−xt)2

2σ2
y

)︄
. (4.18)

With the state equation (4.17) and the observation equation (4.18), the corresponding state

space model has a likelihood function proportional to exp(−κu(x1:T )).

4.3.4 L1 Trend Filtering

L1 trend filtering (Kim et al., 2009) is a variation of the Hodrick-Prescott filtering (Hodrick

and Prescott, 1997). An ℓ1 trend filtering on y1, . . . ,yT is defined to be the minimizer of the

objective function

f(x1, . . . ,xT ) =
T∑︂

t=1
(Yt−xt)2 +λ

T −1∑︂
t=2
|xt−1−2xt +xt+1|. (4.19)

Minimizing (4.19) tends to produce a piece-wise linear function due to the ℓ1 penalty on

second-order difference. An emulated state space model is designed to have the following

Boltzmann likelihood function.

π(x1:T )∝ e−κf(x1:T )/2 =
T∏︂

t=1
exp

{︃
−κ2 (yt−xt)2

}︃ T∏︂
t=3

exp
{︃
− κ

2λ |xt− (2xt−1−xt−2)|
}︃
. (4.20)

The first term of (4.20) leads to the observation equation

yt = xt + ϵt, (4.21)

where ϵt ∼N (0,σ2
y) with σ2

y = 1/κ. The second term of (4.20) leads to the following second

order auto-regressive process of the states

xt = 2xt−1−xt−2 +ηt, (4.22)

where ηt ∼ Laplace(0,λx) with λx = 2/(λκ).
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CHAPTER 5

Annealed Sequential Monte Carlo

5.1 Most Likely Path

The most likely path problem is to find the optimal latent variables x∗
1:T that maximizes

the posterior function π(x1:T | y1:T ) of a state space model defined in (2.7). Particularly, we

define

x∗
1:T = argmax

x1:T ∈X T

π(x1:T | y1:T ), (5.1)

where X is the common support for the states xt, t= 1, . . . ,T . When the state space model

is constructed to emulate a certain objective function f(·) as discussed in Chapter 4, the

most likely path x∗
1:T is also the optimal of f(·) as ensured by (4.1).

Instead of solving (5.1) directly, which trace back to the original optimization of f(·),

numerical solution to (5.1) can be carried out based on a set of (sequential) Monte Carlo

samples. Specifically, let {(x(i)
1:T ,w

(i))}Ni=1 be a set of Monte Carlo samples, which are prop-

erly weighted with respect to the posterior distribution π(x1:T | y1:T ).

A natural and easy way to estimate x∗
1:T in (5.1) is to use the empirical maximum-a-

likelihood (MAP) path such that

x̂
(map)
1:T = argmax

x1:T ∈{x
(i)
1:T }N

i=1

π(x1:T | y1:T ). (5.2)

In (5.2), the posterior function is optimized over the finite set of N sample paths. However,

in order to control the accuracy of x̂(map)
1:T , a large number of sample paths is required when

the dimension T is high. To illustrate such a curse of dimensionality, we assume the desired
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estimate of the optimal point should satisfy

∥x̂(map)
1:T −x∗

1:T ∥∞ < ϵ,

for some constant ϵ. In other words, x̂(map)
1:T lies in a T -dimensional cube with edge length

2ϵ centered at x∗
1:T . To ensure at least one sample path is expected to drop within this

T -dimensional cube, the desired number of samples is approximately

N∗ ∝
(︃ |X |
ϵ

)︃T

,

where |X | is the volume of X . As a result, as the dimension T increase, N∗ increases

exponentially in order to achieve a similar accuracy.

The problem of (5.2) is that N samples {x(i)
t }Ni=1 are generated for every time t. There

exist in total NT combinations of the tuple (x1, · · · ,xT ). But (5.2) only considers N of

NT combinations — a minor portion of all possibilities from the Monte Carlo samples. A

generalized version is to optimize the posterior function over these NT combinations as

shown in the following.

x̂
(joint)
1:T = argmax

{x1:T :xt∈{x
(i)
t }N

i=1}
π(x1:T | y1:T ). (5.3)

The accuracy can be improved as the optimization (5.3) is over a superset of that one of

(5.2). The concern is the computational cost as much more possibilities are considered in

(5.3). However, when the emulated state space model is Markovian and non-singular, the

optimization problem in (5.3) can be solved in a dynamic programming way with a linear

computational time. The algorithm is known as the Viterbi algorithm (Viterbi, 1967).

Details of this algorithm will be discussed later in Section 5.4. Similar to the analysis of

required number of samples for the map estimator, the desired number of samples for the

estimator in (5.3) is now

N∗ ∝ |X |
ϵ
,

by assuming x
(i)
t , i = 1, . . . ,N are i.i.d. and are independent with x

(j)
s , j = 1, . . . ,N , s ̸= t.
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It is obvious that to achieve a similar accuracy, the estimator (5.3) requires a much less

number of samples compared with the one in (5.2).

Aforementioned approaches assumes that the Monte Carlo sample paths {x(i)
1:T }Ni=1 are

already drawn from the posterior distribution. We note that in addition to the algorithm

used to estimate x∗
1:T in (5.1), the quality of the samples and the posterior distribution are

also important in improving the accuracy.

Note that when we use the Boltzmann-like target distributions as discussed in Chapter 4,

the MLP is the same under different choices of κ, the “temperature” parameter. However,

the distribution π(x1:T | y1:T ,κ) is more flat for small κ (high temperature) and is more

concentrated around the MLP for large κ. Hence the empirical MAP path tends to be more

accurate if the Monte Carlo samples are generated from the target distribution with large

κ. When κ is sufficiently large, the average sample path is also a good estimate of the MAP.

However, it is much more difficult to generate Monte Carlo samples with large κ due to the

tendency of being trapped in local optima. The simulated annealing approach provides a

natural bridge to link the high temperature system with easily generated samples with the

low temperature system with more accurate estimates.

5.2 Annealed SMC

We propose a simulated annealing algorithm for sequential Monte Carlo on state space

models. The idea comes from the thermodynamics analogue discussed in the previous

section. When the function ξ(·) is chosen to be Boltzmann-like as in (4.2), the Monte Carlo

samples from the emulated state space models correspond to a random sample set from the

non-interacting particles in a thermodynamic equilibrium system as discussed in Section 4.2.

If the temperature cools down to 0 slowly enough such that the system is approximately

in thermodynamic equilibrium for any temperature in between, all particles will condense

to the base energy level. The idea of simulated annealing to analogize the physical system

was proposed and discussed in Kirkpatrick et al. (1983).

To mimic the thermodynamic procedure, we propose the following system to simulate

the annealing procedure for the SMC samples. Let 0< κ0 < κ1 < · · ·< κK be an increasing
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sequence of inverse temperatures. Suppose at κ0, a base emulated state space model is

constructed as

π(x1:T | y1:T ;κ0)∝ e−κ0f(x1:T ) ∝ f0(x0)
T∏︂

t=1
ft(xt | x1:t−1)gt(yt | xt). (5.4)

At a higher inverse temperature κk, an emulated state space model can be induced from

(5.4) such that

π(x1:T | y1:T ;κk)∝ e−κkf(x1:T ) ∝ f0(x0;κk)
T∏︂

t=1
ft(xt | x1:t−1;κk)gt(yt | xt;κk), (5.5)

where

ft(xt | x1:t−1;κk)∝ [ft(xt | x1:t−1)]κk/κ0 and gt(yt | xt;κk)∝ [gt(yt | xt)]κk/κ0

are the corresponding state equations and observation equations at κk. The starting inverse

temperature κ0 is usually chosen to be relatively small such that the function π(x1:T |

y1:T ;κ0) ∝ e−κ0f(x1:T ) is relatively flat and is easy to sample from by SMC. We start with

κ0, draw {(x(i)
0,1:T ,w

(i)
0,T )}Ni=1 from the base emulated state space model π(x1:T | y1:T ;κ0). For

k = 1, . . . ,K, new samples {(x(j)
k,1:T ,w

(j)
k,T )}Mj=1 are drawn with respect to the distribution

π(x1:T | y1:T ;κk) utilizing samples {(x(j)
k−1,1:T ,w

(j)
k−1,T )}Mj=1 obtained at κk−1. The procedure

is depicted in Algorithm 7. The annealed sequential Monte Carlo uses the following proposal

distribution at temperature κk:

qk,t(xt | x1:t−1;κk)∝ p̂k,t(xt | x1:t−1,y1:T ;κk−1), (5.6)

where the conditional distribution p̂k,t(xt | x1:t−1;κk−1) is an estimate of π(xt | x1:t−1,y1:T ;

κk−1) and can be obtained from the Monte Carlo samples {(x(j)
k−1,1:T ,w

(j)
k−1,T )}Mj=1 under

κk−1. We will discuss how to obtain such an estimate later. Since κ increases slowly,

π(xt | x1:t−1,y1:T ;κk−1) and π(xt | x1:t−1,y1:T ;κk) are reasonably close.

With a sufficiently large κK , samples from the target distribution π(x1:T | y1:T ;κK) are

highly concentrated around the true optimal path x∗
1:T and hence are useful in inferring the
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Algorithm 7: Annealed Sequential Monte Carlo
1 Draw {(x(i)

0,1:T ,w
(i)
0,T )}Ni=1 from π(x1:T | y1:T ;κ0) with SMC in Algorithm 2, using a

set of proposal distributions q1,t(xt | x1:t−1;κ0);
2 for k = 1, . . . ,K do
3 Draw {(x(j)

k,1:T ,w
(j)
k,T )}Mj=1 from π(x1:T | y1:T ;κk) with SMC in Algorithm 2 using

the proposal distribution

qk,t(xt | x1:t−1;κk)∝ p̂k,t(xt | x(j)
k,1:t−1,y1:T ),

where the right hand side is an estimate of π(xt | x1:t−1,y1:T ;κk−1);
4 end
5 Obtain an estimate of the most likely path from {(x(j)

K,1:T ,w
(j)
K,T )}Mj=1.

most likely path. However, sampling from π(x1:T | y1:T ;κK) directly is usually difficult due

to the challenge in finding appropriate proposal distributions, which significantly affects the

Monte Carlo sample quality. Annealed SMC provides an iterative procedure to the difficult

sampling problem under κK by utilizing the samples obtained at higher temperature. On

one hand, annealed SMC provides a relatively “flat” and easy-sampling starting distribution

π(x1:T | y1:T ;κ0) and designs a slow-changing path connecting π(x1:T | y1:T ;κ0) to the desired

“sharp” distribution π(x1:T | y1:T ;κK). On the other hand, for each iteration k = 1, . . . ,K,

annealed SMC adopts an optimal proposal distribution p(xt | x1:t−1,y1:T ;κk−1), which in-

corporates the full information set y1:T and is usually difficult to evaluate in conventional

SMC implementations. In annealed SMC, the proposal distribution is estimated by sample

paths from the previous iteration. The details in estimating the proposal distribution will

be discussed in Section 5.3.

The conventional simulated annealing algorithm (Kirkpatrick et al., 1983) is a varia-

tion of Markov Chain Monte Carlo (MCMC), which adapts Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) with an extra temperature control. The conver-

gence of the conventional simulated annealing algorithm is given by Granville et al. (1994).

However, different from the conventional simulated annealing, annealed SMC does not re-

quire for a mixing condition as usually shown in MCMC algorithms. At each iteration

at κk, the samples are always properly weighted with respect to the target distribution

π(x1:T | y1:T ;κk) because of the weight adjustments. The convergence of SMC samples is
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discussed in Crisan and Doucet (2000).

5.3 Practical Issues

In annealed SMC, at temperature 1/κk, we need to estimate the proposal distribution

qk,t(xt | x0:t−1;κk) = p̂k,t(xt | xt−1,y1:T ) with the sample paths from the previous iteration

{(x(j)
k−1,T ,w

(j)
k−1,T )}Mj=1. Notice that, the weighted samples {(x(j)

k−1,T ,w
(j)
k−1,T )}Mj=1 follow the

distribution π(x1:t | y1:T ;κk−1). Therefore, estimating the proposal distribution is equivalent

to estimating the conditional distribution from a sample set drawn from the joint distribu-

tion. Here we mention two methods to sample from such a conditional probability.

Parametric Approach. For each time t, suppose {Ψt,θ(·)} is a parametric family of dis-

tributions defined on X t and indexed by θ. The joint distribution of x1:t conditioned on

y1:T under κk−1 is approximated by one of the distributions in the family. Specifically, let

θ∗
t,k−1 = argmax

θ

M∏︂
j=1

w
(j)
k−1,T logψt,θ(x(j)

k−1,1:t),

where ψt,θ is the corresponding probability density/mass function of Ψt,θ. Denote the

conditional probability induced from Ψt,θ(x1:t) as ψt,θ(xt | x1:t−1). The joint distribution of

x1:t | y1:T ,κk−1 is approximated by ψt,θ∗
t,k−1

(x1:t) and the proposal distribution qk,t(xt |x1:t−1)

is estimated by ψt,θ∗
t,k−1

(xt | x1:t−1).

One common choice for the distribution family is the multivariate Gaussian distributions.

In this case,

ψt,µµµt,ΣΣΣ1:t,1:t(x1:t) =N (µµµt,ΣΣΣ1:t,1:t) .

The optimal parameter can be obtained by sample mean and sample variance such that

µµµ∗
t,k−1 =

m∑︂
i=1

w
(i)
k−1,Tx

(i)
k−1,1:t

/︄
m∑︂

i=1
w

(i)
k−1,T ,

ΣΣΣ∗
0:t,0:t,k−1 =

m∑︂
i=1

w
(i)
k−1,Tx

(i)
k−1,1:t

[︂
x

(i)
k−1,1:t

]︂′/︄ m∑︂
i=1

w
(i)
k−1,T .
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Denote

µµµ∗
t,k−1 =

(︄
µµµ∗

t−1,k−1
µ∗

t,k−1

)︄
and ΣΣΣ∗

1:t,1:t,k−1 =

⎡⎢⎣ΣΣΣ∗
1:t−1,1:t−1,k−1 ΣΣΣ∗

1:t−1,t,k−1

ΣΣΣ∗
t,1:t−1,k−1 Σ∗

t,t,k−1

⎤⎥⎦ .
Then the induced conditional probability has the following closed-form:

p(xt | x1:t−1,y1:T ;κk−1) =N
(︂
µt|1:t−1,k−1,Σt|1:t−1,k−1

)︂
,

where the parameters are

µt|1:t−1,k−1 = µ∗
t,k−1 +ΣΣΣ∗

t,1:t−1,k−1

[︂
ΣΣΣ∗

1:t−1,1:t−1,k−1

]︂−1
(x1:t−1−µµµ∗

t−1,k−1),

Σt|1:t−1,k−1 = Σ∗
t,t,k−1−ΣΣΣ∗

t,1:t−1,k−1

[︂
ΣΣΣ∗

1:t−1,1:t−1,k−1

]︂−1
ΣΣΣ∗

1:t−1,t,k−1.

The results above for multivariate Gaussian distributions can be easily extended to mixture

Gaussian distributions, which can approximate most distributions well.

Nonparametric Approach. When there is no appropriate distribution family to describe

the joint distribution of xk−1,1:t | y1:T , one can sample from the conditional distribution

p(xt | x1:t−1,y1:T ;κk−1) of {(x(j)
k−1,1:T ,w

(j)
k−1,T )}Mj=1 nonparametrically. Specifically, suppose

Kbbb1(·) and Kb2(·) are kernel functions for x1:t−1 and xt, respectively, and it is easy to

sample from Kb2(·). For any given x(j)
k,t−1, Algorithm 8 depicts the nonparametric approach

to draw x
(j)
k,t from the conditional distribution p(xt | x1:t−1,y1:T ;κk−1) when the samples

{(x(j)
k−1,1:T ,w

(j)
k−1,T )}Mi=1 properly weighted to π(x1:T | y1:T ;κk−1) are available.

Algorithm 8: Sample nonparametrically from a Empirical Conditional Distribu-
tion
1 for any x(j)

k,1:t−1 do
2 Draw l from {1, . . . ,M} with probabilities proportional to

P (l = i)∝ w(i)
k−1,TKbbb1(x(i)

k−1,1:t−1−x
(j)
k,1:t−1)

3 Draw ε from the density induced by Kb2(·);
4 return x

(j)
k,t = x

(l)
k−1,t +ε.

5 end
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The parametric approach often requires the state space model to satisfy certain condi-

tions. For example, when both state equations and observation equations are approximately

linear and Gaussian, the multivariate Gaussian distribution family can be used to estimate

the conditional distributions. The nonparametric approach can deal with general state

space models. However, it often costs much more computing power than the parametric

approach.

One issue for both approaches is the high dimensionality. Unless the system has a

short memory, the conditional distribution at time t involves the high dimensional x1:t

and with potentially increasing dimension of parameters needed or the the dimensions of

spaces the nonparametric approach need to operate within. One solution for reducing the

dimension of the sampling problem is to use a low-dimensional sufficient statistics. Suppose

S(x1:t−1) is a low-dimensional sufficient statistic such that p(xt | x1:t−1,y1:T ;κk−1) = p(xt |

S(x1:t−1),y1:T ;κk−1). Both parametric and nonparametric approaches can therefore be

conducted on the joint distribution of (xt,S(x1:t−1)), which is of lower dimension. In a

Markovian system, S(x1:t−1) = xt−1 and the problem reduces to sampling from a much

simpler distribution. In an auto-regressive system with lag δ, S(x1:t−1) = xt−δ:t−1, which

is a δ+ 1-dimensional system. Note that since the estimated conditional distribution is

used as a proposal distribution, it is often tolerable to use less accurate estimators for

computational efficiency. Hence various approximation and dimension reduction tools can

be used, including variational Bayes approximations (Tzikas et al., 2008).

Another issue in estimating the conditional distribution from sequential Monte Carlo

samples is the sample degeneracy. In SMC, degeneracy refers to the phenomenon that the

number of distinct values for some states such as X1 can be less than the number of Monte

Carlo samples, if resampling steps are engaged. The degeneracy problem is crucial for both

approaches in sampling from the conditional distribution. Therefore, at κ > κ0, we suggest

to conduct resampling only when all propagation steps are finished to prevent the samples

from trapping into local maximums. When high degeneracy is persistent, we suggest to use

post-MCMC steps (Gilks and Berzuini, 2001) to regenerate the samples. If the system is

reversible and SMC can be implemented backward in t, alternating forward and backward

sampling through the annealing iterations may also reduce the degeneracy problem as it
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starts with more diversified samples in each temperature iteration.

5.4 Path refinement with Viterbi algorithm

A more accurate estimate of the mode can be obtained by using Viterbi algorithm (Viterbi,

1967) on the discrete space consisting of the SMC samples. The Viterbi algorithm is a dy-

namic programming algorithm originally used to solve the MLP problem in hidden Markov

models, where the hidden states are finite. Let At = {a(j)
t }Mj=1 be the grid points for xt and

Ω = A1×·· ·×AT be the Cartesian product of the grid point sets. In state space models,

the Viterbi algorithm searches for the maximum over all possible combinations of the grid

points in Ω. Specifically, the MLP obtained by the Viterbi algorithm is

x1:Tˆ (viterbi) = argmax
x1:T ∈Ω

π(x1:T | y1:T ). (5.7)

The Viterbi algorithm for state space models based on the grid points {a(j)
1 }Mj=1, . . . ,{a

(j)
T }Mj=1

is depicted in Algorithm 9.

The SMC samples drawn from the emulated state space model provide a set of grid

points for the Viterbi algorithm. For example, one can set At = {x(j)
t }Mj=1 such that Ω =

{x(j)
1 }Mj=1×·· ·×{x

(j)
T }Mj=1 is the joint set of all SMC sample points. One can also add and

remove grids points to expand coverage with more details around the more important state

paths.

The Viterbi algorithm explores all combinations of sample points and results in a better

mode estimation compared with the empirical MAP in (5.2). However, it has its limitations

for implementation with state space models. One limitation is that the Viterbi algorithm

only works on Markovian state space models. In addition, it only works with a non-singular

state evolution in which the degree of freedom is the same as the state variable dimension.

Otherwise, state paths cannot be re-assembled as the Viterbi algorithm tries to achieve.

For example, in the cubic spline problem, the state evolution is singular. Although one can

reduce the dimension of the state variable to make the evolution non-singular, the state

evolution then becomes non-Markovian. Another limitation is the requirement for Monte
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Algorithm 9: Viterbi Algorithm for Markovian State Space Models
1 Let At = {a(j)

t }Mj=1 be a set of grid points for xt for t= 1, . . . ,T ;
2 Initialize ℓ(j)

0 = 0 and x̂
(j)
1 = a

(j)
1 for j = 1, . . . ,M ;

3 for t= 2, . . . ,T do
4 for j = 1, . . . ,M do
5 Set

ℓ
(j)
t ← max

k∈{1,...,M}
ℓ

(k)
t−1ft(a(j)

t | x̂
(k)
1:t−1)gt(yt | a(j)

t ) (5.8)

6 Set

x̂
(j)
1:t = (x̂

(k∗
j )

1:t−1,a
(j)
t ),

where k∗
j is the optimal point of (5.8).

7 end
8 end
9 Let

j∗ = argmax
j∈{1,...,M}

ℓ
(j)
T .

10 return x̂
(j∗)
1:T

Carlo sample size. The Monte Carlo samples induced Ω provide a discretization of the

support X for each time t. The accuracy of the Viterbi algorithm strongly dependents

on the discretization quality, especially when X is continuous. In general, the denser the

Monte Carlo samples are around the true MLP, the more accurate the Viterbi algorithm

solution is. As a result, it often requires a large Monte Carlo sample size to generate better

discretization and to achieve high accuracy with the Viterbi algorithm. To reduce the path

error ∥x̂(viterbi)
1:T −x∗

1:T ∥ by half, the Monte Carlo sample size M needs to be doubled, because

the discretization size is reduced by half on average with double sample size. On the other

hand, the computational cost increases quadratically with the sample size M . One possible

way to improve is to apply the Viterbi algorithm iteratively by shrinking to the high value

region of last iteration and regenerating grid points there. Similar to iterative grid search,

the iterative Viterbi algorithm may result in a sub-optimal solution.
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5.5 Simulation Examples

5.5.1 Cubic Smoothing Spline

In this simulation study, we consider the cubic smoothing spline problem in Section 4.3.1.

The observations are generated by

yt = sin(9(t−1)/100)+ ζt,

for t= 1, . . . ,50, with ζt ∼N (0,1/16) and we fix λ= 10 in the objective function (4.3).

Since the dynamic system is linear and Gaussian, the most likely path is obtained

by Kalman Smoother (Kalman, 1960). We use it as the benchmark. We start from the

initial inverse temperature κ= κ0 = 4. Figure 5.1 demonstrates m= 1000 samples (in grey)

drawn from the target distribution π(xT | y1:T ;κ0)∝ [π(x1:T | y1:T )]κ0 by the SMC algorithm

described in Algorithm 2 along with the observations y1:T (the solid line) and the true most

likely path (the dashed line).

Figure 5.1: Sample paths at κ0 = 4.

The proposal distribution qt(·) used at κ0 is chosen to be proportional to ft(xt | x1:t−1)

gt(yt | xt). At each time t, ηt is drawn from the proposal distribution qt(ηt | at−1, bt−1, ct−1,

yt), which is a Gaussian distribution in this case. Resampling is conducted when the effective

sample size defined in (2.11) is less than 0.3m.
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Figure 5.2: Sample paths at different κ’s

To find the most likely path stochastically and numerically, we apply the annealed

SMC approach in Algorithm 7 with a predetermined sequence of inverted temperatures

κk = 1.5kκ0 for k = 1, . . . ,16. The proposal distribution for the anneal SMC is estimated by

the parametric approach. Specifically, since the innovation in the state equation is of one

dimension, at κk, we only need to generate proposal samples for ct. It is drawn by first fitting

{(c(j)
k−1,t,a

(j)
k−1,t−1, b

(j)
k−1,t−1, c

(j)
k−1,t−1)}mj=1 with a multivariate Gaussian distribution and then

sampling from the conditional distribution. To prevent degeneracy, resampling step is only

conducted at the end of each annealing SMC iteration and after each iteration, one step

of post-MCMC move is conducted to regenerate sample states. The post-MCMC move

uses blocked Gibbs sampling (Jensen et al., 1995), due to the special structure of the state

dynamic. At each iteration of the Gibbs sampling, (xt,xt+1,xt+2) are updated together.

Figure 5.2 shows the sample paths (after the post-MCMC step) at the end of different

anneal SMC iterations. When the temperature shrinks to zero as κ increases, the sample

paths move to a small neighbor region around the true most likely path. Figure 5.3 shows the

value of the objective function at the weighted average path of the samples as for different

numbers of iterations. The true optimal value (the objective function value at the optimal
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path) obtained by the Kalman smoother is plotted as the dashed horizontal line. As the

number of iteration increases, the objective function value at the averaged path decreases

stochastically and convergences at roughly the 7th iteration.

Figure 5.3: Value of the objective function against the number of iterations

To compare the computational efficiency, we record the computing time needed for

different approaches, shown in Table 5.1. The Scipy approach uses the nonlinear optimizer

provided by the python package Scipy (Jones et al., 2001), which implements the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm by default. The annealed SMC records the

time until convergence (the time when the value of the objective function is not improved

by further iteration). Kalman Smoother is the fastest one due to its deterministic nature in

finding the most likely path for linear Gaussian models. Annealed SMC is slower than the

nonlinear solver program provided by Scipy, but achieves similar accuracy. We also note

that this is a simple convex optimization problem in which a straightforward optimization

algorithm such as the Scipy performs well. Our estimation approach is more flexible and

this example serves as an illustration of how the algorithm works.

Kalman Smoother Scipy minimizer Annealed SMC
2.2 ms 129.6 ms 232.9 ms

Table 5.1: Time spent by different approaches.
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5.5.2 LASSO Regression

In this simulation study, we consider the LASSO regression problem as discussed in Sec-

tion 4.3.2. We set n = 40 observations, p = 20 covariates and σy = 0.3. The covariates

(Z1, . . . ,Zp) are generated from a multivariate normal distribution N (0,Σ) where all diago-

nal elements of Σ is 1 and all off-diagonal elements are 0.4. β’s are generated i.i.d. according

to Bernoulli(0.2). λ is set to 5 in the objective function (4.10).

We start from the initial emulated model with the temperature parameter κ= κ0 = 0.05.

m= 5000 samples are drawn from the standard SMC algorithm under the target distribution

(4.13) with κ0 = 0.05. The state equation (4.14) is used as the proposal distribution and

the weight is from the observation equation (4.15) as a consequence. Resampling is done

when the effective sample size in (2.11) is below 0.3m. The sampled state paths are plotted

in Figure 5.4. The estimated path for solving the original LASSO problem (4.10) using the

scikit-learn python package (Pedregosa et al., 2011) is treated as the benchmark.

Figure 5.4: Sample paths at κ0 = 0.05

In the subsequent annealing procedure, we use m = 2000 samples and set κk = 1.5kκ0

for k = 1, . . . ,30. The proposal distribution used in the annealing procedure is estimated

with a multivariate normal approximation of the joint distribution of (βk−1,t, . . . , . . . ,βk−1,1).

Resampling is done only at the end of each iteration and 10 steps of post-MCMC runs are

applied. The post-MCMC runs use the Gibbs sampling approach with the Metropolis-
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Hasting transition kernel (Metropolis et al., 1953; Hastings, 1970), where for t = 1, . . . ,T

and for i= 1, . . . ,m, a new value for βt is proposed such that β̃(i)
t = β

(i)
t +N (0, τ2), where τ2∝

1/κ, and the proposed move is accepted with the probability min{1,π(x̃(i)
1:t | y1:T ;κ)/π(x(i)

1:T |

y1:T ;κ)} with x̃
(i)
1:t = (x(i)

1:t−1, x̃
(i)
t ,x

(i)
t+1, . . . ,x

(i)
T ). Figure 5.5 plots the sample paths at four

different levels of κ’s. Again, it is seen that the procedure is able to gradually move the

sample paths towards the optimal solution. Figure 5.6 shows the convergence of the values

of the objective function in (4.10) evaluated at the weighted average of the sample paths.

After around 17 iterations, the weighted mean of the samples generated from the an-

nealed SMC converges. Due to Monte Carlo variations, the sample paths and the average

path cannot shrink the coefficients to exactly zero. It is tempting to run the Viterbi al-

gorithm to refine the estimate, with zeros added to the set of allowed values of the state

variables. Unfortunately the state space model designed for the LASSO problem is not

Markovian hence the Viterbi algorithm cannot be used. However, we used an additional

refinement step by iteratively and greedily comparing each estimated state x̂t (using the

average sample path) with zero under the original objective function. The refinement step

(with additional 0.063ms in computing time) moved some of the states to zero, and improved

the value of the objective function from 21.90356 to 21.899657. The minimum achieved by

the Scikit solver is 21.899645. However, such a refinement is based on the knowledge that

the solution of Lasso has exactly zero coefficients, and may not be used in other optimiza-

tion problems. Note that, the emulation system can be easily generalized to other types of

regularization on parameters by changing the penalty term in (4.15) without much effort

and can be adapted much more complex penalty structure.

5.5.3 Optimal Trading Path

In this simulation, we consider the optimal trading path problem in Section 4.3.3. Similarly,

we set T = 20, σ2
x = 0.25, σ2

y = 1 and α= 0.5. The ideal trading path is given by

yt = 25exp{−(t+1)/8}−40exp{−(t+1)/4}.
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Figure 5.5: Sample paths at different κ’s

Figure 5.6: Value of the objective function against the number of iterations
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We start from the initial temperature κ= κ0 = 1.0. The sample paths at κ0 is drawn with

the constrained SMC in Algorithm 3 as in the example of Section 3.6. In this example, we

use m∗ = 300 backward pilot samples. The resulting m= 1000 (forward) sample paths are

shown in Figure 5.7. The observations y1, . . . ,yT , which represent the ideal optimal trading

strategy without the trading cost, are plotted as the solid line. An estimated path, marked

by a dashed line, is provided by the Scipy nonlinear optimization algorithm.

Figure 5.7: Sample paths at κ0

We use the following sequence of inverted temperatures for annealing: κk = 2kκ0 for

k= 1, . . . ,20. The proposal distribution in the annealed SMC is sampled with the parametric

approach by approximating the joint distribution of xk−1,t and xk−1,t−1 with a bivariate

normal distribution. The annealed m = 1000 sample paths are resampled at the end of

each iteration, and no post-MCMC step is conducted. Samples at several different inverted

temperatures are shown in Figure 5.8. We use the sample average as our estimator for the

most likely path. The value of the objective function at the sample average path decreases

stochastically as shown in Figure 5.9. It eventually converges at around the 11th iteration.

The optimal objective function value achieved by the annealed SMC is 89.459, while the one

obtained by the Scipy nonlinear optimizer is 89.462. The values of the objective function at

the sample paths at the 20th iteration have an average of 89.459 and a standard deviation

of 1.09×10−5. The annealed SMC gains some improvement in accuracy at the cost of extra

computation. The Scipy nonlinear optimizer takes 78ms while the annealed SMC costs
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1.820 seconds for the initial emulated model (including the time of backward sampling) and

costs around 2ms for each subsequent iteration. Sampling from the base emulated model

costs much more than subsequent iteration for two reasons. First, it requires a large sample

size for the base model because of high degeneracy. Second, the end point constraint is

imposed and an additional backward pilot run is needed to reduce degeneracy.

Figure 5.8: Sample paths at different κ’s

Figure 5.9: Value of the objective function against the number of iterations
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5.5.4 L1 Trend Filtering

In this simulation study, we consider the ℓ1 trend filtering problem in Section 4.3.4. We set

T = 60, λ= 10 and

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t−1
20 +N (0,0.01), 1 ⩽ t⩽ 20

40− t
20 +N (0,0.01), 21 ⩽ t⩽ 40

t−41
20 +N (0,0.01), 41 ⩽ t⩽ 60.

At κ = κ0 = 10, m = 5000 SMC paths are sampled using the state dynamics (4.22) as the

proposal distribution. A resampling step is conducted when the effective sample size drops

below 0.1m. The approximate MLE marked as dashed line is the solution obtained by Scipy

nonlinear solver. The solution shows a piece-wise linear behavior as the ℓ1 type of penalty

appears in the objective function.

We use the following designed annealing sequence κk = 1.3kκ0 for k = 1, . . . ,40 and use

m= 2000 samples for annealing. In each annealing iteration, the proposal distribution used

is Laplace(Ê[xt | xt−1,xt−2;κk], V̂ [xt | xt−1,xt−2;κk]1/2/
√

2) where Ê and V̂ are estimated

from the samples from the last iteration {(x(j)
k−1,t,x

(j)
k−1,t−1,x

(j)
k−1,t−2)}mj=1.

The Laplace distribution has a heavier tail than the normal distribution with the same

variance. We found it more efficient to sample from the Laplace distribution to reduce

sample degeneracy in this problem. The resampling step is conducted at the end of each

iteration and is followed by 10 steps of post-MCMC moves. The post-MCMC steps follow

the standard Gibbs sampling as in the LASSO example. Sample paths at four different κ’s

are displayed in Figure 5.10. Note that when κ≈ 1462, the sample paths are different from

the nonlinear solver’s solution at t ∈ [38,42]. The value of the objective function at the

sample average path shown in Figure 5.11 show that annealed SMC can obtain a smaller

objective function value than the Scipy optimizer. The Scipy nonlinear optimizer takes

155ms while annealed SMC costs 22 ms for SMC sampling from the initial emulated model

and costs around 160 ms for each subsequent annealing iteration including the post-MCMC

runs.
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Figure 5.10: Sample paths at different κ’s

Figure 5.11: Value of the objective function against the number of iterations



PART II

Individualized Group Learning
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CHAPTER 6

Introduction to Individualized Inference

through Fusion Learning

6.1 Fusion Learning and Individualized Inference

6.1.1 Fusion Learning

Fusion learning is a methodology that aggregates information/dataset from different sources

to make a coherent overall inference (Chen and Xie, 2014; Liu et al., 2014, 2015; Yang

et al., 2016). It has an old name “meta-analysis”, which was named by Glass (1976) as the

“analysis of analyses”. The main idea is to combine outcomes from different studies on the

same object to provide a more powerful inference result.

Based on the idea of combination of information, two nature questions arise: what to

combine and how to combine. The p-value based meta-analysis approaches are discussed

by Marden (1991), where point summary information (p-value in this case) from different

studies of a same object are combined with equal weights. Normand (1999) generalized the

p-value based meta-analysis to the class of model-based meta-analysis approaches, includ-

ing fixed-effects models and random-effects model. The potential unobserved heterogeneity

in different studies is properly tackled in the model-based meta-analysis approaches. In

fixed-effect models, the parameters of interest are assumed to be unknown and fixed, while

those in random-effects models are supposed to be generated randomly from a (super-)

population of parameters. Apart from p-value based models of Marden (1991), the sum-

mary information of different studies are averaged with unequal weights in model-based
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meta-analysis approaches. The weights usually relate to their precision. The varies meta-

analysis approaches are unified by Xie et al. (2011) under a framework using the concept

of confidence distribution (CD), which contains confidence interval information of all levels

for a parameter of interest (Xie et al., 2013; Schweder and Hjort, 2016).

The idea of data fusion or data aggregation is general and has been widely accepted. For

example, in statistical learning, the class of ensemble learning approaches fits each model

with a random subset of data and make prediction by averaging the output of those models

with equal or unequal weights to improve accuracy (Opitz and Maclin, 1999; Polikar, 2006).

6.1.2 Individualized Inference

The individualized inference problem originates from researches in precision medicine, whose

goal is to provide an optimal treatment suggestion tailored to the particular situation of one

specified patient (Insel, 2009; Hamburg and Collins, 2010). It is challenging to find other

patients that are exactly identical to the target patient to carry out statistical analysis on

the treatment effects. As a compromise, the optimality of a treatment can be only measured

over the average effect of a group of similar patients (Qian and Murphy, 2011). The group

of similar patients, as the subject of the inference problem, is constructed for the particular

patient of interest and is therefore different when the patient of interest changes. The idea

of scaling down to a local subset of data neighboring to the target individual also gives

rise to the study of target maximum likelihood estimate method proposed by van der Laan

and Rubin (2006). Van der Laan and Rose (2011) applies the targeted maximum likelihood

approach to causal inference and precision medicine problems to reduce estimation bias.

Analogue to doctor assigning a personalized treatment to the target patient, Liu and

Meng (2016) proposed the concept of individualized inference, where an individualized

estimate for a target dataset/individual is constructed utilizing information from others. As

a comparison, the precision medicine focuses on finding the optimal personalized treatment

assignment function in the context of causal inference, while individualized inference is a

broader topic containing other inference problems.
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6.2 Fusion Learning through Aggregation

In this section, the aggregation-based fusion learning methods will be reviewed. Suppose a

sample dataset contains K independent individuals. Each individual can be one study, an

individual patient, or in some cases a subset of observations according to a partition of the

whole sample set, depending on the context of application. Let Sk be the full information

set for individual k. Sk can be, for example, all the observations from individual k. In

addition, assume θk is the corresponding parameter of interest for individual k.

In classical fusion learning, it is commonly assumed that all individuals share a common

parameter of interest such that θ1 = θ2 = · · · = θK = θ. The assumption is often imposed

when the individuals are independent studies on the same object or the information aggrega-

tion are from random subsets of a single dataset. Normand (1999) relaxed this assumption

to the case when θk,k = 1, . . . ,K, are i.i.d. realizations of a common distribution with

parameter θ of interest.

In this section, we limit our discussion to the classical fusion learning with the identical

parameter assumption.

A typical classical fusion learning approach has three steps. In the first step, information

regarding the parameter θk is summarized from its information set Sk through an estimating

function m(θ;Sk). In the second step, a population level aggregated estimating function is

calculated by a weighted average of individual estimating functions such that

m(c)(θ) =
∑︁K

k=1wkm(θ;Sk)∑︁K
k=1wk

, (6.1)

where wk ⩾ 0 are generic weights for the aggregation. In the last step, a point estimator for

θ is further inferred from the aggregated estimating function in (6.1).

The weight wk in (6.1) can be either fixed or dependent on the data Sk, for example,

wk can be set to be proportional to the precision matrix of the (individual level) param-

eter estimator of individual k. Specifically, when all resources are symmetric in terms of

methodology, the number of observations, etc., the weights are set to be equal. When in

fixed effects models and random effects models, the optimal choice of weights is proportional



83

to the precision matrix of each individual.

The estimating functionm(θ;Sk) is generic concept, which can be log-likelihood function,

pseudo-likelihood function, loss function, log confidence distribution function or even the

individual level point estimator θ̂k.

A general framework for combining independent confidence distributions using any given

coordinate-wise monotonic function was proposed by Singh et al. (2005). Specifically, Xie

et al. (2011); Yang et al. (2016) proposed to use the aggregation form in (6.1) with the

estimating function

m(θ;Sk) = F−1
0 (Hk(θ)), (6.2)

where F0(·) is a given cumulative distribution function and Hk(·) is a confidence distribution

for θk induced from Sk. Sometimes, the combination of (6.1) and (6.2) can be simplified to

m(c)(θ) =
K∑︂

k=1
wkHk(θ), (6.3)

when F0 is the c.d.f. of uniform distribution and wk’s are normalized (Xie et al., 2011).

The confidence distribution based fusion learning framework using (6.3) is generic and

powerful with a borad range of applications in challenging problem settings. Examples in-

clude robust fusion learning (Xie et al., 2011), discrete data (Liu et al., 2014), heterogeneous

individuals (Liu et al., 2015) and split-conquer-combine approaches (Chen and Xie, 2014).

Cheng et al. (2017) provides a detailed review on the confidence distribution based fusion

learning approaches.

Beyond aggregating confidence distributions, Gao and Carroll (2017) proposed a fusion

scheme with pseudo-likelihood functions, where the integrated pseudo-likelihood function

is an aggregation of individual pseudo-likelihoods.

ℓ(c)(θ) =
K∑︂

k=1
wkℓk(θk;Sk),

where ℓk(θk;Sk) is the pseudo-likelihood function of individual k. Varin and Vidoni (2006);

Joe and Lee (2009) provide data structure based practical strategies for choosing the cor-

responding weight wk.
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In opposite to the identical assumption, when the population is heterogeneous such

that θ1 ̸= θ2 ̸= · · · ̸= θK and when estimating θ1 attracts more interest than estimating the

population average θ, the aggregation (6.1) should be modified in order to meet the need

of individualized inference. This class of fusion learning-based individualized inference will

be discussed in Section 6.3.

6.3 Fusion Learning Based Individualized Inference

When potential heterogeneity exists in the population, the identical parameter assumption

in fusion learning often does not hold. Instead of assuming a common parameter of interest

for all individuals, individualized inference through fusion learning focuses on improving the

inference efficiency of one specific study or individual by borrowing strength from similar

studies or individuals. Specifically, suppose the individual of interest is marked as individual

0 with the parameter of interest θ0, the goal of fusion learning based individualized inference

is to provide a better point estimator, through aggregation, than that obtained based only

on the data of individual 0.

The main challenge is that bias arises when fusing a heterogeneous population. On one

hand, aggregating too many other individuals brings extra bias due to heterogeneity. On

the other hand, if few other individuals are fused, variance reduction is limited. Individual

level study yielding an estimator, say θ̂0, is the extreme case with no bias but also no

variance reduction. The population-wise fusion learning, where all individuals are fused

together with equal weights, is another extreme that maximizes variance reduction but may

potentially have a large bias. Individualized version of fusion learning alleviates the problem

by taking control over the aggregation weight wk through a similarity measure between Sk

and S0. Particularly, the aggregation formula for individualized inference through fusion

learning is

m
(c)
0 (θ) =

∑︁K
k=0w0,km(θ;Sk)∑︁K

k=0w0,k

, (6.4)

where the extra subscript 0 indicates the target individual of such an aggregation. In fusion

learning, the aggregation in (6.1) is constructed once and yields one point estimate for all

individuals since they share the common parameter of interest. However, in individual-
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ized inference, the corresponding individualized aggregation (6.4) is constructed for each

individual of interest.

The iFusion approach proposed by Shen et al. (2019) considers the asymptotic settings

when the effective sample size for each individual nk increase to infinite but the proportion

converges to some value between 0 and 1 such that nk/
∑︁

knk = Op(1). Note that the ef-

fective sample size is formally defined with the variance of the individual level estimator θ̂k

such that 1/nk ∝Var(θ̂k). Especially, for estimators of
√
n error rate, nk equals the number

of observations for individual k. It is shown that under the settings, an individual’s inference

can be further improved by incorporating additional information from similar individuals,

which is referred as its clique group. To be more specific, their approach aggregates indi-

vidual log confidence distribution (CD) functions according to (6.4) by choosing a weight

function w0,k which converges to an indicator function of the clique group.

6.4 Individualized Group Learning

In this section, we provide a brief introduction to the individualized group learning approach

(iGroup). Details will be discussed in Chapter 7.

Since in precision medicine (Liu and Meng, 2016; Qian and Murphy, 2011; Zhao et al.,

2012) no two patients or two customers are exactly the same, heterogeneity often exists

in a population. It poses a challenge to combine the data from different individuals, es-

pecially for making improved inferences in individualized learning. A class of conventional

methods is to cluster/group individual entities into subgroups and, assuming homogeneity

within each subgroup, then use the data in the same subgroup for statistical analysis (Jain

et al., 1999; Xu and Wunsch, 2005; Agrawal et al., 1998; Binder, 1978; Ng and Han, 1994;

Gan et al., 2007; Liao, 2005; Jain, 2010). The clustering and grouping in the conventional

methods are typically performed in a priori. Such approaches have several disadvantages.

Firstly, the constitution of subgroups often depends on a predetermined total number of

subgroups, which is a parameter that is either difficult or not reliable to choose in practice.

Secondly, since analytic outcomes and inference (e.g. estimated parameters and testing) are

the same for all individuals in the same subgroup, such a procedure potentially diminishes
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hidden local structures. More importantly, in many cases, there may not be clearly-cut

and well-divided subgroups in the population. In these situations, the conventional sub-

group analysis may impose an artificial grouping structure to the population, which can

potentially lead to large biases and invalid inference for many individuals. Another class

of conventional methods is to assume mixture models, including classical hierarchical mod-

els and Bayesian nonparametric models (Duda and Hart, 1973; Lindsay, 1995; Figueiredo

and Jain, 2000; Ferguson, 1973; Antoniak, 1974; Lo, 1984; Teh et al., 2005). Similar to

the clustering method, the mixture models assume that the population contains several

homogeneous subpopulations, but unlike clustering, there is no clear boundary between the

subpopulations. However, inference on each individual is not the focus of such a procedure.

It is often done as an afterthought, by estimating the mixture likelihood. Furthermore, a

mixture model may not be able to explain the population heterogeneity when the assumed

latent structure is invalid. In addition, when given an observation, it is usually difficult to

tell which subpopulation it belongs to.

In the subsequent chapters, we propose a new method called individualized group learn-

ing, abbreviated as iGroup. Instead of grouping at the population level, the iGroup approach

focuses on each individual and forms an individualized group for the target individual, by

locating individuals that share similar characteristics of the target. It sidesteps aforemen-

tioned difficulties by forming an iGroup specifically for the target individual while ignoring

other entities that have little in common with the target.

Figure 6.1: (Left) Convention clustering method divides the population into several prede-
termined number of groups. (Right) iGroup method find the individualized group for any
given target individual.
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Figure 6.1 demonstrates the difference between group identifications in a two-dimen-

sional feature space. The left panel shows the result from a k-means clustering method

with three groups. Each point is assigned with one cluster label. Data points having the

same label are assumed to follow an identical statistical model, even though a large amount

of heterogeneity may still exist among the individuals in the same group. The right panel

demonstrates the individualized groups for two selected points (bold). Instead of assuming

disjoint cluster regions, the individualized group, whose boundary is shown as a solid line,

is specific and unique for each individual. Therefore, the laws for two individuals are

generally different as their identified individualized groups are different. iGroup corresponds

essentially to a local nonparametric approach.

There are also other methods that borrow strength from others to strengthen inference

results for the target individual. A related classical approach is the k-nearest neighbor

methods (k-NN) (Altman, 1992; Hall et al., 2008). The main different between the k-NN

and the iGroup methods is the covariates used for identifying similarity and near neigh-

bors. The k-NN method identifies neighborhoods usually based on covariates often without

measurement errors, for example, the regressors in a regression problem. In iGroup, the

covariates used for grouping, such as the exogenous variable zzz and the indigenous estimator

θ̂, are both assumed to have measurement errors. Especially, the individual level point

estimator θ̂ has never been used to measure similarity in nearest neighbor algorithms. Ad-

ditionally, while the k-NN method treats every instance in the neighborhoods as equally

important, the iGroup method allows different weight assignments for different individuals,

which brings more flexibility. We recommend to use new weight functions to incorporate

the similarity between neighbor individuals and the target one. Theoretically, when the

number of individuals K approaches infinity, the radius of neighborhood identified by the

k-NN method shrinks to zero as a result of bias-variance tradeoff. However, in iGroup ap-

proach, the radius of the target neighborhood does not necessarily shrink to zero, because

the measurement error in θ̂ always exists due to finite sample size nk =O(1).

In summary, iGroup belongs to the class of fusion learning based individualized inference

approach in Section 6.3. However, in opposite to iFusion approach of Shen et al. (2019),

iGroup considers a different asymptotic scheme where each individual has a finite number
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of observations while the number of individuals K approaches infinity.
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CHAPTER 7

Individualized Group Learning

7.1 Framework

7.1.1 Model Setup

Assume for each individual k ∈ {0,1,2, . . . ,K}, we observe (xxxk,zzzk), where observations xxxk

and zzzk differ in their utilities. Specifically, xxxk is the observed data that are directly related to

the parameter of interest θk at the individual level, with a known distribution xxxk ∼ p(· | θk).

The exogenous variablezzzk serves as a proxy that reveals the similarity among θ’s in the

population level. Specifically, we assume that zzzk is related to an unknown parameter ηηηk

through an unknown distribution q(·;ηηηk), and the parameter θ is an unknown continuous

function of ηηη, i.e. θ= g(ηηη), where the function g(·) is not necessarily a one-to-one mapping.

The continuity of g(·) guarantees that closeness in ηηη implies closeness in θ. The hierarchical

structure and the relationship among the variables are demonstrated in Figure 7.1,

θk ∼ π(·),
xxxk|θk ∼ p(·;θk),

θk = g(ηηηk),
zzzk|ηηηk ∼ q(·;ηηηk).

θk ηηηk

xxxk zzzk

xxx model zzz model diagram

Figure 7.1: Hierarchical structure and parameter diagram.

where π(·) is an unknown (prior) population distribution of θ, which may be heteroge-

neous in nature. Although π(·) is unknown and unspecified, it appears in theoretical calcu-

lations throughout the theoretical analysis in this paper. Without further clarification, all
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unconditioned expectations E[·] are assumed to take over all random variables including θk,

which follows the unknown prior π(·). Posterior expectations on θ conditioned on certain

observed information are explicitly noted with π in the subscript such as Eπ[θ0 | θ̂0]. The

distribution p(·;θk) is known except the parameter θk, but both the function g(·) and the

distribution q(·; ·) are unknown. The role of the exogenous variable zzzk will be discussed

further in later sections. In some cases zzzk may not be available.

One example of the above setup is that xxxk is the daily stock price returns of company

k, which follows a Normal(0,θ2
k) distribution, and zzzk is the company’s characteristics (e.g.

sectors, capital sizes, financial exposure, etc), which is related to stock volatility θk. Another

example is that xxxk is a binary indicator whether individual k has a certain disease and zzzk

is the individual’s health indices such as weight, height, blood pressure, etc., where the

underlying θk = P (xxxk = 1) is the probability of infection.

Denote by C0(ϵ) = {k|d̃(θk,θ0) < ϵ,k = 0, . . . ,K} an ϵ-neighborhood (or a clique) of in-

dividual 0, where d̃(·, ·) is a distance/similarity measure and ϵ is the threshold value. Thus,

the clique C0(ϵ) is a set of indexes of individuals that are similar to individual 0. In our

model development, we impose two regularity assumptions as below.

Assumption 7.1 (Dense Assumption). There exists a constant d ⩾ 1 such that for all

i= 1, . . . ,K, |Ci(ϵ)| ≍Kϵd in probability when K→∞, ϵ→ 0.

Assumption 7.2 (Smooth Parameter Assumption). There exists a positive constant κ,

such that for all θ,θ′ ∈ Ωθ

sup
xxx
|p(xxx;θ)−p(xxx;θ′)|⩽ κ∥θ−θ′∥,

where ∥ · ∥ is a metric on Ωθ.

The dense assumption suggests that individual 0 of interest is not isolated from other

individuals, i.e. for arbitrarily small ϵ, there are a sufficiently large number of other indi-

viduals in its neighborhood as K→∞. The smooth parameter assumption guarantees that

whenever θ and θ′ are close, the distributions of xxx and xxx′ induced from θ and θ′, respectively,

are close to each other.



91

Under these two assumptions, it is beneficial to aggregate information from the neigh-

borhood to estimate θ since one can always find sufficient number of similar individuals in

the neighborhood of individual θ. A key consideration in this aggregation is the familiar

bias-variance trade-off — aggregation over a larger group increases the sample size thus

reduces estimation variance, but it also brings bias.

7.1.2 Individualized Aggregation

Here, we provide two methods to aggregate information by creating ‘pooled’ estimators for

θ0. The first approach constructs a weighted estimator θ̂(c)
0 (xxx0,zzz0,Dx,Dz) for the target

individual 0, directly using the point estimators θ̂k of other individuals based on xxxk. Here

we define Dx = {xxxk}Kk=1 and Dz = {zzzk}Kk=1 be all other information that is available for the

individualized inference on the target individual 0.

The second approach aggregates objective functions Mk(θ) = Mk(θ,xxxk) of other indi-

viduals, where the point estimator θ̃(c)
0 is obtained by optimizing an aggregated objective

function. Specifically, these two methods can be formulated as

(Aggregating estimators) θ̂
(c)
0 =

∑︁K
k=0 θ̂kw(k;0)∑︁K

k=0w(k;0)
, (7.1)

(Aggregating objective functions) θ̃
(c)
0 = argmin

θ

K∑︂
k=0

Mk(θ)w(k;0), (7.2)

where w(k;0) is the weight assigned to individual k when constructing iGroup estimator for

individual 0.

The weight w(k;0) is crucial for the aggregated estimators as it controls how much

information is borrowed from other individuals. We propose to incorporate both individual

level estimator θ̂k and exogenous observation zzzk into the weight function as both can provide

useful information of θ0. Specifically, let

w(k;0) = w(θ̂k,zzzk; θ̂0,zzz0) = w1(zzzk,zzz0)w2(θ̂k, θ̂0|zzz0,zzzk). (7.3)

The weight is decomposed into two parts. The first part w1(zzzk,zzz0) measures the similarity
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Figure 7.2: A one-dimension example in which θ̂0 is away from θ0. If one naively select
individuals according to θ̂0 and θ̂k directly, individuals adjacent to θ̂0, but not those close
to θ0, are often selected.

between zzzk and zzz0, and can be a kernel function

w1(zzzk,zzz0) =K1

(︃∥zzzk−zzz∥
b1

)︃
, (7.4)

When K1 has a finite support, the weight function has a hard grouping structure — indi-

viduals lying far enough from individual 0 are not considered at all. Otherwise, it has a

soft grouping structure such that dissimilar individuals are assigned with non-zero but tiny

weights.

The second part w2(θ̂k, θ̂0|zzz0) measures the similarity between θ̂’s. But unlike w1, using

a distance measure such as K2(∥θ̂k− θ̂0∥/b2) is not a good practice, since it ignores the error

in θ̂0 and θ̂k and θ̂0 may be biased. Note that when K →∞ and b2→ 0, the kernel con-

centrates on a smaller and smaller area adjacent to θ̂0. In this area, aggregating individual

θ̂k will not improve the estimation of θ0. An example of one-dimension case is shown in

Figure 7.2. Vertical bars mark the locations of θ̂k. When θ̂0 is away from its target value

θ0, a small bandwidth b2 tends to give larger weights to individuals in a local region around

θ̂0. Aggregating these individual θ̂k in such a local region will not correct the bias θ̂0−θ0.

We propose the following weight function that considers the distribution p(θ̂|θ) instead

of the point estimator θ̂. Specifically, let

w2(θ̂k, θ̂0|zzz0,zzzk) =
∫︁
p(θ̂k|θ)p(θ̂0|θ)p(θ|zzz0)dθ
p(θ̂k|zzzk)p(θ̂0|zzz0)

. (7.5)
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Notice that, the posterior distribution of θ0, given (θ̂0,zzz0), is

p(θ0|θ̂0,zzz0) = p(θ0, θ̂0|zzz0)/p(θ̂0|zzz0) = p(θ̂0|θ0)p(θ0|zzz0)/p(θ̂0|zzz0).

If θk ≡ θ0 (hence θ̂k provides useful information about θ0), then the predictive distribution

of θ̂k, given (θ̂0,zzz0), is

p(θ̂k|θ̂0,zzz0) =
∫︂
p(θ̂k|θ)p(θ|θ̂0,zzz0)dθ =

∫︁
p(θ̂k|θ)p(θ̂0|θ)p(θ|zzz0)dθ

p(θ̂0|zzz0)
.

Thus, the weight function w2(θ̂k, θ̂0|zzz0,zzzk) in (7.5) is the Radon-Nikodym derivative between

the predictive distribution p(θ̂k|θ̂0,zzz0) and the sampling distribution p(θ̂k|zzzk). As a result,

for any measurable function h(·), we have

Ep(θ̂k|zzzk)[h(θ̂k)w2(θ̂k, θ̂0|zzz0,zzzk)] = Ep(θ̂k|θ̂0,zzz0)[h(θ̂k)].

That is, the weighted expectation of h(θ̂k) under the sampling distribution p(θ̂k|zzzk) equals

to its expectation under the predictive distribution p(θ̂k|θ̂0,zzz0) if θk = θ0. This property

brings invariance under different sampling distributions. More importantly, it shows that the

weighted averages, such as (7.1) and (7.2), estimates the expectations under the predictive

distribution. This gives the iGroup estimators promising asymptotic properties as we will

discuss later in Section 7.2.

The shape (thin or flat) of the weight w2(·) as a function of θ̂k does not change with

the number of individuals K. However, the shape is influenced by the variation (accuracy)

of θ̂. The larger the variance of θ̂ is, the flatter the weight function tends to be. If θ̂k is

estimated without any measurement error, the weight w2(θ̂k, θ̂0|zzz0,zzzk) is proportional to

the indicator function I{θ̂k=θ̂0}. It reduces to the case in which the individual estimator θ̂0

or the individual objective function M0(θ) is used without grouping.

Although an unknown population distribution for θ is assumed to be π(θ) viewed as the

prior, it does not appear explicitly in either θ̂(c)
0 or θ̃(c)

0 . And we’ll show later in Section 3 that

under mild conditions, the iGroup estimators converge to certain Bayes estimators under

the unknown prior. This is similar to empirical Bayes approach (Robbins, 1956), where
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the prior is unknown but a Bayes estimator is constructed. In empirical Bayes, the prior

is usually estimated by either discretization or deconvolution. But our iGroup approach

is different. The unknown π(θ) is not directly estimated. The prior information is taken

into consideration by taking a (weighted) average of sample estimators or sample objective

functions. And the weight w2, which is related to π(θ) in a close form, is approximated by

a bootstrap method in Section 7.1.3.

7.1.3 Evaluation of the Optimal Weight

The weight function w1(zzzk,zzz0) in (7.4) can be directly evaluated. Similar to a bandwidth

selection problem for kernel smoothing, one can choose the bandwidth b1 for w1(zzzk,zzz0) in

(7.4) by either using the plug-in method (Chiu, 1991) or through cross-validation procedure.

The plug-in bandwidth is proportional to K− 1
d+4 (see Section 7.2). Also, the leave-one-out

cross validation process gives an empirical optimal bandwidth, as discussed in Section 7.2.6.

The evaluation of the weight function w2(θ̂k, θ̂0 | zzz0,zzzk) in (7.5) is more complicated,

since the conditional probability p(θ̂|zzz) and the integral
∫︁
p(θ̂0|θ)p(θ̂k|θ)p(θ|zzz0)dθ are un-

known as the relationship between θ and zzz is not explicit. We propose an approximation

method to evaluate w2(θ̂k, θ̂0 | zzz0,zzzk) below.

Denote the estimator of θk and the observed exogenous variable zzzk as the tuple (θ̂k,zzzk),

k = 0, . . . ,K. To calculate the weight in (7.5), we treat them as K + 1 samples from the

joint distribution of (θ̂, zzz). We use the kernel method to estimate the conditional probability

p(θ̂ | zzz) nonparametrically by

p̂(θ̂|zzz) =

K∑︂
j=0
K1

(︃∥zzz−zzzj∥
b1

)︃
K2

(︄
∥θ̂− θ̂j∥
b2

)︄
K∑︂

j=0
K1

(︃∥zzz−zzzj∥
b1

)︃ ,

where K1,K2 are two kernel functions with b1, b2 as the corresponding bandwidths. To

estimate the integral in (7.5), we use the interpretation discussed above that it is the

conditional distribution p(θ̂k | θ̂0,zzz0) given θk = θ0. Hence we need samples from the joint

distribution of (θ̂, θ̂′
,zzz) observed from the same individual with parameter θ. However,
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this is infeasible because in our problem setting, no two individual share the same true

parameter θ and for each individual only one θ̂ is observed. To generate samples from such

a distribution, we consider a bootstrap method. Denote θ̂(1)
k and θ̂

(2)
k as the two bootstrap

estimators for θk, obtained by re-sampling xxxk with replacement (not applicable when xxxk has

few observations). Then (θ̂(1)
k , θ̂

(2)
k ,zzzk),k = 0, . . . ,K is an approximate sample of (θ̂, θ̂′

,zzz),

guaranteeing θ̂(1)
k , θ̂

(2)
k ,zzzk are generated from the same individual k. Therefore the integral

can be estimated by

∫︂
p(θ̂0|θ)p(θ̂k|θ)p(θ|zzz0)dθ ≈

K∑︂
j=0
K1

(︃∥zzz0−zzzj∥
b1

)︃
K2

⎛⎝∥θ̂0− θ̂
(1)
j ∥

b2

⎞⎠K3

⎛⎝∥θ̂k− θ̂
(2)
j ∥

b3

⎞⎠
K∑︂

j=0
K1

(︃∥zzz0−zzzj∥
b1

)︃ ,

where K1,K2,K3 are three kernel functions with b1, b2, b3 as the corresponding bandwidths.

The bandwidths can be selected by either minimizing asymptotic mean integrated squared

error (AMISE) or a rule-of-thumb bandwidth estimator. This estimation of the integral is

an approximation that requires K to be sufficiently large.

7.2 Theoretical Analysis

In this section, we consider several model settings for which we apply the proposed iGroup

method and discuss their corresponding theoretical properties, especially in terms of their

asymptotic performance. In particular, we first define a target estimator Θ0 that minimizes

the Bayes risk, and then investigate the asymptotic performance of iGroup estimators in

(7.1) and (7.2) in approximating the target estimator Θ0. We also quantify the bias and

variance of iGroup estimators as well as the target estimator Θ0 in term of estimating

θ0. Particularly, in this chapter we consider the asymptotic framework that the number

of individuals K goes to infinity, while the number of observations for each individual n is

fixed and finite.
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7.2.1 Risk Decomposition and the Target Estimator

We are interested in making inference about individual 0, with given data information

Dx,Dz that may include the observations xxx0 and zzz0 plus information from other relevant

individuals. Let δ0(Dx,Dz) be a point estimator for θ0, which is constructed with informa-

tion sets Dx and Dz. The iGroup estimator θ̂(c)
0 in (7.1) is such an estimator. Similarly,

δ0(Dx) and δ0(Dz) are point estimators constructed solely based on either Dx or Dz. Under

squared loss, the overall risk of δ0 in estimating θ0 can be decomposed into two non-negative

parts: the expected squared error of δ0 in estimating the corresponding posterior mean and

the overall risk of the posterior mean itself, as shown in Proposition 7.1.

Proposition 7.1. Suppose θ0 has a prior distribution π(·). Under squared loss, we have

the following overall risk decomposition.

E[(δ0(Dx,Dz)−θ0)2] = E[(δ0(Dx,Dz)−Eπ[θ0 | xxx0,zzz0])2]+E[(Eπ[θ0 | xxx0,zzz0]−θ0)2],

E[(δ0(Dx)−θ0)2] = E[(δ0(Dx)−Eπ[θ0 | xxx0])2]+E[(Eπ[θ0 | xxx0]−θ0)2],

E[(δ0(Dz)−θ0)2] = E[(δ0(Dz)−Eπ[θ0 | zzz0])2]+E[(Eπ[θ0 | zzz0]−θ0)2],

where Eπ[θ0 | xxx0,zzz0], Eπ[θ0 | xxx0] and Eπ[θ0 | zzz0] are the posterior means under prior π(·) and

observations (xxx0,zzz0), xxx0 and zzz0 correspondingly.

The proof is given in Appendix A.

Proposition 7.1 reveals that the overall risk is minimized by setting δ0 to the corre-

sponding posterior mean under the prior π(·), which is the population-level (unknown)

distribution for θ0. Throughout this paper, we call the estimator that minimizes the overall

risk the target estimator. More specifically, under squared loss and different information

sets, we denote the target estimators with

Θ0(xxx0;ℓ2) = Eπ[θ0 | xxx0], Θ0(zzz0;ℓ2) = Eπ[θ0 | zzz0] and Θ0(xxx0,zzz0;ℓ2) = Eπ[θ0 | xxx0,zzz0]. (7.6)

Here, ℓ2 refers to the squared loss. For the ease of presentation, we also use a simple notation

Θ0 to represent one of the Bayes estimators in (7.6) when its meaning is apparent.
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Similarly, for a general loss function L(θ̂, θ), we define the target estimator as the Bayes

estimator that minimizes the expected loss, given the available observation on individual 0

and the prior π(·) such that

Θ0(xxx0;L) = argmin
δ

Eπ[L(δ,θ0) | xxx0],

Θ0(zzz0;L) = argmin
δ

Eπ[L(δ,θ0) | zzz0], (7.7)

Θ0(xxx0,zzz0;L) = argmin
δ

Eπ[L(δ,θ0) | xxx0,zzz0].

A similar risk decomposition is demonstrated in Proposition 7.2 below. Again, for the ease

of notation, we simply use Θ0 to represent one of the Bayes estimators in (7.7) when its

meaning is apparent.

Proposition 7.2. Suppose θ0 has a prior distribution π(·) and L(θ̂, θ) is a loss function,

which is second-order partially differentiable with respect to θ̂ such that L′(θ̂, θ) = ∂L/∂θ̂

and L′′(θ̂, θ) = ∂2L/∂θ̂
2. Then for the estimator δ0 constructed based on information set

Dx, Dz or (Dx,Dz), we have

E[L(δ0,θ0)] = 1
2E[L′′(Θ0,θ0)(δ0−Θ0)2]+E[L(δ0,θ0)]+o(E[(δ0−Θ0)2]),

where Θ0 is the corresponding Bayes estimator based on the same information set as δ0.

The proof is given in Appendix A.

The target estimator Θ0 as a function of xxx0 and zzz0 is not directly available, because

neither the population distribution π(θ0) nor the likelihood function p(zzz0 | θ0) is explicitly

known or assumed. The iGroup estimator θ̂(c)
0 in (7.1) constructed based on observed

finite sample Dx,Dz is desired to approach the target estimator Θ0 when more and more

similar individuals contribute to the estimator θ̂(c)
0 . See Diaconis and Freedman (1986) for

discussions of target point estimators and target parameters in Bayesian literature.
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7.2.2 Case 1: With Exogenous Variable zzz Only

In the cases when the individual level estimator θ̂k is not reliable to construct the individual

groups, iGroup may be constructed with the exogenous variable zzz only. In this case, the

corresponding target estimator is defined as:

Θ0(zzz0;ℓ2) = Eπ[θ0 | zzz0], (7.8)

where p(θ0 | zzz0)∝ p(zzz0 | θ0)π(θ0). Although xxx0 is not used for grouping and thus does not

appear in (7.8), the data Dx is used in iGroup estimators in (7.1) and (7.2). Recall that

the relationship between θk and ηηηk is given by a deterministic relationship

θk = g(ηηηk), for k = 0,1, . . . ,K, (7.9)

where g(·) is an unknown continuous function. Furthermore, zzzk is a noisy observation of

ηηηk. Since ηηη is a conceptual parameter, we may simply assume that

zzzk = ηηηk + ϵk, for k = 0, . . . ,K,

where the error satisfies E(ϵk) = 0, Var(ϵk) = σ2
zΣΣΣz with ∥ΣΣΣz∥= 1.

Suppose θ̂k is an unbiased estimator of θk. Then, the combined estimator

θ̂
(c)
0 =

∑︁K
k=0K

(︃∥zzzk−zzz0∥
b

)︃
θ̂k∑︁K

k=0K
(︃∥zzzk−zzz0∥

b

)︃ (7.10)

has all the properties of a conventional kernel smoothing estimator if K is a standard kernel

function. The boundary and asymptotic conditions/assumptions on the weight function K

and the bandwidth b are summarized in Assumption 7.3.

Assumption 7.3 (Boundary and asymptotic conditions). The kernel function K(·) satisfies

K ⩾ 0,
∫︂
|K(u)|du <∞, lim

|u|→∞
uK(u)→ 0.
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And, in addition, when K→∞, b satisfies b→ 0, bdK→∞.

Theorem 7.1. Under the conditions in Assumption 7.1 - 7.3, we have

θ̂
(c)
0 −→Θ0(zzz0;ℓ2) in probability.

The optimal choice of the bandwidth is b̂≍K−1/(d+4) such that the optimal MSE is E[(θ̂(c)
0 −

Θ0)2]≍K−4/(d+4).

Theorem 7.1 follows immediately from consistency theorem on a standard multivariate

kernel smoothing estimator (Wasserman, 2010). When the number of individuals K goes to

infinity, the bias of θ̂(c)
0 with bandwidth b is of order b2 and the variance is of order (bdK)−1,

where d is the dimension of zzz as defined in Assumption 7.1. In such case, the asymptotic

optimal choice of bandwidth that minimizes the mean squared error, b4 + (bdK)−1, is of

order K−1/(d+4), same as a d-dimensional kernel smoothing problem.

Another way of combining individuals is aggregating the objective functions as shown

in (7.2). A combined estimator with respect to kernel K(·) is defined by

θ̃
(c)
0 = argmin

θ

K∑︂
k=0
K
(︃∥zzzk−zzz0∥

b

)︃
Mk(θ).

The estimator is consistent and has a similar asymptotic performance to a d-dimensional

kernel smoothing estimator as stated in Theorem 7.2. This approach is useful especially

when θ̂k is not available, such as in the cases that the number of observations for each

individual is less than the number of parameters.

Theorem 7.2. Suppose the conditions in Assumption 7.3 hold and in addition,

1. Mk(θ) is convex and second order partial differentiable with respect to θ,

2. for any given θ, Exxx|zzz[∂Mxxx(θ)
∂θ

] as a function of zzz is continuous,

3. Exxx|zzz0 [Mxxx(θ)] has a unique minimum at θ = Θ0(zzz0;ℓ2).

Then

θ̃
(c)
0 −→Θ0 in probability.
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The optimal choice of bandwidth b is b̂ ≍K−1/(d+4) and the optimized mean squared error

is E[(θ̂(c)
0 −Θ0)2]≍K−4/(d+4).

The proof is given in Appendix A.

The above theorems suggest that the individualized combined estimator by aggregating

either individual estimators θ̂k or objective functions Mk(θ) would result in an improvement

in mean squared error and it shares a similar asymptotic performance as a d-dimensional

kernel smoothing estimator.

When σz = 0, Θ0(zzz0;ℓ2) = Eπ[θ0 | zzz0] ≡ θ0. Hence, estimating Θ0 becomes estimating

the unknown function g(·) evaluated at zzz0. When σz > 0, Θ0 and θ0 are in general different.

Let B0 and V0 be the bias and variance of the target estimator Θ0(zzz0;ℓ2) in estimating θ0

such that

B0(θ0) := Eθ0 [Θ0(zzz0;ℓ2)]−θ0, V0(θ0) = V arθ0 [Θ0(zzz0;ℓ2)]. (7.11)

The above bias and variance are defined with respect to a fixed θ0 with random zzz0.

Theorem 7.3. The asymptotic bias and variance of θ̂(c)
0 in estimating a fixed θ0 are given

by

Eθ0 [θ̂(c)
0 ]−θ0 =B0(θ0)+Op(b2),

Varθ0 [θ̂(c)
0 ] = V0(θ0)+Op

(︃ 1
Kbd

)︃
,

where the intrinsic bias B0 and the intrinsic variance V0 are defined in (7.11).

The proof is given in Appendix. In the conditional probabilities, Θ0 = Eπ[θ0 | zzz0], as a

function of zzz0, is considered random under a given θ0.

The bias and variance of θ̂(c)
0 in terms of estimating a fixed θ0 can therefore be decom-

posed into two parts. The first part (the intrinsic part) comes from the bias and variance

of estimating Θ0[zzz0] itself to θ0 and the second part comes from estimating Θ0 nonpara-

metrically. Since zzz is observed with error, this is similar to error in variable problem where

certain intrinsic bias cannot be avoided (Fuller, 2009; Carroll et al., 1995; Wansbeek and

Meijer, 2000; Bound et al., 2001). Such intrinsic bias and variance are asymptotically linear
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of σ2
z , which is the noise level of zzzk, as shown in Theorem 7.4. Especially, when σ2

z is exactly

zero, all intrinsic terms vanish, and it reduces to the exact case when Θ0 = θ0.

Theorem 7.4. Suppose g(·) is second-order differentiable and the distribution of ϵk has

finite higher moments. Then, for a fixed θ0, when σ2
z → 0,

B0 ≍ σ2
z , V0 ≍ σ2

z .

The proof is given in Appendix A.

Research in nonparametric regression with error in variable shows a slower convergence

rate to recover the function θ0 = g(ηηη) at any given ηηη (Stefanski and Carroll, 1990; Fan

and Truong, 1993). Our problem is different. We focus on providing a point estimator of

θ0 = g(ηηη0) without knowning ηηη0, but its noisy version zzz0. Even if we known the function

g(·) precisely, θ0 is not known as we do not observe η0.

When considering an individual with fixed but unobserved (θ0,ηηη0), it is difficult to choose

an optimal bandwidth by bias-variance optimization with the non-zero intrinsic terms in

Theorem 7.3, because in this case the asymptotic mean squared error (B0 +Op(b2))2 +V0 +

Op((Kbd)−1) may not have a local minimum. However, if we assume the target individual

0 is randomly chosen from the population, the target estimator Θ0 is the estimator that

minimizes the overall risk under squared loss, i.e. a Bayes estimator, because it minimizes

the squared loss pointwise for any zzz0. Furthermore, immediately from Theorem 7.1, θ̂(c)
0

is a consistent estimator for Θ0. The overall performance of θ̂(c)
0 for all individuals of the

population could be optimized by choosing a proper bandwidth b as stated in the following

Theorem 7.5. It provides a way to optimize the bandwidth globally.

Theorem 7.5. Assume Assumption 7.1 - 7.3 hold, then the estimator θ̂(c)
0 has the following

Bayes risk under squared loss

E[(θ̂(c)
0 −θ0)2] =R0 +Op(b4)+Op

(︃ 1
Kbd

)︃
,

where

R0 = V ar[Θ0−θ0]
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is the risk of the Bayes estimator Θ0 = Eπ[θ|zzz0], and all above expectations is taken over

all random variables assuming an empirical population distribution π(·) for θ0. The op-

timal choice of the bandwidth b is b ≍ K1/(d+4) with the corresponding overall risk R0 +

Op(K4/(d+4)).

The proof is given in Appendix A.

The magnitude of the measurement error of zzzk, measured by σ2
z , compared to that of

the individual estimation error is crucial for the performance of the iGroup method. The

bias and variance of iGroup estimator increase when σ2
z increases (see Theorem 7.4). And

the asymptotic Bayes risk R0 also depends on σ2
z . When iGroup is based on unreliable

zzz, it could result in a worse estimator compared to the one without any grouping. This

phenomenon will be demonstrated in Section 7.3.

Results in Theorems 7.3, 7.4 and 7.5 can be generalized to the iGroup estimator θ̃(c)
0 ,

which combines the objective functions, except that the target estimator changes from

Eπ[θ|z0] is replaced by argminθ Eπ[M(θ)|z0]. As shown in (A.1) in the Appendix, θ̃(c)
0 is

asymptotically a kernel smoothing estimator with the same bias and variance rates.

7.2.3 Case 2: Without Exogenous Variables

In this case, we assume the exogenous variable zzz is not available. Our target estimator is

Θ0(xxx;ℓ2) = Eπ[θ0|xxx0] under squared loss and is Θ0(xxx0;L) = argminθ Eπ[L(θ,θ0) | xxx0] under

a general loss function L. The iGroup estimation depends solely on θ̂. The weight function

(7.5) used in (7.1) and (7.2) now reduces to

w2(θ̂k, θ̂0) =
∫︁
p(θ̂k|θ)p(θ̂0|θ)π(θ)dθ∫︁

p(θ̂k|θ)π(θ)dθ
∫︁
p(θ̂0|θ)π(θ)dθ

, (7.12)

where π(θ) corresponds to the unknown distribution of θ in the whole population. As

discussed in Section 7.1.3, an estimation of this weight function can be achieved by kernel

density estimation on the bootstrapped samples (θ̂(1)
k , θ̂

(2)
k ).

The weight function (7.12) is used to aggregated individual unbiased estimators to the

posterior mean, and to aggregate objective functions M : Ωθ×Ωθ→R to the corresponding

Bayes estimator under certain loss function, as shown in Theorems 7.6 and 7.7.
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Theorem 7.6. Suppose w2(θ̂k, θ̂0) is defined as in Equation (7.12) and θ̂k is a sufficient

and unbiased estimator of θk for all k, then as K→∞:

θ̂
(c)
0 →Θ0(xxx0;ℓ2) in probability.

Furthermore, if Eθ̂0
[w2

2(θ̂k, θ̂0)]<∞ for any fixed θ̂0 and Eπ[θ̂2]<∞, then

√
K(θ̂(c)

0 −Θ0) =Op(1).

The proof is given in Appendix A.

For the aggregated estimator (7.2), suppose the objective function M : Ωθ×Ωθ→R used

satisfies ∫︂
M(θ, θ̂)p(θ̂|θ′)dθ̂ = L(θ,θ′)+C(θ′), (7.13)

where L is non-negative and L(θ,θ) = 0 for all θ, and C is constant with respect to θ. Then

L is the loss function corresponding to M , under which the target estimator is

Θ0(xxx0;L) = argmin
θ

∫︂
L(θ,θ0)p(θ̂0|θ0)π(θ0)dθ0.

For example, if the objective function M is the negative log-likelihood function M(θ, θ̂) =

− logp(θ̂|θ), then the corresponding loss function L(θ,θ′) is the Kullback-Leibler divergence

of the given parameters.

Theorem 7.7. If for any given θ̂, M(θ, θ̂) as a function of θ is convex and second-order

differentiable, then the combined estimator θ̃(c)
0 using the objective function M converges in

probability to the target estimator under the loss function L as K→∞:

θ̂
(c)
0 = argmin

θ

K∑︂
k=0

w2(θ̂k, θ̂0)M(θ, θ̂k) P−−−→Θ0(xxx0;L).

Furthermore, if Eθ̂0
[w2(θ̂k, θ̂0)M ′

θ(θ0, θ̂)]2 <∞ for any fixed θ̂0,

√
K(θ̃(c)

0 −Θ0) =Op(1).
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The proof is given in Appendix A.

The finite second moment conditions in Theorems 7.6 and 7.7 are satisfied in most cases.

Both Theorems 7.6 and 7.7 assume an accurate estimation of the weight w2(θ̂k, θ̂0) (with

an error rate smaller than Op(K−1/2). With the accurate weights w2(θ̂k, θ̂0), both iGroup

estimators have faster convergence rates to the target estimator Θ0 than the nonparametric

one in Theorems 7.1.

When no accurate estimations for w2(θ̂k, θ̂0) are feasible, we proposed an approximate

estimator for w2(θ̂k, θ̂0) in Section 7.1.3, using a set of bootstrap samples (θ̂(1)
k , θ̂

(2)
k ) for

k = 0, . . . ,K. When zzz is not available, the integral
∫︁
p(θ̂k|θ)p(θ̂0|θ)π(θ)dθ can be estimated

by a kernel density estimator in a lower dimensional space:

1
K+1

K∑︂
j=0
K1

⎛⎝ |θ̂(1)
j − θ̂k|
b1

⎞⎠K2

⎛⎝ |θ̂(2)
j − θ̂0|
b2

⎞⎠ ,
where K1 and K2 are two kernel functions with b1, b2 the corresponding bandwidths. The

bootstrap estimation of the weight w2(θ̂k, θ̂0) has a nonparametric error rate Op(K−1/(d′+2),

where d′ is the dimension of θ0. This inaccuracy gives rise to the final error rate in Theorem

7.6 and 7.7 such that for θ̂(c)
0 (or θ̃(c)

0 ) constructed based on ŵ2(θ̂k, θ̂0) with error rate

Op(K−1/(d′+2)), θ̂(c)
0 −Θ0(xxx0;ℓ2) = Op(K−1/(d′+2)) and θ̃

(c)
0 −Θ0(xxx0;L) = Op(K−1/(d′+2)).

Both are slower than Op(K−1/2).

The performance of the target estimator Θ0(xxx0;ℓ2) in estimating θ0 strongly depends

on the accuracy of individual level θ̂k. Define the bias and variance of the target estimator

Θ0(xxx0;ℓ2) = Eπ[θ0 | θ̂0] by

B0(θ0) = Eθ0 [Θ0(xxx0;ℓ2)]−θ0, V0(θ0) = Varθ0 [Θ0(xxx0;ℓ2)]. (7.14)

Suppose θ̂0 = θ0 + ζ0 with E[ζ0] = 0 and E[ζ2
0 ] = σ2

θ . Similar to Theorem 7.4, B0 and V0 are

of order σ2
θ when σ2

θ → 0.

Theorem 7.8. Suppose ζ0 has finite higher moments. Then, when σ2
θ → 0, the bias and
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variance of the target estimator Θ0(xxx0;ℓ2) with respect to a fixed θ0 are

B0 ≍ σ2
θ , V0 ≍ σ2

θ ,

where B0 and V0 are defined in (7.14).

The proof is provided in Appendix A.

When θ̂0 is exact such that σθ = 0, the target estimator equals to the true parameter

θ0 as the weight function w2(θ̂k, θ̂0) assigns zero weight for all other individuals except

individual 0. Similar results hold for the target estimator Θ0(xxx0;L).

7.2.4 Case 3: The Complete Case

When both θ̂ and zzz are available and reasonably accurate, we should use both information

to improve the inference via grouping. Assuming θ̂ is sufficient for θ0, the target estimator

is Θ0(xxx0,zzz0;ℓ2) = Eπ[θ0 | θ̂0,zzz0] under squared loss and Θ0(xxx0,zzz0;L) = argminθ Eπ[L(θ,θ0) |

θ̂0,zzz0] under other loss function L. The following results are based on a combination of

both information.

Theorem 7.9. Suppose θ̂k is a sufficient and unbiased estimator for θk, and θ̂
(c)
0 is a

combined estimator as in (7.1) with the weight functions (7.3), (7.4) and (7.5), where K(·)

is a kernel function satisfying Assumption 7.3. Then under Assumptions (7.1) and (7.2)

θ̂
(c)
0 →Θ0(xxx0,zzz0;ℓ2) in probability.

With the optimal bandwidth b̂ chosen to be b̂≍K1/(d+4), the optimal mean squared error is

E[θ̂(c)
0 −Θ0]2 ≍K−4/(d+4).

The proof is given in Appendix A.

Let M(θ, θ̂) be the corresponding objective function as defined in (7.13). We have that

the aggregated estimator (7.2) based on the objective function M(θ, θ̂) converges to the

target estimator Θ0(xxx0,zzz0;L) as shown in the following Theorem 7.10.
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Theorem 7.10. If for any given θ̂, M(θ, θ̂) as a function of θ is convex and second-order

differentiable, then under Assumptions (7.1) and (7.2), the combined estimator θ̃(c) using

the objective function M satisfying (7.13) converges to the target estimator:

θ̃
(c)
0 = argmin

θ

K∑︂
k=1

w(θ̂k,zzzk; θ̂0,zzz0)M(θ, θ̂k) P−−−→Θ0(xxx0,zzz0;L).

With the optimal bandwidth b̂ chosen to be b̂≍K1/(d+4), the optimal mean squared error is

E[θ̃(c)
0 −Θ0]2 ≍K−4/(d+4).

The proof is given in Appendix A.

Define the bias and variance of the target estimator Θ0(xxx0,zzz0;ℓ2) as

B0(θ0) = Eθ0 [Θ0(xxx0,zzz0;ℓ2)]−θ0, V0(θ0) = Varθ0 [Θ0(xxx0,zzz0;ℓ2)]. (7.15)

The asymptotic rate of B0 and V0 as σ2
θ or σ2

z approaches zero is shown in Theorem 7.11.

Theorem 7.11. Suppose g(·) is second order differentiable and ϵk and ζk have finite higher

moments. If B0 and V0 are as defined in (7.15), then

(i) for a fixed σ2
z , when σ2

θ → 0,

B0 ≍ σ2
θ , V0 ≍ σ2

θ .

(ii) for a fixed σ2
θ , when σ2

z → 0,

B0 ≍ σ2
z , V0 ≍ σ2

z .

The proof is provided in Appendix A.

The bias and variance of the target estimator is of the order of the more accurate one

between zzz0 and θ̂0. Especially, when either is exact such that σ2
z = 0 or σ2

θ = 0, the target

estimator equals the true parameter θ0.
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7.2.5 Further Results on Risk Decomposition

Let θ̂(c)
0 be an iGroup estimator as defined in (7.1) based on information sets {zzz}, {θ̂} or

{θ̂, zzz} as in Sections 7.2.2, 7.2.3 and 7.2.4, respectively. Let Θ0 be the target estimator in

any of the three cases: Θ0(xxx0;ℓ2), Θ0(zzz0;ℓ2) or Θ0(xxx0,zzz0;ℓ2), depending on the information

set used in θ̂
(c)
0 . We have θ̂(c)

0 → Θ0 in probability. When both θ̂ and zzz are available for

all individuals, the overall risk of θ̂(c)
0 under the prior π(θ) can be decomposed into three

components as shown in Proposition 7.3 as an extension to Proposition 7.1.

Proposition 7.3. Suppose θ̂(c)
0 is an iGroup estimator as defined in (7.1) with the target

estimator Θ0. Then

R(θ̂(c)
0 ) =Rnp(θ̂(c)

0 )+Rtarget(Θ0),

where R(θ̂(c)
0 ) = E[(θ̂(c)

0 −θ0)2] is the overall risk of θ̂(c)
0 under squared loss and prior π(θ0),

and

Rnp(θ̂(c)
0 ) = E[(θ̂(c)

0 −Θ0)2], Rtarget(Θ0) = E[(Θ0−θ0)2]

are the risk components from the nonparametric estimation and the target estimator itself,

respectively.

Furthermore, assuming both xxx and zzz are available, for Θ0 = Θ0(xxx0;ℓ2) or Θ0 = Θ0(zzz0;ℓ2),

which only uses partial information, we have

Rtarget(Θ0) =Rinf (Θ0)+R0,

where Rinf (Θ0) = E[(Θ0−Θ0(xxx0,zzz0;ℓ2))2] is the risk premium resulting from using partial

information, and R0 = E[(Θ0(xxx0,zzz0;ℓ2)−θ0)2] is the overall risk of Θ0(xxx0,zzz0;ℓ2).

The proof is provided in Appendix A.

The decomposition in Proposition 7.3 reveals a guideline to optimize the iGroup estima-

tor. The overall risk of iGroup estimator θ̂(c)
0 can be decomposed into two parts: one from

the nonparametric estimation of the target estimator and the other from the risk of the tar-

get estimator itself. The risk component Rnp involves the bandwidth b in the nonparametric

estimation. The corresponding optimal bandwidth is chosen as in a high-dimensional kernel
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smoothing problem (see Theorems 7.1, 7.5 and 7.9), since the bandwidth does not appear

in the other risk terms.

The risk component Rtarget evaluates the performance of the target estimator. Differ-

ent choices in constructing iGroup weight correspond to different Θ0’s. Such difference is

revealed by decomposing Rtarget into two parts: Rinf is the risk term arising from using

partial information and R0 is the risk of the target estimator Θ0(xxx0,zzz0;ℓ2), which incorpo-

rates the full information set. Since Rinf obtains its minimum at Θ0 = Θ0(xxx0,zzz0;ℓ2), it is

always (asymptotically) optimal to use the full information set {θ̂, zzz} in grouping, if both

are available as in the complete case. On the other hand, if θ̂ (or zzz) is extremely noisy such

that Θ0 = Eπ[θ0 | zzz0]≈ Eπ[θ0 | θ̂0,zzz0] (or Θ0 = Eπ[θ0 | θ̂0]≈ Eπ[θ0 | θ̂0,zzz0], respectively), it is

more practical to use zzz only (or θ̂ only, respectively) for grouping, since it will have similar

performance but less computational cost, and finite sample variation.

The last risk component R0 is the minimum overall risk one can achieve. In our ap-

proach, such a minimum risk can be asymptotically reached when both θ̂ and zzz are included

in grouping and the number of individuals K approaches infinity. When θ̂ or zzz is exact,

Θ0(xxx0,zzz0;ℓ2) = Eπ[θ0|θ̂0,zzz0] = θ0 and R0 is 0. In this case, all iGroup estimators in (7.1)

converges to θ0. The three risk components of different iGroup models are compared in

Table 7.1. Note that the rate of Rnp for Case 2 assumes an accurate evaluation of the

weight function w2(θ̂k,θ0).

iGroup Set Rnp
Rtarget

Rinf R0
Case 1 {zzz} ≍K−4/(d+4) > 0
Case 2 {θ̂} ≍K−1 > 0 same value
Case 3 {θ̂, zzz} ≍K−4/(d+4) = 0

Table 7.1: Comparison of the three risk components in different iGroup cases.

Similar to Proposition 7.3, the risk decomposition for the iGroup estimator θ̃(c)
0 in (7.2)

is provided in Proposition 7.4 as an extension to Proposition 7.2.

Proposition 7.4. Suppose the loss function L is as defined in (7.13). The iGroup estimator

θ̃
(c)
0 is defined in (7.2) with the target estimator Θ0. If L(θ̂, θ) is second-order partially
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differentiable with respect to θ̂ such that L′(θ̂, θ) = ∂L/∂θ̂ and L′′(θ̂, θ) = ∂2L/∂θ̂
2, then

R̃(θ̃(c)
0 ) = R̃np(θ̃(c)

0 )+ R̃target(Θ0)+o(E[(θ̃(c)
0 −Θ0)2]),

where R̃(θ̃(c)
0 ) = E[L(θ̃(c)

0 ,θ0)] is the overall risk of θ̃(c)
0 under loss L and prior π(θ), and

R̃np(θ̃(c)
0 ) = 1

2E[L′′(Θ0,θ0)(θ̃(c)
0 −Θ0)2], R̃target(Θ0) = E[L(Θ0,θ0)],

are the risk components from the nonparametric estimation of the target estimator and the

target estimator itself, respectively.

Furthermore, assuming both xxx and zzz are available, for any Θ0 = Θ0(zzz0;L) or Θ0 = Θ0(xxx0;L),

which only uses partial information, we have

R̃target(Θ0) = R̃inf (Θ0)+ R̃0,

where R̃0 = E[L(Θ0(xxx0,zzz0;L),θ0)] denotes the overall risk of Θ0(xxx0,zzz0;L) and R̃inf (Θ0) =

E[L(Θ0,θ0)]− R̃0 is the risk premium resulting from using partial information.

The proof is given in Appendix A.

7.2.6 Bandwidth Selection

For real applications, the bandwidth b in the weight function (7.4) remains to be tuned.

Ideally one would perform bandwidth selection to the target individual θ0. However, cross

validation cannot be implemented to determine b with only one estimator θ̂(c)
0 for a single

individual. Instead, we consider a set Ω0 around target individual 0 such that the bandwidth

b is tuned to minimize the averaged risk over Ω0.

When Ω0 is chosen as the full set {1,2, . . . ,K}, it is the global bandwidth selection scheme

that usually used in kernel smoothing and machine learning. However, the bandwidth

selected by such global optimization is not optimal for the particular target individual

0. A cross validation set Ω0 localized to individual 0 is more appreciated to tune this

individualized local bandwidth. When tuning the bandwidth in w1 over zzzk’s, such a set Ω0
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can be constructed based on zzz0 such as Ω0(zzz0, ϵ) = {k ∈ {1, . . . ,K} : ∥zzz0−zzzk∥⩽ ϵ}.

Suppose θ̂k’s are available and the individual estimators are aggregated to form an

iGroup estimator as described in (7.1). The goal is to choose a bandwidth b that minimizes

the local risk function over Ω0 (under squared loss) around θ0

RΩ0(b) = E

⎡⎣ 1
|Ω0|

∑︂
k∈Ω0

(θ̂(c)
k −θk)2

⎤⎦ .
The cross-validation error we use is computed as

CVΩ0(b) = 1
|Ω0|

∑︂
k∈Ω0

(︃
θ̂

(c)
(−k)− θ̂k

)︃2
,

where θ̂(c)
(−k) is the leave-one-out estimator defined by

θ̂
(c)
(−k) =

∑︁
l ̸=k θ̂lw(l;k)∑︁
l ̸=kw(l;k) . (7.16)

It is worth to point out that although the cross validation set Ω0 is localized/individualized,

the leave-one-out estimators (7.16) still utilize all individuals instead of limited to Ω0.

It is seen in Proposition 7.5 that the leave-one-out cross-validation can estimate the

local risk over Ω0 up to a constant and hence be useful.

Proposition 7.5. Suppose θ̂k is an unbiased estimator for θk for all k = 1, . . . ,K and the

weight function w(l;k) satisfies

w(k;k)∑︁
l ̸=kw(l;k) =O

(︃ 1
K

)︃
. (7.17)

Then

E[CVΩ0(b)] =RΩ0(b)+CΩ0 +O

(︃ 1
K

)︃
,

where CΩ0 is related to Ω0 but is a constant with respect to b.

The proof is given in Appendix A.

A sufficient condition for the weight function to satisfy (7.17) is that the function is
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bounded. With bounded weights, we have

w(k;k)∑︁
l ̸=kw(l;k) →

w(k;k)
KEw(·;k) =O

(︃ 1
K

)︃
.

Common kernels such as the boxed, Gaussian and Epanechnikov kernels satisfy this condi-

tion. Our choice of weight function (7.5) with a bounded kernel K satisfies the condition as

well.

Similar results hold for aggregating objective functions (7.2) as long as the objective

function is convex and second-order differentiable, and a Taylor series expansion is available.

Beside the theoretical discussions on iGroup’s asymptotic performance, there are many

other factors that may affect the accuracy in real applications with finite number of individ-

uals. First of all, the weight component w2(·) is estimated from bootstrapped samples. It

lowers the convergence rate since bootstrapped samples from finite population are usually

correlated. Secondly, computing the full weight function requires a kernel density estima-

tion in a high dimensional space. When K is finite, aggregating individuals with weights

evaluated directly from a high dimensional space suffers from the lack of sample size. It

often requires some feature selection procedures to reduce the dimension.

Therefore, when the weight estimation is not accurate and when the sample size is

limited, the complete case may not be the best choice. In real application, we suggest using

(local) cross-validation to tune the bandwidth and to choose the most appropriate weight

formulation.

7.3 Simulations and Examples

7.3.1 Simulation: Noisy Exogenous Variables

In this example, the performance of using an exogenous variable z in iGroup is studied

(corresponding to Case 1 in Section 7.2.2). Suppose, for each individual, the true parameter

θ is a quadratic function of η:

θk = g(ηk) = (ηk +1)2.
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The relationship is set to a quadratic form because a continuous function of z can be approx-

imated by a quadratic function within a small enough neighborhood of z0. A population of

size K = 1000 is generated with their ηk’s following a Gaussian distribution N(0.2,1). For

each individual k, let θ̂k be a sufficient unbiased estimator of θk using xxxk such that θ̂k is

directly generated with error ϵ∼N(0, τ2 = 1) and there is no need to generate xxxk explicitly.

zk is a noisy observation of ηk such that zk ∼N(ηk,σ
2).

More specifically, the dataset is generated by the following hierarchical structure.

ηk ∼N(0.2,1), θk = (ηk +1)2, θ̂k ∼N(θk,1), zk ∼N(ηk,σ
2),

for k = 1, . . . ,K.

The estimator in (7.10) is used by setting K(·) to the Gaussian kernel.

The parameter σ2 controls the noise level in the observed zk. Both individualized

performances at θ0 = 1 and the overall performance over the population are studied at

the six choices of noise levels σ = 0,0.2,0.4,0.6,0.8,1.0 with 1000 replications each.

Figure 7.3: Bias, variance and mean squared error as a function of bandwidth under different
noise levels for individual 0 (top) and the population (bottom)

The in-sample performance of the iGroup estimators are demonstrated in Figure 7.3.

The first row shows the bias, variance and mean squared error for the individual at θ0 = 1,
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while the second row plots the overall performance by averaging the individual performance

over the population. Every curve represents a performance measure (bias, variance or MSE)

as a function of the bandwidth b used in weight calculation in (7.4) and six different curves

distinguish different noise levels σ2.

From Figure 7.3, it is seen that an increase in the noise level in zzzk increases both the

bias and variance of the iGroup estimator. When σ > 0, an intrinsic bias is observed for

individual 0 when the bandwidth shrinks to zero, while at the population level, the average

bias vanishes when the bandwidth shrinks to zero as the iGroup estimator converges to

the target estimator Θ0(zzz0;ℓ2) = Eπ[θ0 | zzz0], whose expectation is Eπ[θ0]. Recall that the

individual estimate θ̂k without grouping has a risk τ2 = 1.0 by the simulation design. It

is marked on the right panels by the horizontal line. When the noise level σ exceeds 0.4,

both the individual level and population level risk are worse than using θ̂k directly without

grouping. Smaller noise in zk would significantly reduce the risk of the iGroup estimator.

Figure 7.4: Overall MSE of three estimators: individual level, iGroup with cross validation
and population level.

In real applications, the performance plots such as Figure 7.3 are not available without

knowing the true parameter. As suggested in Section 7.2.6, an optimal bandwidth can be

selected by leave-one-out cross validation. We simply use the global set Ω0 = {1, . . . ,K}

to tune the bandwidth. Figure 7.4 compares the mean square errors of three different

estimators under different noise level settings for σ2. The individual level estimator uses θ̂k,
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which achieves a constant MSE at τ2 = 1. The population level estimator uses the averaged

estimator (
∑︁K

k=1 θ̂k)/K, assuming population homogeneity. The iGroup estimator uses

the estimator (7.10) and selects the optimal bandwidth by leave-one-out cross validation

over a grid of bandwidths. The population level estimator is always the worst because

the homogeneity population assumption is invalid in this simulation. The overall MSE of

the iGroup estimator is a monotone increasing function of the noise level σ, because the

intrinsic bias and variance increase with σ. The iGroup estimator outperforms the individual

estimator when σ is below the threshold σ = 0.35. It also suggests that the iGroup method

works better when more accurate exogenous variable z is used.

7.3.2 Simulation: Short Time Series

In this simulation study, the individualized grouping learning method is applied to a set

of short time series without any exogenous information, corresponding to Case 2 in Sec-

tion 7.2.3. Suppose we have K = 200 time series following an AR(1) model. Their AR

coefficients θ1, . . . ,θ200 are drawn randomly from a beta-shaped distribution on [−1,1] such

that
θk +1

2 ∼Beta(4,4), k = 1, . . . ,200. (7.18)

The length of each time series is 10. They are generated from their stationary distributions:

xk,0 ∼N
(︄

0, σ2

1−θ2
k

)︄
,

xk,t = θkxk,t−1 + ϵk,t, k = 1, . . . ,200, t= 1, . . . ,10,

where ϵk,t ∼N(0,σ2) and σ = 3.

Four estimators are used and their mean squared errors averaged over the 200 individ-

ual time series are compared. The individual level estimator is based on each time series

of 10 observations and does not borrow any information from the others. It is an unbiased

estimator for each individual. The iGroup1 estimator aggregates the log-likelihood func-

tions according to (7.2), where the weight function used is (7.12), which is estimated by

bootstrap samples. The bootstrap estimates are obtained based on multinomial samples of
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(xt−1,xt) pairs for each individual. The bandwidth used in estimating w2(θ̂k, θ̂0) in (7.12)

is chosen by cross-validation as in a kernel density estimation problem. The iGroup2 esti-

mator aggregates individual level estimators by the weight function in Equation (7.12), the

same weight function as in the iGroup1 estimator. These three methods do not utilize the

true prior distribution. The fourth estimator, the oracle one, uses the posterior mean as the

estimator with the true population prior (7.18) as the prior. The oracle estimator, which

is the best point estimator for θ0 given the prior information π(·), is the target estimator

Θ0(xxx0;ℓ2) for iGroup methods.

Figure 7.5: Comparison of the averaged MSE over 200 individuals on 100 replications for
four estimators

The simulation (including generating the data) is repeated 100 times. The box plots

of the mean squared errors of the four estimators are reported in the left panel of Figure

7.5. On average, the iGroup1 and iGroup2 estimators achieve smaller mean squared errors

and smaller variances compared with the individual one. The oracle estimator is the best

among those four with the smallest average error and variation. The iGroup estimators are

quite close to the oracle one. The slight worse performance is due to the approximation

error when constructing the weight functions. Between the two iGroup estimators, iGroup2

is slightly better than iGroup1 because the loss function used in iGroup2 is the squared

loss, whose overall risk is minimized by aggregating θ̂k (See Theorem 7.6).

The right panel in Figure 7.5 plots the improvement (difference) of the mean square

errors of the iGroup estimators and the oracle estimator over the individual estimator for

the 100 replications. It shows that in all experiment replications, the mean square errors



116

of the iGroup estimators are uniformly better than the individual one. Estimation does

benefit from individualized grouping in this case.

7.3.3 Simulation: Complete Case

In this simulation, we compare the performance of different iGroup estimators constructed

on different information sets when both θ̂ and zzz are available as in Case 3 discussed in

Section 7.2.4. Consider a population with n= 1024 individuals following:

ηk ∼N(0,1), θk = sin(πηk), zk ∼N(ηk,σ
2), xk,1,xk,2, . . . ,xk,n ∼N(θk,σ

2
x),

for k = 1, . . . ,1024. θ is the parameter of interest. Individual estimator used is

θ̂k = 1
n

n∑︂
i=1

xk,i for k = 1, . . . ,1024.

Four approaches are investigated here as special cases of the iGroup method. iGroup(∅)

is the individual estimation without grouping, i.e. using θ̂k as the estimator. iGroup(z)

uses the exogenous observation z only for grouping and an iGroup estimator is obtained by

aggregating θ̂’s using w1(zzzk,zzz0) in (7.4), where the bandwidth b is selected by leave-one-out

cross validation. iGroup(θ̂) uses θ̂k only for grouping, using w2(θ̂, θ̂′) in (7.5) as the weight

function. The weight is approximated by kernel density estimation on the bootstrapped

samples with bandwidth selected by cross validation. And lastly, iGroup(z, θ̂) uses both

z and θ̂ for calculating the weight function w(zzzk, θ̂k;zzz0, θ̂0) in (7.3) as discussed in Section

7.2.4, with the bandwidth selected by leave-one-out cross validation.

Several different (n,σ,σx) configurations are studied. The mean square errors are re-

ported in Table 7.2. The smallest MSE across the different methods is shown in bold face

for each configuration. From Table 7.2, it is seen that in Configurations 6 to 11, using both

zzz and θ̂ outperforms the other three methods. However, it is worth to point out that it is

not always the best. When z is relatively accurate and θ̂ is not so as in Configurations 1, 2, 3

and 5, using zzz alone is better than involving θ̂ in the grouping. The reason is that the weight

function used in the estimation is an approximation based on bootstrap sampling, which is
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Config. n τ2 = σ2
x/n σ iGroup(∅) iGroup(θ̂) iGroup(z) iGroup(z, θ̂)

1 5 0.20 0.10 0.200 0.163 0.044 0.154
2 5 0.20 0.15 0.200 0.163 0.090 0.163
3 5 0.20 0.20 0.200 0.163 0.137 0.170
4 5 0.20 0.30 0.200 0.163 0.200 0.179
5 10 0.10 0.10 0.100 0.089 0.048 0.059
6 10 0.10 0.15 0.100 0.089 0.089 0.070
7 10 0.10 0.20 0.100 0.089 0.099 0.077
8 10 0.10 0.30 0.100 0.089 0.100 0.084
9 20 0.05 0.10 0.050 0.046 0.044 0.040
10 20 0.05 0.15 0.050 0.046 0.050 0.044
11 20 0.05 0.20 0.050 0.046 0.050 0.045
12 20 0.05 0.30 0.050 0.046 0.050 0.047

Table 7.2: Mean squared error for different configurations.

not accurate when the sample size n is too small (as discussed in Section 7.2.6). It is also

intuitive since using inaccurate θ̂k for grouping may reduce the grouping quality. When zzz

is quite noisy as in Scenario 4 and 12, using θ̂ only is better than using the complete infor-

mation set. Note that when the bandwidth in w1(zzzk,zzz0) shrinks to zero, iGroup(z) reduces

to the individual estimator and the complete estimator iGroup(z, θ̂) reduces to iGroup(θ̂).

However, due to the randomness from finite sample size and possible overfitting, iGroup(θ̂)

or iGroup(z) sometimes performs better.

In conclusion, we suggest the following brief guideline in choosing iGroup models. When

θ̂ is relatively inaccurate and the bootstrap method has unignorable error, it is better not

to use θ̂ in grouping. When zzz is relatively inaccurate, it is better to either use θ̂ only or use

the full model. But when using the full model, the bandwidth needs to be tuned carefully

around zero. When both θ̂ and zzz are considerably accurate, it is beneficial to consider both

in grouping.

7.3.4 Example: Value at Risk of Stock

In this example we use iGroup to improve the estimation of Value at Risk in stock returns.

Denote the return of stock k in day t as rt,k. The one-day value at risk (VaR) of rt,k,

denoted as ˆ︁V aRt,k, is defined as the smallest quantity v such that the probability of the

event rt,k ⩽ −v is no greater than a predetermined confidence level α (for example, 1%).
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Statistically, −v is the α quantile of rt,k. VaR is widely used in quantitative finance and

risk management to estimate the possible losses in worse cases (e.g. 1% lower quantile) due

to adverse market moves. In practice, it is usually difficult to estimate the value of risk

because it requires a large size of data to estimate small quantiles accurately, but the market

conditions change over time, which limits the available sample size. In this application, we

consider the daily return of 490 stocks in S&P 500 for 2016. Three approaches to estimate

VaR are compared.

Individual VaR estimation using empirical quantiles: A naive method to estimate

VaR is to use the empirical quantile of rt−1,k, . . . , rt−S,k. When α is set to be 1% and S = 100,

we have ˆ︁V aR(t,k) = min{rt−1,k, rt−2,k, ..., rt−100,k}. Such a quantile estimation is not very

accurate. On one hand, when S is small and there is not enough observations, the empirical

quantile is not defined. On the other hand, S cannot be very large as the market changes

over time and so does the distribution of returns.

Market Level VaR: The second approach assumes homogeneity among all stocks. The

value-at-risk could then be estimated by pooling historical returns of all stocks. In this

case, the estimator is

ˆ︁V aR(t,k) =Qα

(︄
K⋃︂

l=1

S⋃︂
s=1
{rt−s,l}

)︄
,

where Qα(A) is the empirical α quantile estimator given a set of observations A. Pooling

observations from other stocks bring a significant bias if the homogeneity assumption is not

valid.

iGroup Estimation: The third approach is an application of the iGroup learning method.

Assume on each day, each stock return follows the Fama-French three factor model (Fama

and French, 1993):

rt,k = αt,k + rf + b0,t,k(MKTt− rf )+ b1,t,kSMBt + b2,t,kHMLt + ϵt,k,

ϵt,k ∼N (0,σ2
k),

where MKT , SMB and HML are the three Fama-French factors, and b0,k,t, b1,k,t and b2,k,t

are the corresponding coefficients for the stock labeled k at time t. The three coefficients
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characterize stocks by their sensitivity to the corresponding factors. In this model, we

assume the Fama-French coefficients b0, b1, b2 vary over time slowly. Therefore, the Fama-

French coefficients could be used as the exogenous variable zzz in our iGroup framework. To

be more specific, the iGroup estimator is

ˆ︁V aR(t,k) =Q(w)
α

(︄
K⋃︂

l=1

S⋃︂
s=1
{(rt−s,l,w(zzzt,l;zzzt,k))}

)︄
,

where Q
(w)
α (·) is the empirical α quantile estimator from a weighted sample and zzzt,k =

(b0,t,k, b1,t,k, b2,t,k) are the Fama-French coefficients of stock k fitted using the returns in the

S days before day t. The weight function here is chosen to be a Gaussian kernel

w(zzzt,l;zzzt,k)∝ exp
(︄
−∥z

zzt,l−zzzt,k∥22
2b2

)︄
.

The bandwidth b is the parameter to be tuned. Although the iGroup approach pools all

other stocks just as the market level method, it assigns different weights to different stocks

based on the similarity of characteristics of the stocks, e.g. the Fama-French coefficients in

our case. The market level estimator can be viewed as an extreme case of iGroup estimation

when the bandwidth b approaches ∞. The individual estimator is another extreme when

the bandwidth b shrinks to 0. Note that, the weighted empirical quantile function used in

iGroup estimation is equivalent to aggregating the following objective function

Mk(θ; t) =
S∑︂

s=1
|rt−s,k−θ|

(︂
α111{rt−s,k>θ} +(1−α)111{rt−s,k⩽θ}

)︂

by the weight w1(zzzk,zzz0) in (7.4).

In this study, we use α= 0.01, S = 100, and K = 490. The prediction error is measured

over 250 trading days in the year 2016 for 490 stocks using

RMSE =

⎡⎣ 1
490

490∑︂
k=1

(︄
1

250

250∑︂
t=1

111{︁
rt,k⩽ˆ︁V aR(t,k)

}︁−0.01
)︄2⎤⎦1/2

,

where ˆ︁V aR(t,k) is based on returns {rt−1,k, . . . , rt−100,k,k = 1, . . . ,490}.

Figure 7.6 shows the RMSE curve as a function of the bandwidth b. The bandwidth
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Figure 7.6: Prediction error (RMSE) as a function of bandwidth.

controls the bias-variance tradeoff. It is seen from the figure that the V-shaped RMSE

curve decreases at the beginning and achieves a minimal value at approximately b = 0.05

with minimum RMSE being 5.75× 10−3. The RMSEs of each model are shown in Table

7.3. The iGroup estimator improves the accuracy significantly.

Method Individual Estimation Market Estimation iGroup Estimation
RMSE 9.61×10−3 1.34×10−2 5.75×10−3

Table 7.3: Prediction error for three candidate models.

7.3.5 Example: Maritime Anomaly Detection

The maritime transportation system is critical to the U.S. and world economy. For security

and environmental concerns, it is important to have an efficient detection and risk assess-

ment system for maritime traffic over space and time. Automatic Identification System

(AIS) is an automatic tracking system and are mandatory installed on ships such that the

maritime information, including GPS location, speed, heading, etc., is reported periodically.

The global AIS system receives data from approximately a million ships with updates for

each ship as frequently as every two seconds while in motion and every three minutes while

at anchor. The data are available at https://marinecadastre.gov/ais/.

In this example, we focused on 534 voyages of tankers and cargo vessels arriving at
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the Port of Newark between July and November 2014. We investigated their approaching

behaviors starting from crossing the 12 nautical mile US territorial sea (TS) boundary to

arriving at the port. Two features are considered in this study: the trajectory and the

sailing time (duration). The trajectory, treated as an exogenous variable zzz, is a polygonal

line consisting of a sequence of reported GPS locations during the approach. The 534

approaching trajectories are plotted in Figure 7.7 along with the coastlines around the

Port of Newark. The sailing time, treated as the observation xk, is the time spent in the

approaching procedure starting at the time of entering the 12 nautical miles territorial sea

of U.S. and ending at one of the docks in the Port of Newark. Our goal is to identify outliers

in sailing time given the trajectory. In this case the parameter of interest is the mean and

standard deviation of sailing time, θk = (µk,σk), such that an outlier can be identified by

two standard deviation rule, i.e. individual k is an outlier in time if |xk− µ̂k|⩾ 2σk.

Figure 7.7: All 534 trajectories approaching the Port of Newark

The trajectory is a functional feature that requires special treatment. Every trajectory

consists of a sequence location reports ordered in time. Since the reporting intervals are

irregular, it cannot be considered as a 2-dimensional regular time series of equal time in-

tervals. However, since we utilize the trajectory as an exogenous variable zzz in the iGroup
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framework, we only need a proper distance/similarity measure defined for any trajectory

pairs. Here, we use the dynamic time warping (DTW) distance as the similarity measure.

Dynamic time warping is widely used as a similarity measure between two time series for

studies in speech recognition and other applications (Sakoe and Chiba, 1978; Juang, 1984;

Nakagawa and Nakanishi, 1988; Koenig et al., 2008). It finds the optimal monotone one-to-

one mapping between two sequences such that the average pairwise distance is minimized.

For simplicity, for each individual voyage, we use its nearest 40 neighbors in terms of

DTW to form iGroups with equal weight. Figure 7.8 shows four typical trajectories (top)

and their individualized groups identified by its DTW neighbors (bottom).

Figure 7.8: Four typical trajectories and their identified individualized groups.

Since the individual level estimator for θk is not available as we only have one observation

xk per individual. The iGroup estimator is constructed by aggregating the log-likelihood

functions. In this case, it is equivalent to estimate θk by the sample mean and the sample

standard deviation from the formed igroup. Since our main focus is to identify outliers,

we exclude the target from the estimation. Denote Ck as the individualized group (clique)

identified by the DTW distance for voyage k. Note that we control |Ck|= 40. The iGroup

estimator can be constructed as

µ
(c)
k =

∑︁
i∈Ck

xi

|Ck|
, σ

(c)
k =

∑︁
i∈Ck

(xi−µ(c)
k )2

|Ck|−1 .
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Then the risk score (the likelihood of being an outlier) of individual k can be obtained as

1−2P
(︄
Z >

⃓⃓⃓⃓
⃓xk−µ

(c)
k

σ
(c)
k

⃓⃓⃓⃓
⃓
)︄
,

where Z ∼N(0,1).

Figure 7.9: Outliers among vessels/voyages in trajectories of vessels heading to Port of
Newark

In these 534 vessels, 95 outliers with risk scores larger than 95% were determined as

abnormal. A manual inspection reveals that they belong to three categories (with some

overlaps between (a) and (b)): (a) 40 vessels had a prior dock before the Port of Newark

(left panel of Figure 7.9); (b) 18 vessels were anchored somewhere outside the port for an

extremely long time (middle panel); (c) the other 43 vessels were traveling too fast/slow

compared with their iGroup (right panel). Figure 7.9 shows typical trajectories of the three

categories. Due to the limited population, vessels with few similar trajectories are also

classified as abnormal such as the one shown in the right panel in Figure 7.9.



PART III

Kronecker Product Approximation
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CHAPTER 8

Kronecker Product Decomposition

8.1 Kronecker Product

The Kronecker product, denoted by “⊗”, is a binary operator so that the Kronecker product

of two matrices results in a larger block matrix containing all cross products of the elements

in the two component matrices. The Kronecker product has wide applications in signal

processing, image restoration, quantum computing and many other scientific researches.

For example, in the statistical model for a multi-input multi-output (MIMO) channel com-

munication system, Werner et al. (2008) modeled the covariance matrix of channel signals

as the Kronecker product of the transmit covariance matrix and the receive covariance ma-

trix. In compressed sensing, Duarte and Baraniuk (2012) utilized Kronecker products to

provide a sparse basis for high-dimensional signals. In image restoration, Kamm and Nagy

(1998) considered the blurring operator as a Kronecker product of two smaller matrices. In

quantum computing, Kaye et al. (2007) represented the joint state of quantum bits as a

Kronecker product of their individual states.

We first give the definition of the Kronecker product.

Definition 8.1. The Kronecker product of a p× q real matrix AAA and a p′× q′ real matrix

BBB is a (pp′)× (qq′) real matrix given by

AAA⊗BBB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1BBB a1,2BBB · · · a1,qBBB

a2,1BBB a2,2BBB · · · a2,qBBB

...
...

...

ap,1BBB ap,2BBB · · · ap,qBBB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.1)
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where ai,j is the element of AAA in i-th row and in j-th column. The dimensions (p,q,p′, q′)

is called the configuration of the Kronecker product.

As shown in (8.1), the Kronecker product AAA⊗BBB is a block matrix of p× q blocks, each

of which is a p′×q′ sub-matrix. When AAA or BBB reduces to a scalar or a vector, the Kronecker

product corresponds to some special cases. For example, when AAA or BBB is a scalar (p= q = 1

or p′ = q′ = 1), their Kronecker product AAA⊗BBB reduces to the scalar-matrix multiplication.

When AAA is a column vector and BBB is a row vector (q= p′ = 1), the Kronecker product AAA⊗BBB

is equivalent to their outer product, which gives a p×q′ matrix. So does the case when AAA is

a column vector and BBB is a row vector. One exception is that when AAA is a matrix and BBB is a

column vector, the Kronecker product is not equivalent to matrix-vector multiplication (but

is the same as the element-wise matrix-vector multiplication used in modern programming

languages).

The arithmetic properties of the Kronecker product are listed below.

Proposition 8.1. For c ∈ R, AAA1,AAA2 ∈ Rp×q, BBB1,BBB2 ∈ Rp′×q′ and CCC ∈ Rp′′×q′′, we have

(i) c(AAA1⊗BBB1) = (cAAA1)⊗BBB1 =AAA1⊗ (cBBB1);

(ii) (AAA1 +AAA2)⊗BBB1 =AAA1⊗BBB1 +AAA2⊗BBB1 and AAA1⊗ (BBB1 +BBB2) =AAA1⊗BBB1 +AAA1⊗BBB1;

(iii) (AAA1⊗BBB1)⊗CCC =AAA1⊗ (BBB1⊗CCC);

(iv) If pq = 1 or p′q′ = 1 or pq′ = 1 or qp′ = 1, then AAA1⊗BBB1 =BBB1⊗AAA1.

In summary, Proposition 8.1 shows that the Kronecker product is a bilinear operator

with the associative law and the distributive law. However, in general, the Kronecker

product is not commutative except for the special cases when the product is reduced to

scalar-matrix multiplication or vector outer product as shown in item (iv) in Proposition 8.1.

The properties in Proposition 8.1 can be viewed as immediate results from the property

of tensor product. The tensor product of two matrices AAA and BBB is a four-way tensor such

that

[AAA⊗T BBB]i,j,k,l = [AAA]i,j [BBB]k,l,
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where ⊗T denotes the tensor product and matrices are treated as two-way tensors. The

Kronecker product AAA⊗BBB is a matricization of AAA⊗T BBB by collapsing the first two dimensions

to rows and collapsing the last two dimensions to columns. The properties (i)− (iii) in

Proposition 8.1 follows immediately. When at least two of the four dimensions of AAA⊗T BBB

are trivial, the four-way tensor AAA⊗T BBB reduces to a two-way tensor or matrix. Under this

circumstance, the Kronecker product is commutative.

8.2 Kronecker Product Decomposition

In singular value decomposition (SVD), a matrix is represented as the sum of rank one

matrices, and each rank one matrix is written as the outer product of the left singular

vector and its corresponding right singular vector (after the transpose). Specifically, for a

p× q matrix MMM , we have

MMM =
r∑︂

k=1
λkukv

′
k, (8.2)

where r= min{p,q}, λ1 ⩾ λ2 ⩾ · · ·⩾ λr ⩾ 0 are the singular values, and uk ∈Rp, vk ∈Rq are

the corresponding left and right singular vectors satisfying

u′
kul = v′

kvl = δkl =

⎧⎪⎪⎨⎪⎪⎩
1 if k = l,

0 if k ̸= l.

Similarly, the Kronecker product gives another decomposition of matrix as in Definition 8.2.

Definition 8.2. The Kronecker Product Decomposition (KPD) of a (pp′)×(qq′) real matrix

MMM is

MMM =
d∑︂

k=1
λkAAAk⊗BBBk, (8.3)

where d= min{pq,p′q′} is the number of terms, λ1 ⩾ λ2 ⩾ · · ·⩾ λr ⩾ 0 are the KPD coeffi-

cients, and AAAk ∈ Rp×q, BBBk ∈ Rp′×q′ satisfy

tr[AAAkAAA
′
l] = tr[BBBkBBB

′
l] = δkl, for all k, l = 1, . . . ,d. (8.4)

In addition, (p,q,p′, q′) is called the configuration of the KPD.
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The orthonormal condition (8.4) is similar to the one used in SVD except that the

vector inner product is replaced with the trace inner product. The normalizing condition

embedded in (8.4) is tr[AAAkAAA
′
k], which is equivalent to ∥AAAk∥F = 1 such that all AAAk and BBBk

are required to have a unit Frobenius norm. When the coefficients λ1, · · · ,λk are distinct,

the terms in the KPD (8.3) are can be uniquely determined up to a sign change of AAAk and

BBBk.

The singular value decomposition is a special case of Kronecker product decomposition

when the configuration is set to (p,1,1, q′). In this case, the orthonormal condition (8.4) is

the same as the one in SVD.

Note that, the KPD defined in Definition 8.2 is configuration-related. A P ×Q matrix

MMM can be decomposed with respect to any configuration (p,q,p′, q′) such that p is a factor

of P , q is a factor of Q and p′ = P/p, q′ = Q/q. Therefore, there are usually multiple

ways to decompose MMM in the form of (8.3), corresponding to different configurations. As

discussed above, for a P ×Q matrix MMM , two of the possible configurations, (P,1,1,Q) and

(1,Q,P,1), are equivalent to the SVD of MMM . In addition, two configurations, (1,1,P,Q) and

(P,Q,1,1), are the trivial cases where d = 1 and the only Kronecker product is a scalar-

matrix multiplication.

8.3 The Rearrangement Operator

Although the SVD can be viewed as a special case of KPD, a general Kronecker product

with any configuration is closely related to the vector outer product as well, as pointed out

by Van Loan and Pitsianis (1993).

Denote by vec(·) the vectorization of a matrix by stacking its rows. If AAA = (aij) is a

p× q matrix, then

vec(AAA) := [a1,1, . . . ,a1,q, . . . ,aq,1, . . . , qp,q]′.

If BBB = (bij) is a p′× q′ matrix, then vec(AAA)[vec(BBB)]′ is a (pq)× (p′q′) matrix containing the

same set of elements as the Kronecker product AAA⊗BBB, but in different positions. We define

the rearrangement operator R in Definition 8.3 to represent this relationship.
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Definition 8.3. For MMM ∈ RP ×Q, given a configuration (p,q,p′, q′), the rearrangement op-

erator Rp,q : RP ×Q→ Rpq×P Q/pq is defined as

Rp,q[MMM ] =
[︂
vec

(︂
MMMp′,q′

1,1

)︂
, . . . ,vec

(︂
MMMp′,q′

1,q

)︂
, . . . ,vec

(︂
MMMp′,q′

p,1

)︂
, . . . ,vec

(︂
MMMp′,q′

p,q

)︂]︂′
, (8.5)

where MMMp′,q′

i,j denotes the (i, j)-th block of size p′× q′ in MMM .

The rearrangement operator Rp,q is configuration related. The subscript (p,q) empha-

sizes such a dependence. When there is no ambiguity, we may omit the subscript and

simply use R for simplicity in the rest of this thesis. Some properties of the rearrangement

operator are provided in Proposition 8.2

Proposition 8.2. Let c1, c2 ∈ R, MMM1,MMM2 ∈ RP ×Q, AAA ∈ Rp×q, BBB ∈ Rp′×q′. Then

(i) Rp,q[AAA⊗BBB] = vec(AAA)[vec(BBB)]′;

(ii) Rp,q[c1MMM1 + c2MMM2] = c1Rp,q[MMM1]+ c2Rp,q[MMM2];

(iii) R−1
p,q [Rp,q[MMM1]] =MMM1;

(iv) ∥Rp,q[MMM1]∥F = ∥MMM1∥F ;

(v) Rp,q is an isomorphism;

(vi) Rp,q is isometric under Frobenius norm.

Item (i) in Proposition 8.2 gives the correspondence between the Kronecker product and

the outer product of two vectors. (ii) and (iii) shows the rearrangement operator is linear

and bijective, resulting an isomorphism in (v). Since R only changes the order and shape

of a matrix, the Frobenius norm is preserved as in (iv), which gives that R is isometric in

(vi).

Not only does item (i) in Proposition 8.2 establish a connection between one Kronecker

product and one vector outer product, but it also connects a general KPD in (8.3) to the

form of singular value decomposition. To see this, we apply the rearrangement operator

Rp,q on a Kronecker product decomposition with configuration (p,q,p′, q′) as in (8.3) such
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that

Rp,q

[︄
d∑︂

k=1
λkAAAk⊗BBBk

]︄
=

d∑︂
k=1

λkRp,q[AAAk⊗BBBk] =
d∑︂

k=1
λkvec(AAAk)[vec(BBBk)]′. (8.6)

The right hand side of (8.6) is exactly a singular value decomposition.
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CHAPTER 9

KoPA: Automatic Kronecker Product

Approximation

9.1 Introduction

Observations that are matrix/tensor valued have been commonly seen in various scientific

fields and social studies. In recent years, technological advances have made high dimensional

matrix/tensor type data that are possible and more and more prevalent. Examples include

high resolution images in face recognition and motion detection (Turk and Pentland, 1991;

Bruce and Young, 1986; Parkhi et al., 2015), brain images through fMRI (Belliveau et al.,

1991; Maldjian et al., 2003), adjacent matrices of social networks of millions of nodes (Gold-

enberg et al., 2010), the covariance matrix of thousands of stock returns (Ng et al., 1992; Fan

et al., 2011), the import/export network among hundreds of countries (Chen et al., 2019a),

etc. Due to the high dimensionality of the data, it is often useful and preferred to store,

compress, represent, or summarize the matrices/tensors through low dimensional structures.

In particular, low rank approximations of matrices have been ubiquitous. Finding a low

rank approximation of a given matrix is closely related to the singular value decomposition

(SVD), see Eckart and Young (1936) for an early paper pointing out the connection. SVD

has proven to be extremely useful in matrix completion (Candès and Recht, 2009; Candes

and Plan, 2010; Cai et al., 2010), community detection (Le et al., 2016), image denoising

(Guo et al., 2015), among many others.
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In this chapter, we focus on the model

YYY = λAAA⊗BBB+σEEE,

where EEE is a standard Gaussian ensemble consisting of IID standard normal entries, λ > 0

and σ > 0 indicate the strength of signal and noise respectively. We consider the matrix

de-noising problem which aims to recover the Kronecker product λAAA⊗BBB from the noisy

observation YYY .

9.2 Framework

9.2.1 Kronecker Product Model

We consider the model where the observed P ×Q matrix YYY is a noisy version of an unknown

Kronecker product

YYY = λAAA⊗BBB+ σ√
PQ

EEE. (9.1)

To resolve the obvious unidentifiability regarding AAA and BBB, we require

∥AAA∥F = ∥BBB∥F = 1, (9.2)

so that λ > 0 indicates the strength of the signal part. Note that under (9.2), AAA and BBB are

identified up to a sign change. We assume that the noise matrix EEE has IID stand normal

entries, and consequently the strength of the noise is controlled by σ > 0. The dimensions

of AAA and BBB correspond to the integer factorization of the dimension of YYY . For convenience,

we assume throughout this article that the dimension of the observed matrix YYY in (9.1) is

2M × 2N with M,N ∈ N. As a result, the dimension of AAA must be of the form 2m0 × 2n0 ,

where 0 ⩽m0 ⩽M and 0 ⩽ n0 ⩽ N , and the corresponding dimension of BBB is 2m†
0 × 2n†

0 ,

where m†
0 = M −m0 and n†

0 = N −n0. Therefore, we can simply use the pair (m0,n0) to

denote the configuration of the Kronecker product in (9.1). An implicit advantage of this

assumption lies in the fact that if two configurations (m,n) and (m′,n′) are different, then

the number of rows of AAA under one configurations divides the one under the other, and
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similarly for the numbers of columns, and for BBB. For example, if m⩽m′, then the number

of rows of AAA under the former configuration, which is 2m, divides the number of rows 2m′

under the latter one. This fact leads to a more elegant treatment of the theoretical analysis

in Section 9.3.

For image analysis, assuming the dimension to be powers of 2 seems rather reasonable.

On the other hand, for other applications where the dimension of the observed matrix are

not powers of 2, one can transform the matrix to fulfill the assumption. For example,

one can super-sample the matrix to increase the dimension to the closest powers of 2, or

augment the matrix by padding zeros. The methodology proposed in this paper can be

applied to any integer numbers P and Q with more than two factors.

We will consider two mechanisms for the signal part λAAA⊗BBB.

Deterministic Scheme. We assume that λ, AAA and BBB are deterministic, satisfying (9.2).

We define the following signal-to-noise ratio to measure the signal strength

∥λAAA⊗BBB∥2F
E∥σEEE/2(M+N)/2∥2F

= λ2

σ2 .

Random Scheme. Assume that λ, AAA and BBB are random and independent with EEE. Al-

though AAA and BBB are stochastic, we assume that they have been rescaled so that (9.2) is

fulfilled. In this case the signal-to-noise ratio is defined as

E∥λAAA⊗BBB∥2F
E∥σEEE/2(M+N)/2∥2F

= Eλ2

σ2 .

We distinguish between these two schemes to account for the different assumptions on

data generating mechanism. In the random scheme, the observed matrix data is assumed

to be randomly chosen from a (super-)population of matrices with an ad-hoc prior, which is

Kronecker product of two independent Gaussian random matrices here. Under the random

scheme assumption, ill-behaved matrices arise with negligible probabilities under the prior.

Similar assumptions have been used in factor analysis and random effects models. The

deterministic scheme incorporates arbitrary matrices. Additional assumptions need to be

imposed to exclude extreme cases for which the proposed model selection would fail.
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9.2.2 Estimation with a Known Configuration

Suppose we want to estimate AAA and BBB based on a given configuration (m,n), that is, the

dimensions of AAA and BBB are 2m×2n and 2m†×2n† respectively. Again we use m† =M −m

and n† = N −n to ease the notation when M and N are known. To estimate AAA and BBB in

(9.1) from the observed matrix YYY , we solve the minimization problem

min
λ,AAA,BBB

∥YYY −λAAA⊗BBB∥2F , subject to ∥AAA∥F = ∥BBB∥F = 1. (9.3)

Since we have assumed that the noise matrix contains IID standard normal entries, (9.3) is

also equivalent to the MLE. This optimization problem has been formulated as the nearest

Kronecker product (NKP) problem in the matrix computation literature (Van Loan and

Pitsianis, 1993), and solved through the SVD after rearrangement. According to Section 8.2,

after applying the rearrangement operator, the cost function in (9.3) is equivalent to

∥YYY −λAAA⊗BBB∥2F = ∥R[YYY ]−λvec(AAA)[vec(BBB)]′∥2F .

We note that the rearrangement operator R defined in (8.5) depends on the configuration

of the block matrix, and in the current case, on the configuration (m,n). Let R[YYY ] =∑︁d
k=1λkukv

′
k be the SVD of the rearranged matrix Rm,n[YYY ], where λ1 ⩾ · · ·⩾ λd ⩾ 0 are the

singular values in decreasing order, uk and vk are the corresponding left and right singular

vectors and d= 2m+n∧2m†+n† . The estimators for model (9.1) are given by

λ̂= λ1 = ∥R[YYY ]∥S , AAÂ= vec−1(u1), BBB̂ = vec−1(v1), σ̂2 = ∥YYY ∥2F − λ̂
2
, (9.4)

where vec−1 is the inverse operation of vec(·) that restores a vector back into a matrix of

proper dimensions.

We exam a few special cases of the configuration (m,n). When (m,n) = (0,0) or (m,n) =

(M,N), the nearest Kronecker product approximation of YYY is always itself. For instance,
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if m= n= 0, the estimators are

λ̂= ∥YYY ∥F , AAÂ= 1, BBB̂ = λ̂
−1
YYY , σ̂2 = 0.

These two configurations are obviously over-fitting, and we shall exclude them in the sub-

sequent analysis.

When (m,n) = (0,N) or (m,n) = (M,0), the nearest Kronecker product approximation

of YYY is the same as the rank-1 approximation of YYY without rearrangement. When the

true configuration used to generate YYY is chosen, that is (m,n) = (m0,n0), the problem is

equivalent to denoising a perturbed rank-1 matrix, since

Rm0,n0 [YYY ] = λvec(AAA)vec(BBB)′ + σ

2(M+N)/2Rm0,n0 [EEE], (9.5)

where the rearranged noise matrix Rm0,n0 [EEE] is still a standard Gaussian ensemble. There-

fore λ, AAA and BBB can be recovered consistently when σ∥Rm0,n0 [EEE]∥S = op(λ2(M+N)/2). De-

tails will be discussed in Section 9.3.

9.2.3 Configuration Determination through an Information Criteria

Our primary goal is to recover the Kronecker product λAAA⊗BBB from YYY , based on model (9.1).

It depends on the configuration of the Kronecker product, which is typically unknown. We

propose to use the information criterion based procedure to select the configuration.

Recall that the dimension of YYY is 2M × 2N . If the dimension of AAA is 2m× 2n, then

the dimension of BBB must be 2m† × 2n† , where m† = M −m and n† = N −n. Therefore,

the configuration can be indexed by the pair (m,n), which takes value from the Cartesian

product set {0, . . . ,M}×{0, . . . ,N}.

For any given configuration (m,n), the estimation procedure in Section 9.2.2 leads to

the corresponding estimators λ̂, AAÂ and BBB̂. Denote the estimated Kronecker product by

YYŶ
(m,n) = λ̂AAÂ⊗BBB̂. Note that all of λ̂, AAÂ and BBB̂ depend implicitly on the configuration (m,n)

used in estimation, and should be written as λ̂= λ̂
(m,n) etc. However, we will suppress the

configuration index from the notation for simplicity, whenever its meaning is clear in the
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context. Under the assumption that the noise matrix EEE is a standard Gaussian ensemble,

we define the information criterion as

ICκ(m,n) = 2M+N ln∥YYY −YYŶ (m,n)
∥2F +κη, (9.6)

where η = 2m+n + 2m†+n† is the number of parameters involved in the Kronecker product

of the configuration (m,n), and κ ⩾ 0 controls the penalty on the model complexity. The

information criterion (9.6) can be viewed as an extended version of the BIC. Similar pro-

posals have been introduced by Chen and Chen (2008) and Foygel and Drton (2010) in the

linear regression and graphical models setting, respectively. The information criterion (9.6)

reduces to the log mean square error when κ= 0, and corresponds to the Akaike information

criterion (AIC) (Akaike, 1998) when κ = 2, and the Bayesian information criterion (BIC)

(Schwarz, 1978) when κ= ln2M+N = (M +N) ln2.

Strictly speaking, the number of parameters involved in the Kronecker product λAAA⊗BBB

should be 2m+n + 2m†+n† − 1 because of the constraints (9.2). Since it does not affect the

selection procedure to be introduced in (9.7), we will use η = 2m+n +2m†+n† for simplicity.

The information criterion (9.6) can be calculated for all configurations, and the one

corresponding to the smallest value of (9.6) will be selected, based on which the estimation

procedure in Section 9.2.2 proceeds. In other words, the selected configuration (m̂, n̂) is

obtained through

(m̂, n̂) = argmin
(m,n)∈C

ICκ(m,n), (9.7)

where C is the set of all candidate configurations.

As discussed in Section 9.2.2, when m= n= 0 or (m,n) = (M,N), it holds that YYŶ = YYY ,

and the information criterion (9.6) will be −∞, no matter what value κ takes. Therefore,

these two configurations should be excluded in model selection and we use

C := {0, . . . ,M}×{0, . . . ,N}\{(0,0),(M,N)},

as the set of candidate configurations in (9.7). Note that the set {0, . . . ,M}×{0, . . . ,N}

forms a rectangle lattice in Z2, and (m,n) = (0,0) and (m,n) = (M,N) are the bottom left
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and top right corner of the lattice. Therefore, we sometimes intuitively refer to these two

configurations as the “corner cases” in the sequel. Furthermore, define W as the set of all

wrong configurations

W := C \{(m0,n0)}.

We now provide a heuristic argument to show how the selection procedure (9.7) is

able to select the true configuration (m0,n0). We will leave some technical results aside,

and only highlight the essential idea. Precise statements and their rigorous analysis will

be presented in Section 9.3. For simplicity, assume that λ, σ and κ are fixed constants.

Also assume that both (m0 +n0) and (m†
0 +n†

0) diverge, so that the number of parameters

η0 = 2m0+n0 +2m†
0+n†

0 is of a smaller magnitude than 2M+N .

According to (9.4), for a given configuration (m,n), Rm,n[YYŶ ] equals the first SVD com-

ponent of Rm,n[YYY ], and it follows that ∥YYY −YYŶ ∥2F = ∥YYY ∥2F −∥YYŶ ∥2F = ∥YYY ∥2F − λ̂
2, and the

information criterion (9.6) can be rewritten as

ICκ(m,n) = 2M+N ln(∥YYY ∥2F − λ̂
2)+κη. (9.8)

For the true configuration (m,n) = (m0,n0), the rearranged matrix Rm0,n0 [YYY ] takes the

form (9.5), where the first term is a rank-1 matrix of spectral norm λ, and the noise term

has a spectral norm of the order O(2−(m0+n0)/2 +2−(m†
0+n†

0)/2) (details given in Section 9.3),

which is negligible relative to λ, under the assumption m0 +n0≫ 1,m†
0 +n†

0≫ 1. So under

the true configuration, λ̂≈ λ. On the other hand, the number of parameters η0 = o(2M+N ),

making the penalty term much smaller than the log likelihood in (9.6). To summarize,

ICκ(m0,n0)≈ 2M+N ln
[︂
∥λAAA⊗BBB+σ2−(M+N)/2EEE∥2F −λ2

]︂
≈ 2M+N lnσ2.

For a wrong configuration (m,n) ∈W that is close to the true one, the spectrum norm

∥Rm,n[EEE]∥S and the number of parameters η are still negligible. However, the estimated

coefficient λ̂ is smaller than λ since

λ̂= ∥Rm,n[YYY ]∥S ≈ ∥Rm,n[λAAA⊗BBB]∥S < λ.
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Let us assume that ∥Rm,n[λAAA⊗BBB]∥S ≤ ϕλ for some 0 < ϕ < 1, which implies that for the

wrong configuration (m,n),

ICκ(m,n)≈ 2M+N ln
[︂
∥λAAA⊗BBB+σ2−(M+N)/2EEE∥2F − λ̂

2]︂
≈ 2M+N ln

[︂
∥σ2−(M+N)/2EEE∥2F +λ2−ϕ2λ2

]︂
≈ 2M+N ln

[︄
σ2
(︄

1+ (1−ϕ2)λ2

σ2

)︄]︄
.

Therefore, the information criterion (9.6) is in favor of the true configuration over a wrong

but close-to-truth one, and the two quantities are separated by

ICκ(m,n)− ICκ(m0,n0)≈ 2M+N ln[1+(1−ϕ2)λ2/σ2].

On the other hand, for a wrong configuration (m,n) ∈ W that is close to the corner

configuration (0,0) or (M,N), the singular value ∥Rm,n[EEE]∥S can be as large as 1/2, making

the separation between ICκ(m,n) and ICκ(m0,n0) by the log likelihood not guaranteed, i.e.

it can happen that λ̂ > λ under the wrong configuration. But at the same time the number

of parameters η is also approximately 2M+N , so ICκ(m,n) receives a heavy penalty, which

once again makes it greater than ICκ(m0,n0).

In summary, the trade-off between log likelihood and model complexity plays its role

here, as expected. Wrong but close-to-truth configurations involve similar numbers of pa-

rameters as the true one, but lead to much smaller likelihoods. On the other hand, a

close-to-corner configuration may yield a YYŶ closer to the original YYY , but requires much

more parameters to do so. The true configuration can thus be selected because it reaches

the optimal balance between the the likelihood and model complexity.

In the preceding discussion we have assumed many convenient conditions to simplify

the arguments and signify the essential idea. In particular, by assuming that λ is a positive

constant, the signal strength in model (9.1) is quite strong. In Section 9.3 we will make

effort to establish the model selection consistency under minimal conditions.
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9.2.4 Multi-term Kronecker Product Models

In this section, we extend the one-term Kronecker product model in (9.1) to the following

K-term Kronecker product model.

YYY =
K∑︂

k=1
λkAAAk⊗BBBk + σ

2(M+N)/2EEE, (9.9)

where λ1 ⩾ λ2 ⩾ · · · ⩾ λK > 0 and AAAk ∈ R2m0 ×2n0 , BBBk ∈ R2m
†
0 ×2n

†
0 , k = 1, · · · ,K satisfy the

following orthonormal condition:

tr(AAAkAAA
′
l) = tr(BBBkBBB

′
l) = δkl :=

⎧⎪⎪⎨⎪⎪⎩
1 if k = l,

0 if k ̸= l.

The orthonormal condition implies the identifiability: if λ1 > λ2 > · · · > λk > 0, then AAAk

and BBBk are identified up to a sign change, see Section 8.2. Note that the K terms in model

(9.9) have the same configuration (m0,n0). Therefore, although multiple terms are present,

there is only one configuration to be determined.

Once the configuration is given, the rearranged YYY becomes the sum of a rank K matrix

and a noise matrix. The determination of K turns into the rank selection problem in low

rank approximation, and existing methods (Bai, 2003; Ahn and Horenstein, 2013) can be

applied. Therefore, we focus on the choice of the configuration for model (9.9). We propose

to use the same procedure based on the one-term model, although there are actually K

terms in model (9.9). We show that, if the leading term in (9.9) is strong enough, i.e. if λ1

is large enough, compared with other λk as well as σ, the information criterion introduced

in Section 9.2.3 will continue to select the true configuration consistently.

9.3 Theoretical Analysis

In this section we provide a theoretical guarantee of the configuration selection procedure

proposed in Section 9.2.3, by establishing its asymptotic consistency. Throughout this

section all our discussion will be based on model (9.1).
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9.3.1 Assumptions and Estimation Consistency under Known Configura-

tion

We first introduce the assumptions of the theoretical analysis. Recall that for model (9.1),

(m0,n0) denotes the true configuration, i.e. the matrices AAA and BBB are of dimensions

2m0 × 2n0 and 2m†
0 × 2n†

0 respectively. For the asymptotic analysis, we make the follow-

ing assumption on the sizes of AAA and BBB, which follows the paradigm of high dimensional

analysis.

Assumption 9.1 (Assumption on Dimension). Consider model (9.1). As M +N →∞,

assume that the true configuration (m0,n0) satisfies

m0 +n0
ln ln(MN) →∞,

m†
0 +n†

0
ln ln(MN) →∞,

where m†
0 =M −m0 and n†

0 =N −n0.

On the one hand, the condition entails that the numbers of entries in AAA and BBB will need

to diverge to infinity, and so is that of YYY . On the other hand, it is also ensured that the

true configuration cannot stay too close to the corner configurations. On the other hand,

we remark that this will be the only condition on the sizes of the involved matrices. In

particular, we do not require all of m0,n0,m
†
0,n

†
0 to go to infinity. Consequently, the low

rank approximation (when (m0,n0) = (M,0) or (m0,n0) = (0,N)) is also included in the

KoPA framework as a special case.

The number of parameters involved in the Kronecker product λAAA⊗BBB is η0 = 2m0+n0 +

2m†
0+n†

0 . It is a much smaller number than 2M ×2N , the number of elements in YYY . Hence

Assumption 9.1 implies a significant dimension reduction.

We also make the following assumption on the error matrix EEE.

Assumption 9.2 (Assumption on Noise). Consider model (9.1). Assume that EEE is a

standard Gaussian ensemble, i.e. with IID standard normal entries.

We conclude this subsection with the convergence rates of the estimators λ̂ ,AAÂ and BBB̂,

given by the estimation procedure in Section 9.2.2 under the true configuration. Since
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the error matrix EEE has IID standard normal entries, according to Vershynin (2010), the

expectation of the largest singular value of the rearranged error matrixRm0,n0 [EEE] is bounded

by

s0 = 2(m0+n0)/2 +2(m†
0+n†

0)/2.

Theorem 9.1. Let λ̂, AAÂ and BBB̂ be the estimators obtained under the true configuration, as

given in (9.4). Suppose Assumptions 9.1 and 9.2 hold, then for the deterministic scheme of

model (9.1), we have

λ̂−λ
λ

=Op

(︃
r0
λ/σ

)︃
, ∥AAÂ−AAA∥2F =Op

(︃
r0
λ/σ

)︃
, ∥BBB̂−BBB∥2F =Op

(︃
r0
λ/σ

)︃
,

where

r0 = s0
2(M+N)/2 = 2−(m0+n0)/2 +2−(m†

0+n†
0)/2.

9.3.2 Consistency of Configuration Selection

To study the consistency of the configuration selection proposed in Section 9.2.3, we need

assumptions on the signal-to-noise ratio. We choose to present model (9.1) with both λ

and σ so that it is able to account for any actual data generating mechanism. On the

other hand, the mathematical properties would only depend on the ratio λ/σ. The strength

of the signal also depends on the contrast between true and wrong configurations. If a

configuration (m,n) ∈W is used for the estimation, YYY is rearranged as

Rm,n[YYY ] = λRm,n[AAA⊗BBB]+σ2−(M+N)/2Rm,n[EEE]. (9.10)

Ignoring the noise term, only the first singular value component of Rm,n[AAA⊗BBB] (multiplied

by λ) is expected to enter YYŶ . When the true configuration is used, Rm,n[AAA⊗BBB] is a

rank-1 matrix, and its leading singular value equals 1 (recall that we have assumed that

∥AAA∥F = ∥BBB∥F = 1). On the other hand, if a wrong configuration is used, then Rm,n[AAA⊗BBB]

is no longer rank-1, and its leading singular value should be smaller than 1. Define

ϕ := max
(m,n)∈W

∥Rm,n[AAA⊗BBB]∥S .
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The quantity ϕ characterize how much of the signal AAA⊗BBB can be captured by a wrong

configuration, and it always holds that 0< ϕ≤ 1, so we also introduce

ψ2 := 1−ϕ2,

and call it the representation gap. Note that 0≤ ψ2 < 1, and the larger ψ2 is, the easier it

is to separate true and wrong configurations. The following assumption shows the interplay

between the representation gap ψ2 and the signal-to-noise ratio λ/σ.

Assumption 9.3 (Representation Gap). For model (9.1), assume that AAA and BBB are de-

terministic matrices, and

lim
M+N→∞

2(M+N)/2

2(m0+n0)/2 +2(m†
0+n†

0)/2
· (λ/σ) ·ψ =∞, (9.11)

and

lim
M+N→∞

2(M+N)/4 · (λ/σ) ·ψ2 =∞. (9.12)

In both (9.11) and (9.12), the signal-to-noise ratio and the representation gap ψ2 can

diminish to zero, as long as they do not converge to zero too fast. In this sense, Assump-

tion 9.3 is very flexible by requiring only very week signal strength.

We have defined ϕ as the maximum over W, the set of all wrong configurations. In

fact, if we let ϕm,n := ∥Rm,n[AAA⊗BBB]∥S , and ψ2
m,n = 1−ϕ2

m,n, then Assumption 9.3 can also

be given through ψ2
m,n instead of an uniform lower bound ψ2, leading to a weaker version

of the assumption. On the other hand, as will be show in Section 9.3.3, if AAA and BBB are

randomly generated according to the Random Scheme, then indeed all ψ2
m,n are larger than

or around 1/2 with an overwhelming probability. This is suggesting that using the lower

bound ψ2 in Assumption 9.3 for the deterministic scheme is still reasonable. Therefore, we

do not spell out the detailed version of Assumption 9.3 using ψ2
m,n, but present it in the

current simple form.

Notions similar to the representation gap appear as key parameters in many other prob-

lems. For example, in variable selection of linear regression problems with all independent

and univariance covariates, the representation gap would be the smallest absolute non-zero
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coefficient in the model. In matrix rank determination problems or factor models, the

representation gap would be the eigen-gap, or the smallest singular value.

The following theorem quantifies the separation of the information criterion (9.6) be-

tween the true and wrong configurations.

Theorem 9.2. Consider model (9.1), and assume Assumptions 9.1, 9.2, 9.3. If

κ≥ 2ln2, and κ= o

(︄
2M+N ln(1+(λ/σ)2ψ2)

2m0+n0 +2m†
0+n†

0

)︄
, (9.13)

then

min
(m,n)∈W

E[ICκ(m,n)]−E[ICκ(m0,n0)]≥ 2M+N · ln[1+(λ/σ)2ψ2] · (1+o(1)).

To be precise, we note that for a sequence of numbers {ak}, the statement ak ≥ o(1) is

understood as max{−ak,0}= o(1). According to Assumptions 9.3, (λ/σ)2ψ2≫ 2−(M+N)/2,

so Theorem 9.2 shows that the separation of the information criterion is at least of the order

2(M+N)/2.

The first condition in (9.13) ensures the penalty on number of parameters are large

enough to exclude configurations close to (0,0) and (M,N). The second condition in (9.13)

is imposed so that the contribution from the penalty term under the true configuration

is dominated by the representation gap. The exact formula of the difference in expected

information criterion is given by (B.8) in Appendix.

Next theorem establishes the consistency of (9.6). We need to define the symbol ≳: for

two sequences of positive numbers {ak} and {bk}, ak ≳ bk is defined as liminfk→∞ak/bk > 0.

Theorem 9.3. Assume the same conditions of Theorem 9.2, then

P

[︄
ICκ(m0,n0)< min

(m,n)∈W
ICκ(m,n)

]︄
⩾ 1− exp

{︂
−C2M+N +ln(MN)

}︂
,

where the constant C depending on λ/σ and ψ is of order

C(λ/σ,ψ) ≳ (α1/3−1)∧
(︄
α−α2/3

1+λ/σ

)︄2

,
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with α= 1+(λ/σ)2ψ2. In particular, the preceding convergence rate implies the consistency,

i.e.

lim
M+N→∞

P

[︄
ICκ(m0,n0)< min

(m,n)∈W
ICκ(m,n)

]︄
= 1. (9.14)

In Assumption 9.3, we focus on the minimal signal-to-noise ratio and representation gap.

On the other hand, if they are large such that liminf(λ/σ)2ψ2 ≥ 1/2, then the condition

κ ≥ 2ln2 can be dropped from Theorem 9.2 and Theorem 9.3, which continue to hold if

we set κ = 0 in (9.6). In other words, if the signal strength and the representation gap

are sufficiently large, one can simply use mean squared error to select the configuration.

Specifically, it requires λ2ψ2/σ2 > 1/2 to use κ= 0 in the information criterion.

9.3.3 Model Selection under Random Scheme

In this section we consider the consistency of the model selection under the random scheme

(9.16). First of all, similar convergence rates as Theorem 9.1 can be obtained under the

random scheme.

Corollary 9.1. Assume Assumptions 9.1 and 9.2. If AAA and BBB are generated according to

the random scheme (9.16), then the conclusion of Theorem 9.1 continue to hold.

If a configuration (m,n)∈W is used, then the estimation procedure given in Section 9.2.2

rearranges YYY as (9.10). In Section 9.3.2 for the deterministic scheme, we introduce ϕ as the

upper bound of ∥Rm,n[AAA⊗BBB]∥S over all wrong configurations. For the random scheme, it

turns out this upper bound and hence the representation gap ψ, depending on AAA and BBB, is

also random. We introduce the following “random” version of Assumption 9.3.

Assumption 9.4 (Representation Gap). Assume in model (9.1), λ, AAA and BBB are random

and independent with EEE. Assume there exist two sequences of positive numbers {λ0} and

{ψ0} satisfying (9.11) and (9.12) (by replacing λ and ψ therein), such that

limsup
M+N→∞

E[λ2/λ2
0]<∞, limsup

M+N→∞
E[ψ2/ψ2

0]<∞,
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and for any constant c > 0

lim
M+N→∞

MN ·P
[︂
λ2/λ2

0 < 1− c
]︂

= lim
M+N→∞

MN ·P
[︂
ψ2/ψ2

0 < 1− c
]︂

= 0. (9.15)

With Assumption 9.4, Theorem 9.2 and 9.3 continue to hold under the random scheme,

as asserted by the next theorem.

Theorem 9.4. Consider model (9.1) with random λ, AAA and BBB. Under Assumptions 9.1,

9.2 and 9.4, it holds that

min
(m,n)∈W

E[ICκ(m,n)]−E[ICκ(m0,n0)]≥ 2M+N · ln[1+(λ0/σ)2ψ2
0] · (1+o(1)).

Furthermore, the consistency (9.14) holds.

Assumption 9.4 is formulated to single out the minimal condition required for the con-

sistency under the random scheme. There is no specific distribution assumptions imposed

on AAA and BBB. In the rest of this section, we demonstrate that how it can be satisfied under

normality.

Example 9.1. Consider model (9.1). Suppose that

λAAA⊗BBB = λ0AAÃ⊗BBB̃
2(M+N)/2 , (9.16)

where λ0 is deterministic, and AAÃ and BBB̃ are independent, and both consisting of IID standard

normal entries. In order to fulfill the identifiability condition (9.2), we let AAA = AAÃ/∥AAÃ∥F ,

BBB = BBB̃/∥BBB̃∥F , and λ = λ0 · ∥AAÃ∥F · ∥BBB̃∥F /2(M+N)/2. Also assume that AAA and BBB are both

independent with EEE. For this example, the signal-to-noise ratio becomes

E∥λAAA⊗BBB∥2F
E∥σEEE/2(M+N)/2∥2F

= λ2
0
σ2 .

Recall that ϕ is defined as the upper bound of ∥Rm,n[AAA⊗BBB]∥S over all wrong configura-

tions. Only when the true configurations (m0,n0) is used, the rearrangement Rm0,n0 [AAA⊗BBB]

has the simple structure of a rank-1 matrix. Under a wrong configuration Rm,n[AAA⊗BBB] no
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longer takes any special form. Nevertheless, the following lemma characterizes how the

spectral norm of Rm,n[AAA⊗BBB] depends on further rearrangements of both AAA and BBB. It is

a property of the Kronecker products and the KPD (8.3), so we present it in the general

form, without referring to any “true” configuration.

Lemma 9.1. Let AAA be a 2m× 2n matrix and BBB be a 2m† × 2n† matrix. Then for any

m′,n′ ∈ Z, 0 ⩽m′ ⩽M, 0 ⩽ n′ ⩽N ,

∥Rm′,n′ [AAA⊗BBB]∥S = ∥Rm∧m′,n∧n′ [AAA]∥S · ∥R(m′−m)+,(n′−n)+ [BBB]∥S

Applying Lemma 9.1 to Example 9.1 leads to the following corollary.

Corollary 9.2. For Example 9.1, under Assumption 9.1, it holds that

max
(m,n)∈W

∥Rm,n[AAA⊗BBB]∥S = 1√
2

+op(1).

And as a consequence, Assumption 9.4 holds with the λ0 in (9.16) and ψ2
0 = 1/2.

9.3.4 Multi-term Extension

For ease of presentation, we only provide the result and analysis of the two-term model

YYY = λ1AAA1⊗BBB1 +λ2AAA2⊗BBB2 + σ

2(M+N)/2EEE. (9.17)

Similar results can be directly extended to the multi-term model.

We propose to use the same configuration selection procedure in Section 9.2.3, that is, for

any candidate configuration (m,n) ∈ C, although YYY is generated from the two-term model

(9.17), we nonetheless still calculate the information criterion (9.6) by fitting the one-term

Kronecker product model (9.1) to YYY . This approach avoids the need of the determination

of the number of Kronecker product terms when seeking the correct configuration. It allows

the separation of the two. In this case, the estimated λ̂ used in the information criterion

(9.8) is

λ̂= ∥Rm,n[YYY ]∥S = ∥λ1Rm,n[AAA1⊗BBB2]+λ2Rm,n[AAA2⊗BBB2]+σ2−(M+N)/2Rm,n[EEE]∥S . (9.18)
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Note that under the true configuration, we have λ̂≈ λ1. To bound λ̂ under wrong configu-

rations, we define

ϕ1 = max
(m,n)∈W

∥Rm,n[AAA1⊗BBB1]∥S , ϕ2 = max
(m,n)∈W

∥Rm,n[AAA2⊗BBB2]∥S ,

and the representation gaps

ψ2
1 := 1−ϕ2

1, ψ2
2 := 1−ϕ2

2.

Even though vec(AAA1) and vec(AAA2) are orthogonal according to the model assumption,

the column spaces of Rm,n[AAA1⊗BBB1] and Rm,n[AAA2⊗BBB2] are not necessarily orthogonal. In

the worst case when Rm,n[AAA1⊗BBB1] and Rm,n[AAA2⊗BBB2] have the same column space and the

same row space, then λ̂ in (9.18) is close to λ1ϕ1 +λ2ϕ2, which may exceed λ1. Therefore,

we need to bound the distance between the column (and row) spaces of Rm,n[AAA1⊗BBB1]

and Rm,n[AAA2⊗BBB2]. For this purpose, we make use of the principal angles between linear

subspaces. Specifically, if MMM1 and MMM2 are two matrices of the same number of rows, the

smallest principal angle between their column spaces, denote by Θ(MMM1,MMM2), is defined as

cosΘ(MMM1,MMM2) = sup
u1 ̸=0,u2 ̸=0

u′
1MMM

′
1MMM2u2

∥MMM1u1∥∥MMM2u2∥
.

We first discuss the deterministic scheme, where AAAk and BBBk are non-random. In As-

sumption 9.5, θc and θr are lower bounds of the smallest possible principal angles between

the column spaces and the row spaces of the two rearranged components, respectively.

Assumption 9.5. There exist 0< ξ < 1 such that

max
(m,n)∈WA

cosΘ(Rm,n[AAA1⊗BBB1],Rm,n[AAA2⊗BBB2]) ⩽ ξ,

and

max
(m,n)∈WB

cosΘ([Rm,n[AAA1⊗BBB1]]′, [Rm,n[AAA2⊗BBB2]]′) ⩽ ξ,
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where

WA = {(m,n) ∈W :m+n⩾m† +n†},WB = {(m,n) ∈W :m+n <m† +n†}.

The following lemma provides an upper bound of the spectral norm of a sum of two

matrices. It utilizes the principal angles between the column and row spaces to make the

bound sharper than the one given by the triangular inequality. Assumption 9.5 enables us

to apply Lemma 9.2 to bound λ̂ in (9.18).

Lemma 9.2. Suppose MMM1 and MMM2 are two matrices of the same dimension. Let ∥MMM1∥S =

µ, ∥MMM2∥S = ν. Denote the principle angles between the column spaces and the row spaces

as θ = Θ(MMM1,MMM2), η = Θ(MMM ′
1,MMM

′
2), respectively. Then

∥MMM1 +MMM2∥2S ⩽ Λ2(µ,ν,θ,η),

where

Λ2(µ,ν,θ,η) = 1
2

[︃√︂
(µ2 +ν2 +2µν cosθ cosη)2−4µ2ν2 sin2 θ sin2 η

+µ2 +ν2 +2µν cosθ cosη
]︃
.

Similar to Assumption 9.3, we assume the signal strengths λ1, λ2 and the noise level σ

satisfy the following assumption.

Assumption 9.6. For model (9.17), we assume that λk and the matrices AAAk, BBBk, k = 1,2

are deterministic and

lim
M+N→∞

2M+N

2m+n +2m†+n†
λ2

1ψ
2
1−λ2

2ϕ
2
2−2λ1λ2ϕ1ϕ2ξ

σ2 +λ2
2

=∞ (9.19)

and

lim
M+N→∞

2(M+N)/4λ
2
1ψ

2
1−λ2

2ϕ
2
2−2λ1λ2ϕ1ϕ2ξ

(λ1 +λ2)σ =∞. (9.20)

The conditions (9.19) and (9.20) correspond to (9.11) and (9.12) in the one-term model.

Specifically, when λ2 = 0, the two-term model reduces to one-term case and Assumption 9.6
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reduces to Assumption 9.3 as well. The main result for the two-term model is stated in

Theorem 9.5.

Theorem 9.5. Consider the two-term model (9.17), where λk and the matrices AAAk and BBBk

are deterministic. Suppose Assumptions 9.1, 9.2, 9.5 and 9.6 hold. If κ satisfies

κ⩾ 2ln2 and κ= o

(︄
2M+Nα

2m0+n0 +2M+N−m0−n0

)︄
,

then

min
(m,n)∈W

E[ICκ(m,n)]−E[ICκ(m0,n0)] ⩾ 2M+Nα(1+op(1)),

where

α= ln
(︄

1+ λ2
1ψ

2
1−λ2

2ϕ
2
2−2λ1λ2ϕ1ϕ2ξ

σ2 +λ2
2

)︄
. (9.21)

Furthermore, the consistency (9.14) continues to hold.

Similar to Theorem 9.2, we have shown that for the two-term model, the informa-

tion criterion obtained by fitting a one-term model can still separate the true and wrong

configurations with a gap of the order O(2M+Nα). On the other hand, comparing with

Assumption 9.3, Theorem 9.5 depends on Assumption 9.6, which requires not only the

signal-to-noise ratio (λ1/σ), but also the relative strength of the two terms (λ1/λ2) to be

large enough. Comparing the two term model (9.17) with the one term model (i.e. λ2 = 0),

we note that the information criterion gap α in Theorem 9.5 is smaller than the one given

by Theorem 9.2. This phenomenon can be intuitively explained through (9.21). On one

hand, λ2
2 contributes to the noise term in identifying the configuration of the first Kronecker

product as λ2
2 +σ2 appears in the denominator in (9.21). On the other hand, over-fitting

due to the second Kronecker product reduces ∥YYY −YYŶ ∥2F under the wrong configuration,

which is quantified by λ2
2ϕ

2
2 +2λ1λ2ϕ1ϕ2ξ in the numerator of (9.21).

Similar to Example 9.1, we consider the following example of the two term model under

normality.

Example 9.2. Consider the two term model (9.17). Suppose that

λkAAAk⊗BBBk = λk0AAÃk⊗BBB̃k/2(M+N)/2, k = 1,2,
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where all of the five matrices AAAk̃ and BBBk
˜ and EEE are independent, and each consisting of

IID standard normal entries. To translate it back into the form of (9.17), we let AAAk =

AAÃk/∥AAÃk∥F , BBBk =BBB̃k/∥BBB̃k∥F , and λk = λk0 · ∥AAÃk∥F · ∥BBB̃k∥F /2(M+N)/2.

For Example 9.2, it turns out that with probabilities tending to one, ξ is close to 0 and

the representation gaps ψ2
1 and ψ2

2 are close to 1/2 (due to Corollary 9.2). As an immediate

consequence, Theorem 9.5 yields a information criterion gap of the size

α= ln
(︄

1+ λ2
10−λ2

20
2(σ2 +λ2

20)

)︄
.

However, by a refined analysis of Assumption 5 under the normality of Example 9.2, we are

able to prove the following improved result.

Corollary 9.3. Consider Example 9.2. Under Assumptions 9.1 and 9.2, Theorem 9.5 holds

with the information criterion gap

α= ln
(︄

1+ λ2
10

2(σ2 +λ2
20)

)︄
.

9.4 Simulations and Examples

9.4.1 Simulations

We design two simulation studies: the first one on the performance of the estimation proce-

dure introduced in Section 9.2.2, and the second one on the configuration selection proposed

in Section 9.2.3. Many implications of the theoretical results in Section 9.3 are demonstrated

in the outcome of the numerical studies.

Estimation with known configuration

We first consider the performance of the estimators of λ, AAA and BBB given in (9.4), when the

true configuration (m0,n0) is known. Throughout this subsection the simulations are based

on model (9.1) with m0 = 5, n0 = 5, M = 10, N = 10 and σ = 1.
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The model (9.1) after the rearrangement under the true configuration becomes

Rm0,n0 [YYY ] = λvec(AAA)vec(BBB)′ +σ2−(M+N)/2Rm0,n0 [EEE],

where vec(AAA) ∈ R2m0+n0 , vec(BBB) ∈ R2m
†
0+n

†
0 are unit vectors. Without loss of generality,

set vec(AAA) = (1,0, . . . ,0)′, vec(BBB) = (1,0, . . . ,0)′. In this experiment, the noise level is fixed

at σ = 1, so the signal-to-noise ratio is controlled by λ, which takes values from the set

{e1,e2, . . . ,e16}. For each value of λ, we calculate the errors of the corresponding estimators

λ̂, AAÂ and BBB̂ by

ln
(︄
λ̂

λ
−1
)︄2

and ln∥AAÂ−AAA∥2F +ln∥BBB̂−BBB∥2F .

The errors based on 20 repetitions are reported in Figure 9.1.

Figure 9.1: Boxplots for errors in λ̂, AAÂ and BBB̂ against the signal-to-noise ratio.

Figure 9.1 displays an interesting linear pattern, that is, as the signal-to-noise ratio

increases, ln
(︂

λ̂
λ −1

)︂2
is approximately linear against lnλ with a slope around −2, and so

is the error ln(∥AAÂ−AAA∥2F ∥BBB̂−BBB∥2F ) for the matrix estimators. We note that this pattern is

consistent with Theorem 9.1, which asserts that

λ̂

λ
−1 =Op

(︃ 1
λ

)︃
and ∥AAÂ−AAA∥F ∥BBB̂−BBB∥F =Op

(︃ 1
λ

)︃
,

since r0 defined in Theorem 9.1 remains a constant here as we vary the signal strength λ in

the simulation.
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Configuration Selection

We now demonstrate the performance of the information criterion based procedure for

selecting the configuration. Two criteria will be considered: MSE (when κ = 0) and AIC

(when κ= 2). Corresponding to the one- and multi-term models considered in Sections 9.3

and 9.2.4, we carry out two experiments respectively.

Experiment 1: One-term KoPA model

The simulation is based on model (9.1). Two configurations are considered: (i) M =N = 9,

m0 = 4, n0 = 4, and (ii) M =N = 10, m0 = 5, n0 = 4. Similar to Section 9.4.1, the noise level

is fixed at σ= 1, so the signal-to-noise ratio is controlled by λ. To control the representation

gap ψ2, we construct the matrices AAA and BBB as follows:

AAA=
√︂
φ2

⎡⎢⎣1

0

⎤⎥⎦⊗DDD1 +
√︂

1−φ2

⎡⎢⎣0

1

⎤⎥⎦⊗DDD2,

BBB =
√︂
φ2

⎡⎢⎣1

0

⎤⎥⎦⊗DDD3 +
√︂

1−φ2

⎡⎢⎣0

1

⎤⎥⎦⊗DDD4,

where vec(DDDi), i = 1,2,3,4 are independent random unit vectors such that vec(DDD1) and

vec(DDD2) are orthogonal, and so are vec(DDD3) and vec(DDD4). In the experiment, five values

of φ2 are considered: φ2 ∈ {0.1,0.2,0.3,0.4,0.5}. We remark that the construction above

controls the representation gaps for configurations (1,0) and (m0 + 1,n0) at φ2 exactly,

and the representation gaps for configurations with m+n ∈ {1,M +N −1} (close to trivial

configurations) or |m−m0|+ |n−n0| = 1 (close to the true configuration) at roughly 0.5.

Consequently, when φ2 = 0.1,0.2,0.3,0.4, the overall representation gap ψ2 is at the desired

level φ2 with high probabilities. But when φ2 = 0.5, the representation gap ψ2 can be

slightly smaller than 0.5.

In Figure 9.2, we plot the empirical frequencies of the correct configuration selection,

out of 100 repetitions, against the signal-to-noise ratio λ/σ. Note that the x-axis scale in

subfigures 9.2a and 9.2b is different from that in 9.2c and 9.2d. The performances of both

MSE (κ = 0) and AIC (κ = 2) are illustrated. BIC (κ = (M +N) ln2) has a very similar
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performance to AIC, and is not reported here.

(a) M =N = 9, AIC (b) M =N = 10, AIC

(c) M =N = 9, MSE (d) M =N = 10, MSE

Figure 9.2: The empirical frequencies of the correct configuration selection out of 100 rep-
etitions.

For extremely weak signal-to-noise ratio λ ⩽ 0.03, neither of MSE and AIC is able to

select the true configuration with a high probability, for both configurations. This does

not contradict with Theorem 9.3. When the signal is very weak, larger dimensions of the

observed matrix YYY are required for the consistency. As the signal-to-noise ratio increases

from 0.01 to 0.13, the probability that the true configuration is selected increases gradually

and eventually gets very close to one for AIC as shown in Figures 9.2a and 9.2b. We

also note that the performance gets better as the representation gap ψ2 increases. These

observations are echoing Theorem 9.2, which shows that AIC (with κ = 2 > 2ln2) only

requires a minimal condition (λ/σ)2ψ2 > 0 to achieve the consistency, and the separation

gap of AIC is a monotone function of (λ/σ)2ψ2. On the other hand, the performance

of MSE exhibits a phase transition: it only starts to select the true configuration with

a decent probability when the signal-to-noise ratio λ/σ exceed a certain threshold. The

theoretical asymptotic threshold for MSE is λ/σ⩾
√︁

1/(2ψ2) as discussed in Remark 5. For

ψ2 ∈ {0.5,0.4,0.3,0.2,0.1} used in this simulation, the corresponding thresholds for λ/σ are
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{1,1.12,1.29,1.58,2.24}, which can be clearly visualized in Figures 9.2c and 9.2d.

Comparing Figures 9.2a with Figures 9.2b, we see that the empirical frequency curve

increases from 0 to 100 much faster when the matrices are larger. This is consistent with

Theorem 9.2, which shows that the probability of correct configuration selection approaches

1 exponentially fast.

Experiment 2: Two-term KoPA model

In the second experiment, we consider the two-term KoPA model in (9.17) where AAAk and

BBBk are generated under the random scheme in Example 9.2 such that ψ2
1 ≈ 1/2, ψ2

2 ≈ 1/2

and ξ ≈ 0. According to Theorem 9.5, besides the signal-to-noise ratio λ1/σ, the relative

strength of the second term λ2/λ1 (for the random scheme adopted in this experiment, see

Corollary 9.3) affects the configuration selection as well.

In this simulation, we fix the configurations to M =N = 9,(m0,n0) = (4,4) and consider

four different relative strengths of the second term λ2
2/λ

2
1 ∈ {0.3,0.4,0.5,0.6}. Similar to

Experiment 1, we report the empirical frequencies of correct configurations selection of

MSE and AIC, out of 100 repetitions, as a function of the signal-to-noise ratio λ1/σ in

Figure 9.3.

(a) M =N = 9, AIC (b) M =N = 9, MSE

Figure 9.3: The empirical frequencies of the correct configuration selection out of 100 rep-
etitions in a two-term model.

Figure 9.3a shows that the performance of AIC is in-sensitive to the ratio λ2
2/λ

2
1 over

the experimented range. To the contrary, it is seen from Figure 9.3b that MSE performs
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better when the ratio λ2
2/λ

2
1 gets smaller, which is consistent with Corollary 9.3.

9.4.2 Analysis on Images

The cameraman’s image

In this section we analyze the famous cameraman image. The original image, denoted by

YYY 0, has 512×512 pixels. Each entry of YYY 0 is a real number between 0 and 1, where 0 codes

black and 1 indicates white. The grayscale cameraman image YYY 0 is displayed in Figure 9.4.

Figure 9.4: The cameraman image.

Our analysis will be based on the de-meaned version YYY of the original image YYY 0. We

demonstrate how well the image YYY can be approximated by a Kronecker product or the

sum of a few Kronecker products, and make comparisons with the low rank approximations

given by SVD.

We first consider the configuration selection by MSE, AIC and BIC on the original image

YYY . Figure 9.5 plots the heat maps for the information criterion ICκ(m,n) for all candidate

configurations in the set

C = {(m,n) : 0 ⩽m,n⩽ 9}\{(0,0),(9,9)},

where the top-left and bottom-right corners are always excluded from the consideration.

Since darker cells correspond to smaller values of the information criteria, we see that MSE

and AIC select the configuration (8,9), and BIC selects (6,7).

We also observe an overall pattern in Figure 9.5: configurations with larger (m,n) values

are more preferable than those with smaller (m,n). Note that the Kronecker product does
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Figure 9.5: Information Criteria for the cameraman’s image. (Left) MSE (Mid) AIC (Right)
BIC. Darker color corresponds to lower IC value.

not commute, and with configuration (m,n) the product is a 2m× 2n block matrix, each

block of the size 29−m×29−n. Real images usually show the locality of pixels in the sense that

nearby pixels tend to have similar colors. Therefore, it can be understood that larger values

of m and n are preferred, since they are better suited to capture the locality. Actually, for

the cameraman’s image, the configuration (8,9) accounts for 99.50% of the total variation

of YYY . The penalty on the number of parameters in AIC is not strong enough to offset the

closer approximation given by the configuration (8,9). With a stronger penalty term, BIC

selects a configuration that is closer to the center of the configuration space, involving a

much smaller number of parameters.

From the perspective of image compressing, KoPA is more flexible than the low rank

approximation, by allowing a choice of the configuration, and hence a choice of the compres-

sion rate. To compare their performances, we use the ratio ∥YYŶ ∥2F /∥YYY ∥2F to measure how

close the approximation YYŶ is to the original image YYY . In Figure 9.6, these ratios are plotted

against the numbers of parameters for the KPD, marked by “+” on the solid line. Since

the number of parameters involved in the Kronecker product with configuration (m,n) is

η = 2m+n + 2M+N−m−n, the configurations {m,n :m+n= c} for any given 0< c <M +N

have the same number of parameters. Among these configurations, we only plot the one with

the largest ∥YYŶ ∥2F /∥YYY ∥2F . On the other hand, each cross stands for a rank-k approximation

of YYY , where its value on the horizontal axis is the number of parameters

η = 1+
k∑︂

j=1
(2M +2N −2j+1) for k = 1, . . . ,2M∧N .
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According to Figure 9.6, there always exists a one-term Kronecker product which provides

a better approximation of the original cameraman’s image than the best low rank approxi-

mation involving the same number of parameters.

Figure 9.6: Percentage of variance explained against number of parameters, for KoPA with
all configurations, and for low rank approximations of all ranks.

We also consider de-noising the images corrupted by additive Gaussian white noise

YYY σ = YYY +σEEE,

where EEE is a matrix with IID standard normal entries. We experiment with three levels of

corruption: σ = 0.1,0.2,0.3. Examples of the corrupted images with different σ are shown

in Figure 9.7 with the values rescaled to [0,1] for plotting.

For the corrupted images, the information criteria ICκ(m,n) are calculated, and the

corresponding heat maps are plotted in Figure 9.8. With added noise, AIC and BIC tend

Figure 9.7: Noisy cameraman’s images when (Left) σ = 0.1 (Mid) σ = 0.2 (Right) σ = 0.3
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to select configurations in the middle of the configuration space.

MSE AIC BIC

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

Figure 9.8: Heat maps for three different information criteria for the camera’s images with
different noise levels. Darker color means lower IC value.

Now we consider multi-term Kronecker approximation. Following the discussion in

Section 9.2.4, for each of three corrupted images YYY σ, we use the configuration selected by

BIC in Figure 9.8. Specifically, configurations (6,6), (5,6) and (5,5) are selected when

σ= 0.1, 0.2 and 0.3, respectively. A two-term Kronecker product model (9.17) is then fitted

under the selected configuration. The fitted images are plotted in the upper panel of Figure

9.9. Each of them is compared with the image obtained by the low rank approximation

involving a similar number of parameters as the two-term KoPA. From Figure 9.9, it is quite

evident that the image details can easily be recognized from the images reconstructed from

two-term KoPA, but can hardly be perceived in those given by the low rank approximation.
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σ = 0.1 σ = 0.2 σ = 0.3

K
oP

A
SV

D

Figure 9.9: The fitted image given by multi-term KoPA, and the SVD approximation with
similar number of parameters.

Finally, we examine the reconstruction error defined by

∥YYY −YYŶ ∥2F
∥YYY ∥2F

,

where YYY is the original image and YYŶ is the one reconstructed from YYY σ. For each of the

three noisy images, we continue to use the configuration selected by BIC. With fixed con-

figurations, we keep increasing the number of terms in the KoPA until YYY σ is fully fitted,

and plot the corresponding reconstruction error against the number of parameters in Fig-

ure 9.10. It has the familiar “U” shape, showing the trade-off between estimation bias and

variation. A similar curve is given for the low rank approximations exhausting all possible

ranks. From Figure 9.10, it is seen that the multi-term KoPA constantly outperforms the

low rank approximation at any given number of parameters. Furthermore, the minimum

reconstruction error that KoPA can reach is always smaller than that given by the low rank

approximation.
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Figure 9.10: Reconstruction error against the number of parameters for KoPA and low
rank approximations. The three panels from left to right correspond to σ = 0.1, σ = 0.2 and
σ = 0.3 respectively.

Figure 9.11: List of test images.

More images

To assess the performance of KoPA model in image denoising, we repeat the experiment

in Section 9.4.2 to a larger set of test images. The 10 test images printed in Figure 9.11

are collected from Image Processing Place1 and The Waterloo image Repository2. Each of

the 10 test images is a 512×512 gray-scaled matrix, same as the cameraman’s image. We

corrupt the test image with additive Gaussian noise, whose amplitude is given by 0.5 times

the standard deviation of all its pixel values:

YYY σ = YYY +0.5 · std(YYY ) ·EEE.

We compare five methods of denoising these images: one-term SVD and KoPA mod-
1http://www.imageprocessingplace.com/root files V3/image databases.htm
2http://links.uwaterloo.ca/Repository.html
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image SVD KoPA mSVD mKoPA TVR
boat 0.4709 0.1757 0.0853 0.0613 0.0356

cameraman 0.5446 0.1337 0.0644 0.0399 0.0294
goldhill 0.4632 0.1391 0.0759 0.0568 0.0363
jetplane 0.7347 0.1853 0.0866 0.0596 0.0302

lake 0.5425 0.1287 0.0825 0.0539 0.0308
livingroom 0.6747 0.2055 0.0995 0.0811 0.0589

mandril 0.6949 0.3557 0.1471 0.0889 0.0739
peppers 0.7394 0.1075 0.0734 0.0445 0.0224
pirate 0.7746 0.1533 0.1018 0.0686 0.0413

walkbridge 0.6617 0.2085 0.1263 0.0925 0.0593

Table 9.1: Reconstruction errors of one-term SVD, one-term KoPA, multi-term
SVD(mSVD), multi-term KoPA(mKoPA) and total variation regularization (TVR) on the
ten test images.

els, multi-term SVD and KoPA models, image denoising algorithm through total variation

regularization (Chambolle, 2004). Since determining the number of terms in multi-term

models is beyond the scope of this article, the number of terms in the multi-term models

are chosen to minimize the reconstruction error. The performance of the five approaches

on the ten images are reported in Table 9.1.

For each image, the configuration of the KoPA is selected by BIC (κ = 18ln2). From

Table 9.1, the KoPA-based methods outperform SVD-based approaches, which is not sur-

prising as SVD corresponds to a special configuration in KoPA models. On the other hand,

the image denoising based on KoPA (and multi-term KoPA) is close to the TVR (total

variation regularization) method but the latter does have a superior performance.

Figure 9.12: (left) The mandrill image, (mid) recovered images from multi-term KoPA
model and (right) total variation regularization.

We note that KoPA and TVR are not directly comparable. Image is a special type of

matrix data, whose entries usually possess certain continuity in values. TVR fully utilizes
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this continuity by imposing regularization on the total variation while SVD and KoPA do

not. The difference can be seen from Figure 9.12 as well. The TVR can recover the smooth

region (the mandrill’s nose) well, while the multi-term KoPA model has more details in non-

smooth regions (the mandrill’s fur and beard). Finally we remark that the performance of

KoPA approach on image analysis can possibly be improved by adding a similar penalty

term on the smoothness of BBB.
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CHAPTER 10

Hybrid Kronecker Product

Approximation

10.1 Introduction

It is often the case that KoPA using a single configuration requires a large number of terms

to make the approximation accurate. By allowing the use of a sum of Kronecker products of

different configurations, an observed high dimensional matrix (image) can be approximated

more effectively using a much smaller number of parameters (elements). We note that often

the observed matrix can have much more complex structure than a single Kronecker product

can handle. For example, representing an image with Kronecker products of the same

configuration is often not satisfactory since the configuration dimensions determine the block

structure of the recovered image, similar to the pixel size of the image. A single configuration

is often not possible to provide as much detail as needed. Similar to the extension from low

rank matrix approximation to KoPA of a single configuration, we propose to extend the

Kronecker product approach to allow for multiple configurations. It is more flexible and

may provide a more accurate representation with a smaller number of parameters.

In this chapter, we generalize the KoPA model in Chapter 9 to a multi-term setting,

where the observed high dimensional matrix is assumed to be generated from a sum of

several Kronecker products of different configurations – we name the model hybrid KoPA

(hKoPA). As a special case, when all the Kronecker products are vector outer products,

KoPA corresponds to a low rank matrix approximation.

We consider two problems in this chapter. We first propose a procedure to estimate a
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hKoPA with a set of known configurations. The procedure is based on an iterative backfit-

ting algorithm with the basic operation being finding the least squares solution of a single

Kronecker product of a given configuration to a given matrix. This operation can be ob-

tained through a rearrangement operation and a SVD estimation. Next, we consider the

problem of determining the configurations in a hKoPA for a given observed matrix. As ex-

ploiting the space of all possible configuration combinations is computationally expensive,

we propose an iterative greedy algorithm similar to the boosting algorithm (Freund et al.,

1999). In each iteration, a single Kronecker product term is added to the model by fitting

the residual matrix from the previous iteration. The configuration of the added Kronecker

product is determined using the procedure proposed in Section 9.2.3. This algorithm effi-

ciently fits a hKoPA model with a potentially sub-optimal solution as a compromise between

computation and accuracy.

10.2 The Hybrid KoPA Model

We consider the K-term hKoPA model, where the observed matrix YYY is of the form

YYY =
K∑︂

k=1
λkAAAk⊗BBBk +σEEE. (10.1)

In other words, YYY is generated as the sum of K Kronecker products and a noise matrix. We

assume YYY is of the dimension 2M ×2N , and the matrices AAAk and BBBk in the k-th component

are 2mk ×2nk and 2M−mk ×2N−nk , respectively. The matrix EEE is a noise matrix with i.i.d.

standard Gaussian entries. The model and the methodology that we propose here also

extend to YYY of any dimensions, as long as the corresponding AAAk and BBBk have conformal

dimensions. However, for simplicity, we will assume in this paper that all matrix dimensions

are of powers of 2.

We define the configuration of the hKoPA model in (10.1) as the collection of individual

configurations C := {(mk,nk), 1 ≤ k ≤ K}. The Kronecker product components in (10.1)

are allowed to have different configurations (mk,nk). When the model configuration C is

known, we need to estimate the component matrices AAAk and BBBk, for k = 1, . . . ,K in model
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(10.1). When the configuration C is unknown, the estimation of model (10.1) requires the

determination of the configuration C as well, resulting in a configuration determination

problem in addition to the estimation problem.

Some existing researches on Kronecker product structured data can be viewed as the

special cases of model (10.1). When K = 1 and the configuration is unknown, model (10.1)

reduces to the single-term KoPA model investigated in Section 9.2.1. When the configu-

rations of the K Kronecker products are known and equal such that (m1,n1) = (m2,n2) =

· · ·= (mK ,nK), the estimation of model (10.1) can also be obtained based on the Kronecker

product decomposition introduced in Section 8.2.

The primary goal is to estimate λk, AAAk and BBBk in (10.1). For this purpose, we need

some identifiability conditions. The first one takes care of the scaling of AAAk and BBBk so that

they are determined up to a sign change.

Assumption 10.1 (Identifiability Condition 1). Assume

∥AAAk∥F = ∥BBBk∥F = 1, for k = 1, . . . ,K,

and λ1 ⩾ λ2 ⩾ · · ·⩾ λK > 0.

If AAA1 and AAA2 have the same dimensions (hence so do BBB1 and BBB2), there is an obvious

identifiability issue, since

λ1AAA1⊗ (BBB1 + cλ2BBB2)+λ2(AAA2− cλ1AAA1)⊗BBB2

always gives the same sum for any c ∈ R. There is another type of unidentifiability that is

more subtle. Suppose AAA1 is smaller AAA2 in the sense that m1 ⩽m2 and n1 ⩽ n2, then for

any 2m2−m1×2n2−n1 matrix CCC, it holds that

λ1AAA1 ⊗ (BBB1 + λ2CCC ⊗BBB2) + λ2(AAA2 − λ1AAA1 ⊗CCC)⊗BBB2 = λ1AAA1 ⊗BBB1 + λ2AAA2 ⊗BBB2, (10.2)

Therefore, we also make the following assumption.
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Assumption 10.2 (Identifiability Condition 2). For any 0 ≤ k, l ≤K such that mk ⩽ml

and nk ⩽ nl, we assume

tr
[︂
AAAl(AAAk⊗111ml−mk,nl−nk

i,j )′
]︂

= 0,

for all 1≤ i≤ 2ml−mk and 1≤ j ≤ 2nl−nk , where 111ml−mk,nl−nk
i,j denotes the 2ml−mk×2nl−nk

matrix whose (i, j)-th element is 1, and all other elements are 0.

In particular, if mk =ml and nk = nl, the condition reduces to

tr[AAAlAAA
′
k] = tr[BBBlBBB

′
k] = 0.

Therefore, Assumption 10.2 requires essentially the “orthogonality” of AAAk and AAAl when

both dimensions of AAAk are less than or equal to those of AAAl. If AAAk and AAAl do not satisfy

the condition in Assumption 10.2, one can always perform an orthogonalization operation

by finding a 2ml−mk ×2nl−nk non-zero matrix CCC, whose (i, j)-th element is given by

[CCC]i,j = tr
[︂
AAAl(AAAk⊗111ml−mk,nl−nk

i,j )′
]︂
, (10.3)

such that Assumption 10.2 is satisfied for AAAk and AAA∗
l = (AAAl−AAAk ⊗CCC)/∥AAAl−AAAk ⊗CCC∥F .

Note that CCC in (10.3) is the least squares solution of min∥AAAl−AAAk⊗CCC∥2F . The procedure of

orthogonalizing AAAk and AAAl can be generalized to multiple terms through the Gram-Schmidt

process depicted in Algorithm 10. Note that the identifiability Assumption 10.2 can be

replaced by the same condition on the BBB’s, but there is no need to impose the condition on

both AAA’s and BBB’s.

10.3 Estimation

In this section, we consider the estimation of AAAk BBBk and λk for the hKoPA model (10.1).

When the configuration set C is known, we adopt a backfitting procedure (or alternating

least squares) to fit the model. When the configurations are unknown, we propose a greedy

algorithm by adding one Kronecker product component at a time.
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Algorithm 10: Gram-Schmidt Process for hKoPA Model
1 Sort the configurations {(mk,nk)}Kk=1 in ascending order such that (1) mi ⩽mj for

all i⩽ j; (2) ni ⩽ nj if mi =mj ;
2 Set AAA∗

1 =AAA1, BBB∗
1 =BBB1, λ∗

1 = λ1;
3 for i= 2, · · · ,K do
4 Let Ωi = {k < i :mk ⩽mi,nk ⩽ ni};

5 (CCĈi

k)k∈Ωj
= argmin

(CCCi
k)k∈Ωj

⃦⃦⃦⃦
⃦⃦AAAi−

∑︂
k∈Ωj

AAA∗
k⊗CCCi

k

⃦⃦⃦⃦
⃦⃦

2

F

;

6 RRRi =AAAi−
∑︁

k∈Ωj
AAA∗

k⊗CCĈ
j

k;
7 AAA∗

i =RRRi/∥RRRi∥F , BBB∗
i =BBBi;

8 λ∗
i = λi∥RRRi∥F ;

9 for k ∈ Ωi do
10 SSSk =BBB∗

k +λiCCĈ
i

k⊗BBB∗
k/λ

∗
k;

11 BBB∗
k = SSSk/∥SSSk∥F ;

12 λ∗
k = λ∗

k∥SSSk∥F ;
13 end
14 end
15 return {(λ∗

i ,AAA
∗
i ,BBB

∗
i )}Ki=1.

10.3.1 Hybrid Kronecker Product Model with Known Configurations

When the configurations (mk,nk), k = 1, . . . ,K, are known, we consider the following least

squares problem.

min
⃦⃦⃦⃦
⃦YYY −

K∑︂
k=1

λkAAAk⊗BBBk

⃦⃦⃦⃦
⃦

2

F

. (10.4)

When K = 1, such a problem can be solved by singular value decomposition of a rearranged

version of matrix YYY using the rearrangement operator R as shown in Section 8.3.

Therefore, the least squares optimization problem

min∥YYY −λAAA⊗BBB∥2F ,

is equivalent to a rank-one matrix approximation problem since

∥YYY −λAAA⊗BBB∥2F = ∥Rm,n[YYY ]−λvec(AAA)vec(BBB)′∥2F ,

whose solution is given by the leading component in the SVD of Rm,n[YYY ] (Eckart and
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Young, 1936).

When there are multiple terms K > 1 in model (10.1), we propose to solve the optimiza-

tion problem (10.4) through a backfitting algorithm (or alternating least squares algorithm)

by iteratively estimating λk, AAAk and BBBk by

min

⃦⃦⃦⃦
⃦⃦
⎛⎝YYY −∑︂

i ̸=k

λ̂iAAÂi⊗BBB̂i

⎞⎠−λkAAAk⊗BBBk

⃦⃦⃦⃦
⃦⃦

2

F

,

using the rearrangement operator and SVD, with fixed λ̂i, AAÂi and BBB̂i (i ̸= k) from the

previous iterations.

When all configurations {(mk,nk)}Kk=1 are distinct, the backfitting procedure for hKoPA

is depicted in Algorithm 11, where vec−1
m,n is the inverse of the vectorization operation that

convert a column vector back to a 2m×2n matrix. When r terms indexed by k1, . . . ,kr in

the hKoPA model have the same configuration, these terms are updated simultaneously in

the backfitting algorithm by keeping the first r components from the SVD of the residual

matrix EEEk = YYY −
∑︁

i ̸=k1,...,kr
λ̂iAAÂi⊗BBB̂i. We also orthonormalize the components by the

Gram-Schmidt procedure (Algorithm 10) at the end of each backfitting round.

Since each iteration of the backfitting procedure reduces the sum of squares of residuals,

the algorithm always converges, though it may land in a local optimal. Empirical experi-

ences show that most of the time the global minimum is reached. Starting with different

initial values and with different orders of backfitting helps.

10.3.2 Hybrid KoPA with Unknown Configurations

In this section, we consider the case when the model configuration C = {(mk,nk)}Kk=1 is

unknown. We use a greedy method similar to boosting to obtain the approximation by

iteratively adding one Kronecker product at a time, based on the residual matrix obtained

from the previous iteration. Specifically, at iteration k, we obtain

EEÊ
(k) = YYY −

k−1∑︂
i=1

λ̂iAAÂi⊗BBB̂i,
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Algorithm 11: Backfitting Least Squares Procedure
1 Set λ̂1 = λ̂2 = · · ·= λ̂K = 0;
2 repeat
3 for k = 1, · · · ,K do
4 EEEk = YYY −

∑︁
i ̸=k λ̂iAAÂi⊗BBB̂i;

5 Compute SVD of Rmk,nk
[EEEk]:

Rmk,nk
[EEEk] =

J∑︂
j=1

sjuuujvvv
T
j .

6 Update λ̂k = s1, AAÂk = vec−1
mk,nk

(uuu1) and BBB̂k = vec−1
M−mk,N−nk

(vvv1);
7 end
8 Orthonormalize the components by Algorithm 10;
9 until convergence;

10 return {(λ̂k,AAÂk,BBB̂k)}Kk=1.

where λ̂i, AAÂi and BBB̂i are obtained in the previous iterations, starting with EEE(1) = YYY . Then

we use the single-term KoPA with unknown configuration proposed in Section 9.2.3 to

obtain

min
λk,AAAk,BBBk

∥ÊEE
(k)
−λkAAAk⊗BBBk∥2F ,

where the configuration (mk,nk) of AAÂk and BBB̂k is obtained by minimizing the information

criterion

ICκ(m,n) = 2M+N ln ∥E
EÊ

(k)
−λkAAAk⊗BBBk∥2F

2M+N
+κη, (10.5)

where η = 2m+n + 2M+N−m−n is the number of parameters of the single-term model with

configuration (mk,nk) and q is the penalty coefficient on model complexity. As shown in

Section 9.3, in a single-term Kronecker product case, when the signal-to-noise ratio is large

enough, minimizing the information criterion ICκ in (10.5) produces consistent estimators

of the true configuration.

The procedure is repeated until a stopping criterion is reached as detailed in Algorithm

12.

The iterative Algorithm 12 is a greedy algorithm, which does not guarantee a global

optimal in all configuration combinations. The output of the algorithm satisfies Assump-

tion 10.1 but does not satisfy Assumption 10.2. However, searching the configuration space
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Algorithm 12: Iterative Algorithm for hKoPA Estimation

1 Set EEÊ(1) = YYY ;
2 for k = 1, · · · ,K do
3 for all possible configuration (m,n) do
4 Compute SVD for Rm,n[EEÊ(k)]:

Rm,n[EEÊ(k)] =
J∑︂

j=1
sjujv

′
j .

5 Set λ̂(m,n)
k = s1, AAÂ(m,n)

k = vec−1
m,n(u1) and BBB̂

(m,n)
k = vec−1

M−m,N−n(v1);

6 Compute SSŜ(m,n)
k = λ̂

(m,n)
k AAÂ

(m,n)
k ⊗BBB̂

(m,n)
k ;

7 end
8 Compute

(m̂k, n̂k) = argmin
(m,n)

2M+N ln ∥E
EÊ

(k)
−SSŜ

(m,n)
k ∥2F

2M+N
+κη.

9 Set λ̂k = λ̂
(m̂k,n̂k)
k , AAÂk =AAÂ

(m̂k,n̂k)
k and BBB̂k =BBB̂

(m̂k,n̂k)
k ;

10 if a stopping criterion is met then
11 Break;
12 end
13 EEÊ

(k+1) = EEÊ
(k)
−SSŜ

(m̂k,n̂k)
k ;

14 end
15 return {(λ̂k,AAÂk,BBB̂k)}K̂k=1, where K̂ is the number of terms determined by the

stopping criterion.

{(mk,nk)}Kk=1 in a greedy and additive way requires less computational cost. It is possible

that, given the configuration Ĉ = {(m̂k, n̂k),k = 1, . . . , K̂} obtained in the greedy algorithm,

a refinement step can be engaged using the algorithm proposed in Section 3.1. If more com-

putational resources are available, the refinement can be done at the end of each iteration

k based on Ĉk = {(m̂i, n̂i), i = 1, . . . ,k} to obtain better partial residual matrix EEÊ
(k) so the

configuration determination in future iterations are more accurate.

The stopping criterion can be selected according to the objective of the study. For

denoising applications, one may specify the desired level of the proportion of the total

variation explained by the hKoPA to be reached. We will introduce a practical stopping

criterion based on the random matrix theory in the example section.
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10.4 Simulation

In this simulation, we examine the performance of the least squares backfitting algorithm

in Algorithm 11 for a two-term Kronecker product model and determine the factors that

affect the estimation accuracy and convergence speed of the algorithm.

Specifically, we simulate the data matrix YYY according to

YYY = λ1AAA1⊗BBB1 +λ2AAA2⊗BBB2 +σEEE,

where λ1 = λ2 = 1, AAAk, BBBk (k = 1,2) satisfy Assumption 10.1, and AAA1 and AAA2 satisfy

Assumption 10.2. One of the objectives of the simulation study is to see the impact of

linear dependence of BBB1 and BBB2, since AAA1 and AAA2 are already “linearly independent” under

Assumption 10.2. The configurations for this simulation study are set to be

M =N = 9, (m1,n1) = (4,4), (m2,n2) = (5,5).

To simulate the component matrices, we first generate AAA1 and AAA2 with i.i.d. standard

Gaussian entries, and then preform the Gram-Schmidt procedure given in Algorithm 1 so

that they satisfy Assumption 10.2, and finally rescale them to have Frobenius norm one.

We then generate BBB̃1 and BBB̃2 in exactly the same way (so that BBB̃1 and BBB̃2 also satisfy

Assumption 10.2), and set

BBB1 = BBB̃1 +α111⊗BBB̃2√
1+α22m2+n2−m1−n1

, BBB2 =BBB̃2,

where 111 is a 2m2−m1×2n2−n1 matrix of ones.

It is seen that by such a construction α controls the linear dependency between BBB1 and

BBB2. In particular when α = 0, BBB1 and BBB2 are linearly independent in the sense that they

satisfy Assumption 10.2. When α→∞, BBB1 ∝ 111⊗BBB2 and the model can be represented

using a single Kronecker product.

In this simulation, we consider α ∈ {0,0.5,1.0,1.5,2.0} and σ0 := 2(M+N)/2σ ∈ {0,0.5,

1.0,1.5,2.0}. The benchmark setting is α= 0.5 and σ0 = 1, under which the signal-to-noise
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Figure 10.1: Fitting error against number of iterations for different α values, when σ0 = 1

ratio is (λ2
1 +λ2

2)/σ2
0 = 2.

We first examine the effect of linear dependency of BBB1 and BBB2, controlled by α. Hence

we fix σ0 = 1 and check the performance of the backfitting algorithm under different values

of α, using the known configurations. Figure 10.1 shows the relative error of YYŶ for the first

40 iterations for the five different values of α. At σ0 = 1, a perfect fit is expected to have

an error of
E[∥σEEE∥F ]
E[∥YYY ∥F ] = σ0√︂

λ2
1 +λ2

2 +σ2
0

≈ 0.577.

under the simulation setting. It is seen from Figure 10.1 that the estimators tend to overfit

as the final relative errors are all smaller than the expected value. This is due to the fact

that the observed error term EEE is not orthogonal to the observed signal. On the other hand,

the less the linear dependence between BBB1 and BBB2, the less the model is overfitted.

By comparing the convergence speed of different α values, we notice that larger value

of α, corresponding to higher linear dependency between BBB1 and BBB2, results in a slower

convergence rate. When BBB1 and BBB2 are linearly independent (α= 0), only one iteration is

needed.

In Figure 10.2, the errors of the estimators λ̂k, AAÂk, and BBB̂2 are plotted against the

number of iterations. For all the components, higher values of α result in slower convergence

rates and less accurate final results. It is also seen that the estimation accuracy for AAAk and
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Figure 10.2: Errors against number of iterations at different α values for AAA1, AAA2, BBB1, BBB2,
λ1 and λ2.
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BBBk has quite different behaviors as the number of iterations increases. This is not surprising

because AAA1 and AAA2 are “linear independent”, while BBB1 and BBB2 are designed to have a linear

dependency when α > 0. In particular, the estimators BBB̂k seem to be more accurate than

AAÂk.

Next, we examine the effect of the noise level σ0. We fix α = 0.5 and consider five

different values of the noise σ0. The error in estimating YYY is reported in Figure 10.3. It is

seen that higher noise level σ0 results in larger errors, as expected. A small difference in

the convergence speed is observed as well. The algorithm converges faster when the noise

level is high, but it is not as sensitive as that in the change of linear dependence level α.

Figure 10.3: Fitting error against number of iterations for different σ0 values

Errors for estimating the different components in the model are plotted in Figure 10.4

for different noise levels. The difference in convergence rates is less obvious. We also observe

that the performance for estimating the smaller component matrices AAA1 and BBB2 is better

than that for the larger matrices AAA2 and BBB1.

10.5 Example

In this section, we apply the hKoPA to analyze the image of Lenna, which has been used

widely as a benchmark example in image processing. The Lenna image shown in Figure 10.5

is a gray-scaled 512× 512 picture, which is represented by a 512× 512 (M = N = 9) real
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Figure 10.4: Errors in components against number of iterations for different σ0 values.
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Figure 10.5: (Left) Original Grayscaled Lenna’s image. (Mid Left) Noisy image with σ= 0.1.
(Mid Right) Noisy image with σ = 0.2. (Right) Noisy image with σ = 0.3.

matrix YYY 0. The elements of YYY 0 are real numbers between 0 and 1, where 0 represents black

and 1 represents white. Besides the original image, in this example we also consider some

artificially corrupted images using

YYY = YYY 0 +σEEE,

where EEE is a matrix of i.i.d. standard Gaussian random variables and σ denotes the noise

level. We consider three noise levels σ ∈ {0.1,0.2,0.3}. Note that the original image scale is

[0,1]. Hence the image with noise level σ = 0.3 is considered to be heavily corrupted. The

noisy images are shown in Figure 10.5.

For this example, the configurations in the hKoPA model (10.1) are unknown. Therefore,

we adopt the iterative greedy algorithm proposed in Section 10.3.2, where the configuration

in each iteration is determined by BIC. For each σ, we consider to fit the image with at

most 20 Kronecker product terms. The selected configurations (m̂k, n̂k), the estimated λ̂k

and the cumulative percentage of variation explained (c.p.v.) by the first 10 iterations are

reported in Table 10.6. It is seen that for all noise levels σ, the first several Kronecker

product terms can explain most of the variation of YYY . To check the possible overfitting,

we report the ratio ∥YYY 0∥2F /∥YYY ∥2F in percentage at the bottom row of Table 10.6. When

σ = 0.3, the c.p.v. exceeds this ratio after the seventh iteration, indicating the overfitting

if more terms are added to hKoPA.

In the heavily corrupted cases, configurations close to the center such as (5,4) are more

likely to be selected by BIC. These configurations correspond to more squared AAAk and BBBk

matrices.
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Figure 10.7: Fitted images in the first, third and fifth iterations. (Row 1) σ = 0.0. (Row 2)
σ = 0.1. (Row 3) σ = 0.2. (Row 4) σ = 0.3.
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The recovered images using one to five Kronecker product terms at different noise levels

σ are given in Figure 10.7, where the total number of parameters involved is shown under

each image. We see that hKoPA is able to recovered the true image with a small number

of iterations. Even in the most noisy case σ = 0.3, lots of details are present.

In addition to the iterative greedy algorithm, we propose a stopping criterion based

on random matrix theory to determine the number of Kronecker products. Specifically, at

iteration k, an estimate of σ is

σ̂ = 2−(M+N)/2∥EEÊ
(k)
−SSŜk∥F = 2−(M+N)/2∥EEÊ

(k+1)
∥F .

Under the i.i.d. Gaussian assumption on EEÊ
(k+1), we have

P

[︃
∥Rm̂k,n̂k

[EEÊk+1]∥S ⩾ σ̂
(︂
2(m̂k+n̂k)/2 +2(M+N−m̂k−n̂k)/2 + t

)︂]︃
⩽ e−t2/2,

according to the non-asymptotic analysis on the random matrices and the concentration

inequalities (Vershynin, 2010). Here we set t =
√

2log100≈ 3.03 such that the probability

is bounded by 0.01. We terminate the algorithm at step k if

λ̂k

σ̂
⩽ 2(m̂k+n̂k)/2 +2(M+N−m̂k−n̂k)/2 +

√︁
2log100, (10.6)

and use the first K̂ = k−1 terms as the optimal approximation. Specifically, when σ = 0 or

0.1, the stopping criterion is never met in the first 20 iterations and we use K̂ = 20. When

σ = 0.2, a 9-term model is selected, and when σ = 0.3, the stopping criterion results in a

7-term model.

Low rank approximation is another widely used approach in image denoising and com-

pression. It assumes

YYY =
K∑︂

i=1
λiuiv

′
i.

The complexity is controlled by the number of rank one matrices K. We remark that the low

rank approximation is a special case of hKoPA. It corresponds to the case that all Kronecker

products in (10.1) are of the same configuration (M,1). To compare the performance of
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Figure 10.8: RSE error of against the number of parameters used for KPD and SVD ap-
proaches at different noise levels. The optimal model determined by empirical stopping rule
is marked by ‘⋆’.

hKoPA with the low rank approximation approach, we calculate the relative squared error

of the fitted matrix YYŶ by

RSE = ∥Y
YY 0−YYŶ ∥2F
∥YYY 0∥2F

,

where YYY 0 is the original image without noise and YYŶ is the fitted matrix of the noisy version

YYY . For both hKoPA and the low rank approximation, and for different noise levels σ, we plot

RSE against the number of parameters used in the approximation, in Figure 10.8. For each

graph, the hKoPA chosen by the proposed stopping criterion (10.6) is marked with a “⋆⋆⋆”.

Comparing the error curve of SVD with the one of hKoPA, Figure 10.8 reveals that for any

level of model complexity (or the number of parameters), hKoPA is more accurate than the

standard low rank SVD approximation. When noises are added, overfitting is observed for

both hKoPA and SVD approximation as the error (compared to the true image) increases

when too many terms are used, as seen from the U -shape of the curves. The stopping

criterion in (10.6) prevents the model from significantly overfitting. The realized relative

error of the hKoPA with the number of terms selected by (10.6) is close to the minimum
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attainable error, though the estimated number of terms is not the optimal one.
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CHAPTER 11

Matrix Completion with KoPA

11.1 Introduction to Matrix Completion Problems

Many applications involve observations in a high dimensional matrix form. Often the ob-

served matrix has a certain number of missing entries and is observed with error. In many

recent machine learning studies of high dimensional matrix observations, a common ap-

proach is to assume that the observed matrix has a underlying low rank structure. The low

rank representation explains the interaction between matrix entries with a smaller number

of parameters and reveals the core factors that drive and control the high dimensional ob-

servations, resulting in significant dimension reduction. Such a low rank assumption also

makes it possible to recover the missing entries in an observed matrix, which is known as

the matrix completion problem. Some of the matrix completion applications include collab-

orative filtering (Goldberg et al., 1992), global positioning (Biswas et al., 2006) and remote

sensing (Schmidt, 1986). One of the most famous examples is the Netflix recommendation

system contest, in which the winning algorithm recovers the movie-rating matrix by a rank

one matrix based on the observed entries.

Two different settings of matrix completion problems have been studied in the literature.

One is the exact matrix completion problem whose goal is to recover the original matrix

exactly when a portion of the matrix entries is missing. When the original matrix rank

is known, it can be recovered through the alternating minimization algorithm proposed

by Jain et al. (2013) under certain conditions. When the matrix rank is unknown, it is

still possible to exactly recover the matrix through nuclear norm optimization (Candès and
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Recht, 2009; Candès and Tao, 2010). The nuclear norm optimization approach can also be

applied to tensor completion problems whose goal is to recover a tensor structure (Yuan and

Zhang, 2016). The second setting considers the circumstances when the observed entries

are corrupted with noises while a portion of the matrix entries is missing. It is known as the

stable matrix completion problem. Candes and Plan (2010) extends the nuclear norm opti-

mization approach in the exact matrix completion problem to the stable matrix completion

problem by relaxing the constraint. Assuming the matrix rank is known, Keshavan et al.

(2010) approaches the problem using a combination of spectral techniques and manifold op-

timization. Specifically for stable rank one matrix completion problem, Cosse and Demanet

(2017) proposes to solve it using two rounds of semi-definite programming relaxation. Note

that the alternating minimization algorithm in Jain et al. (2013) is applicable for the stable

matrix completion problem as well.

It is observed that in many applications of image processing, signal processing and

quantum computing, the high dimensional data in matrix forms often has a low-rank struc-

ture in terms of Kronecker product instead of singular value decomposition (Werner et al.,

2008; Duarte and Baraniuk, 2012; Kamm and Nagy, 1998). Approximating a matrix with

a sum of a small number of matrices in Kronecker product form is an extension of low rank

approximation with a sum of rank one matrices. The flexibility provides an alternative

approach for matrix completion. The key challenging factor of the approach is to determine

the configurations of the Kronecker product.

In this chapter, we consider the matrix completion problem under the setting that the

original matrix has a k-term Kronecker product structure with an unknown configuration.

We propose to use an information criterion to determine the configuration similar to the

one in Section 9.2.3. Particularly we first evaluate the information criterion of each possible

conformable configurations, then the matrix is completed under the Kronecker product

structure, using the chosen configuration.
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11.2 Matrix Completion with KoPA

11.2.1 Matrix Completion

Let XXX ∈ RP ×Q be a high dimensional matrix. Suppose both P and Q can be factorized as

P = pp∗ and Q = qq∗. In opposite to the complete Kronecker Product Decomposition in

Section 8.2, a low rank KPD assumes that

XXX =
r∑︂

i=1
λiAAAi⊗BBBi (11.1)

with r < (pq)∧ (p∗q∗). This is similar to matrix low rank assumption in which the matrix

XXX is assumed to have the form

XXX =
r∑︂

i=1
λiuiv

′
i, (11.2)

a sum of r rank one matrices. In fact, there is a direct connection between (11.1)) and

(11.2) as explained later.

Let YYY ∗ be the observed matrix with missing entries to be estimated. We assume

[YYY ∗]ij = [YYY ]ijδij

where δij i.i.d ∼ Bernoulli(τ), and YYY is the complete data matrix. The rate τ is called the

observing rate. We further assume YYY is a corrupted version of an underlying signal matrix

XXX in that

YYY =XXX+σEEE, (11.3)

where EEE is a P ×Q matrix with i.i.d. standard Gaussian entries and σ denotes the noise

level. The underlying signal matrix XXX is assumed to have a low rank KPD in (11.1).

Let Ω be the set of the indices of observed entries in YYY ∗ and define YYY ∗ = PΩ(YYY ) be the

observed version of YYY such that

[PΩ(YYY )]ij =

⎧⎪⎪⎨⎪⎪⎩
[YYY ]ij if (i, j) ∈ Ω,

0 otherwise.
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Note that, the standard matrix completion algorithms (Candès and Recht, 2009; Candes

and Plan, 2010; Jain et al., 2013) assume a low rank structure of the signal matrix XXX in the

form of (11.2). It is a special case of our model, with p= P,p∗ = 1 and q = 1, q∗ =Q. In this

paper we propose to use an information criterion to determine the configuration (p,q) and

the rank r as well, for the purpose of matrix completion under the low rank KPD setting.

We propose a two-step procedure to solve the stable matrix completion problem. In

the first step, we explore all candidate configurations of the underlying KPD. For each

configuration, the Kronecker matrix completion problem is equivalent to the classical matrix

completion problem after a rearrangement operation of the matrix elements and hence is

solved with existing low rank matrix completion algorithms. We obtain an information

criterion for each possible configurations. In the second step, we determine the configuration

by minimizing the information criterion over all candidate configurations and the final

completion estimate is obtained using the estimated optimal configuration.

11.2.2 Estimation

As discussed in Section 8.3, the Kronecker product of two matrices and the outer product

of their vectorized version are linked through a rearrangement operation such that

Rp,q[AAA⊗BBB] = vec(AAA)[vec(BBB)]′.

That is, for any given configuration, the rearrangement operation R turns a Kronecker

product into a rank-one matrix.

Let (p,q) be any allowed configuration for a P ×Q matrix. That is, p is a factor of

P and q is a factor of Q. Let r be a fixed rank. Given any partially observed corrupted

matrix PΩ(YYY ) of dimensions P and Q, the Kronecker matrix completion problem under

configuration (p,q) is the following optimization problem.

min
λi,AAAi,BBBi

⃦⃦⃦⃦
⃦PΩ

(︄
r∑︂

i=1
λiAAAi⊗BBBi

)︄
−PΩYYY

⃦⃦⃦⃦
⃦

F

. (11.4)

Since rearrangement operation preserves the Frobenius norm, the optimization problem
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Algorithm 13: Matrix Completion with Fixed Configuration
1 Input: matrix PΩYYY , configuration (p,q), rank r;
2 Let YYỸ = PΩ̄p,q

Rp,q[YYY ];
3 Initialize ΛΛΛ(0), UUU (0), VVV (0) such that UUU (0)ΛΛΛ(0)[VVV (0)]′ is the leading rank r SVD of YYỸ ;
4 repeat
5 UUU∗ = argmin

UUU
∥PΩ̄p,q

[YYỸ −UUU [VVV (k)]′]∥F ;

6 VVV ∗ = argmin
VVV

∥PΩ̄p,q
[YYỸ −UUU∗[VVV ]′]∥F ;

7 Update ΛΛΛ(k+1), UUU (k+1), VVV (k+1) such that UUU∗[VVV ∗]′ = UUU (k+1)ΛΛΛ(k+1)[VVV (k+1)]′ is in
standard SVD form;

8 until convergence;
9 return XXX̂ =R−1

p,q [UUUΛΛΛVVV ′] where ΛΛΛ,UUU,VVV are from the last iteration.

(11.4) is equivalent to the classical rank-r matrix completion problem

min
λi,ui,vi

⃦⃦⃦⃦
⃦PΩ̄p,q

(︄
r∑︂

i=1
λiuiv

′
i−Rp,q[YYY ]

)︄⃦⃦⃦⃦
⃦

F

. (11.5)

where ui = vec(AAAi), vi = vec(BBBi), and Ω̄p,q records the indices of observed entries after the re-

arrangement such that for any pp∗×qq∗ matrix MMM , we have Rp,q[PΩMMM ] = PΩ̄p,q
Rp,q[MMM ]. To

solve the optimization in (11.5), we adopt the alternating minimization algorithm proposed

by Jain et al. (2013), where the initial values for ui and vi are directly estimated from the

singular value decomposition of PΩ̄p,q
Rp,q[YYY ] as in Keshavan et al. (2010). The algorithm is

depicted in Algorithm 13. The recovered matrix is therefore XXX̂ =R−1
p,q [
∑︁r

i=1 λ̂iûiv̂
′
i], where

R−1 is the inverse operation of rearrangement and λ̂i, ûi and v̂i are the optimal solution of

(11.5).

Notice that if one complete row or column of Rp1,q1 [YYY ] is missing, the matrix cannot

be completely recovered by Algorithm 13. For example, if row j of Rp.q[YYY ] is completely

missing (corresponding to a missing block of size P/p×Q/q in YYY ), the j-th value of ui

(i= 1, . . . , r) is not recoverable as it can have an arbitrary value and the value of the objective

function in (11.5) does not change. In this case, the same block in the recovered matrix

XXX̂ =R−1
p,q [
∑︁r

i=1 λ̂iûiv̂
′
i] would remain to be missing. In classical matrix completion studies

(Candès and Recht, 2009; Candes and Plan, 2010), a feasibility condition is often assumed to

control the probability of missing complete row or column, which in turn imposes a condition



187

on the missing rate in relationship to the dimensions of the matrices (Chen et al., 2019b).

In Kronecker product approach, we will provide two possible solutions in Section 11.3.

Another assumption often used in traditional low rank matrix completion algorithms is

the incoherence condition, which assumes that the information of ui and vi spreads across

all the columns and rows of the matrix uiv
T
i . In the rank-r case as in (11.5), the incoherence

condition bounds the ℓ∞ norm of all ui and vi. In our case, the condition bounds the ℓ∞

norm of all AAAi and BBBi.

We also note that most of the existing theoretical results (Candes and Plan, 2010; Chen

et al., 2019b) for the optimization problem of (6) also apply for the optimization problem

of (5). Hence with a known true configuration and the incoherence condition, these results

hold for matrix completion algorithm under Kronecker product approximation.

11.2.3 Information Criterion for Configuration Determination

Section 11.2.2 provides the algorithm to estimate XXX from the partially observed PΩYYY when

an arbitrary allowed Kronecker product configuration (p,q) is given. It remains to estimate

the true configuration from all possible ones. Again, let (P,Q) be the dimension of YYY ∗ and

let 1 = p0 < p1 < .. . < pM = P be all the factors of P and 1 = q0 < q1 < .. . < qN =Q be all

the factors of Q. Note that pmpM−m =P and qnqN−n =Q for all 0≤m≤M and 0≤ n≤N .

To simplify notation, in the following, we use (m,n) to denote the configuration, instead of

(pm, qn). All possible configurations are in the set

C = {(m,n) :m ∈ [M ], n ∈ [N ]}\{(0,0),(M,N)},

where the configurations (0,0) and (M,N) are excluded because they correspond to trivial

Kronecker products in which one of the matrices is a scalar.

We propose to determine the configuration through minimizing an information criterion,

ICκ(m,n) = PQ ln ∥PΩXXX̂−PΩYYY ∥2F
|Ω| +κη, (11.6)

where XXX̂ is the recovered matrix under configuration (m,n), η = pmqn +pM−mqN−n is the
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number of parameters in the Kronecker product model (11.3) and κ is the coefficient of

penalty on model complexity.

Here we heuristically discuss why the minimization in (11.6) gives the true configuration.

For a fixed observing probability τ , when the size of matrix YYY is large enough such that

PQ→∞, the number of observed entries |Ω| ≈ τPQ increases to infinity as well. Therefore,

∥PΩXXX̂−PΩYYY ∥2F /|Ω| ≈ ∥XXX̂−YYY ∥2F /(PQ) since the elements in YYY are observed independently.

As pointed out in Section 11.2.2, XXX̂ is approximately the (Kronecker) low rank approxima-

tion of YYY under configuration (m,n). The information criterion in (11.6) approximates the

information criterion at τ = 1, which is

ICκ(m,n) = PQ ln ∥Y
YY ∥2F −∥Rm,n[YYY ]∥2S

PQ
+κη.

As proved in Section 9.3, the information criterion ICκ can select the true configuration

consistently when the signal-to-noise ratio ∥XXX∥2F /(PQσ2) exceeds certain threshold. Con-

sequently, the true configuration is expected to be selected consistently by the minimization

in (11.8). A rigorous theoretical investigation is needed though.

11.3 Feasibility and Model Average

As discussed in Section 11.2.2, if a configuration produces a missing row or column after

rearrangement, the recovered matrix XXX̂ by Algorithm 11 will still have unrecovered missing

entries. One simple solution is to restrict the candidate configuration set to the feasible

configuration set

C0 = {(m,n) ∈ C : PΩ̄m,n
Rm,n[YYY ] has no missing column/row } (11.7)

We may assume that the true configuration (m∗,n∗) belongs to C0. In other words, the

Kronecker matrix completion problem defined in Section 11.2.1 is feasible at least for the

true configuration. Then an estimator of the configuration can be obtained by

(m̂, n̂) = argmin
(m,n)∈C0

ICκ(m,n). (11.8)
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In Kronecker matrix completion, configurations close to the corners (0,0) and (M,N)

are more likely to be excluded from C0. To see it, recall τ is the probability that a element

is observed. Hence the probability that at least one entire column in Rm,n[YYY ] is missing is

Pc(m,n;M,N,τ) = 1− [1− (1− τ)pmqn ]pM−mqN−n .

Similarly, the probability of missing an entire row in Rm,n[YYY ] is

Pr(m,n;M,N,τ) = Pc(M −m,N −n;M,N,τ).

Assuming sufficiently large M+N , the configurations close to (0,0) have Pc(m,n;M,N,τ)≈

1 and the configurations close to (M,N) have Pr(m,n;M,N,τ) ≈ 1. Figure 11.1 plots the

probability Pc as a function of m+ n when M +N = 20 for different values of τ , with

P = 2M , Q= 2N , pm = 2m and qn = 2n.

Figure 11.1: Function value of Pc(m,n;M,N,τ) when M +N = 20 under the P = 2M and
Q= 2N setting.

Intuitively it is easy to see the corner configurations (when pq or p∗q∗ are small) have a

higher probability to be infeasible. The rearranged matrix is of dimension pq×p∗q∗. When

pq or p∗q∗ is small, the rearrangement matrix is either a short and fat matrix or a tall and

thin matrix, hence it is easier to have a complete missing row or column. A different way to

see the impact of corner configuration is through the number of infeasible entries under the
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configuration. It is easily seen that the expected number of rows and columns missing in the

reconfigured matrix is p∗q∗(1−τ)pq and pq(1−τ)p∗q∗ , respectively. Hence the proportion of

infeasible entries (the missing entries after Kronecker production completion in Algorithm

1) is roughly (1− τ)(pq)∧p∗q∗ .

In fact these corner configurations are less interesting. For example, if P is an even

number, then the configuration (p= 2, q = 1) uses a 2×1 vector as AAAi and P/2×Q matrix

as BBBi. Their Kronecker product is a matrix with its top and bottom halves differs by a

multiplicative constant. And it uses approximately PQ/2 parameters, which would easily

result in overfitting of the matrix. In additional, the theory in Section 9.3 indicates that

the information criterion (under full matrix setting) requires higher signal-to-noise ratio in

order to distinguish the true configuration and the corner cases. In the matrix completion

problem this issue is more severe since the first term in the information criterion (11.6)

is based only on the observed observations. In addition, the Kronecker rank r cannot be

larger than the minimum of pq and p∗q∗ based on the complete Kronecker decomposition in

Section 8.2. Hence the corner configurations limits the number of Kronecker product terms

in the model. Hence it is often beneficial to exclude the corner cases from consideration.

Instead of just simply assuming the true configuration is in the feasible set, an alternative

is to combine several configurations in a model averaging operation. Since different config-

urations rearrange the observed matrix differently, the infeasible entry sets (the entries that

cannot be recovered under a configuration) may not overlap for different configurations.

Hence the infeasible entries under a configuration may be estimated with an alternative

configuration that is feasible for these specific entries. We propose the following model

averaging operation.

First we define the restricted configuration set as

Cs = {(m,n) ∈ C : pmqn∧pM−mqN−n ≥ ln(s)/ ln(1− τ)}, (11.9)

where s controls the expected proportion of infeasible entries under a configuration.

Let Ck = (pmk
, qnk

),k = 1,2, . . . be the sequence of configurations ordered according to

their information criterion IC(Ck) within the restricted configuration set Cs, and let XXX̂k be
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the estimated XXX using configuration Ck. Define νijk be the infeasible entry indicator for

which νijk = 0 if (i, j)-th entry is an infeasible entry under configuration Ck, and νijk = 1

otherwise. Let dij = mink{νijk = 1} so Cdij
is the best configuration under which (i, j)-th

entry is a feasible entry. Let the (i, j)-th entry of the final estimate XXX̂ be weighted average

of the (i, j)-th entry of XXX̂k,

XXX̂[i, j] =
∑︁d∨dij

k=1 wkνijkXXX̂k[i, j]∑︁d∨dij

k=1 wkνijk

(11.10)

where wk is the assigned weight to configuration Ck. One may simply use constant weights.

A more precise approach is to use a set of weights that reflects the accuracy of each config-

uration such as IC(Ck).

The model average estimator take the weighted average of the recovered entries under

the best d configurations for most of the missing entries. If an entry (i, j) is infeasible under

all d configurations C1, . . . ,Cd, the above estimator finds the best configuration (in terms

of IC) under which (i, j)-th entry is a feasible entry, and fill the entry with the recovered

entry under that configuration.

The benefit of model averaging is multi-fold. First it provides an effective approach to

handle the infeasibility issue. The probability that there is an entry that is infeasible under

all possible configurations is extremely small, for reasonably large (M,N), the number of

factors of (P,Q). Hence the procedure is able to handle high missing rate. Second, model

averaging provides potentially more robust and stable estimators, as demonstrated in many

studies in statistics literature (Buckland et al., 1997; Raftery et al., 1997). Note that KPD is

true for all possible configurations. With a finite rank r, they all provide an approximation

to the signal matrix XXX in (11.3), with different qualities. Averaging over the best performing

models potentially improves the quality of matrix recovery. Third, model averaging provides

sharper resolution in the completed matrix, particularly in image reconstruction. Kronecker

products induce a block structure in the resulting matrix hence often produce ’grainy’

images. Averaging over several configurations reduces such effects. Fourth, although the
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final predictive model after averaging is equivalent to a hybrid Kronecker product model

XXX =
d∑︂

k=1
wkXXXk,

where each XXXk assumes a Kronecker product model (11.1) under configuration Ck. The

model averaging approach bypasses the difficulty of jointly estimating such a model as well

as determining the configurations in such a model. The effectiveness of the approach will

be demonstrated in the empirical study.

In practice the matrix dimension P and Q may not have many factors, which limits

the flexibility of the KPD approach as the candidate set C can be small. In this case it

is possible to augment the observed matrix with additional missing rows and columns so

that the new dimensions P ∗ and Q∗ have more factors to expand the candidate set. is

to make P ∗ = 2M and Q∗ = 2N . One can also use different P ∗ and Q∗ as part of model

averaging operation. With a good configuration determination procedure and effective

model averaging, significant improvement in matrix completion tasks can be obtained.

11.4 Simulation

In this simulation experiment, we exam the performance of the configuration determination

procedure under a rank-1 setting. Specifically, the data is generated in a random scheme,

where AAÃ and BBB̃ are realizations of Gaussian random matrices of size 2m×2n and size 2M−m×

2N−n, respectively, with i.i.d N(0,1) entries. Let XXX = λ0AAÃ⊗BBB̃, where λ0 is the parameter

used to control the signal-to-noise ratio. After re-parametrization of above construction, we

have the identifiable parameters as

λ= λ0∥AAÃ∥F ∥BBB̃∥F , AAA= AAÃ

∥AAÃ∥F
, BBB = BBB̃

∥BBB̃∥F
.

The underlying complete matrix YYY is generated according to YYY =XXX+σEEE, where EEE contains

i.i.d. standard normal entries. The observed set Ω is generated independently such that

P [(i, j) ∈ Ω] = τ for all (i, j).

In this simulation, we set M = N = 9 (hence the observed matrix is 512× 512) and
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ICκ τ
λ0/σ

0.1 0.2 0.3 0.4 0.5 0.6

AIC

0.1 0 0 57 93 100 100
0.2 0 0 98 100 100 100
0.3 0 0 100 100 100 100
0.6 100 100 100 100 100 100
0.8 100 100 100 100 100 100

BIC

0.1 13 100 100 100 100 100
0.2 40 100 100 100 100 100
0.3 86 100 100 100 100 100
0.6 100 100 100 100 100 100
0.8 100 100 100 100 100 100

Table 11.1: Number of correct configuration selections over 100 repetitions for different
λ0/σ, τ and information criteria.

(m∗,n∗) = (5,4). A combination of six different λ0/σ values and five different probabilities

τ are considered. AIC (κ= 2) and BIC (κ= (M +N) ln2) are used. For each combination

of λ0/σ and τ , we repeat the simulation 100 times and record the number of repetitions

that the true configuration (m∗,n∗) is selected by the minimization in (11.8). The result is

reported in Table 11.1.

From the table, it is obvious (and intuitively true) that the information criteria perform

better with smaller missing proportion (large τ) and larger signal-to-noise ratio. And BIC

performs better than AIC in this setting for the more difficult cases when the τ is small

and the signal-to-noise ratio λ0/σ is small.

We estimate XXX with the configuration (m̂, n̂) selected by BIC and measure the error of

recovered matrix XXX̂ by

∥XXX−XXX̂∥2F /∥XXX∥2F ,

which is the Frobenius norm of error matrix, normalized by the Frobenius norm of XXX. The

averaged error of XXX̂ over 100 repetitions are reported in Table 11.2.

It reveals that the estimation error decreases when more entries are observed and when

the signal-to-noise ratio λ0/σ increases. As a comparison, SVD matrix completion, whose

rank is selected such that the number of parameters are similar to the one selected by

BIC, is reported in Table 11.2 as well. We notice that, with (almost) the same number of

parameters used, KPD matrix completion with configuration selected by BIC is uniformly



194

τ
λ0/σ

0.1 0.2 0.3 0.4 0.5 0.6

K
PD

0.1 1.158 0.833 0.571 0.417 0.300 0.206
0.2 1.032 0.688 0.518 0.384 0.272 0.181
0.3 0.931 0.665 0.506 0.375 0.264 0.174
0.6 0.841 0.650 0.498 0.367 0.257 0.167
0.8 0.829 0.647 0.496 0.365 0.255 0.165

SV
D

0.1 1.159 1.177 1.153 1.170 1.124 1.494
0.2 1.042 1.042 1.042 1.043 1.046 1.050
0.3 1.026 1.025 1.025 1.024 1.023 1.022
0.6 1.010 1.010 1.008 1.004 0.999 0.995
0.8 1.008 1.006 1.003 0.998 0.993 0.989

Table 11.2: Averaged error of XXX̂ over 100 repetitions.

better than its SVD counterpart when the true matrix XXX has a low Kronecker rank structure

instead of low matrix rank structure. This simulation also reveals that it is not optimal to

apply classical matrix completion on matrices with Kronecker product structure.

11.5 Example

In this section, we apply the matrix completion approach for Kronecker products to images

based on the image of Lenna. The original color image is converted to grayscale as shown

in Figure 11.2 (left image) such that the image can be represented by a 512× 512 matrix

XXX of real numbers between 0 and 1.

To simulate the process of noise corruption and missing data, we first add a noise matrix

to the grayscale image such that YYY = XXX +σEEE, where the entries of EEE are i.i.d. standard

Gaussian errors. We set σ= 0.1 and the corrupted image YYY is shown in the middle of Figure

11.2. We set the missing rate to 80% (τ = 0.2) and generated the missing set Ω with i.i.d

Bernoulli(τ).

Let YYY ∗ =PΩYYY be the observed matrix which is plotted in the right of Figure 11.2, where

missing entries are filled with white. We follow the configuration determination procedure

proposed in Section 11.2.3. Based on PΩYYY , all information criteria MSE (κ= 0), AIC (κ= 2)

and BIC (κ= ln(512×512) = 18ln2) select the configuration (p̂m, q̂n) = (32,128), restricted

to the feasible configuration set C0. It corresponds to decompose XXX to the Kronecker

product of a 32×128 matrix and a 16×4 matrix. Recovered images using the configuration



195

Figure 11.2: (Left) Grayscale Lenna’s image; (Middle) Lenna s image with noise; (Right)
Noisy image with 20% observed entries.

and ranks 1 to 3 are shown in the left column in Figure 11.3. The face can be recognized

from the rank-one recovered matrix and more details are added as the rank increases.

To compare the performance of matrix completion through KPD with the classical

approach through low rank SVD, the observed matrix PΩYYY is fitted by the alternating

minimization algorithm assuming a SVD structure, which is equivalent to applying the KPD

matrix completion with the configuration (512,1). SVD matrix completion with ranks 4, 8

and 12 are fitted to match the numbers of parameters of ranks one to three of KPD matrix

configuration (32,128). The recovered matrices from SVD matrix completion are shown in

the right column in Figure 11.3. The superiority of the KPD approach is obvious from the

images. Besides judging the recovered images by eyesight, we measure the error of recovered

matrix by

∥XXX−XXX̂∥2F /∥XXX∥2F ,

where XXX is the image without noise and XXX̂ is the recovered matrix by matrix completion

through either KPD or SVD. Table 11.3 reports the errors of fitted matrices from KPD

approaches and the ones of SVD matrix completion with a similar number of parameters.

It is clear that KPD matrix completion can recover the Lenna’s image more accurately

compared to the SVD matrix completion approach, with a similar number of parameters.

The result is anticipated since KPD matrix completion has more flexibility in selecting the

configurations, with SVD matrix completion being one of its special cases. The proposed

configuration determination procedure is able to find a better configuration, which provides
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KPD rank 1 2 3
Error 0.1558 0.1371 0.1707

SVD rank 4 8 12
Error 0.4045 0.2995 0.3236

Table 11.3: Error for Kronecker matrix completion and classical matrix completion with
similar number of parameters.

better performance than one of its special cases. Table 11.3 also reveals that increasing the

rank r does not always improve the performance as overfitting may occur. To test the

performance of the model averaging approach, we consider several restricted candidate sets

Cs defined in (11.9) with s = 0.167,0.028,0.00079, corresponding to pq ∧ p∗q∗ ≥ 23,24,25,

respectively. We slightly abuse the notation and name them C3 to C5 for simplicity. We also

consider both (Kronecker) rank 1 and 2 models. The configurations within the candidate

sets are ordered based on BIC criterion and their corresponding recovered matrices are ob-

tained. Using equal weights wk, XXX̂ using different d, the number of configurations for model

averaging, are obtained according to (11.10). The reconstruction errors of the completed

matrices as a function of d are reported in Figure 11.4. The error rates using Kronecker

rank r = 2 with restricted set C3 and C4 are worse than all the four lines presented in the

figure and are not shown.

It can be seen from the figure that using rank r = 2 and restricted set C5 performs the

best. The error of averaging the top six configurations is around 0.11, which is about 20%

smaller than 0.1371 obtained by the rank-two single configuration KPD matrix completion

in Table 11.3. The error rate stays roughly the same if more configurations are used in

the averaging. The performance of rank-1 models continues to improve when the averaging

includes more models. The configurations close to the corners actually provide better per-

formance when only rank-1 models are used. Note that C3 includes the corner configurations

1× 8 and 2× 4 matrices. Using restricted set C2 (using 1× 4 and 2× 2) yields the same

results as using C3, hence the extra configurations were not ranked in the top 10 models.

It is seen that rank-2 models are more sensitive to the corner cases. One reason is

that under the configuration that contains completely missing blocks, a rank-two matrix

completion is less robust compared with a rank-one model, resulting in severe overfitting.
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Figure 11.3: (Left column) Recovered images using KPD (Right column) Recovered images
using SVD.
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Figure 11.4: Reconstruction error of the averaged matrix against the number of configura-
tions for four different scenarios.

When we include these configurations in model averaging, the results are poor.

The reconstructed images averaged over 10 rank-1 configurations under the restricted

set C3 and over 9 rank-2 configurations under C5 are shown in Figure 11.5. Using the rank-1

average model, big pixels are observed in the reconstructed image but are less noisy than the

ones in Figure 11.3. By using the rank-2 average model, more details are added resulting

in a much smoother reconstructed image.

Figure 11.5: (Left) Average reconstructed image over 10 rank-one configurations. (Right)
Average reconstructed image over 9 rank-two configurations.
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APPENDIX A

Theorem Proofs for PART II

Proof of Theorem 7.2

We prove the consistency first. Define

ψk(θ) = ∂

∂θ
Mk(θ),

ΨK(θ) =

∑︁K
k=0K

(︃∥zzzk−zzz0∥
b

)︃
ψk(θ)

∑︁K
k=0K

(︃∥zzzk−zzz0∥
b

)︃ ,

Ψ(θ) = Exxx|zzz0ψxxx(θ).

For any given θ, ΨK(θ) is a kernel smoothing estimator for Exxx|zzz0 [ψxxx(θ)] = Ψ(θ). Hence

ΨK(θ)→Ψ(θ) in probability for any given θ, provided Exxx|zzz[ψxxx(θ)] continuous at zzz0 (Wasser-

man, 2010). Due to the assumption that Mk(θ) is convex and second-order differentiable,

ψk(θ) is a non-decreasing function for any xxxk. Therefore, both ΨK and Ψ are non-decreasing

and continuous. By assumption, Θ0 is the unique root of Ψ(θ). Let θ∗
K be such a point that

ΨK(θ∗
K) = 0. θ∗

K may not be unique and may not even exist for small K. For any ϵ > 0, it is

immediate that Ψ(Θ0− ϵ)< 0<Ψ(Θ0 + ϵ) and by the pointwise convergence in probability

of ΨK , we have

P

[︃
|ΨK(Θ0− ϵ)−Ψ(Θ0− ϵ)|⩽

1
2 |Ψ(Θ0− ϵ)|

]︃
−→ 1,

P

[︃
|ΨK(Θ0 + ϵ)−Ψ(Θ0 + ϵ)|⩽ 1

2 |Ψ(Θ0 + ϵ)|
]︃
−→ 1.



217

Therefore,

P

[︃
|ΨK(Θ0− ϵ)−Ψ(Θ0− ϵ)|⩽

1
2 |Ψ(Θ0− ϵ)| ,

|ΨK(Θ0 + ϵ)−Ψ(Θ0 + ϵ)|⩽ 1
2 |Ψ(Θ0 + ϵ)|

]︃
−→ 1.

The event in the probability implies that ΨK(Θ0 − ϵ) < 0 < ΨK(Θ0 + ϵ), which further

implies the existence of θ∗
K in (Θ0− ϵ,Θ0 + ϵ) by continuity of ΨK . Hence

P

[︃
|ΨK(Θ0− ϵ)−Ψ(Θ0− ϵ)|⩽

1
2 |Ψ(Θ0− ϵ)| , |ΨK(Θ0 + ϵ)−Ψ(Θ0 + ϵ)|⩽ 1

2 |Ψ(Θ0 + ϵ)|
]︃

⩽P [ΨK(Θ0− ϵ)< 0<ΨK(Θ0 + ϵ)]

⩽P [Θ0− ϵ < θ∗
K <Θ0 + ϵ] .

Since the first term converges to 1, the last term converges to 1 as well. Note that when

θ̃
(c)
0 exists, it equals θ∗

K . The consistency of θ̃(c)
0 is proved.

With θ̃
(c)
0 −→ θ0 in probability, it is reasonable to expand ΨK(θ̃(c)

0 ) at Θ0.

K∑︂
k=0
K
(︃∥zzzk−zzz0∥

b

)︃
ψk(Θ0)+(θ̃(c)−Θ0)

K∑︂
k=0
K
(︃∥zzzk−zzz0∥

b

)︃
ψ′

k(Θ0)

+
K∑︂

k=0
K
(︃∥zzzk−zzz0∥

b

)︃
O((θ̃(c)

0 −Θ0)2) = 0.

Now we have

θ̃
(c)
0 −Θ0 =−

1
K+1

∑︁K
k=0K

(︃∥zzzk−zzz0∥
b

)︃
ψk(Θ0)

1
K+1

∑︁K
k=0K

(︃∥zzzk−zzz0∥
b

)︃
ψ′

k(Θ0)+O(θ̂(c)
0 −Θ0)

. (A.1)

Consider K → ∞. On one hand, the numerator is a kernel smoothing estimator for

Exxx|zzz0 [ψxxx(Θ0)] = 0 up to a normalizing constant. On the other hand, the denominator

is a similar kernel smoothing estimator for Exxx|zzz0ψ
′
xxx(Θ0). By Slutsky’s theorem, their ratio

has a similar asymptotic distribution to the numerator kernel smoothing estimator up to

a constant factor of Exxx|zzz0ψ
′
xxx(Θ0). Therefore, θ̃(c)

0 has an asymptotic bias Op(b2) and an

asymptotic variance Op(1/Kbd) (Wasserman, 2010). Hence, the optimal choice of band-
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width in a bias-variance optimization scheme is b̂ ≍K−1/(d+4) and the optimal MSE is of

order K−4/(d+4).

Proof of Theorem 7.3

In this case, θ0 is assumed to be fixed, and θ̂
(c)
0 is a standard kernel smoothing estimator

for Eπ[θ0|zzz0] = Θ0. By following the asymptotic property of a standard kernel smoothing

estimator, we have

E[θ̂(c)
0 |zzz0] = Θ0 +Op(b2) and V ar[θ̂(c)

0 |zzz0] =Op

(︃ 1
Kdb

)︃
.

Therefore, we have

Eθ0 [θ̂(c)
0 ] = Eθ0 [Θ0]+Op(b2),

V arθ0 [θ̂(c)
0 ] = V arθ0 [E[θ̂(c)

0 |zzz0]]+Eθ0 [V ar[θ̂(c)
0 |zzz0]] = V arθ0 [Θ0]+Op

(︃ 1
Kdb

)︃
.

Proof of Theorem 7.4

We first prove the following lemma, which would be used in the proof of Theorem 7.4.

Lemma A.1. Suppose the random vector ξ has a pdf pξ and has zero mean, finite variance

and finite higher moments such that

Eξ = 0, Var(ξ) = σ2ΣΣΣ, ∥ΣΣΣ∥= 1.

Then for any second-order partially differentiable function f , we have

∫︂
f(xxx+ t)pξ(t)dt= f(xxx)+ 1

2σ
2tr[∇2f(xxx)ΣΣΣ]+o(σ2),

when σ2→ 0.
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Proof. Let ξ1 = ξ/σ, then E(ξ1) = 0 and Var(ξ1) = ΣΣΣ. Hence

∫︂
f(xxx+ t)pξ(t)dt=

∫︂
f(xxx+σs)pξ1(s)ds

=
∫︂ [︃

f(xxx)+σsT [∇f(xxx)]+ 1
2σ

2sT [∇2f(x)]s+o(σ2)
]︃
pξ1(s)ds

= f(xxx)+ 1
2σ

2
∫︂
sT [∇2f(xxx)]spξ1(s)ds+o(σ2)

= f(xxx)+ 1
2σ

2tr[∇2f(xxx)ΣΣΣ]+o(σ2).

Now we prove Theorem 7.4. Let π̄() be the population distribution for ηηη. Since θ= g(ηηη),

we have

Eπ[θ0|zzz0] =
∫︁
g(ηηη)p(zzz0|ηηη)π̄(ηηη)dηηη∫︁
p(zzz0|ηηη)π̄(ηηη)dηηη

=
(gπ̄)(zzz0)+ 1

2σ
2
ztr[∇2(gπ̄)(zzz0)ΣΣΣz]+o(σ2

z)

π̄(zzz0)+ 1
2σ

2
ztr[∇2π̄(zzz0)ΣΣΣz]+o(σ2

z)

=
(gπ̄)(zzz0)+ 1

2σ
2
ztr[∇2(gπ̄)(zzz0)ΣΣΣz]+o(σ2

z)

π̄(zzz0)

[︄
1− 1

2σ
2
z

tr[∇2π̄(zzz0)ΣΣΣz]
π̄(zzz0) +o(σ2

z)
]︄

= g(zzz0)+ σ2
z

2π̄(zzz0)
(︂
tr[∇2(gπ̄)(zzz0)ΣΣΣz]−g(zzz0)tr[∇2π̄(zzz0)ΣΣΣz]

)︂
+o(σ2

z)

= g(zzz0)+σ2
z

(︄
tr[∇2g(zzz0)ΣΣΣz]

2 + tr[∇π̄(zzz0)T ΣΣΣz∇g(zzz0)]
π̄(zzz0)

)︄
+o(σ2

z).

Thus, the bias is

Eθ0 [Eπ[g(ηηη)|zzz0]]−g(ηηη0)

=
∫︂

Eπ[g(ηηη)|zzz0]p(zzz0|ηηη0)dzzz0−g(ηηη0)

=
∫︂ (︄

g(zzz0)+σ2
z

(︄
tr[∇2g(zzz0)ΣΣΣz]

2 + tr[∇π̄(zzz0)T ΣΣΣz∇g(zzz0)]
π̄(zzz0)

)︄
+o(σ2

z)
)︄
p(zzz0|ηηη0)dzzz0−g(ηηη0)

=g(ηηη0)+σ2
z

(︄
tr[∇2g(ηηη0)ΣΣΣz]

2 + tr[∇π̄(ηηη0)T ΣΣΣz∇g(ηηη0)]
π̄(ηηη0)

)︄
+ 1

2σ
2
ztr[∇2g(ηηη0)ΣΣΣz]+o(σ2

z)−g(ηηη0)

=σ2
z

(︄
tr[∇2g(ηηη0)ΣΣΣz]+ tr[∇π̄(ηηη0)T ΣΣΣz∇g(ηηη0)]

π̄(ηηη0)

)︄
+o(σ2

z)
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≍σ2
z .

On the other hand,

(Eπ[g(ηηη)|zzz0])2 = g2(zzz0)+σ2
z

[︄
gtr[∇2g(zzz0)ΣΣΣz]+ 2gtr[∇π̄(zzz0)T ΣΣΣz∇g(zzz0)]

π̄(zzz0)

]︄
+o(σ2

z),

hence

Eθ0

[︂
(Eπ[g(ηηη)|zzz0])2

]︂
=
∫︂

(Eπ[g(ηηη)|zzz0])2 p(zzz0|ηηη0)dzzz0

=
∫︂ (︄

g2(zzz0)+σ2
z

[︄
gtr[∇2g(zzz0)ΣΣΣz]+ 2gtr[∇π̄(zzz0)T ΣΣΣz∇g(zzz0)]

π̄(zzz0)

]︄
+o(σ2

z)
)︄
p(zzz0|ηηη0)dzzz0

=g2(ηηη0)+σ2
z

[︄
gtr[∇2g(ηηη0)ΣΣΣz]+ 2gtr[∇π̄(ηηη0)T ΣΣΣz∇g(ηηη0)]

π̄(ηηη0)

]︄
+ 1

2σ
2
ztr[∇2(g2)(ηηη0)ΣΣΣz]+o(σ2

z)

=g2(ηηη0)+σ2
z

[︄
2gtr[∇2g(ηηη0)ΣΣΣz]+ 2gtr[∇π̄(ηηη0)T ΣΣΣz∇g(ηηη0)]

π̄(ηηη0) +tr[∇g(ηηη0)T ΣΣΣz∇g(ηηη0)]
]︄

+o(σ2
z).

Therefore, the variance is

Varθ0 [Eπ[g(ηηη)|zzz0]] = Eθ0

[︂
(Eπ[g(ηηη)|zzz0])2

]︂
− [Eθ0 [Eπ[g(ηηη)|zzz0]|ηηη0]]2

= σ2
z∇g(ηηη0)T ΣΣΣz∇g(ηηη0)+o(σ2

z)

≍ σ2
z .

Proof of Theorem 7.5

From Theorem 7.3, we have

Eθ0 [(θ̂(c)
0 −θ0)2] =B2

0 +2B0Op(b2)+Op(b4)+V0 +Op

(︃ 1
Kdb

)︃
.
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On the other hand,

E[B0] = E[Eθ0 [Eπ[g(ηηη)|zzz0]]−g(ηηη0)] = E[g(ηηη)]−E[g(ηηη0)] = 0,

E[B2
0 +V0] = V ar[B0]+E[V0] = V ar[Eθ0 [Eπ[g(ηηη)|zzz0]]−θ0]+E[V arθ0 [Eπ[g(ηηη)|zzz0]]]

= V ar[Eθ0 [Eπ[g(ηηη)|zzz0]−θ0]]+E[V arθ0 [Eπ[g(ηηη)|zzz0]−θ0]]

= V ar[Eπ[θ0|zzz0]−θ0].

Therefore,

E[(θ̂(c)
0 −θ0)2] = E[Eθ0 [(θ̂(c)

0 −θ0)2]] = V ar[Eπ[θ0|zzz0]−θ0]+Op(b4)+Op

(︃ 1
Kdb

)︃
.

Proof of Theorem 7.6

The combined estimator can be written as

θ̂
(c)
0 =

∑︁K
k=0w(θ̂k, θ̂0)θ̂k∑︁K

k=0w(θ̂k, θ̂0)
=

1
K+1

∑︁K
k=0w(θ̂k, θ̂0)θ̂k

1
K+1

∑︁K
k=0w(θ̂k, θ̂0)

.

Let

q(θ̂) =
∫︂
p(θ̂)π(θ)dθ.

By law of large number, when K→∞, the numerator is

1
K+1

K∑︂
k=0

w(θ̂k, θ̂0)θ̂k
P−−−→ E[w(θ̂, θ̂0)θ̂]

=
∫︂ (︄ 1

q(θ̂)q(θ̂0)

∫︂
p(θ̂|θ′)p(θ̂0|θ′)π(θ′)dθ′

)︄
θ̂q(θ̂)dθ̂

= 1
q(θ̂0)

∫︂ (︃∫︂
g(θ̂)p(θ̂|θ′)dθ̂

)︃
p(θ̂0|θ′)π(θ′)dθ′

= 1
q(θ̂0)

∫︂
θ′p(θ̂0|θ′)π(θ′)dθ′

=
∫︂
θ′π(θ′|θ̂0)dθ′.
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Similarly, for the denominator, we have

1
K+1

K∑︂
k=0

w(θ̂k, θ̂0) P−−−→ E[w(θ̂, θ̂0)]

=
∫︂ (︄ 1

q(θ̂)q(θ̂0)

∫︂
p(θ̂|θ′)p(θ̂0|θ′)π(θ′)dθ′

)︄
q(θ̂)dθ̂

= 1
q(θ̂0)

∫︂ (︃∫︂
p(θ̂|θ′)dθ̂

)︃
p(θ̂0|θ′)π(θ′)dθ′

= 1
q(θ̂0)

∫︂
p(θ̂0|θ′)π(θ′)dθ′

= 1.

Hence, the combined estimator would converge in probability to the Bayes estimator with

squared loss. On one hand, by central limit theorem, the numerator has asymptotic nor-

mality, provided finite second moment. On the other hand, the denominator converges to 1

in probability. By Slutsky’s theorem, the ratio is also asymptotically normal with the same

rate as central limit theorem. Therefore,

√
K(θ̂(c)

0 −E[θ|θ̂0]) =Op(1).

Proof of Theorem 7.7

When K→∞, the target function in optimization is now

1
K+1

K∑︂
k=0

w(θ̂k, θ̂0)f(θ, θ̂k)

P−−−→
∫︂ 1
q(θ̂)q(θ̂0)

(︃∫︂
p(θ̂|θ′)p(θ̂0|θ′)π(θ′)dθ′

)︃
f(θ, θ̂)q(θ̂)dθ̂

= 1
q(θ̂0)

∫︂ (︃∫︂
f(θ, θ̂)p(θ̂|θ′)dθ̂

)︃
p(θ̂0|θ′)π(θ′)dθ′

= 1
q(θ̂0)

∫︂
L(θ,θ′)p(θ̂0|θ′)π(θ′)dθ′ + 1

q(θ̂0)

∫︂
C(θ′)p(θ̂0|θ′)π(θ′)dθ′.
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The second component here is a constant with respect to θ. Given the assumptions on

M(θ, θ̂) and following the proof in Appendix A, we have

argmin
θ

K∑︂
k=0

w(θ̂k, θ̂0)M(θ, θ̂k) P−−−→ argmin
θ

∫︂
L(θ,θ′)p(θ̂0|θ′)π(θ′)dθ′ = Θ0.

Here, we simply denote the target estimator Θ0(xxx0;L) as Θ0. Let M ′
θ(θ, θ̂) = ∂M(θ, θ̂)

∂θ
,

M ′′
θ (θ, θ̂) = ∂2M(θ, θ̂)

∂θ2 and θ∗
K = argminθ

∑︁K
k=0w(θ̂k, θ̂0)M(θ, θ̂k). Then we have

K∑︂
k=0

w(θ̂k, θ̂0)M ′
θ(θ∗

K , θ̂k) = 0.

Since θ∗
K converges to Θ0, it’s reasonable to expand the equation at Θ0.

K∑︂
k=0

w(θ̂k, θ̂0)M ′
θ(Θ0, θ̂k)+(θ∗

K −Θ0)
K∑︂

k=0
w(θ̂k, θ̂0)M ′′

θ (Θ0, θ̂k)+Op((θ∗
K −Θ0)2) = 0.

Then

θ∗
K −Θ0 =−

∑︁K
k=0w(θ̂k, θ̂0)f ′

θ(Θ0, θ̂k)∑︁K
k=0w(θ̂k, θ̂0)f ′′

θ (Θ0, θ̂k)+Op(θ∗
K −Θ0)

.

Given the numerator has a finite variance, by central limit theorem and Slutsky’s theorem,

it is immediate that
√
K(θ∗

K −Θ0) =Op(1).

Proof of Theorem 7.8

Similar to the proof of Theorem 7.4, when σ2
θ → 0, we have

Θ0[xxx0;ℓ2] = Eπ[θ0 | θ̂0]

=
∫︁
θ0p(θ̂0 | θ0)π(θ0)dθ0∫︁
θ0p(θ̂0 | θ0)π(θ0)dθ0

=
θ̂0π(θ̂0)+ 1

2σ
2
θ(θ̂0π(θ̂0))′′ +op(σ2

θ)

π(θ̂0)+ 1
2σ

2
θ(π(θ̂0))′′ +op(σ2

θ)
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= θ̂0 + 1
2σ

2
θ

(︄
(θ̂0π(θ̂0))′′

π(θ̂0)
− θ̂0(π(θ̂0))′′

π(θ̂0)

)︄
+op(σ2

θ)

= θ̂0 +σ2
θ

π′(θ̂0)
π(θ̂0)

+op(σ2
θ).

Therefore, for any fixed θ0

Eθ0 [Θ0[xxx0;ℓ2]] =
∫︂ (︄

θ̂0 +σ2
θ

π′(θ̂0)
π(θ̂0)

+op(σ2
θ)
)︄
p(θ̂0 | θ0)dθ̂0

= θ0 +σ2
θ

π′(θ0)
π(θ0) + 1

2σ
2
θ

(︃
θ0 +σ2

θ

π′(θ0)
π(θ0)

)︃′′
+op(σ2

θ)

= θ0 +σ2
θ

π′(θ0)
π(θ0) +op(σ2

θ),

and similarly,

Eθ0 [Θ0[xxx0;ℓ2]2] = θ2
0 +2σ2

θ

θ0π
′(θ0)

π(θ0) +σ2
θ +op(σ2

θ).

Hence, the bias is

B0(θ0) = Eθ0 [Θ0[xxx0;ℓ2]]−θ0 = σ2
θ

π′(θ0)
π(θ0) +op(σ2

θ)≍ σ2
θ ,

and the variance is

V0(θ0) = Eθ0 [Θ0[xxx0;ℓ2]2]−Eθ0 [Θ0[xxx0;ℓ2]]2 = σ2
θ +op(σ2

θ)≍ σ2
θ .

Proof of Theorem 7.9

The iGroup estimator is

θ̂
(c)
0 =

1
K+1

∑︁K
k=0w(θ̂k,zzzk; θ̂0,zzz0)θ̂k

1
K+1

∑︁K
k=0w(θ̂k,zzzk; θ̂0,zzz0)

.

When K→∞, the numerator converges to

1
K+1

K∑︂
k=0

w(θ̂k,zzzk; θ̂0,zzz0)θ̂k
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P−−−→ E[w(θ̂, zzz; θ̂0,zzz0)θ̂]

=
∫︂∫︂
K
(︃∥zzz−zzz0∥

b

)︃ ∫︁
p(θ̂|θ)p(θ̂0|θ)p(θ|zzz0)dθ

p(θ̂|zzz)p(θ̂0|zzz0)
θ̂p(θ̂, zzz)dθ̂dzzz

= 1
p(θ̂0|zzz0)

(︃∫︂∫︂
p(θ̂|θ)p(θ̂0|θ)p(θ|zzz0)θ̂dθdθ̂

)︃(︃∫︂
K
(︃∥zzz−zzz0∥

b

)︃
p(zzz)dzzz

)︃
P−−−→ p(zzz0)

p(θ̂0|zzz0)

∫︂∫︂
p(θ̂|θ)p(θ̂0|θ)p(θ|zzz0)g(θ̂)dθdθ̂

= p(zzz0)
p(θ̂0|zzz0)

∫︂ (︃∫︂
p(θ̂|θ)g(θ̂)dθ̂

)︃
p(θ̂0|θ)p(θ|zzz0)dθ

= p(zzz0)
p(θ̂0|zzz0)

∫︂
θp(θ̂0|θ)p(θ|zzz0)dθ

= p(zzz0)
∫︂
θp(θ|θ̂0,zzz0)dθ.

Similarly for the denominator, we have

1
K+1

K∑︂
k=0

w(θ̂k,zzzk; θ̂0,zzz0) P−−−→ E[w(θ̂, zzz; θ̂0,zzz0)] P−−−→ p(zzz0).

Therefore, the ratio converges to the target estimator Θ0(xxx0,zzz0;ℓ2) = Eπ[θ0|θ̂0,zzz0]. More-

over, by central limit theorem, given bandwidth b, the numerator has an error of order

1/
√
K:

1
K+1

K∑︂
k=0

w(θ̂k,zzzk; θ̂0,zzz0)θ̂k−E[w(θ̂, zzz; θ̂0,zzz0)θ̂] =Op

(︂
K−1/2

)︂
.

It brings a zero bias bias and a Op(1/K) variance. Now consider the kernel smoothing part,

which yields a bias of order b2 and a variance of order 1/(Kbd). Therefore, the overall bias

is of order b2 and the overall variance is of order Op(K−1) +Op(1/(Kbd)) = Op(1/(Kbd)).

Both the bias and variance is of the same order as in a d-dimensional kernel smoothing

estimator. Hence, the optimal choice of the bandwidth is b̂ ≍ K1/(d+4), under which the

optimal mean squared error is Op(K−4/d+4).
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Proof of Theorem 7.10

When K→∞, the combined objective function is

1
K+1

K∑︂
k=0

w(θ̂k,zzzk; θ̂0,zzz0)M(θ, θ̂k)

P−−−→
∫︂∫︂
K
(︃∥zzz−zzz0∥

b

)︃ ∫︁
p(θ̂|θ′)p(θ̂0|θ′)p(θ′|zzz0)dθ′

p(θ̂|zzz)p(θ̂0|zzz0)
M(θ, θ̂)p(θ̂, zzz)dθ̂dzzz

= 1
p(θ̂0|zzz0)

(︃∫︂∫︂
p(θ̂|θ′)p(θ̂0|θ′)p(θ′|zzz0)M(θ, θ̂)dθ′dθ̂

)︃(︃∫︂
K
(︃∥zzz−zzz0∥

b

)︃
p(zzz)dzzz

)︃
P−−−→ p(zzz0)

p(θ̂0|zzz0)

∫︂∫︂
p(θ̂|θ′)p(θ̂0|θ′)p(θ′|zzz0)M(θ, θ̂)dθ′dθ̂

= p(zzz0)
p(θ̂0|zzz0)

∫︂ (︃∫︂
p(θ̂|θ′)M(θ, θ̂)dθ̂

)︃
p(θ̂0|θ′)p(θ′|zzz0)dθ′

= p(zzz0)
p(θ̂0|zzz0)

∫︂
(L(θ,θ′)+C(θ′))p(θ̂0|θ′)p(θ′|zzz0)dθ′

= p(zzz0)
∫︂
L(θ,θ′)p(θ′|θ̂0,zzz0)dθ′ +p(zzz0)

∫︂
C(θ′)p(θ′|θ̂0,zzz0)dθ′.

The second term here is a constant with respect to θ. Given the convex and second-order

differentiable condition of M(θ, θ̂), following the proof in Appendix A, the iGroup estimator

converges to the target estimator Θ0(xxx0,zzz0;L) in probability. Given the consistency, one

can expand the term at Θ0 as in Appendix A (proof of Theorem 7.7) except that the weight

is replaced by the full weight w(θ̂, zzz; θ̂0,zzz0). By following the same argument in Appendix

A, the numerator has an asymptotic mean squared error of order K−4/(d+4) when the

bandwidth is chosen to be optimal b̂ ≍K−1/(d+4). Provided the denominator converges in

probability to its expectation by law of large number, we have θ̃(c)
0 has a mean squared error

of order K−4/(d+4).

Proof of Theorem 7.11

For fixed σ2
z , the result follows immediately from the proof of Theorem 7.8 except that

Θ0[θ̂0;ℓ2] =
∫︁
θ0p(θ̂0 | θ0)π(θ0)dθ0/

∫︁
p(θ̂0 | θ0)π(θ0)dθ0 is replaced by Θ0[θ̂0,zzz0;ℓ2] =

∫︁
θ0p(θ̂0 |

θ0)p(zzz0 | θ0)π(θ0)dθ0/
∫︁
p(θ̂0 | θ0)p(zzz0 | θ0)π(θ0)dθ0. For fixed σ2

θ , the result follows from the

same proof in Theorem 7.4.
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Proof of Proposition 7.1

Consider the problem based on both information sets Dx and Dz and use the notation of

the target estimator Θ0 = Eπ[θ0 | xxx0,zzz0]. Notice that

δ0(Dx,Dz)−θ0 = (δ0(Dx,Dz)−Θ0)+(Θ0−θ0).

Given any fixed (xxx0,zzz0), the first term δ0(Dx,Dz)−Θ0 depends on other individuals’ obser-

vations (xxx1, . . . ,xxxK ,zzz1, . . . ,zzzK), while the second term Θ0−θ0 depends on the true parameter

θ0, which is treated as random. Therefore, these two terms are independent conditioned on

(xxx0,zzz0), and we have

E[(δ0(Dx,Dz)−θ0)2 | xxx0,zzz0] =E[(δ0(Dx,Dz)−Θ0)2 | xxx0,zzz0]+E[(Θ0−θ0)2 | xxx0,zzz0]

+2E[δ0(Dx,Dz)−Θ0 | xxx0,zzz0]E[Θ0−θ0 | xxx0,zzz0].

The last term E[Θ0−θ0 | xxx0,zzz0] is zero. By taking expectation over xxx0 and zzz0, the decom-

position is proved. Similar procedure for information set Dx or Dz.

Proof of Proposition 7.2

Consider the problem based on both information sets Dx and Dz. We expand the loss

function at θ̂ = Θ0 such that

L(δ0,θ0) = L(Θ0,θ0)+(δ0−Θ0)L′(Θ0,θ0)+ 1
2(δ0−Θ0)2L′′(Θ0,θ0)+o((δ0−Θ0)2). (A.2)

Notice that

Eπ[(δ0−Θ0)L′(Θ0,θ0) | xxx0,zzz0] = Eπ[(δ0−Θ0) | xxx0,zzz0]Eπ[L′(Θ0,θ0) | xxx0,zzz0] = 0.

The first equality is because for fixed xxx0 and zzz0, δ0−Θ0 depends on other individuals’

observations and L′(Θ0,θ0) depends on the value of θ0. The second equality is because Θ0

is the minimizer of Eπ[L(Θ0,θ0) | xxx0,zzz0]. Hence, by taking expectation of Equation (A.2),
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we have the desired decomposition. Similar procedure for information set Dx or Dz.

Proof of Proposition 7.3

We first calculate the mean squared error of θ̂(c)
0 conditioned on (θ̂0,zzz0). Notice that

θ̂
(c)
0 −θ0 = (θ̂(c)

0 −Θ0)+(Θ0−θ0).

Given any fixed (θ̂0,zzz0), the first term θ̂
(c)
0 −Θ0 is a function of other individuals’ obser-

vations (θ̂1, . . . , θ̂K ,zzz1, . . . ,zzzK) , while the second term Θ0− θ0 is a function of the true

parameter θ0, which is treated as random. Therefore, these two terms are independent

conditioned on (θ̂0,zzz0), and we have

E[(θ̂(c)
0 −θ0)2 | θ̂0,zzz0] = E[(θ̂(c)

0 −Θ0)2 | θ̂0,zzz0]+E[(Θ0−θ0)2 | θ̂0,zzz0]

+2E[θ̂(c)
0 −Θ0 | θ̂0,zzz0]E[Θ0−θ0 | θ̂0,zzz0].

Furthermore, since Θ0 is a function of θ̂0 and zzz0, we have

E[(Θ0−θ0)2 | θ̂0,zzz0] = Θ2
0−2Θ0E[θ0 | θ̂0,zzz0]+E[θ2

0 | θ̂0,zzz0]

= (Θ0−E[θ0 | θ̂0,zzz0])2 +E[θ2
0 | θ̂0,zzz0]−

(︂
E[θ0 | θ̂0,zzz0]

)︂2

= (Θ0−E[θ0 | θ̂0,zzz0])2 +E[(E[θ | θ̂0,zzz0]−θ0)2 | θ̂0,zzz0].

Hence, the conditional mean squared error of θ̂(c)
0 becomes

E[(θ̂(c)
0 −θ0)2 | θ̂0,zzz0] =E[(θ̂(c)

0 −Θ0)2 | θ̂0,zzz0]+ (Θ0−E[θ0 | θ̂0,zzz0])2

+E[(E[θ0 | θ̂0,zzz0]−θ0)2 | θ̂0,zzz0]

+2E[θ̂(c)
0 −Θ0 | θ̂0,zzz0]E[Θ0−θ0 | θ̂0,zzz0].

By taking the expectation for θ̂0 and zzz0 on both sides, we have

E[(θ̂(c)
0 −θ0)2] =E[(θ̂(c)

0 −Θ0)2]+E(Θ0−E[θ0 | θ̂0,zzz0])2 +E[(E[θ0 | θ̂0,zzz0]−θ0)2]
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+2E
{︃
E[θ̂(c)

0 −Θ0 | θ̂0,zzz0]Eθ̂0,zzz0
[Θ0−θ0 | θ̂0,zzz0]

}︃
=Rnp(θ̂(c)

0 )+Rinf (θ̂(c)
0 )+R0 +2E

{︃
E[θ̂(c)

0 −Θ0 | θ̂0,zzz0]E[Θ0−θ0 | θ̂0,zzz0]
}︃
.

(A.3)

The only thing left is to show the last term is 0. When Θ0 = Θ0(xxx0,zzz0;ℓ2) = Eπ[θ0 | θ̂0,zzz0]

as in Case 3 in Section 7.2.4, it is straightforward that

E[Θ0−θ0 | θ̂0,zzz0] = Θ0−Eπ[θ0 | θ̂0,zzz0] = 0.

When Θ0 = Θ0(xxx0;ℓ2) =Eπ[θ0 | θ̂0] as in Case 2 in Section 7.2.3, neither θ̂(c)
0 nor Θ0 depends

on zzz, and we can prove it by taking expectation over zzz0 first as follows

E
{︃
E[θ̂(c)

0 −Θ0 | θ̂0,zzz0]E[Θ0−θ0 | θ̂0,zzz0]
}︃

= E
{︃
E[θ̂(c)

0 −Θ0 | θ̂0]E[Θ0−θ0 | θ̂0,zzz0]
}︃

= E
{︃
E[θ̂(c)

0 −Θ0 | θ̂0]E
(︂
E[Θ0−θ0 | θ̂0,zzz0] | θ̂0

)︂}︃
= E

{︃
E[θ̂(c)

0 −Θ0 | θ̂0]E
(︂
Θ0−E[θ0 | θ̂0,zzz0] | θ̂0

)︂}︃
= E

{︃
E[θ̂(c)

0 −Θ0 | θ̂0]
(︂
Θ0−Eπ[θ0 | θ̂0]

)︂}︃
= 0.

Similarly, when Θ0 = Θ0(zzz0;ℓ2) = Eπ[θ0 | zzz0] as in Case 1 in Section 7.2.2, it can be shown

by taking expectation over θ̂0 first. Therefore, for all cases we considered, the last term in

(A.3) equals 0, and we have

R(θ̂(c)
0 ) =Rnp(θ̂(c)

0 )+Rinf (θ̂(c)
0 )+R0.

Proof of Proposition 7.4

Since θ̃(c)
0 →Θ0(θ̂0,zzz0) for all θ̂0 and zzz0, the loss function can be expanded at Θ0 as follows

L(θ̃(c)
0 ,θ0) = L(Θ0,θ0)+L′(Θ0,θ0)(θ̃(c)

0 −Θ0)+ 1
2L

′′(Θ0,θ0)(θ̃(c)
0 −Θ0)2 +op((θ̃(c)

0 −Θ0)2).
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By taking expectation on both sides, we have

E[L(θ̃(c)
0 ,θ0)] = E[L(Θ0,θ0)]+ 1

2E[L′′(Θ0,θ0)(θ̃(c)
0 −Θ0)2]

+o(E[(θ̃(c)
0 −Θ0)2])+E[L′(Θ0,θ0)(θ̃(c)

0 −Θ0)]

= (R̃0 + R̃inf (θ̃(c)
0 ))+ R̃np(θ̃(c)

0 )+o(E[(θ̃(c)
0 −Θ0)2])+E[L′(Θ0,θ0)(θ̃(c)

0 −Θ0)].

(A.4)

It only needs to show the last term is 0. When in Case 3, Θ0 = Θ0(xxx0,zzz0;L), and L′(Θ0,θ0)

and (θ̃(c)
0 −Θ0) are independent conditioned on (θ̂0,zzz0). Therefore,

E[L′(Θ0,θ0)(θ̃(c)
0 −Θ0) | θ̂0,zzz0] = E[L′(Θ0,θ0) | θ̂0,zzz0]E[θ̃(c)

0 −Θ0 | θ̂0,zzz0].

The first term E[L′(Θ0,θ0) | θ̂0,zzz0] equals 0 because Θ0 = argminθ Eπ[L(θ,θ0) | θ̂0,zzz0]. Sim-

ilarly, in Case 1 and Case 2, the conditional expectations of L′(Θ0,θ0) conditioned on zzz0

and θ̂0 respectively are 0. Hence, the last term in (A.4) is always 0.

Proof of Proposition 7.5

Noticing that θ̂(c)
(−k)−θk and θ̂

(c)
k −θk are independent with each other, we have

E(θ̂(c)
(−k)− θ̂k)2 = E(θ̂(c)

(−k)−θk)2 +E(θ̂k−θk)2 +0

= E
(︄
θ̂

(c)
k −θk + w(k;k)∑︁

l ̸=kw(l;k)(θ̂(c)
k − θ̂k)

)︄2

+E(θ̂k−θk)2

= E
(︃
θ̂

(c)
k −θk

)︃2
+E(θ̂k−θk)2 +O

(︃ 1
K

)︃
.

Therefore, the expectation of cross validation error is

E(CVΩ0(b)) = 1
|Ω0|

∑︂
k∈Ω0

E(θ̂(c)
(−k)− θ̂k)2

= 1
|Ω0|

∑︂
k∈Ω0

[︄
E
(︃
θ̂

(c)
k −θk

)︃2
+E(θ̂k−θk)2 +O

(︃ 1
K

)︃]︄

=RK(b)+EΩ0(θ̂−θ)2 +O

(︃ 1
K

)︃
,
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where the second term is averaging over all individuals in Ω0 and hence a constant term

with respect to bandwidth.
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APPENDIX B

Theorem Proofs for PART III

Proof of Theorem 9.1 and Corollary 9.1

Without loss of generality, we assume σ = 1. Noticing that

λ̂= ∥Rm0,n0 [YYY ]∥S = ∥λvec(AAA)vec(BBB)′ +σ2−(M+N)/2Rm0,n0 [EEE]∥S ,

by triangular inequality, we have

⃓⃓⃓
λ̂−∥λvec(AAA)vec(BBB)′∥S

⃓⃓⃓
⩽ σ2−(M+N)/2∥Rm0,n0 [EEE]∥S ,

where ∥λvec(AAA)vec(BBB)′∥S = λ. The following bound for ∥Rm0,n0 [EEE]∥S can be obtained

using the concentration inequality from Vershynin (2010),

P (∥Rm0,n0 [EEE]∥S ⩾ 2(m0+n0)/2 +2(M+N−m0−n0)/2 + t) ⩽ e−t2/2.

Therefore, ∥Rm0,n0 [EEE]∥S = s0 +Op(1) and

|λ̂−λ|⩽ 2−(M+N)/2(s0 +Op(1)) = r0 +Op(2−(M+N)/2),

which yields λ̂−λ=Op(r0).

The bounds for AAÂ and BBB̂ corresponds to the error bounds in estimating the left and right

singular vectors of Rm0,n0 [YYY ], which is a direct consequence of the analysis in Wedin (1972)
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by observing that

∥AAÂ−AAA∥2F = ∥vec(AAÂ)−vec(AAA)∥22 = 2sin2 Θ(vec(AAÂ),vec(AAA)).

A sharper bound is provided in Cai et al. (2018).

Since above analysis holds for any fixed value of λ, Corollary 9.1 follows immediately.

Proof of Theorem 9.2

We first show and prove several technical lemmas.

Lemma B.1. Suppose an > 0,an→ 0 and xn =Op(1) is a sequence of continuous random

variables with density functions pn satisfying

(i) E|xn|⩽ C for some constant C for every n,

(ii) 1+anxn > 0 almost surely,

(iii) a−2
n supx⩽−1/(2an) pn(x)→ 0,

then we have

E ln(1+anxn) =O (an) .

Proof. Let pn(xn) be the density function of xn. For the positive part, we have

E+ =
∫︂ +∞

0
ln(1+ant)pn(t)dt⩽

∫︂ +∞

0
antpn(t)dt⩽ anE|xn|⩽ Can.

For the negative part, we have

E− =
∫︂ 0

−1/an

ln(1+ant)pn(t)dt

=
∫︂ −1/(2an)

−1/an

ln(1+ant)pn(t)dt+
∫︂ 0

−1/(2an)
ln(1+ant)pn(t)dt

⩾

[︄
sup

t⩽−1/(2an)
pn(t)

]︄∫︂ −1/(2an)

−1/an

ln(1+ant)dt+
∫︂ 0

−1/(2an)
2antpn(t)dt

⩾−1+ ln2
2an

sup
t<−1/(2an)

pn(t)+2an

∫︂ 0

−∞
tpn(t)dt
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⩾ o(an)−2Can.

Hence,

E ln(1+anxn) = E+ +E− =O(an).

The conditions in Lemma B.1 are easy to verify in the subsequent proofs. Condition

(ii) ensures the logarithm is well-defined on the whole support. Condition (i) is satisfied

when xn converges in mean to a random variable x with finite expectation. Condition (iii)

is controlling the left tails of the densities, and is easily fulfilled if they are exponential.

Lemma B.2. Let XXX be an arbitrary P ×Q real matrix with P ⩽Q and EEE be a P ×Q matrix

with IID standard Gaussian entries. Then we have

E∥XXX+EEE∥2S ⩽ ∥XXX∥2S +(
√
P +

√︁
Q)2 +4∥XXX∥S

√
P +
√

2π(
√
P +

√︁
Q)+2 =: U2.

Furthermore, the departure from the expectation is sub-Gaussian such that for any positive

t, we have

P [∥XXX+EEE∥S ⩾ U + t] ⩽ e−t2/2.

Proof. Without loss of generality, we assume XXX = [XXX1,XXX2], where XXX1 ∈RP ×P is a diagonal

matrix and XXX2 ∈RP ×(Q−P ) is zero. Such a form of XXX can always be achieved by multiplying

XXX and EEE from left and right by orthogonal matrices, without changing the distribution of

EEE. Similarly, we partition EEE into [EEE1,EEE2] with EEE1 ∈ RP ×P and EEE2 ∈ RP ×(Q−P ). Then

∥XXX+EEE∥2S = sup
u∈RP ,∥u∥=1

u′(XXX+EEE)(XXX+EEE)′u

= sup
u∈RP ,∥u∥=1

u′XXXXXX ′u+u′EEEEEEu+2u′XXXEEE′u

⩽ ∥XXX∥2S +∥EEE∥2S +2∥XXX∥S∥EEE1∥S
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According to Vershynin (2010), we have E∥EEE1∥S ⩽ 2
√
P and

P [∥EEE∥S ⩾
√
P +

√︁
Q+ t] ⩽ e−t2/2.

Therefore,

E∥EEE∥2S =
∫︂ ∞

t=0
P [∥EEE∥S > t]2tdt⩽ (

√
P +

√︁
Q)2 +

√
2π(
√
P +

√︁
Q)+2.

Hence, we have

E∥XXX+EEE∥2S ⩽ ∥XXX∥2S +(
√
P +

√︁
Q)2 +4∥XXX∥S

√
P +
√

2π(
√
P +

√︁
Q)+2 =: U2.

Since for any fixed XXX, ∥XXX+EEE∥S is a function of EEE with Lipschitz norm 1, by concentration

inequality, for any positive t, we have

P [∥XXX+EEE∥S ⩾ U + t] ⩽ e−t2/2.

We rewrite the information criterion as

ICκ(m,n) =D

[︃
ln∥YYY −YYŶ (m,n)

∥2F +κr2
m,n−2κD−1/2

]︃
,

where D = 2M+N and rm,n = 2−(m+n)/2 +2−(m†+n†)/2. The constant term 2κD−1/2 is irrel-

evant to the configuration (m,n) and is therefore ignored in subsequent proofs. Without

loss of generality, we define the following expected information criterion

EICκ(m,n) =D

[︃
E ln∥YYY −YYŶ (m,n)

∥2F +κr2
m,n

]︃

for simplicity. The difference in expected information criterion between wrong configura-

tions and the true configuration is of central interest, so we define

∆EICκ(m,n) = EICκ(m,n)−EICκ(m0,n0)
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Under the true configuration (m0,n0), we have

E∥YYY −YYŶ
(m,n)

∥2F ⩽ E∥YYY −λAAA⊗BBB∥2F = σ2D−1E∥EEE∥2F = σ2.

Therefore, we have

EICκ(m0,n0) ⩽D

[︃
lnE∥YYY −YYŶ (m,n)

∥2F +κr2
0

]︃
⩽D

[︂
lnσ2 +κr2

0

]︂
, (B.1)

where r0 = rm0,n0 .

Define

λ̂
(m,n) := ∥Rm,n[YYY ]∥S = ∥λRm,n[AAA⊗BBB]+σD−1/2Rm,n[EEE]∥S . (B.2)

To calculate the information criterion for wrong configurations, we use the following equality

∥YYY −YYŶ
(m,n)

∥2F = ∥YYY ∥2F −
[︃
λ̂

(m,n)
]︃2
.

Notice that

∥YYY ∥2F = ∥λAAA⊗BBB∥2F +σ2D−1∥EEE∥2F +2λσD−1/2tr[(AAA⊗BBB)EEE′],

where ∥λAAA⊗BBB∥2F = λ2, σ2D−1∥EEE∥2F = σ2(1+Op(D−1/2)) and tr[(AAA⊗BBB)EEE′] follows a stan-

dard normal distribution. We have

∥YYY ∥2F = λ2 +σ2 +R1, (B.3)

where

R1 =Op

(︂
(σ2 +λσ)D−1/2

)︂
.

For wrong configurations (m,n) ∈ W, without loss of generality, we assume m+n ⩽

(M +N)/2. According to Lemma B.2, we have the upper bound for (B.2):

[λ̂(m,n)]2 ⩽ λ2ϕ2 +σ2r2
m,n +4λϕσ2(m+n)/2D−1/2 +Op((λσ+σ2)D−1/2)

⩽ λ2ϕ2 +σ2r2
m,n +4λσD−1/4 +Op((λσ+σ2)D−1/2). (B.4)
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Hence,

∥YYY −YYŶ
(m,n)

∥2S ⩾ λ2(1−ϕ2)+σ2(1− r2
m,n)−4λσD−1/4 +Op((λσ+σ2)D−1/2).

The last two terms are minor terms by Assumption 9.3. Therefore,

EICκ(m,n) ⩾D

[︄
ln(λ2ψ2 +σ2(1− r2

m,n))−O
(︄
λσD−1/4

σ2 +λ2ψ2

)︄
+κr2

m,n

]︄
. (B.5)

Here Lemma B.1 is applied since the stochastic term in (B.4) has an exponential tail bound.

Notice that EICκ(m,n) in (B.5) is either a monotone increasing function or a uni-modal

function of r2
m,n on [1/2,4D1/2]. Therefore, the minimum of the right hand side of (B.5) is

obtained on the boundary. When r2
m,n = 1/2, (B.5) becomes

EICκ(m,n) ⩾D

[︄
ln(λ2ψ2 +σ2/2)−O

(︄
λσD−1/4

σ2 +λ2ψ2

)︄
+κ/2

]︄
. (B.6)

When r2
m,n = 4D−1/2, (B.5) becomes

EICκ(m,n) ⩾D

[︄
ln(λ2ψ2 +σ2)−O

(︄
λσD−1/4

σ2 +λ2ψ2

)︄]︄
. (B.7)

In conclusion, for any wrong configuration (m,n) ∈W, we have

∆EICκ(m,n) ⩾D

[︄
α−O

(︄
λσD−1/4

σ2 +λ2ψ2

)︄
−κr2

0,

]︄
(B.8)

where

α=
[︄
ln
(︄

1+ λ2ψ2

σ2

)︄]︄
∧
[︄
ln
(︄

1
2 + λ2ψ2

σ2

)︄
+ κ

2

]︄
.

When κ⩾ 2ln2, α takes the first value in the preceding equation. The assumptions imposed

in Theorem 9.2 ensure the leading term α in (B.8) dominates other terms so that the

minimum of ∆EIC over the wrong configurations is strictly positive.

We now address Remark 6. It turns out possible to use only the MSE to select the

configuration, which corresponds to κ = 0. It requires a stronger signal-to-noise ratio

λ2ψ2/σ2 > 1/2 so that the leading term α in (B.8) is positive, and hence Theorem 9.2
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continues to hold.

Note that the upper bound used in (B.4) is quite conservative, because the maximums

of ϕ and 2(m+n)/2 overW are taken separately. It leads to a simple form of Assumption 9.3,

which is actually not as optimal as possible. If we define ϕ(m,n) = ∥Rm,n[AAA⊗BBB]∥S , then

the condition (9.12) in Assumption 9.3 can be relaxed to

lim
M+N→∞

inf
(m,n)∈W

(2(m+n)/2 +2(m†+n†)/2) · λ
σ
· 1− [ϕ(m,n)]2

ϕ(m,n) =∞.

However, in the main text we choose to introduce the concept of representation gap and

present a simple version of Assumption 9.3.

Proof of Theorem 9.3

We begin with the tail bounds for ∥EEE∥2F . According to the tail bounds for χ2 random

variable given in Laurent and Massart (2000), it holds that for any t > 0,

P
[︂
D−1∥EEE∥2F > 1+

√
2D−1/2t+D−1t2

]︂
⩽ e−t2/2, (B.9)

P
[︂
D−1∥EEE∥2F < 1−

√
2D−1/2t

]︂
⩽ e−t2/2, (B.10)

where D = 2M+N . Therefore, at the true configuration (m0,n0), we have

P

[︃
∥YYY −YYŶ

(m0,n0)
∥2F > σ2 +

√
2σ2D−1/2t+σ2D−1t2

]︃
⩽P

[︂
∥σD−1/2EEE∥2F > σ2 +

√
2σ2D−1/2t+σ2D−1t2

]︂
⩽e−t2/2. (B.11)

Noticing that

∥YYY ∥2F = λ2 +σ2D−1∥EEE∥2F +2λσD−1/2Z,

where Z = tr[(AAA⊗BBB)EEE′] is a standard Gaussian random variable, by (B.10) we have

P
[︂
∥YYY ∥2F < λ2 +σ2− (

√
2σ2 +2λσ)D−1/2t

]︂
⩽ 2e−t2/2. (B.12)
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Now we consider the tail bound for λ̂
(m,n) of wrong configurations. According to

Lemma B.2, we have the tail bound for λ̂(m,n) as

P [λ̂(m,n)
⩾ U +σD−1/2t] ⩽ e−t2/2, (B.13)

where

U2 = λ2ϕ2 +σ2r2
m,n +4λϕσ2(m+n)/2D−1/2 +

√
2πσ2rm,nD

−1/2 +2σ2D−1 < (λ+σ)2.

Let α= ln(1+(λ/σ)2ψ2) be the positive gap constant. We have

P [ICκ(m0,n0)> EICκ(m0,n0)+Dα/3]

=P
[︃
∥YYY −YYŶ

(m0,n0)
∥2F > σ2eα/3

]︃
⩽exp

(︂
−c2

1D/2
)︂
, (B.14)

where

c2
1 = eα/3−1.

For any (m,n) ∈W, it holds that

P [ICκ(m,n)< EICκ(m0,n0)+Dα/3]

⩽P [ICκ(m,n)< EICκ(m,n)−Dα/3]

⩽P
[︂
∥YYY ∥2F − λ̂

2
< λ2 +σ2−λ2ϕ2−2h

]︂
⩽P

[︂
∥YYY ∥2F < λ2 +σ2−h

]︂
+P

[︂
λ̂

2
> U2 +h

]︂
⩽2exp

(︂
−c2

2D/2
)︂

+exp
(︂
−c2

3D/2
)︂

(B.15)

where we use (B.12) and (B.13) to obtain (B.15),

h= 1
2
(︂
1−e−α/3

)︂
(λ2(1−ϕ2)+σ2), c2 = h√

2σ2 +2λσ
,
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and c3 is the solution of

σ2c2
3 +2(λ+σ)σc3 = h.

We conclude that

P

[︄
ICκ(m0,n0) ⩾ min

(m,n)∈W
ICκ(m,n)

]︄

⩽
∑︂

(m,n)∈W
P [ICκ(m0,n0) ⩾ ICκ(m,n)]

⩽
∑︂

(m,n)∈W

(︃
P [ICκ(m0,n0) ⩾ EICκ(m0,n0)+Dα/3]

+P [ICκ(m,n) ⩽ EICκ(m0,n0)+Dα/3]
)︃

⩽4(M +1)(N +1)exp
[︂
−c2D/2

]︂
→ 0, (B.16)

where c= min{c1, c2, c3}. By calculating the orders of c1, c2, c3, it holds that

c2 ⩾O

⎛⎝(eα/3−1)∧
(︄
eα−e2α/3

1+λ/σ

)︄2
⎞⎠ .

Specifically, if α→ 0 (or equivalently, (λ/σ)2ψ2→ 0), we have

c2 ⩾O

(︄
λ2

σ2ψ
2∧ (λ2/σ2)2

(1+λ/σ)2ψ
4
)︄

The right hand side is much greater than ln(MN), under Assumptions 9.1 and 9.3.

Proof of Theorem 9.4

The proof is very similar to the proofs of Theorem 9.2 and Theorem 9.3, so we only point out

the major steps, but omit the details. Condition (9.15) implies that λ2 = λ2
0(1+op(1)) and

ψ2 = ψ2
0(1 +op(1)). The proof of Theorem 9.2 follows immediately by replacing λ2 and ψ2

with the deterministic values λ2
0 and ψ2

0, except that an op(λ2
0 +ψ2

0) term is added to (B.2).

Since the additional stochastic term is negligible and has finite expectation, Theorem 9.2

continues to hold.
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The consistency follows same lines as those of Theorem 9.3 except that the deviations

λ2−λ2
0 and ψ2−ψ2

0 should be incorporated into (B.16). Specifically, Assumption 9.4 implies

that for any small constant δ, with probability larger than 1− o(1/(MN)), we have λ2 ⩾

λ2
0(1−δ) and ψ2 ⩾ψ2

0(1−δ). Proof of Theorem 9.3 follows immediately by replacing λ2 and

ψ2 with λ2
0(1− δ) and ψ2

0(1− δ). The following probability of exceptions should be added

to (B.16).

(M +1)(N +1)
[︂
P [λ2 < λ2

0(1− δ)]+P [ψ2 < ψ2
0(1− δ)]

]︂
= o(1),

which does not affect consistency but may reduce the convergence rate.

Proof of Lemma 9.1 and Corollary 9.2

Consider the complete Kronecker product decomposition of AAA with respect to the configu-

ration (m∧m′,n∧n′,(m−m′)+,(n−n′)+):

AAA=
I∑︂

i=1
µiCCCi⊗DDDi, (B.17)

where I = 2m∧m′+n∧n′ ∧2(m−m′)++(n−n′)+ , µ1 ⩾ µ2 ⩾ · · ·⩾ µI are the coefficients in decreas-

ing order. CCCi and DDDi satisfy

⟨CCCi,CCCj⟩= ⟨DDDi,DDDj⟩= δi,j , (B.18)

where δi,j is the Kronecker delta function such that δi,j = 1 if and only if i= j and δi,j = 0

otherwise, and ⟨AAA,BBB⟩ := tr[AAA′BBB] is the trace inner product. Notice that the decomposition

in (B.17) corresponds to the singular value decomposition for Rm∧m′,n∧n′ [AAA]. Therefore,

the singular values µ1, . . . ,µI are uniquely identifiable and the components CCCi, DDDi are iden-

tifiable if the singular values are distinct. In particular,

µ1 = ∥Rm∧m′,n∧n′ [AAA]∥S .
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Similarly, the KPD of BBB with the configuration ((m′−m)+,(n′−n)+,M−m∨m′,N−n∨n′)

is given by

BBB =
J∑︂

j=1
νjFFF j⊗GGGj ,

where J = 2(m′−m)++(n′−n)+ ∧2M+N−m∨m′−n∨n′ and

ν1 = ∥R(m′−m)+,(n′−n)+ [BBB]∥S .

With the two KPD of AAA and BBB, we can rewrite AAA⊗BBB as

AAA⊗BBB =
(︄

I∑︂
i=1

µiCCCi⊗DDDi

)︄
⊗

⎛⎝ J∑︂
j=1

νjFFF j⊗GGGj

⎞⎠=
I∑︂

i=1

J∑︂
j=1

µiνjCCCi⊗DDDi⊗FFF j⊗GGGj .

Notice that the Kronecker product satisfies distributive law and associative law. The matrix

DDDi is 2(m−m′)+×2(n−n′)+ and the matrix FFF j is 2(m′−m)+×2(n′−n)+ . For all possible values

of m,m′,n,n′, either one of DDDi and FFF j is a scalar, or they are both vectors; and for both

cases DDDi⊗FFF j = FFF j⊗DDDi. Therefore,

AAA⊗BBB =
I∑︂

i=1

J∑︂
j=1

µiνjCCCi⊗FFF j⊗DDDi⊗GGGj =
I∑︂

i=1

J∑︂
j=1

µiνjPPP ij⊗QQQij , (B.19)

where

PPP ij := CCCi⊗FFF j , QQQij :=DDDi⊗GGGj .

Notice that PPP ij is a 2m′ × 2n′ matrix and QQQij is a 2M−m′ × 2N−n′ matrix. Therefore,

(B.19) is a KPD of AAA⊗BBB indexed by (i, j) with respect to the Kronecker configuration

(m′,n′,M −m′,N −n′) as long as PPP ij and QQQij satisfy the orthonormal condition in (B.18).

In fact,

⟨PPP ij ,PPP kl⟩= tr[PPP ′
ijPPP kl]

= tr[(CCCi⊗FFF j)′(DDDk⊗GGGl)]

= tr[(CCC ′
iDDDk)⊗ (FFF ′

jGGGl)]

= tr[CCC ′
iDDDk]tr[FFF ′

jGGGl]
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= δi,jδk,l,

and similar results hold for QQQij . It follows that

∥Rm′,n′ [AAA⊗BBB]∥S = max
i,j

µiνj = µ1ν1 = ∥Rm∧m′,n∧n′ [AAA]∥S · ∥R(m′−m)+,(n′−n)+ [BBB]∥S ,

and the proof of Lemma 9.1 is complete.

Now we consider Corollary 9.2. When AAA and BBB are generated as in Example 9.1, we

have

∥Rm∧m′,n∧n′ [AAÃ]∥S ⩽ 2(m∧m′+n∧n′)/2 +2((m−m′)++(n−n′)+)/2 +Op(1),

∥R(m′−m)+,(n′−n)+ [BBB̃]∥S ⩽ 2((m′−m)++(n′−n)+)/2 +2(M+N−m∨m′−n∨n′)/2 +Op(1),

∥AAÃ∥F ∥BBB̃∥F = 2(M+N)/2(1+Op(r0)).

Hence,

∥Rm′,n′ [AAA⊗BBB]∥S = ∥Rm′,n′ [AAÃ⊗BBB̃]∥S
∥AAÃ∥F ∥BBB̃∥F

⩽ 2−(m′+n′)/2 +2−(M+N−m′−n′)/2

+2−(|m−m′|+|n−n′|)/2 +2−(M+N−|m−m′|−|n−n′|)/2 +op(1).

The maximum of the right hand side is obtained when |m−m′|+ |n−n′|= 1, or m′ +n′ ∈

{1,M +N −1}, for which

∥Rm′,n′ [AAA⊗BBB]∥S ⩽ 1/
√

2+op(1).

Furthermore, it is straightforward to verify that the upper bound is attained when m′ +n′ ∈

{1,M +N −1}, which leads to Corollary 9.2.

Proof of Lemma 9.2

We first prove the following technical lemma.
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Lemma B.3. Let U , V be two vector subspaces of Rn with Θ(U,V ) = θ ∈ [0,π/2], where

Θ(U,V ) denotes the smallest principal angle between U and V . Suppose w ∈ Rn is a unit

vector and

∥PUw∥= cosα,

for some α ∈ [0,π/2], where PU denotes the orthogonal projection to the space U . Then it

holds that

∥PV w∥⩽

⎧⎪⎪⎨⎪⎪⎩
cos(θ−α) if α⩽ θ,

1 if α > θ.

Proof. Let

u= PUw

∥PUw∥
,

then ∥u∥= 1 and u ∈ U . Let {u1,u2, . . . ,un} be an orthogonal basis of Rn such that u1 = u.

For any vector v ∈ V , we have

v′w = v′
(︄

n∑︂
i=1

uiu
′
i

)︄
w

= v′u1u
′
1w+

n∑︂
i=2

v′uiu
′
iw

⩽ v′u1u
′
1w+

⌜⃓⃓⎷ n∑︂
i=2

v′ui

⌜⃓⃓⎷ n∑︂
i=2

u′
iw

= cosη cosα+sinη sinα

= cos(η−α),

where v′u1 = cosη. The proof is complete by noting that cosη = v′u1 ⩽ cosθ.

We now prove Lemma 9.2.

Proof of Lemma 9.2. Recall that MMM1 and MMM2 are of the same dimension. We consider the

maximization of ∥(MMM1 +MMM2)u∥2 over all unit vectors u. First write

∥(MMM1 +MMM2)u∥2 = ∥MMM1u+MMM2u∥2

= ∥MMM1PMMM ′
1
u+MMM2PMMM ′

2
u∥2



245

= ∥MMM1PMMM ′
1
u∥2 +∥MMM2PMMM ′

2
u∥2 +2(MMM1PMMM ′

1
u)′MMM2PMMM ′

2
u,

where PMMM denotes the projection matrix to the column space of MMM . Since ∥MMM1∥S = µ and

∥MMM2∥S = ν, we have

∥MMM1PMMM ′
1
u∥2 ⩽ µ2∥PMMM ′

1
u∥2 and ∥MMM2PMMM ′

2
u∥2 ⩽ ν2∥PMMM ′

2
u∥2.

Since MMM1PMMM ′
1
u ∈ span(MMM1) and MMM2PMMM ′

2
u ∈ span(MMM2), it holds that

(MMM1PMMM ′
1
u)′MMM2PMMM ′

2
u⩽ cosθµν∥PMMM ′

1
u∥∥PMMM ′

2
u∥.

It follows that

∥(MMM1 +MMM2)u∥2 ⩽ µ2∥PMMM ′
1
u∥2 +ν2∥PMMM ′

2
u∥2 +2µν∥PMMM ′

1
u∥∥PMMM ′

2
u∥cosθ.

Suppose ∥PMMM ′
1
u∥= cosα for some α ∈ [0,π/2]. If α > η, then ∥PMMM ′

2
u∥⩽ 1. The right hand

side of the preceding inequality attains its maximum when ∥PMMM ′
1
u∥= cosη and ∥PMMM ′

2
u∥= 1.

Hence, we only consider the case α⩽ η, which implies that ∥PMMM ′
2
u∥⩽ cos(η−α), and

∥(MMM1 +MMM2)u∥2 ⩽ µ2 cos2α+ν2 cos2(η−α)+2µν cosθ cosαcos(η−α).

Therefore,

µ2 cos2α+ν2 cos2(η−α)+2µν cosθ cosαcos(η−α)

=1
2µ

2(1+cos2α)+ 1
2ν

2(1+cos(2η−2α))+µν cosθ[cosη+cos(η−2α)]

=1
2(µ2 +ν2 +2µν cosθ cosη)

+
(︃1

2µ
2 + 1

2ν
2 cos(2η)+µν cosθ cosη

)︃
cos(2α)+

(︃1
2ν

2 sin(2η)+µν cosθ sinη
)︃

sin(2α)

⩽
1
2(µ2 +ν2 +2µν cosθ cosη)

+

√︄(︃1
2µ

2 + 1
2ν

2 cos(2η)+µν cosθ cosη
)︃2

+
(︃1

2ν
2 sin(2η)+µν cosθ sinη

)︃2
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=1
2

(︃
µ2 +ν2 +2µν cosθ cosη+

√︂
(µ2 +ν2 +2µν cosθ cosη)2−4µ2ν2 sin2 θ sin2 η

)︃
.

The proof is complete.

Proofs of Theorem 9.5 and Corollary 9.3

The proof of Theorem 9.5 is similar to the proofs of Theorem 9.2 and Theorem 9.3, so we

only point out the main steps here and omit the details.

Following the same argument as in the proof of Theorem 9.2, the expected information

criteria of the true configuration is

EICκ(m0,n0) =D
[︂
ln
(︂
λ2

2 +σ2
)︂

+κr2
0

]︂
.

For a wrong configuration (m,n) ∈W, λ̂(m,n) is obtained by

λ̂
(m,n) = ∥λ1R[AAA1⊗BBB1]+λ2R[AAA2⊗BBB2]+σD−1/2R[EEE]∥S .

According to Lemma 9.2 and Assumption 9.5, we have

∥λ1R[AAA1⊗BBB1]+λ2R[AAA2⊗BBB2]∥2S ⩽ λ2
1ϕ

2
1 +λ2

2ϕ
2
2 +2λ1λ2ϕ1ϕ2ξ < (λ1 +λ2)2. (B.20)

By Lemma B.2, we have

[λ̂(m,n)]2 ⩽ λ2
1ϕ

2
1 +λ2

2ϕ
2
2 +2λ1λ2ϕ1ϕ2ξ+σ2r2

m,n

+O((λ1 +λ2)σD−1/4)+Op

(︂
(λ1 +λ2 +σ)σD−1/2

)︂
. (B.21)

With (B.21) replacing (B.4), the rest of the proof follows the same line of the proof of

Theorem 9.2.

The proof of consistency is same as in the proof of Theorem 9.3 except that the formula of

λ̂
(m,n) in (B.21) is used in (B.15).

We now prove Corollary 9.3. When model (9.17) is generated under the random scheme
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in Example 9.2, we only consider the wrong configuration close to the true configuration. It

can be verified that the separation ∆EIC(m,n) is larger at other configurations. Consider

(m,n) such that |m0−m|+ |n0−n|= 1. Then from Corollary 9.2, we have

ϕ1 = 1√
2

+Op(r0), ϕ2 = 1√
2

+Op(r0).

Now consider the principle angles between R[AAA1⊗BBB1] and R[AAA2⊗BBB2 as in Lemma 9.2,

We have

cosθ =Op(2−(m+n)), cosη =Op(2−(m†+n†)).

By Lemma 9.2, (B.20) can be revised to

∥λ1R[AAA1⊗BBB1]+λ2R[AAA2⊗BBB2]∥2S ⩽
λ2

1
2 +Op(λ2

1r0).

Corollary 9.3 follows immediately.
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