
DISTRIBUTED FRAMEWORKS FOR APPROXIMATE
DATA ANALYTICS

by

GUANGYAN HU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Thu D. Nguyen

and approved by

New Brunswick, New Jersey

October, 2020

ABSTRACT OF THE DISSERTATION

Distributed Frameworks for Approximate Data Analytics

By Guangyan Hu

Dissertation Director:

Thu D. Nguyen

Data-driven discovery has become critical to the mission of many enterprises and scien-

tific research. At the same time, the rate of data production and collection is outpacing

technology scaling, suggesting that significant future investment, time, and energy will

be needed for data processing. Straightforwardly increasing hardware resources can

address the extra processing needs by either adding more CPU cores/memory (scale-

up) or more worker nodes (scale-out). However, it will introduce higher computing

cost that may not be feasible when budget is limited. One powerful tool to address

the above challenge is approximate computing, which trades off computational time

and resources with computational accuracy by reducing the amount of data needed to

be processed. Fortunately, many data analytic applications such as data mining, log

processing, video/image processing are amenable to approximation.

In this thesis, we describe the design and implementation of approximation frame-

works to accelerate distributed data analytics. We present the frameworks targeting

a variety of tasks and datasets, including log aggregation, text analytics and video

querying and aggregation:

1. Our first work targets approximating aggregation jobs with error estimation. Ag-

gregation is central to many decision support queries. Aggregation is also an

ii

important component in OLAP (Online Analytical Processing) systems, and is

frequently used for summarizing data patterns in business intelligence. Aggrega-

tion jobs often involve multiple transformation steps in a data processing pipeline.

We design and implement a sampling-based approximation framework called Ap-

proxSpark, that can rigorously derive estimators with error bounds for approxi-

mate aggregation.

2. Our second work targets approximate text analytic tasks. We propose and eval-

uate a framework called EmApprox that uses sampling-based approximation to

speed up the processing of a wide range of queries over large text datasets. EmAp-

prox builds an index for a dataset by learning a natural language processing model,

producing vectors representing words and subcollections of documents. Our ap-

proximation index can significantly improve approximate quality while processing

a small amount of the data. It will apply to each sampling unit with a sampling

rate proportional to its similarity to the query. We have implemented a proto-

type of EmApprox as a Python library, and used it to approximate aggregation,

information retrieval, and recommendation tasks.

3. Finally, we target approximate video analytics. Video data embed rich and high-

quality information. Yet video analytics is particularly compute intensive as it

often involves invoking a deep convolutional neural network (CNN) for object

detection. We design and implement a approximate video analytics framework

called VidApprox for accelerating video queries that involve object detection.

VidApprox first leverages cheåap CNNs to learn vector representations of video

segments, and further processes the vectors as a persistent index structure. At

query processing time, the index lookup will serve as auxiliary information for

only retrieving a subset of more similar video segments. It make downstream

processing such as object detection or aggregation more efficient by only perform-

ing expensive operations such as CNN inference on the relevant video data.

We show that approximation is a promising technique for reducing processing time

for large datasets. However, approximation poses multifaceted challenges when applied

iii

to data processing tasks across different domains. In particular, approximation when

applied can present a complicated trade-off space that involves processing time reduc-

tion, quality of computation results and preprocessing complexity. Our works not only

demonstrates that it is possible to balance computational accuracy with processing

time reduction, but also that a machine-learned compact representation of the data

generated can function as index structure for improving approximation quality across

different domains and data sets.

iv

Acknowledgements

First of all, I would like to thank my advisor Prof. Thu D. Nguyen for providing me

an opportunity to pursue doctoral study in the Department of Computer Science at

Rutgers University. He gave me freedom to pursue research topics of my interests and

motivated me to take on more challenges and think deeper in research. I would also like

to thank him for funding my Ph.D. study, which is crucial for me to finish this thesis.

Next, I would like to thank my collaborators Prof. Desheng Zhang and Prof.

Yongfeng Zhang from Rutgers University, Prof. Sandro Rigo from University of Camp-

inas, Brazil. The collaboration with them was both instrumental for my works and a

wonderful learning experience for me.

Last but not least, I would like to thank my parents for their constant support and

encouragement through the ups and downs of my Ph.D. journey.

v

Dedication

This dissertation is dedicated to mom and dad.

vi

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vi

1. Introduction . 1

1.1. Approximate Computing . 1

1.2. Thesis Contributions . 2

1.2.1. ApproxSpark . 3

1.2.2. EmApprox . 4

1.2.3. VidApprox . 5

1.3. Organization . 7

2. Approximation with Error Bounds in Spark 9

2.1. Background and Related Work . 12

2.2. Multi-stage sampling in spark . 14

2.2.1. Multi-stage sampling . 15

2.2.2. Data provenance tree . 18

2.2.3. Tree traversal-based statistics computation 21

2.2.4. Per-key population estimation . 24

2.3. Stratified Reservoir Sampling . 27

2.4. ApproxSpark implementation . 28

2.4.1. User-specified sampling rates . 29

2.4.2. User-specified target error bounds 31

2.5. Evaluation . 33

2.5.1. Applications . 35

vii

2.5.2. Results for multi-stage sampling 36

2.5.3. Results for stratified sampling using ASRS 50

2.5.4. Results for user-specified error targets 52

2.6. Conclusion . 53

2.7. Appdendix: Cluster Sampling Variance with Population Estimation . . 54

2.8. Appdendix: Optimal Allocation for Stratified Reservoirs 55

3. Similarity Driven Approximation for Text Analytics 57

3.1. Background and Related Work . 60

3.1.1. Approximate query processing 60

3.1.2. Cluster sampling . 61

3.1.3. Paragraph Vectors . 62

3.1.4. Locality-Sensitive Hashing . 64

3.2. Similarity-driven Sampling . 64

3.2.1. Query vector . 64

3.2.2. Sampling probability estimation 65

3.3. Vector-based index structure . 66

3.4. Retrieval-based Queries . 67

3.4.1. Distributed information retrieval 68

3.4.2. Recommendation . 70

3.4.3. Discussion . 71

3.4.4. Discussion on Document Allocation 72

3.5. Limitations . 73

3.6. Implementation . 73

3.7. Evaluation . 75

3.7.1. Setup . 75

3.7.2. Results . 79

3.7.3. Sensitivity analysis . 84

3.7.4. Summary . 84

viii

3.8. Conclusions . 84

4. Video Querying with Approximate Indexing 86

4.1. Related work and Background . 89

4.1.1. Approximate computing . 89

4.1.2. Visual data management . 89

4.1.3. Convolutional neural networks 89

4.1.4. Video analytics . 91

4.1.5. Cluster sampling . 91

4.2. VidApprox Design . 92

4.2.1. Overview . 92

4.2.2. Segment vector representation 93

4.2.3. Locality sensitive hashing . 94

4.2.4. Similarity-aware segment placement 95

4.2.5. Vector-based index structure . 96

4.3. Approximate segment querying . 96

4.4. Implementation . 97

4.4.1. Offline indexer . 98

4.4.2. Query processor . 99

4.5. Evaluation . 99

4.5.1. Methodology . 99

4.5.2. Aggregation . 103

4.5.3. Retrieval . 104

4.5.4. Summary . 105

4.6. Conclusion . 105

5. Conclusion . 106

5.1. Summary . 107

5.2. Future Work . 108

References . 109

ix

1

Chapter 1

Introduction

The past decade has witnessed exponential growth of digital data. The volume of digi-

tal data is projected to reach 149 zettabytes by 2024 [1]. Data growth is also outpacing

technology scaling [2, 3]. In the mean time, data-driven services have become crucial

for many industries and business. Nowadays, the challenges introduced by data growth

data are characterized as three Vs [4] - Volume refers to the massive sizes of data, Ve-

locity describes the fast growth data and lastly, Variety points to the diversity of data

sources (e.g. sensors, clickstreams), as well as its structure such as structured data (e.g.,

relational data), semi-structured data (e.g., JSON), and unstructured data (e.g, mul-

timedia data, text) [5]. In order to mine rich and valuable information, data analytic

frameworks are expected to scale and adapt to the vast amounts of data, a variety of

data types as well as data processing within reasonable response times.

1.1 Approximate Computing

Employing more computational resources such as adding more CPU cores (scale-up) or

more worker nodes (scale-out), can cope with high volumes of data. However, organiza-

tions or projects that are under budget limits may not be able to absorb the additional

costs. For example, to process 10x amounts of the original data, one would certainly

need at least 10x the original amount of computational power.

A powerful tool to address the challenge is approximate computing, which trades

off execution time with computational accuracy by reducing the amount of data needed

to be processed. Fortunately, many classes of applications are amenable to approx-

imation, including log analytics, sentiment analysis, Monte Carlo computations, and

image/audio/video processing [5, 6]. Since approximate computing paradigm performs

2

analytics over a subset instead of the entire datasets, it requires less processing time

and resources, and therefore allows to achieve more efficient resource utilization with

less processing time. As a concrete example, e-commerce websites often want to know

the popularity of individual products for various purposes such as recommendation,

which can be computed from aggregating the purchase logs of users. The accumulation

of logs can grow quickly. However, relative popularity instead of exact counts may be

sufficient in this scenario, and a website often wants to have the statistics computed

within a certain latency. Thus, approximate computing is promising as it can lead to a

significant reduction in processing time and resources.

The idea behind approximate computing in the context of distributed data process-

ing is to execute analytical queries on representative synopses of the original dataset

for reduced processing time. Approximate computing summarizes the massive data in

such a way that the synopsis effectively captures the original dataset’s features and at-

tributes [5]. Various techniques for building the synopses has been proposed including

sampling [7], sketches [8] and online aggregation [9]. Among these, sampling has been

widely used since it can provide probabilistic error bounds estimators for approximate

aggregation [5,10]. With sampling-based approximation, user will has the flexibility of

adjusting sampling rates to strike a balance between latency and resource consumption;

user may also be able to apply non-uniform sampling rates among data items based

on a priori knowledge of the data for enhanced approximation quality under resource

constraints [10,11].

1.2 Thesis Contributions

Approximate data analytic frameworks can address the data processing challenges char-

acterized by the three Vs. The objective of our work is to design and implement

distributed sampling-based approximation techniques for accelerating a variety of data

analytic tasks. We target log data aggregation, text analytics and video analytics. User

can specify a sampling rate for the input dataset, which can translate to the processing

budget of a server cluster. For aggregation jobs, user may also submit target error

bounds where our system can autonomously search for appropriate sampling rates. We

3

also propose to use machine learning model trained from the input dataset, that learn

the distribution of the dataset which is used as approximate index to select the most

relevant sub-dataset. The approximate index allows much more efficient processing

for a sample of the same size that is constructed using uniform sampling. We leverage

sampling-based approximation throughout our frameworks with different emphasis: the

first work designs algorithms for computing an error bound for aggregation by expand-

ing existing sampling theories, the second and third works propose techniques that

result in improved approximation quality by processing less data. In this thesis, we

present these three following approximation frameworks:

1.2.1 ApproxSpark

Many decision-making queries are based on aggregating massive amounts of data, where

sampling is an important approximation technique for reducing execution times. It

is important to estimate error bounds when sampling to help users balance between

precision and performance. However, error bound estimation is challenging because

data processing pipelines often transform the input dataset in complex ways before

computing the final aggregated values.

We introduce a sampling framework to support approximate computing with esti-

mated error bounds in Spark. Our framework allows sampling to be performed at mul-

tiple arbitrary points within a sequence of transformations preceding an aggregation

operation. The framework constructs a data provenance tree to maintain information

about how transformations are clustering output data items to be aggregated. It then

uses the tree and multi-stage sampling theories to compute the approximate aggregate

values and corresponding error bounds. When information about output keys are avail-

able early, the framework can also use adaptive stratified reservoir sampling to avoid (or

reduce) key losses in the final output and to achieve more consistent error bounds across

popular and rare keys. Finally, the framework includes an algorithm to dynamically

choose sampling rates to meet user-specified constraints on the CDF of error bounds in

the outputs.

We have implemented a prototype of our framework called ApproxSpark and used it

4

to implement five approximate applications from different domains. Evaluation results

show that ApproxSpark can (a) significantly reduce execution time if users can tolerate

small amounts of uncertainties and, in many cases, loss of rare keys, and (b) automat-

ically find sampling rates to meet user-specified constraints on error bounds. We also

explore and discuss extensively tradeoffs between sampling rates, execution time, accu-

racy and key loss. To highlight ApproxSpark’s performance, with a combined sampling

rate of 22%, ApproxSpark can achieve a speedup of 5x with a median error bound of

1% across all output keys.

1.2.2 EmApprox

Enterprises are increasingly seeking to extract insights for decision making from text

data sets. At the same time, data is being generated at an unprecedented rate, so that

text data sets can get very large. Processing such large text data sets using sophisticated

algorithms is computationally expensive.

Traditional approximate query processing (AQP) systems have targeted answering

aggregation queries over relational datasets with an estimator and an error bound [6,

11–14]. However, 95% of big data is unstructured [4, 15], where a bounded estimator

may not be the desired output. Examples include document retrieval, where ranking

accuracy is the quality metric, and visual analytics, where user perception is the key

concern [16]. A ubiquitous form of unstructured data is text (e.g., Web pages, emails,

news archives), which often contains important insights that can be useful toward de-

cision making [4, 15]. However, text datasets can be very large so that processing text

analytical queries can be expensive, e.g., the Google book Ngrams dataset contains

2.2 TB of text data [17], and CommonCrawl corpus petabytes of web pages [18].

The above challenge is exacerbated when it is desirable to run different types of

queries against a data set, making it expensive to build multiple indices to speedup

query processing. For example, given a data set comprising user reviews on products,

an enterprise may want to count positive vs. negative reviews, use the reviews to make

recommendations, or retrieve reviews relating to a particular product [19]. Currently,

a different index is required for quickly answering each of these query types.

5

We propose and evaluate a framework called EmApprox that uses sampling-based

approximation to speed up the processing of a wide range of queries over large text

data sets. The key insight is that different types of queries can be approximated by

processing subsets of data that are most similar to the queries. EmApprox builds an

index for a data set by learning a natural language processing model, producing a set of

highly compressed vectors representing words and subcollections of documents. When

processing a query comprising one or more words, a vector representing the query is

computed from the vectors representing the words. EmApprox then samples the data

set, with the probability of selecting each subcollection of documents being proportional

to its similarity to the query as computed using their corresponding vectors.

We have implemented a prototype of EmApprox as a library, and used it to approx-

imate three types of queries: aggregation, information retrieval, and recommendation.

Experimental results show that EmApprox can achieve significant speedups if users can

tolerate small inaccuracies. For example, when sampling at 10%, EmApprox speeds up

a set of queries counting phrase occurrences by almost 10x while achieving estimated

relative errors of less than 22% for 90% of the queries.

1.2.3 VidApprox

Volumes of video data have been growing at an unprecedented rate: over 300 hours

of Youtube videos are uploaded every minute [20], surveillance cameras are ubiquitous

in every major city. Video data contain rich and high-quality information. An an

increasing number of industries/business, ranging from smart city initiative to mar-

keting, have turned to extracting insights from video [21]. Video query often involves

examining the contents of video frames, which would involve object detection: e.g.,

one may be interested in identifying frames that have at least an object of class X, or

estimating average number of cars per frame etc. Advancement of convolutional neural

networks (CNN) has led to accurate objection detection and image classification [22].

However, deep CNN inference is very expensive to apply at scale [23]. For example,

using an state-of-the-art object detector such as YOLOv2 [24] to identify frames with a

given object class (e.g., truck) on a month-long traffic video can take roughly 190 hours

6

on a high-end GPU (such as NVIDIA P100) [23].

Large-scale video workloads such as autonomous vehicle development, urban plan-

ning, etc [21, 25, 26], are often run on distributed systems. The typical workflow starts

with capturing, followed by storage then retrieval and finally the consumption of video

frames [21]. More often than not, the consumer operator will only need to process

frames that are relevant by supplying a predicate. While processing a large video

dataset, much inefficiency comes from processing frames that are irrelevant especially

when downstream processing is costly (e.g., involving CNN inference). For example,

suppose an application is to perform object detection and OCR on the license plates

of cars that appear in any frame. A naive implementation would read the frames se-

quentially without knowing ahead of time whether a frame has any car object present

or not. If a frame does not have a car, then performing object detection and OCR on

this frame would be wasteful as both operations are relatively costly. Therefore, the

end-to-end latency will be greatly reduced if the application can directly retrieve frames

of interest, i.e. frames that have cars.

It is common for large-scale video applications to subsample frames to keep cost

manageable. Then a natural question is how to generate a sample that results in the

most efficient utilization of limited resources. That is, relevant data to a query should

have higher probabilities of being chosen. For example, if the likelihood of some regions

in the video containing red car is high, then the search for frames with red cars should

be biased toward these regions. The other challenge is then to efficiently retrieve the

frames for further distributed processing. Suppose the dataset is stored across many

servers, and the selected frames only concentrate in a small number of servers, then

I/O may bottleneck the processing. Therefore, it is desirable to distribute the I/O load

among different servers.

Large video data often contains regions that are irrelevant. Processing video frames

that are of interest will result in efficient utilization of limited computing resources.

Video analytics pipeline starts with video data capturing and storage, followed by

retrieval and finally consumption. We design and implement a approximate video an-

alytics framework called VidApprox for accelerating video queries that involve object

7

detection. VidApprox provides integrated support for video queries through indexing

and placement of frames through approximation in a distributed system. VidApprox

first compresses/encodes frames into segment. It then leverages cheap object detection

CNNs to learn vector representations of video segments, and further processes the vec-

tors as index structure. The primary objective of indexing is early pruning of irrelevant

segments. It uses cheap CNNs to learn feature vectors in offline indexing, that is used

to index and cluster segments that are similar in the same video. At query time, a

subset of most similar clusters of segments to the query are retrieved facilitated by the

vector-based index. The size of the subset is given by user input. Our evaluation shows

that VidApprox can achieve a significant speedup with a small accuracy loss in both

video aggregation and retrieval tasks. VidApprox can also significantly outperform

uniform random sampling over video segments in terms of approximation quality. For

example, at 10% segment sampling rate, VidApprox can achieve a speedup of almost

103x compared against processing all frames, with 8% error bound for aggregation tasks

that count the number of the queried object.

Our works target different approximation scenarios, since approximation can present

different challenges when applied to different types of datasets and domains. Approx-

Spark is more effective when we have large log datasets that need to be aggregated

once or a few times, since the preprocessing cost may outweigh the time savings gained

by approximation. EmApprox and VidApprox are more effective when users may pose

repeated queries to the same dataset, so that preprocessing cost of the data can be

amortized across runs. They both demonstrate that an index structure learned from

the dataset as compact representation can guide the approximation of text and video

datasets. We also believe our approach of ”learning an index“ from the data is not

limited to text and video data, the general technique should be applicable other data

with inherent distribution to extract such as genomics, time series, etc.

1.3 Organization

The remainder of the thesis is organized as follows:

8

In Chapter 2, we present the design and implementation of ApproxSpark.

In Chapter 3, we present the design and implementation of EmApprox.

In Chapter 4, we present the design and implementation of VidApprox.

Finally in Chapter 5, we conclude our works and lay out an outlook for future work.

9

Chapter 2

Approximation with Error Bounds in Spark

In this chapter, we propose a framework for creating and running approximate Spark

programs that use online sampling to efficiently aggregate massive amounts of data.

The framework computes error bounds (i.e., confidence intervals) along with the ap-

proximate aggregate values. We focus on aggregation because many decision support

tasks require aggregation queries: e.g., a study of a Microsoft SCOPE [27] data pro-

cessing cluster reveals that 90% of 2,000 data mining jobs were aggregations [28]. It

is also an important component in online analytical processing systems that are often

used for summarizing data patterns in business intelligence [29,30].

Spark is a popular data processing system that has been widely adopted in different

domains [31–34]. Thus, embedding a general approximation framework in Spark will

make approximation easily accessible to application developers in many different fields.

In addition, while our work is specific to Spark, it should be portable to other similar

data processing systems.

Estimating error bounds is important, especially for decision support queries, be-

cause it allows users to intelligently balance precision and performance. However, Spark

programs (and data processing pipelines in general) often include multiple complex

Figure 2.1: A Spark computation comprising a chain of transformations ({T}) followed

by an aggregation.

10

transformations of the input data before the final aggregation [35, 36], making it chal-

lenging to compute error bounds. Consider a Spark computation comprising a chain

of transformations ending with a summation as shown in Figure 2.1. If we sample

data items in the resilient distributed dataset (RDD) Rout immediately before the ag-

gregation, then it is straightforward to use simple random sampling (SRS) theories to

estimate the sums with error bounds [10]. However, this sampling is unlikely to reduce

execution time by much since the additions saved are relatively inexpensive.

Alternatively, we can view each partition of Rout as a cluster and apply cluster

sampling. We can then use two-stage cluster sampling theories for estimating sums

and error bounds [10], although we would need to estimate populations in multi-key

computations (see the discussion on multi-stage sampling in multi-key computations

below). This can lead to much greater execution time savings since we can avoid

performing all of the transformations on the dropped partitions. Unfortunately, this

locks the computation into a very coarse-grained sampling process that may not be

tunable to achieve the desired tradeoff between precision and performance.

A natural solution is to sample earlier, e.g., sample when creating R1 from the

input data, where we use a combination of partition and data item sampling to achieve

the right balance between precision and performance. As we discuss in Section 2.2, a

key insight behind our work is that it is possible to map such a sampling process to a

multi-stage sampling process on Rout, and use the accompanying theories to compute

the estimated aggregate values and error bounds.

As a concrete example, consider a program to count word occurrences in a text

dataset, where a map parses each sentence and produces a list of (word, 1) pairs, and

a subsequent flatMap breaks the lists to produce the final set of (word, 1) pairs,

followed by summing the count of each unique word. In this computation, there are

two levels of clustering, with each partition of the input being a cluster of sentences,

and each sentence a cluster of words. Therefore, when sampling at the creation of R1

by selecting a random subset of partitions and a random subset of sentences from each

selected partition, the sampling errors need to be estimated using three-stage cluster

sampling theories since the end populations are actually words rather than sentences.

11

The population size of each word also has to be estimated from its sample size given

the sampling rate over the sentences, because if a sentence is not chosen for the sample,

then it is unknown whether that dropped sentence would have produced counts for a

particular word.

In Section 2.2, we first explain how sampling at multiple arbitrary points within

a sequence of transformations can be mapped to a multi-stage sampling process on

the output RDD. We then propose an algorithm to build a data provenance tree to

maintain information about this mapping. Finally, we propose a second algorithm to

extract information from the tree, estimate populations where needed, and compute

the final approximate aggregate values and their error bounds. Critically, we show

how to account for the imprecision introduced by population estimation. If the final

keys are known early in the transformation sequence, we show how adaptive stratified

reservoir sampling (ASRS) [37] can be integrated with multi-stage sampling to avoid

losing rare keys, as well as balancing the sampling errors between popular and rare keys

(Section 2.3).

We have implemented the proposed framework in a prototype system called Ap-

proxSpark (Section 2.4). Our framework supports a subset of common Spark trans-

formations, including map, flatMap, mapValues, sample and filter, and aggregation

operations mean and sum. When running an approximate computation, users have the

flexibility to specify sampling rates or constraints on the CDF of relative error bounds

for values associated with output keys—if the computation produces a single value or

key-value pair, then the latter reduces to just the maximum allowable relative error

bound. When the user specifies constraints for the error bound CDF, ApproxSpark

will run pilot executions of several partitions and use the results to select appropriate

sampling rates.

We have used ApproxSpark to implement five approximate applications from dif-

ferent domains, including text mining, graph analysis, and log analysis. We use the

applications to evaluate ApproxSpark and explore the tradeoffs between performance

and precision. Among other findings, our results show that (i) ApproxSpark can signif-

icantly reduce execution time if users can tolerate small amounts of uncertainties and,

12

in many cases, loss of rare keys; (ii) it is possible to automatically find sampling rates to

meet user-specified constraints on the CDF of error bounds in the output; (iii) partition

sampling can lead to greater reduction in execution time than data item sampling, but

lead to more key loss and significantly larger error bounds, especially for the rarer keys;

and (iv) ASRS with multi-stage sampling avoids or reduces key loss and leads to more

consistent error bounds across keys.

In summary, our contributions include: (i) to our knowledge, our work is the first

to apply multi-stage sampling theories to estimate aggregate values and error bounds

when sampling within arbitrarily long sequences of transformations; (ii) we introduce

algorithms for maintaining provenance information during the execution of the trans-

formations and computing the approximate aggregate values and error bounds; (iii) we

show how ASRS can be combined with multi-stage sampling for some applications to

reduce key loss and equalize error bounds across popular and rare keys; (iv) we explore

extensively the tradeoffs between sampling rates, execution time, key loss, and error

bounds; and (v) we present an algorithm for automatically choosing sampling rates to

meet user-specified constraints on the CDF of error bounds for output values.

2.1 Background and Related Work

Spark. Spark introduces RDDs, which are fault-tolerant collections of data partitioned

across server clusters that can be processed in parallel [38]. Spark has two types of

operations: transformations and actions. A transformation is a lazy operation that

produces an output RDD from an input RDD, where as an action computes non-RDD

values from an input RDD, and triggers preceding transformations needed to produce

the input RDD. Data items in RDDs can be key/value pairs, so that a Spark program

may be running multiple computations in parallel.

Spark already contains random and stratified sampling transformations with several

important limitations. First, there is no support for computing error bounds, especially

across a sequence of multiple transformations. Second, stratified sampling can still lose

some keys, because it adopts Bernoulli Sampling. Third, sampling is only implemented

13

on existing RDDs, so that the entire input dataset has to be loaded before sampling

can be applied.

Approximate query processing (AQP). A variety of approximation techniques

have been employed by query processing systems to reduce execution time. These

techniques include using random or stratified sampling to construct samples to provide

bounded errors [11, 13, 28, 39–42] or online aggregation to sample data and produce a

result within a time-bound [9, 43]. BlinkDB [42] maintains a set of offline-generated

stratified samples by using an error-latency profile based on past queries. Sapprox [11]

collects the occurrences of sub-datasets in offline preprocessing and uses them to drive

online sampling. Many AQP systems use offline processing under the assumption that

data will be used repeatedly. Online sampling is an efficient approximation method

when the large dataset (e.g., logs) will be used only once or a few times [6].

Online sampling. ApproxHadoop [6] introduces approximation to the MapReduce

paradigm [44]. It uses multi-stage sampling to trade off precision and performance sim-

ilar to ApproxSpark (we discuss differences below). Users can specify sampling rates or

a target maximum relative error. StreamApprox [45] approximates stream processing

workloads based on Spark Streaming [46]. MaRSOS [41] is related to ApproxHadoop

but proposes a stratified sampling algorithm to avoid losing keys and balance error

bounds for popular and rare keys. Compared to MaRSOS, ApproxSpark’s implemen-

tation of stratified sampling using ASRS avoids the overheads of coordination between

parallel tasks while still being able to balance error bounds.

Comparison with ApproxHadoop. While ApproxSpark and ApproxHadoop both

use multi-stage sampling, there are important differences. First, ApproxSpark general-

izes multi-stage sampling to handle sequences of transformations with arbitrary lengths,

allowing sampling anywhere within the sequences, whereas ApproxHadoop is limited

to using two- and three-stage sampling to handle a single map phase in MapReduce

computations. Second, ApproxHadoop also relies on population estimation but does

not account for the added uncertainties; ApproxSpark does. ApproxSpark implements

ASRS to avoid losing keys and balance error bounds when output keys are known early

14

in the computation. Finally, in this chapter, we explore the rich space of tradeoffs be-

tween sampling rates, execution times, error bound distributions across all output keys,

and loss of rare keys far beyond what was considered in the ApproxHadoop study [6].

2.2 Multi-stage sampling in spark

Suppose we have a simple Spark program that reads a set of values into an RDD Rin

and sums the values. We can reduce the execution time of this computation by (1)

reading only a randomly selected subset of input partitions, (2) loading a randomly

selected subset of data items from each selected partition into Rin, and (3) computing

an estimated sum τ̂ and its variance V̂, which is needed for computing confidence

intervals around τ̂ , using two-stage cluster sampling theories as follows [10]:

τ̂ =
N

n

n∑
i=1

vi (2.1)

τ̂ =
N

n

n∑
i=1

(
Mi

mi

mi∑
j=1

vij) (2.2)

V̂(τ̂) = N(N − n)
S2
u

n
+
N

n

n∑
i=1

Mi(Mi −mi)
S2
i

mi
(2.3)

where N is the total number of partitions in the input data set, n is the number of

selected partitions, Mi is the total number of values in partition i of the input data set,

mi is the number of values selected from partition i and loaded into Rin, vij is the jth

value from partition i in Rin, S2
i is the intra-cluster variance for partition i, and S2

u is

the inter-cluster variance. Note that N and Mi’s are attributes of the input data set,

while n and mi’s are attributes of the sample. S2
u and S2

i are both computed using the

sample. Unfortunately, sampling Ro only reduces the execution time of the summation.

For many Spark programs, this will lead to minimal savings because the sequence of

transformations dominates overall execution time. Thus, we are motivated to sample

earlier in the computation. In fact, if we can sample when the input is being read into

Ri, we will reduce both the I/O time and the execution time of the entire sequence of

transformations and the summation.

15

Now consider a program where Rin is transformed by a sequence of transformation

T0, T1, ..., Tn to produce Rout, which is then summed. If each transformation Ti is a

one-to-one mapping of an input value to a single output value (e.g., a map operation),

such that Rin, Rout and all intermediate RDDs contain the same number of data items,

then it is possible to sample the input data when creating Rin in the same manner

as above and still use the estimators given in Equations 2.2 and 2.3. Sampling the

input data is exactly equivalent to sampling the Rout that would have been produced

by processing the entire input dataset.

Spark, however, includes transformations that map input items to output items in

more complex ways than one-to-one. As already mentioned, this complexity makes it

much more challenging to compute error bounds when sampling early within a Spark

computation. In the remainder of this section, we first show how generalized multi-

stage sampling theories can be used when sampling at multiple different points within

a Spark program. We then describe two algorithms necessary to track the multi-level

clustering of data items in Rout as the input data is transformed, and to use the tracking

information to estimate the aggregate values and error bounds. We discuss summation,

but the discussion is equally applicable to average.

2.2.1 Multi-stage sampling

Consider the Spark program and its execution as shown in Figure 2.2. The flatMap

transformation can generate multiple output items for each input item, corresponding

to a one-to-many mapping. An example is the generation of the two data items c2:e3

and c2:e4 in R2 from the single data item c2 from R1. In this case, when sampling,

selecting an input data item to load into R1 is equivalent to selecting a cluster of items

from R2, and selecting a partition from the input data set is equivalent to selecting

a cluster of clusters from R2. This corresponds to a three-stage sampling process. In

fact, general multi-stage sampling and population estimation can be used to handle

Spark programs comprised of a subset of common transformations for both single- and

multi-key computations.

The filter and sample transformations, on the other hand, can produce zero

16

Figure 2.2: HDFS blocks and input data items are sampled when read into RDD R1.

Block B2 not shown has been dropped. Gray boxes are dropped data items. In R2,

ci : ej means data item j is generated from the data item i in the input partition.

17

output items for each input item, corresponding to an one-to-zero mapping. In this

case, if we apply a map or flatMap after sampling or filtering an RDD, we cannot

deduce the impact of clusters or items not chosen from the input RDD had filter

and sample not applied on the output RDD; i.e., some cluster/items not chosen from

the input RDD would have produced items in the output RDD, while others would not

have. This introduces the need to estimate the population of the output RDD from the

sample size to apply the cluster sampling theories for estimating the sampling error.

Below, we generalize the two-stage sampling equations (Eq (2.2) and (2.3)) into

recurrences for multi-stage sampling with estimated sum and variance. We use Ik =

i0, i1, ..., ik to denote the index of a specific cluster at level k. Note that in a multi-key

computation, a sample is chosen for each key, so we will need to estimate the sum and

variance for each key.

Consider an application that computes the distribution of page lengths within a

Web site. The input is a set of all Web pages, with the first transformation producing

a key/value pair (length, 1) for each page, while the action is to count the number of

pages for each distinct length. In this case, the input dataset really contains a mix of

populations (pages of different lengths) that are being counted. The first transformation

and the data shuffle that occurs between the transformation and action effectively sort

the input into a set of different populations, each population corresponding to the

pages of a particular length. Each population is then counted by the summation on

each different length. This implies that the number of items in the input does not

correspond to the size of any of the subpopulations. We will need to maintain sufficient

information to estimate the size of each subpopulation, and compute its impact on

V(τ̂). In this case, we will still need to estimate the subpopulations of each key.

Sum estimation. We estimate the sum of a multi-stage sample with d sampling stages

using the following recurrence:

τ̂Ik =


NIk
nIk

∑nIk
j=1 τ̂Ik,j 0 ≤ k < d ,

vIk k = d

(2.4)

where τ̂Ik is the estimated sum of cluster Ik (at level k), NIk is the total number of

18

sub-clusters of cluster Ik, nIk is the number of sub-clusters chosen from cluster Ik, Ik, j

is the index i0, i1, ..., ik, j such that τ̂Ik,j is the estimated sum of a sub-cluster of cluster

Ik, and vIk is the value in the sample (at the last level k = d) with index Ik. The

0th stage contains just one cluster comprising the entire population, so τ̂0 is then the

overall estimated sum.

Variance estimation. Similarly, we estimate the variance using the recurrence:

V̂ (τ̂Ik) =


NIk(NIk − nIk)

S2
u,Ik
nIk

+
NIk
nIk

∑nIk
j=1 V̂ (τ̂Ik,j) 0 ≤ k < d− 1 ,

MIk(MIk −mIk)
S2
i,Ik
mIk

k = d− 1

(2.5)

where V̂ (τ̂Ik) is the variance of τ̂Ik , S2
u,Ik

is the inter-cluster variance of the sub-clusters

of cluster Ik, MIk is the total number of values in cluster Ik, mIk is the number of values

from cluster Ik in the sample, and S2
i,Ik

is the intra-cluster variance of cluster Ik. V (τ̂0)

is then the overall estimated variance.

Confidence interval. Given the above estimated sum and variance, we compute the

confidence interval as: τ̂0 ± ε, where ε = tn−1,1−α/2

√
V̂ (τ̂0), tn−1,1−α/2 is the critical

value under the Student’s t distribution at the desired level of confidence α, and n is

the degree of freedom (i.e., the number of chosen clusters at level 1) [10].

2.2.2 Data provenance tree

We now show how a data provenance tree can be constructed to capture the multi-level

(multi-stage) clustering of items in the output RDD resulting from sampling while exe-

cuting a transformation chain. We show how a provenance tree can be used to compute

Equations (2.4) and (2.5) in the next subsection. Note that a tree is constructed in

parallel, with sub-trees being constructed on servers processing RDD partitions. Fig-

ure 2.3 shows the data provenance tree corresponding to the sampling and execution

shown in Figure 2.2.

Overview. A provenance tree starts with a root node that represents the top level

clustering of all data items in the output RDD. Then, a level is added to the tree

whenever a transformation leads to a new clustering level; e.g., the execution of a

19

Figure 2.3: The provenance tree built for the sampling and execution shown in Fig-

ure 2.2.

Transformation Functionality

map(f) Applies f to each input data item, producing one output

data item.

flatMap(f) Applies f to each input data item, producing possibly mul-

tiple output data items.

mapValues(f) Applies f to the value of each input key/value pair, produc-

ing one output key/value pair.

filter(p) Outputs each input data item that satisfies the predicate p.

sample(r) Samples from the input RDD using sampling rate r and

outputs the sample.

Table 2.1: Spark transformations that are supported in ApproxSpark for sampling-

based approximation with error bounds.

20

flatMap may add a level to the tree since it corresponds to a one-to-many mapping of

input to output data items, whereas the execution of a map will not.

Nodes at each level of the tree represent sampling units at the corresponding cluster-

ing level. Internal nodes correspond to clusters, while leaves correspond to data items

in the output RDD. Each leaf node contains the corresponding value (or key/value

pair) in the output RDD. Each internal node stores intermediate values in support of

computing the recurrences in Equations 2.4) and (2.5 (which are not computed until

after the entire tree has been built). An edge relates each sub-cluster/data item to its

parent cluster. Table 2.1 shows the subset of Spark transformations that ApproxSpark

currently handles.

Tree building. We introduce Algorithm 1 for building data provenance trees. Ta-

ble 2.2 describes the subroutines that are not explicitly defined. We assume that input

partitions and data items are sampled when input data is being loaded, so a provenance

tree will always have at least three levels: the root (level 0), the first level of clustering

defined by sampling of the RDD partitions, and the selected data items from the chosen

partitions.

Lines 1 to 9 comprise the main routine, taking as input a transformation chain {T},

partition sampling rate pRate, and input data item sampling rate iRate. Lines 2 to 6

are executed sequentially, creating the root node, then sampling the input partitions

with rate pRate and adding the sampled partitions ({P}) to the tree as children of

the root. We use variable ratek to keep track of the sampling rate at every tree level.

Line 8 is the parallel execution of the buildSubtree routine for each partition in {P},

which builds a sub-tree rooted at each node in level 1 as each transformation executes.

Lines 11 to 13 add the sampled input data items in each partition to the tree. In

order to do that, a new node is created for each selected data item in {DI} and those

nodes are inserted in a new level. The rest of the algorithm updates the tree based on

the semantics of each transformation Ti in T . If Ti is sample, it replaces the nodes in

the last tree level with a set of nodes {node} generated by sampling the previous level,

then updates ratek by multiplying it with the sampling rate. If Ti is flatMap and there

21

is a sampling operation before it, a new level is added because sampling data items

before applying flatMap is equivalent to selecting groups of data items generated from

this flatMap, thus adding a new level of clustering. In other cases, the last level’s nodes

will be replaced by the new set of nodes {node} without adding a new level. Note that

replacing nodes will also maintain the appropriate parent/child relationships.

Multi-key computation. A transformation can produce multiple keys, and a trans-

formation chain can lead to multiple aggregations over different keys in the output

RDD. However, only each final output key, rather than intermediate keys, defines an

independent Spark computation. Since we are only interested in the estimator and error

bounds of the final output RDD, the multi-level clustering in the final sample would

only be determined by the leaf nodes with the same key. Therefore in the provenance

tree building process, the intermediate key spaces need not to be explicitly reflected in

the internal nodes. The presence of multiple keys also introduces the need of population

estimation which can be handled by the theory introduced earlier.

Limitations. We assume sample and filter will not eliminate all the data items from

a particular partition, so that the number of partitions stay the same after loading the

input data. We do not consider filter’s effect over the sampling error; specifically

we do not account for its impact over the variance and how it is propagated through

clusters to the final error bound. It is because filter deterministically eliminates some

data items based on its predicate, instead of randomly selecting data items where the

sample sum and variance would follow a certain distribution. We leave exploring the

impact of filter over error bounds as a future work.

2.2.3 Tree traversal-based statistics computation

Equations (2.4) and (2.5) can be computed by traversing the provenance tree built using

Algorithm 1. The tree is traversed level by level starting from the leaves, and the esti-

mated sum/variance for each cluster represented by an internal node are computed in-

crementally using information stored in the node’s children. We introduce Algorithm 2

for this computation. Lines 3 to 7 compute in parallel each partition’s statistics by

22

Algorithm 1: Building data provenance tree

1 Algorithm DataProvenance({T}, pRate, iRate)

2 createRoot(); // root is at level 0

3 {P} = sampleInputPar(pRate);

4 {node}P = createNodes({P});

5 rate1 = pRate;

6 addLevel({node}P);

7 for Pi ∈ {P} do in parallel

8 buildSubtree({T}, iRate);

9 end

10 subroutine buildSubtree({T}, iRate)

11 {DI} = sampleInputDI(iRate);

12 {node} = createNodes({DI});

13 addLevel({node});

14 rate2 = iRate;

15 k = 3, rate3 = 1.0;

16 for Ti ∈ {T} do

/* data items generated by Ti */

17 {DI} = exec(Ti);

/* each tree nodes corresponds to a data item in {DI} */

18 {node} = createNodes({DI});

19 if Ti is sample then

20 replaceLast({node});

21 ratek *= sample.rate;

/* if Ti is flatMap and there is sampling operation before

it, then a new level needs to be added */

22 else if ratek < 1.0 and Ti is flatMap then

23 addLevel({node});

24 ratek = 1.0, k ++;

25 else if Ti is map or flatMap or mapValues or filter then

26 replaceLast({node});

27 end

23

Subroutine Semantics

sampleInputPar(rate) Samples input partitions with rate and returns selected par-

titions.

sampleInputDI(rate) Samples input data items in the selected partitions with rate

and returns selected data items.

createRoot() Creates root for the tree.

createNodes({DI}) Creates new nodes using data items {DI}, where each node

corresponds to one item, and an item is a data item in an

RDD.

addLevel({node}) Adds a new level to the tree using {node}, where each node’s

parent is the parent data item that has generated the data

item that this node represents.

replaceLast({node}) Replaces last level nodes with {node}. A new node (e) shares

the parent of the node that has generated e in this trans-

formation. Then the nodes that were originally in the last

level are deleted.

Table 2.2: Description of subroutines used in Algorithm 1.

24

calling the subroutine ComputeNodeI, which computes Equations (2.4) and (2.5) of a

given node at level k. Line 8 computes the root’s estimated sum/variance for the final

confidence interval output. We illustrate the computation process by using the tree in

Figure 2.3 representing three-stage cluster sampling as an example. We begin at the

level where k = 2, where we first compute the intra-variance of c2 formed by c2 : e3

and c2 : e4 using the subroutine ComputeNodeI shown in Algorithm 2. After computing

other clusters (c3, c4 and c5) in the same level, we decrement k to 1 and move to second

level nodes. Computing statistics (e.g., estimated sum, intra/inter-cluster variance) for

P1 depends on c2 and c3’s statistics (same for P3), which has already been computed

in the previous level. Finally, the sum/variance at the root comprising P1 and P3 can

be computed using ComputeNodeI.

2.2.4 Per-key population estimation

A Spark transformation can generate multiple keys, thus sampling before a transfor-

mation is equivalent of sampling a mixed-key population where sub-population size of

each key is unknown. It is because sampling occurs before the transformation that

actually generates a key. However, each sub-population size is needed because variance

computation applies to each output key. Since we adopt Bernoulli sampling to at each

cluster level, we model estimated population size of a cluster at each sampling stage as

a negative binomial distribution parameterized by sample size and sampling rate i.e.

N̂Ik ∼ NB(nIk , p), where N̂Ik is the population size, nIk is the sample size and p is the

sampling rate applied for the sub-clusters. nIk at the current stage is equivalent to the

estimated population size of the next stage (NIk), p, nIk and NIk corresponds to the

success rate, number of successes and the number of trials in a binomial distribution.

The unbiased estimator N̂Ik is
nIk
p . The same logic also applies to the last sampling

stage where the value of MIk needs to be estimated. The uncertainty coupled with

estimating NIk and MIk , must be included in computing the variances in Eq (2.5) since

their estimators affects the variance. We have detailed derivation on incorporating it

into the variance computation in the Appendix of our technical report [47].

Logically, an RDD could be viewed as the zeroth level cluster containing partitions,

25

Algorithm 2: Confidence interval computation

1 Algorithm ComputeTree(tree)

2 d = tree.numLevels− 1;

3 for k ← d to 1 do in parallel

4 for nodei ∈ all nodes at level k do

5 ComputeNodeI (nodei, k, d);

6 end

7 end

8 ComputeNodeI (root, 0, d);

/* turns estimator and variance into confidence interval */

9 return ConfidenceInterval(root.τ̂ , root.V̂);

10 subroutine ComputeNodeI(node, k, d)

11 {c} = node.children;

/* computes Eq 3, 4 for each tree node */

12 if k is d then

13 node.τ̂ = data item’s value;

14 else if k is d− 1 then

15 mIk = {c}.size(), S2
i,Ik

= V ar({c.τ̂});

16 node.τ̂ = Eq2.4({c.τ̂},mIk ,MIk);

17 node.V̂ = Eq2.5(mIk ,MIk , S
2
k);

18 else

19 nIk = {c}.size(), S2
u,Ik

= V ar({c.τ̂});

20 node.τ̂ = Eq2.4({c.τ̂}, nIk , NIk);

21 node.V̂ = Eq2.5(nIk , NIk , S
2
u,Ik

, {c.V̂ });

22 end

26

Algorithm 3: Computing equation 2.5

input : sampling rates, data item clustering info, sampling stages d

output: Overall estimated variance

1 k = d ;

2 Using equation 2.5:

3 while k ≥ 0 do

4 if k = d then

5 Compute each V̂ (τ̂Ik) from the sample under the case when k = d, using

the estimated value for NIk ;

6 else

7 Compute each V̂ (τ̂Ik) from the sample under the case when 0 ≤ k < d

using the estimated value for MIk ;

8 end

9 k− = 1

10 end

27

and the sub-clusters within each cluster are its “data items” containing sub-clusters,

with only the final output data items in Rout being monolithic. It is convenient to

have this nested view because both sampling the output data items and clusters can

be modeled as sampling the immediate higher level clusters’ data items. For example,

partition sampling can be viewed as sampling the data items of the zeroth cluster, the

entire RDD. Estimated statistics such as sums, variance, cluster population sizes can

all be computed backward from the output data items in Rout to the second cluster

level, until the zeroth cluster level in a recurrence fashion.

The strategy we identify cluster sampling stages is through the appearances of

flatMap, which generates a group of data items from one data item. Thus it estab-

lishes one-to-many relationship between an data item in the RDD on which flatMap is

applied and the resulting group of data items in the following RDD. We treat implicitly

the creation process of the first RDD in a transformation as the first flatMap. For ex-

ample, in Figure 2.2, the raw input is seen as a single data item and the HDFS blocks

are modeled as the result of an application of flatMap on the singular input which

generates a number of blocks. On the other hand, map only generates one data item

from one data item, which forms one-to-one relationship between them. Thus map does

not create new cluster sampling stages, which means that RDDs created by consecutive

maps would be collapsed as the same sampling stage.

The goal of mapping data items and RDD partitions to multi-stage sampling is

to form a confidence interval for the estimated result, which requires estimating the

sampling error for the estimator using information on how data items/partitions form

multiple levels of clusters.

2.3 Stratified Reservoir Sampling

An inherent limitation of multi-stage sampling is that some rare output keys may

either be lost or have large error bounds. We leverage a one-pass sampling algorithm

Adaptive Stratified Reservoir Sampling (ASRS) [37] to address the rare key issues.

ASRS combines stratified and reservoir sampling [10,48], and uses power allocation [49]

28

to divide the total sample size among different strata proportionally to each stratum’s

running sampling error. ASRS dynamically increases the sampling rates of rare keys

to compensate for their larger sampling errors and decreases sampling rates on popular

keys [37].

Stratified sampling partitions a heterogeneous population into disjoint homogeneous

subgroups (strata), from which a random sample is taken from each. On the other hand,

reservoir sampling [48] is a sampling algorithm for selecting a uniform random sample

from an input stream by storing randomly selected items in the reservoir. What makes

reservoir sampling attractive is that it samples online and only makes one pass over the

data.

ASRS with partition sampling. ASRS has a larger overhead compared to simple

random sampling. In order to achieve balance among output key retaining, balanced

error bound distributions and the overall execution time, we sample RDD partitions

at the input and apply ASRS over the their elements, so that in the chosen RDD

partitions, sampling errors among popular and rare keys are more even and rare keys

are better retained. Partition sampling at the input may have significant execution

time saving since it reduces I/O time. We can estimate the result and the error bound

using standard multi-stage sampling theory using Eq (2.4) and (2.5), because an ASRS

sample is very close to a simple random sample [37].

Limitations. ASRS stratifies the sample by output keys, thus it cannot be applied

unless the output keys are available. However, sampling right before aggregation will

not save execution time since aggregation is relatively cheap. Therefore our solution

is to apply ASRS over an intermediate RDD, which would make ASRS suitable for

applications where an output key’s occurrence is proportional to an intermediate key.

2.4 ApproxSpark implementation

We have implemented our approximation framework by modifying and extending the

original Spark system. We extend the Spark executor implementation to maintain

our data provenance tree. We also extend Spark’s StatCounter class to store intra and

29

inter-cluster variances, sample sizes, sampling rates, etc. ApproxSpark offers two meth-

ods for the user to set the degree of approximation, either by specifying the sampling

rates or error bound targets. In addition to setting specified sampling rates, the user is

also able to set target error bounds at different percentiles on the error bound CDF of

all keys. For example, the user may specify that the 10th percentile of the error bound

is at most 0.1, the 50th percentile at 0.3, the 90th percentile at most 0.6.

2.4.1 User-specified sampling rates

Multi-stage sampling. We modify the partition loading and computation mechanisms

in Spark’s HadoopRDD class to support partition/input data item sampling when data

is being loaded into an RDD. Subsequent RDDs’ data items can be sampled using

the original sample function from Spark API. We extend the implementations of the

transformations shown in Table 2.1 in the RDD class to support the data provenance

building algorithm shown in Algorithm 1. For example, flatMap not only tags a group

of data items generated from the same data item i in the parent RDD with a cluster

id ci, it also implements the provenance tree building logic. ApproxSpark provides the

user with a new RDD transformation aggregateByKeyMultiStage, for aggregations

when multistage sampling is used. It is similar to RDD’s original aggregateByKey but

has added error bound computation mechanisms.

Error bound estimation. The error computation process is shown in Figure 2.4. As

introduced in Algorithm 1, the first two levels of the provenance tree are sequentially

built by the Spark driver program. Then every subtree rooted at each partition node

are built by each parallel task in the transformation phase, maintained by a coordinator

in each Spark executor. In the action phase, an RDD partition is first locally aggregated

by each Spark executor before sending them to reducers across the network for final

aggregation. In the local aggregation phase, the subtree of each partition is traversed to

compute each partition’s statistics. Then in the final aggregation, the statistics of each

partition are sent to the reduces for computing the inter-cluster variance among the

RDD partitions and the final confidence interval. As transformations T1 → Tn execute

30

Figure 2.4: Error bound computation process, divided across the transformation and

action phases. The tree building happens in the transformation phase, and the error

bound computation happens in the action phase.

in parallel on every partition in the transformation phase, the subtree for every partition

of the provenance tree is built; in the action phase, partitions are first locally aggregated

to compute each partition’s statistics, then sent to the reducers across network for the

final error bound computation.

Stratified reservoir sampling. We modify ASRS for Spark’s distributed environment

by dividing the total reservoir size, taken as a user input, evenly among RDD partitions.

Each partition is then sampled using ASRS independently without coordination among

them. We implement ASRS as a transformation that produces another RDD containing

the resulting sample with balanced sampling errors among popular and rare keys. ASRS

changes the sampling rate by changing the size of the portion of the reservoir allocated

for a particular key. On the other hand, ASRS shrinks the size allocated to each

existing key as it discovers more keys in the partition, where the initial reservoir size

for the new key is set as the average of the sizes for existing keys. The benefit of

implementing ASRS as a transformation is that the resulting RDD can be cached in

memory for reuse. We provide ASRSSample for the user to sample an RDD using ASRS

and aggregateByKeyStratified for the aggregation with error bound computation,

both implemented as RDD transformations.

va l sc = new SparkContext (new SparkConf ())

31

. setAppName(”WordCount ”))

// p1 : p a r t i t i o n sampling ra t e

// p2 : input data item sampling ra t e

va l token i zed = sc . textFi leWithSampl ing (args (0) , p1 , p2)

. f latMap (. s p l i t (” , ; . ”))

// count the occurrence o f each word

va l wordCounts = token ized . map((, 1))

. countByKeyApproxMultiStage ()

// conta in ing s t a t i s t i c s o f each word

wordCounts . saveAsTextFi le ()

Listing 2.1: ApproxSpark approximate word count

2.4.2 User-specified target error bounds

Algorithm 4: Two-stage sampling rates search

input : tperc1,...tpercn, pCluster = 1.0, pItem = 1.0

output: pCluster and pItem

1 ——————————-Phase I—————————-

2 Execute pilot tasks and return partially aggregated partitions to the driver;

3 Estimate M , S2
i and S2

u

4 while None of the predicted error exceeds the target error do

5 Use pCluster to compute error bounds in perc1, perc2...percn ;

6 pCluster -= bstep;

7 end

8 pCluster += bstep;

9 fix pCluster, find pItem in the same way as pCluster;

10 ——————————-Phase II—————————-

11 Continue the remaining Spark tasks setting sampling rates to be pCluster and

pItem;

32

We propose a greedy algorithm to search for a sampling rate combination leading to

a potentially tight error bound CDF constrained by the target errors, while aiming to

significantly reduce execution time. Initially, partition and data item sampling rates are

both initialized as 1.0. The algorithm includes two phases. 1) In the first phase, a wave

of pilot tasks are executed and the partially aggregated results from these tasks are sent

back to the driver program, where the number of data items M and inter/intra cluster

variances for each key are computed. It uses a Spark’s job submission mode that returns

the partially aggregated partitions to the driver instead of sending them for shuffling.

2) In the second phase, the algorithm uses statistics gathered in the first phase to

predict error bounds: it first lowers partition sampling rate for potentially maximum

execution time reduction until it would violate any error bound target, then it searches

for an appropriate input data item sampling rate, before the predicted error CDF would

violate any of the user-specified targets. When predicting errors for keys that are not

encountered in the first phase, the algorithm just uses the average of the statistics for

the keys obtained in the first phase. When the predicted error distribution meets all

the error targets with the lowest possible sampling rates, the algorithm proceeds to

the second phase and uses them for the remaining Spark tasks. Figure 2.5 shows the

architecture of user setting error bounds.

The algorithm exploits a property that partition sampling may incur more sampling

error [10], but reduces more execution time compared with data item sampling. Our

algorithm follows a principle in online aggregation - minimum time to accuracy [9], i.e.

minimizing the time to achieve a useful estimated value. However, online aggregation

typically outputs a running confidence interval for a single estimator as data is being

aggregated in a random order, whereas ApproxSpark applies multi-stage sampling over

the data and outputs the error bounds for multiple keys at the end of execution.

Discussions. Our proposed searching algorithm only considers partition and data item

sampling rate for the input RDD. We think that sampling the input RDD is sufficient

to meet the error bound targets without too much added complexity. It is because

sampling operations placed far from the input will have diminishing effect over the

error bound as well as execution time. In fact, expanding the algorithm to search for

33

Figure 2.5: Design of the algorithm for automatically selecting sampling rates based on

user specified target error bounds. Gray shaded box is dropped partition(s).

more than two sampling rates is straightforward, as we can add more while loops to

find sampling rates for following RDDs down the transformation chain.

Limitations. The algorithm assumes the keys are distributed evenly and the pilot

partitions are representative of the entire dataset. However, when keys are not dis-

tributed evenly, the pilot wave is not able to accurately estimate the parameters. The

error bound computation in our implementation has only considered two-stage sam-

pling, while in theory, user can insert multiple sampling operations along the chain and

achieve the target error bounds. We leave this more complicated case as future work.

2.5 Evaluation

We evaluate ApproxSpark using five real world applications from different application

domains (see Table 2.3). We begin by briefly describing the applications. We then use

them to extensively explore the tradeoff space between sampling and precision. Finally,

we explore ApproxSpark’s ability to find appropriate sampling rates for user specified

34

Size

Application Domain Input Dataset (GB)

Co-occur Text Mining MEDLINE database 7.5

Speed Smart City GPS trace 36.0

Twitter NLP Tweets2011 (TREC) 2.2

PageRank Graph Analysis Wikipedia snapshot 53.0

Clickstream Log Analysis Wikipedia clickstream 6.5

Table 2.3: List of applications, the domains they come from, and the input datasets

used in our evaluation.

Figure 2.6: Multi-step transformation for Speed

target error bound constraints.

Experimental environment. All experiments are run on a cluster of four servers.

Each server is equipped with a 2.5GHZ Intel Xeon CPU with 12 cores, 256GB of RAM,

and a SATA hard disk. The cluster is interconnected with 1Gbps Ethernet. All servers

run Linux 3.10.0. ApproxSpark is implemented on top of Spark version 1.6.1 and is

configured with 16 executors, each of which runs up to 6 tasks, so that each server has

4 executors, running up to 24 tasks.

35

2.5.1 Applications

Word Co-occurrence (Co-occur). Co-occurrence is a common text mining applica-

tion that computes the frequencies of pairs of words [50]. In this study, the application

counts co-occurrences of topic tags in the MEDLINE database [51], containing more

than 20M citation records of publications in life sciences. Each citation record contains

a set of topic tags, listing the major topics relevant to the publication. The application

first reads the input data into an RDD, and then performs a map to extract the list

of major topic tags from each citation record. It then performs a flatMap to generate

key-value pairs ((co-occurring tag pair), 1). Finally, it sums and outputs the count of

each co-occurring tag pairs.

Vehicular Average Speed Analysis (Speed). This application analyzes the average

speed of vehicles moving in a geographical area each hour at three different granularities:

around a point-of-interest (POI) (e.g., a restaurant), on a road segment, and within a

region. An analysis of vehicular traces is useful for monitoring urban traffic, predicting

passenger demand, recommending taxi routes, etc. [52]. We analyze a taxi GPS dataset

containing status records collected every 30 seconds from 14,000 taxis operating in

Shenzhen, China, over one week [53]. Each record contains information about a taxi,

including a timestamp and the taxi’s GPS location and speed. The dataset has ∼291M

records that covers an area of ∼790 square miles divided into 491 regions, containing

∼569k POIs and ∼198k road segments. Each POI is assigned to a road segment and

each road segment belongs to a region. The application reads the input data into an

RDD, and then performs three transformations using metadata and three actions. The

three transformations are three map operations that: (1) transform each GPS entry

into a ((POI, hour), speed) key-value pair; (2) transform each ((POI, hour), speed)

pair into a ((road segment, hour), speed) key-value pair; and, (3) transform each ((road

segment, hour), speed) pair into a ((region, hour), speed) pair. The three actions use

the three intermediate RDDs to compute the average speed per hour at each POI, each

road segment, and each region, respectively.

Twitter Hashtags Sentiment Analysis (Twitter). Sentiment analysis computes

36

quantitatively whether a piece of text is positive, negative or neutral using natural

language processing (NLP) techniques [54]. In this study, the application computes

the average sentiment for each unique hashtag in the Tweets2011 Twitter dataset from

TREC 2011 [55], using the Stanford CoreNLP library [56]. This dataset contains ∼16M

tweets sampled over 17 days in early 2011. The application first reads the input data

into an RDD, and then performs a map to compute a score in the interval [0, 5] with

0 being very negative, 3 being neutral, and 5 being very positive for each tweet. It

then performs a flatMap to extract all hashtags from each tweet and associates each

with the sentiment score for the tweet. Finally, it computes and outputs the average

sentiment for each hashtag.

WikiPageRank (PageRank). This application counts the number of articles that

link to each article in a set, emulating one of the main processing components of PageR-

ank [57]. We use the Wikipedia data snapshot from 2016 with ∼5M articles [58]. The

application first loads the data into an RDD, then applies a map to parse the XML,

generating a list of outbound links for each article. It next performs a flatMap to

generate pairs of (destination article, 1). Finally, it sums and outputs the count for

each destination article.

WikiClickstream (Clickstream). Clickstream analysis can be used to generate a

weighted network of linked articles showing the probability of users navigating from one

article to another. We use a Wikipedia clickstream dataset from 2016 [59] containing

∼149M tuples of (source, destination, count), where count is the number of times that

a user has visited the destination page from the source page. The application computes

the total count for each unique (source, destination) pair. Specifically, it reads the

input data into an RDD, performs a map to generate a key-value pair for each entry,

and then sums and outputs the total count for each unique (source, destination) pair.

2.5.2 Results for multi-stage sampling

We explore the performance and accuracy of multi-stage sampling using four of the

above applications: Co-occur, Twitter, WikiPageRank, and WikiClickstream. In most

37

experiments, we sample the input data as it is read into the first RDD because this will

lead to the highest speedups. However, we also explore sampling from RDDs later in

the applications’ transformation chains to explore the trade-off between performance

and accuracy of such scenarios.

 0 20 40 60 80 100
Data item sampling rate (%)

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

100%
75%
50%
25%
precise

(a)

 0 20 40 60 80 100
Data item sampling rate (%)

0

50

100

150

R
un

 ti
m

e
(s

ec
on

ds
)

100%
75%
50%
25%
precise

(b)

 0 20 40 60 80 100
Data item sampling rate (%)

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

100%
75%
50%
25%
precise

(c)

Figure 2.7: Execution times under different sampling rates. Each line corresponds to a

partition sampling rate. The x-axis shows the sampling rate for input data items. The

dashed line gives the run time of precise executions.

Execution times. Figure 2.7 plots the execution times for two of the applications, Co-

occur, WikiPageRank at different partition and data item sampling rates. Consistent

with previous results from [6], we observe that (a) multi-stage sampling significantly

reduces execution times, and (b) partition sampling can lead to larger execution time

savings than data item sampling. The latter is because dropping a partition eliminates

overheads such as I/O time for reading the blocks, the creation of an RDD partition

38

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

100%
75%
50%
25%

(a) Co-occur

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

100%
75%
50%
25%

(b) WikiPageRank

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

100%
75%
50%
25%

(c) WikiClickstream

Figure 2.8: Fraction of unique keys (normalized against number of keys produced under

precise execution) outputed under different sampling rates. Each line represents a

particular partition sampling rate.

39

0 0.2 0.4 0.6 0.8 1
Lost keys' occurrences 10 -4

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-60%
50%-60%
25%-60%

(a) Co-occur

0 0.5 1 1.5 2
Lost keys' occurrences 10 -7

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-60%
50%-60%
25%-60%

(b) WikiPageRank

0 0.2 0.4 0.6 0.8 1
Lost keys' occurrences 10 -7

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-60%
50%-60%
25%-60%

(c) WikiClickstream

Figure 2.9: CDFs of occurrences of the lost keys, normalized against the total number

of data items across all keys at a data item sampling rate of 60%. Each line corresponds

to a specific partition sampling rate.

40

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
75%
50%
25%

(a) Data item sampling rate - 100%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
75%
50%
25%

(b) Data item sampling rate - 75%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
75%
50%
25%

(c) Data item sampling rate - 60%.

Figure 2.10: Each graph plots CDFs of errors with 95% confidence at a fixed input data

item sampling rate Co-occur. Each line in a graph plots the error CDF at a particular

partition sampling rate.

41

0 0.2 0.4 0.6 0.8 1
Fraction 10 -4

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

50%-100%
25%-100%

(a)

0 0.2 0.4 0.6 0.8 1
Fraction 10 -4

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

50%-75%
25%-75%

(b)

0 0.2 0.4 0.6 0.8 1
Fraction 10 -4

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

50%-50%
25%-50%

(c)

Figure 2.11: CDFs of the occurrences of keys with error bound of over 40%, normalized

against the total number of data items across all keys, in the Co-occur application. The

legends indicate partition and data item sampling rates respectively.

42

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
80%
60%
40%

(a) Partition sampling rate - 75%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
80%
60%
40%

(b) Partition sampling rate - 50%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
80%
60%
40%

(c) Partition sampling rate - 25%.

Figure 2.12: CDFs of errors at a fixed partition sampling rate for Co-occur application.

Each line in a graph plots the error CDF at a particular input data item sampling rate.

43

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-100%

(a)

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-30%
75%-75%
50%-100%

(b)

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-10%
60%-20%
30%-80%

Figure 2.13: Error distribution trade off under different partition and data item sam-

pling rates combination from the Co-occur application. The legends indicate partition

and data item sampling rates respectively.

in memory, etc., whereas data item sampling still requires some processing for each

partition. The sampling framework imposes some overheads; i.e., execution time for

the (100% (partition sampling), 100% (data item sampling)) case is somewhat greater

than that of the precise version, ran on unmodified Spark.

Fraction of keys in output. As already mentioned, multi-stage sampling can result

in loss of keys in the output for jobs that produce more than one key. Figure 2.8

plots the fractions of keys present in the output at different sampling rates for the

same three applications, normalized against the total number of keys produced in the

precise executions. Figure 2.9 shows the occurrence frequencies of lost keys in the input

RDD of the final aggregation action in a precise execution, normalized against the total

number of data items in the RDD. We observe that significant fractions of keys can be

44

0 0.02 0.04 0.06 0.08 0.1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

Estimated
Actual

(a) WikiPageRank, 75%-50%

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

Estimated
Measured

(b) WikiClickstream, 75%-50%

Figure 2.14: Estimated and actual relative error comparison.

lost, especially at higher partitioning sampling rates. For example, sampling rates of

(75%, 60%) for Co-occur reduce execution time by 40% at the expense of losing 25% of

the keys produced by the precise execution. However, Figure 2.9 shows that only rare

keys are lost. For example, for the same (75%, 60%) sampling rates in Co-occur, the

most frequently appearing key that was lost accounted for only a very small fraction

0.85×10−4 of the total number of data items in the input RDD of the final aggregation

action, while 90% of the lost keys each accounted for less than or equal to 0.08× 10−4

of the total number of data items in the RDD. The lost keys are even more rare in the

WikiPageRank and WikiClickstream applications, where the occurrences of each lost

key accounting for 10−7 of the total number of data items.

Effect of sampling rates on error bounds. Figure 2.10 plots the CDFs of the

estimated error bounds computed as ε
vapprox

, which are the ratios of sampling error to

estimated value, for all keys with 95% confidence for Co-occur. Each graph in the

figure plots CDFs for several different partition sampling rates while keeping data item

sampling rate fixed. We observe that, as pointed out in [41], multi-stage sampling

without considering keys in the final output over-samples popular keys and under-

samples rare keys, leading to uneven relative error bounds. This can lead to large

relative error bounds in the tails of the relative error bounds CDFs.

We observe that even relatively high partition sampling rates (e.g., 75% - green curve

45

in Figure 2.10(a)) can significantly impact error bounds for more rare keys (pushing

the CDF curve for >60% to the right) while not affecting the frequently appearing keys

much (the CDF curve does not change much for <60%). Interestingly, a 75% partition

sampling rate affects error bounds less or comparable to a 75% data item sampling rate

(red curve in Figure 2.10(b)) for up to 60% of the keys, but the tail is significantly worse

for partition sampling. We believe this is caused by the clustering of data items with

the same keys within partitions. As either or both sampling rates decrease, the entire

error bound CDF shifts to the right (larger error bounds). However, the observation

that partition sampling affects the tail of error bounds CDF much more strongly than

data item sampling remains consistent throughout.

Figure 2.12 shows the error bound CDFs when the partition sampling rates are

fixed with varying data item sampling rates, the tails of the error bound CDFs are

similar under the same partition sampling rates. This points to a fundamental trade-

off: partition sampling can reduce execution time over data item sampling, but trades

off higher error bounds for the rarer keys to do so. Figure 2.13 shows that the 95%

relative error CDFs can exhibit trade-offs with different combinations of partition and

data item sampling rates. In each subgraph, the sampling rates are chosen so that

they have similar execution time as in Figure 2.7(a). We can see that their error

CDFs intersect, with the error CDFs from lower partition sampling rates having worse

tails. It shows that different partition and data item sampling rates combinations can

achieve similar execution time, but different error bound distributions. For example

in Figure 2.13(a), (100%-60%) has better smaller errors after the 62th percentile, but

performs worse on frequent keys that have smaller errors. It is because (100%-75%)

processes more data than (100%-60%), so the frequent keys result in smaller errors but

the rarer keys have worse error due to partition dropping.

Comparison with relative error. Figure 2.14 plots the distributions of estimated

error bounds, versus the relative error against ground truth - |1 − v̂
v |. We can see

that ApproxSpark’s error estimation is constantly lower than the actual relative error.

We can also see that the estimation is more accurate at lower percentiles and less so

at higher percentiles. It is because the popular keys usually provides more statistical

46

Sampling Rates

Source (100%, 30%) (75%, 75%)

Partition sampling 0% 78%

Data item sampling 88% 12%

Pop. estimate partitions 0% 5%

Pop. estimate data items 12% 5%

Table 2.4: Breakdown of uncertainty on average across all keys for the four sources of

errors in multi-stage sampling for Co-occur.

information to the error estimation process than rare keys.

Effect of sampling data items. Figure 2.12 shows that the CDFs follow the same

trend as varying partition sampling rates. However we observe that the tails tend

to converge under the same partition sampling rates if we vary the input data item

sampling rates. We see that varying the data item sampling rate shifts the body (lower

percentiles) more rather than the tail portions of the CDF curves. The reason is that

large errors come from rare keys that tend to concentrate in only a few RDD partitions

in the resulting multi-stage sample. Since the partition sampling rates are the same,

percentage of keys that have large errors tend to be similar across different data item

sampling rates.

Effect of where to sample. Sampling at different parts of the RDD transforma-

tion chain can produce different error bound distributions. Figure 2.17 shows the error

bound distributions when data item sampling occurs at different points in the transfor-

mation chain. Since data item sampling before the flatMap corresponds to dropping

small clusters generated by the flatMap, we can see that under the same partition and

data item sampling rates, sampling after the flatMap results in an error distribution

that is smaller than sampling before the flatMap.

Sensitivity to underlying data distribution. In the dataset for our Twitter ap-

plication, the tweets are ordered chronologically which implies that the keys (Hashtag)

47

Sampling Execution Error Bound Percentile % Keys

Rates Time (s) 100th 90th 50th Present

100%-60% 149.2 0.17 0.12 0.10 80.0

75%-100% 150.8 0.37 0.22 0.06 80.3

100%-30% 120.9 0.22 0.20 0.17 71.8

75%-75% 121.4 0.32 0.28 0.13 72.3

50%-100% 119.7 0.51 0.31 0.11 61.5

Table 2.5: Comparison of run times, error bounds at 100th, 90th, 50th percentiles, and

fraction of unique keys for Co-occurrence.

(region id, h)

10

30

50

70

90

110

km
/h

95% CI
Estimated Value
Precise

(a) 50%-25% SRS

(region id, h)

10

30

50

70

90

110

k
m

/h

95% CI
Estimated Value
Precise

(b) 50%-25% Stratified

Figure 2.15: Region average speed at each hour at different partition and data item

sampling rates combinations. Comparisons of 95 % Confidence Interval width when

sample random or stratified sampling is applied at the POI RDD, coupled with partition

sampling at the input.

48

(region id, h)

10

30

50

70

90

110

km
/h

95% CI
Estimated Value
Precise

(a) 75%-50% SRS

(region id, h)

10

30

50

70

90

110

km
/h

95% CI
Estimated Value
Precise

(b) 75%-50% Stratified

Figure 2.16: Region average speed at each hour at different partition and data item

sampling rates combinations. Comparisons of 95 % Confidence Interval width when

sample random or stratified sampling is applied at the POI RDD, coupled with partition

sampling at the input.

0.2 0.4 0.6 0.8 1
Data item sampling ratio

50

100

150

R
un

 ti
m

e
(s

)

bf - 75%
af - 75%
bf - 50%
af - 50%

(a) Run time

0 0.5 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

bf-75%-60%
af-75%-60%
bf-50%-60%
af-50%-60%

(b) Error bound CDF

Figure 2.17: Run time comparison between data item sampling at the input data (before

flatMap) and after flatMap, coupled with different input partition sampling ratios

49

tend to cluster. We explored shuffling the data items and see what effects it has over

the result.

Sampling error. Sampling error is smaller in the shuffled data case. It because

when data items is shuffled, there is less inter-cluster variance and less uncertainty in

population size estimation. Figure 2.18 shows the comparison of sampling error CDFs

between the shuffled and unshuffled data when applying a 50% partition sampling rate.

Fraction of keys shown in the output. Effect of sampling partitions misses fewer

keys when the input data is shuffled, mitigating the clustering effect of the keys. So if

temporal info is not important to the application, shuffling the data offline as prepro-

cessing will improve the result in terms of sampling error and number of missed keys,

assuming data will be reused.

Sources of uncertainty. As previously explained, uncertainties (leading to estimated

error bounds) can arise from the sampling as well as population estimations. Table 2.4

shows the percentages of the error bounds, averaged across all keys in the output,

attributable to each of four sources for Co-occurence. We observe that the inter-cluster

variance from partition sampling accounts for by far the largest portion of the estimated

error bounds, which is consistent with [10]. The intra-cluster variance from data item

sampling accounts for the next largest portion, while population estimations for number

of partitions, the number of groups of co-occurred words, within each partition for each

key, account for only small portions of the error bounds.

Summary. Putting together the observations made above, we conclude that multi-

stage sampling works well to significantly reduce execution time while introducing small

to modest relative errors, as long as the loss of rare keys are acceptable. Further, data

item sampling would typically be preferable to partition sampling because it gives more

consistent error bounds across keys. To more clearly support this conclusion, Table 2.5

presents data for two sets of sampling rates for Co-occur, {(100%, 60%), (75%, 100%)}

and {(100%, 30%), (75%, 75%), (50%, 100%)}, where members within each set have sim-

ilar execution times. As the partition sampling rate increases, the tail of the error

bounds CDF worsen significantly. The trend is less clear for lost keys; however, high

50

0 0.1 0.2 0.3 0.4
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

Original data
Shuffled data

Figure 2.18: Comparison of error bound in twitter application between the shuffled

data and unshuffled data when applying 50% partition sampling rate.

partition sampling rates (e.g., 50%) can clearly lead to significantly increased number

of lost keys. Looking at Figure 2.7(a), this implies that partition sampling rates of

50% and 75% are not as useful since similar performance is achievable with (100%,

x%) sampling rates. On the other hand, execution time can be reduced using a parti-

tion sampling rate of 25% if one is willing to tolerate the accompanying key loss and

increased error bounds.

2.5.3 Results for stratified sampling using ASRS

In the Speed application, we explored both stratified sampling using ASRS with power

allocation technique, and simple random sampling (SRS) on the data items in POI

RDD. In addition, partition sampling is also applied when reading the input data. When

stratified sampling is performed over the data items in the POI RDD, it also creates

stratification effect for both road segment and region RDDs since each POI maps to a

road segment, which in turn maps to a region. We use power allocation techniques to

balance the sampling errors at each strata in the POI RDD when stratified sampling is

applied.

Execution times. We have observed that aggregating the street and region RDD both

have run time reduction as the sampling rate on the POI RDD lowers, whether stratified

sampling or SRS is performed. However, we do see that stratified sampling using ASRS

51

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 k
ey

s
in

 o
ut

pu
t

100%
75%
50%
25%

(a) SRS

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 k
ey

s
in

 o
ut

pu
t

100%
75%
50%
25%

(b) Stratified

Figure 2.19: Number of output keys (normalized) occurred in the output, SRS or

stratified sampling performed at the road segment RDD. Each line represents a partition

sampling rate at the initial RDD.

has much higher overhead than the SRS since it needs to perform stratification and

power allocation steps over the key space.

Confidence interval. Figure 2.15 and 2.16 plot the estimated values with error bars

of the average speed at the region level. The precise result is plotted in the dashed black

curves, estimated value in green curve and 95 % confidence intervals as red error bars.

Usually higher average speed is observed in regions that are away from city centers and

at hours that are early in the morning or late night, as a result these points come with

lower taxi densities, i.e., fewer samples which also tend to cluster over a few partitions.

These points would have larger error bars without balancing the sample sizes among

popular and rare keys, as shown in the Figure 2.15(a) and 2.16(a), whereas stratified

reservoir sampling coupled with power allocation technique increases the sampling rates

of these rare keys, resulting in smaller error bars for them. However, we do observe

that the popular keys have shorter error bars under SRS compared to stratified, it is

because the popular keys have a much larger representation in the sample than the rare

keys.

Fraction of keys shown in the output. In Figure 2.19, we see that the stratified

sampling constantly loses less keys than SRS at same sampling rate. In Figure 2.19(b),

52

0 0.05 0.1 0.15 0.2
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

(a) Speed

0 0.05 0.1 0.15 0.2
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

(b) WikiClickstream

Figure 2.20: User-specified error bounds targets shown on the error CDF achieved by

ApproxSpark.

we see that when partition sampling rate is set, stratified sampling can preserve the

number of output keys without being affected by the sampling rate over the data item

shown in (a). This shows that stratified reservoir sampling is much better at preserving

output keys in the result.

Summary. ASRS can not only achieves a balanced error distribution among popular

and rare keys, it also loses much fewer output keys, consistent throughout varying

sampling rates over the data items. However, ASRS has a higher sampling overhead

than SRS which is reflected in the execution times.

2.5.4 Results for user-specified error targets

We now demonstrate ApproxSpark’s capability in allowing users to set error bounds

target at different percentiles over the relative error distribution. The red dots in Figure

2.20 show the target error bounds at 20th, 50th, 90th, 100th percentiles; the blue curves

show the resulting CDF achieved by ApproxSpark, setting both partition and data item

sampling step sizes to be 0.1%. We can see that the CDFs are bounded by the targets

set by the user. Figure 2.20(a) is the error distribution for average Taxi speed with 50%

partition, and 80% data item sampling rates at the POI RDD. Figure 2.20(b) is the error

distribution for WikiClickstream aggregation result with 40% partition and 60% data

53

item sampling rates. We randomly select 10% of the RDD partitions to be executed in

the pilot wave. This approximation mode incurs more overhead compared with setting

the sampling rates that satisfy the user-specified error targets. We have observed that

the pilot wave causes about 20% and 25% extra execution time respectively in the two

applications compared with setting the sampling rates directly.

2.6 Conclusion

In this chapter, we have proposed a sampling-based framework that supports approx-

imate data processing with estimated error bounds in Spark. The framework includes

algorithms that track clustering of data items to be aggregated as the input data is

sampled and transformed and use multi-stage sampling theories to estimate output ag-

gregate values and corresponding error bounds. We have implemented our framework

in a prototype system called ApproxSpark. We used ApproxSpark to implement five

approximate applications from different application domains. Experiments with these

applications show that ApproxSpark can effectively allow users to tradeoff precision for

significantly reduced execution time, although in many cases, it must be acceptable to

lose some output keys. We also used the applications to explore and discuss extensively

tradeoffs between sampling rates, execution time, precision and key loss. Based on

our experience and results, we conclude that frameworks such as the one we propose

here can make efficient and controlled approximation more easily accessible to Spark

programmers, as well as data processing systems similar to Spark.

Acknowledgement

We thank the Rutgers Discovery Informatics Institute (RDI2) for partially supporting

this research, as well as providing the computing platform for our experimentation and

evaluation.

54

2.7 Appdendix: Cluster Sampling Variance with Population Estima-

tion

Estimated sum for all clusters is:

τ̂ =
N̂

n

∑
i∈S

vi = N̂ τ̄ (2.6)

Sample mean among the cluster totals is:

τ̄ =
1

n

∑
i∈S

vi (2.7)

Estimated total number of clusters N is:

N̂ =
n

p1
(2.8)

Since N̂ ∼ NB(n, p1), the variance of N̂ is:

V ar(N̂) =
n(1− p1)

p21
(2.9)

If we treat it as simple random sampling, the variance of mean of cluster total is:

V ar(τ̄) = (1− p1)
s2t
n

(2.10)

Variance of cluster totals V ar(τ̂)srs =

V ar(N̂ τ̄)

= N̂2V ar(τ̄) + τ̄2V ar(N̂) + V ar(N̂)V ar(τ̄)

= (
n

p1
)2(1− p1)

s2t
n

+
n(1− p1)

p21
(τ̄2 + (1− p1)

s2t
n

)

(2.11)

thus:

V arinter = (1− 1

p1
)V arsrs(τ̂) (2.12)

Estimated sum of cluster i is:

τ̂i = M̂iτ̄i (2.13)

where sample mean τ̄i in cluster i is:

τ̄i =
1

mi

∑
j∈Si

vij (2.14)

55

where mi is the number of sampled items in cluster i, Mi is the population total in

cluster i and p2 is the data item sampling rate.

Since M̂i ∼ NB(mi, p2), estimated M̂i is:

M̂i =
mi

p2
(2.15)

with variance:

V ar(M̂i) =
(mi)(1− p1)

p22
(2.16)

The variance of sample mean in cluster i is:

V ar(τ̄i) = (1− p2)
s2i
mi

(2.17)

The variance of estimated sum in cluster i is:

V ar(τ̂i) = M̂i
2 ˆV ar(τ̄i) + τ̄i

2V ar(Mi) + V ar(M̂i)V ar(τ̄i)

= (
mi

p2
)2(1− p2)

s2i
mi

+
(mi)(1− p1)

p21
(τ̄i +

(mi)(1− p1)
p21

)

(2.18)

Intra-cluster variance is:

V arintra =
1

p1

∑
i∈S

V (τ̂i) (2.19)

The total variance is:

V ar(τ̂) = V arinter + V arintra

= V ar(τ̂)srs +
1

p1

∑
i∈S

V ar(τ̂i)
(2.20)

2.8 Appdendix: Optimal Allocation for Stratified Reservoirs

Under the power allocation technique with power q setting to 0, we compute the reser-

voir size |ri| for key i as [37]:

|ri| = |r| ×
σi/(

∑|Ri|
j=1 yij
|Ri|)∑n

k=1 σk/(
∑|Rk|

j=1 ykj
|Rk|)

(2.21)

56

where |Ri| is the population size of key i and yij is the jth item value of key i and σi

is the standard deviation of key i. Then at any point in time t during the sampling

process, reservoir size |ri(t)| is determined by this formula [37]:

|ri(t)| = |r| ×
σi(t)/(

∑|Si(t)|
j=1 yij
|Si(t)|)∑n

k=1 σk(t)/(
∑|Sk(t)|

j=1 ykj
|Sk(t)|)

(2.22)

where |ri(t)| denotes the size of a sub-sample allocated for key Si at time point t, σi(t)

denotes the running standard deviation of key i up to t,and |Si(t)| denotes the number

of tuples processed up to t from key i.

57

Chapter 3

Similarity Driven Approximation for Text Analytics

In this chapter, we propose a framework called EmApprox to speed up a wide range of

queries over large text data sets. The key idea behind EmApprox is to build a general

index that guides the processing of a query toward a subset of the data that is most

similar to the query. For example, consider a query that seeks to count the number

of occurrences of a given phrase. EmApprox would select a sample of the data set,

preferentially choosing items most similar to the query phrase, count the occurrences

in the sample, and use the count to estimate the number of occurrences in the entire

data set. Clearly, the result is approximate so that users of EmApprox would need to

tolerate some imprecision in the estimated results. EmApprox allows users to trade off

precision and performance by adjusting the sampling rate.

Our approach is related to the many approximate query processing (AQP) systems

that answer aggregation queries over relational data sets by processing estimators with

error bounds using samples of the data [6, 11–13]. In essence, one can think of EmAp-

prox as extending AQP to text analytics. EmApprox supports the estimation of errors

bounds when possible; e.g., for aggregation queries. However, EmApprox can also be

used in scenarios where it is not possible to estimate error bounds such as information

retrieval, making it widely applicable to many different text analytic queries/applica-

tions.

As we know, index structures can make data access/search more efficient. For

example in a database, B-tree based index can speed up range queries, Bloom filters

are used for quickly checking record existence and hash maps makes single-key lookups

O(1) operations [60]. It is also pointed out in [60] that traditional index structures can

be viewed as models, and using ML model to learn the distribution of keys can result

58

Figure 3.1: Overview. Sn are subcollections of documents.

in a general-purpose index which can complement existing index structures.

System overview. Figure 3.1 gives an overview of EmApprox. As mentioned above,

EmApprox executes a query on a sample of the data set to reduce query processing

time. Straightforward use of random sampling can lead to large errors, however, when

sampling from a skewed distribution [11]. To mitigate this issue, EmApprox builds

an index offline, then consults the index at query processing time to guide sampling

toward subsets of data that are most similar to the query.

Specifically, EmApprox uses a natural language processing (NLP) model [61] to learn

vector representations for unique words and documents. The resulting vectors can be

composed and used to compute a similarity metric. Then, assuming that the data

set is partitioned into a number of subcollections as shown in Figure 3.1, EmApprox

computes a vector for each subcollection from the vectors of the documents contained

in it.1 The final index contains vectors for unique words together with vectors for the

subcollections.

At query processing time, EmApprox computes a vector for the query using vectors

of the words in the query. It then computes a sampling probability for each subcol-

lection that is proportional to the similarity between the subcollection and the query

using their vector representations. Finally, it selects a sample of subcollections using

1Data sets may be partitioned into subcollections for a variety of reasons, including storage in a
distributed file system such as HDFS [62].

59

unequal probability cluster sampling. It is also known as probability proportional to

size (pps) [10] 2 over the subcollections, where sampling probabilities are proportional

to subcollections’ similarity to the query as computed using the subcollections’ and

query’s vectors.

EmApprox uses locality-sensitive hashing (LSH) to hash each real-valued vector to

a bit vector [63] to reduce the storage overhead of the index. LSH works well because

it preserves the distance between the original vectors. Computing similarity using LSH

bit vectors is also extremely cheap; it is simply the Hamming distance of two bit vectors

that can be computed efficiently using XOR. This optimization has greatly increased the

scalability and efficiency of EmApprox’s index.

Queries. We have implemented a prototype of EmApprox and used it to support ap-

proximate processing for three different types of queries: (1) aggregation queries that

count occurrences within a text data set, (2) retrieval queries, both Boolean and ranked,

that retrieve relevant documents, and (3) recommendation queries that predict users’

ratings for products. For aggregation queries, we show how to compute estimated error

bounds along with the approximate results. We also show that the training objective of

PV-DBOW [61], the specific NLP model that we use, is directly related to minimizing

the variance of the estimated results when using similarity driven sampling. For the

retrieval queries, we use EmApprox in a similar fashion to distributed information re-

trieval (DIR), where a query is only processed against subcollections that are expected

to be most relevant to the query [11]. Finally, for the recommendation queries, we use

the user-centric collaborative filtering (CF) algorithm [64] to predict a target user’s

ratings using the average of other users’ ratings weighted by similarities between their

product reviews.

Evaluation. We generate a large number of queries for each query type, and execute

them on three different data sets. We adopt equal probability cluster sampling [10] over

subcollections as the baseline for our evaluation. We show that EmApprox can achieve

2Size is referring to the number of relevant data items in a cluster.

60

significant improvements on different domain-specific metrics (e.g., error bounds, pre-

cision@k, etc.) compared to the baseline with very little extra overhead during query

processing. For example, to match the error bounds in aggregation queries achieved by

EmApprox, the baseline would have to process ∼4x the amount of data. We also show

that EmApprox can achieve significant speedups if users can tolerate modest amounts

of imprecision. For example, when sampling at 10%, EmApprox speeds up a set of

queries counting phrase occurrences by almost 10x while achieving estimated relative

errors of less than 22% for 90% of the queries.

EmApprox is extremely efficient for processing queries that estimate results such

as aggregation and recommendation queries. In contrast, like all sampling-based ap-

proaches, EmApprox is less effective for speeding up queries similar to information

retrieval queries. This is because these queries are seeking specific data items in the

data set, and it is impossible to estimate missed data items based on the sample.

Contributions. In summary, our contributions include: (i) to our knowledge, our

work is the first to leverage an NLP model to build a general-purpose index to guide

the approximate execution of text analytic queries; (ii) we show that the training ob-

jective of PV-DBOW is directly correlated with minimizing the variance of counting

queries; (iii) we propose similarity driven sampling that can significantly increase accu-

racy compared to random sampling for three distinct types of approximate queries in

three different application domains; (iv) we show that hashing real-valued vectors into

light-weight LSH bit vectors significantly improves storage and computation efficiency

without compromising precision.

3.1 Background and Related Work

3.1.1 Approximate query processing

Traditional AQP systems target aggregation queries over relational data sets. BlinkDB [12]

is an AQP system that selects offline stratified samples based on historical information

about queries for query processing. ApproxHadoop [6] and ApproxSpark [65] are on-

line sampling-based frameworks that supports approximating aggregation with error

61

bounds. Sapprox [11] has offline and online components. It collects the occurrences

of column values offline, and uses the information to facilitate online cluster sampling.

EmApprox is related to the above AQP systems in that it uses sampling and similar

statistical theories to estimate error bounds for certain classes of queries. EmApprox is

different in its target of many different types of queries on unstructured text data sets,

and its use of an NLP model to estimate similarity.

ApproxSpark [65] generalizes ApproxHadoop by adapting online cluster sampling

from the MapReduce computation model to multi-step RDD transformations. It also

implements a distributed version of stratified sampling [66] to reduce sampling errors

for rare keys, but its performance gain is limited because of a larger overhead from

online stratified sampling.

3.1.2 Cluster sampling

Large data sets are typically partitioned such that a partition can naturally correspond

to a cluster for cluster sampling. When this is true, cluster sampling is especially

efficient since it avoids the need to access clusters that are not selected for a sample,

and so is used in many approximate computing systems, e.g., [6, 11,12,65].

Suppose we need to estimate the frequency τ of a phrase Z occurring in a text data

set partitioned into subcollections. If we take a cluster sample from the data set using

subcollections as the sampling clusters, we can use the estimator τ̂ = 1
n

∑
s∈S

τs
φs
±ε [10],

where S is the chosen sample, n is the number of subcollections in S, τs is the frequency

of Z in subcollection s, φs is the sampling probability for s, and ε is the estimated error

bound. ε ∝
√
V̂ (τ̂), with

V̂ (τ̂) =

∑
s∈S(τsφs − τ̂)2

n(n− 1)
(3.1)

We observe that as the φs’s approach τs
τ̂ , V̂ (τ̂) and hence ε will approach 0. The goal

of probability proportional to size (pps) sampling [10] is to set each φs close to τs
τ̂ by

leveraging auxiliary information of each sampling unit, so that we can reduce the error

bound for our estimator τ̂ . Below, our approach is to set φs close to τs
τ , which should

be close to τs
τ̂ if τ̂ is a good estimator.

62

3.1.3 Paragraph Vectors

Recent advances in NLP have shown that semantically meaningful representations of

words and documents can be efficiently learned by neural embedding models [61, 67].

Word2vec uses an unsupervised neural network to learn vector representations (em-

beddings) for words [67]. It seeks to produce vectors that are close in a vector space

for words having similar contexts, which refers to the words surrounding a word in

a pre-determined window. For example, synonyms like “smart” and “intelligent,” or

closely related words such as “copper” and “iron,” are likely to be surrounded by sim-

ilar words, so that Word2vec will produce spatially close vector representations for

them. Similarity between two words can thus be scored based on the dot product

distance between their corresponding vectors. The learned vectors also exhibit addi-

tive compositionality, enabling semantic reasoning through simple arithmetic such as

element-wise addition over different vectors. For example, vec(“king”)−vec(“man”) ≈

vec(“queen”)− vec(“woman”).

Paragraph Vector (PV) [61] is similar to Word2vec, which jointly learns vector

representations for words and variable-length text ranging from sentences to entire

documents in a method. Distributed Bag of Words PV (PV-DBOW) is a version of PV

that has been shown to be effective in information retrieval due to its direct relationship

to word distributions in text data sets [68]. By setting PV-DBOW’s window size to be

each of the document’s length, the generative probability of word w in a document d is

modeled by a softmax function:

PPV (w|d) =
exp(~w · ~d)∑

w′∈V exp(
~w′ · ~d)

(3.2)

where ~w and ~d are vector representations for w and d, and V is the vocabulary (i.e., the

set of unique words in the data set). PV-DBOW learns the word and document vectors

using standard maximum likelihood estimation (MLE), by maximizing the likelihood

of observing the training text data set under the distribution defined by Eq (3.2). As a

result, the training process will output word and document vectors that satisfy Eq (3.2)

which formulates the theoretical foundation of our approximation index.

To reduce the expense of computing Eq (3.2) during training, a technique called

63

negative sampling has been proposed [67] that randomly samples a subset of words

in that document according to a noise distribution to approximate Eq (3.2). The

training process is equivalent to implicitly factorizing a shifted matrix of point-wise

information (PMI) between words and documents: [69]:

~w · ~d = PMI(w, d)− log(k) (3.3)

PMI(x, y) = log
p(x, y)

p(x)p(y)
= log

p(x|y)

p(x)
(3.4)

where PMI(w, d) is the point-wise information between word w and document d, and k

is a constant representing the number of negative samples for each positive instance in

the training process. PMI can be estimated empirically by observing the frequencies of

words in documents in the data set as log#(w,d)
|d| ·

|D|
#(w,D) , where #(w, d) is the frequency

of w in document d, |d| is the length of (number of words in) d, D is the data set,

#(w,D) is the total number of occurrences of w in D, |D| is the total number of words

in D.

Given PMI’s definition, Eq (3.3) reveals that the exponential of the distance be-

tween a document and word vector is proportional to the probability of document

predicting this word p(w|d), which indicates that if a word is chosen randomly from d,

then what is the probability that it would be w:

exp(~w · ~d) =
p(w|d)

p(w)k
∝ p(w|d) (3.5)

We can see from Eq (3.5) that the inner-product distance between the word vector and

each document vector is proportional to the percentage of the total occurrence of w

contributed by each document d.

Negative sampling randomly samples words according to a predefined noise distri-

bution and uses these words to approximate eq (3.2). The global training objective of

PV-DBOW using negative sampling is:

l =
∑

(w,d)∈D

#(w, d) (log σ(~w · ~d) + k · EwN∼Pn [log σ(− ~wN · ~d)]) (3.6)

where #(w, d) denotes the frequency of an observed word-document pair, D is the cor-

pus, k is the number of negative samples, σ is the sigmoid function and EwN∼Pv [log σ(− ~wN ·

~d)] is the expected value of log σ(− ~wN · ~d) given a noise distribution Pn for wN [61].

64

3.1.4 Locality-Sensitive Hashing

Hashing methods have been studied extensively for searching for similar data samples

in a high-dimensional data set to solve the approximate nearest neighbor problem. LSH

is among the most popular choices for indexing a data set using hashing [63]. The basic

idea behind LSH is to transform each item in a high dimensional space into a bit vector

with b bits, using b binary-valued hash functions h0, ..., hb. In order for the bit vector to

preserve the original vectors’ similarity, each hash function h must satisfy the property:

Pr[h(~x) = h(~y)] ∝ sim(~x, ~y)

where ~x and ~y are two vectors in the data set; sim is a similarity measure, such as

Jaccard, Euclidean or cosine. Pr[h(~x) = h(~y)] is computed as one minus the ratio of

the Hamming distance between two bit vectors over the total number of bits in them.

Similarity between two items is preserved in the mapping, that is, if two items’ LSH

bit vectors are close in Hamming distance then the probability that they are close to

each other in the original metric space is also high. This property allows items’ LSH

bit vectors to efficiently index a data set for similarity search [63].

3.2 Similarity-driven Sampling

In this section, we discuss cluster sampling with probabilities proportional to similarities

of a query to subcollections for aggregation queries. Cluster sampling has been adopted

for approximating aggregation queries (section 3.1.2) that seek to compute a sum/mean

over the data set, such as counting the occurrences of a phrase or number of documents

related to a given topic. We show that the similarities, as auxiliary information for

sampling, can be computed online using the offline trained PV-DBOW vectors.

3.2.1 Query vector

We assume a query q contains l words {wi}. Under the bag-of-words assumption, the

probability of q in a document d is the joint probability of its words wi:

p(q|d) =
∏
i∈l

p(wi|d) (3.7)

65

We define ~q as element-wise arithmetic sum of its individual words’ vectors: ~q =∑l
i=1 ~wi, then by combining Eq (3.5) and Eq (3.7) we can derive that p(q|d) is propor-

tional to exp(~q · ~d) from PV-DBOW’s training objective:

p(q|d) =
∏
i∈l

p(wi|d) ∝ exp(~q · ~d) (3.8)

which is the exactly the same form as Eq (3.5) when a query only comprises a single

word. Therefore by computing ~q this way, we can conveniently derive the probability of

document predicting this query, under the assumption that the words are independent.

3.2.2 Sampling probability estimation

We define a document’s similarity to a query as p(q|d), the probability of d predicting

q. exp(~q · ~q) in Eq (3.8) can be used to compute p(q|d) at sampling time using ~q and

~d, both contained in the offline trained PV-DBOW model. Suppose we use documents

as cluster sampling units to estimate the quantity of q throughout the data set, then

we can use exp(~q · ~d) as each document’s auxiliary information for setting sampling

probabilities proportional to its similarity to q:

φd(q) =
p(q|d)∑

d′∈D p(q|d′)
=

exp(~q · ~d)∑
d′∈D exp(~q · ~d′)

(3.9)

As large data set is often partitioned into subcollections, it more efficient if we use sub-

collection as sampling clusters [6,11]. Similar to sampling documents with probabilities

proportional to similarity, we propose to use a subcollection’s vector representation to

compute its similarity to the query and set sampling probabilities proportionally. In-

tuitively, we propose to define a subcollection’ vector representation using the element-

wise arithmetic mean of the vectors of the subcollection’s documents: ~s = 1
n

∑
d∈s

~d,

where n is the number of documents in s, and d is a document in s.

We now demonstrate that choosing arithmetic mean of document vectors as sub-

collection’s vector representation is reasonable. Given ~s and Eq (3.8), we can derive

the exponential of the dot product between a subcollection and query’s vectors as the

geometric mean of each p(q|d) in s:

exp(~q · ~s) = n

√∏
d∈s

exp(~q · ~d) ∝ n

√∏
d∈s

p(q|d) (3.10)

66

Let p(q|s) denote n
√∏

d∈s p(q|d), then we can rewrite Eq (3.10) in a similar form as Eq

(3.8):

p(q|s) ∝ exp(~q · ~s) (3.11)

where we use p(q|s) to express the similarity of a subcollection to the query. Similar

to computing the similarity of q to a document, we can use Eq (3.11)’s left hand

side to compute the similarity of q to a subcollection. Following the same idea as

using documents as sampling units, we define a probability distribution φs(q) for each

subcollection s with respect to q in the same form as Eq (3.9):

φs(q) =
p(q|s)∑

s′∈D p(q|s′)
=

exp(~q · ~s)∑
s′∈D exp(~q · ~s′)

(3.12)

where exp(~q · ~s) can be computed at sampling time.

A cluster sample over the subcollections with probabilities according to Eq (3.12)

will reduce the variance (Eq (4.1)) in estimating the occurrence of {wi}. It is because

each subcollection is sampled with probability proportional to the probability each

subcollection predicts the query. Variants of aggregations include estimating number

of documents that contain {wi} or number of documents similar to {wi} in semantics.

Both distributions defined in Eq (3.9) and (3.12) normalize the probability of a phrase

appearing in a document or subcollection. Interestingly, Eq (3.9) and (3.12) have the

same form as a softmax classifier over query words {wi} which predicts its probabilities

conditioned on a document or subcollection.

3.3 Vector-based index structure

We slightly modify the gradient descent-based training process of PV-DBOW: at each

update step, we normalize the original vectors to be unit length so that the dot product

of the trained vectors is equivalent to the cosine similarities between two vectors rather

than dot product. The resulting approximation index includes vectors for every word,

document and subcollection. The index can occupy significant storage space for a large

data set, for which we propose to map the real-valued vectors to LSH bit vectors to

reduce the required storage. And, the cost of computing the similarities between bit

vectors is also much more efficient than dot product between real-valued vectors.

67

Locality-sensitive hashing. LSH is among the most popular choices for indexing a

data set using hashing [63]. The basic idea behind LSH is to transform each item in a

high dimensional space into a bit vector with b bits, using b binary-valued hash functions

h0, ..., hb. In order for the bit vector to preserve the original vectors’ similarity, each

hash function h must satisfy the property: Pr[h(~x) = h(~y)] ∝ sim(~x, ~y), where ~x and ~y

are two vectors in the data set; sim is a similarity measure, such as Jaccard, Euclidean

or cosine. Pr[h(~x) = h(~y)] can be computed using the Hamming distance between ~x

and ~ys’ corresponding bit vectors. Computing the Hamming distance of the LSH bit

vectors using XOR is much more efficient than dot product of two real-valued vectors.

The hash function for preserving cosine distance depends on the dot product between

a random plane ~r and an item vector ~x, where hr(~x) evaluates 1 if ~r · ~x ≥ 0, and

0 otherwise, where ~r usually has a standard multi-dimensional Gaussian distribution

N (0, I), and a new ~r is generated each time the hash function is applied [63]. In order

to generate the LSH signature for a real value vector, we first choose a dimension l

for the bit vector, then apply hash function hr(~x) l times to generate each bit, each

choosing a random ~r. Specifically, we can approximate exp(~w · ~d) using exp(cos(ml π)),

where m is the Hamming distance between ~w and ~d’s corresponding LSH bit vectors.

3.4 Retrieval-based Queries

In this section, we describe approximating DIR and recommendation queries using

similarity-driven sampling extrapolated from aggregation. The goal of IR is to identify

“similar” documents to a query, and that many recommendation techniques also require

identifying “similar” users to a target user. We characterize our targeted queries as

following: 1) the query can be represented by words; 2) similarity of query to a subset

of data is proportional to how likely the subset contains relevant data.

68

Symbol Description

Bi ith HDFS subcollection

d dth doc

ni number of docs in Bi

ld number of words in d

φi average topic distribution in Bi

q̂i estimated amount of queried data in

Bi

πi Bi’s sampling probability = q̂i∑
i q̂i

Pi any probability w.r.t. Bi

3.4.1 Distributed information retrieval

In IR, a score is usually computed for each document indicating how relevant it is

to the user’s query (usually a sequence of words), to retrieve the relevant documents.

The score can be computed based on metrics such as tf-idf of the query words or the

generative probability of the query given a document using a language model, known

as query likelihood [70]. IR can benefit from representations of words and documents in

vectors that encode semantic information [68], where scoring of the documents can be

computed based on the similarity between a query and documents. A retrieval model

proposed in [70] uses latent Dirichlet allocation (LDA) for query likelihood. LDA is a

generative language model that abstracts a document as mixture of topics, represented

by a stochastic vector θd ∈ ∆K , where K is the number of topics. Inspired by [70], a

Paragraph Vector-based retrieval model was proposed in [68] that has PPV (w|d) defined

in eq (3.2) in its retrieval model.

P (w|d) = (1− λ)PQL(w|d) + λPPV (w|d) (3.13)

where P (w|d) is the probability of w given d, PQL(w|d) is defined as PPV (w|d) is defined

in eq (3.2), λ is a free parameter between 0 and 1.

69

Information retrieval from disjoint subcollections of documents is known as dis-

tributed information retrieval (DIR), where many irrelevant subcollections are ignored

for improved retrieval efficiency [71]. EmApprox can facilitate subcollection selection

under the vector space retrieval paradigm for DIR [71]. We target Boolean and ranked

retrieval models for DIR in the following discussion. However, our goal is not to compete

with existing DIR solutions, but to demonstrate that our proposed index can comple-

ment previous AQP systems and extend approximation tasks to DIR with efficiently.

Boolean retrieval. A Boolean query is a Boolean expression of words (e.g., w0∨ (w1∧

w2)), where a term wi only evaluates to true when contained in a document [71]. The

retrieval result is a set of documents that satisfy the Boolean expression.

To answer a Boolean query qb, we first compute its similarity to each subcollection -

p(qb|s), which can be computed using the same order as evaluating the Boolean query,

i.e. ∧ takes precedence over ∨. We compute p(wi|s) of each term wi for a subcollection s

using Eq (3.11), in order to compute the query’s overall similarity. Since wi∧wj implies

that wi and wj both have to exist for the entire expression to be true, whereas satisfying

wi∨wj requires either wi or wj to exist, the generative probability of wi∧wj is equivalent

of p(wi|s) ·p(wj |s); similarly, the generative probability of wi∨wj is therefore p(wi|s) +

p(wj |s). For example, suppose we have a Boolean query qb = w0∨(w1∧w2), then p(qb|s)

can be computed as p(w0|s) + (p(w1|s) · p(w2|s)), where each p(wi|s) is computed using

Eq (3.11). Finally, we use the overall query similarity to the subcollections p(qb|s) to

compute sampling probability of each subcollection to sample a subset of subcollections,

where only documents in the chosen subcollections are evaluated against the Boolean

query.

Ranked retrieval. Instead of returning a set of documents that precisely match a

Boolean expression, ranked retrieval returns a list of documents ranked by their rel-

evancy to the query. Each document is assigned a score using a function, such as

the tf-idf of the query terms. Similar to Boolean retrieval, our proposed framework

first samples a subset of subcollections with probabilities proportional to the query’s

similarity to each subcollection - we just use Eq (3.12) to compute its similarity to a

70

subcollection. We then apply a user-specified scoring function to documents from the

chosen subcollections, such as BM25 [72].

3.4.2 Recommendation

User-centric collaborative filtering (CF) is one of the most successful recommendation

techniques [64]. It identifies a subset of similar users as neighbors to a target user u,

then uses the similarity score to predict a rating for item i by user u. It computes the

prediction by taking an average of u’s neighbors’ rating weighted by their similarity

scores.

Review text can embed rich information and has been leveraged to model users’

behavior. It’s predicting performance has been shown to be more effective than numer-

ical data [19]. A user’s vector representation can be learned under PV-DBOW model

by defining a document as all the reviews a user has written [19]. Consequently, a

user’s vector ~u encodes u’s preference. When the number of total users in the data

set is large, the process of identifying neighbors from them to a target user u would

be expensive. Our vector-based index structure makes it more amenable for large data

sets by selecting only more similar subcollections of users. Suppose the review data set

is sorted by users, then similarity of a user u to a collection of reviews can be computed

using Eq (3.11) to sample most similar collections of users. Then predicted ratings for

the new user can be computed using any model/metric with the neighbors in the chosen

subcollections.

As a concrete example, rating of an item i by user u’s predicted value can directly

leverage u’s review text vector’s similarity to a user v who has also rated item i, com-

puted as
∑

v∈U ′ sim(u, v)r(v, i), where U ′ is the set of all users who have rated item

i in the chosen subcollections, r(v, i) is user v’s rating for item i, sim(u, v) can be

characterized by their similarity in the review texts u and v have written, defined as:

∑
v∈U ′

exp(~u · ~v)∑
v′∈U ′ exp(~u · ~v′)

(3.14)

Suppose the data set is the Amazon reviews, the purchase history of a user is the

set of distinct products he has written reviews for, the ”features” of a product is all the

71

reviews it has received. Then respectively, if we treat both each user and each product

as documents, embedding vectors of both the user and products can be learned using

doc2vec. Suppose the trained user and product vectors are stored in plain text files,

they could also be stored in HDFS and loaded into memory as RDD as well since they

could be multiple GBs in size. The original review data set is also stored in HDFS.

As before, we compute the vectors of each HDFS subcollection, representing groups

of products and sample a percentage of the subcollections based on the similarities

of the subcollection vectors and the user we’d like to recommend products to. Note

that the RDD that stores the model should be partitioned in the same way as the

data set RDD. After the subcollections are sampled, we first compute the list of top N

products from the ”sampled” model and retrieve relevant metadata (reviews, ratings,

etc that accompanies selected products) from the selected HDFS subcollections storing

the original data set.

Usually each user is represented by all the reviews she has written, where a user’s

vector representation can be learned under PV-DBOW model by defining a document

as all the reviews a user has written. A user’s vector ~u would encode the information of

all review text she has written which potentially represents u’s preference. We believe

that ~u can also be obtained by averaging the word vectors in her reviews if this user is

not already present in the data set.

3.4.3 Discussion

We hypothesize that using documents as sampling units is better for information

retrieval-oriented tasks where subcollection-based cluster sampling may be too coarse.

It is because IR is very sensitive to the allocation of documents in the data sets. If

semantically documents are not clustered together, dropping subcollections may result

in missing highly similar documents to the query.

However, using subcollection as sampling units is preferred since computing closed-

form estimator to the query is less prone to losing particular documents. Sampling

subcollections is more efficient because it eliminates the need of I/O for the dropped

subcollections.

72

3.4.4 Discussion on Document Allocation

The document allocation policy can affect DIR’s performance, where the storage of doc-

uments needs to be skewed for DIR to be effective. This is because the query expects

to retrieve as many relevant documents to the query as possible from only a subset of

the data set. The document allocation policy can also affect recommendation’s perfor-

mance, since identifying similar users is similar to retrieving relevant documents. On

the other hand, the accuracy of aggregation estimators is not dependent on document

allocation, since the local sum of each chosen subcollection is multiplied by the inverse

of its own sampling probability as a scaling factor to compute an overall estimator, i.e.,

subcollections with a large local sum will just have a small scaling factor.

We propose to allocate documents based on their vectors’ pair-wise cosine distance

through clustering the documents in the original data set using spherical K-means, that

uses the cosine as distance metric. The clustering process takes as input the collection

of document vectors, and produces an allocation where semantically similar documents

are clustered.

When documents d1, d2, ..., dn are semantically similar, it indicates that the prob-

abilities p(w|d1), p(w|d2), ..., p(w|dn) are also similar for a query word w. The result

of clustering is a more skewed distribution of the documents, therefore documents that

have the same probability of predicting a query word tend to be allocated together. As

Eq (3.10) shows that

p(w|s) = n

√∏
d′∈s

p(w|d′) (3.15)

which is the geometric mean of each document’s probability of predicting w in that

subcollection s – so if p(w|d′)’s are similar in each s, then their geometric mean p(w|s)

will approach a local maximum equivalent to the arithmetic mean of all the p(w|d′),

according to the AM-GM inequality [73]. It therefore suggests that this allocation policy

would produce a skewed sampling probability distribution φs(w), which is desired for

a retrieval query.

73

3.5 Limitations

EmApprox can approximate a range of text analytical queries, we nevertheless highlight

a couple of limitations.

Model drift. We assume the text data set is historical and stable. If new documents

are added to the existing data set, PV-DBOW is able to infer the vectors for an unseen

document using the words in the new document [61]. However, the originally trained

PV-DBOW model may drift due to document updates. Therefore PV-DBOW model

should be retrained to capture the true word/frequent distributions in the data set,

which requires the offline index to be rebuilt.

Unseen words in the query. Currently we assume the query does not include words

outside the vocabulary of the data set, so that any word vector in the query can be

directly obtained.

3.6 Implementation

We have implemented a prototype of EmApprox as a Python library comprising two

parts: one for building offline indexers and one for building approximate query process-

ing applications (queries for short). Users write indexers and queries as Spark programs

in Python using the PySpark [74] and EmApprox libraries. Figure 3.2 gives an overview

of a system built using EmApprox, where documents are stored in blocks of an HDFS

filesystem, with blocks considered subcollections of documents and used as sampling

units. Note that a single indexer can be used to index many different data sets of the

same type, and many different queries can be executed against each index/data set.

We leave the task of writing indexers to the user because it allows the flexibility

for indexing many different types of data (e.g., different data layouts and definitions of

documents). It is quite simple to write indexers given the EmApprox library. Specifi-

cally, users need to write code to parse a given data set to extract the documents (much

of this code can come from standardized libraries) and identify documents in each sub-

collection (HDFS block). All other functionalities are implemented in the EmApprox

74

Figure 3.2: System architecture. {bN} are HDFS blocks, {rn} are Spark RDD partitions

based on selected blocks.

library, and simply requires the user program to call several functions. Similarly, the

main difference between an approximate query built using EmApprox and a precise

query is the invocation of several EmApprox functions.

An offline indexer uses EmApprox to learn vector representations for words and doc-

uments, cluster documents (when desired) using K-means as discussed in Section 3.4.4,

compute vectors for blocks (subcollections), compute corresponding LSH bit vectors,

and prepare the index. This process is shown as steps p1 and p2 in Figure 3.2. (We do

not show the clustering for simplicity.) We use Gensim [75] as the default library for

PV-DBOW model training, but we can also use alternative implementations that can

run on distributed frameworks such as Tensorflow [76] to reduce the training time. We

use Gensim in our prototype because it is a widely adopted PV-DBOW implementation.

The execution of an approximate query is shown as steps a1 through a5 in Figure 3.2.

In step a1, the query uses EmApprox to read the index into an in-memory hash table,

compute sampling probabilities for all HDFS blocks, and choose a sample using pps

sampling. Step a2 launches a Spark job. Steps a3− 4 are part of the Spark job and use

75

Query Domain Description Metrics

phrase occurrence aggregation estimates frequency for target

phrase.

error bound

Boolean retrieval DIR retrieves a (sub)set of docu-

ments that precisely match a

Boolean query.

recall

ranked retrieval DIR retrieves top-k documents

ranked by a given scoring

function over a set of query

terms.

precision

user-centric CF recommendation predicts ratings on unbought

products and outputs top-k

recommendations for a user.

MSE, preci-

sion

Table 3.1: Approximation queries and metrics summary

EmApprox and PySpark to read the sample from the data set into an RDD. Step a5

is the execution of the rest of the Spark job. We provide two simple reduce functions

that compute the estimated sum and average, along with the confidence interval.

3.7 Evaluation

3.7.1 Setup

Data. We use three data sets: a snapshot of Wikipedia [58], a news corpus from

Common Crawl (CCNews) [77], and a set of Amazon user reviews [19]. Table 3.2

summarizes the data sets, their use in different queries, the training time of PV-DBOW

using Gensim, and the size of the resulting indices after compression using LSH.

Experimental platform. Experiments are run on a cluster of 6 servers interconnected

with 1Gbps Ethernet. Each server is equipped with a 2.5GHz Intel Xeon CPU with 12

cores, 256GB of RAM, and a 100GB SSD. Data sets are stored in an HDFS file system

76

Dataset Description Size Document T-Time Idx-size

Wikipedia ∼5 million arti-

cles in XML.

62GB each

Wikipedia

article

4.3h 125MB

CCNews ∼22 million news

articles crawled in

2016 in JSON.

65GB each news

article

6.2h 280MB

Amazon reviews ∼142 million re-

views in JSON.

55GB reviews

from a user

3.8h 87.5MB

Table 3.2: Dataset descriptions, notion of a document (Document) for PV-DBOW,

training time (T-Time) and index sizes.

hosted on the servers’ SSDs, configured with a replication factor of 2 and block size of

32MB. Applications are written in Python 3 and run on Spark 2.0.2.

Index construction. We train PV-DBOW to produce word and document vectors

with 100 dimensions. We use LSH vectors of 100 bits, which compresses the PV-

DBOW learned vectors by a factor of 64. We explore the sensitivity of EmApprox to

these parameters in Section 3.7.3.

Baselines. We analyze and compare EmApprox’s performance against simple random

clustered sampling (SRCS) [10] of HDFS blocks and precise execution. We compare

execution times (speedups) and query-specific metrics. We run the precise executions

as “pure” Spark programs on an unmodified Spark system. We run SRCS using the

EmApprox prototype, replacing pps sampling with simple random sampling.

Aggregation queries. We run aggregation queries that estimate the numbers of oc-

currences and the corresponding relative errors of target phrases in the Wikipedia data

set. We create 200 queries by randomly selecting phrases from the data set. The lengths

of the phrases follow a normal distribution with a mean of 2 words and a standard devi-

ation of 1. The approximate answer to each query executed with a given sampling rate

77

0.0 0.2 0.4 0.6 0.8 1.0
Est. Relative Rrror

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

Em
SRCS

(a) 5% Sampling Rate

0.0 0.2 0.4 0.6 0.8 1.0
Est. Relative Rrror

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

Em
SRCS

(b) 10% Sampling Rate

Figure 3.3: CDFs of estimated relative error for phrase occurrences under different

block sampling rates.

includes the estimated count (τ̂) with an error bound (τ̂ ± ε). We report the estimated

relative error at 95% confidence level as the ratio of ε over τ̂ . We also compare the

estimated relative error with the actual relative error, computed as |τ̂−τ |τ , where τ is

the precise answer.

DIR queries. We cluster documents within the Wikipedia and CCNews data sets as

explained in Section 3.4.4, setting the number of centroids equal to the number of HDFS

blocks in the file holding the data set. We generate 200 sets of randomly chosen words,

100 from the Wikipedia data set and 100 from CCNews. Set sizes follow a normal

distribution with an average size of 3 and a standard deviation of 1. We randomly

insert Boolean operators (and and or) to form Boolean queries, and use the sets of words

directly as queries in ranked retrieval. We use the BM25 ranking function [72] in ranked

retrieval. We choose BM25 from a plethora of ranking functions, including functions

that use Paragraph Vector [68], because it is widely adopted by search platforms such

as Solr [78] and IR libraries such as Apache Lucene [79]. In Boolean retrieval, we report

recall, defined as ratio of the number of documents retrieved by the approximate query

processing to the ground truth. In ranked retrieval, we report precision-at-k (P@k),

defined as the percentage of the top k documents retrieved by the approximate query

processing that is in the top k retrieved by the precise query execution.

Recommendation queries. We approximate user-centric CF, which takes as input

78

1 2.5 5 10
Sampling Rates(%)

0
10
20
30
40
50

Sp
ee

du
p

Em
SRCS

(a) Avg. Speedup

1 2.5 5 10
Sampling Rates(%)

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Er
ro

r EmE
EmA
SRCSE
SRCSA

(b) Actual and estimated rel. errors

Figure 3.4: Average speedups and relative errors for phrase occurrence query. (b)

shows the comparison of estimated (E) and actual average relative error (A) using EM

and SRCS (e.g. EmE means estimated relative error using EmApprox, SRCSA means

actual relative error using SRCS).

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

Em
SRCS

(a) Wikipedia, 25% sampling

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

Em
SRCS

(b) CCNews, 5% sampling

Figure 3.5: CDFs of recall for Boolean retrieval queries over Wikipedia and CCNews

data sets at 25% sampling rate.

79

25(W) 50(W) 75(W) 25(C) 50(C) 75(C)
Sampling Rates(%)

0.0

1.5

3.0

4.5

Sp
ee

du
p

Em
SRCS

(a) Avg. Speedup - Boolean

25(W) 50(W) 75(W) 25(C) 50(C) 75(C)
Sampling Rates(%)

0.0
0.2
0.4
0.6
0.8

Re
ca

ll

Em
SRCS

(b) Avg. Recall - Boolean

Figure 3.6: (a) and (b) show speedup and recalls averaged across the test queries

under 25%, 50% and 75% sampling rates for Boolean retrieval ((W) and (C) represent

Wikipedia and CCNews data sets respectively).

a target user with past reviews/purchase history then outputs predicted ratings for

unpurchased items. It also generates a top-k recommended item list sorted by their

predicted ratings. We rearrange the reviews in the original data set to group all

reviews written by a unique user together. Each group of reviews written by a unique

user is then considered a single document. We randomly select 100 users and remove

20% of each selected user’s ratings from the data set to be used as test data. We

then cluster the remaining documents as we did for the DIR queries and construct the

index. Finally, we construct 100 queries for the selected users, where each query outputs

the predicted ratings as computed by the CF algorithm for the users/reviews in the

test data. The rating scale is 1-5 in the Amazon data set. We report mean squared

error (MSE) and P@k to measure prediction performance. MSE is computed for the

predicted vs. actual ratings as a measure of accuracy for the predictions. P@k is the

percentage of the items predicted top-k list that were purchased by the target user.

3.7.2 Results

Aggregation. Figure 3.3 plots the CDFs of estimated relative errors when running the

200 queries under EmApprox and SRCS at 5% and 10% sampling rates. We observe

that: (1) EmApprox consistently achieves smaller estimated relative errors than SRCS

80

at the same sampling rate; (2) the “tails” of the CDFs are “shorter,” meaning that

there are fewer query answers with large estimated relative errors; and, (3) EmApprox

achieves smaller maximum estimated relative errors. Under SRCS, the estimated rela-

tive errors can be large at very low sampling rates. For example, the estimated relative

errors are 80% and 95% for the 50th (median) and 90th percentile, respectively, at 1%

sampling rate. Under EmApprox, they are reduced to 25% and 45%. Errors become

much smaller with increasing sampling rates.

Figures 3.4(a) and (b) show average speedups compared to precise execution and

average relative errors (both estimated and actual), respectively. We observe that

speedups are slightly smaller for EmApprox compared to SRCS. This is because EmAp-

prox does incur a small amount of extra overhead to compute the sampling probabilities

for blocks. On the other hand, EmApprox achieves much smaller relative errors than

SRCS. Specifically, SRCS has to process roughly 4x the amount of data processed by

EmApprox to achieve similar relative errors.

In summary, EmApprox significantly outperforms SRCS. If the user can tolerate

the estimated relative error profile for EmApprox at 10% sampling rate (i.e., 30% and

40% at 50th and 90th percentiles, respectively), then EmApprox achieves an average

speedup of ∼10x for the 200 aggregation queries. Further, the user can trade off between

accuracy and performance by adjusting the sampling rate.

DIR. Figure 3.5 plots the CDFs of recall for the Boolean queries under EmApprox and

SRCS out of 100 queries over Wikipedia and CCNews data sets. Similar to aggregation,

we observe that EmApprox significantly outperforms SRCS. Figures 3.6(a) and (b) show

Boolean retrieval’s speedups over precise execution and the average achieved recall rates,

respectively. We observe that the much higher sampling rates required to achieve higher

recall rates constrain achievable speedups. We have our ranked retrieval results in our

technical report [80].

In summary, EmApprox significantly outperforms SRCS. However, the nature of

the problem, which is to find specific items in a large data set, reduces the effectiveness

of sampling, even when sampling is directed by some knowledge of content. Thus,

81

Speedup (x) MSE P@10 (%)

Sampling

Rates(%)

Em SRCS Em SRCS Impr (%) Em SRCS Impr (%)

10 48.04 48.12 1.29 1.42 9.15 0.25 0.23 8.69

25 26.76 27.01 1.16 1.26 7.93 0.28 0.26 7.69

50 16.70 16.75 1.08 1.12 3.50 0.29 0.28 3.57

75 9.63 9.52 1.04 1.06 2.80 0.31 0.30 3.33

100 9.63 9.52 1.015 1.015 0 0.32 0.32 0

Table 3.3: Average speedups over precise execution, and recall for Top-10 recommen-

dation under EmApprox and SRCS. Impr column contains the improvement in recall

under EmApprox compared with SRCS.

EmApprox can only achieve modest speedups while achieving relatively high recall

rates and precision levels. For example, EmApprox achieves an average speedup of

1.3x at a sampling rate of 75%. Achieved average recall and P@10 are 0.89 and 0.78,

respectively.

Recommendation. Figure 3.7 shows average MSE and P@10 under different sam-

pling rates for EmApprox and SRCS. Similar to results for the other two query types,

EmApprox outperforms SRCS. The differences between the two approaches are less

pronounced, however. For example, EmApprox outperforms SRCS by 8% and 7.4%

for average MSE and average P@10, respectively, at a sampling rate of 25%. This is

likely due to the fact that user-centric CF itself does not achieve high accuracy—the

precise execution achieves an average MSE of 1.015 and average P@10 of 0.32%—so

that selecting customers most similar to the target customer does not have a large

impact compared to random selection. EmApprox incurs minimal overheads at query

processing time, however, and so its increased accuracy is still desirable, especially when

the number of customers is large. EmApprox speeds up the query processing time by

almost 9x while degrading P@10 by 18.7% at 10% sampling rate. Speedup is over 3x

with 12.5% degradation of P@10 at 25% sampling.

82

10 25 50 75
Sampling Rates(%)

0
2
4
6
8

10
Sp

ee
du

p
Em
SRCS

(a) Speedup

10 25 50 75
Sampling Rates(%)

0.0

0.4

0.8

1.2

1.6

M
SE

Precise
Em
SRCS

(b) Avg. MSE

10 25 50 75
Sampling Rates(%)

0.0

0.1

0.2

0.3

0.4

P@
10

(%
)

Precise
Em
SRCS

(c) Avg. P@10 (%)

Figure 3.7: Recommendation results showing prediction MSE and p@10 across the

customers under various sampling rates.

83

10 30 50 75 100 150 200
vector dimension

1.1

1.2

1.3

1.4

1.5

M
SE

10%
25%

(a) Recommendation - MSE

10 25 50 75 100 125 150
LSH size

0.2

0.4

0.6

0.8

Er
ro

r

LSH
Real-valued

(b) Aggegation - Error

10 25 50 75 100 125 150
LSH size

0.1

0.2

0.3

0.4

P@
10

LSH
Real-valued

(c) Ranked retrieval - P@10

Figure 3.8: (a) shows the impact of vector dimension over MSE in the recommendation

results under 10% and 25% sampling rates. (b) shows the impact of LSH bits to the

aggregation results using the Wikipedia dataset (d) shows the impact of LSH bits to

P@10 using the Wikipedia dataset

0.1 0.5 1.0 1.5 2.0 2.5 3.0
k (# of clusters) 1e3

0.0

0.1

0.2

0.3

0.4

P@
10

10%
25%
of blocks

(a) Ranked retrieval

0.1 0.5 0.8 1.3 1.9 2.3 2.6
k (# of clusters) 1e3

0.1

0.2

0.3

0.4

P@
10

10%
25%
of blocks

(b) Recommendation

Figure 3.9: Impact of k in the K-means clustering over P@10 for ranked re-

trieval (Wikipedia) and CF, under 5% and 25% sampling rates.

84

3.7.3 Sensitivity analysis

We briefly explore the impact of PV-DBOW and LSH bit vectors’ dimensions (λ1 and

λ2), as well as number of clusters (k) in K-means in offline preprocessing. Our technical

report contains a more extensive discussion [80].

Vector dimensions. Experiments show that EmApprox’s performance improves grad-

ually with increasing λ1 and λ2, and then stabilizes when they are sufficiently large.

For example, MSE for recommendation improves roughly linearly until λ1 reaches 75,

and then completely flattens out when λ1 grows beyond 100. These observations led us

to choose λ1 = 100 and λ2 = 100 in our evaluation.

Number of Clusters for K-means. EmApprox’s performance for DIR and recom-

mendation queries is sensitive to k (the number of clusters) in K-means. Experiments

show that the performance gradually improves as k increases and plateaus as it ap-

proaches the number of HDFS blocks in a data set. Beyond that, performance may

actually decrease because data within each block (sampling unit) is no longer clustered.

3.7.4 Summary

EmApprox can speed up aggregation and recommendation queries by up to 10x if the

user can tolerate modest imprecision. In addition, EmApprox can gracefully trade off

imprecision with performance by adjusting sampling rates. For example, under 10%

sampling, EmApprox achieves an estimated relative error of 18.2% for aggregation, and

a degradation on average of 18.7% in P@10 for recommendation queries.

3.8 Conclusions

We present an approximation framework for a wide range of analytical queries over

large text data sets, using a light-weight index based on an NLP model (PV-DBOW).

We formally show that the training objective of PV-DBOW maximizes the generative

probability of a query given a collection of documents. Our experiment shows that

our light-weight index can reduce the execution time by almost an order of magnitude

85

while degrading gracefully in approximation quality with decreasing sampling rates.

EmApprox is particularly useful for exploratory text analytics.

86

Chapter 4

Video Querying with Approximate Indexing

In this chapter, we propose an approximate video analytics framework called VidAp-

prox for accelerating video queries that involve object detection. A video processing

workflow would consist of video capturing, followed by storage, retrieval and finally con-

sumption [21]. VidApprox aims to facilitate the efficient retrieval of relevant video data

to reduce the processing needs of downstream operators (e.g. a deep CNN for batch

object detection jobs). To reduce the storage cost, VidApprox encodes raw frames into

segments, that is the smallest unit for decoding [81]. Each segment has a key frame

representative of the entire segment [82]. The key frame can represent a visual sum-

mary and meaningful information about a part of the video. It can be useful in many

applications such as searching, information retrieval, and indexing [82]. VidApprox

mainly employs three techniques to facilitate the retrieval process, where the first two

are performed offline and the third is online:

1. Vector-based segment indexing. A key frame’s vector representation can be

obtained through performing inference over object recognition CNNs with the

frame as the input. Since the key frame is representative of an entire segment,

we just use its vector representation to represent the segment. An image and

a segment’s similarity can be calculated by taking the cosine distance of their

corresponding vectors. A real-valued vector can be further compressed using its

mapping to locality sensitive hashing, which approximately preserves cosine/eu-

clidean distance between a pair of original vectors [83].

2. Similarity-aware segment placement. We cluster similar segments based

on their cosine distance between their vector representations. The intuition is

that if a group of segments are not similar to a reference image, then they can

87

be pruned altogether. The clustering can make the segments distribution more

skewed that can make retrieving relevant segments more efficient. As the segments

are clustered, we use the centroid’s vector to represent the cluster. We assume

the video data set is stored in partitioned distributed storage. Within the same

partition, we place the clusters such that the minimum distance among their

centroids are maximized. The probability that all similar clusters end up on the

same partitions is significantly lowered to distribute workload across the server

nodes.

3. Relevant segments retrieval. User will need to provide a reference image that

contains the target object category for the query. We then employ probability

proportional to similarity sampling, where a cluster’s similarity to will determine

the sampling probability of each segment. As a result, only the most similar subset

of segment clusters can be retrieved for further processing. A most similar subset

is more efficient for both aggregation and retrieval oriented queries. Although

we focus on single video data throughout our work, we can easily extend our

technique to the case with a video library - dataset that contain multiple video

streams.

Several recent works have sought to reduce video query latency. Noscope [23] aims to

reduce the latency of batch binary classification tasks. It places a cascade of specialized

shallower CNNs before the ground truth CNN for inference, and returns the result once

predictions from one of the cheaper CNNs have sufficient confidence level. Focus [84]

can reduce more query latency by building approximate object to frame index at ingest

time by paying a preprocessing cost upfront. Both of the aforementioned works aim at

query that identifies frames with objects of class X, and assume the frames are already

present in memory. In practice, it is much more efficient to process encoded video

segments rather than raw frames. For example, many video types such as surveillance

video feeds do not contain scene changes, therefore encoded segments will significantly

save storage space.

88

Figure 4.1: Example image classification CNN

We use our proposed segment indexing and clustering scheme to process two cate-

gories of video querying tasks: (1) aggregation queries that compute statistic such as

average number of certain object per frame/segment, (2) retrieval queries that retrieve

segments matching a predicate (e.g., containing a certain object class). For aggregation

queries that estimate quantity of an object type, we leverage CNN inference for object

detection in the retrieved segments and then cluster sampling theory to compute an

estimator with probabilistic error bounds. We then show that indexing segments can

result in a significant speedup with a small loss in accuracy. For retrieval queries, we

show that our framework can facilitate retrieving a large number relevant segments

by processing a fraction of the original video data. The retrieval scenario can make

the downstream video consumer significantly more efficient by avoiding decoding and

processing irrelevant segments.

In summary, our contributions include: (i) To our knowledge, our work is the first

that leverages CNN-learned vectors to index similar video segments for approximate

video processing. (ii) We show that our segment indexing and clustering scheme results

in reduced error bounds for video aggregation tasks, and retrieval of a large number of

relevant segments by processing only a fraction of the data.

89

4.1 Related work and Background

4.1.1 Approximate computing

Traditional AQP systems have mainly targeted aggregation queries over relational data

sets. AQP++ [13] is a recent database system that uses sampling-based AQP and

precomputed aggregates to achieve interactive response time for aggregation queries.

BlinkDB [12] is an AQP system that selects offline-generated samples to answer queries.

It uses query column sets (QCSs) for representing the sets of columns appearing in past

workloads, and stratified samples are created for each QCS. It assumes QCSs are stable

over time, which does not perform well for queries outside the QCS coverage in the offline

samples. ApproxHadoop [6] and ApproxSpark [65] are online cluster sampling based

frameworks that supports approximating aggregation with error bounds. However,

their result estimation is prone to large error bounds over skewed data. Sapprox [11]

has an offline and an online component. It collects the occurrences of sub-data sets

offline, and the information to facilitate online cluster sampling.

4.1.2 Visual data management

Visual data management has aimed to organize and query visual data, early systems

include Chabot [85] and QBIC [86]. These systems were followed by a range of visual

database for storing, querying and managing video data [87]. Many of these systems and

languages use classic computer vision techniques such as low-level image features and

rely on manual annotations (e.g., text) over the images for semantic queries. However,

recent advances in deep learning based computer vision models allows learning the

semantic information directly from the datasets.

4.1.3 Convolutional neural networks

Convolution Neural Networks (CNNs) have become effective for many computer vision

tasks such as object detection and classification [88–90]. CNNs consist of different

types of layers including convolutional layers, pooling layers and fully-connected layers,

where convolutional layer combine nearby pixels via convolution operators; pooling

90

layers reduce the dimensionality of the subsequent layers; rectified linear unit (ReLU)

layers perform a non-linear transformation), and a fully connected layer outputs the

actual prediction. For example in classification task, output from the final layer of the

CNN is the probabilities of all object classes, and the class with the highest probability

will be the predicted class for the object or input. image [24].

CNN can be considered as a feature extractor. Output of the second to last layer

of a CNN is the representative features of the input image [88], where the layers before

are considered transformations applied to the input image. The feature is represented

as a real-valued vector, which has been shown that images with similar feature vectors

(i.e., cosine distance) are visually similar [91, 92]. Thus, the distance between feature

vectors is a common metric to measure similarity of images in many applications, such

as face recognition [93] and image retrieval [94,95].

Since inference using deep CNNs is computationally expensive, two main techniques

have been developed to reduce the cost of inference. First, compression is a set of

techniques that can dramatically reduce the cost of inference at the expense of accuracy.

Such techniques include removing some expensive convolutional layers, reducing input

image resolution. For example, ResNet18, which is a ResNet152 variant with only 18

layers, is 8x cheaper. Likewise, Tiny YOLO [24], a shallower variant of the YOLO

object detector, is 5x cheaper than YOLOv2. However, the tradeoff is that compressed

CNNs are usually less accurate than the original CNNs. The second technique is CNN

specialization [24], where the CNNs are trained on a subset of a dataset specific to a

particular context (such as a video stream). Specialization simplifies the task of a CNN

because specialized CNNs only need to consider a particular context. For example,

differentiating object classes in any possible video is much more difficult than doing so

in a traffic video, which is likely to contain far fewer object classes (e.g., cars, bicycles,

pedestrians). As a result, specialized CNNs can be more accurate and smaller at the

expense of generality.

91

4.1.4 Video analytics

A video query is typically executed through a pipeline of filters that may include deep

CNNs. However due to the high inference cost of CNNs, several works have been

proposed to reduce video query’s latency [23,84,96,97]. NoScope [23] places the filters

in the pipeline ordered by complexity, where the cheapest models sits in the front

and most expensive model (e.g. a full object recognition NN) in the end. In this

configuration, frames are executed in a short-circuit evaluation fashion, where a frame

is passed onto the next filter only if the result from the current filter does not meet the

accuracy requirement. The query latency is still quite high because most of the heavy

lifting is performed at query time. Additionally, user has to train and maintain several

specialized CNNs that are cheaper to execute at query-time. Focus [84] proposes to

preprocess the frames during ingest time in order to reduce query latency. At ingest

time, it uses a specialized CNN to construct an approximate index for query time. The

index in Focus is approximate in order to keep a balance between ingest and query cost.

These two works target retrieval queries only. Besides the retrieval queries, Blazeit [96]

also handles queries for aggregate statistics, but it suffers similar issues with NoScope

since the NN specialization technique does not reduce significant query latency. It also

does not consider distributed processing of the video data, and the placement of video

frames/segment for efficient retrieval.

4.1.5 Cluster sampling

Large datasets are typically partitioned such that a partition can naturally correspond

to a cluster for cluster sampling. In this scenario, cluster sampling is especially efficient

since it avoids the need to access clusters that are not selected for a sample, and so is

used in many approximate computing systems, e.g., [6, 11,12,65].

Suppose we need to estimate the frequency τ of data item Z occurring in a dataset

partitioned into subcollections. If we take a cluster sample from the dataset using

subcollections as the sampling clusters, we can use the estimator τ̂ = 1
n

∑
s∈S

τs
φs
±ε [10],

where S is the chosen sample, n is the number of subcollections in S, τs is the frequency

92

Figure 4.2: Overview: Sn are clusters of segments

of Z in subcollection s, φs is the sampling probability for s, and ε is the estimated error

bound. ε ∝
√
V̂ (τ̂), with

V̂ (τ̂) =

∑
s∈S(τsφs − τ̂)2

n(n− 1)
(4.1)

We observe that as the φs’s approach τs
τ̂ , V̂ (τ̂) and hence ε will approach 0. The goal

of probability proportional to size (pps) sampling [10] is to set each φs close to τs
τ̂ by

leveraging auxiliary information of each sampling unit, so that we can reduce the error

bound for our estimator τ̂ .

4.2 VidApprox Design

4.2.1 Overview

In this section, we present the design of VidApprox. Our proposed framework consists

of offline indexing and online approximation components. The offline component is

responsible for placement and indexing of video data. Online component handles the

retrieval of relevant parts of the video for downstream processing operators. Figure 4.2

shows the overview of VidApprox. The offline index is produced mainly through apply-

ing inference over the object detection and image classification CNNs. The index will

project the query and the video data into the same vector space, so that their similarity

can be computed. The online sampling of a subset of the video data is facilitated by

93

consulting the index that is persistent for retrieving the most relevant parts of the video

to the query.

4.2.2 Segment vector representation

Under the bag-of-words model in computer vision [98], a frame can be viewed as a bag

of objects. We propose to have include the information of the objects encoded in its

vector representation, ignoring the background as we target video processing tasks that

involve object detection. Similar to representing a text document using the average of

word vectors [80], we use the average of the object vectors in the image as its vector

representation.

Storing and moving a large number of raw video frames is costly, making encoded

video segments an attractive option. An encoded video is a sequence of segments [81]),

in which a segment contains near-duplicate frames. A key frame is representative of

the entire segment, and is used for many applications such as browsing, searching,

information retrieval, and indexing [81]. We encode the video data using a video encoder

e.g., ffmpeg [99], and use segment as the smallest unit of storage in our system, as a

segment is also the smallest data unit that can be decoded independently.

An object detection CNN can output the bounding boxes of the objects in an image.

For each detected object, we use another image classification CNN to output its feature

as a real-valued vector. As mentioned in the background section, the feature vector is

the output of the second-to-last layer of an image classification CNN. Previous works

suggest that if two images/objects have similar vectors, then they are also visually

similar [84]. The distance between two vectors can be easily quantified using a distance

measure such as cosine.

Since a key frame is representative of a segment, we use key frame’s vector represen-

tation as the segment’s vector. In order to keep the inference cost low for preprocess-

ing, we choose to use a lightweight objection CNN (e.g., TinyYolo [24]) to detect the

object boundaries then use another relatively shallow image classification CNN (e.g.

ResNet50) to capture each individual object’s features. Algorithm 5 shows the proce-

dure for generating the vector representation for each segment. First the object CNN

94

will detect the objects for every segment’s key frame, and output their bounding boxes,

where n is the number of objects in the key frame. Each of these objects will be fed

through ResNet for feature extraction, the output of which is used as its vector repre-

sentation. The final vector representation for the segment will be the arithmetic mean

of these the objects’ vectors. This will automatically take into account the weighting of

the objects. Suppose a query is to estimate the number of cars across the video, then

segments with a higher similarity to car, i.e. its vector has a relatively larger weight

for the car object, its inclusion probability should be higher according to pps cluster

sampling theory [10].

Algorithm 5: Segment vector generation

1 Function SegmentVectorGen({S})

2 for Si ∈ {S} do

3 Object detection(Ii)→ {obj}n;

4 Image classification{obj}n → { ~obj}n;

5
1
n

∑n
i=1{ ~obj} →~Si;

6 end

In summary, a segment’s vector representation contributes to the indexing, place-

ment and retrieval of segments. The most similar segments to the query reference image

can then be identified through cosine distance between the vectors of the reference of

a segment. In order to sample the most similar segments, the sampling probability of

each segment can be set proportional to its similarity to the reference image.

4.2.3 Locality sensitive hashing

We propose to compress the vectors using locality sensitive hashing. LSH bit vectors

can preserve different distance metrics (e.g., cosine) between their real-valued vector

counterparts. Computing the Hamming distance of the LSH bit vectors using XOR is also

much more efficient than dot product. The value of the hash function for preserving

cosine distance depends on the dot product between a random plane ~r and an item

vector ~x, where hr(~x) evaluates 1 if ~r · ~x ≥ 0, and 0 otherwise, where ~r usually has

95

a standard multi-dimensional Gaussian distribution N (0, I), and a new ~r is generated

each time the hash function is applied [63]. In order to generate the LSH signature for

a real value vector, we first choose a dimension l for the bit vector, then apply hash

function hr(~x) l times to generate each bit, each choosing a random ~r. Specifically,

we can approximate exp(~w · ~d) using exp(cos(ml π)), where m is the Hamming distance

between ~w and ~d’s corresponding LSH bit vectors.

4.2.4 Similarity-aware segment placement

As we know, a segment contains near-duplicate frames. On the other hand, there will

be similar segments throughout a video dataset as well. Intuitively, if a “group” of

segments are not similar to a reference image, then this group can be pruned altogether

to avoid processing redundant segments. On the other hand, if a group of segments

are similar to the reference image, then this group should be retrieved at once for

improved retrieval efficiency. The method we form groups is by cluster the segments

using K-means, using the cosine distance between segment vectors as distance metric.

After clustering, we just use a cluster’s centroid segment’s vector as the cluster’s vector

representation. The vector representation for a cluster is obtained similarly as vector

for a frame, which is the element-wise arithmetic mean of the segment vectors that exist

in the same cluster.

We assume a large video dataset is stored in a distributed storage, and the number of

segment clusters is greater than the number of partitions. If we cluster the segments too

aggressively, i.e., there are two few centroids, the segments within a cluster may not be

similar enough, such that the centroid segment is no longer representative. Within the

same partition, we randomly place clusters into the partitions to lower the probability

that similar clusters ending up in the same partition. The benefit is that for a group of

similar clusters, I/O for loading and decoding the segments can be evenly distributed

across the storage nodes rather than concentrated only on a few nodes, which may slow

down processing.

96

4.2.5 Vector-based index structure

We store the index structure for segment clusters in database tables. Every row in the

index table represents a cluster of video segments, including its cluster id, the ids of

segments that in this cluster, vector representation of the cluster. We also use a another

table to store the segment’s vectors. We compress the vectors using distance-preserving

LSH bit vectors, as the LSH compression would make storing segment vectors much

more space-efficient. As part of the index structure, we also store the original object

recognition/detection CNNs themselves to produce the query image’s vector through

neural network inference.

4.3 Approximate segment querying

We present two types of queries to demonstrate our system’s efficiency. The first is

aggregation and the second is retrieval. Common to both of the query types, the aim

to identify relevant segments/frames without having to search through the entire data.

We obtain the vector representation for the reference image. We apply cluster sampling

to sample the clusters with probability proportional to the similarity to the reference

image. Each cluster has a sampling probability using:

φd(q) =
~q · ~s∑

s′∈D ~q · ~s′
(4.2)

In the querying process, the segment vector’s cosine similarity to the query image’s

vector will be computed which is used as auxiliary information for unequal-probability

cluster sampling. After a subset of segment clusters have been retrieved, only these seg-

ments will be fed through the objection detection CNN to further identify the segments

of interest. We refer to the sampling method as similarity-driven sampling [80].

Aggregation. Aggregation query outputs statistics of the video, where user may want

to estimate total the number of frames/segments that contain object X, or average

number of object X per frame, or number of similar frames to the reference image. The

output is a closed-form estimator plus or minus a central limit theorem based error

bound [10]. The user also needs to supply a reference image containing the object that

97

is of interest. The error bound and estimator can be estimated using Eq (4.1) from

the cluster sampling theory [10]. For example, if the query is to estimate the average

number of cars per segment. By processing the chosen clusters, we are able to estimate

the average number of cars in the clusters of segments that are not chosen by leveraging

the similarity as sampling auxiliary information.

Retrieval. If the frames of interest are sparsely distributed throughout the entire

dataset, then significant processing time will be spent on identifying and retrieving

those relevant frames.user wants to retrieve all segments/frames that contain object X.

The retrieved frames can optional be sent to downstream operators for further con-

sumption or simply written to stable storage. Instead of scrubbing the entire video

data, we should bias the search to the most promising regions or segments of the video

data. For example, an OCR application that needs to perform license plate recognition

on all red cars. The application first needs to retrieve frames that contain at least

a red car in the first place. A variant of retrieval query is to find a given number

of segments containing object X. The use case is that user may want to search for

certain events for manual inspection. As segments are processed in the order of their

similarities, the search can stop once user has enough segments retrieved. This would

significantly reduce the segments that need to be searched compared with randomly

processing segments.

4.4 Implementation

We have implemented a prototype of our framework VidApprox as a Python library. It

comprises two components: one for building offline video indexer and one for building

the online approximate querying of the video segments. Figure 4.3 shows the key

components of VidApprox. We provide library functions for user to write offline indexer

and customized query processor.

98

Figure 4.3: 2

4.4.1 Offline indexer

As previously mentioned, the offline part is mainly responsible for indexing and cluster-

ing/placing video segments. We adopt Yolo [24] and ResNet [100] respectively for object

recognition and image classification. In the indexing process, we adopt the shallow ver-

sions of the CNNs respectively TinyYolo and ResNet50 in order to save preprocessing

costs. Given a video dataset with raw frames, the index generation part will first encode

the video with segments using ffmpeg [81]. Then inference will be performed over the

CNNs to generate the vector representations for the segments following algorithm (5).

We use Tensorflow [76] for the inference process. After the vectors have been generated,

the segments will be clustered based on the cosine distance. Then the clusters will be

randomly placed on HDFS, where each partition contains a number of clusters. We

also save the standard Yolo and ResNet models for querying time.

We use Cassandra [101] as the storage for the index structure, for which we use

two tables. The first table (CLUSTER) stores information for the segment clusters;

the second table (SEGMENT) contains mapping between each segment and its vector

representation. In the CLUSTER table, the row key is the cluster id, column keys

are its vector representation, the HDFS partition id, and list of segment ids that are

included in the cluster. In the SEGMENT table, the row key is the segment id, and the

99

ClusterId PartitionId Vector Segments

0 12 010100... {0,4,7..}

...

Table 4.1: Example index structure of CLUSTER table

column key is its vector representation. Note that we convert the real-valued vectors

into LSH bit vector so we can just use blob data type for the vectors. We show example

index tables below.

4.4.2 Query processor

The reference image contained in the query will first be converted into a vector that

encodes the objects in it. The query vector will be compared against each cluster vector

where each cluster will be assigned a similarity score for sampling. The chosen clusters

will have corresponding partitions. Then these partitions will be further processed.

The key frames in each segment in the chosen clusters will be fed through YOLO and

its inference result will determine whether to this segment should be returned. After

the segments have been identified, they are either aggregated or retrieved depending

on the specific user query.

4.5 Evaluation

We evaluate VidApprox on a variety of aggregation and retrieval queries on a number

of video streams, such as traffic feeds and news archives. We divide our queries into

two categories: aggregation and retrieval, in which aggregation outputs statistics about

the video and retrieval retrieves segments based on a user-specified predicate.

4.5.1 Methodology

Software. We use ffmpeg [99] to extract the segments and keyframes the videos. Vi-

dApprox relies on Tensorflow trained CNNs for inference both at offline indexing and

100

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(a) 1% Sampling rate

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(b) 5% Sampling rate

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(c) 10% Sampling Rate

Figure 4.4: Comparison of speedups across variants of aggregation query under different

sampling rates for RSS and VidApprox. The dataset is street. The speedups are relative

to the naive execution. The Y axis is in log scale.

101

1 5 10
Sampling Rates(%)

0

20

40

60

80

Er
ro

r(%
)

RSS
VidApprox

(a)

1 5 10
Sampling Rates(%)

0

20

40

60

80

Er
ro

r(%
)

RSS
VidApprox

(b)

Figure 4.5: Comparison of relative error across variants of the aggregation query under

different sampling rates for RSS and VidApprox. The dataset is street. (a) shows

popular object class and (b) shows a relatively rare object class.

Name Description Length FPS

street Traffic camera from an

intersection in Auburn

10 hr 30

aqua An aquarium video 12 hr 30

news News clip 12 hr 30

Table 4.2: Datasets

online querying stages. The vector-based segment index is stored in Cassandra DB [101].

Hardware platform. Experiments are run on a cluster of 2 servers interconnected

with 1Gbps Ethernet. Each server is equipped with a 2.5GHz Intel Xeon CPU with 8

cores, 64GB of RAM, and a 100GB hard drive. Data sets are stored in an HDFS file

system across the same server cluster.

Data sets. We evaluated video streams that span across traffic camera feeds to news

clips scraped from Youtube. The description is shown in table 4.2.

Baselines. We run the following variants to demonstrate VidApprox’s effectiveness

and how it can trade-off accuracy with execution time. The first three are compared

102

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(a) 1% Sampling rate

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(b) 5% Sampling rate

Naive PS RSS VidApprox
100

101

102

103

104

105

Sp
ee

du
p

(c) 10% Sampling rate

Figure 4.6: Comparison of speedups across variants of retrieval query under different

sampling rates for RSS and VidApprox. The dataset is the aqua. The speedups are

relative to the naive execution. The Y axis is in log scale.

10 25 35
Sampling Rates(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Re
ca

ll

RSS
VidApprox

Figure 4.7: Comparison of recall across variants of retrieval query under different sam-

pling rates for RSS and VidApprox. The dataset is aqua.

103

against as baselines.

• Naive: performs object detection on every raw frame.

• PS: Precise execution on encoded segments. Performs object detection on all

segments with no sampling.

• RSS: Simple random sampling on segments. Performs random sampling over

segments, then object detection on the chosen segments.

• VidApprox: performs similarity-driven cluster sampling over segments, then ob-

ject detection on the segments from the chosen clusters.

4.5.2 Aggregation

We evaluate VidApprox on the following approximate aggregation queries across multi-

ple datasets with specified target object type contained in the data: 1) Average number

of object X per segment; 2) Number of segments that contain object X. Optionally

user may supply beginning and ending time stamps to filter the segments, such as from

time t1 to time t2. For example, for a traffic video feed, user may be interested in

the average number of cars per frame during a certain time period, in order to see the

traffic condition during that time. If a time filter is specified, we first narrow down the

segments we would like to search by filtering the timestamp attached to each segment.

The metrics we report is error bound around the estimator, and end-to-end speedups.

User needs to supply a sampling rate when running these queries. Our results below

are from the query on the traffic cam video to count the average number of cars per

frames.

Speedup. Figure 4.4 shows the speedups across variant setups of the aggregation query

under different sampling rates. We observe that PS, which is object detection on the

segment level (key frames) can already outperform the naive execution significantly.

With sampling, both RSS and VidApprox can outperform PS by speedups scaling al-

most linearly with the sampling rates. For example, under a 1% sampling rate, RSS and

VidApprox can achieve a speedup of almost 104x compared with Naive. They can also

104

outperform PS by almost 80x. However, VidApprox does have to pay a preprocessing

cost for building the vector-based index and clustering. The actual VidApprox speedup

is less than RSS as looking up the index tables involves a small overhead.

Estimation error. We report the relative error, computed as |τ̂−τ |τ , where τ is the

ground truth answer. Figure 4.5(a) shows the relative error across the variants of the

query under different sampling rate for a relatively popular object class car. The Naive

and PS execution are the ground truth thus not shown in the graph. We can see that

VidApprox constantly outperforms RSS under different sampling rates. For example,

under 1% sampling rate, VidApprox can outperform RSS by almost 6x. It is because

under VidApprox, the sampling probability of the clusters are adjusted proportional to

their similarity to the target object. RSS and VidApprox can achieve similar speedups,

but VidApprox has to pay a preprocessing cost and storage of the index tables. It

is similar to what we have observed in EmApprox [80]. We have also observed in

Figure 4.5(b) that VidApprox can achieve a smaller error when the aggregation target

object is relatively rare. For example, estimating average number of cars has smaller

error bound than estimating average number of pedestrians, since car is more popular

in street video data. Furthermore, we have also found VidApprox helps reduce the

error for aggregation for more rare objects also shown in Figure 4.5.

4.5.3 Retrieval

For retrieval queries, we run the following retrieval query: find segments with at least

one object X. The metric we report is recall, which is defined as ratio of the number of

segments retrieved by the approximate query processing to the ground truth. Similarly

user may specify a time range as the additional filter as with the aggregation query.

Our results below are from the query.

Speedup. Figure 4.6 shows the speedups across variant setups of the retrieval query

under different sampling rates. We observe that PS, which is object detection on the

segment level (key frames) can already outperform the naive execution significantly.

With sampling, both RSS and VidApprox can outperform PS by speedups scaling

105

almost linearly with the sampling rates. This is inline with our aggregation speedup

results.

Recall. Figure 4.7 shows the recall across the variants of retrieval query under different

sampling rates. We can see that VidApprox constantly outperforms RSS under different

sampling rates. For example, under 10% sampling rate, VidApprox can outperform RSS

by almost 3x. However, compared with aggregation queries, retrieval queries do require

a higher sampling rate since it is more sensitive to missing data items.

4.5.4 Summary

VidApprox can speed up aggregation and retrieval queries significantly if the user can

tolerate modest imprecision and afford preprocessing. In addition, VidApprox can

gracefully trade off imprecision with performance by adjusting sampling rates. The

result is more pronounced when user queries for relatively rare object types in the

video.

4.6 Conclusion

We present VidApprox, a system that provides integrated support for distributed video

analytics by indexing the video segments, and facilitates the efficient storage and re-

trieval of relevant video segments. Our experiment shows that our vector-based index

for video segments can reduce the execution time significantly while retrieving a large

number of relevant segments, as well as degrading gracefully in approximation quality

with decreasing sampling rates. This is particularly useful in the retrieval phase of a

video processing pipeline, for reducing the processing needs of potentially expensive

downstream operators.

106

Chapter 5

Conclusion

Approximate computing has emerged as a powerful tool for reducing the processing

needs to cope with growing volumes of data. This thesis has shown approximate com-

puting can be effective toward efficiently processing a variety of tasks with different

types of data. We mainly employ sampling-based approximation methods, built in-

frastructure mechanisms to allow the application of existing statistical theories, and/or

utilizing machine learning models learned offline from the data as index structure for

enhanced online approximation quality. We show that our approaches can gracefully

tradeoff large execution reduction with a tolerable loss in computation accuracy.

As data sets grow exponentially, batch processing jobs are becoming more hetero-

geneous and time consuming than ever. Though approximation has been shown as

an effective method for reducing processing time, it can present different challenges

when applied to different types of datasets and application domains. As we know, to-

day’s large data sets are characterized by the the three V’s (Volume, Variety, Velocity).

However, past approximation research as been focusing on relational data, and today’s

popular distributed data processing frameworks such as Spark still lack approximation

mechanisms that can adapt to these different scenarios. Our proposed approximation

structures, such as provenance tree, vector-based index; as well as sampling strategies

such as similarity-driven sampling can be incorporated into a distributed data process-

ing framework to bridge the gap between today’s characteristics of big data and current

approximation techniques. As conclusion, we present a summary of our works and lay

out an outlook for future work.

107

5.1 Summary

• ApproxSpark - a sampling framework to support approximate computing with

estimated error bounds in Spark. It allows sampling to be performed at multiple

arbitrary points within a sequence of transformations preceding an aggregation

operation. The framework constructs a data provenance tree to maintain infor-

mation about how transformations are clustering output data items to be ag-

gregated. It then uses the tree and multi-stage sampling theories to compute the

approximate aggregate values and corresponding error bounds. It also includes an

algorithm to dynamically choose sampling rates to meet user-specified constraints

on the CDF of error bounds in the outputs.

• EmApprox - a sampling-based approximation framework to speed up the pro-

cessing of a wide range of queries over large text datasets. It builds an index for

a data set by learning a natural language processing model, producing a set of

highly compressed vectors representing words and subcollections of documents.

When processing a query comprising one or more words, a vector representing the

query is computed from the vectors representing the words. It then samples the

data set, with the probability of selecting each subcollection of documents being

proportional to its similarity to the query derived from the vectors.

• VidApprox - a system that provides integrated support for video queries through

indexing and placement of encoded frames through approximation in a distributed

system. It consists of two components, offline indexing and online approximation.

The primary objective of indexing is early pruning of irrelevant frames, where

a user’s target and groups of frames’ similarities can be pre-computed. It uses

a CNN to learn feature vectors in offline indexing, that is used to index and

cluster segments. The query component is approximate in nature. At query

time, a subset of most similar clusters of segments to the query are sampled by

consulting the vector-based index.

108

5.2 Future Work

In our work, the user has to provide sampling ratios over the input dataset, that will be

determined by the available computational budget. However, the relationship between

sampling rate and processing need is not so clear, so that the user needs to rely on prior

experience to set an appropriate sampling rate. Future versions of our approximation

frameworks can allow user to submit more intuitive representation of processing budget.

It can be in the form of latency guarantee, desired energy consumption, etc. This will

require the system to construct profiles of processing needs for the supported tasks from

prior runs, that will be available at online query processing time.

We also believe our proposed model-based index structure can be extended to ac-

celerating more big data processing applications involving other datasets. For example,

it can be used to efficiently detect the sentiment for a large text dataset; it can also

potentially be used toward selecting relevant users/products for more complex recom-

mendation methods, such as model-based algorithms involving multiple data sources.

We believe plan our methodology – learning an index directly from the data set to

facilitate approximate computation – is promising toward other applications, such as

query against audio, time series, bioinformatics data, etc. As future research, it will

be interesting to see how effective our approximation methodology may be extended to

these areas, and help answer user-specified queries with reduced latency with tolerable

loss in accuracy.

109

References

[1] (2020) Volume of data. https://www.statista.com/statistics/871513/
worldwide-data-created/.

[2] F. T. Chong, M. J. R. Heck, P. Ranganathan, A. A. M. Saleh, and H. M. G. Was-
sel, “Data Center Energy Efficiency:Improving Energy Efficiency in Data Centers
Beyond Technology Scaling,” IEEE Design & Test, vol. 31, no. 1, 2014.

[3] W. Dai, L. Qiu, A. Wu, and M. Qiu, “Cloud infrastructure resource allocation
for big data applications,” IEEE Transactions on Big Data, vol. 4, no. 3, pp.
313–324, 2018.

[4] I. Lee, “Big data: Dimensions, evolution, impacts, and challenges,” Business
Horizons, vol. 60, no. 3, pp. 293–303, 2017.

[5] D. Quoc, “Approximate data analytics systems,” Ph.D. dissertation, PhD thesis,
Technische Universität Dresden (TU Dresden), 2017.

[6] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approxhadoop:
Bringing approximations to mapreduce frameworks,” in Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York, NY, USA:
ACM, 2015, pp. 383–397. [Online]. Available: http://doi.acm.org/10.1145/
2694344.2694351

[7] M. N. Garofalakis and P. B. Gibbons, “Approximate query processing: Taming
the terabytes.” in VLDB, 2001, pp. 343–352.

[8] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for mas-
sive data: Samples, histograms, wavelets, sketches,” Foundations and Trends in
Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

[9] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Pro-
ceedings of the 1997 ACM SIGMOD international conference on Management of
data, 1997, pp. 171–182.

[10] S. Lohr, Sampling: Design and Analysis. Cengage Learning, 2009.

[11] X. Zhang, J. Wang, and J. Yin, “Sapprox: Enabling efficient and accurate
approximations on sub-datasets with distribution-aware online sampling,” Proc.
VLDB Endow., vol. 10, no. 3, pp. 109–120, Nov. 2016. [Online]. Available:
https://doi.org/10.14778/3021924.3021928

[12] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: Queries with bounded errors and bounded response times on very

110

large data,” in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 29–42.
[Online]. Available: http://doi.acm.org/10.1145/2465351.2465355

[13] J. Peng, D. Zhang, J. Wang, and J. Pei, “Aqp++: connecting approximate query
processing with aggregate precomputation for interactive analytics,” in Proceed-
ings of the 2018 International Conference on Management of Data. ACM, 2018,
pp. 1477–1492.

[14] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden, B. Moza-
fari, and I. Stoica, “Knowing when you’re wrong: building fast and reliable ap-
proximate query processing systems,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 2014, pp. 481–492.

[15] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and
analytics,” International journal of information management, vol. 35, no. 2, pp.
137–144, 2015.

[16] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2893356

[17] “Google Book Ngrams,” 2019, http://storage.googleapis.com/books/ngrams/
books/datasetsv2.html.

[18] “Common crawl,” https://registry.opendata.aws/commoncrawl/, 2018.

[19] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding
rating dimensions with review text,” in Proceedings of the 7th ACM Conference
on Recommender Systems, ser. RecSys ’13. New York, NY, USA: ACM, 2013,
pp. 165–172. [Online]. Available: http://doi.acm.org/10.1145/2507157.2507163

[20] “YouTube Stats,” 2019, https://merchdope.com/youtube-stats/.

[21] T. Xu, L. M. Botelho, and F. X. Lin, “Vstore: A data store for analytics on large
videos,” in Proceedings of the Fourteenth EuroSys Conference 2019. ACM, 2019,
p. 16.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[23] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope: op-
timizing neural network queries over video at scale,” Proceedings of the VLDB
Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[24] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017, pp.
7263–7271.

[25] H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream process-
ing frameworks for iot applications in smart cities,” Journal of Big Data, vol. 6,
no. 1, p. 52, 2019.

111

[26] H. Kavalionak, C. Gennaro, G. Amato, C. Vairo, C. Perciante, C. Meghini, and
F. Falchi, “Distributed video surveillance using smart cameras,” Journal of Grid
Computing, vol. 17, no. 1, pp. 59–77, 2019.

[27] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou, “Scope: easy and efficient parallel processing of massive data sets,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1265–1276, 2008.

[28] Y. Yan, L. J. Chen, and Z. Zhang, “Error-bounded sampling for analytics on big
sparse data,” Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1508–1519,
2014.

[29] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals,” Data mining and knowledge dis-
covery, vol. 1, no. 1, pp. 29–53, 1997.

[30] X. Xie, K. Zou, X. Hao, T. B. Pedersen, P. Jin, and W. Yang, “Olap over prob-
abilistic data cubes ii: Parallel materialization and extended aggregates,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

[31] J. G. Shanahan and L. Dai, “Large scale distributed data science using apache
spark,” in Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 2015, pp. 2323–2324.

[32] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data processing
in spark,” in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. ACM, 2015, pp. 1383–1394.

[33] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for
processing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems. ACM,
2015, p. 70.

[34] M. S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and
M. J. Okoniewski, “Sparkseq: fast, scalable and cloud-ready tool for the inter-
active genomic data analysis with nucleotide precision,” Bioinformatics, vol. 30,
no. 18, pp. 2652–2653, 2014.

[35] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan,
“The rise of “big data” on cloud computing: Review and open research issues,”
Information Systems, vol. 47, pp. 98–115, 2015.

[36] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle,
“The dataflow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing,” Proc.
VLDB Endow., vol. 8, no. 12, pp. 1792–1803, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824076

112

[37] M. Al-Kateb and B. S. Lee, “Adaptive stratified reservoir sampling over hetero-
geneous data streams,” Information Systems, vol. 39, pp. 199–216, 2014.

[38] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
12). San Jose, CA: USENIX, 2012, pp. 15–28. [Online]. Available: https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[39] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized Stratified Sampling for Ap-
proximate Query Processing,” ACM Transactions on Database Systems (TODS),
vol. 32, no. 2, 2007.

[40] M. Al-Kateb and B. S. Lee, “Stratified reservoir sampling over heterogeneous data
streams,” in Proceedings of the 22nd International Conference on Scientific and
Statistical Database Management (SSDBM). Springer Berlin Heidelberg, 2010,
pp. 621–639.

[41] M. Thottethodi, T. Vijaykumar, M. Kulkarni et al., “Stratified online sampling
for sound approximation in mapreduce,” 2015.

[42] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very
Large Data,” in Proceedings of the Eurosys Conference, 2013.

[43] G. Kumar, G. Ananthanarayanan, S. Ratnasamy, and I. Stoica, “Hold ’em or
fold ’em?: Aggregation queries under performance variations,” in Proceedings
of the Eleventh European Conference on Computer Systems, ser. EuroSys
’16. New York, NY, USA: ACM, 2016, pp. 7:1–7:14. [Online]. Available:
http://doi.acm.org/10.1145/2901318.2901351

[44] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251264

[45] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“Streamapprox: Approximate computing for stream analytics,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, ser. Middleware
’17. New York, NY, USA: ACM, 2017, pp. 185–197. [Online]. Available:
http://doi.acm.org/10.1145/3135974.3135989

[46] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: An effi-
cient and fault-tolerant model for stream processing on large clusters.” HotCloud,
vol. 12, pp. 10–10, 2012.

[47] G. Hu, D. Zhang, S. Rigo, and T. D. Nguyen, “Approximation with error bounds
in spark,” arXiv preprint arXiv:1812.01823, 2018.

113

[48] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[49] M. D. Bankier, “Power allocations: determining sample sizes for subnational
areas,” The American Statistician, vol. 42, no. 3, pp. 174–177, 1988.

[50] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping multi-
dimensional data. Springer, 2006, pp. 25–71.

[51] “MEDLINE Data,” 2017, https://www.nlm.nih.gov/databases/download/
pubmed medline.html/.

[52] D. Zhang, T. He, F. Zhang, M. Lu, Y. Liu, H. Lee, and S. H. Son,
“Carpooling service for large-scale taxicab networks,” ACM Trans. Sen.
Netw., vol. 12, no. 3, pp. 18:1–18:35, Aug. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2897517

[53] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring human
mobility with multi-source data at extremely large metropolitan scales,” in
Proceedings of the 20th Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’14. New York, NY, USA: ACM, 2014, pp.
201–212. [Online]. Available: http://doi.acm.org/10.1145/2639108.2639116

[54] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on human
language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[55] (2011) Tweets 2011. http://trec.nist.gov/data/tweets/.

[56] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky,
“The Stanford CoreNLP natural language processing toolkit,” in Association
for Computational Linguistics (ACL) System Demonstrations, 2014, pp. 55–60.
[Online]. Available: http://www.aclweb.org/anthology/P/P14/P14-5010

[57] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Rank-
ing: Bringing Order to the Web,” Stanford InfoLab, Tech. Rep., 1999.

[58] “Wikipedia database,” http://en.wikipedia.org/wiki/Wikipedia database., 2018.

[59] (2016) Wikipedia clickstream. https://meta.wikimedia.org/wiki/Research:
Wikipedia clickstream/.

[60] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned
index structures,” in Proceedings of the 2018 International Conference on Man-
agement of Data, 2018, pp. 489–504.

[61] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in International Conference on Machine Learning, 2014, pp. 1188–1196.

[62] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th
symposium on. Ieee, 2010, pp. 1–10.

114

[63] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC ’98.
New York, NY, USA: ACM, 1998, pp. 604–613. [Online]. Available:
http://doi.acm.org/10.1145/276698.276876

[64] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduction and
challenges,” in Recommender systems handbook. Springer, 2015, pp. 1–34.

[65] G. Hu, S. Rigo, D. Zhang, and T. Nguyen, “Approximation with error bounds
in spark,” in 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), Oct
2019, pp. 61–73.

[66] M. Al-Kateb and B. S. Lee, “Adaptive stratified reservoir sampling over
heterogeneous data streams,” Inf. Syst., vol. 39, pp. 199–216, Jan. 2014. [Online].
Available: http://dx.doi.org/10.1016/j.is.2012.03.005

[67] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
neural information processing systems, 2013, pp. 3111–3119.

[68] Q. Ai, L. Yang, J. Guo, and W. B. Croft, “Analysis of the paragraph
vector model for information retrieval,” in Proceedings of the 2016 ACM
International Conference on the Theory of Information Retrieval, ser. ICTIR
’16. New York, NY, USA: ACM, 2016, pp. 133–142. [Online]. Available:
http://doi.acm.org/10.1145/2970398.2970409

[69] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’14. Cambridge,
MA, USA: MIT Press, 2014, pp. 2177–2185. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2969033.2969070

[70] X. Wei and W. B. Croft, “Lda-based document models for ad-hoc retrieval,” in
Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, 2006, pp. 178–185.

[71] W. B. Croft, D. Metzler, and T. Strohman, Search engines: Information retrieval
in practice. Addison-Wesley Reading, 2015, vol. 283.

[72] S. Robertson, H. Zaragoza et al., “The probabilistic relevance framework: Bm25
and beyond,” Foundations and Trends R© in Information Retrieval, vol. 3, no. 4,
pp. 333–389, 2009.

[73] M. D. Hirschhorn, “The am-gm inequality,” The Mathematical Intelligencer,
vol. 29, no. 4, pp. 7–7, 2007.

[74] “PySpark,” 2017, https://spark.apache.org/docs/latest/api/python/index.html.

[75] “Gensim,” 2018, https://radimrehurek.com/gensim/.

115

[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), 2016, pp. 265–283.

[77] “Common crawl news dataset,” http://commoncrawl.org/2016/10/
news-dataset-available., 2016.

[78] “Apache Solr,” 2019, http://lucene.apache.org/solr/.

[79] “http://lucene.apache.org/,” 2019, http://lucene.apache.org/.

[80] G. Hu, Y. Zhang, S. Rigo, and T. D. Nguyen, “Similarity driven approximation
for text analytics,” arXiv preprint arXiv:1910.07144, 2019.

[81] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads,” in 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17),
2017, pp. 363–376.

[82] U. Gawande, K. Hajari, and Y. Golhar, “Deep learning approach to key frame de-
tection in human action videos,” in Recent Trends in Computational Intelligence.
IntechOpen, 2020.

[83] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable im-
age search,” in 2009 IEEE 12th international conference on computer vision.
IEEE, 2009, pp. 2130–2137.

[84] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Phili-
pose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video datasets with
low latency and low cost,” in 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), 2018, pp. 269–286.

[85] V. E. Ogle and M. Stonebraker, “Chabot: Retrieval from a relational database of
images,” Computer, vol. 28, no. 9, pp. 40–48, 1995.

[86] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic et al., “Query by image and video content: The
qbic system,” computer, vol. 28, no. 9, pp. 23–32, 1995.

[87] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini, “Visual query systems for
databases: A survey,” Journal of Visual Languages & Computing, vol. 8, no. 2,
pp. 215–260, 1997.

[88] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[89] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

116

[90] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[91] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for image
retrieval,” in European conference on computer vision. Springer, 2014, pp. 584–
599.

[92] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[93] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database forstudying face recognition in unconstrained environments,”
2008.

[94] A. Babenko and V. Lempitsky, “Aggregating deep convolutional features for im-
age retrieval,” arXiv preprint arXiv:1510.07493, 2015.

[95] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2014, pp. 806–
813.

[96] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Fast exploratory video queries using
neural networks,” arXiv preprint arXiv:1805.01046, 2018.

[97] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon:
scalable adaptation of video analytics,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. ACM, 2018, pp.
253–266.

[98] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model: a sta-
tistical framework,” International Journal of Machine Learning and Cybernetics,
vol. 1, no. 1-4, pp. 43–52, 2010.

[99] F. Team, “Ffmpeg,” URL http://FFmpeg. org, 2013.

[100] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting the resnet
model for visual recognition,” Pattern Recognition, vol. 90, pp. 119–133, 2019.

[101] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage sys-
tem,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

