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ABSTRACT OF THE DISSERTATION

MODELING MULTISYSTEM BIOLOGICAL EFFECTS OF

MULTIROUTE EXPOSURES TO AIR POLLUTANTS

By LONGFEI CHAO

Dissertation Director:

Panos G. Georgopoulos

Nine out of ten people are breathing polluted air worldwide. Health concerns

associated with human exposures to air pollutants, such as ozone and particulate

matter (PM), have become a persisting and widespread problem around the globe.

Interconnected, multiscale, mechanistic models were developed to study the exposure

biology of air pollution in the respiratory, cardiovascular and integumentary systems,

resulting from inhalation and dermal contact exposure routes. Lung function al-

terations were linked with ozone inhalation using a multiscale model that considers

pulmonary surfactant depletion by ozone reactions, pulmonary inflammation after

ozone exposure and the expansion / contraction of the alveolar units. A computa-

tional model for cardiovascular effects of air pollution was developed and implemented

for human PM exposure using heart rate variability (HRV) as the health endpoint.

Specific considerations were given to PM-initiated excessive oxidative stress and pro-
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/ anti-inflammatory signaling at cellular level, neuroendocrine-immune system inter-

actions and systemic inflammation propagation. The skin biology after air pollutant

exposure was studied by mechanistic models that respectively addressed skin surface

reactions, AhR activation and cell cycle regulation in keratinocytes. Inflammatory

responses are often evoked when air pollutants exert their detrimental effects in any

physiological system mentioned above. Macrophage is an essential type of immune

cell that plays critical roles in the regulation of inflammation. An agent-based model

that spans molecular, cellular and tissue levels was developed aiming at reproducing

and elucidating the dynamics of macrophage polarization under various complex acti-

vation signals, while considering system stochasticity and heterogeneity. Key factors

in signaling cascades were included in this model, and critical underlying regulatory

controls influencing the polarization process were explored and quantified. All mod-

els were evaluated with data of in vitro and in vivo measurements from different

sources. These models formed a platform that integrates physiological, biochemical

and experimental information for various organ systems to mechanistically investigate

biological effects initiated by air pollutants.
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Chapter 1

Introduction

1.1 Background

Concerns about air pollution have a long and complex history. Problems caused by

air pollution can be traced back to the days of ancient Rome. After the Industrial

Revolution, air quality worsened considerably due to the wide use of fossil fuels, es-

pecially in the urban areas of some European countries and the United States. In

December 1952, the 5-day London Smog Episode led to the deaths of 12,000 people

caused by heavy exposures to airborne mixtures of soot, sulfur dioxide and calcium

sulfate particles. From the 1940s to the 1960s, photochemical smog characterized by

high concentrations of ground-level ozone hovered over Los Angeles, CA in the United

States causing detrimental health effects to millions of people. Since then, modern

air pollution legislation and abatement measures for air quality control have been

implemented and air quality in industrialized countries (e.g. the US and European

countries) has been greatly improved over the past six decades. In developing coun-

tries (e.g. China and India), however, air pollution problems have become much more

severe in recent years due to large-scale industrialization and urbanization coupled

with rapid transportation development. Nowadays, air pollution has become a uni-

versal issue around the globe. According to data from the World Health Organization
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(WHO), more than 92% of the world population live in places where the WHO air

quality guidelines levels are not met [1]. Even in the United States, more than 40%

of the population are living in areas with unhealthy air pollution levels [2].

It is well established that air pollution is associated with various health effects.

For sensitive and susceptible people, even low air pollution levels can exert significant

detrimental effects on their health. Short-term exposure to air pollution can cause

cough, asthma, COPD (chronic obstructive pulmonary disease) and other respira-

tory disease. Long-term effects of air pollution are associated with chronic asthma,

pulmonary insufficiency, diabetes, cardiovascular diseases, etc [3]. Collectively, air

pollution has become a major risk factor for increased human morbidity and mortal-

ity. Figure 1.1 shows the number of deaths attributable to ambient air pollution in

Figure 1.1: Death attributable to ambient air pollution in 2012 [1]

2012 [1]. Ambient air pollution alone kills about 3 million people each year globally.

If we count in household indoor air pollution, nearly 7 million premature deaths per

year - one in eight of total global deaths - are associated with air pollution exposures.

Therefore, studying the biological effects of air pollution is of great importance. Air

pollution is a mixture of thousands of components. Among them, ground level ozone
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and airborne particulate matter (PM) are considered as probably the most significant

causes of premature deaths related to poor ambient air quality [4]. This thesis aims

to develop and apply computational models that span multiple biological scales to

study the biological effects of air pollutants, especially ozone and PM, in multiple

physiological systems.

1.2 Multi-routes exposure and multi-system effects

of air pollution

The health impacts of an air pollutant depend on the route through which it enters

the human body and the subsequent interactions it undergoes once inside the body.

There are three major exposure routes through which humans get in contact with

pollutions: inhalation, ingestion and dermal adsorption. Inhalation exposure results

from breathing air that is contaminated with airborne pollutants and it is the pri-

mary route of exposure to air pollution. Pollutants can deposit in water and soil to

contaminate potential sources of food and drinking water which will be consumed by

people and cause ingestion exposures to contaminants. Dermal contact is another

important route. Although skin provides a good protection against many pollutants,

it is highly possible that airborne contaminates can enter the body when skin cracks

and aberrations are present. Highly oxidative pollutants like ozone can also react

with skin surface components forming secondary products that penetrate the skin.

The different exposure routes do not function independently. For example, during

inhalation the mucociliary clearance process filters the air we breathe and forms

pollutants-containing phlegm which can be swallowed to enter the digestive tract.

During dermal contact with ozone, skin surface lipids can react with ozone to form

secondary organic aerosol that enhances the pollutant exposure via inhalation. In this

thesis, primary focus is given to modeling the biological events initiated by ozone and
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PM due to inhalation exposures with a secondary focus on dermal exposures. Figure

Cutaneous 
Toxicodynamics 

and Health Effects

Inhalation and 
Dermal Exposures

Indoor  
O3 & PM

Ambient  
O3 & PM

Respiratory  
Toxicodynamics 

and Health Effects

Cardiovascular
Toxicodynamics 

and Health Effects

Production of airborne 
PM from reactions of 
ozone with skin 
constituents

Figure 1.2: Multiple exposure routes and physiological systems considered in this
thesis

1.2 shows the two exposure routes and multiple physiological systems considered in

this thesis. Exposures to ozone and/or PM via inhalation and dermal contact cause

primary health effects in the respiratory and integumentary system, respectively. In

addition to local biological events, health effects of ozone and PM extend beyond

the lung and skin to other physiological systems, especially the cardiovascular system

which is well-known for being affected by ozone and PM exposure. The mechanisms
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underlying the multi-system effects of ozone and PM often involve the generation of

reactive oxygen species (ROS). For example, ROS result from reactions of ozone with

skin lipids during dermal contact and from reactions with lung lining fluid compo-

nents following inhalation. These secondary ROS initiate series of cascading events,

such as release of pro-inflammatory mediators, infiltration of immune cells, activa-

tion of aryl hydrocarbon receptor (AhR) pathways, etc. Other physiological systems

are subsequently affected: for example, the respiratory-originated pro-inflammation

mediators can enter the circulatory system to cause systemic inflammation and sub-

sequent adverse effects in the cardiovascular system.

1.2.1 Respiratory effects associated with air pollutants

First target of inhaled air pollutants is the respiratory tract. The structure of the

human respiratory tract is shown in the Appendix. It is well established that air pol-

lutants are strongly associated with adverse respiratory outcomes. According to the

Integrated Science Assessment of Ozone and Related Photochemical Oxidants by the

U.S. EPA [5], the most salient observations from controlled human ozone-exposure

studies include the following: (1) young healthy adults exposed to ozone concen-

trations ≥ 80 ppb develop significant reversible, transient decrements in pulmonary

function and symptoms of breathing discomfort if minute ventilation or duration of

exposure is increased sufficiently; (2) relative to young adults, children experience

similar spirometric responses but lower incidence of symptoms from ozone exposure;

(3) relative to young adults, ozone-induced spirometric responses are decreased in

older individuals; (4) there is a large degree of intersubject variability in physiologic

and symptomatic responses to ozone, but responses tend to be reproducible within

a given individual over a period of several months; (5) subjects exposed repeatedly

to ozone for several days experience an attenuation of spirometric and symptomatic

responses on successive exposures, which is lost after about a week without exposure;
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and (6) acute ozone exposure initiates an inflammatory response that may persist

for at least 18 to 24 hours postexposure. Epidemiological studies also provide clear

evidence for the associations between increases in ambient ozone concentration and

increases in respiratory hospital admissions and ER visits [6].

According to the Integrated Science Assessment for Particulate Matter by the

U.S. EPA [7], the association between PM and respiratory effects is weaker than that

of ozone, but epidemiological studies still demonstrate positive correlations between

increases in ambient PM concentrations and increases in respiratory hospitalizations

and ER visits. Altered pulmonary function, mild pulmonary inflammation and in-

jury, oxidative responses, airway hyperresponsiveness and exacerbations of allergic re-

sponses were observed in a large number of controlled human studies and toxicological

studies involving exposure to different types of PM, providing biological plausibility

for associations between PM and respiratory morbidity observed in epidemiological

studies.

1.2.2 Cardiovascular effects associated with air pollutants

The cardiovascular system and the respiratory system are both hemodynamically

and neuronally connected. Detrimental effects initiated in the respiratory system can

be propagated to the cardiovascular system. In fact, evidence from epidemiologic

studies has consistently supported the link between exposure to air pollution and

cardiovascular morbidity and mortality [8–10].

Among all the pollutants associated with cardiovascular impacts, the evidence

for PM is the strongest [11]. According to the Integrated Scientific Assessment for

PM [7], the preponderance of evidence suggests a causal relationship between PM

exposure and increased risk of cardiovascular health outcomes. It is debatable whether

there is a certain causal relationship between ozone exposures and cardiovascular

impacts. The Integrated Scientific Assessment for Ozone [5] suggests a likely causal
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relationship, while others claim that current evidence is not sufficient to support a

scientific judgment about this issue [12].

However, in reality people always get exposed to mixtures of co-occurring air

pollutants (including both PM and ozone). So we should never rule out the poten-

tial effects of ozone when studying cardiovascular effects. Toxicological studies and

controlled human studies have been conducted to investigate the cardiovascular ef-

fects of PM/ozone. In toxicological studies, in vivo assessments demonstrated that

PM, including concentrated ambient particles (CAP), diesel exhaust, urban dust and

engineered nanoparticles, can enhance vasoconstriction and decrease vasodilatory re-

sponses in different species [11]. Although fewer data are available for ozone, Chuang

et al. observed vascular dysfunction and atherogenesis in mice after a single exposure

to ozone [13]. Two other studies using ex vivo methods showed that vasorelaxation re-

sponses in aortas of mice and coronary arteries of rats were impaired following ozone

exposure. Kumarathasan et al. demonstrated that plasma endothelin (a vasocon-

strictor) levels increased after inhalation of ozone or PM, but co-exposure to ozone

and PM seemed to attenuate these effects [14]. Furthermore, other pollutants can

sensitize the cardiovascular system to the effects of exposure to ozone. For example,

Farraj et al. conducted a study where hypertensive rats were exposed to NO2 in

the morning followed by same day ozone exposure in the afternoon [15]. Compared

to the control group, rats treated with NO2 and ozone showed decreased heart rate,

increased heart rate variability, decreased blood pressure and increased pulse pres-

sure, suggesting that the cardiovascular system became more sensitive to ozone after

pre-exposure to NO2. In controlled human studies, diesel exhaust, ultrafine carbon

particles and CAP were all associated with alteration of vascular function. Brook

et al. observed that exposure to a mixture of ozone and CAP caused vasoconstric-

tion, but the effect of ozone alone was not tested [16]. Fakhri et al. demonstrated

that exposure to mixture of ozone and CAPs increased diastolic bold pressure, while
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single exposure to ozone did not cause significant changes [17]. Some other studies

demonstrated similar effects of co-exposure to PM and ozone, whereas single expo-

sure to ozone decreased blood pressure [18, 19]. Collectively, the association between

cardiovascular effects and exposures to PM or mixtures of PM and ozone is strongly

supported by toxicological and controlled human studies.

1.2.3 Skin effects associated with air pollutants

Skin (integumentary system) is the largest organ of the human body. Human skin is

regularly exposed to many pollutants in gas, liquid and solid forms [20]. In particu-

lar, both ozone and PM are associated with multiple skin disorders. Previous studies

have shown that PM can affect the progression of inflammatory skin diseases, enhance

skin aging and promote skin cancer. Song et al. recruited 44 elementary school stu-

dents with atopic dermatitis, a chronic and recurrent inflammatory skin disease, and

significant associations were discovered between ultrafine particle concentrations and

the itchiness symptom in the study participants [21]. In a cohort study, Vierkotter

et al. found that people living in urban areas with higher ambient PM concentra-

tions demonstrated 20% more facial pigment spots formation than those living in

rural areas, suggesting that traffic-related PM exacerbates skin aging [22]. A survey

conducted by Puntoni et al. shows that occupational exposure to black carbon is

positively associated with the incidence of melanoma, the most serious type of skin

cancer [23].

Although ozone has a history of being used as a therapeutic treatment for skin

diseases [24], exposures to air pollutant ozone are associated with skin disorders.

A time-series analysis by Xu et al. investigated ozone exposure and emergency-

room visits for skin diseases [25]. An increase of 10 µg/m3 ozone resulted in 0.78%

increase in urticarial, 3.84% increase in eczema, 2.86% increase in contact dermatitis,

3.22% increase in rash/other nonspecific eruption and 2.72% increase in infected skin
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disease. In addition, ozone may also contribute to premature skin aging. In a cohort

study, ozone exposure was found significantly associated with the formation of deeper

wrinkles in a group of elderly people, suggesting the potential role of ozone in the

extrinsic aging of human skin [26].

1.3 Multiscale modeling with MENTOR

Living organisms are inherently complex biological systems consisting of functional

networks operating at various scales. From the human health perspective, any detri-

mental effects induced by air pollutants are the results of a series of biological events

across multiple scales, extending from gene transcription inside the cell nucleus to clin-

ical symptoms at the physiome level. This multiscale nature of air pollution exposure

biology requires knowledge and experimental information for each biological level in

order to fully understand the health effects of the pollutants. The adverse outcome

pathways (AOP) framework is employed here to illustrate current understandings of

the mechanisms underlying health effects of air pollution. AOP is a conceptual con-

struct that portrays existing knowledge regarding the linkages between direct molec-

ular initiating events and adverse health outcomes at a biological level of organization

relevant to risk assessment [27]. In general, an AOP consist of a series of causally con-

nected events that span multiple levels of biological organization, including molecular

initiating events, cellular/extracellular responses, tissue/organ responses and individ-

ual responses. Two case examples, shown in Figure 1.3 and Figure 1.4 respectively,

demonstrate AOPs of ozone in respiratory, dermal and cardiovascular systems, and

AOPs of PM in respiratory and cardiovascular systems (details of these AOP can be

found in the Appendix).
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Figure 1.3: Adverse outcome pathways for ozone in the respiratory, dermal and car-
diovascular systems
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Figure 1.4: Adverse outcome pathways for particulate matter in the respiratory and
cardiovascular systems. (CNS: central nervous system; ANS: autonomic nervous sys-
tem)

Behind each health endpoint induced by ozone and PM are biological events that

form interrelated networks across molecular, cellular, tissue and organ scales. This

complexity makes it hard to thoroughly investigate the health effects of air pollu-

tion using only experimental approaches and brings the need for multiscale modeling.

Multiscale computational models are uniquely positioned to study such complex bi-

ological systems because they can:

• Bridge the gap in understanding between isolated in vitro and in vivo experi-
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mental studies to capture the connectivity between various scales of biological

functions

• Evaluate variables that are not measurable by experimental techniques

• Offer unique advantages to explore complex mechanisms by allowing precise per-

turbation of any variable/parameter of interest in any biological level involved

in the system

The primary focus of this thesis is on developing multiscale computational models

which integrate existing mechanisms and experimental information for multiple bio-

logical scales to support comprehensive understanding of health effects induced by air

pollutants, in particular ozone and PM. This approach originates from the MENTOR

(Modeling ENvironment for TOtal Risk) computational platform for human toxicoki-

netics and toxicodynamics developed by Georgopoulos et al. (Figure 1.5) [28], which

serves as a foundation for modeling adverse health effects due to hazardous exposures.
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Figure 1.5: The MENTOR integrative multiscale whole body platform for human
toxicokinetics and toxicodynamics [28]
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The integrative multiscale whole body platform of MENTOR incorporates suffi-

cient physiological and biochemical information for the various organ systems to ad-

dress the exposure biology modeling needs for a wide range of xenobiotics, including

air pollutants such as ozone and PM. The structure of individual tissues and organs

is described by multicompartmental formulations that reflect the specific attributes

of intracellular and extracellular media, complemented by more detailed models that

span multiple scales of biological organization [28]. The multiscale computational

models developed in this thesis follow the concepts and structure of MENTOR to

specifically address the toxicokinetics and toxicodynamics of air pollutants in respira-

tory, cardiovascular and integumentary systems by integrating detailed modules for

biological processes at various scales, such as gene transcription, intracellular signal-

ing pathway activation, cell-cell interactions, macrophage polarization, biochemical

reactions of ozone, inflammation regulation across physiological systems, etc. The

mechanistic and multiscale design of the models developed in this thesis is consistent

with a computational platform that incorporates different mechanisms across multi-

ple biological levels, thus providing a promising in silico tool to study a wide range

of other air pollutants in addition to ozone and PM. The models demonstrated here

can also be envisioned as “hypothesis generators” that will allow formulation and

testing of various hypotheses regarding the mechanisms underlying the health effects

of air pollution, and therefore, will support the development of potential therapeutic

interventions to attenuate the adverse health outcomes of air pollution.

1.4 Main objectives of the thesis

• Modeling ozone induced lung function changes

– Modeling interfacial ozone reactions with pulmonary surfactant in the alve-

olar region of mammalian lungs and the changes of pulmonary surfactant
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dynamics at the tissue level

– Modeling immune responses initiated by ozone-macrophage interactions

– Integrating information on pulmonary surfactant dynamics and immune

responses with the alveolar recruitment/derecruitment model to link ozone

inhalation with lung function alterations in mice

• Modeling reduced heart rate variability (HRV) due to exposure to particulate

matter (PM)

– Developing models for cellular inflammatory signaling pathways and cross-

systems regulation of inflammatory responses initiated by PM exposures

– Linking systemic pro-inflammatory signals to HRV changes

• Development of models for skin biology initiated by exposures to air pollutants

– Modeling the formation of secondary organic aerosol via ozone skin surface

reactions

– Modeling AhR activation and subsequent gene transcription in response

to air pollution related environmental agents

– Developing a model to study the regulatory roles of AhR on cell cycle

progression in keratinocytes

• Agent-based modeling of macrophage polarization, to assess the dynamic of

macrophage activation

– Building a model for macrophage polarization by incorporating relevant

transcription factors in macrophages for different external stimuli

– To capture the dynamic of macrophages polarization by implementing the

model using an agent-based modeling approach
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Chapter 2

A Multiscale Computational Model for

Ozone Induced Lung Function Changes in

Mice

2.1 Introduction

Ground-level ozone is a major air pollutant with adverse health effects associated with

respiratory morbidity and mortality [29]. Emerging evidence has shown that exposure

to ozone concentrations at or below the current regulatory standards are associated

with increased mortality due to respiratory diseases [30]. Currently more than 40% of

the people in the United States are still living in areas with unhealthy levels of ozone

pollution [2], requiring focus on pulmonary mechanisms of ozone toxicity. Since it is

a potent oxidative gas, ozone exposures through inhalation cause oxidative damages

to pulmonary cells and lining fluids, and subsequent immune-inflammatory responses

within the respiratory system, leading to breathing difficulty, reduced lung function

and exacerbation of various lung diseases.

The multiscale model developed in this study is an attempt to link cellular and tis-

sue level toxicodynamics changes induced by ozone inhalation to measurable changes

in lung function from a mechanistic point of view. The mathematical model described
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here simulates the mechanical operation of the mouse lung, involving the expansion

and compression of alveoli, and links pulmonary tissue resistance with surfactant

dynamics in the alveolar hypophase, pulmonary inflammatory responses and the dy-

namic surface tension of the alveolar air-liquid interface. The effect of progressive

chronic inflammation is also explored by implementing the model for mice deficient

in surfactant protein D, a pulmonary collectin that functions as an anti-inflammatory

protein [31]. The multiscale model can be decomposed into three functional modules:

Surfactant Dynamics Module, Immune Responses Module and Lung Mechanics Mod-

ule (Figure 2.1). It serves as a tool which can be further expanded and extended to

other species, to provide system level predictions and develop key insights to systemic

behavior due to inhalation of ozone and related air pollutants.
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Figure 2.1: Schematic describing the modularization of the multiscale lung model
into mechanistic modules capturing various structural and functional properties of
the mammalian respiratory system.
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2.2 Methods

2.2.1 Modeling surfactant dynamics with ozone exposure

The pulmonary surfactant consists of 90% phospholipids and about 10% of lipopro-

teins [32]. There are generally 4 types of lipoproteins in the pulmonary surfactant:

Surfactant protein (SP) A, B, C and D. SP-B and SP-C make up the surface-active

agents which are involved in the regulation of surface properties of the air-liquid inter-

face in the alveolar region. SP-A and SP-D are pulmonary collectins that participate

in the immune responses to xenobiotic. The mathematical model of Mukherjee et

al. [33] is adapted here to simulate the pulmonary surfactant dynamics, including

surfactant secretion, surfactant adsorption to the air-liquid interface, surfactant re-

cycling and the regulation of surfactant dynamics. Briefly, all surfactant components

are secreted into lamellar bodies in alveolar type II cells. These lamellar bodies are

exocytosed from alveolar type II cells to the alveolar fluids and the secreted sur-

factant components are released [34]. In addition, pulmonary collectins (SP-A &

SP-D) can be secreted directly into the alveolar fluids from alveolar type II cells in

a lamellar bodies-independent manner [35]. Once in the alveolar fluids, surfactant

components are adsorbed onto the alveolar air-liquid interface where they maintain a

normal surface tension for the lung [36]. In the meantime, surfactant components can

also recycle back into alveolar type II cells [37]. Some of the surfactant is also lost

to the airway [38]. Furthermore, the various pulmonary surfactant components do

not function independently. The surfactant proteins participate in the regulation of

secretion, adsorption and recycling of phospholipids in the alveolar fluids [39]. SP-A

binds strongly to phospholipids and promotes the formation of the interfacial surfac-

tant films [40, 41]. SP-B and SP-C enhance the adsorption of phospholipids to the

alveolar surface [42, 43]. SP-A also inhibits the secretion of phospholipids by alve-

olar type II cells and promotes the recycling of phospholipids back to alveolar type
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II cells [37]. The mathematical model for the surfactant dynamics module involves

five compartments: alveolar type II cells (AT2), lamellar bodies (LB), alveolar flu-

ids (AF), alveolar air-liquid interface (Int) and a purely mathematical compartment

called “Loss”, which represents the net loss of surfactant from the system. The mass

balance equations for the five compartments are as follows:

dMAT2,i

dt
= RGen,i − (KSec,i +KDSec,i)MAT2,i +KReMAF,i (2.1)

dMLB,i

dt
= KSec,iMAT2,i −KLBMLB,i (2.2)

dMAF,i

dt
= KLBMLB,i +KDSec,iMAT2,i +KDesMInt,i − (KRe +KDeg)MAF,i

−KAd,iMAF,i(M
eq
Int,i −MInt,i) (2.3)

dMInt,i

dt
= KAd,iMAF,i(M

eq
Int,i −MInt,i)−KDesMInt,i −KAW,iMInt,i (2.4)

dMLoss,i

dt
= KAW,iMInt,i +KDegMAF,i −RGen,i (2.5)

Here, M stands for the amount of a particular compound in mol and K represents

the rate constant for a particulate process with a unit of min−1. The subscript “i”

represents the three surfactant components: PL, SA and C.Gen stands for generation,

Sec for secretion, DSec for direct secretion, LB for exocytosis of lamellar bodies, Des

for desorption, Re for recycle, Ad for adsorption, Deg for degradation and AW for

airway loss. KDSec represents the rate constant for direct secretion into the alveolar

fluid, which only happens for collectins. So KDSec for PL and SA is zero. The

regulatory effects of surfactant proteins on phospholipid dynamics are included with

the following equations:

KAd,PL = K0
Ad,PL(1 + kSAAdCSA + kCLBCC) (2.6)

KLB = K0
LB(1− kCLBCC) (2.7)

KRe,PL = K0
Re,PL(1 + kCReCC) (2.8)
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Here, K0 represents the rate constant without the regulation effect, K stands for

the rate constant with regulation and kji represents the regulatory constant of species

j on process i. C stands for the concentration of the particular components in the

alveolar fluids with a unit of mol/ml.

Under ozone exposure conditions, surfactant dynamics are also affected by the

presence of ozone due to its high oxidative potential. Ozone reactions with the unsat-

urated phospholipids in the alveolar surfactant result in degradation and rearrange-

ment of lung surfactant lipids and subsequently impair the physical properties of the

surfactant films at the alveolar air-liquid interface [44]. Ozone exposure can damage

SP-B by changing its structure, thus impairing the ability of SP-B to interact with

phospholipids [45]. SP-A has also been found to be damaged structurally by ozone

exposure [46]. Therefore, it is important to include the effect of ozone in the surfac-

tant dynamics module. Kim et al. found that the kinetics of ozone reactions with

phospholipids and surfactant protein-B at the air-liquid interface can be described as

pseudofirst order reactions [47, 48]. Thus equation 2.3 and 2.4 are modified as follows:

dMAF,i

dt
= KLBMLB,i +KDSec,iMAT2,i +KDesMInt,i − (KRe +KDeg)MAF,i

−KAd,iMAF,i(M
eq
Int,i −MInt,i)−KO3,iMAF,i (2.9)

dMInt,i

dt
= KAd,iMAF,i(M

eq
Int,i −MInt,i)−KDesMInt,i

−KAW,iMInt,i −KO3,iMAF,i (2.10)

where KO3,i represents the reaction rate constant of ozone and surfactant component

i. The values of KO3,i are estimated based on the study from Kim et al. [47] and the

study from Uppu et al. [49] where they compared the relative reactivities of ozone

with phospholipids and surfactant proteins.

The outcomes of the surfactant dynamics module are time profiles of surfactant

components which will be used to link surfactant profiles with the surface tension at
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the alveolar air-liquid interface.

2.2.2 Modeling immune responses after ozone exposure

In addition to direct reactions with alveolar surfactant components, ozone may also

affect lung functions by initiating pulmonary inflammation [50–52]. In the alveolar

region, secondary ozone reaction products can stimulate on site macrophages in the

lining fluid to produce various pro-inflammatory cytokines, including TNF-α, IL-1,

IL-6, etc. These pro-inflammatory mediators will further signal the influx of more

macrophages into the lung from the blood circulation, leading to a cascade of inflam-

matory events. To address the inflammation-related lung function alteration induced

by ozone, a cellular level immune response module is included in the current model

(Figure 2.2).

Although ozone itself does not enter cells due to its reactions with alveolar lining

fluid components before reaching the cells, ozonation products can lead to the intracel-

lular production of reactive oxygen species (ROS) and cause excessive oxidative stress

[53]. These ROS will activate transcriptional signaling pathways that regulate pro-

and anti-inflammatory events that comprise immune responses. Among many tran-

scription factors involved in inflammation, NFκB is of critical importance because of

its ability to regulate the expressions of a wide variety of pro-inflammatory cytokines

[54]. Therefore, NFκB pathway is chosen as the representative pro-inflammatory sig-

naling pathway activated by ROS in the current model. An average delegator P is

used to represent the various pro-inflammatory cytokines induced by NFκB activa-

tion. These pro-inflammatory cytokines can induce the generation of intracellular

ROS, which further activate NFκB forming a positive feedback loop [55]. The anti-

inflammatory response (A) is the essential immunoregulatory signal that can dampen

pro-inflammatory responses and maintain homeostasis in the host defense system.

In the current model, the anti-inflammatory response stimulated by the activation
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Figure 2.2: Immune response module that captures the inflammation induced by
ozone exposure.(ROS: reactive oxygen species; AO: anti-oxidants; P: inflammatory
signals; A: anti-inflammatory signals; SPD: surfactant protein-D)

of pro-inflammation negatively affects the production of pro-inflammatory cytokines.

Surfactant protein D (SP-D) is a pulmonary collectin that plays an important role in

regulating innate immunity of the respiratory system. Various studies have demon-

strated that SP-D can suppress inflammatory responses induced by xenobiotics in-

cluding ozone [31, 56–58]. The anti-inflammatory function of SP-D is incorporated in

the current model by reducing the production of pro-inflammatory cytokines. Nrf2

is a key transcription factor for controlling cell homeostasis in response to oxidative

stress [59]. It mediates basal and induced transcription of an array of antioxidant
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proteins (AO) to promote oxidant resistance [60]. Nrf2 signaling cascades also inhibit

the activity of the NFκB pathway leading to reduced production of pro-inflammatory

cytokines [61], and vice versa, the NFκB pathway negatively affects Nrf2 mediated

gene expressions [62]. The mathematical equations for the immune responses module

are presented below:

dCNFκB
dt

= KG,NFκBCROS(1 +
xNFκB,Nrf2

xNFκB,Nrf2 + CNrf2

)−Kdeg,NFκBCNFκB (2.11)

dCNrf2

dt
= KG,Nrf2CROS(1 +

xNrf2,NFκB

xNrf2,NFκB + CNFκB
)−Kdeg,Nrf2CNrf2 (2.12)

dCAO
dt

= KG,AOCNrf2 −Kdeg,AOCAO (2.13)

dCP
dt

= KG,P (1 +
C
nP,NFκB
NFκB

xP,NFκB + C
nP,NFκB
NFκB

× xP,A
xP,A + CA

× xP,SP−D

xP,SP−D + CSP−D
)−Kdeg,PCP (2.14)

dCA
dt

= KG,A(1 +
C
nA,AO
AO

xA,AO + C
nA,AO
AO

× C
nA,P
P

xA,P + C
nA,P
P

)−Kdeg,ACA (2.15)

dCROS
dt

= KG,ROSCO3(1 +
xROS,AO

xROS,AO + CAO
)−Kdeg,ROSCROS

+ CP
C2
ROS

1 + C2
ROS

(2.16)

Here, C stands for the concentration of the particular compound, KG represents

the generation rate constant, and Kdeg stands for the degradation rate constant. xij

is the regulatory constant of compound j on compound i. The power nij controls the

strength of the regulation effect of compound j on compound i.
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2.2.3 Modeling lung mechanics

Modeling lung impedance

Pulmonary impedance can be described as the opposition to the flow of air into the

lungs, and, like electrical impedance, is defined as the ratio of the driving force causing

the flow (in this case, pressure) and the rate of flow (in this case, air flow rate). The

relation between pressure and volume of air in the lung has been modeled since Otis

et al. (1956) [63] using the analogy of an electric R-C circuit, with pressure and flow

rate analogous to voltage and electric current respectively. Therefore, P and V are

related as P = V̇ Z, where Z is the pulmonary impedance and V̇ is the air flow rate.

Taking the Fourier transform of both sides of Z(t) = P (t)/V̇ (t), we obtain

Z(ω) =
P (ω)

iωV̇ (ω)
(2.17)

where ω is the angular frequency that is related to time-based frequency f (ω =

2πf). Pulmonary impedance is intrinsically dependent on lung viscoelasticity. Many

formulations have been developed over the years to relate various frequency dependent

and independent lung parameters with impedance. In Hildebrandt’s experiments with

cat lungs [64], the author first demonstrated that the viscoelastic modulus of the

system varies linearly with the logarithm of time. Hantos and co-workers [65, 66] then

made modifications to Hildebrandt’s original theory with their Constant-Phase Model

(CPM), where they decomposed the complex pulmonary impedance into components

due to airway resistance (Raw), inertance (I), tissue damping (G) and tissue elastance

(H). The CPM can be expressed as:

Z(ω) =

(
R +

G

ωα

)
+ i

(
Iω − H

ωα

)
= Zre + iZim (2.18)
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The CPM has been widely used to characterize pulmonary mechanics in mammals

because of its apparent simplicity, elegance and the fact that it can be readily sepa-

rated into dissipative and capacitive effects of the lung [67–69]. Physically, the real

part of the pulmonary impedance Zre captures the dissipative effects of pulmonary

mechanics and represents the physical impedance to airflow and energy loss due to

impedance. The imaginary part of impedance Zim captures the capacitive effects and

represents energy storage due to the recoil forces in the lung. They can be written

as:

Zre = R +
G

ωα
(2.19)

Zim = Iω − H

ωα
(2.20)

Relating impedance to alveolar properties

In the CPM equations, R represents airway resistance [68, 70]. Inertance I is also a

parameter of the airways and is expected to vary between animals but is not expected

to change due to tissue-level changes in surfactant dynamics. The real part of the

pulmonary impedance is generally considered to be composed of two resistances:

airway resistance (RAW ) and pulmonary tissue resistance (RT ) [68, 69].The real part

of impedance Zre then can be written as composed of different resistive components

as Zre = RAW +RT . So, if we ignore the airway contributions, we have the pulmonary

tissue resistance as:

RT =
G

ωα
(2.21)

Similarly, the pulmonary tissue elastance ET can be expressed as:

ET =
H

ωα
(2.22)

The variables RT and ET are expected to depend on pulmonary tissue properties in-

cluding surfactant profiles. It should be pointed out that the CPM parameters G and
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H, which represent pulmonary tissue resistance and elastance, do not change inde-

pendent of each other, and are in fact related. The ratio η = H/G is known as tissue

hysteresivity and remains fairly unchanged in a particular subject, unless there is a

very high extent of lung injury [71]. η has been measured in a number of mammalian

species and was found to be in the range of 0.1-0.2 [68]. Therefore a model that is able

to predict pulmonary tissue elastance (H) under various conditions, is considered suf-

ficiently equipped to predict overall pulmonary function under conditions of limited

lung injury. The following sections describe an alveolar recruitment model that has

been developed to link pulmonary tissue properties to pulmonary tissue elastance, H.

Alveolar recruitment model

Alveolar recruitment is a key mechanism in the process of breathing by mammals.

Recruitment refers to the opening of alveolar air spaces so that air can flow into

these spaces. During the normal breathing process, most of the alveoli remain open

and they only expand and contract during inspiration and expiration. Recruitment

and decruitment (R/D) changes substantially during lung injury [72] and is also a

significant factor during normal tidal breathing [73]. Small airway and alveolar closure

is known to occur at low lung volumes in normal lungs and may exist even at larger

lung volumes in subjects with lung obstruction [74]. Alveolar R/D has been shown

to modulate pulmonary tissue resistance and elastance [75] in mice with acute lung

injury. Increase in alveolar surface tension has been known to cause derecruitment of

alveolar units leading to an increase in both G and H [68], which represent pulmonary

tissue resistance and elastance respectively. More severe pulmonary injury, which

leads to remodeling of the lung tissue, can independently increase G, without an

associated increase in H. The alveolar recruitment model described here predicts the

fractional alveolar recruitment and its effect on tissue elastance, H. The alveolar R/D

model follows the models developed by Bates et al. [76] and Massa et al. [75].
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Figure 2.3: Schematic representation of the alveolar recruitment model: (top) inte-
gration of alveolar units at the terminus of an airway; (bottom) opening and closing
of individual airways due to surfactant dynamics

Figure 2.3 shows a graphical representation of the model. The model simulates

alveolar R/D based on a pressure signal using the following key alveolar parameters:

critical opening pressure (PO), critical closing pressure (PC), rate of opening (SO) and

rate of closing (SC). Opening and closing of alveolar units and the smallest airways

are dependent on a number of surfactant and airway properties. Gaver et al. [74] and

Halpern et al. [77] studied surfactant effects in liquid-lined flexible tubes which were

used as physical models of the small airways in the lung. The effects of surfactant
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properties on the four alveolar properties are discussed in detail later. The model

considers a set of N individual alveolar units and simulates their opening and closing

as well as expansion/contraction due to a selected air flow. A variable x is defined

such that 0 < x < 1 which determines if an alveolar unit is open or closed with x =

0 representing the closed state and x = 1 representing the open state. The dynamics

of variable xi for the ith airway are described as follows:

dxi
dt

=


SOi(P − POi) if P > POi

SCi(P − PCi) if P < PCi

0 otherwise

(2.23)

Here, P represents the external applied pressure which is provided as a sinusoidal

function as P = Pmsin(ωt), where Pm is the pressure amplitude determined by the

actual tidal volume of the species and ω is the frequency of breathing.

A binary variable y is also defined, taking values of 0 or 1, to signify closed or

open status of a particular airway unit. At a particular time t, yt takes on values

according to the following rule:

yt =


0 if xt = 0 | 0 < xt < 1 and xt−1 < xt

1 if xt = 1 | 0 < xt < 1 and xt−1 > xt

(2.24)

Lung tissue heterogeneity is taken into account by considering the values of the four

parameters as distributions rather than as single values. The opening and closing

pressures, POi and PCi for the ith alveolar unit are randomly selected from normal

distributions as:

PO ∈ N(µPO , σ
2
PO

) (2.25)

PC ∈ N(µPC , σ
2
PC

) (2.26)
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Here, N(µ, σ2) is a normal distribution with mean µ and standard deviation σ. The

rate of opening (SO) and the rate of closing (SC) are selected from hyperbolic distri-

butions as described below:

SO ∈
βO

unif [0, 1]
(2.27)

SC ∈
βC

unif [0, 1]
(2.28)

Here, unif [0, 1] is a uniform distribution between 0 and 1, and βO and βC are scaling

parameters for the rate of opening and closing respectively. In the subsequent sections,

the effect of O3 on these key parameters (µ and β) has been investigated; σ essentially

reflects the extent of heterogeneity in the alveoli and is assumed to be unchanged due

to O3 exposure.

The air flow rate, Qi into an individual unit is defined by

Qi =
yi
Ri

(Pi − Vi0Ei) (2.29)

Here, yi represents the open/close status of the ith unit, Pi is the air pressure at

the airway inlet which is assumed equal to the input dynamic pressure signal to the

model, Vi0 is the residual volume in the ith unit at the end of expiration. Ri and

Ei are the individual unit resistance and elastance for the ith alveolar unit. They

are assumed to be identical for all units and their values were optimized by Massa et

al.[75] using in vivo data from mice. The residual volume Vi0 is estimated based on

the value of Positive End Expiratory Pressure (PEEP) in each experimental scenario.

And the relationship between Vi0 and PEEP is described using the Salazar-Knowles

equation [78]:

V = A−Be−kP (2.30)

Where A, B and k are intrinsic parameters of the lung. The parameter A can be con-

sidered equal to the total lung capacity (TLC) and parameter B is equal to functional
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residual capacity (FRC) [79]. However, for individual airway unit in this model, the

values of TLC or FRC were divided by n, the number of airway units in the model.

The individual airway volumes at any time t (Vi,t) is estimated as:

Vi,t = Vi,0 + ∆t ·Qi (2.31)

The total dynamic volume of the lung is calculated by summing up all the individual

airway volumes as: Vt = Σn
i=1Vi,t

Alveolar surface tension

The primary function of pulmonary surfactant is to reduce the surface tension at the

air-liquid interface in the alveolar region to make the work of breathing easier. Since

90% of pulmonary surfactant, surface tension is largely controlled by the phospholipid

concentration at the alveolar surface. The functional form was derived using data from

Walter et al. [36]. The surface tension γPL is dependent on the concentration of PL

in the alveolar lining and can be expressed using the following equation:

γPL = γmax

(
1− Cn

S

K + Cn
S

)
(2.32)

where CS is the surface concentration of free PL at the alveolar air-liquid interface;

K and n are Hill-type coefficients.

Surface tension γ is also known to depend on the presence of SA (SP-B and SP-C)

in the alveolar lining. During the process of breathing, PL bilayers are repeatedly

squeezed out from dynamically compressed surface films and suffer respreading during

expansion [80]. The ability of PL bilayers to function repeatedly in this fashion is

significantly dependent on the presence of SA in close association to the PL bilayers

[81]. Wang et al. [82] measured the surface tension produced by various surfactant

formulations and showed that the minimum surface tension produced by natural
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calf lung surfactant extracts was about 50% lower than PL by itself. The actual

surface tension γ of the alveolar interface is a result of PL adsorption to the interface,

composition of bilayers, and spreading of the PL bilayers which requires the presence

of SA. To take this into consideration, the effective surface tension γ is modified by

a surface-active factor fSA as:

γ = γPL · fSA (2.33)

where fSA is estimated by fSA = ksurf,SA(1 − CSA). Here CSA is the fractional

concentration (by weight) of SA in surfactant and ksurf,SA is a constant quantifying

the effect of SA on γ. The value of ksurf,SA is estimated using measurements from

Wang et al. [82].

Effects of ozone on alveoli recruitment

Alveolar surface tension is regulated by the concentrations of lung surfactant com-

ponents. Being a highly oxidative compound, ozone can react with phospholipids

and proteins in the lung surfactant [45, 46, 50, 83] and therefore affect the alveo-

lar surface tension. The alveolar recruitment model described earlier contains four

key alveolar parameters: mean critical opening pressure (µPO), mean critical closing

pressure (µPC), scaling parameter for rate of opening (βO) and scaling parameter for

rate of closing (βC). All of these parameters are expected to be affected by changes

in the surfactant profile caused by ozone-induced surface tension changes. Gaver et

al. [74] found both airway opening pressure and opening rate to be affected by the

surface tension (γ) at the air-liquid interface in the alveolar region. Based on Gaver

study, Mukherjee [84] linked µPO and βO to the surface tension using the following

mathematical equations:

µPO = µ∗
PO

(
γ

γ∗

)
(2.34)

βO = β∗
O

(
γ

γ∗

)
(2.35)
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where γ∗ is the control value of surface tension in the alveolar fluid, and µ∗
PO and β∗

O

are the control values obtained for normal mice [75].

Effects of inflammation on pulmonary tissue elastance

Pulmonary inflammation is known to cause alterations of pulmonary tissue elastance.

Starling et al. found that chronic pulmonary inflammation contributed to increased

tissue elastance in guinea pigs [85]. Xisto and co-workers demonstrated that pul-

monary tissue elastance was significantly increased due to allergic inflammation in

a murine model [86]. Dixon et al. found that tissue elastance increased in a dose-

dependent manner for LPS-induced inflammation in rats [87]. As mentioned before,

inhaled ozone can interact with the immune system to initiate pulmonary inflam-

mation. In order to incorporate the effect of ozone-induced inflammation on tissue

elastance, a Damage variable is defined to quantify the adverse effect of inflammation

[88]:

dD

dt
=

Ch1
P

Ch1
P + xh1

D,P

(2.36)

where D stands for Damage caused by inflammation, CP is the concentration of pro-

inflammatory cytokines obtained from the immune response module, xD,P stands for

the regulatory constant of pro-inflammatory cytokines on Damage, h1 controls the

strength of the regulation effect. The final tissue elastance is then described as:

H = H∗(1 +D) (2.37)

Here, H is the tissue elastance considering the effect of inflammation, H∗ stands for

the tissue elastance without the effect of inflammation.
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2.2.4 In vivo measurements of lung functions

In vivo measurements of ozone effects on lung functions were done in experiments

involving male C57BL/6J wild type mice and SP-D knockout (Sftpd−/−) mice bred

at Rutgers University [89]. All procedures were reviewed and approved by the Rut-

gers University Institutional Animal Care and Use Committee. Mice were euthanized

72h following exposure (3h) to ozone (0.8ppm) or air in whole body Pleiglas cham-

bers. Pulmonary mechanics was measured using a flexiVent (SCIREQ, Montreal, PQ,

Canada). Mice were ventilated at a frequency of 150 breaths/min and a tidal volume

of 10 ml/kg. The in vivo measurements consisted of overall pulmonary resistance

and elastance that are related to the real and imaginary parts of lung impedance

as RL = ZRe and EL = ω|ZIm|. Further details of the measurement protocols are

presented in Grove et al. (2013) [89].

2.3 Results

The model described above simulated the conditions of mice exposed to ozone through

inhalation. The model was run for 10 additional days prior to dosing of ozone to al-

low the levels of surfactant components to reach steady state that reflects the normal

physiological conditions of mice. In order to capture the alterations in lung function,

the first issue that needed to be addressed is how lung surfactant components are

responding to ozone inhalation. Figure 2.4 demonstrates the relative fold change of

concentration for surfactant components at different time points after ozone expo-

sure. The fold changes are calculated using the concentrations at selected time points

divided by the corresponding steady state values before applying ozone exposure to

mice. All surfactant components including PL, SA and C experienced a continuous

decrease in the first 12 hours after ozone exposure. Then the levels of surfactant

components started to recover gradually and were restored back to normal level at
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around 72 hours after exposure.
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Figure 2.4: Relative fold change of surfactant component levels after 3 hours of ozone
exposure (0.8 ppm) in mice. (PL: Phospholipids in the alveolar fluid; SA: surface-
active agents in the alveolar fluid; C: collectins in the alveolar fluids). Values are
normalized using the corresponding values at the control condition (before ozone
exposure)

The immune response module was run for wild type and Sftpd−/− mice to sim-

ulate the inflammatory responses initiated by ozone with and without surfactant

protein D. Figure 2.5 shows the time course of pro-inflammatory signals induced

by ozone. The intensity of the pro-inflammatory signal was calculated through nor-

malizing the level of pro-inflammatory cytokines by the basal level before applying

ozone dosage. Simulation results demonstrate that ozone exposure induced acute pul-

monary inflammation in both wild type and Sftpd−/− mice, indicated by the rapid

increase of pro-inflammatory signals within the first 10 hours after ozone exposure.

After 10 hours, inflammation in wild type mice started to be attenuated by the anti-

inflammatory mechanisms of the host defense system while in Sftpd−/− mice, the

attenuation process is much slower. The pro-inflammatory signal level in Sftpd−/−

mice is higher than the level in wild type mice for the entire simulation time. At the
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end of simulation when lung function indexes were experimentally measured (72 h

after ozone exposure), Sftpd−/− mice still have a significantly higher level of inflam-

mation than wild type mice.
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Figure 2.5: Simulated time course of the pro-inflammatory signal (P) in wild type
(WT) and SP-D knockout (Sftpd−/−) mice after 3 hours of ozone exposure (0.8 ppm).
Values are normalized using corresponding values at control condition (before ozone
exposure)

The surfactant component profiles estimated by the Surfactant Dynamics Module

and the inflammatory responses from the Immune Responses Module were used in the

Lung Mechanics Module to estimate changes in alveolar surface tension and overall

lung function. Model predictions of tissue elastance H were compared with values

of H from in vivo lung function measurements in mice at PEEP ranging from 0 to

6 cmH2O by use of a flexiVent. Figure 2.6a shows the comparison between model

predicted and experimentally measured H for wild (WT) type mice, and Figure 2.6b

shows the comparison for SP-D knockout (Sftpd−/−) mice. In all scenarios, model

predictions successfully capture the changes in H. To have a better comparison

between wild type and Sftpd−/− mice in terms of their lung function alteration upon

ozone exposure, tissue elastance H changes over time were simulated at different



37

PEEPs and are shown in Figure 2.7. Model simulation results were normalized by

corresponding control values (tissue elastance level before ozone exposure). In both

wild type and Sftpd−/− mice, tissue elastance increased immediately after 3 hours

of ozone exposure and this increase continued up to 12 hours. Then tissue elastance

started to decrease but still persisted at a level higher than control values until 72

hours after ozone exposure. Sftpd−/− mice demonstrated significantly higher levels

of tissue elastance over the entire time of the simulation, suggesting the protective

role of surfactant protein D in response to ozone-initiated lung function changes.
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Figure 2.6: Comparison of measured (EXP) and model simulated (SIM) lung tissue
elastance (H) with different PEEPs at 72 hours after 3 hours of ozone exposure: (a)
wild type mice; (b) SP-D knockout mice. Experimental measurements are obtained
from Grove et al. [89]. H values are normalized using corresponding values at the
control condition (before ozone exposure)
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Figure 2.7: Simulated temporal effect of ozone exposure on lung tissue elastance after
3 hours of ozone exposure (0.8 ppm) in wild type and SP-D knockout mice. Values are
normalized using corresponding values at control condition (before ozone exposure).

2.4 Discussion

Ozone is a ubiquitous air pollution known to cause lung function alterations. In

this model, two main biological mechanisms are included to simulate lung function

changes in response to ozone: ozone-induced pulmonary surfactant perturbation and

ozone-initiated pulmonary inflammation. These two mechanisms are then coupled

with a lung mechanics module capturing the expansion and contraction of the alve-

oli and its mechanistic representation of pulmonary impedance. The fact that this

model successfully predicted the changes of tissue elastance H (Figure 2.6) strongly

supports the selection of biological mechanisms involved in the model construction.

After short-term ozone exposure, simulation results demonstrate that the levels of

pulmonary surfactant components are immediately lowered, which has also been ob-

served in previous studies [90, 91]. Although ozone itself does not stay for a long
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time due to its high reactivity, the protracted effect of ozone on lung function (Fig-

ure 2.7) can be partially explained by the persistent surfactant depletion after ozone

exposure (Figure 2.4). The model also simulates the initiation and resolution of pul-

monary inflammation. The trend for inflammation signals (Figure 2.5) is consistent

with the changes of tissue elastance H over time shown in Figure 2.7, confirming

that pulmonary inflammation is another mechanism through which ozone negatively

affect lung functions. Surfactant protein D is an important surfactant component

associated with immune responses. The model explores the differences between wild

type and Sftpd−/− mice regarding inflammation and lung function alteration upon

ozone exposure. Compared with wild type mice, pulmonary inflammation is signif-

icantly prolonged in Sftpd−/− mice (Figure 2.5), which is correlated with the more

significantly altered lung functions (Figure 2.7). Considering the fact that surfactant

components levels are almost restored back to normal physiological levels at 72 hours

after exposure (Figure 2.4), pulmonary inflammation is the dominant mechanism af-

fecting lung functions at later times after ozone exposure. Also, the higher sensitivity

to ozone in Sftpd−/− mice is mainly attributed to the development of progressive

chronic inflammation.

This model is the first attempt, to the authors’ knowledge, to illustrate the con-

nection between ozone exposure and lung function changes from a mechanistic point

of view, considering pulmonary surfactant dynamics, cellular inflammation responses

and alveoli expansion/contraction simultaneously. The modular nature of the model

allows flexible modifications to incorporate newer findings and additional experimen-

tal data regarding surfactant dynamics and pulmonary immune responses. Although

the current model is run for mice, this model can be extended to other mammalian

species, including human, to access pulmonary effects due to ozone inhalation. The

model successfully quantifies cellular level immune responses and tissue level sur-

factant perturbations, and links them to organism level changes. This multiscale
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modular approach would be valuable in understanding cell and tissue scale mecha-

nisms associated with various pulmonary diseases such as asthma, COPD, etc. which

can all be exacerbated due to ozone inhalation.
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Chapter 3

Modeling Reduced Heart Rate Variability

due to Exposures to Particulate Matter

3.1 Introduction

The adverse health effects of air pollution have long been recognized and exposures to

air pollution have become a major problem leading to deaths and diseases worldwide

[1, 92]. Among different air pollutants, particulate matter (PM) is a mixture of

solid particles and/or liquid droplets suspended in the air with significant impacts

on human health. Epidemiological studies have shown strong associations between

exposures to PM and human morbidity and mortality [93–95]. The respiratory effects

of PM include increased respiratory symptoms, altered lung function, pulmonary

inflammation and increased incidence of chronic obstructive pulmonary disease and

asthma. In addition, PM is associated not only with pulmonary effects but also with

cardiovascular diseases. Acute exposure to PM has been linked to various adverse

cardiovascular events including emergency department visits and hospital admissions

for ischemic heart disease and congestive heart failure [96].

Heart rate variability (HRV) is the variation in the time interval between one

heartbeat and the next and is usually characterized by time domain and frequency
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domain indices. HRV is controlled by the autonomic nervous system (ANS) and

clinical measurement of HRV is a noninvasive way to identify cardiac autonomic dys-

function. It has been suggested that a reduction in HRV represents increased isolation

of the heart from other organs [97] and decreased HRV has been demonstrated as a

predictive factor for cardiovascular mortality, such as myocardial infarction, arrhyth-

mias and heart failure [98, 99]. Previous studies have demonstrated the association

between decreased HRV and exposures to PM [100–102]. Although the evidence is

strong, the exact mechanisms underlying PM induced HRV reduction are not fully

understood yet. One hypothesized and well-studied mechanism suggests that dimin-

ished HRV is induced by systemic inflammations due to the release of inflammatory

cytokines initiated by PM inhalation in the pulmonary region [103]. A recent study

conducted a meta-analysis of human studies to estimate the relationship between

HRV and inflammatory markers [104]. The study results showed a negative associ-

ation between HRV and inflammation markers; in particular, the time domain HRV

index SDNN (the standard deviation of the interbeat interval of normal sinus beats)

showed the most robust associations with markers of inflammation, indicating the

importance of inflammation in mediating HRV in humans. In the context of PM ex-

posures, intracellular pathways are activated upon recognition of PM by cells in the

pulmonary region leading to the excretion of pro- and anti-inflammatory cytokines.

These cytokines can enter the circulation to further propagate systemic inflammatory

cascades. The physiological mechanisms regulating inflammation include not only the

local release of pro- and anti-inflammatory cytokines but also influences from the neu-

roendocrine system. It has been shown that the central nervous system (CNS) plays a

critical role in regulating anti-inflammatory responses. [105] The primary pathway by

which the CNS regulates the immune system is the hypothalamic-pituitary-adrenal

(HPA) axis who can produce glucocorticoid to enhance anti-inflammatory responses

[105]. Furthermore, the sympathetic nervous system (SNS), a main division of the
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ANS that controls HRV, can release neurotransmitters to inhibit the production of

pro-inflammatory cytokines [106]. These functions form a complex network of inter-

actions among the immune, neuroendocrine and autonomic systems for regulating

HRV upon exposures to PM.

Although extensive efforts have been made to understand how PM can induce

HRV reduction, we still lack of a systems-level understanding due to the complex in-

teracting pathway networks involved in the process, thus rising the need for a systems

biology approach. In the present study, a multiscale mechanism-based model is devel-

oped to simulate HRV changes resulting from exposures to PM. The model contains a

cellular level immune response module that connects PM exposure to intracellular sig-

naling cascades leading to the transcriptions of pro- and anti-inflammatory cytokines.

Considering the importance of the neuroendocrine system in regulating inflammatory

responses and HRV, a module describing the bidirectional communication between

the immune system and the neuroendocrine axis is also included. Furthermore, the

dynamic signals evoked via immune-neuroendocrine interactions are propagated to

the heart to assess how HRV is altered on a systemic level following exposures to PM.

The proposed multiscale model consists of 27 coupled ordinary differential equations,

and it is parameterized by fitting to experimental measurements from the literature.

The output of the model is shown to capture experimentally observed HRV changes

in different human PM exposure studies. Furthermore, the relative importance of bi-

ological processes involved in the complex interacting pathway networks is evaluated

by performing sensitivity analysis.

This work is an attempt to explore the feasibility of using a systems biology ap-

proach to integrate the complex biological events involved in the HRV alteration

induced by PM exposures, including transcriptional dynamics, signaling cascades,

immune-neuroendocrine interactions and signal propagation into the heart. Such a

modeling approach can serve as a step towards gaining insight into how air pollu-
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tants containing particulate matter exert detrimental effects in multiple organs and

contribute to cardiovascular mortality.

3.2 Model and Methods

3.2.1 Modeling cellular level responses to oxidative stress

agents

One of the critical mechanisms through which PM exert its toxic effects is via gener-

ating excessive oxidative stress and triggering inflammatory responses. At the cellular

level, we established a semi-mechanistic model to characterize the increase of intracel-

lular oxidative stress as well as the activation of pro- and anti-inflammatory signaling

pathways. Among the many transcription factors involved in inflammation, NFκB

is known for its prominent role in the development and function of the immune sys-

tem [107]. It has been widely studied as a major mediator of cellular inflammatory

responses and mathematical modeling approaches have been developed to quantify

the dynamics of NFκB signaling cascades [108, 109]. Therefore, the NFκB signal

transduction cascade is chosen as the representative signaling pathway that initiates

and regulates the transcription of pro-inflammatory genes in our model. Nrf2 is a key

transcription factor for controlling cell homeostasis in response to oxidative stress [59]:

it mediates basal and induced transcription of an array of antioxidant proteins to pro-

mote oxidant resistance [60]. The Nrf2 signaling cascade also inhibits the activity of

the NFκB pathway leading to reduced production of pro-inflammatory cytokines [61],

and vice versa, the NFκB pathway negatively affects Nrf2 mediated gene expressions

[62]. Because of the anti-oxidative/ anti-inflammatory role of Nrf2 and the cross-talk

between Nrf2 and NFκB, we selected the Nrf2 signaling cascade as the representative

pathway that mediates cellular defense responses against PM in our model. The level

of oxidative stress in the cell is characterized by the intracellular concentration of
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reactive oxygen species (ROS) whose intracellular production is associated with the

secretion of pro-inflammatory cytokines [110, 111].

Upon contact with cells, PM is recognized via a receptor mediated mechanism.

Depending on the size and composition of the PM, different pattern recognition re-

ceptors (e.g. TLR 2, TLR 4, RAGE) could be activated to initiate subsequent sig-

naling cascades [112–114]. For modeling simplicity, an average delegator R is used to

represent the various pattern recognition receptors activated during the PM recog-

nition process. Once PM binds to its receptor, the PM-receptor complex (PM-R)

induces the activation of IκB kinase (IKK) which phosphorylates the inhibitor pro-

tein IκB to activate NFκB resulting in the production of many pro-inflammatory

cytokines, including TNF-α, IL-1, IL-6, etc. [115–117]. An average delegator P is

used to represent the pro-inflammatory cytokines induced by NFκB activation. These

pro-inflammatory cytokines induce alterations of the cellular energetic responses (E)

whilst a dysregulation in the cellular bioenergetics serves a positive feedback danger

signal to the pro-inflammatory response [118, 119]. The anti-inflammatory response

(A) is the essential immunoregulatory signal that can dampen pro-inflammatory re-

sponses and maintain homeostasis in the host defense system. We hypothesize that

the anti-inflammatory response is stimulated by the activation of pro-inflammation

and the energetic response, and it negatively affects the production rate of the pro-

inflammation and energetic response. These pro-inflammatory cytokines produced

via the NFκB pathway also induce the generation of intracellular ROS which further

activate NFκB, forming a positive feedback loop [55]. In the meanwhile, intracellu-

lar ROS activate Nrf2 resulting in its translocation to the nucleus and subsequent

activation of antioxidant response element (ARE)-mediated gene transcriptions. A

variety of endogenous anti-oxidant proteins (represented by the delegator AO) are

produced via the Nrf2-ARE pathway to reduce the level of intracellular ROS in the

cell [120, 121]. Furthermore, mutually inhibiting effects between NFκB and Nrf2
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signaling pathways are modeled using an indirect response approach [122].

3.2.2 Modeling neuroendocrine immune system interactions

Pro-inflammatory response originating from exposures to air pollutants in the pul-

monary region can induce neuroendocrine responses, which then mediate the pul-

monary inflammation and a wide range of systemic effects in distant organs [123, 124].

A neuroendocrine-immune system model developed for human endotoxemia [125] is

adapted here to simulate the interaction effects between inflammation and neuroen-

docrine responses. Briefly, the hypothalamic-pituitary adrenal axis (HPA) serves as

the primary stress response pathway through which the central nervous system (CNS)

regulates the immune system. In response to the pro-inflammatory cytokines entering

the circulation from pulmonary inflammation, HPA releases cortisol (F) to inhibit the

expression of pro-inflammatory cytokines via a receptor/gene-mediated mechanism

[126]. Along the same line, the hormone epinephrine (EPI) also regulates a series of

immune functions [127]. The sympathetic nervous system (SNS) secretes epinephrine

upon stimulation by the pro-inflammatory cytokines [128]. The secreted epinephrine

then binds to adrenergic receptors to form the epinephrine-receptor complex which

activates the cAMP pathway, resulting in the upregulation of anti-inflammatory cy-

tokines expression [129].

3.2.3 Modeling HRV changes associated with exposures to

air pollutants

HRV is the variation in the time interval between one heartbeat and the next. It is

commonly used to index autonomic nervous system activity. Decreased HRV is an

important marker for autonomic dysfunction and it has been shown to correlate well

with increased risk of cardiovascular events [130, 131]. Exposures to ambient air pollu-
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tants, especially particulate matter, have been associated with reduced HRV involving

pulmonary and systemic inflammations [132–134]. A nonlinear model [135] is adapted

to quantify the relationship between pro-inflammatory mediators and autonomic dys-

function. The effect of pro-inflammation on HRV is mathematically approximated by

using a sigmoid activation function which involves signal transduction mechanisms

in the sinus node of the heart [136] and the activation of efferent nerve activity on

the heart [125]. A schematic illustration of the multilevel model connecting cellular

response, neuroendocrine immune system interactions and HRV is shown in Figure

3.1.

3.2.4 Model Equations

The principles of indirect response model theory [122] are applied in developing the

mathematical equations for our model. Indirect response models are commonly used

to describe the dynamics of physiological responses of a system induced by external

stimuli [137]. The mathematical equations for this model are presented at the end of

this section.

Equation 3.1 describes the recognition process of PM via a receptor mediated

pathway. The dynamics of PM (Eq.3.1a) depend on the PM concentration in the

air (Cpm), tidal volume (TV), breathing frequency (BF) and a first order elimination

rate constant kpm. Also, we assume that approximately 10 percent of the inhaled

PM eventually deposit in the alveolar region [138] and get in contact with cells. The

dynamics of the PM receptor R (Eq.3.1b) depend on the association/dissociation of

PM-receptor interaction with corresponding rate constants k1 and k2 as well as the

translation rate of its mRNA to surface protein (ksyn). The dynamics of the PM-

receptor complex (Eq. 3.1c) are characterized by the binding parameters k1, k2 and

the parameter k3 that describes the rate of formation of IKK. The dynamics of the

receptor mRNA (Eq.3.1d) are described by a production rate (Kin,mR) and a degra-
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Figure 3.1: A schematic illustration of the multilevel model of air pollutant induced
inflammation and cardiovascular effects. At the cellular level, PM induced transcrip-
tional responses (P, A, E) are regulated through NFκB and Nrf2 pathways involv-
ing excessive oxidative stress. Neuroendocrine immune interactions mainly involve
the release of stress hormones cortisol (F) and epinephrine (EPI) and their anti-
inflammatory effects. Finally, adverse health effects on the cardiovascular system are
quantified by heart rate variability.

dation rate (Kout,mR), and is indirectly affected by the pro-inflammatory cytokines

(kmR,P ).

The activation of NFκB pathways is described in Equation 3.2. The dynamics

of IKK (Eq.3.2a) depend on the formation rate (k3) induced by the PM-receptor

complex and an elimination rate k4, and is indirectly affected by the pro-inflammatory

cytokines [139]. The nonlinear function of Hill-type is an essential functional form in

order to achieve a bistability response [119]. The dynamics of NFκB activity (Eq.3.2b)

depend on the import rate (kNFκB1) of cytoplasmic NFκB into the nucleus induced by
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IKK and the deactivation rate (kNFκB2) associated with its primary inhibitor IkBa

and the presence of Nrf2. The dynamics of the mRNA for IkBa (Eq. 3.2d) are

described by a production rate (Kin,mIkBa) and a degradation rate (Kout,mIkBa), and

are indirectly affected by NFκB (kIkBa1). The dynamics of inhibitor IkBa (Eq. 3.2d)

involve the translation of its mRNA and the degradation associated with IKK and

NFκB.

Equation 3.3 describes the activation of Nrf2 pathway. As seen in Eq. 3.3a,

Nrf2 is generated with a production rate (ksyn,Nrf2) which is induced by ROS and

negatively affected by NFκB, and it degrades with a first order elimination rate

kdeg,Nrf2. The dynamics of anti-oxidant proteins AO (Eq. 3.3b) are described by

a first order production rate (ksyn,AO) and a first order degradation rate (kdeg,AO).

As shown in Eq. 3.3c, the production of mRNA for anti-oxidant proteins (mAO)

is governed by a production rate (kmAO) and the presence of Nrf2 (ksyn,mAO); mAO

degrades with a first order rate kdeg,mAO.

Equation 3.4 describes the dynamics of the pro-inflammatory cytokines (P), the

anti-inflammatory cytokines (A), the cellular energetic response (E) and the intracel-

lular ROS. As seen in Eq. 3.4a, the generation of the pro-inflammatory cytokines is

associated with a production rate (Kin,P ) and is assumed to be indirectly stimulated

by NFκB (kP,NFκB) and the cellular energetic response (kP,E). The anti-inflammatory

cytokine is assumed to inhibit the production rate of the pro-inflammatory cytokines.

The inflammatory cytokines degrade with a rate of Kout,P . The dynamics of the

anti-inflammatory cytokines (Eq. 3.4b) involve a production rate (Kin,A) and are in-

directly affected by the cellular energetic response (kA,E). They are also assumed to

be stimulated by cAMP (kA,cAMP ) and cortisol (kA,FRN) resulting from the neuroen-

docrine immune system interactions. The anti-inflammatory cytokines decay with a

rate of Kout,A. As shown in Eq. 3.4c, the production of energetic responses (Kin,E)

is indirectly stimulated by the pro-inflammatory cytokines (kE,P ) and is inhibited
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by the presence of anti-inflammatory cytokines and anti-oxidant proteins. The en-

ergetic responses decay with a rate of Kout,E. The dynamics of ROS (Eq. 3.4d)

are characterized by a production rate (kin,ROS) indirectly affected by anti-oxidant

proteins, a degradation rate (kdeg,ROS) and a positive feedback loop representing the

ROS generation induced by pro-inflammatory cytokines.

The production of cortisol (F) via HPA due to the stimulation of pro-inflammatory

cytokines and the subsequent cellular signaling pathway are mathematically expressed

by Equation 3.5. The dynamics of cortisol (Eq. 3.5a) are governed by a production

rate (Kin,F ) stimulated by the pro-inflammatory cytokines (kF,P ) and have a first

order elimination rate of Kout,F . Cortisol binds to its cytosolic receptor to form the

cortisol-receptor complex (FR). The dynamics of the cortisol-receptor complex in the

cytosol (Eq. 3.5b) depend on the cortisol binding rate (kon) and its translocation

rate (kT ) to the nucleus. In the nucleus, the active nuclear receptor complex (FRN)

mediates the transcriptional induction of various genes. The dynamics of the nuclear

cortisol receptor complex (Eq. 3.5c) are characterized by the nucleus translocation

rate and the recycling rate (kre) of cortisol from nucleus to the cytosol. The dy-

namics of the mRNA of cortisol receptor (Eq. 3.5d) involve a zero order production

rate (ksyn,mRF ) inhibited by the nuclear cortisol-receptor complex and a first order

degradation rate (kdeg,mRF ). The parameter IC50,mRF represents the concentration of

the nuclear cortisol-receptor complex FRN at which the synthesis rate of the receptor

drops at 50% of its baseline value. The dynamics of the cytosolic cortisol receptor

are expressed in Eq. 3.5e where ksyn,RF is the synthesis rate due to transcription and

kdeg,RF is the degradation rate. In addition, the dynamics of the receptor are also

affected by the cortisol binding process and the cortisol recycling from nucleus to the

cytosol. The parameter rf denotes the fraction of the cortisol that is recycled.

The secretion of epinephrine (EPI) by the sympathetic nervous system in response

to the stimulation of pro-inflammatory cytokines and the subsequent cellular signaling
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pathway are mathematically expressed by Equation 3.6. The dynamics of EPI (Eq.

3.6a) are governed by a production rate (Kin,EPI) stimulated by the pro-inflammatory

cytokines (kEPI,P ) and have a first order elimination rate (Kout,EPI). Epinephrine

binds to its receptor to form the epinephrine-receptor complex which induces the

increase of the cAMP intracellular levels [140]. The dynamics of the epinephrine

receptor are characterized by Eq. 3.6b where KREPI is the zero order production

rate, k1,REPI and k2,REPI are first order rate constants for the loss of the receptor,

kREPI ,EPI represents the epinephrine binding to its receptor. The formation of the

epinephrine-receptor complex is shown in Eq. 3.6c with a first order decay rate

(k3,EPIR). The dynamics of cAMP are simulated using the principles of a transit

compartment model [137]. As seen in Eq. 3.6d, the production and loss of the cAMP

signaling depend on a first order rate constant which is equal to the reciprocal of the

transit times (τ). The parameter n is a scaling factor that is used to amplify the

signal transduction cascade associated with the effect of EPI [125].

Changes of HRV in response to pro-inflammation induced by exposure to air pol-

lutants are simulated using nonlinear sigmoid functions [125] and are mathematically

expressed by Equation 3.7. The nonlinear effect of pro-inflammatory responses (P) on

HRV is described by the dynamics of fP (Eq. 3.7a), which reflects the activation of ef-

ferent nerve activity on the heart. A sigmoid function tanh(P−ω) is used to determine

the switch-like behavior, where ω is a parameter greater than the pro-inflammatory

responses induced by exposure to air pollutants. This nonlinear modulatory function

should be active under conditions of pro-inflammation and inactive when the system

is in its homeostasis. A function tanh(P φ − 1)φ is employed to model such events,

where φ is an artificial big number which ensures that tanh(P φ − 1)φ takes values 1

when pro-inflammatory responses occur, and 0 when the system is in homeostasis.

The activation of efferent nerve activity leads to the upregulation of the signal trans-

ductions in the sinus node of the heart [136], which is characterized by the dynamics
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of Sf (Eq. 3.7b). The production and loss of Sf depend on a first order rate con-

stant equal to the reciprocal of the transit times (τs) and the scaling factor ns. The

dynamics of the HRV (Eq. 3.7c) are governed by a production rate (Kin,HRV ) and a

degradation rate (Kout,HRV ) stimulated by Sf
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dt
= (1 + tanh([P ]− ω)− [fP ])tanh([P ]φ − 1)φ
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(3.7a)

(3.7b)
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3.3 Results and Discussion

3.3.1 Model parameterization

The estimation of appropriate model parameters is conducted using results and data

from literature. For those that are not directly available in literature, parameteri-

zation data were estimated by fitting the simulated HRV changes with experimental

measurements extracted from a cohort study conducted by Magari, et al. (2001)[141].

In this longitudinal study, an occupational cohort consisting of 40 men were contin-

uously monitored during and away from work. Their work environment was under

continuous PM2.5 exposure with an average concentration of 167 µg/m3 [141]. The

data of 5-minute SDNN during the 6 hours work period is used in our model for pa-

rameterization purpose. Measurements of 5-minute SDNN are normalized by taking

the ratio of the measured SDNN at each time point with respect to the control time

point (work start time, t = 0). All model parameters are shown in Table 3.1. The

performance of our model is shown in Figure 3.2. Experiment measurements demon-

strate a visible depression of HRV throughout the 6 hours of working period under

continuous PM2.5 exposure. The relative fluctuations in HRV can be attributed to

the fact that HRV is affected by many factors, including environmental hazards, age,

gender, circadian rhythm, physical health conditions, psychological factors, lifestyle

habits, etc. [142]. Our model not only generates simulation results that are quan-
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titatively close to the experimental measurements, but also qualitatively captures

the decreasing trend of HRV dynamics proofing the applicability of our model for

simulating air pollutants exposure induced HRV reduction.

Table 3.1: Parameter values used to model HRV alteration due to PM exposure

Parameters Values Parameters Values Parameters Values
kcpm 1.8788 kcdeg,mAO 7.7562 kbdeg,mRF 0.1124
kcsyn 3.3241 Ka

in,P 0.0331 kbsyn,RF 1.1990
kc1 3.0990 kaout,P 0.3328 kbdeg,RF 0.0572
kc2 2.8971 kaP,NFκB 29.7410 rbf 0.4900
kc3 5.1998 kaP,E 9.0505 Kb

in,EPI 5.9209
ka4 2.2400 Kb

in,A 0.4609 kbout,EPI 7.2857
Ka
in,mR 0.0914 Kb

out,A 0.8095 kbEPI,P 0.2305
Ka
out,mR 0.2505 kbA,cAMP 0.1450 Kb

REPI
11.0100

kamR,P 1.7402 kbA,E 0.5340 kb1,REPI
3.0055

kaNFκB1 16.2940 Ka
in,E 0.0800 kbREPI,EPI

0.8453

kaNFκB2 1.1861 kaout,E 0.2573 kb2,REPI
5.4651

Ka
in,mIkBa 0.4634 kaE,P 2.2160 kb3,EPIR 5.5460

kaout,mIkBa 0.4634 kcin,ROS 9.3119 τ b 0.0525
kaIkBa1 13.2730 kcdeg,ROS 17.8088 nb 5.5088
kaI,1 1.4000 Kb

in,F 0.8425 ωc 13.2134
kaI,2 0.8700 kbout,F 1.0583 τ cS 3.4166

kcsyn,Nrf2 9.2733 kbF,P 0.2562 nsc 0.4707
kcdeg,Nrf2 27.7926 kbon 0.0033 Kc

in,HRV 12.5175
kcsyn,AO 6.2552 kbT 0.6300 kcHRV,Sf 0.8044

kcdeg,AO 14.3091 kbA,FRN 0.4010 Kc
out,HRV 15.1522

kcmAO 7.7562 kbre 0.5700
kcsyn,mAO 14.4721 kbsyn,mRF 2.9000

a:Parameters are taken from Foteinou et al.(2009) [119]; b:Parameters are taken from
Foteinou et al.(2010) [125]; c:Parameters with optimized value
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Figure 3.2: Estimation of relevant model parameters intending to capture the trend
of HRV changes during 6 hours of continuous exposure to PM2.5 at an average con-
centration of 167 µm/m3. The time domain measure SDNN is used to assess overall
HRV. Data are normalized by taking the ratio of the measured SDNN at each time
point with respect to the control time point (work start time, t = 0).

3.3.2 Model evaluation

In order to evaluate our model and test its predictive capability, it was applied to two

case-studies where information about PM exposure conditions and SDNN changes

overtime were available. In case 1, a group of healthy elderly adults between 60 and

80 years old were continuously exposed to concentrated ambient air pollution parti-

cles (CAPs) for 2 hours with an average PM2.5 concentration of 40.5 µg/m3 [143].

Changes in SDNN were measured immediately before, immediately following, and 24

hour after exposure. In case 2, a group of healthy young adults were exposed to di-
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lute wood smoke (PM1) for 3 hours continuously with an average concentration of 314

µg/m3 [144]. Changes in SDNN were measured before and immediately after expo-

sure. Comparisons between model simulation results and experimental measurements

for both cases are shown in Figure 3.3. Simulation results agree well with experimen-

tal measurements in both cases. However, our model tends to slightly overestimate

the reduction of HRV in both scenarios. Possible explanations are that our model

only simulates the effects on HRV exerted by PM via an inflammation mediated

mechanism. Other factors that can alter HRV, including physical and psycholog-

ical conditions during the data collection process, are not included in the current

model. Nevertheless, these two case studies provide a preliminary evaluation of the

applicability of our model in different exposure scenarios and build confidence to the

predictive ability of the current model.
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Figure 3.3: Comparison between model predictions and measurements in two case-
studies: Devlin et al. (2003)[143] measured HRV changes immediately after and
24 hours after exposure to PM2.5 at an average concentration of 40.5 µg/m3 for 2
hours; Unosson et al. (2013) [144] measured HRV changes immediately after exposure
to PM2.5 at an average concentration of 314 µg/m3 for 3 hours. HRV assessed by
evaluating SDNN. Data are normalized by taking the ratio of the measured SDNN
at each time point to SDNN measured before exposure; measurements expressed as
mean ± standard deviation.
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3.3.3 Sensitivity analysis

Sensitivity analysis was performed for all the kinetic parameters in the model to ex-

plore and identify biological pathways that have significant influences on heart rate

variability upon exposure to particulate matter. Each kinetic parameter was sequen-

tially perturbed under the exposure scenario used for the model parameterization,

which is a 6 hour continuous exposure to PM2.5 with an average concentration of 167

µg/m3. Area under the SDNN time profile curve (AUC) is calculated to characterize

the model performance on overall HRV changes during the 6 hour exposure period.

In this case, 75% is selected as the cutoff to have a clear impact of parameter per-

turbations on percentage change of AUC. Out of all 64 kinetic parameters evaluated

in the sensitivity analysis, 14 of them are identified as significant as they introduce

at least 10% change in AUC of the SDNN time profile curve upon 75% perturbation

of the parameter. Results are shown in Figure 3.4. Three parameters that have sig-

nificant effects are Kin,HRV , Kout,HRV and kHRV,Sf . As shown in Equation 3.7c, they

directly control the dynamics of HRV signal and the effects of signal transduction in

the sinus node, therefore they should have large impacts on HRV. Previous studies

have documented that heart rate variability is inversely associated with inflammation

markers in both healthy subjects and patients with pre-existing health conditions

across different gender and age groups, indicating the critical role of inflammation in

HRV regulation [145, 146]. In our model, kinetic parameters involved in the dynam-

ics of pro-inflammatory cytokines also exert large impacts on HRV. Consistent with

literature findings, parameters that govern the production of pro-inflammatory cy-

tokines (Kin,P , kP,E and kP,NFκB) are negatively correlated with HRV; Kout,P , which

controls the degradation of pro-inflammatory cytokines, is positively correlated with

HRV. The anti-inflammatory cytokines are the essential immunoregulatory response

that can dampen pro-inflammation to restore homeostasis in the host defense system.

In our model, the presence of anti-inflammatory cytokines reduces the production
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of pro-inflammatory cytokines (Eq. 3.4a), therefore, the anti-inflammatory cytokine

related kinetic parameters (Kin,A and Kout,A) have significant impacts on HRV, sug-

gesting the importance of anti-inflammatory pathways in HRV regulation. Previous

studies have documented the anti-inflammatory role of the sympathetic nervous sys-

tem [129, 147]. Animal studies also demonstrated the association between increased

time-domain HRV indices and the epinephrine infusion [148, 149]. Our sensitivity

analysis has revealed that the interactions between epinephrine and its adrenergic

receptors are critical for SNS mediated HRV changes. Two parameters (k1,REPI
and

k3,EPIR) control the formation and decay of the epinephrine-receptor complex which

induces subsequent upregulation of anti-inflammatory responses; therefore they have

large impacts on HRV changes. KREPI
and k2,REPI

are relevant to the production

and elimination of the adrenergic receptors. Their significant effects indicate that the

availability of cellular adrenergic receptors is important for SNS to regulate HRV.

Finally, Kout,EPI , which directly controls the level of circulation epinephrine also has

a large impact on HRV.
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Figure 3.4: Sensitivity analysis for kinetic parameters in the HRV model. Sensitivity
analysis is performed under the scenario of 6 hour continuous exposure to PM2.5 with
an average concentration of 167 µg/m3. 75% is selected as the cutoff to perturb the
kinetic parameters. Only parameters that cause at least 10% change in AUC of the
SDNN time profile curve are shown.

3.4 Summary

In summary, a multiscale model has been developed to bridge the complex biolog-

ical processes involved in the alteration of HRV following exposure to particulate

matter. At the cellular level, an inflammation module addresses the recognition of

PM by cells, the activation of intracellular signaling pathways (NFκB and Nrf2) as

well as the transcription of pro- and anti-inflammatory cytokines. The secretion of

endocrine stress hormones and their anti-inflammatory role are taken into consid-

eration in a module built for the bidirectional communication between the immune
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response and the neuroendocrine system. The systemic alteration (changes of HRV)

is further incorporated in the model by propagating the dynamic signal evoked via

immune-neuroendocrine interactions into the heart. This work connects PM expo-

sure and HRV changes via a semi-mechanistic model that includes biological events

from the cellular to the systemic level. Model parameters were evaluated to generate

simulation results that are quantitatively consisted with measurements in a human

PM exposure study. Model performance and its predictive capability were further

evaluated by applying the model to two different PM exposure scenarios. Sensitivity

analysis for all kinetic parameters was also performed to identify biological pathways

with significant impact on HRV. This modeling approach provides insight into the

mechanisms underlying the cardiovascular mortality induced by air pollutants and

can support the future exploration of potential clinical measures to attenuate the

adverse health effects of air pollution.
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Chapter 4

Modeling Skin Biology Initiated by Air

Pollutants Exposures

4.1 Background

Skin is both a complex biological interface between the human organism and the

environment, and a toxicological target for a wide range of hazardous agents, in-

cluding UV radiation, photochemical oxidants, polycyclic aromatic hydrocarbons,

halogenated hydrocarbons, fine particles, etc. Existence of associations between air

pollution and adverse skin effects has been supported by many recent studies. Lefeb-

vre et al. [150] compared biochemical and clinical skin parameters of two populations

living in areas with different levels of air pollution in Mexico. 93 volunteers living

in Cuernavaca (the less polluted area) participated in the study from September 7,

1999 to January 5, 2000; 96 volunteers living in Mexico City (the most polluted area)

participated in the study from February 3 to March 23, 2000. The population from

Mexico City showed a lower level of antioxidants and squalene in sebum, an increased

level of sebum excretion rate and a higher erythematous index on the face of the

participants. From a clinical point of view, a higher frequency of red dermographism

and a higher frequency of atopic and urticarial skins were observed in the Mexico
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City population. In 2008/2009, Vierkotter et al. assessed the influence of PM on skin

aging in 400 Caucasian women aged 70-80 years living in urban and rural areas in

Germany [22]: they demonstrated, for the first time that chronic traffic-related PM

exposure was significantly correlated to extrinsic skin aging signs, especially pigment

spots formation. In Shanghai, China, Xu et al. evaluated the association between

emergency-room visits for skin conditions and ozone exposure [25]. An increase of 10

µg/m3 ozone resulted in 0.78% increase in urticarial, 3.84% increase in eczema, 2.86%

increase in contact dermatitis, 3.22% increase in rash/other nonspecific eruption and

2.72% increase in infected skin disease. Figure 4.1 shows the correlation between

ozone exposure and the relative risk of Emergency Room (ER) visits for total skin

conditions. The relative risk of ER visits for total skin conditions increases mono-

tonically as ozone concentrations increase up to a level of approximately 100 µg/m3,

while data for higher concentrations are too variable to allow derivation of a definite

trend.

The mechanisms behind air pollutants induced adverse health effects in the cuta-

neous system involve skin surface reactions, subsequent activations of cell signaling

pathways, as well as potential alterations in skin cell cycle regulation. In the follow-

ing sections, different computational models are developed to simulate air pollution-

initiated skin effects, mediated by the biological events mentioned above.

4.2 Modeling ozone reactions with skin surface lipids

Human skin consists of two major layers: epidermis and dermis. The epidermis is

predominately made up of keratinocytes which account for 95% of the cells; however,

the epidermis also houses melanocytes as well as immune cells such as Langerhans

cells. In the epidermis, keratinocytes proliferate and divide in the epidermal basal

layer and move upward as they differentiate to form cornified cells at the outermost
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Figure 4.1: Ambient ozone concentration vs. relative risk of increase in emergency
room visits for skin conditions in Shanghai, China [25].
(Data were collected from February 10, 2007 to December 31, 2008; ozone concen-
tration is in the unit of µg/m3; minimal, mean and maximal daily 8-h average ozone
concentrations were 5.0, 71.6 and 225 µg/m3; increase of ER visits was analyzed
against 10 µg/m3 increase of 7-day average ozone concentration; RR: relative risk)

surface of skin. Depending on their differentiation stages, keratinocytes are arranged

into four layers as shown in Figure 4.2 [151]: the stratum corneum and lucidum

(cornified cell layer and clear cell layer), the stratum granulosum (granular cell layer),

the stratum spinosum (spinous cell layer) and the stratum basale (basal cell layer).

The primary cell types in the dermis are fibroblasts which produce components of

the extracellular matrix (ECM) such as collagen, elastin and extracellular structural

proteins. In addition, many different types of immune cells also populate the dermis.

These cells undergo dynamic changes during immune responses.

Human skin surface is covered with a layer of lipids which can be divided into

two groups [152]: the majority of the surface lipids are sebaceous lipids; the rest of

the surface lipids are produced by the epidermis (Figure 4.3). Ozone, being a highly

oxidative molecule, reacts rapidly with components of skin surface lipids by attacking

C=C bonds [153–155].
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Figure 4.2: Keratinocyte layers in the human epidermis [151]

Among all the skin lipids, squalene (Figure 4.3) is a specific marker of human

sebum since it is absent in the sebum of almost all other mammalian species. The

six C=C bonds in squalene make it a major target for ozone. Reactions between

ozone and squalene can generate secondary organic aerosol (SOA), a source of fine

particle exposure that is associated with an increase in both morbidity and mortal-

ity. Especially in the indoor environment, where people spend most of their time,

inhalation exposure to ozone-induced SOA may become significant in terms of caus-

ing respiratory and cardiovascular health outcomes. This phenomenon also links the

two exposure routes, single dermal exposure may enhance inhalation exposures to air

pollutants.

Here, we developed a semi-empirical model to simulate the indoor formation of fine
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Figure 4.3: Representative structure of skin surface lipids with relative percentage by
weight [152]

particles due to the reaction between ozone and squalene. The model is parameterized

based on the chamber experiments conducted by Wang et al. [156]. Briefly, four

petri dish bottoms with surfaces covered with squalene were placed in a reaction

chamber. Ozone and air mixture flows into the reaction chamber which is operated

at constant relative humidity, temperature and air exchange rate for each experiment.

Concentration of ozone and SOA formation in the chamber were measured by an ozone

monitor (2B Technologies model 205, 10 s intervals) and Scanning Electrical Mobility

Sizer, respectively.

The model considers the reaction between ozone and squalene, deposition of ozone

to chamber walls, SOA deposition to chamber walls and mass transfer due to air
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exchange. Mass balance equations for ozone and SOA are presented below:

dCO3

dt
= λCO3,inlet −

(
λ+

vd,w(Aw − Asq)
V

+
vd,sq − Asq

V

)
CO3 (4.1)

Here CO3 and CO3,inlet are the ozone mole fractions in the chamber and the inlet flow,

respectively; λ is the air exchange rate (λ = 5.42/h); vd,w and vd,sq are the deposition

velocities to the chamber walls and the squalene surface, respectively; Aw and Asq are

the surface areas of the chamber walls and the squalene-sorbed zones, respectively;

V (V=37.1L) is the volume of the reaction chamber.

dCSOA,M
dt

= ξO3/SQ,MCO3,M
vd,sqAsq
V

− (λ+ βSOA,M)CSOA,M (4.2)

CO3,M and CSOA,M are the chamber ozone and SOA mass concentration, respectively;

βSOA,M is the loss rate of SOA mass to the chamber surfaces; ξO3/SQ,M is the ratio

of SOA produced to the amount of ozone reacted with surface squalene. vd,w is a

function of the chamber ozone mole fraction, in the form of:

vd,w = a× Cb
O3

(4.3)

Values of a and b depend on the relative humidity and will be estimated from exper-

imental measurements. vd,sq and ξO3/SQ,M are assumed to be constant and equal to

their steady state values. At steady state,
dCO3

dt
and

dCSOA,M
dt

equal to zero. From

equation 4.1 and 4.2,

vd,sq =
λV

Asq
(
CO3,inlet

CO3

− 1)− vd,w(Aw − Asq)
Asq

(4.4)

ξO3/SQ,M =
V

Asqvd,sq
× (λ+ βSOA,M)CSOA,M

CO3,M

(4.5)

In equations 4.1 to 4.5, the only unknown or unmeasured parameter is βSOA,M .
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βSOA,M represents the particle deposition rate onto chamber walls and depends on

the particle size distribution, therefore, βSOA,M has different values for different ex-

periments. Combining the theory of Lai et al. [157] and laboratory measurements,

values of βSOA,M are estimated for each steady state SOA mass distribution.

Time profiles of model predicted SOA and ozone concentrations are compared

with laboratory measurements in low and high ozone experiments at 21% and 51%

humidity levels (Figure 4.4). The model is able to predict the steady state level of

SOA and ozone under all circumstances. Under the same humidity level, higher ozone

concentrations lead to higher steady state SOA concentrations; at high ozone levels,

a more humid environment tends to generate higher levels of SOA. Both simulation

results and laboratory measurements show that the low ozone experiments require

more time for SOA to approach steady state than the high ozone experiments. How-

ever, model simulated SOA formation reaches a steady state faster than experimental

measurements in all four conditions. This may be caused by overly simplified assump-

tions in our model that use constant values for several parameters (i.e. ξO3/SQ,M , vd,sq)

throughout the process. A mechanistic model that considers the real time kinetics of

ozone-squalene reaction would be needed to better characterize ozone induced SOA

formation in indoor environment.
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Figure 4.4: Comparisons of model simulation and measurements for chamber exper-
iments exploring SOA formation initiated by surface reactions between ozone and
sorbed squalene: (a)inlet ozone 241 ppb, relative humidity (RH) 21%; (c) inlet ozone
771 ppb, RH 21%; (b) inlet ozone 275 ppb, RH 51%; (d) inlet ozone 877 ppb, RH
51%.



71

4.3 Modeling AhR activation in keratinocyte upon

exposure to air pollutants

The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix Per-

ARNT-Sim family. It is a transcription factor that mediates toxic and carcinogenic

effects of a very wide range of environmental agents. Many air pollutants can either

act as ligands or induce ligands that activate the AhR. A “generic” mechanism in

skin exposure biology involves AhR-mediated inflammatory responses: upon binding

with ligands, cytoplasmic AhR translocates to the nucleus and heterodimerizes with

ARNT; this heterodimer binds to DNA response elements and initiates the transcrip-

tion of target genes encoding CYP1 proteins and subsequent production of ROS,

leading to activation of pro-inflammatory NFκB signaling pathways. In addition, the

AhR-ARNT complex induces translocation of Nrf2 from cytosol to the nucleus, re-

sulting in anti-inflammatory effects. Figure 4.5 presents a diagram summarizing the

key signaling and regulatory processes occurring in keratinocytes upon exposure to

air pollutants and other AhR ligands.
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Figure 4.5: AhR-mediated signaling pathways upon exposure to air pollutants
(the diagram follows SBGN standards; SBGN:Systems Biology Graphical Notation)
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As an initial step towards building a comprehensive model for the complex sig-

naling network in keratinocytes, a specific model for AhR activation and subse-

quent gene transcriptions is first developed independently, i.e. without consider-

ing interactions with NFκB and Nrf2 pathways. A model designed for 2,3,7,8-

tetrachlorodibenzodioxin (TCDD) initiated transcription in T47D cells [158] was

adapted and modified to simulate AhR activation in human keratinocytes upon expo-

sure to air pollutants. AhR is an ozone sensor in human skin and ozone exposure has

been shown to activate AhR in cultured normal human epidermal keratinocytes [159].

However, ozone is highly reactive and itself does not directly bind to AhR because

of its rapid depletion via reactions with skin lipids (in vivo), cell culture media (in

vitro) and components of the cell membrane. The exact ozone reaction products that

work as the directly binding ligands to AhR have not been clearly identified. It is well

known that FICZ (6-formyl-indolo[3,2-b]carbazole, C9H12N2O), a tryptophan photo-

oxidation product, mediates the activation of AhR upon UV radiation [160]. Sindhu

et al. conducted in vitro experiments in Hepa lclc7 cells and demonstrated that both

ozone-oxidized tryptophan and photo-oxidized tryptophan induced the transcription

of CYP1 mRNA, a commonly used marker for the activation of AhR [161, 162]. There-

fore, it is postulated that AhR activation in keratinocytes after ozone treatment is

mediated by ozone/tryptophan products following a mechanism similar to FICZ. The

model is implemented for AhR activation in human keratinocytes assuming FICZ as

the activating agent.

The biological events included in the model are briefly described as follows:

• FICZ diffuses into keratinocyte cells and binds to cytoplastic AhR that is synthe-

sized at a constant rate. The AhR-FICZ complex can degrade in the cytoplasm

or move to the nucleus.

• Once inside the nucleus, FICZ-AhR can bind to the aryl hydrocarbon nuclear

translocator (ARNT) to form a heterodimer or undergo degradation. The het-
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erodimer binds cofactors [163] to form a transcription complex. The complex

then binds to xenobiotic response elements on DNA (XREs) that regulate the

expression of CYP1 proteins. The transcription complex, consisting of AhR,

ARNT and the cofactor, can also bind to other DNA sites associated with the

transcription of other genes.

• Once the transcription complex binds to an XRE, RNA polymerase also binds,

and the XRE-bound transcription complex can undergo transcription initiation.

Once initiated, the complex starts transcription.

• ARNT may dissociate from the transcription complex without interrupting the

transcription. The transcription complex could reversibly bind to another co-

regulator protein and increase the rate of transcription [158].

• Transcription is modeled with irreversible mass action kinetics. Any transcribed

mRNA can degrade or exit the transcription complex. In an attempt to handle

the complexity of the transcription process, the model includes four states of

the transcription complex and each state has a slightly different rate of tran-

scription.

Gene expression is a fundamentally stochastic process involving discrete and inher-

ently biochemical reactions for the production of mRNA and proteins [164]. Ordinary

differential equations (ODEs) based models do not capture the stochastic nature of

AhR mediated gene expression. Therefore, the direct method of Gillespie’s stochastic

simulation algorithm (SSA) was selected for model implementation and simulation.

The reaction network in the model consists of 32 reactions of either one of the follow-

ing types:

• A+B → C

• A→ B + C
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• A→ B

All the reactions follow the law of mass action in the form of propensity a =

k[A][B] or propensity a = k[A]. During a stochastic simulation, k is the molecular

rate constant in units of 1/(molecules× s) or 1/s. [A] or [B] is the number of molecules

for each reactant. Propensity is the probability of the reaction occurring in the next

time interval. The steps for running the model with Gillespie’s stochastic simulation

algorithm can be summarized as follows:

1. Pass initial amount of each species to the model (time is t0 = 0)

2. Calculate propensity ai for each reaction Ri (i = 1 —32)

3. Calculate total propensity atotal = a1 + a2 + a3 + ...a32

4. Generate a random number rand1 between 0 and 1 from a uniform distribution

5. ∆t =
1

atotal
×ln(

1

rand1

)

6. Generate another random number rand2 between 0 and 1 from a uniform dis-

tribution

7. Find the smallest q such that a1 + a2 + ...+ aq > atotal × rand2

8. At time (t0 + ∆t), only the qth reaction happens

9. Update the amount of each species accordingly

10. Repeat steps 2 —9 until time reaches the pre-decided simulation time

The model considers 29 compounds, 32 reactions and 4 compartments. Full details

of the model parameters and variables are presented in Table 4.1. The model is

implemented using Simbiology toolbox of Matlab. For model simulations, 100 runs

were conducted for every experimental scenario and the average values are used as

results.
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Simulation results are compared with laboratory measurements from a study con-

ducted by Nair et al [165] in which CYP1B1 mRNA levels were measured in HaCaT

cells after 6 hours of treatment with FICZ at different concentrations. The model

faithfully reproduces the increase of CYP1B1 mRNA expressions (Figure 4.6), indi-

cating the applicability of the model in FICZ initiated AhR activation and subsequent

gene transcription. To further evaluate the model and test its extensibility to other

AhR ligands, the model was implemented for benzo(a)pyrene (BaP) exposure. BaP

is a carcinogenic polycyclic aromatic hydrocarbon formed through incomplete com-

bustion of organic matter. It can be found in emissions from burning plants, wood,

coal and from internal combustion engine operating in cars and trucks. The major

sources of population exposures to atmospheric BaP are residential wood-burning fire-

places and cooking stoves, as well as tobacco smoking. Tsuji et al [166] measured the

expression of CYP1A1 mRNA in normal human epidermal keratinocytes (NHEKs)

after treatment with BaP for 3 hours at concentrations of 20 nM, 40 nM, 100 nM

and 1000 nM. Figure 4.7 shows an overall agreement between model simulation re-

sults and laboratory measurements at all concentrations, suggesting the potential to

apply adaptations of the current model to various AhR ligands originating from air

pollution.
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Figure 4.6: Comparison between model predictions and laboratory measurements
for CYP1B1 mRNA expression in keratinocytes in an in vitro system for different
concentrations of FICZ.
(Experimental data were extracted from the study conducted by Nair et al. [165];
column, means: for experimental measurement n =3 and for model prediction, n=100;
bars: standard deviation)
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Figure 4.7: Comparison between model predictions and laboratory measurements
for CYP1A1 mRNA expression in keratinocytes in an in vitro system for different
concentrations of Benzo(a)pyrene.
(Experimental data were extracted from the study conducted by Tsuji et al. [166];
column, means: for experimental measurement n =3 and for model prediction, n=100;
bars: standard deviation)
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4.4 Modeling AhR regulated cell cycle progression

in the integumentary system

One potential mechanism for air pollution induced skin disorders is the activation of

AhR, through which the cell cycle progression is affected. Cell cycle is the series of

events during which a growing cell replicates its DNA and all other components and

divides into two daughter cells. Misregulation of the cell cycle leads to abnormal cell

proliferation resulting in serious human diseases, such as cancer. In eukaryotic cells,

the cell cycle is commonly split into four phases: G1 → S → G2 → M. During G1

phase, the cell grows in size, copies organelles and prepares for DNA synthesis. In S

phase, the cell synthesizes a complete copy of its DNA. Then the cell enters G2 phase

during which the cell grows more and prepares for mitosis. After G2 phase, the cell

enters M phase, during which the cell separates its DNA into two sets and divides

its cytoplasm, forming two daughter cells. Cells in G1 phase can also enter a resting

phase (G0) where the cells have left cell cycle and stopped dividing.

It is well established that AhR plays a role in the regulation of the cell cycle

[167]. AhR-defective variant of the mouse hepatoma Hepa 1c1c7 cell line exhibited

a prolonged doubling time compared with its wild-type counterpart [168]. Elizondo

et al. [169] reported that mouse embryonic fibroblasts (MEFs) from AhR-null mice

grew more slowly than wild-type MEFs. These studies suggest that AhR could fa-

cilitate cell cycle progression. Some other studies reported seemingly contradictory

results. When treated with TCDD (a typical AhR agonist), the growth of MCF-7

human breast cancer cells was inhibited. In addition, TCDD inhibited DNA syn-

thesis in confluent mouse epithelial cells, in partially hepatectomized rat liver and in

rat primary hepatocytes. TCDD also induced G1 phase arrest in SK-N-SH human

neuronal [170, 171]. Collectively, it is plausible to conclude that AhR facilitate cell

cycle progression in the absence of exogenous ligands; but when activated by an ex-
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ogenous ligand, AhR induces cell cycle arrest and inhibits cell proliferation. Several

mechanisms have been proposed by Murray et al. [167] based on experimental stud-

ies using cell culture models to explain the effects of AhR on the cell cycle (Figure

4.8). In Figure 4.8 (a), AhR acts as the direct transcriptional activator of genes

encoding mitogenic growth factors, including vascular endothelial growth factor A

(VEGFA), platelet-derived growth factor (PDGF), epiregulin, amphiregulin and fi-

broblast growth factor 9 (FGF9). These growth factors stimulate the entry into M

phase of cell cycle and therefore promote cell proliferation. In Figure 4.8 (b), acti-

vated AhR enhances the expression of p27 which limits the phosphorylation of RB

and restricts the E2F-dependent expression of genes required for S phase, therefore

resulting in cell cycle arrest at G1 phase. In Figure 4.8 (c), AhR interacts with RB

to attenuate the phosphorylation of RB and the release of E2F, leading to G1 arrest

and inhibition of cell proliferation. In Figure 4.8 (d), activated AhR stimulates the

ubiquitylation of β-catenin, leading to enhanced degradation of β-catenin which re-

stricts the expression of factors required for cell cycle-dependent gene expression and

proliferation. In Figure 4.8 (e), AhR without a bound ligand can form a complex with

cyclin D and cyclin-dependent kinases 4 (CDK4) to suppress the phosphorylation of

RB, leading to G1 arrest by limiting E2F regulated S phase progression. As noted,

AhR has contradictory roles in cell cycle regulation; therefore, a model is developed

based on the above-mentioned mechanisms as an attempt to capture both the pro-

and anti-proliferative effects of AhR in the presence or absence of exogenous ligands.

Progression through the cell cycle depends on a complex interaction network in-

volving cyclins, cyclin-dependent kinases (CDK), CDK inhibitors and other regula-

tory proteins. The model developed here is adapted from a model originally proposed

by Swat et al. [172]. The core of G1 phase progression is the interactions between

pRB and E2F1. pRB is a tumor suppressor that inhibits the activation of E2F pro-

teins resulting in repression of E2F-regulated gene expression. The repression of this
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Figure 4.8: Proposed mechanisms of cell cycle modulation by AhR [167]

gene expression leads to downregulation of cell cycle required cyclins and CDKs re-

sulting in prolonged G1 phase or even G1 phase arrest. In the absence of exogenous

ligands, unbound AhR can interact with CycD/cdk4,6 to form a complex that fa-

cilitates the hyper-phosphorylation of pRB leading to enhanced activation of E2F

proteins and subsequent cell cycle progression [173]. Upon binding to exogenous lig-

ands, AhR dissociates from the AhR/CycD/cdk4, 6 complex and the bound AhR

inhibits the phosphorylation process of pRB leading to G1 arrest. The cell is deemed

to enter S phase when E2F1 levels cross a certain threshold value [172] and the time

this occurs is recorded as the duration of G1 phase. A schematic presentation of the
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model is shown in Figure 4.9. This model incorporates different mechanisms of action

pRB

E2F1

pRB-p

CycD/

cdk4,6(i)

CycD/

cdk4,6(a)

AP-1

Mitogenic 

Stimulation

uAhR
bAhR

CycD/

cdk4,6(a)

AhR

Exogenous 

Ligand

Figure 4.9: Proposed model for the dual role of AhR on cell cycle regulation
(The diagram follows SBGN standards; CycD: cyclin D; cdk:cyclin-dependent kinase;
pRB: retinoblastoma proteins; pRB-p: phosphorylated pRB; E2F1: transcription
factor for S phase proteins; uAhR: unbound AhR; bAhR: ligand-bound AhR; (i):
inactive; (a): active)

for unbound AhR and ligand-bound AhR: it aims to predict G1 phase duration in

normal cells, AhR-knockout cells and exogenous AhR ligand treated cells. The model

is mathematically formulated using the following ordinary differential equations:

d[pRB]

dt
= k1

[E2F1]

Km1 + [E2F1]

J11

J11 + [pRB]

J61

J61 + [pRBp]
+ k61[pRBp]

− k16[pRB][CycDa]
[AhRCyc]

Km6 + [AhRCyc]

J86

J86 + [bAhR]
− φpRB[pRB] (4.6)

d[E2F1]

dt
= kp + k2

a2 + [E2F1]2

K2
m2 + [E2F1]2

J12

J12 + [pRB]

J62

J62 + [pRBp]
− φE2F1[E2F1]

(4.7)
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d[CycDi]

dt
= k3[AP1] + k23[E2F1]

J13

J13 + [pRB]

J63

J63 + [pRBp]
+ k43[CycDa]

− k34[CycDi]
[CycDa]

Km4 + [CycDa]
− φCycDi [CycDi] (4.8)

d[CycDa]

dt
= k34[CycDi]

[CycDa]

Km4 + [CycDa]
− k43[CycDa]

− k9[cycDa][uAhR]− φCycDa [CycDa] (4.9)

d[AP1]

dt
= Fm + k25[E2F1]

J15

J15 + [pRB]

J65

J65 + [pRBp]
− φAP1[AP1] (4.10)

d[pRBp]

dt
= k16[pRB][CycDa]

[AhRCyc]

Km6 + [AhRCyc]

J86

J86 + [bAhR]

− k61[pRBp]− φpRBp [pRBp] (4.11)

d[uAhR]

dt
= k7 − k9[CycDa][uAhR]− k87[uAhR][ligand] (4.12)

d[bAhR]

dt
= k87[uAhR][ligand] + k89[AhRCyc][ligand]− φbAhR[bAhR] (4.13)

d[AhRCyc]

dt
= k9[CycDa][uAhR]− k89[AhRCyc][ligand]

− φAhRCyc[AhRCyc] (4.14)

d[ligand]

dt
= k10 − k89[AhRCyc][ligand]− k87[uAhR][ligand] (4.15)

The values of all parameters are summarized in Table 4.2.

In the absence of exogenous AhR agonists, model predicted effects of constitu-

tively synthesized AhR on the keratinocyte cell cycle are shown in Figure 4.10. The

alteration of cell cycle progression is characterized by the duration of G1 phase. Nor-

mal keratinocyte cells (control condition: relative constitutive AhR level = 1) have

the shortest G1 phase duration. When there is less AhR synthesized, cells undergo

a prolonged G1 phase. At very low AhR levels, the duration of G1 phase tends

to approach “infinity” based on the trend of simulation results, indicating that the

cells will be arrested in G1 phase leading to the stop of cell cycle progression and

cell proliferation. The simulation results demonstrate the pro-proliferative effects of

AhR and are consistent with experimental measurements from Kalmes et al. [174].
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Table 4.2: Parameter values used to model the regulatory effects of AhR on cell cycle
progression

Parameters Values Parameters Values Parameters Values
k1 1.0 nM/min k2 1.6 nM/min k3 0.05 /min
kp 0.05 nM/min k∗7 113.4E-05 nM/min k+

9 0.4 /(nM·min)
k∗10 43.48E-05 nM/min k16 0.4 /(nM·min) k61 0.3 /min
k23 0.3 /min k34 0.04 /min k43 0.01 /min
k25 0.9 /min k∗87 0.024 /(nM·min) k+

89 0.023 /(nM·min)
J11 0.5 nM J12 5.0 nM J13 0.002 nM
J15 0.001 nM J61 5.0 nM J62 8.0 nM
J63 2.0 nM J65 6.0 nM J+

86 0.005 nM
Km1 0.5 nM Km2 4.0 nM Km4 0.3 nM
K+
m6 0.1 nM a 0.04 nM F+

m 1.0 nM/min
φpRB 0.005 /min φE2F1 0.1 /min φCycDi 0.023 /min
φCycDa 0.03 /min φAP1 0.01 /min φpRBp 0.06 /min
φbAhR 0.025 /min φAhRCyc 0.01 /min

*: values are estimated from Simon et al [158]; +: optimized values; rest of the
parameters are from Swat et al [172]

In their study, cell cycle progression was investigated in both regular HaCaT cells

and HaCaT cells expressing a siRNA targeted against the AhR. The siAhR HaCaT

cells demonstrated a 80% reduction of AhR levels and a significantly longer G1 phase

compared to regular HaCaT cells (Figure 4.10). When cells are treated with exoge-

nous AhR ligands, AhR activation can inhibit cell cycle progression. The simulation

results in Figure 4.11 show that G1 phase duration increases with the relative level of

exogenous AhR ligands while with high levels of exogenous ligand, cells will undergo

G1 arrest and the cell cycle will stop. The mechanistic model developed here suc-

cessfully incorporates the contradictory effects of AhR on cell cycle progression into

one unified model by distinguishing constitutively synthesized and ligand activated

AhR in keratinocyte cells. It not only provides insights into the complex role of AhR

in cell cycle regulation, but also can serve as a tool to support studies of potential

AhR-targeted therapeutic strategies for diseases involving abnormal cell proliferation,

such as cancer, fibrosis, atherosclerosis, diabetes, Alzheimer’s disease, etc. [175].



87

Figure 4.10: Model prediction of the effects of constitutive AhR on G1 phase duration
in HaCaT cells.
(Experiment data were extracted from Kalmes et al. [174]; bars: mean of experiment
measurements; +/-: SEM)
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Figure 4.11: Model prediction of the effects of exogenous activated AhR on G1 phase
duration in HaCaT cells
(Experiment data were extracted from Kalmes et al. [174]; bars: mean of experiment
measurements; +/-: SEM; CNTL: control)
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Chapter 5

Agent-Based Modeling of the Dynamics of

Alveolar Macrophage Polarization under

Pro- and Anti- Inflammatory Cytokine

Signals

5.1 Introduction

Macrophages are mononuclear phagocytes formed through differentiation of circulat-

ing monocytes which are originated from bone marrow. With their versatile func-

tions, macrophages play critical roles in the innate immune system. Functioning as

scavengers, they recognize, engulf and destroy worn-out cells, debris, viruses, bacte-

ria, apoptotic cells and some tumor cells through the process of phagocytosis [176].

Macrophages secrete various pro- and anti- inflammatory cytokines that play a vi-

tal role in regulating immune response in health and disease. The diverse biological

functions of macrophages are achieved through their remarkable plasticity that al-

lows them to efficiently respond to environmental cues and signals, polarizing toward

distinct phenotypes [177]. The polarization process and diverse macrophage subsets

are critical for maintaining tissue homeostasis and fighting disease. Inappropriate
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polarization or imbalance of different phenotypes underlies the pathogenesis of many

diseases, such as cancer, atherosclerosis, obesity and insulin resistance, bacterial and

viral infections, periodontal disease, etc. [178–180]. Thus, understanding the mecha-

nisms of macrophage polarization is important for developing therapeutic approaches

through modulating the phenotypical and functional features of macrophages.

Adopting a simplified approach, macrophages can be broadly classified into two

major groups: classically activated macrophages (M1) and alternatively activated

macrophages (M2) which can be further divided into three subgroups: M2a, M2b

and M2c. M1 macrophages are activated by type 1 cytokines, e.g., interferon-γ

(IFN-γ) and tumor necrosis factor α (TNF-α), or pathogen-associated molecular

patterns, such as lipopolysaccharide (LPS) which involves Toll like receptor (TLR)

pathways. These cells secrete high levels of pro-inflammatory cytokines such as IL-1,

TNF-α, IL-12, IL-23 and promote Th1 immune responses [181]. In addition, M1

macrophages release reactive oxygen species (ROS) and reactive nitrogen species

(RNS) resulting in anti-proliferative and cytotoxic activities. M1 activation is essen-

tial for macrophage-mediated tissue injuries. In contrast to M1 macrophages which

exhibit pro-inflammatory properties, M2 macrophages balance the activity of M1

macrophages by producing anti-inflammatory cytokines and initiating wound repair.

Various stimuli activate M2 subpopulations. Specifically, exposures to IL-4 and IL-

13 activate M2a; M2b can be activated by a combination of immune complexes and

LPS or IL-1β; M2c is induced by IL-10, TGF-β and glucocorticoids [182]. It should

be noted that macrophage polarization is a dynamic and reversible process. For ex-

ample, given a change of microenvironment, pro-inflammatory M1 macrophages can

transform into M2 macrophages to participate in the resolution of inflammation and

tissue repair [183].The molecular mechanisms underlying macrophage polarization

require complicated networks of intracellular signaling pathways and transcriptional

factors. Upon exposures to IFN-γ, TNF-α, LPS and ROS (M1 stimuli), activations of
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NFκB-Nrf2 and STAT1 pathways promote macrophage polarization toward the M1

phenotype; on the other hand, IL-4, IL-10, IL-6 and immune complex (M2 stimuli)

skew macrophages toward the M2 phenotype via STAT3 and STAT6 pathways [184]

(see Figure 5.1).

Several groups have attempted to build models for macrophage polarization pro-

cesses. Rzosinska et al. developed a Petri net theory based model and conceptually

incorporated current knowledge on macrophage polarization [185]. Their model was

constructed based on the hypothesis that monocytes in tissues can differentiate to

all phenotypic classes without considering the possibility of changing phenotype of

already polarized macrophages. Macrophage phenotypes M1 and M2 were consid-

ered, as well as the subpopulations of M2 including M2a, M2b and M2c. Although

comprehensive analysis of the model was conducted and biological significance was

determined for each component, the model did not resolve underlying molecular mech-

anism and signaling cascades. Wendelsdorf et al. used ordinary differential equations

(ODEs) to simulate M1 and M2 polarization as part of a model for immune modula-

tory mechanisms in inflammatory bowel diseases [186]. The macrophage phenotype

was linked with pro- and anti-inflammatory cytokine levels in the system, but molec-

ular mechanisms that regulate M1/M2 phenotypic changes were not considered in

their model. The same group also developed a more sophisticated ODE-based model

containing 38 reactions and 138 parameters, which took into account the dynamic

behaviors of the intracellular signaling pathways that regulate macrophage polariza-

tion.

The above models are deterministic and assume homogeneity within biological

compartments. Given that stochasticity and heterogeneity are key properties of

all biological dynamical systems, agent-based modeling (ABM) provides more flexi-

ble alternative approaches to model molecular and cellular scale biological phenom-

ena. ABM is a rule-based, discrete-event and discrete-time computational model-
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ing method, where interactions between agents can be nonlinear, stochastic, spatial,

and described by asynchronous movements through multiple compartments. Various

ABMs have been developed in the literature to simulate immunological problems and

thus provided substantial insights on interactions and dynamics of immune response

networks at the cellular level. Brown et al. utilized a relatively simple ABM to inves-

tigate lung inflammation and fibrosis following exposure to particulate matter [187].

Their model predicted elevated pro- and anti-inflammatory cytokines, persistent tis-

sue damage and fibrosis that were consistent with in vivo measurements. Nguyen et

al. employed an ABM of human endotoxemia to examine the interplay between circa-

dian controls, cellular variability and stochastic dynamics of inflammatory cytokines

[188]. Cilfone et al. developed an ABM that spanned molecular, cellular and tissue

levels to study the controlling role of balance between TNF-α and IL-10 in a granu-

loma environment during mycobacterium tuberculosis (Mtb) infection [189]. Later,

they expanded their model to study M1 and M2 macrophage polarization during Mtb

infection, taking into consideration NFκB and STAT signaling pathways [190].

In this study, we present a multiscale ABM that spans molecular, cellular and

tissue levels to investigate macrophage polarization under the M1/M2 paradigm. Due

to the nature of ABM, the model takes into account the stochastic, heterogeneous

and discrete features of a biological system. Macrophage phenotypic changes at tissue

level are mechanistically simulated by modeling selected biological events occurring

at molecular and cellular levels following exposures to M1 and M2 stimuli. Novel

heuristics are introduced regarding parameter tuning with process trending analysis

techniques and time-scale estimation by mapping in silico system behaviors to in

vitro responses. Considering the inevitable level of abstraction when representing

biological events using the ABM approach, the model has been evaluated through

its ability to reproduce patterns of in vitro measurements for mice bone marrow

derived macrophage polarization. The new model provides an in silico system that
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reflects the major characteristics of macrophage transition between M1 and M2 under

external stimuli. The model allows us to study how macrophages respond to their

micro-environment changes and explore effects of molecular and cellular activities

on macrophage behaviors. Therefore, the model not only provides insights into the

molecular basis of the M1-M2 paradigm but also has the potential to support studies

involving different treatment strategies of macrophage mediated diseases.
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Figure 5.1: Molecular mechanisms regulating M1/M2 polarization
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5.2 Methods

5.2.1 Model Construction

Assumptions and biological evidence

Two main macrophage phenotypes are considered in this study, namely: classically

activated macrophages (M1) and alternatively activated macrophages (M2). Depend-

ing upon the microenvironment of a macrophage cell, multiple interacting signaling

pathways are activated leading to a specific pro- or anti- inflammatory status within

a cell which then determines the activation form of a macrophage.

The assumptions made for constructing the model can be summarized as follows:

1. the main behaviors of macrophages are characterized by asynchronous and

stochastic activities without considering intra-cellular spatial localization and

recruitment of monocytes into the system.

2. the dynamics of the pro-inflammatory response and the counter-regulatory re-

sponse in macrophages can be characterized by patterns of corresponding pro-

inflammatory cytokines and anti-inflammatory cytokines.

3. different types of pro-inflammatory, anti-inflammatory cytokines and anti-oxidant

proteins are represented by corresponding average delegators as P, A and AO, re-

spectively, whose main behaviors are associated with asynchronous and stochas-

tic activities.

4. the signaling cascade triggered by the recruitment of P/A to the cytoplasm are

represented by random movements of key molecules involved in corresponding

signaling pathways where only relevant productions of new units are recorded

when the endpoints are in the nucleus.

The expression dynamics of pro- and anti- inflammatory cytokines are assumed to
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be mainly regulated by the activation of relevant transcription factors. Nuclear factor-

kappa B (NFκB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signal transducer

and activator of transcription 3 (STAT3) and STAT6 were selected as the representa-

tive signaling controllers underpinning the manifestation of transcriptional responses

due to their essential role in the immune system [59, 191]. NFκB serves as a critical

mediator of inflammatory responses and is involved in the pathogenesis of inflam-

matory diseases [107]. When activated in macrophages, NFκB induces transcription

of pro-inflammatory cytokines, chemokines and other inflammatory mediators [192].

The activity of NFκB is primarily modulated by the activity of its kinase (IKK) and its

inhibitor (IκB) through the Toll-like receptor (TLR) signaling pathway. Nrf2 is a key

transcription factor mediating responses to oxidative stress and toxic insults. Acti-

vated Nrf2 controls expression of an array of antioxidant response element-dependent

genes to promote oxidant resistance [60]. The activity of Nrf2 is mainly mediated

by interactions with the Kelch-like ECH-associated protein 1 (Keap1). STAT3 and

STAT6 are essential for regulating anti-inflammatory responses and the activities of

STAT3 and STAT6 are mainly mediated by the activity of Janus kinase 1 (JAK1),

JAK3 and tyrosine kinase 2 (TYK2) following binding of anti-inflammatory cytokines

to corresponding receptors [191, 193, 194]. In addition, crosstalk between NFκB path-

ways and Nrf2 pathways [59] are also considered in the model.

A schematic representation of the proposed model, including all components and

associated interactions, is shown in Figure 5.2 (a). A snapshot of the implemented

model is also presented in Figure 5.2 (b). Simulated agents and their correspond-

ing characteristics are shown in Table 5.1. Details of model components, rules and

parameters are discussed next.
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Figure 5.2: In silico macrophage polarization model: ABM implementation
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Table 5.1: List of agents included in the macrophage polarization model

No. Agents Description Half-
life+

Initial popu-
lation size*

1 P Pro-inflammatory molecules$ 1.5 18 (3f)
2 A Anti-inflammatory molecules$ 1.5 18 (3f)
3 TLR4 Toll-like receptor 4 2.0 24 (4f)
4 PR Active form of pro-inflammatory molecules$ 2.0 n/a
5 IKK I kappa-B kinase complex – actived by PR 2.5 30 (5f)
6 NFκB.IκB NFκB complex – inactive form 2.5 30 (5f)
7 NFκB NFκB – active form 2.0 n/a
8 IκB I kappa-B – NFκB inhibitors 0.5 6 (f)
9 IL6 Interleukine 6 2.0 24 (4f)
10 NOX NADPH oxidase 0.5 6 (f)
11 ROS Reactive oxygen species 0.5 n/a
12 Nrf2.Keap1 Nrf2 complex– inactive form 2.0 24 (4f)
13 Nrf2 Nrf2 – active form 0.5 n/a
14 Keap1 Kelch-like ECH-associated protein 1-Nrf2 in-

hibitors
2.5 30 (5f)

15 AO Antioxidants 2.0 24 (4f)
16 ILR Interleukine receptor (e.g. IL10R) 2.0 24 (4f)
17 AR Active form of anti-inflammatory molecules$ 2.0 n/a
18 JAK1.Tyk2 JAK proteins to trigger STAT functions 2.5 30 (5f)
19 STAT3 STAT3– inactive form 1.0 12 (2f)
20 M1/M2 Macrophage M1/M2 phenotype 720 n/a

*: the initial corresponding number of molecules in a simulated cell; $:hypothesized
molecules represent for pro-/anti- inflammatory effects during signaling cascades;
+:the half-life is approximately to the closest factor limited to [0.5, 2.5] for modeling
purpose.

Agent rules and behaviors

Agents are simulated objects (cells and molecules) that follow specific instructions

(“rules”) on how they behave and interact with other agents within or between com-

partments. The rule system is listed in Table 5.2 and described briefly here. When M1

stimuli (e.g. TNF-α, LPS) are recognized by their receptor, TLR-4, a signal trans-

duction cascade triggers downstream intracellular signaling modules to ultimately

activate the transcription of inflammatory genes. Such transcriptional processes are

mainly regulated by interacting NFκB and Nrf2 pathways [195]. Following the ac-

tivation of NFκB through the phosphorylation of the inhibitor protein IκB by IKK,

NFκB is translocated into the nucleus to activate the transcriptional processes re-
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sulting in the production of pro-inflammatory cytokines (e.g. TNF-α, IκB and IL-6)

[115–117, 196, 197]. After being released outside the cell, pro-inflammatory cytokines

may bind to their corresponding receptors on the membrane of macrophages and ei-

ther further activate the NFκB signaling pathway or lead to production of additional

TLR-4 molecules [198, 199]. After recognizing M1 stimuli, the TLR-4 signaling path-

way can also activate NADPH oxidase (NOX) to generate reactive oxygen species

(ROS) which move in and out of cells without the involvement of receptors [200, 201].

These ROS further activate NFκB forming a positive feedback loop. ROS in cell also

triggers the dissociation of Nrf2 from Nrf2-Keap1 complex [202]. Free Nrf2 translo-

cates to the nucleus and activate antioxidant response element (ARE)-mediated gene

transcription of anti-oxidant enzymes leading to elevation of cytoplasm anti-oxidant

proteins which then inhibit the activity of NOX, and therefore attenuate oxidative

stress in the cell [120, 121, 203]. Furthermore, mutually inhibiting effects between

NFκB and Nrf2 signaling pathways are considered in the model. NFκB promotes the

translocation of free cytoplasm Keap1 into the nucleus, where Keap1 dissociates Nrf2

from the ARE and therefore represses Nrf2 mediated anti-oxidant gene transcriptions,

resulting in functional inactivation of Nrf2 [62]. On the other hand, overexpression

of Nrf2 suppresses the DNA binding activity of NFκB [204]. In addition, when anti-

inflammatory cytokines (e.g. IL-10) are recognized by their corresponding receptors,

members of the Janus kinase (JAK) family are activated to phosphorylate STAT3.

The phosphorylated STAT3 then enters the nucleus to activate the expression of

anti-inflammatory genes and STAT3 [110, 205–209]. IL-4 and IL-13 follow a sim-

ilar pattern as IL-10, except that they activate STAT6 instead of STAT3. Thus,

we use STAT3-JAK in the model to represent all anti-inflammatory cytokine induced

STAT-JAK signaling pathways activation during macrophage polarization. Like anti-

inflammatory cytokines, IL-6 also activates JAK-STAT3 pathways upon binding to

its receptor [191, 210, 211]. Therefore, it is assumed that IL-6 shares the same process
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with anti-inflammatory cytokines for modeling simplicity. The activation status of a

cell is determined by the “macrophage polarization ratio” (RMP ), which is defined as

the dynamic ratio of P over A in the cytoplasm of corresponding cell [190]:

RMP =
ΣP

ΣA
(5.1)

Phenotype =


M1 if RMp > 1.25

M2 if RMp < 0.75

unchanged if 0.75 ≤ RMp ≤ 1.25

(5.2)

In our simulation, there are three types of compartments spanning multiple scales:

the tissue, the cell cytoplasm and the nucleus. The tissue compartment contains all

simulated cells; each cell contains a cytoplasm compartment and a nucleus compart-

ment. All agents move in a random fashion following the “random walk” (discussed

later) model on a 2-dimensional grid. The tissue and each cell have their own sim-

ulating grid while the nucleus directly occupies a region in its corresponding cell

simulating grid. Although no special spatial arrangements are set for agents, there

are a number of restrictions regarding which compartment a molecule can be in.

Specifically, P, A, IL-6 and ROS can move between the tissue and the cytoplasm;

NFκB, Keap1, Nrf2 and STAT3 can be in both the cytoplasm and the nucleus; after

being produced, TLR4 and ILR will be transferred to the cell membrane and remain

there until they are removed from the simulation; other molecules are only present in

the cytoplasm.

Translocation of molecules is based on an import- and export procedure. In the

tissue compartment, if a molecule has the same position with a cell, the system

will check to determine whether it is imported or not. Except for P and A, other

molecule types are imported to the cells with the approximate probability of P-binding
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TLR4 to simulate the probability of the binding to receptors. This probability is

approximately equal to the initial number of TLR4 molecules in a cell divided by the

number of positions on the boundary of the cell simulating grid, which is about 20%.

For P molecules, a random position on the boundary of the cell simulating grid is

assigned; if it overlaps with the position of some TLR4 molecules, it will be imported

(similar for A). Once imported to a cell, it combines with receptors and forms an

‘active’ complex PR (or AR). In the cytoplasm compartment, active molecules are

translocated to the nucleus compartment when they reach the nucleus region of the

corresponding simulating grid. On the other hand, when a molecule reaches the

boundary of a compartment, it is exported to the outer compartment if it is not

restricted.

Each agent moves in a random direction for a random number of times with

a random delay time for each movement. However, two interactive molecules X1,

X2 with current positions {PX1
x , PX1

y }, {PX2
x , PX2

y } respectively will move towards a

position where an interaction may occur if their distance is less than a threshold:

d(X1, X2) = max{|PX1
x − PX2

x |, |PX1
y − PX2

y |} ≤ τ, τ = 1 (5.3)

If two molecules have the same position on the simulating grid of the corresponding

compartment, they will interact (activation, inhibition or degradation) following the

rules shown in Table 5.2, e.g. A and P with the same status in any compartment, PR

and IKK, activated IKK and NFκB.IκB, AR and JAK1/Tyk2 in the cytoplasm, and

NFκB and IκB in cytoplasm. The rule is also applied to the movement of molecules

when adjacent to cells in the tissue compartment to increase the probability of entering

a cell. There are no explicit processes governing cell and molecule “movements”; the

movement rules are set so as to reflect probabilities of biological plausible agent

interactions following the conceptual formulation of the Agent Based Model.
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Table 5.2: List of rules governing the behaviors of agents in the Macrophage polar-
ization model

No. Rule definition
1 Macrophage phenotype is determined by the ratio Rmp

2 P, A, ROS, and IL-6 can be imported to cells from the tissue if they hit a cell
while moving in the tissue simulating grid or exported to the tissue if they lie
on the cell membrane while moving in the cell simulating grid

3 PR can activate IKK and NOX; activated IKK turns NFκB.IκB to active NFκB
while an activated NOX produces a ROS every simulated tick during the rest of
its lifetime

4 An individual NFκB in the nucleus has a probability of κp/κt/κi/κI to produce
a new unit of P/TLR4/IκB/IL-6 respectively

5 IκB inhibits NFκB activity by forming NFκB.IκB complex
6 ROS can turn Nrf2.Keap1 complex into active Nrf2 and Keap1 or activate

NFκB.IκB to NFκB
7 Keap1 inhibits Nrf2 activity by forming Nrf2.Keap1 complex
8 An individual Nrf2 in the nucleus has a probability of na to produce a new unit

of AO
9 AO inhibits NOX activity; both are degraded when they hit each other in the

corresponding simulating grid
10 NFκB triggers Keap1 to active form so that it can be translocated to the nucleus

to inhibit Nrf2 activity
11 NFκB activity in the nucleus is inhibited if the number of NFκB is less than the

number of Nrf2 in the nucleus
12 AR can activate JAK1.Tyk2; activated JAK1.Tyk2 triggers STAT3 to the active

form
13 IL-6 shares the same pathway with A after it is translocated to the cell cytoplasm
14 An individual STAT3 in the nucleus has a probability of sa/ss/si to produce a

new unit of A/STAT3/ILR respectively
15 TLR4/ILR stop moving when hitting the cell membrane, waiting for recruiting

P/A from the tissue
16 A inhibits P activity; both are degraded when they hit each other in the corre-

sponding simulating grid
17 An individual NFκB in the nucleus of M1 has a probability to produce a new

unit of P three times more than that if it is in the nucleus of M2
18 An individual STAT3 in the nucleus of M2 has a probability to produce a new

unit of A three times more than that if it is in the nucleus of M1
19 NFκB, Nrf2, active STAT3, and active Keap1 can be translocated to the nucleus

while others can not
20 Agents are degraded after t hr if there is no action except movements where t/2

is defined by the approximate half-life of the agents

Model parameters

Model parameters are classified into two categories: default- and production- param-

eters. Default parameters are those related to system setting and physicochemical

properties of cells and molecules, such as compartment extensions, simulation scales,
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molecule life-times or initial populations. For simplicity, all compartments are simu-

lated with unitless rectangular grids in this study. The tissue compartment is repre-

sented by an 80 × 50 rectangular unitless grid and the cell by a 40 × 30 grid. The

cell nucleus is approximately 10% of the total cell volume and therefore it occupies a

region of about 11 × 11 in the cell simulating grid (Figure 5.2b).

Since the relationship between the system response time and the system produc-

tion rate is unclear, we define two scales (an approximate number of simulated steps

for an hour) in this simulation: (1) the life-scale (L) that characterizes the lifetime of

molecules and the system production rate; (2) the response-scale (Ntph) that charac-

terizes for system responses. The response-scale is initially equal to the life-scale but

adjusted later to match in silico system responses. In order to identify the life-scale,

the system is set to have no activity except the default system production and pro-

tein degradation; thus the number of units of each molecule type in a cell should be

balanced over time. Given that the default production rate is R%, a cell will produce

R × L new units for a molecule type after one hour, and thus there must be R × L

units of this molecule type degraded to keep the cell at homeostasis (R% = 50% in

this study). As a result, if a molecule has a certain lifetime, its average lifetime will

be approximately equal to its number of units divided by R × L. In other words, the

initial number of units of a molecule type is set equal to its average lifetime multiplied

by R × L.

In this simulation, the average lifetime of a molecule is the double of its approx-

imate half-life as listed in Table 5.1. The half-life is approximately equal to the

closest factor limited to [0.5, 2.5] for modeling purpose. So for those molecules whose

half-lives longer than 2.5 hours, we set their half-lives to be 2.5 hours; and for those

molecules whose half-lives are shorter than 0.5 hours, we set their half-lives to be 0.5

hours. Specifically, the IκB half-life is about 0.5 hours and the NFκB.IκB half-life is

five-fold higher than that of IκB [212, 213]; the half-lives of Nrf2, NOX and ROS are
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shorter than or about 30 min and therefore are set to be 0.5 hours [214–216]; the half-

life of STAT3 is about 1 hour [217]; inflammatory cytokines have an average half-life

of about 1 hour [218]; the half-life of Keap1 is longer than 2.5 hours and is set to be

2.5 hours [219]; JAK1 and Tyk2 have half-lives of 2-3 hours and we set them to be

2.5 hours [220]; IKK is a large protein and is assumed to have a half-life equal to that

of the NFκB.IκB complex; the rest are assumed to have an average half-life about

2 hours. Since intracellular proteins occupy 15-35% of cell volume [221], we assume

that the number of molecules in a homeostatic cell would be about 25% of the cell

volume, which is approximately 300 molecules. The initial number of units for each

type of molecule is proportional to its corresponding half-life. Let f be the initial

number of units of IκB, the total initial number of units (molecules) in a cell, under

the assumption of a homeostatic system, will be around 50f , resulting in f =
300

50
= 6

units. The estimated initial population size of each molecules type in a cell is shown

in Table 5.1. The life-scale L, which is the number of simulated steps per hour or the

number of simulated steps over the lifetime of an IκB, is therefore equal to f/R or 12

ticks per hour. Additionally, the initial number of units for P (or A/ROS/IL-6) in the

tissue compartment is initialized with 10% of total P (or A/ROS/IL-6 respectively)

units in all cells in the system.

Production parameters are the probabilities of producing new molecules when a

particular molecule type is involved in the transcriptional process, characterized by

its presence in the nucleus compartment. In order to estimate these parameters, we

hypothesized that there must be a balance between protein synthesis and protein

degradation in a homeostatic system [222]. Thus, under conditions of no external

stimulation, production parameters need to be adjusted so that the number of units

of each molecule type in the system does not change significantly over time (Table

5.3). Techniques from process trending analysis were used to obtain a set of adjusted

parameters whose values remain constant for subsequently added mechanisms such as



105

treatment with pro- or anti- inflammatory cytokines [223, 224]. The configuration of

the homeostatic system, including all agents and their properties, is saved for further

in silico experiments.

Model implementation

The in silico macrophage polarization model was implemented in the Java language,

using the Repast Simphony toolkit for Agent-Based Modeling and the Eclipse devel-

opment environment.

“Random walk” model

Agents (cells and molecules) move on a 2-dimensional grid in a random fashion de-

pending on two main factors: (i) the time agents wait before each movement and (ii)

the number of times agents move in a particular direction. For a specific agent U , at

time t, let γ(t) be the time (number of ticks) U has to wait before moving and λ(t)

be the number of times U will move in direction D, we have

γ(t+ 1) =


γ(t)− 1 if γ(t) > 0

rand{0, 1}+ status(U) if γ(t) = 0

(5.4)

λ(t+ 1) =


λ(t) if γ(t) > 0 and λ(t) > 0

λ(t)− 1 if γ(t) = 0 and λ(t) > 0

rand{2, 3, 4} × (Ncomp + 1) if γ(t) = 0

(5.5)

Where status(U) =


rand{1, 2} (initial value)

0 if U is in the active form

Ncomp = {0, 1, 2} if U in {nucleus, cell, tissue} respectively
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Each compartment or each cell has its own 2-dimensional simulating grid. When

γ(t) is zero, U will move to the next grid-space in the Moore neighborhood of the

corresponding simulating grid which consists of 8 spaces immediately adjacent to and

surrounding the current position based on the current direction D. D is one of the 8

directions {N , NE, E, SE, S, SW , W , NW} (N : north, E: east, S: south, and W :

west). Let Px(t), Py(t) be the current position of U in a 2-dimensional simulating

grid, its next position is defined as follows:

Px(t+ 1) = Px(t) +Hx(γ(t), D(t)) (5.6)

Py(t+ 1) = Py(t) +Hy(γ(t), D(t)) (5.7)

where

D(t+ 1) =


D(t) if λ(t) > 0

rand{N,NE,E, SE, S, SW,W,NW} if λ(t) = 0

(5.8)

Hx(γ(t), D(t)) =


0 if γ(t) > 0 orD(t) ∈ {N,S}

+1 if γ(t) = 0 andD(t) ∈ {NE,E, SE}

−1 if γ(t) = 0 andD(t) ∈ {NW,W,SW}

(5.9)

Hy(γ(t), D(t)) =


0 if γ(t) > 0 orD(t) ∈ {E,W}

+1 if γ(t) = 0 andD(t) ∈ {NW,N,NE}

−1 if γ(t) = 0 andD(t) ∈ {SW,W, SE}

(5.10)
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Parameter tuning

Based on the trend of the dynamics of each molecule type X, we adjust the probability

of the associated production parameter pX(Table 5.3) so that the total number of X

in the system does not change significantly over time. For each simulated day, we

sample the level of X each hour and determine whether there is a significant change

based on the sample vector using ordinary least square regression and significant mean

difference [223].

Let xj be the number of molecules X in the system at hour j, j = 1. . . J , J = 24.

The regression model used in this approach is xj = α+βJ+εj where α is the intercept,

β is the slope, and εj are random errors which are assumed to be independent and

identically distributed. The estimates of the slope and intercept are given by

β̂ =

∑
j

(j − j̄)(xj − x̄)∑
j

(j − j̄)2
; α̂ = x̄-β̂j̄; x̄= 1

J

∑
j

xj

The standard error of the slop will be SE(β̂) =

√√√√√√
∑
j

(xj − α̂− β̂j)2

(J − 2)
∑
j

(j − j̄)2

A 95% confidence interval for the slope β is β̂±t0.975,J−2SE(β̂). If zero is not contained

in the interval, we conclude that the trend of change is significant.

Let m1,m2 be the means of the first and last half of the sample vector, m1 =

J/2∑
j=1

xj;

m2 =
J∑

j=J/2+1

xj. If the percentage change between the first and last half of the sample

vector (m2 − m1)/m1 is more than 10%, we conclude that the change is significant

and adjust the corresponding production parameter. If the trend of the dynamics is

increasing, the parameter value pX will be decreased. Otherwise, if the trend of the

dynamics is decreasing, we increase pX . In order to estimate the changing amount of

pX , we assume that the percentage change of the parameter would be approximately

to the percentage change of the molecule level between the first and last half of the
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sample vector but set under the opposite effect. Thus, the estimate for the adjusted

parameter value will be

p
′
X − pX
pX

= −m2 −m1

m1

⇒ p
′

X = pX(1− m2 −m1

m1

)

In the case when there are two associated production parameters, the amount each

parameter is changed will be half of that in the normal case. The process is repeated

until there is no change of all production parameters in three consecutive simulated

days.

Table 5.3: Values of production parameters used in the macrophage polarization
model

No. Parameters Initial probability Adjusted probability
1 κp(NFκB → P )∗ 0.8000 0.3224
2 κi(NFκB → IκB) 0.8000 0.4111
3 κt(NFκB → TLR4) 0.8000 0.4916
4 κI(NFκB → IL6) 0.8000 0.3430
5 na(Nrf2→AO) 0.8000 0.1155
6 sa(STAT3→A) 0.2000 0.1001
7 ss(STAT3→STAT3) 0.2000 0.1107
8 si (STAT3→ILR) 0.2000 1.0000

*x(Y→Z): x is the probability that a single unit Y can produce an individual unit Z
when Y is in the cell nucleus.

5.2.2 In vitro measurements

The data used in this study were extracted from literature reporting in vitro ex-

periments performed with primary mouse bone marrow derived macrophages [225].

Marrow from femurs of 6-12 week old female C57BL/6 mice was harvested followed

by lysing red blood cells with ACK buffer. Cells were then cultured on bacteriolog-

ical polystyrene plates for seven days in DMEM supplemented with 10% FBS, 2%

penicillin/streptomycin, 2 mM L-glutamine and 10% conditioned media from CMG

12-14 cells expressing recombinant mouse M-CSF. Macrophages were stimulated with
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LPS, IFN-γ, IL-4, or IL-13 at given doses for the indicated time, and then flow cy-

tometry or cytokine analysis was performed. For flow cytometry, cells were first

fixed in 4% formaldehyde and stored at 4 ◦C. After staining with anti-CD86 (clone

GL-1, APC conjugate) and anti-CD206 (clone C068C2, Alexa 488 conjugate) anti-

bodies or isotype controls, cells were analyzed on a BD LSR flow cytometer with

post-processing in FlowJo (Tree Star). Cell populations were gated on forward and

side scatter to select intact single cells. Events were acquired until 10000 events were

collected in a preliminary analysis gate or the sample was exhausted. For cytokine

analysis, macrophages were seeded at 3e5 cells/ml, allowed to adhere overnight, and

then treated with indicated concentrations of IL-4, IL-13, TNF-α, and IFN-γ. The

cell culture supernatants were collected at 24, 48, 72 and 96 hours after stimulation

and analyzed with a Luminex 31-plex mouse cytokine array.

5.3 Results and Discussion

5.3.1 Qualitative assessment of model behaviors with exper-

iment measurements

In vitro data were extracted from literature reporting experiments with primary

mouse bone marrow derived macrophages [225]. Original experimental data were

the measurements of M1 marker (CD86) and M2 marker (CD206) expressions un-

der different treatment conditions normalized by the values of corresponding time

points under condition of either M1 stimuli only or M2 stimuli only treatment. We

re-normalized the experimental data by taking the ratio of measurements under dif-

ferent treatment conditions with respect to the control condition (no treatment with

either M1 or M2 stimuli). In silico experiments are simulated by ‘injecting’ a num-

ber of new cytokine molecules into the system. Cytokine molecules are randomly

allocated to the plasma compartment and M1/M2 phenotypes of cells are tracked.
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In silico simulation results are compared with in vitro experiment measurements

for macrophage polarization in Figure 5.3. Under M1 stimuli only conditions, in sil-

ico results show the same trend with in vitro data for the M1 phenotype, where the

amount of M1 macrophages in the system increases rapidly, peaking around 24 hours

after treatment and eventually resuming to the control values. In vitro data reveal a

pattern of M2 macrophages which first decreases and then comes back to the control

values. In silico results show a similar M2 pattern except that the maximum decrease

happens at 24 h instead of 48 h. In conditions involving only M2 stimuli treatments,

both in silico and in vitro data demonstrate that numbers of M2 macrophages first

increase and then plateau, remaining at higher levels than the control even 96 hours

after treatment. In vitro results show relatively low levels of M1 macrophages with

a gradually decreasing trend, while in silico data display an overall decreasing M1

pattern with lowest levels around 24 h. For co-stimulations with M1 and M2 stimuli,

in silico and in vitro data both show that numbers of M1 macrophages increase, peak

about 24 h and come back to control levels 96 hours after treatment. In vitro M2 pat-

terns exhibit a continuous increasing trend, while in silico M2 patterns demonstrate

an overall increasing trend with an initial decrease from 0 to 24 h.

It should be noted that the total number of cells in a cell culture is dynamic. How-

ever, for modeling simplicity, the in silico formulation here uses a fixed total number

of cells. Therefore, the increase of one phenotype during in silico simulation will lead

to inevitable decrease of the other phenotype. When the predominant phenotype

pattern is captured, this limitation of the model leads to slight differences between

in silico and in vitro patterns for the other phenotype (e.g. M2 pattern under M1

stimuli only condition). Nevertheless, our results suggest that the in silico model

qualitatively captures the major characteristics of the dynamic phenotypical changes

during M1/M2 polarization. With M1 stimuli only, M1 macrophages predominate

over M2 macrophages and resume to basal levels eventually. Under M2 stimuli only
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conditions, most of the macrophages are activated as M2 phenotype and the levels of

M2 macrophages stay higher than the control levels after a relatively long period of

time. For co-stimulations with M1 and M2 stimuli, macrophages polarize toward both

M1 and M2 phenotypes. M1 macrophages return to the control levels, whereas num-

bers of M2 macrophages increase continuously for a long period of time, suggesting

the natural progression of macrophages from pro-inflammatory to anti-inflammatory

phenotype in response to wounds or infections with pathogens [225, 226].

Figure 5.3: Correspondence between in vitro and in silico results of macrophage
polarization

5.3.2 Patterns and implications of cellular variability

Since stochasticity is an inherent property of our Agent Based simulation, stochastic

transcriptional activities have large impacts on cellular variability. Simulated cells

behave differently from one to another and no individual cell behaves like the average
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one. Figure 5.4 shows the pro-inflammatory cytokine levels for several individual cells

and the average pattern for all the cells in the system under treatment with only M1

stimuli. Each individual cell possesses a unique dynamic pattern of pro-inflammatory

molecules which is different from other cells in a stochastic way. However, the average

level of pro-inflammatory molecules increases upon exposure to M1 stimuli and then

abates gradually, exhibiting a pattern which is consistent with corresponding system

responses characterized by the dynamic change of M1 macrophages (Figure 5.3).
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Figure 5.4: Stochastic dynamics of pro-inflammatory cytokines in cell population

5.3.3 Dynamic phenotype change of macrophages

Macrophage polarization is a dynamic and reversible process. Given an altered micro-

environment, an already polarized macrophage could change its polarization status.

In our model, the polarization status of a cell is determined by the P/A ratio which

reflects the change of local environment for the simulated cell. Figure 5.5 shows the

phenotypic change of one simulated macrophage cell under treatment with only M1
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stimuli. The cell is first polarized to M1 phenotype and then re-polarizes to a M2

macrophage as the P/A ratio decreases over time. These re-polarization phenom-

ena captured in our simulation indicate that one macrophage cell can exert both

pro-inflammatory and anti-inflammatory functions during the natural inflammation

resolving process by dynamically changing its polarization status.

Figure 5.5: Phenotypical change of one simulated macrophage cell

5.3.4 Sensitivity analysis

Overall system behavior is characterized by the M1/M2 ratio, defined as the ratio

between number of cells with M1 phenotype and number of cells with M2 phenotype

in the system. Sensitivity analysis was performed to explore how perturbations in

production parameter values affect the M1/M2 ratio. Each production parameter

was sequentially perturbed from a control condition where no external stimulations

were added to the system. The resulting changes in M1/M2 ratio were recorded. In

this approach, 75% change was selected to perturb production parameters and the

change of M1/M2 ratio at t = 24 h was selected to show a clear impact of production
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parameter perturbation on the overall system behavior. Results are presented in Fig-

ure 5.6. Two parameters that have significant effect on the M1/M2 ratio are kp and

sa, where kp is responsible for the NFκB induced production of pro-inflammatory cy-

tokines and sa is responsible for the STAT3 induced production of anti-inflammatory

cytokines. Since the phenotype of a macrophage is determined by the P/A ratio in

our model, the M1/M2 ratio is mainly dependent on the dynamics of pro- and anti-

inflammatory cytokines in the system. Therefore, parameters (kp and sa) relevant to

the production of these cytokines should have large impacts. The positive correlation

between kp and M1/M2 and the negative correlation between sa and M1/M2 further

demonstrate that pro-inflammatory environment tends to skew macrophages toward

the M1 phenotype, whereas macrophages tend to polarize to the M2 phenotype in an

anti-inflammatory environment. In addition, the M1/M2 ratio is also significantly af-

fected by production parameter ss which is responsible for the production of STAT3,

suggesting the important role of the STAT3 pathway in anti-inflammatory responses

and M2 activation upon exposure to M2 stimuli [110, 227].
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Figure 5.6: Sensitivity analysis
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5.4 Summary

In this study we presented a new multiscale agent-based model that spans molecular,

cellular and tissue levels to provide a computational simulation framework aimed at

reproducing and elucidating the dynamics of macrophages phenotypes under various

complex activation signals, while considering system stochasticity and heterogene-

ity. Transcription factors NFκB, Nrf2, and STAT3 are selected as representative

controllers that regulate the expression dynamics of pro- and anti-inflammatory cy-

tokines during macrophage polarization process. A macrophage polarization ratio,

defined as the ratio between the concentrations of pro- and anti-inflammatory cy-

tokines in the local microenvironment of macrophage cells, is employed to link cellular

signaling events and cytokine expressions with macrophage phenotype changes. The

model successfully captures the qualitative trends of macrophage phenotype changes

in an in vitro system of mouse bone marrow-derived macrophages exposed to var-

ious doses of LPS/IFN-γ and IL-4/IL-13. In addition, the agent-based modeling

approach used in this study allows the model to capture the cell-to-cell variability of

macrophages under a collective phenotype pattern induced by certain external stim-

uli. The model also demonstrates that macrophages can shift between phenotypes to

achieve different biological functions. Important regulatory processes, including the

NFκB induced production of pro-inflammatory cytokines, STAT3 induced produc-

tion of anti-inflammatory cytokines and the production of STAT3, are identified to

have higher impacts on macrophage polarization, a result that can provide insights

into studies of potential therapeutic interventions targeting macrophage phenotypes

in different diseases.
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Chapter 6

Conclusion and recommendations

This chapter summarizes the main findings and limitations of the work presented

in this dissertation, as well as recommendations for future research. In this work,

multiscale computational models that integrate multilevel mechanisms and in vitro

/ in vivo experimental information were developed to study biological effects of air

pollutants, especially ozone and PM, in three interconnected physiological systems:

the respiratory system, the cardiovascular system and the integumentary system.

An essential biological phenomenon, macrophage polarization, which plays critical

roles in mediating inflammatory responses, such as those elicited by exposures to air

pollutants, was also studied using an Agent Based modeling approach.

6.1 Main findings and limitations

6.1.1 Respiratory effects of ozone inhalation

Effects of ozone on the respiratory system were modeled using a multiscale approach

that considers two main biological mechanisms: ozone-induced pulmonary surfac-

tant perturbation and ozone-initiated pulmonary inflammation. Information on the

two biological processes was then coupled with an alveolar recruitment/decruitment

module to link ozone inhalation with reduced lung function. The performance of the
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model was evaluated using in vivo measurements from experiments involving mice.

The immune response module of the model allows us to track the progression and

restoration of pulmonary inflammation after ozone exposure and to explore the reg-

ulatory effect of surfactant protein D (SP-D) on inflammatory responses. Chronic

pulmonary inflammation was observed in the absence of SP-D. The altered lung

function at later times following ozone exposure was mainly attributed to prolonged

inflammation rather than surfactant component profile changes.

However, the model described here has certain limitations:

• The lung function alterations simulated by the current model do not include

the potential effects of cellular injuries induced by ozone. In fact, ozone and

ozone induced ROS can damage the epithelial cells lining the respiratory tract

to cause increased airway epithelial permeability and structural impairment of

the alveolar epithelium [228, 229]; those effects are associated with degradation

in lung function [230].

• Another limitation of the current model is that it has been evaluated only with

mice data, although the design of the model actually allows its extension to other

mammalian species, as it incorporates corresponding physiological structures

and parameters corresponding to rats and mice [84].

6.1.2 Heart rate variability changes caused by PM exposure

A computational model for cardiovascular effects of air pollution was developed and

implemented for human PM exposure, using heart rate variability (HRV) as the health

endpoint. The model considers excessive oxidative stress and pro- / anti-inflammatory

signaling at the cellular level, neuroendocrine-immune system interactions, and sys-

temic inflammation propagation to the heart, where HRV is altered. The model

was parameterized using human HRV data. The predictive capability of the model
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was tested and evaluated by applying the model to different PM exposure scenarios.

This model considers a complex network of interactions among the immune, neuroen-

docrine and autonomic systems for HRV regulation, and biological processes that

have high impact on HRV were identified, including the production of pro- and anti-

inflammatory cytokines, NFκB activation, and the interactions between epinephrine

and its adrenergic receptors. This model provides a simulation framework for study-

ing the cardiovascular effects of pollutants that are caused by excessive oxidative

stress and systemic inflammation.

Limitations of the current model include:

• In this model, systemic inflammation is induced only by the pulmonary release

of pro-inflammatory cytokines into the circulation system. However, inhaled

fine and ultrafine particles, typically present in air with high ozone levels, can

also directly enter the circulation system [231] to trigger systemic inflammation

or get access to the central nervous system through the olfactory bulb [232].

Mechanisms governing the PM-initiated effects beyond the pulmonary system

[84] should be added to the model.

• The model parameterization is accomplished by fitting simulation results to

experimental data; therefore, model performance is largely dependent on the

available experimental data sets. The current model uses only one data set for

parameterization, which limits the applicability of the model to different PM

exposure scenarios. A wider range of field and laboratory measurements of HRV

are needed to both improve and evaluate model performance.

• The current model uses only one time-domain index (SDNN) to characterize

HRV; however, this index does not fully reflect the physiological significance of

HRV [233]. A module capable of generating both time-domain and frequency-

domain indices of HRV should be developed to address this limitation.
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6.1.3 Modeling Skin biology after air pollution exposure

Three models were developed to respectively address mechanisms of action involved in

air pollution related skin disorders: (a) Skin lipids reactions with ozone were modeled

to simulate the formation of secondary organic aerosol in an indoor environment; (b)

A model for AhR activation and subsequent gene transcription was developed using

a stochastic algorithm. The model was implemented for two different air pollution

components and was evaluated using in vitro experimental measurements; (c) A skin

cell cycle regulation model focusing on G1 phase progression was established. The

contradictory effects of AhR on cell cycle progression were successfully captured by

the model.

Models developed for the skin biology have their limitations as well:

• The ozone-skin lipids reaction model was developed using data from a chamber

experiment; it therefore needs to be extended to a real-life indoor environment,

incorporating detailed mechanistic modeling of the reaction kinetics involving

ozone and skin lipids, as well as of associated physicochemical processes.

• The two AhR skin biology modules developed here need to be integrated with

models of epidermal homeostasis (e.g. EPISIM [234]) in order to link air pollu-

tion with symptoms of skin disorders.

6.1.4 Agent Based Modeling (ABM) of macrophage polar-

ization

Macrophage polarization is essential for inflammatory responses involved in the mech-

anisms of health effects induced by a wide range of air pollutants. A new multiscale

compartmental model employed an agent-based modeling (ABM) approach to simu-

late: the intracellular signaling cascade mediated by relevant transcription factors, cell

movements, molecule-cell interactions, cell-cell interactions, and phenotype changes
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of macrophages. A quantitative metric, the macrophage polarization ratio, was de-

fined to link macrophage phenotype with the local microenvironment around cells.

The agent-based model successfully reproduced qualitative patterns of macrophage

polarization in an in vitro cell culture model. Cellular variability was observed in the

simulation results, suggesting the potential of using ABM to capture the stochastic-

ity and heterogeneity of biological processes. The dynamic and reversible nature of

macrophage polarization was reflected in the fact that individual macrophage cells in

the model demonstrated different phenotypes over the course of model simulation.

The current model has its own limitations:

• The M1-M2 paradigm in this model is a simplified idealization of actual macrophage

phenotype changes. In biological organisms, after circulating monocytes are re-

cruited to tissues, an unpolarized type of macrophages (M0) is often involved

before macrophages are polarized to pro- and anti-inflammatory phenotypes

[235]. The M1-M2 idealization is adequate for replicating in vitro behavior , as

was the goal of this model, but a M0-M1-M2 model will be more appropriate

for simulating in vivo conditions.

• The model uses a fixed total number of cells (n=100) during simulations, while

the cell number is much larger and can change dynamically in both in vitro

and in vivo systems. The computational limitation on the number of agents

the model can handle efficiently is expected to cause discrepancies between

simulation results and experimental measurements.
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6.2 Future research recommendations

6.2.1 Extend the ozone respiratory model to other pollutants

and species

The current model was implemented for ozone induced lung function changes in mice.

However, a comprehensive computational model that could be used as an in silico tool

to study respiratory effects of air pollutants should be applicable to various pollutants

in different species. The multiscale and modularized design of the present model en-

ables such extensions. Future research steps can extend the model to other species by

including more species-specific physiological information and control measurements

(in vitro / in vivo) to account for the intrinsic sensitivities of different species. The

immune response module can be adjusted to accommodate the cellular mechanisms of

action for other pollutants (e.g. through the addition of TLR receptors for PM recog-

nition; the addition of AhR activation for polycyclic aromatic hydrocarbons, etc.).

The ultimate goal should be to increase the level of model realism and to improve the

performance of the model so that it can serve as a virtual human respiratory system

for risk assessments of air pollutants.

6.2.2 Improve the performance of the cardiovascular model

One limitation of the current model is that the simulation results only represent the

time domain HRV index —SDNN. Other HRV indices with different physiological

meanings are not calculated. This is due to the lack of a detailed model that describes

the autonomic control of heartbeats. Next steps should include development of a more

sophisticated module for autonomic heart rate control. The improved model should

be able to generate discrete heartbeats, so that HRV indices (both time-domain and

frequency-domain) can be calculated as simulation results to fully characterize HRV

alterations induced by PM exposures.



122

6.2.3 Integration of skin biology models

The three computational models developed for the skin system are rather preliminary

and isolated from each other. Future research work should include: (a) Besides

the formation of SOA, addition of reaction kinetics for lipid ozonation to the skin

surface reaction model; (b) identification of AhR ligands from the ozone-lipid reaction

products and simulation of their effects on AhR activation and gene transcriptions

in keratinocytes; (c) incorporation of AhR-mediated cellular signaling pathways that

regulate oxidative stress and pro- / anti-inflammatory responses; (d) incorporation of

the three models in a comprehensive multiscale model for skin health effects associated

with ozone exposure, that should consider: skin surface reactions, cellular signaling

events and keratinocyte cell cycle regulation.

6.2.4 Improvements of the macrophage polarization model

In the current model, the number of macrophage cells is set to be a fixed number (100).

This limits the model’s ability to reproduce the real-life polarization processes. To

further improve model performance, two initial steps should be taken: (a) increase

the number of cells in the system as allowed by computational resource that can be

obtained; (b) allow the total number of cells in the system to be dynamic so that the

model can mimic the natural proliferation and apoptosis of macrophages. In order to

extend the model from in vitro to in vivo systems, the unpolarized macrophages(M0)

should be incorporated into the current M1-M2 model.

6.2.5 Incorporation of new modules into an integrative sim-

ulation framework

The multiscale models developed for the three physiological systems as well as the

macrophage polarization model should be incorporated into the MENTOR (Modeling
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ENvironment for TOtal Risk) [28] whole body human toxicokinetics and toxicody-

namics modeling framework to facilitate studies of risks associated with air pollution

exposures.
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Matsui, Ursula Krämer, and Jean Krutmann. Airborne particle exposure and
extrinsic skin aging. Journal of investigative dermatology, 130(12):2719–2726,
2010.

[23] Riccardo Puntoni, Marcello Ceppi, Valerio Gennaro, Donatella Ugolini, Matteo
Puntoni, Gaspare La Manna, Claudia Casella, and Domenico Franco Merlo.



126

Occupational exposure to carbon black and risk of cancer. Cancer Causes &
Control, 15(5):511–516, 2004.

[24] Jinrong Zeng and Jianyun Lu. Mechanisms of action involved in ozone-therapy
in skin diseases. International immunopharmacology, 56:235–241, 2018.

[25] F. Xu, S. Yan, M. Wu, F. L. L., and X. Xu. Ambient ozone pollution as a risk
factor for skin disorders. British journal of dermatology (1951), 165(1):224–225,
2011.
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Appendix A

Basics of human respiratory physiology

A.1 Basic structure of the human respiratory tract

The human lung is divided into three major regions as shown in Figure A.1: the

extrathoracic (ET) region or upper respiratory tract (URT, from the nose/mouth to

the end of the larynx); the tracheobronchial (TB) tree (from trachea to the terminal

bronchioles); and the alveolar or pulmonary region (from the respiratory bronchioles

to the terminal alveolar sacs). The TB region together with the alveolar region

comprise the lower respiratory tract (LRT).

A thin layer of fluid covers the air-facing surface of the lung. It consists of the

airway surface lining, which is a mucus gel-aqueous sol complex, and the alveolar

surface lining, which includes subphase fluid and pulmonary surfactant. The thickness

of the lining fluid layer decreases distally.
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Figure A.1: Respiratory regions in humans [5]
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Figure A.2: Idealization of the human airways according to Weibel’s model. Z =
airway generation; BR = bronchus; BL = bronchiole; TBL = terminal bronchiole;
RBL = respiratory bronchiole; AD = alveolar duct; AS = alveolar sac. Note that the
RBL, AD, and AS make up the transitional and respiratory zone.[236]
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Figure A.3: Illustration of the LRT structure with progression from the larger air-
ways to the alveolus. (a) Illustrates basic airway anatomy. Structures are epithelial
cells, EP; basement membrane, BM; smooth muscle cells, SM; and fibrocartilaginous
coat, FC. (b) Illustrates the relative amounts of liquid, tissue, and blood with distal
progression. In the bronchi there is a thick surface lining over a relatively thick layer
of tissues. With distal progress, the lining diminishes allowing increased access of
compounds crossing the air-liquid interface to the tissues and the blood. (c) Presents
the factors acting in the gas and liquid phases of ozone transport. [5]
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Appendix B

Adverse Outcome Pathways (AOP) for

ozone and PM

This section contains the details of AOP for ozone and PM in each physiological

system included in this thesis

B.1 AOP for ozone

B.1.1 Ozone and skin health outcomes

• Molecular initiating events

In vivo animal and human studies have demonstrated that ozone does not ex-

ert direct effects on viable skin cells but reacts with molecules in the stratum

corneum characterized by antioxidants depletion and lipid peroxidation [237].

Thiele et al. exposed hairless mice to various concentrations of ozone (from 0

ppm to 10 ppm) for 2 h [238]. They also exposed some mice to either 0 ppm or 1

ppm of ozone for six consecutive days. After exposure to increasing ozone doses,

the depletion of antioxidants and formation of lipid peroxidation products both

increased in a dose-depend manner. Repeated low-level ozone exposure resulted

in cumulative oxidative effects in the stratum corneum. He et al. conducted in
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vivo ozone exposure on female Caucasian volunteers aged 18-55 years [239]. 2 h

of ozone exposure at 0.8 ppm caused a 70% decrease in vitamin E (antioxidant)

levels and a 230% increase in lipid hydroperoxide levels. Thus, ozone reactions

with surface lipids and subsequent formation of reactive oxygen species (ROS)

comprise the molecular initiating events.

• Cellular/Extracellular level responses

Ozone not only exerts direct effects at the stratum corneum, but also has indi-

rect effects in the deeper functional layers of the skin [240] and causes various

responses at cellular level.

– Ozone reactions at the stratum corneum alter components in the extracel-

lular lipid matrix which serves as the continuous phase of the skin barrier

[241].

– Afaq et al. exposed cultured normal human epidermal keratinocytes (NHEKs)

to 0.3 ppm of ozone for 20 min [159]. In their study, the activation of

aryl hydrocarbon receptor (AhR) was observed. Furthermore, cytochrome

P450 family 1 (CYP1) isoforms were induced through the activation of

AhR.

– Valacchi et al. exposed hairless mice to 0.8 ppm ozone 6 h/day for six

consecutive days and observed the activation of NFκB pathway [242].

– Valacchi et al. exposed SKH-1 hairless mice to 8 ppm ozone for 2 h [243].

In addition to antioxidant depletion in stratum corneum, they observed

significant upregulation of heat shock protein 27 (HSP 27), HSP 70 and

HSP 32. In a similar study conducted by the same group, they observed

increased levels of proliferating cell nuclear antigen (PCNA) and keratin

10 (K10) in hairless mice after exposure to 0.8 ppm of ozone [242].
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– Valacchi et al. also demonstrated that after exposing SKH-1 hairless mice

to 0.8 ppm ozone for 6 h, expressions of matrix metalloproteinase-9 (MMP-

9) was significantly upregulated [244].

• Tissue level responses

Cellular responses may lead to corresponding tissue level responses.

– Skin barrier function is highly associated with the integrity of epidermal

lipids in the lipid matrix of the stratum corneum. Therefore, damaged skin

barrier function directly results from lipid depletion in stratum corneum

due to ozone exposure.

– AhR is known to mediate most of the toxic and carcinogenic effects of

various contaminants [245]. Therefore, the activation of AhR at cellular

level due to ozone exposure will alter the metabolism of xenobiotics and

endogenous compounds in human skin.

– The NFκB pathway plays a critical role in the expression of numerous pro-

inflammatory responses, thus the activation of NFκB after ozone exposure

will result in skin inflammation at tissue level.

– HSPs and PCNA are involved in cell proliferation [240]. K10 is produced in

well differentiated, suprabasal keratinocytes and is involved in keratinocyte

differentiation [151]. Therefore, ozone induced changes of HSPs, PCNA

and K10 may lead to abnormal skin cell proliferation and differentiation.

– MMPs are a group of endopeptidases capable of degrading skin extracel-

lular matrix components [246]. Thus, the upregulation of MMP-9 after

ozone exposure could result in enhanced degradation of collagen leading

to a loss of skin’s ability to resist stretching.
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Figure B.1: Adverse Outcome Pathways for ozone and skin outcomes (ROS: reactive
oxygen species; HSP: heat shock protein; PCNA: proliferating cell nuclear antigen;
K10: keratin 10; AhR: aryl hydrocarbon receptor; MMP-9: matrix metalloproteinase-
9)

B.1.2 Ozone and respiratory health outcomes

• Molecular initiating events

Inhalation of ozone leads to reactions with components of lung lining fluid in-

cluding depletion of antioxidants [247] and formation of many ROS such as

ozonized lipids, lipid peroxidation products, etc. [248]. These molecular inter-

actions comprise the molecular initiating events in the AOP.

• Cellular/Extracellular level responses

At the cellular response level, the ozone induced ROS can trigger activation

of neural reflexes by stimulating bronchial C-fibers [249]. These ROS may also

promote injury or apoptosis of airway epithelial cells leading to increased airway

epithelial permeability [250]. In addition, ROS can activate macrophages and
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other immune cells to release multiple inflammatory mediators [51, 251]. The

ROS-induced redox reactions may generate hyaluronan fragments or other prod-

ucts that stimulate TLR signaling in airway epithelial cells and inflammatory

cells [11]. Furthermore, products of redox reactions can change the pulmonary

surfactant profile by reacting with surfactant phospholipids and surfactant pro-

teins [47].

• Tissue/Organ level responses

Cellular level responses may lead to tissue/organ level responses. The activation

of neural reflexes and the release of inflammatory mediators may cause airway

smooth muscle sensitization. The upregulation of inflammatory mediators can

cause acute airway inflammation. The activation of TLR signaling pathways

will enhance immune responses to allergens and endotoxin. Recurrent epithelial

injury and subsequent increased epithelial permeability will promote persistent

airway inflammation and remodeling. Alterations in the pulmonary surfactant

profile may cause abnormal changes of alveolar surface tension leading to im-

paired lung function.

B.1.3 Ozone and cardiovascular health outcomes

• Molecular initiating events

Upon inhalation, ozone reacts with lung lining fluids components to form ROS

leading to oxidative stress and initiation of pulmonary inflammation. Those

oxidative and pro-inflammatory mediators then enter the circulation system.

All these molecular interactions comprise molecular initiating events.

• Cellular/Extracellular level responses

At the cellular level, bioavailability of vascular NO is reduced [13] and blood lev-

els of pro-inflammatory cytokines are increased [252]. Pulmonary afferents are
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Figure B.2: Adverse Outcome Pathways for ozone and respiratory outcomes

activated after ozone inhalation [253]. The increased levels of pro-inflammatory

cytokines may stimulate the secretion of stress hormones [254].

• Tissue/Organ level responses

Cellular level responses may lead to tissue/organ level responses. Loss of vas-

cular NO bioavailability may lead to abnormal vascular tone, endothelium dys-

function and platelet aggregation. Activation of pulmonary afferents and stress

hormone secretions induced by increased pro-inflammatory cytokines can cause

autonomic imbalance. Norepinephrine released from sympathetic nerves and

circulating norepinephrine released from the adrenal medulla binds to α1 adren-

ergic receptors and induces vasoconstriction [255].

• Individual responses

Finally, clinical consequences, such as altered blood pressure, myocardial is-

chemia, altered HRV and myocardial infarction, may result from those tissue/or-
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B.2 AOP for particulate matter

B.2.1 PM and respiratory health outcomes

• Molecular initiating events

Inhaled PM may be a direct source of ROS due to the redox active surface com-

ponents, such as metals and organic species, and the surface characteristics of

crystal structures; PM may also act as an indirect source of ROS by stimulating

cells to produce ROS [256, 257]. In addition, exogenous or endogenous surface

components carried by PM may directly interact with respiratory cells initiat-

ing a series of events without involving ROS [258, 259]. All these interactions

comprise the molecular initiating events in the AOP.
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• Cellular/Extracellular level responses

At the cellular level, cell signaling pathways, such as the NFκB and AhR path-

ways, are activated in immune cells either by the PM-induced ROS or PM

surface components [259, 260]. Pro- and anti-inflammatory mediators are re-

leased by different immune cells and may recruit more immune cells leading to

pulmonary inflammation. Airway epithelial cells can be damaged by inflamma-

tion as well as by the direct contact with PM, resulting in increased epithelial

permeability. Fine PM can also alter the pulmonary surfactant profile.

• Tissue/Organ level responses

Cellular level responses lead to tissue/organ level responses. The activation of

cell signaling pathways and the release of inflammatory mediators contribute to

the pulmonary inflammation induced by PM. Interactions between PM and im-

mune cells mediate the cytotoxicity of macrophages, which may affect pathogen

clearance and cause impaired lung defense mechanisms [261]. Increased epithe-

lial permeability caused by epithelial injury leads to impaired respiratory bar-

rier function. The PM induced secretion of IL-4, IL-5, IL-13 and the alternative

macrophage activation are associated with allergic disorders [138]. Alteration of

the pulmonary surfactant profile can cause changes of alveolar surface tension

and impaired lung function.

B.2.2 PM and cardiovascular health outcomes

• Molecular initiating events

Inhalation of PM causes excessive oxidative stress and subsequent inflamma-

tion in pulmonary system. Those mediators of oxidative stress and inflamma-

tion (e.g. cytokines and activated immune cells) can then enter the circulation

system. In addition, inhaled fine and ultrafine particles can also migrate from
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Figure B.4: Adverse Outcome Pathways for PM and respiratory outcomes

the respiratory system into the circulation system or get access to the cen-

tral nervous system (CNS) through the olfactory bulb [232]. These molecular

interactions and translocations of PM comprise molecular initiating events.

• Cellular/Extracellular level responses

At the cellular level, vascular nitric oxide (NO) bioavailability is reduced via

multiple pathways, including decreased eNOS protein levels, decreased eNOS

substrate levels, decreased eNOS activation and destruction of NO by superox-

ide anion [11]. Pulmonary afferents can be activated by secondary ROS or PM

itself [262]. PM in the circulation and those deposited in the olfactory bulb may

enter CNS and directly exert their effects. These inflammation mediators, re-

leased from the pulmonary system, may activate immune cells to secrete more

inflammatory cytokines and stimulate the secretion of stress hormones [254].

Furthermore, PM in blood vessels can directly affect endothelial integrity [263].
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• Tissue/Organ level responses

Cellular level responses may lead to tissue/organ level responses. Reduced NO

bioavailability and impaired endothelial integrity lead to altered vascular tone

and endothelium dysfunction causing abnormal vasoconstriction and platelet

aggregation. Activation of pulmonary afferents, direct interaction with CNS

and the secretion of stress hormones can cause autonomic dysfunction lead-

ing to imbalance of sympathetic and parasympathetic activities. Changes in

peripheral vascular resistance—mediated by neurohormonal activation or local

metabolic factors such as nitric oxide (NO)—are important for acute blood

pressure regulation. In the peripheral circulation, norepinephrine released from

sympathetic nerves and circulating nor-epinephrine released from the adrenal

medulla binds to α1 adrenergic receptors and induces vasoconstriction [255].

• Individual responses

Eventually, tissue/organ responses result in physiological consequences that can

be measured clinically, including increased blood pressure, myocardial ischemia,

altered heart rate variability (HRV), and myocardial infarction, etc.
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Appendix C

Matlab codes for ozone / lung function

model

This section contains guidelines for executing the ozone / lung function models im-

plemented in Matlab. The model first simulates the toxicodynamics of ozone in the

alveolar region and then uses a lung mechanics module to the link toxicodynamics

biomarkers to measurable pulmonary biomarkers that characterize lung functions.

(The model was implemented in Matlab R2018b).

C.1 Matlab codes structure

Matlab code files are classified into two modules: the toxicodynamics module and

the lung mechanics module. The toxicodynamics module simulates the dynamics of

the lining fluids and cells in the alveolar region as well as their interactions with

ozone. Since ozone is known for invoking excessive oxidative stress and inflammation,

the immune responses were added to the toxicodynamics module. The relations

among different Matlab code files are illustrated in Figure C.1. ‘O3 mice run.m’ is the

master script that runs the entire model. The toxicodynamics module consists of four

Matlab function files: ‘O3 TD withInfla case study.m’, ‘O3 TD withInfla driver.m’,

‘O3 mice deriv withInfla.m’ and ‘O3 mice config.m’. The lung mechanics module
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is made of the following Matlab function files: ‘alv config O3.m’, ‘alv mech O3.m’,

‘PV O3.m’ which calls ‘openclose.m’, ‘time2freq.m’, ‘O3 Cons fit.m’ and ‘CPM.m’.

O3_mice_run.m

O3_TD_withInfla_case_study.m
alv_config_

O3.m

alv_mech_O3.

m
PV_O3.m

openclose.m

time2freq.m
O3_Cons_

fit.m
CPM.m

O3_TD_withInfla

_driver.m

O3_mice_deriv_

withInfla.m

O3_mice_

config.m

Toxicodynamic 

module

Lung mechanics 

module

Function call

Execution direction

Figure C.1: The structure of Matlab code files for the lung function model upon ozone
exposure

C.2 Matlab codes summaries

O3 mice run.m

‘O3 mice run.m’ is the master script that runs all necessary files for the entire model.

It outputs simulated toxicodynamics, pulmonary and inflammatory biomarkers.

O3 TD withInfla case study.m

‘O3 TD withInfla case study.m’ is the function that runs the toxicodynamics module.

It defines ozone inhalation scenarios for mice and calls ‘O3 TD withInfla driver.m’.

Inputs for this function are necessary parameter values obtained from ‘O3 mice config.m’.

Outputs for this function are toxicodynamics biomarkers that will be used by the lung

mechanics module.
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O3 TD withInfla driver.m

‘O3 TD withInfla driver.m’ is a function within the toxicodynamics module. It tells

Matlab how to solve the differential equations for our model (e.g. solver type, time

span, etc.), checks mass balance of the model and calls ‘O3 mice deriv withInfla.m’.

Inputs for this function are information of ozone inhalation scenarios, necessary model

parameter values and initial amounts of compounds considered in the toxicodynamics

module. The major outputs of this function are time profiles of compounds in the

model.

O3 mice deriv withInfla.m

‘O3 mice deriv withInfla.m’ is a function within the toxicodynamics module. This

function contains all the ordinary differential equations (ode) for the toxicodynamics

module. Particularly, equations that describe the immune responses initiated by

ozone exposure are included in this file. Inputs of this function are time span for the

selected ode solver, initial amounts of all compounds and necessary model parameters.

The output of this function is a set of ordinary differential equations in a format that

meets the requirement of Matlab ode solvers.

O3 mice config.m

‘O3 mice config.m’ stores all parameters required by the toxicodynamics module for

ozone exposure to mice.

alv config O3.m

‘alv config O3.m’ is a function that defines the parameters used in the lung mechanics

module. It has three input arguments: choice of species, positive end expiratory

pressure (PEEP) and pressure amplitude. The output of this function is a set of
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parameter values which will be used to simulate alveolar recruitment and decruitment.

alv mech O3.m

‘alv mech O3.m’ estimates alveolar mechanical parameters. The inputs for this func-

tion are physiological parameters obtained from ‘O3 mice config.m’, alveolar parame-

ters from ‘alv config O3.m’ and outputs from the toxicodynamics module. The main

outputs of this function are the parameters that controls opening pressure and open-

ing rate of alveoli in the lung mechanics module.

PV O3.m

‘PV O3.m’ is a function within the lung mechanics module. The inputs of this func-

tion are alveolar parameters from ‘alv config O3.m’ and alveolar mechanical parame-

ters from ‘alv mech.m’. It loads two mat files (Primewave timeseries and Primewave

frequencies) which replicate the mechanical oscillator used for the artificial breathing

in mice. PV O3.m also calls ‘openclose.m’ which models the sequential opening and

closing of individual alveolar unit. Based on all these, PV O3.m then calculates time

series of pressure, volume, open-close status and fractional recruitment of alveoli (i.e.

fraction of alveolar units that are open).

openclose.m

‘openclose.m’ is a function that decides the open/close status of alveoli. It is called

by ‘PV O3.m’ and its output is a set of binary numbers (0 or 1) corresponding to the

closed or open status of alveoli.
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time2freq.m.m

‘time2freq.m’ is a tool to convert time domain data to frequency domain data using

Fast-Fourier transform algorithm. In this lung mechanics module, time series results

from ‘PV O3.m’ are converted to frequency domain via ‘time2freq.m’.

O3 Cons fit.m

‘O3 Cons fit.m’ is a function within the lung mechanics module. It fits the frequency

domain results to Constant Phase Model. Inputs of this function are frequency do-

main lung impedance and corresponding frequencies. Outputs of this function are

airway resistance, tissue resistance, tissue elastance and tissue inertance.

CPM.m

‘CPM.m’ is a function that calculates the real and imaginary parts of pulmonary

impedance using Constant Phase Model

C.3 Detailed Matlab code

O3 mice run.m

1 clear

2 rng(1);

3

4 %% ************ User-defined parameters *************************

5 %% ************** Species selection *******************************

6 species = 1; % Mouse = 1, SD rat = 2, BN rat = 3, Human = 4

7 %% ************** Breathing properties ...

******************************
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8 PEEP = 9; % Postive End-Expiratory Pressure (cmH2O)

9 Pamp = 30; % Breathing pressure amplitude (cmH2O)

10

11 %% running simulation of toxicodynamic model to get results

12 c = O3 mice config; % we only model mouse(Gow's data is mice data)

13

14 %% Assign inflammation parameters

15

16 TTT = load('Initial X Hill 66 PAadded.mat');

17 x = TTT.X;

18 % NFkB related

19

20 c.R NFkB = x(1);

21 c.x NFkB Nrf2 = x(2);

22 c.deg NFkB = x(3);

23

24 % Nrf2 related

25 c.R Nrf2 = x(4);

26 c.x Nrf2 NFkB = x(5);

27 c.deg Nrf2 = x(6);

28

29 % AO related

30 c.R AO = x(7);

31 c.deg AO = x(8);

32

33 % P A related

34 c.R P = x(9);

35 c.x P NFkB = x(10);

36 c.n P NFkB = x(11);

37 c.x P A = x(12);

38 c.x P SPD = x(13);

39 c.deg P = x(14);

40
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41 % A related

42 c.R A = x(15);

43 c.x A AO = x(16);

44 c.n A AO = x(17);

45 c.deg A = x(18);

46

47 % ROS related

48 c.R ROS = x(19);

49 c.x ROS AO = x(20);

50 c.deg ROS = x(21);

51

52 % P effect on A

53 c.x A P = x(22);

54 c.n A P = x(23);

55 %%

56 CID = c.ChemID;

57 ID = c.IDNum;

58 res = O3 TD withInfla case study(c); % Results of the ToxD model

59

60 %% ******************* Get BAF endpoints when lung function is ...

measured ***************

61

62 t = (240+72)* 60; % min, Timepoint of biomarker 72 hours after ...

3h O3 exposure

63 t crl = 240*60; % Timepoint of control is 0,corresponding to the ...

first item in the result matrix

64

65 %% Total PL

66 % Ratio of total PL at endpoint over control (at 72 hrs)

67

68 PL end = res.amounts(t, ID.AF + (CID.PL-1).*c.N Comp) +...

69 res.amounts(t, ID.Int + (CID.PL-1).*c.N Comp) + ...

70 res.amounts(t, ID.LB + (CID.PL-1).*c.N Comp);
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71

72 PL con = res.amounts(t crl, ID.AF + (CID.PL-1).*c.N Comp) +...

73 res.amounts(t crl, ID.Int + (CID.PL-1).*c.N Comp) + ...

74 res.amounts(t crl, ID.LB + (CID.PL-1).*c.N Comp);

75 PL = PL end/PL con;

76

77

78

79 %% Total SA

80 % Ratio of total SA at endpoint over control (at 72 hrs)

81 SA end = res.amounts(t, ID.AF + (CID.SA-1).*c.N Comp) +...

82 res.amounts(t, ID.Int + (CID.SA-1).*c.N Comp) + ...

83 res.amounts(t, ID.LB + (CID.SA-1).*c.N Comp);

84

85 SA con = res.amounts(t crl, ID.AF + (CID.SA-1).*c.N Comp) +...

86 res.amounts(t crl, ID.Int + (CID.SA-1).*c.N Comp) + ...

87 res.amounts(t crl, ID.LB + (CID.SA-1).*c.N Comp);

88

89 SA = SA end/SA con;

90

91 %

92

93 %% ******************* Alveolar Model ...

**********************************

94 c alv = alv config O3(species,PEEP,Pamp); % Get param values for ...

alveolar model

95

96 [mu Po, ...

beta So,gamma PL ratio,gamma SA ratio,gamma ratio,eta ratio] = ...

alv mech O3(c, c alv, PL, SA,PL con,SA con); % Getting ...

mechanical params

97

98 res alv = PV O3(c alv, mu Po, beta So); % Alveolar model results
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99

100 res.sv.Nfr = res alv.Nfr; % Fractional recruitment of alveoli

101 res.sv.Pf = res alv.Pf; % Pressure (cmH2O) values in breathing

102 res.sv.tf = res alv.tf; % Time points of breathing

103 res.sv.Vt = res alv.Vt; % Vol. values (mL) in breathing

104

105 %% ************** Fourier Transform *****************

106 % This section converts predicted temporal pressure-volume data

107 % to CPM parameters G & H

108 freq = res alv.freq; % Primewave frequencies

109 prime time = res alv.prime t; % Primewave time points

110 N prime = length(prime time); % No. of prime timepoints

111 Pw = time2freq(res.sv.Pf(end-N prime+1:end),freq,0); % Freq. ...

domain pressure

112 Vw = time2freq(res.sv.Vt(end-N prime+1:end),freq,0); % Freq. ...

domain volume

113 Zw = Pw ./ (1i .* (2*pi.*freq) .* Vw); % Freq. domain impedance

114 params = O3 Cons fit(Zw, freq); % Estimating CPM ...

parameters

115 res.sv.G = params(3); res.sv.H = params(4);

116 % [ZR,ZI] = CPM(params, freq);

117

118 %% incorporate P effect into H

119

120 P = res.amounts(:, ID.Cell + (CID.P-1).*c.N Comp);

121 P end = P(t); % P value at the time point of interested, end is ...

72h after exposure

122 load ('h all.mat');

123 Damage = (P end-1)ˆh(2)./(h(1)+(P end-1)ˆh(2));

124 H = res.sv.H*(1+Damage);

125 PARA = params;

126 PARA(4) = H;

127 [ZR,ZI] = CPM(PARA, freq);
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O3 TD withInfla case study.m

1 function res = O3 TD withInfla case study(config)

2

3 global T Infla

4

5 T Infla = 240*60;

6

7

8 c = config;

9 CID = c.ChemID;

10 ID = c.IDNum;

11

12 %%%%%%%%%%%%%%%%% User-defined initial amounts %%%%%%%%%%%%%%%%

13 amount initial = c.amount init;

14

15 % events.timestages = [0 240 243 267 291 1000].* 60; % Time (in ...

mins), add 10 days for the model to reach steady state before ...

O3 exposure

16

17 events.timestages = [0 240 243 246 252 264 288 312].* 60; % 3 ...

hour O3 exposure

18

19 % events.timestages = [0 2 6 12 24 48 72].* 60; % for Kierstein ...

2006, 2 hour O3 exposure

20

21 events.timeincrements = ones(1,length(events.timestages)-1); % ...

output increments

22
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23 %% ********** Inhalation scenarios *************************

24 events.rate inhale.O3 = c.L.Resp rate .* ...

ones(1,length(events.timeincrements)); % L/min

25 events.air concs.O3 = zeros(1,length(events.timeincrements));

26

27 Dose = 0.036 ; % umol/L (0.8 ppm),O3 conc used in Groves paper

28

29

30 events.air concs.O3 = [0 Dose 0 0 0 0 0]; % micro.g/L

31

32 res = O3 TD withInfla driver(c, events, amount initial); % ...

consider ozone reacts with AF

33

34 end

O3 TD withInfla driver.m

1 function simout = O3 TD withInfla driver(config, events, ...

amount initial)

2

3 global E

4

5

6 c = config;

7 ID = c.IDNum;

8 CID = c.ChemID;

9

10 if nargin ≥ 3

11 amount = amount initial;

12 amount(ID.Intake,:) = sum(amount(1:end-1,:),1);

13 else
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14 amount = zeros(c.N Comp, c.N Chem);

15 end

16

17 nstages = length(events.timestages)-1;

18

19

20 saved amounts = [];

21 saved times = [];

22 saved mass balances = [];

23 saved sv = [];

24 saved percents = [];

25

26 % odeset('RelTol', 1e-8, 'AbsTol', 1e-12, 'MaxOrder', 5, 'BDF', ...

'on');

27 odeset('RelTol', 1e-6, 'AbsTol', 1e-8, 'MaxOrder', 5, 'BDF', 'on');

28 for istage=1:nstages % run simulation segments ...

0-3,3-27,27-51,51-75 h

29 stage beg = events.timestages(istage);

30 stage end = events.timestages(istage+1);

31 tspan = stage beg:events.timeincrements(istage):stage end;

32 E = local get event(events, istage); % get exposure scenaios

33 amount(ID.Intake,CID.O3)=amount(ID.Intake,CID.O3)+c.K.pulmonary.* ...

E.C.Inh * E.Q.Inh;

34

35 [cur time new, amount new] = ...

ode15s(@O3 mice deriv withInfla,tspan,amount,[],c);

36

37 saved amounts = [saved amounts(1:end-1,:); amount new];

38 saved times = [saved times(1:end-1); cur time new];

39 amount = amount new(end,:)'; % Set the state for the next stage

40 amount = reshape(amount, c.N Comp, c.N Chem);

41 end

42
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43 simout.amounts = saved amounts; % amounts in compartments

44 simout.times = saved times; % times at which model outputs are saved

45 simout.TD config = c;

46 simout.event config = events;

47

48 function thisevent = local get event(events, istage)

49 thisevent.Q.t = istage;

50 thisevent.Q.Inh = events.rate inhale.O3(istage);

51 thisevent.C.Inh = events.air concs.O3(istage);

52 end

53

54 end

O3 mice deriv withInfla.m

1 function [d amount, optSV] = O3 mice deriv withInfla(t, amount, c)

2 % Derivative function defined in a manner the ODE solver in ...

Matlab expects.

3 % Inputs:

4 % t -- current time of the simulation (time variable in the ODE ...

system)

5 % amount -- amount of chemical in each tissue (state variables)

6 % Outputs: d amount -- derivatives

7 % optSV -- optional state variables such as intermediate conC s

8

9 global E

10

11

12 global T Infla

13

14 if t > T Infla
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15 boolean = 1;

16 else

17 boolean = 0;

18 end

19

20

21

22

23 ID = c.IDNum; % Compartment IDs by name

24 CID = c.ChemID; % Chemical IDs

25

26 amount = reshape(amount, c.N Comp, c.N Chem); %

27

28 c.V = repmat(c.V, 1, c.N Chem); % repmat: copy Volume ...

vector into a 1 by 4 matrix

29 conc = amount ./ c.V; % Concentrations in all ...

compartments

30

31 d amount = zeros(c.N Comp,c.N Chem); % set up a matrix for d amount

32

33 %% ************ Inhalation dosimetry *********************

34 % Inhalation dosimetry of ozone

35 inhale dose = c.K.pulmonary.* E.C.Inh * E.Q.Inh; % Actual ...

inhalation dose into pulmonary alveolar region

36

37 %% ************ Surfactant dynamics***********************

38 %% Surfactant regulation

39 PL Re = c.K.Re(CID.PL) .* (1 + c.K.PL.Re C .* amount(ID.AF,CID.C) ...

./ c.V(ID.AF)); % effect of C on PL recycle,eqn 4.8 in DP thesis

40

41 LB effect = c.K.LB C .* amount(ID.AF,CID.C) ./ c.V(ID.AF); % ...

Effect of C on LB

42 K LB = c.K.LB .* (1 - min(1,LB effect)); % eqn 4.8 in DP thesis
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43

44 PL Ad = c.K.Ads(CID.PL) .* (1 + c.K.Ads SA .* amount(ID.AF, ...

CID.SA) ./ c.V(ID.AF)...

45 + c.K.Ads C .* amount(ID.AF, CID.C) ./ ...

c.V(ID.AF)); % effect of SA and C on PL ...

adsorption,eqn 4.6 in DP thesis

46

47 % Rate of generation (R Gen,i in eqn 4.1 DP thesis) of surfactant

48 % components (R Gen = steady state amount - amount, see page 90 ...

DP thesis)

49 PL Gen = 1 * (c.L.AT2pool(CID.PL) * c.L.Mass - amount(ID.AT2, ...

CID.PL));

50 SA Gen = 1 * (c.L.AT2pool(CID.SA) * c.L.Mass - amount(ID.AT2, ...

CID.SA));

51 C Gen = 1 * (c.L.AT2pool(CID.C) * c.L.Mass - amount(ID.AT2, CID.C));

52

53 % Rate of secretion of surfactant components into lamellar body(LB)

54 PL Sec = c.K.Sec(CID.PL) .* amount(ID.AT2, CID.PL);

55 SA Sec = c.K.Sec(CID.SA) * amount(ID.AT2, CID.SA);

56 C Sec = c.K.Sec(CID.C) * amount(ID.AT2, CID.C);

57 C DSec = c.K.DSec .* amount(ID.AT2, CID.C); % secretion of ...

collectin (SP-A&D) into alveolar fluids(AF) independent of LB

58

59 %% Rate of exocytosis of surfactant components (from LB to AF)

60 PL Exo = K LB .* amount(ID.LB,CID.PL);

61 SA Exo = K LB .* amount(ID.LB,CID.SA);

62 C Exo = K LB .* amount(ID.LB,CID.C);

63

64 %% Rate of recycle of surfactant components from AF

65 PL Rec = PL Re .* amount(ID.AF,CID.PL);

66 SA Rec = c.K.Re(CID.SA) .* amount(ID.AF,CID.SA);

67 C Rec = c.K.Re(CID.C) .* amount(ID.AF,CID.C);

68
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69 %% Degradation of surfactant in AF

70 Deg Loss PL = c.K.Loss.Deg(CID.PL) .* max(0,amount(ID.AF,CID.PL));

71 Deg Loss SA = c.K.Loss.Deg(CID.SA) .* max(0,amount(ID.AF,CID.SA));

72 Deg Loss C = c.K.Loss.Deg(CID.C) .* max(0,amount(ID.AF,CID.C));

73

74 %% Loss to airway from Int

75 AW Loss PL = c.K.Loss.AW .* max(0,amount(ID.Int,CID.PL));

76 AW Loss SA = c.K.Loss.AW .* max(0,amount(ID.Int,CID.SA));

77 AW Loss C = c.K.Loss.AW .* max(0,amount(ID.Int,CID.C));

78

79 %% Mass balance of surfactant in Alveolar type 2(AT2) cells ...

(Generation - Secretion + Recycle)

80

81 d amount(ID.AT2,CID.PL) = PL Rec - PL Sec + PL Gen;

82 d amount(ID.AT2,CID.SA) = SA Rec - SA Sec + SA Gen;

83 d amount(ID.AT2,CID.C) = C Rec - C Sec - C DSec + C Gen;

84

85 %% Mass balance of surfactant in LB (Secretion - exocytosis)

86 d amount(ID.LB,CID.PL)= PL Sec - PL Exo;

87 d amount(ID.LB,CID.SA)= SA Sec - SA Exo;

88 d amount(ID.LB,CID.C)= C Sec - C Exo;

89

90 %% Mass balance of surfactant in Alveolar fluids(AF)

91 d amount(ID.AF,CID.PL) = PL Exo - PL Rec - Deg Loss PL - ...

AW Loss PL-c.K.O3 PL.*(conc(ID.AF,CID.PL)).*amount(ID.AF,CID.O3);

92 d amount(ID.AF,CID.SA) = SA Exo - SA Rec - Deg Loss SA - ...

AW Loss SA-c.K.O3 SA.*(conc(ID.AF,CID.SA)).*amount(ID.AF,CID.O3);

93 d amount(ID.AF,CID.C) = C Exo - C Rec - Deg Loss C - AW Loss C + ...

C DSec-c.K.O3 C.*(conc(ID.AF,CID.C)).*amount(ID.AF,CID.O3);

94 d amount(ID.AF,CID.O3) = ...

inhale dose-c.K.O3 PL.*(conc(ID.AF,CID.PL)).*amount(ID.AF,CID.O3)...

95 -c.K.O3 SA.*(conc(ID.AF,CID.SA)).*amount(ID.AF,CID.O3)...

96 -c.K.O3 C.*(conc(ID.AF,CID.C)).*amount(ID.AF,CID.O3);
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97

98

99 d amount(ID.Intake,CID.O3) = inhale dose;

100 %% Mass balance of surfactant in the Loss compartment (Reaction ...

with ozone + Airway Loss + Degradation in AF - Generation in AT2)

101 d amount(ID.Loss,CID.PL)= ...

c.K.O3 PL.*conc(ID.AF,CID.PL).*amount(ID.AF,CID.O3)+AW Loss PL ...

+ Deg Loss PL - PL Gen;

102 d amount(ID.Loss,CID.SA)= ...

c.K.O3 SA.*conc(ID.AF,CID.SA).*amount(ID.AF,CID.O3)+AW Loss SA ...

+ Deg Loss SA - SA Gen;

103 d amount(ID.Loss,CID.C)= ...

c.K.O3 C.*conc(ID.AF,CID.C).*amount(ID.AF,CID.O3)+AW Loss C + ...

Deg Loss C - C Gen;

104

105

106 %% Equations for the inflammatory module of the Hill version ...

equations

107

108 % regulatory terms

109

110 Reg NFkB Nrf2 = ...

c.x NFkB Nrf2./(c.x NFkB Nrf2+amount(ID.Cell,CID.Nrf2));

111 Reg Nrf2 NFkB = ...

c.x Nrf2 NFkB./(c.x Nrf2 NFkB+amount(ID.Cell,CID.NFkB));

112 Reg P NFkB = (amount(ID.Cell,CID.NFkB).ˆc.n P NFkB)./(c.x P NFkB...

113 +(amount(ID.Cell,CID.NFkB).ˆc.n P NFkB));

114 Reg P A = c.x P A./(c.x P A+amount(ID.Cell,CID.A));

115

116 Reg P SPD = (c.x P SPD ...

./(c.x P SPD+amount(ID.AF,CID.C)./0.0011))*1;

117

118 Reg A AO = (amount(ID.Cell,CID.AO).ˆc.n A AO)./(c.x A AO ...
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119 +(amount(ID.Cell,CID.AO).ˆc.n A AO));

120 Reg ROS AO = c.x ROS AO./(c.x ROS AO+amount(ID.Cell,CID.AO));

121

122 Reg A P = ...

(amount(ID.Cell,CID.P).ˆc.n A P)./(c.x A P+(amount(ID.Cell,CID.P).ˆc.n A P)); ...

% Add P effect on A

123

124 % NFkB related

125 d amount(ID.Cell,CID.NFkB) = boolean*(...

126 c.R NFkB.*amount(ID.Cell,CID.ROS).*(1+Reg NFkB Nrf2)-c.deg NFkB ...

.*amount(ID.Cell,CID.NFkB)...

127 ); % NFkB

128

129

130 %%%%%%%% % P,A,E related

131

132

133 d amount(ID.Cell,CID.P)= boolean*(...

134 c.R P.*(1.*Reg P NFkB.*Reg P A.*Reg P SPD)-...

135 c.deg P.*amount(ID.Cell,CID.P)...

136 ); % P response

137

138

139

140 % d amount(ID.Cell,CID.P)= boolean*(...

141 % ...

c.R P.*(1.*Reg P NFkB.*Reg P A)-c.deg P.*amount(ID.Cell,CID.P)...

142 % ); % P response, Remove SPD regulatory term

143

144 d amount(ID.Cell,CID.A) = boolean*(...

145 c.R A .*(1+Reg A AO)-c.deg A.*amount(ID.Cell,CID.A)...

146 ); % A response,

147
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148 d amount(ID.Cell,CID.A) = boolean*(...

149 c.R A .*(1+Reg A AO*Reg A P)-c.deg A.*amount(ID.Cell,CID.A)...

150 ); % A response, Added P effect on A

151

152

153

154 % Nrf2 related

155 d amount(ID.Cell,CID.Nrf2) =boolean*(...

156 c.R Nrf2.*amount(ID.Cell,CID.ROS).*(1+Reg Nrf2 NFkB)-c.deg Nrf2 ...

.*amount(ID.Cell,CID.Nrf2)...

157 ); % Nrf2

158

159 d amount(ID.Cell,CID.AO) = boolean*(...

160 c.R AO.*amount(ID.Cell,CID.Nrf2)-c.deg AO.*amount(ID.Cell,CID.AO)...

161 ); % AO

162

163

164 d amount(ID.Cell,CID.ROS) = boolean*(...

165 c.R ROS.*amount(ID.AF,CID.O3).*(1+Reg ROS AO)-...

166 c.deg ROS.*amount(ID.Cell,CID.ROS)+amount(ID.Cell,CID.P).*...

167 (amount(ID.Cell,CID.ROS).ˆ2)./(1+(amount(ID.Cell,CID.ROS).ˆ2)));%ROS

168

169

170

171

172 %% Reshape d amount to a vector

173 d amount = reshape(d amount, size(d amount,1) * size(d amount,2), 1);

174 optSV.conc s.tissue = 0; % All tissues

175

176 end
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O3 mice config.m

1 function c = O3 mice config()

2 % provide default configuration values for the model of ozone induced

3 % changes in pulmonary surfactant

4

5 %% Compartments considered in ozone surfactant model

6 c.IDNum.Int = 1; c.CompName{1} = 'Int'; % Alveolar Interface

7 c.IDNum.AF = 2; c.CompName{2} = 'AF'; % Alveolar Fluid

8 c.IDNum.LB = 3; c.CompName{3} = 'LB'; % Lamellar Bodies

9 c.IDNum.AT2 = 4; c.CompName{4} = 'AT2'; % Type II cells

10 c.IDNum.Mph = 5; c.CompName{5} = 'Mph'; % Macrophage

11 c.IDNum.Loss = 6; c.CompName{6} = 'Loss'; % Net Loss of ...

surfactant

12 c.IDNum.Intake= 7; c.CompName{7} = 'Intake'; % Amount of intake ...

in alveoli

13

14 %% Chemicals species considered in ozone surfactant model

15 c.ChemID.O3 = 1; c.ChemName{1} = 'O3'; % Ozone

16 c.ChemID.PL = 2; c.ChemName{2} = 'PL'; % Phospholipids

17 c.ChemID.SA = 3; c.ChemName{3} = 'SA'; % Surface-Active ...

proteins(SP-B, SP-C)

18 c.ChemID.C = 4; c.ChemName{4} = 'C'; % Collectins (SP-A, SP-D)

19

20 %% Add a 'Cell' compartment and chemicals for the inflammation module

21 c.IDNum.Cell= 8; c.CompName{8} = 'Cell'; % A general 'Cell' ...

compartment in which inflammatory responses happen.

22 % chemicals involved in the inflammation module

23 % c.ChemID.IKK = 5; c.ChemName{5} = 'IKK'; % IKK

24 c.ChemID.NFkB = 5; c.ChemName{6} = 'NFkB'; % NFkB

25 % c.ChemID.mIkBa = 7; c.ChemName{7} = 'mIkBa'; % mRNA of IkBa

26 % c.ChemID.IkBa = 8; c.ChemName{8} = 'IkBa'; % IkBa



179

27 c.ChemID.P = 6; c.ChemName{9} = 'P'; % pro-inflammatory ...

response

28 c.ChemID.A = 7; c.ChemName{10} = 'A'; % anti-inflammatory ...

response

29 % c.ChemID.En = 11; c.ChemName{11} = 'En'; % energetic response

30 c.ChemID.Nrf2 = 8; c.ChemName{12} = 'Nrf2'; % Nrf2

31 c.ChemID.AO = 9; c.ChemName{13} = 'AO'; % Anti-oxidative ...

species

32 % c.ChemID.mAO = 14; c.ChemName{14} = 'mAO'; % mRNA of ...

anti-oxidative species

33 c.ChemID.ROS = 10; c.ChemName{15} = 'ROS'; % ROS

34

35

36 %%

37 ID = c.IDNum; % A temporary variable for compartment IDs

38 CID = c.ChemID; % A temporary variable for chemical IDs

39

40 c.N Comp = length(c.CompName); % No. of tissue compartments

41 c.N Chem = length(c.ChemName); % No. of different chemicals

42

43 %% ************ Biological parameters *********************

44 c.Density = 1.0; % Body and tissue density

45 c.BW = 0.140; % Reference BW for mice (in kg)[Wu et al., 2008]

46 c.BW exp = 0.02482; % BW of subject mice (C57J/BL6) (kg) [bw of ...

male C57BL/6J WT is about the same]

47 %% *********** ozone dosimetry in pulmonary ********************

48 c.K.pulmonary = 0.215; % 43% of O3 absorption in the Lower ...

Respiration Tract(O3 ISA), 32%-66% of O3 in the alveolar ...

region(Overton etal. 1987), thus 50% is used here. Therfore, ...

43% * 50% = 21.5%;

49

50 %% *********** Cell parameters of lung ********************
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51 c.L.Mass = 0.43 .* c.BW exp ./ c.BW; % Mass of mouse lung(in ...

g) [Based on 140g mouse in Wu et al., 2008]

52 c.L.Vol = 0.17/25 .* (c.BW exp*1000); % Total mouse lung vol ...

(ml)(SimCYP)

53 c.L.Resp rate = 1.5 * c.BW exp; % Respiratory flow rate (L/min/kg ...

BW) from Groves paper, 150 breath/min with tidal volume of 10 ...

ml/kg-bw

54 c.L.N AT2 = 9.13e7 .* c.L.Mass; % No. of Type II cells per g lung ...

(Gurel et al.,2001)

55 c.L.N AT1 = c.L.N AT2 ./ 2; % No. of Type I cells per g lung ...

(assumend half of AT2)

56 c.L.N Mph = 1.66e5; % No. of macrophages per mouse (Kubota et ...

al.,1999)

57 c.L.N ICell = 60e5; % No. of Icells per lung (assumed half of ...

macrophages)

58 c.L.N LB = 150; % No. of LB per Type II cell

59 c.L.AT2pool(CID.PL) = 10; % PL pool size in Type II ...

cells(mu-mol per g lung)

60 c.L.AT2pool(CID.SA) = 0.175; % SA pool size in Type II ...

cells(mu-mol per g lung)

61 c.L.AT2pool(CID.C) = 1.7848; % C pool size in Type II ...

cells(mu-mol per g lung)

62 c.L.PL dens = 1.04; % PL density (in g/ml)

63 c.L.BD ratio = 0.0035/0.0146; % Basal SP-B/SP-D ratio

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 c.P.alv area = 0.0082/0.3; % Avg. alveolar area(m2) per ml vol of ...

lung (Knust et al.,2009)

66 c.P.alv area = c.P.alv area .* c.L.Vol; % (m2)

67 c.P.alv thick = 0.2; % Avg. thickness of alv. interface(mu-m)

68

69 %% Volume of various compartments (in ml for 0.43g lung)

70 c.V = ones(length(c.CompName),1);

71 c.V(ID.LB) = 2.2;
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72 c.V(ID.AF) = 1.4; % in ml (Moessinger et al., 1990)

73 c.V(ID.Int) = c.P.alv area * c.P.alv thick;

74 c.V(ID.AT2) = 1.51e-2;

75 c.V(ID.Mph) = 8.35e-5;

76 c.V = c.V .* c.L.Mass ./ 0.43; % Scaling to actual subject lungs

77

78 %% ********** Initial and SS amounts *******************

79 c.amount init = zeros(c.N Comp, c.N Chem); % Initial amounts in ...

body (mu-mol)

80 c.amount init(ID.AT2,CID.PL) = c.L.AT2pool(CID.PL);

81 c.amount init(ID.AT2,CID.SA) = c.L.AT2pool(CID.SA);

82 c.amount init(ID.AT2,CID.C) = c.L.AT2pool(CID.C);

83 c.amount init(ID.AF,CID.PL) = 0.0818; % See Page 89 Table 4.1

84 c.amount init(ID.AF,CID.SA) = 0.0035; % See Page 89 Table 4.1

85 c.amount init(ID.AF,CID.C) = 0.0146; % See Page 89 Table 4.1

86 c.amount init(ID.LB,CID.PL) = 1.14; % See Page 89 Table 4.1

87 c.amount init(ID.LB,CID.SA) = 1.995e-2; % See Page 89 Table 4.1

88 c.amount init(ID.LB,CID.C) = 6.84e-6; % See Page 89 Table 4.1

89 c.amount init(ID.Int,CID.PL) = 0;

90 c.amount init(ID.Int,CID.SA) = 0;

91 c.amount init(ID.Int,CID.C) = 0;

92

93 %

94 c.amount init = c.amount init .* c.L.Mass; % Scaling to lung weight

95

96 %% Add initial amounts for chemicals in the Cell compartment of ...

the inflammation module

97 % c.amount init(ID.Cell,CID.IKK) = 0;

98 c.amount init(ID.Cell,CID.NFkB) = 0;

99 % c.amount init(ID.Cell,CID.mIkBa) = 1;

100 % c.amount init(ID.Cell,CID.IkBa) = 0;

101 c.amount init(ID.Cell,CID.P) = 1;

102 c.amount init(ID.Cell,CID.A) = 1;
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103 % c.amount init(ID.Cell,CID.En) = 1;

104 c.amount init(ID.Cell,CID.Nrf2) = 0;

105 c.amount init(ID.Cell,CID.AO) = 0;

106 % c.amount init(ID.Cell,CID.mAO) = 1;

107 c.amount init(ID.Cell,CID.ROS) = 0;

108

109 %% Equlibrium amount at interface

110 c.amount eq(CID.PL) = 1.46; % See Page 89 Table 4.1

111 c.amount eq(CID.SA) = 0.0301; % See Page 89 Table 4.1

112 c.amount eq(CID.C) = 0.0151; % See Page 89 Table 4.1

113 c.amount eq = c.amount eq .* c.L.Mass; % Scaling to lung weight

114 %% ********* Surfactant Rate Constants ****************************

115 % Rate constant for secretion into LB (per min)

116 c.K.Sec(CID.PL:CID.C) = 3.833e-5;

117 % Rate of LB release into BALF (per min)

118 c.K.LB = 0.002;

119 % Rate constant for recycling into cell (per min)

120 c.K.Re(CID.PL:CID.SA) = 1.798e-5;

121 c.K.Re(CID.C) = 9.63e-4;

122 % Constitutive secretion

123 c.K.DSec = 1.222e-4;

124 % Adsorption rate constant into Int (per min)

125 % c.K.Ads(CID.PL) = 3.795e-5;

126

127 c.K.Ads(CID.PL) = 1000;

128 c.K.Ads(CID.SA:CID.C) = 0.0402;

129 % Desorption rate constant from Int (per min)

130 c.K.Des(CID.PL:CID.C) = 0.0646;

131

132 %% ************ Surfactant Loss fractions **********************

133 c.K.Loss.Deg(CID.PL) = 0.0466e-5; % Fractional loss due to ...

degradation(PL)0.0466e-5
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134 c.K.Loss.Deg(CID.SA) = 0.0611e-1; % Fractional loss due to ...

degradation(SA)0.0611e-1

135 c.K.Loss.Deg(CID.C) = 0.0014; % Fractional loss due to ...

degradation(C)0.0014

136 c.K.Loss.AW = 2.083e-5; % Fractional loss to the airway

137

138 %% *********** Regulatory parameters **************************

139 c.K.Ads SA = 7.312e4; % Activation parameter of SA on PL ...

adsorption(per umol/ml)

140 c.K.Ads C = 2.185e5; % Activation parameter of C on PL ...

adsorption(per umol/ml)

141 c.K.LB C = 1.7342e1; % Inhibition parameter of C on LB ...

exocytosis(per umol/ml)

142 c.K.PL.Re C = 3.078e4; % Activation parameter of C on PL ...

recycle(per umol/ml)

143

144 %% Rate constant for ozone reaction with surfactant components

145 c.K.O3 PL = 16262; % ml/(umol*min) from Kim et al. 2010, 4.5e-16 ...

ml/(molecules*s)

146

147 c.K.O3 PL = 16.262*50;

148

149 c.K.O3 SA = c.K.O3 PL/0.37; % from Uppu et al 1995, table 3, ...

relative reactivity c.K.O3 PL/0.37

150 c.K.O3 C = c.K.O3 PL/0.37;

151

152 %% Inflammation module related parameters

153

154 % NFkB related

155 c.k4 = 2.24;

156 c.k NFkB1 = 16.294;

157 c.k NFkB2 = 1.1861;

158 c.K in mIkBa = 0.46337;
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159 c.k IkBa1 = 13.273;

160 c.K out mIkBa = 0.46337;

161 c.k I1 = 1.4;

162 c.k I2 = 0.87;

163 c.k3 = 5;

164

165 % P,A,E related

166 c.K in P = 0.033116;

167 c.k P NFkB = 29.741;

168 c.k P E = 9.0505;

169 c.K out P = 0.332832358;

170 c.K in A = 0.46089;

171 c.k A E = 0.534;

172 c.k A SPD = 0.401;

173 c.K out A = 0.80952;

174 c.K in E = 0.08;

175 c.k E P = 2.216;

176 c.K out E = 0.25728;

177

178 % Nrf2 related

179 c.k synNrf2 = 7.46924565238776;

180 c.k degNrf2 = 0.0115428188310558;

181 c.k synAO = 8.86676515958695;

182 c.k degAO = 12.9865089720687;

183 c.k mAO = 2.42456162185853;

184 c.k syn mAO = 14.6653411502872;

185

186 % ROS related

187 c.k in ROS = 1.32468364935054;

188 c.k deg ROS = 18.4718695869607;

189

190 %% Inflammation related for Hill version equations

191 % NFkB related
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192 c.R NFkB = 16.294;

193 c.x NFkB Nrf2 = 1;

194 c.deg NFkB = 1.1861;

195

196 % Nrf2 related

197 c.R Nrf2 = 7.46924565238776;

198 c.x Nrf2 NFkB = 1;

199 c.deg Nrf2 = 0.0115428188310558;

200 c.R AO = 8.86676515958695;

201 c.deg AO = 12.9865089720687;

202

203 % P A related

204 c.R P = 0.033116;

205 c.x P NFkB = 1;

206 c.n P NFkB =1;

207 c.x P A = 1;

208 c.x P SPD = 1;

209 c.deg P = 0.332832358;

210 c.R A =0.46089;

211 c.x A AO = 1;

212 c.n A AO = 1;

213 c.deg A = 0.80952;

214

215 % ROS related

216 c.R ROS = 1.32468364935054;

217 c.x ROS AO = 1;

218 c.deg ROS = 18.4718695869607;

219

220 % P effect on A

221 c.x A P = 1;

222 c.n A P = 1;

223

224 end
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alv config O3.m

1 function c = alv config O3(i,PEEP,Pamp)

2 % This function defines the parameters for the alveolar R/D model

3 % Argument i represents species, i = 1(Mouse), 2(BN rat), 3 (SD ...

rat), 4(Human)

4 % Argument PEEP, Pamp are in cmH2O

5 %% ***** Body weight (kg) and Pulmonary parameters **********

6 switch i

7 case 1

8 BW = 0.025;

9 c.TLC = 1.175;

10 c.FRC = 0.341;

11 c.K SK = 0.169; %(McGovern et al., 2013)

12 % c.BR = 480; % Breathing rate (breaths per min) (Vaickus ...

et al., 2010)

13

14 c.BR = 150; % Breathing rate (breaths per min) (Grove et ...

al., 2013)

15 c.Qav = 67; % Air flow rate (mL/min) (Vaickus et al., 2010)

16 case 2

17 BW = 0.15;

18 c.TLC = 9.72;

19 c.FRC = 3.91;

20 c.K SK = 0.2;

21 c.BR = 105; % Breathing rate (breaths per min) (Strohl et ...

al., 1997)

22 c.Qav = 30 * (BW*1000/100); % Air flow rate (mL/min per ...

100g) (Strohl et al., 1997)
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23 case 3

24 BW = 0.4;

25 c.TLC = 14.9;

26 c.FRC = 6.18;

27 c.K SK = 0.2; %(Ask et al., 2008)

28 c.BR = 92; % Breathing rate (breaths per min) (Strohl et ...

al., 1997)

29 c.Qav = 30 * (BW*1000/100); % Air flow rate (mL/min per ...

100g) (Strohl et al., 1997)

30 case 4

31 BW = 70;

32 c.TLC = 6800;

33 c.FRC = 2200;

34 c.K SK = 0.2;

35 c.BR = 15; % Breathing rate (breaths per min)

36 c.Qav = 402000; % Air flow rate (mL/min) (Heathcote et ...

al., 2011)

37 end

38

39 %% ***** Alveolar parameters ***************

40 c.Po mu = 66;

41 c.Pc mu = 66;

42 c.Po sig = 3;

43 c.Pc sig = 3;

44 c.So beta = 0.465;

45 c.Sc beta = 0.465;

46 c.N = 1250;

47 Q mice = 67; % Air flow rate for mice for scaling

48 c.Runit = 2500 * (c.Qav/Q mice); % R for alveolar unit ...

(cmH2O/s/ml)(Massa et al.)

49 c.Eunit = 27500; % E for alveolar unit (cmH2O/ml)(Massa et al.)

50 c.k gamma = 0.5;

51 c.mu fac = 1; % Scaling factor
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52 c.beta fac = 1; % Scaling factor

53 %% ********** Breathing parameters *************

54 c.PEEP = PEEP; % PEEP (cmH2O)

55 c.VT = 10 * BW; % Tidal vol. (ml)

56 c.Pamp = Pamp; % Pressure amplitude (cmH2O)

alv mech O3.m

1 function [mu Po, ...

beta So,gamma PL ratio,gamma SA ratio,gamma ratio,eta ratio] = ...

alv mech O3(c, c alv, PL, SA,PL con,SA con)

2 % ** This function estimates alveolar mechanical parameters

3 % mu Po, mu Pc, beta So, beta Sc

4 % Arguments are BAFs and parameters

5 % PL = Ratio of PL in alveolar fluid to baseline

6 % SA = Ratio of SA in alveolar fluid to baseline

7 % NP = total of NP & SfNP in alveolar fluid

8 % c = Physiological parameters for the species

9 % c alv = Alveolar parameters

10 ID = c.IDNum; % A temporary variable for compartment IDs

11 CID = c.ChemID; % A temporary variable for chemical IDs

12

13 eta ratio = 1;

14

15 %% *************Adjust to DP's ...

code*****************************************

16 C PL normal = c.amount init(ID.AF,CID.PL) .* c.L.Mass ./ ... %

17 c.P.alv area; % Normal free PL conc. in alveolar ...

fluid(mu-mol/m2)

18 C SA normal = c.amount init(ID.AF,CID.SA) .* c.L.Mass ./ ...
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19 c.P.alv area; % Normal free SA conc. in alveolar ...

fluid(mu-mol/m2) % ORIGINALLY FROM DP

20

21 %%

22 C PL = C PL normal * PL;

23 C SA = C SA normal * SA;

24

25

26

27 term = (C PL ˆ 1.6) / (0.01 + (C PL ˆ 1.6));

28 term0 = (C PL normal ˆ 1.6) / (0.01 + (C PL normal ˆ 1.6));

29

30 gamma PL ratio = (1 - term) / (1 - term0); % Fold change in gamma PL

31 gamma SA ratio = (1 - C SA) / (1 - C SA normal); % Fold change in ...

gamma SA

32 gamma ratio = gamma PL ratio * gamma SA ratio;

33

34 mu Po = 4.* gamma ratio;

35 beta So = 0.0313.* ((1/gamma ratio) * (1/eta ratio));

36 end

PV O3.m

1 function res = PV O3(c alv, mu Po, beta So)

2 % ** This function estimates macroscopic pulmonary variables

3 % by adding volumes of alveolar units due to an input signal pressure

4 % It calls function openclose.m

5 % Output variables: [Pf,Vt,tf,xf,y,Nfr]

6

7 %% *********** Parameters ******************

8 N = c alv.N; % No. of alveolar units to be simulated
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9

10 Vfrc = c alv.FRC; % FRC vol. (ml) Functional residual capacity

11 VT = c alv.VT; % Tidal vol. (ml)

12 PEEP = c alv.PEEP; % PEEP (cmH2O)

13 % Parameters for PV function for alveoli (Salazar-Knowles)

14 A = c alv.TLC / N; % ml (assuming the entire lung divided ...

into N units)

15 B = c alv.FRC / N; % ml

16 K = c alv.K SK; % 1/cmH2O

17 Vexp = A - B * exp(-K * PEEP); % Minimum vol. at the end of ...

expiration (mL)

18 V0 = Vexp .* ones(N,1); % Initial alveolar volumes (mL)

19 %% *********** Input pressure signal **************

20 Amp = c alv.Pamp; % Max Pressure amplitude (cmH2O)

21 T = 60/c alv.BR; % Period for pressure signal (secs)

22

23 %% *********** Primewave *******************

24 load Prime8 Ptr time series % Flexivent primewave data

25 load Primewave freqs % Flexivent frequencies

26

27 prime time = t; % Primewave time points (secs)

28 eval(['prime pr = Ptr PEEP', num2str(PEEP), ';']) % Primewave ...

pressure vals (cmH2O)

29 % *****************************************

30 % Stages in pressure signal

31 stage1 = 0:0.05:30; % Time series 1 for regular breathing (secs)

32 stage2 = stage1(end):0.05:30+3*T; % Time series 2 for deep ...

breaths (secs)

33 stage3 = stage2(end) + prime time'; % Time series 3 for Prime ...

wave stage (secs)

34 t series = [stage1(1:end-1),stage2(1:end-1),stage3];

35

36 Pamp1 = Amp * VT / Vfrc; % Pr. amplitude for stage 1



191

37 Pamp2 = Amp; % Pr. amplitude for stage 2

38 P1 = (Pamp1 / 2) + (Pamp1 / 2) * sin(2*pi.*(stage1./T) + 1.5*pi) ...

+ PEEP; % for stage 1

39 P2 = (Pamp2 / 2) + (Pamp2 / 2) * sin(2*pi.*(stage2./T) + 1.5*pi) ...

+ PEEP;

40 P3 = prime pr';

41 p series = [P1(1:end-1), P2(1:end-1), P3];

42 %% ************************************************

43 % sim.time = [0 30 30+3*T]; % Timepoints for pressure signal (sec)

44 % sim.time = [sim.time, sim.time(end) + prime time];

45 % sim.delT = 0.05 .* ones(length(sim.time) - 1); % Time intervals ...

(sec)

46 %sim.delT(end) = 0.1666; % Bigger delT for regular inflations

47 % sim.Pamp = (Amp * VT / Vfrc) .* ones(length(sim.time) - 1); % P ...

amplitudes (cmH2O)

48 % sim.Pamp(2) = Amp; % Pressure for deep breaths (cmH2O)

49

50 % tp = 0:0.1:Ncyc*T; % Time array for pressure signal (secs)

51 % P = (Amp/2) + (Amp/2) * sin(2*pi*(tp/T) + 1.5*pi); % ...

Pressure signal (cmH2O)

52

53 %% **** Generating random values for individual airways *****

54 Pcrit = zeros(N,2); % Critical opening & closing pressure

55 Pcrit(:,1) = normrnd(mu Po,c alv.Po sig,N,1);

56 % Pcrit(:,2) = normrnd(Pc,sig Pc,N,1);

57 Pcrit(:,2) = Pcrit(:,1); % Same opening & closing pressures

58 s = zeros(N,2); % Opening & closing rates

59 s(:,1) = beta So ./ unifrnd(0,1,N,1);

60 s(:,2) = s(:,1); % Same opening & closing rates

61

62 %% This is Massa et al. 2008

63 % Excellent fits to the data were obtained when the normally ...

distributed critical
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64 % opening pressures were about 5 cmH2O above the closing ...

pressures and

65 % when the hyperbolically distributed opening velocities were ...

about an order of magnitude greater than the closing velocities.

66 Pcrit(:,2) = max(0,Pcrit(:,1)-5);

67 s(:,2) = s(:,1)./10;

68

69 Ri = repmat(c alv.Runit, N, 1); % Spatially homogenous units

70 Ei = repmat(c alv.Eunit, N, 1); % Spatially homogenous units

71 %% ************** PV computation *******************

72 % Input pressure

73 x0 = zeros(N,1); % Initial state of alveoli (0=closed, 1 = ...

open)

74 % Pf = []; % Array of all values of pressure (cmH2O)

75 % tf = []; % Array of all time points (sec)

76 Vt = []; % Array of volumes (ml)

77 yf = []; % Array of open-close statuses (binary)

78 Po = Pcrit(:,1); Pc = Pcrit(:,2); so = s(:,1); sc = s(:,2);

79 % ************* Quasi-static simulation ****************

80 xf = yf;

81 %nstages = length(sim.delT); % No. of static stages

82 % for i = 1:nstages

83 % timestart = sim.time(i);

84 % timeend = sim.time(i+1);

85 % timeint = sim.delT(i);

86 % time = timestart:timeint:timeend;

87 % Pmax = sim.Pamp(i);

88 % P = (Pmax/2) + (Pmax/2) * sin(2*pi.*(time./T) + 1.5*pi) + ...

PEEP; % Pressure signal (cmH2O)

89 for j = 1:length(t series)-1

90 timeint = t series(j+1) - t series(j); % Length of time interval

91 P = p series; % Pr. time series

92 x = x0;
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93 x(x0 < 1) = so(x0 < 1) .* (P(j) - Po(x0 < 1)) .* timeint + ...

x0(x0 < 1);

94 x(x0 > 0) = sc(x0 > 0) .* (P(j) - Pc(x0 > 0)) .* timeint + ...

x0(x0 > 0);

95 x(x > 1) = x(x > 1) ./ x(x > 1); % Binding x to 1

96 x(x < 0) = x(x < 0) + abs(x(x < 0)); % Binding x to 0

97 y = openclose(x,x0); % Compute open/close status (N X 1)

98 Pi = repmat(P(j), N, 1); % Same input pressure for all units

99 Q = (y ./ Ri) .* (Pi - V0 .* Ei); % Flow rates (N X 1) (ml/s)

100 Valv = V0 + timeint .* Q; % Update volumes based on flow ...

rate (ml)

101 x0 = x;

102 V0 = Valv;

103 Vt = [Vt, sum(Valv)];

104 yf = [yf, y];

105 xf = [xf, x];

106 end

107

108 Pf = p series(1:end-1);

109 tf = t series(1:end-1);

110

111 % s = size(xf)

112 % s1 = size(Pf)

113 % y = openclose(xf); % Compute open/close ...

status (N X t)

114 % V = A - B * exp(-K*Pf); % Salazar-Knowles equation

115 % Valv = zeros(N, length(V)); % Final alveolar volumes (ml)

116

117 % for i = 1:length(tf)

118 % yi = y(:,i); % Open/close statuses at that time ...

(N X 1)

119 % Valv(yi == 0,i) = V0(yi == 0,1); % Alveoli closed; takes ...

last alveolar vol.
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120 % Valv(yi == 1,i) = repmat(V(i), length(yi(yi == 1)), 1); % ...

Alveoli open

121 % V0(yi == 1) = repmat(V(i), length(yi(yi == 1)), 1); % ...

Update V0

122 % end

123

124 % Vt = sum(Valv, 1); % Total volume of all alveolar units (ml)

125 Pcr = Pcrit(:,1);

126 Nfr = sum(yf) ./ N; % Fractional recruitment at each time point

127 res.Pf = Pf; res.Vt = Vt; res.tf = tf; res.xf = xf; res.y = yf;

128 res.Nfr = Nfr;

129 res.freq = freq;

130 res.prime t = prime time;

131 %% Plotting

132 % subplot(1,3,1)

133 % plot(res.tf, res.Pf)

134 % title('Time vs pressure')

135 % subplot(1,3,2)

136 % plot(res.tf, res.Vt)

137 % title('Time vs volume')

138 % subplot(1,3,3)

139 % plot(res.tf, res.Nfr)

140 % title('Time vs Fr.recruit')

141

142 end

O3 Cons fit.m

1 function [R,I,G,H] = O3 Cons fit(Zw, freq)

2 % This function fits real and imaginary parts of freq. domain ...

lung impedance to
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3 % the Constant Phase Model and calculates the parameters R,G,H

4 % Argument Zw contains freq. domain lung impedance values

5 % Freq contains the array of freqs. corr. to the impedance values

6

7 R0 = 0.2997; I0 = 0.58e-3; G0 = 3.6892; H0 = 149.9555;

8

9 x0 = [R0,I0,G0,H0]; % Initial estimates for data fitting

10

11

12 options = optimset('MaxFunEvals',20000);

13 lb = [0 0 0 0];

14

15 [R,I,G,H] = fmincon(@func,x0,[],[],[],[],lb,[],[],options,Zw);

16 % [R,I,G,H] = fminsearch(@func,x0,options,Zw);

17

18 function f = func(x,Zw)

19 % This function constructs the Constant Phase Model equations

20 % and calculates errors between model and results

21 % Argument x contains R, G, H

22 % Argument imp contains the exp values of ZR and ZI

23 freq = [0.5 0.75 1.25 1.75 2.75 3.25 4.25 4.75 5.75 7.25 9.25 ...

10.25...

24 11.75 14.75 16.75 18.25 19.75];

25 R = x(1).*ones(size(freq));

26 I = x(2).*ones(size(freq));

27 G = x(3).*ones(size(freq)); H = x(4).*ones(size(freq));

28 om = 2 * pi .* freq;

29 alpha = (2/pi).*atan(H./G);

30 ZR sim = G./(om.ˆalpha) + R;

31 ZI sim = I.*om - H./(om.ˆalpha);

32 ZR exp = real(Zw); ZI exp = imag(Zw);

33 err1 = (ZR sim - ZR exp).ˆ2;

34 err2 = (ZI sim - ZI exp).ˆ2;
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35 f = sum(err1 + err2);

36 end

37

38 end

time2freq.m

1 function f data = time2freq(time data,freq,mag)

2 % This function converts time domain data to frequency domain

3 % using the Fast Fourier Transform algorithm

4 % Argument time data is the time domain data

5 % freq is the array of frequencies

6 % mag is a decision variable taking 1 if magnitude of the ...

transformed data is required and

7 % 0 if the transformed data is reqd in complex form

8

9 Nt = length(time data); % Length of time data

10 Nf = length(freq); % Length of freqeuncy array

11

12 NFFT = 2ˆnextpow2(Nt);

13 Fs = Nt / (Nf - 1);

14 f = Fs .* linspace(0,1,NFFT/2 + 1);

15 %% ****** Finding indices of resonant frequencies ******

16 ids = zeros(1,Nf);

17 i = 1;

18 for F = freq

19 fr = repmat(F,1,length(f));

20 tmp = abs(f - fr);

21 [tmp, id] = min(tmp);

22 ids(i) = id;

23 i = i + 1;
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24 end

25

26 %% *********** Finding Amplitudes at Resonant Frequencies ****

27 data f = fft(time data,NFFT);

28 if mag == 1

29 f data = abs(data f(ids));

30 else

31 f data = data f(ids);

32 end

33 end

CPM.m

1 function [ZR, ZI] = CPM(params, freq)

2 % Constant Phase Model

3 % params is a 1X4 array containing R, I, G, H

4

5 R = params(1).*ones(size(freq));

6 I = params(2).*ones(size(freq));

7 G = params(3).*ones(size(freq));

8 H = params(4).*ones(size(freq));

9

10 om = 2 * pi .* freq;

11 alpha = (2/pi) .* atan(H./G);

12 ZR = G./(om.ˆalpha) + R;

13 ZI = I.*om - H./(om.ˆalpha);

14 end


