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ABSTRACT OF THE DISSERTATION 

 

SPARSE MACHINE LEARNING METHODOLOGY AND ITS APPLICATIONS TO 

SEMICONDUCTOR MANUFACTURING PROCESSES  

 

by JEONGSUB CHOI 

 

Dissertation Director: 

Dr. Myong K. Jeong 

 

In this dissertation, we present new methodologies in machine learning for sparse solutions 

and the applications to semiconductor manufacturing processes. First, we present a new 

variant of relevance vector machine, called restricted relevance vector machine (RRVM), 

for incomplete data. Imputation is a common remedy to handle incomplete data that hinders 

from training a relevance vector machine (RVM) model. Imputation in kernel space for 

RVM leads to its prediction performance superior to imputation in original space but causes 

the loss of model sparsity. RRVM restricts its basis to be from complete instances 

incorporating incomplete instances for training. The experimental results show that RRVM 

performs prediction with a competitive accuracy, maintaining its model sparsity.  

Next, we propose a new estimation method for Gaussian kernels with incomplete 

data. Gaussian kernels have been extensively used in kernel methods. A recent study 

proposes the estimation of the Gaussian kernels with incomplete data based on a function 

of the squared Euclidean distance between incomplete instances that is the sum of 
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independent squared unit-dimensional distances, and it overlooks the correlations between 

missing unit-dimensional distances. In the proposed method, we model the squared 

Euclidean distance between incomplete instances as the sum of correlated squared unit-

dimensional distances and estimate the Gaussian kernel from the expected kernel function 

under the distribution for the squared Euclidean distance between the instances. The 

experimental results show that the proposed method improves the prediction performance 

in a kernel method when missing components are correlated. 

Furthermore, we present a new autoencoder for feature extraction from multistep 

process signals. Autoencoder is a neural network that reconstructs an input while 

representing the input in a lower-dimensional space from which features are obtained. The 

nature of the input from multistep process signals, however, is neglected by the 

autoencoder. The proposed autoencoder aims to extract features with smooth 

reconstruction by a fusion regularization on neighboring signals and with clipped penalties 

caused by the transient changes of the signals between consecutive subprocesses. A case 

study for virtual metrology at an etching process shows that the proposed method provides 

features for superior prediction performance. 

Finally, we propose a new regularization, group-exclusive group lasso (GGL), in 

deep neural networks for automatic exclusive feature group selection. With group-level 

sparsity, group lasso facilitates the selection of feature groups, but it is difficult to avoid 

the coincident selection of the feature groups that are group-level correlated and that share 

their predictability to a response. GGL aims to enforce exclusive sparsity at an inter-group 

level to select salient feature groups. The experimental results show that GGL leads to 

higher feature group sparsity, maintaining competitive prediction accuracy.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Overview  

Wafers for integrated circuits (ICs) are processed through complex fabrication processes 

(Fenner et al. 2005). According to the increase of the use of ICs, wafer fabrication is 

performed with highly automated facilities and the process equipment for mass production, 

and it is critical to assure reliable wafer fabrication and therefore in-control product 

qualities from process variations (Diebold, 1995; Hung et al., 2007). 

A key to achieving successful wafer fabrication is building an accurate monitoring 

model that predicts wafer qualities. Modeling to monitor wafers is typically based on 

physical measurements on quality characteristics from processed wafers (He and Wang, 

2007; Hung et al., 2007; Weiss et al., 2010), but data collection is a common issue facing 

investigators due to costs for production processing and measurement equipment (Yugma 

et al., 2015). On the other hand, wafer quality prediction can be performed with fabrication 

information from process-equipment sensors, which is called virtual metrology (VM). VM 

is a tool that describes processed wafer qualities by the soft sensor signals from process-

equipment as in-process information, instead of physical measurements, (Vallejo et al., 

2019), and so reliable VM can lead to cost reduction and time-saving, implementing 

predictive and/or prospective maintenances based on process health status provided by VM 

and replacing costly physical measurements and metrology devices (Cheng et al., 2011; 

Chen et al., 2005). For successful VM modeling, many features are extracted from high-
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dimensional data collected from numerous sensors (Hirai and Kano, 2015; Hwang et al., 

2014; Kang et al., 2011; Susto et al., 2015). In this dissertation, we focus on the 

development of methodologies for sparse machine learning models considering data 

properties and the applications to wafer quality prediction in semiconductor manufacturing 

processes.  

For accurate prediction of wafer qualities, a great deal of research has been 

conducted to exploit available information from the partially observed measurements of 

incomplete instances (Chien et al., 2007; He and Wang, 2007; Hsu and Chien, 2007; 

Purwins et al., 2014), wherein missing components in data can occur from various reasons 

such as sensing failures, mistakes in measuring and storing data, and refusals of 

respondents (Kadlec et al., 2009). For the inclusion of incomplete data, imputation is 

commonly adopted to make incomplete instances available as complete data (Hung et al., 

2007; Lee et al., 2019; Pan and Tai, 2009; Wu et al., 2011; Zeng and Spanos, 2009), and 

imputation in feature space for nonlinear prediction models outperforms imputation in 

original data space (Von Hippel, 2009). The imputation in feature space, however, leads to 

the loss of model sparsity in the predictive distribution of the relevance vector machine. 

Therefore, we proposed a new relevance vector machine that performs prediction with a 

competitive accuracy, maintaining model sparsity, by restricting model basis to be from 

complete instances. 

A recent study (Mesquita et al., 2019) proposes the estimation of Gaussian kernels 

with incomplete data as the expected Gaussian kernel (EGK) aiming to the estimation of 

the kernels in feature space. However, EGK overlooks the correlation between missing 

components in the estimation of the squared Euclidean distance between two incomplete 



3 
 

 

instances for the estimation of the Gaussian kernel of the instances. Therefore, we propose 

a new estimation method, the expected Gaussian kernel with correlated variables (EGKC), 

considering the correlations among missing components. In EGKC, a Gamma distribution 

for the squared Euclidean distance between incomplete instances is estimated by the 

approximation of the sum of the correlated Gamma distributions based on the 

approximation in (Feng et al., 2016) for the sum of its correlated squared unit-dimensional 

distances. Then, the Gaussian kernel between the instances is obtained from the expected 

Gaussian kernel under the probability distribution for the squared distance between the 

instances. 

Autoencoder is a neural network that reconstructs an input while representing the 

input in a lower-dimensional space from which features are obtained. The nature of the 

input from multi-step process signals is neglected by the autoencoder, and so the 

reconstructed input signals fluctuate although the original signals are not. Therefore, we 

propose autoencoder with a fusion regularization (Land and Friedman, 1996) on 

neighboring reconstructed signals aiming to extract features with smooth reconstruction. 

Also, we further consider autoencoder with clipping fusion regularization to alleviate 

indiscriminate penalization caused by the application of the fusion regularization on the 

transient changes between the signals of consecutive subprocesses.  

For group-level sparsity, group lasso (Yuan and Lin, 2006) has been a widely 

adopted regularization. However, group lasso leads to the coincident selection of the 

feature groups that are group-level correlated and that share their predictability to a 

response. Aiming at exclusive sparsity at an inter-group level to select salient feature 

groups, we propose a new regularization, group-exclusive group lasso (GGL), that 
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penalizes the feature groups that are active simultaneously and are correlated to each other. 

We evaluate GGL in deep neural networks on a case study for automatic exclusive sensor 

selection in VM modeling. 

 

1.2 Dissertation Outline 

The rest of this dissertation is organized as follows. In Chapter 2, we present a new 

relevance vector machine for incomplete data. In Chapter 3, we propose a new method to 

estimate the expected Gaussian kernels of incomplete data with correlated variables. In 

Chapter 4, we present an autoencoder with a new regularization for multi-step process 

signals. In Chapter 5, we propose a new group-level regularization for automatic exclusive 

feature group selection in deep neural networks. Finally, in Chapter 6, we summarize the 

research results and describe future research. 
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CHAPTER 2  

RESTRICTED RELEVANCE VECTOR MACHINE FOR INCOMPLETE DATA  

 

2.1 Introduction  

Process monitoring in semiconductor manufacturing is a key to achieving reliable wafer 

fabrication and high yield in production. Fabricating wafers is complex, and researchers 

have investigated diverse approaches to monitoring the fabricating processes and the 

quality of the wafer outputs (Martínez-Costa et al., 2014; Negahban and Smith, 2014). A 

typical approach to monitoring wafer fabrication is based on the physical metrology of 

wafer quality characteristics (He and Wang, 2007; Weiss et al., 2010). A few wafers in 

batches are randomly selected as a sample, and their quality characteristics are measured 

assuming that the characteristics of any given sample of all the wafers in production will 

be representative of the full batch (Hung et al., 2007). However, monitoring production 

processes based on such measurements can be limited because of the additional costs for 

measuring devices and human resources and delays in production (Kurz et al., 2014; Yiqi 

et al., 2013). 

Virtual metrology (VM), considered soft metrology, predicts wafer quality 

characteristics based on data about in-process wafers from fabrication equipment sensors. 

In recent decades, VM models have been studied to overcome the limitations of the 

metrology-based approaches (Vallejo et al., 2019) and reduce manufacturing costs by 

enhancing or substituting metrology steps while improving the manufacturing quality by 

providing information about all wafers in production (Kang et al., 2016), thereby increasing 

manufacturing efficiency (Zeng and Spanos, 2009). 
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There is the possibility of missing VM data during wafer fabrication. Signals are 

collected from different sensors on the fabrication equipment as inputs in VM models to 

collect in-process wafer information, and sensor failure is a common cause of missing data 

(Kadlec et al., 2009). Difficulties can arise in detecting sensor signals because of aging, 

miscalibration, or drift without regular maintenance and quality testing (Park et al., 2003), 

and measurements from malfunctioning sensors are rejected or disregarded in model 

building.  

In studies on semiconductor manufacturing, researchers have commonly used two 

approaches to building predictive models with incomplete data. Many investigators 

discarded incomplete instances, measurements that were missing or partially observed, and 

built their models using only complete, fully observed measurements (Chien et al., 2007; 

He and Wang, 2007; Hsu and Chien, 2007; Purwins et al., 2014). Other researchers 

considered imputation to make it possible to include incomplete instances as complete data, 

replacing the missing values with appropriate values based on available instances such as 

the mean (Hung et al., 2007; Wu et al., 2011; Zeng and Spanos, 2009). 

Kernel-based machine learning methods have become popular in data analysis. 

Using the “kernel trick,” complex nonlinear relationships in data can be represented in a 

high-dimensional space by such kernel-based models such as Gaussian processes 

(Rasmussen and Williams, 2006), support vector machines (Vapnik, 1998), and the 

relevance vector machine (RVM) (Tipping, 2001). RVM is a sparse Bayesian kernel 

machine that can be used for regression with high sparsity of a trained prediction model 

and the Bayesian property, and it has shown successful performance on predictive tasks in 

semiconductor manufacturing (Hwang and Jeong, 2018; Hwang et al., 2014) as well as 
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other complex manufacturing (Bastani et al, 2012; Caesarendra et al., 2010; Chang et al., 

2017; Di Maio et al., 2012). 

The presence of missing data hinders training an RVM model because the kernel 

between two instances cannot be calculated by a kernel function if any of the instances has 

missing components. For kernel methods, imputation can be commonly applied to include 

partially observed, incomplete instances. That is, to compute the kernels of incomplete data 

given a kernel function, the missing values are replaced in the original space to make the 

original data complete. However, as discussed in (Von Hippel, 2009), variable 

transformation after direct imputation in the original space, i.e. impute-and-transform, can 

lead to inaccurate estimation of coefficients in an analysis model, and therefore poor 

prediction performance in VM, whereas imputation in the feature space after 

transformation, i.e., transform-and-impute, does not. For the direct treatment of missing 

kernels, imputation can be considered in the kernel space (Belanche et al., 2014; Nebot-

Troyano and Belanche-Muñoz, 2010), which can lead to losing the sparsity of the 

predictive function of a trained RVM model by selecting RVs from among all the instances, 

including incomplete ones, in a data set. 

In this study, we propose a new RVM model for incomplete data, called a restricted 

relevance vector machine (RRVM). RRVM handles incomplete data, imputing the missing 

values in the kernel space to consider complex data nonlinearity. RRVM restricts model 

basis functions to complete instances and maintains the model sparsity incorporating 

incomplete instances. RRVM can explore nonlinearity by using any kind of kernel 

functions to fit data in the presence of missing values. We describe the proposed RRVM 

adopting a method for imputation in kernel space (Nebot-Troyano and Belanche-Muñoz, 
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2010), and we derive the predictive distribution for RRVM, presenting the marginal 

likelihood optimization for RRVM. 

The remainder of this chapter is organized as follows. In Section 2.2, we review the 

related literature on missing treatment methods and the RVM for regression. In Section 2.3, 

we describe the proposed method in detail, and, in Section 2.4, we present experimental 

results from a toy example and a real-life case. Finally, we conclude this work and suggest 

future work in Section 2.5. 

 

2.2 Related Work 

 

2.2.1 Missing treatments 

Incomplete or missing data has long been studied in the literature. A widely adapted 

approach for missing values is imputation, which entails filling in missing values with 

reasonable surrogate values induced from available given data. In another approach, some 

methods deal with missing values within algorithms in order to incorporate such instances 

into model fitting. In this section, we briefly review the literature on missing values. 

One of the most basic imputation methods is single value imputation which replaces 

each missing piece of data with a certain value. Mean imputation uses the mean of the 

variable corresponding to an incomplete instance’s missing coordinate, and median 

imputation uses the median of the variables as a variant of mean imputation. However, 

these processes have the limitation that they underestimate the variance of the variables 

(Little, 1992).  
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Hot-deck imputation methods (Andridge and Little, 2010; Sande, 1983) replace 

missing values with similar observed values in given data. However, hot-deck imputation 

may not be robust because it relies on a single nearest point(s). In response, advanced 

imputation methods have been suggested that take into account the multiple nearest 

neighbor points (Cotton, 1991), a set of neighboring points with weights (Kim and Fuller, 

2004), and a set of neighboring points including partially observed instances (Van Hulse 

and Khoshgoftaar, 2014).  

Multiple imputation methods, introduced in (Rubin, 1978), simultaneously produce 

multiple data sets in which the missing values are replaced with different values randomly 

sampled from the distribution that the data including the missing values are assumed to 

follow. For multiple imputation, some methods in the literature entail generating data sets 

from the distributions whose parameters are estimated by employing the expectation-

maximization algorithm (Dempster et al., 1977; Schafer, 1997) and Markov chain Monte 

Carlo (Lin, 2010) and from iterative hot-deck imputation (Siddique and Belin, 2008).  

However, other researchers have developed missing data imputation methods using 

model-based techniques. In particular for kernel methods, researchers have studied 

implicitly incorporating partial information in analysis models: modifying the objective 

functions of Gaussian process and SVM models in the probability estimation of 

exponential families (Smola et al., 2005) and minimizing the risk caused by incomplete 

instances in SVM modeling (Pelckmans et al., 2005). 

For some kernel method models, researchers have handled missing data in original 

space with values inferred in a kernel space. For general kernel functions, the kernel 

extension (Belanche et al., 2014; Nebot-Troyano and Belanche-Muñoz, 2010) considers 
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imputation in the kernel space without estimating any missing values in the original space, 

which allows for treating missing values in testing data. However, the kernel extension 

overlooks the information from partially observed values of incomplete instances, and 

hence the kernel extension is extended to the extended heterogeneous kernels (EHKs) 

(Belanche et al., 2014; Nebot-Troyano and Belanche-Muñoz, 2010) to make full use of 

available values in incomplete data as an implementation of the kernel extension with 

empirical distributions. The EHK for inputs in a d-dimensional original space is estimated 

by d univariate kernel extensions, each of which exploits all the available values in the 

original space. 

 

2.2.2 Relevance vector machine for regression 

RVM, originally proposed in (Tipping, 2001), is a Bayesian kernel machine whose 

coefficient vector has an automatic relevance determination (ARD) prior distribution. 

RVM has been applied to various regression and classification tasks because it usually 

leads to sparser models than the other kernel methods such as support vector machines and 

Gaussian process regression that originated from the ARD prior (Tipping, 2001; Tipping 

and Faul, 2003) with comparable performance and computational complexities. 

A kernel-based sparse model for predicting a target variable 𝑦  ∈ ℝ with input 

variable vector 𝐱 ∈ ℝ! can be given in the form of a general linear regression model as 

 𝑦 = 𝐰"𝝓(𝐱) + 𝜀 (2.1) 

where 𝐰  = [𝑤#, 𝑤$, … , 𝑤%]"  is an 𝑀 -dimensional model coefficient vector, 𝝓(𝐱)  = 

[𝜙#(𝐱), … , 𝜙%(𝐱)]" is a vector of 𝑀 basis functions, and 𝜀 is a zero-mean Gaussian noise 
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with variance 𝜎$. The basis funcitons 𝜙&(𝐱) can be defined with a kernel function with 

training instances such that 𝑘>𝐱, 𝐱&? for 𝑗 = 1, …, 𝑁. 

Given a data set of 𝑁 instances, {(𝐱' , 𝑦')}'(#) , the target values in 𝐲 = [𝑦#, … , 𝑦)]" 

are predicted by a RVM model as 

 𝐲 = 𝚽𝐰+ 𝛜 (2.2) 

where 𝚽  = [𝝓#, … , 𝝓%]  is the design matrix whose 𝑗 -th column is 𝝓&  = 

G𝜙&(𝐱#), … , 𝜙&(𝐱))H
"  for 𝑗  = 1, …, 𝑀 , and 𝛜  =  [𝜖, … , 𝜖)]"  is a vector of the errors 

assumed as probabilistically independent samples of 𝜀 . Accordingly, the multivariate 

Gaussian likelihood for the target vector 𝐲 is given as 𝑝(𝐲|𝐗,𝐰, 𝜎$) ~ 𝒩(𝐲|𝐲N, 𝜎$) where 

𝐲N = 𝚽𝐰 . The coefficient vector 𝐰  has an ARD prior of 𝑝(𝐰|𝐀)  ~ 𝒩(𝐰|𝟎, 𝐀*#)  = 

∏ 𝒩>𝑤&R0, 𝐴&&*#?%
&(#  where the precision matrix 𝐀 is an 𝑀-by-𝑀 diagonal matrix whose 𝑗-

th diagonal element is 𝐴&&. 

The hyperparameters for the prior distribution on 𝐰 in 𝐀 and 𝜎$ can be determined 

by type-II maximum likelihood estimation, and the likelihood is 

 𝑝(𝐲|𝐗, 𝐀, 𝜎$) = T 𝑝(𝐲|𝐗,𝐰, 𝜎$)𝑝(𝐰|𝐀)𝑑𝐰	

																									~	𝒩(𝟎,𝚽𝐀*#𝚽" + 𝜎$𝐈) 

 

 (2.3) 

where 𝐗 = [𝐱#, … , 𝐱)]" is an input matrix and 𝐱' is the 𝑖-th instance vector. Due to the 

ARD prior, most of the diagonal elements in 𝐀  become infinite after the likelihood 

maximization and the corresponding coefficients collapse to zero. Therefore, the model in 

(2.1) can be represented by a small number of kernel functions that center at the input 

points corresponding to the nonzero coefficients, and these points are called relevance 
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vectors (RVs). Tipping (2001) explained the sparsity brought by the ARD prior using the 

vector alignment, and Wipf and Nagarajan (2008) reformulated the ARD prior and showed 

that the models related to the prior can be considered as a series of re-weighted ℓ# problems. 

More detailed description for the hyperparmaeter estimation of RVM and the sparsity can 

be found in (Tipping, 2001; Tipping and Faul, 2003; Wipf and Nagarajan, 2008). Then, the 

predictive distribution of RVM for a new test point 𝐱∗ can be obtained as follows: 

 𝑝(𝑦∗|𝐱∗, 𝐲, 𝐗, 𝐀, σ)	~	𝒩 \𝑓(𝐱∗), 𝜎$ +𝝓(𝐱∗)"𝚺𝝓(𝐱∗)_ (2.4) 

where 

 𝑚(𝐱∗) = 𝜎*$𝝓(𝐱∗)"𝚺𝚽"𝐲 (2.5) 

 𝚺 = (𝐀 + 𝜎*$𝚽"𝚽)*#. (2.6) 

Sparsity can also be found from the predictive distribution in (2.4). Because most 

diagonal entries of 𝐀 are infinite, most elements in 𝚺 become zero except those for which 

the row and column coincide with the finite diagonal entries of 𝐀 (i.e., Σ'& has nonzero 

values if and only if both 𝐴'' and 𝐴&& are finite). Therefore, 𝚺 can be contracted to an 𝑟-by-

𝑟 matrix where 𝑟 is the number of RVs, and only the kernels between 𝐱∗ and RVs are 

required to find the predictive distribution in (2.4). 
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2.3 Proposed Method 

We first describe the restricted kernel matrix formed with basis functions only from 

complete instances. Then, we propose a novel variant of RVM, the restricted RVM to 

handle incomplete data. 

 

2.3.1 Restricted kernel matrix 

Given a data index set of 𝑁 instances 𝒳 = {1,… ,𝑁}, let 𝒳, ⊂ 𝒳 be an index set of 𝐿 

complete instances in 𝒳  and let 𝒳- = 𝒳\𝒳,  be an index set of (𝑁  − 𝐿) incomplete 

instances that have missing values. Given a kernel function 𝑘>𝐱' , 𝐱&?	for a pair of two 

instance vectors 𝐱' and 𝐱&, it is insufficient to train a RVM model with the kernel matrix 

𝚽 wherein 𝑘>𝐱' , 𝐱&? cannot be computed if either 𝐱' or 𝐱&, or both is in 𝒳-. Therefore, all 

the elements in the kernel matrix, including the kernels from incomplete instances, needs 

to be determined. 

Missing values in an incomplete instance can be inferred from available 

information in given data, and this can be written as 𝓀>𝐱' , 𝐱&R𝒳? where 𝓀 is a function for 

computing 𝑘>𝐱' , 𝐱&? with either instance 𝑖  or instance 𝑗 or with both in 𝒳- . Following 

(Nebot-Troyano and Belanche-Muñoz, 2010), the complete kernel matrix 𝚽j  = 

G𝝓j#, 𝝓j$, … , 𝝓j)H  can be defined imputing the missing components where 𝝓j&  = 

G𝑘k>𝐱#, 𝐱&?, … , 𝑘k>𝐱) , 𝐱&?H
" for 𝑗 ∈ 𝒳 and 𝑘k>𝐱' , 𝐱&? for instances 𝑖, 𝑗 ∈ 𝒳 is given by 
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𝑘k>𝐱' , 𝐱&? =

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑘>𝐱' , 𝐱&?,																																											 if		𝑖, 𝑗 ∈ 𝒳,																			

T𝑝(𝐱')𝑘>𝐱' , 𝐱&?𝑑𝒙' ,																						 if		𝑖 ∈ 𝒳-	and	𝑗 ∈ 𝒳,

T𝑝>𝐱&?𝑘>𝐱' , 𝐱&?𝑑𝒙& ,																						 if		𝑖 ∈ 𝒳,	and	𝑗 ∈ 𝒳-

TT𝑝(𝐱')𝑝>𝐱&?𝑘>𝐱' , 𝐱&?𝑑𝐱'𝑑𝐱& , if		𝑖, 𝑗 ∈ 𝒳-																		

. (2.7) 

To compute 𝑘k>𝐱' , 𝐱&?, we adopt the EHKs of (Belanche et al., 2014) as follows: 

 

𝑘k./0>𝐱' , 𝐱&? =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧1
𝐷
v𝑘1>𝐱' , 𝐱&?
!

1(#

, if		𝑖, 𝑗 ∈ 𝒳,

1
𝐷v𝓀1,-,>𝐱' , 𝐱&R𝒳?

!

1(#

, if		𝑖 ∈ 𝒳-	and	𝑗 ∈ 𝒳,

1
𝐷
v𝓀1,,->𝐱' , 𝐱&R𝒳?
!

1(#

, if		𝑖 ∈ 𝒳,	and	𝑗 ∈ 𝒳-

1
𝐷v𝓀1,-->𝐱' , 𝐱&R𝒳?

!

1(#

, if		𝑖, 𝑗 ∈ 𝒳-

 (2.8) 

where 𝑘1, 𝓀1,-,, 𝓀1,,-, and 𝓀1,-- are univariate kernel functions defined on 𝑑-th input 

features of both instances, respectively, as 

 𝑘1>𝐱' , 𝐱&? = 𝑘>𝑥'1 , 𝑥&1?  

 𝓀1,-,>𝐱' , 𝐱&R𝒳? = 𝕀\𝑖 ∈ 𝒳,
(1)_𝑘1>𝒙' , 𝒙&? +

1
𝐿1
𝕀\𝑖 ∈ 𝒳-

(1)_ v 𝑘1>𝒙5, 𝒙&?
5∈𝒳!

(#)

  

 𝓀1,,->𝐱' , 𝐱&R𝒳? = 𝕀\𝑗 ∈ 𝒳,
(1)_𝑘1>𝒙' , 𝒙&? +

1
𝐿1
𝕀\𝑗 ∈ 𝒳-

(1)_ v 𝑘1(𝒙' , 𝒙8)
8∈𝒳!

(#)
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 𝓀1,-->𝐱' , 𝐱&R𝒳? = 𝕀\𝑖 ∈ 𝒳,
(1), 𝑗 ∈ 𝒳,

(1)_𝑘1>𝒙' , 𝒙&?	

																																				+
1
𝐿1
𝕀\𝑖 ∈ 𝒳-

(1), 𝑗 ∈ 𝒳,
(1)_ v 𝑘1>𝒙5, 𝒙&?

5∈𝒳!
(#)

	

																																				+
1
𝐿1
𝕀\𝑖 ∈ 𝒳,

(1), 𝑗 ∈ 𝒳-
(1)_ v 𝑘1(𝒙' , 𝒙8)

8∈𝒳!
(#)

	

																																				+
1
𝐿1$
𝕀\𝑖 ∈ 𝒳-

(1), 𝑗 ∈ 𝒳-
(1)_ v v 𝑘1(𝒙5, 𝒙8)

8∈𝒳!
(#)5∈𝒳!

(#)

, 

 

𝕀 is an indicator function, 𝒳-
(1)  and 𝒳,

(1)  are the sets of instances of which 𝑑-th input 

features are missing and observed, respectively, and 𝐿1  is the number of instances that 

belong to 𝒳,
(1). 

However, direct application of the imputed kernel matrix 𝚽j  to an RVM model may 

cause issues. First, the basis functions can contain uncertainties from incomplete instances. 

By employing the entire matrix 𝚽j  for a RVM model, a RV can be chosen from the instance 

𝐱9: ∈ 𝒳-, and accordingly, the model is built on this basis function whose values are 

artificially determined with uncertainties. If the basis function has uncertainties from 

missing imputation, it can cause imprecise coefficient estimation in regression such that 

the measurement errors in independent variables causes bias in regression coefficients in 

error-in-variables regression. 

Furthermore, the RVM model with Φj  may lose its sparsity properties if a RV is 

selected that has missing values. Predicting a new testing instance 𝐱∗ requires computing 

kernel values between 𝐱∗ and 𝐱9: in order to find the predictive distribution in (2.4). If 

𝐱9: ∈ 𝒳-, the kernel 𝑘k(𝐱∗, 𝐱9:) implicitly requires calculating the kernel between 𝐱∗ and 
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the instances associated with 𝑘(𝐱∗, 𝐱9:|𝒳,) as in (2.7) or (2.8). Analogously, if 𝐱∗  is 

missing, the predictive distribution requires such computation for the instances associated 

with 𝓀(𝐱∗, 𝐱9:|𝒳,). 

To avoid building a RVM model with RVs chosen from incomplete instances, we 

construct an 𝑁-by-𝐿 matrix 𝚽j9 = G𝝓j9,#, … , 𝝓j9,;H whose basis functions are restricted to 

the functions of the complete instances as 𝝓j9,< = G𝑘k9(𝒙#, 𝒙<), … , 𝑘k9(𝒙) , 𝒙<)H
= for 𝑙 ∈ 𝒳,. 

Then, the kernel in (2.7) and (2.8) restricting the basis can be represented, respectively, as 

 
𝑘k9>𝐱' , 𝐱&? = {

𝑘>𝐱' , 𝐱&?,																					 if		𝑖, 𝑗 ∈ 𝒳,																			

T 𝑝(𝐱')𝑘>𝐱' , 𝐱&?𝑑𝒙' , if		𝑖 ∈ 𝒳-	and	𝑗 ∈ 𝒳,
 (2.9) 

and 

 

𝑘k./0,9>𝐱' , 𝐱&? =

⎩
⎪
⎨

⎪
⎧1
𝐷v𝑘1\𝐱'

(1), 𝐱&
(1)_

!

1(#

,				 if		𝑖, 𝑗 ∈ 𝒳,																			

1
𝐷
v𝓀1,-,>𝐱' , 𝐱&R𝒳?
!

1(#

, if		𝑖 ∈ 𝒳-	and	𝑗 ∈ 𝒳,

. (2.10) 

 

2.3.2 Restricted relevance vector machine for regression with missing data 

We here propose the RRVM to construct a sparse Bayesian kernel regression with missing 

data, restricting relevance vectors to fully observed points. 

Given 𝑁  pairs of input vectors and target values {(𝐱' , 𝑦')}'(#) , suppose inputs 

vectors of 𝐿 instances are complete (0 < 𝐿 < 𝑁) and the target values of all 𝑁 instances 
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are available. With the restricted kernel matrix 𝚽j9  from (2.9) or (2.10), the proposed 

RRVM regression model is defined as 

 𝐲 = 𝚽j9𝐰9 + 𝛆 (2.11) 

where 𝐰9 is an 𝐿-dimensional coefficient vector, 𝛆 is an 𝑁-dimensional noise vector that 

follows 𝒩(𝟎, 𝜎$𝐈)) , and 𝐈)  is an 𝑁 -by-𝑁  identity matrix. The basis functions of the 

RRVM model are restricted to the kernel functions centered at the fully observed instances. 

The proposed RRVM also employs an ARD prior over 𝐰9  in order to obtain a sparse 

solution as the regular RVM model in Section 2.2.2. That is, the coefficient vector 𝐰9 has 

the ARD prior as 𝑝(𝐰9|𝐀9)	 ~ 	𝒩(𝟎, 𝐀9*#) = ∏ 𝒩>𝑤&R0, 𝐴&&*#?;
&(#  where the precision 

matrix 𝐀9 is an 𝐿-by-𝐿 diagonal matrix with diagonal vector 𝛂 = [𝛼#, … , 𝛼;]=. 

Given the ARD prior, the posterior distribution over the coefficient vector 𝐰9 is 

Gaussian: 

 𝑝(𝐰9|𝐲, 𝐗, 𝐀9 , 𝜎$)	~	𝒩(𝐦9 , 𝚺9) (2.12) 

where 𝐦9  = 𝜎*$𝚺9𝚽j9"𝐲  and 𝚺9 = >𝐀9 + 𝜎*$𝚽j9"𝚽j9?
*# . The hyperparameters of the 

proposed model (i.e., 𝐀9 and 𝜎$) can be found by maximum likelihood estimation where 

the marginal likelihood is  

 𝑝(𝐲|𝐗, 𝐀9 , 𝜎$) = T 𝑝(𝐲|𝐗,𝐰9 , 𝜎$)𝑝(𝐰9|𝐀9)𝑑𝐰9 	

																												~	𝒩>𝟎,𝚽j9𝐀9*#𝚽j9" + 𝜎$𝐈)?. 

(2.13) 

The optimization can be conducted iteratively as in (Tipping and Faul, 2003) and 

the detailed procedure is as follows. First, we need to find update formula for iterative 
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process. The covariance matrix in (2.13), 𝚲 = 𝚽j9𝐀9*#𝚽j9" + 𝜎$𝐈), can be decomposed as 

follows: 

 𝚲 = 𝛼'*#𝝓j '𝝓j '" +v𝛼<*#𝝓j <𝝓j <"

<>'

+ 𝜎$𝐈)	

				= 𝛼'*#𝝓j '𝝓j '" + 𝚲*' (2.14) 

where 𝚲*' contains the sum of the contribution of the basis vectors 𝑙 from the complete 

instances for 𝑙  = 1, …,  𝐿  and 𝑙  ≠  𝑖 . The determinant and inverse of 𝚲  are given, 

respectively, by 

 |𝚲| = |𝚲*'| ⋅ R1 + 𝛼'*#𝝓j '"𝚲*'*#𝝓j 'R (2.15) 

and  

 
𝚲*# = 𝚲*'*# −

𝚲*?*#𝝓j '𝝓j ?"𝚲*?*#

𝛼' +𝝓j '"𝚲*'*#𝝓j '
	. (2.16) 

Then, letting 𝛂*'  be the (𝐿 − 1)-dimensional vector that is 𝛂 whose 𝑖-th component is 

excluded, the log marginal likelihood ℒ(𝛂) = log 𝑝(𝐲|𝐗, 𝐀9 , 𝜎$) is given by 

 ℒ(𝛂) = ℒ(𝛂*') + ℓ(𝛼') (2.17) 

where  

 ℒ(𝛂*') = −
1
2
[𝑁 log(2𝜋) + log|𝚲*'| + 𝐲"𝚲*'*#𝐲]	 (2.18) 

and 
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ℓ(𝛼') =

1
2 �log 𝛼' − log

(𝛼' + 𝑠') +
𝑞'$

𝛼' + 𝑠'
� (2.19) 

with the sparsity factor of the 𝑖-th instance, 𝑠' = 𝝓j '"𝚲*'*#𝝓j ', that shows the extent to which 

the corresponding basis vector 𝝓j ' overlaps the basis vectors already involved in the model, 

and the quality factor, 𝑞' = 𝝓j '"𝚲*'*#𝐲, that shows the extent of the alignment of 𝝓j ' with the 

error in the model without that basis. 

Because the log marginal likelihood in (2.17) as the objective function of the 

optimization is decomposed into the part that is related to 𝛼' and those that are not as in 

(2.17), 𝛼' has an unique maximal solution if all other variables are fixed as follows: 

 
𝛼' = {

𝑠'$

𝑞'$ − 𝑠'
,									if			𝑞'$ > 𝑠'

∞,																	otherwise
 (2.20) 

by solving  

 ∂ℓ(𝛼')
𝛼'

=
1
𝛼'
−

1
𝛼' + 𝑠'

−
𝑞'$

(𝛼' + 𝑠')$
= 0. 

 

Hence, the point 𝐱' ∈ 𝒳, is included in the set of RVs, 𝒮9:, if 𝑞'$ > 𝑠'. If 𝜎$ is not given 

as a fixed value, it can also be updated as 𝜎$ = ∥𝐲*𝐲B∥%

)*;C∑ EF&G%H',&&I)
&*+

 (Tipping, 2001) where 

𝐲N = 𝚽j9𝐦9  is the predictive mean of the training points and 𝛴9,<<  is the 𝑙 -th diagonal 

element of 𝚺9. 

Following the algorithm in (Tipping and Faul, 2003), the optimization above is 

performed as shown in Algorithm 2.1. This algorithm has the time complexity 𝒪(𝜂𝑁𝑀$) 

(Tipping and Faul, 2003; Son and Lee 2016) where 𝑀 is the maximum number of basis   



20 
 

 

Algorithm 2.1   Marginal Likelihood Optimization for RRVM 

 Given 𝐗 ∈ ℝ)×!, 𝐲 ∈ ℝ), 𝑘(⋅), and 𝒮9: = ∅ 

1: Initialize 𝜎$ with an appropriate value. 

2: Choose a single basis vector 𝝓j8 = G𝑘k9(𝐱#, 𝐱8), … , 𝑘k9(𝐱) , 𝐱8)H
"  where 𝑟 ∈ 𝒳, , 

and include 𝑟 in 𝒮9:, setting  

• 𝛼8 ←
K𝝓M,K%

%

K𝝓M,-𝐲K%
%
/K𝝓M,K%

%
*G%

 

• 𝛼' ← ∞ for all 𝑖 ∈ 𝒳, and 𝑖 ∉ 𝒮9:.  

3: Calculate 𝐦9 = σ*$𝚺9𝚽j9"𝐲   and 𝚺9 = >𝐀9 + σ*$𝚽j9"𝚽j9?
*#  with given initial 

values. 

4: Repeat 

5:     Select a candidate basis vector 𝝓j ' for 𝑖 ∈ 𝒳,. 

6:     Compute 𝑞' and 𝑠'.  

7:     if 𝑞'$ − 𝑠' > 0 and 𝛼 < ∞ (i.e., already 𝑖 in 𝒮9:), 

8:         Re-estimate 𝛼' 

9:     else if 𝑞'$ − 𝑠' > 0 and 𝛼 = ∞, 

10:         Add 𝑖 to the set 𝒮9: and compute 𝛼' 

11:     else if 𝑞'$ − 𝑠' ≤ 0 and 𝛼' < ∞, 

12:         Remove 𝑖 from 𝒮9: and set 𝛼' = ∞ 

13:     end 

14:     Update 𝜎$ ← ‖𝐲*𝐲B‖%

)*;C∑ EF&G%H',&&I)
&*+

. 

15:     Recalculate 𝐦9, 𝚺9. 

16: Until converged. 
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vectors included during the algorithm and 𝜂 is the number of iterations until convergence. 

Finally, the posterior predictive distribution of the RRVM for a new instance 𝐱∗ 

can be derived using the Sherman-Morrison-Woodbury matrix identity as follows: 

 𝑝(𝑦∗|𝐱∗, 𝐲, 𝐗, 𝐀9 , σ$) = T𝑝(𝑦∗|𝐱∗, 𝐰9 , 𝜎$)𝑝(𝐰9|𝐲, 𝐗, 𝐀9 , 𝜎$)𝑑𝐰9 	

																																								~	𝒩>𝑚PQR(𝐱∗), 𝜎PQR$ (𝐱∗)? (2.21) 

where  

 𝑚PQR(𝐱∗) = 𝐦9
"𝝓j(𝐱∗) (2.22) 

 𝜎PQR$ (𝐱∗) = 𝝓j(𝐱∗)"𝚺9𝝓j(𝐱∗) + 𝜎$. (2.23) 

The detailed derivation of the predictive distribution in (2.19) can be found in Appendix A. 

The proposed RRVM has all advantages of the kernel extension noted in Section 2.2.2, 

maintaining the sparsity of the solution in the predictive posterior distribution. 

Similar to the original RVM, a sparse solution of the proposed RRVM can be 

obtained by employing the ARD prior distribution for the regression coefficient vector 𝐰9. 

Most of the diagonal entries in 𝐀9 go to infinity after maximizing the likelihood in (2.17) 

with respect to the hyperparameters 𝐀9  and 𝜎$  so that only a small number of the 

coefficients have nonzero values. While the original RVM takes all the instances of 

nonzero regression coefficients as the RVs, the RRVM selects the instances of nonzero 

coefficients of 𝐰9 only from the fully observed instances wherein the basis vector consists 

only of the kernel functions centered at the fully observed instances. 

Analogously, most of the elements in 𝚺9 become zero except for those for which 

row and column together coincide with the finite diagonal entries of 𝐀9. In particular, the 
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𝑖𝑗-th entry of 𝚺9  is nonzero if and only if both 𝛼'  and 𝛼&  are finite. Hence, 𝚺9  can be 

contracted to |𝒮9:|-by-|𝒮9:| matrix where |𝒮9:| is the number of RVs in the set, 𝒮9:, after 

the hyperparameter estimation. The kernels between a new point 𝐱∗ and RVs only from 

fully observed instances are required to find the predictive distribution in (2.19). To be 

specific, in the case of EHK, the trained RRVM requires calculating 𝐷|𝒮9:|  kernel 

functions if 𝐱∗  that has no missing and (𝐷 − 𝑢 + 𝑢𝐿)|𝒮9:|  kernel functions if 𝐱∗  has 

missing data in 𝑢 dimensions (𝑢 < 𝐷). Meanwhile, the RVM with the EHK, if one of its 

RVs has missing values in 𝑣 dimensions (𝑣 < 𝐷), requires computing the 𝐷(|𝒮9:| − 𝑣 +

𝑣𝐿)  and (𝐷 − 𝑢 + 𝑢𝐿)(|𝒮9:| − 𝑣 + 𝑣𝐿)  functions, respectively, for complete and 

incomplete 𝐱∗. Therefore, the predictive distribution of the proposed RRVM also implies 

a sparser solution than that of the conventional RVM.  

 

2.4 Experiments 

We evaluate the performance of RRVM-EHK on a toy data set and a real-world data set in 

this section.  

 

2.4.1 Toy data 

In this experiment, we generated artificial data consisting of two-dimensional input and 

output variables. The input data were from the equation [𝑋#, 𝑋$]" = [𝑅 cos 𝜃 , 𝑅 sin 𝜃]" 

where 𝑅 = 4 + 0.5𝑈, 𝜃 = 𝜋𝑉, and 𝑈, 𝑉 ∈ [0,1]. We generated 100 instances of 𝑈 and 𝑉 

sampled from a uniform distribution with the range between 0 and 1 as a training set and 

101 instances by sampling 𝑈 from a uniform distribution with the range between 0 and 1  
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Figure 2.1  Toy data with a noise variance of 0.1.  
 

 

 

 and 𝑉 linearly spaced in the same range as a testing set. The output data were from 𝑌 = 

sinc(𝑋#) + 0.1𝑋$ + 𝜀  where sinc(𝑥)  =  sin(𝑥) /𝑥  and 𝜀  ~	𝒩(0, 𝜎P,'5Q$ )  with a noise 

variance 𝜎P,'5Q$ . Figure 2.1 illustrates the data generated with a noise variance 𝜎P,'5Q$  = 

0.01. We randomly selected instances in the training set and generated missing values for 

either 𝑋# or 𝑋$ of the instances.  

We evaluated the performance of RRVM with EHK for a Gaussian kernel (RRVM-

EHK), comparing with that of RVM with EHK for the same kernel (RVM-EHK). We 

measured the performance of the models by computing each model’s root mean squared 

error, 𝑅𝑀𝑆𝐸  =  ¬∑ 𝑒'$/𝑁SQ
)./
'(#  and maximum absolute error (MAXAE) as 𝑀𝐴𝑋𝐴𝐸  = 

max±|𝑒#|, |𝑒$|, … , R𝑒)./R² where 𝑒' = 𝑦' − 𝑦N' is the prediction error of the 𝑖-th instance in 

the testing set with the predicted value 𝑦N' and 𝑁SQ is the number of testing instances. 

Figures 2.2 and 2.3 show the averaged difference between the testing performances 

of RVM-EHK and RRVM-EHK in 20 replications under different levels of uncertainty (i.e.,  
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Figure 2.2  RMSE difference between RVM-EHK and RRVM-EHK in toy data analysis. 

 

 

 

Figure 2.3  MAXAE difference between RVM-EHK and RRVM-EHK in toy data 
analysis. 
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𝜎P,'5Q$ ) and missing rates given a fixed Gaussian kernel parameter 𝜏 = 0.01, and Figures 

2.4 and 2.5 present the numbers of RVs chosen by RVM-EHK and RRVM-EHK, 

respectively. As the uncertainty level in data (i.e., 𝜎P,'5Q$ ) increased, RRVM-EHK improved 

the prediction accuracy from RVM-EHK, and such improvement was amplified as the 

missing rate increased as shown in Figures 2.2 and 2.3. Besides, the number of RVs of 

RVM-EHK increased for higher missing rate in Figure 2.4, and the proportion of the RVs 

from incomplete instances increased as the missing rate increased in Table 2.1. In the other 

words, the directly application of imputation in feature space to RVM led to losing the 

sparsity of a RVM model wherein more RVs were chosen from highly missing data. 

Meanwhile, the number of RVs of RRVM-EHK maintained lower than the RVM-EHK as 

sparser models, which led to the improved prediction performance by avoiding overfitting. 

 

2.4.2 Case study 

We now evaluate the proposed method for VM modeling in plasma etching for 

semiconductor wafer fabrication. For the etching process, surface films layered on wafers 

are removed by plasmas in a chamber as illustrated in Figure 2.6. The process is monitored 

by various sensors in/on the chamber that measure different physical parameters such as 

gas supply pressure, temperature, and chemical levels. After the completion of the process, 

critical dimensions (CDs) of wafer quality characteristics are recorded as the output of the 

VM model. 
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Figure 2.4  Number of selected RVs of RVM-EHK in toy data analysis. 

 

 

 

Figure 2.5  Number of selected RVs of RRVM-EHK in toy data analysis. 
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Table 2.1  Ratio of RVs of RVM-EHK selected from the incomplete instances in toy data 
analysis. 

Missing  

rates 

𝜎P,'5Q$  

0.10 0.20 0.50 1.00 

0.1 0.147 0.164 0.178 0.201 

0.2 0.247 0.331 0.364 0.334 

0.3 0.373 0.419 0.432 0.429 

0.4 0.465 0.532 0.528 0.510 

0.5 0.552 0.595 0.617 0.585 

0.6 0.641 0.704 0.702 0.697 

0.7 0.736 0.768 0.763 0.764 

0.8 0.840 0.834 0.839 0.853 

 

 

 

Figure 2.6  Illustration of a plasma etching process for wafer fabrication and its 
equipment. 
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Figure 2.7  A general procedure of VM modeling using raw process signals. 
 

 

 

The data set we employed in this experiment consisted of 299 instances from the 

etching process. During the production of identical wafer products, lots of 25 wafers were 

randomly sampled, and instances were collected from the wafers randomly selected from 

the wafers in the sampled lots. Each wafer instance consisted of the signals from 85 

sensors1 and a CD of the wafer. Wafer 𝑖  for 𝑖  = 1, …, 299 was processed during the 

processing time 𝑇', and the signals from sensor 𝑘, 𝐱'T, for 𝑘 = 1, …, 85 were stored.  

To build a VM model, the collected data were preprocessed as illustrated in Figure 

2.7. The features for VM were obtained by computing the process statistics from each 

signal shown in Table 2.2; then, 10 process features were selected based on importance 

scores from the conditional permutation for random forest (Strobl et al., 2008). A summary 

of the data is given in Table 2.3. In the data set, CD measurements of all the sampled wafers 

were available, and the features of 120 wafers were fully available; there were missing 

values from the features of the remaining wafers.  

 

 
1 Among more than 200 sensors, 85 were initially chosen by fab engineers screening out irrelevant sensors. 

Raw 
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Extracted 
features
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data Prediction

Feature 
selection

Feature 
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Table 2.2  Statistics extracted from the signal from sensor 𝑘 for the process of wafer 𝑖. 

Statistic Expression 

Length 𝑇'  

Max max>𝑥'T#, 𝑥'T$, … , 𝑥'T=0?  

Min min>𝑥'T#, 𝑥'T$, … , 𝑥'T=0?  

Mean �̅�'T =
#
=0
∑ 𝑥'T&
=0
&(#   

Variance 𝑠T$ =
#
=0
∑ >𝑥'T& − �̅�'T?

$=0
&(#   

Skewness ∑ \U012*U̅01
51

_
W=0

&(#   

Kurtosis ∑ \U012*U̅01
51

_
X=0

&(#   

 

 

Table 2.3  A summary of selected process features. 

Sensor index Statistics Missing rate (%) 

3 Min 12.04 

10 Max 13.38 

21 Mean   0.00 

22 Min   0.00 

35 Mean 12.37 

35 Skewness 12.37 

66 Max   0.00 

68 Max   7.02 

68 Skewness   7.02 

72 Variance 29.48 
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We evaluated the proposed RRVM (RRVM-EHK), comparing with RVM with the 

incomplete data imputed with the unconditional mean of each dimension (RVM-SMI), 

RVM with the incomplete data imputed with the conditional mean from a multivariate 

normal distribution (RVM-CMI), and RVM with the incomplete data and EHK (RVM-

EHK). The performance of each model was measured from a ten-fold cross-validation. We 

employed all the available complete instances and incomplete instances that were randomly 

sampled from the given data set as follows. We divided both the complete and incomplete 

data into ten individual data sets. We trained a prediction model with a training set that 

consisted of nine complete and nine incomplete sets, and we measured its performance 

using the rest of the complete set. We employed the Gaussian kernel, determining the 

parameter 𝜏 for each predictive model from a five-fold cross-validation over the training 

data set. 

Table 2.4 presents the testing performance results with the pairwise t-test for the 

difference between the testing results. Using EHK for imputation in kernel space (RVM-

EHK and RRVM-EHK) outperformed the imputation in original space (RVM-SMI and 

RVM-CMI). RRVM-EHK showed the competitive performance with higher sparsity over 

that of RVM-EHK where RVM-EHK selected more RVs from the data including 

incomplete instances as seen in Table 2.4. 

 

2.5 Conclusion 

We proposed a novel sparse Bayesian kernel model, the restricted relevance vector 

machine, for incorporating incomplete data into virtual metrology in semiconductor 

manufacturing. RRVM restricts the basis functions to be chosen only from complete   
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Table 2.4  Testing accuracy, the number of RVs, and the ratio of RVs from the 
incomplete instances in VM data analysis. 

 
RMSE MAXAE 

Number of 

RVs Ratio┼ 

RVM-SMI   0.808*     1.760***     86.4*** 0.48 

RVM-CMI   0.807*    1.666**     89.1*** 0.43 

RVM-EHK   0.744* 1.388     40.7*** 0.48 

RRVM-EHK 0.693 1.287 25.7 - 

┼  Ratio of RVs from incomplete instances 
* p-value < 0.10; **   p-value < 0.05; *** p-value < 0.01 

 

 

 

instances in order to prevent the potential loss of the sparsity in the predictive RVM 

distribution. We described the proposed method with EHK, and we evaluated RRVM with 

both a toy and a real-life data set for VM in the etching process for wafer fabrication. The 

experimental results showed that the predictive performance improved when we included 

incomplete instances whose missing values were imputed by EHK in the kernel space, and 

RRVM-EHK achieved this improvement while maintaining model sparsity.  

The proposed method can be extended to problems with different types of data in 

semiconductor manufacturing processes. The information from incomplete data can be 

incorporated considering special data properties such as spatial or time attributes of 

sampled instances. Additionally, it would be worth studying classification problems with 

missing data in semiconductor manufacturing such as faulty detection.  

  



32 
 

 

CHAPTER 3  

GAUSSIAN KERNEL WITH CORRELATED VARIABLES FOR INCOMPLETE 

DATA 

 

3.1 Introduction 

Kernel method is a popular approach for machine learning tasks. Mapping data into a high-

dimensional feature space, kernels facilitate a model to represent complex nonlinearity in 

the original space as linear patterns in feature space (Schölkopf et al., 2002; Shawe-Taylor 

and Cristianini, 2004). The mapping is performed with a kernel function that computes 

inner products of pairs of instance vectors, and diverse types of kernels are considered in 

the literature such as the linear kernel, the polynomial kernel and the radial basis function 

kernel where the selection of the kernel should be based on the nature of problems. 

The presence of incomplete instances that have missing components, however, 

hinders training a kernel method model as the kernel between two instances cannot be 

calculated through a kernel function if any of the instances have missing components. 

There are diverse approaches to handling incomplete data with kernel methods. 

For kernel methods, incomplete data can be treated implicitly in analysis models. 

Some methods in the literature, for example, are proposed such as the kernel partial least 

square for both the estimation of missing values and the classification thereof (Nguyen and 

Tsoy, 2017), the support vector machine minimizing the risk caused by incomplete 

instances (Pelckmans et al., 2005), and the support vector machines and Gaussian process 

with the estimation in feature space (Smola et al., 2005). However, these are model-specific 

methods that are limited to classification tasks and the analysis models employed. 
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As a simple approach, incomplete data for kernel methods can be handled based on 

missing imputation directly in the original space. As a preprocessing step to make 

incomplete data as complete (Jurado et al., 2017), one may employ imputation techniques 

to replace missing components with appropriate values inferred from observed components 

in the data, and then kernels are estimated with complete instances the data whose missing 

components are imputed. Imputation in the original space, however, leads to inaccurate 

estimation of analysis model coefficients when the missing imputation is performed for 

nonlinear terms from the transformation of input variables before the variable 

transformation (Von Hippel, 2009).  

In recent years, there have been studies that address the estimation of kernels for 

incomplete data estimating transformed variables, in particular, for the Gaussian kernel 

that is one of the most popular choices because of its advantages (Bae and Park, 2019; 

Khellat-Kihel et al., 2016; Kim et al., 2018; Zhong et al., 2018). Instead of estimating the 

missing components in the original space, the expected squared distance with incomplete 

instances is considered to estimate the Gaussian kernel (Eirola et al., 2013) and extend their 

work using a Gaussian mixture distribution (Eirola et al., 2014). 

A recent study in (Mesquita et al., 2019) proposes a method to estimate the 

Gaussian kernel with incomplete data as the expected Gaussian kernel (EGK). EGK 

estimates the Gaussian kernel of incomplete instances by computing the expectation of the 

Gaussian function under the probability distribution of the squared Euclidean distance 

between the instances. Following the assumption in (Mesquita et al., 2017), the squared 

distance between two instances in EGK is modeled as a random variable from the sum of 

the squared unit-dimensional distances between the instances, and the squared distance 
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between the instances is approximated by a Gamma random variable from the sum of 

independent Gamma random variables. However, the independence assumption among the 

variables for the squared unit-dimensional distances can lead to a poor approximation of 

the squared distance between two instances when the correlations among the squared unit-

dimensional distances are ignored, and such poor approximation can be amplified when 

more squared unit-dimensional distances are missing as more missing components involve 

in the approximation. Consequently, this leads to inaccurate estimation of Gaussian kernels 

and therefore poor performance of kernel method models. 

In this work, we propose a new method to estimate the Gaussian kernels with 

incomplete data considering the correlations among squared unit-dimensional distances, 

called the expected Gaussian kernel with correlated variables (EGKC). The proposed 

EGKC generalizes EGK considering the correlations among squared unit-dimensional 

distances of incomplete instances in the Gaussian kernel function. By incorporating the 

correlations among the unit-dimensional distances, EGKC leads to a better approximation 

of the squared distance between two instances i) when stronger correlations among the 

squared unit-dimensional distances exist and ii) when more squared unit-dimensional 

distances are missing. We model the squared Euclidean distance between two incomplete 

instances as the sum of the correlated squared unit-dimensional distances. In this modeling, 

we derive the distribution of the Gaussian kernel of incomplete instances using the 

approximation of the squared distance as the sum of the correlated squared unit-

dimensional distances by a Gamma variable as the sum of correlated Gamma variables, 

adopting the approximation in (Feng et al., 2016). We show the parameter estimation of 

the Gamma, and we prove that a necessary condition for the approximation in (Feng et al., 
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2016) is satisfied by the parameter estimation for squared unit-dimensional distance 

variables using the moments of random variables for missing components in original space. 

Then, the Gaussian kernel is obtained from the expected value of the Gaussian kernel 

function under the probability distribution for the squared distance between the instances. 

The remainder of this chapter is organized as follows. In Section 3.2, we review the 

missing treatment methods for the Gaussian kernel for incomplete data. In Section 3.3, the 

proposed method is described in detail, and, in Section 3.4, experiments on synthetic data 

and a real-life case in semiconductor manufacturing are presented. Finally, we conclude 

this chapter and suggest future work in Section 3.5. 

 

3.2 Related Work 

Let 𝐱' = [𝑥'#, … , 𝑥'!]" be a 𝐷-dimensional vector for the 𝑖-th instance and let 𝓂' be an 

index set of the missing dimensions of 𝐱'. For a pair of two vectors 𝐱' and 𝐱&, the Gaussian 

kernel is given by 

 𝑘>𝐱' , 𝐱&? = exp ¸−
1
2𝜏 ¹𝐱' − 𝐱&¹$

$º (3.1) 

where 𝜏 is a kernel parameter (𝜏 > 0) and ¹𝐱' − 𝐱&¹$
$ = ∑ >𝑥'Y − 𝑥&Y?

$!
Y(#  is the squared 

Euclidean distance between the vectors. The presence of any missing in the two vectors 

(i.e.,	𝓂' ∪𝓂& ≠ ∅), however, precludes the computation in (3.1).  

To make available the computation of the Gaussian kernel with incomplete 

instances, missing components can be replaced with appropriate values which are typically 

estimated using the observed components of incomplete instances and other complete 
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instances. One may directly handle incomplete instances imputing the missing components 

in the original space of data, and then obtain the value from the calculation in (3.1) with 

the imputed intances as complete data. As a simple approach, the expected values of 

missing components as random variables are estimated from the conditional distribution 

given the observed values of the incomplete instance in the original space. That is, the 

missing component on 𝑥'Y in 𝐱' as 𝑝 ∈ 𝓂' is regarded as a random variable 𝑋'Y according 

to missing at random (Little and Rubin, 1986), and its expectation 𝐸¼𝑋'Y½𝐱'
(,)¾ is employed 

to replace the missing component where 𝐱'
(,) is the vector that consists of only the observed 

components of 𝐱'. Then, we obtain the imputed vector 𝐱¿ ' whose 𝑝-th component is given 

by 

 
𝑥¿'Y = À

𝐸¼𝑋'Y½𝐱'
(,)¾ if		𝑝 ∈ 𝓂'

𝑥'Y															 otherwise
	. (3.2) 

The missing imputation in (3.2) requires estimating the conditional distribution 

parameters. In the case of data that follow a multivariate normal distribution, the 

expectation conditional maximization method (Meng and Rubin, 1993; Sexton and 

Swensen 2000) can be a fine option (Elora et al., 2013). Then, the Gaussian kernel in (3.1) 

is computed with the imputed vectors 𝐱¿ ' and 𝐱¿& as 𝑘>𝐱¿' , 𝐱¿&? where 𝐱¿' = [𝑥¿'#, … , 𝑥¿'!]". 

EGK in (Mesquita, 2019) is a method to estimate the Gaussian kernel with 

incomplete instances directly in kernel space using the expectation of the Gaussian kernel 

function. For the pair of the instances 𝑖 and 𝑗, the Gaussian kernel function in (3.1) can be 

written as a function of the squared distance: 
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 𝑓>𝜁'&; 𝜏? = exp ¸−
𝜁'&
2𝜏º 

(3.3) 

where 𝜁'& is the squared Euclidean distance between the instance vectors 𝐱' and 𝐱&. In EGK, 

the squared distance 𝜁'& is modeled with the sum of the squared unit-dimensional distances 

over all the dimensions as 𝜁'& = ∑ 𝛾'&Y!
Y(#  where 𝛾'&Y = >𝑥'Y − 𝑥&Y?

$ is the squared unit-

dimensional distance between 𝐱' and 𝐱& in the 𝑝-th dimension for 𝑝 = 1, …, 𝐷. 

In the presence of missing components in any of 𝐱' and 𝐱&, the Gaussian kernel in 

(3.3) becomes a function of random variables. For example, if 𝑝 ∈ 𝓂' and 𝑝 ∈ 𝓂&, the 

corresponding squared unit-dimensional distance 𝛾'&Y is defined as a random variable as a 

function of the random variables for missing components in 𝐱'  and 𝐱&  such that 𝛾'&Y  = 

>𝑋'Y − 𝑋&Y?
$. 

In EGK, it is assumed that the squared unit-dimensional distance in the 𝑝 -th 

dimension, 𝛾'&Y, follows a Gamma distribution with the shape and scale parameters, 𝑘'&Y 

> 0 and 𝜃'&Y > 0, respectively, wherein Gamma distributions are employed for modeling 

with squared random variables (Mesquita et al., 2017) as well as non-negative random 

variables of skewed distributions (Covo and Elalouf, 2014; Genton, 2004; Johnson et al, 

1970; Roberts and Geisser, 1966). Also, it is assumed that the random variables 𝛾'&Y for 𝑝 

= 1, …, 𝐷 are independent of each other. 

The squared distance 𝜁'& is approximated as Gamma distributed with the shape and 

scale parameters, 𝑘'& > 0 and 𝜃'& > 0, respectively, using the sum of independent Gamma 

random variables, 𝛾'&Y for 𝑝 = 1, …, 𝐷 based on the approximation in (Covo and Elalouf, 

2014). The parameters of 𝜁'& are estimated by using its moments as 
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𝑘'& =

𝐸G𝜁'&H
$

𝑉𝑎𝑟>𝜁'&?
 (3.4) 

 
𝜃!" =

𝑉𝑎𝑟&𝜁!"(
𝐸*𝜁!"+

. (3.5) 

Using the estimates from the original data, the expected squared distance 𝐸G𝜁'&H (Eirola et 

al., 2013) can be estimated as 

 
𝐸*𝜁!"+ = -.&𝑥0!# − 𝑥0"#(

$ + 𝜎##,! + 𝜎##,"4
&

#'(

 (3.6) 

where 𝜎YY,' is the conditional variance of 𝑋'1 defined as  

 
𝜎YY,' = Å𝑉𝑎𝑟\𝑋'1½𝐱'

(,)_ if	𝑑 ∈ 𝓂'

0																								 otherwise
, (3.7) 

and, similarly, the variance of the squared distance 𝑉𝑎𝑟>𝜁'&? (Mesquita et al., 2019) can be 

estimated as 

 
𝑉𝑎𝑟&𝜁!"( = -.2&𝜎##,! + 𝜎##,"(

$ + 4&𝜎##,! + 𝜎##,"(&𝑥0!# − 𝑥0"#(
$4

&

#'(

. 
 

(3.8) 

Then, the Gaussian kernel for a pair of instances (𝑖, 𝑗) ∈ ±(𝑖, 𝑗)R𝓂' ∪𝓂& ≠ ∅, 𝑖 ≠ 𝑗² is 

obtained by computing the expected value of the Gaussian kernel function in (3.3) under 

the probability distribution of 𝜁'& with the parameters in (3.4) and (3.5). 
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3.3 Proposed Method 

We propose a new method to estimate the Gaussian kernel with incomplete data, called the 

expected Gaussian kernel with correlated variables (EGKC). In the proposed method, we 

consider a missing component 𝑥'Y  (i.e., 𝑝 ∈ 𝓂') as a random variable 𝑋'Y  according to 

missing at random (Little and Rubin, 1986), and, for brevity, we use the notation 𝑋'Y also 

for observed components as 𝐸G𝑋'YH = 𝑥'Y and 𝑉𝑎𝑟>𝑋'Y? = 0 if 𝑝 ∉ 𝓂'. 

 

3.3.1 Formulation 

Consider a pair of 𝐷-dimensional vectors 𝐱' = [𝑥'#, … , 𝑥'!]" and 𝐱& = G𝑥&#, … , 𝑥&!H
", and 

let 𝓂' and 𝓂& be index sets of the missing dimensions of 𝐱' and 𝐱&, respectively. For the 

pair of  𝐱' and 𝐱&, the Gaussian kernel function in (3.1) can be written as a function of the 

squared distance:   

In the proposed method, we assume that the squared unit-dimensional distance in 

the 𝑝 -th dimension, 𝛾'&Y , is Gamma distributed for 𝑝  ∈  𝓂' ∪𝓂&  as 𝛾'&Y  ~ 

𝐺𝑎𝑚𝑚𝑎>𝑘'&Y, 𝜃'&Y?  with the shape and scale parameters, 𝑘'&Y  ≥  #
$

 and 𝜃'&Y  >  0 , 

respectively, where its probability density function of 𝛾Y is given by 

 
𝑝Z023(𝑥) =

𝑥T023*#

Γ>𝑘'&Y?𝜃'&Y
T023

exp Å−
𝑥
𝜃'&Y

É	.  

The variables, 𝛾'&Y  for 𝑝  =  1, …, 𝐷 , are not necessarily distributed with identical 

parameters. Therefore, in the presence of the correlations among 𝛾'&Y for all 𝑝, the variable 
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for the squared distance 𝜁'&∗  is from the sum of the correlated Gamma random variables 

whose distributions have unequal shape and scale parameters. 

We approximate the squared distance 𝜁'&∗  as Gamma distributed with the shape and 

scale parameters, 𝑘'&∗  >  0  and 𝜃'&∗  >  0 , respectively, using the sum of the correlated 

Gamma random variables, 𝛾'&Y for 𝑝 = 1, …, 𝐷, based on the approximation in (Feng et 

al., 2016) as follows. 

Let 𝛄'& 	  =  G𝛾'&#, … , 𝛾'&!H
"  be a 𝐷 -dimensional vector of the squared unit-

dimensional distances and 𝐑'& be the covariance matrix of 𝛄'& whose (𝑝, 𝑞)-th element is 

𝑅'&,Y[  =  𝐶𝑜𝑣>𝛾'&Y, 𝛾'&[? . Let 𝛚'& = G𝜔'&#, … , 𝜔'&!H
"  be a 𝐷 -dimensional vector of 

independent Gamma random variables 𝜔'&T 	~ 𝐺𝑎𝑚𝑚𝑎>𝑎'&Y, 𝑏'&Y? for 𝑝 = 1, …, 𝐷 where 

the covariance matrix of 𝝎 is a 𝐷-by-𝐷  identity matrix. The original Gamma random 

variable 𝛾'&Y can be approximated using the sum of weighted independent Gamma random 

variable 𝜔'&T for 𝑘 = 1,… , 𝐷 (Zhang et al., 2004) as 

 
𝛾'&Y =v𝑙'&YT𝜔'&T

Y

T(#

 (3.9) 

where 𝑙'&YT the (𝑝, 𝑘)th element of 𝐋'& that is a unique lower triangular matrix from the 

Cholesky factorization on 𝐑'& given by 

 𝐑'& = 𝐋'&𝐋'&= . (3.10) 

Using (3.9), we can obtain the variable 𝜁'& from the sum of weighted independent 

Gamma random variables as 
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𝜁'& =vv𝑙'&YT𝜔'&T

Y

T(#

!

Y(#

=v𝜔'&Yv𝑙'&TY

!

T(Y

!

Y(#

=v𝜔'&Y\
!

Y(#

 (3.11) 

where 𝜔'&Y\  ~ 𝐺>𝑎'&Y, 𝑏'&Y\ ? with 𝑏'&Y\  = 𝑏'&Y ∑ 𝑙'&TY!
T(Y . Then, the distribution for 𝜁'&  can 

be obtained from the approximation from the sum of independent Gamma random 

variables (Nakagami, 1960), and its shape and scale parameters, 𝑘'&∗  and 𝜃'&∗ , respectively, 

are given as 

 
𝑘'&∗ =

>∑ 𝑎'&Y𝑏'&Y\!
Y(# ?$

∑ 𝑎'&Y>𝑏'&Y\ ?$!
Y(#

=
>∑ 𝑎'&Y𝑏'&Y ∑ 𝑙'&TY!

T(Y
!
Y(# ?$

∑ >∑ 𝑙'&TY!
T(Y ?$!

Y(#

 (3.12) 

 
𝜃'&∗ =

∑ 𝑎'&Y>𝑏'&Y\ ?$!
Y(#

∑ 𝑎'&Y𝑏'&Y\!
Y(#

=
∑ >∑ 𝑙'&TY!

T(Y ?$!
Y(#

∑ 𝑎'&Y𝑏'&Y ∑ 𝑙'&TY!
T(Y

!
Y(#

 (3.13) 

where 𝑉𝑎𝑟>𝜔Y?  =  𝑎'&Y𝑏'&Y$  =  1 . Based on (3.9) and (3.10), the distribution of 𝜁'&∗  is 

characterized with the approximated shape and scale parameters, 𝑘'&∗  and 𝜃'&∗ , respectively, 

rewriting (3.12) and (3.13) as 

 
𝑘'&∗ =

>∑ 𝑘'&Y𝜃'&Y!
Y(# ?$

∑ ∑ 𝑅'&Y[!
[(#

!
Y(#

 (3.14) 

 
𝜃'&∗ =

∑ ∑ 𝑅'&Y[!
[(#

!
Y(#

∑ 𝑘'&Y𝜃'&Y!
Y(#

 (3.15) 

where 𝑘'&Y𝜃'&Y = 𝑎'&Y𝑏'&Y ∑ 𝑙'&TY!
T(Y  and ∑ >∑ 𝑙'&TY!

T(Y ?$!
Y(# = ∑ ∑ 𝑅'&Y[!

[(#
!
Y(# . 

Finally, EGKC for the pair of the instances (𝑖, 𝑗), 𝑘.]0^>𝐱' , 𝐱&?, can be obtained by 

estimating the expected Gaussian kernel function 𝑓>𝜁'&; 𝜏? in (3.3) under the probability 
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distribution of 𝜁'&  with the parameters in (3.14) and (3.15) as the expectation of 

𝑘.]0^>𝐱' , 𝐱&? and its variance are, respectively, 

 
𝐸_02∗ G𝑘>𝐱' , 𝐱&?H = Ó

2𝜏
2𝜏 + 𝜃'&∗

Ô
T02
∗

 (3.16) 

 
𝑉𝑎𝑟 \𝑘>𝐱' , 𝐱&?_ = Ó

𝜏
𝜏 + 𝜃'&∗

Ô
T02
∗

Ó1 −
2𝜏

2𝜏 + 𝜃'&∗
Ô
$T02

∗

. (3.17) 

 

3.3.2 Estimation of EGKC 

To estimate the expectation and variance of the Gaussian kernel in (3.17) and (3.18), we 

first estimate the parameters of 𝛾'&Y by the expected squared unit-dimensional distance in 

the 𝑝-th dimension 𝐸G𝛾'&YH and its variance 𝑉𝑎𝑟>𝛾'&Y?. Similar to the methods for the 

distances between two vectors shown in (3.6) and (3.8), 𝐸G𝛾'&YH and 𝑉𝑎𝑟>𝛾'&Y? can be 

obtained by matching the moments with the conditional means in (3.2) and the conditional 

variances in (3.7) of the missing components in original space: 

 𝐸G𝛾'&YH = >𝑥¿'Y − 𝑥¿&Y?
$ + 𝜎YY,' + 𝜎YY,& 																																											 (3.18) 

 𝑉𝑎𝑟>𝛾'&Y? = 2>𝜎YY,' + 𝜎YY,&? Õ𝜎YY,' + 𝜎YY,& + 2>𝑥¿'Y − 𝑥¿&Y?
$Ö. (3.19) 

Proposition 1 shows the estimation in (3.18) and (3.19) for 𝛾'&Y is sufficient to the condition 

of the Gamma approximiation described in Section 3.3.1, and the proof of Proposition 1 is 

in Appendix B. Besides, we may notice that the sum of the expectation in (3.18) for 𝑝 = 
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1, …, 𝐷 and the sum of variance in (3.19) for 𝑝 = 1, …, 𝐷 become equivalent to (3.6) and 

(3.8), resepectively, if the independence among 𝛾'&Y for 𝑝 = 1, …, 𝐷 is assumed. 

 

Proposition 1 Let 𝑋!# and 𝑋!# be a random variable for the missing component of instance 𝑖 in 

the p-th and q-th dimensions, respectively, and let 𝛾!"# = &𝑋!# − 𝑋"#(
$ ~	𝐺𝑎𝑚𝑚𝑎&𝑘!"#, 𝜃!"#( be 

a random variable for the squared unit-dimensional distance between instances 𝑖 and 𝑗 for 𝑖 ≠ 𝑗 

and 𝜎##,! + 𝜎##,! ≠ 0. Then, the parameters estimated using the moments of 𝑋!# and 𝑋"# in (3.18) 

and (3.19) satisfy the condition of the parameters, 𝑘!"# ≥ (
$
 and 𝜃!"# > 0, in the Gamma 

approximation using the sum of the correlated Gammas. 

 

Also, for the approxmiation of the Gamma distribution for 𝜁'&∗ , it is required to 

estimate the covariances between 𝛾'&Y and 𝛾'&[, 𝑅'&Y[, for 𝑝, 𝑞 ∈ {1, … , 𝐷}. However, it is 

unavailable to directly estimate the covariance where the joint distribution of 𝛾'&Y and 𝛾'&[ 

is not given. Similar to the estimation in (3.18) and (3.19), we estimate the covariance 𝑅'&Y[ 

= 𝐶𝑜𝑣>𝛾'&Y, 𝛾'&[?, by means of the moments of the missing components in original space. 

The covariance between 𝛾'&Y  and 𝛾'&[  can be written in terms of the random 

variables for missing components in original space as 

𝐶𝑜𝑣>𝛾'&Y, 𝛾'&[?	

= 𝐸 ¼>𝑋'Y − 𝑋&Y?
$>𝑋'[ − 𝑋&[?

$¾ − 𝐸 ¼>𝑋'Y − 𝑋&Y?
$¾ 𝐸 ¼>𝑋'[ − 𝑋&[?

$¾. 

 

(3.20) 

Under the assumption of the independence between two instances 𝐱' and 𝐱&, it becomes 
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𝐶𝑜𝑣>𝛾'&Y, 𝛾'&[?	

= 𝐸G𝑋'Y$ 𝑋'[$ H − 2𝐸G𝑋'Y$ 𝑋'[H𝐸G𝑋&[H − 2𝐸G𝑋'Y𝑋'[$ H𝐸G𝑋&YH + 4𝐸G𝑋'Y𝑋'[H𝐸G𝑋&Y𝑋&[H	

−2𝐸G𝑋'YH𝐸G𝑋&Y𝑋&[$ H − 2𝐸G𝑋'[H𝐸G𝑋&Y$ 𝑋&[H + 𝐸G𝑋&Y$ 𝑋&[$ H + 2𝐸G𝑋'Y$ H𝐸G𝑋'[H𝐸G𝑋&[H	

−𝐸G𝑋'Y$ H𝐸G𝑋&[$ H + 2𝐸G𝑋'YH𝐸G𝑋&YH𝐸G𝑋'[$ H − 4𝐸G𝑋'YH𝐸G𝑋'[H𝐸G𝑋&YH𝐸G𝑋&[H	

+2𝐸G𝑋'YH𝐸G𝑋&YH𝐸G𝑋&[$ H + 2𝐸G𝑋&Y$ H𝐸G𝑋'[H𝐸G𝑋&[H − 𝐸G𝑋&Y$ H𝐸G𝑋&[$ H 

 

(3.21) 

where the two terms in (3.20) are 

 𝐸 ¼>𝑋'Y − 𝑋&Y?
$>𝑋'[ − 𝑋&[?

$¾	

= 𝐸G𝑋'Y$ 𝑋'[$ H − 2𝐸G𝑋'Y$ 𝑋'[H𝐸G𝑋&[H + 𝐸G𝑋'Y$ H𝐸G𝑋&[$ H − 2𝐸G𝑋'Y𝑋'[$ H𝐸G𝑋&YH	

+4𝐸G𝑋'Y𝑋'[H𝐸G𝑋&Y𝑋&[H − 2𝐸G𝑋'YH𝐸G𝑋&Y𝑋&[$ H + 𝐸G𝑋'[$ H𝐸G𝑋&Y$ H − 2𝐸G𝑋'[H𝐸G𝑋&Y$ 𝑋&[H	

+𝐸G𝑋&Y$ 𝑋&[$ H 

and  

 𝐸 ¼>𝑋'Y − 𝑋&Y?
$¾ 𝐸 ¼>𝑋'[ − 𝑋&[?

$¾	

= 𝐸G𝑋'Y$ H𝐸G𝑋'[$ H − 2𝐸G𝑋'Y$ H𝐸G𝑋'[H𝐸G𝑋&[H + 𝐸G𝑋'Y$ H𝐸G𝑋&[$ H − 2𝐸G𝑋'YH𝐸G𝑋&YH𝐸G𝑋'[$ H	

+4𝐸G𝑋'YH𝐸G𝑋'[H𝐸G𝑋&YH𝐸G𝑋&[H − 2𝐸G𝑋'YH𝐸G𝑋&YH𝐸G𝑋&[$ H + 𝐸G𝑋'[$ H𝐸G𝑋&Y$ H	

−2𝐸G𝑋&Y$ H𝐸G𝑋'[H𝐸G𝑋&[H + 𝐸G𝑋&Y$ H𝐸G𝑋&[$ H. 

To compute the high-order moments of the 𝑖-th instance in (3.21), let 𝐱'(Y[)  = 

G𝑋'Y, 𝑋'[H
" be the bivariate normal distribution, as a subset of the variables in 𝐱', with the 

mean 𝐱¿ '(Y[) = G𝑥¿'Y, 𝑥¿'[H
" and covariance matrix 𝐒k'(Y[) = ¼

𝜎YY,' 𝜎Y[,'
𝜎Y[,' 𝜎[[,'¾ where 
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𝜎Y[,' = Å𝐶𝑜𝑣\𝑋'Y, 𝑋'[½𝐱'

(,)_ if			𝑝, 𝑞 ∈ 𝓂'

0																																 otherwise				
. (3.22) 

Let 𝑀(𝐭) be the moment generating function of 𝐱'(Y[) with a variable vector 𝐭 = G𝑡Y, 𝑡[H
" 

as 

 𝑀(𝐭) = exp ¸𝐭=𝐱¿ '(Y[) +
1
2 𝐭

=𝐒k'(Y[)𝐭º. 
 

High-order raw cross moments of 𝐱'(Y[) are given by 

 
𝐸G𝑋'Y

T+𝑋'[
T%R𝐱¿ '(Y[), 𝐒k'(Y[)H =

𝜕T+CT%𝑀(𝐭)
𝜕𝑡Y

T+𝑡[
T%

Û
𝒕(𝟎

, 
 

and, accordingly, we have 

 𝐸G𝑋'Y$ H = 𝑥¿'Y$ + 𝜎YY,' (3.23) 

 𝐸G𝑋'Y𝑋'[H = 𝜎Y[,' + 𝑥¿'Y𝑥¿'[ (3.24) 

 𝐸G𝑋'Y$ 𝑋'[H = 𝜎YY,'𝜇'[ + 2𝜎Y[,'𝑥¿'Y + 𝑥¿'Y$ 𝑥¿'[ (3.25) 

 𝐸G𝑋'Y$ 𝑋'[$ H = 𝜎YY,'𝜎[[,' + 𝜎YY,'𝑥¿'[$ + 𝜎[[,'𝑥¿'Y$ + 2𝜎Y[,'$ + 4𝜎Y[,'𝑥¿'Y𝑥¿'[ + 𝑥¿'Y$ 𝑥¿'[$ . (3.26) 

From (3.23) - (3.26), we estimate the covariance in (3.21) with the moments of the variables 

for missing components in original space as 

 𝐶𝑜𝑣>𝛾'&Y, 𝛾'&[? = 2>𝜎Y[,' + 𝜎Y[,&?±𝜎Y[,' + 𝜎Y[,& + 2>𝑥¿'Y − 𝑥¿&Y?>𝑥¿'[ − 𝑥¿&[?². (3.27) 
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Note that the covariance in (3.27) becomes equivalent to the variance in (3.19) in the case 

of 𝑝 = 𝑞. Finally, the parameters of 𝜁'&∗  are estimated using (3.18) and (3.26) as 

 
𝑘'&∗ =

𝐸G𝜁'&∗ H
$

𝑉𝑎𝑟>𝜁'&∗ ?
 

(3.28) 

 
𝜃'&∗ =

𝑉𝑎𝑟>𝜁'&∗ ?
𝐸G𝜁'&∗ H

 
(3.29) 

with  

𝐸G𝜁'&∗ H = vÕ>𝑥¿'Y − 𝑥¿&Y?
$ + 𝜎YY,' + 𝜎YY,&Ö

!

Y(#

 (3.30) 

𝑉𝑎𝑟>𝜁'&∗ ? = vv2>𝜎Y[,' + 𝜎Y[,&?±𝜎Y[,' + 𝜎Y[,& + 2>𝑥¿'Y − 𝑥¿&Y?>𝑥¿'[ − 𝑥¿&[?²
!

[(#

!

Y(#

. (3.31) 

 

3.3.3 Implementation 

Given a dataset of 𝑁 intances, {𝐱'}'(#)  and its index set 𝒳 = {1, … , 𝑁}, let ℳ be a set of 

incomplete instance indexes (ℳ ⊂ 𝒳) where 𝑖 ∈ ℳ if 𝓂' ≠ ∅. The Gaussian kernels with 

incomplete data and EGKC are obtained according to the procedure described in Algorithm 

3.1. 
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Algorithm 3.1   Estimation of the Gaussian kernels with EGKC 

 Input: a data set {𝐱'}'(#) , a instance index set 𝒳, and an incomplete instance 

index set ℳ 

1: Estimate mean 𝛍𝒳  and covariance 𝚺𝒳  from data 

2: Repeat for all 𝑖 ∈ 𝒳 

3:     Obtain 𝑥¿'Y in (3.2) for all 𝑝 and 𝜎Y[,' in (3.22) for all (𝑝, 𝑞) 

4: End  

5: Repeat for 𝑖 ∈ 𝒳, 

6:     Repeat for 𝑗 ∈ 𝒳, 

7:         If 𝑖 = 𝑗,  

8:             Set 𝑘>𝐱' , 𝐱&? = 1 

9:         Else if 𝑖, 𝑗 ∉ ℳ,  

10:             Obtain 𝑘>𝐱' , 𝐱&? with the standard Gaussian kernel  

11:         Else 

12:             Compute 𝐸G𝜁'&∗ H in (3.30) and 𝑉𝑎𝑟>𝜁'&∗ ? in (3.31) 

13:             Estimate the parameters 𝑘'&∗  in (3.28) and 𝜃'&∗  in (3.29) 

14:             Compute 𝑘.]0^>𝐱' , 𝐱&? from the expectation in (3.16) 

15:         End 

16:     End 

17: End 

 Output: a kernel matrix 𝐊 ∈ ℝ)×) where [𝐊]'& = 𝑘.]0^>𝐱' , 𝐱&? 
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3.4 Experiments 

We evaluate the performance of EGKC by conducting experiment with synthetic data and 

real-life case data. Using synthetic data from multivariate normal distribution, we compare 

the Gaussian kernels estimated by EGKC with those estimated by EGK. Then, we conduct 

a comparative experiment using a real-life data from a multi-pattern photolithography 

process in wafer fabrication. 

For the following experiments, we employed the relevance vector machine (RVM) 

(Tipping, 2001), which is a kernel-based machine learning method for sparse Bayesian 

regression. RVM chooses relevance vectors from the instances in a given training data set, 

and a RVM model with the relevance vectors as the basis can perform prediction tasks with 

high sparsity, maintaining the Bayesian property. The applications of RVM has been 

shown with successful performance in predictive tasks in manufaturing (Caesarendra et al., 

2010; Chang et al., 2017; Di Maio et al., 2012; Hwang et al., 2014). 

 

3.4.1 Synthetic data: Multivariate normal data 

We evaluate the estimation quality of the kernels from EGKC using the difference from 

true data. Let 𝐱 = [𝑋#, 𝑋$, … , 𝑋b] be an input variable vector that follows a multivariate 

normal distribution as 𝐱 ~	𝒩(𝛍, 𝚺) with a zero mean vector 𝛍 and a covariance matrix 𝚺 

whose diagonal elements 𝛴'' for 𝑖 = 1, …, 6 are one and whose off-diagonal elements 𝛴'& 

are 𝑐c,88  to control for the correlations of variables of interest for (𝑖, 𝑗)  ∈ 

{(1,2), (3,4), (5,6)}  and 0 otherwise. Then, an output variable 𝑌 ∈ ℝ  is defined by a 

function of the input variables as 
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 𝑌 = 𝑢#𝑋# sin 𝑋$ + 𝑢$𝑋W sin 𝑋X + 𝑢W𝑋d sin 𝑋b + 𝜀  

where 𝑢&  ∈ {−10,10} is a coefficient with the randomly chosen sign for 𝑗 = 1,2,3 and 

𝜀~𝑁(0,0.2). 

Based on the distribution, we generated training data of 𝑁S8  = 100 instances at 

random as an input matrix 𝐗S8 ∈ ℝ).,×% and an output vector 𝐲 ∈ ℝ).,. We divided the 

data randomly into two sets of 𝑁, instances as complete data 𝐗S8
(,) = G𝐱#, … , 𝐱)!H

" and 𝑁- 

instances as incomplete data 𝐗S8
(-) = G𝐱)!C#, … , 𝐱).,H

" where 𝐱' is the 𝑖-th instance vector 

and 𝑁S8  = 𝑁,  + 𝑁- . We made missing the values for the pair of variables of interest 

together as 𝐙S8
(-) = G𝐳)!C#, … , 𝐳).,H

" where 𝐳' is the vector 𝐱' with missing components. 

Then, we trained RVM models using the incomplete data 𝐙S8  =  ä\𝐙S8
(,)_

"
, \𝐙S8

(-)_
"
å
"

 

where 𝐙S8
(,) = 𝐗S8

(,). We generated testing data of 𝑁SQ = 100 complete instances at random 

from the same distribution as 𝐗SQ ∈ ℝ)./×% . We measured the performance of the 

prediction models computing the mean absolute error (MAE) as 𝑀𝐴𝐸.]0^  = ∑ |𝑒'|/𝑁SQ
)./
'(#  

and the root mean square error (RMSE) as 𝑅𝑀𝑆𝐸 = ¬∑ 𝑒'$/𝑁SQ
)./
'(# . 

Figures 3.1 and 3.2 present the averaged prediction results of EGK and EGKC over 

10 replications with the Gaussian kernel parameter 𝜏  and the missing rate 𝜂 . Roughly 

speaking, EGKC outperformed EGK in the varying kernel parameters and missing rates. 

EGKC improved the prediction performance as the correlation coefficient 𝑐c,88 increased. 

Also, we may notice that such improvement by EGKC was amplified by the increase of 

missing ratio wherein the more missing components, the more the estimation of the kernels 

affected the prediction model.    
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Figure 3.1  Testing MAE of EGK (red circles) and EGKC (black asterisks) in synthetic 
data. 
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Figure 3.2  Testing RMSE of EGK (red circles) and EGKC (black asterisks) in synthetic 
data. 
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Figure 3.3  A schematic procedure of multistage wafer fabrication process. 

 

 

 

3.4.2 Case study: Prediction in wafer quality at an etching process 

We consider a multi-pattern photolithography process in wafer fabrication. The wafer 

fabrication is typically performed in a complex multistage process that consists of 

numerous stages. At each stage a specified unit process such as chemical-mechanical 

polishing (CMP), chemical vapor deposition (CVD), planarization and lithography 

(PHOTO), and etching (ETCH) is performed, and wafers in a batch go through the set of 

stages predefined along with a fabrication recipe for final products as shown in Figure 3.3.  

For the process control in semiconductor manufacturing processes, monitoring 

models are built typically using wafers quality characteristics measured at each stage after 

the completion of the corresponding operation. A few critical dimensions for wafer 

qualities are selected based on engineers’ knowledge such as the thickness of the remaining 

silicon on wafers at a unit etching process stage, and then the physical measurements of 

the quality characteristics are obtained from sampled lots of wafers.  
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A goal in a multistage process is to monitor the process with wafer qualities at a 

critical stage and thereby to control the final product volume according to a production 

plan considering undesirable defective chips on the wafers. The product qualities are 

determined not only by the corresponding unit process stage but also by the results from 

the preceding stages as accumulated antecedents on the products. 

Collecting data for process analysis at an inter-stage level requires much time and 

cost. Although it is available to readily monitor the qualities of wafers at a unit process 

stage taking the measurements from sampled wafers, the sampled wafers need to be traced 

along the preceding/subsequent stages based on the fabrication recipe in order to get the 

complete measurements for the inter-stage analysis. Besides, it is cumbersome to collect 

such inter-stage data wherein the relevant unit processes are interrupted to obtain 

measurements for the sampled wafers each time. In these regards, the number of the wafers 

observed fully at all the stages is often limited comparing to that of the wafer partially 

observed in a multistage process. 

This experiment aims to predict the quality of wafers at an etching process using 

the information of its preceding unit processes, determined by technical relationships based 

on engineers’ knowledge, in a multi-pattern fabrication process. The target etching process 

is performed after the completion of eight preceding unit processes, and wafer quality at 

each unit process is measured on a predetermined measurement such as thickness (THK) 

and critical dimensions (CDs). The data collected from the nine processes consists of 204 

instances. All the measurements at the target process were available, and the measurements 

of 75 instances were fully observed at all the preceding processes whereas those of the rest  
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Table 3.1  Unit processes preceding to the target process. 

 Variable Process 

type 

Measurement 

type 

Number of 

observed instances 

Preceding unit 

process 

𝑋# CMP THK 78 

𝑋$ CVD THK 117 

𝑋W CVD THK 162 

𝑋X PHOTO THK 68 

𝑋d PHOTO THK 141 

𝑋b PHOTO THK 120 

𝑋e ETCH THK 86 

𝑋f CVD THK 119 

𝑋g ETCH THK 71 

𝑋#h CVD THK 163 

𝑋## ETCH CD 140 

𝑋#$ CVD THK 144 

𝑋#W PHOTO THK 110 

𝑋#X ETCH CD 102 

𝑋#d ETCH THK 63 

𝑋#b ETCH THK 127 

Target process 𝑌 ETCH CD 316 

 

 

 

were partially observed. Table 3.1 presents the basic information about the processes and 

the observations therefrom, and the squared unit-dimensional distances of the observed 

instances presented linear relationships with the others as shown in Figure 3.4. 
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(a) (b) 

Figure 3.4  Scatter plots of the squared unit-dimensional distance in the multi-pattern 
photolithography process data: (a) 𝛾',Wh,g against 𝛾',#fd,W for all 𝑖 and (b) 𝛾',#hh,g against 

𝛾',#fd,W for all 𝑖. 

 

 

 

We evaluated the performance of the proposed EGKC using RVM (RVM-EGKC) 

over ten-fold cross validation. The predictive performance with the kernels from EGKC 

was compared with the performances with the kernels from the instances imputed with 

simple unconditional means in respective dimensions (RVM-SMI), the performances with 

the kernels from the instances imputed with conditional means in (3.2) (RVM-CMI), and 

from the instances imputed with EGK (RVM-EGK). The Gaussian kernel parameter 𝜏 for 

each of the comparing models was chosen through the five-fold cross validation in the 

training data. 

Table 3.2 shows the prediction performance of the RVM models and the statistical 

significance in the two-side t-test between the results of RVM-EGKC and the others. First,   
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Table 3.2  Testing results in photolithography process data. 

 RVM-SMI RVM-CMI RVM-EGK RVM-EGKC 

MAE (× 10$) 10.422** 9.510*** 8.975* 8.792 

RMSE (× 10$) 11.850*** 10.944** 9.533* 8.388 

* p-value < 0.10; ** p-value < 0.05; *** p-value < 0.01 

 

 

 

we notice that the imputation in kernel space (RVM-EGK and RVM-EGKC) outperformed 

with the imputation in original space (RVM-SMI and RVM-CMI). Furthermore, RVM-

EGKC led to more accurate prediction than RVM-EGK in the multi-pattern 

photolithography process data of high missing ratio and correlations among the squared 

unit-dimensional distances. 

 

3.5 Conclusion 

We proposed a new method to estimate the expected Gaussian kernel for incomplete data. 

considering the correlation between missing variables. The proposed method generalized 

the existing EGK considering the correlations among the squared unit-dimensional 

distances of incomplete instances in the Gaussian kernel. We derived the distribution of 

the Gaussian kernel for incomplete data, modeling the squared distance between two 

instance vectors as the sum of the correlated squared unit-dimensional distances and 

approximating the squared distance as the sum of the correlated Gammas by a Gamma. 
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We evaluated the proposed method on synthetic data and real-life case of high 

missing ratio and correlations in the squared unit-dimensional distances for the prediction 

of wafer quality characteristic at an etching process using a sparse Bayesian kernel machine 

for regression. The proposed method with showed competitive performances in the cases 

of correlated variables. 

As this work has focused on modeling variables for the components of Gaussian 

kernels with Gamma variables, future work should investigate different distributions and 

kernels. Also, the proposed method may be extended to handle missing components of 

different types of data such as spatial data and time series. 
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CHAPTER 4  

DEEP AUTOENCODER WITH CLIPPING FUSION REGULARIZATION ON 

MULTI-STEP PROCESS SIGNALS 

 

4.1 Introduction 

Virtual metrology (VM) in semiconductor manufacturing is a tool to monitor wafers in 

processes through data from fabrication equipment. Unlike conventional approaches based 

on physical measurements, quality characteristics of wafers in VM are predicted based on 

sensory data on process equipment. Therefore, cost reduction can be achieved in process 

and production control by dynamic monitoring wherein numerous stages are involved in 

wafer fabrication (Gazzola et al., 2018). 

Feature extraction is a key for building a successful VM model. As extensive data 

are collected from numerous sensors on process equipment, features are required not only 

to explain latent relationships with outputs (i.e., wafer quality characteristics), but also to 

compress high-dimensional data from the sensors into a feature space as well. For VM 

modeling, diverse feature extraction methods are employed in the literature: summary 

statistics from each sensor signal over a whole process (Kang et al., 2011) and over the 

subprocesses of a whole process (Hirai and Kano, 2015; Hwang et al., 2014) and principal 

component analysis (PCA) (Susto et al., 2015). 

In wafer fabrication, a sensor signal at a process stage may consist of several 

heterogeneous signals from subprocesses. To be specific, the whole process can be divided 

into subprocess steps according to a product recipe, and the setup may differ from 

subprocess to subprocess to meet requirements on the product recipe. The signals from the 
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sensors on the equipment are reflected by such changes in the process equipment setup 

according to subprocesses. Thus, it is frequently observed that the signals have transient 

changes between subprocesses. This characteristic of data, however, is considered in no 

existing feature extraction method. 

In this study, we aim to extract features from high-dimensional signals of process-

equipment sensors for VM considering the characteristics of the signals that consist of 

multiple sub-processes. To do so, we present a new unsupervised deep autoencoder (AE) 

with the clipping fusion regularization (Choi and Jeong, 2018). The proposed model is 

evaluated by conducting a comparative experiment using a real-life dataset from an etching 

process for wafer fabrication. 

The remainder of this chapter is organized as follows. In Section 4.2, we review the 

related literatures on deep learning models and regularizatino techniques. In Section 4.3, 

the proposed method is described in detail, and, in Section 4.4, experiments on a real-life 

case in semiconductor manufacturing are presented. Finally, we conclude this chapter and 

suggest future work in Section 4.5. 

 

4.2 Related Work 

AE is an unsupervised feature extraction method that compresses inputs into latent 

variables (i.e., neurons) on a hidden layer by reconstructing the inputs in a neural network. 

In the network, inputs are encoded typically into a lower dimensional latent space, and 

features from the space are decoded reconstructing the inputs. In the neural network for 

AE, nonlinear activation functions, such as logistic sigmoid and hyper-tangent functions, 

enable us to extract features considering the nonlinearity of data. 
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In recent years, AEs with deep architectures have been studied in the literature for 

feature extraction tasks with complex data (Khatab et al., 2018) as deep learning-based 

approaches show great performance in many applications (Längkvist et al., 2014; 

Schmidhuber, 2015), as well as in semiconductor manufacturing modeling (Lee et al., 

2017). Regularization techniques are widely used in modeling deep structured neural 

network (Schmidhuber, 2015). Such models employ regularization terms to achieve 

diverse purposes while training the models. For example, the ℓ# or ℓ$-norm regularization 

on a neural network model is commonly used to penalize weight values so that it helps the 

model avoid overfitting by taking critical weights only. Also, critical features can be 

extracted by suppressing a group of weights associated with a neuron (Scardapane et al., 

2017).  

In regression modeling with signal data, the fusion regularization (Land and 

Friedman, 1996) and the fused LASSO regularization elaborated therefrom (Tibshirani et 

al., 2005) are developed to take the nature of sequential/spatial data into account. With the 

fusion regularization, the neighboring variables from a signal are forced to be similar to 

each other, which leads the model to be trained with denoising the signal (Hoefling, 2010). 

Recently, researchers have been using the technique of clipping values (like max-

norm constraints) in deep learning models on diverse purposes such as for gradients to train 

models efficiently (Abadi et al., 2016), for activations to stabilize the model (Gupta et al., 

2015), and for feature values to denoise (Yosinski et al., 2015), and weights for binarization 

(Courbariaux et al., 2016). In this study, we clip penalizing values in training an AE model 

to control the intensity of the fusion regularization on the transient changes in signals 

between subprocesses. 



61 
 

 

 

4.3 Proposed Model 

Consider an input vector, 𝐱 ∈ ℝ-5, from 𝑆 sensors, each of which collects a signal of a 

wafer in process during 𝑇 processing time, (𝑚h = 𝑆 × 𝑇) and a target value, 𝑦 ∈ ℝ, from 

a quality characteristic of the wafer processed. 

First, we extract features from the raw signals using an AE model as a feed-forward 

network 𝑓 with 𝐾 hidden layers. The activations of 𝑚T neurons on the 𝑘-th layer for	𝑘 = 

1, …, (𝐾 + 1) in 𝑓, 𝐚(T) ∈ ℝ-1, is given by  

 𝐚(T) = 𝑔(T)>𝐖(T)𝐚(T*#) + 𝐛(T)? (4.1) 

where 𝐖(T) ∈ ℝ-(16+)×-1 , 𝐛(T) ∈ ℝ-1 , and 𝑔(T) are the weight matrix, the bias vector, 

and element-wise activation function, respectively, on the 𝑘-th layer. In (4.1), 𝐚(h) = 𝐱 and 

𝐚(0C#) = 𝑓(𝐱; 𝛉) where 𝛉 indicates a set of all the parameters in 𝑓. The target vector in 𝑓 

is set to the original input 𝐱, and the model is trained to obtain the reconstructed input 𝐱N = 

𝑓(𝐱; 𝛉) minimizing the reconstruction loss (i.e., the prediction error of the AE), ℒ(𝐱, 𝐱N), 

where ℒ(⋅) is a loss function between two vectors. In such 𝑓, features are extracted on the 

pre-determined 𝐾; -th layer (0 < 𝐾;  < 𝐾 + 1). The architecture of AE is typically in a 

symmetric shape with the same number of layers and the same number neurons thereof for 

the encoder and decoder in 𝑓. Then, as shown in Figure 4.1, a VM model is built to predict 

the water quality 𝑦 with the features extracted by the AE, 𝐯 = 𝐚(0)) and a predictive model 

ℎ as  
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Figure 4.1  Flowchart of VM modeling with AE-based feature extraction. 
 

 

 

 𝑦 = ℎ(𝐯) + 𝜖.		 (4.2) 

where 𝜖 is a prediction error. 

Given a dataset of 𝑁 instances {𝐱' , 𝑦'}'(#)  where 𝐱'  is the input vector of signals 

from the 𝑖-th processing wafer and 𝑦'  is the output value of processed the 𝑖-th wafer, 

respectively, the AE model 𝑓 is trained by minimizing the objective function (Goodfellow 

et al., 2016) as 

 
ℐ(𝛉) = arg	min

𝛉
À
1
𝑁vℒ(𝐱' , 𝐱N')

)

'(#

	+ ℛ(𝐱; 𝛉)ñ (4.3) 

where 𝐱N'  =  𝑓(𝐱'; 𝛉)  is the 𝑖 th input signals reconstructed by 𝑓 , and and ℛ(⋅)  is a 

regularizer. For continuous outputs, the squared error loss is employed as ℒ(𝐳, 𝐳′)  = 

‖𝐳 − 𝐳′‖$$ here ‖⋅‖$ is an ℓ$ vector norm. 

Considering the high dimensionality of multiple sensor data, for efficient model 

training, we employ the weight decay method with the ℓ# regularization on weights as 
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ℛ;#(𝛉) = 𝜆;# v¹𝐖(T)¹

#

0C#

T(#

 (4.4) 

where 𝜆;# is a non-negative constant for the ℓ# regularization. 

In VM modeling, diverse types of sensors, such for pressure, temperature, and 

voltage in chamber, are considered in order to derive critical information about in-process 

wafers from process equipment. Accordingly, different shapes of signals are collected from 

those sensors (Park et al., 2014). Unsurprisingly, stable regions are often manifested in 

parts of the signals as a result that the process is controlled to follow the predefined wafer 

fabrication recipe at the respective subprocesses. However, the signals reconstructed by 

AE turn into fluctuating shapes coarsely reflecting the nature of the original data. Thus, to 

preserve such characteristics of multi-step process signals by suppressing the fluctuation, 

we propose the fusion regularization on the reconstructed signals as ℛj(𝐱'; 𝛉)  = 

𝜆j¹𝐱N',*# − 𝐱N',*Y¹# where 𝐱N',*k is the vector that exclude the 𝑎-th element in 𝐱N'.  

Furthermore, the signals over a whole fabrication process consist of several 

heterogeneous regions as the wafer is processed along with fabrication recipes for the 

respective sub-processes. That is, for each of the sub-processes, the process equipment is 

differently set up, which results in the significant difference between the signals of the sub-

processes. The direct application of the fusion regularization, however, overlooks such data 

characteristic suppressing the difference between the signals of two consequent sub-

processes. Thus, to alleviate such indiscriminate penalization from the fusion 

regularization, we propose the clipping fusion regularization as 
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 ℛ^j(𝐱'; 𝛉) = 𝜆^jmin \𝛿, ¹𝐱N',*# − 𝐱N ',*Y¹#_ (4.5) 

where 𝜆^j  is a non-negative constant and the maximum threshold 𝛿  is a non-negative 

constant. Restricting the maximal penalty from the excessive difference between 

consequent sub-processes, the clipping fusion regularization facilitates to preserve the 

advantage of the fusion regularization.  

The proposed AE model is trained by minimizing the objective function in (4.3) 

with the regularizations in (4.4) and (4.5) as: 

 
ℛ(𝐱; 𝛉) = ℛ;#(𝛉) +vℛ^j(𝐱'; 𝛉)

)

'(#

. (4.6) 

 

4.4 Experiment 

We evaluate the proposed model using a real-life dataset from a plasma etching process in 

a semiconductor manufacturing industry. The etching process for wafer fabrication is to 

remove complex surface films layered on a silicon wafer by plasmas such as fluorine and 

chlorine plasmas. The information about each in-process wafer is monitored in a chamber 

by equipment sensors that trace the process status such about gas flow, power, pressure, 

and temperature. Then, critical dimensions (CD) of wafer quality characteristics, such as 

the etching rate from the thickness of the remaining film of the material of interest on the 

process wafer, are measured after completion of the process for the wafer.  

For this experiment, the data in total were collected from 298 wafers. For VM 

modeling as illustrated in Figure 4.2, we employed the signals from five sensors on the   
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Figure 4.2  VM modeling with sensor signals as inputs and physical measurements as 
outputs. 

 

 

 

process equipment at the etching process as model input and a CD of wafers as the output. 

The heterogeneous signals from the five different sensors were recorded for each wafer 

while the wafer is processed as shown in Figure 4.3(a). The signals for different wafers 

varied as shown in Figure 4.3(b) due to the variation of the processing time at each different 

subprocesses. In Figure 4.3, the grey lines indicate the completion time of the subprocesses 

in the process of a chosen wafer, and the completion time of the first of every five 

subprocesses is labeled on the top of the plots.  

For a comparative experiment, the following approaches are considered to obtain 

features from the raw signals as conventional methods and the proposed method:  

1) RAW: the raw signal data; 

2) STEP: 1740 features (6×5×58) from the six statistics of the signal for each 

subprocess from each sensor; 
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(a) 

 

 
(b) 

Figure 4.3  (a) The sensor signals about an observed wafer and transient changes on the 
signals. (b) The signals at Sensor 2 from 200 instances. 

 

 

 

3) PCA: 30 features from principal components of the signals for the whole process 

in PCA; 

4) AE: 30 features from the activations on the hidden layer in the middle of the AE 

with no regularization;  
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5) AE-L1: 30 features from AE whose individual weights are regularized with the ℓ# 

norm; 

6) AE-FL: 30 features from AE-L1 whose reconstructed inputs are regularized with 

the fusion norm; 

7) AE-CFL: 30 features from AE-L1 whose reconstructed inputs are regularized with 

the fusion norm clipping the panelized values. 

 

The AE models in this experiment are structured with hyper-tangent activation 

functions on the layers, and the architecture of the AEs is identically employed as shown 

in Figure 4.4 where the architecture was decided based on the network complexity in which 

AE can reconstruct the given signals sufficiently as the reconstruction errors in different 

architectures are shown in Appendix C.  

Each instance, albeit for the same type of wafer products, was collected from 

different lots, and its processing time varied where the numbers of the regularly observed 

time points are from 644 to 654. For the implementation of the AE models, we 

preprocessed the signals, as seen in Figure 4.1, by last-value padding for all the signals 

shorter than the maximal length (i.e., 654), and then, the signals were cut off to 648 time 

points assuming no loss of critical information from the signals with the length. Finally, all 

the signals of each sensor were rescaled in the range from 0.00 to 0.99 to avoid the extreme 

activations on the reconstruction layer. 
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Figure 4.4  Architecture of AEs. 

 

 

The testing performance of a predictive model with features was evaluated by 

conducting ten-fold cross-validation. To measure the performance of the prediction models, 

we compute the 𝑅$  metric in the testing set 𝑅=Q5S$  to show the improvement with the 

features from the null model (i.e., prediction without any input features) as 𝑅SQ5S$  = 1 −

∑ (l0*lB0)%0
∑ (l0*lm)%0

 where 𝑦ö is the mean of the outputs (i.e., the CDs of wafers) and 𝑦N' is the predicted 

𝑖th instance’s output.  

In the experiment, the deep AE models are trained as follows. The objective 

function of each model is optimized using the RMSprop (Tieleman and Hinton, 2012) with 

the ratio of the moving average of squared gradients as 0.9 for preventing the gradient 

exploding and vanishing by balancing the learning step size, the batch size as 8, and a 

random initialization. To prevent the model from overfitting during the optimization, the 

early stopping is applied with 10% of the training instances for validating the model given 
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the maximum iteration number as 1000 and the tolerance epochs as 100. Then, the other 

hyper-parameters are chosen by testing the predictive performance with the features of the 

AE from the combinations of the parameters in the sets for the initial learning rate {10*X, 

10*W, 10*$} and the learning rate decay per epoch {10*W, 10*$, 10*#}. With the chosen 

hyper-parameters by the AE, the AE-L1 is trained choosing the parameter 𝜆;# from a set of 

parameters {5 × 10*e, 2 × 10*e, 10*e,	5 × 10*f, 2 × 10*f, 10*f}. Similarly, with the 

chose parameters by the previous models, the AE-FL is trained choosing the parameter 𝜆j 

from a set of parameters {5 × 10*e, 2 × 10*e, 10*e,	5 × 10*f, 2 × 10*f, 10*f}. Finally, 

with the chosen parameters setting 𝜆j = 𝜆^j, the AE-CFL is trained choosing the clipping 

threshold parameter 𝛿 from a set of parameters {0.25,0.2, 0.1, 0.05, 0.02, 0.01, 0.001}.  

Figure 4.5 presents the reconstructed signals for an observed wafer based on the 

comparing models. The existing methods, PCA, AE, and AE-L1, produced the 

reconstructed signals fluctuating around the original signal, whereas the proposed AE-FL 

and AE-CFL produced the stable reconstructed signals.  

With the features obtained from the aforementioned methods, the predictive 

performances are compared using the following models: the LASSO regression (LAS) 

(Tibshirani, 1996) as a linear model and the support vector machine for regression (SVR) 

(Smola and Schölkopf, 2004) as a kernel-based model. The parameters of the predictive 

models are determined from the result of ten-fold cross validation from the sets of 

parameters: in LAS, {2*#h, 2*g,…, 2d} for the coefficient penalty; in SVR, combination 

of {2*d, 2*X,…, 2d} for the error penalty and {10*W, 10*$,…, 10W} for the radial basis 

function kernel.   
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(a) 

 

 
(b) 

Figure 4.5  (a) The signal reconstructed by the comparing models. (b) The enlargement 
of the highlighted part in (a). 

 

 

 

Table 4.1 presents the experimental results about the prediction with the features 

obtained by the comparing methods from ten-fold cross validation. The prediction for VM 

was improved mostly by employing feature extraction methods comparing to the prediction 

with the raw signals. In particular, the prediction with the features from AE was improved 

by introducing ℓ#  regularization as seen from the performance of AE-L1. Also, the 

prediction performance decreased by additionally employing the fusion regularization in 

the AE-L1, but it rebounded by clipping the regularization penalty. 
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Table 4.1  Testing performance of the predictive models with the features extracted by 
different methods. 

 Prediction model 

Method LAS SVR 

RAW 0.1498 0.3120 

STEP 0.3079 0.2918 

PCA 0.3161 0.3216 

AE 0.3070 0.3178 

AE-L1 0.3180 0.3238 

AE-FL 0.3214 0.2920 

AE-CFL 0.3177 0.3318 

 

 

 

4.5 Conclusion 

We proposed a deep autoencoder with clipping fusion regularization for feature extraction 

from multi-step process signals. By clipping the penalizing values from fusion 

regularization for the process signals, the proposed model reduced the penalties from the 

heterogeneous subprocess signals.  

We conducted a comparative experiment for the predictive performance for virtual 

metrology with the features extracted by the proposed model and the features of the 

existing methods. The results demonstrated that the prediction with the features extracted 

by the proposed model outperformed the prediction with the others where the limitation of 

the fusion regularization for multi-step process signals was overcome.  
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In future work, it would be of interest to consider feature extraction with 

regularization on multi-step process signals classifying the different types of transient 

changes into subprocess changes and process noise. 
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CHAPTER 5  

GROUP-EXCLUSIVE GROUP LASSO IN DEEP NEURAL NETWORKS  

 

5.1 Introduction  

In recent years, deep learning has been a powerful tool for machine learning problems. 

Based on high flexibility and complexity, deep neural networks (DNNs) enable to achieve 

remarkable accuracies in prediction tasks (Schmidhuber, 2015; LeCun et al., 2015), 

including problems with high dimensional data such as image, video, and sensor signals 

(Litjens et al., 2017; Zhao et al., 2019; Wang et al., 2019). Such properties of DNNs, 

however, often ‘overpower’ a model (Scardapane et al., 2017), which can lead to model 

overfitting and become unsuitable for devices that low-power devices (Sainath et al., 2013). 

Accordingly, researchers have proposed techniques to efficiently train DNNs with 

numerous layers and parameters therefrom, for example, considering delicate architectures 

(He et al., 2016; Xie et al., 2017) and regularization such as parameter penalties and 

dropout (Srivastava et al., 2014). 

Regularization is a strategy widely employed to improve the prediction 

performance of machine learning models, including DNNs. A common approach to 

regularization is sparse modeling based on parameter penalties that limit the capacity of 

models, and structural sparsity induced by such regularization is a key element for better 

generalization to unseen data with a finite training set or in an imperfect optimization 

(Goodfellow et al., 2016). In these regards, regularization in DNN models has been 

employed for modeling with high dimensional data where high dimensionality of data often 
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causes excessive numbers of model parameters and the improper results in model training 

like overfitting therefrom. 

Sparse modeling has been considered for feature learning with diverse forms of 

regularization. In particular, the relations in features are incorporated in sparse modeling. 

Group lasso (Yuan and Lin, 2006) and its variants (Wang and Leng, 2008; Simon and 

Tibshirani, 2012; Simon et al., 2013) enforce the sparsity of groups at an inter-group level 

as variables in a group compete with variables in the other groups to survive, and such 

group-level sparsity has drawn attention for the sparsity of structured features in machine 

learning (Hastie et al., 2015) including DNN (Wen et al., 2016; Scardapane et al., 2017; 

Yoon and Hwang, 2017). Exclusive lasso (Zhou et al., 2010) enforces the sparsity of 

variables at an intra-group level as an exclusive variable (or a few) is selected among the 

covarying variables in the same group. Exclusive group lasso (Kong et al., 2014) enforces 

the sparsity of variables at inter-group and intra-group levels as each group that consists of 

covarying variables compete with each other. However, these methods aim at group-level 

sparsity, assuming the orthogonality among groups (Simon and Tibshirani, 2012), or 

focusing on feature-level sparsity (Simon et al., 2013) and their exclusivity (Kong et al., 

2014; Kong et al., 2016) at an intra-group level. Thus, the existing methods penalize the 

coefficients without considering the similarity between groups, and no study considers 

group-level exclusivity for groups (and their features) that are similar with each other at an 

inter-group level. That is, a group may consist of the features correlated to the features in 

the other group, and the features in both groups are significant to the prediction of an output. 

On the other hand, some studies that incorporate group-level relations: A study 

considers the smoothness between the coefficients of neighboring groups in regression (Liu 
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et al., 2012) and the others rely on lower-dimensional representations of feature groups 

(Lin et al., 2013; Yan et al., 2011; Zhang et al., 2012). These, however, require models to 

perform prediction using the information from all the available groups.  

In this study, we propose a new regularization for higher group-level sparsity to 

penalize active groups that are similar with each other and develop a deep neural network 

using the proposed regularization for automatic exclusive feature group selection. Based 

on the group lasso (Yuan and Lin, 2006), we incorporate the correlations between feature 

groups in the formulation introducing group-exclusive group lasso (GGL). The proposed 

regularization aims to achieve higher group-level sparsity by discouraging a model from 

employing similar groups, maintaining competitive prediction performance. 

The rest of this chapter is organized as follows. In Section 5.2, we briefly review 

DNN models and relevant studies. In Section 5.3, we describe the proposed feature 

extraction model. In Section 5.4, we present experimental results using synthetic datasets 

and a case study. Finally, in Section 5.5, we conclude this chapter with future research. 

 

5.2 Related Work 

Consider a general fully connected feedforward neural network 𝑓 of 𝐾 hidden layers with 

𝑀T neurons on the 𝑘-th layer for 𝑘 = 1, …, 𝐾, respectively for the prediction of target 𝑇 ∈ 

ℝ using input 𝐱 ∈ ℝ%5. Let 𝐱 be on the 0-th layer and the predicted target �̂� = 𝑓(𝐱; 𝛉) on 

the (𝐾 + 1)-th layer (i.e., 𝑀TC# = 1) where 𝛉 is a set of all parameters in 𝑓. The output of 

the 𝑘-th layer 𝐳(T) ∈ ℝ%1 for 𝑘 = 1, …, 𝐾 + 1 is given by  
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 𝐲(T) = 𝐛(T) +𝐖(T)𝐳(T*#) (5.1) 

 𝐳(T) = 𝜎(T)>𝐲(T)?															 (5.2) 

where 𝜎(T) is an element-wise activation function, 𝐛(T) ∈ ℝ%1 is a bias vector, and 𝐖(T) 

∈ ℝ%1×%(16+)	 is a weight parameter matrix on the 𝑘-th layer for 𝑘 = 1, …, 𝐾.  

Given a dataset (𝐗, 𝐭) of 𝑁 instances where 𝐗 ∈ ℝ%5×)  and 𝐭 ∈ ℝ)  are the input 

matrix and the target vector, respectively, a neural network 𝑓 is trained through minimizing 

the cost as follows:  

 ℐ(𝛉) = ℒ(𝐭, �̂�) + ℛ(𝛉) (5.3) 

where ℒ(𝐚, 𝐚\) is a loss function between two vectors 𝐚 and 𝐚\, ℛ(⋅) is a regularizer, and �̂� 

= 𝑓(𝐗; 𝛉) is a vector of 𝑁 predicted instances. To solve the problem in (5.3), a widely 

adopted approach is the backpropagation (Rumelhart et al., 1985). The backpropagation is 

based on updating parameters through the gradients of weight units in a neural network 

model. The gradients of 𝑤Y[
(T) that is the (𝑝, 𝑞)-th element in 𝐖(T) is obtained using the 

chain rule as 

 𝜕ℐ(𝛉)

𝜕𝑤Y[
(T) =

𝜕ℐ(𝛉)

𝜕𝑧Y
(T)

𝜕𝑧Y
(T)

𝜕𝑦Y
(T)

𝜕𝑦Y
(T)

𝜕𝑤Y[
 (5.4) 

where 𝑧Y
(T) is the 𝑝-th element of 𝐳(T), and 𝑦Y

(T) is the 𝑝-th element of 𝐳(T). The gradients 

computed in (5.4) are used for iteratively updating the parameters as  

 𝛉(𝑡 + 1) = 𝛉(𝑡) − Δ𝛉(𝑡) (5.5) 
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where 𝑡 is the index of iterations, 𝛉(𝑡) is the parameters in 𝛉 at the 𝑡-th iteration, and Δ𝛉 

= 𝜂𝜕ℐ(𝛉)/𝜕𝛉 with a learning rate 𝜂. Furthermore, there are many methods proposed for 

effective model training such as the Adam algorithm (Kingma and Ba, 2014) as an adaptive 

gradient-based optimization algorithm and batch normalization (Ioffe and Szegedy, 2015). 

DNN results in outstanding performance if the network were successfully trained. 

As noted in (Schmidhuber, 2015), the backpropagation, however, encounters some critical 

issues that hinder efficient training a DNN model. One of the issues is model overfitting 

due to a large number of parameters. To alleviate the issue from model overfitting, sparse 

modeling with regularization has been considered, and diverse approaches has been 

proposed considering different levels of sparsity in DNN models.  

Let us consider the regularization on the weight parameters connecting the (𝑘 − 1)-

th layer to the 𝑘-th layer for generality in the following description.  

For the sparse modeling of DNN, an approach is to employ an element-level 

regularizer as the sparsity is addressed based on the number of active parameters. Popular 

methods are the ℓ$  regularization (also called weight decay) on individual weight 

parameters such that, for the weight parameters on the 𝑘-th layer,  

 ℛℓ%
(T)(𝛉) =v\𝑤Y[

(T)_
$

Y,[

. (5.6) 

Similarly, the other popular method is the ℓ# (also called lasso) regularization such that  

 ℛℓ+
(T)(𝛉) =v½𝑤Y,[

(T)½
Y,[

. (5.7) 

Besides, the Kullback-Leibler divergence between the average of the activations of the 

instances on each hidden layer and the given target activation level is used to control the 
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sparsity level of a DNN model (Ranzato et al., 2006). Furthermore, the regularization on 

the Jacobian matrix of hidden features is imposed for invariant/robust results induced by 

suppressing the small variation from the features that have the low values of the first partial 

derivatives (Rifai et al., 2011). 

On the other hand, higher-level sparsity of DNN models has been addressed by 

grouping parameters for regularization. Based on the number of active neurons, the neuron-

level sparsity is considered by imposing the regularization on all the outward weight 

parameters associated with each neuron (Scardapane et al., 2017) such that, on the 𝑘-th 

layer,  

 
ℛ)
(T) = v 𝑐o

(T)ú𝐰o
(T)ú

$

%16+

o(#

 (5.8) 

where 𝑐o
(T) is a coefficient for the weight parameter group size, ‖𝐚‖$ = >∑ 𝑎&%

&(# ?#/$ is a 

ℓ$ norm of a vector 𝐚 = [𝑎#, 𝑎$, … , 𝑎%]", and 𝐰o
(T) ∈ ℝ%1 is the ℎ-th column of 𝐖(T) as 

the outward weights from the ℎ-th input unit.  

Other studies address the sparsity of neuron groups as input or feature groups. 

Similar to the neuron-level regularization in (5.8), the weight parameter groups are 

penalized as 

 
ℛ]
(T) = v 𝑐8

(T)ú𝛚8
(T)ú

$

p16+

8(#

 (5.9) 

where 𝑔T*# is the total number of predetermined groups on the (𝑘 − 1)-th layer and 𝛚8
(T) 

is the vectorized 𝐖8
(T) that consists of 𝐰o

(T) for all ℎ in group 𝑟. For the feature-group-level 
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sparsity, the regularizations in (5.9) are employed on the groups of the neurons on the first 

hidden layer as the grouped input features (Yu and Lin, 2011), and on the features 

individually extracted from submodels in a multimodal DNN (Zhao et al., 2015).  

Furthermore, recent studies (Zhu et al., 2018; Yoon and Hwang, 2017) employ the 

exclusive group regularization (EG) firstly introduced in (Zhou et al., 2010) for multi-task 

learning problems. EG is to penalize for intra-group sparsity with ℓ# norm and inter-group 

sparsity with ℓ$ norm as 

 
ℛ.]
(T) = v 𝑐8

(T)ú𝛚8
(T)ú

#

$
p16+

8(#

	. (5.10) 

 

5.3 Proposed Model 

 

5.3.1 Group-exclusive group lasso regularization 

Let 𝒢(T) be an index set of all the features on the 𝑘-th layer and let 𝒢8
(T) be the 𝑟-th feature 

group set as a subset of 𝒢(T) for 𝑟 = 1, …, 𝑔T where 𝒢(T) = ⋃ 𝒢8
(T)p1

8(#  and 𝒢8
(T) ∩ 𝒢5

(T) = ∅ 

for 𝑟 and 𝑠 = 1, …, 𝑔T and 𝑟 ≠ 𝑠. Denoting 𝑚8T to the number of neurons in group 𝑟 on the 

𝑘-th layer where 1 ≤ 𝑚8T ≤ 𝑀T and 𝑀T = ∑ 𝑚8T
p1
8(# , in this work, we consider an equal 

group size on the 𝑘-th layer as 𝑚8T = 𝑚T for 𝑟 = 1, …, 𝑔T.  

Suppose that the information about 𝑔h groups for 𝑀h features in input 𝐱 (i.e., 𝐱 = 

𝐳(h)) is given as 𝒢(h). Let 𝐱8 be a 𝑚h-dimensional subvector for the input features in 𝒢8
(h). 
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The linear operation in (5.1) on the first hidden layer can be written with respect to the 

groups as 

 
𝐖(#)𝐱 + 𝐛(#) = 𝐛(#) +v𝐖8

(#)𝐱8

p5

8(#

 (5.11) 

where 𝐖8
(#) ∈ ℝ%+×-5  is a matrix whose columns are 𝐰o

(#)  for ℎ ∈ 𝒢8
(h) . For a group 

sparsity, penalizing the weight parameters in 𝐖8
(#) for groups 𝒢8

(h) for 𝑟 = 1, …, 𝑔h with a 

rescaling factor 𝑐8
(#) = þ𝑀# ⋅ 𝑚h using the ℓ$,# norm is equivalent to the regularization for 

𝑘 = 1  in (5.9). Given a dataset (𝐗, 𝐭) , the input matrix 𝐗  are divided as 𝐗 =

G𝐗#", 𝐗$", … , 𝐗p5
" H" accordingly.  

To avoid the redundant information from different groups, we first measure the 

association 𝜌85 between the 𝑟- and 𝑠-th input feature groups. In this work, we adopt the RV 

coefficient (Escoufier, 1973) to measure the linear association between the feature groups 

over all the instances, given 𝐗8 , 𝐗5 ∈ ℝ-5×) are data matrices for the features in the 𝑟- and 

𝑠-th groups as  

 
𝜌85 =

tr(𝐗8𝐗8"𝐗5𝐗5")

þtr(𝐗8𝐗8")$tr(𝐗5𝐗5")$
 (5.12) 

where tr(𝐗8𝐗8") is a trace of 𝐗8𝐗8". The association of two groups may be defined with the 

other measures as summarized in (Josse and Holmes, 2016).  

We now introduce a new regularization for the exclusivity of feature groups. For 

simplicity, we consider imposing the proposed regularization on the weights of the first 

layer and drop the superscripts of group penalty terms as layer indexes in the following 
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description for the proposed regularization, accordingly. We define the group-exclusive 

group penalty for the 𝑟- and 𝑠-th groups that are linearly associated with each other as  

 ℛ]](𝑟, 𝑠) ≜ 𝛿85(‖𝛚8‖$ ⋅ ‖𝛚5‖$)
#
$ (5.13) 

where 𝛿85 = 𝜌85(𝑐8𝑐5)#/$. The penalty from (5.13) will go to zero if two feature groups 

have no association and/or if any of the two groups or both were excluded. Otherwise, the 

penalty will be imposed if the two feature groups are being simultaneously selected in a 

DNN model. It would be worth noting that ℛ]](𝑟, 𝑠) becomes equivalent to ℛ](𝑠) when 

𝑟 = 𝑠. Then, we define the group-exclusive group regularization (GG): 

 ℛ]](𝛉; 𝐗) =vvℛ]](𝑟, 𝑠)
8∈𝒢5∈𝒢

	

																				= vℛ]](𝑠, 𝑠)
5∈𝒢

+v v ℛ]](𝑟, 𝑠)
8∈𝒢(68)5∈𝒢

 

 

(5.14) 

where 𝒢(*5) = 𝒢 ∖ {𝑠}. 

Also, as noted in Section 5.2, the element-wise regularization on the weight 

parameters in a DNN model is a great tool to have the model sparse and to discourage 

model overfitting. Thus, we employ the lasso regularizer in (5.7) for the element-wise 

sparsity 

 
ℛ.;(𝛉) = vℛℓ%

(T)(𝛉)
0

T(#

. (5.15) 

Finally, with the regularizers in (5.14) and (5.15), we define the group-exclusive group 

lasso regularization (GGL) as follows: 
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 ℛ]];(𝛉; 𝐗) ≜ 𝜆]]ℛ]](𝛉; 𝐗) + 𝜆.;ℛ.;(𝛉) (5.16) 

where 𝜆]]  and 𝜆.; are nonnegative regularization coefficients. 

 

5.3.2 Formulation and model training 

Given a dataset (𝐗, 𝐭) and input feature groups, the proposed DNN model for a group-

exclusive group-level sparsity is formulated in (5.3) with the term in (5.16) as 

 ℐ(𝛉) = arg	min
𝛉

ℒ>𝐭, 𝑓(𝐗; 𝛉)? 	+ ℛ]];(𝛉; 𝐗). (5.17) 

For model training, we use a popular gradient-based optimization algorithm, the 

Adam (Kingma and Ba, 2014), to train the proposed model. As noted in Section 5.2, the 

model is trained by iteratively updating the parameters in 𝛉  with their gradients. In 

particular, we need to compute the gradients of ℛ]](𝛉; 𝐗) in (5.14). The GG regularization 

term is convex, and its gradient is not defined when 𝛚8 = 𝟎 for any 𝑟. We, therefore, use 

the subgradient of the GG regularization term with respect to 𝛚5:  

 
𝜕ℛ]](𝛉; 𝐗)

𝜕𝛚5
=

⎩
⎨

⎧ 𝛚5

‖𝛚5‖$
v

𝛿85
2 Ó

‖𝛚8‖$
‖𝛚5‖$

Ô

#
$

8∈𝒢

	if		𝛚5 ≠ 𝟎

𝐯 ∈ {𝐯 ∶ ‖𝐯‖$ ≤ 𝛿55}							 	if		𝛚5 = 𝟎

		, (5.18) 

and the derivation is in Appendix D. 

 



83 
 

 

5.4 Experiments 

We evaluate the proposed method on different datasets from artificial examples and a real-

life case. We first illustrate general behavior of GGL in a prediction model with toy data 

and then test its performance with real-life data from the virtual metrology in 

semiconductor wafer fabrication.  

 

5.4.1 Experimental setup 

In this work, we performed all experiments with feedforward neural networks. We set up 

a network structure with different numbers of hidden layers for each experiment according 

to its complexity and an output layer with a single neuron for regression. For hidden layers, 

we employed an element-wise hyperbolic tangent activation 𝜎rstu(𝑎) = Q
%9*#
Q%9C#

. On each 

layer, the weight parameters were initialized with random values from a uniform 

distribution and the bias parameters were set to be zero following the method in (Glorot 

and Bengio, 2010). Randomly selecting 10% of training data as a validation set, a network 

was trained using the Adam algorithm (Kingma and Ba, 2014) with the learning rate as 

0.001, the maximum number of training epochs as 10000, and the number of patience 

epochs for the early stopping criterion as 20.  

Given a network structure in each experiment, we compared the proposed DNN 

with GGL (DNN-GGL) in (5.16) with the following models: a DNN with the neuron-wise 

group lasso (DNN-NL) from the terms in (5.8) and (5.15) as ℛ);  =  𝜆)ℛ)
(#)(𝛉; 𝐗)  + 

𝜆.;ℛ.;(𝛉); a DNN with the feature-group-wise group wise lasso (DNN-GL) from the 

terms in (5.9) and (5.15) as ℛ]; = 𝜆]ℛ]
(#)(𝛉; 𝐗) + 𝜆.;ℛ.;(𝛉); and a network with the 
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exclusive-neuron-group-wise group lasso (DNN-EGL) from the terms in (5.10) and (5.15) 

as ℛ.]; = 𝜆.]ℛ.]
(#)(𝛉; 𝐗) + 𝜆.;ℛ.;(𝛉). 

Given a prediction error vector 𝐞  =  [𝑒#, … , 𝑒)]= , we evaluate the prediction 

performance using mean square error (MSE), 𝑀𝑆𝐸(𝐞) = #
)
∑ 𝑒'$)
'(# , and mean absolute 

error (MAE), 𝑀𝐴𝐸(𝐞) = #
)
∑ |𝑒'|)
'(# , and maximum absolute error (MAXAE) as 𝑀𝐴𝑋𝐴𝐸 

= max±|𝑒#|, |𝑒$|, … , R𝑒)./R². We measure the model sparsity induced by the regularizations 

by counting the number of active feature groups and the number of active neurons on the 

first hidden layer as ∑ 𝕀{∑ 𝕀{|𝜔T5| > 10*W}T ≠ 0}p5
5(#  and ∑ 𝕀±∑ 𝕀±R𝑤T&R > 10*W²T ≠%5

&(#

0², respectively, where 𝕀(⋅)	is an indicator function and 𝜔T5 is the 𝑘-th element of 𝛚5. 

 

5.4.2 Synthetic data 

We generated 𝑛 = 200 sample instances for 𝐿 = 30 feature groups with 𝑚 = 10. As input 

data, we independently sampled instances of each group 𝑟,	𝐗8 ∈ ℝ-×), for 𝑟 = 1, …,	𝐿, 

from a central multivariate normal 𝒩(𝟎, 𝚺8) where [𝚺8]'' = 1.0 for all 𝑖 and [𝚺8]'& = 0.1 

for all (𝑖, 𝑗) and 𝑖 ≠ 𝑗. As output data, we sampled the responses for which the features of 

the first 4 groups are significant as  

 𝐲 = v 𝐗8𝛃8
8∈{#,$,W,X}

+ 𝛆  

where 𝛃8 = [−2,−1,0,0,0,1,2,0,0,0]" for 𝑠 = 1, …, 4. Let 𝑥'&8 be the (𝑖, 𝑗)-th element in 

𝐗8 . Then, we construct an input matrix of 32 groups with 𝐗 = [𝐗#\ , 𝐗#\\, 𝐗$\ , 𝐗$\\, 𝐗W, …, 

𝐗Xh ] where [𝐗8\ ]'& = 𝑥'&8\  is given by 𝑥'&8\  = 𝑥'&8  + 𝜖#  with noises 𝜖#  ~ 𝒩(0,0.1) and 
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[𝐗8\\]'& = 𝑥'&8\\  is given by 𝑥'&8\\  = −𝑥'&8  + 𝜖$ with 𝜖$ ~ 𝒩(0,0.2). Figure 5.1 shows the 

pairwise group similarities in the generated data estimated using the RV coefficient in (5.12). 

Unsurprisingly, the RV coefficient between groups 1 and 2 was high as they were generated 

from the same original data 𝐗# as well as the RV coefficient between groups 3 and 4 from 

𝐗$. 

 

 

Figure 5.1  Pairwise group similarities of the synthetic data. 

 

 

 

We built network models with a hidden layer of 8 neurons and an output layer of 1 

neuron with the comparing regularization terms. The model performance was evaluated 

over a five-fold cross validation. In the training set, the parameters for the group 
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regularization as 𝜆)  =  𝜆]  =  𝜆.]  =  𝜆]]  = 10*k/X  with 𝑎 = 0 , 1 , … , 24  and for the 

element-wise regularization 𝜆.; = 10*k/X with 𝑎 = 0, 1, …, 24 were chosen based on the 

validation MSE over three-fold cross validations.  

Table 5.1 shows the testing accuracy and the model sparsity in the synthetic data 

and the pairwise t-test results between the proposed DNN-GGL and the comparing models. 

DNN-GGL showed the superior accuracy to the other models. Furthermore, the models   
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Table 5.1  Testing results and the numbers of active neurons and active groups in the 
synthetic data. 

 MSE MAE MAXAE 
Active 

neurons 
Active 
groups 

DNN-NL 0.0014** 0.0293** 0.0249** 107.27*** 29.13*** 

DNN-GL 0.0018*** 0.0335*** 0.0285*** 131.20*** 30.27*** 

DNN-EGL 0.0164*** 0.1024*** 0.0874*** 145.27*** 32.00*** 

DNN-GGL 0.0007 0.0217 0.0185 42.13 7.47 

* p-value < 0.10; **   p-value < 0.05; *** p-value < 0.01 
 

 

 

with the existing regularizations were trained with higher numbers of neurons and groups, 

and the proposed DNN-GGL had the smallest number of active groups that is closest to the 

true number of groups.   

 

5.4.3 Case study: Sensor selection for virtual metrology in semiconductor 

manufacturing 

We evaluate the proposed method on a real-life case about virtual metrology (VM) in 

semiconductor manufacturing processes. VM aims to predict the quality of a wafer using 

data from process and production equipment, without physical metrology on wafers. The 

measurement of a wafer’s quality from VM can be provided immediately after being 

processed, without an additional operation for gauging the quality. Typically, a number of 

sensors are employed to obtain salient information about processed wafers, which can 

facilitate monitoring and controlling the process in real-time, and to improve production 
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efficiency (Khan et al., 2007; Qin et al., 2006) and reduce process costs by replacing costly 

physical metrologies and metrology devices and by planning predictive/prospective 

maintenance based on process health status provided by VM (Chen et al., 2005; Cheng et 

al., 2011 Kang et al., 2009).  

In this case study, we aimed to build a VM model at a plasma etching process for 

wafer fabrication. The process was monitored by various sensors in/on the chamber that 

records different physical parameters about the process status such as levels of chemicals, 

power, gas supply, and temperature, and a critical dimension (CD) as a quality 

characteristic of the wafer was measured after the completion of the process. During the 

production of identical products, lots were sampled at random, and the instances were 

collected from the wafers selected at random in a lot of 25 wafers. For our experiment, 299 

instances were collected. The signals from 28 sensors during the processing time 𝑇' were 

recorded for wafer 𝑖. Figure 5.2 shows raw process signals from the first ten sensors for a 

wafer, some of which provided similar information as the same types of sensors. Besides, 

the etching was processed through a series of 58 sub-processes where the grey vertical lines 

in Figure 5.2 indicate the completion time of the subprocesses.  

As input variables in VM models, we extracted 3248 features (2 × 58 × 28) from 

the raw signals of 28 sensors by calculating two statistics of the signals for each of 58 

subprocesses: mean �̅�'&T  = #
=02
∑ 𝑥'&T<
=02
<(#  and variance 𝑠'&T$  = #

E=02*#I
∑ >𝑥'&T< − �̅�'&T?

$=02
<(#  

where 𝑥'&T<  is the value at the 𝑙-th time point of the 𝑖-th wafer’s signals from the 𝑗-th 

subprocess on the 𝑘-th sensor and 𝑇'& is the processing time for the 𝑖-th wafer at the 𝑗-th 

subprocess (𝑇' = ∑ 𝑇'&& ). We formed 28 feature groups, each of which consists of 2 × 58 

= 116 features from a sensor. Figure 5.3 shows the similarities of the feature groups and,   
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Figure 5.2  Raw signals of a wafer from ten sensors. 
 

 

 

unsurprisingly, there were highly correlated feature groups as some of the features were 

from the sensors of similar signals. 

We set up the network architecture of four hidden layers with 64, 32, 16, and 8 

neurons. The hyper-parameters for the regularization penalties were explored during this 

experiment by grid search with 𝜆]9x  = 𝜆]]  = 𝜆.]  = 𝜆]  = 10*k  for 𝑎 = 2, … , 5 and 

𝜆.; = 10*y for 𝑏 = 2, … , 7 and were chosen in terms of MSE among the models in which 

all the groups were not active, considering the use of less number of sensors for VM. 
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Figure 5.3  Pairwise group similarities of VM data. 
 

 

Table 5.2  Testing accuracy and the numbers of active neurons and active groups in the 
case study data. 

 
MSE MAE MAXAE 

Active 

neurons 

Active 

groups 

DNN-NL 0.1232 0.2812 0.2349 656.4 26.8 

DNN-GL 0.1097 0.2710 0.2390 851.6 23.8 

DNN-EGL 0.1146 0.2719 0.2352 547.4 27.8 

DNN-GGL 0.1043 0.2609 0.2189 67.8 5.2 
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Table 5.2 presents the testing result from a five-fold cross-validation. DNN-GGL 

showed the best prediction performance in terms of three performance measures and the 

highest sparsity in terms of both the active neurons and active groups. Although DNN-GL 

showed the competitive accuracy, it required much more active groups and input neurons, 

comparing to DNN-GGL. Unsurprisingly, DNN-NL and DNN-EGL barely achieved group-

level sparsity as only few feature groups were inactive.  

 

5.5 Conclusion 

We have proposed the group-exclusive group lasso regularization in deep neural networks 

for group selection. Extending from the group lasso regularization for individual groups, 

the proposed regularization additionally penalized the active groups that are similar with 

each other, which leads to the automatic selection of salient feature groups from a solution 

of higher group sparsity. We developed a deep neural network using the proposed 

regularization. The experimental results showed its superior group sparsity maintaining its 

competitive prediction performance.  

The proposed method can be extended in several ways. First, we should extend the 

proposed group-exclusive group lasso to generalized groups of different numbers of 

features. Second, different similarities/associations at a group level can be considered with 

the other measures of different properties as reviewed in (Josse and Holmes, 2016). Also, 

it would be interesting to investigate a method for smoothing the proposed regularization 

in order to overcome computational obstacles, such as the oscillation of gradients at the 

origin, caused by the group lasso regularization (Wang et al., 2017). Finally, it is of interest 
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to explore the proposed regularization for the other types of neural networks, including 

convolutional neural networks and recurrent neural networks.  
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CHAPTER 6  

CONCLUSION AND FUTURE RESEARCH 

 

6.1 Conclusion 

In this dissertation, we proposed sparse machine learning methods for the prediction of 

wafer qualities in semiconductor manufacturing processes.  

In Chapter 2, we proposed the restricted relevance vector machine for incomplete 

data. The proposed model that restricts its basis in order to prevent the potential loss of the 

sparsity in its predictive distribution when the missing components were imputed in kernel 

space. The experimental results using toy and real-life data demonstrated that the proposed 

method maintained the model sparsity while the imputation of missing components in 

kernel space improved the prediction performance.  

In Chapter 3, we proposed the expected Gaussian kernel with correlated variables 

for the sparse Bayesian kernel machine regression with incomplete data. Considering the 

correlation between the variables whose instances are missing, the parameters of the 

probability distributions are estimated for the computation of the expected Gaussian 

kernels. The experimental results revealed the proposed method led to superior prediction 

performance to the existing EGK when the more incomplete instances are considered and 

when more strong correlation between missing variables is manifested.  

In Chapter 4, we proposed a deep learning-based feature extraction using the 

clipping fusion regularization for multistep process signals. By clipping the penalties from 

the fusion regularization for the stable signals reconstructed, the proposed model reduces 

the undesired penalties from the heterogeneous subprocess signals. We conducted a 
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comparative experiment for the predictive performance for virtual metrology with the 

features extracted by the proposed model and the features of the existing methods. The 

results demonstrated that the potential of the predictive performance with the features 

extracted by the proposed model over the performances by the existing methods.  

In Chapter 5, we proposed a new group-exclusive group lasso in a deep neural 

network for automatic exclusive feature group selection. With feature groups and their 

correlations, the proposed model aims to avoid the coincident selection of the feature 

groups that correlated to each other and share the predictive powers to responses. The 

experimental results from synthetic and real-life data sets showed that the proposed method 

achieved higher group sparsity with competitive prediction accuracy.  

 

6.2 Future Research 

In future work, a meaningful line of research would be further investigation of the restricted 

relevance vector machine extending to incorporating different data types and solving 

classification problems. In addition, it would be worth investigating the relevance vector 

machine with weights from the uncertainties of incomplete instances. 

Next, the expected Gaussian kernels for incomplete data can be extended by 

incorporating different distributions, kernels, and data types. Also, it would be worth 

extending the expected Gaussian kernels for the other types of machine learning problems 

such as classification and feature extraction. 

Furthermore, future studies with the clipping fusion regularization can be feature 

extraction on multistep process signals classifying the types of transient changes. Also, it 



95 
 

 

would be interesting to employ the regularization in the other types of machine learning 

methods that reconstruct original signals.  

Finally, we can extend the group-exclusive group lasso in several approaches. We 

should generalize the group-exclusive group lasso in terms of group sizes, group 

similarities, and predictive models. Also, the development of methods for the efficient 

computation of the group-exclusive lasso can be future works. We believe that more 

advanced methodologies will bring improvements in this research area. 
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APPENDIX A  Derivation of the predictive distribution of RRVM 

To find the predictive distribution of the proposed RRVM in (2.17), we need to calculate 

the posterior distribution over the coefficient vector 𝐰9 in (2.11) as:  

𝑝(𝐰9|𝐲, 𝐗, 𝐀9 , 𝜎$) =
𝑝(𝐲|𝐗,𝐰9 , 𝜎$)𝑝(𝐰9|𝐀9)

𝑝(𝐲|𝐗, 𝐀9 , 𝜎$)
	

																																				= (2𝜋)*
)C#
$ |𝚺|*

#
$ exp ¸−

1
2
(𝐰9 −𝐦9)"𝚺9*#(𝐰9 −𝐦9)º 

 

where  

		𝑝(𝐲|𝐗,𝐰9 , 𝜎$) = (2𝜋𝜎$)*
)
$ exp ¸−

1
2𝜎$ ¹𝐲 −𝚽

j9𝐰9¹
$º 

		𝑝(𝐰9|𝐀9) = (2𝜋)*
;
$|𝐀9|

#
$ exp ¸−

1
2𝐰9

"𝐀𝐰9º 

	𝑝(𝐲|𝐗, 𝐀9 , 𝜎$) = T(2𝜋𝜎)*
)
$(2𝜋)*

;
$|𝐀9|

#
$ exp ¸−

1
2𝜎$ ¹𝐲 −𝚽

j9𝐰9¹
$ −

1
2𝐰9

"𝐀𝐰9º 𝑑𝐰9 	

																													= (2𝜋)*
)
$ R𝚽j9𝐀9*#𝚽j9" + 𝜎$𝐈)R

*#$ exp ¸−
1
2 𝐲

=>𝚽j9𝐀9*#𝚽j9" + 𝜎$𝐈)?
*#𝐲º. 

Then, the predictive distribution for 𝑦PQR  given a new instance 𝐱PQR  is obtained as a 

convolution of two Gaussian distributions:  

𝑝(𝑦PQR|𝐱PQR , 𝐲, 𝐗, 𝐀9 , 𝜎$) = T 𝑝(𝑦PQR|𝐱PQR , 𝐰9 , 𝜎$)𝑝(𝐰9|𝐲, 𝐗, 𝐀9 , 𝜎$)𝑑𝐰9 	

																																																		~	𝒩 \𝐦"𝝓(9(𝐱PQR), 𝜎$ +𝝓(9(𝐱PQR)"𝚺9𝝓(9(𝐱PQR)_. 
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APPENDIX B  Proof of Proposition 1 

For the squared distance between two real vectors 𝐱'  and 𝐱& , a Gamma variable 𝜁'&  is 

approximated from the sum of correlated Gamma variables 𝛾'&Y ~ 𝐺𝑎𝑚𝑚𝑎>𝑘'&Y, 𝜃'&Y? for 

𝑝 = 1, …, 𝐷 based on the approximation in (Feng et al., 2016). The shape parameter 𝑘'&Y, 

which is estimated using 𝐸G𝛾'&YH in (3.18) and 𝑉𝑎𝑟>𝛾Y? in (3.19) from the moments of the 

missing components in original space, satisfies the condition 𝑘'&Y ≥ #
$
 if 𝜎YY,' + 𝜎YY,& > 0: 

 
𝑘'&Y =

𝐸G𝛾'&YH
$

𝑉𝑎𝑟>𝛾'&Y?
≥
1
2 

⇔
Õ>𝑥¿'Y − 𝑥¿&Y?

$ + 𝜎YY,' + 𝜎YY,&Ö
$

2>𝜎YY,' + 𝜎YY,&? Õ𝜎YY,' + 𝜎YY,& + 2>𝑥¿'Y − 𝑥¿&Y?
$Ö
≥
1
2			 

⇔ >𝑥¿'Y − 𝑥¿&Y?
X ≥ 0. 

 

 

 

 

 

(B.1) 

Similarly, the scale parameter 𝜃'&Y satisfies the condition 𝜃'&Y > 0 if 𝜎YY,' + 𝜎YY,& 

> 0: 

 
𝜃'&Y =

𝑉𝑎𝑟>𝛾'&Y?
𝐸G𝛾'&YH

> 0	

⇔
2>𝜎YY,' + 𝜎YY,&? Õ𝜎YY,' + 𝜎YY,& + 2>𝑥¿'Y − 𝑥¿&Y?

$Ö

>𝑥¿'Y − 𝑥¿&Y?
$ + 𝜎YY,' + 𝜎YY,&

> 0			 

 

(B.2) 
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APPENDIX C  Preliminary analysis result for model architecture 

Table C.1 presents the reconstruction errors of the AE models in different architectures. 

The first column of Table C.1 indicates the front-end architecture as the numbers of hidden 

neurons on the layers following the input layer where all the architectures were designed 

in a symmetric shape. 

 

Table C.1  Reconstruction MSE in different architectures. 

Front-end architecture  Reconstruction MSE 

Input – 160 –30 0.003839 
Input – 320 – 30 0.002815 
Input – 640 –30 0.002410 
Input – 1280– 30  0.001798 
Input – 1280 – 160 – 30 0.001711 
Input – 1280 – 320 – 160 – 30  0.001686 
Input – 1280 – 640 – 160 – 30  0.001650 
Input – 1280 – 1280 – 160 – 30  0.001604 
Input – 1280 – 1280 – 320 – 160 – 30  0.001586 
Input – 1280 – 1280 – 320 – 320 – 160 – 30 0.001618 
Input – 1280 – 1280 – 640 – 320 – 320 – 30 0.001599 
Input – 1280 – 1280 – 640 – 640 – 160 – 160 – 30 0.001607 
Input – 1280 – 1280 – 640 – 640 – 320 – 160 – 30 0.001562 
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APPENDIX D  Derivation of the subgradient of group-exclusive group lasso 

Given an index set of groups, 𝒢, let 𝛚5 = G𝜔#5, … , 𝜔Y8,5H
" ∈ ℝY8 be a vector of the weights 

for group 𝑠 ∈ 𝒢. For a pair of groups 𝑟 and 𝑠, the derivative of (5.18) for 𝛚5 ≠ 0 is  

 𝜕ℛ]](𝑟, 𝑠)
𝜕𝜔&5

=
𝛿85
2

𝜔&5
‖𝛚5‖$

Ó
‖𝛚8‖$
‖𝛚5‖$

Ô
#/$

	. (D.1) 

Accordingly, the derivative of the GG regularization in (5.14) is given, using (D.1), as 

 𝜕ℛ]]

𝜕𝜔&5
=

𝜕
𝜕𝜔&5

*vℛ]](𝑠, 𝑠)
5∈𝒢

++
𝜕

𝜕𝜔&5
*v v ℛ]](𝑟, 𝑠)

8∈𝒢(68)5∈𝒢
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											=
𝜔&5

‖𝛚5‖$
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‖𝛚5‖$
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where 

 𝜕
𝜕𝜔&5
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+ = 𝛿55
𝜔&5
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(D.4) 

For 𝛚5 = 0, the regularization term is non-differentiable at 𝟎 and we consider the 

subdifferential of 𝑓(𝛚5) = 𝛿55‖𝛚5‖$ + 2∑ 𝛿85(‖𝛚8‖$ ⋅ ‖𝛚5‖$)#/$8∈𝒢(68) 	, following the 

general form, as 

 𝜕𝑓(𝛚5) = {𝐯 ∈ ℝY8 	|	𝑓(𝛚5
\ ) ≥ 𝑓(𝛚5) + 𝐯"(𝛚5

\ −𝛚5), ∀𝛚5
\ ∈ ℝY8}	

																= {𝐯 ∈ ℝY8 	|	𝑓(𝛚5
\ ) ≥ 𝐯"𝛚5

\ , ∀𝛚5
\ ∈ ℝY8}. 

 

(D.5) 
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At any 𝛚5
\ ∈ ℝY8, it holds  

 𝑓(𝛚5
\ ) ≥ 𝛿55‖𝛚5

\‖$ ≥ 0, (D.6) 

and we define a set 𝜕𝑓∗(𝛚5) ⊆ 𝜕𝑓(𝛚5) from the inequality in (D.6) as 

𝜕𝑓∗(𝛚5) = {𝐯 ∈ ℝY8 	|	𝛿55‖𝛚5
\‖$ ≥ 𝐯"𝛚5

\ , ∀𝛚5
\ ∈ ℝY8}. (D.7) 

The inequality condition in (D.7) becomes the subdifferential of the standard group 

lasso with a coefficient. Thus, a subgradient vector 𝐯 of 𝑓(𝛚5) at 𝛚5 = 0 needs to satisfy 

‖𝐯‖ ≤ 𝛿55 and we define the subdifferential 𝜕𝑓∗(𝛚5) as 

 𝜕𝑓∗(𝛚5) = {𝐯 ∈ ℝY8 	|	‖𝐯‖ ≤ 𝛿55}. (D.8) 
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