
UNDERSTANDING DICTIONARIES AT THE
INTERSECTION OF THEORY AND PRACTICE

by

ALEXANDER CONWAY

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Mart́ın Farach-Colton

and approved by

New Brunswick, New Jersey

October, 2020

ABSTRACT OF THE DISSERTATION

Understanding Dictionaries at the Intersection of Theory

and Practice

By Alexander Conway

Dissertation Director:

Mart́ın Farach-Colton

Dictionaries are fundamental data structures that associate values to a set of keys.

They form the foundation of most storage systems, and are key to the performance of

many algorithms.

Dictionaries are well studied from an algorithmic perspective, and many construc-

tions of optimal dictionaries are known. However, these are rarely used in practice, and

the ubiquitious implementation, the log-structured merge tree, is theoretically subop-

timal.

This work studies a collection of dictionary problems, each of which lies somewhere

between theory and practice. These problems take advantage of the flow of ideas

back and forth betwen them, yielding interesting and surprising results, both where

innovations and ideas in systems have influenced theoretical data structures, and also

where those data structures form the foundation for new highly performant systems.

ii

Acknowledgements

I can’t say enough to thank my advisor, Mart́ın Farach-Colton. Under his guidance,

I have found countless cool things to learn, awesome problems to work on, and great

people to work with. More than that, him and his family have been great friends to

me, have helped me when I was struggling and helped me grow into a better person.

Most of all, these five years have been so much fun.

I have had the pleasure of working with a truly amazing group of collaborators.

It has been invaluable to discuss systems with Don Porter and theory with Michael

Bender. I have loved working with Ainesh Bakshi, Yizheng Jiao, William Jannen,

Nirjhar Mukherjee, Prashant Pandey, Guido Tagliavini Ponce, Meng-Tsung Tsai, Jun

Yuan and Yang Zhan. Working together with everyone has been one of my favorite

things in graduate school, and is one of the reasons I’ve been successful and stuck it

through.

I would especially like to thank Rob Johnson, with whom I interned at VMware

Research Group for 2 years, and with whose help I have secured the next phase of my

research career. I am greatly looking forward to working there together in the future.

I would like to thank everyone else whom I’ve had the pleasure of working with

at VMware, specifically Vijay Chidambaram, Kapil Chowksey, Yoni Fogel, Abhishek

Gupta, Srinath Premachandran and Amy Tai. Also my time there would not have been

the same without my good friends, Reto Achermann, Amogh Akshintala and Soujanya

Ponnapalli.

I would also like to thank my committee members for their time and support.

I would like to thank my family for their support. My mother has always pushed me

to work hard and live up to my potential, and especially to pursue hard and interesting

research. My brother, Oliver, has spent many hours chatting with me about different

iii

problems. And I would also like to thank my mother-in-law, Zsuzsanna, for encouraging

and supporting me (not to mention letting me crash with her near Rutgers!).

Finally, I would like to thank my partner, Hanna, who has been there for me for the

last 15 years. She has put up with me when I’ve struggled and has always been there

to stand me up on my feet again. I know I could not have done this without her, and

I hope that I can support her on her upcoming academic journey as well as she has on

mine.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

1. Introduction . 1

1.1. Key Differences between Theory and Practice 2

Models . 2

Hardware . 2

Filters . 3

1.2. This Work . 3

Chapter 2: Optimal Hashing in External Memory 4

Chapter 3: SplinterDB . 4

Chapter 4: File System Aging . 4

Chapter 5: Optimal Ball Recycling 5

2. Optimal Hashing in External Memory 6

2.1. Introduction . 6

2.2. Preliminaries . 8

Fingerprints and Hashing . 8

Delta Encoding . 8

Log-structured Merge Trees . 9

2.3. Bundle of Arrays Hashing . 10

2.3.1. Routing Filters . 11

2.4. Refined Bundle of Arrays Hashing . 13

Refined Routing Filter . 14

BOA Performance . 15

v

2.5. Bundle of Trees Hashing . 16

2.5.1. Queries in a BOT . 17

2.5.2. Character Queue . 19

The character queue tradeoff . 20

The character queue merging schedule 20

2.5.3. Performance of the BOT . 21

2.6. Cache-Oblivious BOTs . 22

2.7. Asymmetric BOTs . 24

3. SplinterDB . 27

3.1. Introduction . 27

3.2. Background . 30

The DAM model. 30

B-trees. 30

Log-structured Merge Trees. 31

Bε-Trees. 32

Filters. 33

Size Tiering. 33

3.3. High-Level Design of STBε-trees . 34

3.4. Size-Tiering with Workload-Driven Compaction 36

3.5. Preemptive Splitting for STBε-trees . 40

3.6. From STBε-trees to SplinterDB . 41

3.6.1. User-level Cache and Distributed Locks 41

3.6.2. Branch Trees and Memtables . 42

Branch trees . 43

Memtables . 43

3.6.3. Quotient filters . 44

3.6.4. Logging and Recovery . 45

3.7. Evaluation . 45

vi

3.7.1. Setup and Workloads . 46

3.7.2. YCSB . 47

3.7.3. KVell . 48

3.7.4. Sequential Insertion Performance 49

3.7.5. Concurrency Scaling . 50

Read Concurrency . 51

Insertion Concurrency . 52

3.7.6. Scan Performance . 53

3.8. Related Work . 55

4. File System Aging . 58

4.1. Introduction . 58

Results. 60

4.2. Related Work . 61

4.2.1. Creating Aged File Systems . 61

4.2.2. Measuring Aged File Systems . 62

4.2.3. Existing Strategies to Mitigate Aging 63

Cylinder or Block Groups. 63

Extents. 64

Delayed Allocation. 64

Packing small files and metadata. 65

4.3. A Framework for Aging . 65

4.3.1. Natural Transfer Size . 65

4.3.2. Allocation Strategies and Aging 67

B-trees. 67

Write-Once or Update-in-Place Filesystems. 67

Bε-trees. 68

4.4. Measuring File System Fragmentation 68

Recursive grep test. 68

vii

Dynamic layout score. 69

4.5. Experimental Setup . 69

4.6. Fragmentation Microbenchmarks . 70

Intrafile Fragmentation. 70

Interfile Fragmentation. 74

4.7. Application Level Read-Aging: Git . 76

Git Workload with Warm Cache. 82

Git Workload on BTRFS with Different Node Sizes 82

4.8. Application Level Aging: Mail Server . 84

4.9. Conclusion . 87

5. Optimal Ball Recycling . 88

5.1. Introduction . 88

5.2. Ball Recycling and Insertion/Update Buffers 91

5.3. Ball Recycling and Markov Theory . 93

5.3.1. Ball-recycling games are Markov decision processes. 94

5.3.2. Stationary distributions of recycling strategies 95

5.4. Random Ball is Optimal . 97

5.4.1. Outline of Proof . 97

5.4.2. The Upper Bound . 97

5.4.3. Random Ball with m ≥ n . 101

5.4.4. Aggressive Empty is Optimal 102

5.4.5. Random Ball is Optimal . 105

5.5. The Uniform Case . 107

5.5.1. Random Ball in the Uniform Case 108

5.6. Database Experiments . 114

5.6.1. Insertion Buffers in Database Systems 114

5.6.2. Experimental Validation . 116

5.6.3. Insertion-Buffer Background . 117

viii

SAP: . 117

NuDB: . 117

Buffered Bloom and quotient filters: 118

InnoDB: . 118

5.6.4. Leaf Probabilities in B-trees . 119

5.6.5. Simulating Insertion Buffers . 120

5.6.6. Real-World Performance (InnoDB) 121

References . 124

ix

1

Chapter 1

Introduction

Dictionaries are fundamental data structures that map a set of keys to values. A

dictionary generally must support insertion and lookup, but also optionally delete,

update, successor and scan. A systems that implements a dictionary is called a key-

value store. Dictionaries lie at the heart of most storage systems and also play an

essential role in many algorithms.

The work presented here examines problems related to the theory and implementa-

tion of high-performance external memory dictionaries.

Since the invention of the B-tree 50 years ago, the theory of external memory dic-

tionaries and the implementation of key-value stores has progressed to some extent

independently and in parallel. Currently, most external memory key-value stores used

in practice are based on log-structured merge trees (LSMs), which are suboptimal from

a theoretical standpoint.

From a theoretical perspective, there are many dictionary data structures which are

optimal under different models. In the comparison DAM model, where the only oper-

ations permitted on key are key comparisons, the Bε-tree was the first known optimal

dictionary, and it was followed by an LSM derivative, the COLA, and several other

data structures. In the broader DAM model, more general operations—in particular

hashing—are permitted, which improves the performance of optimal data structures.

In this model, the only previously known optimal dictionary is the external memory

hash table of Iacono and Pǎtraşcu. Of these optimal data structures, only the Bε-tree

has been used successfully in a handful of systems.

2

1.1 Key Differences between Theory and Practice

Although a proper exposition of this schism between the data structures used in practice

and those which are optimal in theory is beyond the scope of this work, it is helpful to

examine some of the reasons here in order to motivate and contextualize the results.

Models

One of the difficulties in translating theoretical results into systems is understanding

the strengths and limitations of the models used. The disk access model (DAM) has

long been the standard model for external memory algorithms, but while it offers a

reasonable approximation of the perforamnce of hard drives, it can distort performance

by a factor of 2 compared to more realistic models, such as the affine model. These

sorts of constant factors are irrelevant in theory, but meaningful in practice.

The assumptions used also matter. For example, it is often the case that a system

may have a cache which is 25–50% the size of the dataset, whereas many theoretical

results, such as the lower bounds alluded to above, assume that the cache is much

smaller, typically M = o(N/ logN). Thus, at first glance, these results may not directly

apply.

Hardware

As technology changes and new storage hardware is developed, new models and design

principles are required to understand and leverage their performance. As the premium

storage technology has evolved from hard drive to solid state device to block-addressable

non-volatile memory, much of the external memory literature has remained relatively

constant. Interestingly enough, the performance of SSDs and NVMe devices is perhaps

best captured by a classical model: the parallel disk access model (PDAM). As a result,

in many settings, variations of classical external memory data structures perform well

on these devices.

3

Filters

A filter is a probabilistic set-membership data structure with one-sided error. The first

and most well-known example is the Bloom filter, but many other variants have been

proposed and implemented, such as the cuckoo filter and the quotient filter. Filters are

commonly used to optimize the lookup performance of LSMs and under some conditions

can reduce the number of IOs per point lookup to 1.

Filters are commonly only used in memory (although cuckoo and quotient filters

have good performance characteristics in external memory as well), and across the

dataset consume at least ΩN/ logN space—implying that M = ΩN/ logN . This part

of the parameter space is less theoretically interesting, because the principle lower

bounds do not hold. However, as a result, the application of filters to common data

structures which asymptotically dominate LSMs, such as COLAs and Bε-trees, has been

overlooked, and these data structures have received much less exposure to the systems

community.

Thus filters have steered systems both towards LSMs, by “fixing” their lookups,

and towards hardware configurations with a relatively large amount of cache, to enable

their use.

1.2 This Work

This work studies a collection of dictionary problems, each of which lies somewhere

between theory and practice. The themes above—models and their limitations, chang-

ing hardware and the use of filters—frequently recur. However, rather than dividing

the theoretic and practical study of dictionaries, these themes reflect the flow of ideas

back and forth between them. This yields interesting and surprising results, both where

innovations and ideas in systems have influenced theoretical data structures, and also

where those data structures form the foundation for new highly performant systems.

4

Chapter 2: Optimal Hashing in External Memory

This is evident in Optimal Hashing in External Memory, in which LSMs—commonly

used in practice, but theoretically suboptimal—are modified using a new type of filter,

the routing filter, to create a simple optimal external memory dictionary, the BOA.

Pushing these ideas further yields the BOT, which is optimal over larger parameter

ranges, and the COBOT, which is the first optimal cache-oblivious dictionary.

This content was presented at ICALP 2018 by myself, Mart́ın Farach Colton and

Phillip Shillane.

Chapter 3: SplinterDB

This chapter introduces SplinterDB: a highly concurrent key-value store designed to

perform on NVMe. SplinterDB takes the ideas underlying BOAs and BOTs, includ-

ing routing filters, and implements them within a Bε-tree. SplinterDB outperforms

RocksDB, a state-of-the-art key-value store, by 2–8× on insertions and 1.2–2× on point

lookups.

This content will appear at ATC 2020 and is by myself, Abhishek Gupta, Vijay

Chidambaram, Mart́ın Farach-Colton, Richard Spillane, Amy Tai and Rob Johnson.

Chapter 4: File System Aging

File system aging is thought to be a solved problem: while older file systems are known

to age, modern file systems (and devices) are believed to only age under adversarial

workloads. However, models for block allocation suggest that the approaches taken by

most file systems should lead to aging under a broad range of workloads.

In this work, we present an aging tool based on the version control system, git,

which replays development histories spanning years of use. Using this tool, we show

that 5 popular file systems suffered catastrophic aging on hard drives and substantially

aging on SSDs.

On the other hand, BetrFS, a file system which uses Bε-trees to manage its on-disk

data, should not age because it algorithmically moves stored data to maintain locality.

5

This is borne out using the git aging tool: BetrFS does not age at all under the same

workload.

This content was presented at FAST 2017 by myself, Ainesh Bakshi, Yizheng Jiao,

William Jannen, Yang Zhan, Jun Yuan, Michael A Bender, Rob Johnson, Bradley C

Kuszmaul, Donald E Porter and Mart́ın Farach-Colton.

Chapter 5: Optimal Ball Recycling

A popular optimization technique for B-tree-based databases is the use of an insertion

buffer. This is an in-memory buffer, which stores insertions as they arrive with the

hope of batching them together before they are written to the leaves of the B-tree. This

chapter models and analyzes insertion buffers (as well as the related update buffers) and

provides a tight upper bound of the performance improvement that can be obtained.

This result undermines the common assumption that large caches can be used to fix

performance problems in storage systems.

This content appeared at SODA 2018 by Michael Bender, Jake Christensen, myself,

Martin Farach-Colton, Rob Johnson and Meng-Tsung Tsai.

6

Chapter 2

Optimal Hashing in External Memory

2.1 Introduction

Dictionaries are among the most heavily used data structures. A dictionary main-

tains a collection of key-value pairs S ⊆ mathcalU × mathcalV , under operations1

insert(x, v,S), delete(x,mathcalS), and query(x,S), which returns the value cor-

responding to x when x ∈ S. When data fits in memory, there are many solutions to

the dictionary problem.

When data is too large to fit in memory, comparison-based dictionaries can be quite

varied. They include the Bε-tree [29], the write-optimized skip list [20], and the cache-

optimized look-ahead array (COLA) [15, 18, 13]. These are optimal in the external-

memory comparison model in that they match the bound established by Brodal

and Fagerberg [29] who showed that for any dictionary in this model, if insertions can

be performed in O
(
λ logλN

B

)
amortized IOs, then there exists a query that requires at

least Ω(logλN) IOs, where N is the number of items that can be stored in the data

structure, B is the size of a memory transfer, and λ is a tuning parameter. In the

following M will be the size of memory, and B = Ω(log n). This trade off has since

been extended in several ways [17, 4].

Iacono and Pǎtraşcu showed that in the DAM model, in which operations beyond

comparisons are allowed on keys, a better tradeoff exists:

Theorem 1 ([57]). If insertions into an external memory dictionary can be performed

in O (λ/B) amortized IOs, then queries require an expected Ω(logλN) IOs.

1We do not consider dictionaries that also support the succ(x,S) and pred(x,S).
succ(x,mathcalS) returns min{y|y > x ∧ y ∈ S} and pred(x,mathcalS) is defined symmetrically.

7

They further describe an external-memory hashing algorithm, which we refer to here

as the IP hash table, that performs insertions in O
(

1
B

(
λ+ logM

B
N + log logN

))
IOs

and queries in O(logλN) IOs w.h.p. Therefore, for λ = Ω
(

logM/B N + log logN
)

, the

IP hash table meets the tradeoff curve of theorem 1 and is thus optimal.

In dictionaries that do not support successors and predecessors, we can assume

that keys are hashed, that is, that they are uniformly distributed and satisfy some

independence properties. The IP hash table and the following results hash all keys

before insertion and query in the dictionary by a Θ(logN)-independent hash function.

The base result of this paper is a simple external-memory hashing scheme, the

Bundle of Arrays Hash Table (BOA), that meets the optimal theorem 1 trade off

curve for large enough λ. Specifically, we show:

Theorem 2. A BOA supports N insertions and deletions with amortized per entry

cost of O
((
λ+ logM

B
N + logλN

)
/B
)

IOs, for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or

deleted.

Thus BOAs are optimal for λ = Ω(logM
B
N + logλN). They are readily modified to

provide several variations, notably the Bundle of Trees Hash Table (BOT). BOTs

are optimal for the same range of λ as the IP hash table:

Theorem 3. A BOT supports N insertions and deletions with amortized per entry cost

of O
((
λ+ logM

B
N + log logM

)
/B
)

IOs for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or

deleted.

We further introduce the first cache-oblivious hash table, the Cache-Oblivious

Bundle of Trees Hash Table (COBOT), which matches the IO performance of

BOTs and IP hash tables.

The BOT can also be adapted to models in which disk reads and writes incur

different costs. The β-asymmetric BOT adjusts the merging schedule of a regular BOT

to trade some writes for more reads.

8

Theorem 4. A β-asymmetric BOT supports N insertions and deletions with amortized

per entry cost of O
(

1
B

(
λ+ 1

β logλN
))

writes and O
(
1
B (λ+ β)

)
reads for any λ > 1

and β ≤
⌊
logλ

M
B logλN

⌋
. A query for a key K performs O(DK logλN) reads, where DK

is the number of times K has been inserted or deleted.

2.2 Preliminaries

Fingerprints and Hashing

In order to achieve our bounds, we need Θ(logN)-wise independent hash functions,

which, once again matches IP hash tables. We note that a k-wise independent hash

function is also k-wise independent on individual bits. Furthermore, the following

Chernoff-type bound holds:

Lemma 1 ([96]). Let X1, X2, . . . , XN be dµδe-wise independent binary random vari-

ables, X =
∑N

i=1Xi and µ = E [X]. Then P (X > µδ) = O
(
1/δµδ

)
, for sufficiently

large δ.

In the following, we use fingerprint to refer to any key that has been hashed

using a Θ(logN)-wise independent hash function. Such hash functions have a compact

representation and can be specified using Θ(logN) words. The universe that is hashed

into is assumed to have size Θ(Nk) for k ≥ 2. We ignore collisions, but these can be

handled as in [57].

For a fingerprint K, it will be convenient to interpret the bits of K as a string of

log λ (where lambda is a given parameter) bit characters, K = K0K1K2 · · · .

Delta Encoding

We will frequently encounter sorted lists of fingerprint prefixes (possibly with dupli-

cates), together with some data about each. When the size of the list is dense in

the space of prefixes, we can compress it using delta encoding, where the difference

between prefixes is stored rather than the prefixes themselves.

9

Lemma 2. A list of delta-encoded prefixes with density D, that is there are D prefixes

in the list for every possible prefix, requires O(− logλD) characters per prefix.

Proof. The average difference between consecutive prefixes is 1/D. Because logarithms

are convex, the average number of characters required to represent this difference is

therefore O(− logλD).

Log-structured Merge Trees

Log-structured merge trees (LSMs) are (a family of) external-memory dictionary data

structures. They come in two varieties: level-tiered LSMs (LT-LSMs) and size-

tiered LSMs (ST-LSMs). Both kinds are suboptimal in that they do not meet the

optimal insertion-query tradeoff [29], although the COLA [15] is an optimal variant of

the LT-LSMs.

An LSM consists of sets of either B-trees or sorted arrays called runs. In this paper,

we describe them in terms of runs, since we use runs below.

An LT-LSM consists of a cascade of levels, where each level consists of at most one

run. Each level has a capacity that is λ times greater than the level below it, where

λ is called the growth factor.2 When a level reaches capacity, it is merged into the

next level (perhaps causing a merge cascade). The amortized IO cost for insertions

is small because sequential merging is fast, although each item will participate in λ/2

merges on average. The IO cost for a query is high because a query must be performed

independently on each of O(logλN) levels (although Bloom filters [24, 18] are sometimes

used to mitigate this cost).

An ST-LSM further improves insertion IOs at the expense of queries. Each level

contains fewer than λ runs. Every run on a given level has the same size, which is

λ times larger than the runs on the level beneath it. When λ runs are present at a

level, they are merged into one run and placed at the next level. There are therefore

O(logλN) levels. Insertions are faster than in LT-LSMs because each item is only

2Sometimes this and related structures are analyzed with a growth factor of Bε. The two are
equivalent. We use λ rather than ε as the tuning parameter for consistency with the external-memory
hashing literature.

10

merged once on each level. Queries are slower because each query must be performed

O(λ) times at each level.

In LSMs, deletions can be implemented by the use of upsert messages [48, 60],

which are a type of insertion with a message that indicates that the key has been

deleted. A query for a key K then fetches all the matching key-value pairs and if the

last one (temporally) is a deletion upsert, it returns false. To this end, the merges

must maintain the temporal order of key-value pairs with the same key. Because a

query for a key K must fetch every instance of K, the cost of a query is proportional

to the number of times the key has been inserted and deleted, which we refer to as the

duplication count, DK of K. When N/2 deletions have been made, the structure is

rebuilt to reclaim space. In what follows, deletions will be implemented using the same

mechanism.

2.3 Bundle of Arrays Hashing

A Bundle of Arrays Hash Table (BOA) is an external-memory dictionary based on

ST-LSMs. In this section, we describe a simple version which is optimal in the sense of

theorem 1, but where the query cost meets the bound only in expectation, not w.h.p.

In section 2.4, we give a version that satisfies theorem 2.

As a first step, we show that runs with uniformly distributed, Θ(logN)-wise inde-

pendent fingerprints can be searched more quickly than in an ST-LSMs.

Lemma 3. Let A be a sorted array of N uniformly distributed Θ(logN)-wise indepen-

dent keys in the range [0,K), and assume B = Ω(logN). Then A can be written to

external memory using O(N) space and O(N/B) IOs so that membership in A can be

determined in O(1) IOs with high probability.

Proof. First note that, by lemma 1 and Bonferroni’s inequality, if N balls are thrown

into Θ(N/ logN) bins uniformly and Θ(logN)-wise independently, then every bin has

Θ(logN) balls with high probability.

Divide the range of keys into N/B uniformly sized buckets; that is, bucket i contains

keys in the range [(i − 1)KB/N, iKB/N). Because the keys in A are distributed

11

uniformly, and B = Ω(logN), every bucket contains Θ(B) keys with high probability.

Let F be the number of items in the fullest bucket, and write the keys in each bucket to

disk in order using F space for each. Because F = Θ(B), this takes the desired space

and IOs.

Now, to find a key, compute which bucket it belongs to. A constant number of

IOs will fetch that bucket, whose address is known because all buckets have the same

size.

Corollary 1. If an ST-LSM contains uniformly distributed and Θ(logN)-wise inde-

pendent fingerprints and has growth factor λ, then a query for K can be performed in

O(DKλ logλN) IOs by writing the levels as in lemma 3. The insertion/deletion cost is

unchanged: O
(

1
B

(
logλN + logM

B
N
))

amortized IOs.

While the query performance improves by a factor of logN , the ST-LSM is still

off of the optimal tradeoff curve of theorem 1. In particular, queries can be at least

exponentially slower than optimal. The BOA uses additional structure in order to

reduce this query cost.

2.3.1 Routing Filters

The main result of this section is an auxiliary data structure, the routing filter, that

improves the query cost of an ST-LSM by a factor of λ by further exploiting the log-wise

independence of fingerprints. Combining these routing filters with fast interpolation

search will yield the BOA, a hashing data structure that is optimal for large enough λ.

The purpose of the routing filter is to indicate probabilistically, at each level, which

run contains the fingerprint we are looking for. Each level will have its own routing

filter, defined as follows. For each level `, let h` be some number, to be specified below.

Let P`(K) be the prefix consisting of the first h` characters of K. The routing filter

F` for level ` is a λh`-character array, where F`[i] = j if the jth run R`,j contains a

fingerprint K such that the P`(K) = i, and no later run R`,j′ (i.e. with j′ > j) contains

such a fingerprint.

We also modify each run R`,j during the merge so that each fingerprint-value pair

12

contains a previous field of 1 additional character used to specify the previous run

containing a fingerprint with the same prefix, or j, to indicate no such run exists. Thus

these fingerprint-value pairs now form a singly linked list whose fingerprints share the

same prefix, and the routing filter points to the run containing the head.

During a query for a fingerprint K, first F`[P`(K)] is checked to find the latest

run containing a fingerprint with a matching prefix. Once that fingerprint-value pair

is found, its previous field indicates the next run which needs to be checked and so

on until all fingerprints with matching prefix in the level are found. Each fingerprint

K ′ 6= K that matches K’s prefix is a false positive.

Such routing filters induce a space/cost tradeoff. The greater h` is, the more space

the table takes but the less likely it is that many runs will have false positives. The rest

of this section shows that when h` = logλB + `, in other words, when prefixes grow by

a character per level, the BOA lies on the optimal tradeoff curve of theorem 1.

Define β, the routing table ratio, to be the ratio of the number of buckets in the

routing filter to the size of a run. The number of entries in a run on level ` is Bλ`−1,

so β = λh`/Bλ`−1. We first analyze the per-level insertion/deletion cost, and then we

compute the expected number of false positives in order to analyze the overall query

cost.

Lemma 4. For a BOA with growth factor λ and routing table ratio β, merging a level

incurs Θ
(

1
B

(
1 + logM

B
λ+ β logN λ

))
IOs per fingerprint.

Proof. Merging a level requires merging its runs as well as updating the next level’s

routing filter. Merging λ sorted arrays takes Θ
(

1
B

(
1 + logM/B λ

))
IOs per fingerprint.

The routing filter is updated by iterating through it and the new run sequentially.

For each fingerprint K appearing in the run, F`+1[Ph`+1
(K)] is copied to the previous

field in the run, and F`+1[Ph`+1
(K)] is set to the number of the current run. Each entry

in the routing filter is a character, and the routing filter has β entries for each new

fingerprint. Thus, it requires Θ
(
β
B logN λ

)
IOs per fingerprint to update sequentially.

13

Lemma 5. For a BOA with growth factor λ and routing table ratio β, querying a

fingerprint K on a given level incurs at most λ
β false positives in expectation.

Proof. Given some enumeration of the fingerprints in level `, which are not equal to K,

denote the ith such fingerprint by Ki. Some of these may be duplicates. Let Xi be the

indicator random variable, which is 1 if P`(K) = P`(Ki) and 0 otherwise. K and Ki

are uniformly distributed and their bits are pairwise independent. Thus E [Xi] ≤ 1
λh`

.

The expected number of fingerprints (excluding K) in the level with prefix P`(K) is

thus at most
∑Bλ`

i=1 E [Xi] ≤ Bλ`

λh`
= λ

β .

Lemma 6. A BOA with growth factor λ and routing table ratio β has insertion/deletion

cost O
(

1
B

(
β + logM

B
N + logλN

))
. A query for fingerprint K has expected cost

O
(
λ
βDK logλN

)
, where DK is the duplication count of K.

Proof. Because a BOA has logλN levels, the insertion cost follows from lemma 4.

To query for a fingerprint K, the routing filter on each level is checked, which incurs

O(logλN) IOs. These routing filters return a collection of runs which contain up to DK

true positives and an expected O
(
λ
β logλN

)
false positives, by lemma 5. By lemma 3,

each run can be checked in O(1) IOs.

So for a fixed λ, there is no advantage to choosing β = ω(λ). On the other hand,

β = o(λ) is suboptimal, because then choosing β′ = λ′ = β changes a linear factor in

the query cost to a logarithmic one. Therefore, it is optimal to choose β = Θ(λ), and

in what follows we will fix β = λ. Thus,

Lemma 7. A BOA supports N insertions and deletions with amortized per entry cost

of O
((
λ+ logM

B
N + logλN

)
/B
)

IOs, for any λ > 1. A query for a key K costs

O(DK logλN) IOs in expectation, where DK is the duplication count of K.

2.4 Refined Bundle of Arrays Hashing

In order to obtain high probability bounds for a BOA, we need a stronger guarantee

on the number of false positives. This is achieved by including an additional character,

14

the check character from each fingerprint in the routing filter, which is also checked

during queries and thus eliminates most false positives. To support this, we will need

to refine the routing filter so it can maintain check characters even when there are

collisions.

The ith check character Ci(K) of a fingerprint K is the ith character from the end

of the string representation of K. As described in section 2.2, we assume that the

fingerprints are taken from a universe of size at least N2 so that the check characters

do not overlap with the characters used in the prefixes of the routing filters, and by

Θ(logN)-wise independence, the check characters of O(1) fingerprints are independent.

Now each fingerprint in the filter has a check character and a array pointer, and we

refer to this data as the sketch of the fingerprint.

When level i of the BOA is queried for a fingerprint K, the refined routing filter

(described below) returns a list of sketches, one for each fingerprint in the level with

prefix Pi(K). The array indicated in the sketch is only checked if the check character

matches Ci(K), which reduces the number of false positives by a factor of λ.

Refined Routing Filter

The routing filter described in section 2.3.1 handles prefix collisions by returning only

the last run containing the queried fingerprint and then chaining in the runs. Whereas,

to support check characters we need to return a list instead, while having the same

performance guarantees.

The idea behind the refined routing filter is to keep the prefix-sketch pairs in a sorted

list and use a hash table on prefixes to point queries to the appropriate place. Each

pointer may require as many as Ω(logN) bits, and we require the routing filter to have

O(1) characters per fingerprint. Therefore the hash table must use shorter prefixes so

as to reduce the number of buckets and thus reduce its footprint. In particular, it uses

prefixes which are logλ logλN characters shorter, which we refer to as pivot prefixes.

The list delta encodes the prefix for each fingerprint K, together with its sketch. In

addition, the first entry following each pivot prefix contains the full prefix, rather than

just the difference. Otherwise, when the hash table routes a query to that place in the

15

list, the full prefix wouldn’t be immediately computable.

Lemma 8. A refined routing filter can be updated using O
(
λ log λ
B logN

)
IOs per new entry,

and performs lookups in O(D∗K) IOs w.h.p., where D∗K is the number of times K appears

in the level.

Proof. We prove first the update bound and then the query bound.

Let C be the capacity of the level. There are at most C
logλN

pivot prefixes. For

each pivot prefix, the hash table stores the bit position in a list with at most C entries,

where C ≤ N . Each entry is at most logN bits, so this position can be written using

O(logN) bits.

For each fingerprint in the node, the list contains O(1) characters by lemma 2, or

O(log λ) bits. Additionally, each pivot prefix has to an initial entry of length O(logN)

bits, so the list all together uses O(C log λ+ C
logλN

· logN) = O(C log λ) bits.

When the refined routing filter is updated, the old version is read sequentially and

the new version is written out sequentially. C/λ fingerprints are added at a time, so

this incurs O
(
λ log λ
B logN

)
IOs per entry.

During a query, the pivot bit string of a fingerprint and its successor are accessed

from the hash table in O(1) IOs. This returns the beginning and ending bit positions in

the list. Because the fingerprints are distributed uniformly and are pairwise independent

to K, there are O(logλN +D∗K) fingerprints matching the pivot prefix in expectation.

From lemma 1 with δ = log λ, there are O(logN +D∗K) fingerprints matching the pivot

prefix w.h.p. The encoding of each fingerprint is less than a word, and B = Ω(logN)

by assumption, so this is O(D∗K) IOs.

BOA Performance

We now can show:

Theorem 2. A BOA supports N insertions and deletions with amortized per entry

cost of O
((
λ+ logM

B
N + logλN

)
/B
)

IOs, for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or

deleted.

16

Proof. The insertion/deletion cost is given by lemma 8 and lemma 7.

During a query for a fingerprint K, the expected number of false positives on level i

(fingerprints which match the prefix Pi(K) and check character Ci(K) but are not K)

is O
(
1
λ

)
. Thus, the number of false positives across levels is O

(
logλN
λ

)
, so by lemma 1,

the number of false positives is O (logλN) w.h.p.

Thus, a BOA is optimal for large enough λ:

Corollary 2. Let B be a BOA with growth factor λ containing N entries. If λ =

Ω
(

logM
B
N + logN

log logN

)
, then B is an optimal unsorted dictionary.

2.5 Bundle of Trees Hashing

In order for a BOA to be an optimal dictionary, its growth factor λ must be

Ω(logN/ log logN). Otherwise, the cost of insertion is dominated by the cost of merg-

ing, which is slow because it effectively sorts the fingerprints using a λ-ary merge sort.

In this section, we present the Bundle of Trees Hash Table (BOT), which is a

BOA-like structure. A BOT stores the fingerprints in a log in the order in which they

arrive. Each level of the BOT is like a level of a BOA, where the bundle of arrays on

each level is replaced by a search structure on the log (the routing tree) and a data

structure needed to merge routing trees (the character queue). The character queue

performs a delayed sort on the characters needed at each level, thus increasing the arity

of the sort and decreasing the IOs.

A BOT has s = dlogλN/Be levels, each of which contains a routing tree. The root of

the routing tree has degree less than λ and all internal nodes have degree λ. Each node

of a routing tree contains a routing filter. As in section 2.4, each routing filter takes as

input a fingerprint K and outputs a list of sketches corresponding to fingerprints with

the same prefix as K. Each sketch consists of a pointer to a child, a check character

and some auxiliary information discussed below.

Each leaf points to a block of B fingerprints in the log. The deepest level s uses a

height-s tree to index the beginning of the fingerprint log, the next level then indexes

the next section, and so forth, as shown in fig. 2.1. Insertions and deletions (as upsert

17

messages) are appended to the log until they form a block, at which point they are

added to the tree in the 1st level of the BOT.

Level 3
Level 2

Level 1

LogLog

Figure 2.1: The routing trees in a
3 level BOT. The trees cover con-
tiguous portions of the log. The
highest level covers the beginning
of the log, the next level the begin-
ning of the remainder of the log,
and so on.

Level 2Level 3 Level 3

Keys added to
root routing filter

Tree becomes
child of root

Figure 2.2: When the routing tree on level i
fills, it is merged into the routing tree on level
i+ 1. The now-full routing tree from level i+ 1
becomes a child of the root on level i + 1. Its
fingerprints are added to the root routing filter.
Note that the tree is not moved.

When a level i in the BOT fills, its routing tree is merged into the routing tree of

level i+1, thus increasing the degree of the target routing tree by 1 (and perhaps filling

level i + 1, which triggers a merge of level i + 1 into i + 2, and so on). The merge of

level i into level i+ 1 consists of adding the prefix-sketch pairs of the fingerprints from

level i to the routing filter of the root on level i + 1. The child pointers of these pairs

will point to the root of the formerly level-i routing tree, so it becomes a child of the

root of the level i + 1 routing tree, although it isn’t moved or copied. See fig. 2.2. In

this way, a BOT resembles an LT-LSM, as described in section 2.2.

In order to add a fingerprint K from level i to the root routing filter on level i+ 1,

the prefix Pi+1(K) must be known. However, the root routing filter on level i only

stores the prefix Pi(K) for each fingerprint K it contains, so that in particular, the last

character of Pi+1(K) is missing. As described in section 2.5.2, each level has a character

queue, which provides this character, as well as the check characters, in order to merge

the routing trees efficiently.

2.5.1 Queries in a BOT

A query to the BOT for a fingerprint K is performed independently at each level,

beginning at the root of each routing tree. When a node is queried, its routing filter

18

returns a list of sketches. The sketches whose check characters match the queried

fingerprint indicate to which children the query is passed. This process continues until

the query reaches a block of the log, which is then searched in full. In this way queries

are “routed” down the tree on each level to the part of log where the fingerprint and its

associated value are. Note that as queries descend the routing tree, they may generate

false positives which are likewise routed down towards the log.

In this section, we refine routing trees so that they offer two guarantees about false

positives. The first is that at each level, the probability that a given false positive is

not eliminated is at most 1
λ . The second is that false positives can only be created in

the root, so that as the query descends the tree, the number of false positives cannot

increase.

During a query to a node of height h for a fingerprint K, the routing filter returns

a list of sketches corresponding to fingerprints which match K’s prefix. The query

only proceeds on those children whose check characters also match the check character

Ch(K). Since the characters of the fingerprint are uniformly distributed and Θ(logN)-

wise independent, the check character of each false positive matches with probability 1
λ .

Moreover, the characters of each level are non-overlapping, so for fingerprints K, K ′,

the event that Vh(K) = Vh(K ′) is independent of the event that Vh−1(K) = Vh−1(K
′).

To prevent new false positives from being generated when a query passes from a

parent to a child, the next character of each fingerprint is also kept in its sketch

in the routing filter. For a fingerprint K in a node of height h, the next character is

just the next character that follows the prefix, Ph(K), so that its prefix in the parent,

Ph+1(K), can be obtained. A false positive in a child which is not in the parent will

not match this next character and can be eliminated.

When there are multiple prefix-matching fingerprints in both a parent and its child,

we would like to be able to align the lists returned by the routing filters so that known

false positives in the parent (either from check or next characters) can be eliminated

in the child. Otherwise the check character in the child of a known false positive in

the parent may match the queried fingerprint, and therefore more than 1
λ of the false

positives may survive. To this end, we require the routing filter to return the list of

19

sketches in the order their fingerprint-value pairs appear in the log. Then after the

sketches in the child list whose next characters do not match the parent are eliminated,

the remaining phrases will be in the same order as in the parent. In this way, known

false positives can also be eliminated in the child.

Now we can show:

Lemma 9. During a query to a routing tree, the following are true:

1. A false positive can only be generated in the root.

2. At each level, a given false positive survives with probability at most 1
λ .

Proof. Because of the next characters, false positives may only be created in the root of

the routing tree. Each false positive in the root corresponds to a fingerprint K ′ in the

level. At each node on the path to K ′’s location in the log, we use the ordering to deter-

mine which returned sketch corresponds to K ′, so that the false positive corresponding

to K ′ is eliminated with probability 1
λ .

2.5.2 Character Queue

The purpose of the character queue is to store all the sketches of fingerprints contained

in a level i that will be needed during a merge in the future. When level i is merged

into level i + 1, the character queue outputs a sorted list of the delta-encoded prefix-

sketch pairs of all the fingerprints, which is used to update the root routing tree. The

character queue is then merged into the character queue on level i+ 1.

The character queue effectively performs a merge sort on the sketches. If it were to

merge all the sketches as soon as they are available, this would consist of λ-ary merges.

In order to increase the arity of the merges, it defers merging sketches which are not

needed immediately. The sketches are stored as a collection of series, by which we

mean a collection of sorted runs. Each series stores a continuous range of sketches

Si(K), Si+1(K), . . . , Si+j(K) for each fingerprint K, together with the prefix up to the

first sketch, Pi−1(K). These prefixes are delta encoded in their run. Thus the size of

an entry is determined by the number of sketches in the range and the length of the

prefix relative to the size of the run (by lemma 2).

20

The character queue tradeoff

We are faced with the following tradeoff. If the character queue merges a series fre-

quently, the delta encoding is more efficient, which decreases the cost of the merging.

However the arity is lower, which increases it. The character queue uses a merging

schedule which balances this tradeoff and thus achieves optimal insertions.

The character queue merging schedule

The character queue on level i (here we consider blocks of the log to be level 0) contains

the sketches Si+1(K), Si+2(K), . . . Ss(K) of each fingerprint K in the level. These

characters are stored in a collection of series {σjq}, where jq is the smallest multiple of

2q greater than i. Series σjq contains the sketches Sjq(K), . . . , Sjq+1−1(K). Each series

consists of a collection of sorted runs, each of which stores the delta encoded prefix of

each fingerprint together with its sketches.

Initially, when a block of the log is written, all the series σ2q for q = 1, 2, 3, . . . are

created. When level i fills, the runs in the series σi+1 are merged, and the character

queue outputs the delta encoded prefix-sketch pairs, (Pi+1(K), Si+1(K)) to update the

root routing filter on level i+ 1. If 2ρ(i+q) is the greatest power of 2 dividing i+ 1 (ρ is

sometimes referred to as the ruler function [107]), then σi+1 also contains the next

2ρ(i+1)−1 sketches of each fingerprint. These are batched and delta encoded to become

runs in the series σjq for q = [0, ρ(i + 1)]. The runs in the remaining series of level i

become runs of their respective series on level i+ 1.

Note that for the lower levels, some runs may be shorter than B due to the delta

encoding. For a run in a series σq, this is handled by buffering them with the runs σq

of higher levels and writing them out once they are of size B. Note that this requires

O(B log logN) memory.

This leads to the following merging pattern: σj batches 2ρ(j) sketches, and has delta

encoded prefixes of 2ρ(j) characters on average, by lemma 2. Therefore,

Lemma 10. A series σj in a character queue contains O(2ρ(j)) characters per finger-

print.

21

This leads to a merging schedule where the characters per item merged on the jth

level is O(2ρ(j)). Starting from 1 this is 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, . . ., which

resemble the tick marks of a ruler, hence the name ruler function.

We now analyze the cost of maintaining the character queues.

Lemma 11. The total per-insertion/deletion cost to update the character queues in a

BOT is Θ
(

1
B

(
logM

B
N + log logM

))
.

Proof. When σj is merged, λ2
ρ(j) runs are merged, which has a cost of

O
(
2ρ(j)

B

⌈
logM/B

(
λ2

ρ(j)
)⌉)

characters per fingerprint.

There are logλ
N
B = O(logλN) levels, so this leads to the following total cost in

terms of characters:

O

logλN∑
i=1

2ρ(j)
⌈
logM

B

(
λ2

ρ(j)
)⌉ = O

log logλN∑
k=0

logλN

2k
· 2k

⌈
logM

B

(
λ2

k
)⌉

= O

logλN

log logM +

log logλN∑
k=log logM

2k logM
B
λ

= O

(
logλN

(
log logM + logM

B
N
))

,

where the last equality is because the RHS sum is dominated by its last term. Be-

cause there are logλN characters in a word, and all reads and writes are performed

sequentially in runs of size at lease B, the result follows.

2.5.3 Performance of the BOT

We can now prove Theorem 3:

Theorem 3. A BOT supports N insertions and deletions with amortized per entry cost

of O
((
λ+ logM

B
N + log logM

)
/B
)

IOs for any λ > 1. A query for a key K costs

O(DK logλN) IOs w.h.p., where DK is the number of times K has been inserted or

deleted.

Proof. By lemma 8, the cost of updating the routing filters is O
(
λ
B

)
, since there are

O(logλN) levels. This, together with the cost of updating the character queues given

22

by lemma 11, is the insertion cost.

By lemma 9, a query for fingerprint K on level i incurs O
(
1
λ

)
false positives in the

root, and O(1) nodes are accessed along each of their root-to-leaf paths. By lemma 8,

each false positive thus incurs O(DK) IOs.

There are an expected O
(
logλN
λ

)
false positives across all levels, so, using lemma 1

with δ = λ, O(DK logλN) nodes are accessed due to false positives w.h.p. For each

time K appears in the BOT, O(logλN) nodes are accessed on its root-to-leaf path. By

lemma 8 the node accesses along each path incur O(DK logλ) IOs w.h.p., so accessing

the nodes incurs O(logλN) IOs w.h.p.

A block of the log is scanned at most DK times for true positives and also whenever

a false positive from the level-i root survives i times. The expected number of such false

positives for level i is 1/λi, so the expected number across levels is O
(
1
λ

)
. Therefore

by lemma 1, the number of blocks scanned is O(DK logλN) w.h.p.

Corollary 3. Let B be a BOT with growth factor λ containing N entries. If λ =

Ω
(

logM
B
N + log logM

)
, then B is an optimal dictionary.

2.6 Cache-Oblivious BOTs

In this section, we show how to modify a BOT to be cache oblivious. We call the

resulting structure a cache-oblivious hash tree (COBOT).

Much of the structure of the BOT translates directly into the cache-oblivious model.

However, some changes are necessary. In particular, when the series of character queues

are merged, this merge must be performed cache-obliviously using funnels [52], rather

than with an (up to) M/B-way merge. Also, the log cannot be buffered into sections

of size O(B), and so instead they are buffered into sections of constant size, items are

immediately added to the routing filter, and the extra IOs are eliminated by optimal

caching.

When an insertion is made into a COBOT, its fingerprint-value pair is appended to

the log, and it is immediately inserted into level 1. Thus, the leaves of the routing trees

point to single entries in the log.

23

The series of the character queues must be placed more carefully as well. In partic-

ular the runs of series σj must be laid out back-to-back for all j (rather than just small

j as in section 2.5.2), so that the caching algorithm can buffer them appropriately.

The series are merged using a partial funnelsort. Funnelsort is a cache-oblivious

sorting algorithm that makes use of K-funnels [52]. A K-funnel is a CO data structure

that merges K sorted lists of total length N . We make use of the the following lemma.

Lemma 12 ([52]). A K-funnel merges K sorted lists of total length N ≥ K3 in

O
(
N
B logM/B

N
B +K + N

B logK
N
B

)
IOs, provided the tall cache assumption that M =

Ω(B2) holds.

The partial funnelsort used to merge K runs of a series with total length L (in

words) performs a single merge with a K-funnel if L ≥ K3, and recursively merges the

run in groups of K1/3 runs otherwise.

Corollary 4. A partial funnelsort merges K runs of total word length L in

O
(
L
B logM/B

L
B + L

B logK
L
B

)
IOs, provided the tall cache assumption that M = Ω(B2)

holds.

Proof. The base case of the recursion occurs either when there is only 1 list remaining

or the remaining lists fit in memory. In any other case of the recursion, since L = Ω(B2)

by the tall cache assumption, the K term in lemma 12 is dominated.

The recurrence is dominated by the cost of the funnel merges, which yields the

result.

Theorem 5. If M = Ω(B2), then a COBOT with N entries and growth factor λ has

amortized insertion/deletion cost Θ
(

1
B

(
λ+ log logM + logM/B N/B

))
. A query for

key K has cost Θ (DK logλN), w.h.p., where DK is the duplication count of K.

Proof. We may assume that the caching algorithm sets aside enough memory that the

last B items in the log, together with the subtree rooted at their least common ancestor,

are cached. Thus the log is updated at a per-item cost of O(1/B).

24

The proof of theorem 3 now carries over to the COBOT. The routing filters are

updated the same way, and the cost of updating the character queues is unchanged, by

corollary 4.

Queries are performed as in section 2.5.1, except that now the level 1 nodes cover

O(1) fingerprints, but the depth of the tree is unchanged, so the cost is the same.

2.7 Asymmetric BOTs

In this section we describe the β-asymmetric Bundle of Arrays Hash table

(Asymmetric BOT), which adapts BOTs to the asymmetric external memory model [23].

This model is similar to the regular external memory model of Aggarwal and Vitter,

except that the cost of reading a block is 1, but where the cost of writing a block is

ω > 1.

The underlying idea is to not write character on most levels and instead read

the necessary information from the queues of descendant nodes. This only requires

reads, provided no more than M/B such queues are read at a time. Thus, every

β ≤
⌊
logλ

M
B logλN

⌋
levels, all the character queues must be merged and stored. We say

level i is a queue level if i is divisible by β.

When the ith level root fills, where level i is not a queue level, it is added to level

i+1. For each key K covered by the now-full orphan root, the high-order bits Hi+1(K),

check characters Ci+1(K) and next characters Di+2(K) are obtained by merging the

character queues on the highest queue level below i, which is ` = i − (i mod β). Thus

L`+1
` , . . . , Li+1

` are read; for each key K in sorted order this yields: H`(K) together with

the characters D`+1(K), . . . , Di+2(K), from which Hi+1(K) and Di+2(K) can be com-

puted, as well as the check character Ci+1(K). This computation occurs sequentially,

so that the intermediate results need not be written out.

When the ith level root fills on a queue level, its character queues are created before

it is added to level i + 1. This involves computing Hi(K) in sorted order as above

and then merging all the character queues Li+1
i−β, L

i+2
i−β, . . . into new character queues

Li+1
i , Li+2

i , These merges are performed with a single λβ-way merge. Then the

25

now-full level root can be added to the routing filter of the (i+ 1)st level root using the

character queue Li+1
i .

We refer to this modified BOT as an β-asymmetric BOT.

Theorem 4. A β-asymmetric BOT supports N insertions and deletions with amortized

per entry cost of O
(

1
B

(
λ+ 1

β logλN
))

writes and O
(
1
B (λ+ β)

)
reads for any λ > 1

and β ≤
⌊
logλ

M
B logλN

⌋
. A query for a key K performs O(DK logλN) reads, where DK

is the number of times K has been inserted or deleted.

Proof. Each insertion will eventually be added to each level i. When the level i is not

a queue level, i mod β characters per item will be read from the character queues on

the queue level below i. Summed over all levels, this yields

logλN∑
i=0

i mod β

B logλN
= O

(
β

B

)
reads per insertion.

A λβ-way merge is performed every β levels. Since β ≤
⌊
logλ

M
B logλN

⌋
, this requires

O(1/B) reads and writes per element. This contributes O
(
logλN
βB

)
reads and writes

per insertion in total.

The per-insertion read and write cost of building the routing filters is Θ(λ/B) as in

the proof of theorem 3.

The cost per query is the same as in theorem 3.

Theorem 4 can improve the write cost when λ = o(log logM) and log logM =

Ω
(

logM
B
N
)

. In that case, β can be tuned to optimize insertion performance relative

to the ω of the AEMM by solving the quadratic equation β = ω ·
(
λ+ 1

β logλN
)

.

In particular, an interesting consequence of theorem 4 is in the case where N is

polynomial in M . Then insertions can be performed into a (logλM/B)-asymmetric

BOT with growth factor λ = O(1) with constant write amplification. This does come

at the cost of more reads than when using a regular BOT:

Corollary 5. If N = O(M c) for some constant c, then a (logλM/B)-asymmetric BOT

with growth factor λ = O(1) containing N key-value values performs Θ(1/B) amortized

26

writes per insertion, Θ
(
1
B

(
λ+ log M

B

))
amortized reads per insertion and Θ(logN)

reads per query.

27

Chapter 3

SplinterDB

3.1 Introduction

Key-value stores form an integral part of system infrastructure. Google’s LevelDB

and Facebook’s RocksDB are widely used, both within and outside of their companies.

Their importance has spurred research into several aspects of key-value store design,

such as increasing write throughput, reducing write amplification, and increasing con-

currency [87, 50, 97, 91, 26, 43, 44, 42, 15, 29, 12, 20, 72, 34, 39, 57, 109, 74, 103, 98,

53, 114, 111, 67, 65, 54, 68, 11].

Existing key-value stores face new challenges with the increasing use of high-

performance NVMe solid state drives (SSDs) in industry. NVMe SSDs offer substan-

tially higher bandwidth (500K-600K IOPS) and lower latency (10-20 micro-seconds)

than other SSDs.

These key-value stores struggle to utilize all the available bandwidth in modern

SSDs. For example, we find that for the common case of small key-value pairs, RocksDB

is able to use only 30% of the bandwidth supplied by an Optane-based Intel 905p NVMe

SSD (even when using 20 or more cores).

We find that the bottleneck has shifted from the storage device to the CPU: reading

data multiple times during compaction, cache misses, and thread contention cause

RocksDB to be CPU-bound when running atop NVMe SSDs. Thus, there is a need

to redesign key-value stores to avoid these CPU inefficiencies. While KVell [70], a

new research key-value store, also tries to reduce CPU overhead, it presents a design

optimized for large key-value pairs. In particular, we show that KVell experiences an

extreme performance cliff when it does not have enough memory to hold its in-memory

28

SplinterDB RocksDB PebblesDB

0
50
0

10
0
0

15
0
0

20
0
0

25
0
0

2352

348

83

Insertion Throughput

O
p
er
at
io
n
ss
/S

ec
on

d
(T

h
o
u
sa
n
d
s)

0
2

4
6

8
1
0

5.2

9.1
8.2

Write Amplification

W
ri

te
A

m
p

li
fi

ca
ti

o
n

Figure 3.1: YCSB load throughput and write amplification benchmark results with
24-byte keys and 100-byte values.

index, a limitation also acknowledged by its authors.

We present SplinterDB, a key-value store designed for high performance on NVMe

SSDs. For example, on small key-value pairs, SplinterDB is able to fully utilize the

device bandwidth and achieves almost 2× lower write amplification than RocksDB (see

fig. 3.1). We show that compared to state-of-the-art key-value stores such as RocksDB

and PebblesDB, SplinterDB is able to ingest new data 6–28× faster (see fig. 3.1) while

using the same or less memory. For queries, SplinterDB is 1.5-3× faster than RocksDB

and PebblesDB.

Three novel ideas contribute to the high performance of SplinterDB: the STBε-tree, a

concurrent memtable that removes the insertion scalability bottleneck, and a concurrent

user-level cache that reduces cache-interference in highly-concurrent settings. All three

components are designed to enable the CPU to drive high IOPS without wasting cycles.

At the heart of SplinterDB is the STBε-tree, a novel data structure that combines

ideas from log-structured merge trees and Bε-trees. The STBε-tree adapts the idea

of size-tiering (also known as fragmentation) from key-value stores such as Cassandra

and PebblesDB and applies them to Bε-trees to reduce write amplification by reducing

the number of times a data item is re-written during compaction. The STBε-tree also

29

enables localized, fine-grained compactions that increase compaction concurrency across

the entire tree. By enabling fine-grained, localized compactions, STBε-trees push ideas

from PebblesDB to their logical conclusion.

In key-value stores such as RocksDB, all inserted data is first stored in an in-memory

component called the memtable. We find that the memtable in RocksDB provides low

concurrency and becomes the bottleneck when used on top of the highly-concurrent

STBε-tree on NVMe devices. We redesigned the memtable for high concurrency: sim-

ilar to the STBε-tree, the SplinterDB memtable is based on a B-tree designed using

a 4KB disk block size and the L3 cache-line size; as a result, when data needs to

be moved between the memtable and STBε-tree, it can be done using simple pointer

manipulations, reducing the CPU cost.

Finally, key-value stores such as RocksDB and PebblesDB use the Linux page cache,

but we found the page cache ill-suited for high concurrency. We designed a new user-

level concurrent cache for SplinterDB that uses fine-grained, distributed reader-writer

locks to avoid contention and ping-ponging of cache lines, as well as a direct map to

enable lock-free cache operations. All the data read and written by SplinterDB flows

through this concurrent cache.

SplinterDB is not without limitations. Like all key-value stores based on size-tiering,

SplinterDB sacrifices the performance of small range queries, although less than one

might expect. For large range queries, SplinterDB can use the full device bandwidth.

Similarly, size-tiering is known to temporarily increase space usage until multiple ver-

sions of a single data item are compacted together. Finally, SplinterDB is meant for

scenarios where good performance is required when memory is low; if memory is plen-

tiful and query performance is not as important, then key-value stores such as KVell

might be a better fit. Despite these limitations, SplinterDB represents an interesting

new point in the design spectrum for key-value stores.

In summary, the contributions of SplinterDB are as follows:

• We introduce the STBε-tree, which reduces write amplification and enables fine-

grained concurrency in compaction operations (sections 3.3 to 3.5).

30

• We design and build a highly-concurrent memtable that is able to drive enough

operations to the underlying STBε-tree (section 3.6).

• We combine the STBε-tree, memtable, and user-level cache in SplinterDB, a key-

value store that can fully utilize NVMe SSD bandwidth. (section 3.7).

3.2 Background

This section describes the building blocks we use to construct the STBε-tree. We also

describe related data structures, such as the log-structured merge tree (LSM), in order

to put our data-structural innovations in context. Finally, we summarize theoretical

performance analyses of the data structures.

The DAM model.

We use the Disk Access Machine (DAM) model [5] in our performance analyses. In the

DAM model, data is transferred between disk and RAM of size M in blocks of size B

words. The I/O cost of a data structure is the number of block transfers. In DAM

model analyses, key-value pairs have size O(1) words, so the write-amp of a key-value

workload is Θ(B ×W), where W is the amortized number of writes per insertion.

B-trees.

We analyze the write-amplification of B-trees to serve as a baseline. Each insertion

into a B-tree requires ≈ logB N
1 writes in the worst case, but almost all insertions

modify only a leaf of the B-tree and hence require only 1 write. Although caching can

help when the data set is small or the insertion workload has locality, in the worst

case of random inserts into a large B-tree, each insertion will have to bring in a new

leaf, causing an old, dirty leaf to be written back to disk. Thus the worst-case write

amplification of a B-tree is ≈ B, much greater than that of LSMs and Bε-trees.

1Throughout the paper, we use ≈ to indicate an analytical result accurate up to lower-order terms.
In other words, when we write ≈ X, we mean X + o(X).

31

It is common to size the hardware so that all the indexing nodes of the B-tree fit in

RAM, i.e. RAM has size M = N/B. In this case each query and insert costs O(1) I/O

once the cache is warm.

Log-structured Merge Trees.

A generic LSM consists of k ≈ logF
N
M levels, L0, . . . , Lk−1. Each level contains a sorted

run of key-value pairs. The first run, L0, has capacity Θ(M), and each subsequent

run has capacity F times bigger than the previous. The fanout F is a parameter that

trades off between insertion throughput and query latency. Each sorted run is called

an SSTable.

New items are inserted into L0. When an SSTable fills, it is merged into the next

table, which is called compaction. An SSTable can receive F such merges before it is

full, so each element participates in an average of F/2 compactions on a level before

being compacted into the next level. Compaction is just a sequential scan since both

tables are sorted. A compaction of total sizeK takes≈ K/B writes, or≈ 1/B writes per

key-value pair, so the average write amplification is approximately F
2 logF

N
M . Assuming

the cache has size M = N/B, this simplifies to F
2 logF B.

Most implementations also store indexing information about each SSTable, so that

queries in a table have similar performance to queries in a B-tree. Naively, a query

in an LSM requires searching in each level. for a total cold-cache query cost of

O(logF
N
M logB N) I/Os. Given a warm cache of size M = N/B, we can cache the

indexing information of all the SSTables, so that each SSTable query requires O(1)

I/Os. Then, on a warm cache, the query cost becomes O(logF N/M), which is signif-

icantly higher than the O(1) warm-cache query in a B-tree given the same cache size.

This is for a generic LSM; most LSM implementations use filters to reduce queries to

O(1) I/Os, as described below.

An off-the-shelf LSM is typically asymptotically much faster than a B-tree for inser-

tions but, for some insertion workloads that have high locality, can be asymptotically

slower. Queries can also be asymptotically slower than in a B-tree, but this can largely

be mitigated with filters.

32

Bε-Trees.

The generic Bε-tree [29] is a B-tree that uses part of the space in each node to buffer

items recently inserted into the subtree rooted at that node. Queries must check for

relevant mutations in each buffer along their search path.

Insertions place an item in the root node’s buffer. When the buffer in a node

becomes full, the Bε-tree moves some of the elements in the buffer to the buffer of one

of its children. The Bε-tree always moves items to the child that would be examined

during a search for those items, ensuring that a future query for one of those items will

find it. This process is called a flush and is analogous to an LSM compaction. There

are several options for how to select the items to be flushed. The most common policy

is to select the child for which the most items are buffered in the parent and then flush

all the items buffered for that child.

To analyze the Bε-tree in the DAM model, let F � B be the fanout of the Bε-tree.2

Thus pivots and child pointers consume O(F) space in each node. The remaining

B −O(F) ≈ B space in each node is used for buffering. Thus the height of the tree is

≈ logF N and the cold-cache query cost is ≈ logF N I/Os.

Each flush costs O(1) I/Os and moves at least B/F elements one level down the

tree. Since each element moves at most O(logF N) levels down the tree, insertions cost

O((F logF N)/B) amortized IOs, which is the same as that of an LSM. Likewise, the

write amplification of a Bε-tree is O(F logF N) without caching.

With a cache of sizeM = N/B, we can cache the top of the tree, reducing query costs

to O(logF B) I/Os. Insertions become O((F logF B)/B) I/Os, and write amplification

reduces to O(F logF B), which are both the same as an LSM with the same size cache.

One advantage of Bε-trees is that they can naturally exploit locality in the insertion

workload to improve insertion performance, much as a B-tree can. This is because

flushes are not done on a level-wide basis, but node by node. Thus, for example, if

a workload consists of insertions all destined for a small sub-tree, a Bε-tree can cache

2Historically F = Bε, where 0 ≤ ε ≤ 1, which is where the name comes from. We use F to ease the
comparison with LSMs.

33

that sub-tree to reduce write amplification and improve insertion throughput.

Filters.

Many LSM implementations mitigate the high query cost of a generic LSM by using

filters; bloom filters [24] are the most well known filters. The space requirement of a

filter is O(n log 1/ε) for a set of a size n. For typical values of ε ≈ 1%, this is about 1 or

2 bytes per element. When filters are small enough to fit in RAM, they can reduce the

I/O costs of cold-cache point queries in LSMs to O(logB N), which is the same as in

B-trees. With a cache of size M = N/B, queries cost O(1) I/Os. The same calculation

holds for Bε-trees. Note, however, that filters cannot be used to speed up range queries,

since filters do not support range emptiness queries.

In our work we use a variant of quotient filters [18], because inserts and lookups

access only a constant number of distinct locations [18], making them generally faster

than Bloom filters. Furthermore, quotient filters are, for the false-positive rate used in

SplinterDB, roughly the same size as Bloom filters.

Size Tiering.

Cassandra introduced the notion of size tiering in an LSM. In a size-tiered LSM

(STLSM), each level has up to F SSTables of approximately the same size. When

a level reaches its maximum number of SSTables, its SSTables are merged into one

SSTables, which is moved to the next level. The advantage of size-tiering is that each

item is involved in only one compaction per level. The downside is that queries now

have more places to search.

Kuszmaul [68] showed that with size tiering, write amplification decreases by a

factor of F from that of a generic LSM to O(logF
N
M), while queries increase by a factor

of F to O(F logF
N
M logB N) IOs. Even if we assume that the cache has size M = N/B,

size tiering still trades off a factor of F reduction in write amplification for an F -fold

increase in query costs. However, by maintaining a filter for each SSTable on every

level, the point query costs can be kept at O(1) IO per positive query and no IOs per

negative query. Size tiering also increases the costs of small range queries, and filters

34

filter

buffer

filter

buffer

filter

buffer

filter

branch

trunk
node

filter

buffer

filter

buffer

filter

buffer

filter

branch

trunk
node

filter

buffer

filter

buffer

filter

buffer

filter

branch

trunk
node

per-thread log...per-thread log...per-thread log...per-thread log...per-thread log...per-thread log...memtable

Figure 3.2: Overall design of STBε-trees and SplinterDB. Trunk nodes contain pivots
and child pointers and pointers to a collection of branches and their associated fil-
ters. Each branch is a B-tree. SplinterDB also keeps a queue of memtables to enable
pipelining of memtable compactions.

don’t mitigate that cost.

3.3 High-Level Design of STBε-trees

We now describe the design features of STBε-trees that give them low write amplifi-

cation, low pass complexity, and high concurrency, without sacrificing lookup perfor-

mance.

At a high level, a STBε-tree is a Bε-tree, as shown in fig. 3.2, albeit with several

modifications to reduce I/O amplification and exploit the I/O parallelism of NVMe

devices.

On a spinning disk, data locality is paramount. Thus, Bε-trees designed for spinning

disks typically store each node, including pivots, child pointers, and buffer contents,

contiguously on disk. Furthermore, nodes are large—typically over a megabyte in size—

in order to amortize the cost of the seek required to access the node. The downside

of large nodes is that they make point queries expensive. Even if a point query has

to load only a single leaf into cache, it still has to transfer a megabyte or more of

data. Thus some Bε-trees divide their nodes into a header and physically contiguous

partitions. The header contains pivots, child pointers, and an index on the partitions,

so that queries need only load the relevant partition in a node. Headers and partitions

are typically 32-64KBs, which is small enough to ensure that, on a hard drive, point

query performance is seek bound rather than bandwidth bound.

35

On NVMe, however, even transferring 32KB per query is too much. For example,

on an Optane NVMe device, locality offers essentially no gain in throughput, i.e. the

device can deliver its full bandwidth via a random I/O workload as long as the device

queues are kept sufficiently full. Thus transferring 32KB per query would directly

reduce maximum query throughput to 1/8th of the device’s random I/O throughput.

Consequently, our STBε-tree strives not for locality, but rather for low I/O amplifi-

cation and high I/O parallelism. Our STBε-tree is a tree of trees. The trunk tree (or

simply trunk) is analogous to the headers of a traditional Bε-tree, i.e. trunk nodes con-

tain pivots, child pointers, and pointers and metadata for the node’s branches. Trunk

nodes are kept small—4KB in our implementation—so that they do not waste cache

space. In all practical use cases, trunk nodes comprise less than 0.1% of the total data

and so are essentially always cached.

Each branch is a static B-tree, also with 4KB nodes in our current implementa-

tion. Since each branch is constructed once and never modified, the B-tree nodes are

always fully packed, which improves cache efficiency for point queries and reduces I/O

amplification during compactions and range queries. Note that the B-tree nodes of a

branch are not necessarily stored contiguously on disk, since locality is less important

for utilizing the bandwidth of NVMe devices. Range queries and compaction use the

pointers in branch nodes to prefetch leaves in advance, enabling our STBε-tree to take

advantage of the I/O parallelism of NVMe devices.

Each branch also has an associated quotient filter. Quotient filters serve the same

role as Bloom filters in many LSM implementations. However, we choose quotient

filters because they have substantially greater insert and query performance than Bloom

filters [18], reducing the CPU costs of both queries and compactions, while using roughly

the same or slightly less space than Bloom filters for the false-positive rate used in

SplinterDB (1/256). Quotient filters are also efficient if they get paged out to disk,

since each lookup accesses only one page.

SplinterDB uses memtables to collect new insertions. Our memtable is a dynamic

B-tree. In fact, it is the same structure as the B-trees used to store branches except

that, since it is dynamic, the nodes are not always fully packed. When a memtable

36

fills, it is locked for new insertions, then the quotient filter is constructed and then the

memtable is inserted as a branch into the trunk root. No serialization or other work

needs to happen. When former memtables participate in compactions, the resulting

B-tree is packed.

SplinterDB uses write-ahead logical logging for crash recovery. SplinterDB uses

per-thread logs to support highly concurrent updates. Inter-log ordering is maintained

by cross-referencing log entries with timestamps on the leaves of the memtable (see

section 3.6.4 for details).

Note that all of the above data structures—memtables, trunk nodes, branch nodes,

filters and logs—are pageable. SplinterDB has a unified CLOCK cache for all these

structures.

3.4 Size-Tiering with Workload-Driven Compaction

One of the goals of SplinterDB is to get both the benefits of size- tiering and the

benefits of Bε-tree’s workload-driven compaction and flushing. Size-tiering reduces

write amplification of all workloads. Workload-driven compaction and flushing further

reduces write amplification when the workload is not uniformly random. Our flushing

and compaction algorithm is designed to preserve worst-case performance guarantees

of size-tiered LSM trees while exceeding their performance on non-random workloads.

The challenge is that a flushing and compaction algorithm must balance two com-

peting objectives. First, we want to move data from one level of the tree to the next in

large batches. This is the key reason that LSMs and Bε-trees are so much faster than

B-trees for insertions. On the other hand, we want to limit the number of locations that

must be searched during a query. This means we cannot accumulate data indefinitely

before merging it into lower levels of the tree.

We begin by explaining the structure of STBε-tree nodes. This structure will enable

us to cleanly accomplish the above goals while also enabling us to skip some compactions

when the workload allows it.

Node structure. Each trunk node has a list of branches, sorted from oldest to

37

newest. The trunk node also stores, for each child, the index of the next branch to be

flushed to that child. Branches are flushed to a child in chronological order, so all older

branches have already been flushed to that child, and all newer branches are yet to be

flushed to that child. We say that a branch is live for a child if it hasn’t been flushed

to that child. We say that a message in a branch is live if the message’s branch is live

for the message’s target child. Finally, each trunk node stores, for each child, a rough

estimate of the number of live messages for that child across all the parent’s branches.

This estimate is made by scanning the top-level nodes of the branches and estimating

the amount of data in each subtree that falls entirely within the pivots for a child. Since

branches are packed, these estimates are quite accurate (typically to within less than

1%).

Trunk nodes have a fixed number of branches that they can hold. In the current

SplinterDB implementation, each trunk node can hold up to 84 branches. However,

trunk nodes begin flushing when they have 3F live branches, which is typically far less

than 84 (e.g. F is in the range of 8 to 16). This extra capacity is used to enable nodes

to absorb new incoming branches while compacting old branches.

Branches may be referenced by more than one trunk node. Each trunk node knows

the range of keys that it covers so, for example, when a parent and child both refer to

the same branch, the parent might refer to all the messages in the branch, while the

child refers to only the subset of messages in the branch for keys covered by the child.

Branches are immutable and refcounted, so sharing branches is safe.

This node structure and branch sharing means that we can “flush” a live branch

from a node to one of its children by simply adding a pointer to the branch to the child.

We can then mark the branch as dead for that child in the parent. If the branch becomes

completely dead in the parent (i.e. dead for all of its children), then the parent can

delete its references to the branch, decrementing the branch’s refcount. Thus flushes

are extremely cheap—just a few pointer and refcount updates.

Flush then Compact. SplinterDB avoids some intermediate compactions by using

a “flush-then-compact” approach. Each flush may trigger some compactions and some

further, recursive flushes (see below for a description of SplinterDB’s flushing policy).

38

The idea of flush-then-compact is to perform all the recursive flushes first. Only once all

the branches have been moved as far down the trunk as possible do we begin performing

compactions. This will enable some branches to skip intermediate compactions within

the tree.

Once all the flushes from a node have completed, SplinterDB initiates background

compactions on all the nodes that received new branches. Each background compaction

compacts only the new branches in that node. Thus no message gets compacted twice

without being flushed from one trunk node to another.

Compaction does not interfere with other concurrent tasks. The trunk node is

not locked during the compaction—other threads may perform queries or flush more

branches to or from the trunk node. During this time, the compaction thread constructs

a new branch that is the compaction of all its input branches. When the compaction

thread finishes, it briefly locks the trunk node to replace the old branch pointers with

a pointer to the new, compacted branch.

This mechanism also reduces contention at the root, since no compactions are ever

performed in the root. Rather, whenever the root fills, branches are moved to some of

its children and compactions are performed there, immediately making room for new

items in the root.

Note that compactions skip over portions of the branches that are not relevant to the

compaction. For example, when we flush branches from the root to one of its children,

the branches may contain keys outside the range covered by that child. When these

branches get compacted in the child, the compaction process won’t even look at those

keys. We can do this efficiently because branches are B-trees that support iterators

starting anywhere in the branch.

Flushing policy. The memtable has a maximum size of m messages. Once it

reaches size m, it is added as a new branch to the root trunk node.

Flushes from a trunk node to one of its children are triggered by two conditions:

either the trunk node has more than Fm live data, or one of the trunk node’s chil-

dren has more than 3F live branches, where F is the fanout of the trunk. These two

conditions serve distinct performance objectives.

39

The too-much-live-data trigger works with the compact-then-flush algorithm to de-

tect localized insertion workloads and move them quickly down the tree without per-

forming unnecessary intermediate compactions.

For example, imagine a sequential insertion workload. These inserts first go to the

memtable. Once the memtable fills, it is added as a branch to the root. Once the

root accumuates F such branches, it will go over the max-live-data threshold, causing

a flush. This flush will move all the branches down the tree towards their target leaf.

This will immediately cause the child to exceed the max-live-data threshold, so the

branches will get flushed towards their target leaf again. This will repeat until the

branches reach the leaf, at which time SplinterDB will perform a compaction (and will

probably split the leaf). The next batch of inserts will go to the new leaf created by the

split. Thus each message will be involved in only a constant number of compactions,

giving O(1) a write- and pass-complexity.

This method automatically adapts to varying degrees of locality. For example, if

the workload is half inserts to a single leaf, then every other time the root fills, we will

perform a flush from the root to the target leaf. Or, if the workload consists of random

inserts of keys that all fall within a subtree T of height, say, h/2, then every time

the root fills, SplinterDB will flush all the branches to the root of the subtree without

performing intermediate compactions, skipping half the compactions that would occur

in a size-tiered LSM tree.

This policy does not weaken the worst-case insertion performance guarantees of a

size-tiered LSM: each message undergoes at most one compaction per level of the tree,

and the height of the tree is still logF N/m.

The second flushing trigger is designed to bound the number of filters and branches

that must be examined during a query. Whenever there are more than 3hF branches

on a search path (where h is the height of the trunk), at least one of the trunk nodes

will violate the max-live-branches condition. This will trigger a flush and compaction,

which will reduce the number of branches checked by queries along that path.

40

3.5 Preemptive Splitting for STBε-trees

Splits and merges pose problems for hand-over-hand locking in B-trees (and Bε-trees).

Hand-over-hand locking proceeds from root to leaf, but splits and merges proceed from

the leaves up.

An approach to solving this issue in B-trees is to use preemptive splitting and

merging [92]. During a B-tree insert, if a child already has the maximum number of

children, then it is split while the insertion thread still holds a lock on its parent. Then

the insertion can release the parent’s lock and proceed down the tree, assured that the

child will not need to split again as part of this insertion. Analogously, deletions merge

a child with one of its neighbors if the child has the minimum number of children. This

works because insertion and deletions can increase or decrease the number of children

of a node by at most 1.

This approach does not work in Bε-trees, because a flush to a leaf could cause

that leaf to split multiple times. In STBε-tree with flush-then-compact, we can move

all pending messages along a root-to-leaf path to the leaf before performing any com-

paction, splits, or merges. The total number of messages moved to the leaf is bounded

by O(B logF N), i.e. the height of the tree times the maximum amount of data that

can be stored in branches at each trunk node. The leaf can therefore split into as many

as O(logF N) new leaves of size B. Similarly, a collection of flushes full of delete mes-

sages to several leaves of a single parent can reduce the parent’s number of children by

O(logF N).

In practice, the height of the tree is less than 10 for typical fanouts F ≈ 8 and

dataset size N ≤ 280 key-value pairs.

We extend preemptive splitting and merging to STBε-trees as follows. We reserve

space in each node to accommodate up to F +H children, where H is an upper bound

on the tree height, e.g. H = 10. We then apply preemptive splitting, except we

preemptively split a node during a flush if its fanout is above F . For merges, we take a

similar approach. If, during a flush, we encounter a node with less than F/2 children,

then we merge or rebalance it with one of its siblings.

41

Thus all operations on the STBε-tree—flushes, splits, and merges—proceed from

root to leaf and can therefore use hand-over-hand locking.

The mechanisms for flush-then-compact make it easy to handle branches during

splits. Recall that each branch can be marked dead or alive for each child, and branches

are refcounted and hence can be shared by multiple trunk nodes. Thus we can split a

trunk node by simply giving its new sibling references to all the same branches as the

node had before the split. In the new node, we copy the liveness information for each

branch along with the children that are moved to the new sibling.

3.6 From STBε-trees to SplinterDB

In this section, we discuss the details of SplinterDB’s implementation. SplinterDB

targets NVMe SSDs, and on NVMe SSDs, CPU is the primary bottleneck to write

performance, and concurrency is the primary bottleneck to read performance. As a

result, what would be minor design decisions for a key-value store which targets a

slower storage medium become performance critical when targeting NVMe storage.

3.6.1 User-level Cache and Distributed Locks

SplinterDB has a single user-level cache which keeps recently accessed pages in memory.

Almost all the memory that SplinterDB uses comes from this cache, so pages from all

parts of the data structure—trunk node pages, branch pages, filter pages and memtable

pages—are all stored there. Only cache and file-system metadata, as well as small

allocations used to enqueue compaction tasks are allocated from system memory.

This design allows nearly all the free memory to be used for whichever operations

are being performed, so that parts of the data structure which are not in use can be

paged out.

The cache at a high level is a clock cache, but with several features designed to

improve concurrency.

Each thread has a thread-local hand of the clock, which covers 64 pages. The thread

draws free pages from the hand, and if it has exhausted them, it acquires a new hand

42

from a global variable using a compare-and-swap. It then writes out dirty pages from

the hand which is a quarter turn ahead, and evicts any evictable pages in its new hand.

Thus threads clean and evict pages from distinct cache lines within the cache metadata,

avoiding contention and cache-line ping-ponging.

SplinterDB uses distributed reader-writer locks [55] to avoid cache-line thrashing

between readers. Briefly, a distributed reader-writer lock consists of a per-thread reader

counter and a shared write bit. Each reader counter is on a separate cache line to avoid

cache-line ping-ponging when readers acquire the lock. Writers set the write bit (using

compare and swap) and then wait for all the read counters to become zero. Readers

acquire the lock by incrementing their read counter and then checking that the writer

bit is 0. If it is not, they decrement their reader counter and restart.

Distributed reader-writer locks allow readers to scale essentially perfectly linearly,

at the cost that acquiring a write lock is expensive. However, the design of SplinterDB

makes writing rare enough that this is a good trade-off.

We make distributed reader-writer locks space efficent by storing each thread’s

reader counters in an array indexed by cache-entry index. Each reader counter is one

byte, so the total space used by locks is t × c bytes, where t is the number of threads

and c is the number of cache entries.

SplinterDB supports three levels of lock: read locks, “claims”, and write locks. A

claim is a read lock that can be upgraded to a write lock. Only one thread can hold

a claim at a time. After obtaining a read lock, a thread may try to obtain a claim by

trying to set a shared claim bit with a test-and-set. If this fails, they must drop the

read lock and start over. Otherwise, they can upgrade their claim to a write lock by

setting a shared write bit and waiting for all the read counters to go to zero.

3.6.2 Branch Trees and Memtables

SplinterDB uses the same B-tree implementation for both its branches and its memta-

bles, although there are some differences to optimize for their use cases. By using the

same data structure, memtables can be incorporated into the STBε-tree directly as

branch trees with no serialization. The only processing needed is the construction of a

43

quotient filter.

Branch trees

When a branch is created from a compaction, its key-value pairs are packed into the

leaves of the B-tree, and the leading edge of internal nodes are created to index them.

The nodes in each level are allocated in extents of 32 pages, and the header of each

node stores the address of the following node, but also of the next extent. In this way,

the nodes of each level form a singly linked list.

Iteration through a branch is performed by walking the linked list formed by its

leaves. Whenever the iterator reaches the beginning of a new extent, it issues an

asynchronus prefetch request for the next extent.

Memtables

The basic design of the memtables mirrors that of the branch B-trees, but includes

some optimizations designed to increase their insertion performance and concurrency.

As in the case of the static branch trees, the nodes on each level of the memtable

form a singly-linked list, and nodes are allocated in extents. However, because nodes

are created on demand as nodes split, we do not try to guarantee that successive nodes

reside in the same extent. Furthermore, since memtables are almost always in RAM,

we do not perform prefetching during memtable traversals.

The memtable uses hand-over-hand locking, together with preemptive splitting. At

each index node, first a read lock is obtained, which is upgraded only if a split is

required. If an index node is full, the inserter tries to upgrade it to a claim; if this fails,

that means another thread is already splitting the node, and the inserter attempts to

continue down the tree. If it cannot continue because of held locks, or if it finds that

the leaf is full, then it aborts and tries again from the root.

To ensure locks are held briefly, especially on nodes near the top of the tree, the tree

uses a new technique called shadow splitting. To split a node c, a claim is obtained on

c and the parent p. We allocate a physical block number (PBN) n for the new sibling,

c′. However, in the cache, we initially point n to c. We also add a new pivot to the

44

parent p, pointing to the new PBN n. At this point, we can release all locks on p. We

then allocate space for c′ and fill in its contents. We then update the PBN n to point

to c′ in the cache, and then release all locks on c′. Finally we upgrade to a write lock

on c, truncate its child list (via a metadata operation) and then release all locks on c.

3.6.3 Quotient filters

Bloom filters [24] are the standard filter for most LSMs [54, 26, 91]. However, the cost

of Bloom filter insertions can dominate the cost of sorting the data in a compaction.

Therefore modern key-value stores often use more efficient filters; for example, RocksDB

uses blocked Bloom filters [90];

Similarly, SplinterDB uses quotient filters [19, 18, 86] instead of Bloom filters. A

full presentation of quotient filters is out of scope for this paper, but we review their

salient features for SplinterDB. See Pandey, et al. for a full presentation on quotient

filters [86]. The key feature of quotient filters is that, like blocked Bloom filters, each

insert or query accesses O(1) cache lines (and hence O(1) page accesses). Quotient

filters are roughly as space efficient as Bloom filters—for the range of parameters used

in SplinterDB, quotient filters use between 0.8× and 1.2× the space of a blocked Bloom

filter. We view the space as essentially a wash. Quotient filter inserts and lookups also

require only one hash function computation. In past work, quotient filter insertions

and queries were shown to be 2-4× faster than in a Bloom filter.

SplinterDB further reduces the CPU costs of filter building during compaction by

using a bulk build algorithm. During the merging phase of compaction or when inserting

into a memtable, SplinterDB builds an unsorted array of all the hashes of all the tuples

compacted or inserted. The array is then sorted (by hash value) and the quotient filter

is built. Since the quotient filter also stores the hashes in sorted order, this means that

the process of inserting all the hashes is a linear scan of the sorted array and of the

quotient filter. Hence it has good locality and can benefit from cache prefetching.

45

3.6.4 Logging and Recovery

SplinterDB uses per-thread write-ahead logical logging for recovery. By using per-

thread logs, we avoid contention on the head of a single, shared log.

The challenge is to resolve the order of operations across logs after a crash. For this,

we use a technique similar to “cross-referenced logs” [56]. Our scheme works as follows.

Each leaf of the memtable has a generation number. Whenever a thread inserts a new

message into the memtable, it records and increments the generation number of the

memtable leaf for the inserted key. It then appends the inserted message to its per-

thread log, tagged with the leaf’s generation number. During recovery, the generation

numbers in the logs give a total order on the operations performed on each leaf (and

hence on all the keys for that leaf), so that the recovery procedure can replay the

operations on each key in the proper order. When a leaf of the memtable splits, the

new leaf gets the same generation number as the old leaf.

3.7 Evaluation

We evaluate the performance of SplinterDB on several microbenchmarks and on the

standard YCSB application benchmark[40]. We compare this performance against that

of two state-of-the-art key-value stores, RocksDB and PebblesDB. The following ques-

tions drive our evaluation:

• Does SplinterDB achieve its primary goal of improved insertion performance?

• To what extent is this performance achieved through reduced write amplification

as opposed to other factors?

• Does increasing insert performance come at a cost to [range] query performance?

In particular, do queries in SplinterDB require more I/O, due to size tiering, than

in non-size-tiered systems?

• Are sequential (or otherwise local) insertions faster, as predicted on SplinterDB?

Do they have lower write amplification?

46

• Can SplinterDB utilize device bandwidth for large range queries?

• SplinterDB is designed to be highly concurrent; do point lookups scale with the

number of threads?

3.7.1 Setup and Workloads

All results are collected on a Dell PowerEdge R720 with a 32-core 2.00 GHz Intel Xeon

CPU, 256 GiB RAM and a 960GiB Intel Optane 905p PCI Express 3.0 NVMe device.

The block size used was 4096 bytes.

In general, we use workloads derived from YCSB traces with 24B keys. We generally

use 100B values, but also include a set of YCSB benchmarks for 1KiB values. We

instrumented dry runs of YCSB in order to collect workload traces for the load and

A− F YCSB workloads and replay them on each of the databases evaluated. In order

to eliminate the overhead of reading from a trace file during the experiment, the trace

replayer mmaps the trace file before starting the experiment. We use the same traces for

each system.

In general, we limit the available memory to 10% of the dataset size or less. In

order to perform the benchmarks on reasonably sized datasets, we restrict the available

system memory with a type 1 Linux cgroup, sized to the target memory size plus the

size of the trace, which we pin so that it cannot be swapped out. Unless otherwise noted,

the target memory size is 4GiB. PebblesDB has an apparent memory leak, which causes

it to consume the available memory, so we allow it to use the full system memory. On

the YCSB load benchmarks, this causes it to swap for a small portion at the end, but

this was less than 10% of the run time.

Unless otherwise noted, SplinterDB uses a max fanout of 8, a memtable size of

24MiB and a total cache size of 3.25GiB. The difference between this cache size and

the target memory size of 4GiB is to accommodate other in-memory data structures

maintained by SplinterDB.

Each system is run with the thread count which yields the highest throughput.

RocksDB is configured to use background threads equal to the number of cores minus

47

SplinterDB RocksDB PebblesDB

Load A B C D E F

0
1
00

0
2
00

0

2
3
5
2

1
1
4
1

8
5
5

8
6
1

7
5
8

8
5

1
0
3
2

3
4
8 4
6
0

4
8
5 6
1
4

4
8
3

1
0
1

4
9
8

8
3 1
1
3 2
8
7

3
0
5

2
1
5

5
5 1
4
5

YCSB Workload (24B keys, 100B values)

O
p
er
a
ti
on

s/
S
ec
o
n
d
(T

h
o
u
sa
n
d
s)

(a) Throughput on YCSB workloads with 24B keys
and 100B values. Load is 673M operations, E is 20M
operations and others are 160M operations. Higher
is better.

Load A B C D E F

0
2
00

4
00

6
00

8
00

2
1
4

3
9
6

6
8
3

7
7
1

6
9
9

2
2

4
5
7

7
3

1
2
5

3
2
5

3
3
1

4
0
7

1
9

2
5
8

YCSB Workload (24B keys, 1KiB values)

O
p
er
a
ti
on

s/
S
ec
o
n
d
(T

h
o
u
sa
n
d
s)

(b) Throughput on YCSB workload with
24B keys and 1KiB values. Load is 84M
operations, E is 1.3M operations and oth-
ers are 10M operations. Higher is better.

Figure 3.3: YCSB throughput and I/O benchmark results.

the number of foreground threads, with a minimum of 4. PebblesDB uses its default

number of background compaction threads. SplinterDB is configured without back-

ground compaction threads.

3.7.2 YCSB

We measure application performance using the Yahoo Cloud Services Benchmark (YCSB).

The core YCSB workloads consist of load phases and run phases. The load phases cre-

ate a dataset by inserting uniformly random key-value pairs. The run phases emulate

various workload mixes. Workload A is 50% updates, 50% reads, workload B is 95%

reads, 5% updates), workload C is 100% reads, workload D is read latest (95% reads, 5%

insertions), workload E is short range scans (95% scans, 5% insertions) and workload

F is read-modify-writes (50% reads, 50% RMWs).

We perform the benchmark with 24B keys and two different value size configurations:

one with small 100B values, shown in figs. 3.3a and 3.4 and one with large 1KiB values,

shown in fig. 3.3b.

On the load phase, SplinterDB is faster by almost an order of magnitude. Because

48

Load:
Write Amp

Load:
Total I/O Amp

Run C:
Read Amp

0

10

20

30

5.2
7.5

22.0

9.1

15.8

29.2

8.2 8.3
4.4

YCSB IO Amplification (24B keys, 100B values)

I/
O

A
m

p
li

fi
ca

ti
o
n

Figure 3.4: IO amplification on YCSB load and Run C workloads, as measured with
iostat. Lower is better.

of size-tiering and its compaction/flushing policy SplinterDB has about 1/2 the write

amplification of the other systems. Note PebblesDB performs almost no reads because

it was given unlimited memory. Surprisingly PebblesDB does not show substantially

lower write amplification than RocksDB.

On the run phases, which the exception of E, SplinterDB is 40–150% faster than

RocksDB, the next fastest system. On E, SplinterDB is roughly half as fast as RocksDB.

3.7.3 KVell

KVell [70] is a key-value store also designed to utilize full NVMe bandwidth. It has an

in-memory B-tree index that maps all keys to disk page offsets. It does well on large

(4KiB) key-value pairs, but on small key-value pairs, the overhead of the in-memory

index becomes a significant fraction of the dataset size. In particular, it was impossible

to run KVell in a memory cgroup of 4GiB. Figure 3.5 shows KVell’s performance on

the YCSB workload with 100B values, for different memory sizes. At 22GiB, which is

around the size of the in-memory index, KVell’s performance starts to drop. At 20GiB,

KVell becomes unusable. Therefore in realistic memory settings, KVell is not a viable

option for the small key-value sizes that SplinterDB targets.

49

Load A B C D E F

0
10

00
20

00
30

00

5
3.
3

6 4 6.
5

6 0.
0
2

4

1
07
5

16
.7

21
.7

23
.1

24
.2

0.
22

43
.6

3
06
8

3
52 54

5

58
3

58
3

1
2
.2

3
52

3
06
9

3
52 5
45 58
3

58
2

1
2.
1 3
52

3
0
47

3
52 5
45 58
3

58
4

1
2
.1

3
52

YCSB Workload (24B keys, 100B values)

O
p
er
at
io
n
s/
S
ec
o
n
d
(T

h
ou

sa
n
d
s) 20GiB 22GiB 24GiB 26GiB 28GiB

Figure 3.5: Throughput of Kvell on YCSB workloads with varying amounts of available
RAM. Load consists of 673M operations, E consists of 20M operations and all other
workloads consist of 160M operations. Higher is better.

3.7.4 Sequential Insertion Performance

Because SplinterDB is based on an STBε-tree and makes use of a flush-then-compact

policy, we predict that its performance will improve substantially on insertion workloads

with a high degree of locality (see section 3.4). We test this hypothesis by performing

20GiB of single-threaded insertions from a trace composed of interleaved sequential and

random keys in different proportions. For comparison, we perform the same workload

on RocksDB.

As shown in fig. 3.6, SplinterDB’s performance improves smoothly from 349K in-

sertions per second for a purely random workload to 614K insertions per second for

a purely sequential workload, which is 76% faster. This improvement is partially ob-

scured by the log, which adds a constant additive IO overhead. If we disable the log,

SplinterDB improves from 430K insertions per second on a purely random workload to

866K operations per second on a purely sequential workload, 100% faster. Note that we

would expect the intermediate throughputs in the best case to be the [weighted] har-

monic mean of the pure cases, because they are rates. At 50% random, 50% sequential

for SplinterDB with no log this is 575K insertions/second, so its actual performance of

50

0 50 90 99 100

0
5
00

1,
00

0

349
386

537
595 614

430

521

676

799
866

144 152 171 185 193

Percentage Sequential Insertions

O
p
er
at
io
n
s/
S
ec
on

d
(T

h
ou

sa
n
d
s)

SplinterDB

SplinterDB (no log)
RocksDB

Figure 3.6: Single-threaded insertion throughput by locality. X-axis indicates the per-
centage of sequential keys. X-axis not to scale. Higher is better.

521K insertions/second captures a substantial amount of the potential improvement.

RocksDB also improves as the workload becomes more sequential, but this effect is

much smaller, a 35% speedup. Furthermore, RocksDB shows less than 20% speedup

until the workloads becomes 99% sequential.

Figure 3.7 shows that as predicted, SplinterDB incurs less IO amplification on more

sequential workloads. With the log disabled, its write amp approaches 1 as the workload

approaches purely sequential. In contrast, while RocksDB also has less IO amplification

on more sequential workloads, it still incurs write amplification of 4.1 even when 99%

of the keys are sequential. It is only when the workload becomes 100% sequential that

the write amplification becomes close to 1 (because of caching it even falls below 1).

3.7.5 Concurrency Scaling

SplinterDB is designed to scale with the number of available cores up to the perfor-

mance limits of the storage device. This is especially true for reads, where the use

of distributed reader-writer locks and a highly concurrent cache design, together with

a careful avoidance of dirtying cache lines, can avoid almost all contention between

threads.

51

0 50 90 99 100

0
5

10
15

4.12 3.97
3.09

2.37 2.34
2.87 2.56

1.91
1.27 1.24

9.67

7.87

4.96
4.1

0.94

Percentage Sequential Insertions

I/
O

A
m

p
li

fi
ca

ti
on

SplinterDB

SplinterDB (no log)
RocksDB

Figure 3.7: I/O amplification of mixed sequential/random insertion workloads. Shown
are write amplification (solid) and total IO amplification (dashed) as measured with
iostat. X-axis not to scale. Lower is better.

Read Concurrency

We test the read concurrency scaling of SplinterDB by running YCSB workload C with

160M key-value pairs, where (as in fig. 3.3a) each instance of the test divides the keys

into N evenly divided batches, which are then performed in parallel by N threads. The

results are in fig. 3.8.

The results show nearly linear scaling—throughput with 24 threads is 18.5× the

single-threaded throughput. Between roughly 24 and 32 threads, the scaling flattens

out, but at that point the measured throughput is 2.07–2.24 GiB/sec, which is 88–95%

of the device’s advertised random read capability.

While RocksDB also scales well, its throughput with 24 threads is 17.4× its single-

threaded throughput, and with 32 threads it uses 91% of the device’s advertised random

read capability. Therefore, even though SplinterDB can perform more operations per

second, RocksDB is still making nearly full use of the device for reads. We conclude

here that SplinterDB is making better use of the available memory for caching, since it

has noticeably lower read amplification.

52

0 4 8 12 16 20 24 28 32

0
20

0
4
00

6
00

8
00

1,
00

0

42
86

17
3

2
43

30
9 36

9

44
9 49

5 55
4 60

8 6
70

72
6 77

7 8
09 8
30 8
39 8
42

32
47

118

178

232
171

325

364

449
475

496

537
557

585
597

605
614

14 22
54

77
97 64

127
135

142

260
265

295 272 267

305

Number of Concurrent Threads

O
p
er
at
io
n
s/
S
ec
on

d
(T

h
o
u
sa
n
d
s)

SplinterDB
RocksDB
PebblesDB

Figure 3.8: Read throughput performance (YCSB workload C) by number of threads.
Each instance performs 160M reads divided evenly between threads. Higher is better.

Insertion Concurrency

We test the insertion concurrency scaling of SplinterDB by running the YCSB load

workload with 673M key-value pairs divided into N batches, each of which is inserted

in parallel by a different thread. Figure 3.9 shows selected N for each system, including

its peak throughput.

The results show that SplinterDB scales almost linearly up to 10 threads. With 10+

threads, it performs 2.0-2.4M insertions per second with IO amplification around 7.5,

which implies that it uses 1.9-2.2GiB/sec of bandwidth, which is at or near the device’s

sequential bandwidth of 2.2GiB/sec.

RocksDB’s insertion performance also scales as the number of threads increases up to

14 threads, by a factor of 2.7. At its peak, it uses 754GiB/sec of bandwidth. PebblesDB

scales slightly as well. For both RocksDB and PebblesDB, as many background threads

as available are used for flushing and compaction during this benchmark.

53

0 4 8 12 16 20 24 28 32

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0

1,408

1,687

2,003

2,143

2,248

2,334

2,352
2,321

2,313

1
38 1
53 22

8

2
79 31
7

3
45 35
2

38
0

35
9

34
6

3
38

69 69 72 78 76 82 80 79 83 82 84

Number of Concurrent Threads

O
p
er
at
io
n
s/
S
ec
o
n
d
(T

h
ou

sa
n
d
s)

SplinterDB
RocksDB
PebblesDB

Figure 3.9: Write throughput performance (YCSB Load) by number of threads. Each
instance performs 673M writes divided evenly between threads. Higher is better.

3.7.6 Scan Performance

An inherent disadvantage of size-tiering is that short scans must search every branch

along the root-to-leaf path to the starting key. Each of these searches is likely to incur

an IO to the device. As a result, as seen in fig. 3.3a, SplinterDB with 124B key-value

pairs has scan throughput on small ranges that is about 85% that of RocksDB. During

that workload, SplinterDB performed 2.26 GiB/sec of IO, which is within 96% of the

device’s advertised random read capability (short scans of small key-value pairs are

essentially random reads).

However, once the initial search for the successor to the starting key has completed,

the root-to-leaf path within each relevant branch will be in memory. Together with

prefetching, this allows subsequent keys to be fetched at near disk bandwidth. There-

fore, we expect that scans have a relatively high startup cost for the search to the

starting key, followed by a very low iteration cost of obtaining subsequent keys.

Thus, when the amount of data requested grows to multiple pages, the disadvantage

begins to dissipate. One way this happens is with larger key-value pairs: with 1kib

54

100 101 102 103 104 105

0
50

0
10

00
15

00
20

00
25

00
30

00

device read throughput

12.2 118

857

2375 2496 2554

18.7
171

972

2063

2158

1872

4.3 43

397

1653

1926

Scan Length in Number of Key-Value Pairs

E
ff

ec
ti

ve
T

h
ro

u
g
h
p

u
t

(M
iB

/
se

c)

SplinterDB
RocksDB

PebblesDB

Figure 3.10: Scan throughput in MiB/sec as a function of scan length. For small scans,
the start up cost dominates, but as the scans get longer, the throughput approaches
the device’s advertised bandwidth (2.6GiB/sec). The x-axis is on a log scale. Higher is
better.

values, SplinterDB is about 16% faster than RocksDB.

Another way this can happen is with scans of more key-value pairs. We modify

YCSB workload E to have only fixed-length scans of N key-value pairs, where N is 1,

10, 100, 1K, 10K or 100K. We perform runs of 10M scans of length 1, 10 and 100, 1M

scans of length 1000, 100K scans of length 10000 and 10K scans of length 100000. Each

run is performed on a dataset of 80GiB (with 24B keys and 100B values) and 4GiB

memory.

The result is shown in fig. 3.10. Short scans on SplinterDB have low effective

bandwidth, and in fact the bandwidth scales close to linearly with the scan length for

scans of up to 100 key-value pairs. This suggests that for scans of this length, the startup

cost dominates the iteration cost, which is as expected. As the scan length increases,

the effective bandwidth of the scans approaches the device’s advertised sequential read

bandwidth, delivering 91% at scans of 1,000 key-value pairs. At scans as small as 100

key-value pairs, SplinterDB returns data at nearly half the bandwidth of the device.

55

3.8 Related Work

The closest work to ours is Tucana [87], a Bε-tree optimized for SSDs. They also focus

on CPU cost, concurrency, and write amplification. Our work pushes this to the even

more demanding case of NVMe devices.

Size-Tiering. Cassandra [50], Scylla [97] PebblesDB [91], and RocksDB [26] (in

“universal compaction” mode) use size-tiering to reduce write amplification. Size-tiering

delays compaction of sorted runs in order to reduce write amplification. This can harm

query performance because queries must search in more runs to find the queried item.

Fluid LSMs [43], Dostoevsky [43], LSM bushes [44], and Wacky [44] use hybrids between

size-tiering and level-tiering to tune the trade-off between write amplification and query

performance. See [91] for a survey of LSM-compaction schemes.

Bloom filters in LSM trees. Almost all LSM trees use Bloom filters [24] to

improve point-query performance, and specifically to mitigate the impact of size-tiering.

Monkey [42] and ElasticBF [71] investigated how to allocate RAM to Bloom filters

to improve query performance. Bloom filters do not affect range query performance,

however, since they support only point queries.

Additional indexing. Numerous key-value stores use additional indexing to im-

prove query performance. For example, COLAs [15] use fractional cascading, Bε-

trees [29] follow a B-tree-like structure, and PebblesDB uses randomized skip-list-based

fractional cascading (referred to as guards in [91]). External-memory skip lists were

analyzed in [12] and write optimized in [20]. The main technical challenge in such skip

lists is the high variance of the size of runs, which in PebblesDB was addressed by

turning long runs into mini-B-trees.

Write amplification vs. range queries. Several systems sacrifice range-query

performance in order to reduce write amplification in other ways. Wisckey [72] reduces

write amplification by declustering their key-value store: they log values and only store

keys in the LSM-Tree. Since values are stored on disk in arrival order, a range query

must gather values from the log. On NVMe, this is not a problem once the values are

4KB or larger. However, for smaller values, this can induce huge read amplification,

56

limiting range query performance to a tiny fraction of device bandwidth. HashKV [34]

builds on Wisckey by introducing hash-based data-grouping to further reduce write

amplification, but inherits Wisckey’s range query performance limitations.

Other systems improve write amplification by sacrificing range queries altogether.

Conway et al. [39] describe a write-optimized hash table, called the BOA, that also

uses size-tiering with an LSM. In a BOA, SSTables of sorted runs are replaced with

hash tables. They also introduce the concept of a routing filter, which extends the

functionality of Bloom filters, in order to speed up queries. The principle advantage

of routing filters is that performance does not degrade as much when they don’t fit

in RAM. The BOA meets a provable lower bound on the I/O costs of insertions and

queries [57]. Thus the BOA is essentially the best possible on-disk data structure for

random insertions and point queries. The downside is that the BOA does not support

range queries, which are crucial to many key-value-store applications. LSM-tries [109]

organize the LSM tree using tries, resulting in reduced write amplification. However,

LSM-tries do not support range queries.

Other approaches. Researchers have also attempted to reduce write amplification

by exploiting special hardware features such as flash translation layers [74] and vector

interfaces [103]. VT-Tree [98] uses indirection to avoid copy data that is already sorted.

“Trivial moves” are a similar idea is in RocksDB and PebblesDB. TRIAD [11] reduces

write amplification by holding hot keys in memory, delaying compaction until different

runs have significant key overlap, and by reducing redundancy between log and LSM tree

writes. All these techniques are orthogonal to our work and can be used in conjunction

with our techniques.

Concurrency is also an important aspect of key-value store performance. One of

the first works in increasing concurrency in LSM-based stores was cLSM [53] which

introduces a new compaction algorithm. Zuo et al. [114] show how to tune a cuckoo

hash for NVM. Such a scheme suffers from high write amplification, since each insertion

must re-write all keys in a data block. Zuo et al. do not report write amplification

numbers but instead focus on concurrency.

Recent work on fast key-value stores includes GearDB [111], a key-value store that

57

avoids garbage collection on HM-SMR. Eisenman et al. [47] address the issue of large

DRAM requirements of key-value stores for NVM via several techniques, including in-

memory compression and NVM-specific caching schemes. Kourtis, et al. describe several

systems-level optimizations for improving key-value-store throughput on NVMe, such

as efficient use of user-level asynchronous I/O and low-latency scheduling [67]. Their

techniques are largely orthogonal to the work in this paper. Kaiyrakhmet, et al. use

persistent memory to simplify and improve performance relative to LevelDB [65].

58

Chapter 4

File System Aging

4.1 Introduction

File systems tend to become fragmented, or age, as files are created, deleted, moved,

appended to, and truncated [99, 76].

Fragmentation occurs when logically contiguous file blocks—either blocks from a

large file or small files from the same directory—become scattered on disk. Reading

these files requires additional seeks, and on hard drives, a few seeks can have an outsized

effect on performance. For example, if a file system places a 100 MiB file in 200 disjoint

pieces (i.e., 200 seeks) on a disk with 100 MiB s−1 bandwidth and 5 ms seek time,

reading the data will take twice as long as reading it in an ideal layout. Even on SSDs,

which do not perform mechanical seeks, a decline in logical block locality can harm

performance [77].

The state of the art in mitigating aging applies best-effort heuristics at allocation

time to avoid fragmentation. For example, file systems attempt to place related files

close together on disk, while also leaving empty space for future files [76, 33, 102, 75].

Some file systems (including ext4, XFS, Btrfs, and F2FS among those tested in this

paper) also include defragmentation tools that attempt to reorganize files and file blocks

into contiguous regions to counteract aging.

Over the past two decades, there have been differing opinions about the significance

of aging. The seminal work of Smith and Seltzer [99] showed that file systems age

under realistic workloads, and this aging affects performance. On the other hand, there

is a widely held view in the developer community that aging is a solved problem in

production file systems. For example, the Linux System Administrator’s Guide [108]

59

says:

Modern Linux file systems keep fragmentation at a minimum by keeping all

blocks in a file close together, even if they can’t be stored in consecutive

sectors. Some file systems, like ext3, effectively allocate the free block that

is nearest to other blocks in a file. Therefore it is not necessary to worry

about fragmentation in a Linux system.

There have also been changes in storage technology and file system design that

could substantially affect aging. For example, a back-of-the-envelope analysis suggests

that aging should get worse as rotating disks get bigger, as seek times have been rela-

tively stable, but bandwidth grows (approximately) as the square root of the capacity.

Consider the same level of fragmentation as the above example, but on a new, faster

disk with 600MiB/s bandwidth but still a 5ms seek time. Then the 200 seeks would

introduce four-fold slowdown rather than a two-fold slowdown. Thus, we expect frag-

mentation to become an increasingly significant problem as the gap between random

I/O and sequential I/O grows.

As for SSDs, there is a widespread belief that fragmentation is not an issue. For

example, PCWorld measured the performance gains from defragmenting an NTFS file

system on SSDs[1], and concluded that, “From my limited tests, I’m firmly convinced

that the tiny difference that even the best SSD defragger makes is not worth reducing

the life span of your SSD.”

In this paper, we revisit the issue of file system aging in light of changes in storage

hardware, file system design, and data-structure theory. We make several contributions:

(1) We give a simple, fast, and portable method for aging file systems. (2) We show

that fragmentation over time (i.e., aging) is a first-order performance concern, and

that this is true even on modern hardware, such as SSDs, and on modern file systems.

(3) Furthermore, we show that aging is not inevitable. We present several techniques

for avoiding aging. We show that BetrFS [62, 112, 61, 48], a research prototype that

includes several of these design techniques, is much more resistant to aging than the

other file systems we tested. In fact, BetrFS essentially did not age in our experiments,

60

establishing that aging is a solvable problem.

Results.

We use realistic application workloads to age five widely-used file systems—Btrfs [93],

ext4 [33, 102, 75], F2FS [69], XFS [100] and ZFS [25]—as well as the BetrFS research

file system. One workload ages the file system by performing successive git checkouts

of the Linux kernel source, emulating the aging that a developer might experience on

her workstation. A second workload ages the file system by running a mail-server

benchmark, emulating aging over continued use of the server.

We evaluate the impact of aging as follows. We periodically stop the aging workload

and measure the overall read throughput of the file system—greater fragmentation

will result in slower read throughput. To isolate the impact of aging, as opposed to

performance degradation due to changes in, say, the distribution of file sizes, we then

copy the file system onto a fresh partition, essentially producing a defragmented or

“unaged” version of the file system, and perform the same measurement. We treat the

differences in read throughput between the aged and unaged copies as the result of

aging.

We find that:

• All the production file systems age on both rotating disks and SSDs. For example,

under our git workload, we observe over 50× slowdowns on hard disks and 2–5×

slowdowns on SSDs. Similarly, our mail-server slows down 4–30× on HDDs due

to aging.

• Aging can happen quickly. For example, ext4 shows over a 2× slowdown after

100 git pulls; Btrfs and ZFS slow down similarly after 300 pulls.

• BetrFS exhibits essentially no aging. Other than Btrfs, BetrFS’s aged perfor-

mance is better than the other file systems’ unaged performance on almost all

benchmarks. For instance, on our mail-server workload, unaged ext4 is 6× slower

than aged BetrFS.

61

• The costs of aging can be staggering in concrete terms. For example, at the end of

our git workload on an HDD, all four production file systems took over 8 minutes

to grep through 1GiB of data. Two of the four took over 25 minutes. BetrFS

took 10 seconds.

We performed several microbenchmarks to dive into the causes of aging and found that

performance in the production file systems was sensitive to numerous factors:

• If only 10% of files are created out of order relative to the directory structure (and

therefore relative to a depth-first search of the directory tree), Btrfs, ext4, F2FS,

XFS and ZFS cannot achieve a throughput of 5 MiB s−1. If the files are copied

completely out of order, then of these only XFS significantly exceeds 1 MiB s−1.

This need not be the case; BetrFS maintains a throughput of roughly 50 MiB s−1.

• If an application writes to a file in small chunks, then the file’s blocks can end up

scattered on disk, harming performance when reading the file back. For example,

in a benchmark that appends 4 KiB chunks to 10 files in a round-robin fashion

on a hard drive, Btrfs and F2FS realize 10 times lower read throughput than if

each file is written completely, one at a time. ext4 and XFS are more stable but

eventually age by a factor of 2. ZFS has relatively low throughput but did not

age. BetrFS throughput is stable, at two thirds of full disk bandwidth throughout

the test.

4.2 Related Work

Prior work on file system aging falls into three categories: techniques for artificially

inducing aging, for measuring aging, and for mitigating aging.

4.2.1 Creating Aged File Systems

The seminal work of Smith and Seltzer [99] created a methodology for simulating and

measuring aging on a file system—leading to more representative benchmark results

than running on a new, empty file system. The study is based on data collected from

62

daily snapshots of over fifty real file systems from five servers over durations ranging

from one to three years. An overarching goal of Smith and Seltzer’s work was to evaluate

file systems with representative levels of aging.

Other tools have been subsequently developed for synthetically aging a file system.

In order to measure NFS performance, TBBT [113] was designed to synthetically age

a disk to create an initial state for NFS trace replay.

The Impressions framework [6] was designed so that users can synthetically age a

file system by setting a small number of parameters, such as the organization of the

directory hierarchy. Impressions also lets users specify a target layout score for the

resulting image.

Both TBBT and Impressions create file systems with a specific level of fragmenta-

tion, whereas our study identifies realistic workloads that induce fragmentation.

4.2.2 Measuring Aged File Systems

Smith and Seltzer also introduced a layout score for studying aging, which was used

by subsequent studies [8, 6]. Their layout score is the fraction of file blocks that are

placed in consecutive physical locations on the disk. We introduce a variation of this

measure, the dynamic layout score, in section 4.4.

The degree of fragmentation (DoF) is used in the study of fragmentation in

mobile devices [63]. DoF is the ratio of the actual number of extents, or ranges of

contiguous physical blocks, to the ideal number of extents. Both the layout score and

DoF measure how one file is fragmented.

Several studies have reported file system statistics such as number of files, distri-

butions of file sizes and types, and organization of file system namespaces [7, 46, 94].

These statistics can inform parameter choices in aging frameworks like TBBT and Im-

pressions [113, 6].

63

Feature Btrfs ext4 F2FS XFS ZFS BetrFS

Grouped allocation within directories

Extents

Delayed allocation

Packing small files
and metadata (by OID)

Default Node Size 16 K 4 K 4 K 4 K 8 K 2–4 M
Maximum Node Size 64 K 64 K 4 K 64 K 128 K 2–4 M

Rewriting for locality

Batching writes to reduce amplification

Table 4.1: Principal anti-aging features of the file systems measured in this paper. The top
portion of the table are commonly-deployed features, and the bottom portion indicates features
our model (section 3.7.4) indicates are essential; an ideal node size should match the natural
transfer size, which is roughly 4 MiB for modern HDDs and SSDs. OID in Btrfs is an object
identifier, roughly corresponding to an inode number, which is assigned at creation time.

4.2.3 Existing Strategies to Mitigate Aging

When files are created or extended, blocks must be allocated to store the new data.

Especially when data is rarely or never relocated, as in an update-in-place file system

like ext4, initial block allocation decisions determine performance over the life of the

file system. Here we outline a few of the strategies use in modern file systems to address

aging, primarily at allocation-time (also in the top of table 4.1).

Cylinder or Block Groups.

FFS [76] introduced the idea of cylinder groups, which later evolved into block groups

or allocation groups (XFS). Each group maintains information about its inodes and a

bitmap of blocks. A new directory is placed in the cylinder group that contains more

than the average number of free inodes, while inodes and data blocks of files in one

directory are placed in the same cylinder group when possible.

ZFS [25] is designed to pool storage across multiple devies [25]. ZFS selects from

one of a few hundred metaslabs on a device, based on a weighted calculation of several

factors including minimizing seek distances. The metaslab with the highest weight is

chosen.

In the case of F2FS [69], a log-structured file system, the disk is divided into

64

segments—the granularity at which the log is garbage collected, or cleaned. The pri-

mary locality-related optimization in F2FS is that writes are grouped to improve local-

ity, and dirty segments are filled before finding another segment to write to. In other

words, writes with temporal locality are more likely to be placed with physical locality.

Groups are a best-effort approach to directory locality: space is reserved for co-

locating files in the same directory, but when space is exhausted, files in the same

directory can be scattered across the disk. Similarly, if a file is renamed, it is not

physically moved to a new group.

Extents.

All of the file systems we measure, except F2FS and BetrFS, allocate space using

extents, or runs of physically contiguous blocks. In ext4 [33, 102, 75], for example, an

extent can be up to 128 MiB. Extents reduce bookkeeping overheads (storing a range

versus an exhaustive list of blocks). Heuristics to select larger extents can improve

locality of large files. For instance, ZFS selects from available extents in a metaslab

using a first-fit policy.

Delayed Allocation.

Most modern file systems, including ext4, XFS, Btrfs, and ZFS, implement delayed

allocation, where logical blocks are not allocated until buffers are written to disk. By

delaying allocation when a file is growing, the file system can allocate a larger extent for

data appended to the same file. However, allocations can only be delayed so long with-

out violating durability and/or consistency requirements; a typical file system ensures

data is dirty no longer than a few seconds. Thus, delaying an allocation only improves

locality inasmuch as adjacent data is also written on the same timescale; delayed allo-

cation alone cannot prevent fragmentation when data is added or removed over larger

timescales.

Application developers may also request a persistent preallocation of contiguous

blocks using fallocate. To take full advantage of this interface, developers must know

each file’s size in advance. Furthermore, fallocate can only help intrafile fragmentation;

65

there is currently not an analogous interface to ensure directory locality.

Packing small files and metadata.

For directories with many small files, an important optimization can be to pack the file

contents, and potentially metadata, into a small number of blocks or extents. Btrfs [93]

stores metadata of files and directories in copy-on-write B-trees. Small files are broken

into one or more fragments, which are packed inside the B-trees. For small files, the

fragments are indexed by object identifier (comparable to inode number); the locality of

a directory with multiple small files depends upon the proximity of the object identifiers.

BetrFS stores metadata and data as key-value pairs in two Bε-trees. Nodes in a

Bε-tree are large (2–4 MiB), amortizing seek costs. Key/value pairs are packed within

a node by sort-order, and nodes are periodically rewritten, copy-on-write, as changes

are applied in batches.

BetrFS also divides the namespace of the file system into zones of a desired size (512

KiB by default), in order to maintain locality within a directory as well as implement

efficient renames. Each zone root is either a single, large file, or a subdirectory of small

files. The key for a file or directory is its relative path to its zone root. The key/value

pairs in a zone are contiguous, thereby maintaining locality.

4.3 A Framework for Aging

4.3.1 Natural Transfer Size

Our model of aging is based on the observation that the bandwidth of many types

of hardware is maximized when I/Os are large; that is, sequential I/Os are faster

than random I/Os. We abstract away from the particulars of the storage hardware

by defining the natural transfer size (NTS) to be the amount of sequential data

that must be transferred per I/O in order to obtain some fixed fraction of maximum

throughput, say 50% or 90%. Reads that involve more than the NTS of a device will

run near bandwidth.

From fig. 4.1, which plots SSD and HDD bandwidth as a function of read size, we

66

0.004 0.016 0.063 0.25 1 4 16 64 256
0.25

1

4

16

64

256

Read size (MiB)

E
ff

ec
ti

ve
b

an
d
w

id
th

(M
iB

p
er

se
co

n
d

) SSD HDD

Figure 4.1: Effective bandwidth vs. read size (log-log scale, higher is better). Even on
SSDs, large I/Os can yield an order of magnitude more bandwidth than small I/Os.

conclude that a reasonable NTS for both the SSDs and HDDs we measured is 4MiB.

The cause of the gap between sequential- and random-I/O speeds differs for differ-

ent hardware. For HDDs, seek times offer a simple explanation. For SSDs, this gap

is hard to explain conclusively without vendor support, but common theories include:

sequential accesses are easier to stripe across internal banks, better leveraging paral-

lelism [64]; some FTL translation data structures have nonuniform search times [73];

and fragmented SSDs are not able to prefetch data [35] or metadata [63]. Whatever the

reason, SSDs show a gap between sequential and random reads, though not as great as

on disks.

In order to avoid aging, file systems should avoid breaking large files into pieces

significantly smaller than the NTS of the hardware. They should also group small files

that are logically related (close in recursive traversal order) into clusters of size at least

the NTS and store the clusters near each other on disk. We consider the major classes

of file systems and explore the challenges each file system type encounters in achieving

these two goals.

67

4.3.2 Allocation Strategies and Aging

The major file systems currently in use can be roughly categorized as B-tree-based,

such as XFS, ZFS, and Btrfs, update-in-place, such as ext4, and log-structured, such as

F2FS [69]. The research file system that we consider, BetrFS, is based on Bε-trees. Each

of these fundamental designs creates different aging considerations, discussed in turn

below. In later sections, we present experimental validation for the design principles

presented below.

B-trees.

The aging profile of a B-tree depends on the leaf size. If the leaves are much smaller

than the NTS, then the B-tree will age as the leaves are split and merged, and thus

moved around on the storage device.

Making leaves as large as the NTS increases write amplification, or the ratio between

the amount of data changed and the amount of data written to storage. In the extreme

case, a single-bit change to a B-tree leaf can cause the entire leaf to be rewritten. Thus,

B-trees are usually implemented with small leaves. Consequently, we expect them to

age under a wide variety of workloads.

In section 4.7, we show that the aging of Btrfs is inversely related to the size of the

leaves, as predicted. There are, in theory, ways to mitigate the aging due to B-tree leaf

movements. For example, the leaves could be stored in a packed memory array [14].

However, such an arrangement might well incur an unacceptable performance overhead

to keep the leaves arranged in logical order, and we know of no examples of B-trees

implemented with such leaf-arrangement algorithms.

Write-Once or Update-in-Place Filesystems.

When data is written once and never moved, such as in update-in-place file systems like

ext4, sequential order is very difficult to maintain: imagine a workload that writes two

files to disk, and then creates files that should logically occur between them. Without

68

moving one of the original files, data cannot be maintained sequentially. Such patholog-

ical cases abound, and the process is quite brittle. As noted above, delayed allocation is

an attempt to mitigate the effects of such cases by batching writes and updates before

committing them to the overall structure.

Bε-trees.

Bε-trees batch changes to the file system in a sequence of cascading logs, one per node

of the tree. Each time a node overflows, it is flushed to the next node. The seeming

disadvantage is that data is written many times, thus increasing the write amplification.

However, each time a node is modified, it receives many changes, as opposed to B-tree,

which might receive only one change. Thus, a Bε-tree has asymptotically lower write

amplification than a B-tree. Consequently, it can have much larger nodes, and typically

does in implementation. BetrFS uses a Bε-tree with 4MiB nodes.

Since 4MiB is around the NTS for our storage devices, we expect BetrFS not to

age—which we verify below.

Log-structured merge trees (LSMs) [82] and other write-optimized dictionaries can

resist aging, depending on the implementation. As with Bε-trees, it is essential that

node sizes match the NTS, the schema reflect logical access order, and enough writes

are batched to avoid heavy write amplification.

4.4 Measuring File System Fragmentation

This section explains the two measures for file system fragmentation used in our eval-

uation: recursive scan latency and dynamic layout score, a modified form of Smith

and Seltzer’s layout score [99]. These measures are designed to capture both intra-file

fragmentation and inter-file fragmentation.

Recursive grep test.

One measure we present in the following sections is the wall-clock time required to

perform a recursive grep in the root directory of the file system. This captures the effects

69

of both inter- and intra-file locality, as it searches both large files and large directories

containing many small files. We report search time per unit of data, normalizing by

using ext4’s du output. We will refer to this as the grep test.

Dynamic layout score.

Smith and Seltzer’s layout score [99] measures the fraction of blocks in a file or (in

aggregate) a file system that are allocated in a contiguous sequence in the logical block

space. We extend this score to the dynamic I/O patterns of a file system. During a given

workload, we capture the logical block requests made by the file system, using blktrace,

and measure the fraction that are contiguous. This approach captures the impact of

placement decisions on a file system’s access patterns, including the impact of metadata

accesses or accesses that span files. A high dynamic layout score indicates good data

and metadata locality, and an efficient on-disk organization for a given workload.

One potential shortcoming of this measure is that it does not distinguish between

small and large discontiguities. Small discontiguities on a hard drive should induce

fewer expensive mechanical seeks than large discontiguities in general, however factors

such as track length, difference in angular placement and other geometric considerations

can complicate this relationship. A more sophisticated measure of layout might be more

predictive. We leave this for further research. On SSD, we have found that the length

of discontiguities has a smaller effect. Thus we will show that dynamic layout score

strongly correlates with grep test performance on SSD and moderately correlates on

hard drive.

4.5 Experimental Setup

Each experiment compares several file systems: BetrFS, Btrfs, ext4, F2FS, XFS, and

ZFS. We use the versions of XFS, Btrfs, ext4 and F2FS that are part of the 3.11.10

kernel, and ZFS 0.6.5-234 ge0ab3ab, downloaded from the zfsonlinux repository on www.

github.com. We used BetrFS 0.3 in the experiments1. We use default recommended

1Available at github.com/oscarlab/betrfs

www.github.com
www.github.com
github.com/oscarlab/betrfs

70

file system settings unless otherwise noted. Lazy inode table and journal initialization

are turned off on ext4, pushing more work onto file system creation time and reducing

experimental noise.

All experimental results are collected on a Dell Optiplex 790 with a 4-core 3.40

GHz Intel Core i7 CPU, 4 GB RAM, a 500 GB, 7200 RPM ATA Seagate Barracuda

ST500DM002 disk with a 4096 B block size, and a 240 GB Sandisk Extreme Pro—both

disks used SATA 3.0. Each file system’s block size is set to 4096 B. Unless otherwise

noted, all experiments are cold-cache.

The system runs 64-bit Ubuntu 13.10 server with Linux kernel version 3.11.10 on

a bootable USB stick. All HDD tests are performed on two 20GiB partitions located

at the outermost region of the drive. For the SSD tests, we additionally partition the

remainder of the drive and fill it with random data, although we have preliminary data

that indicates this does not affect performance.

4.6 Fragmentation Microbenchmarks

We present several simple microbechmarks, each designed around a write/update pat-

tern for which it is difficult to ensure both fast writes in the moment and future locality.

These microbenchmarks isolate and highlight the effects of both intra-file fragmentation

and inter-file fragmentation and show the performance impact aging can have on read

performance in the worst cases.

Intrafile Fragmentation.

When a file grows, there may not be room to store the new blocks with the old blocks

on disk, and a single file’s data may become scattered.

Our benchmark creates 10 files by first creating each file of an initial size, and then

appending between 0 and 100 4KiB chunks of random data in a round-robin fashion

until each file is 400KiB. In the first round the initial size is 400KiB, so each entire file

is written sequentially, one at a time. In subsequent rounds, the initial size becomes

smaller, so that the number of round-robin chunks increases until in the last round

71

the data is written entirely with a round-robin of 4KiB chunks. After all the files are

written, the disk cache is flushed by remounting, and we wait for 90 seconds before

measuring read performance. Some file systems appear to perform background work

immediately after mounting that introduced experimental noise; 90 seconds ensures the

file system has quiesced.

The aging process this microbenchmark emulates is multiple files growing in length.

The file system must allocate space for these files somewhere, but eventually the file

must either be moved or will fragment.

Given that the data set size is small and the test is designed to run in a short time, an

fsync is performed after each file is written in order to defeat deferred allocation. Similar

results are obtained if the test waits for 5 seconds between each append operation. If

fewer fsyncs are performed or less waiting time is used, then the performance differences

are smaller, as the file systems are able to delay allocation, rendering a more contiguous

layout.

The performance of these file systems on an HDD and SSD are summarized in

fig. 4.2. On HDD, the layout scores generally correlate (−0.93) with the performance

of the file systems. On SSD, the file systems all perform similarly (note the scale of the

y-axis). In some cases, such as XFS, ext4, and ZFS, there is a correlation, albeit at a

small scale. For Btrfs, ext4, XFS, and F2FS, the performance is hidden by read-ahead

in the OS, or in the case of Btrfs, also in the file system itself. If we disable read-ahead,

shown in fig. 4.2c, the performance is more clearly correlated (−.67) with layout score.

We do note that this relationship on an SSD is still not precise; SSDs are sufficiently

fast that factors such as CPU time can also have a significant effect on performance.

Because of the small amount of data and number of files involved in this microbench-

mark, we can visualize the layout of the various file systems, shown in fig. 4.3. Each

block of a file is represented by a small vertical bar, and each bar is colored uniquely

to one of the ten files. Contiguous regions form a colored rectangle. The visualization

suggests, for example, that ext4 both tries to keep files and eventually larger file frag-

ments sequential, whereas Btrfs and F2FS interleave the round robin chunks on the end

of the sequential data. This interleaving can help explain why Btrfs and F2FS perform

72

BetrFS Btrfs ext4 F2FS XFS ZFS

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Rounds of 4KiB chunks appended

G
re
p
co
st

(s
ec
/
G
iB
)

(a) Recursive grep cost: HDD (lower is better).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

Rounds of 4KiB chunks appended

G
re
p
co
st

(s
ec
/
G
iB
)

(b) Recursive grep cost: SSD (lower is better).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

Rounds of 4KiB chunks appended

G
re
p
co
st

(s
ec
/G

iB
)

(c) Recursive grep cost: SSD, no readahead (lower is better).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Rounds of 4KiB chunks appended

D
y
n
am

ic
la
y
o
u
t
sc
or
e

(d) Dynamic layout score (higher is better).

Figure 4.2: Intrafile benchmark: 4KiB chunks are appended round-robin to sequential
data to create 10 400KiB files. Dynamic layout scores generally correlate with read
performance as measured by the recursive grep test; on an SSD, this effect is hidden by
the readahead buffer.

73

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

(a
)
ex
t4

ro
u
n
d

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

(b
)
B
tr
fs

ro
u
n
d

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

(c
)
X
F
S

ro
u
n
d

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

(d
)
Z
F
S

ro
u
n
d

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

Relative LBA

(e
)
F
2F

S
ro
u
n
d

Figure 4.3: Intrafile benchmark layout visualization. Each color represents blocks of
a file. The x-axis is the logical block address (LBA) of the file block relative to the
first LBA of any file block, and y-axis is the round of the experiment. Rectangle sizes
indicate contiguous placement, where larger is better. The brown regions with vertical
lines indicate interleaved blocks of all 10 files. Some blocks are not shown for ext4, XFS
and ZFS.

74

the way they do: the interleaved sections must be read through in full each time a file

is requested, which by the end of the test takes roughly 10 times as long. ext4 and XFS

manage to keep the files in larger extents, although the extents get smaller as the test

progresses, and, by the end of the benchmark, these file systems also have chunks of

interleaved data; this is why ext4 and XFS’s dynamic layout scores decline. ZFS keeps

the files in multiple chunks through the test; in doing so it sacrifices some performance

in all states, but does not degrade.

Unfortunately, this sort of visualization doesn’t work for BetrFS, because this small

amount of data fits entirely in a leaf. Thus, BetrFS will read all this data into memory

in one sequential read. This results is some read amplification, but, on an HDD, only

one seek.

Interfile Fragmentation.

Many workloads read multiple files with some logical relationship, and frequently those

files are placed in the same directory. Interfile fragmentation occurs when files which are

related—in this case by being close together in the directory tree—are not collocated

in the LBA space.

We present a microbenchmark to measure the impact of namespace creation order

on interfile locality. It takes a given “real-life” file structure, in this case the Tensorflow

repository obtained from github.com, and replaces each of the files by 4KiB of random

data. This gives us a “natural” directory structure, but isolates the effect of file ordering

without the influence of intrafile layout. The benchmark creates a sorted list of the

files as well as two random permutations of that list. On each round of the test, the

benchmark copies all of the files, creating directories as needed with cp --parents.

However, on the nth round, it swaps the order in which the first n% of files appearing

in the random permutations are copied. Thus, the first round will be an in-order copy,

and subsequent rounds will be copied in a progressively more random order until the

last round is a fully random-order copy.

The results of this test are shown fig. 4.4. On hard drive, all the file systems except

BetrFS and XFS show a precipitous performance decline even if only a small percentage

75

BetrFS Btrfs ext4 F2FS XFS ZFS

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

Percentage of files copied out-of-order

G
re

p
co

st
(s

ec
/
G

iB
)

(a) Recursive grep cost: HDD (Lower is better).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of files copied out-of-order

G
re

p
co

st
(s

ec
/G

iB
)

(b) Recursive grep cost: SSD (Lower is better).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage of files copied out-of-order

D
y
n

am
ic

la
y
ou

t
sc

o
re

(c) Dynamic layout score (higher is better).

Figure 4.4: Interfile benchmark: The TensorFlow github repository with all files re-
placed by 4KiB random data and copied in varying degrees of order. Dynamic layout
scores again are predictive of recursive grep test performance.

76

of the files are copied out of order. F2FS’s performance is poor enough to be out of scale

for this figure, but it ends up taking over 4000 seconds per GiB at round 100; this is not

entirely unexpected as it is not designed to be used on hard drive. XFS is somewhat

more stable, although it is 13-35 times slower than drive bandwidth throughout the

test, even on an in-order copy. BetrFS consistently performs around 1/3 of bandwidth,

which by the end of the test is 10 times faster than XFS, and 25 times faster than

the other file systems. The dynamic layout scores are moderately correlated with this

performance (−0.57).

On SSD, half the file systems perform stably throughout the test with varying

degrees of performance. The other half have a very sharp slowdown between the in-

order state and the 10% out-of-order state. These two modes are reflected in their

dynamic layout scores as well. While ext4 and ZFS are stable, their performance is

worse than the best cases of several other file systems. BetrFS is the only file system

with stable fast performance; it is faster in every round than any other file system even

in their best case: the in-order copy. In this cases the performance strongly correlates

with the dynamic layout score (−0.83).

4.7 Application Level Read-Aging: Git

To measure aging in the “real-world,” we create a workload designed to simulate a

developer using git to work on a collaborative project.

Git is a distributed version control system that enables collaborating developers to

synchronize their source code changes. Git users pull changes from other developers,

which then get merged with their own changes. In a typical workload, a Git user may

perform pulls multiple times per day over several years in a long-running project. Git

can synchronize all types of file system changes, so performing a Git pull may result in

the creation of new source files, deletion of old files, file renames, and file modifications.

Git also maintains its own internal data structures, which it updates during pulls. Thus,

Git performs many operations which are similar to those shown in section 4.6 that cause

file system aging.

77

We present a git benchmark that performs 10,000 pulls from the Linux git repository,

starting from the initial commit. After every 100 pulls, the benchmark performs a

recursive grep test and computes the file system’s dynamic layout score. This score is

compared to the same contents copied to a freshly formatted partition.

On a hard disk (fig. 4.5), there is a clear aging trend in all file systems except BetrFS.

By the end of the experiment, all the file systems except BetrFS show performance drops

under aging on the order of at least 3x and as much as 15x relative to their unaged

versions. All are at least 15x worse than BetrFS. The dynamic layout scores througout

the benchmark are shown in fig. 4.7. In all of the experiments in this section, F2FS

ages considerably more than all other file systems, commensurate with significantly

lower layout scores than the other file systems—indicating less effective locality in data

placement. The overall correlation between grep performance and dynamic layout score

is moderate, at −0.41.

On an SSD (fig. 4.6), Btrfs and XFS show clear signs of aging, although they

converge to a fully aged configuration after only about 1,000 pulls. While the effect is

not as drastic as on HDD, in all the traditional file systems we see slowdowns of 2x-4x

over BetrFS, which does not slow down. In fact, aged BetrFS on the HDD outperforms

all the other aged file systems on an SSD, and is close even when they are unaged.

Again, this performance decline is strongly correlated (−0.79) with the dynamic layout

scores.

The aged and unaged performance of ext4 and ZFS are comparable, and slower than

several other file systems. We believe this is because the average file size decreases over

the course of the test, and these file systems are not as well-tuned for small files. To

test this hypothesis, we constructed synthetic workloads similar to the interfile fragmen-

tation microbenchmark (section 4.6), but varied the file size (in the microbenchmark

it was uniformly 4KB).fig. 4.8 shows both the measured, average file size of the git

workload (one point is one pull), and the microbenchmark. Overall, there is a clear

relationship between the average file size and grep cost.

The zig-zag pattern in the graphs is created by an automatic garbage collection pro-

cess in Git. Once a certain number of “loose objects” are created (in git terminology),

78

BetrFS clean Btrfs clean ext4 clean F2FS clean XFS clean ZFS clean

BetrFS aged Btrfs aged ext4 aged F2FS aged XFS aged ZFS aged

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
20

0
40

0
60

0

Pulls accrued

G
re
p
co
st

(s
ec
/G

B
)

(a) HDD, git garbage collection on (Lower is better).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0

Pulls accrued

G
re
p
co
st

(s
ec
/G

B
)

(b) HDD, git garbage collection off (Lower is better).

Figure 4.5: Git read-aging experimental results on HDD: On-disk layout as measured
by dynamic layout score generally is predictive of read performance.

79

BetrFS clean Btrfs clean ext4 clean F2FS clean XFS clean ZFS clean

BetrFS aged Btrfs aged ext4 aged F2FS aged XFS aged ZFS aged

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
5

10
15

20

Pulls accrued

G
re
p
co
st

(s
ec
/
G
B
)

(a) SSD, git garbage collection on (Lower is better).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
5

1
0

15
20

25
30

Pulls accrued

G
re
p
co
st

(s
ec
/G

B
)

(b) SSD, git garbage collection off (Lower is better).

Figure 4.6: Git read-aging experimental results on SDD: On-disk layout as measured
by dynamic layout score generally is predictive of read performance.

80

BetrFS clean Btrfs clean ext4 clean F2FS clean XFS clean ZFS clean

BetrFS aged Btrfs aged ext4 aged F2FS aged XFS aged ZFS aged

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

0.2

0.4

0.6

0.8

1

Pulls Accrued

D
y
n
am

ic
la
y
o
u
t
sc
or
e

(a) Dynamic layout score: git garbage collection on (Higher is better).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

0.2

0.4

0.6

0.8

1

Pulls Accrued

D
y
n
a
m
ic

la
y
ou

t
sc
or
e

(b) Dynamic layout score: git garbage collection off (Higher is better).

Figure 4.7: Git read-aging layout scores.

81

8KiB 12KiB 16KiB 20KiB
0

5

10

15

20

25

30

Average file size

G
re

p
co

st
(s

ec
s/

G
B

)

ext4 git
ext4 interfile

ZFS git
ZFS interfile

Figure 4.8: Average file size versus unaged grep costs (lower is better) on SSD. Each
point in the git line is the average file size for the git experiment, compared to a
microbenchmark with all files set to a given size.

many of them are collected and compressed into a “pack.” At the file system level, this

corresponds to merging numerous small files into a single large file. According to the

Git manual, this process is designed to “reduce disk space and increase performance,”

so this is an example of an application-level attempt to mitigate file system aging. If

we turn off the git garbage collection, as show in figs. 4.5b, 4.6b and 4.7b, the effect of

aging is even more pronounced, and the zig-zags essentially disappear.

On both the HDD and SSD, the same patterns emerge as with garbage collection

on, but exacerbated: F2FS aging is by far the most extreme. ZFS ages considerably

on the HDD, but not on the SSD. ZFS on SSD and ext4 perform worse than the other

file systems (except F2FS aged), but do not age particularly. XFS and Btrfs both

aged significantly, around 2x each, and BetrFS has strong, level performance in both

states. This performance correlates with dynamic layout score both on SSD (−0.78)

and moderately so on HDD (−0.54).

We note that this analysis, both of the microbenchmarks and of the git workload,

runs counter to the commonly held belief that locality is solely a hard drive issue. While

82

the random read performance of solid state drives does somewhat mitigate the aging

effects, aging clearly has a major performance impact.

Git Workload with Warm Cache.

The tests we have presented so far have all been performed with a cold cache, so that

they more or less directly test the performance of the file systems’ on-disk layout under

various aging conditions. In practice, however, some data will be in cache, and so it is

natural to ask how much the layout choices that the file system makes will affect the

overall performance with a warm cache.

We evaluate the sensitivity of the git workloads to varying amounts of system RAM.

We use the same procedure as above, except that we do not flush any caches or remount

the hard drive between iterations. This test is performed on a hard drive with git

garbage collection off. The size of the data on disk is initially about 280MiB and grows

throughout the test to approximately 1GiB.

The results are summarized in fig. 4.9. We present data for ext4 and F2FS; the

results for Btrfs, XFS and ZFS are similar. BetrFS is a research prototype and unstable

under memory pressure; although we plan to fix these issues in the future, we omit this

comparison.

In general, when the caches are warm and there is sufficient memory to keep all the

data in cache, then the read is very fast. However, as soon as there is no longer sufficient

memory, the performance of the aged file system with a warm cache is generally worse

than unaged with a cold cache. In general, unless all data fits into DRAM, a good

layout matters more than a having a warm cache.

Git Workload on BTRFS with Different Node Sizes

We present the git test with a 4KiB node size, the default setting, as well as 8KiB,

16KiB, 32KiB, and 64KiB (the maximum). fig. 4.10a shows similar performance graphs

to fig. 4.5, one line for each node size. The 4KiB node size has the worst read perfor-

mance by the end of the test, and the performance consistently improves as we increase

the node size all the way to 64KiB. fig. 4.10b plots the number of 4KiB blocks written

83

768MiB 1024MiB 1280MiB 1536MiB 2048MiB
Cold Cache Aged Cold Cache Unaged

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

Pulls Accrued

(a
)
ex
t4

G
re
p
co
st

(s
ec
/
G
B
)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
5
00

1,
00

0
1,
50

0
2,
00

0
2,
50

0

Pulls Accrued

(b
)
F
2F

S
G
re
p
co
st

(s
ec
/G

B
)

Figure 4.9: Grep costs as a function of git pulls with warm cache and varying system
RAM on ext4 (top) and F2FS (bottom). Lower is better.

84

to disk between each test (within the 100 pulls). As expected, the 64KiB node size

writes the maximum number of blocks and the 4KiB node writes the least. We thus

demonstrate—as predicted by our model—that aging is reduced by a larger block size,

but at the cost of write-amplification.

4.8 Application Level Aging: Mail Server

In addition to the git workload, we evaluate aging with the Dovecot email server.

Dovecot is configured with the Maildir backend, which stores each message in a file,

and each inbox in a directory. We simulate 2 users, each having 80 mailboxes, receiving

new email, deleting old emails, and searching through their mailboxes.

A cycle or “day” for the mailserver comprises 8,000 operations, where each operation

is equally likely to be an insert or a delete, corresponding to receiving a new email

or deleting an old one. Each email is a string of random characters, the length of

which is uniformly distributed over the range [1, 32K]. Each mailbox is initialized with

1,000 messages, and, because inserts and deletes are balanced, mailbox size tends to

stay around 1,000. We simulate the mailserver for 100 cycles and after each cycle we

perform a recursive grep for a random string. As in our git benchmarks, we then copy

the partition to a freshly formatted file system, and run a recursive grep.

fig. 4.11 shows the read costs in seconds per GiB of the grep test on hard disk.

Although the unaged versions of all file systems show consistent performance over the

life of the benchmark, the aged versions of ext4, Btrfs, XFS and ZFS all show significant

degradation over time. In particular, aged ext4 performance degrades by 4.4×, and is

28× slower than aged BetrFS. XFS slows down by a factor of 7 and Btrfs, by a factor of

30. ZFS slows down drastically, taking about 20 minutes per GiB by cycle 20. However,

the aged version of BetrFS does not slow down. As with the other HDD experiments,

dynamic layout score is moderately correlated (−0.63) with grep cost.

85

4Kib 8Kib 16Kib 32Kib 64Kib

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Pulls Accrued

G
re
p
co
st

(s
ec
s/
G
B
)

(a) Grep cost at different node sizes (lower is better).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0
50

1
00

15
0

20
0

25
0

30
0

Pulls accrued

N
u
m
b
er

of
4
K
iB

b
lo
ck
s
w
ri
tt
en

(t
h
ou

sa
n
d
s)

(b) Write amplification at different node sizes (lower is better).

Figure 4.10: Aging and write amplification on Btrfs, with varying node sizes, under
the git aging benchmark.

86

Btrfs BetrFS ext4 F2FS XFS ZFS aged unaged

0 10 20 30 40 50 60 70 80 90 100

0
20

0
40

0
60

0
8
00

1,
00

0
1,
20

0
1,
40

0
1,
60

0

Operations performed

G
re
p
co
st

(s
ec
/
G
iB
)

(a) Grep cost during mailserver workload (lower is better).

0 10 20 30 40 50 60 70 80 90 100

0
0
.2

0
.4

0
.6

0
.8

1

Operations performed

D
y
n
a
m
ic

la
y
ou

t
sc
or
e

(b) Mailserver layout (higher is better).

Figure 4.11: Mailserver performance and layout scores.

87

4.9 Conclusion

The experiments above suggest that the conventional wisdom on fragmentation, aging,

allocation and file systems is inadequate in several ways.

First, while it may seem intuitive to write data as few times as possible, writing data

only once creates a tension between the logical ordering of the file system’s current state

and the potential to make modifications without disrupting the future order. Rewriting

data multiple times allows the file system to maintain locality. The overhead of these

multiple writes can be managed by rewriting data in batches, as is done in write-

optimized dictionaries.

For example, in BetrFS, data might be written as many as a logarithmic number of

times, whereas in ext4, it will be written once, yet BetrFS is able in general to perform

as well as or better than an unaged ext4 file system and significantly outperforms aged

ext4 file systems.

Second, today’s file system heuristics are not able to maintain enough locality to

enable reads to be performed at the disk’s natural transfer size. And since the natural

transfer size on a rotating disk is a function of the seek time and bandwidth, it will

tend to increase with time. Thus we expect this problem to possibly become worse with

newer hardware, not better.

We experimentally confirmed our expectation that non-write-optimized file systems

would age, but we were surprised by how quickly and dramatically aging impacts per-

formance. This rapid aging is important: a user’s experience with unaged file systems

is likely so fleeting that they do not notice performance degradation. Instead, the

performance costs of aging are built into their expectations of file system performance.

Finally, because representative aging is a difficult goal, simulating multi-year work-

loads, many research papers benchmark on unaged file systems. Our results indicate

that it is relatively easy to quickly drive a file system into an aged state—even if this

state is not precisely the state of the file system after, say, three years of typical use—

and this degraded state can be easily measured.

88

Chapter 5

Optimal Ball Recycling

5.1 Introduction

Balls-and-bins games have been a successful tool for modeling load balancing prob-

lems [80, 3, 2, 9, 36, 37, 41, 78, 79, 105, 27, 88, 106, 49, 39]. For example, they can be

used to study the average and worst-case occupancy of buckets in a hash table [21], the

worst-case load on nodes in a distributed cluster [89, 22] and even the amount of time

customers wait in line at the grocery store [79]. In all these load-balancing problems,

balls-and-bins games are used to study how to distribute load evenly across the resource

being allocated.

In this paper we study a new scenario, which we refer to as the ball-recycling

game, defined as follows:

Throw m balls into n bins i.i.d. according to a given probability distribution

p. Then, at each time step, pick a non-empty bin and recycle its balls:

take the balls from the selected bin and re-throw them according to p.

We call a bin-picking method a recycling strategy and define its recycling rate to

be the expected number of balls recycled in the stationary distribution (when it exists).

The ball-recycling game models insertion buffers and update buffers, which are

widely used to speed up insertions in databases by batching updates to blocks on disk.

The recycling rate of a recycling strategy corresponds to the speed-up obtained by an

insertion buffer, so the goal studied in this paper is how to maximize the recycling

rate. This relationship is described in section 5.2, and the experiments in section 5.6

demonstrate that it holds in practice.

In this paper, we present results for ball recycling for both general p and for the

89

special case of uniform p, which we denote by u. As we explain in section 5.2, these

distributions correspond to update and insertion buffers, respectively.

We focus on three natural recycling strategies:

• Fullest Bin: A greedy strategy that recycles the bin with the most balls.

• Random Ball: A strategy that picks a ball uniformly at random and recycles

its bin.

• Golden Gate: A strategy that picks the bins in round-robin fashion; after a bin

is picked, the next bin picked is its non-empty successor.

Let ‖p‖ 1
2

= (
∑√

pi)
2 be the half quasi-norm of p. We achieve the following result for

general p.

Theorem 6 (section 5.4). Consider a ball-recycling game with m balls and n bins,

where the balls are distributed into the bins i.i.d. according to distribution p. Then

Random Ball is Θ(1)-optimal.

It achieves recycling rate RRB:

1. If m ≥ n,

RRB = Θ

(
m

‖p‖ 1
2

)
.

2. If m < n, let L be the m lowest-weight bins, q =
∑

`∈L p`, and RRB
L be the recycle

rate of Random Ball restricted to L. Then,

RRB = Θ
(
min

(
RRB
L , 1/q

))
.

In order to establish this result, we first show that no recycling strategy can achieve

a higher recycling rate than (2m+ n)/‖p‖ 1
2
. This directly establishes optimality when

m = Ω(n). For m = o(n), we show that Random Ball performs as well as another

strategy, Aggressive Empty, which takes an optimal strategy on a subset of high-

weight bins and turns it into an optimal strategy on all the bins.

Interestingly, the greedy strategy Fullest Bin is not generally optimal, and in

particular:

90

Observation. There are distributions for which Fullest Bin is pessimal, that is, it

recycles at most 2 balls per round whereas OPT recycles almost m balls per round.

For example, consider the skyscraper distribution, where p0 = 1 − 1/n + 1/n2

and pi = 1/n2, for 0 < i ≤ n − 1. Suppose that m =
√
n. Then Fullest Bin will

pick bin 0 every time until it has at most one ball, at which point it will pick another

bin, which will almost certainly have 1 ball in it. Thus, the recycling rate of Fullest

Bin drops below 2. Suppose, instead, that we recycle the least-full non-empty bin. In

this case, every approximately
√
n rounds, a ball lands in a low-probability bin and is

promptly returned to bin 0. Thus, the recycling rate of this strategy is nearly m. Thus,

Fullest Bin is pessimal for this distribution.

However, the uniform distribution is of particular importance to insertion buffers for

databases based on B-trees. This is because (arbitrary) random B-tree insertions are

nearly uniformly distributed across the leaves of the B-tree, as we show in section 5.2.

On the uniform distribution, Fullest Bin and Golden Gate are optimal even up to

lower order terms:

Theorem 7 (section 5.5). Fullest Bin and Golden Gate are optimal to within an

additive constant for the ball-recycling game with distribution u for any n and m. They

each achieve a recycling rate of at least 2m/(n + 1), whereas no recycling strategy can

achieve a recycling rate greater than 2m/n+ 1.

In this case, Random Ball is only optimal to within a multiplicative constant in

the following range:

Theorem 8 (section 5.5). On the uniform distribution u, for sufficiently large m,

Random Ball is at least (1/2 + 1/(2334))-optimal and at most (1− 3/1000)-optimal.

Thus, we establish some surprising results: that Fullest Bin can perform poorly

for arbitrary p but is optimal for u, up to lower-order terms; and that Random Ball

is asymptotically optimal for any p and in particular is more than 1/2-optimal but not

quite optimal for u.

In section 5.6, we present experimental results showing that our analytical results

for the ball recycling problem closely match performance results in real databases.

91

We describe the recycling strategies of several commercial and open-source database

systems. In particular we focus on InnoDB, a B-tree that uses a variant of Random

Ball.

Our results suggest that Fullest Bin or Golden Gate would be a better choice

than Random Ball for InnoDB. In particular, Golden Gate requires almost no

additional bookkeeping, and can be implemented in InnoDB with a change of only a

few lines of code. With this implementation, we measured a 30% improvement in its

insertion-buffer flushing rate, which is in line with our theoretical results.

We conclude that ball recycling is a natural hitherto unexplored balls-and-bins

game that closely models a widely deployed method for improving the performance

of databases. Moreover, this is the first application (to our knowledge) of a balls-and-

bins game to the throughput of a system. This is in contrast to past balls-and-bins

analyses, which modeled load balancing and latency.

5.2 Ball Recycling and Insertion/Update Buffers

Ball recycling models insertion and update buffers, which are widely used in modern

databases [10, 58, 110, 59, 31, 81, 83, 95, 104, 32, 18]. These implementations are

discussed in more detail in section 5.6.

For a key-value store, such as a database, an insertion buffer is a cache of recently

inserted items. When the insertion buffer fills, the database selects a disk block and all

the cached items going to that block are evicted in bulk. If k elements are flushed in

bulk, then there is a speedup of k, compared to writing the elements to the destination

block as soon as they arrive. After evicting k items, there is room for k new elements

in the buffer. An update buffer caches changes to existing key-value pairs but is

otherwise like an insertion buffer. Although these types of buffers seem quite similar,

we show that they have important differences in how they are modeled as a ball-recycling

game.

The mapping to ball recycling is direct: disk blocks are bins and elements in the

92

insertion/update buffer are balls. The probability distribution p is based on the dis-

tribution of items inserted or updated. Evicting all the items going to a disk block

corresponds to emptying the bin associated with that disk block. After an eviction of

k items, we have room for k new insertions/updates, i.e., we have k new balls to throw.

The policy for selecting the target disk block of an eviction corresponds to the policy for

selecting a bin to recycle, and the speedup induced by an eviction policy is its recycling

rate.

For B-trees, insertion buffers and update buffers differ in an important way: updates

do not change the structure of leaves of a B-tree. In contrast, insertions can change

the range of keys associated with a leaf (due to leaf splits), which yields the following

result:

Lemma 13. If N keys are inserted into a B-tree i.i.d. according to some key dis-

tribution q, then provided B = Ω(logN), the maximum probability that a leaf has of

receiving the next insertion is O(B/N) with probability 1. Thus the corresponding re-

cycling game is asymptotically almost uniform: no bin has probability more than a

constant multiple of 1
n .

We prove the uniformity bound as follows. Let F (κ) be the cumulative density

function (CDF) of q, which is the probability that an item sampled from q is less than

κ. If κ is distributed according to q, then F (κ) will be uniformly distributed on [0, 1].

If n points are sampled from [0, 1] uniformly and sorted so that x1 ≤ x2 ≤ · · · ≤ xn,

then maxxi+B − xi is known as the maximal B-spacing. It follows that:

Lemma 14. Having inserted n keys into a B-tree i.i.d. according to a distribution q,

the maximum probability that any leaf has of receiving the next insertion is less than

the maximum B-spacing of the CDFs of those points.

It is known that:

Lemma 15 ([45]). If B = Θ(log n), then the maximum B-spacing of n points distributed

uniformly on the unit interval is Θ(B/n) with probability 1.

For B = ω(log n), we can subdivide B into intervals of log n points, each of which will

satisfy the lemma. Adding together the resulting bounds, we have that the maximal

93

B-spacing of n points is O(B/n) with probability 1. Together with lemma 14, this

implies lemma 13.

We also note that an (almost-uniform) ball-recycling game is an imperfect model for

an insertion buffer, because the ball-recycling game has a fixed number of bins, whereas

in the insertion buffer, the number of disk blocks will increase. Furthermore, insertions

may not be independently distributed.

Finally, the implementation of these strategies is a point of departure between in-

sertion/update buffers and ball recycling. In ball recycling, it is obvious which bin each

ball is in. In insertion/update buffers for a B-tree, elements have a key, but we don’t

necessarily know what the buckets are, since the mapping from keys to buckets depends

on the pivots used to define the B-tree leaves. Fullest Bin needs to know what the

buckets are, whereas Random Ball and Golden Gate do not. For Random Ball

this is because the key of the randomly selected item can be used to fetch its target

B-tree leaf, after which we know the max and min keys in that leaf, and Golden

Gate can be implemented by remembering the upper bound of the last leaf to which

we flushed and then flushing the item with the successor of that key, along with all the

other keys going to that leaf. None of these strategies require knowledge of p.

Our results on general p have an interesting implication for Bε-trees, which are

known to be asymptotically optimal for insertions, in the worst case. Bε-trees can also

handle updates by propagating messages to the leaves. For some update distributions,

flushing according to Random Ball can achieve an update rate that is Bε faster than

Fullest Bin. We expect to try Random Ball flushing in our Bε-tree-based file

system, BεtrFS [62, 112, 38, 61, 48].

5.3 Ball Recycling and Markov Theory

We begin our analysis of ball-recycing games with some preliminary results. In particu-

lar, we show that all finite-state ball-recycling strategies have stationary distributions.

94

5.3.1 Ball-recycling games are Markov decision processes.

This section makes use of the standard theory of Markov chains and Markov decision

processes; for an introduction see e.g. Kallenberg [66].

In a ball-recycling game, we represent the configuration of the balls as a vector

X = (Xi) of length n, where Xi is the number of balls in the ith bin. Since the number

of balls is finite, there are only a finite number of bin configurations.

A recycling strategy A takes as input the current bin configuration X together with

an internal state S, and selects a non-empty bin to recycle; the next state is obtained

by removing all the balls from the selected bin and re-throwing them according to p.

The bin selection may be randomized. We write AiX for the state obtained after i

rounds of recycling using strategy A. In each round, the recycling algorithm earns a

reward equal to the number of balls recycled in that round.

In this way, the ball-recycling game is a Markov decision process, and we are inter-

ested in policies that maximize the expected average recycling rate, defined for a policy

A as

RA = lim
T→∞

1

T

T∑
t=0

R(AtX0).

Note that Markov decision processes are very general. For example, in a Markov

decision process the policy may vary over time, and may even take the entire history of

the process and its own past decisions into account when deciding on its next action.

Thus, for some strategies A, the limit RA may not exist. In the literature of Markov

decision processes, this is often handled by taking the lim sup instead of the limit.

However, for any Markov decision process, any strategy that maximizes the limit also

maximizes the lim sup [66]. Therefore, for simplicity, we will focus only on strategies

for which the limit is well-defined, and the results will generally hold for the lim sup of

arbitrary strategies.

A Markov decision process policy is deterministic if it decides on its next action

based solely on the current state, i.e. without looking at history, the number of time

steps that have passed or by flipping random coins. A deterministic policy can be

represented as a simple table mapping each state to a single action to be taken whenever

95

the system is in that state.

The specific strategies we analyze are finite-state strategies, where the internal

state has only finitely many configurations. When we prove our lower bounds, we will

further restrict ourselves to stateless strategies, where there is a unique internal state.

In order to do so, we make use of the following lemma.

Lemma 16 ([66]). There exists a stateless deterministic recycling strategy OPT that

achieves the optimal expected average recycling rate.

Proof. This follows from Kallenberg’s Corollary 5.4.

5.3.2 Stationary distributions of recycling strategies

A ball-recycling game and a recycling strategy together define a Markov process on the

state space; the space of pairs comprising a balls-and-bins configuration and an internal

state. If the strategy is stateless, this is a Markov process on the balls and bins space.

There are a finite number of balls-and-bins configurations. Therefore, a ball-recycling

game with a finite-state recycling strategy defines a finite Markov process, and so has

at least one stationary distribution.

We now show that stateless recycling strategies result in Markov processes with

unique stationary distributions. The following lemma shows that, when we look only

at the bin configurations, recycling games have properties analogous to irreducibility

and aperiodicity in Markov chains.

Lemma 17. For any ball-recycling game with m balls and n bins there is an ε >

0 such that, for all bin configurations X and Y , and for all recycling strategies, the

probability that X reaches Y within min(m,n) steps is at least ε. Furthermore, every

bin configuration can transition to itself in one time step.

Proof. We just need to show a sequence of outcomes for ball tosses that transform X

into Y , no matter which bins the recycling strategy chooses to empty. So, imagine

that, at each step, all the recycling balls land in occupied bins, so that at each step,

the number of occupied bins goes down by 1. After at most min(m,n) − 1 steps, all

96

the balls will be in a single bin. On the next round, the recycling strategy must choose

that bin, causing all the balls to be rethrown. There is some non-zero probability that

they land in configuration Y .

For the second observation, simply note that all the recycled balls may happen to

land in the bin from whence they came.

Lemma 18.

1. All ball-recycling games using stateless recycling strategies have unique stationary

distributions which are equal to their limiting distributions.

Proof. Having fixed a stateless recycling strategy, the ball-recycling game is a Markov

process on the balls-and-bins configuration. By lemma 17, this process is irreducible and

aperiodic, and so has a unique stationary distribution equal to its limiting distribution.

Together with lemma 16, we have:

Corollary 6. For any ball-recycling game, there exists an optimal strategy with a unique

stationary distribution.

We now show that two of the three main recycling strategies studied in this paper

yield unique stationary distributions. The strategies are:

• Fullest Bin: selects the bin that has the most balls;

• Random Ball: selects a ball uniformly at random and recycles whichever bin it

is in;

• Golden Gate: selects the bins in a round robin sequence.

Fullest Bin is a deterministic strategy, Random Ball is a stateless strategy and

Golden Gate is a finite-state strategy. By lemma 18 we have:

Lemma 19. Fullest Bin and Random Ball have unique stationary distributions.

97

5.4 Random Ball is Optimal

In this section we prove theorem 6, showing that Random Ball is Θ(1)-optimal.

5.4.1 Outline of Proof

We prove theorem 6 in the following steps:

1. No recycling strategy has a recycling rate exceeding (2m + n − 1)/‖p‖ 1
2
. (sec-

tion 5.4.2)

2. Random Ball matches that bound when m ≥ n, leading to case (1) of theorem 6.

(section 5.4.3)

3. There is an Θ(1)-optimal strategy, Aggressive Empty, when m < n. The recy-

cling rate of Aggressive Empty matches case (2) of theorem 6. (section 5.4.4)

4. By comparison to Aggressive Empty, Random Ball is Θ(1)-optimal when

m < n. (section 5.4.5)

5.4.2 The Upper Bound

We begin by proving an important lemma that will be used throughout, which we refer

to as the flow equation. Then we proceed to prove the upper bound.

Let A be a stateless strategy with stationary distribution χA,p. Let φi be the event

that A picks bin i to recycle. Let RAi = E[RA(χA,p)|φi] be the number of balls recycled

given that the strategy picks bin i, and fi = P (φj), the probability of picking the bin i

in the stationary distribution. We note that RAi and fi could alternatively be defined

as limits of repeated applications of A to any given starting state.

For a given bin i, we can analyze the “flow” of balls into and out of i. When k balls

are thrown, pik of them are expected to land in i. For a ball to leave i, i must first

be picked to be emptied by A, at which point every ball in i will be evicted. In the

stationary distribution, the net flow must be zero. We can generalize to any set of bins

and get:

98

Lemma 20. Let A be a statelss strategy for a ball-recycling game with n bins with

probabilities p. If L is a subset of the bins, pL =
∑

`∈L p`, fL =
∑

`∈L f` and RAL the

conditional recycle rate given A picks a bin in L, then

pLRA = fLRAL . (5.1)

We will mostly use the following special case of the lemma 20:

Lemma 21 (The Flow Equation). Let A be a statless recycling strategy for a ball-

recycling game with n bins with probabilities p. Then, for all 0 ≤ i < n,

piRA = fiRAi . (5.2)

We now describe the main upper bound on the recycling rate of any recycling

strategy. In order to understand the intuition behind lemma 22, consider a given bin i.

Intuitively, it makes sense to think that for a reasonable recycling strategy the recycling

rate of the other bins in the system will go down as the number of balls Xi in bin i grows.

After all, the Xi balls in bin i aren’t available for recycling until bin i is selected. If we

assume this intuition as fact for the moment, this suggests that the expected number of

balls in bin i should be greater than half the recycling rate of bin i, perhaps excluding

the last ball to land in the bin.

By the Flow Equation, this would suggest that

E [Xi] ≥
1

2
(RAi − 1) =

1

2

(
pi
fi
RA − 1

)
,

so that after summing over i, we obtain lemma 22.

However, the following strategy does not satisfy this assumption: for a given bin i,

have the strategy just pick the least full non-empty bins until i has a few balls, then

pick the fullest ones, then pick i and repeat. Showing that better strategies do not do

this is non-trivial, and we prove lemma 22 by different means.

Lemma 22. Consider a ball-recycling game with m balls, n bins and distribution p.

If A is a stateless strategy that picks bin i with frequency fi, then its recycle rate is

bounded by

RA ≤ 2m+ n− 1∑
j
pj
fj

. (5.3)

99

Given a strategy A, the idea of the proof is to use the invariance of the statistic

Z(X) =

n∑
j=1

X2
j

pj
, (5.4)

under the action of A on its stationary distribution. The application of A to Z together

with the flow equation creates a factor of
∑

j Rj , which when solved for proves the

bound. First, we begin with some foundational lemmas, and then proceed to prove the

main results.

Lemma 23. Suppose k balls are thrown into n bins i.i.d. according to distribution p.

Let B(j, k) be the binomial random variable denoting how many balls land in the jth

bin. The following hold:

E [B(j, k)] = pjk (5.5)

E
[
(B(j, k))2

]
= pj(1− pj)k + p2

jk
2 (5.6)

Proof. B(j, k) is a binomial random variable with parameters pj and k.

Next, given a state X, we compute the effect of recycling the `th bin on the jth

component of Z. Note that if A recycles bin ` of state X, then X` = RA(X).

Lemma 24. In a ball-recycling game with m balls, n bins and probability distribution

p, if a strategy A recycles bin ` in state X, then for j 6= `,

E
[
(AX)2j

]
= X2

j + 2XjpjR
A(X) + pj(1− pj)R

A(X) + p2
jR

A(X)2,

where RA(X) = X` is the number of balls recycled.

Proof.

E
[
(AX)2j

]
= E

[
(Xj +B(j, RA(X)))2

]
= X2

j + 2XjE
[
B(j, RA(X))

]
+ E

[
B(j, RA(X))2

]
= X2

j + 2XjpjR
A(X) + pj(1− pj)R

A(X) + p2
j

(
RA(X)

)2

We now can use this result to compute the result of applying A to Z.

100

Lemma 25. In a ball-recycling game with m balls, n bins and probability distribution

p, if a strategy A recycles bin ` in state X, then

E [Z(AX)] = Z(X)−
(

1 +
1

p`

)(
RA(X)

)2
+ (2m+ n− 1)RA(X)

Proof.

E [Z(AX)] =

n∑
j=1

E
[
(AX)2j/pj

]

=
E
[
(AX)2`

]
p`

+
∑
j 6=`

E
[
(AX)2j

]
pj

= (1− p`)R
A(X) + p`

(
RA(X)

)2
+
∑
j 6=`

(
X2
j /pj + 2XjR

A(X) + (1− pj)R
A(X) + pj

(
RA(X)

)2)
= Z(X)−

(
2 +

1

p`

)(
RA(X)

)2
+ 2mRA(X)

+
∑
j

(
(1− pj)R

A(X) + pj
(
RA(X)

)2)
= Z(X)−

(
1 +

1

p`

)(
RA(X)

)2
+ (2m+ n− 1)RA(X)

Now, we can prove lemma 22.

Proof of lemma 22. Let χA be the stationary distribution relative to A. Let φj be the

event that A recycles the jth bin of χA, RAj the random variable of how many balls are

recycled given the jth bin is chosen by A, RAj = E
[
RAj

]
and fj the probability that

A recycles that bin. Because χA = AχA by definition, we must have E
[
Z(AχA)

]
=

E
[
Z(χA)

]
. Therefore:

101

E
[
Z(χA)

]
= E

[
Z(AχA)

]
=
∑
j

fjE
[
Z(AχA)|φj

]
=
∑
j

fj

(
E
[
Z(χA)|φj

]
−
(

1 +
1

pj

)
E
[(
RAj
)2]

+ (2m+ n− 1)RAj
)

≤ E
[
Z(χA)

]
+ (2m+ n− 1)RA −

∑
j

fj

(
1 +

1

pj

)(
RAj
)2

= E
[
Z(χA)

]
+ (2m+ n− 1)RA −

∑
j

1

fj

(
p2
j + pj

) (
RA
)2
,

where the inequality is due to the Cauchy-Schwartz Inequality and the last line is

because of the Flow Equation.

Thus we have:

RA ≤ 2m+ n− 1∑
j

1
fj

(
p2
j + pj

) ≤ 2m+ n− 1∑
j
pj
fj

.

Lemma 22 applies to the optimal deterministic strategy OPT promised by corol-

lary 6, and we know that RA ≤ ROPT for any recycling strategy A. Thus, by maxi-

mizing the RHS of lemma 22, we can get an upper bound on the recycling rate of any

recycling strategy.

Lemma 26. Consider a ball-recycling game with m balls, n bins and distribution p.

For any recycling strategy A,

RA ≤ 2m+ n− 1

‖p‖ 1
2

.

Proof. This follows immediately from the Cauchy-Schwartz Inequality.

5.4.3 Random Ball with m ≥ n

We show the following lower bound, which with lemma 26, shows optimality when

m = Ω(n).

Lemma 27. Random Ball recycles at least m
‖p‖ 1

2

balls per round in expectation.

102

Proof. Let χRB = (χRB
i) be the random variable of the number of balls in each bin in

the stationary distribution of Random Ball. Random Ball recycles bin i with prob-

ability
χRB
i
m , and therefore the expected number of balls recycled from bin i per round

is
E
[
(χRB
i)

2
]

m . The number of balls that land in bin i per round is pi
∑n

j=1

E
[
(χRB
j)

2
]

m .

Since X is distributed stationarily, we must have

pi

n∑
j=1

E

[(
χRB
j

)2]
m

=
E
[(
χRB
i

)2]
m

≥
E
[
χRB
i

]2
m

,

using Jensen’s Inequality. Clearing denominators, taking square roots and summing

across i, we have n∑
j=1

E
[(
χRB
j

)2] 1
2 n∑
i=1

p
1
2
i =

n∑
i=1

pi

n∑
j=1

E
[(
χRB
j

)2] 1
2

≥
n∑
i=1

E
[
χRB
i

]
= m.

Therefore the expected recycle rate is

n∑
j=1

E

[(
χRB
j

)2]
m

≥ m(∑n
i=1

√
pi
)2 =

m

‖p‖ 1
2

.

Corollary 7. Consider a ball-recycling game with m balls and n bins. If m = Ω(n),

then Random Ball is asymptotically optimal among recycling strategies.

5.4.4 Aggressive Empty is Optimal

In this section, we investigate Aggressive Empty strategies, which aggressively re-

cycle balls outside a given subset of bins. An Aggressive Empty strategy runs one

strategy on a fixed subset of bins, but always chooses to recycle a bin outside of this

set if there exists one which has any balls. Specifically, we show that a Θ(1)-optimal

strategy on a particular O(m) subset of the bins can be extended to an Θ(1)-optimal

strategy on the full ball-recycling game by aggressively emptying the rest.

Consider a ball-recycling game with m balls, n bins, and ball distribution p. Let L

be some subset of bins and S be a strategy on the induced ball-recycling game of L,

103

which is the ball-recycling game with m balls, |L| bins, and ball distribution q, where

qi =
pi∑
`∈L p`

.

Therefore, q is p’s conditional probability distribution on L. We define L, S-Aggressive

Empty to be the strategy which empties the lowest weight non-empty bin in the com-

plement of L if one exists and otherwise performs S on L. Note that all the balls will

be in L whenever S is performed, so this is well-defined.

We begin by showing that there exists an L and S such that |L| = O(m), L contains

all bins with weight at least 1
m , and L, S-Aggressive Empty is asymptotically optimal.

Note that when m = Ω(n), this is trivial, because we can take L to be all the bins and

S to be a Θ(1)-optimal strategy; however, this section provides stronger bounds when

m = o(n). Intuitively, the idea is that very low weight bins won’t be able to effectively

accumulate balls, so strategies do better to recover any balls in them than to wait for

more balls to land there.

Lemma 28. There exists an L and S such that |L| = O(m), L contains all bins of

weight at least 1
m and L, S-Aggressive Empty is asymptotically optimal.

Proof. By lemma 16, there exists an optimal deterministic strategy OPT. Using the

flow equation, lemma 22 can be rewritten as:

n∑
i=1

ROPT
i ≤ 2m+ n.

Because OPT will never recycle an empty bin, each ROPT
i ≥ 1. Therefore, there can be

at most m bins with average recycle rates at least 3. Let L be this set of bins, together

with any bins of weight at least 1
m , and we will construct a strategy S that aggressively

empties the remaining bins into L.

S aggressively empties the complement of L, but also keeps a virtual configuration

of where OPT thinks the balls are, as well as a log of where S has moved them. So when

S aggressively empties a bin, it also updates the log of each ball it throws, indicating

where it landed. When Lc is empty, it asks OPT which bin to recycle based on the

virtual configuration. If it says to recycle a bin in Lc, we use the logs to update where

104

those balls will land in the virtual configuration. If it says to recycle a bin in L, we

recycle those balls that are there in the virtual configuration, leaving any others behind

in that same bin. Thus S performs OPT but rushes ahead to recycle those balls outside

of L.

Now, consider t rounds of OPT. For large enough t, OPT will recycle on average at

most 3 balls at a time from Lc. S recycles at least 1 ball at a time from Lc and exactly

as many balls at a time from L. Therefore for large t, t rounds of OPT will correspond

to at most 3t rounds of S, and during this period S will recycle the same number of

balls. Thus S is 1/3-optimal.

Next we compute the recycle rate of L, S-Aggressive Empty as a function of the

recycle rate of S on the induced ball-recycling game on L.

Lemma 29. If RS is the recycle rate of S (on L), and q is the probability of a ball

landing in Lc, then the recycle rate of L, S-Aggressive Empty is

RAE = Θ

(
1

(1− q)/RS + q

)
Proof. Consider a collection of recycling rounds of L, S-Aggressive Empty where t

of those times L, S-Aggressive Empty recycles a bin from L. Say b balls are thrown

from bins in L and a balls land in Lc. Now, if m balls are thrown into bins of size at

most 1
m , then the expected number of empty bins is at most

m

(
1− 1

m

)m
≤ m

e
.

Because fewer thrown balls will have fewer collisions, this means the expected number of

non-empty bins when k ≤ m balls are thrown into Lc is at least
(
1− 1

e

)
k, requiring at

least as many time steps to aggressively empty. Thus, for large t, the expected number

of turns required to empty the a balls out of Lc is at least
(
1− 1

e

)
a

1−q . Whereas even if

the balls were recycled from Lc one at a time this expected number of turns is at most

a
1−q turns. The number of balls recycled during this period is b + a

1−q , and we have

shown the number of rounds ρ satisfies:

ρ = Θ

(
t+

a

1− q

)
.

105

For large enough t, b = Θ
(
tRS

)
and a = Θ

(
tqRS

)
, so the overall recycle rate RAE

therefore satisfies

RAE = Θ

(
tRS + tqRS/(1− q)
t+ tqRS/(1− q)

)
= Θ

(
1

(1− q)/RS + q

)
.

5.4.5 Random Ball is Optimal

In this section we will further examine the performance of Random Ball and show

that it is asymptotically optimal. We first describe a sufficient condition for optimality

of a strategy based on its recycle rate on L, then show that Random Ball satisfies

this criterion.

Lemma 30. Let L be a set of O(m) bins for which there exists a strategy T such that

L, T -Aggressive Empty is asymptotically optimal. Let ROPTL be the recycle rate of

the optimal strategy on the induced ball-recycling game of L. For a given strategy S, let

RSL be the conditional recycle rate of S in the stationary distribution given that a ball

in L is selected, and q be the probability that a ball lands in Lc, i.e. q =
∑

k∈Lc pk. If

either

E
[
RSL
]

= Ω(ROPTL) or E
[
RSL
]

= Ω

(
1

q

)
,

then S is asymptotically optimal.

Proof. By applying lemma 20, the subset variant of the flow equation, to L,

fLRSL = (1− q)(fLRSL + (1− fL)RSLc),

where fL is the stationary probability of S picking a bin in L. Solving for fL,

fL =
RSLc

qRSL +RSLc
. (5.7)

Suppose RSL = o
(
1
q

)
and RSL is Θ(1)-optimal on L. If RSL ≤

1
q , then fL ≥ 1

2 , and

so because RS = fLRSL + (1− fL)RSLc , we must have RS = Ω(RSL).

Now, using lemma 28, let L and T be such that L, T -Aggressive Empty is asymp-

totically optimal, and let RAE be its expected recycle rate. By lemma 29,

RAE = Θ

(
1

(1− q)/RT + q

)
= O

(
RT
)

= O
(
RSL
)

= O
(
RS
)
,

106

so S must be asymptotically optimal.

If RSL = Ω
(
1
q

)
, then RSL >

α
q for some α. Rearranging Equation (5.7) and multi-

plying by RSL yields

fLRSL =
1

q
RSLc

+ 1
RSL

.

Here 1
RSL
≤ q
RSLc

, so fLRSL = Ω
(
1
q

)
, and thus RS = Ω

(
1
q

)
as well. Now we can compare

to L, T -Aggressive Empty as above:

RAE = Θ

(
1

(1− q)/RT + q

)
= O

(
1

q

)
= O

(
RS
)

so in this case S is asymptotically optimal as well.

We can now prove theorem 6.

Proof of theorem 6. If m = Ω(n), then by lemmas 26 and 27 we are done.

Otherwise, let L be a set of O(m) bins for which there exists a strategy T such

that L, T -Aggressive Empty is asymptotically optimal. We will prove the result for

a slightly modified Random Ball that only recycles 1 ball outside of L even if more

are available; that is, it moves only one of the balls in the bin. Since this strategy is

worse than Random Ball, this will be sufficient. We number the bins so that the first

|L| bins comprise L.

If RL ≥ 1−q
q , then we are done by lemma 30. Otherwise, in the stationary distri-

bution, when a bin in L is recycled, the expected number of balls which land in Lc is

qRL < 1 − q. When a bin in Lc is recycled, the expected number of balls which land

in L is 1− q. Thus Random Ball must pick a bin in L more than half the time, and

so the expected number of balls in L must be more than m
2 .

Now analogously to the proof of lemma 27, we have:

pi

 |L|∑
j=1

E
[(
χRB
j

)2]
+

n∑
j=|L|+1

E
[
χRB
j

] = E
[(
χRB
i

)2] ≥ E
[
χRB
i

]2
.

Thus,

E
[
χRB
i

]
≤ √pi

 |L|∑
j=1

E
[(
χRB
j

)2]
+
m

2

 1
2

.

107

Summing over i ≤ |L| yields

E
[
χRB
L

]
≤

 |L|∑
i=1

√
pi

 |L|∑
j=1

E
[(
χRB
j

)2]
+
m

2

 1
2

,

where χRB
L is the expected number of balls in L. Now,

RRB
L ≥ 1

m

|L|∑
j=1

E
[(
χRB
j

)2] ≥ E
[
χRB
L

]2
m
(∑|L|

i=1

√
pi

)2 − 1

2
>

m

4‖pL‖ 1
2

− 1

2
,

where pL is the conditional probability distribution on L obtained from p. The last

inequality holds because there are at least m
2 balls in L in expectation.

Thus by lemma 26, Random Ball is asymptotically optimal on the induced system

of L, and therefore Random Ball is asymptotically optimal by lemma 30.

5.5 The Uniform Case

The results of section 5.4 hold for any distribution of the balls into the bins. In this

section we consider the special case where they are uniformly distributed, which models

insertion buffers as discussed in section 5.2. We then show that Golden Gate and

Fullest Bin are optimal, up to lower-order terms, in this setting, whereas Random

Ball is at least 1/2- and at most (1− ε)-optimal, for some constant ε > 0.

For a ball-recycling game with uniformly distributed balls, lemma 26 implies:

Corollary 8. Consider a ball-recycling game with m balls, n bins and uniform distri-

bution u. For any recycling strategy A,

RA ≤ 2m+ n− 1

n
< 2

m

n
+ 1.

The average number of balls in a bin is m/n, so corollary 8 suggests that any

“reasonable” strategy will be at least 1/2-optimal in the uniform case.

We now show that Golden Gate and Fullest Bin are within an additive constant

of optimal on strictly uniform distributions.

Lemma 31. Golden Gate and Fullest Bin each recycle at least 2m/(n+ 1) balls

per round in expectation.

108

Proof. Let S be the random variable denoting the number of balls thrown in a given

round with Golden Gate. Golden Gate will recycle the bins in order starting from

the next one and cycling around. Therefore, we can consider the collection of bins

to be a queue. After throwing the balls, the average place in the queue in which a

ball lands is the [(n− 1)/s]th bin, due to uniformity. Each ball thrown will therefore

sit for an average of at most (n − 1)/2 rounds before it is thrown again. Therefore,

m− E [S] ≤ E [S] (n− 1)/2, and we have the result after solving for E [S].

Let T be the random variable denoting the number of balls thrown in a given round

with Fullest Bin. If after removing the balls in the Fullest Bin, we list the bins

in order of fullness, we can again think of the bins as a sort of queue. When we throw

the balls, the average place in the queue which a ball lands is the [(n− 1)/2]th bin as

above, due to uniformity. Now, we reorder the bins back into fullness order. During

the reordering more balls are moved up the queue than down, thus each ball thrown

into the system will sit for an average of less than (n− 1)/2 rounds before it is thrown

again. Therefore, as above, m− E [S] ≤ E [S] (n− 1)/2, and we are done.

Corollary 8 and lemma 31 together prove theorem 7. Despite these strong perfor-

mance bounds, recall that Fullest Bin can perform arbitrarily badly on non-uniform

p. Random Ball on the other hand is always Θ(1)-optimal.

5.5.1 Random Ball in the Uniform Case

However, Random Ball does not achieve this level of optimality on uniform distribu-

tions. In this section we will show in theorem 8 that Random Ball recycles at most

1 + (2 − ε)m/n balls per round in expectation, for some ε > 0. The upper bound is

given in lemma 33 and corollary 9, and the lower bound is given in lemma 34.

We begin with the following lemma:

Lemma 32. Let χRB be the stationary distribution relative to Random Ball, RRB(X)

the random variable of how many balls Random Ball recycles from ball configuration

109

X, and RRB = E
[
RRB

(
χRB

)]
the expected recycle rate of Random Ball. Then,

E
[
RRB

(
χRB

)2]
RRB

=
2m+ n− 1

n+ 1
≤ 1 +

2m

n
.

Proof. Consider the random variable of the number of distinct unordered pairs of balls

which are in the same bin in χRB. In expectation, a round of Random Ball eliminates(
RRB

2

)
and creates

R−1∑
k=0

m−RRB + k

n

such pairs. In the stationary distribution, these must be equal, so

E
[
RRB

(
χRB

)2]
2

− R
RB

2
=

(2m− 1)RRB

2n
−

E
[
RRB

(
χRB

)2]
2n

.

After rearranging we have the result.

Lemma 33. There exists a constant α > 0 such that Random Ball is at most (1−α)-

optimal.

Proof. Let χRB be the stationary distribution relative to Random Ball, RRB(X) the

random variable of how many balls Random Ball recycles from ball configuration X,

and RRB = E
[
RRB

(
χRB

)]
the expected recycle rate of Random Ball. We will prove

the result by contradiction, so assume that for all constant ε > 0,

RRB ≥ 1 +
(2− ε)m

n
.

Let c ∈ (1, 2) be a constant to be determined later. We say a bin is light if it

contains at most cm/n balls. Let L be the random variable of the number of balls in

light bins in the stationary distribution. Then the probability qL that Random Ball

recycles a light bin in the stationary distribution is E [L] /m. We proceed by cases.

Case 1. Suppose E [L] ≥ δm for some constant δ > 0. Then qL ≥ δ and for

110

c ≤ 2− 2ε and ε < 1/2,

Var
[
RRB

(
χRB

)]
= E

[(
RRB

(
χRB

)
−RRB

)2]
≥ qL

(
1 +

(2− ε)m
n

− cm

n

)2

≥ ε2δ

4

(
4m2

n2
+

4m

n
+ 1

)
≥ ε2δ

4

(
RRB

)2
.

Thus by the definition of variance, we have

E
[
RRB

(
χRB

)2] ≥ (1 +
ε2δ

4

)(
RRB

)2
.

Now by lemma 32,

RRB ≤
(

1 +
ε2δ

4

)−1(
1 +

2m

n

)
.

Since ε, δ are constants greater than 0, we have our contradiction for the first case.

Case 2. Otherwise, E [L] < δm. Since L ∈ [0,m], E
[
L2
]
< δm2. Lemma 32 implies

E
[
RRB

(
χRB

)2] ≤ (1 + 2m/n)2. Together Hölder’s inequality we have

E
[
LRRB

(
χRB

)]
≤
(

E
[
L2
]

E
[
RRB

(
χRB

)2])1/2
<

(
δm2

(
1 +

2m

n

)2
)1/2

=
√
δm

(
1 +

2m

n

)
(5.8)

Let Y be the random variable of the number of balls in the stationary distribution

which start in a light bin, but end up begin among the first 1+cm/n balls in a heavy bin

after an application of Random Ball. Let Φ be the random variable of the number

of distinct unordered pairs of balls that are in the same light bin in the stationary

distribution. Applying Random Ball in expectation creates at most

E

RRB−1∑
k=0

L+ k

n

 = E

[
2LRRB

(
χRB

)
+RRB

(
χRB

)2 −RRB
(
χRB

)
2n

]

such pairs, and eliminates at least

E

[
Y

1 + cm
n

(
1 + cm

n

2

)]
.

111

In the stationary distribution these quantities must be equal, so rearranging together

with Equation (5.8), we have

E [Y] ≤
2E
[
LRRB

(
χRB

)]
+ E

[
RRB

(
χRB

)2]−RRB

cm

<
2
√
δ

c

(
1 +

2m

n

)
+

E
[
RRB

(
χRB

)2]−RRB

cm

<

(
1 +

2m

n

)(
2
√
δ

c
+

2

cn

)
,

where we have used lemma 32 for the last inequality.

We now compute the effect on E [L] of applying Random Ball to the stationary

distribution. By Markov’s inequality, there must be more than (1−1/c)n light bins, and

so the probability that a ball is thrown into a light bin is more than 1−1/c. Therefore,

at least (1− 1/c)RRB balls land in light bins in expectation. We expect at most E [Y]

balls to be in light bins which turn into heavy bins. Finally, we recycle at most cm/n

balls from a light bin E [L] /m of the time. Since the net change to L must be 0 in

expectation, (
1− 1

c

)
RRB <

c

n
E [L] + E [Y] .

However, this is a contradiction. Indeed, the LHS is at least(
1− 1

c

)(
1 +

(2− ε)m
n

)
,

but the RHS is less than

δc
m

n
+

(
1 +

2m

n

)(
2
√
δ

c
+

2

cn

)
.

Thus, if we pick a sufficiently small δ > 0, ε = 0.01, c = 1.98 and n ≥ 3, we have a

contradiction. For n ≤ 2, the contradiction follows immediately from lemma 32.

Corollary 9. Setting

(ε, c, δ) = (0.001, 1.456, 0.042)

in the proof of theorem 8, we obtain

RRB < 1 + 1.994
m

n
.

112

Lemma 34. For all c > 0, there exists a c′ such that if m ≥ c′n log n, the uniform

random ball policy has expected recycle rate at least(
1 +

1

64
− c
)
m

n
.

Proof. Let Xt,k be the random variable denoting the number of balls in the kth bin at

the beginning of the tth round. Because of symmetry, Xt,k follows the same distribution

as Xt,` for any k 6= `. For simplicity, we let Xt be a random variable that follows the

same distribution as Xt,k for all k.

We pick t to be sufficiently large so that the system enters its stationary state after

t rounds. Thus, Xt and Xt′ follows the same distribution for any t′ > t.

Let Yt be the random variable denoting the number of balls recycled in the tth

round. By definition, we have

E [Yt] =
∑

1≤k≤n

E
[
X2
t,k

]
m

=
n

m

(
E [Xt]

2 + Var [Xt]
)
.

Note that E [Xt] = m/n, and so E [Yt] ≥ m/n.

To show E [Yt] deviates from m/n, we derive a lower bound for Var [Xt].

If P (Xt ≤ (1− ε)m/n) ≥ δ, then E [Yt] ≥ (1 + ε2δ)m/n.

Otherwise P (Xt > (1− ε)m/n) > 1 − δ. We will show that if δ is small enough,

then this case does not exist.

We say a bin is heavy if it has more than (1 − ε)m/n balls. Let Zt be the random

variable denoting the number of heavy bins at the beginning of the tth round. We have

E [Zt] =
∑

1≤k≤n
E
[
I
[
Xt,k > (1− ε)m

n

]]
> (1− δ)n.

Zt is a non-negative variable in [0, n] and has expected value more than (1 − δ)n. By

Markov’s inequality,

Pr[Zt ≤ (1− 2δ)n] <
1

2
and Pr[Zt > (1− 2δ)n] >

1

2
.

We compute E
[
Zt+n/2

]
from the Zt. If Zt > (1 − 2δ)n for some constant δ < 1/4,

the following hold during P , the time period between the tth round and the (t+n/2)th

round:

113

1. At least (1/2− 2δ)n bins in Ht are recycled,

2. At least (1/2− 2δ)(1− ε)m balls are recycled,

3. At least (1/2− 2δ)n bins in Ht are not recycled,

where Ht denotes the set of heavy bins at the beginning of the tth round.

Given (c), we can find a subset St ⊂ Ht that is composed of (1/2− 2δ)n bins in Ht

not recycled during P . Note that which bins are recycled and which are not depends

on the random choices made by the system. Hence, St varies.

Next, we derive a lower bound on the expected number of balls in any St. The balls

which stay in St come from two different sources. There are those that stay in St at

the beginning of the tth round, of which there are at least |St|(1 − ε)m/n. There are

also those which are recycled during P , of which there are at least |St|(1− ε′)|B|/n by

lemma 35, to follow. Combining the two sources, the expected number of balls in St is

at least

Γ = (1− ε)

((
1

2
− 2δ

)
+

(
1

2
− 2δ

)2

(1− ε′)

)
m.

Lemma 35. Let B be the multiset of the first (1/2− 2δ)(1− ε)m balls recycled during

P . B is well-defined thanks to 2. above. Let Li be the random variable denoting the

number of balls in B that land on the ith bin. For all ε′ > 0, there exists a c′ such that

if m ≥ c′n log n

E [min{L1, L2, . . . , Ln}] ≥ (1− ε′)|B|/n.

Proof. For i ∈ [1, n], E [Li] = |B|/n. By Chernoff bounds,

Pr[|Li − E [Li] | ≥ (ε′/2)E [Li]] ≤
1

n2

for some sufficiently large c′. Consequently, by the union bound,

Pr[min{L1, L2, . . . , Ln} ≤ (1− ε′/2)|B|/n] ≤ 1

n
.

Because the Li’s are non-negative, we are done.

114

Given Γ, we obtain the following bound:

E
[
Zt+n/2

∣∣ Zt > (1− 2δ)n
]
≤ |St|+

m− Γ

(1− ε)m/n

=

(
1

1− ε
−
(

1

2
− δ
)2

(1− ε′)

)
n

≈
(

3

4
+ ε+ δ

)
n

Together with the trivial bound E
[
Zt+n/2

∣∣ Zt ≤ (1− 2δ)n
]
≤ n, E

[
Zt+n/2

]
equals

P (Zt ≤ (1− 2δ)) E
[
Zt+n/2

∣∣ Zt ≤ (1− 2δ)
]

+ P (Zt > (1− 2δ)) E
[
Zt+n/2

∣∣ Zt > (1− 2δ)
]

<
1

2

(
1 +

(
3

4
+ ε+ δ

))
n

≈
(

7

8
+
ε+ δ

2

)
n

This leads to a contradiction if ε + δ is small enough. This is because we have

E [Zt] > (1−δ)n and E
[
Zt+n/2

]
= E [Zt], because the system is stationary. As a result,

we have a contradiction if ε+3δ
2 < 1

8 .

Combining the results for the two cases, we wish to maximize 1 + ε2δ subject to

ε+ 3δ < 1
4 . Picking ε = 1/6 yields the result.

Theorem 8 follows from corollaries 8 and 9 and lemma 34.

5.6 Database Experiments

In this section, we consider insertion buffers as they are used in practice. We demon-

strate, through simulations as well as experiments on real-world systems, that the

theoretical results in the prior sections hold and can be used to improve performance.

5.6.1 Insertion Buffers in Database Systems

Many databases cache recently inserted items in RAM so that they can write items

to disk in batches. Examples include Azure [10], DB2 [58], Hbase [110], Informix [59],

InnoDB [31], NuDB [81], Oracle [83], SAP [95], and Vertica [104]. They are also

115

used to accelerate inserts in several research prototypes, such as the buffered Bloom

filter [32] and buffered quotient filter [18]. By batching updates to disk, these insertion

buffers reduce the amortized number of I/Os per insert, which can substantially improve

insertion throughput. Facebook claims that the insertion buffer in InnoDB speeds up

some production workloads by a factor of 5 to 16, and accelerates some synthetic

benchmarks by up to a factor of 80 [31].

A motivating factor for the use of insertion buffers is that they can significantly

mitigate the precipitous performance drop that databases can experience when the data

set grows too large to fit in RAM. section 5.6.1 shows the time per 1,000 insertions into

a MySQL database using the InnoDB backend, with and without InnoDB’s insertion

buffer enabled. For the first 200, 000 insertions, the entire database fits in RAM, and

so insertions are fast, even without the insertion buffer.

Once the database grows larger than RAM, insertion performance without the in-

sertion buffer falls off a cliff. In fact, once the database reaches 1M rows, it can perform

only about 200 insertions per second, suggesting that the throughput is limited by the

random-I/O performance of the underlying disk. In the benchmark with the insertion

buffer enabled, on the other hand, performance degrades by only a small amount.

Based on the performance of the first 1M insertions, it appears that InnoDB’s

insertion buffer effectively eliminates the performance cliff that can occur when the

database grows larger than RAM. This improvement explains the popularity of insertion

buffers in database design.

However, in our experiment, as the database continues to grow, the efficacy of the

insertion buffer declines. Figure 5.1 shows the time per 10,000 insertions as the database

grows to 50M rows. Although the performance without the insertion buffer drops more

quickly early on, it remains relatively stable thereafter. Performance with the insertion

buffer, on the other hand, slowly declines over the course of the benchmark until it

is only about a third faster than without the insertion buffer. This is well below the

5− 80× speedups reported above.

As these experiments show, it can be difficult to extrapolate from small examples

the performance gains that insertion buffers can provide for large databases. Therefore,

116

Insertion buffer disabled Insertion buffer enabled

0 0.2 0.4 0.6 0.8 1
0

2

4

Rows inserted (in millions)

S
ec
on

d
s
p
er

th
ou

sa
n
d
in
se
rt
io
n
s

0 10 20 30 40 50
0

2

4

6

8

Rows inserted (in millions)

S
ec
on

d
s
p
er

th
ou

sa
n
d
in
se
rt
io
n
s

Figure 5.1: The cost of inserting batches of rows into an empty table in InnoDB with
and without the insertion buffer. The rows are inserted in batches of 10,000 to avoid
slowdown in parsing, and the keys are distributed uniformly. After 1M insertions, the
buffered version takes 12.3% as long as the unbuffered version (measured over 50,000
insertions); after 50M insertions, the advantage is reduced so that the buffered version
takes 68.3% of the time of the unbuffered. (Lower is better)

it is no wonder that reported speedups from insertion buffers vary wildly from as little

as 2× to as high as 80× [31]. Some have even suggested that insertion buffers may

provide many of the benefits of write-optimization [30], i.e., that insertion buffers can

bring the performance of B-trees up to that of LSM-trees [82], COLAs [15], Fractal

Trees [101], xDicts [28], or Bε-trees [29].

5.6.2 Experimental Validation

Here we validate our theoretical study of insertion buffers by showing that our analy-

sis above can have a material impact on the performance of databases with insertions

buffers. We simulated workloads of random insertions to a B-tree, with varying dis-

tributions on the inserted keys. We found that, as predicted, the performance was

independent of the input distribution and closely matched the performance predicted

by our theorems.

We then ran workloads of random insertions into InnoDB and measured the aver-

age batch size of flushes from its insertion buffer. InnoDB implements a variant of the

random-item flushing strategy. We modified it to implement the golden-gate flushing

117

strategy. Despite the additional complexities of InnoDB’s insertion buffer implemen-

tation, we found that performance closely tracked our theoretical predictions and was

independent of the distribution of inserted keys. We also found that the golden-gate

flushing strategy improved InnoDB’s flushing rate by about 30% over the course of our

benchmark.

Our analysis explains why insertion buffers can provide dramatic speedups for small

databases, but only small gains are available as the database grows. Our results also

provide useful guidance to implementers about which flushing strategy will provide the

most performance improvement.

Our results also show that insertion buffers cannot deliver the same asymptotic

performance improvements that are possible with write-optimized data structures, such

as LSM-trees and Bε-trees.

5.6.3 Insertion-Buffer Background

This section describes insertion buffers that are actually implemented and used in de-

ployed systems and recent research prototypes.

SAP:

The SAP IQ database supports an in-memory row-level versioning (RLV) store, and

insertions are performed to the RLV store and later merged into the main on-disk

store [95].

NuDB:

The NuDB SSD-based key-value store buffers all insertions in memory, and later flushes

it to SSD [81]. Flushes occur at least once per second, or more often if insertion activity

causes the in-memory buffer to fill.

118

Buffered Bloom and quotient filters:

Bloom filters are known to have poor locality for both inserts and lookups. The buffered

Bloom filter [32] improves the performance of insertions to a Bloom filter on SSD by

buffering the updates in RAM. The on-disk Bloom filter is divided into pages, and each

page has a buffer of updates in RAM. When a page’s buffer fills, the buffered changes

are written to the page.

The buffered quotient filter stores newly inserted items in an in-memory quotient

filter [18, 16]. When the in-memory quotient filter fills, its entire contents are flushed

to the on-disk quotient filter.

InnoDB:

The InnoDB [84] B-tree implementation used in the MySQL [85] and MariaDB [51]

relational database systems includes an insertion buffer.

Our experiments in this paper focus on InnoDB as an archetypal and open-source

implementation of an insertion buffer, so we describe it in detail.

InnoDB structures its insertion buffer as a B-tree. When the insertion buffer be-

comes full, it selects the items to be flushed by performing a random walk from the root

to a leaf. The random walk is performed by selecting, at each step, uniformly randomly

from among the children of the current node. Once it gets to a leaf, it picks a single

item to insert into the on-disk B-tree. This item, along with any other items in the

insertion buffer that belong in that leaf, are inserted into the leaf and removed from

the insertion buffer.

InnoDB’s insertion buffer is complicated in several ways. First, the size of the

insertion buffer changes over time, as InnoDB allocates more or less space to other

buffers and caches.

InnoDB also has a leaf cache. Whenever a leaf is brought into cache for any reason,

all inserts to that leaf that are currently in the insertion buffer are immediately applied

to the leaf, and any future inserts to that leaf also skip the insertion buffer as long as

the leaf remains in cache.

119

Uniform Pareto α = 0.5 Pareto α = 1.0 Pareto α = 2.0 Normal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.2

1.4

1.6

1.8

2

Rows inserted in millions

R
at
io

o
f
m
ax

im
u
m

le
a
f
w
ei
g
h
t
to

1/
n

Figure 5.2: Deviation of the maximum weight leaf from uniform in simulation

Finally, it performs some flushing when the buffer is not full. Roughly every second,

InnoDB performs a small amount of background flushing. Moreover, it prematurely

flushes its buffer to a leaf when it calculates that such a flush will cause the leaf to split.

We hypothesize that this feature exists to simplify the transactional system.

5.6.4 Leaf Probabilities in B-trees

In section 5.5, we established that, on insertion, the leaf probabilities are nearly uni-

form. We empirically verify this uniformity property by simulating insertions into the

leaves of a B-tree. We insert real-valued keys i.i.d. according to uniform, Pareto (real-

valued Zipfian) and normal distributions; the leaves of the B-tree split when they are

full, and we measure the ratio of the maximal weight leaf to 1/n. Lemma 13 tells us

that this ratio should be asymptotically at most constant, but as fig. 5.2 shows, our

experimental analysis shows further that this constant is generally less than 2. Because

leaves generally split in 2, this makes some intuitive sense.

We also verify the these results using the InnoDB storage engine. We insert 5 million

rows into a database using uniform, Pareto and normal distributions on the keys. the

120

Uniform Pareto α = 0.5 Pareto α = 1.0 Pareto α = 2.0 Normal

0 1 2 3 4 5

1
1.
2

1.
4

1.
6

1.
8

Rows inserted in millionsR
at
io

o
f
m
ax

im
u
m

le
a
f
w
ei
g
h
t
to

1/
n

0 1 2 3 4 5

1
1.
2

1.
4

1.
6

Rows inserted in millions

R
at
io

o
f
9
5t
h
p
er
ce
n
ti
le

le
af

w
ei
gh

t
to

1/
n

Figure 5.3: Deviation of the maximum and 95th percentile weight leaves from uniform
as observed in InnoDB.

results are summarized in section 5.6.4. The maximum ratio does not exceed 2.3, and

the 95th percentile ratio does not exceed 1.6. Thus the distribution of the keys to the

leaves is in fact almost uniform.

5.6.5 Simulating Insertion Buffers

The ball-and-bins models described above are based on a static leaf structure. How-

ever, in practice inserting into a database causes the leaf structure (the number and

probability distribution of bins in the model) to change. However, we can still perform

the same strategies, and by simulating an insertion buffer in front of a database, we can

compare their efficiency as well as verify that much of the static analysis empirically

applies to the dynamic system.

We insert real-valued keys into the simulation according to one of several dis-

tributions of varying skewness: uniform on [0, 1000], Pareto with parameter α =

{0.5, 1.0, 2.0}, and uniform centered at 0, with standard deviation 1000. We have a

buffer which stores 2,500 keys; when it fills we choose a leaf according to the chosen

strategy and flush all the buffered keys destined to it. Initially we have one leaf, and

the leaves split when they exceed 160 keys, as uniformly as possible.

121

As shown in fig. 5.4, the key distribution doesn’t affect the recycle rate of the

insertion buffer, and as the number of leaves gets larger, the recycle rate decreases.

Generally fullest bin does better than golden gate, and golden gate does better than

random ball. Demonstrated with the normal distribution (all distributions perform

very similarly), fig. 5.4f shows that golden gate initially outperforms random ball by

about 30%, which then decreases as the number of bins grows.

5.6.6 Real-World Performance (InnoDB)

In this section, we empirically evaluate the performance of insertion buffers in InnoDB,

the default storage engine in MySQL.

Analogously to the experiments in section 5.6.5, we insert rows into the MySQL

database, and after every 10000 insertions, we check the “merge ratio” reported by

InnoDB. This is the number of rows merged into the database from the buffer during

each buffer flush, and corresponds to the recycling rate in the balls and bins model. We

also check the reported memory allocated to the buffer, which allows us to control for

memory usage.

The keys of the rows are i.i.d. according to the same real-valued probability distribu-

tions as in section 5.6.5: uniform on [0, 1000000], Pareto with parameter α = {0.5, 1, 2},

and normal centered at 0 with standard deviation 1000. The results for the different

distributions are shown in figs. 5.5a to 5.5e. The structure of the plot generally does

not depend on the key distribution, and while there is more noise, the overall picture

is similar to the plots in fig. 5.4.

If we were to hold the number of leaves roughly constant and change the buffer size,

lemma 31 suggests that the relationship with recycle rate would be roughly linear. To

test this, we ran the above experiment with buffer sizes from 8mb to 128mb in 2mb

increments. We performed 11 million insertions with uniformly distributed keys each

time, and then took the average recycle rate for the last million rows. As demonstrated

in fig. 5.5f, the resulting plot is approximately linear.

122

Golden Gate Random Ball Fullest Bin

1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(a) Uniform key distribution

1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(b) Pareto-0.5 key distribution

1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(c) Pareto-1 key distribution

1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(d) Pareto-2 key distribution

1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(e) Normal key distribution

1 2 3 4 5

1

1.5

2

Rows inserted in millions

R
ec
y
cl
e
ra
te

ra
ti
o

(f) Ratio of golden gate to random ball (nor-
mally distributed keys)

Figure 5.4: Simulated results with various key distributions and recycling strategies.
Recycle rates are taken over the latest 50,000 insertions. (Higher is better)

123

Golden Gate Random Ball (default)

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(a) Uniform key distribution

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(b) Pareto α = 0.5 key distribution

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(c) Pareto α = 1 key distribution

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(d) Pareto α = 2 key distribution

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

(e) Normal key distribution

0 20 40 60 80 100 120
0

10

20

30

Buffer size in MiB

R
ec

y
cl

e
ra

te

(f) Buffer size and recycle rate

Figure 5.5: InnoDB Insertion buffer recycle rates for various key distributions and
memory sizes. Recycling rate taken over last 10,000 insertions, except for fig. 5.5f,
where it is taken over last 1 million insertions. (Higher is better)

124

References

[1] Fragging wonderful: The truth about defragging your ssd. Accessed
25 September 2016. URL: http://www.pcworld.com/article/2047513/

fragging-wonderful-the-truth-about-defragging-your-ssd.html.

[2] Micah Adler, Petra Berenbrink, and Klaus Schröder. Analyzing an infinite par-
allel job allocation process. In Gianfranco Bilardi, Giuseppe F. Italiano, An-
drea Pietracaprina, and Geppino Pucci, editors, Algorithms - ESA ’98, 6th An-
nual European Symposium, Venice, Italy, August 24-26, 1998, Proceedings, vol-
ume 1461 of Lecture Notes in Computer Science, pages 417–428. Springer, 1998.
doi:10.1007/3-540-68530-8_35.

[3] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Eilstrup
Rasmussen. Parallel randomized load balancing (preliminary version). In
Frank Thomson Leighton and Allan Borodin, editors, Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995,
Las Vegas, Nevada, USA, pages 238–247. ACM, 1995. doi:10.1145/225058.

225131.

[4] Peyman Afshani, Michael A. Bender, Martin Farach-Colton, Jeremy T. Fine-
man, Mayank Goswami, and Meng-Tsung Tsai. Cross-referenced dictionaries
and the limits of write optimization. In Philip N. Klein, editor, Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1523–
1532. SIAM, 2017. doi:10.1137/1.9781611974782.99.

[5] Alok Aggarwal and Jeffrey Scott Vitter. The I/O complexity of sorting and re-
lated problems (extended abstract). In Thomas Ottmann, editor, Automata, Lan-
guages and Programming, 14th International Colloquium, ICALP87, Karlsruhe,
Germany, July 13-17, 1987, Proceedings, volume 267 of Lecture Notes in Com-
puter Science, pages 467–478. Springer, 1987. doi:10.1007/3-540-18088-5\

_40.

[6] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Gen-
erating realistic impressions for file-system benchmarking. TOS, 5(4):16:1–16:30,
2009. doi:10.1145/1629080.1629086.

[7] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A
five-year study of file-system metadata. TOS, 3(3):9:1–9:32, 2007. doi:10.1145/
1288783.1288788.

[8] Woo Hyun Ahn, Kyungbaek Kim, Yongjin Choi, and Daeyeon Park. DFS: A de-
fragmented file system. In 10th International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS 2002),

http://www.pcworld.com/article/2047513/fragging-wonderful-the-truth-about-defragging-your-ssd.html
http://www.pcworld.com/article/2047513/fragging-wonderful-the-truth-about-defragging-your-ssd.html
https://doi.org/10.1007/3-540-68530-8_35
https://doi.org/10.1145/225058.225131
https://doi.org/10.1145/225058.225131
https://doi.org/10.1137/1.9781611974782.99
https://doi.org/10.1007/3-540-18088-5_40
https://doi.org/10.1007/3-540-18088-5_40
https://doi.org/10.1145/1629080.1629086
https://doi.org/10.1145/1288783.1288788
https://doi.org/10.1145/1288783.1288788

125

11-16 October 2002, Fort Worth, Texas, USA, pages 71–80. IEEE Computer
Society, 2002. doi:10.1109/MASCOT.2002.1167062.

[9] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Bal-
anced allocations. SIAM J. Comput., 29(1):180–200, 1999. doi:10.1137/

S0097539795288490.

[10] Microsoft Azure. How to use batching to improve SQL database application
performance. https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-use-batching-to-improve-performance, 2016.

[11] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. TRIAD: creating syn-
ergies between memory, disk and log in log structured key-value stores. In
Dilma Da Silva and Bryan Ford, editors, 2017 USENIX Annual Technical Confer-
ence, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017, pages 363–
375. USENIX Association, 2017. URL: https://www.usenix.org/conference/
atc17/technical-sessions/presentation/balmau.

[12] Michael A. Bender, Jonathan W. Berry, Rob Johnson, Thomas M. Kroeger,
Samuel McCauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh, and David
Zage. Anti-persistence on persistent storage: History-independent sparse tables
and dictionaries. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
289–302. ACM, 2016. doi:10.1145/2902251.2902276.

[13] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton.
Scanning and traversing: Maintaining data for traversals in a memory hierarchy.
In Rolf H. Möhring and Rajeev Raman, editors, Algorithms - ESA 2002, 10th
Annual European Symposium, Rome, Italy, September 17-21, 2002, Proceedings,
volume 2461 of Lecture Notes in Computer Science, pages 139–151. Springer,
2002. doi:10.1007/3-540-45749-6_16.

[14] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious b-trees. SIAM J. Comput., 35(2):341–358, 2005. doi:10.1137/

S0097539701389956.

[15] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fo-
gel, Bradley C. Kuszmaul, and Jelani Nelson. Cache-oblivious streaming b-
trees. In Phillip B. Gibbons and Christian Scheideler, editors, SPAA 2007:
Proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, San Diego, California, USA, June 9-11, 2007, pages 81–
92. ACM, 2007. URL: http://doi.acm.org/10.1145/1248377.1248393, doi:
10.1145/1248377.1248393.

[16] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,
Samuel McCauley, and Shikha Singh. Bloom filters, adaptivity, and the dic-
tionary problem. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 182–193. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00026.

https://doi.org/10.1109/MASCOT.2002.1167062
https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1137/S0097539795288490
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://doi.org/10.1145/2902251.2902276
https://doi.org/10.1007/3-540-45749-6_16
https://doi.org/10.1137/S0097539701389956
https://doi.org/10.1137/S0097539701389956
http://doi.acm.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1109/FOCS.2018.00026

126

[17] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Dzejla Medjedovic,
Pablo Montes, and Meng-Tsung Tsai. The batched predecessor problem in ex-
ternal memory. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms
- ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-
10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages
112–124. Springer, 2014. doi:10.1007/978-3-662-44777-2_10.

[18] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner,
Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty,
Richard P. Spillane, and Erez Zadok. Don’t thrash: How to cache your hash on
flash. PVLDB, 5(11):1627–1637, 2012. URL: http://vldb.org/pvldb/vol5/

p1627_michaelabender_vldb2012.pdf.

[19] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,
and Erez Zadok. Don’t thrash: How to cache your hash on flash. In Ir-
fan Ahmad, editor, 3rd USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage’11, Portland, OR, USA, June 14, 2011. USENIX As-
sociation, 2011. URL: https://www.usenix.org/conference/hotstorage11/

dont-thrash-how-cache-your-hash-flash.

[20] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler
Mayer, Cynthia A. Phillips, and Helen Xu. Write-optimized skip lists. In
Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceed-
ings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages
69–78. ACM, 2017. URL: http://doi.acm.org/10.1145/3034786.3056117,
doi:10.1145/3034786.3056117.

[21] Itai Benjamini and Yury Makarychev. Balanced allocation: Memory performance
tradeoffs. CoRR, abs/0901.1155, 2009. URL: http://arxiv.org/abs/0901.

1155, arXiv:0901.1155.

[22] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn, Lars
Nagel, and Christopher Wastell. Self-stabilizing balls & bins in batches: The
power of leaky bins [extended abstract]. In George Giakkoupis, editor, Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016, pages 83–92. ACM, 2016. doi:10.

1145/2933057.2933092.

[23] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian
Shun. Sorting with asymmetric read and write costs. In Guy E. Blelloch and Ku-
nal Agrawal, editors, Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15,
2015, pages 1–12. ACM, 2015. doi:10.1145/2755573.2755604.

[24] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970. URL: http://doi.acm.org/10.1145/

362686.362692, doi:10.1145/362686.362692.

https://doi.org/10.1007/978-3-662-44777-2_10
http://vldb.org/pvldb/vol5/p1627_michaelabender_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1627_michaelabender_vldb2012.pdf
https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash
https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash
http://doi.acm.org/10.1145/3034786.3056117
https://doi.org/10.1145/3034786.3056117
http://arxiv.org/abs/0901.1155
http://arxiv.org/abs/0901.1155
http://arxiv.org/abs/0901.1155
https://doi.org/10.1145/2933057.2933092
https://doi.org/10.1145/2933057.2933092
https://doi.org/10.1145/2755573.2755604
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692

127

[25] Jeff Bonwick. ZFS. In Paul Anderson, editor, Proceedings of the 21th Large
Installation System Administration Conference, LISA 2007, Dallas, Texas, USA,
November 11-16, 2007. USENIX, 2007. URL: http://www.usenix.org/events/
lisa07/tech/bonwick_guru.pdf.

[26] Dhruba Borthakur. Rocksdb github wiki – performance benchmarks, 2013. URL:
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks.

[27] Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun. Balls into
bins via local search: Cover time and maximum load. Random Struct. Algorithms,
48(4):681–702, 2016. doi:10.1002/rsa.20602.

[28] Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono,
Stefan Langerman, and J. Ian Munro. Cache-oblivious dynamic dictionaries
with update/query tradeoffs. In Moses Charikar, editor, Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 1448–1456. SIAM, 2010.
doi:10.1137/1.9781611973075.117.

[29] Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external mem-
ory dictionaries. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA.,
pages 546–554. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?
id=644108.644201.

[30] Mark Callaghan. An obscure performance problem with the in-
sert buffer. https://www.facebook.com/notes/mysql-at-facebook/

an-obscure-performance-problem-with-the-insert-buffer/

479735920932/, 2010.

[31] Mark Callaghan. Something awesome in InnoDB – the insert
buffer. https://www.facebook.com/notes/mysql-at-facebook/

something-awesome-in-innodb-the-insert-buffer/492969385932/, 2011.

[32] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Christian A.
Lang, and Kenneth A. Ross. Buffered bloom filters on solid state storage.
In Rajesh Bordawekar and Christian A. Lang, editors, International Workshop
on Accelerating Data Management Systems Using Modern Processor and Stor-
age Architectures - ADMS 2010, Singapore, September 13, 2010, pages 1–8,
2010. URL: http://www.vldb.org/archives/workshop/2010/proceedings/

files/vldb_2010_workshop/ADMS_2010/adms10-canim.pdf.

[33] Rémy Card, Theodore Ts’o, and Stephen Tweedie. Design and implementation of
the Second Extended Filesystem. In Proceedings of the First Dutch International
Symposium on Linux, pages 1–6, Amsterdam, NL, December 8–9 1994. URL:
http://e2fsprogs.sourceforge.net/ext2intro.html.

[34] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. Hashkv:
Enabling efficient updates in KV storage via hashing. In Haryadi S. Gu-
nawi and Benjamin Reed, editors, 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 1007–1019.

http://www.usenix.org/events/lisa07/tech/bonwick_guru.pdf
http://www.usenix.org/events/lisa07/tech/bonwick_guru.pdf
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://doi.org/10.1002/rsa.20602
https://doi.org/10.1137/1.9781611973075.117
http://dl.acm.org/citation.cfm?id=644108.644201
http://dl.acm.org/citation.cfm?id=644108.644201
https://www.facebook.com/notes/mysql-at-facebook/an-obscure-performance-problem-with-the-insert-buffer/479735920932/
https://www.facebook.com/notes/mysql-at-facebook/an-obscure-performance-problem-with-the-insert-buffer/479735920932/
https://www.facebook.com/notes/mysql-at-facebook/an-obscure-performance-problem-with-the-insert-buffer/479735920932/
https://www.facebook.com/notes/mysql-at-facebook/something-awesome-in-innodb-the-insert-buffer/492969385932/
https://www.facebook.com/notes/mysql-at-facebook/something-awesome-in-innodb-the-insert-buffer/492969385932/
http://www.vldb.org/archives/workshop/2010/proceedings/files/vldb_2010_workshop/ADMS_2010/adms10-canim.pdf
http://www.vldb.org/archives/workshop/2010/proceedings/files/vldb_2010_workshop/ADMS_2010/adms10-canim.pdf
http://e2fsprogs.sourceforge.net/ext2intro.html

128

USENIX Association, 2018. URL: https://www.usenix.org/conference/

atc18/presentation/chan.

[35] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding intrin-
sic characteristics and system implications of flash memory based solid state
drives. In John R. Douceur, Albert G. Greenberg, Thomas Bonald, and Ja-
son Nieh, editors, Proceedings of the Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS/Performance
2009, Seattle, WA, USA, June 15-19, 2009, pages 181–192. ACM, 2009. doi:

10.1145/1555349.1555371.

[36] Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher,
Andréa W. Richa, Ramesh K. Sitaraman, and Eli Upfal. On balls and bins
with deletions. In Michael Luby, José D. P. Rolim, and Maria J. Serna, edi-
tors, Randomization and Approximation Techniques in Computer Science, Second
International Workshop, RANDOM’98, Barcelona, Spain, October 8-10, 1998,
Proceedings, volume 1518 of Lecture Notes in Computer Science, pages 145–158.
Springer, 1998. doi:10.1007/3-540-49543-6_12.

[37] Richard Cole, Bruce M. Maggs, Friedhelm Meyer auf der Heide, Michael Mitzen-
macher, Andréa W. Richa, Klaus Schröder, Ramesh K. Sitaraman, and Berthold
Vöcking. Randomized protocols for low congestion circuit routing in multistage
interconnection networks. In Jeffrey Scott Vitter, editor, Proceedings of the Thir-
tieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, pages 378–388. ACM, 1998. doi:10.1145/276698.276790.

[38] Alexander Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang Zhan,
Jun Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul, Don-
ald E. Porter, and Martin Farach-Colton. File systems fated for senes-
cence? nonsense, says science! In Geoff Kuenning and Carl A. Wald-
spurger, editors, 15th USENIX Conference on File and Storage Technologies,
FAST 2017, Santa Clara, CA, USA, February 27 - March 2, 2017, pages 45–
58. USENIX Association, 2017. URL: https://www.usenix.org/conference/
fast17/technical-sessions/presentation/conway.

[39] Alexander Conway, Martin Farach-Colton, and Philip Shilane. Optimal hashing
in external memory. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 39:1–39:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.39.

[40] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. Benchmarking cloud serving systems with YCSB. In Joseph M. Heller-
stein, Surajit Chaudhuri, and Mendel Rosenblum, editors, Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA,
June 10-11, 2010, pages 143–154. ACM, 2010. doi:10.1145/1807128.1807152.

[41] Artur Czumaj and Volker Stemann. Randomized allocation processes. Random
Struct. Algorithms, 18(4):297–331, 2001. doi:10.1002/rsa.1011.

https://www.usenix.org/conference/atc18/presentation/chan
https://www.usenix.org/conference/atc18/presentation/chan
https://doi.org/10.1145/1555349.1555371
https://doi.org/10.1145/1555349.1555371
https://doi.org/10.1007/3-540-49543-6_12
https://doi.org/10.1145/276698.276790
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1002/rsa.1011

129

[42] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navi-
gable key-value store. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pages 79–94. ACM, 2017. doi:10.1145/3035918.3064054.

[43] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for lsm-
tree based key-value stores via adaptive removal of superfluous merging. In Gau-
tam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Con-
ference 2018, Houston, TX, USA, June 10-15, 2018, pages 505–520. ACM, 2018.
doi:10.1145/3183713.3196927.

[44] Niv Dayan and Stratos Idreos. The log-structured merge-bush & the wacky
continuum. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol
Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019, pages 449–466. ACM, 2019. doi:

10.1145/3299869.3319903.

[45] Paul Deheuvels and Luc Devroye. Strong laws for the maximal k-spacing when
k ≤ c log n. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
66(3):315–334, 1984.

[46] Allen B. Downey. The structural cause of file size distributions. In 9th In-
ternational Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2001), 15-18 August 2001, Cincinnati,
OH, USA, pages 361–370. IEEE Computer Society, 2001. doi:10.1109/MASCOT.
2001.948888.

[47] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing
DRAM footprint with NVM in facebook. In Rui Oliveira, Pascal Felber, and
Y. Charlie Hu, editors, Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys 2018, Porto, Portugal, April 23-26, 2018, pages 42:1–42:13. ACM, 2018.
doi:10.1145/3190508.3190524.

[48] John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C.
Kuszmaul. The tokufs streaming file system. In Raju Rangaswami,
editor, 4th USENIX Workshop on Hot Topics in Storage and File Sys-
tems, HotStorage’12, Boston, MA, USA, June 13-14, 2012. USENIX Asso-
ciation, 2012. URL: https://www.usenix.org/conference/hotstorage12/

workshop-program/presentation/esmet.

[49] Martin Farach-Colton, Rohan J. Fernandes, and Miguel A. Mosteiro. Bootstrap-
ping a hop-optimal network in the weak sensor model. ACM Trans. Algorithms,
5(4):37:1–37:30, 2009. doi:10.1145/1597036.1597040.

[50] Apache Software Foundation. Apache Cassandra, 2019. URL: http://

cassandra.apache.org.

https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3299869.3319903
https://doi.org/10.1145/3299869.3319903
https://doi.org/10.1109/MASCOT.2001.948888
https://doi.org/10.1109/MASCOT.2001.948888
https://doi.org/10.1145/3190508.3190524
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/esmet
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/esmet
https://doi.org/10.1145/1597036.1597040
http://cassandra.apache.org
http://cassandra.apache.org

130

[51] MariaDB Foundation. MariaDB Foundation, 2017. https://mariadb.org.
URL: https://mariadb.org.

[52] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium on Foundations of Com-
puter Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 285–
298. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814600.

[53] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. Scaling con-
current log-structured data stores. In Laurent Réveillère, Tim Harris, and Mau-
rice Herlihy, editors, Proceedings of the Tenth European Conference on Computer
Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015, pages 32:1–32:14.
ACM, 2015. doi:10.1145/2741948.2741973.

[54] Inc. Google. Leveldb, 2019. URL: https://github.com/google/leveldb.

[55] Wilson C. Hsieh and William E. Weihl. Scalable reader-writer locks for parallel
systems. In Viktor K. Prasanna and Larry H. Canter, editors, Proceedings of the
6th International Parallel Processing Symposium, Beverly Hills, CA, USA, March
1992, pages 656–659. IEEE Computer Society, 1992. doi:10.1109/IPPS.1992.

222989.

[56] Yihe Huang, Matej Pavlovic, Virendra J. Marathe, Margo Seltzer, Tim Harris,
and Steve Byan. Closing the performance gap between volatile and persistent
key-value stores using cross-referencing logs. In Haryadi S. Gunawi and Benjamin
Reed, editors, 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13, 2018, pages 967–979. USENIX Association, 2018.
URL: https://www.usenix.org/conference/atc18/presentation/huang.

[57] John Iacono and Mihai Patrascu. Using hashing to solve the dictionary prob-
lem. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, Jan-
uary 17-19, 2012, pages 570–582. SIAM, 2012. URL: http://portal.acm.org/
citation.cfm?id=2095164&CFID=63838676&CFTOKEN=79617016, doi:
10.1137/1.9781611973099.

[58] IBM. Buffered inserts in partitioned database environments. https:

//www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.

luw.apdv.embed.doc/doc/c0061906.html, 2017.

[59] IBM Informix. Understanding SQL insert cursors. URL: https:

//www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.

gen_busug.doc/c_fgl_InsertCursors_002.htm.

[60] William Jannen, Michael A. Bender, Martin Farach-Colton, Rob Johnson,
Bradley C. Kuszmaul, and Donald E. Porter. Lazy analytics: Let other
queries do the work for you. In Nitin Agrawal and Sam H. Noh, edi-
tors, 8th USENIX Workshop on Hot Topics in Storage and File Systems,
HotStorage 2016, Denver, CO, USA, June 20-21, 2016. USENIX Asso-
ciation, 2016. URL: https://www.usenix.org/conference/hotstorage16/

workshop-program/presentation/jannen.

https://mariadb.org
https://mariadb.org
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2741948.2741973
https://github.com/google/leveldb
https://doi.org/10.1109/IPPS.1992.222989
https://doi.org/10.1109/IPPS.1992.222989
https://www.usenix.org/conference/atc18/presentation/huang
http://portal.acm.org/citation.cfm?id=2095164&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095164&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1137/1.9781611973099
https://doi.org/10.1137/1.9781611973099
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/jannen
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/jannen

131

[61] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, and Donald E. Porter. Betrfs: A right-optimized write-optimized
file system. In Jiri Schindler and Erez Zadok, editors, Proceedings of the
13th USENIX Conference on File and Storage Technologies, FAST 2015,
Santa Clara, CA, USA, February 16-19, 2015, pages 301–315. USENIX
Association, 2015. URL: https://www.usenix.org/conference/fast15/

technical-sessions/presentation/jannen.

[62] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael A.
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Don-
ald E. Porter. Betrfs: Write-optimization in a kernel file system. TOS, 11(4):18:1–
18:29, 2015. doi:10.1145/2798729.

[63] Cheng Ji, Li-Pin Chang, Liang Shi, Chao Wu, Qiao Li, and Chun Jason Xue.
An empirical study of file-system fragmentation in mobile storage systems. In
Nitin Agrawal and Sam H. Noh, editors, 8th USENIX Workshop on Hot Top-
ics in Storage and File Systems, HotStorage 2016, Denver, CO, USA, June
20-21, 2016. USENIX Association, 2016. URL: https://www.usenix.org/

conference/hotstorage16/workshop-program/presentation/ji.

[64] Myoungsoo Jung and Mahmut T. Kandemir. Revisiting widely held SSD ex-
pectations and rethinking system-level implications. In Mor Harchol-Balter,
John R. Douceur, and Jun Xu, editors, ACM SIGMETRICS / International
Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS ’13, Pittsburgh, PA, USA, June 17-21, 2013, pages 203–216. ACM, 2013.
doi:10.1145/2465529.2465548.

[65] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young-ri
Choi. SLM-DB: single-level key-value store with persistent memory. In Arif Mer-
chant and Hakim Weatherspoon, editors, 17th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25-28, 2019, pages 191–
205. USENIX Association, 2019. URL: https://www.usenix.org/conference/
fast19/presentation/kaiyrakhmet.

[66] Lodewijk Kallenberg. Markov Decision Processes - version 2016. 10 2016.

[67] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping the perfor-
mance of fast NVM storage with udepot. In Arif Merchant and Hakim Weather-
spoon, editors, 17th USENIX Conference on File and Storage Technologies, FAST
2019, Boston, MA, February 25-28, 2019, pages 1–15. USENIX Association, 2019.
URL: https://www.usenix.org/conference/fast19/presentation/kourtis.

[68] Bredley Kuszmaul. Tokutek White Paper: A Compari-
son Of Log-Structured Merge (LSM) And Fractal Tree Index-
ing, 2014. URL: http://highscalability.com/blog/2014/8/6/

tokutek-white-paper-a-comparison-of-log-structured-merge-lsm.html.

https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://doi.org/10.1145/2798729
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://doi.org/10.1145/2465529.2465548
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kourtis
http://highscalability.com/blog/2014/8/6/tokutek-white-paper-a-comparison-of-log-structured-merge-lsm.html
http://highscalability.com/blog/2014/8/6/tokutek-white-paper-a-comparison-of-log-structured-merge-lsm.html

132

[69] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. F2FS:
A new file system for flash storage. In Jiri Schindler and Erez Zadok, edi-
tors, Proceedings of the 13th USENIX Conference on File and Storage Technolo-
gies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, pages 273–
286. USENIX Association, 2015. URL: https://www.usenix.org/conference/
fast15/technical-sessions/presentation/lee.

[70] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. Kvell: the
design and implementation of a fast persistent key-value store. In Tim Brecht and
Carey Williamson, editors, Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019,
pages 447–461. ACM, 2019. doi:10.1145/3341301.3359628.

[71] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. Elas-
ticbf: Elastic bloom filter with hotness awareness for boosting read perfor-
mance in large key-value stores. In Dahlia Malkhi and Dan Tsafrir, editors,
2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, pages 739–752. USENIX Association, 2019. URL:
https://www.usenix.org/conference/atc19/presentation/li-yongkun.

[72] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Wisckey: Separating
keys from values in ssd-conscious storage. TOS, 13(1):5:1–5:28, 2017. doi:10.

1145/3033273.

[73] Dongzhe Ma, Jianhua Feng, and Guoliang Li. A survey of address translation
technologies for flash memories. ACM Comput. Surv., 46(3):36:1–36:39, 2014.
doi:10.1145/2512961.

[74] Leonardo Mármol, Swaminathan Sundararaman, Nisha Talagala, and Raju
Rangaswami. NVMKV: A scalable, lightweight, ftl-aware key-value store.
In Shan Lu and Erik Riedel, editors, 2015 USENIX Annual Technical Con-
ference, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA, pages 207–
219. USENIX Association, 2015. URL: https://www.usenix.org/conference/
atc15/technical-session/presentation/marmol.

[75] Avantika Mathur, Mingming Cao, and Andreas Dilger. Ext4: The next gen-
eration of the ext3 file system. login Usenix Mag., 32(3), 2007. URL: https:
//www.usenix.org/publications/login/june-2007-volume-32-number-3/

ext4-next-generation-ext3-file-system.

[76] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry.
A fast file system for UNIX. ACM Trans. Comput. Syst., 2(3):181–197, 1984.
doi:10.1145/989.990.

[77] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and
Young Ik Eom. SFS: random write considered harmful in solid state
drives. In William J. Bolosky and Jason Flinn, editors, Proceedings
of the 10th USENIX conference on File and Storage Technologies, FAST
2012, San Jose, CA, USA, February 14-17, 2012, page 12. USENIX

https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/3341301.3359628
https://www.usenix.org/conference/atc19/presentation/li-yongkun
https://doi.org/10.1145/3033273
https://doi.org/10.1145/3033273
https://doi.org/10.1145/2512961
https://www.usenix.org/conference/atc15/technical-session/presentation/marmol
https://www.usenix.org/conference/atc15/technical-session/presentation/marmol
https://www.usenix.org/publications/login/june-2007-volume-32-number-3/ext4-next-generation-ext3-file-system
https://www.usenix.org/publications/login/june-2007-volume-32-number-3/ext4-next-generation-ext3-file-system
https://www.usenix.org/publications/login/june-2007-volume-32-number-3/ext4-next-generation-ext3-file-system
https://doi.org/10.1145/989.990

133

Association, 2012. URL: https://www.usenix.org/conference/fast12/

sfs-random-write-considered-harmful-solid-state-drives.

[78] Michael Mitzenmacher. Load balancing and density dependent jump markov
processes (extended abstract). In 37th Annual Symposium on Foundations of
Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996,
pages 213–222. IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.548480.

[79] Michael Mitzenmacher. On the analysis of randomized load balancing schemes.
Theory Comput. Syst., 32(3):361–386, 1999. doi:10.1007/s002240000122.

[80] Michael Mitzenmacher. The power of two choices in randomized load balancing.
IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001. doi:10.1109/71.

963420.

[81] NuDB. Nudb: A fast key/value insert-only database for ssd drives in c++11.
https://github.com/vinniefalco/NuDB, 2016.

[82] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, 1996. doi:10.

1007/s002360050048.

[83] Oracle. Tuning the database buffer cache. https://docs.oracle.com/

database/121/TGDBA/tune_buffer_cache.htm#TGDBA294, 2017.

[84] Oracle, Inc. Introduction to innodb, 2017. https://dev.mysql.com/doc/

refman/5.6/en/innodb-introduction.html. URL: https://dev.mysql.com/
doc/refman/5.6/en/innodb-introduction.html.

[85] Oracle, Inc. MySQL, 2017. https://www.mysql.com. URL: https://www.

mysql.com.

[86] Prashant Pandey, Michael A. Bender, Rob Johnson, and Robert Patro. A general-
purpose counting filter: Making every bit count. In Semih Salihoglu, Wenchao
Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 775–787. ACM, 2017. doi:

10.1145/3035918.3035963.

[87] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. Tucana: Design and implementation of a fast and efficient scale-up key-
value store. In Ajay Gulati and Hakim Weatherspoon, editors, 2016 USENIX An-
nual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24,
2016, pages 537–550. USENIX Association, 2016. URL: https://www.usenix.
org/conference/atc16/technical-sessions/presentation/papagiannis.

[88] Gahyun Park. A generalization of multiple choice balls-into-bins: Tight bounds.
Algorithmica, 77(4):1159–1193, 2017. doi:10.1007/s00453-016-0141-z.

[89] Marina Petrova, Natalia Olano, and Petri Mähönen. Balls and bins distributed
load balancing algorithm for channel allocation. In WONS ’10.

https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://doi.org/10.1109/SFCS.1996.548480
https://doi.org/10.1007/s002240000122
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://github.com/vinniefalco/NuDB
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm#TGDBA294
https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm#TGDBA294
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://www.mysql.com
https://www.mysql.com
https://www.mysql.com
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1145/3035918.3035963
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://doi.org/10.1007/s00453-016-0141-z

134

[90] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-, and space-
efficient bloom filters. ACM Journal of Experimental Algorithmics, 14, 2009.
doi:10.1145/1498698.1594230.

[91] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Peb-
blesdb: Building key-value stores using fragmented log-structured merge trees. In
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, pages 497–514. ACM, 2017. doi:10.1145/3132747.
3132765.

[92] Ohad Rodeh. B-trees, shadowing, and clones. TOS, 3(4):2:1–2:27, 2008. doi:

10.1145/1326542.1326544.

[93] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: the linux b-tree filesystem.
TOS, 9(3):9:1–9:32, 2013. doi:10.1145/2501620.2501623.

[94] Drew S. Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison of
file system workloads. In Proceedings of the General Track: 2000 USENIX An-
nual Technical Conference, June 18-23, 2000, San Diego, CA, USA, pages 41–
54. USENIX, 2000. URL: http://www.usenix.org/publications/library/

proceedings/usenix2000/general/roselli.html.

[95] SAP. Rlv data store for write-optimized storage. http:

//help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/

13783784f21015bf03c9b06ad16fc0/content.htm, 2017.

[96] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding
bounds for applications with limited independence. SIAM J. Discrete Math.,
8(2):223–250, 1995. doi:10.1137/S089548019223872X.

[97] Inc. Scylla. ScyllaDB: The real-time big data database, 2019. URL: https:

//www.scylladb.com.

[98] Pradeep Shetty, Richard P. Spillane, Ravikant Malpani, Binesh Andrews, Justin
Seyster, and Erez Zadok. Building workload-independent storage with vt-trees.
In Keith A. Smith and Yuanyuan Zhou, editors, Proceedings of the 11th USENIX
conference on File and Storage Technologies, FAST 2013, San Jose, CA, USA,
February 12-15, 2013, pages 17–30. USENIX, 2013. URL: https://www.usenix.
org/conference/fast13/technical-sessions/presentation/shetty.

[99] Keith A. Smith and Margo I. Seltzer. File system aging - increasing the rel-
evance of file system benchmarks. In John Zahorjan, Albert G. Greenberg,
and Scott T. Leutenegger, editors, Proceedings of the 1997 ACM SIGMET-
RICS international conference on Measurement and modeling of computer sys-
tems, Seattle, Washington, USA, June 15-18, 1997, pages 203–213. ACM, 1997.
doi:10.1145/258612.258689.

[100] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,
and Geoff Peck. Scalability in the XFS file system. In Proceedings of the
USENIX Annual Technical Conference, San Diego, California, USA, January 22-
26, 1996, pages 1–14. USENIX Association, 1996. URL: http://www.usenix.
org/publications/library/proceedings/sd96/sweeney.html.

https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/1326542.1326544
https://doi.org/10.1145/1326542.1326544
https://doi.org/10.1145/2501620.2501623
http://www.usenix.org/publications/library/proceedings/usenix2000/general/roselli.html
http://www.usenix.org/publications/library/proceedings/usenix2000/general/roselli.html
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
https://doi.org/10.1137/S089548019223872X
https://www.scylladb.com
https://www.scylladb.com
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty
https://doi.org/10.1145/258612.258689
http://www.usenix.org/publications/library/proceedings/sd96/sweeney.html
http://www.usenix.org/publications/library/proceedings/sd96/sweeney.html

135

[101] Tokutek, Inc. TokuDB and TokuMX, 2014. http://www.tokutek.com. URL:
http://www.tokutek.com.

[102] Stephen Tweedie. EXT3, journaling filesystem. In Ottowa Linux Symposium,
Ottowa, ON, Canada, July 20 2000.

[103] Vijay Vasudevan, Michael Kaminsky, and David G. Andersen. Using vector in-
terfaces to deliver millions of IOPS from a networked key-value storage server. In
Michael J. Carey and Steven Hand, editors, ACM Symposium on Cloud Comput-
ing, SOCC ’12, San Jose, CA, USA, October 14-17, 2012, page 8. ACM, 2012.
doi:10.1145/2391229.2391237.

[104] Vertica. Wos (write optimized store). https://my.vertica.com/docs/7.1.x/

HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm, 2017.

[105] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589,
2003. doi:10.1145/792538.792546.

[106] R. West, P. Zaroo, C.A. Waldspurger, X. Zhang, and H. Zheng. Online compu-
tation of cache occupancy and performance, July 19 2016. US Patent 9,396,024.

[107] Wikipedia. Thomae’s function — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Thomae’s%20function&

oldid=837510765, 2018. [Online; accessed 28-April-2018].

[108] Lars Wirzenius, Joanna Oja, Stephen Stafford, and Alex Weeks. Linux System
Administrator’s Guide. The Linux Documentation Project, 2004. Version 0.9.
URL: http://www.tldp.org/LDP/sag/sag.pdf.

[109] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An lsm-tree-based
ultra-large key-value store for small data items. In Shan Lu and Erik Riedel, edi-
tors, 2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10,
Santa Clara, CA, USA, pages 71–82. USENIX Association, 2015. URL: https://
www.usenix.org/conference/atc15/technical-session/presentation/wu.

[110] Jimmy Xiang. Apache hbase write path. http://blog.cloudera.com/blog/

2012/06/hbase-write-path/, 2012.

[111] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhiwen Liu, Changsheng Xie,
and Xubin He. Geardb: A gc-free key-value store on HM-SMR drives with gear
compaction. In Arif Merchant and Hakim Weatherspoon, editors, 17th USENIX
Conference on File and Storage Technologies, FAST 2019, Boston, MA, February
25-28, 2019, pages 159–171. USENIX Association, 2019. URL: https://www.
usenix.org/conference/fast19/presentation/yao.

[112] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. Optimizing every operation in a write-optimized file system. In An-
gela Demke Brown and Florentina I. Popovici, editors, 14th USENIX Conference
on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, Febru-
ary 22-25, 2016, pages 1–14. USENIX Association, 2016. URL: https://www.
usenix.org/conference/fast16/technical-sessions/presentation/yuan.

http://www.tokutek.com
http://www.tokutek.com
https://doi.org/10.1145/2391229.2391237
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm
https://doi.org/10.1145/792538.792546
http://en.wikipedia.org/w/index.php?title=Thomae's%20function&oldid=837510765
http://en.wikipedia.org/w/index.php?title=Thomae's%20function&oldid=837510765
http://www.tldp.org/LDP/sag/sag.pdf
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
http://blog.cloudera.com/blog/2012/06/hbase-write-path/
http://blog.cloudera.com/blog/2012/06/hbase-write-path/
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan

136

[113] Ningning Zhu, Jiawu Chen, and Tzi-cker Chiueh. TBBT: scalable and accurate
trace replay for file server evaluation. In Garth Gibson, editor, Proceedings of the
FAST ’05 Conference on File and Storage Technologies, December 13-16, 2005,
San Francisco, California, USA. USENIX, 2005. URL: http://www.usenix.

org/events/fast05/tech/zhu.html.

[114] Pengfei Zuo, Yu Hua, and Jie Wu. Level hashing: A high-performance and
flexible-resizing persistent hashing index structure. TOS, 15(2):13:1–13:30, 2019.
doi:10.1145/3322096.

http://www.usenix.org/events/fast05/tech/zhu.html
http://www.usenix.org/events/fast05/tech/zhu.html
https://doi.org/10.1145/3322096

	Abstract
	Acknowledgements
	Introduction
	Key Differences between Theory and Practice
	Models
	Hardware
	Filters

	This Work
	Chapter 2: Optimal Hashing in External Memory
	Chapter 3: SplinterDB
	Chapter 4: File System Aging
	Chapter 5: Optimal Ball Recycling

	Optimal Hashing in External Memory
	Introduction
	Preliminaries
	Fingerprints and Hashing
	Delta Encoding
	Log-structured Merge Trees

	Bundle of Arrays Hashing
	Routing Filters

	Refined Bundle of Arrays Hashing
	Refined Routing Filter
	BOA Performance

	Bundle of Trees Hashing
	Queries in a BOT
	Character Queue
	The character queue tradeoff
	The character queue merging schedule

	Performance of the BOT

	Cache-Oblivious BOTs
	Asymmetric BOTs

	SplinterDB
	Introduction
	Background
	The DAM model.
	B-trees.
	Log-structured Merge Trees.
	B^e-Trees.
	Filters.
	Size Tiering.

	High-Level Design of STB^e-trees
	Size-Tiering with Workload-Driven Compaction
	Preemptive Splitting for STB^e-trees
	From STB^e-trees to SplinterDB
	User-level Cache and Distributed Locks
	Branch Trees and Memtables
	Branch trees
	Memtables

	Quotient filters
	Logging and Recovery

	Evaluation
	Setup and Workloads
	YCSB
	KVell
	Sequential Insertion Performance
	Concurrency Scaling
	Read Concurrency
	Insertion Concurrency

	Scan Performance

	Related Work

	File System Aging
	Introduction
	Results.

	Related Work
	Creating Aged File Systems
	Measuring Aged File Systems
	Existing Strategies to Mitigate Aging
	Cylinder or Block Groups.
	Extents.
	Delayed Allocation.
	Packing small files and metadata.

	A Framework for Aging
	Natural Transfer Size
	Allocation Strategies and Aging
	B-trees.
	Write-Once or Update-in-Place Filesystems.
	B^e-trees.

	Measuring File System Fragmentation
	Recursive grep test.
	Dynamic layout score.

	Experimental Setup
	Fragmentation Microbenchmarks
	Intrafile Fragmentation.
	Interfile Fragmentation.

	Application Level Read-Aging: Git
	Git Workload with Warm Cache.
	Git Workload on BTRFS with Different Node Sizes

	Application Level Aging: Mail Server
	Conclusion

	Optimal Ball Recycling
	Introduction
	Ball Recycling and Insertion/Update Buffers
	Ball Recycling and Markov Theory
	Ball-recycling games are Markov decision processes.
	Stationary distributions of recycling strategies

	Random Ball is Optimal
	Outline of Proof
	The Upper Bound
	Random Ball with m >= n
	Aggressive Empty is Optimal
	Random Ball is Optimal

	The Uniform Case
	Random Ball in the Uniform Case

	Database Experiments
	Insertion Buffers in Database Systems
	Experimental Validation
	Insertion-Buffer Background
	SAP:
	NuDB:
	Buffered Bloom and quotient filters:
	InnoDB:

	Leaf Probabilities in B-trees
	Simulating Insertion Buffers
	Real-World Performance (InnoDB)

	References

