Staff View
Design of a high endurance MAV

Descriptive

TitleInfo
Title
Design of a high endurance MAV
Name (type = personal)
NamePart (type = family)
Costeas
NamePart (type = given)
Aristedes
NamePart (type = date)
1991
DisplayForm
Aristedes Costeas
Role
RoleTerm (authority = RULIB); (type = text)
author
Name (type = personal)
NamePart (type = family)
Diez
NamePart (type = given)
F. Javier
DisplayForm
F. Javier Diez
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
DeMauro
NamePart (type = given)
Edward
DisplayForm
Edward DeMauro
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Bai
NamePart (type = given)
Xiaoli
DisplayForm
Xiaoli Bai
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Qin
NamePart (type = given)
Michael
DisplayForm
Michael Qin
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract
Micro Aerial Vehicles (MAVs) are increasing in popularity and are finding applications in both the civil and defense sectors. A major limitation of MAV plat- forms is low endurance, which greatly diminishes mission capabilities. This study was restricted to MAVs with a characteristic length of 20cm or less and a weight of less than 100 grams; although, these restrictions were relaxed in a few cases. A comprehensive approach was taken to develop a high endurance coaxial MAV. A literature review showed that hover capable organisms, such as hummingbirds and bats, also suffer from the same low aerodynamic efficiency issues that MAV designers face. Following nature’s example, the maximum possible power loading, also known as hover efficiency, was increased by minimizing vehicle disc loading. Through simulations and experiments, the classic quadcopter platform proved too inefficient to achieve maximum endurance. Higher aerodynamic efficiencies did not provide a high enough power loading to achieve high endurance. This investigation shows that the coaxial configuration, due to it’s very low disc loading, has the highest power loading and therefore the highest possible endurance. Mo- tor/propeller matching was also performed to maximize efficiency. A database of propellers and motors was created and all possible combinations were simulated, along with different gear ratios, to shift the motor efficiency peak closer to that of the propeller. This optimization yielded a propulsion system which had a power loading comparable to biological flyers. Finally, the entire vehicle was simulated using a battery optimization model and accurate predictions of vehicle weight, thrust and endurance were obtained. Using this approach, hundreds of vehicle and component combinations can be simulated and optimized rapidly. The developed model included simulations for the static hover case and a dynamic case, where a constant climb rate was considered. Dynamic case simulations predicted the optimal climb rate to achieve maximum altitude. Using precomputed data obtained from the simulations, a Pareto front was created and an optimal vehicle configuration was selected. This approach was used to create a coaxial micro drone with a maximum achieved endurance of 37 minutes. This endurance represents a 460% improvement over the average 8 minute flight time of the sub 100g drones examined. The simulations and models developed in this study resulted in predicted MAV endurances within 30 seconds of the experimental measurements, regardless of payload or battery size. Total flight weight ranges were between 40 and 88 grams depending on payload and the MAV version in question. The final MAV platform created was foldable into a 40mm profile and launchable via a pneumatic launching device. Basic air/water capabilities were also demonstrated giving the MAV the ability to be deployed from underwater. Future work includes adding robust autonomy and swarming capabilities.
Subject (authority = local)
Topic
Drone
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11229
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiv, 100 pages)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-61b9-v346
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Costeas
GivenName
Aristedes
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-09-28 19:25:21
AssociatedEntity
Name
Aristedes Costeas
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2022-10-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2022.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.6
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-29T18:52:31
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-29T19:15:57
ApplicationName
pdfTeX-1.40.20
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024