
© 2020

Jonathon George Gray

ALL RIGHTS RESERVED
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Use of molecular mechanics force fields and RISM densities

to improve macromolecular models

by Jonathon George Gray

Dissertation Director: David A. Case

As RNA structures continue to be solved at a rapid pace, and as RNA has become a

target for therapeutics and has been found to have many different functions other than

basic nucleic acid functions, the importance of properly modelled structures continues

to grow. With the conventional restraints used in crystallographic refinement, persistent

outliers and errors crop up in the structures published. The use of AMBER-derived re-

straints in the PHENIX crystallographic refinement process has been proven to improve

the structures of proteins modelled based on experimental data, and is implemented

in RNA structures in this thesis. Further improvement of structural modelling can be

made in solvent description. While the most accurate way to model solvent is through

explicit solvent molecules in crystal MD simulations, it is also the most computationally

expensive. Meanwhile, the faster implicit models, such as the Generalized-Born model,

are approximate and can sometimes lead to improper secondary structure in macro-

molecules. The periodic 3D-RISM method, presented in Chapter 3 and an upcoming

paper, calculates densities for each solvent entity. It is thought to be more accurate than

general implicit methods, but is faster than explicit methods. In this thesis, crystal MD

simulations and periodic 3D-RISM calculations are employed to study the solvation of

RNA structures.
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In Chapter 2, parallel refinements with conventional and AMBER-derived restraints

in PHENIX on RNA molecules are presented. The resultant structures are analyzed

via energy calculations and MolProbity analysis. The results show that in a data set

of 21 structures, the AMBER restraints lead to improved electrostatic and non-bonded

interactions over conventional restraints, which was expected, as this is the main im-

provement of AMBER restraints over conventional restraints. This leads to overall

energetic improvement over the course of the data set, except for the structure at high-

est resolution. Also, this occurs with little concession to structure factors, as the r-free

factors are very similar. There are increases in the r-work, but the r-gap, or the gap be-

tween the r-work and r-free factors (an indication of over-fitting when high), is generally

the same if not decreased as compared to the conventionally restrained refinements. The

geometric outliers are more numerous for AMBER-restrained structures, but analysis

and testing of repetitive bond and angle outliers finds that this appears to be due to

both a larger distribution of angles and bond lengths due to the interconnectedness of

all the energy terms in AMBER, as well as a difference in the ideal values for these terms

between AMBER and MolProbity. At low resolution, where the experimental data is

poor and the need for external restraints is greatest, there is even greater improvement.

This implies greater physical accuracy of the structures produced, and could lead to

improved structural understanding.

In Chapter 3, the periodic 3D-RISM theory is presented. The existing 3D-RISM

code for non-periodic systems has been expanded to periodic systems, which allows for

the possibility of use in refinement description of solvent. Results are presented for

experiments in proteins and RNA comparing refinement with the standard flat density,

3D-RISM results, and explicit MD solvent densities, which show that 3D-RISM im-

proves r-factors over the standard density, while being improved upon by MD, which is

more time-consuming. Results for different proteins are also presented showing that the

number of water molecules produced via 3D-RISM calculations are all very similar to

the numbers derived from crystal MD. Further work including calculation of 3D-RISM

solvent throughout refinements may be the next step.

In Chapter 4, crystal MD simulations of three of the structures from the PHENIX
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data set are presented as an opportunity to look at the dynamics of the structures as

well as a baseline for testing the accuracy of 3D-RISM code presented in Chapter 3.

The 3D-RISM calculations match fairly closely the number of water molecules found by

MD. Through comparative 3D-RISM calculations, it is found that solvent composition

has an effect on the number of ions produced to neutralize the solute. More sodium

ions are used than potassium ions when used at the same concentration in conjunction

with magnesium. As sodium’s ionic radius is smaller than potassium’s, it appears that

this is due to size differences. The 3D-RISM code provides an appropriate, and less

time-expensive, approximation of solvent description and interactions than the standard

crystal MD simulations.

In Chapter 5, the sarcin/ricin domain of the ribosomal RNA of E. coli, a well-

conserved domain across species with many structures in the PDB, is used as a test

molecule for PHENIX refinements with AMBER restraints, periodic 3D-RISM single-

point calculations, and minimizations with periodic 3D-RISM. These small structures

all contain the same solute, so the differences in results should be resolution- or solvent-

dependent. When analyzing the PHENIX results, there is a trend in energetics, specifi-

cally non-bonded interactions, toward greater improvement over conventional restraints

with AMBER restraints as the resolution worsens. Different parameters were tested to

determine what sets resulted in the fastest runs.

iv



Acknowledgements

Chapter 3 is a collaborative work with George Giambaşu, Tyler Luchko, Darrin M.

York, and David A. Case and is in preparation for submission for publication. Chapter

2 is the basis for an upcoming first-author paper. All original molecular images were

created in UCSF Chimera, and all trajectory visualization was likewise performed in

UCSF Chimera, which was developed by the Resource for Biocomputing, Visualization,

and Informatics at the University of California, San Francisco, and supported by NIH

P41-GM103311[92].

I would have been completely unable to complete this work or even get to this point

without the help of so many people. I’d like to thank them here, but there is not enough

room to cover everyone. To all have helped me in my educational and personal growth,

thank you.

Regarding specific people:

First, I’d like to thank Professor David A. Case for his support, his close mentorship,

and his patience and understanding as I worked through learning a completely new sort

of chemistry to perform all this work. I appreciate all the help and guidance. Thank

you so much every piece of advice, answered email, and nudge. It has all helped me

reach this point, and I’m forever grateful.

I’d also like to thank Shashidhar Rao and George Giambaşu for their close and

intentional help as I entered the lab from an experimental background. Your one-on-one

advice and encouragement helped me feel welcome, and helped me focus on completing

my courses while also getting initiated to the lab and the work. You were so helpful,

and I appreciate you both very much.

I want to thank my committee for being so supportive and focused on my growth

as a scientist, my other fellow labmates for their emotional support, and my college

v



professors and high school chemistry teachers for motivating me to study chemistry all

the way to this point. I especially want to thank Professor Daniel King, my analytical

chemistry professor at Taylor University, who helped me throughout all of college: as a

friend, a great teacher, and an amazing mentor. My high school AP chemistry teacher,

Mr. John Thompson, was the stimulus toward me studying chemistry. He is a hilarious

man and an enthusiastic, passionate teacher of chemistry. Thank you all.

Finally, I’d like to thank my family. My parents, Carlos and Teresa, and my brother,

George, have been great support, pushing me to do my best when under their roof, and

encouraging me from afar during my undergraduate and graduate studies. Thank you

for the rides to practices, all of the backing, and the opportunity for a great future you

provided me. George, who is also studying chemistry for his PhD, has been the best

brother a man can ask for, and has shared his experiences with me and been a sounding

board. Thank you so much George!

And of course, I could not mention my family without mentioning my wife, Grace.

Grace, you have been supportive and loving for so long, even when I’ve flagged as a

productive worker, at which points you’ve pushed me to be better than who I was being

at the time. You’re my best friend, my partner in goofiness, and the best part of my

life. I’m so grateful to be yours, and I love you so much.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Crystallographic refinement . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Solvent models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Crystal MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. PHENIX refinement of RNA structures with AMBER force fields . 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Theory and implementation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. Structure selection . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2. Structure preparation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3. Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. Data and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1. Example with 2oiu . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.1. Accessing, modifying, and creating needed files . . . . . 16

2.4.1.2. Building of the structure . . . . . . . . . . . . . . . . . 18

vii



2.4.1.3. Parallel refinements with AMBER and conventional ge-

ometric restraints . . . . . . . . . . . . . . . . . . . . . 23

2.4.1.4. Geometric analysis of the parallel refinements . . . . . . 29

2.4.1.5. Energy Analysis . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2. Structure factors, energy, and clashscores . . . . . . . . . . . . . 36

2.4.3. Differences in structures . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.4. Geometric outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.5. Investigation of outlier difference . . . . . . . . . . . . . . . . . . 49

2.4.6. Hydrogen bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3. Integral equation models for disordered solvent in macromolecular

crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3. Reference Interaction Site Model for periodic systems . . . . . . . . . . . 67

3.3.1. Computing the periodic solute potential. . . . . . . . . . . . . . . 69

3.3.2. Solving the 3D-RISM equations. . . . . . . . . . . . . . . . . . . 70

3.3.2.1. (a) The Ornstein-Zernike equation generates an electro-

neutral solvent . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2.2. (b) Extending the RISM equations to achieve charge

neutral periodic systems . . . . . . . . . . . . . . . . . . 72

3.3.2.3. (b) Employing non-neutral bulk solvent models. . . . . 73

3.3.3. Computing forces on the solute atoms . . . . . . . . . . . . . . . 73

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1. Solvent distribution in molecular crystals . . . . . . . . . . . . . 75

3.4.1.1. Comparison with X-ray scattering factors . . . . . . . . 75

3.4.1.2. Total number of waters . . . . . . . . . . . . . . . . . . 75

viii



3.4.2. Using 3D-RISM as an implicit solvent model for biomolecular

crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3. Thermodynamics in the infinite dilution regime . . . . . . . . . . 78

3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6. Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. Studies of RNA structures using 3D-RISM and explicit solvent crystal

MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1. Structure selection and preparation . . . . . . . . . . . . . . . . . 83

4.2.2. Crystal simulation parameters and process . . . . . . . . . . . . . 84

4.2.3. rism3d.snglpnt parameters . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3. Data and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1. Crystal simulation results . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2. 3D-RISM solvation results . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3. Comparison between methods . . . . . . . . . . . . . . . . . . . . 100

4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5. Sarcin/ricin domain as a case study for RNA simulations . . . . . . . 107

5.1. The sarcin/ricin domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1. Structure selection and description . . . . . . . . . . . . . . . . . 108

5.2.2. Refinement methods and parameters . . . . . . . . . . . . . . . . 109

5.2.3. Solvation studies of sarcin/ricin . . . . . . . . . . . . . . . . . . . 109

5.2.4. Time-step tracking of minimization with periodic 3D-RISM . . . 109

5.3. Data and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1. Refinement data and trends . . . . . . . . . . . . . . . . . . . . . 110

5.3.2. Solvation results: ion and water counts . . . . . . . . . . . . . . . 115

ix



5.3.3. Time step results . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6. Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . 127

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

x



List of Tables

2.1. This table shows the PDB ID, name, and chemical chemical component

IDs of the noncovalent ligands, modified residues, or solvent molecules;

the 3bo3, 3iwn, and 3mxh structures also include U1 proteins. Only 6

structures in the data set do not contain any of these molecules that need

to be built with parameters not found explicitly within the AMBER force

fields (1q9a, 2a43, 2oiu, 3r4f, 480d, and 483d). . . . . . . . . . . . . . . . 11

2.2. Per-nucleotide energy difference values (kcal/mol) between AMBER- and

conventionally restrained PHENIX refinements for all components of the

structures that contain RNA without the U1 protein. The conventional

value is subtracted from the AMBER value, and, therefore, the more

negative the value, the more favorable the AMBER-restrained structure

is. As the resolution worsens, the improvement upon conventional refine-

ment by use of AMBER-derived restraints becomes greater. (B=bond,

A=angle, D=dihedral, E=electrostatics, F=1-4 electrostatics, W=1-4

non-bonded, V=van der Waals, R=RISM, EFR=E+F+R, TOT=EP Tot) 39

2.3. Per-residue energy difference values (kcal/mol) between AMBER- and

conventionally restrained PHENIX refinements for all components of the

structures that contain RNA with the U1 protein. The conventional value

is subtracted from the AMBER value, and, therefore, the more negative

the value, the more favorable the AMBER-restrained structure is. As

the resolution worsens, the improvement upon conventional refinement by

use of AMBER-derived restraints becomes greater. (B=bond, A=angle,

D=dihedral, E=electrostatics, F=1-4 electrostatics, W=1-4 non-bonded,

V=van der Waals, R=RISM, EFR=E+F+R, TOT=EP Tot) . . . . . . 39

xi



2.4. Per-nucleotide difference values for geometric statistics, and difference in

suiteness score. The more negative the value, the more favorable AMBER

restraints are for that particular geometric statistic. Generally speaking,

the conventional refinements result in better geometric outlier numbers.

At lower resolution, the AMBER-restrained refinements produce better

suite outlier numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5. Table looking at P-O5’ (bond A) bond outliers as a result of different

modifications to the AMBER ideal bond length (Ideal) and bond force

constant (FC) for bonds of the P-OS bond types. The other bond of

that type, O3’-P (bond B), was also examined (MP=MolProbity ideal

bond length of 1.59 Å for P-O5’, 1.61 Å for O3’-P). As the AMBER

ideal value is changed, the location of outliers relative to the MolPro-

bity ideal changes, indicating that the differences in ideal values affects

the number of outliers. Increasing the force constant removes all out-

liers of A and B, indicating that the distribution of bonds might be nar-

rowing. (RT=refinement type, PR=pre-refinement, CV=conventional,

AM=AMBER, Out=bond outliers) . . . . . . . . . . . . . . . . . . . . 51

2.6. Table looking at O3’-P-O5’ (angle A) bond angle outliers as a result

of different modifications to the AMBER ideal bond angle (Ideal) and

angle force constant (FC) for bond angles of the OS-P-OS bond types

(MP=the MolProbity ideal value of 104 degrees for this angle). As with

bond lengths, adjusting the force constant appeared to decrease the num-

ber of A outliers, likely due to a tighter adherence to the AMBER ideal

value. Also, as the ideal value was increased, the outliers were all greater

than the MolProbity ideal, as opposed to less than the MolProbity ideal

when refined with the normal AMBER ideal value. (RT=refinement type,

PR=pre-refinement, CV=conventional, AM=AMBER, Out=angle out-

liers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xii



2.7. The differences in the numbers of base pairs (BP) and hydrogen bonds

(HB) in conventional and AMBER refinements at different hydrogen bond

cutoff distances. Little is found in the way of differences at high- and

mid-resolution, but in low-resolution structures improvements are found

in hydrogen bonding with AMBER-restrained refinement. . . . . . . . . 59

2.8. Comparison of hydrogen bonds involving non-covalent ligands in AMBER-

and conventionally refined structures. Generally, there are more hydro-

gen bonds in the AMBER-refined structures, but surprisingly the lowest-

resolution structure in this group has 1 more hydrogen bond in the con-

ventionally refined structure. . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1. Bulk solvent models with a single protein configuration; each block shows

R/Rfree after 40 cycles of refmac5 refinement. There is an average drop

in R of 0.019 between flat and explicit MD, and an average drop of 0.011

between flat and 3D-RISM. (a) results for 1aho using alternate conformers. 76

3.2. Bulk solvent models with a single RNA configuration; each block shows

R/Rfree after 40 cycles of refmac5 refinement. There is an average drop

in Rfree of 0.017 between flat and 3D-RISM, slightly larger than the value

of 0.011 found for proteins in Table 3.1. . . . . . . . . . . . . . . . . . . 76

3.3. Predicted number of solvent molecules per protein chain. (a) solvent

fraction reported by phenix.f000 ; (b) from MD simulation with SPCE

water, see text; (c) 3D-RISM result using the KH closure; (d) 3D-RISM

result using the PSE3 closure; (e) as in (d), but using 0.1 M NaCl solvent,

rather than pure water; (f) prediction from phenix.f000 assuming the

default solvent electron density of 0.35 e/Å3; (g) triclinic; (h) tetragonal 77

4.1. The three structures used as input for RISM calculations, with their

respective small molecules and ions. Only 3tzr has any non-RNA entities. 83

xiii



4.2. Water and ion counts needed to neutralize and stabilize the unit cell for

each structure, as well as the average pressure in the longest unrestrained

run for each and predictions of water molecule numbers via different

methods (Res=resolution, DMG=deposited magnesium ions in unit cell,

WAT=water molecules in simulation, F(000)=predicted number of waters

using phenix.f000, SC=predicted number of waters using the PDB solvent

content percentage, PSC=predicted number of waters using PHENIX sol-

vent content percentage from phenix.f000, NA=sodium ions in simulation,

P=average pressure in longest unrestrained run, UCV=deposited unit cell

volume). All numbers found in the simulations are generally higher than

the predictions, and the F(000) predictions are closest to the simulation

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3. Unrestrained simulation times (Sim Time), average structure asymmetric

unit base heavy atom RMSD (BHA), and average structure asymmetric

unit heavy atom RMSD (HA). Typical RMSD values are found for 2a43

and 3tzr, while 2oiu has relatively high values that are in line with other

published results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



4.4. Calculation results for differing concentration setups for the three struc-

tures. The last setup for each is a modified version of the concentration

of ions in the crystallization solvent, using Na for all monovalent cations

(except for in the case of high concentration, such as the high molar

concentration of Li in 2oiu), Mg for the divalents, and Cl to neutralize

the cations. The water counts for each structure are rather in agreement

with each other, while the ion counts seem to have a dependence both

on relative concentrations of the two salts involved and on ionic radius.

(Solvent A=20 mM MgCl2, 140 mM KCl; Solvent B=20 mM MgCl2,

140 mM NaCl; Solvent C=10 mM MgCl2, 100 mM NaCl; Solvent D=100

mM MgCl2, 50 mM NaCl, simulation of experimental conditions for 2a43;

Solvent E=7.5 mM MgCl2, 30 mM NaCl, simulation of experimental con-

ditions for 3tzr; solvent F=35 mM MgCl2, 75 mM NaCl, simulation of

experimental conditions for 2oiu; mdel=mdiis_del, Solv=solvent) . . . . 95

4.5. Comparison of differing RISM methods and explicit water crystal MD

simulations regarding solvent description. There is reasonable agreement

regarding water numbers, but differences in ion counts. (Solv=solvent

method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1. Per-nucleotide energy values (kcal/mol) for each of three sarcin/ricin

structures used in Chapter 2. The electrostatic and non-bonded interac-

tions, as well as the total energy, appear to be more favorable for AMBER

restraints as the resolution worsens. (B=bond, A=angle, D=dihedral,

E=electrostatics, F=1-4 electrostatics, W=1-4 non-bonded, V=van der

Waals, R=RISM, EFR=E+F+R, TOT=EP Tot) . . . . . . . . . . . . . 111

xv



5.2. Differences in crystallographic and geometric statistics between conven-

tionally and AMBER-restrained refinement output structures. Bond, an-

gle, pucker, and suite values are differences in numbers of outliers of that

type per nucleotide. All other values are absolute differences. Negative

values indicate more favorable values for AMBER-restrained refinement,

positive values indicate favorable conventional refinements. There are no

cohesive trends found in this data relative to resolution or numbers of

waters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3. RMSD (Å) measurements for the three structures, looking at differences

between the AMBER (A) and conventional (C) refinement output and

deposited (D) structures for a particular PDB ID. For example, the 0.072

value in A to C for 1q9a indicates that the heavy atom RMSD for the AM-

BER output structure for 1q9a from the conventional output structure

is 0.072 Å. All three structures show little deviation amongst their re-

finement output structures, while there is greater deviation from refined

structures to the deposited. There is also greater deviation from the

AMBER-refined structures to the deposited ones as compared to conven-

tional to deposited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4. RMSD (Å) measurements for the three structures, looking at differences

between the deposited (D) structures from the other PDB IDs to a partic-

ular PDB ID. For example, the 0.231 value in D1q9a for 483d indicates

that the heavy atom RMSD for the deposited structure for 483d from

the deposited structure for 1q9a is 0.231 Å. As expected, the greatest

deviation is from the lowest-resolution structure to the highest-resolution

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



5.5. RMSD (Å) measurements for the three structures, looking at differences

between the conventional (C) refinement output structures from the other

PDB IDs to a particular PDB ID. For example, the 0.198 value in C1q9a

for 483d indicates that the heavy atom RMSD for the conventional output

structure for 483d from the conventional output structure for 1q9a is

0.198 Å. The values here are less than in Table 5.4, indicating that the

refinement brings these structures closer together than their deposited

predecessors. Also, again the lowest- and highest-resolution structures

have the greatest deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6. RMSD (Å) measurements for the three structures, looking at differences

between the AMBER (A) output structures from the other PDB IDs to

a particular PDB ID. For example, the 0.176 value in A1q9a for 483d

indicates that the heavy atom RMSD for the AMBER output structure

for 483d from the AMBER output structure for 1q9a is 0.176 Å. There

is generally less deviation here than in either Table 5.5 or Table 5.6,

indicating that the use of AMBER restraints draws these structures, all

the same solute, closer together, as they should be fairly similar. Again,

the greatest deviation is from lowest- to highest-resolution structures. . 114

5.7. Comparison of 3D-RISM results using different solvent concentrations.

The water number differences seem to match the differences expected

based on volume differences, while the ions using the same solvent are the

same within rounding error. (Solv=solvent; TWD=theoretical water dif-

ference from largest unit cell water molecule count, using 30 Å3as the vol-

ume per water molecule, and comparing only those calculations with the

same concentrations; AWD=actual water difference from number found

for 480d, the structure here with the largest unit cell; Vol=volume; Sol-

vent G=20mM MgCl2, 50mM KCl; Solvent H=10mM MgCl2, 100mM

KCl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvii



5.8. Timing and RISM excess chemical potential for single-core, 16-processor

minimizations in sander.MPI, with differing minimization methods and

step numbers to look at their effects. Minimizer choice for ntmin=3 is

TNCG, and each step requires multiple neutralizing steps (this is the

number, not 100, used for the time per step calculation). Here, for min-

imizations with RISM, the fastest was with ntmin=3 ; however, this is

likely due to the larger number of “real” steps averaging out the startup

time. (NR=no RISM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9. Timing and RISM excess chemical potential for 10-step minimizations in

sander.MPI with differing sets of cores and processors, using ntmin=2 as

the minimization method. Surprisingly, the fastest combination is just 1

node with 16 processors. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10. Timing and RISM excess chemical potential for 10-step minimizations in

sander.MPI with differing sets of cores and processors, using ntmin=3,

TNCG as the minimization method. As with ntmin=2, the fastest com-

bination is 1 node with 16 processors. . . . . . . . . . . . . . . . . . . . 121

5.11. Timing and RISM excess chemical potential for 10-step minimizations

in sander.MPI with 1 core, 16 processors, using ntmin=2, and differing

values for mdiis_del. Most options here resulted in failure to converge,

while the fastest runs were with an mdiis_del value of 0.50. . . . . . . 121

5.12. Timing and RISM excess chemical potential for 10-step minimizations in

sander.MPI with 1 core, 20 processors, using ntmin=2, mdiis_del=0.40,

and differing values for grid spacing. The grid spacing value is in each

direction, creating a grid that is cubic with the given side length. As

expected, as the grid spacing was smaller, the minimizations took longer,

as there were more grid points to evaluate. Surprisingly, the largest grid

spacing also resulted in a long time step. . . . . . . . . . . . . . . . . . 122

xviii



5.13. Timing and RISM excess chemical potential for 10-step minimizations

in sander.MPI with 1 core, 20 processors, using ntmin=2, and differing

values formdiis_nvec and npropagate. Parameters formdiis_del and grid

spacing were set to 0.40 and 0.35 (in each direction), respectively. Using

too few vectors resulted in failure to converge, while including a previous

solution for guessing the next (npropagate>0 ) resulted in a shortening of

the time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xix



List of Figures

1.1. Computed Mg2+ and water densities (shown as dark green and red isoden-

sity meshes, respectively) versus crystallographically resolved positions

(shown as light green and pink spheres) near the protein−DNA interface

of the catalytic site of polymerase h (PDB ID: 3mr2[15]). (Image and

caption text from [42].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Graphs of the AMBER total energy throughout refinements of 2oiu using

least-squares, maximum-likelihood, and least-squares with weight opti-

mization minimizers. The energy appears to reach the lowest value with

least-squares with weight optimization, but takes a lot longer to complete

refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2. Graphs comparing the structure factors, r-gap, and clashscore for the

AMBER-restrained and conventionally restrained refinements. Structure

factors are similar for both sets of restraints, and the r-gap is some-

what improved for low-resolution AMBER structures. The largest differ-

ence occurs in clashscores, where AMBER-restrained refinements result

in nearly similar clashscore values across the data set, while conventional

refinement results in very high clashscores at low resolution. . . . . . . 37

2.3. Graph of per-residue energy difference values (kcal/mol) for the total po-

tential energy (EPtot) between AMBER- and conventionally restrained

PHENIX refinements . The conventional value is subtracted from the

AMBER value, and, therefore, the more negative the value, the more

favorable the AMBER-restrained structure is. As the resolution wors-

ens, the improvement found by using AMBER-derived restraints becomes

more pronounced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xx



2.4. Graph of RMSD between conventionally and AMBER-refined structures.

The RMSD increases as the resolution worsens, indicating that there are

greater differences between the output structures as the quality of the

data worsens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5. Images of global (left) and local (right) differences in the AMBER- (blue)

and conventionally refined (green) structures of 3iwn[63]. The local image

is a rotated look at the boxed area in the global image. Very little changes

on the global scale, but there are some slight, but significant, changes at

the local level, specifically in the ligand and bases around it. . . . . . . 44

2.6. Images of global (left) and local (right) differences in the AMBER- (blue)

and conventionally refined (green) structures of 3bo3[67]. The local image

is a look at the boxed area in the global image. Very little changes on the

global scale, but there are some slight, but significant, changes at the local

level, specifically in the bases. There is also deviation in the magnesium

ion locations, but these are not included in RMSD calculations. . . . . 44

2.7. Images of global (left) and local (right) differences in the AMBER- (blue)

and conventionally refined (green) structures of 3r4f[36]. The local image

is a look at the boxed area in the global image. Very little changes on

the global scale, but there are some slight, but significant, changes at the

local level, specifically in the bases. Also, while not included in RMSD

calculations, the magnesium ions are very differed in location between

the structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8. Images of the global (left) and local (right) differences in 1y0q[44] be-

tween the AMBER-(blue) and conventionally refined (green) structures.

This is the structure with the largest RMSD between AMBER- and con-

ventionally refined structures. A lot of the deviation appears to show up

in the ligand and bases, as seen in the local image. . . . . . . . . . . . . 45

xxi



2.9. Histograms showing the distribution of all P-O5’ bond lengths in the

AmberPrepped structure and the refinement output structures when pre-

pared and refined with the standard AMBER parameters, longer AMBER

ideal bond length, doubled bond force constant, and AMBER ideal bond

length equal to MolProbity’s (from top to bottom). AMBER-restrained

refinements resulted in wider distributions with centers that shifted as the

AMBER ideal was modified. The distribution narrowed with an increase

in force constant. Regardless of the AMBER ideal, the conventional re-

finement distribution was nearly the same. . . . . . . . . . . . . . . . . 52

2.10. Histograms looking at O3’-P-O5’ bond angles with differing ideal values

and force constant values for the AmberPrepped, conventional refinement,

and AMBER refinement structures. As with Figure 2.9, the AMBER dis-

tributions were wider than the conventional ones, with shifting centers

based on AMBER ideal, and narrowing of the distribution with an in-

crease in the force constant. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.11. Images comparing conventionally and AMBER-restrained (green and blue,

respectively) refinement outputs for 4fe5[10]. The measurements are from

donor to acceptor, not donor heavy atom to acceptor. The difference here

is in distances and also the additional hydrogen bonds involving a nearby

solvent molecule in the AMBER image. The ligand being examined is

hypoxanthine (HPA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1. Water density in 1aho. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2. Blue: experimental average structure from X-ray crystallography (PDB

ID 480d); red: average structure from a 3D-RISM crystal simulation;

green: average structure from a crystal simulation with no solvent cor-

rection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3. Variation of solute chemical potential with respect to periodic cell size

(black dots and green linear fit) and comparison with solution case (blue

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xxii



4.1. Heavy-atom and base heavy-atom RMSD analysis, as well as visual anal-

ysis of 2a43 crystal simulation. The structural image is an overlay of

the starting asymmetric unit PDB file (green) and the average coordi-

nate PDB file from the simulation (blue). The RMSD between these

structures is in Table 4.3. The RMSD throughout the simulation stays

relatively low, other than the sixth asymmetric unit, which has a large

spike in the middle of the simulation and restabilizes. There is some

backbone deviation in the average asymmetric unit structure, but a lot

of the differences appear to take place in the bases. . . . . . . . . . . . 89

4.2. RMSD and visual analysis of 2oiu crystal simulation. The RMSD for

this structure is rather high, but matches what is found in the literature

for this structure. Visual analysis of the starting structure (green) and

the average asymmetric unit structure (blue) from the simulation shows

both massive deviation in the backbone and bases, especially in the upper

monomer as depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3. RMSD analysis of 2oiu on a per-monomer basis. The first monomer

in each asymmetric unit shows much less deviation than the second

monomer for most of the simulation, which is a surprise as compared

to the literature on this structure. . . . . . . . . . . . . . . . . . . . . . 92

4.4. RMSD analysis of 3tzr crystal simulation. This simulation took the

longest to converge, but the RMSD is relatively the same as that found

for 2a43. As with 2a43, the comparison of the average structure to the

starting structure shows some differences in the backbone, but most of

the deviation occurs in the bases. . . . . . . . . . . . . . . . . . . . . . 93

4.5. Solvation results for 2a43 with magnesium, sodium, and water respec-

tively. The densities for the three are shown in blue, purple, and dark

green, respectively, while the Laplacians are seen in light green, orange,

and pink, respectively. In all three cases, the Laplacian locations are

more condensed, and as expected, there are far more water and magne-

sium locations than those for sodium. . . . . . . . . . . . . . . . . . . . 99

xxiii



1

Chapter 1

Introduction

As structure influences and informs function, it is important to have proper models of

biological molecules. Generally speaking, there are two components to macromolecular

structures: the macromolecule and the solvent environment. This dissertation will

investigate methods implemented to improve both parts of macromolecular structures,

with RNA as the test biological structure set.

1.1 RNA

mRNA has long been known as the intermediate molecule between DNA and protein[52].

In tRNA, we have a molecule that aids in that translation to protein from mRNA[99].

The other major type of RNA, rRNA (ribosomal) also plays a major part in translation[83],

and has been found to be a member of a group of molecules known as ribozymes. These

catalytic RNA molecules perform one of the more recently discovered uses of RNA

molecules[62, 19]. Further uses of RNA include the escorting of Cas9 in CRISPR-Cas9

gene editing[54] and post-transcriptional modifications[40] and RNA silencing[32] in the

forms of miRNA and siRNA, respectively.

With such a vast array of important functions and uses for RNA molecules, it is

important to have proper structural models of these molecules. This dissertation will

test out different computational methods for improving RNA structural models. A lot

of the work performed with these methods has been performed on proteins, which are

more diverse in terms of different types of building blocks available to make up the

macromolecule, but have fewer backbone parameters than RNA. The flexibility and

heterogeneity of the RNA backbone in terms of number of bonds, angles, and torsions,

and even sugar puckers, could lead to issues unseen in work on protein structures. Also,
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due to the sugar-phosphate backbone, RNA has a much more concentrated and higher

overall charge than proteins do.

1.2 Crystallographic refinement

In the process of structural determination and model development from X-ray crys-

tallography, refinement is the last part of the process. Before refinement can occur,

however, molecules have to be isolated, crystals have to be grown, data has to be col-

lected, densities have to be determined, and preliminary models must be developed.

In order to collect data for the development of electron density maps for structural

models to be refined into, crystals of the structure must first be grown. This is a generally

difficult process that is somewhat of a rate-limiting step for structure determination,

as it is still a guess-and-check process to find the best conditions to grow crystals[37].

That is the case for proteins, but it is even more of an issue in nucleic acid structures, of

which all of our structures in this thesis are made, where the strong backbone negative

charge makes it difficult to form the crystal contacts[57] between neighboring molecules

necessary for crystals to develop[66]. Once these crystals, which contain repeating unit

cells of molecules related by symmetry operations, are grown, they are cryoprotected

(usually) and eventually mounted for shooting with X-rays, which are diffracted by the

electrons in the structure. This diffraction pattern is deconvoluted into electron density,

into which a structural model based on known sequence of the structure is fit. From

here, the structure is refined to improve fit to the electron density[37].

The general process of refinement involves minimizing a target function that com-

pares the experimental structure factors and those calculated from the model. The

amount of information able to be gleaned from the experimental data is insufficient,

however. Also, using only the experimental data to fit the model can lead to overfitting.

These are reasons why geometric restraints are used to supplement the experimental

data in model refinement.

While there are many different refinement programs, PHENIX is the program that

will be used in this dissertation. In phenix.refine’s coordinate refinement, the target
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function to be minimized is generalized as:

TXY Z = w ∗ Texp + Txyz_restraints (1.1)

Each of these terms is a function of the atomic coordinates: TXY Z is the target residual

that phenix.refine aims to minimize, Texp is a measurement of how the model structure

factors match the experimental structure factors, Txyz_restraints measures the model’s fit

to geometric restraints, and w is the generic weight factor that determines the relative

weight placed on the experimental data and the geometric restraints. In conventional

refinement, Txyz_restraints involves the Engh and Huber and Conformation Dependent

Library restraints[78].

In a recently published paper[78], AMBER force field restraints were introduced

in place of the Engh and Huber restraints and used in refinements of protein struc-

tures in parallel with conventional refinements. The AMBER-restrained refinements

improved structural models in the areas of clashscores, protein backbone torsion angles,

electrostatic, hydrogen bond, and van der Waals interactions, and side chain rotamers.

Particular improvement was seen in low resolution structures. While these sorts of im-

provements are expected in the RNA structures to be refined in this thesis, interactions

with solvent and RNA backbone may affect the results due to the high negative charge

of RNA, and the high number of cations needed to neutralize that charge. The high

charge could possibly cause strong energetic interactions to overcome the anchoring of

the structure in the experimental data.

1.3 Solvent models

As solvent makes up about 30-70% of volume in biomolecular crystals[73] and greatly

facilitates interactions in active sites and with ligands[47, 93], it is important to properly

model solvent. However, due to the vast amount of solvent compared to the number of

macromolecules in modeled systems, and the fact that macromolecules already contain

very large numbers of atoms, it can be difficult to model all the atoms in a unit cell.

Thus, there are trade-offs to consider when deciding how to model solvent.
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The highest-accuracy and most computationally intensive way is to model explicit

solvent molecules in an atomistic way. This allows for direct calculation of forces on and

due to each molecule and is the most comprehensive description of what is going on in

the system, as solvent exists not as just some vast bath but as individual molecules that

make up the bulk of the volume of the system. However, this way of modelling solvent

requires calculations for all solvent molecules, resulting in much higher computational

times than implicit models. Also, in the case of crystal MD simulations, which will

be discussed later, the number of water molecules that properly simulate crystalline

conditions must be reached through a guess-and-check series of test simulations, which

also increase the amount of time spent reaching the desired end goal[21].

On the other end of the spectrum are implicit solvent models. These include various

versions of the Generalized-Born and Poisson-Boltzmann models, and others. Implicit

models have the benefit of being less computationally demanding, and thus faster, while

having been developed to be good approximations of the explicit models. They also allow

for better sampling of conformational space[34, 39, 2, 112, 3]. However, they are known

to be a step down from explicit solvent models regarding accuracy, even resulting in

inaccurate secondary structures within proteins[84, 103].

A middle-ground approach that will be tested in RNA structures later in this thesis

is periodic 3D-RISM. The theory related to this method will be presented in Chapter 3,

while calculations testing the accuracy of this approach are presented in both Chapters

3 and 4. 3D-RISM calculates densities of solvent entities (water and ions) chosen to

solvate the macromolecule. An example of these densities as wire mesh, as compared to

the placement of deposited solvent particles, can be seen in Figure 1.1. These densities

can be used to try to place molecules, and numbers of particles in the system are

able to be determined from these calculations. These calculations are able to reach

an understanding of the solvent distribution in a system far faster than crystal MD

simulations using explicit water molecules, and hopefully will lead to results that are

fairly similar in terms of accuracy.
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Figure 1.1: Computed Mg2+ and water densities (shown as dark green and red isodensity
meshes, respectively) versus crystallographically resolved positions (shown as light green
and pink spheres) near the protein−DNA interface of the catalytic site of polymerase h
(PDB ID: 3mr2[15]). (Image and caption text from [42].)

1.4 Crystal MD simulations

MD simulations can be performed in a vast sea of solution, but they have been found

to better match experimental data when performed with conditions used to mimic crys-

talline conditions[21]. It was found in simulations of both DNA and RNA duplexes

that the crystal simulations result in structures with higher fidelity to the experimen-

tally derived structures than those in solution simulations[68](further sources within

article). The simulations performed in such conditions can provide complementary

data of the dynamics of structures to the structural data gleaned from crystallographic

experiments[68]. This is especially true in situations where molecules have to be in their

inactive forms to be crystallized[89](for more sources and further information, check out

this source). Further information about the setup of crystal MD simulations can be

found in Chapter 4.
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In the following work, RNA will be used as a test molecule type for different methods

used in model description. Chapter 2 will investigate the effects of AMBER force fields

being used as restraints in crystallographic refinement in PHENIX of RNA molecules.

Chapter 3 will present theory of and data from tests of the new periodic 3D-RISM code,

while Chapter 4 will look at solvation of three RNA structures through the established

method of crystal MD simulations and the newly presented periodic 3D-RISM code.

Finally, in Chapter 5, the sarcin/ricin domain is used as a target system for further

analysis of all methods covered in this thesis.



7

Chapter 2

PHENIX refinement of RNA structures with AMBER
force fields

2.1 Introduction

Since the turn of the millennium, the number of RNA structures solved has vastly

increased. As these structures have been solved, the many functions of the different

types of RNA molecules have begun to be discovered[27, 8, 97]. Self-catalytic RNA

molecules, ribozymes, have been found to be possible evidence supporting the “RNA

world” hypothesis[20, 18]. MicroRNAs have been studied as antitumor agents[16, 25, 69],

and CRISPR, which is an RNA-guided technique, has expanded in use[94, 29, 9]. In

order to make the best conclusions about function and use of these RNA structures,

the models must be as physically accurate as possible. As the number of structures

deposited in the PDB has increased, it has been determined that there is a persistence

of geometric outliers in RNA models developed from crystallographic data[27, 98, 35].

These outliers not only arise due to low resolution in many RNA structures[27, 58],

but also due to the use of geometric restraints that do not take attractive electrostatic

interactions into account[79]. Different methods have been developed to try to improve

upon the outliers found in RNA structures, including ERRASER.

ERRASER uses the Rosetta energy score function to guide real space refinement of

the structure, individually modifying outlier bonds, angles, etc., to improve the overall

structure. However, it is a time-consuming process, and requires another step of recip-

rocal space refinement within PHENIX at the end[27]. PHENIX has also introduced

nucleic acid secondary structure restraints to maintain proper base pair hydrogen bond-

ing, planarity, and stacking[53, 78]. This, however, does not include an energetic term,

and forces the hydrogen bonding through restraint parameters.
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Our interface of PHENIX and the AMBER force fields integrates energetics, espe-

cially the electrostatic term (an important factor in highly charged molecules, like RNA),

with the electron density data to guide reciprocal space refinement. So far, this interface

has been shown to guide reciprocal space refinement of protein structures with marked

improvement over conventional refinement[78]. In this chapter, the effects of use of this

interface on RNA structure refinement will be compared to conventional refinement, as

well as other techniques designed to improve the results gained from refinement.

2.2 Theory and implementation

The “import sander ” command in python allows for PHENIX to reach to AMBER and

access the energies and forces through the sander python API. In each coordinate re-

finement step, the asymmetric unit is expanded to a unit cell, which is used by sander to

calculate the energy gradients, and then those gradients are combined, in place of those

developed by use of the conventional geometric restraints within PHENIX, with the

gradients from the target function from the X-ray data. This combination of gradients

is then used to change the coordinates through minimization here[78].

In phenix.refine’s coordinate refinement, the target function to be minimized is gen-

eralized as:

TXY Z = w ∗ Texp + Txyz_restraints (2.1)

Each of these terms is a function of the atomic coordinates: TXY Z is the target residual

that phenix.refine aims to minimize, Texp is a measurement of how the model structure

factors match the experimental structure factors, Txyz_restraints measures the model’s fit

to geometric restraints, and w is the generic weight factor that determines the relative

weight placed on the experimental data and the geometric restraints. In conventional

refinement, Txyz_restraints involves the Engh and Huber and Conformation Dependent

Library restraints, while in AMBER refinement, this term actually ends up being the

potential energy function in AMBER using the ff14SB protein force field[72], as well as

the OL3 RNA force field[113].



9

The target function for AMBER-restrained refinement can be more specifically laid

out as follows (with some tweaking of nomenclature):

TXY Z = wxc_scale ∗ wxc ∗ Texp + wc ∗ EAmberFF (2.2)

Here, wc is usually 1.0 in cases where restraints are being used and is set to 0

turn off restraints in high resolution cases, wxc is a “ratio of gradient norms” between

the geometric and experimental target functions (normally fluctuates), and wxc_scale

is a fixed value that consistently weighs the experimental target function against the

restraint target function. Also, here, the restraint term has been labeled as EAmberFF ,

as in the protein paper, to more explicitly show that the potential energy function

has been implemented[78]. These weighting terms are important in this work, as to

allow for Boltzmann weighting of AMBER restraints, we set up phenix.refine to set

both wxc_scale and wxc to 1, and set wc=1.667. The experimental target function

estimates −LL, the negative log of the likelihood of finding the data, given the current

model; hence the likelihood is maximized when Texp is minimized. For a Boltzmann

distribution, the corresponding −LL is EAmberFF /kBT , which is 1.667EAmberFF , for

AMBER energies expressed in kcal/mol. (This “theoretical” value does not necessarily

provide the best weighting of restraint and force field energies, but has been found to

work fairly well for proteins, where the exact value of wc is not critical to the results.

The phenix.refine code can also search for optimized weights, based on some empirical

criteria, but this option was not explored here.)

2.3 Methods

2.3.1 Structure selection

In order to have a robust set of RNA structures to investigate and on which to test

the PHENIX/AMBER interface, we started with the set of structures used to test ER-

RASER. After removing structures that were difficult to build due to size or difficult to

parameterize units (ribosomal subunits, osmium-ion-containing structure, other build-

ing issues) and adding in 3 structures of an RNA mimic of the sarcin/ricin domain of the
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23S - 28S ribosomal RNA, we arrived at a set of 21 structures ranging in resolution from

1.04 to 3.6 Å. The set includes the domain previously mentioned, as well as riboswitches,

pseudoknots, ribozymes, and viral RNA domains, and some of the structures include

the U1 small nuclear ribonucleoprotein A. For a description of each structure, see Table

2.1.

2.3.2 Structure preparation

Once the structures were chosen, they had to be prepared for refinement and use with

AMBER’s sander utility for minimization. This involves creating parameter and co-

ordinate files for use in sander, a molecular dynamics engine within AMBER. This is

done through the AmberPrep utility of PHENIX (assuming PHENIX has already been

installed), preparing parameter and coordinate files for the whole unit cell, while also

minimizing all atoms of the unit cell for 50 steps to straighten out any horrible geometric

issues, as well as hopefully moving the structure away from any local minima and to a

point where refinement could take the structure to the global minimum.

Before AmberPrep could be run, some of the structures had to be edited in order

to avoid failures of the AmberPrep process. Any structures with 5’-terminal guanosine-

monophosphates, labeled as a regular G, had to be labeled as GMP in order to be built

with the phosphate group, as opposed to a typical 5’-guanosine without the phosphate.

All 5’-terminal monophosphates were built into a new library as a part of this work and

this library is now distributed as a part of the AmberTools20 package. Also, mol2 and

frcmod files for 5’-terminal GTP and GDP were built using parameters from Heather

Carlson[74]. Other modified residues (5BU, CCC, etc.) were built in library or mol2

files to allow for the proper parameters and proper connections (took CCC, built as a

noncovalent ligand, and added proper connect atoms to connect to previous residue,

etc.). Charges were also checked and modified, especially in modified terminal residues,

to allow for integral charges on residues or, in the case of terminal residues, pairs of

residues. Structures with modified residues and ligands are identified in Table 2.1.
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PDB ID Description HETATMs
1q9a sarcin/ricin domain from E.coli 23S rRNA
1y0q active group I ribozyme-product complex SO4, SPK
2a43 luteoviral pseudoknot
2gdi thiamine pyrophosphate-specific riboswitch CCC, GTP, TPP
2gis SAM riboswitch mRNA regulatory element GMP, IRI, SAM
2oiu L1 ribozyme ligase circular adduct
2pn3 Hep C IRES subdomain 2a 5BU
2pn4 Hep C IRES subdomain 2a 5BU
2qus hammerhead G12A mutant pre-cleavage GTP
2ygh SAM-I riboswitch, with S-adenosylmethionine GMP, SAM
3bo3 active site following exon ligation by group I intron A23, GTP, U1
3e5e SMK box (SAM-III) riboswitch with SAH GTP, SAH
3f2q FMN riboswitch with FMN CCC, FMN, GTP
3gx5 T. tencongensis SAM-I riboswitch GMP, SAM
3iwn bacterial c-di-GMP riboswitch C2E, U1
3mxh c-di-GMP riboswitch from V. cholerae C2E, GTP, U1
3r4f prohead RNA
3tzr riboswitch complex from Hep C IRES SO4, SS0
480d sarcin/ricin domain from E. coli 23 S rRNA
483d sarcin/ricin domain from E. coli 23 S rRNA
4fe5 xpt-pbuX guanine riboswitch aptamer domain ACT, HPA, NCO

Table 2.1: This table shows the PDB ID, name, and chemical chemical component
IDs of the noncovalent ligands, modified residues, or solvent molecules; the 3bo3, 3iwn,
and 3mxh structures also include U1 proteins. Only 6 structures in the data set do
not contain any of these molecules that need to be built with parameters not found
explicitly within the AMBER force fields (1q9a, 2a43, 2oiu, 3r4f, 480d, and 483d).

Two structures had specific problems to address:

• 2oiu, the L1 ribozyme ligase circular adduct, required the creation of a myuclinks

file used in the tleap utility of AMBER during the AmberPrep process to build

the parameters of the structure and properly connect atoms to each other. In this

myuclinks file, explicit bonds between the first and last residue in each chain had

to be made in order to create the circular adduct, and the terminal residues had

to be removed from the RNA force field being used to prevent them being built

without these connections.

• With 3f2q, the flavin mononucleotide riboswitch bound to its ligand, a TER card

had to be placed in the sequence where there is a gap in the density, and the

use_reduce=False parameter had to be used in the AmberPrep utility to prevent
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a hydrogen from being added to O3’ of the residue on the 5’-end of the gap and

treating the residue as a 3’-terminal residue. This was also true for 1y0q.

• CIF files were also developed for any residues not included in PHENIX’s data to

provide energy terms within PHENIX. One specific residue where this is the case

is GMP, which needed a specific CIF file developed for it as a terminal residue

because it contains a proton on the phosphate group not found in the noncovalent

ligand form of the molecule.

Once everything was prepared properly regarding any modified residues that needed

to be bound in the RNA chain, ’phenix.AmberPrep xxxx.pdb minimise=amber_all ’ was

run (with the added use_reduce=False parameter in the cases mentioned) to build the

parameter, coordinate, and order files needed to provide the required files for AMBER

within the PHENIX refinement run, as well as providing a connection between the way

AMBER and PHENIX each like to order atoms within residues. The AmberPrep utility

runs the structure through pdb4amber to remove any multiple conformers and check for

gaps in the structure and to determine residues that are not a part of protein or nucleic

acid so that those can then be built (if normal) by antechamber/eLBOW. The AmberPrep

script then creates an input script for tleap and runs it to fill out all the hydrogens

and missing heavy atoms for residues and to build the parameter and coordinate files

for the asymmetric unit. The coordinate file is then passed through ChBox to make

sure the unit cell parameters at the end of the coordinate file are accurate. Then,

the asymmetric unit is passed through UnitCell to propagate the asymmetric unit into

a full unit cell using the symmetry operations provided in the PDB header, and the

process is repeated (without the need to build the ligands again) for the unit cell, after

which the 50-step minimization is performed, and the output coordinate file is combined

with the parameter file using ambpdb to create a PDB file, which is pared down to the

asymmetric unit, providing the 4phenix_xxxx.pdb file used as the input in refinement,

along with the unit cell parameter (4amber_xxxx.prmtop) and minimized coordinate

(4amber_xxxx.rst7 ) files.
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2.3.3 Refinement

As the focus of this chapter is to test the effectiveness of AMBER restraints within

PHENIX refinement compared to conventional Engh and Huber restraints, all of the

prepared structures were refined in PHENIX with parallel refinements with and without

AMBER restraints. First, a conventional refinement was performed with a flag to

generate r-free flags for each structure in order to provide a reflections file with all of the

needed r-free flags built in. This output mtz file was then used as the input reflection

data for the parallel refinements for that particular structure. Each refinement script

contained the same parameters other than whether or not AMBER restraints were called

for. Each refinement was 10 macrocycles long, and called for refinement of individual

coordinates in reciprocal space, individual B-factors, and occupancies. In the AMBER

refinements, the script contained the command line arguments for the input parameter,

coordinate, and order files, as well the argument to print AMBER energies in the output

log file, as well as the set up of the weighting of the AMBER restraints compared to

the reflection data (wxc fixed to 1.0, wc set to 1.667; indicated in Equation 2). For

the nonstandard residues and ligands, the CIF files had to be included as input files on

the first line of the command in the script. In conventional refinements for 2oiu and

3f2q, custom restraint files had to be made to induce bonding of the terminal residues

to form the circular ligase and to bond the terminal GTP to the rest of the structure,

respectively.

2.3.4 Analysis

In order to compare the results of refinement with and without AMBER restraints, a set

of statistics were chosen as comparison points: structure factors, clashscore, geometric

outliers, suiteness score, and AMBER energy. Clashscores are per-1000-atom numbers

of strong clashes between atoms in the structures[26]. The geometric outliers include

bond length, bond angle, sugar pucker, and torsion suite outliers. While bond length

and bond angle outliers require no definition here, sugar puckers and torsion suites bear

explanation. The ribose sugars in RNA nucleotides have two main types of pucker, as
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they are not planar molecules. These are C3’-endo and C2’-endo[26, 81], and outliers

are defined in MolProbity when there are outliers in e or d torsion angles, or if “the

perpendicular distance between the C1’-N1/9 glycosidic bond vector and the following

(3’) phosphate” is less than 2.9 Å for C3’-endo puckers and is greater than 2.9 Å for C2’-

endo puckers (as the opposite is correlated to the proper puckers: >2.9 Å for C3’-endo

and <2.9 Å for C2’-endo)[26]. Regarding torsion suites, it has been found that the RNA

backbone torsions, when analyzed from sugar to sugar (7 torsions, d-e-z-a-b-g-d), result

in a set of “distinct ’rotameric’ backbone conformers”[26], or torsion suites[81, 101, 26].

The outliers and suiteness score are determined by the Suitename utility. Outliers are

suites that exist outside the boundary parameters of the 7 torsions within the any of

the defined suite conformers[101, 26, 111]. There are differing numbers of consistent

suite conformers determined through analysis of deposited structural data, from 42 to

52 [81, 101, 26, 111]. Finally, the suiteness score is a composite of the suiteness scores

for each torsion suite, where 1.0 is a perfect fit to the mean torsion angles for the

labeled conformer, and scores run all the way to 0.01 at the extremes of the range for

each torsion within a suite. A suiteness score of 0 results from torsions outside of any

suite conformer’s ranges, and, thus, indicates an outlier, or a suite that has yet to be

discovered as a consistent suite within the data [101].

In order to get to these statistics, only a few things needed to be done. To get all

of these data points other than the AMBER energy, MolProbity[35] was called from

within the PHENIX command line, with ’phenix.molprobity output.pdb *.cif ’ (if there

were any CIF files for ligands needed to perform the refinement; make sure there are no

files with the .cif file name ending in the directory other than those for ligands, etc.;

alternatively, each .cif file can be named individually in the command). The output

contains a python file to point out clashes, etc., in coot, and a text file with information

about the geometry outliers and other statistics. All of the statistics we were interested

in were taken from this output file. The structure factors and clashscore were found in

the summary at the end of the file, while the geometry outliers and suiteness score were

all found in the RNA validation portion of the output file. In the case of a structure

where there were no torsion suite outliers, phenix.rna_validate was run in order to get
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the suiteness score because it did not show up in the MolProbity output file unless there

were suite outliers.

To get the AMBER energy, one could find energy values throughout the output of

the AMBER refinement. However, in order to get an energy value for the conventional

refinement output structure, as well as providing a consistent way to get energy values

for all structures, the output structures were stripped of their water molecules, mono-

and divalent cations, and fairly simple anions (sulfate, acetate, etc.). The structures

were also stripped of their hydrogen atoms using pdb4amber, as the riding hydrogens

consistently provided large energy penalties. Then, these stripped structures were run

through AmberPrep with 100 steps of minimization with the minimise=amber_h flag,

with adjustment of the parameters in the AmberPrep.py file to restrain the heavy atoms

using ibelly=1 as opposed to ntr restraints. (The standard build of the AmberPrep.py

code uses standard harmonic potential restraints to hold the chosen atoms in very

similar locations, but as we did not want a change of heavy atom location at all, the

code was changed to use belly-type dynamics to hold the heavy atoms in place without

any movement at all. The minimise=amber_h flag calls for only hydrogen atoms to be

minimized.) The unit cell parameter and coordinate files made from this AmberPrep

were used to run a 0-step MD run in sander with periodic 3D-RISM. Running sander

with a step number of 0 allows for a calculation of the energy at the beginning of

the “run,” without any MD being performed. The 3D-RISM calculation allows for the

screening out of some of the electrostatic energy by the calculated solvent density. This

helps to focus the results on the macromolecular contribution to the energy and provide

a true representation of the solvent electrostatics, as the electrostatics resulting directly

from the refinement involve only a few solvent molecules deposited in the structures,

and thus do not provide an accurate description of the electrostatics in the system

and the interaction between the macromolecules and the solvent in the unit cell. Each

component of the energy as printed out in the sander output of each method had the

value for the conventional refinement subtracted from the AMBER-restrained refinement

value and was then divided by the number of macromolecular residues in the structure

to provide a comparative, normalized per-residue value. The more negative the value,



16

the more energetically favorable the AMBER-refined structure was. Further analysis

was performed by visual analysis of the structures.

2.4 Data and discussion

2.4.1 Example with 2oiu

For first-time users of the command-line interface for PHENIX, the process of building

and refining a structure could easily be confusing. Also, some modifications need to

be made with certain structures before they go through this process. In order to aid

in reproducibility of results and provide instruction for further use of this interface, a

structure had to be chosen as an example. PDB 2oiu[102] is the L1 Ribozyme Ligase

circular adduct, which required extra work to be performed to make sure the circular

nature of the RNA molecules was retained. Thus, it made a perfect choice for a demon-

stration. The following is a walkthrough of the entire process used in this chapter for

building and refining this structure.

2.4.1.1 Accessing, modifying, and creating needed files

The PDB file and mtz files were fetched from the PDB using the phenix.fetch_pdb

command with the --mtz flag in order to download the reflections file. This could have

also been done by accessing www.rcsb.org on the Internet, searching for the structure

in question via its PDB ID, clicking on the “Download Files” section, and finding the

desired files, but the command was used both to keep in line with the command-line

nature of the work, and because of the simplicity of using a single command. The

point-and-click method of downloading is useful if an error occurs with your terminal’s

connection to the PDB and your work is time-sensitive. After running the fetch_pdb

command, the working directory contained the deposited PDB file for 2oiu as well as

the experimental reflections file.

jgg75@casegroup5:~/2oiu/phenix_refinement/example$ phenix.fetch_pdb 2oiu --mtz

Model saved to /home/jgg75/2oiu/phenix_refinement/example/2oiu.pdb
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...

Converted structure factors saved to 2oiu.mtz

Then, because the ligase structure is a circular adduct, the leaprc.RNA.OL3 file, the

file that sets up the RNA force field used by default in the PHENIX/AMBER interface

and found in $PHENIX/conda_base/dat/leap/cmd/, was modified to remove the

residue name mapping for 5’- and 3’-terminal residues. This way, the “terminal”

residues, called such to indicate they are the residues at the beginning and end of the

chain designation in the PDB file, would not be built as actual terminal residues, since

there is no beginning or end of a circle. The following is the section of the standard

leaprc.RNA.OL3 file that enumerates the names for terminal RNA nucleotides.

#

# Define the PDB name map for the nucleic acids

#

addPdbResMap {

{ 0 "G" "G5" } { 1 "G" "G3" }

{ 0 "A" "A5" } { 1 "A" "A3" }

{ 0 "C" "C5" } { 1 "C" "C3" }

{ 0 "U" "U5" } { 1 "U" "U3" }

In the modified leaprc.RNA.OL3, which was copied into the working directory to

supersede the standard file when loaded into LEaP (via tleap), the same section was

edited to appear as follows to avoid the building of terminal nucleotides.

#

# Define the PDB name map for the nucleic acids

#

addPdbResMap {

{"G" "G" }

{"A" "A" }

{"C" "C" }

{"U" "U" }

Without the residue mapping for the terminal residues, those “terminal” residues are

read as mid-chain residues with connections at both the phosphorus and O3’ atoms.
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The other key to building the circular RNA molecule is explicitly connecting the “end”

residue’s O3’ atom to the phosphorus of the “beginning” residue. The myuclinks file

was developed to force the bonding of the 5’- and 3’-“ends” of the RNA molecules to

make them circular within the AmberPrep process. If a file exists within the working

directory with the filename myuclinks, it will be identified by the AmberPrep run and

included in the tleap input file for building of the unit cell parameter and coordinate

files. This includes any special commands that one would like to include, such as the 4

bond commands below, used to connect the “head” and “tail” of the 4 RNA molecules

in the unit cell.

logFile leap.log

source leaprc.protein.ff14SB

source leaprc.DNA.OL15

source leaprc.RNA.OL3

source leaprc.water.tip3p

source leaprc.gaff2

set default nocenter on

set default reorder_residues off

x = loadpdb 2oiu_4tleap_uc.pdb

bond x.71.O3’ x.1.P

bond x.142.O3’ x.72.P

bond x.246.O3’ x.176.P

bond x.317.O3’ x.247.P

set x box { 45.29 100.018 71.93 }

saveAmberParm x 2oiu_uc.prmtop 2oiu_uc.rst7

quit

2.4.1.2 Building of the structure

Once any pre-building preparation was finished, the actual building of the structure

was performed by running the phenix.AmberPrep command with the flag calling for

AMBER minimization of all atoms. The following is the output, which shows the

whole process of the production of the 4phenix_2oiu.pdb file, as well as the

4amber_2oiu.prmtop, 4amber_2oiu.rst7, and 4amber_2oiu.order files as described in

subsection 2.3.2:
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jgg75@casegroup5:~/2oiu/phenix_refinement/example$

phenix.AmberPrep 2oiu.pdb minimise=amber_all

==================================================

Running pdb4amber on 2oiu.pdb

==================================================

==================================================

Summary of pdb4amber for: 2oiu.pdb

===================================================

----------Chains

The following (original) chains have been found:

P

Q

---------- Alternate Locations (Original Residues!))

The following residues had alternate locations:

None

---------- Missing heavy atom(s)

None

==================================================

Setting up library files for non-standard residues

==================================================

==================================================

Preparing asu files and 4phenix_2oiu.pdb

==================================================

| ~> /home/jgg75/phenix-1.16-3546/build/../conda_base/bin/tleap

-f 2oiu_asu_tleap_input_run

Checking output filenames

file : 2oiu_asu.prmtop

file : 2oiu_asu.rst7

| ~> /home/jgg75/phenix-1.16-3546/build/../conda_base/bin/ChBox

-c 2oiu_asu.rst7 -o 2oiu_asu.rst7 -X 45.29 -Y 100.018 -Z 71.93 -al 90.0 -bt 104.42 -gm 90.0

============================================================

Preparing unit cell files: 4amber_2oiu.prmtop and 4amber_2oiu.rst7

============================================================

==================================================

Running pdb4amber on 2oiu_4tleap_uc1.pdb

==================================================

==================================================

Summary of pdb4amber for: 2oiu_4tleap_uc1.pdb

===================================================

----------Chains

The following (original) chains have been found:

P

Q
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a

b

c

d

e

---------- Alternate Locations (Original Residues!))

The following residues had alternate locations:

None

---------- Missing heavy atom(s)

None

| ~> /home/jgg75/phenix-1.16-3546/build/../conda_base/bin/tleap

-f 2oiu_uc_tleap_input_run

Checking output filenames

file : 2oiu_uc.prmtop

file : 2oiu_uc.rst7

| ~> /home/jgg75/phenix-1.16-3546/build/../conda_base/bin/ChBox

-c 2oiu_uc.rst7 -o 2oiu_uc.rst7 -X 45.29 -Y 100.018 -Z 71.93 -al 90.0 -bt 104.42 -gm 90.0

4amber_2oiu.prmtop

==================================================

Minimizing input coordinates.

==================================================

| ~> /home/jgg75/phenix-1.16-3546/build/../conda_base/bin/sander

-O -i 2oiu_amber_all.in -p 4amber_2oiu.prmtop -c 4amber_2oiu.rst7

-o 2oiu.min.out -ref 4amber_2oiu.rst7 -r 4amber_2oiu.min.rst7

checking special positions in 4phenix_2oiu.pdb

==================================================

Done. Four new files have been made:

4phenix_2oiu.pdb

4amber_2oiu.rst7

4amber_2oiu.prmtop

4amber_2oiu.order

==================================================

Example

phenix.refine 4phenix_2oiu.pdb use_amber=True \

amber.topology_file_name=4amber_2oiu.prmtop \

amber.coordinate_file_name=4amber_2oiu.rst7 \

amber.order_file_name=4amber_2oiu.order \

....(other refinement keywords here).....

While pre-building preparation was made to properly build the circular RNA

molecules, it was still important to check that the bonds were actually made in the

output structure files. If not, the O3’ and P atoms in the “tail” and “head” residues
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would be free to move away from each other, and the structure would not be properly

refined. To check for the existence of these bonds, parmed was run on the unit cell

prmtop and rst7 files. The printBonds command was performed on all O3’ and P

bonds, and the bonds in question appeared in the output (truncated below; the bonds

in question have P as atom 1), so the workflow was continued.

jgg75@casegroup5:~/2oiu/phenix_refinement/example$ parmed 4amber_2oiu.prmtop

ParmEd: a Parameter file Editor

Loaded Amber topology file 4amber_2oiu.prmtop

Reading input from STDIN...

> loadCoordinates 4amber_2oiu.rst7

Adding coordinates to 4amber_2oiu.prmtop from 4amber_2oiu.rst7

> printBonds @O3’ @P

Atom 1 Atom 2 R eq Frc Cnst Distance Energy

34 O3’ ( OS) 35 P ( P) 1.6100 230.0000 1.6051 0.0055

1 P ( P) 2297 O3’ ( OS) 1.6100 230.0000 1.5985 0.0305

68 O3’ ( OS) 69 P ( P) 1.6100 230.0000 1.6049 0.0061

101 O3’ ( OS) 102 P ( P) 1.6100 230.0000 1.6007 0.0200

132 O3’ ( OS) 133 P ( P) 1.6100 230.0000 1.5927 0.0687

...

2298 P ( P) 4594 O3’ ( OS) 1.6100 230.0000 1.5592 0.5945

...

4680 P ( P) 6976 O3’ ( OS) 1.6100 230.0000 1.5985 0.0305

...

6977 P ( P) 9273 O3’ ( OS) 1.6100 230.0000 1.5592 0.5945

...

> quit

Done!

A conventional refinement was performed to develop an mtz file with r-free flags. As

the downloaded reflections files for most of the chosen structures did not include r-free

flags, these were generated for each structure using the below input file. The

“refinement.input.xray_data.r_free_flags.generate=True” option generated those

r-free flags and put them into the output mtz file with the prefix “cdl_start”. This file

was then moved to 2oiu_data.mtz right after the generation of the flags at the

beginning of the refinement using the mv command, as shown in the input file,

subsequent running of the input file, and the selected portions of the output:

run_cnew.sh
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#!/bin/sh

# "standard" CDL refinement

if [ "$#" -ne 1 ]; then

echo "Usage: run_cdl.sh <pdb-id>"

exit 1

fi

phenix.refine \

4phenix_$1.pdb $1.mtz \

c_beta_restraints=False discard_psi_phi=False \

strategy=individual_sites+individual_adp+occupancies \

flip_symmetric_amino_acids=True \

refinement.target_weights.optimize_xyz_weight=True \

refinement.input.xray_data.r_free_flags.generate=True \

refinement.main.number_of_macro_cycles=10 \

prefix=cdl_start serial=1 \

write_geo=False cdl=True

/bin/mv cdl_start_data.mtz $1_data.mtz

jgg75@casegroup5:~/2oiu/phenix_refinement/example$ ./run_cnew.sh 2oiu

================================== X-ray data =================================

...

Generating a new array of R-free flags.

Miller array info: R-free-flags

Observation type: None

Type of data: bool, size=19049

Type of sigmas: None

Number of Miller indices: 19049

Anomalous flag: False

Unit cell: (45.29, 100.018, 71.93, 90, 104.42, 90)

Space group: P 1 21 1 (No. 4)

Systematic absences: 0

Centric reflections: 691

Resolution range: 31.3421 2.60002

Completeness in resolution range: 0.994155

Completeness with d_max=infinity: 0.993429

Test (R-free flags) flag value: 1

Number of work/free reflections by resolution:

work free %free

bin 1: 31.3444 - 5.5920 [1886/1946] 1707 179 9.5%

bin 2: 5.5920 - 4.4426 [1918/1936] 1719 199 10.4%

bin 3: 4.4426 - 3.8822 [1913/1917] 1719 194 10.1%

bin 4: 3.8822 - 3.5278 [1922/1924] 1737 185 9.6%

bin 5: 3.5278 - 3.2752 [1890/1896] 1695 195 10.3%

bin 6: 3.2752 - 3.0823 [1913/1926] 1733 180 9.4%
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bin 7: 3.0823 - 2.9280 [1914/1916] 1711 203 10.6%

bin 8: 2.9280 - 2.8007 [1878/1880] 1694 184 9.8%

bin 9: 2.8007 - 2.6929 [1907/1909] 1718 189 9.9%

bin 10: 2.6929 - 2.6000 [1908/1911] 1704 204 10.7%

overall 17137 1912 10.0%

...

No array of experimental phases found.

Writing MTZ file: /home/jgg75/2oiu/phenix_refinement/example/cdl_start_data.mtz

...

A look at the files in the working directory shows a cdl_start_data.mtz that is an

output file, but 2oiu_data.mtz appears at the beginning of the refinement run,

showing that it is the input reflections file with the r-free flags generated:

-rw-r--r-- 1 jgg75 case 369885 Oct 22 14:10 4phenix_2oiu.pdb

-rw-r--r-- 1 jgg75 case 585 Oct 22 14:27 parmed.log

-rw-r--r-- 1 jgg75 case 459656 Oct 22 14:52 2oiu_data.mtz

-rw-r--r-- 1 jgg75 case 33040 Oct 22 14:52 cdl_start_001.eff

-rw-r--r-- 1 jgg75 case 383872 Oct 22 15:33 cdl_start_001.pdb

-rw-r--r-- 1 jgg75 case 423733 Oct 22 15:33 cdl_start_001.cif

-rw-r--r-- 1 jgg75 case 1232480 Oct 22 15:34 cdl_start_001.mtz

-rw-r--r-- 1 jgg75 case 33218 Oct 22 15:34 cdl_start_002.def

-rw-r--r-- 1 jgg75 case 108744 Oct 22 15:34 cdl_start_001.log

This mtz file was then used as the input mtz file for the parallel AMBER and conven-

tional refinements to provide consistent reflection data and proper r-free flags.

2.4.1.3 Parallel refinements with AMBER and conventional geometric re-

straints

As the focus of this chapter was to compare the resultant structures from refinement

with AMBER force field restraints and conventional restraints, the next step was to

perform those refinements with the output files from AmberPrep. The AMBER

refinement was run using the following input file. This script is set up to allow running

of subsequent runs using the previous AMBER refinement’s output PDB file as the

input for the next run by changing the serial number of the run. It uses the mtz file

with the generated r-free flags as the common reflections file with the conventional

refinement, and calls for use of AMBER restraints, and thus sander minimization,
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using the 4amber_2oiu.prmtop and 4amber_2oiu.rst7 files to provide AMBER atom

types and coordinates for use in sander. It also calls for the printing of AMBER

energies from within each cycle of sander minimization. To run the refinement, the

command at the bottom of this section was executed, where 2oiu is the PDB ID used

to call for use of the proper input files in this generalized script, and 1 is the serial

number, making sure that the script calls for a first refinement of 2oiu using the

4phenix_2oiu.pdb file as the input file and results in amber_001.pdb as its output

structure file.

#!/bin/bash

# run a "standard Amber refinement

if [ "$#" -ne 2 ]; then

echo "Usage: run_amber.sh <pdbid> <serial no.>"

exit 1

fi

new=$(printf ’%03d’ "$2")

old=$(printf ’%03d’ $(($new - 1)) )

if [ "$new" -eq 1 ]; then

inpdb="4phenix_$1.pdb"

else

# inpdb="amber_$old.pdb"

inpdb="4phenix_$1.pdb"

fi

phenix.refine \

$inpdb $1_data.mtz \

c_beta_restraints=False discard_psi_phi=False \

strategy=individual_sites+individual_adp+occupancies \

refinement.main.number_of_macro_cycles=10 \

flip_symmetric_amino_acids=True nqh_flips=True \

refinement.target_weights.optimize_xyz_weight=False \

fix_wxc=1.0 wc=1.6667 \

use_amber=True \

amber.topology_file_name=4amber_$1.prmtop \

amber.coordinate_file_name=4amber_$1.rst7 \

amber.order_file_name=4amber_$1.order \

print_amber_energies=True \

prefix=amber serial=$new \

write_geo=False --overwrite cdl=True

grep ’Amber total’ amber_$new.alog | tail -1 > lastenergy

/bin/mv amber_$new.alog amber_$new.log
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cat lastenergy >‌> amber_$new.log

/bin/rm -f lastenergy

jgg75@casegroup5:~/2oiu/phenix_refinement/example$ ./run_amber.sh 2oiu 1

The following is an excerpt from the AMBER refinement output log. It shows the

main difference in AMBER and conventional refinements: the use of sander in

coordinate refinement. The AMBER energies for each minimization step in the first

macrocycle are shown, as well as the starting r-factors and clashscore, etc.

============================== Initializing AMBER =============================

topology : 4amber_2oiu.prmtop

atom order : 4amber_2oiu.order

coordinates : 4amber_2oiu.rst7

Amber total: -52743.46 bonds (n=10080): 662.20 angles (n=17736): 2057.28

diheds (n=36328): 6480.96 elec.: -58554.83 vdW: -3389.07

...

====================== XYZ individual (reciprocal space) ======================

R-FACTORS RMSD CLASH RAMA ROTA CBET WEIGHT TARGETS

work free delta bonds angl data restr

Amber total: -52743.46 bonds (n=10080): 662.20 angles (n=17736): 2057.28

diheds (n=36328): 6480.96 elec.: -58554.83 vdW: -3389.07

27.10 27.20 0.10 0.015 2.2 1.7 0.0 0.0 0 none 0.077 -0.6738

...

Amber total: -54417.19 bonds (n=10080): 624.96 angles (n=17736): 2192.23

diheds (n=36328): 6603.02 elec.: -60527.26 vdW: -3310.15

26.38 28.20 1.81 0.015 2.5 1.1 0.0 0.0 0 1.000 0.071 -0.7123

Legend:

- first line corresponds to starting state (before refinement)

- R-factors reported in percent

- delta is Rfree-Rwork in percent

- CLASH is all-atom MolProbity clashscore

- ROTA is percent of side-chain rotamer outliers

- RAMA is percent of Ramachandran plot outliers

- CBET is number of Cbeta deviations

- WEIGHT is relative weight between X-ray (or neutron) target and restraints

- TARGETS: the values of X-ray (or neutron) and restraints target functions

In Figure 2.1, the graph shows the AMBER total energy value found in the AMBER

refinement output log over each step of minimization throughout 10 macrocycles of dif-

fering refinements (a couple of the “steps” are just the statement of the starting energy
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and the ending energies at the beginning and end of the refinement). While this particu-

lar refinement used a combination of least-squares and maximum-likelihood targets, the

graphs in the figure used all least-squares, all maximum-likelihood, and least-squares

with optimization of the target weights, respectively. (Least-squares target functions

are used in refinements that seek to minimize the squared weighted difference between

experimental and model structure factors[17, 88, 1], while maximum-likelihood targets

are used to refine structures to a point that maximizes the likelihood of having observed

the experimental data given the structural model[88, 1]). In each case, the spikes at

the beginning of each macrocycle are due to PHENIX’s adjustment of hydrogens, which

usually does not handle hydrogens in an energetically favorable manner. Also, with the

weight optimization graph, the numerous spikes are due to each macrocycle involving

running minimization with differing settings for the weighting options to find the best

structure.
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Figure 2.1: Graphs of the AMBER total energy throughout refinements of 2oiu using
least-squares, maximum-likelihood, and least-squares with weight optimization mini-
mizers. The energy appears to reach the lowest value with least-squares with weight
optimization, but takes a lot longer to complete refinement.

Among these targets, both of the least-squares refinements result in much lower ener-

gies than the maximum-likelihood refinement does. This occurs with a large trade-off in

r-factors, as the r-work/r-free for the maximum-likelihood refinement is 0.1913/0.2409,

while the lowest for either least-squares run is 0.2204/0.2589 for the non-weight-optimization

refinement. This is likely due to the setup for the wc variable: this appears to work well

for maximum-likelihood while not doing as well for least-squares refinements. In fact,

in the standard AMBER refinements used in this chapter, the majority of macrocycles
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use maximum-likelihood and wc=1.667.

The ending energies for all three refinements in the figure are only reached after 8-10

macrocycles, indicating that 5 macrocycles would not be a good standard number of

macrocycles to use with AMBER force field restraints in order to reach convergence.

The 10-macrocycle standard used in this chapter appears to be a good place to start.

The energy profile for the weight optimization run results in a similar endpoint as least-

squares with a fixed wc value, but with an even lower ending energy, but higher r-factors.

This weight optimization works to find sets of weight values that optimize multiple

factors, including r-factors and geometric outliers. This appears to also optimize the

ability of the least-squares target to lead to a lower minimum.

The next step, although it was usually run simultaneously, was to perform the

conventional refinement of the same structure. Because the bonds completing the

circle of the RNA molecules were not stored in the PDB file but in the prmtop file,

which is not used as input for the conventional refinement, a custom restraints file had

to be created and included in the input to force those bonds to exist and keep the

atoms within the proper distance from each other. The restraints file (2oiu.eff) is seen

below. Unlike the myuclinks file, this file only includes 2 bond additions, because the

input PDB file only contains the asymmetric unit.

refinement.geometry_restraints.edits {

bond {

action = *add

atom_selection_1 = chain P and resid 1 and name P

atom_selection_2 = chain P and resid 71 and name O3’

distance_ideal = 1.61

sigma = 0.015

slack = None

}

}

refinement.geometry_restraints.edits {

bond {

action = *add

atom_selection_1 = chain Q and resid 1 and name P

atom_selection_2 = chain Q and resid 71 and name O3’

distance_ideal = 1.61

sigma = 0.015
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slack = None

}

}

The conventional refinement script below calls for the same parameters of refinement

as the AMBER refinement, other than the use of AMBER restraints and the fixed

weighting of the geometric restraints versus the x-ray data. As mentioned above, the

other main difference here is that the prmtop and rst7 files were not used as input for

conventional refinement.

#!/bin/sh

# "standard" CDL refinement

if [ "$#" -ne 1 ]; then

echo "Usage: run_cdl.sh <pdb-id>"

exit 1

fi

phenix.refine \

4phenix_$1.pdb $1_data.mtz 2oiu.eff\

c_beta_restraints=False discard_psi_phi=False \

strategy=individual_sites+individual_adp+occupancies \

flip_symmetric_amino_acids=True nqh_flips=True \

refinement.main.number_of_macro_cycles=10 \

prefix=cdl_restrained serial=1 \

write_geo=False cdl=True

The command below runs the conventional refinement script. As with the AMBER

refinement, 2oiu is used as an argument along with the command running the script.

Below that is the coordinate refinement portion of the first macrocycle from the

conventional refinement output log file. No AMBER energies are printed, as there is

no call to sander for minimization. While the starting structures are the same for

AMBER and conventional refinements (the r-factors, clashscore, etc., are all the

same), the targets themselves are already different at the beginning, likely due to the

difference in geometric restraints and the different weighting scheme used in the

AMBER refinement. Also, the ending structures in the macrocycle were already

noticeably different, as observed through the r-factors.

jgg75@casegroup5:~/2oiu/phenix_refinement/example$ ./run_cdl.sh 2oiu

...
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====================== XYZ individual (reciprocal space) ======================

R-FACTORS RMSD CLASH RAMA ROTA CBET WEIGHT TARGETS

work free delta bonds angl data restr

27.10 27.20 0.10 0.015 2.2 1.7 0.0 0.0 0 none 0.077 1.2702

25.21 27.28 2.07 0.009 1.4 11.1 0.0 0.0 0 9.170 0.065 0.0943

Legend:

- first line corresponds to starting state (before refinement)

- R-factors reported in percent

- delta is Rfree-Rwork in percent

- CLASH is all-atom MolProbity clashscore

- ROTA is percent of side-chain rotamer outliers

- RAMA is percent of Ramachandran plot outliers

- CBET is number of Cbeta deviations

- WEIGHT is relative weight between X-ray (or neutron) target and restraints

- TARGETS: the values of X-ray (or neutron) and restraints target functions

2.4.1.4 Geometric analysis of the parallel refinements

The resulting output structures from the parallel AMBER and conventional

refinements were then analyzed using phenix.molprobity to look at the RNA geometric

outliers and more general PDB statistics. If the structure contained modified residues

or ligands, the CIF files would need to be included in the command line before the

“>”. As there were no ligands or modified residues in this structure, this option was

not used. The selected sections of the output shown below are the sections that were

focused on for comparison of the refinement methods across the data set. The

geometric outliers examined were only those found in the RNA via the RNA validation

portion. These could also be found by using phenix.rna_validate, but that command’s

output does not also include the overall PDB statistics. As seen below, in 2oiu, the

bond length, bond angle, and pucker outliers were more numerous in AMBER

refinement, but the torsion suites were actually improved in the AMBER-refined

structure as compared to conventional refinement. Within the PDB statistics, the

r-factors were fairly similar, but the AMBER clashscore was much improved over that

of the conventionally refined structure.

jgg75@casegroup5:~/2oiu/phenix_refinement/example$

phenix.molprobity amber_001.pdb > amber.out

...
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================================ RNA validation ===============================

----------Backbone bond lengths----------

...

10/1986 bond outliers present

----------Backbone bond angles----------

...

225/3116 angle outliers present

----------Sugar pucker----------

...

3/142 pucker outliers present

----------Backbone torsion suites----------

...

10 suites triaged and 0 incomplete leaving 132 suites

19/142 suite outliers present

Average suiteness: 0.528

=================================== Summary ===================================

Ramachandran outliers = 0.00 %

favored = 0.00 %

Rotamer outliers = 0.00 %

C-beta deviations = 0

Clashscore = 1.97

RMS(bonds) = 0.0188

RMS(angles) = 2.84

MolProbity score = 2.11

Resolution = 2.60

R-work = 0.1943

R-free = 0.2388

Refinement program = PHENIX

jgg75@casegroup5:~/2oiu/phenix_refinement/example$

phenix.molprobity cdl_restrained_001.pdb > cdlrest.out

================================ RNA validation ===============================

----------Backbone bond angles----------

...

1/3116 angle outliers present

----------Backbone torsion suites----------

...

13 suites triaged and 0 incomplete leaving 129 suites

22/142 suite outliers present

Average suiteness: 0.522

=================================== Summary ===================================

Ramachandran outliers = 0.00 %

favored = 0.00 %

Rotamer outliers = 0.00 %



31

C-beta deviations = 0

Clashscore = 9.13

RMS(bonds) = 0.0083

RMS(angles) = 1.57

MolProbity score = 2.64

Resolution = 2.60

R-work = 0.1945

R-free = 0.2320

Refinement program = PHENIX

2.4.1.5 Energy Analysis

As the addition of energetic terms to the restraints is the most important

improvement provided by interfacing PHENIX and AMBER, it was important to

compare the energies of the output structures. In order to do so, the output structures

had the water molecules and magnesium ions removed (and all CONECT cards, etc.,

that referenced them), and then also the hydrogen atoms. The riding hydrogens used

in conventional refinement were found to be very energetically unfavorable, resulting in

very large differences between refinement types. As hydrogens are not placeable via

electron density in all but the very highest resolution structures, it is fair to say that

riding hydrogens are mainly used to minimize r-factors, and thus are not a useful part

of analyzing improvements upon conventional refinement via AMBER-restrained

refinement. It is assumed that, because energetic terms are used in AMBER-restrained

refinement, the hydrogen atoms in the AMBER output structure are more

energetically favorable than the conventionally refined ones, and thus can be dismissed

to get a better view of the effects of AMBER restraints on refinement of the heavy

atoms of the macromolecules. The hydrogen atoms were removed from each output

structure using the pdb4amber utility with the -y flag, which removes all hydrogen

atoms.

jgg75@casegroup5:~/2oiu/phenix_refinement/example/energy$

pdb4amber -i amber_001.pdb -o amber_001_noH.pdb -y

The output PDB from this command, as expected, resulted in a structure without

hydrogen atoms, as seen below.
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ATOM 1 P G P 1 -2.494 -23.551 -16.078 1.00 81.50 P

ATOM 2 OP1 G P 1 -1.020 -23.651 -16.003 1.00 94.82 O

ATOM 3 OP2 G P 1 -3.365 -23.953 -14.968 1.00 60.76 O

ATOM 4 O5’ G P 1 -2.824 -22.049 -16.621 1.00 73.28 O

ATOM 5 C5’ G P 1 -1.897 -21.405 -17.486 1.00 75.67 C

ATOM 6 C4’ G P 1 -2.380 -20.115 -18.173 1.00 72.60 C

ATOM 7 O4’ G P 1 -3.507 -20.296 -19.028 1.00 75.69 O

ATOM 8 C3’ G P 1 -2.733 -19.009 -17.194 1.00 79.95 C

ATOM 9 O3’ G P 1 -1.564 -18.263 -16.846 1.00 87.51 O

ATOM 10 C2’ G P 1 -3.736 -18.218 -18.057 1.00 76.18 C

ATOM 11 O2’ G P 1 -3.112 -17.364 -19.007 1.00 72.83 O

ATOM 12 C1’ G P 1 -4.484 -19.304 -18.788 1.00 67.97 C

ATOM 13 N9 G P 1 -5.639 -19.773 -17.976 1.00 63.69 N

ATOM 14 C8 G P 1 -5.775 -20.802 -17.053 1.00 72.58 C

ATOM 15 N7 G P 1 -6.979 -20.951 -16.559 1.00 61.00 N

ATOM 16 C5 G P 1 -7.710 -19.938 -17.187 1.00 61.01 C

ATOM 17 C6 G P 1 -9.110 -19.572 -17.102 1.00 62.03 C

ATOM 18 O6 G P 1 -10.022 -20.054 -16.422 1.00 60.69 O

ATOM 19 N1 G P 1 -9.446 -18.492 -17.911 1.00 62.24 N

ATOM 20 C2 G P 1 -8.558 -17.828 -18.714 1.00 71.60 C

ATOM 21 N2 G P 1 -9.038 -16.754 -19.313 1.00 69.42 N

ATOM 22 N3 G P 1 -7.246 -18.143 -18.847 1.00 69.67 N

ATOM 23 C4 G P 1 -6.890 -19.212 -18.050 1.00 65.46 C

ATOM 24 P G P 2 -1.258 -17.683 -15.343 1.00 88.23 P

The next step is to again modify the myuclinks file with the proper input file names

and the proper atoms for the bond command, as there are no water molecules or

magnesium ions in this structure, resulting in differing residue numbers. The modified

myuclinks file is below.

...

x = loadpdb amber_001_noH_4tleap_uc.pdb

bond x.71.O3’ x.1.P

bond x.142.O3’ x.72.P

bond x.213.O3’ x.143.P

bond x.284.O3’ x.214.P

set x box { 45.29 100.018 71.93 }

saveAmberParm x amber_001_noH_uc.prmtop amber_001_noH_uc.rst7

quit

To perform the 0-step MD run in sander, the unit cell prmtop and rst7 files were

required to be built from the output structure PDB files. The phenix.AmberPrep run
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here for each of the output structures requires the added flag of use_reduce=False to

prevent reduce from adding hydrogens within pdb4amber (the default). Without this

flag, the rebuilding of the conventional refinement output structure usually resulted in

some error where reduce tried to add a hydrogen atom to a residue that did not

require that particular hydrogen atom, causing tleap to fail. Including this flag

resulted in all hydrogens being added by tleap as required by each residue type. Also,

as these hydrogen atoms were added purely based on parameters specifically made for

atom types, not including any real interactions with the rest of the structure, the

minimise=amber_h flag was used to result in minimization of just the new hydrogen

atoms. This was only done after modifying the AmberPrep.py code to change the

restraint method for restraining the heavy atoms during this minimization. The use of

ntr restraints was not strong enough to keep the heavy atoms in place without

fluctuation, and thus ibelly was used. The bellymask–unlike the restraintmask, which

describes the set of atoms to be restrained–describes the atoms to be allowed to move.

Below are the sander minimization inputs for the original and modified AmberPrep.py

codes, respectively.

inputs = {"amber_h" : """Initial minimization

&cntrl

ntwx = 0, ntb = 1, cut = 9.0, nsnb = 10,

ntr = 1, restraint_wt = 50.0, restraintmask =’!@H=’,

imin = 1, maxcyc = 1000, ncyc = 200, ntmin = 1, ntxo = 1,

/

""",

inputs = {"amber_h" : """Initial minimization

&cntrl

ntwx = 0, ntb = 1, cut = 9.0, nsnb = 10,

ibelly = 1, restraint_wt = 50.0, bellymask =’@H=’,

imin = 1, maxcyc = 100, ncyc = 200, ntmin = 2, ntxo = 1,

/

""",

The command below was used to build the AMBER-refined output structure. The

output to the terminal was similar to that of the original AmberPrep run for 2oiu, so

that is omitted here.

jgg75@casegroup5:~/2oiu/phenix_refinement/example/energy$
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phenix.AmberPrep amber_001_noH.pdb minimise=amber_h use_reduce=False

Once the prmtop and rst7 files were created for both refinement output structures,

they were run through sander for a 0-step MD calculation with the following

command and input file.

sander -O -i energy.in -p 4amber_amber_001_noH.prmtop

-ref 4amber_amber_001_noH.rst7 -c 4amber_amber_001_noH.rst7

-o amber_001_noH_en.out -xvv ~/rismKCL.xvv

unit cell

&cntrl

ntx=1, ntpr=1, ntwx=0, ntwr=0

ioutfm=1

imin=0, drms=1E-4, nstlim=0, maxcyc=0,

ig=314159

ntb=1

irism=1

cut=9.0

/

&rism

periodic=’pme’

closure=’kh’

buffer=1, grdspc=0.5,0.5,0.5

solvcut=9.0

npropagate=0

mdiis_del=0.5, mdiis_nvec=10, tolerance=1e-6

apply_rism_force=0 /

The command called the MD engine sander, with a call to overwrite existing output

files with the same names (-O), use the prmtop and rst7 files for the parameters and

coordinates, output the MD output into a file called amber_001_noH_en.out, and

use the file rismKCL.xvv as the bulk solvent description file for the RISM calculation.

This file uses 100 mM KCl in water as the neutralizing salt to balance the negative

charge of the RNA, and screens out some of the electrostatic energy improvements

found in the AMBER structure due to its electrostatic interactions with the deposited

solvent molecules. The input file was set up to use constant volume periodic boundary

conditions, the particle mesh Ewald method of calculating the electrostatics for the full

unit cell with periodic boundary conditions, and the Kovalenko-Hirata closure for the

RISM calculation.
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To get to the energy data used in this chapter, the output files (as seen in part

below) were used to find the energy values for each energy component. For each of

these components, including the total energy (EPtot), the conventional output was

subtracted from the AMBER output and then divided by the number of

macromolecular residues in the unit cell. The manipulation of the following data

(AMBER output first, then conventional) as mentioned above results in the numbers

found in the 2oiu line in Table 2.2. As can be seen both by looking at the raw data,

and the normalized difference values in the table, the AMBER-refined structure was

favorable across all of the energy components except for the bond angles and the

RISM energy. Each of the labels below corresponds to a different component of the

total energy. Etot is really the total energy, but in this case, since there is no kinetic

energy (EKtot), the total potential energy (EPtot) is the same value as the total

energy. BOND, ANGLE, and DIHED are the energy terms associated with energy

penalties related to deviations from ideal bond lengths and angles and dihedral angles,

respectively. 1-4 NB is the non-bonded term for interactions between the first and last

atoms in a dihedral angle, 1-4 EEL is the electrostatic interaction term for those

atoms, VDWAALS is the van der Waals term, EELEC is the electrostatics term, and

ERISM is the energy associated with the RISM solvent distribution.

amber_001_noH.out

...

NSTEP = 0 TIME(PS) = 0.000 TEMP(K) = 0.00 PRESS = 0.0

Etot = -54692.4826 EKtot = 0.0000 EPtot = -54692.4826

BOND = 824.6225 ANGLE = 2681.7445 DIHED = 6604.8747

1-4 NB = 2846.3056 1-4 EEL = -31537.9503 VDWAALS = -6098.3011

EELEC = -21496.7750 ERISM = -8517.0035 RESTRAINT = 0.0000

cdl_001_noH.out

...

NSTEP = 0 TIME(PS) = 0.000 TEMP(K) = 0.00 PRESS = 0.0

Etot = -52971.2120 EKtot = 0.0000 EPtot = -52971.2120

BOND = 1095.5831 ANGLE = 2139.3299 DIHED = 6657.0875

1-4 NB = 2981.0591 1-4 EEL = -30461.0156 VDWAALS = -5038.2771

EELEC = -20451.6281 ERISM = -9893.3507 RESTRAINT = 0.0000
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2.4.2 Structure factors, energy, and clashscores

As the goal of this research was to determine the effects of AMBER force field restraints

within refinement as compared to conventional refinement restraints, it was important

to define statistics that would be good indicators of improvement and would be con-

sidered relevant. Three of the main statistics chosen were the structure factors (and

gap between them, the r-gap; this is an indicator of overfitting if large), the clashscores,

and the energy. Structure factors and clashscores are standard statistics used in anal-

ysis of macromolecular models developed from crystallographic data and refined with

refinement software. The energy was chosen because energetic terms are included in the

restraints by using AMBER force fields. Therefore, the energy is an important statis-

tic, as it would be a check on whether AMBER-restrained refinement is doing what is

expected. (Brief aside: all trendlines in these graphs are used to guide the eyes, not as

accurate regression lines.)

When looking at those three sets of statistics data, overall improvement using AM-

BER restraints over conventional restraints can be surmised, but is not quite obvious.

When looking at r-work values (Figure 2.2) for refinements with AMBER versus conven-

tional restraints, the conventional refinements generally result in values that are better

than those for AMBER refinements by 1 or 2 percentage points. However, this may be

due to overfitting, as r-free values are fairly similar except at very low resolution, where

the electron density being modeled provides more room for physically incorrect struc-

tures to fit the data. This overfitting possibility is also backed up by the decreased r-gap

by AMBER refinement as compared to conventional refinement. It was not expected

that AMBER-restrained refinement would result in improvements of structure factors as

compared to conventional refinement, as conventional refinement generally had a higher

weight on the crystallographic data in the target function. However, the fact that the

AMBER r-free values are as close as they are to those for the conventional refinement

implies that the difference in how the two restraint sets fit the models into the data is

small enough that the possible trade-off for improvement of the other statistics would

be worthwhile.
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Figure 2.2: Graphs comparing the structure factors, r-gap, and clashscore for the
AMBER-restrained and conventionally restrained refinements. Structure factors are
similar for both sets of restraints, and the r-gap is somewhat improved for low-resolution
AMBER structures. The largest difference occurs in clashscores, where AMBER-
restrained refinements result in nearly similar clashscore values across the data set,
while conventional refinement results in very high clashscores at low resolution.
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With clashscores and energies, this is an obvious trade-off (Figure 2.2 and Tables 2.2

and 2.3). The clashscores for very high resolution structures are very low regardless of

what restraints are used, due to the fact that the resolution is high enough to properly

distinguish between atoms and place them in proper locations for bonds that do not

result in clashes. The rest of the structures show far lower clashscores for the structures

refined with AMBER restraints as compared to their conventional refinement counter-

parts. This was to be expected, as the use of AMBER restraints included the use of a

van der Waals term in the energy calculation, putting a very large energy penalty on

clashes. Also, the gap at the lowest resolutions got larger between conventional refine-

ment clashscores and AMBER refinement clashscores. This matched the expectation

that improvement would be greater at low resolution, where there is greater room for

error in placing the model in the density and a greater chance of physical inaccuracy of

the structure.

Regarding the energy, as one might expect when calculating AMBER energy with one

set of restraints developed to minimize AMBER energies and another set of restraints

not scored against the AMBER force field, the AMBER-restrained refinements resulted

in far better total AMBER energy values than those with conventional restraints, as

seen in Tables 2.2 and 2.3.
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PDB Res(Å) B A D E F W V R EFR TOT

1q9a 1.04 1.17 1.07 0.13 0.10 -2.03 -0.24 -0.54 0.36 -1.56 0.02
483d 1.11 0.48 0.24 0.13 -0.55 -1.96 -0.27 -0.55 0.83 -1.68 -1.65
4fe5 1.32 0.76 -0.34 -0.17 -1.89 -3.06 -0.72 -1.11 2.60 -2.35 -3.92
2a43 1.34 0.69 0.22 -0.14 -0.54 -3.21 -0.48 -0.81 1.37 -2.39 -2.91
480d 1.50 1.16 0.16 -0.01 -0.45 -3.14 -0.52 -0.63 1.40 -2.19 -2.03
2gdi 2.04 -1.95 0.39 0.14 -2.44 -3.94 -0.36 -2.38 3.63 -2.75 -6.91
3tzr 2.21 0.75 -2.10 0.24 0.22 -3.51 -0.70 -2.46 1.59 -1.70 -5.98
2pn4 2.32 0.17 0.85 -0.01 -3.92 -3.45 -0.19 -2.89 4.54 -2.83 -4.90
2qus 2.40 -0.73 1.33 0.22 -3.19 -3.34 -0.06 -4.18 3.53 -3.01 -6.43
3gx5 2.40 -2.17 -1.05 -1.16 -1.65 -3.95 -1.17 -4.78 3.70 -1.91 -12.24
2oiu 2.60 0.80 2.15 -0.12 -3.73 -3.73 -0.44 -3.54 4.92 -2.54 -3.70
2ygh 2.60 -2.04 -0.27 -0.42 -3.95 -3.62 -0.57 -3.86 4.73 -2.84 -10.00
2gis 2.90 -2.81 -2.97 -1.37 -2.92 -3.42 -2.07 -12.05 5.06 -1.28 -22.54
2pn3 2.90 -1.34 -0.44 -0.64 -6.71 -3.35 -0.60 -5.20 6.86 -3.21 -11.44
3e5e 2.90 -5.81 -2.18 -0.62 -4.42 -5.13 -1.37 -6.54 7.63 -1.91 -18.44
3f2q 2.95 -0.40 0.61 -1.04 -0.46 -5.85 -1.16 -6.21 5.09 -1.21 -9.42
3r4f 3.50 0.10 1.01 -0.08 -9.53 -2.84 -1.02 -7.16 8.90 -3.47 -10.61
1y0q 3.60 -0.29 0.38 0.13 -35.00 -4.29 -2.23 -17.98 36.33 -2.96 -22.95

Table 2.2: Per-nucleotide energy difference values (kcal/mol) between AMBER- and
conventionally restrained PHENIX refinements for all components of the structures
that contain RNA without the U1 protein. The conventional value is subtracted
from the AMBER value, and, therefore, the more negative the value, the more favor-
able the AMBER-restrained structure is. As the resolution worsens, the improvement
upon conventional refinement by use of AMBER-derived restraints becomes greater.
(B=bond, A=angle, D=dihedral, E=electrostatics, F=1-4 electrostatics, W=1-4 non-
bonded, V=van der Waals, R=RISM, EFR=E+F+R, TOT=EP Tot)

PDB Res(Å) B A D E F W V R EFR TOT

3mxh 2.30 -1.80 0.35 0.19 -6.58 -2.72 -0.66 -3.00 7.36 -1.93 -6.85
3iwn 3.20 -0.95 -0.04 -0.54 -18.47 -3.26 -1.47 -11.99 18.87 -2.86 -17.85
3bo3 3.40 -2.95 -1.50 -0.74 -15.10 -4.87 -2.67 -9.33 18.35 -1.62 -18.81

Table 2.3: Per-residue energy difference values (kcal/mol) between AMBER- and con-
ventionally restrained PHENIX refinements for all components of the structures that
contain RNA with the U1 protein. The conventional value is subtracted from the AM-
BER value, and, therefore, the more negative the value, the more favorable the AMBER-
restrained structure is. As the resolution worsens, the improvement upon conventional
refinement by use of AMBER-derived restraints becomes greater. (B=bond, A=angle,
D=dihedral, E=electrostatics, F=1-4 electrostatics, W=1-4 non-bonded, V=van der
Waals, R=RISM, EFR=E+F+R, TOT=EP Tot)

The majority of the improvement, and the trend in greater improvement at lower

resolution, appears to be due to the van der Waals contributions, which also accounts
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for the greater improvement in clashscores at low resolution. These tables were devel-

oped by subtracting the energy values from the conventional structure from those of

the AMBER structure and dividing by the number of macromolecular residues in the

unit cell to provide normalization. With the inclusion of electrostatic interactions and

the aforementioned van der Waals term, the emphasis on the AMBER restraints in the

target function for refinements with AMBER increased the likelihood that the structure

would be more energetically favorable than one using a stronger emphasis on electron

density data and a restraint set without energy terms. The RISM energy was surpris-

ingly more favorable for the conventionally refined structure. It also screened some of

the electrostatics, as can be seen in the column for the combined electrostatics, 1-4 elec-

trostatics, and RISM term. While not all structures are more favorable with AMBER

restraints (1q9a is slightly more favorable with conventional refinement, likely due to the

resolution being so high that most atoms are visible in the electron density, and, thus,

the density provides very energetically favorable bond lengths, angles, etc.), there is a

general trend of the total potential energy becoming more favorable as resolution wors-

ens (Figure 2.3), which was both expected and hoped for as a major improvement due

to implementation of the AMBER force fields. As mentioned above regarding clashscore

improvement at low resolution, as the accuracy of the experimental data decreases, the

refinements that are more strongly tethered to general physical restraints and the poor

experimental data are less able to provide energetically favorable structures than the

AMBER-restrained refinements where energetic terms are able to steer the structures

away from bad clashes and physically inaccurate geometries.
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Figure 2.3: Graph of per-residue energy difference values (kcal/mol) for the total poten-
tial energy (EPtot) between AMBER- and conventionally restrained PHENIX refine-
ments . The conventional value is subtracted from the AMBER value, and, therefore,
the more negative the value, the more favorable the AMBER-restrained structure is.
As the resolution worsens, the improvement found by using AMBER-derived restraints
becomes more pronounced.

In order to compare the refinement restraint sets, structure factors, clashscores,

and energy were chosen as benchmark statistics. Conventional restraints led to output

structures with better structure factors than those for the AMBER-restrained refinement

outputs. However, the r-free values for AMBER-restrained refinements are very close to

those for the conventionally refined structures, and the slight differences are offset by the
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vast improvements on energy and clashscores. Also, the gap between the r-work and r-

free values, the r-gap, is lesser for AMBER-restrained structures than for conventionally

restrained structures for the most part, indicating that there may be some overfitting of

the conventionally restrained structures. Both clashscores and energy values exhibit a

trend of increased difference between the conventionally refined and AMBER-restrained

structures as the resolution worsens, which shows that the interface of PHENIX and

AMBER provided the improvement that was expected in the target resolution area.

2.4.3 Differences in structures

Because AMBER force fields were implemented to improve the structural models de-

veloped in refinement, it was important to not only look at the energetics, but the

structures themselves. This was done both visually and through RMSD calculations

using cpptraj. With the large differences in energy, especially at low resolution, between

conventional and AMBER refinements, one might expect the structures to be vastly

different. On the other hand, due to the fact that the structural models were being fit

to the same experimental data, one might also assume there would not be very large

global structural differences. Therefore, it was a worthwhile analysis to conduct.

When heavy atom RMSD calculations comparing the solvent-stripped output PDB

files from conventional and AMBER refinements (which contain one asymmetric unit

each) were performed, the largest RMSD was around 0.6 Å. As seen in Figure 2.4,

the majority of the structures actually had an RMSD of half that or less. There is a

general increase in RMSD as the resolution worsens, as would be expected as the energy

difference increased with resolution worsening.
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Figure 2.4: Graph of RMSD between conventionally and AMBER-refined structures.
The RMSD increases as the resolution worsens, indicating that there are greater differ-
ences between the output structures as the quality of the data worsens.

When the structures that were above 0.4 Å regarding RMSD were examined (3iwn,

3bo3, 3r4f, and 1y0q; Figures 2.5, 2.6, 2.7, and 2.8, respectively), a general trend of

slight global differences in the backbone of the RNA was found. There was also a slight

difference in the ligands in structures that contained ligands, as seen in Figures 2.5 and

2.8. These images make it clear that while these differences were slight, they could very

well be large enough to make a difference in choice of restraints worthwhile.

Here, it was found through both RMSD analysis and visual analysis that there were
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Figure 2.5: Images of global (left) and local (right) differences in the AMBER- (blue)
and conventionally refined (green) structures of 3iwn[63]. The local image is a rotated
look at the boxed area in the global image. Very little changes on the global scale, but
there are some slight, but significant, changes at the local level, specifically in the ligand
and bases around it.

Figure 2.6: Images of global (left) and local (right) differences in the AMBER- (blue)
and conventionally refined (green) structures of 3bo3[67]. The local image is a look at
the boxed area in the global image. Very little changes on the global scale, but there are
some slight, but significant, changes at the local level, specifically in the bases. There
is also deviation in the magnesium ion locations, but these are not included in RMSD
calculations.
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Figure 2.7: Images of global (left) and local (right) differences in the AMBER- (blue)
and conventionally refined (green) structures of 3r4f[36]. The local image is a look at
the boxed area in the global image. Very little changes on the global scale, but there
are some slight, but significant, changes at the local level, specifically in the bases.
Also, while not included in RMSD calculations, the magnesium ions are very differed in
location between the structures.

Figure 2.8: Images of the global (left) and local (right) differences in 1y0q[44] between
the AMBER-(blue) and conventionally refined (green) structures. This is the structure
with the largest RMSD between AMBER- and conventionally refined structures. A lot
of the deviation appears to show up in the ligand and bases, as seen in the local image.
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small global differences in the structures made by the differing restraint sets in refine-

ment. However, especially at low resolution, these small differences were significant,

especially when looked at regarding their effects at the local level.

2.4.4 Geometric outliers

As mentioned before, the statistics chosen to compare the output structures from the

2 different restraint sets included the energy, the clashscores, the structure factors, and

the geometric outliers. While the energy differences and clashscores were in AMBER’s

favor and the structure factors are similar enough to accept the slight worsening of

the agreement with experimental data for the improvements in energy and clashscore,

the geometric outliers and suiteness scores were less complimentary to refinement using

AMBER restraints (Table 2.4). This was surprising, as it seemed to follow reason that

using energy terms to guide in the refinement would lead to bond lengths, angles, and

torsion angles that would be most energetically favorable and, thus, ideal.
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PDB ID Resolution Bond Angle Pucker Suite Suiteness
1q9a 1.04 0.028 0.10 0 0 -0.009
483d 1.11 0 0.046 0 0.0093 0.034
4fe5 1.32 0.056 0.082 0.0037 0 0.056
2a43 1.34 0 0.026 0 0 0.072
480d 1.50 0.028 0.037 0.0093 0 -0.015
2gdi 2.04 0.20 0.36 0.0047 0.0047 0.035
3tzr 2.21 0 0.13 0.0069 0 0.055
3mxh 2.30 0.11 0.79 0.022 0.011 0.061
2pn4 2.32 0.017 0.24 0.0028 -0.0028 0.034
2qus 2.40 0.16 1.93 0.015 -0.015 0.044
3gx5 2.40 0.0066 0.052 0.0053 -0.0027 -0.077
2oiu 2.60 0.035 0.87 0.011 -0.011 0.026
2ygh 2.60 0.012 0.11 0.0026 -0.0013 0.03
2gis 2.90 0.0040 0.076 -0.0013 -0.0040 -0.045
2pn3 2.90 0 0.060 0 0 0.001
3e5e 2.90 0.011 0.054 0.0012 -0.0012 0.06
3f2q 2.95 0.034 0.25 0.0030 -0.012 -0.046
3iwn 3.20 0.015 0.39 0.017 -0.0081 0.02
3bo3 3.40 0.0084 0.26 0.0023 -0.0034 0.026
3r4f 3.50 0.00095 0.12 0.0057 -0.0057 -0.019
1y0q 3.60 0.0054 0.24 0.0027 0.00054 0.107

Table 2.4: Per-nucleotide difference values for geometric statistics, and difference in
suiteness score. The more negative the value, the more favorable AMBER restraints are
for that particular geometric statistic. Generally speaking, the conventional refinements
result in better geometric outlier numbers. At lower resolution, the AMBER-restrained
refinements produce better suite outlier numbers.
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The table shows a comparative look at the RNA geometric outlier numbers across

the whole data set. The outlier difference values are created by subtracting the number

of outliers of that type for the conventional refinement from the number for AMBER

refinement, and then dividing that number by the number of nucleotides in that struc-

ture’s unit cell. The suiteness difference value is the normalized difference found when

subtracting the AMBER-restrained structure’s value from the conventional refinement

output value. (This opposite order for subtraction was set up to keep in order with

the setup for energy differences: a negative difference means that AMBER is more

favorable.)

A few trends appear in the geometric data as follows. First, all of the conventional

structures compare favorably to the AMBER structures regarding bond outliers and

angle outliers, as indicated by the positive normalized differences, even to the point in

2qus where there are 2 angle outliers per nucleotide more in the AMBER-restrained

refinement output structure than in the conventional structure. This consistent differ-

ence was a little concerning, so it was dug into, with results in the next section. While

there does not appear to be a resolution-dependent trend in the angle outlier data, it

does seem the case that the normalized bond outlier difference decreases at lower reso-

lution. When individual structure outlier numbers are studied, the AMBER-restrained

refinement output structures have a lower proportion of bond length outliers at lower

resolution, indicating that at low data quality, the AMBER restraints have less trouble

providing bond lengths that match MolProbity’s ideal bond lengths.

Second, sugar pucker outlier numbers are also generally better for conventional re-

finement, while the suite outliers are generally the same at high resolution, and the

AMBER-refined structures were better for most of the rest of the structures, albeit only

by one or two total outliers. Due to the fact that each suite spans from one d to the

next, there are far fewer suites than bonds or angles, and thus a difference of 1 or 2

outliers results in a much larger proportional difference than it would in the bond or

angle outlier differences.

Finally, the suiteness scores for the parallel refinements do not really appear to

have a trend as to which restraint set results in a better score. For the most part,
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the conventional refinement structures have better suiteness scores, but there are 6

structures where the AMBER refinement resulted in better suiteness scores, with no real

resolution dependence for these “trends”. The only real trend is that 4 of the 6 structures

with better suiteness scores for the AMBER refinement have better suite outlier numbers

for the AMBER refinement as well. It is surprising that far more of the structures

with better suite outlier numbers for AMBER refinements have worse suiteness scores

than their conventional counterparts when looked at at face value connecting the two

statistics. However, suiteness is not just a measure of outliers, but is a measure of all

the suites and how they fit the ideal torsions for their defined suites. Thus, while the

conventional refinement structures showed more outliers at low resolution, the whole of

the structures had better overall suites than those in the AMBER output.

As the geometric statistics chosen to analyze the differences between the output

structures for each restraint type were observed, three things were found. First, the

bond and angle outliers were consistently fewer for conventional restraints. Second,

the torsion suite outliers were actually better for AMBER-restrained refinements at low

resolution, but only by 1 or 2 outliers. Finally, while the suite outliers were worse for con-

ventional refinement, the sugar puckers and the overall suite quality (suiteness score) for

the conventional refinements were generally better than those for the AMBER-restrained

refinements. These statistics indicated that the conventional restraints resulted in struc-

tures that better fit MolProbity’s ideal values for the statistics studied. However, it

seemed unlikely that AMBER restraints would result in such vastly poor structures

regarding bonds and angles. Thus, examples were studied in the next section.

2.4.5 Investigation of outlier difference

When looking at output from MolProbity, it was determined that AMBER-restrained

refinements resulted in consistently worse bond and angle outliers than their conven-

tionally restrained counterparts. Within these outliers, there were some fairly consistent

bonds and angles that appeared from structure to structure within AMBER-restrained

refined structures. Some of these consistent outliers were examined more closely.

When analyzing these consistent outliers, it was found that the ideal values for some
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of these bonds and angles were different from MolProbity to AMBER. To see whether

this was the reason for the number of outliers, one particular bond and one particular

angle were chosen to be studied. First, the AMBER ideal measurements were modified

to see if that affected the overall number of outliers for the chosen bond and angle. In

this case, the P-O5’ bond was chosen, and the O3’-P-O5’ bond angle was chosen. The

ideal value for the bond length was set to 1.66 Å (while the standard AMBER ideal is

1.61 Å and the MolProbity ideal is 1.59 Å) within the RNA.OL3 force field in AMBER,

and 2ygh[104] was rebuilt for refinement using AmberPrep. For another test on the

effects of the parameters, the force constant was doubled from 230 to 460 and the struc-

ture was reAmberPrepped using this modification. Then, AMBER and conventional

refinements were performed with the rebuilt structures. Further AmberPrepping of the

output structures without minimization provided prmtop and rst7 files for parmed anal-

ysis (using the printBonds command) of all the P-O5’ bond lengths in the starting and

output structures from each refinement. The values from parmed output were used to

make histograms for the original refinement, the ideal length modification, and the force

constant doubling. Further modification of the parameters to make the AMBER ideal

equal to the ideal in MolProbity was also performed, and the resulting AmberPrepped

structure was also refined and analyzed. MolProbity analysis showed a change in the

number of outliers, and a change in which bonds/angles were outliers and whether the

outliers were higher or lower than the ideal (Table 2.5, Figure 2.9).
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RT Ideal FC Out A Out A<MP A>MP B Out B<MP B>MP
PR 1.61 230 11 0 0 0 0 0 0
CV 1.61 230 1 0 0 0 0 0 0
AM 1.61 230 10 1 1 0 1 1 0
PR 1.66 230 14 2 0 2 1 0 1
CV 1.66 230 1 0 0 0 0 0 0
AM 1.66 230 14 4 0 4 2 0 2
PR 1.61 460 11 0 0 0 0 0 0
CV 1.61 460 1 0 0 0 0 0 0
AM 1.61 460 7 0 0 0 0 0 0
PR 1.59 230 11 0 0 0 0 0 0
CV 1.59 230 1 0 0 0 0 0 0
AM 1.59 230 14 3 3 0 3 3 0

Table 2.5: Table looking at P-O5’ (bond A) bond outliers as a result of different mod-
ifications to the AMBER ideal bond length (Ideal) and bond force constant (FC) for
bonds of the P-OS bond types. The other bond of that type, O3’-P (bond B), was also
examined (MP=MolProbity ideal bond length of 1.59 Å for P-O5’, 1.61 Å for O3’-P). As
the AMBER ideal value is changed, the location of outliers relative to the MolProbity
ideal changes, indicating that the differences in ideal values affects the number of out-
liers. Increasing the force constant removes all outliers of A and B, indicating that the
distribution of bonds might be narrowing. (RT=refinement type, PR=pre-refinement,
CV=conventional, AM=AMBER, Out=bond outliers)
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Figure 2.9: Histograms showing the distribution of all P-O5’ bond lengths in the Am-
berPrepped structure and the refinement output structures when prepared and refined
with the standard AMBER parameters, longer AMBER ideal bond length, doubled
bond force constant, and AMBER ideal bond length equal to MolProbity’s (from top to
bottom). AMBER-restrained refinements resulted in wider distributions with centers
that shifted as the AMBER ideal was modified. The distribution narrowed with an
increase in force constant. Regardless of the AMBER ideal, the conventional refinement
distribution was nearly the same.
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(It should be noted that “outliers” in this context are bonds with lengths that are

4 sigma or more away from the MolProbity value.) With the original refinement, the

only outlier for P-O5’ bonds was actually found to be below the MolProbity ideal, even

though the AMBER ideal is higher than the MolProbity ideal. When the ideal length

was increased, the number of outliers in AMBER refinement and the AmberPrepped

structure increased, and all of the P-O5’ and O3’-P bond outliers were longer bonds

than the MolProbity ideal value. When the ideal length was decreased to be equal with

the MolProbity ideal, there were also more outliers for AMBER refinement than there

were with the standard AMBER ideal bond length value, and the number of O3’-P bond

length outlier also increased, and all of these outliers were also below the MolProbity

ideal. This was a surprise, but maybe it should not have been, as the histograms (Figure

2.9) showed that in general, the range of the distribution of bond lengths was wider for

AMBER refinement. This appears to have been due to an inherent lower level of weight

placed on the restraint for this bond length in AMBER as compared to conventional

refinement. With doubling of the AMBER force constant for this bond, that range

decreased, and got rid of all P-O5’ and O3’-P bond length outliers. Another key point

is that the conventional refinement’s distribution was roughly the same every time, even

from different starting points. This makes sense, as the restraints being used for these

refinements were the same every time.

As the histograms show, what appeared to happen was that the distribution of

the values was wider with AMBER refinement due to the complexity of the energy

equation and the number of different factors involved, and, while the distribution was not

necessarily centered on the AMBER ideal value, the center of the distribution increased

in bond length in the refinement with the increased AMBER ideal value. This led to

the higher-end bonds getting moved further away from the MolProbity ideal, and thus

made them the new outliers. When the MolProbity ideal was used as the AMBER

ideal bond length, the center of the distribution shifted lower than the normal AMBER

ideal (because the MolProbity ideal is lower than the AMBER ideal), but because the

distribution was wider than that for the conventional refinement, there were still outliers.

It appears that the overall reason for the larger number of outliers is due to the weaker
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restraint weight (force constant) on the bond length in AMBER as compared to the

conventional restraints, as evidenced by the disappearance of all P-O5’ bond length

outliers and the narrowing of the distribution when the force constant was doubled.

The interconnectedness of all of the energy terms in AMBER allows for play in the

bond lengths to provide for an energetically favorable and physically accurate structure

at the expense of perfectly ideal bond lengths.

In the instance of looking at bond angle outliers, the O3’-P-O5’ angle was modified

in three separate ways: increasing the ideal angle from 102.6 degrees to 112.6 degrees,

doubling the force constant from 45 to 90, and increasing the ideal angle to the Mol-

Probity ideal of 104 degrees. After structure preparation and refinement as described

above, the data was analyzed by AmberPrepping the output structures and running

parmed (printAngles) on the resultant prmtop and rst7 files (Table 2.6).

RT Ideal FC Out A Out A<MP A>MP
PR 102.6 45 71 7 6 1
CV 102.6 45 3 0 0 0
AM 102.6 45 85 26 26 0
PR 112.6 45 65 1 0 1
CV 112.6 45 3 0 0 0
AM 112.6 45 79 8 0 8
PR 102.6 90 61 1 1 0
CV 102.6 90 3 0 0 0
AM 102.6 90 66 9 9 0
PR 104.0 45 67 5 4 1
CV 104.0 45 3 0 0 0
AM 104.0 45 68 16 16 0

Table 2.6: Table looking at O3’-P-O5’ (angle A) bond angle outliers as a result of
different modifications to the AMBER ideal bond angle (Ideal) and angle force constant
(FC) for bond angles of the OS-P-OS bond types (MP=the MolProbity ideal value
of 104 degrees for this angle). As with bond lengths, adjusting the force constant
appeared to decrease the number of A outliers, likely due to a tighter adherence to
the AMBER ideal value. Also, as the ideal value was increased, the outliers were
all greater than the MolProbity ideal, as opposed to less than the MolProbity ideal
when refined with the normal AMBER ideal value. (RT=refinement type, PR=pre-
refinement, CV=conventional, AM=AMBER, Out=angle outliers)

As seen in the histograms in Figure 2.10, the distribution of the angle measurements

for AMBER was much wider than that for the conventional refinement, as well as having
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a different median of the distribution. The median of the AMBER distributions is always

below the ideal value. (As with the bond lengths, I’m a little unsure why that is.) As

with the bond length distributions, when the force constant was doubled, the range of

the distribution was decreased. In this case, the distribution was still wider than the

conventional refinement’s, but that was likely due to the force constant for this angle,

even when doubled, being much lower than that for the bond length.
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Figure 2.10: Histograms looking at O3’-P-O5’ bond angles with differing ideal values
and force constant values for the AmberPrepped, conventional refinement, and AMBER
refinement structures. As with Figure 2.9, the AMBER distributions were wider than
the conventional ones, with shifting centers based on AMBER ideal, and narrowing of
the distribution with an increase in the force constant.
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As seen in Table 2.6, the O3’-P-O5’ outliers for the AMBER output with the original

parameters were all at measurements less than the MolProbity ideal. When the AMBER

ideal angle measurement was increased, the whole distribution shifted higher in terms of

angle measures while staying roughly the same in terms of distribution of angles. This

led to a decrease of O3’-P-O5’ outliers, and all of those outliers being at measures greater

than the MolProbity ideal. This is due to the upper end of the distribution being shifted

out of the 4 sigma range from the MolProbity ideal, and the outliers at the lower end

of the original refinement being shifted into that 4 sigma range on the lower side of the

MolProbity ideal value. The doubled force constant also resulted in a similar decrease

of the outliers in question due to the shrinking of the distribution width, and all of

those outliers were still on the lower side of the MolProbity ideal, likely due to the lower

AMBER ideal angle measure for this angle type. Finally, with the AMBER ideal set to

be equal to the MolProbity ideal of 104 degrees, the number of outliers of the selected

angle decreased, and all of the outliers were still on the lower side of the MolProbity

ideal. Even with the same ideal value as MolProbity, the AMBER-restrained refinement

resulted in outliers of the angle in question, indicating that, as in the case of the bond

length outliers, the outliers come from a combination of a much lower restraint weight

on the angle measurement than conventional refinement, as well as a difference in the

ideal value used by AMBER as opposed to the Engh and Huber restraints.

As the geometric outliers in Subsection 2.4.4 showed, the bonds and angles in

AMBER-restrained refinement output structures provided far more outliers than their

conventionally restrained counterparts. It was important to understand this in order

to be able to determine if the differences were due to systematic errors or just freedom

of movement inherent to the complex nature of AMBER force fields. To examine this,

one consistent bond outlier (P-O5’) and one consistent angle outlier (O3’-P-O5’) were

chosen for testing. For each measurement, the AMBER ideal value and the force con-

stant were modified to test their effects on the number of outliers of that particular

measurement, which side of the MolProbity ideal those outliers fell on, and the width of

the distribution of that measurement. Due to the fact that in both cases, the number

of outliers decreased as the force constant was doubled and when the AMBER ideal
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value was changed to that of MolProbity, it was determined that the outliers in these

cases were due to a combination of the greater flexibility allowed in these measurements

when using AMBER force fields as compared to conventional restraints and (to a lesser

extent) the difference in the ideal values between AMBER and MolProbity. Thus, at

least for these 2 measurements, it is fair to say that the outliers are less an indication of

poor structure quality within AMBER and more of a result of the interconnected nature

of all parts of a structure that is less of a consideration via conventional restraints.

2.4.6 Hydrogen bonds

One final area of analysis that could point to the usefulness or lack thereof of AMBER-

restrained refinement is hydrogen bonding. Presumably, AMBER energy terms would

lead to increased hydrogen bonding due to the energetic favorability of such interac-

tions. To look into this, specifically within the confines of base pairing within the RNA

molecules, the nastruct command in cpptraj was performed at differing hydrogen bond

cutoff distances to make sure that differences in hydrogen bond or base pair numbers

were due to an actual lack of interaction, as opposed to just a very sharp distance cut-

off. Table 2.7 shows the difference in base pairs and hydrogen bonds found in AMBER

and conventional refinements for the first asymmetric unit of all the structures in the

data set. Situations where a base in one asymmetric unit “base paired” with a base in

another asymmetric unit were not counted as base pairs. Certain bases had base pairs

with multiple bases within the first asymmetric unit. These were counted. Negative

differences are indicative of AMBER having a larger number of base pairs or hydrogen

bonds, and positive differences occur when the conventional refinement resulted in more

base pairs or hydrogen bonds.

It was found to be the case that from high to mid-range resolution, there is no

real difference in hydrogen bonding for base pairs. At low resolution, the hydrogen

bonding and base pairing are generally better for AMBER-restrained refinements, but

there are still not consistently large differences. This is likely due to the lack of large

structural changes, as found in the RMSD calculations. In most cases where there was

a difference in base pairs, but not hydrogen bonds, it was due to a base pair existing
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PDB Res(Å) Cut=3.5 Å Cut=3.6 Å Cut=3.7 Å
BP HB BP HB BP HB

1q9a 1.04 0 0 0 0 0 0
483d 1.11 0 0 0 0 0 0
4fe5 1.32 0 0 0 0 0 0
2a43 1.34 0 0 0 0 0 0
480d 1.50 0 0 0 0 0 0
2gdi 2.04 0 0 0 0 0 0
3tzr 2.21 -1 0 -1 0 -1 0
3mxh 2.30 0 0 0 0 0 0
2pn4 2.32 0 0 0 0 0 0
2qus 2.40 0 0 0 0 0 0
3gx5 2.40 1 0 1 0 1 0
2oiu 2.60 0 -2 0 -1 0 -1
2ygh 2.60 -1 -4 -1 -4 -1 -4
2gis 2.90 0 0 0 0 0 0
2pn3 2.90 0 0 0 0 0 0
3e5e 2.90 -1 0 -1 0 -1 -2
3f2q 2.95 -1 0 -1 0 -1 0
3iwn 3.20 2 -1 2 -3 2 -2
3bo3 3.40 1 -7 1 -4 1 -4
3r4f 3.50 0 1 0 1 0 -1
1y0q 3.60 -3 -6 -2 -6 0 -3

Table 2.7: The differences in the numbers of base pairs (BP) and hydrogen bonds (HB)
in conventional and AMBER refinements at different hydrogen bond cutoff distances.
Little is found in the way of differences at high- and mid-resolution, but in low-resolution
structures improvements are found in hydrogen bonding with AMBER-restrained refine-
ment.
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without hydrogen bonds within the existing hydrogen bond parameters. In particular,

3e5e is a structure where the AMBER-restrained refinement resulted in a structure with

one more base pair than that for the conventional refinement, but that base pair had

no hydrogen bonds associated with it until the hydrogen bond cutoff was at 3.7 Å, and

then it was deemed to have 1 hydrogen bond, and another base pair that both structures

had in common picked up a hydrogen bond in the AMBER-restrained structure as well.

Through further analysis (not shown in this table), that same base pair appeared in

the conventional refinement output when the cutoff was set to 3.8 Å, along with 1

more hydrogen bond, and the structures became even in hydrogen bonds and base pairs

at the 4.0 Å cutoff for the conventionally refined structure (did not go to that cutoff

with AMBER structure). In 2oiu, the differing hydrogen bond numbers evened out by

setting the cutoff for the conventionally refined structure at 4.0 Å. Only one structure

(3r4f) resulted in fewer hydrogen bonds in the conventionally refined structure than

in the AMBER-refined structure with cutoffs raised up to 4.0 Å for the conventional

structure, and in that case, it was only 1 hydrogen bond different. So, while the general

numbers show improvement with AMBER with the default cutoff and values near it,

the interactions are not necessarily absent from the conventionally refined structures,

but may just be weaker.

Finally, as the images for the low resolution structures with ligands showed changes

in ligand orientation, it seemed important to see how the hydrogen bonding of those

ligands was different between conventional and AMBER refinements. The results of the

hbond command in cpptraj for the structures with ligands are found in Table 2.8. In

almost all of the structures, the AMBER-refined structure has more hydrogen bonds

involving the ligand, indicating more favorable energetic interactions with the ligands,

and thus better binding. These numbers were found by counting the hydrogen bonds

to the ligands in the first asymmetric unit for these structures, as found in the so-

lute_avg_*.dat, solvent_avg_*.dat, and bridge_*.dat output by the command (spe-

cific parameters set up to get it to work this way), where * indicates the restraint type

(AMBER or conventional). The cutoff from acceptor to donor heavy atom was the

default 3.0 Å, and in cases where there were vast differences, the cutoff was extended
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incrementally up to 4.0 Å to see whether the interaction was there, just at a longer

distance. This was only done for 4fe5 and 2gdi, as it stood to reason at high resolution

that if the hydrogen bonds existed in the AMBER-refined structure, they should prob-

ably do so in the conventional structure, even if at a slightly higher distance. In both

cases, none of the missing hydrogen bonds appeared in the data files after extending

the cutoff. This could either be due to slight differences in angles outside of the cutoff

range for the hydrogen bond angle or due to a slight enough difference in these local

areas, both in the ligand itself and the surrounding binding pocket atoms and solvent

molecules, that the additive difference as compared to the AMBER structure resulted

in the interactions not existing. This was examined for 4fe5, and in Figure 2.11, it can

be seen that the missing hydrogen bonds found in the AMBER-restrained refinement

output resulted from the change in orientation of a water molecule due to the influence

of the electrostatics term in AMBER.

PDB ID Resolution (Å) AMBER Conventional
4fe5 1.32 6 4
2gdi 2.04 11 8
3tzr 2.21 3 3
3mxh 2.30 17 11
3gx5 2.40 6 5
2ygh 2.60 8 6
2gis 2.90 8 4
3e5e 2.90 7 7
3f2q 2.95 7 6
3iwn 3.20 7 8

Table 2.8: Comparison of hydrogen bonds involving non-covalent ligands in AMBER-
and conventionally refined structures. Generally, there are more hydrogen bonds in
the AMBER-refined structures, but surprisingly the lowest-resolution structure in this
group has 1 more hydrogen bond in the conventionally refined structure.

In the one structure where the conventionally refined structure has more hydrogen

bonds with the ligand(s) than the AMBER-restrained refinement output structure, 3iwn,

there was only a difference of one hydrogen bond. When the distance cutoff from

hydrogen bond acceptor and hydrogen bond donor heavy atom was adjusted to 3.2 Å

for both structures, they each had 13 hydrogen bonds, although they were different

hydrogen bonds in some cases. For example, a hydrogen bond from chain B, residue
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A 101’s H62 atom (donated by N6) to O2’ from ligand C2E in chain B exists within

the default cutoff in the conventionally refined structure, but does not show up in the

AMBER output structure at the default cutoff, when the number of hydrogen bonds is

equal at a cutoff of 3.2 Å for both, or even at a cutoff of 4.0 Å for the AMBER output.

Actually, a different hydrogen bond between the ligand and A 101 exists in the AMBER

output at 3.2 Å cutoff between the N1 atom of A 101 and HN21 (donated by N2) from

the C2E in chain B.

The hydrogen bonding of these structures seemed a reasonable measure of the effects

of AMBER energy favorability being a driving force in the refinement of the AMBER-

restrained refinements. The base-pair hydrogen bonding and ligand hydrogen bonding

were studied in cpptraj, and the results were somewhat underwhelming. While there

appeared to be reasonably significant differences in the ligand hydrogen bonding, (which,

if substantiated, could result in better ligand binding and binding pocket understanding,

and thus lead to the use of AMBER in refinement for drug discovery purposes, where

improved description of binding site interactions is of premium importance,) the overall

difference in base-pair hydrogen bonding was underwhelming. The higher-resolution

half of the data set showed little to no differences at all, and the rest of the structures

showed that, while the AMBER-refined structures resulted in more hydrogen bonds

near the default cutoff distance, when the cutoff distance was expanded, conventional

refinement was able to retain almost all of those hydrogen bonds. It seems at least

encouraging, however, that there are decreased hydrogen bonding distances in those

cases for the AMBER-restrained outputs, indicating stronger hydrogen bonds. It bears

further examination as to the possible benefits of AMBER restraints in this particular

area.

2.5 Conclusions

A study of the use of the PHENIX/AMBER interface on RNA structures has been

presented here in comparison to conventional PHENIX refinement. The introduction of

the AMBER force fields into PHENIX refinement provided marked improvement across

the set of 21 RNA-containing structures in this study, especially in terms of energy and
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clashscores, while giving away little in terms of r-free factors. The emphasis on van

der Waals’ and electrostatic energies from AMBER, which are not considered in con-

ventional refinement restraints, in refining the structures led to structures that had far

fewer clashes and had more energetically favorable, and physically accurate, interactions,

including hydrogen bonds. While there were obvious improvements, the changes in the

structures were generally not very large, as evidenced by a maximum RMSD of around

0.6 Å. The geometric statistics for the structures showed that conventional refinement

resulted in structures that had fewer bond, angle, and sugar pucker outliers. However,

it was found in a test case that P-O5’ bonds and O3’-P-O5’ bond angles, which were

persistent outliers in AMBER-refined structures, were found to be outliers because of

the difference in ideal values for these measures between MolProbity and AMBER, as

well as an overall greater flexibility allowed in these two measures for AMBER-refined

structures based on the force constant being used and the interplay of so many different

energetic terms allowing for the finding of the overall best structure. Therefore, it was

determined that these outliers were again a modest trade-off for the improvement in

interactions being modeled with the AMBER-restrained refinement outputs.

Maybe more important than the general trend of improvement for AMBER-refined

structures is the improvement in low resolution structures. As the resolution decreased,

a marked trend of increase in energetic difference toward AMBER favorability, improve-

ment in clashscores, improvement in the r-gap, and RMSD between differently refined

structures (showing that AMBER found a considerably different, and likely better,

structure) appeared, showing greater improvement at low resolution, where the lack of

experimental data necessitates greater reliance on restraints. Also, hydrogen bonding

between bases appeared to be slightly improved as compared to conventional refinement,

with a few hydrogen bonds that were at least 0.3 Å closer in the AMBER-restrained out-

put. As many RNA structures are solved at low resolution[27, 58], these improvements

at low resolution should incentivize the use of this novel interface.
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Figure 2.11: Images comparing conventionally and AMBER-restrained (green and blue,
respectively) refinement outputs for 4fe5[10]. The measurements are from donor to
acceptor, not donor heavy atom to acceptor. The difference here is in distances and
also the additional hydrogen bonds involving a nearby solvent molecule in the AMBER
image. The ligand being examined is hypoxanthine (HPA).
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Chapter 3

Integral equation models for disordered solvent in
macromolecular crystals

3.1 Summary

[This is a paper co-authored by George M. Giambaşu, Darrin M. York and David A.

Case. My contribution resides in Table 3.2, where the three structures tested are from

the data set in Chapter 2, as well as in the work that led up to the production of Figure

3.2.]

X-ray scattering measurements from macromolecular crystals are influenced by the

solvent environment, but conventional refinement techniques use only very simplified

models for water molecules (and other solvent species) that form the bulk of the solvent

environment. Here we examine solvent distributions for a variety of crystals, computed

using molecular dynamics or with a newly-developed periodic version of the integral

equation (3D-RISM) codes in AMBER. Bragg intensities for both MD and RISM sol-

vent models are in better agreement with experiment at all resolution ranges than are

intensities computed using the default “flat” solvent model in the refmac5 refinement

programs, with the greatest improvement in the 1.5 to 2.5 Å range. Localized ions or

water molecules match known behavior in many cases, and the total number of ions and

water molecules can (in principle) be compared to crystal density measurements and

atomic emission spectroscopy. The 3D-RISM solvent distributions can be derived in

seconds (for unit cells that are roughly 50 Å on a side), and could be updated regularly

during the course of crystallographic refinement. The new 3D-RISM codes provide the

numerically accurate gradients required to use 3D-RISM as an implicit solvent model,

and yield charge neutrality for charged solutes; this is an important consideration for
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nucleic acids, where most or all of the counterions are part of the “disordered” sol-

vent. Prospects for improving accuracy and incorporating integral equation models into

crystallographic refinement are discussed.

3.2 Introduction

Ions and water molecules have been long known to play crucial roles in governing

biomolecular stability and function. Elucidating how ions and water molecules dis-

tribute themselves around the solutes should provide valuable insights in the mechanism

of how those molecules function, and also provide experimental tests for theoretical pre-

dictions. However, there are few methods that directly probe the positions of ions and

water molecules around macromolecules. In solution, counts of the total number of

excess waters and ions around a macromolecule can be obtained from atomic emission

spectroscopy,[7, 41] small-angle X-ray scattering,[85, 86, 75, 82] and measurements of

partial molar volumes.[22, 24, 23, 106] These techniques, however, give relatively little

information about the distribution of water and ions in the vicinity of a biomolecule.

In principle, much more detailed information is available from X-ray diffraction stud-

ies on biomolecular crystals, and it is common to include some number of “bound” (or

localized) waters and ions in a refined atomic model that has been optimized to fit

observed scattering intensities. These locations are typically identified as features in a

difference density map that satisfy criteria for both intensity (percent occupation) and

geometry. Since it is common for biomolecular crystals to consist of 30-70% solvent,[73]

locations that are favorable in a crystal lattice are also likely to be favorable in solution,

and taking account of such positions can be an important component in computa-

tional schemes that analyze ligand-binding geometries and affinities.[47, 93] However,

the “bound” solvent molecules generally make up only a small fraction of the total sol-

vent; the remainder is typically modeled as a flat distribution, usually with density and

B-factor components that are adjusted to optimize the fit of the total model to observed

intensities. The limitations of such a flat-density model are thought to contribute to the

“R-factor gap”, which reflects the nearly universal observation that differences between

computed and observed intensities in macromolecular crystallography are much greater
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than the experimental uncertainties, prompting searches for better models.[50]

In this paper, we explore integral equation (3D-RISM) models for the solvent dis-

tribution in molecular crystals of proteins and nucleic acids. We present results from

a newly-developed periodic version of the existing non-periodic 3D-RISM models in

AMBER,[70, 71] as well as from molecular dynamics simulations of crystals with an

explicit solvent. Particular attention is paid to the way in which charged solutes are

handled, since there is more than one way to ensure electroneutrality of the entire unit

cell, that is, to ensure that the distribution of ions in the solvent cancels the net charge

of the solute.

3.3 Reference Interaction Site Model for periodic systems

The core principle of RISM is to find the single particle density distributions that min-

imize the excess chemical potential in response to an external potential arising from

a molecular “solute”. The basic idea, and the approximations involved, have been dis-

cussed many times,[70, 96] and we only give a brief summary here. In principle, the

distribution of solvent molecules around a (fixed) solute is a six-dimensional quantity,

describing the translation and orientations of the solvent molecules. The 3D-RISM for-

malism reduces these to three dimensions by decomposing polyatomic solvents (water

molecules here) into atomic contributions, such that the resulting solvent density dis-

tributions contain only a spatial dependence, ργ (r), and can be represented by scalar

densities on 3D grids. Here, the solvent index γ would range over H and O sites in

water, and over mobile atomic ions such as Na+ and Cl-.

An Ornstein-Zernike-like equation relates the total correlation function, hγ (r) =

gγ(r)− 1, and direct correlation function, cγ (r), through a convolution (denoted by ∗):

hOZγ (r) =
∑
α

cα (r) ∗ χαγ (r) (3.1)

Here, χαγ (r) is the site-site solvent-susceptibility of solvent sites α and γ and de-

scribes the orientationally averaged bulk properties of the solvent. These values are

pre-computed (generally by a “1D-RISM” approach) for the reference solvent using the
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dielectrically consistent RISM (DRISM) integral equation [91, 90]. Eq. 3.1 is augmented

by a 3D closure relation:

hclosureγ (r) = exp
{
−βuγ (r) + hOZγ (r)− cγ (r) + bγ (r)

}
− 1 (3.2)

where bγ (r) is the bridge function, which is only known as an infinite series of functionals

and is always subject to some approximation[46]. Among the many closure relations

that have been developed here we use family of closures related to the hypernetted chain

(HNC) closure [80] where the bridge function is simply set to zero. HNC produces good

results for ionic [51, 45, 95] and polar systems [49, 48] and has an exact, closed form

expression for the excess chemical potential [105]. Since HNC solutions are often difficult

to converge, one can use intermediaries such as the so-called partial series expansion of

order-n (PSE-n) [56] of HNC as a Taylor series expansion when the exponent in 3.2 is

positive:

hPSE−n
γ (r) =


exp {tγ (r)} − 1 tγ (r) < 0

n∑
i=1

tγ (r)i

i!
tγ (r) ≥ 0

(3.3)

tγ (r) = −βuγ (r) + hOZγ (r)− cγ (r) .

where HNC is the limiting case as n → ∞. As for HNC, the PSE-n family of closures

have an exact, closed form expression for the chemical potential. The form of this

approximation has a major impact on the convergence of calculations as well as on

resulting thermodynamic quantities and correlation functions.

The goal of the self-consistent 3D-RISM procedure can be viewed as finding a direct

correlation function cγ (r) such that hOZγ and hclosure
γ become identical at all grid points

to within some (fairly tight) tolerance. In existing, non-periodic, implementations, the

convolution required in Eq. 3.1 is carried out via fast Fourier transforms in a rectangular

box surrounding the solute, and additional terms that account for solvent outside of the

artificial box are added to this. The periodic codes described here are simpler because

there is no “external” region to account for. Key differences are that the electrostatic
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and Lennard-Jones potentials that appear in Eq. 3.3 need to take periodic boundary

conditions into account, and that some special considerations are needed, when the

solute has a net charge, to ensure charge neutrality for each unit cell. These are taken

up in the next two sections.

3.3.1 Computing the periodic solute potential.

The closure functional equation requires the mapping of the solute potential onto regular

grids that cover the entire unit cell; there is one grid for each type of solvent site.

The workflow closely follows what is done in molecular dynamics simulations that use

the Particle Mesh Ewald (PME) procedure.[33, 38] Lennard-Jones interactions between

solute atoms and all solvent types are calculated at each grid point using a distance

cutoff (default is 9 Å) and the minimum-image convention. The same procedure is used

for the short-range part of the electrostatic energy, where the bare Coulomb interaction

is replaced by erfc (β |r− ri|) / |r− ri|. Here r is the position of a solute atom, and ri

a point on the grid. The remaining, “long-range” part of the Coulomb interaction is

handled via a fast Fourier transform procedure, in direct analogy to what is done for

molecular dynamics calculations:[33, 38]

1. Interpolate the solute atomic charges to the Cartesian grid. We choose the smooth

PME (SPME) approach, which uses a cardinal b-spline to interpolate the source

charge to the grid. The b-spline interpolation has a roughly Gaussian character at

high polynomial orders, and has the desirable trait that integration of its weights

over the region of interpolation equals unity.

2. Convert the source charge grid from real space to frequency space using a FFT.

3. Convolute the source charge grid with the electrostatic interaction Green function.

In frequency space the convolution is a simple multiplication, and the electrostatic

interaction potential is k−2 .

4. Compute the electrostatic potential on the grid by converting the convoluted kernel

from frequency space to real space using an inverse FFT.
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At this point, the solute potential is ready, and the next step is to handle the solvent.

3.3.2 Solving the 3D-RISM equations.

As noted above, “solving” the 3D-RISM equations amounts to finding a cγ function (for

each solute site γ) that minimizes 4cγ ≡ hclosure−hOZ at all points on the grid. Calcu-

lations are initialized with a guess for each cγ , which is typically chosen to be uniformly

zero, although a user-provided starting point can accelerate convergence. Each self-

consistent procedure cycle begins with computing hOZγ in the reciprocal space, followed

by a switch to the real space where hclosureγ is computed, and ending by modifying the

current guess for cγ using an MDIIS procedure based upon 4cγ . This cycle is repeated

until 4cγ reaches a pre-determined threshold, which is typically 10-10 if gradients are

to be used (for minimization or dynamics), and 10-? if one just needs thermodynamic

parameters or solvent distribution functions.

This procedure is complicated when charged solutes are used: here one wants the

solute net charge to be neutralized by the converged ion distribution of the solvent.

However, as long as the reference solvent is neutral, the hOZ distribution arising from

Eq. 3.1 will also be neutral. This is, of course, a problem when the solute charge is

non-zero. We have considered two ways to address this problem: the first, adopted by

Kovalenko and Hirata for non-periodic 3D-RISM[61], modifies the OZ total correlation

function to ensure that the solvent charge exactly balances the solute charge. The

second model removes the restraint that the bulk solvent be neutral.

3.3.2.1 (a) The Ornstein-Zernike equation generates an electro-neutral sol-

vent

The total solvent charge can be obtained from the integral of the charge distribution of

all solution species (Qλρλgλ (r)) over the volume of the system, in this case the volume

of the unit cell. The solvent species distributions are generated using the OZ equation:

QOZsolvent =

∫
Vcell

∑
γ

Qγργ
[
hOZγ + 1

]
dr
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If we restrict to the situations where the solution composition is chosen to satisfy the

neutrality condition, ie
∑

γ Qγργ = 0 and replace hOZγ using Eq 3.1, we get:

QOZsolvent =

∫
Vcell

∑
γ

Qγργ
∑
α

cα ∗ χαγdr

which can be rearranged using linearity and distributivity properties of convolution to

read:

QOZsolvent =

∫
Vcell

∑
α

cα ∗
∑
γ

Qγργχαγdr

and can be further re-written using the integration property of convolutions as:

QOZsolvent =
∑
α

(∫
Vcell

cαdr

)(∫
Vcell

∑
γ

Qγργχαγdr

)

Remembering the definition of solvent-solvent susceptibilities:

χαγ = ωαγ + ραhαγ (3.4)

ωαγ = δ (r − lαγ)

and consequently that
∫ ∑

γ Qγργχαγdr = 0, ie the sum over the excess number of

particles (γ) with respect to a specific species (α) equals to the total charge of the bulk

solvent model (which is chosen here to be zero, electro-neutrality) which nullifies each

term of the sum over α irrespective of the values of the direct correlation function,

cα. So, the OZ equation when used in conjunction with susceptibilities derived for a

electro-neutral solvent, will always lead to an electro-neutral three dimensional solvent

distribution.
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3.3.2.2 (b) Extending the RISM equations to achieve charge neutral peri-

odic systems

RISM and, in general, molecular solvation theories, due to their formulation in the grand

canonical ensemble, should be able to build in the necessary excess of ionic charges to a

charged solute such that the final system is electro-neutral. As shown above, irrespective

of the values of cγ the OZ equation insures that the solvent and not the system will be

neutralized. To address this problem, we follow the basic idea used by Kovalenko and

Hirata for the non-periodic problem,[59, 60] and modify the total correlation functions

to impose system neutrality, ie:

∑
γ

Qγργ

∫
hOZ,corrγ dr +Qsolute = 0 (3.5)

whereQγ and ργ are the charge and reference concentrations of the solvent sites, hOZ,corr

is a corrected form of the total correlation functional, which we propose to take the form:

hOZ,corrγ (r) = hOZγ (r)−Qγφ (3.6)

that adds an additional term dependent on the charge of the solution site. Hence

∑
γ

Qγργ

∫ [
hOZγ (r)−Qγφ

]
dr +Qsolute = 0

Remembering that
∑

γ Qγργ
∫
hOZγ (r) dr = 0, we can solve for φ:

φ =
Qsolute

Vcell
∑

γ Q
2
γργ

(3.7)

which, as such, becomes constant and does not need to be updated at each iteration.

The correction to hOZγ applies only to charged species of the solvent (ions) and not on

neutral components (such as water).

Algorithm 1 shows how the RISM equations are solved to reach self-consistency, as

described at the beginning of Subsection 3.3.2.
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Algorithm 1 Periodic algorithm with hOZ shifted; assumes HNC closure for simplicity.
c0 = 0; δc0 = 999.
while δci > thresh:
ĉi−1 = FT [ci−1]
ĥOZ,i = ĉi−1 ∗ χ̂vv
hOZ,i = FT−1

[
ĥOZ,i

]
hOZ,i = hOZ,i −Qγφ
hHNC,i = Exp [−UPME + hOZ,i − ci−1]− 1
δci = hHNC,i − hOZ,i
ci = MDIIS[ci,δci]
i+ +

3.3.2.3 (b) Employing non-neutral bulk solvent models.

A second approach to system neutralization abandons the constraint that the solvent

be net neutral. This approach won’t work for non-periodic systems, since the (physical)

bulk solvent conditions are satisfied (by construction) at a large distance from the solute.

But for periodic systems, there is no point in space that is not close to a solute molecule,

and hence no clear reason to require that the reference solvent be neutral. We encounter

the same sort of decision here with modifying hOZ in the integral equation approach

discussed above: for (say) a negative solute, should one increase the concentration of

cations, or decrease the concentration of anions, or take some combination of these two?

To begin exploration, we looked at the sarcin-ricin RNA, which has a net solute charge

of -104. Calculations using the modified OZ correlation (described above) suggested

that very few anions would be expected in the water channels here, so we decided to

explore reference solvents that just had water and varying concentrations of Na+ ions.

An ion concentration of 2.5M (using the pse2 closure) resulted in having 104.02 Na+

ions per unit cell, which compares well with the ion counts of 107.41 Na+ and 3.41 Cl-

when using a (neutral) 1.0 M NaCl reference solvent and the OZ modifications.

3.3.3 Computing forces on the solute atoms

Under certain circumstances (apparently, that there is a closed form for the chemical

potential, independent of the path of thermodynamic integration), KH argue that the
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gradient of the excess chemical potential can be written in the following form:

f (Ri) ≡ −∇Ri4µ =
∑
γ

ργ

∫
drgγ (r)∇iUγ (r−Ri) (3.8)

where the electrostatic part of Uγ is U elγ = Qγφ
el
solute, which is the electrostatic potential

of the periodic solute that can be computed using lattice sums, such as Ewald sum or

PME. φelsolute can thus be separated in a real and reciprocal space terms term.

f el (Ri) =

∫ (∑
γ

Qγργgγ (r)

)[
∇iφel,shortsolute +∇iφel,longsolute

]
dr (3.9)

=

∫
ρ (r)

[
∇iφel,shortsolute +∇jφel,longsolute

]
dr

The real (short range) term is in part a convolution (ρ ∗ φel,shortsolute ) with a short-range

kernel

φel,shortsolute (r) =
∑
j

Qierfc (β |r−Ri|)
|r−Ri|

+ const.

that can be carried out in the real space: where the constant terms have been ignored,

and with which the short range electrostatic field component can be computed by taking

the derivative of the above:

∇iφel,shortsolute = Qi

(
− 2β√

π
exp

(
−β2 |r−Ri|2

)
+

erfc (β |r−Ri|)
|r−Ri|

)
r−Ri

|r−Ri|2

The contributions of this term are evaluated using a minimum image convention and

using a cutoff and can be computed simultaneously with the LJ part. The reciprocal

(long range) term can be obtained considering first a simple case where the charge

density interacts with a single Gaussian positioned at Ri. The interaction energy is:

Eeli = Qi
∫
ρ (r)φGaussian (r−Ri) dr, which can be recast as a convolution:

Eeli = Qiρ ∗ φGaussian (Ri) (3.10)
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where the analytical form of φGaussian (r) = erf (β |r|) / |r|; in practice it is represented

on the reciprocal grid and recycled from the initiation step where the solute potential

is mapped on the regular grid. Therefore, the electrostatic force acting on the atom i

could be written as:

f eli = Qi∇iρ ∗ φGaussian (3.11)

showing that one has to carry out a single FFT based convolution between the solvent

charge density and the electrostatic potential of a Gaussian distribution centered at

the origin, followed by an estimation of the force at the atomic position using a spline

derivative, numerical differentiation in the real space.

We are examining whether this equation still holds if option (a) above is chosen,

where hOZ is modified to force neutrality.

3.4 Results

3.4.1 Solvent distribution in molecular crystals

3.4.1.1 Comparison with X-ray scattering factors

How we can compute scattering from the solvent distributions coming from 3D-RISM,

and compare to experiment, and cross-compare to simple, flat bulk solvent models is

discussed in Section 3.6. Results below show that refinement with RISM density and

the solvent distributions from MD show improvement over the standard flat model for

solvent. The MD distributions result in the best r-factors, but r-factors for refinements

using RISM densities become closer to the MD results as resolution worsens. See Fig.

3.1 and Tables 3.1 to 3.2.

3.4.1.2 Total number of waters

It would be of considerable utility to know the total number of waters per unit cell.[50,

64]. This parameter is also useful in testing how well 3D-RISM is working. Table 3.3

gives the number of solvent water molecules per protein chain for several examples. In
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Figure 3.1: Water density in 1aho.

Protein scorpion toxin scorpion toxin
a

GB3 myoglobin lysozyme lysozyme cyclophilin

PDB ID/resol. 1aho/0.96 1aho/0.96 2igd/1.10 1bzr/1.15 4lzt/0.95 2lzt/1.97 4yul/1.42

flat (Refmac) .209/.214 .178/.190 .220/.233 .200/.208 .196/.205 .167/.216 .201/.224

3D-RISM .197/.211 .158/.174 .213/.224 .194/.206 .190/.197 .154/.201 .185/.202

explicit MD .189/.198 .144/.167 .191/.209 .186/.192 .191/.202 .153/.214 .172/.185

Table 3.1: Bulk solvent models with a single protein configuration; each block shows
R/Rfree after 40 cycles of refmac5 refinement. There is an average drop in R of 0.019
between flat and explicit MD, and an average drop of 0.011 between flat and 3D-RISM.
(a) results for 1aho using alternate conformers.

RNA 2a43 480d 2qus
flat (Refmac) .223/.261 .192/.216 .206/.255
3D-RISM .208/.229 .175/.208 .186/.234

Table 3.2: Bulk solvent models with a single RNA configuration; each block shows
R/Rfree after 40 cycles of refmac5 refinement. There is an average drop in Rfree of 0.017
between flat and 3D-RISM, slightly larger than the value of 0.011 found for proteins in
Table 3.1.
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protein PDB ID solvent %
a

MD
b

cSPCE_kh
c

cSPCE_pse3
d

NaCl_pse3
e

f000
f

find_F000

lysozyme
g

4lzt 34 284 271 288 284 312 312±8

lysozyme
h

5l9j 44 419 408 422 412 453 558±19 (!)

cyclophilin-A 4yul 56 971 963 960 995

thaumatin 4el7 59 1274 1256 1334

scorpion toxin 1aho 41 195 180 189 202

Table 3.3: Predicted number of solvent molecules per protein chain. (a) solvent fraction
reported by phenix.f000 ; (b) from MD simulation with SPCE water, see text; (c) 3D-
RISM result using the KH closure; (d) 3D-RISM result using the PSE3 closure; (e)
as in (d), but using 0.1 M NaCl solvent, rather than pure water; (f) prediction from
phenix.f000 assuming the default solvent electron density of 0.35 e/Å3; (g) triclinic; (h)
tetragonal

all protein structures, the RISM water counts are all very similar to the crystal MD

counts, indicating the high accuracy of the periodic code. In fact, at least one RISM

calculation for each structure is the closest prediction to the MD results, performing

better than the built-in method from PHENIX.

3.4.2 Using 3D-RISM as an implicit solvent model for biomolecular

crystals

The next figure compares the average structures from (Fig. 3.2) 100 ps of simulation of

the sarcin-ricin RNA unit cell, using either the 3D-RISM result (left) or no solvent term

(right), to the experimentally-determined and deposited structure. As can be seen, there

is less deviation from the deposited structure in the simulation with RISM forces than

in the simulation without solvent. This indicates that the macromolecular interactions

with solvent stabilize the structure, and that simulations with RISM forces do a better

job of replicating experimental conditions than simulations with no solvent description.

More work should be done, both with different structures, as well as to compare these

results with those found from crystal MD simulations using explicit solvent molecules.

Within AMBER, this RISM implementation is the only implicit model of solvent with

the ability to replicate periodic systems like macromolecular crystals.
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Figure 3.2: Blue: experimental average structure from X-ray crystallography (PDB
ID 480d); red: average structure from a 3D-RISM crystal simulation; green: average
structure from a crystal simulation with no solvent correction.

3.4.3 Thermodynamics in the infinite dilution regime

The examples discussed above dealt with molecular crystals, where solute molecules are

in contact with their images in neighboring unit cells, and the solvent volume is fairly

small. Another application might be to a single (dilute) solute surrounded by a buffer

of solvent. As the size of the unit cell increases, such a calculation should approach the

infinite dilution, non-periodic limit that has traditionally been assumed in 3D-RISM

applications. As noted above, these traditional calculations actually employ a regular

periodic grid in the vicinity of the solute (to enable convolutions to be carried out via

fast Fourier Transforms), and add in estimates of the “asymptotic” contributions from

solvent outside the grid. Here we study the box-size dependence of periodic 3D-RISM

calculations that have a single solute molecule at the origin. We show that extrapolation

of thermodynamic quantities to an infinite box size can be readily carried out, yielding

results that are in close agreement with those from existing non-periodic codes. See Fig.

3.3

The slope of this line at large box sizes is just q2ζ/2L. This implies that a correction

to infinite box size can be made from a single periodic calculation, provided that it is

large enough to be in the linear regime. Hence there is a possibility of using periodic

calculations to replace non-periodic ones, with particular advantages for gradients, but
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Figure 3.3: Variation of solute chemical potential with respect to periodic cell size (black
dots and green linear fit) and comparison with solution case (blue line).

also potential timing advantages for single-point calculations. Clearly, the size of the

unit cell in the periodic calculations needs to be large enough to capture the energetic

consequences of perturbations in the solvent, and this minimal “buffer size” likely de-

pends on the nature of both the solute and solvent. It seems likely that the required

buffer size for non-periodic calculations also has to be large enough to describe these

solvent perturbations, although it is possible that the (approximate) asymptotic con-

tributions are accurate enough to allow somewhat smaller explicit grids. This will be a

subject of future study.

3.5 Conclusions

Water molecules and ions around biomolecules often play a crucial role in function.

Analysis of the solvent distributions in biomolecular crystals can provide an important

check on the accuracy of computational models. Here we have presented sample results

for a variety of small proteins and RNAs, derived from explicit solvent molecular dy-

namics calculations, and from a newly-developed periodic integral equation (3D-RISM)

code. The predicted solvent distributions can be compared to experiment in a variety

of ways: by looking at the locations of ordered waters and ions that can be identified

in density maps derived from X-ray crystallography; by comparing computed and ob-

served Bragg intensities; and (potentially) by comparing predicted and measured crystal
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densities (which reflect the total number of water and ions per unit cell).

3.6 Computational details

The six macromolecule crystal structures being refined have Protein Data Bank (PDB)

IDs 1aho (scorpion toxin protein), 1bzr (whale myoglobin), 2igd (protein G IGG-binding

domain II), 2lzt (lysozyme), 4lzt (hen egg white lysozyme), and 4yul / 3k0n (Cyp-

clophilin A - CypA).

Refinement calculations were performed using Refmac5. The refinement procedure

requires two input structures: the solvent density distribution (as calculated by the

solvent model) and the energy minimized solute structure. During refinement, the

solvent density is held constant (except for overall scaling and overall B-factors, which

are refined), and the atomic positions and B-factors of the solute are modified to achieve

best agreement with the observed diffraction intensities. The final R-factor is obtained

after 40 refinement cycles.

All 3D-RISM solvent model calculations were performed with the Kovalenko-Hirata

(KH) closure on a uniform 0.35 Å spaced grid. A 10−6 correlation function convergence

error tolerance was enforced at each MD time step. The periodic 3D-RISM implemen-

tation directly produced solvent distributions which were used in Refmac refinement

calculations.

The periodic 3D-RISM implementation used here is part of AmberTools (versions

19 and above), an open source collection of molecular simulation software. The im-

plementation was based upon an existing non-periodic RISM code that was primarily

developed by Tyler Luchko, David Case, and Andriy Kovalenko [70]. Extensions to pe-

riodic systems were spearheaded by Jesse Johnson and George Giambaşu, and a more

complete description of the codes is given elsewhere.[55]
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Chapter 4

Studies of RNA structures using 3D-RISM and explicit
solvent crystal MD

4.1 Introduction

As mentioned in Chapter 2, more and more RNA molecules have been solved in recent

years, and as such, our understanding of the roles RNA has played and does play in

the world has expanded[27, 8, 97, 20, 18], and ideas for leveraging RNA therapeutically

have gained traction[16, 25, 69, 94, 29, 9]. As such, structural accuracy is of the utmost

importance. Along with structural accuracy, however, proper understanding of solvent

interactions with RNA and distribution of water molecules and ions is also paramount.

Many interactions at active sites and in ligand binding are mediated by water

molecules and ions[47, 93], and tertiary structure of RNA molecules can be supported

by electrostatic interactions with nearby water molecules and ions[110, 76]. The water

molecules and ions involved in these kind of interactions are generally well placed in

models from X-ray crystallography[6, 109, 12, 13, 5]. However, as solvent can make up

from 30-70% of the volume in biomolecular crystals[73, 4, 28], there is a great deal of

solvent that is not represented on a molecular basis in crystallographic models. In fact,

crystallographic refinement software generally uses a flat solvent distribution to model

this disordered solvent. This flat model is modified via its parameters (B-factors and

density) to improve the model’s fit to experimental data on a global scale, but does not

properly describe the vast majority of the solvent in the crystal[78]. Methods other than

X-ray crystallography, such as atomic emission spectroscopy[7, 41], small-angle X-ray

scattering[85, 86, 75, 82], and partial molar volume measurement[22, 24, 23, 106], can

provide ion and water molecule numbers for the bulk solvent in solution, but provide
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little to no information regarding the solvent molecules near the biomolecules. Com-

putational methods may be the best way to determine solvent information both at the

local interaction level and the bulk solvent level. Both 3D-RISM calculations and crys-

tal MD simulations are methods suitable to providing bulk solvent characterization, one

implicitly and the other explicitly, and to placement and description of nearby solvent

molecules and their energetic interactions with the biomolecules. Crystal MD simula-

tions, however, have been an established method for longer than 3D-RISM.

Crystal MD simulations, which have been around since at least the 1980s [108],

mimic crystalline environments with explicit solvent molecules describing the entire

unit cell’s solvent, and could ideally provide a fuller description of solvent left out of

crystallographic models. The insistence on keeping unit cell dimensions for the size

of the box held under periodic boundary conditions in such a simulation leads to a

more accurate description of crystal solvent and macromolecular dynamics than can

be provided by typical solution simulations. Not only can these simulations provide a

more diverse description of bulk crystal solvent than standard flat densities, but they

can also help provide structural dynamical information to describe diffuse scattering

observed in crystallographic experiments. This method is still developing and improving

as technology improves[21] (for further information, see this source).

3D-RISM, on the other hand, is a much more recent development as a method

to describe and predict how ions and water molecules solvate macromolecules. The

distributions of the different solvent species are found as atomic spatial distributions in

three dimensions from an approximate solution to an equation similar to the Ornstein-

Zernike equation. The equation used relates the total correlation and direct correlation

functions to each other, but in order to get the solution, a closure equation that relates

the two must be used. This method has the benefit over other non-explicit models of

being developed with explicit water as its starting point and having statistical mechanics

as its basis (see Chapter 3).

3D-RISM, as with all non-explicit models, has the advantage of being far more

time efficient than explicit water simulations to arrive at a description of the solvent.

However, as the solutions sought are approximations, it might be questionable whether,
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especially with a new implementation, the description arrived at is accurate. In this

paper, both 3D-RISM and crystal MD simulations will be used to probe the solvent in

3 different RNA structures.

4.2 Methods

4.2.1 Structure selection and preparation

Three structures with a good range of resolution (1.34-2.6 Å), while still relatively high

resolution for RNA structures, and fairly simple structures (no complex modifications)

were chosen (PDB IDs 2a43[87], 2oiu, 3tzr). To prepare the structures for crystal MD

simulations, the crystallographic water molecules were removed from the structures,

and prmtop and rst7 files were prepared for the unit cell of each structure. This was

done using phenix.AmberPrep, and then the output prmtop and rst7 files were combined

using ambpdb in AMBER to build unit cell PDB files. These were then run through

a script called addtobox.sh, which used the AddToBox utility to add enough sodium

ions to neutralize the structures and a test number of water molecules to provide a

stable pressure in the crystal during simulation (the test starting numbers were chosen

after 3D-RISM calculations of the structures). The structure preparation was more of

a cycle, as this addition of water molecules had to be done multiple times to get the

proper pressures throughout the simulation process.

In order to be prepared for RISM calculations, the structures had all deposited

waters and monatomic ions removed. These structures, with their existing ligands

and crystallization solvent molecules (as listed in Table 4.1), were then run through

phenix.AmberPrep without minimization in order to prepare topology and coordinate

files for the unit cell to be handled as input for the calculations.

PDB ID Resolution (Å) Non-RNA Entities
2a43 1.34 None
3tzr 2.21 SO4, SS0
2oiu 2.60 None

Table 4.1: The three structures used as input for RISM calculations, with their respec-
tive small molecules and ions. Only 3tzr has any non-RNA entities.
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4.2.2 Crystal simulation parameters and process

For crystal MD simulations of these structures, at each number of water molecules tested

out, a 500-step minimization using the steepest descent method was performed with con-

stant volume periodic boundary conditions, followed by 20 ns of restrained equilibration

(restraint_wt=10.0) up to the experimental temperature at constant pressure periodic

boundary conditions with an artificially high constant pressure, and then 20 ns each of

restrained simulation at restraint weights of 10.0, 1.0, and 0.1, followed by at least 60

ns of unrestrained simulation in order for the system to converge. The restraints were

set on all heavy atoms in the systems, other than those in the water molecules and

the sodium ions. The unrestrained simulations were only performed once the proper

number of water molecules was settled upon. This was done by checking the average

pressures at the end of each of the restrained runs: water numbers were changed if the

absolute value of the average pressure was higher than 500, 200, and 100 for the 10.0,

1.0, and 0.1 restraint weight runs, respectively. All of these calculations, performed in

pmemd using the cuda_SPFP implementation in AMBER18 on a GPU (except for the

minimization, which used cuda_DPFP), used SHAKE on the hydrogen atoms in the

systems.

4.2.3 rism3d.snglpnt parameters

For rism3d.snglpnt calculations of these structures, differing sets of parameters were

used, both in trying to converge the calculations and in order to test differing sets

of ions and concentrations. All calculations were performed with grid spacing of 0.35

Å in each dimension, with a cutoff of 20 Å and solvent cutoff of 9 Å, with up to 10

previous iterations used for predicting the next one (mdiis_nvec=10) and a maximum of

10,000 steps for convergence at each closure. The calculations were all performed with 2

different closures, starting with Kovalenko-Hirata and ending with PSE2 with tolerances

of 0.1 and 0.000001, respectively. Concentrations of salts were chosen arbitrarily in some

cases, and at experimental levels in others.
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4.2.4 Analysis

Multiple routes of analysis were charted, both numerical and visual in nature. For the

crystal MD simulations, the first line of analysis was already performed, checking on

average pressures to make sure the boxes were stable in the simulations. Once the

proper numbers of waters were settled upon for the simulations (and marked down),

to monitor the convergence of the unrestrained simulations, the RMSD for the entire

crystal lattice of the RNA base heavy atoms, the asymmetric unit RNA base heavy

atoms, and all heavy atoms of the RNA in an asymmetric unit were analyzed using the

XtalAnalyze, GetBfactors, and XtalPlot scripts in AmberTools/src/xtalutil/Analysis/,

with modification to allow for the differences in atom names from protein to RNA (base

heavy atoms were used as the backbone, as the bases should stay pretty stable due to

the base pairing interactions) and C1’ atoms used in place of the CA atoms found in

proteins. When the RMSD leveled out, the simulations were considered to be converged,

and further analysis was performed.

At this point, the scripts used above were performed on the finished simulations.

In all uses of these scripts, the trajectories, starting rst7 files, and prmtop files were

stripped of all atoms but the RNA and MG ions in cpptraj, and only the unrestrained

trajectories were used for analysis. (Currently, what use the output plots for B-factors

and RMSD will be put to is unseen.) Further, easier, analysis of the RMSD was per-

formed using cpptraj, loading in the stripped prmtop, starting rst7 (as the reference),

and unrestrained trajectories and running the rms command, with fitting and mass-

weighting, for all RNA heavy atoms and for just the base heavy atoms, in the entire

unit cell and each individual asymmetric unit. Further RMSD analysis involved using

the average structure asymmetric unit backbone (base) heavy atom and all RNA heavy

atom RMSD from the XtalAnalyze script’s use of reverse symmetry placement of all of

the asymmetric units on top of each other and averaging of the structures and comparing

to the starting asymmetric unit and placing these numbers in a table. Further analysis

concerning water molecule counts was performed to provide predictions using crystal

parameters in three different ways. First, the phenix.f000 command was performed on
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the 4phenix PDB files made for 3D-RISM use using a mean_solvent_density of 0 and

again with it set to 0.35 (the default). The resultant F(0,0,0) values indicate an estimate

of the number of electrons without and with solvent molecules, respectively. Finding

the difference between these values, and dividing by 10 electrons per water molecule,

provides the F(000) WP values in Table 4.2. Second, the SC WP values were found by

using the solvent content percentage on the “Experimental” tab for each structure on the

PDB[14, 11], multiplying that by the unit cell volume, and then dividing by 30 Å3per

water molecule. Finally, the PSC WP predicted value comes from a similar calculation

to the SC WP, just using the fraction value given by phenix.f000 as the solvent content

percentage. Visual analysis of the structures from these simulations was performed by

creating images in Chimera overlaying the average asymmetric unit structure on top of

the starting asymmetric unit structure to visually inspect and depict the difference in

the average output structure and the starting structure.

Analysis of the 3D-RISM calculations was mostly numerical, looking at the output

for each calculation, and comparing numbers of waters and ions found with differing

solvent setups. One other measure recorded was the excess chemical potential for RISM,

which is equivalent to the ERISM value in the energy calculations for the PHENIX

structures. Finally, the data for both crystal MD simulations and 3D-RISM calculations

were compared to demonstrate the effectiveness of 3D-RISM in solvating the structures

when compared to the more established explicit solvent method (crystal MD). The ion

counts and water counts were compared.

4.3 Data and discussion

4.3.1 Crystal simulation results

As the standard to which the 3D-RISM results were to be compared, it was important

to successfully perform and analyze the crystal MD simulations. This included looking

at the ion and water molecule counts, as well as the RMSD of the RNA molecules in

the simulations to the starting structures from before minimization. The following data

will show that the simulations converged properly, as well as showing the standards for
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numbers of water molecules for 3D-RISM results to be compared to.

PDB Res(Å) DMG WAT F(000) SC PSC NA P(bar) UCV(Å3)
2a43 1.34 12 3125 3125 2476 2976 126 -81.2 135062.4
3tzr 2.21 24 1549 1506 1028 1434 112 103.9 87240.9
2oiu 2.60 14 7968 8086 6745 7670 256 -34.0 315564.8

Table 4.2: Water and ion counts needed to neutralize and stabilize the unit cell for
each structure, as well as the average pressure in the longest unrestrained run for
each and predictions of water molecule numbers via different methods (Res=resolution,
DMG=deposited magnesium ions in unit cell, WAT=water molecules in simulation,
F(000)=predicted number of waters using phenix.f000, SC=predicted number of wa-
ters using the PDB solvent content percentage, PSC=predicted number of waters using
PHENIX solvent content percentage from phenix.f000, NA=sodium ions in simulation,
P=average pressure in longest unrestrained run, UCV=deposited unit cell volume). All
numbers found in the simulations are generally higher than the predictions, and the
F(000) predictions are closest to the simulation results.

As can be seen in Table 4.2, the number of water molecules in these unit cells were

relatively proportional to the unit cell volume, and the structures were all neutralized

with only positive ions added. The MD numbers were generally higher than the predic-

tive values, which was somewhat surprising, although the F(000) predicted values are

all rather close to the number of waters found in the MD simulations, with the largest

difference being 118 waters in 2oiu, which is only 1.48% of the total number found in

the MD simulation for this structure, while the difference for 3tzr is 2.78% of that struc-

ture’s MD waters. The prediction for 2a43, at very high resolution, was exactly the

same as the number found. All three structures’ longest unrestrained runs had average

pressures within about 100 bar of 0, meaning there was not much effort of the unit cell

to try to expand or contract from its deposited cell dimensions.

As mentioned above, the RMSD of the structures were analyzed in multiple ways.

First, the output from XtalAnalyze of the unrestrained simulations included base heavy

atom and all RNA heavy atom RMSD for the average structure of all the asymmetric

units as compared to the starting asymmetric unit. These values appear in Table 4.3,

and show that there are similar changes from the starting structure to the average struc-

ture for 2a43 and 3tzr, while the average structure is vastly different from the starting

structure for 2oiu. This result, while initially surprising, became less so when seeing
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the RMSD found in previous simulations was around 4.2 Å for the docked conforma-

tion of the structure[43]. Another interesting point to consider with 2oiu is that the

two monomers in the starting asymmetric unit are not identical: one is in a mimic of

the active state (docked confirmation) of the ligase ribozyme, while the other is in an

inactive state[102]. Further analysis of the monomers of this structure was performed

due to this possible reason for the large RMSD.

PDB Res(Å) Sim Time(ns) BHA(Å) HA(Å)
2a43 1.34 160 1.0498 1.0333
3tzr 2.21 340 1.5022 1.4596
2oiu 2.60 60 4.1526 4.4531

Table 4.3: Unrestrained simulation times (Sim Time), average structure asymmetric
unit base heavy atom RMSD (BHA), and average structure asymmetric unit heavy
atom RMSD (HA). Typical RMSD values are found for 2a43 and 3tzr, while 2oiu has
relatively high values that are in line with other published results.

When looking at the entire unrestrained simulation heavy atom RMSD for 2a43, the

entire unit cell RMSD jumped from 2.0 to 2.5 Å in the first 60 ns and stayed relatively

steady for the rest of the run. Generally speaking, the asymmetric units followed the

same trend, but at lower levels (started between 1.0 and 1.7 Å, ended between 1.3 and

2.0 Å). The only real exception to that was the 6th asymmetric unit, which grew up to

about 2.75 Å by the 60-ns mark. After this, it leveled off back around the rest of the

asymmetric units. When looking at the simulation around this time, the 6th asymmetric

unit started to become very unstable regarding the sugar-phosphate backbone, and the

3’-end of the structure spread apart from the mid-chain loop that base paired to it.

There’s also a large fluctuation in residue 12 (labeled this way in the deposited structure,

in analysis it becomes residue 10 as the deposited structure starts with 3), the base of

which sticks out of the base pairing groove and rotated freely during this portion of the

simulation. This asymmetric unit became more stable as the simulation continued, and,

thus, the RMSD stabilized. When looking at this structure visually in Figure 4.1, the

differences were across the board, especially with all of the non-base-paired bases, and

even one of the two magnesium ions changed locations relative to the RNA molecules

in a rather large way (even though the magnesium ions were not included in the atom
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Figure 4.1: Heavy-atom and base heavy-atom RMSD analysis, as well as visual analysis
of 2a43 crystal simulation. The structural image is an overlay of the starting asym-
metric unit PDB file (green) and the average coordinate PDB file from the simulation
(blue). The RMSD between these structures is in Table 4.3. The RMSD throughout
the simulation stays relatively low, other than the sixth asymmetric unit, which has a
large spike in the middle of the simulation and restabilizes. There is some backbone
deviation in the average asymmetric unit structure, but a lot of the differences appear
to take place in the bases.
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mask for RMSD).

When looking at the data from the 2oiu simulation in Figure 4.2, one might expect

somewhat higher RMSD values due to this structure being at the lowest resolution of

the 3 structures studied in this chapter. However, the RMSD was far and away much

worse than expected purely when compared to the other structures. The unrestrained

simulation heavy atom and base heavy atom RMSD were relatively the same, ranging

from 3.25 to 4.75 Å for the unit cell, with both of the asymmetric units fluctuating

between 2.5 and 4.5 Å. It was somewhat surprising that with such a high RMSD, the

simulation was stable enough to be considered converged even in just the first 60 ns of

prolonged unrestrained simulation.

As mentioned in analysis of Table 4.3, the average structure RMSD was not far

from the docked state RMSD found in simulations, and there are two different states

in the two monomers in each asymmetric unit. To better look into how these two

different states affect the overall RMSD, each monomer’s RMSD was analyzed in a

similar way to the asymmetric unit RMSD. In Figure 4.3, the unit cell RMSD graphs

are the same as in Figure 4.2, but the other curves are the RMSD for each monomer

throughout the simulation. Generally speaking, the 1st monomer in each asymmetric

unit is lower in RMSD than the 2nd monomer, around 2 to 3 Å, while the 2nd monomers

were much closer to the overall unit cell RMSD. While it was not surprising that their

were differences in the RMSD from monomer to monomer when the monomers were

in different conformations, it was surprising to compare which monomers were higher

in RMSD. When looking at the literature [102, 43], one finds that the 1st monomer

of each asymmetric unit is the undocked conformation, and the 2nd asymmetric unit

is the docked conformation, and the RMSD in simulations in [43] is higher for the

undocked conformation, which is not the case here. The structural image in Figure

4.2, an overlay of the average asymmetric unit structure on the starting asymmetric

unit structure, further shows the difference in the monomers over the course of the

simulation. The monomer in the bottom portion of the image is the 1st monomer in the

asymmetric unit, and this has a much better fit, minus one or two free bases floating

at different angles outside of the groove, while the top monomer is the 2nd, showing
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Figure 4.2: RMSD and visual analysis of 2oiu crystal simulation. The RMSD for this
structure is rather high, but matches what is found in the literature for this structure.
Visual analysis of the starting structure (green) and the average asymmetric unit struc-
ture (blue) from the simulation shows both massive deviation in the backbone and bases,
especially in the upper monomer as depicted.



92

0 10 20 30 40 50 60
MD simulation run time (ns)

1

2

3

4

5

6

R
M

SD
 (A

ng
st

ro
m

s)

Entire Unit Cell
1st monomer 1st ASU
2nd monomer 1st ASU
1st monomer 2nd ASU
2nd monomer 2nd ASU

RNA Monomer Heavy Atom RMSD
2oiu

0 10 20 30 40 50 60
MD simulation run time (ns)

1

2

3

4

5

6

R
M

SD
 (A

ng
st

ro
m

s)

Entire Unit Cell
1st monomer 1st ASU
2nd monomer 1st ASU
1st monomer 2nd ASU
2nd monomer 2nd ASU

RNA Monomer Base Heavy Atom RMSD
2oiu

Figure 4.3: RMSD analysis of 2oiu on a per-monomer basis. The first monomer in each
asymmetric unit shows much less deviation than the second monomer for most of the
simulation, which is a surprise as compared to the literature on this structure.

the large RMSD difference from the starting structure seen in the monomer RMSD

graphs. When analyzing the unrestrained simulation of 3tzr, the original 60 ns of

simulation showed a non-converged simulation, with the whole unit cell’s RMSD (and

especially the 4th asymmetric unit) on the rise. The RMSD continued to rise slightly,

until around the 240-ns mark, at which point it leveled out for the last 100 ns. The

asymmetric units were all between 1.5 and 2.25 Å in the converged section in terms of

all RNA heavy atom RMSD, while the unit cell RMSD stayed between 2.0 and 2.4 Å.

This shows a dynamism to the structure similar to that of 2a43, despite the fact that

the average asymmetric unit structure RMSD was nearly 0.5 Å higher for 3tzr. The

base heavy atom RMSD was even a bit higher than the all heavy atom RMSD, with

the asymmetric units more spread out, between 1.5 and around 2.5 Å, and the overall

unit cell RMSD closer to 2.5 Å. The RMSD using both sets of atoms is fairly similar

to that of 2a43, a higher resolution structure with fewer residues per asymmetric unit,

which was surprising, even with the difference in number of asymmetric units . One

possible reason for this similarity in stability could be due to a larger number of base

pairs within the structure of the asymmetric unit of 3tzr as compared to that of 2a43.

This seems to be borne out by the average structure-original asymmetric unit overlay
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Figure 4.4: RMSD analysis of 3tzr crystal simulation. This simulation took the longest
to converge, but the RMSD is relatively the same as that found for 2a43. As with 2a43,
the comparison of the average structure to the starting structure shows some differences
in the backbone, but most of the deviation occurs in the bases.
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image in Figure 4.4, as most of the bases in base pairs seem to be fairly well-overlapped,

with the main differences appearing in the sugar-phosphate backbone at the termini of

the RNA, as well as the few bases that are not base paired and lie outside the groove.

As was hoped, the simulations for all three structures resulted in convergence, with

average pressures that indicated the box was set up properly with the right number

of water molecules. While the simulations all seemed stable, the asymmetric units in

each structure were not uniform in their dynamics throughout the simulation, with each

structure having a spread of RMSD across the asymmetric units (or monomers for 2oiu).

The RMSD for 2oiu was much higher than for either of the other 2 structures, but that

was expected based on other simulations of the same structure in the literature. Based

on the images comparing the average structure to the starting structure, it appeared that

most of the structural difference resided in bases that floated outside of the base-pairing

groove and in residues near the termini of the chains. There were persistent differences

in the bases, but there still appeared to be base pairs. One difference between these

simulations and crystalline conditions was the choice to neutralize the RNA with only

sodium cations. This will surely be found to be different in 3D-RISM output.

4.3.2 3D-RISM solvation results

As the focus of this chapter is to examine the ability of the 3D-RISM code to replicate

and approximate crystallographic solvent conditions as found in crystal MD simulations,

it was important to perform calculations with differing solvent concentrations, including

conditions approximating crystallization conditions. It also was decided to be relevant

to determine what effects differing concentrations of monovalent and divalent ions had

on the solvent predicted. In order to analyze the effects of these differences, numbers of

ions and water molecules were recorded and compared from the output of the different

calculations.

The selections of solvent species and concentrations in Table 4.4, besides the last

choice for each structure, were mostly arbitrary in their choice. The concentrations

were generally chosen as ones that would likely be in relevant ranges for crystals and

ones that already had solvent files created for them, and the ions were chosen to see the
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PDB Solv mdel MG Wat NA K CL MG% ERISM

2a43

A 0.3 60 3166 0 31 1 79.5 -4527.65
B 0.3 47 3129 57 0 1 62.3 -4537.14
C 0.3 40 3111 71 0 0 53.0 -4595.51
D 0.5 74 3162 6 0 5 96.1 -4361.46

3tzr

A 0.5 68 1608 0 24 0 85.0 -2515.11
B 0.5 53 1568 54 0 0 66.3 -2562.08
C 0.4 45 1550 70 0 0 56.3 -2592.64
E 0.2 62 1580 37 0 0 77.0 -2637.33

2oiu

A 0.5 110 8066 0 66 2 76.9 -13274.28
B 0.5 86 8001 114 0 3 60.1 -13275.14
C 0.5 73 7965 139 0 1 51.2 -13390.55
F 0.5 121 8048 47 0 4 83.7 -13333.59

Table 4.4: Calculation results for differing concentration setups for the three structures.
The last setup for each is a modified version of the concentration of ions in the crys-
tallization solvent, using Na for all monovalent cations (except for in the case of high
concentration, such as the high molar concentration of Li in 2oiu), Mg for the divalents,
and Cl to neutralize the cations. The water counts for each structure are rather in
agreement with each other, while the ion counts seem to have a dependence both on
relative concentrations of the two salts involved and on ionic radius. (Solvent A=20
mM MgCl2, 140 mM KCl; Solvent B=20 mM MgCl2, 140 mM NaCl; Solvent C=10
mM MgCl2, 100 mM NaCl; Solvent D=100 mM MgCl2, 50 mM NaCl, simulation of
experimental conditions for 2a43; Solvent E=7.5 mM MgCl2, 30 mM NaCl, simulation
of experimental conditions for 3tzr; solvent F=35 mM MgCl2, 75 mM NaCl, simulation
of experimental conditions for 2oiu; mdel=mdiis_del, Solv=solvent)

differences in how ion distribution was affected by differing monovalent cations and by

changes in relative monovalent cation and divalent magnesium ion concentrations.

The column for mdiis_del shows the value set to handle the step size of MDIIS,

which helps accelerate the iterative solving for the direct correlation function. Generally,

0.5 was the starting point, but decreasing the step size was necessary in some cases

to aid convergence. The next columns bear the weight of the data, showing to-the-

nearest-whole-particle numbers for ions and water molecules determined by the density

calculated. While some of these numbers of ions may not add up to a neutralizing charge

when compared to the charge of the rest of the system, this is due to the rounding, and

the overall charge of the densities calculated always neutralized the system. Further

analysis included the MG%, which is the percentage of positive charge supplied by

magnesium ions as rounded to the nearest whole number of ions.

A few trends appeared in this data. As one would expect, as concentrations of
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particular ions were increased, the ion count for those ions increased, and the oppo-

site trend occurred when those concentrations were decreased. Generally speaking, it

looks as if the driving force, when the monovalent salt concentration and magnesium

concentration both changed, was the ionic radius of the monovalent salt, and more the

change in relative concentration between the two ions than really the absolute con-

centration of either salt. As there was a switch (within structures, comparing solvent

setups) in which monovalent salt was used, from potassium to sodium, there was a large

increase in the number of monovalent cations (and a corresponding decrease in magne-

sium ions). This was somewhat surprising, as there was a lower absolute concentration

of sodium (100mM) than that of potassium (140mM); however, the relative concen-

tration of sodium is higher with the lower magnesium concentration (10mM) than the

potassium with a higher magnesium concentration (20mM). Also, the ionic radius of

sodium is much smaller than that of potassium, allowing for more of it to fit into chan-

nels that were too small for Mg ions. To check to see what the exact cause for this was,

a calculation was performed for each structure with equal concentrations of magnesium

chloride (20mM) and sodium chloride (140mM) to those in the magnesium chloride and

potassium chloride calculations. In each case, there are fewer sodium ions than in the

corresponding calculation with 10 mM magnesium and 100 mM sodium, but there were

still more sodium ions than potassium ions in corresponding calculations. This indi-

cates that the larger number of magnesium ions in the potassium calculation than the

10 mM magnesium, 100 mM sodium calculation is both due to an increase in magnesium

concentration, and the ionic radius difference between potassium and sodium.

Regarding the number of water molecules, for each structure, the difference between

the highest number found and the lowest number found is at most 101 water molecules,

with the largest percentage difference (range divided by lowest number of waters) being

3.74%. The percentage difference for the largest absolute difference is 1.27%. This lack

of large differences should not be surprising, as the water “concentration” in each solvent

file was basically the same, with small differences by decimal points, all around 55 M.

It does appear as though the water molecule numbers were somewhat dependent on ion

counts. For all three structures, the RISM calculation with the lowest water molecule
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count had the fewest magnesium ions, and the calculations with the second fewest

number of waters were the calculations with the second fewest number of magnesium

ions. Actually in 3tzr, the relationship between magnesium ion count (and inversely,

monovalent cation count) and water molecules has no exceptions: the greater number of

magnesium ions, the greater the number of water molecules. In the other two structures,

what breaks this trend is chloride ions: the calculation that has the second-most water

molecules has the most magnesium ions, but also has the most chloride ions (5 in 2a43,

4 in 2oiu). This appears to indicate that in general, as more of the positive charge was

supplied by monovalent cations with larger ionic radii than the magnesium ions and

taking up more space, it prevented more water molecules from inhabiting that space.

Also, the relatively large ionic radius of chloride ions, when they were included in the

calculation, and the added number of cations needed to neutralize their charge, led to

fewer water molecules being able to inhabit the volume they took up. This trend is

more easily seen in the MG% column, where in each structure, as the percentage of

positive charge provided by magnesium ions increases, the number of water molecules

also increases, except in the cases where the numbers of chloride ions are higher, where

the water counts are a bit lower, even though the MG% is higher. This all indicates

that water molecule counts are heavily influenced by volume occupation by ions.

One last area of focus here is the number of chloride ions in each calculation. Out

of twelve total calculations in the table, only seven had any chloride ions resulting from

the calculation. None of these calculations resulted in more than five chloride ions.

This was surprising on the surface, considering the concentrations of chloride needed

to neutralize the cations in solution. However, considering the high negative charge

on the RNA molecules in a relatively small space, as well as the large ionic radius of

chloride ions, it was not surprising to see many of the calculations having no chloride

ions, especially in the smallest unit cell (and a structure already containing large sulfate

ions), 3tzr, where none of the calculations resulted in any chloride ions in the unit cell.

The numbers of chloride ions are lower for the calculations that had more monovalent

cations, as well, hence the lack of chloride ions in the 2a43 calculation with the largest

number of monovalent cations. This further indicates the importance of the ionic radius
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of the cations used to neutralize the RNA in what other particles can be in the unit

cell, as the monovalent cations have larger ionic radii and decrease the already limited

volume available for chloride ions to inhabit.

One last piece of 3D-RISM analysis was performed by looking at the ion densities

provided by the calculations for 2a43. In this case, the solvent setup was solvent D,

or the experimental conditions (100mM Mg, 50mM Na). In Figure 4.5, the particle

density was compared to the Laplacian for the same particle density as provided by

metatwist. The main difference between the density and Laplacian is that the Laplacian

shows a more condensed prediction of ion placement as compared to the density itself,

for all ions and oxygens from the water molecules. For the magnesium portion of the

calculation, there are far more locations found than for the sodium portion. This was

expected by looking at the ion counts in Table 4.4. Also, the magnesium locations

are almost all along the sugar-phosphate backbone of the RNA, as expected for such

a negatively-charged portion of a molecule. The sodium locations are far more spread

out. Water oxygen locations are far more numerous and do cover some of the deposited

locations. No areas of high density of any ion or atom are found in the deposited

magnesium ion locations. This was surprising, as such high-resolution data would likely

result in properly placed ions, or at least proper electron density locations that may be

misassigned. Further analysis of this result should be performed.

In order to assess the new 3D-RISM code, 4 different calculations were performed

on each of 3 structures, 3 of which were the same calculation for each structure, with

the 4th trying to mimic the experimental conditions in which the crystals were grown.

The numbers of water molecules, which for select calculations in Table 4.4 will be

used for comparison of 3D-RISM to crystal MD simulations, were fairly similar, with

no more than a 3.74% spread from the lowest to highest number of waters within a

structure. A trend in numbers of ions (and water molecules) found in the unit cell was

found to coincide with ionic radius of the ions used in the calculation. Most notably, in

calculations with equal magnesium concentrations and equal, but higher, concentrations

of monovalent cations, with sodium in one calculation and potassium in the other, the

number of magnesiums was always higher in the potassium calculation, seemingly in
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Figure 4.5: Solvation results for 2a43 with magnesium, sodium, and water respectively.
The densities for the three are shown in blue, purple, and dark green, respectively, while
the Laplacians are seen in light green, orange, and pink, respectively. In all three cases,
the Laplacian locations are more condensed, and as expected, there are far more water
and magnesium locations than those for sodium.
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order to provide neutralization of the solute without creating clashes due to the larger

ionic radius of potassium as compared to both sodium and magnesium. This ionic radius

point was somewhat of a surprise, and the magnesium counts in all calculations were

somewhat surprising due to numbers of magnesiums found in the deposited structures,

but this will be addressed in the next subsection. Visual analysis of the results for 2a43

are found in Figure 4.5, where it was seen that particle densities follow the numerical

results, and ionic locations make sense electrostatically. The main issue to be analyzed

in the future is that no density appeared to exist where the deposited magnesium ions

were placed.

4.3.3 Comparison between methods

As the focus of this chapter was to provide a comparison of the more established crystal

MD simulations and the 3D-RISM code developed by current and former members of

the Case and York labs and presented in Chapter 3 of this thesis, this subsection is

the crux of the chapter. That comparison was best made by looking at the numbers

of water molecules found for each method in each structure. As the ions for the MD

simulations were arbitrarily chosen by using just the deposited magnesium ions and

only using sodium ions to neutralize the unit cell, ion counts became a possible source of

explanation for differences in water molecule numbers. Final comparison and conclusions

about the efficacy of the new 3D-RISM code were made.

Table 4.5 shows the comparative data for the crystal simulations, which used de-

posited magnesium ions and added sodium ions to neutralize the solute, along with

explicit water molecules; and two different 3D-RISM calculations for each structure:

one that used 10 mM magnesium chloride and 100 mM sodium chloride, and one for

each structure that tried to do a good job of mimicking the experimental settings of the

crystal growing for these structures. The focus was to see whether the 3D-RISM calcu-

lations did a good job of approximating the explicit MD solvent description, especially

the number of water molecules.

As can be seen in the table, in each case, the experimental conditions RISM cal-

culations resulted in higher water molecule counts than in the crystal MD simulations,
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PDB Res(Å) Solv RISM Solvent Wat MG NA CL

2a43 1.34
MD N/A 3125 12 126 0
RISM C 3111 40 71 0
RISM D 3162 74 6 5

3tzr 2.21
MD N/A 1549 24 112 0
RISM C 1550 45 70 0
RISM E 1580 62 37 0

2oiu 2.60
MD N/A 7968 14 256 0
RISM C 7965 73 139 1
RISM F 8048 121 47 4

Table 4.5: Comparison of differing RISM methods and explicit water crystal MD sim-
ulations regarding solvent description. There is reasonable agreement regarding water
numbers, but differences in ion counts. (Solv=solvent method)

while the 10mM MgCl2, 100mM NaCl calculations had numbers of water molecules

much closer to, if not lower than, the MD number. MD simulations always had more

sodium ions than the RISM calculations. The first point about the water molecule

counts appears to be intertwined with the second point about the ion counts. As men-

tioned in subsection 4.3.2, it appears that as the number of magnesium ions increased,

the number of water molecules that were able to occupy volume in the unit cell in-

creased. As the crystal MD simulations used only the deposited magnesium ions, which

are usually ones close to the RNA that are coordinating some residues or a conserved

water molecule and have strong enough scattering to have density in the structure, it

meant that the sodium ions bore the weight of neutralizing the RNA, resulting in much

higher sodium ion counts for the MD simulations. As these simulations had much higher

sodium ion counts and far lower magnesium ion counts than the RISM calculations, that

meant that they had less volume for water molecules to fill. The calculations with the

largest difference in water molecules from the MD have very high magnesium ion counts,

possibly leading to their high volume available for water molecules. This is possibly the

cause in the differences in water molecule counts between the methods.

That being said, the key conclusion to draw from this table is that the RISM cal-

culations are approximating the number of water molecules in the unit cell fairly well.

The largest difference in water molecule count from MD to RISM was 80 waters, in

a system where that was 1.00% of the number of waters in the MD simulation. The
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largest percentage difference was in 3tzr, and was 2.00%. This structure also has the

fewest waters, no matter the method, out of all of them, meaning that a difference of 31

waters, as seen here, results in a 2.00% difference, but in 2oiu would be less than 1%.

Despite these minute water molecule count differences, it appears that 3D-RISM

has approximated the number of water molecules in the unit cell fairly well in compar-

ison with crystal MD simulations, while also taking much less time to reach this goal.

These 3D-RISM calculations took on the order of 5 to 50 minutes when run in parallel

(they took a bit longer in serial calculations, which are required to properly output the

density maps), while the MD simulations took on the order of 80 to 110 minutes per

20-nanosecond run, with an undetermined number of MD runs of that length needed to

determine the exact proper number of water molecules, and then more runs needed to

fully converge the simulation.

One more way to compare the crystal MD/deposited structures and RISM is the

placement of ions. It does no good to predict numbers of ions used to neutralize a

system if the ions that are predicted do a horrible job replicating the ion locations

determined by experiment in the localized areas near the RNA. While analyzing the

results in 2a43 (found in Figure 4.5), the ion locations did not match, but further work

looking into this structure and the others needs to be performed to really provide any

definitive understanding of the accuracy of the ion placement.

Before concluding discussion of these results, it is important to consider the ion count

differences between the crystal MD simulations and 3D-RISM calculations. Due to the

fact that only well-diffracting ions are placed in crystal structures, and the fact that

these ions do not provide enough positive charge to neutralize the highly negatively-

charged RNA molecules, it can be assumed there are more cations in the bulk solvent

within the crystal unit cell, and the distribution of these cations between monovalent

and divalent cations is unknown. These periodic 3D-RISM calculation results show that

there is a possibility that the divalent to monovalent ratio is far higher than assumed

for the crystal MD simulations in this chapter. If correct, these predictive results could

provide a better understanding of the bulk solvent and better fit to scattering data when

used in refinements. As alluded to in the following paragraph, crystal MD simulations
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with divalent and monovalent cation counts as found in the experimental 3D-RISM

calculations are being performed to study the effects on RNA stability as well as on

water molecule counts and bulk solvent description.

As the comparison was made between the solvent descriptions achieved by crystal

MD simulations and differing solvent setups for 3D-RISM, the water molecule counts and

ion counts were analyzed. It was found that the water molecule numbers found across

methods, while not identical, were similar enough to be considered properly approxi-

mated, with the largest percentage difference being 2.00% from the explicit molecule

count in the MD simulation for 3tzr to the highest number found by 3D-RISM for that

structure. For all three structures, it was found that the MD water molecule count was

never the highest of the three methods. This appears to have been due to the large

number of sodium ions required to neutralize the RNA when only using the deposited

magnesium ions, which are likely not the only ones in the crystal, just the ones that

resulted in enough scattering to provide density for the ions to be placed into. As the

sodium ion counts decreased into the RISM output, the numbers of magnesium ions

were higher due to their smaller ionic radii, and it appears this was the reason for the

larger water numbers in the higher RISM outputs. For further confirmation of the ac-

curacy of 3D-RISM, as well as study of the effects on RNA stability and bulk solvent

description, similar numbers of magnesium ions to those found in the 3D-RISM calcu-

lations are being introduced into crystal MD simulations, and the resultant number of

water molecules will be determined from those simulations as they were with the ion

distributions in Table 4.5. If the water molecule numbers rise, it will be further confir-

mation of the relation of water counts with ionic radii of the ions used to neutralize the

solute. As it is, the 3D-RISM results appear to match the crystal MD simulation results

sufficiently and provide possibly interesting insight into the distribution of neutralizing

positive charge among divalent and monovalent cations throughout the crystal unit cell.

4.4 Conclusions

The focus of this chapter was to investigate ways in which the solvent in a crystal can

be described. The two specific methods studied here were crystal molecular dynamics
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simulations and 3D-RISM using the code developed by current and former members of

the Case and York labs. The more particular focus of this chapter was to compare said

3D-RISM code to the standard of crystal simulations. This was done through compar-

ison of water molecule counts and ion counts from the MD simulations and 3D-RISM

calculations performed on three RNA structures–2a43, 3tzr, and 2oiu–at 1.34, 2.21, and

2.6 Å resolution, respectively, in relatively simple systems. The MD simulations and 3D-

RISM calculations were analyzed separately, and then compared to check for accuracy

of the new code.

For all three structures, crystal simulations reached convergence, albeit at different

lengths of unrestrained simulation. For 2a43 and 3tzr, the overall unit cell RMSD values

for all RNA heavy atoms and the base heavy atoms were rather similar from structure to

structure, while there were some differences in these values for the asymmetric units from

structure to structure and within each structure. While these RMSD values were very

similar, the average asymmetric unit structure’s RMSD from the starting asymmetric

unit for 3tzr was nearly 0.5 Å higher than that for 2a43. The similarity of the full

unit cell RMSD values in light of this average structure RMSD difference appears to

rise from the larger number of asymmetric units in 2a43, allowing for propagation of

differences in each asymmetric unit to add up to a greater difference as opposed to that

found from fewer asymmetric units. The third structure, 2oiu, had much larger RMSD

values than those found for either of these structures. The values were actually similar

to, if not lower, than those found in simulations in the literature, however. The one

oddity was that the undocked conformation monomers were lower in RMSD than the

docked conformers, which was opposite the results found in Giambaşu, et al.[43] The

overall takeaways from these simulations were that stable water molecule numbers had

been found to stabilize the crystal dimensions for the boxes in the simulations, and

that the structures in general showed some fluctuation in the base pairs, but the largest

differences occurred at the termini of the chains and in the bases that floated outside of

the base-pairing grooves.

For the 3D-RISM results from all three structures, a few conclusions were reached.

First, it was found that the numbers of water molecules across different solvent setups
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for each structure stayed within 3.74% of each other, indicating that the calculations are

able to be consistent regarding the number of water molecules, but that there is some

fluctuation as the ionic concentrations and species are changed. Second, the ionic radii

of the ions used affected both the number of water molecules predicted and the balance

of divalent and monovalent ions. When potassium, the largest cation used in terms

of ionic radius, was used, far more magnesium ions were predicted than when sodium

was the monovalent cation, and more waters were found in the unit cell. Third, along

with ionic radii, the relative concentrations of ions played more of a role in determining

the distribution of positive charge among the magnesium ions and monovalent cations.

Even in cases where the magnesium concentration was very reduced relative to other

calculations for the same structure, the number of magnesium ions could be higher than

for other calculations if the sodium concentration decreased by a larger ratio than the

magnesium concentration did.

After these points were discovered, the crux of this chapter was reached: how did

the 3D-RISM calculations compare to the more-established crystal MD simulations?

For each structure, the data from the simulations were compared to the data from

the experimental conditions 3D-RISM calculations and a simple two-salt magnesium

and sodium calculation with the same concentrations from structure to structure. In all

three cases, the experimental 3D-RISM calculations resulted in higher numbers of water

molecules found than the crystal simulations, although the numbers were all within

2.00% of the MD water count. None of the differences were larger than 80, indicating

good agreement with the MD solvent description. When including ideas about ionic

radii and which ions appear in the system, it might be possible to account for some of

these differences in water count, as the only magnesium ions in the simulations were

the deposited ones, whereas each of the 3D-RISM calculations resulted in far more

magnesium ions than what was deposited in the PDB. However, this was not a trend

that held up across all RISM/MD comparisons. 3D-RISM calculations here had the

added bonus of being much faster than crystal MD simulations at arriving at a stable

number of water molecules to solvate the system.

While it was found that the 3D-RISM calculations approximated the water counts
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well, further work could be done to substantiate this claim. First, performing simula-

tions with added magnesium ions to meet the magnesium values found in the 3D-RISM

calculations could further confirm the idea that the number and size of different ions

affected the water counts. If correct, my hypothesis would indicate that the number of

waters found in the simulation would be higher as the number of smaller cations used

increased. This work could also provide more insight on the ionic makeup of the bulk

solvent in the crystal unit cell. Second, comparing the placement of ions in the RISM

density outputs to the deposited ions would indicate the ability of 3D-RISM to properly

place ions based on the electrostatics and steric factors of the structures. Work to look

at this was performed on 2a43, and there is not enough data from this one structure to

properly get a sense of how the code compared to deposited ion placements. Finally,

the expansion of this study to more structures would be helpful to further support the

accuracy of the code.
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Chapter 5

Sarcin/ricin domain as a case study for RNA simulations

5.1 The sarcin/ricin domain

The sarcin/ricin domain of the ribosomal RNA, or the SRL RNA, contains the largest

conserved region of the ribosomal RNA across all species[30, 107, 31, 65]. It is actually a

well-known, well-studied example of RNA containing an internal loop, the type of which

contained in this domain is known as a bulged-G motif[30, 107, 31, 65]. This domain

was actually one of the very first structures discovered containing the bulged-G internal

loop motif[30, 107]. This motif contains a “bulged G” that forms a base triple[30, 31].

On each side of this triple, non-canonical base pairs exist, followed by canonical ones[30,

107, 31, 65]. The domain also contains a GAGA tetraloop[30, 107, 31, 65].

The sarcin/ricin domain of the ribosomal RNA is an important binding site for

elongation factors involved in translation[30, 107, 31, 65]. Actually, binding of the

elongation factors prevents chemical changes to this segment of the RNA[77, 107]. The

translational process is disrupted by the toxins for which this domain is named when

either one (or a mimic) breaks a covalent bond, preventing binding of the elongation

factors. This shuts down the formation of proteins[30, 107, 31, 65], leading eventually

to cell death[107, 30]. What is remarkable is that synthetic mimics of this domain have

been found to simulate both form and function of the native structure, including acting

as binding partner for the elongation factor EF-G and as target for sarcin and ricin

action[30, 31].

As this domain contains a well-conserved sequence across species, plays such an

important role in translation and the life cycle, and is relatively small, it has been an

oft-studied structure. As such, there are 537 structures in the PDB that result from a

query for “sarcin/ricin”, the majority of which have been solved at or below 2.5 Å[11].
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Of the 537, 32 are from some form of E. coli, and 20 of those are actually EM structures

that are of whole ribosomal subunits, while the other 12 are crystallographic structures.

The three structures that are chosen for this chapter, however, do not show up in this

set of E. coli structures due to classification issues, so there are likely more. The size,

general high resolution but range of resolutions, number, and understanding of these

structures lend to them the quality of being good test structures for comparisons of

methods across resolutions.

In this chapter, the three different sarcin/ricin domain structures from E. coli will

be used to test PHENIX refinement with and without AMBER restraints at different

resolutions of the same structure. They will also be used to test out the effects on ion

and water distributions developed from 3D-RISM of different resolutions for structures

of the same sequence, as well as what effects there are from differing concentrations of

the same ions. Finally, one of the structures, due to its small number of atoms, was

used as a test structure for minimizations with 3D-RISM.

5.2 Methods

5.2.1 Structure selection and description

The three structures chosen, PDB ID 1q9a[30], 480d[31], and 483d[31], all come from

E. coli 23 S rRNA, and are all the wild type sequence of the sarcin/ricin domain of

the rRNA. They are all the same 27-mer RNA, with data collection for 1q9a and 483d

(at 1.04 and 1.11 Å resolution, respectively) performed at 100 K, while the data was

collected for 480d (1.50 Å) at 295 K. The three structures are all free of ions and

crystallization solvent, having only water molecules (differing numbers) in the structure

besides the single RNA molecule in the asymmetric unit. The unit cells are all slightly

different in size, as can be seen in the Volume column of Table 5.7. As these are all

high-resolution RNA structures, with the same sequence and no complicating factors in

the structures (difficult to build ligands or modified residues, etc.), they make a great

set of structures to compare the effects of data resolution, water molecule count, and

unit cell volume on structure refinement with and without AMBER restraints and on
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solvent description in 3D-RISM. The small size of the structure also provides a great

test case for testing out different parameters with minimizations with 3D-RISM solvent

description and their effects on runtime.

5.2.2 Refinement methods and parameters

The refinement data from Chapter 2 for these three structures were collected as de-

scribed in Chapter 2. In this chapter, the data are presented again, but are analyzed

by focusing only on these three structures and searching for trends in energy values

or crystallographic or geometric statistics as a result of resolution or number of water

molecules in the structure. Further analysis of the RMSD between the structures was

also performed.

5.2.3 Solvation studies of sarcin/ricin

The structures were prepared for 3D-RISM calculations by first removing all of the water

molecules, and then using phenix.AmberPrep to build the necessary unit cell parameter

and coordinate files. 3D-RISM calculations using rism3d.snglpnt were then performed

for all three structures using grid spacings of 0.35 in all three dimensions, to the kh

and pse2 closures to tolerances of 0.1 and 0.000001, respectively. The calculations were

performed at two different solvent conditions, which appear in Table 5.7.

Analysis of the results was performed by comparing the RISM charges and counts of

magnesium ions, potassium ions, chloride ions, and water molecules. As the structures

were the exact same solutes, it was expected that there would be very little, if any,

differences from structure to structure at a certain solvent concentration setup. Having

no ions in their structures, though, it was to be interesting to see what ions might exist

in the crystals due to their differing crystallization conditions.

5.2.4 Time-step tracking of minimization with periodic 3D-RISM

As periodic 3D-RISM calculations are being implemented in minimizations and MD runs

and the periodic RISM forces are being used to guide said simulations, it is important to
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have a good sense of what combinations of parameters and numbers of processors provide

the most time-efficient calculations. In order to gain this knowledge, the PDB-REDO

structure (chosen as PDB-REDO’s versions of these structures were being studied) of

1q9a was prepared in the same way as all three structures were prepared in subsec-

tion 5.2.3–by removing all the water molecules and then running the structure through

AmberPrep. Many different short (10-20 steps) minimizations were performed on the

structure using differing numbers of cores and processors (with mdiis_del=0.40 ), as well

as differing minimization engines and RISM parameters such as npropagate (number of

old solutions used to predict the next solution; can speed up calculations), mdiis_del

(MDIIS step size), grdspc (grid spacing), and mdiis_nvec (vectors MDIIS uses). Dif-

fering closure options were also tested for time steps, but all other parameters were

tested in minimizations where the RISM setup called for kh and pse2 closures to be

converged to 0.1 and 0.000000001 tolerances, respectively. These RISM calculations

were performed using 0.100M KCl as the solvent, with the xvv file made in rism1d to

the pse2 closure. Average time per step and RISM energy values were recorded to deter-

mine which combinations of parameters were fastest and to check whether the resultant

RISM calculations were in line with the other ones.

5.3 Data and discussion

5.3.1 Refinement data and trends

As these three structures are only different, regarding what residues they contain, in

terms of number of water molecules, but were all solved at different resolutions, it is

an interesting case study to analyze these structures and the resultant AMBER and

conventional output structures from parallel refinements in PHENIX. Presumably, the

main differences leading to how AMBER restraints versus conventional restraints affect

energy differences would be the differences in solvent and resolution-dependent differ-

ences in the structures. Presumably, also, there would be little to no difference in the

geometric statistics at the small difference in resolution.

In Table 5.1, the energy data from Table 2.2 for these three structures are presented
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again for close focus on the three related structures. In all three, the bonds and angles in

the conventionally refined structures provided more favorable bond and angle energies,

but the angles do trend more toward them being almost energetically interchangeable

relative to those in the AMBER-restrained structures. This is likely due to the less

defined electron density that results from the data collected in the room temperature

structure. The dihedral angles are all relatively similar energetically between refinement

methods.

PDB Res(Å) B A D E F W V R EFR TOT

1q9a 1.04 1.17 1.07 0.13 0.10 -2.03 -0.24 -0.54 0.36 -1.56 0.02
483d 1.11 0.48 0.24 0.13 -0.55 -1.96 -0.27 -0.55 0.83 -1.68 -1.65
480d 1.50 1.16 0.16 -0.01 -0.45 -3.14 -0.52 -0.63 1.40 -2.19 -2.03

Table 5.1: Per-nucleotide energy values (kcal/mol) for each of three sarcin/ricin struc-
tures used in Chapter 2. The electrostatic and non-bonded interactions, as well as the
total energy, appear to be more favorable for AMBER restraints as the resolution wors-
ens. (B=bond, A=angle, D=dihedral, E=electrostatics, F=1-4 electrostatics, W=1-4
non-bonded, V=van der Waals, R=RISM, EFR=E+F+R, TOT=EP Tot)

Regarding non-bonded interactions, the AMBER-restrained structures for all three

structures generally were more favorable, with a slight trend toward a greater improve-

ment in these areas with decreased resolution, especially in 1-4 electrostatics and 1-4

non-bonded interactions. The only of these non-bonded areas where there was a lack of

improvement due to AMBER restraints was in electrostatics for 1q9a. This was likely

due to the high resolution of the data leading to the conventionally restrained struc-

ture sticking very closely to the data, and the resultant structure being represented well

energetically.

The RISM energy is more favorable for conventionally refined structures, and be-

comes moreso as resolution worsens. This is due to the screening of electrostatics and 1-4

electrostatics that the RISM potential does. That combined set of interactions trends

toward increased AMBER favorability, thus explaining the reverse trend for RISM en-

ergy. As the water molecules are all removed before these calculations, the effects of the

numbers of water molecules are not very easily established here.

The overall energy difference between refinement methods does appear to have a

trend here based on resolution. The overall energy difference between AMBER- and
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conventionally restrained refinement output structures increases toward higher AMBER

favorability as the resolution worsens. This was also observed over the course of the

whole structure set in Table 2.2.

When looking at the geometric statistics in Table 5.2 and how the differences be-

tween the AMBER- and conventionally restrained refinement output structures relate

to resolution or number of water molecules, there did not appear to be a real trend

in any of the statistics. Part of that was due to the fact that it is hard to discern

trends between values for three structures, but part of that is truly that no real trends

showed themselves. The r-work improvement by conventional refinement as compared

to AMBER-restrained refinement increased as resolution worsened, likely due to the

greater likelihood of AMBER restraints to try to correct energetic issues and take the

structure away from the experimental data a slight bit more. However, it might be due

to a lesser chance of AMBER over-fitting the data than the conventional refinement,

as evidenced by the trend toward a smaller r-gap for AMBER-restrained refinements at

lower resolution.

PDB Res(Å) R-work R-free R-gap Clash Bond Angle Pucker Suite Suiteness

1q9a 1.04 0.0012 0.0083 0.0071 -2.29 0.028 0.102 0 0 -0.009

483d 1.11 0.0065 0.0133 0.0068 0 0 0.046 0 0.009 0.034

480d 1.50 0.0065 -0.0006 -0.0071 0 0.028 0.037 0.009 0 -0.015

Table 5.2: Differences in crystallographic and geometric statistics between convention-
ally and AMBER-restrained refinement output structures. Bond, angle, pucker, and
suite values are differences in numbers of outliers of that type per nucleotide. All
other values are absolute differences. Negative values indicate more favorable values
for AMBER-restrained refinement, positive values indicate favorable conventional re-
finements. There are no cohesive trends found in this data relative to resolution or
numbers of waters.

The only other real trend that emerges is in the angle outliers per nucleotide differ-

ence, where, as the resolution worsens, the difference in number of outliers decreases.

This is due to, surprisingly enough, fewer angle outliers in the AMBER structures as the

resolution decreases. This is likely due to, again, the greater freedom allowed by the less

defined electron density at lower resolution, and thus more room for both energetically

favorable and data-fitting structural details such as angles.

One more level of structural analysis performed for these structures not performed
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for the full PHENIX data set was cross-structure and cross-method RMSD analysis. In

Table 5.3, the heavy atom RMSD of the RNA molecules in the first asymmetric unit was

calculated using different PDB IDs and different structures for those PDB IDs as the

reference structures (D stands for deposited, C is the conventional refinement output,

and A is the AMBER refinement output). For the first column of RMSD in the table,

the output structures for each PDB ID are the reference and input structures. The

differences between the output structures at each PDB ID are roughly the same for

each structure. However, the conventional output structures move slightly less far away

from the deposited structures than the AMBER structures do.

PDB Res(Å) A to C C to D A to D
1q9a 1.04 0.072 0.117 0.139
483d 1.11 0.076 0.084 0.115
480d 1.50 0.078 0.102 0.110

Table 5.3: RMSD (Å) measurements for the three structures, looking at differences
between the AMBER (A) and conventional (C) refinement output and deposited (D)
structures for a particular PDB ID. For example, the 0.072 value in A to C for 1q9a
indicates that the heavy atom RMSD for the AMBER output structure for 1q9a from
the conventional output structure is 0.072 Å. All three structures show little deviation
amongst their refinement output structures, while there is greater deviation from refined
structures to the deposited. There is also greater deviation from the AMBER-refined
structures to the deposited ones as compared to conventional to deposited.

PDB Res(Å) D1q9a D483d D480d
1q9a 1.04 0 0.231 0.380
483d 1.11 0.231 0 0.324
480d 1.50 0.380 0.324 0

Table 5.4: RMSD (Å) measurements for the three structures, looking at differences
between the deposited (D) structures from the other PDB IDs to a particular PDB
ID. For example, the 0.231 value in D1q9a for 483d indicates that the heavy atom
RMSD for the deposited structure for 483d from the deposited structure for 1q9a is
0.231 Å. As expected, the greatest deviation is from the lowest-resolution structure to
the highest-resolution structure.

When doing cross-structure RMSD (seen in Tables 5.4, 5.5, and 5.6), a very slight

trend that might be inferred appeared, showing that the refinements bring the structures

slightly closer together than the deposited structures are, likely due to the fact that the

structures are all the same regarding the physical source material. The values found



114

PDB Res(Å) C1q9a C483d C480d
1q9a 1.04 0 0.198 0.334
483d 1.11 0.198 0 0.299
480d 1.50 0.334 0.299 0

Table 5.5: RMSD (Å) measurements for the three structures, looking at differences
between the conventional (C) refinement output structures from the other PDB IDs
to a particular PDB ID. For example, the 0.198 value in C1q9a for 483d indicates
that the heavy atom RMSD for the conventional output structure for 483d from the
conventional output structure for 1q9a is 0.198 Å. The values here are less than in
Table 5.4, indicating that the refinement brings these structures closer together than
their deposited predecessors. Also, again the lowest- and highest-resolution structures
have the greatest deviation.

PDB Res(Å) A1q9a A483d A480d
1q9a 1.04 0 0.176 0.322
483d 1.11 0.176 0 0.307
480d 1.50 0.322 0.307 0

Table 5.6: RMSD (Å) measurements for the three structures, looking at differences
between the AMBER (A) output structures from the other PDB IDs to a particular
PDB ID. For example, the 0.176 value in A1q9a for 483d indicates that the heavy atom
RMSD for the AMBER output structure for 483d from the AMBER output structure for
1q9a is 0.176 Å. There is generally less deviation here than in either Table 5.5 or Table
5.6, indicating that the use of AMBER restraints draws these structures, all the same
solute, closer together, as they should be fairly similar. Again, the greatest deviation is
from lowest- to highest-resolution structures.

for the deposited structures compared to each other are nearly 0.05 Å larger than for

the AMBER or conventional refinement when comparing 1q9a to 480d, and there is a

similar, but smaller difference for 1q9a to 483d and 483d to 480d. However, it is such

a small difference that it is more than likely that it is not a real trend, but more of an

interesting coincidence.

While it was expected there might be effects due to the larger number of water

molecules in the higher resolution structure than the lower resolution structures, and

that there would likely be trends in many of the statistics analyzed related to resolution,

there only appeared to be trends related to resolution, and not a lot of them. This is

likely due to the small number of structures making it hard to observe trends in data,

and also due to the fact that little of the analysis performed indicates anything related

to the number of water molecules. The few trends found in data based on the resolution
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were mostly energy related, showing that conventionally restrained bonds and angles

were more energetically favorable at high resolution, while the electrostatics and non-

bonded interactions were far more energetically favorable at lower resolution than their

conventionally refined counterparts. No real trends were found that were any different

than those found in Chapter 2, and the statistics did not show any particular similarity

either that one might expect from structures that are as similar as these are.

5.3.2 Solvation results: ion and water counts

As there were no ions in any of the deposited structures for these threes structures, it

seemed likely to be a good idea to perform 3D-RISM calculations using different solvent

setups, using some of the ions found in the experimental crystallization setup. Also,

since there were more water molecules in the higher resolution structures, it seemed

like a good idea to analyze how that occurred, considering that the structures are all

roughly the same. These structures were also all high resolution and small, and thus

seemed like opportunities to get very well resolved solvent densities.

There are a few conclusions to draw from the calculations that were performed.

First, the ion counts are the same within rounding error for each PDB ID with the same

solvent conditions. This was not surprising due to the solute charge being the same and

the structure being roughly the same. Second, as in Chapter 4, as ion concentrations

change, the ion distribution changes, albeit not linearly. As the potassium concentration

increased (and the magnesium concentration decreased), the charge stayed the same, but

the distribution of positive charge between the magnesium and potassium ions changed.

However, even though the magnesium concentration was cut in half and the potassium

concentration was doubled, the resultant changes in ion counts are not a strict doubling

or halving. The changes in ion counts are relative, not absolute in terms of quantity.

Finally, the water molecule counts, among results for the same calculation type, did

not follow the trend of the deposited structures, where the number of water molecules

decreased from high resolution to low resolution. Here we see the highest resolution

having the second most water molecules for each calculation, 483d (in the middle in

terms of resolution) with the fewest, and the lowest resolution structure having the
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most water molecules. It makes sense that the trend for deposited structures would

be the way it is, due to the fact that the highest resolution data would be most likely

to have the largest number of high density areas in the solvent region corresponding

to defined water molecules. This trend for the RISM results, though, was somewhat

surprising due to the nature of the solutes being the same, as well as the solvent setups

being the same. While a difference of 50 or 60 waters from crystal MD to 3D-RISM

is not a problem, having that large of a difference for the same calculations with very

similar structures is not likely, unless there’s another reason. The only possible reason

seems to be a difference in the structures that was not noticed. At this point, the crystal

dimensions were checked, and the crystal sizes for these three structures actually were

different regarding edge lengths of the unit cell. While the space group and angles for

the unit cell were the same, these edge differences resulted in differences in volume as

seen in Table 5.7. When taking into account that a water molecule takes up roughly

30Å3of volume [100], a theoretical calculation of water molecule difference based on the

difference in volume (TWD) was performed using the equation (V480d−Vsmaller)/30Å3,

where Vsmaller is the volume of the smaller unit cell of the two structures being compared

(480d has the largest unit cell of the three structures). The numbers in the TWD column

were compared to the AWD, or actual water difference, from the calculation with the

largest number of waters (480d for both solvent types), and were very similar. This

indicates that the difference in numbers of water molecules in these calculations was

due to the difference in volume between unit cells for these structures. It is very likely

that the true numbers of water molecules in the unit cells in these crystals follow the

trend seen in the RISM data (increasing with volume) as opposed to that seen in the

deposited structures (increasing with better resolution).

These structures, which had no ions in their deposited files in the PDB and contain

the same solute, were great choices to be analyzed via 3D-RISM calculations. The results

showed that the distribution of ions using a specific solvent setup ended up being the

same for each structure, which was not very surprising. Also, as seen in Chapter 4,

changes in concentrations in the solvent resulted in expected relative changes in ion

distribution without matching the exact change in concentrations. When the potassium
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PDB Res(Å) Solv Charge Wat AWD MG K CL Vol TWD

1q9a 1.04 G 104.0 1286 56 49 7 0 66770 59H 104.0 1260 57 38 29 0

483d 1.11 G 104.0 1277 65 49 6 0 66361 73H 104.0 1251 66 38 29 0

480d 1.50 G 104.0 1342 0 49 7 0 68549 0H 104.0 1317 0 37 29 0

Table 5.7: Comparison of 3D-RISM results using different solvent concentrations. The
water number differences seem to match the differences expected based on volume dif-
ferences, while the ions using the same solvent are the same within rounding error.
(Solv=solvent; TWD=theoretical water difference from largest unit cell water molecule
count, using 30 Å3as the volume per water molecule, and comparing only those calcula-
tions with the same concentrations; AWD=actual water difference from number found
for 480d, the structure here with the largest unit cell; Vol=volume; Solvent G=20mM
MgCl2, 50mM KCl; Solvent H=10mM MgCl2, 100mM KCl)

concentration doubled and the magnesium concentration was halved, the number of

potassiums increased and the number of magnesiums decreased. However, the changes

were not strictly the same as the changes in concentration. This shows that there’s not

much of quantitative relationship to be found in particle counts versus concentrations

other than the relative change in particle counts, which follows the relative change in ion

concentrations. The more surprising result was that the difference in number of water

molecules from PDB ID to PDB ID was rather large for structures that were so similar.

However, once the size of the unit cells was analyzed, it became clear that the difference

in water molecules was likely due to the difference in volume for the unit cells. The next

step to really tease out how well these calculations worked, as well as seeing similarities

and differences between these structures, would be to check the ion densities and water

densities and see where the ions and waters line up from structure to structure, and

whether any of the water density blobs line up with the deposited water molecules in

these structures.

5.3.3 Time step results

As previously mentioned, these small structures are of a good size to provide a test case

for minimization with 3D-RISM solvent description and forces. The smaller number

of atoms results in fewer degrees of freedom in each calculation, allowing for quicker
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calculations, while still showing differences based on parameters. As it so happens, the

structure chosen for these minimizations is not technically one that was used in other

experiments in this chapter: it is the PDB-REDO structure for 1q9a as opposed to

the deposited structure. The waters were stripped and the structure was run through

AmberPrep, thus providing the same necessary starting structure files for RISM as in

the RISM calculations above. This was purely an arbitrary choice of continuing with

calculations of a structure that had been experimented with and seemed to converge

fairly quickly for RISM steps. No atom or residue changes were made in the solute of

this structure, just adjustments of residues to improve density fit by re-refinement and

rebuilding of the structure. While this likely results in differences in the ERISM and

time steps as compared to the deposited structure, the relative differences for differing

parameters within use of this structure should not be different.

In Table 5.8, the comparisons performed are of differing numbers of steps and dif-

fering minimization methods, even without RISM for a benchmark (3 NR). For min-

imizations where the minimization method was ntmin=2, this equates to the use of

the steepest descent minimization method. For ntmin=3, this results in minimizations

using XMIN, which requires a submethod choice, of which TNCG, or the “optionally

LBFGS-preconditioned Truncated Newton Conjugate Gradient” method, was chosen.

This particular method actually results in multiple substeps being performed per cy-

cle of minimization, meaning that far more steps are performed than just 100 for the

minimizations in this table that used this method. The time/step was calculated using

the number of these substeps used, as opposed to 100 cycles, as the denominator for

ntmin=3 rows in the tables.

As can be seen for this table, the number of seconds per step is different for each

method, with it being the most for the 10-step ntmin=2 minimization, while the min-

imization without RISM is obviously the fastest. Of those with RISM, the ntmin=3

minimization is faster than those for ntmin=2. However, when looking into the amount

of time spent just setting up the minimization and RISM calculations in the output, it

seems likely that most of this difference is due to the larger number of steps. For in-

stance, it does not seem likely that just by changing the number of minimization steps,
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ntmin steps time/step (s) ERISM
2 10 122.4 -559.2
2 100 114.8 -600.0
3 100 109.0 -1110.8

3 NR 100 2.3 N/A

Table 5.8: Timing and RISM excess chemical potential for single-core, 16-processor
minimizations in sander.MPI, with differing minimization methods and step numbers
to look at their effects. Minimizer choice for ntmin=3 is TNCG, and each step requires
multiple neutralizing steps (this is the number, not 100, used for the time per step cal-
culation). Here, for minimizations with RISM, the fastest was with ntmin=3 ; however,
this is likely due to the larger number of “real” steps averaging out the startup time.
(NR=no RISM)

the step speed would change within the use of the same minimizer. The difference in the

first two rows is mainly due to the startup time of the minimization being averaged out

over more steps. The same likely holds true for the jump from ntmin=2 to ntmin=3, as

there are far more substeps in the ntmin=3 than just 100 cycles, and thus, that startup

time gets further averaged out with the larger number of steps. Nothing conclusive can

really be drawn from this table, other than that the RISM energy decreases further

with more steps of minimization in this case, and that minimization without calculating

and applying RISM forces is far faster than with the calculation and application of said

forces.

In Table 5.9, comparisons are made between 10-step minimizations using the steepest

descent minimization method. On the perceval cluster, since shuttered, there were

plenty of resources for running minimizations in parallel. The sander.MPI utility was

used with differing numbers of nodes and processors to see what combination was the

fastest for RISM minimizations of this structure. While it was expected that the larger

number of processors used, the faster the minimization would progress, this was not the

case. The sweet spot appeared to be 16 processors on 1 node, resulting in a speed of

about 2 minutes per step. It was somewhat odd to see slight differences in the RISM

energy, although the minimization would not necessarily be the same every time it is

run. One interesting point is that when these minimizations are run, the output prints

a warning message if the number of processors is not a power of 2, indicating that it

is likely that this might be an issue that causes the 20-processor run to take longer
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than the 16-processor run. Similar runs were performed for the TNCG minimization

method, with the results appearing in Table 5.10. Again, the fastest combination was 1

node, 16 processors, and here it was about 13 seconds faster per minimization step, but

that is over the course of 146 substeps as compared to 10 steps for the steepest descent

method. It therefore seems likely that the difference is due to the greater number of

steps over which the setup time for the RISM grid is averaged. Also, the greater number

of substeps results in the overall time of minimization being much longer for TNCG,

and it is less controllable than the steepest descent method. Further calculations were

performed with the steepest descent method.

nodes processors time/step (s) ERISM
1 1 1166.5 -558.9
1 2 614.2 -558.9
1 4 365.5 -559.2
1 8 215.4 -559.2
1 10 181.7 -559.4
1 16 122.4 -559.2
1 20 130.4 -559.6
2 16 165.7 -559.2
2 20 172.9 -559.6
2 32 199.8 -559.2
2 40 288.6 -559.6
3 30 264.2 -559.4
3 60 315.0 -559.6
4 32 268.2 -559.2
4 40 277.5 -559.6
4 64 415.4 -559.1
4 80 383.3 -559.5
8 64 357.4 -559.1

Table 5.9: Timing and RISM excess chemical potential for 10-step minimizations in
sander.MPI with differing sets of cores and processors, using ntmin=2 as the minimiza-
tion method. Surprisingly, the fastest combination is just 1 node with 16 processors.

All of the above minimizations were performed with mdiis_del values of 0.40. In

order to see what effect this step size has on time, these minimizations were performed

with the steepest descent method and varying mdiis_del values. This is one of the

parameters adjusted when convergence of the 3D-RISM calculations fails, so it was not

surprising to see some of these calculations fail. The RISM energy appears in the 0.10
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nodes processors time/step (s) ERISM
1 10 165.1 -683.3
1 16 109.5 -717.0
1 20 125.9 -662.3
2 20 164.4 -732.4
2 40 264.8 -698.7
3 30 165.0 -683.9
3 60 284.7 -713.1
4 40 262.9 -730.6
4 80 302.4 -625.0

Table 5.10: Timing and RISM excess chemical potential for 10-step minimizations in
sander.MPI with differing sets of cores and processors, using ntmin=3, TNCG as the
minimization method. As with ntmin=2, the fastest combination is 1 node with 16
processors.

row because the minimization failed on the 8th step of the minimization. The other

failures occurred before even the first step of minimization could be finished. The use

of mdiis_del=0.50 resulted in the fastest minimization time, as seen in Table 5.11.

mdiis_del time/step (s) ERISM
0.10 failed -557.9
0.20 180.3 -559.2
0.30 135.5 -559.2
0.40 122.4 -559.2
0.50 115.5 -559.2
0.60 failed N/A
0.70 failed N/A
0.80 failed N/A
0.90 failed N/A

Table 5.11: Timing and RISM excess chemical potential for 10-step minimizations
in sander.MPI with 1 core, 16 processors, using ntmin=2, and differing values for
mdiis_del. Most options here resulted in failure to converge, while the fastest runs
were with an mdiis_del value of 0.50.

Other parameters tested can be seen in Tables 5.12 and 5.13. In the first of these

two, grid spacing was adjusted, looking at the effects of widening or narrowing the grid

from the 0.35 setting used in all of the previous minimizations. Also, in this case, 20

processors and an mdiis_del value of 0.40 were used for arbitrary reasons. As expected,

the smaller the grid spacing, the longer it took to perform each RISM calculation.

However, it was surprising that the largest grid spacing actually ended up being much
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slower than slightly smaller grids. This appears to be due to a much longer time in

the FFT portion of the calculations. In the second table, the parameters being tested

are the number of iterations within the RISM calculation (mdiis_nvec) used to help

find the next solution and the number of previous RISM solutions used to make the

next RISM guess (npropagate). The value that was used in all previous minimizations

for mdiis_nvec was 10, and npropagate was set to 0. In the table, we find that using

any number of iterations less than 5 results in failure of convergence, likely due to the

freedom provided by fewer iterations being saved to stray away from the tolerance being

sought. There was very little difference in time per step for 5 iterations used versus 10

iterations. When regarding the number of previous solutions used to guide the guess

for the next RISM calculation, it appears that saving at least one solution to guide the

next guess had a marked impact on speed, but using a second solution in conjunction

with the first did not, likely due to the fact that these were 10-step minimizations, and

waiting until two solutions were saved meant that the second solution did not have the

benefit of an educated guess, slowing the minimization down a little bit. Over the course

of a longer minimization, that brief slowdown on the second step could very likely be

made up for by the increased speed of a greater number of subsequently faster steps.

grid spacing (Å) time/step(sec) ERISM
0.25 254 -558.2
0.35 129 -559.6
0.40 75 -560.5
0.50 215 -557.1

Table 5.12: Timing and RISM excess chemical potential for 10-step minimizations in
sander.MPI with 1 core, 20 processors, using ntmin=2, mdiis_del=0.40, and differing
values for grid spacing. The grid spacing value is in each direction, creating a grid that
is cubic with the given side length. As expected, as the grid spacing was smaller, the
minimizations took longer, as there were more grid points to evaluate. Surprisingly, the
largest grid spacing also resulted in a long time step.

Due to the relatively small size of 1q9a, any version of this structure, such as the

PDB-REDO version here, would make a great test case for longer calculations made

shorter by the smaller size. As such, the PDB-REDO version of the 1q9a structure was

used in many different sander.MPI minimizations with periodic RISM forces. Differing

numbers of nodes and processors were tested, finding that regardless of minimization
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mdiis_nvec npropagate time/step (s) ERISM
1 0 failed N/A
2 0 failed N/A
3 0 failed N/A
5 0 129 -559.6
10 0 130 -559.6
10 1 101 -559.6
10 2 106 -559.6

Table 5.13: Timing and RISM excess chemical potential for 10-step minimizations
in sander.MPI with 1 core, 20 processors, using ntmin=2, and differing values for
mdiis_nvec and npropagate. Parameters for mdiis_del and grid spacing were set to
0.40 and 0.35 (in each direction), respectively. Using too few vectors resulted in failure
to converge, while including a previous solution for guessing the next (npropagate>0 )
resulted in a shortening of the time step.

method chosen, 1 node and 16 processors was the fastest combination, despite the fact

that it was expected that the speed would scale with number of processors used. “Sweet

spots” were found regarding mdiis_del (0.50) and grid spacing (0.40) values, although

these values were not generally tested at the same time. Finally, it was found that using

npropagate (ie, setting it to something other than 0) sped up the minimization. While

having more solutions used in making an initial guess did not make the minimization

any faster in this test, it seems likely that over the course of a longer minimization, the

added saved solutions could speed up the minimization even more.

5.4 Conclusions

Due to its high conservation across species and small size, the sarcin/ricin domain of

the ribosomal RNA of E. coli provided a great test structure in order to have varying

resolution and solvent content. This variety among structures with the same solute pro-

vided for a nice, small set of structures on which to test the PHENIX/AMBER interface,

periodic 3D-RISM singlepoint calculations, and periodic 3D-RISM minimizations.

During analysis of the previous PHENIX refinements of 1q9a, 483d, and 480d, it

was found that while it was expected there might be differences in the statistics of

the structures based on the number of waters, there were no observed effects when

comparing AMBER- and conventionally restrained refinements. Resolution-dependent
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effects seen in Chapter 2 across the broader data set appeared here as well, however,

where the overall and interaction (electrostatics, non-bonded) energy values became

more favorable for AMBER-restrained refinements as the resolution worsened. There

were few trends, if any, found in the geometric data. This could very easily be due

to the small number of structures, so further work including more sarcin/ricin domain

structures (ideally wild-type like these) could be useful in searching for trends. Also,

looking at absolute values, instead of method-dependent comparison values, for statistics

could be useful, especially in determining the effects of the number of water molecules

in these structures. Further analysis of electron-density fit would likely be the best way

to judge the effects of the number of placed water molecules in each structure.

When these structures were solvated using periodic 3D-RISM singlepoint calcula-

tions with differing concentrations of potassium and magnesium ions, it was expected

that, due to the similarities in the solute of each structure, and looking at no other

information, it was expected that the water molecule and ion counts would be the same

with a particular solvent setup. However, the number of water molecules was different

for each structure within a particular ion concentration setup. When the unit cell di-

mensions were examined, it was found that 480d was a larger unit cell than either of

the other two structures. The number of water molecules was found to increase as the

unit cell volume increased. This difference in volume appears to be the cause of the

trend, as the differences in numbers of water molecules were found to be very similar

to the numbers found by dividing the differences in unit cell volume by 30 Å3per water

molecule. Regarding ion counts, it was found that the number of magnesium ions and

potassium ions found for each structure were the same (within rounding error) in cal-

culations with the same concentrations for each ion. This was to be expected, as there

were no ions found in the deposited structures, and the solute charge and structure were

the fairly much the same for each structure. However, when the ion concentrations were

changed, as found in Chapter 4, the resultant changes in ion counts were not linear with

the change in concentrations. The ion counts did change in accordance with the relative

concentration changes, however. Further work on these structures could be performed



125

to see what differences would be found in ion placement and water counts at experi-

mental crystallization conditions (which are different for the three structures), which

have thus far led to non-converged calculations, as well as examining the similarities

and differences in ion placement and water placement across the three structures with

the already converged calculations. Also, it would be interesting to see what effects

placement of ions and/or waters from RISM density might have on refinement of these

three structures in both conventionally and AMBER-restrained refinements.

The use of the PDB-REDO structure of 1q9a as a test structure for minimizations

with periodic RISM forces allowed for many tests to be run within relatively short

periods of time. These tests tried out different combinations of nodes, processors, min-

imization methods, mdiis_del, mdiis_nvec, npropagate, and grid spacing. It was found

that running these minimizations with 1 node and 16 processors was the fastest combi-

nation of hardware used, despite the expectation that speed would scale with processor

usage. Further work to analyze this could be performed with longer minimizations on

each of the combinations of processors and nodes. Regarding the minimization methods,

it was hard to determine whether the steepest descent method or the TNCG method

was faster at performing these minimizations with periodic RISM forces, as the number

of steps was not really equal. The best way to truly determine which is faster would

be to use the steepest descent method for a number of steps equal to the number of

neutralization steps used by TNCG in a “10-step” minimization in order to directly com-

pare these methods and give the same amount of steps for the initial setup time to be

averaged over. When using the steepest descent method, different levels of mdiis_del,

mdiis_nvec, npropagate, and grid spacing were tested to find those that worked fastest.

However, some of these tests were performed with the non-optimal values for the other

parameters and processors, so it would be ideal to truly determine the ideal options by

testing them all at their optimal levels and really test across ranges of all the values.

It was interesting to find that using at least one previous solution (npropagate>0 ) sped

up finding the solution in the next RISM step, but that using more than one solution

did not appear to speed it up any faster than using just one. Ideally, running a longer

minimization could help us truly see if that is the case, or if that was just an artifact
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caused by only running 10 steps of minimization and taking more than one of those to

build up a memory of previous solutions to use slowed enough of the minimization down

to outweigh the benefit that could be seen over more steps.

The small set of structures used here, along with the shorter minimizations per-

formed, provided a brief overview of how these techniques are working on structures

with the same structure. However, any real trends that might appear will likely need

more structures to provide space for those trends to show. Also, longer minimizations,

as most minimizations are, and different solvent conditions, such as the experimental

conditions, for 3D-RISM calculations, would better allow us to fully grasp what is going

on in these structures as we study them.
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Chapter 6

Conclusions and future directions

This accumulation of five years of work covers many different topics, and also leaves

large amounts of work performed in that time out. As work on larger structures revealed

issues in how nucleic acids were being handled, the focus of this work shifted to RNA

and how it was handled by the different methods involved in this work, as a lot of the

focus for previous work with these techniques had been with proteins. Other work was

performed in collaboration with other labs, but did not amount to anything publishable.

There was, of course, still plenty to cover.

In Chapter 1, background information about RNA and methods of interest was pro-

vided as a primer for understanding the work performed. This was a short introduction,

and discussion of the PHENIX/AMBER interface and its use in RNA structures was

entered into in Chapter 2. Here, it was found that the use of AMBER force fields to

restrain the geometry of the structures provided the added benefit of electrostatic and

non-bonded energies to the restraints guiding refinement, providing more energetically

favorable structures, as expected when scoring structures refined with and without AM-

BER restraints against the AMBER force fields. Also, the inclusion of non-bonded

terms improved clashscores for these structures. However, AMBER-restrained refine-

ment led to more geometric outliers as determined by MolProbity. One test bond and

one test angle were investigated to determine why there were such persistent outliers for

AMBER-restrained refinement output structures. As AMBER ideal bond lengths and

angles for those chosen were modified both in terms of the ideal value and the force con-

stant, it was determined that the large number of outliers, at least for the chosen bonds

and angles, were due to both differing ideal values for AMBER and MolProbity and

AMBER’s force constants allowing for more freedom in bonds and angles to allow for
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the best structure energetically to be reached by including electrostatic and non-bonded

terms. Essentially, the AMBER refinements led to larger distributions of bond angles

and lengths, allowing for more measurements to be outside the ±4-sigma range demar-

cating “real” outliers. There were also some slight improvements in hydrogen bonding

found with AMBER-restrained refinements due to the energetic favorability of hydrogen

bonds. The best improvement upon conventional refinement found in this chapter was

that of the low-resolution structures. The structures reached by AMBER-restrained

refinements of the low-resolution structures were highly energetically favorable to their

conventionally refined counterparts, and far superior regarding clashscores. Further

work could be done to cement the superiority of AMBER restraints in PHENIX refine-

ment of RNA structures by increase the size of the data set. Also, test sugar pucker

outliers and suite outliers could be chosen to analyze the reason for increased numbers

of such outliers in AMBER-restrained refinements and whether or not it is for the same

reasons found for bond lengths and angles.

In Chapter 4, new periodic 3D-RISM code, as presented in Chapter 3, was tested

on three of the RNA structures from the data set in Chapter 2 and compared to the

standard for solvent description, crystal MD simulations. The MD simulations were

stable and settled on reasonable numbers of water molecules. Periodic 3D-RISM single-

point calculations were performed for each structure with four different solvent setups,

testing the effects of different ion types and concentrations on water molecule and ion

counts produced by the code. It was found that all of the water counts produced by

the differing solvent setups were within 3.74% of the lowest count for within a PDB ID,

and the largest gap was 101 waters, in a structure where that translated to 1.27% of

the smallest number of waters. It was found that ionic radii seemed to have an effect on

both ion counts and water counts, as a general trend of higher water counts with higher

numbers of magnesium ions was found. As more of the positive charge was accounted

for by smaller, divalent magnesium ions, there appeared to be more volume available to

be occupied by water molecules. Also, when comparing solvents with sodium as opposed

to potassium, there were more sodium ions than potassium ions at the same concentra-

tions, likely due to the smaller ionic radius of sodium. Relative concentrations were also
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found to have more of an effect on ion distribution than the absolute concentrations.

As the 3D-RISM calculations containing magnesium and sodium were compared to the

crystal MD results, the main conclusion was that the water counts found through 3D-

RISM were very close to the MD counts. The largest percentage difference was 2.00%,

and the largest gap was only 80 waters. This is very promising as to the ability of

the periodic 3D-RISM calculations to approximate closely the results of the far more

time-expensive MD simulations. These calculations also resulted in interesting divalent

to monovalent cation ratios, indicating that our understanding of the bulk solvent and

the way we model it in crystal MD simulations may need tweaking. Visual analysis

of the placement of ion and water density was performed on 2a43 with crystallization

solvent conditions, showing that the majority of the magnesium density surrounded the

negatively-charged portions of the sugar-phosphate backbone. However, the deposited

magnesium sites were not replicated. Further analysis of the effectiveness of these cal-

culations would involve more visual checking like this for all the structure and solvent

combinations to see how well the output ion and water densities matched placement

of the deposited ions and water molecules, especially near the RNA molecules. Also,

closer comparison of the crystal MD simulations and 3D-RISM calculations could be

performed by placing the number of magnesium ions found in 3D-RISM calculations

into simulations to see what effect the change in the divalent ion:monovalent ion ra-

tio has on the number of water molecules in the unit cell, and on the overall solvent

description and RNA stability within the unit cell..

In Chapter 5, the highly conserved sarcin/ricin domain of the ribosomal RNA was

chosen as a test structure for different methods, due to its small size and the high

resolution of some of the structures. The three structures analyzed here were already

included in the PHENIX/AMBER interface data set in Chapter 2. The data from

their refinements was analyzed to see what effects the differing numbers of deposited

water molecules and the resolutions of the structures had on refinement results. Only

resolution appeared to have an effect on improvements due to the use of AMBER re-

straints in terms of energy, and no real trends appeared to exist in geometric outlier

data. Regarding how periodic 3D-RISM singlepoint calculations turned out for these
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three structures, it was found that different numbers of water molecules filled the unit

cells of the structures, but not in the same order as they did in the deposited structures.

The higher the resolution of the deposited structure, the more water molecules there

were in the deposited structure. However, when it came to the 3D-RISM results, the

highest number of water molecules was found in the unit cell with the highest volume,

which actually happened to be the structure with the lowest resolution. The differences

in number of water molecules appeared to be due to the difference in volume, as they

were roughly the same as the theoretical differences found when assuming that a wa-

ter molecule fills 30 Å3of volume. The ion counts, on the other hand, were the same

within rounding error for each set of concentrations, and did not change linearly with

the change in concentrations. This was not surprising, as the solutes were the same,

and thus had the same charge that needed to be neutralized. Finally, the PDB-REDO

version of 1q9a was used as a test case for short minimizations in sander.MPI with

periodic 3D-RISM forces. Testing a bunch of different sets of parameters, certain “sweet

spots” for parameters were found, but further work needs to be performed to really

decide exactly what the best options are for the best and fastest results, likely in longer

minimizations. Further work to get a better grasp of what is going on in these struc-

tures with PHENIX would likely include comparing absolute energies and geometric

statistics across resolution and water molecule counts as opposed to looking at the dif-

ferences between methods for each structure. Also, trends are hard to dissect from only

three structures, so other sarcin/ricin structures could be chosen to be refined to give

more data through which to comb for trends. In the case of the 3D-RISM results for

these structures, the next steps should be to test solvent setups that give a semblance

of the experimental crystallization conditions for the three structures (as this was tried,

but proper convergence failed; also, they have different experimental conditions) and to

compare the placement of the ion and water densities from structure to structure.

Overall, the work presented in this dissertation covers a wide range of ways to look

at RNA structures and hopefully provide insights in the future. The energetic and clash-

score improvements found by implementing AMBER force field restraints in PHENIX

refinement should lead to more physically accurate RNA structures, including better
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ligand binding interactions, hopefully leading to better understanding of interactions

for RNA-interacting therapeutics and of ribozymes and the like. Periodic 3D-RISM cal-

culations can hopefully provide a better understanding of water- and ion-coordinated

interactions within structures and with ligands, again leading to better understanding of

therapeutic interactions. Ideally, further use of periodic 3D-RISM, both in singlepoint

calculations and MD could even lead to better overall descriptions of bulk solvent scat-

tering and thus improved agreement of models with experimental data. While I hope

that these visions of what this work can lead to become realities, there is still plenty of

work needed to get there.
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