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Let F be a one variable function field over a complete discretely valued field with residue

field k. Let n be a positive integer, coprime to the characteristic of k. Given a finite

subgroup B in the n-torsion part of the Brauer group nBr(F ), we define the index of B

to be the minimum of the degrees of field extensions which split all elements in B. In

this thesis, we improve an upper bound for the index of B, given by Parimala-Suresh,

in terms of arithmetic invariants of k and k(t). As a simple application of our result,

given a quadratic form q/F , where F is a function field in one variable over an m-local

field, we provide an upper-bound to the minimum of degrees of field extensions L/F so

that the Witt index of q ⊗L becomes the largest possible.
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Chapter 1

Introduction

1.1 Two Motivating Problems

The question how arithmetic properties of a field transmit to its finitely generated field

extensions has been explored throughout the years. Let F be a field. The u-invariant of

F is the smallest natural number u(F ) such that all degree two homogenous polynomials

with coefficients in F , and number of variables greater than u(F ), have a non-trivial

solution. The u-invariant is an example of an arithmetic invariant. A natural question

arises: how does the u-invariant behave under finitely generated field extensions of F?

If u(F ) is finite, then can we say that u(F (t)) is finite? These questions are yet to be

answered. Even for nicer fields, say when F is a totally imaginary number field, it is

not known if u(F (t)) is finite.

The finiteness of the u-invariant is related to the finiteness of other arithmetic invariants

of F , coming from the Brauer group. The Brauer group of F can be thought of as the

group of Brauer equivalence classes of finite dimensional central simple algebras over F

(see Definition 2.1.13) under the operation of tensor product. The identity element of

this group is the class of the field F . Given a division algebra D/F , we can associate

two numbers to it, namely the period of D, which is simply its order in the Brauer

group, and the index of D which is the minimum degree of the field extension that

makes D trivial in the Brauer group of that extension. Alternatively the index can also

be defined as the square root of the dimension of the division algebra. For example,

consider the Hamilton quaternion algebra (−1,−1) over R. One can show that the tensor

product (−1,−1) ⊗R (−1,−1) is Brauer equivalent to the class of the identity element in

the Brauer group, i.e., R. This shows that the period of (−1,−1) is two. Since there are
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no nontrivial division algebras over an algebraically closed field, (−1,−1) ⊗R C is trivial

in the Brauer group of C. Thus its index is also two.

It turns out that the period divides the index and they share the same prime factors.

As a measure of how complicated can the division algebras be, one asks the following

question: given any division algebra D over F of a fixed period `, can we uniformly

bound its index in terms of `? It is not difficult to construct fields where there can be no

such uniform bound. However, for nice fields such as finitely generated fields over number

fields, finite fields, local fields or algebraically closed fields, there is a folklore conjecture

that there is such a uniform bound. This problem is known as the period-index problem.

The uniform bound has been referred to as the Brauer `-dimension in recent times.

The question of finiteness of the Brauer `-dimension for function fields in one variable

over number fields remains open. Finiteness of the Brauer 2-dimension in the case of

function fields in one variable over totally imaginary number fields, will imply that their

u-invariant is also finite, in view of a recent result of Suresh (see [Su]).

1.2 Generalized Brauer Dimension

In addition to the u-invariant and the Brauer dimension, we have another measure of

complexity of the arithmetic of the field. Given any finite collection of division algebras

{D1,⋯,Dn} over F of a fixed period `, can we uniformly bound the degree of field

extensions L/F such that Di⊗F L is trivial in the Brauer group of L, for every i = 1,⋯, n?

Again, it is reasonable to ask a similar question only over the nice fields mentioned in the

previous paragraph. The existence of such a uniform bound means that division algebras

cannot be too “independent”. We will briefly expand on this heuristic: it is not too hard

to show that there is a uniform bound on the degree of the field extension that kills a

finite collection of square classes if and only if the group of square classes is finite. While

a uniform bound for division algebras of period two does not mean that the number

of division algebras is finite, it does impose some constraints on division algebras of a

given period. For example, one can show that there exist central simple algebras, Brauer

equivalent to those division algebras, and containing a Galois field extension, with a
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uniform bound on the cardinality of the Galois group. The smallest uniform bound on

the degree of field extensions that split any finite collection of Brauer classes of period

dividing ` is called the Generalized Brauer `-dimension (see 5.1.1 for a formal definition).

The Generalized Brauer `-dimension was first introduced before by Parimala and Suresh

in [Pa-Su3], where they refer to it as “uniform (2, `) bound”. We prefer the terminology

“Generalized Brauer `-dimension” due to its similarity with the Brauer `-dimension.

We will denote the Generalized Brauer `-dimension of a field F by GBrd`(F ). One

knows the Generalized Brauer `-dimension only for “lower dimensional” fields such as

global fields and local fields, and for function fields of curves over local fields. Even

the finiteness of the Generalized Brauer `-dimension is not known for function fields of

higher dimensional varieties over local fields, finite fields and algebraically closed fields.

The finiteness of Generalized Brauer `-dimension provides some handle on the complexity

of Galois cohomology classes in degree three and higher, which is otherwise difficult to

understand. Combined with the norm residue theorem (see [Hmr-Wei, Pg1, Theorem

A]) and a theorem of Krashen [Kra] (and independently, Saltman), there is a uniform

bound on the number of symbols required to express a Galois cohomology class with

µ` coefficients, provided the Generalized Brauer `-dimension is finite. This uniform

bound will be called the mod-` symbol length. The case when ` = 2 is particularly

interesting, since the finiteness of mod-2 symbol length, implies that the u-invariant is

also finite (see Theorem 5.4.16). In general, the higher Galois cohomology classes with

µ` coefficients (with appropriate twisting) are often invariants of principal homogenous

spaces under linear algebraic groups, which themselves are in natural bijection with finite

dimensional algebraic structures. In particular, the degree three classes are invariants of

principal homogenous spaces under simply connected linear algebraic groups. Therefore,

we speculate that the finiteness of the Generalized Brauer `-dimension will give some

information about the arithmetic complexity of principal homogenous spaces, just as it

does for quadratic forms by informing us that the u-invariant is finite.
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1.3 Semi-global Fields

As mentioned before, just as the u-invariant and Brauer `-dimension, the Generalized

Brauer `-dimension is not known for many fields of arithmetic and geometric interest.

The field patching technique introduced by Harbater and Hartmann in [HH], and later

developed further by Harbater, Hartmann and Krashen in a series of papers ([HHK09],

[HHK15(1)], [HHK15]), offers a systematic way to deal with such arithmetic problems

over certain kinds of fields. These fields are function fields in one variable over complete

discretely valued fields. They are being called semi-global fields in recent times. Good

examples to keep in mind are k((t))(x) in the equicharacteristic case and Qp(t) in the

mixed characteristic case. Harbater, Hartmann and Krashen in [HHK09] compute the

u-invariant and the Brauer `-dimension for semi-global fields in terms of fields of lower

arithmetic complexity.

In the increasing direction of arithmetic complexity, semi-global fields serve as interme-

diate cases: we cannot address the arithmetic questions above, say for fields of the form

k(t, x) yet, where k is a nice field, but we can for fields of the form k((t))(x), and the

hope is that this will be helpful in dealing with these problems over k(t, x).

1.4 Main Result

In this thesis, we provide an upper-bound for the Generalized Brauer `-dimension of

semi-global fields in terms of that of fields of lower arithmetic complexity. The first

upper-bound in this case was provided by Parimala and Suresh in [Pa-Su3] (see also

Theorem 5.1.5):

Theorem (Parimala-Suresh). Let F be a semi-global field with residue field k such that

char(k) ≠ `. We have the following upper bound for the Generalized Brauer `-dimension.

GBrd`(F ) ≤ `3 ⋅ [GBrd`(k(t))]! ⋅ [GBrd`(k)]!.

The authors in [Pa-Su3] are interested in providing an upper bound in the bad, mixed

characteristic case, i.e., when char(F ) = 0 and char(k) = `. Their upper bound in
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this situation is much better than the above bound. This suggests that in the good

characteristic case, the above bound is not optimal.

We manage to cut the above bound and obtain the following:

Theorem. Let F be a semi-global field with residue field k. Let ` be a prime not equal

to char(k).

1. We have the following upper bound for the Generalized Brauer 2-dimension:

GBrd2(F ) ≤ 23 ⋅GBrd2(k(t)) ⋅GBrd2(k).

2. If ` ≠ 2, we obtain

GBrd`(F ) ≤ `2 ⋅GBrd`(k(t)) ⋅GBrd`(k).

This allows us to give an upper bound for the Generalized Brauer `-dimension for

function fields in one variables over m-local fields. We use this to give a non-trivial

answer to a question concerning the so called“splitting index” of quadratic forms raised

in the conference on “Deformation theory and Brauer groups” in 2011 ([AimPL]). Our

techniques can also be used to obtain a statement similar to Theorem 5.3.3 for finiteness

of mod-` symbol length of semi-global fields.

Our strategy is to use the recipe of Saltman used in [Salt], to first “clear out” the

bad locus of a given collection of Brauer classes on a two dimensional model of the

semi-global field by making a field extension of an appropriate degree. After clearing

out this bad locus, we can locally specialize these Brauer classes on the special fiber

of a regular model. Note that the function fields of the curves in the special fiber are

fields of lower arithmetic complexity. We can split these specialized Brauer classes

by making another extension, generically on the special fiber. This means that there

are only finitely many closed points on the special fiber where the Brauer classes are

non-zero. The most technical part is then to split them on the remaining closed points

in a controlled manner. Finally, field patching, which provides us with a local-global

principle with respect to over-fields coming from closed points and open sets of the
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special fiber, enables us to conclude that all the Brauer classes are killed by this field

extension.

1.5 Open Problems And Future Directions

1. As we noted above, Parimala-Suresh in [Pa-Su3] obtain a much better bound

for GBrd`(F ) for a semi-global field F in the mixed characteristic case. This

indicates that one can improve the upper bound in the Main Theorem further.

One approach to improve the bound can be getting rid of the factor GBrd`(k) or

replacing it with a smaller factor, possibly at the cost of increasing the first factor

`2.

2. A uniform bound for the splitting dimension of a field F also provides a uniform

bound for the index of maximal orthogonal Grassmannians of quadratic forms.

Another related question arises: is there a small enough, uniform bound for the

indices of other orthogonal Grassmannians of quadratic forms? It looks like such

a uniform bound can be provided. One can also obtain upper bounds for the

indices of Galois Cohomology classes which are a lot smaller than the one in the

Main Theorem. This can be potentially used to obtain better bounds for splitting

indices of quadratic forms which lie in a larger power of the fundamental ideal.

3. In another direction, we prove in Theorem 5.4.16 (see Chapter 5) that if a field F

has finite 2-cohomological dimension and if GBrd2(F ) is finite, then u(L) is finite

for every finite degree field extension L/F . Parimala-Suresh raise the question if

the converse of this Theorem is true, and also remark that it is plausible that it is

not true. Another related question is that if the Brauer 2-dimension of F is finite,

is it true that the Generalized Brauer 2-dimension is finite?
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Chapter 2

Preliminaries

2.1 Central Simple Algebras

Definition 2.1.1. An F -algebra A is called a central simple algebra (c.s.a) over F if A

is a finite dimensional F -vector space, the only two sided ideals of A are (0) and A, and

the center of A is F .

Example 2.1.2. 1. A = Mn(F ) is a central simple algebra over F . We will call

such central simple algebras split.

2. If D is a division algebra over F with center F , then D is a central simple algebra

over F . So is Mn(D) for n ≥ 1. As we will see in Theorem 2.1.5, these are all the

examples of central simple algebras.

3. When F = R and Q is the R-algebra with basis {1, i, j, ij} given by the relations:

i2 = −1, j2 = −1, ij = −ji,

one can check that Q is a central simple algebra over R.

4. Let a, b be elements in F×. The F -algebra with basis {i, i, j, ij} and given by the

relations:

i2 = a, j2 = b, ij = −ji,

is a central simple algebra over F . This algebra goes by the name generalized

quaternion algebra and will be denoted by (a, b)2.

5. Let L/F be a cyclic Galois extension of degree n. Let σ be a generator of its Galois

group. Let b be an element of F ×. Consider the F -algebra which, as an L-vector
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space is given by the following equality and subject to the following relations:

A =
n−1

⊕
i=0

Lui; un = b, uxu−1 = σ(x) ∀ x ∈ L.

For the isomorphism χ ∶ Gal(L∣F ) Ð→ Z/nZ where σ ↦ 1, A is also denoted by

(χ, b). Such algebras are called cyclic algebras.

If L = F ( n
√
a) for some a in F (This happens always when F contains nth roots

of unity), then A is also denoted by (a, b)n

Cyclic algebras form an important class of central simple algebras. A deep theorem of

Merkurjev and Suslin says that up to a certain equivalence, every central simple algebra

over F can be expressed as tensor products of cyclic algebras, provided F contains

enough roots of unity. The definition of cyclic algebras seems somewhat ad hoc but it

turns out that whenever a central simple algebra A contains a cyclic Galois extension as

a maximal subfield, it is isomorphic to a cyclic algebra. One naturally obtains such a

description of A in the course of proving this fact, using the Skolem-Noether theorem

(see Theorem 2.1.8)

Proposition 2.1.3. If A is a central simple algebras over F and B is a simple algebra

over F , then

1. A⊗F B is also a simple algebra.

2. Z(A⊗F B) = Z(A) ⊗F Z(B)

Proof. See [Pierce, 12.4, Lemma b, c].

Therefore, as a corollary:

Corollary 2.1.4. If A and B are central simple algebras over F and K/F is a field

extension, then

1. A⊗F B is central simple algebras over F .

2. K ⊗F A is a central simple algebra over K.

Theorem 2.1.5. The following statements are equivalent:
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1. A is a c.s.a over F .

2. There exists a uniquely determined division algebra D with center F and some

k ≥ 1 such that A ≅Mk(D).

3. There exists a finite separable field extension L/F such that A⊗F L ≅Mn(L).

4. The F -algebra map ρ ∶ A ⊗ Aop Ð→ EndF (A) given by ρ(a ⊗ b)(x) = axb is an

isomorphism.

Proof. (1) ⇐⇒ (2) is the Artin-Wedderburn theorem. See [Pierce, Theorem 3.5] for a

proof. For (1) ⇐⇒ (3), see [Pierce, Lemma 13.5]. (1) ⇐⇒ (4) follows from Corollary

2.1.4.

Remark 2.1.6. By Theorem 2.1.5, dimension of a c.s.a as an F vector space is a

square. We define the degree of A, denoted by deg(A), to be
√

dimF (A).

The characterization (3) of central simple algebras given in Theorem 2.1.5 is central to

this thesis.

Definition 2.1.7. Let A/F be a central simple algebra. We say that L/F splits A if

A⊗F L ≅Mn(L) for some n.

There is another important theorem named after Skolem and Noether, that we will need

later. We will state it here and use it in the next two sections.

Theorem 2.1.8 (Skolem-Noether). Let A/F be a central simple algebra and B ⊆ A be

a simple subalgebra of A. If σ ∶ B ↪ A is any F algebra embedding, then there exists a

unit u in A× such that σ(b) = ubu−1 for every b in B.

Proof. See [Pierce, Section 12.6]

Remark 2.1.9. The Skolem-Noether theorem says that every automorphism of a central

simple algebra is inner. In particular, AutF (Mn(F )) ≅ PGLn(F ).

We will state a few facts about maximal subfields in central simple algebras. The driving

force behind the proofs of these facts is the important Double Centralizer theorem.
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Theorem 2.1.12 will be useful in relating the Brauer group with the second Galois

cohomology group.

Definition 2.1.10. Let A/F be a central simple algebra. A subalgebra E ⊂ F which is

also a field is called strictly maximal if [E ∶ F ] = deg(A)

Proposition 2.1.11. Let D/F be a division algebra. The following statements are

equivalent:

1. E ⊂D is a maximal subfield.

2. The centralizer of E in D, CD(E), equals E.

3. [E ∶ F ] = deg(D)

Proof. See [Pierce, Corollary 13.3]

Theorem 2.1.12. Let A/F be a central simple algebra. Let K/F be a Galois extension

such that K splits A. Then there exists a central simple algebra B Brauer equivalent to

A (see Definition 2.1.13), and an embedding of F subalgebras K ↪ B such that K is a

strictly maximal subfield in B.

Proof. See [Pierce, Theorem 13.3]

2.1.1 Brauer Group

The Brauer group is an extremely important algebraic object which makes its presence

felt in a wide variety of places, from class field theory in number theory to obstruction

problems for the existence of fine moduli spaces for moduli problems concerning vector

bundles. Recall that the Artin-Wedderburn Theorem tells us that it is sufficient to

study division algebras in order to study central simple algebras. We will denote the

underlying division algebra of a central simple algebra A by DA. We put the following,

seemingly näıve, equivalence relation on the set of isomorphism classes of central simple

algebras over F :
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A ∼ B ⇐⇒ DA ≅DB.

This equivalence relation is called Brauer equivalence. Traditionally, it is defined as the

following:

Definition 2.1.13. Let A and B be central simple algebras over F . We say that A

and B are Brauer equivalent if:

A ∼ B ⇐⇒ Mm(A) ≅Mk(B)

for some integers m,k ≥ 1.

Remark 2.1.14. 1. Note that F is Brauer equivalent to Mn(F ).

2. By the Artin-Wedderburn Theorem, one can see that the two equivalence relations

defined above coincide.

Notice that by the Artin-Wedderburn Theorem, this equivalence relation is compatible

with tensor products, i.e., if A1 ∼ B1 and A2 ∼ B2, then A1 ⊗F B1 ∼ A2 ⊗F B2. Further,

by Theorem 2.1.5, A⊗F Aop ∼ F .

Together with the associative property of tensor products, this shows that the operation

of tensor product equips a well-defined Abelian group structure on the set of isomorphism

classes of central simple algebras over F . This group is called the Brauer group of F

and is denoted by Br(F ).

Since central simple algebras are split by a finite separable field extension (see 2.1.5),

there are no nontrivial central simple algebras over a separably closed field, i.e., Br(F ) = 0

when F is separably closed. Of course, we hope to compute Brauer groups of some

nontrivial fields. In the decreasing direction of triviality, as a first step, let us compute

Br(R).

Example 2.1.15. Br(R) = Z/2Z

Let D/R be a central division algebra. Let L be a maximal subfield in D. Note that

either L = R or L = C. By proposition 2.1.11, [L ∶ R] =
√

[D ∶ R]. Therefore, either
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D = R or [D ∶ R] = 4. We will show below that up to isomorphism, there is a unique

division algebra with [D ∶ R] = 4, namely the quaternions.

Let us fix a maximal subfield L and make the identification: L = C since [L ∶ R] = 2. Let

σ be the element in Gal(C∣R) acting by conjugation. By Theorem 2.1.8, there exists

j in D× such that j(a + bi)j−1 = a − bi and therefore jij−1 = −i. Since conjugation is

an element of order two, j2 commutes with all the elements in C, i.e., j2 lies in the

centralizer CD(C). Since C is a maximal subfield, CD(C) = C. Thus, j2 lies in C. Now

observe that Gal(C∣R) fixes j2 since it is fixed by conjugation by j. So in fact, j2 lies in

R. Because D is a division algebra j2 cannot be positive, otherwise D would have zero

divisors. Therefore, j2 is negative. Normalizing j, we may assume that j2 = −1.

Thus, we have found two elements i and j inside D satisfying i2 = −1, j2 = −1 and

ij = −ji. Now we only need to show that {1, i, j, ij} forms a basis for D. We just need

to check that this set is linearly independent. If we have the following linear relation

a+ bi+ cj + dij = 0, multiplying it by a− bi− cj − dij, we get that a2 + b2 + c2 + d2 = 0 for

a, b, c, d in R, and therefore a = b = c = d = 0. Thus, D is isomorphic to the quaternions

H.

Let α be the class of H in Br(R). Since, every non-trivial division algebra is isomorphic

to H, 2α = 0. Therefore, Br(R) ≅ Z/2Z.

Note that the proof above can be easily generalized to show that any degree two central

simple algebra over a field of characteristic not equal to two is isomorphic to a generalized

quaternion algebra. We therefore obtain the following proposition:

Proposition 2.1.16. Let F be a field with char(F ) ≠ 2. Let A/F be a central simple

algebra of degree two. Then there exist elements a, b in A× such that A ≅ (a, b)

2.2 Galois Descent

Note that if K/F is a Galois extension of fields, we have that, KGal(K∣F ) = F . Thus, the

“algebraic structure” K/F descends to the algebraic structure F viewed as an algebraic

structure over itself. This naturally leads us to ask the question:
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If V is an algebraic structure over K, when does it “descend” to an algebraic structure

over F? We need to make a couple of things precise here. First, what do we mean

by an algebraic structure? And what does it mean for it to descend? While we would

like to think that all “arithmetic information” in an algebraic structure should descend

to the ground field under the action of a Galois group, it does not happen. And we

are thankful for that, since such phenomena gives rise to interesting structures such as

central simple algebras.

Let (V,Φ) be a finite dimensional vector space over F equipped with a tensor Φ of

type (m,n), i.e., Φ is some element in V ⊗m ⊗ (V ∗)⊗n, possibly satisfying some more

properties. For our purpose, we will take this to mean an algebraic structure, as it

covers many of the examples of algebraic structures we have in mind. For example, if

(V, q) is a quadratic form, we may think of q as a tensor of type (0, 2). If A is a central

simple algebra with multiplication map m, (A,m) can be thought of as a tensor of type

(1,2) satisfying some more properties.

Theorem 2.1.5 says that every degree n central simple algebra becomes isomorphic to

Mn(F ) when one extends scalars to F sep. Or, in other words, Mn(F sep) descends to

A. Regular quadratic forms of dimension n become isometric to the n dimensional

form ⟨1,⋯, 1⟩ when one extends scalars to F sep. Many such algebraic structures become

isomorphic to a distinguished algebraic structure when one passes to F sep.

Definition 2.2.1. Let (V,Φ) be a finite dimensional vector space equipped with a

tensor Φ over F . We say that a tensor (W,Ψ) over F is a twisted form of (V,Φ) if there

exists an isomorphism f ∶ (V,Φ) ⊗ F sep Ð→ (W,Ψ) ⊗ F sep.

Thus, degree n central simple algebras are twisted forms of Mn(F ).

The main theorem of Galois descent helps us in classifying twisted forms of a distinguished

algebraic structure. We state it below and classify twisted forms of a tensor in terms of

non-Abelian Galois cohomology in the next section. We refer the reader to [JJ] for the

proof.

Theorem 2.2.2. 1. Let (V,Φ) be a vector space with a tensor defined over F sep.
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Suppose that for every σ in Gal(F sep∣F ), we have maps Tσ ∶ (V,Φ) Ð→ (V,Φ) which

are σ-linear map (i.e., Tσ(λv) = σ(λ)v for every λ in F sep). Then there exists a

tensor of the same type (W,Ψ) over F such that there exists an isomorphism:

φ ∶ (W,Ψ) ⊗ F sep ∼Ð→ (V,Φ).

2. Suppose that (V1,Φ1) and (V2,Φ2) are tensors over F sep and θ, a homomorphism

θ ∶ (V1,Φ1) Ð→ (V2,Φ2) such that the following diagram commutes

(V1,Φ1) (V2,Φ2)

(V1,Φ1) (V2,Φ2).

θ

Tσ Tσ

θ

Then there exist tensors (W1,Ψ1) and (W2,Ψ2) which are forms of (V1,Φ1) and

(V2,Φ2) respectively and a homomorphism θ ∶ (W1,Φ1) Ð→ (W2,Φ2) such that

θ ⊗ F sep = θ.

Proof. See [JJ, Theorem 2.2]

2.3 Galois Cohomology

One thinks of central simple algebras as those algebraic structures over F which “come

from” matrix algebras over F sep. Theorem 2.1.5 demolishes the näıve belief that only

Mn(F ) gives rise to Mn(F sep). If one takes the elements in Mn(F sep) that are fixed

under the action of Gal(F sep∣F ), depending upon how we act the Galois group, we would

not only get Mn(F ). Thus the Brauer group can be thought of as the group of “things”

which come from matrices over F sep. Cohomology in algebra encodes the information

lost when an algebraic structure goes through some process. In our context, if this

process is taking Galois invariants, then (with some hindsight) we are led to conclude

that there should be some relationship between Cohomology arising from taking Galois

invariants, and the Brauer group. We will follow the treatment in [G-S, Chapter 3] in

this section.
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2.3.1 A quick introduction to group cohomology

Let G be a finite group and M be a G module. We define the G invariants of M as

MG ∶= {m ∈M ∣ gm =m ∀g ∈ G}.

Observe that the functor ( )G which takes G invariants of objects in the Abelian

category of G modules is not right exact. A simple example comes from Galois theory.

Consider the exact sequence of Gal(C∣R) modules:

0→ Z/2Z→ C× ×2Ð→ C× → 0.

If one takes Gal(C∣R) invariants, one sees that the right-most map is not surjective

since negative numbers cannot be squares.

Observe that MG ≅ HomZ[G](Z,M) for every G module M , and the trivial Z[G]-

module Z. One can further show that the following functors are isomorphic: ( )G ≅

HomZ[G](Z, ). The defect of right exactness is captured by the right derived functors.

Thus we are led to the following definition:

We define the group cohomology of G with coefficients in M as:

Hi(G,M) ∶= ExtiZ[G](Z,M).

Thus, in order to compute this group, one would take a projective resolution of the

trivial G module Z, apply the functor ( ) and take cohomology of this new cochain

complex. There is a “computational friendly” free resolution of Z as a Z[G] module.

This resolution is called the bar resolution.

Let Fj be the free abelian group on the set Gj , for j > 0, let F0 = Z[G], and F−1 ∶= Z,

where Z is given the trivial action of G. Thus to give a map from Fj to any G module

M for j > 0, amounts to giving a set map Gj →M . Consider the free resolution:

⋯ → F j
djÐ→ Fj−1

dj−1Ð→ Fj−2 → ⋯→ Z[G] εÐ→ Z→ 0
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Here dj is the map defined on the basis of Fj as:

dj(g1,⋯, gj) = g1(g2,⋯, gj) +
j−1

∑
i=1

(−1)i(g1,⋯, gigi+1,⋯gj) + (−1)j(g1,⋯, gj−1)

and ε is the augmentation map sending every g in G to 1 in Z.

It will be useful to explicitly see what elements in H1(G,M) and H2(G,M) look like.

Note that elements of the cohomology groups Hj(G,M) can be thought of as the group

of maps Gj →M , up to an equivalence. Using the bar resolution, elements in H1(G,M)

can be though of as the group of crossed homomorphisms up to an equivalence.

Let Z1(G,M) be the group of crossed homomorphisms, i.e., Z1(G,M) is the group of

maps a ∶ G→M satisfying aστ = aσσaτ .

Let B1(G,M) be the subgroup of the crossed homomorphisms which are of the form,

σ ↦ σm −m.

One then gets that

H1(G,M) = Z1(G,M)/B1(G,M).

Let Z2(G,M) be the group of maps G ×G→M satisfying the identity

σaτ,ρ − aστ,ρ + aσ,τρ − aσ,τ = 0.

Let B2(G,M) be the subgroup of Z2(G,M) consisting of maps (σ, τ) ↦ σbτ − bστ + bσ

for maps b ∶ G→M .

Again, one can check that

H2(G,M) = Z2(G,M)/B2(G,M).

LetH be a subgroup ofG andN be anH-module. Note thatMG
H(N) ∶= HomZ[H](Z[G],N)

is a G-module with the action of G defined as follows: for φ in HomZ[H](Z[G],N) and

g′ in G, the map g′φ sends g to φ(gg′). Such modules are called coinduced.

Lemma 2.3.1 (Shapiro). For every i ≥ 0, we have the following canonical isomorphism:

Hi(G,MG
H(N)) ∼Ð→ Hi(H,N).
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Proof. The isomorphism follows from the canonical isomorphism

HomZ[G](M,MG
H(N)) ∼Ð→ HomZ[H](M,N)

for every G module M . Given θ in HomZ[G](M,HomZ[H](Z[G],N)), we send it to the

morphism which is defined as m ↦ (θ(m))(1). This lies in HomZ[H](M,N). For the

inverse, given φ in HomZ[H](M,N), we obtain the morphism m ↦ φm, where φm is

defined as φm(g) = φ(gm).

Shapiro’s lemma helps us in constructing the restriction maps. For every G module M , we

have the isomorphism: M
∼Ð→ HomZ[G](Z[G],M). Viewing a G module homomorphism

as an H module homomorphism, we get the map:

M → HomZ[H](Z[G],M)

Taking cohomology we obtain the restriction map:

Hi(G,M) ResÐ→ Hi(G,HomZ[H](Z[G],M)) ≅ Hi(H,M)

Concretely, if we think of a cocycle as a function Gi →M , the restriction map sends

this function to the composition H i ↪ Gi ↪M .

We also have another canonical morphism Cor ∶ Hi(H,M) Ð→ Hi(G,M) called core-

striction.

Let H be a subgroup of G with [G ∶ H] = n. To define the corestriction map, we first

need to define the map HomZ[H](Z[G],M) → HomZ[G](Z[G],M).

Let {g1,⋯, gn} be a system of coset representatives of G/H. Suppose φ is an element

in HomZ[H](Z[G],M), we define the map φGH which sends x to ∑ni=1 giφ(gi−1x). It is

standard to check that this map does not depend upon the choice of the coset represen-

tatives, and that it is an H-module homomorphism. Again, passing to cohomology, one

obtains the corestriction homomorphism

Hi(H,M) CorÐ→ Hi(G,M).
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The restriction map is similar to the pullback map in Algebraic Geometry and the

corestriction map is similar to the pushforward. We also have the following form of the

projection formula involving restriction and corestriction.

Theorem 2.3.2. If H is a subgroup of G of index n, for every i ≥ 0 the composition

Cor ○Res ∶ Hi(G,M) Ð→ Hi(G,M)

coincides with multiplication by n.

Proof. It is enough to check this for i = 0. If φ is a morphism in HomZ[G](Z[G],M), then

Res(φ) is the same map viewed as an H-module homomorphism. Let {g1,⋯, gn} be a set

of coset representatives of G/H. Now for x in Z[G], Cor(Res(φ))(x) = ∑ni=1 giφ(gi−1x) =

nx, since φ is a G-module homomorphism.

Finally, we define a map, called the inflation map, which relates the cohomology of a

quotient of a group and the cohomology of the group. Let N be a normal subgroup of

G. Then we have the map

Inf ∶ Hi(G/N,MN) → Hi(G,M).

We will describe this map concretely. Thinking of a cocycle as a function f from (G/N)i

to MH satisfying an identity, we compose it with the standard projection G→ G/N to

get a function from Gi to M .

For our application, G will be the Galois group of a field. Although Galois groups are

not finite, they are profinite, i.e.,

Gal(F sep∣F ) = lim←Ð
K/F

Gal(K ∣F ),

where K/F ranges over finite Galois extensions.

If M is a Gal(F sep∣F )-module which is given the discrete topology, then we define the

Galois cohomology of F with coefficients in M to be:

Hi(F,M) ∶= limÐ→
K/F

Hi(Gal(K ∣F ),MGal(F sep∣K)),
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where K/F ranges over finite Galois extensions.

Following [Serre2], one can also define Galois cohomology as the cohomology of a certain

cochain complex. We will denote the Galois group Gal(F sep∣F ) by ΓF in what follows.

Let Ci−1
c (ΓF ,M) be the group of continuous maps Gi−1 aÐ→M . Consider the cochain

complex:

⋯ → Ci−1
c (ΓF ,M) di−1Ð→ Cic(ΓF ,M) diÐ→ Ci+1

c (ΓF ,M) → ⋯

where the differential di−1 is defined by sending the map a ∶ Gi−1 →M to the following

map in Cic(G,M):

(σ1,⋯, σi) ↦ σ1aσ2,⋯,σi +
i

∑
j=1

(−1)jaσ1,⋯,σjσj+1,⋯σi + (−1)j+1aσ1,⋯,σi−1 .

We have the following important theorem due to Hilbert. Originally stated for cyclic

Galois extensions, this version of the theorem will help us in computing various Galois

cohomology groups. In the section on Nonabelian Galois cohomology, we will see a more

general form of this theorem. We succumb to the temptation of giving a proof which

involves a delightful trick!

Theorem 2.3.3. H1(F, (F sep)×) = 1.

Proof. We will show that H1(Gal(K ∣F ),K×) = 1 for a finite Galois extension K/F . Let

G be the Galois group Gal(K ∣F ). Let a be a cocycle in Z1(G,K×). Thus a satisfies

the identity

aστ = aσσaτ .

Recall that Dedekind’s lemma says that the the elements of G are linearly independent.

Thus there exists b in K× so that the element

c ∶= ∑
τ∈G

aττ(b)
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is non-zero. For σ in G, we have

σ(c) = ∑
τ∈G

σaτσ(τ(b))

= ∑
τ∈G

aσ
σaτσ(τ(b))

aσ

= 1

aσ
∑
τ∈G

aστστ(b)

= c

aσ
.

Thus, aσ = c
σ(c) and hence aσ is a coboundary in B1(G,K×). Therefore, H1(G,K×) =

1.

When K/F is a cyclic extension, Hilbert theorem 90 says that elements of norm 1 are of

the form c/σ(c), for σ a generator of Gal(K ∣F ). One obtains this as a corollary of the

above theorem. With this trickery out of the way, let us compute a Galois cohomology

group.

Example 2.3.4. Let F be a field and let n > 1 be coprime to char(F ). Then,

H1(F,µn) ≅ F×/(F×)n.

Consider the short exact sequence:

1→ µn → F sep×
×nÐ→ F sep× → 1.

Passing to the long exact sequence, and using Theorem 2.3.3, we obtain the following

exact sequence:

1→ µn ∩ F → F× ×nÐ→ F× → H1(F,µn) → 1.

Therefore F×/(F×)n ≅ H1(F,µn), where the isomorphism maps λ in F×/(F×)n to the

crossed homomorphism σ ↦ σ( n
√
λ)

n√
λ

. We will end by computing the group cohomology of

cyclic groups. This will be useful later to compute the relative Brauer groups of cyclic

extensions.

Example 2.3.5. Let G be a finite cyclic group of order n. Let M be a G-module. We

will compute all the cohomology groups Hi(G,M).



21

To do this, consider the following projective resolution of Z:

⋯ → Z[G] NÐ→ Z[G] σ−1Ð→ Z[G] NÐ→ Z[G] σ−1Ð→ Z[G] εÐ→ Z→ 0,

where ε is the map sending a generator g of G to 1 in Z. The map σ − 1 sends g to

σg − g, and N sends g to ∑n−1
i=0 σ

ig.

Note that since 0 = σn − 1 = (σ − 1)N , we see that Im(N) ⊆ Ker(σ − 1). Further if

∑n−1
i=0 λiσ

i lies in Ker(N), one can check that λ0 = λ1 = ⋯ = λn−1. Therefore, ∑n−1
i=0 λiσ

i

lies in Im(N), and hence Ker(σ − 1) ⊆ Im(N). This shows that the resolution is exact.

Applying the functor HomZ[G](Z, ) to this, we obtain the following cochain complex:

0→M
σ−1Ð→M

NÐ→M
σ−1Ð→ ⋯

Notice that the kernel of σ − 1 is the invariant module MG. We therefore obtain:

H2i+1(G,M) = Ker(N)/(σ − 1)M, H2i+2(G,M) =MG/ Im(N), for i ≥ 0.

2.3.2 Brauer group and H2

Since every central simple algebra can be split by a finite separable extension, we can as

well assume that this splitting field is Galois by going to the Galois closure. If A/F is

split by a Galois extension K/F with Galois group G, by Theorem 2.1.12, A is Brauer

equivalent to a central simple algebra B, with K sitting inside B as a strictly maximal

subfield. Skolem-Noether (see Theorem 2.1.8) tells us that automorphisms of K as an

F algebra are inner. Therefore, for every σ ∈ G and x ∈K, there exist elements uσ ∈ A×

such that

σ(x) = uσxuσ−1. (2.1)

SinceK is strictly maximal, [K ∶ F ] = deg(B). As a result, B has dimension [K ∶ F ] = ∣G∣

as a K-vector space. We have ∣G∣ elements in B× available to us, namely {uσ}σ∈G. If

they form a K linearly independent set, then we obtain a generating set for B as a K

algebra and at least one relation.

It does turn out that the set {uσ}σ∈G is linearly independent. We will not prove this

fact here. See [Pierce, Lemma 14.1] for the argument. It is a standard argument as
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arguments for showing linear independence go. One assumes that there is a minimal

relation, and using the relation 2.1, one obtains a contradiction to the minimality.

Therefore as a K-vector space, we have that

B = ⊕
σ∈G

Kuσ.

We still do not know how to multiply uσuτ . We expect this product to be some linear

combination involving the elements uσ with coefficients in K. We make a guess: perhaps

uσuτ = aσ,τuστ for some aσ,τ in K×. Using (2.1), it is not hard to show that the element

uσuτu
−1
στ commutes with every element in K. Since K, being strictly maximal is self

centralizing (see Proposition 2.1.11), we obtain that the elements aσ,τ lie in K× for every

σ, τ in G. Therefore, we have

uσuτ = aσ,τuστ . (2.2)

Note that, since we have taken u1 = 1, we get that a1,σ = aσ,1 = 1.

We have not yet exploited the fact that B is an associative algebra. This fundamental

property provides us with relations among the aσ,τ and that relation turns out to be a

2-cocycle! Computig the product uσuτuρ in two different ways, one obtains:

σaτ,ρaσ,τρ = aσ,ρaστ,ρ. (2.3)

To summarize: we started with a central simple algebra A which was split by a Galois

extension K/F and therefore was Brauer equivalent to the algebra B which contained

K as a strictly maximal subfield. Using the Skolem Noether Theorem and Proposition

2.1.11, we saw that the algebra B has a very peculiar structure. From relations among

its generators, we obtained a 2-cocycle condition. Therefore we can associate an element

in H2(G,K×) to every element in the subgroup of Br(F ) consisting of elements split by

K. Central simple algebras with structure similar to that of B/F , are called crossed

product algebras.

We define the relative Brauer group Br(K/F ) to be the subgroup of elements in Br(F )

which are split by K. We have thus obtained a map:

Br(K/F ) θKÐ→ H2(G,K×). (2.4)
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If L/K is a field extension, the restriction of a Brauer class α in Br(K) to L will also

be denoted by α⊗L.

The map θK is in fact surjective. Given a cocycle aσ,τ in H2(G,K×), one can define a

crossed product algebra which is split by K, by just reverse engineering the way we

described the structure of B.

We define the K-vector space B of dimension ∣G∣. We choose a basis {uσ}, indexed by

elements σ in G, and subject it to the following relations:

B = ⊕
σ∈G

Kuσ uσxuσ
−1 = σ(x) ∀ x ∈K uσuτ = aσ,τuστ .

It turns out that θK is a group isomorphism. Above, we have roughly sketched that

the map θK is a bijection. The isomorphisms are compatible with the inflation and

restriction maps in Group cohomology. We collect these facts in the following theorem:

Theorem 2.3.6. 1. The map θK in (2.4) is a group isomorphism.

2. Further, if L/F is a Galois extension with Galois group H containing K as a

subfield, then the following diagram commutes:

Br(K/F ) H2(G,K×)

Br(L/F ) H2(H,L×).

θK

ιL/K inf

θL

(2.5)

3. If L/F is a subextension of K/F , with Galois group H. Then the following diagram

commutes:

Br(K/F ) H2(G,K×)

Br(K/L) H2(H,L×).

θK

⊗L res

θL

(2.6)

Proof. For a proof, see [Pierce, Proposition 14.7(a)].

The compatibility of the isomorphisms as in (2.6) therefore establishes the following

important isomorphism:

Corollary 2.3.7. The map θ is an isomorphism:

Br(F ) θÐ→ H2(F,F sep×). (2.7)
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Since every central simple algebra is split by a Galois extension, for any field F ,

Br(F ) = ⋃
K/F

Br(K/F ),

where K/F ranges over Galois extensions.

The isomorphism (2.4), together with Example 2.3.5, helps in computing the relative

Brauer groups of cyclic extensions.

Example 2.3.8. Let K/F be a cyclic Galois extension, with Galois group G. Let σ be a

generator of G. Let NK/F ∶K× → F× be the norm map. Recall that since K/F is Galois,

(K×)G = F× and NK/F (x) = ∏n−1
i=0 σ

i(x). Then, we have the following isomorphism:

F×/NK/F (K×) ∼Ð→ Br(K/F ).

Since the map θK in (2.4) is an isomorphism by Theorem 2.3.6, we may identify

Br(K/F ) and H2(G,K×). By Example 2.3.5, H2(G,K×) ≅ F ×/NK/F (K×).

There is an explicit description of the above isomorphism (see [G-S, Corollary 4.7.4]):

for b in F×, the element bNK/F (K×) in F×/NK/F (K×) is sent to [(σ, b)] in Br(K/F ),

where [(σ, b)] is the class of the cyclic algebra as in Example 2.1.2(5.).

Notice that, this example also shows that Br(R) ≅ Z/2Z. Since, every central simple

algebra over R is split by C, and Gal(C∣R) ≅ Z/2Z, we have

Br(R) = Br(C/R) ≅ R×/NC/R(C×).

Since NC/R(C×) is isomorphic to the multiplicative group of positive real numbers R+,

one sees that Br(R) ≅ Z/2Z.

Example 2.3.9. Using Example 2.3.8 and Theorem 2.3.3 (Hilbert’s original version),

one can also shows that for any finite field Fq:

Br(Fq) = 0.

Recall that every field extension of Fq is cyclic with Galois group generated by the

qth power map: φq(x) = xq. To establish that Br(Fq) = 0, it suffices to show that
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Br(Fqn/Fq) = 0. Now consider the sequence:

1→H → F×qn
NFqn /FqÐ→ F×q ,

where H denotes the kernel of the norm map. We will show that the norm map is

surjective.

By Theorem 2.3.3, the elements in H are of the form φq(y)/y for y in F×qn. But note

that φq(y)/y = yq−1. Therefore, we have that ∣H ∣ = (qn − 1)/(q − 1). This implies that the

image of the norm map has cardinality equal to q − 1. Therefore, NFqn/Fq is surjective.

By Example 2.3.8, we conclude that Br(Fqn/Fq) = 0.

Finally, observe that the isomorphism in 2.3.8 also provides us with the following useful

identities. Let us assume that F contains the group of nth roots of unity. We may

therefore denote cyclic algebras as (a, b)n. We have the following identities in Br(F ):

[(a1a2, b)] = [(a1, b)] + [(a2, b)] (2.8)

[(a, b1b2)] = [(a, b1)] + [(a, b2)]. (2.9)

2.3.3 Nonabelian Galois cohomology

The purpose of this section is to define the pointed Galois cohomology set H1(F,G), for

an algebraic group G. For our applications, G will almost always be a linear algebraic

group over F . Nonabelian Galois cohomology sets classify many important algebraic

structures over F . For example, H1(F,PGLn) classifies central simple algebras of degree

n over F and H1(F,On) classifies non-degenerate n-dimensional quadratic forms over F

(at least when char(F ) ≠ 2). Such a classification puts classical local-global principles

such as the Albert-Brauer-Hasse-Noether theorem for central simple algebras and the

Hasse-Minkowski theorem for quadratic forms on an equal philosophical footing.

Let G/F be an algebraic group. For any extension, L/F , G(L) will denote the L-rational

points of G.

Definition 2.3.10. Equip the set G(F sep) with the discrete topology and Gal(F sep∣F )

with the profinite topology. We define the set of cocyles Z1(F,G) to be the set of
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continuous maps a ∶ Gal(F sep∣F ) → G(F sep) satisfying aστ = aσ(σaτ ). We define the

following equivalence relation on Z1(F,G): (aσ) ∼ (bσ) if and only if there exists

an element c in G(F sep) such that aσ = c−1bσ(σc) for every σ in Gal(F sep∣F ). The

nonabelian Galois cohomology set H1(F,G) is the set of equivalence classes of Z1(F,G).

Note that H1(F,G) is a pointed set with base point given by the equivalence class of the

cocycle a ∶ Gal(F sep∣F ) → G(F sep) which maps every σ in Gal(F sep∣F ) to the identity

element 1 in G(F sep).

We will prove the statement claimed above, that H1(F,PGLn) classifies central simple

algebras of degree n. Let A be a degree n central simple algebra over F . Fix an

isomorphism

Mn(F sep)
f
→ A⊗F F sep.

Note that Gal(F sep∣F ) acts on A⊗F sep as σ(x⊗λ) = x⊗σ(λ) for x in A and λ in F sep.

Let T be a matrix in Mn(F sep), and v a vector in (F sep)n; Gal(F sep∣F ) acts on T as

σT (v) = σ ○ T ○ σ−1(v). Consider the diagram:

Mn(F sep) A⊗F F sep

Mn(F sep) A⊗F F sep.

f

σ σ

f

(2.10)

This diagram need not be commutative. The following element of G(F sep) is the

obstruction for this diagram to be commutative:

aσ ∶= f−1 ○ σ ○ f ○ σ−1. (2.11)

We will check that aσ is in fact an element in Z1(F,PGLn).

aσ
σaτ = f−1 ○ σ ○ f ○ σ−1 ○ σ(f−1 ○ τ ○ f ○ τ−1)

= f−1 ○ σ ○ f ○ σ−1 ○ σ ○ f−1 ○ τ ○ f ○ τ−1 ○ σ−1

= f−1 ○ στ ○ f ○ (στ)−1

= aστ .

Now, let us rewrite the equation aσ = f−1 ○ σ ○ f ○ σ−1 as: f ○ aσ ○ σ = σ ○ f . If we

redefine the action of Gal(F sep∣F ) on Mn(F sep) as σ ∗T = aσ ○σ(T ), the diagram (2.10)



27

commutes. (Note that aσ acts on Mn(F sep) by conjugation). All we need to check now

is that this defines an action:

(aσ ○ σ)(aτ ○ τ) = aσ ○ (σ ○ aτ) ○ σ−1 ○ σ ○ τ = aστ ○ στ.

We will call this the twisted action of Gal(F sep∣F ) on Mn(F sep).

We are now in a position to state our theorem.

Theorem 2.3.11. Let CSAn(F ) denote the pointed set of isomorphism classes of

central simple algebras of degree n over F , with distinguished element, the class of

Mn(F ). Then there is a one to one correspondence between the following pointed sets,

which is natural in F :

CSAn(F ) ←→ H1(F,PGLn).

Proof. Let A be a degree n central simple algebra. Fix an isomorphism Mn(F sep)
f
→

A ⊗F F sep. We get a cocycle aσ defined in Equation (2.11). Suppose g is another

such isomorphism with corresponding cocycle bσ. Consider the element c ∶= g−1f in

PGLn(F sep). It is standard to check that aσ = c−1bσ(σc). Thus, the map is well-

defined. For surjectivity, given a cocycle aσ, we redefine the action of Gal(F sep∣F ) as

σ ∗ T = aσ ○ σ(T ) for T in Mn(F sep). Using Theorem 2.2.2, one sees that there exists

a central simple algebra A of degree n which gives rise to the cocycle aσ. This also

shows injectivity. For if A and B are two central simple algebras of degree n giving

rise to the same cocycle aσ, consider the two diagrams as in (2.10) involving A and B.

With the twisted action on Mn(F sep) defined using the cocycle aσ, these diagrams are

commutative. Again using Theorem 2.2.2, we see that A and B are isomorphic.

We saw in the course of proving Theorem 2.3.11 that giving a cocycle is the same as

giving a “descent datum” for the corresponding twisted form. Taking the limit of the

pointed sets H1(F,PGLn) as n varies gives the set of isomorphism classes of central

simple algebras over F . The same argument as in the proof of Theorem 2.3.11 shows:

Theorem 2.3.12. Let (V,Φ) be a finite dimensional vector space equipped with a tensor

Φ, and let G = Aut(V,Φ). Let TW(V,Φ) be the pointed set of isomorphism classes
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of twisted forms of (V,Φ) with distinguished element (V,Φ). There is a one to one

correspondence between the following pointed sets, which is natural in F :

TW(V,Φ) ←→ H1(F,G).

If V is a finite dimensional vector space over F sep, one would expect V to descend

down to a vector space over F , with no additional structure. Since there is exactly one

vector space of a given dimension up to isomorphism, it is reasonable to guess that

H1(F,GLn) = 1, and that is indeed true. The following theorem is a generalization

of Theorem 2.3.3 and also goes by the name Hilbert Theorem 90. The proof is a

modification of the proof of Theorem 2.3.3.

Theorem 2.3.13. H1(F,GLn) = 1.

Proof. See [Serre1, Chapter X, Proposition 3].

For any algebraic group G over F , H1(F,G) classifies the so called principal homogenous

spaces under G.

Definition 2.3.14. Let P be a non-empty left Gal(F sep∣F ) set, equipped with a

compatible right action of G. We will assume that this action is continuous. We say

that P is a principal homogenous space under G if G(F sep) acts simply transitively on

P .

Theorem 2.3.15. Let PG denote the pointed set of isomorphism classes of principal

homogenous space under G with distinguished element G. Then there is a one to one

correspondence between the following pointed sets:

PG ←→ H1(F,G).

Proof. Let P be a principal homogenous space under G. Let p be an element in P ,

and σ be in Gal(F sep∣F ). Since G acts simply transitively on P , there exists a unique

element aσ in G(F sep) such that σp = paσ. One may check that aσ is a cocycle. For

surjectivity, if aσ is a cocycle, define a new action of Gal(F sep∣F ) on G(F sep): for σ in
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Gal(F sep∣F ) and g in G(F sep), σ ∗ g ∶= aσ(σg). It is not hard to check that this is a

principal homogenous space under G.

Note that principal homogenous spaces under a linear algebraic group G may be identified

with the F sep-rational points of a variety. To see this, first note that the category of

continuous Gal(F sep∣F ) sets is equivalent to the category of sheaves of sets on the small

étale site Spec(k)ét. Thus a principal homogenous space under G can be identified with

a sheaf of sets on Spec(k)ét. Such sheaves are also called as G-torsors. It is shown in

[Milne] on Pg 120 that G-torsors are representable by varieties.

Theorem 2.3.16. Suppose that Z is a closed subgroup of G. We have the following

long exact sequence of pointed sets:

1→ Z(F ) → G(F ) → (G/Z)(F ) → H1(F,Z) → H1(F,G).

Further, if Z is contained in the center of G, and H denotes the quotient group G/Z,

then one may extend it to the following longer exact sequence:

1→ Z(F ) → G(F ) →H(F ) → H1(F,Z) → H1(F,G) → H1(F,H) → H2(F,Z).

Proof. See [Serre2, Proposition 43].

Consider the exact sequence

1→ Gm(F sep) → GLn(F sep) → PGLn(F sep) → 1.

Taking Galois invariants, and using Theorem 2.3.3, one obtains the following exact

sequence

1→ F× → GLn(F ) → PGLn(F ) → 1.

Extending this long exact sequence, one obtains the injective (in the category of pointed

sets) map:

1→ H1(F,PGLn) → H2(F,Gm) = Br(F ).

This map turns out to be as we might expect, sending the isomorphism class of a central

simple algebra A to its Brauer class [A].
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2.4 Brauer Dimension

2.4.1 Period-Index problem

Definition 2.4.1. Let α be an element of Br(F ). The period of α, denoted by per(α),

is the smallest positive integer n such that nα = 0.

Definition 2.4.2. Let α be an element of Br(F ), with underlying division algebra D.

The index of α, denoted by ind(α), is defined as the degree of D.

Theorem 2.4.3. For any α in Br(F ), the index of α, denoted by ind(α) is the gcd

(and the minimum) of degrees of field extensions L/F such that ResL/F (α) = 0 in Br(L).

Proof. Let D be the underlying division algebra of α. If L is a maximal subfield in D,

by Theorem 2.1.12, D ⊗F L is isomorphic to a matrix algebra over L. Note that L is

also strictly maximal (see Definition 2.1.10). Therefore [L ∶ F ] = deg(D).

Let K/F be any splitting field of D. Then D is Brauer equivalent to an algebra

B ≅ Mn(D) containing K as a strictly maximal subfield in B. Therefore [K ∶ F ] =

deg(B) = ndeg(D), and deg(D) divides the degree of every splitting field. As we saw,

deg(D) also equals the degree of a splitting field. This establishes that ind(α) is the

gcd and the minimum of degrees of splitting fields of α, and is equal to the degree of a

maximal subfield in its underlying division algebra.

Theorem 2.4.4. 1. Br(F ) is a torsion group.

2. For every element α in Br(F ), the period of α divides the index of α.

3. Moreover, per(α) and ind(α) share the same prime factors.

Proof. Let L/F be a maximal subfield of the underlying division algebra. By Theorem

2.4.3, ResL/F (α) = 0 and ind(α) = [L ∶ F ]. Note that, [L ∶ F ]α = Cor ○Res(α) = 0. The

period of α, being the order of α, therefore divides ind(α). This also shows that Br(F )

is torsion.

We now establish the last statement. Let α be a non-trivial element of Br(F ), and p be
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a prime factor of ind(α). Let L/F be a separable splitting field of α with degree equal

to ind(α). Denote the Galois closure of L/F by L̃/F . Let Hp be the Sylow p subgroup

of the Galois group of L̃/F . Set K ∶= L̃Hp . Note that per(α⊗F K) divides per(α). Since

L̃/K splits α⊗K, by Theorem 2.4.3, ind(α⊗K) divides [L̃ ∶K]. Thus, ind(α⊗K) is

a power of p. By the second statement of the theorem proved in the previous paragraph,

per(α⊗K) divides ind(α⊗K). As a result, per(α⊗K) is a power of p. Therefore, p

divides per(α).

Remark 2.4.5. Theorem 2.4.4 shows that every cyclic algebra of prime degree ` has

period `. In particular, every non-trivial quaternion algebra has period 2.

By Theorem 2.4.4, for every α in Br(F ), ind(α) divides some power of per(α), i.e.,

ind(α)∣[per(α)]N(α),

where N(α) is the smallest positive integer satisfying the divisibility condition above

for α. Note that ind(α) measures how large the underlying division algebra can be, or

equivalently how hard it is to split the division algebra. It is natural to wonder whether

there is a uniform bound for this measure. In other words, can we uniformly bound the

integer N(α)? Of course, the question whether or not there is a bound, should depend

upon the field.

Definition 2.4.6. Let F be a field and ` be a prime. The Brauer `-dimension of F ,

denoted as Brd`(F ) is the supremum of N(α) as α varies in the `-primary torsion

subgroup of Br(L), and L/F varies over finite degree field extensions.

The Brauer dimension of F , denoted by Brd(F ), is the supremum of Brd`(F ) as `

varies.

When F = R, there is a uniform bound, since the only non-trivial division algebra over

R is the quaternion algebra (−1,−1). Therefore Brd(R) = 1. However, determining this

uniform bound is not an easy problem in general, since finding the index of a given

division algebra is not easy. Even to determine whether a given central simple algebra

is division or not is hard enough.



32

We would like to compute Brd(F ) for nice fields arising in arithmetic and geometry,

starting with local fields and global fields. The question that, for number fields whether

Brd(F ) = 1, was asked by Brauer in a letter to Hasse (see [Roq]). For C2 fields, Artin

asks whether Brd(F ) = 1? In view of some circumstantial evidence, we record the

following folklore problem here. The problem is known as the period-index problem.

Question 1. Let F be the function field of a variety over either an algebraically closed

field, finite field, non-archimedean local field or a global field (any reasonably “nice”

field). Compute Brd(F ).

We record some known answers below. The techniques used in obtaining these answers

vary considerably. One of the major advances in systematically dealing with the problem

is the approach of Lieblich, which uses the theory of moduli spaces of twisted sheaves.

The field patching technique of Harbater-Hartmann-Krashen succesfully deals with this

problem over function fields of curves over complete discretely valued fields.

Example 2.4.7. 1. If F is a local field or a global field, then Brd(F ) = 1. This is a

classical result going back to the work of Albert, Brauer, Hasse and Noether.

2. If F is the function field of a curve over a local field, then Brd`(F ) = 2. For ` not

equal to the residue characteristic, this was proved by Saltman in [Salt]. Parimala-

Suresh in [Pa-Su2] completed this computation in the bad, mixed characteristic

case (i.e., when characteristic of the residue field equals `).

3. If F is the function field of a curve over an m-local field, then Brd`(F ) =m + 1,

when ` is not equal to the characteristic of the smallest residue field. This was

proved by Lieblich in [Lie1], and independently by Harbater-Hartmann-Krashen in

[HHK09].

4. If F is the function field of a surface over a finite field, then Brd(F ) = 2. This

was proved by Lieblich in [Lie].

5. If F is the function field of a surface over an algebraically closed field, then

Brd(F ) = 1. This is due to deJong (for characteristic 0), proved in [dJ].
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6. Let F be the function field of a surface over Qp. Recently, Antieau-Auel-Ingalls-

Krashen-Lieblich in [AAIKL] show that Brd`(F ) = 3 for ` coprime to 6p.

We will end this section with a Lemma which says that to compute Brd`(F ), it is enough

to compute the indices of Brauer classes with period `.

Lemma 2.4.8. Suppose that for every finite extension L/F and every Brauer class α in

the `-torsion part of Br(L), ind(α) divides `N . Further, N is the smallest such integer.

Then Brd`(F ) = N .

Proof. Let L/F be a finite extension. Let β be a Brauer class in Br(L/F ) of period `d.

We will show by induction on d that ind(β) divides `dN .

The base case d = 1 follows by the hypothesis in the Lemma.

Now let β′ = `β. Thus, the period of β′ is `d−1. By the induction hypothesis, there exists

a field extension M/L of degree dividing `(d−1)N . Thus, β′ ⊗M = 0, which means that

β ⊗M has period `. Therefore, there exists a field extension N/M of degree `N which

splits β ⊗M . Thus, N/L splits β. Now the degree of [N ∶ L] is `N`(d−1)N = `dN . Or in

other words, Brd`(F ) = N .

2.4.2 Ci property and cohomological dimension

We will see how arithmetic properties behave when passes to a higher transcendence

degree field or to the completion, one of the theme that is explored in this thesis.

At this point, we should also collect more examples of division algebras over specific

fields, and Brauer `-dimension of some fields. Let us start with fields sharing some

arithmetic properties with finite fields. We will take a detour into the Ci property and

cohomological dimension of fields, and apply the Theorems in computing the Brauer

group of certain fields (see Example 2.4.13), and also the Brauer `-dimension for C2

fields for ` = 2,3 (see Proposition 2.4.20).

Definition 2.4.9. Let F be a field. We say that F satisfies the Ci property (or simply,

F is Ci) if every homogenous polynomial of degree d in n variables satisfying n > di has

a nontrivial solution.
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Note that any algebraically closed field is a C0 field, and in fact Ci for every i ≥ 0. We

will see some examples of Ci fields for i > 0. The very first example of C1 fields which

are not C0 are:

Theorem 2.4.10 (Chevalley). Finite fields have the C1 property.

Proof. See [G-S, Theorem 6.2.6]

Theorem 2.4.11 (Lang). Let F be a field satisfying the Ci property. If L/F is an

extension of transcendence degree d, then L is a Ci+d field.

Proof. See [Lang, Theorem 6]

Example 2.4.12. Let F be a C1 field. We claim that Br(F ) = 0. Let D be a division

algebra over F . We choose a basis for D as an F -vector space, and hence view it as

an affine space An2

F over F . Thus the reduced norm on D (denoted by Nrd) can be

viewed as a homogenous polynomial of degree n in n2 variables. Since F is a C1 field,

the equation Nrd = 0 has a non-trivial solution if n > 1. As a result, there exists d

in D× such that Nrd(d) = 0. But that is impossible since d is invertible and Nrd is

multiplicative.

Remark 2.4.13. 1. The above example and Theorem 2.4.10 shows that Br(Fq) = 0.

2. If F is the function field of a curve over an algebraically closed field, then Br(F ) = 0

by Theorem 2.4.11 and the above Example.

The Ci property is a measure of how far a field is from being algebraically closed. It

however does not seem that natural. There is a more natural notion called cohomological

dimension, which in some sense also measures how “easy” is it for varieties to have

rational points.

Definition 2.4.14. Let F be with char(F ) ≠ p. Then, we say that the p-cohomological

dimension of F , denoted by cdp(F ) is at most n if for every algebraic extension K/F ,

Hn+1(K,µp) = 0.
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Remark 2.4.15. This is not the most correct way to define p-cohomological dimension

since we had to make the assumption that char(F ) ≠ p. The definition in [Serre2] goes

as: we say that p-cohomological dimension of F (possibly also of characteristic p) is at

most n if the p-primary component of Hn+1(F,A) is 0 for every torsion, discrete Galois

module A.

One can show that if F has characteristic equal to p, then cdp(F ) ≤ 1 (see [Serre2,

Chapter 2, Section 2.2]).

Example 2.4.16. Let F be a C1 field. Then cdp(F ) ≤ 1. By the above Remark, we

may assume that char(F ) is not equal to p. Thus, we need to show that H2(F,µp) = 0.

By the long exact sequence in Galois cohomology of the short exact sequence

1→ µp → Gm
×p
Ð→ Gm → 1,

and the Hilbert Theorem 90 (see 2.3.3), one sees that pBr(F ) ≅ H2(F,µp). Since F is

C1, by Remark 2.4.13, Br(F ) = 0. Therefore, pBr(F ) = 0. Thus, H2(F,µp) = 0.

Serre in [Serre2] asks the question: If F is Ci, then does it imply that cdp(F ) ≤ i? He

shows that this is indeed true when p = 2 using Milnor’s conjecture. For other primes p,

it is not known whether this is true.

There is a transition theorem analogous to Theorem 2.4.11 for cohomological dimension.

Theorem 2.4.17. Let K/F be a field of transcendence degree at most d, then

cdp(K) ≤ cdp(F ) + d.

Proof. Clearly, when d = 0, the inequality is satisfied, following from the definition

of p-cohomological dimension. It is enough to show the statement holds when the

transcendence degree of K/F is one. The general case follows inductively. If K has

transcendence degree one, then K is a finite extension of F (t). Thus, we just need to

prove the statement for K = F (t). Consider the extension L ∶= F sep(t), and denote

the separable closure of F (t) by M . Note that Gal(F sep(t)∣F (t)) can be identified

with Gal(F sep∣F ). Since L is a C1 field, cdp(L) ≤ 1. Finally using [Serre2, Chapter 1

Proposition 15], one sees that cdp(F (t)) ≤ cdp(F ) + 1.
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Theorem 2.4.18. Let F be a complete discretely valued field with residue field k. Then

cdp(F ) ≤ cdp(k) + 1.

Proof. Let F ur be the maximal unramified extension of F . We can identify Gal(F ur ∣F )

with Gal(ksep∣k). It is shown in [Lang], that Kur satisfies the C1 property. Thus

cdp(Kur) ≤ 1. Again, using [Serre2, Chapter 1 Proposition 15], the inequality follows.

Remark 2.4.19. Note that the above theorem has no analogue for the Ci property. It

is known that Q2 does not satisfy the C2 property (see references in [Serre2]).

We will end this section by computing the Brauer 2-dimension and Brauer 3-dimension

of fields satisfying the C2 property.

Proposition 2.4.20 (Artin). Let F be a field satisfying the C2 property. We will

assume that char(F ) ≠ 2,3. Then Brd2(F ) ≤ 1 and Brd3(F ) ≤ 1.

Proof. First, by Lemma 2.4.8, it is enough to show this for period 2 and period 3

algebras. In view of Theorem 2.4.11, it is also enough to assume that these algebras are

over F .

We will only prove that Brd3(F ) ≤ 1. The statement that Brd2(F ) ≤ 1 follows from a

similar reasoning. To show that Brd3(F ) ≤ 1, we will first prove that any two degree 3

division algebras, A and B, can be simultaneously split by a field extension of degree 3.

The proof for the degree 2 case is similar. If F (α)/F is a degree 3 splitting field of A,

F (α) sits inside A.

Let {ei} be a basis for the F -vector space A. Consider the element ∑9
i=1 xiei in A⊗F

F (x1,⋯, x9). The reduced characteristic polynomial of this generic element is called the

generic reduced characteristic polynomial. If one extends scalars to F sep, this polynomial

agrees with the characteristic polynomial of the generic 3 × 3 matrix [xij]. Thus the

generic reduced characteristic polynomial is a degree 3 polynomial: t3 + a1t
2 + a2t + a3,

where each ai is a homogenous polynomial of degree i with coefficients in F .

The reduced characteristic polynomial of a generic element in A is the same as the
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minimal polynomial of a generic degree 3 subfield in A. Therefore a field extension

F (α) sits inside A and B if and only if there is a solution in F to the equations given

by setting the coefficients of the generic reduced characteristic polynomials of A and B

equal.

Let a1, a2 and a3 be the coefficients of the generic reduced characteristic polynomial of A,

and let b1, b2 and b3 be the coefficients of the generic reduced characteristic polynomial

of B. Consider the system of homogenous polynomials: a1 = b1, a2 = b2 and a3 = b3.

This is a system of polynomials on A(A) × A(B) involving 18 variables. Note that

18 > 12 + 22 + 32. Since F satisfies the C2 property, this system has a non-trivial solution.

Therefore there exists a common degree 3 field extension in both A and B. Since, this

is a strictly maximal subfield of both A and B, it splits both the division algebras A

and B.

Without loss of generality, we can assume that F contains the cube roots of unity.

By the Merkurjev-Suslin theorem (see [Me-Sus]), any period 3 algebra A is Brauer

equivalent to a tensor product of cyclic algebras. Let A =D1 ⊗⋯⊗Dn, where each Di

is a cyclic algebra. We will show that ind(A) = 3, by induction on n. If n = 1, there is

nothing to prove. Consider the algebra A′ =D1⊗⋯⊗Dn−1. By the induction hypothesis,

ind(A′) = 3. Replace A′ with its underlying division algebra D′. Since D and D′ have a

common degree three splitting field extension, it follows that ind(A) = 3.

2.4.3 Witt exact sequence

The Brauer group of a complete field can be described in terms of the Brauer group of

the residue field and the group of characters of the Galois group of the residue field. The

Witt exact sequence (see 2.4.24) makes this statement precise. The ramification map,

one of the homomorphisms appearing in the sequence, helps in determining whether a

given Brauer class over a given field is non-trivial, or equivalently whether a division

algebra is split. Usually, one passes to the completion at a suitable place of that field,

and shows that the Brauer class is non-trivial there by inspecting its image under the

ramification map.
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Proposition 2.4.21. Let K be a complete discretely valued field with residue field k.

Assume that char(k) = p. Let α be in Br(K) with period prime to p. Then α⊗F Fnr = 0.

Proof. We will sketch the proof here and refer the reader to [Serre1]. It is sufficient

to show that if α is in Br(Knr) with period prime to p, then α = 0. The main idea is

to pass to the maximal prime-to-p extension L/F ur and observe that α should split L,

since α has period p and hence should have index a power of p, and therefore cannot

be split by a prime to p extension. The advantage in passing to L is that the Galois

group Gal(L/Fnr) is isomorphic to Ẑ′ = lim←Ð(n,p)=1)
Z/nZ. This is because L/Fnr is a

tamely ramified extension (see [Serre2, Chapter II, Section 4.3]). One then shows that

Br(L/Knr) ≅ H2(Ẑ′, L×) ≅ H2(Ẑ′, µ), where µ is the group of roots of unity. The group

on the right hand side then vanishes for cohomological dimension reasons.

We will make the same assumption as in the statement of Proposition 2.4.21. Note

that the Galois group Gal(Knr ∣K) can be identified with Gal(ksep∣k). Let Unr be the

kernel of the valuation maps. We therefore have the split exact sequence of Gal(ksep ∣k)-

modules:

0→ Unr →K× vÐ→ Z→ 0. (2.12)

The map s ∶ Z→K× which sends 1 to π, where π is a parameter, defines a splitting of

the sequence. The long exact sequence of Gal(ksep∣k)-modules therefore splits into the

following split short exact sequences, for every i > 0:

0→ Hi(k,Unr) → Hi(k,K×) → Hi(k,Z) → 0.

Now consider the exact sequence:

0→ Z→ Q→ Q/Z→ 0.

We thus have the following long exact sequence in Galois cohomology:

⋯ → Hi−1(k,Q/Z) → Hi(k,Z) → Hi(k,Q) → Hi(k,Q/Z) → ⋯.

Now notice that Hi(G,Q) is a Q vector space and also torsion for a finite group G.

Therefore, Hi(k,Q) = 0 since Gal(ksep∣k) is profinite. Therefore, we have:

Hi(k,Z) ≅ Hi−1(k,Q/Z),
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for i > 1. We record the following technical lemma:

Lemma 2.4.22. For i > 1, we have the following isomorphism:

Hi(k,Unr) ≅ Hi(k, ksep×).

Proof. We will show this in the special case when K = k((t)) and char(k) = 0, referring

the reader to [Serre1] for the proof in the general case. Note that Knr = ksep((t))

and Unr = ksep[[t]]×. Observe that there exists a homomorphism ksep[[t]]× → (ksep)×

obtained by sending the formal power series f(t) to f(0). Set U1 ∶= 1 + tksep[[t]]. Now,

consider the short exact sequence:

0→ U1 → ksep[[t]]× → ksep× → 0.

To establish the result, it is enough to show that Hi(k,U1) = 0. Note that by Hensel’s

lemma, it is easy to show that U1 is a uniquely divisible Gal(ksep∣k)-module. Therefore,

U1 has the structure of a Q-vector space. This establishes the claim.

We will denote the prime-to-p part of the Brauer group of a field K by Br(K)′, and

Homcont(Gal(ksep∣k),Q/Z)′ will denote the prime-to-p part of the group of continuous

characters of the Galois group Gal(ksep∣k). Putting together the above discussion, we

obtain:

Theorem 2.4.23 (Witt). Let K be a complete discretely valued field with residue field

k. Suppose that char(k) = p. Then, we have the following split exact sequence:

0→ Br(k)′ → Br(K)′ ∂vÐ→ Homcont(Gal(ksep∣k)Q/Z)′ → 0. (2.13)

Proof. Note that that H2(Γk,K×) ≅ Br(Knr ∣K). By Proposition 2.4.21, it follows that

Br(K)′ ≅ H2(k,K×)′. Finally since Q/Z is a trivial Gal(ksep∣k)-module, H1(k,Q/Z) can

be identified with Homcont(Gal(ksep∣k),Q/Z).

In fact, we also have the following generalization of (2.13). We will however not prove

it here. The main ideas used in the proof, to a great extent, are contained in obtaining

Theorem 2.4.23.
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Theorem 2.4.24. Let n > 1 be coprime to the char(k). For i, j > 0, we have the

following split exact sequence:

0→ Hi(k,µn⊗j) → Hi(K,µn⊗j)
∂ivÐ→ Hi−1(k,µn⊗(j−1)) → 0. (2.14)

Proof. See [G-S, Corollary 6.8.8].

The map ∂iv is called the ramification map. For i = 2 and j = 1, the map ∂2
v ∶

nBr(K) → H1(k,Z/nZ) can be described explicitly on Brauer classes of cyclic al-

gebras as ∂2
v([(χ,π)]) = χ. For i = j = 1, the ramification map can be identified with

valuation mod n: K×/K×n v→ Z/nZ. Thus the ramification map can be thought of as

a higher cohomological analogue of the valuation map. This also justifies the term

“ramification” since for a in K×/K×n, the fact that mod n valuation v(a) equals 0 implies

that the extension K( n
√
a)/K is unramified. Analogous to this, if the ramification of a

Brauer class is trivial at a discrete valuation, then by Theorem 2.4.23, the class can be

specialized uniquely to the residue field. In this sense, the ramification map determines

whether a Brauer class can be locally specialized.

Let F be the function field of a smooth projective variety X, and α be an element

in Br(F ). The codimension one points of X provide discrete valuations of F . The

ramification maps at these discrete valuations, help in determining whether α can be

specialized at the residue fields of these codimension one points. The subgroup of

unramified Brauer classes of X is a very useful birational invariant. It has been used to

produce counterexamples of unirational varieties that are not rational (see [CT]).

Proposition 2.4.25. Let L/K be an extension of complete discretely valued fields with

ramification index e. Let l/k be the corresponding extension of residue fields. We assume

as before that char(k) is coprime to n. Then the following diagram is commutative:

H2(K,µn) H1(k,Z/nZ)

H2(L,µn) H1(l,Z/nZ).

∂v

resL/K e resl/k

∂v

(2.15)

Proof. See [CT, Proposition 3.3.1].
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One can compute the Brauer group of local fields using the Witt exact sequence.

Although we have established it away from the characteristic of the residue field, by

modifying the proof suitably, one obtains the following computation of Brauer groups of

nonarchimedean local fields:

Example 2.4.26. 1. Let K be the completion of a number field at a nonarchimedean

place (so a finite extension of Qp). Then the ramification map gives the isomor-

phism:

Br(K) ∼Ð→ Q/Z.

2. Let K be the completion of a function field of a smooth curve over a finite field

(so isomorphic to Fq((t))). Then the ramification map gives the isomorphism:

Br(Fq((t)))
∼Ð→ Q/Z.

The isomorphisms follow from the Witt exact sequence and the fact that the residue fields

in both cases is a finite field, and thus has trivial Brauer group. Recall that the absolute

Galois group of a finite field is Ẑ = lim←ÐZ/nZ. We claim that Homcont(Ẑ,Q/Z) ≅ Q/Z.

Let θ be the canonical, topological generator of Ẑ, i.e., the closure of the subgroup

of Ẑ generated by θ equals Ẑ. Let f be in Homcont(Ẑ,Q/Z). Define the map ev ∶

Homcont(Ẑ,Q/Z) → Q/Z such that ev(f) = f(θ). This map is injective since if for some

f , f(θ) = 0 then f vanishes on the subgroup generated by θ. Since this subgroup is

dense in Ẑ and f is continuous, it follows that f = 0. Thus the map defined above is

injective. For surjectivity: if µ is an element in Q/Z, we obtain a map f ∶ Ẑ→ Q/Z such

that f(θ) = µ.

Theorem 2.4.27. Let F be a nonarchimedean local field. For α in Br(F ), per(α) =

ind(α). In other words, Brd(F ) = 1.

Proof. By the primary decomposition theorem, we may assume that per(α) is ` primary

for a prime `. Using Lemma 2.4.8, we may further assume that per(α) = `. Let k be

the residue field of F . Note that k is a finite field. Let χ be the ramification of α with

the corresponding cyclic extension l/k. Let L/K be the unramified lift of l/k. Since
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Ker(χ) = Gal(ksep∣l), χ∣Γl = 0 and therefore by the commutativity of diagram (2.15),

α⊗L = 0. From this it follows that, ind(α) divides `. Since α is non-trivial and ` is a

prime, ind(α) = `.

The following proposition is an exercise in [G-S]. It can be seen as a generalization of

the above theorem. It will be used in Proposition 2.4.29 in this section, and a couple of

times later as well.

Proposition 2.4.28. Let α = α0 + (χ,π) be a class in Br(K) with period ` coprime

to p, where α0 is a class in Br(k) and χ is a character of Γk. Let m/k be the cyclic

extension of degree ` corresponding to χ Then,

ind(α) = ` ⋅ ind(α0 ⊗m).

Proof. Let M/K be the unramified lift of m/k. Observe that M/K splits α0. If M ′/M

is a splitting field of α0⊗M , then the extension M ′/K splits α. Therefore ` ⋅ ind(α0⊗m)

divides ind(α). Thus it suffices to show that ind(α) divides ` ⋅ ind(α0 ⊗m).

Now let L/K be any splitting field of α with residue field extension l/k, and ramification

index e. Let K ′/K be the largest unramified extension in L/K. By the commutativity of

the diagram (2.15), and the fact that L/K splits α, it follows that 0 = ∂(α⊗L) = e ⋅χ∣Γl.

If e is coprime to `, Γl ⊆ Ker(χ) = Γm. This implies that m ⊆ l and hence M ⊆K ′. Note

that α ⊗M = α0 ⊗M . Since L/M splits α ⊗M , it splits α0 ⊗M . Thus ind(α0 ⊗m)

divides [L ∶M]. Therefore, ` ⋅ ind(α0 ⊗m) divides [L ∶M][M ∶K] = [L ∶K].

If ` divides e, then note that ` divides [L ∶K ′]. We claim that K ′ splits α0 ⊗M . Since

K ′/K is the largest unramified extension in L, the residue fields of K ′ and L are the

same. Therefore, the reduction of α0 ⊗K ′ to the residue field is trivial since L splits

α0 ⊗K ′. Thus, α0 ⊗K ′ = 0. Thus, ind(α0 ⊗m) divides [K ′ ∶M]. From this, it follows

that ` ⋅ ind(α0 ⊗m) divides [L ∶ K]. Since ` ⋅ ind(α0 ⊗m) divides the degree of any

splitting field, ` ⋅ ind(α0 ⊗m) divides ind(α) by Theorem 2.4.3.

One needs to restrict to “nice” fields to answer Question 1 (see Subsection 2.4.1). As

we see below in Proposition 2.4.29, one can construct Brauer classes of arbitrary high
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index.

Proposition 2.4.29. Let F be a purely transcendental function field in countably

many variables over C. Then there exists a family of Brauer classes {αi}∞i=1 such that

ind(αi) = 2i for every i ≥ 1.

Proof. Let F = C(x1, y1, x2, y2,⋯). Define αi to be the sum of i Quaternion algebras:

αi ∶=
i

∑
j=1

(xj , yj).

We need to show that ind(αi) = 2i. We will show this by induction on i. For i = 1,

we first need to show that α1 = (x1, y1) is a division algebra. Since it is a quaternion

algebra, it suffices to show that it is not split. We will show that α1 is not split by

passing to a larger field: F1 ∶= C(x2, y2,⋯)((x1))((y1)). The ramification of α1 over

this field is ∂(x1, y1) = (x1), where (x1) denotes the square class of x1 in the residue

field C(x2, y2,⋯)((x1)). Since the valuation of x1 is 1, the square class (x1) is nonzero.

Thus (x1, y1) is not split. In fact, we have shown that (x1, y1) is not split on C(x1, y1).

By the induction hypothesis, ind(αd−1) = 2d−1. Note that αd = αd−1 + (xd, yd). Let

Fd ∶= C(x1, y1,⋯, xd−1, yd−1, xd+1, yd+1,⋯)((xd))((yd))

with residue field Kd. By Proposition 2.4.28, ind(αd ⊗ Fd) = 2 ind(αd−1 ⊗Kd(
√
xd)).

Note that the residue field of Kd(
√
xd) is C(x1, y1,⋯, xd−1, yd−1, xd+1, yd+1,⋯) and αd−1

is unramified on Kd(
√
xd). Thus, again using Proposition 2.4.28, ind(αd−1⊗Kd(

√
xd)) =

ind(αd−1) = 2d−1. Thus ind(αd ⊗ Fd) = 2d. Note that ind(αd) divides 2d since αd =

αd−1 + (xd, yd). Also, ind(αd ⊗ Fd) divides ind(αd), i.e., 2d divides ind(αd). Therefore

ind(αd) = 2d.

Proposition 2.4.28 also helps in constructing Brauer classes of high index over function

fields of varieties. The following proposition is a generalization of another exercise in

[G-S] suggested by Colliot-Thélène.

Theorem 2.4.30. Let F be a field having char(F ) ≠ 2. Assume that the dimension

of the F2-vector space F×/(F×)2 is at least d. Then there exists a Brauer class α in

Br(F (x1,⋯, xd)) with ind(α) = 2d.
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Proof. Let {a1,⋯, ad} be a linearly independent set in the F2-vector space F×/(F ×)2.

Consider the Brauer class

αd =
d

∑
i=1

(xi, ai)

We will show by induction on d that ind(αd) = 2d. For d = 1, it suffices to show that the

Brauer class (a1, x1) is not split. Computing the residue at the valuation on F ((x1)):

∂(a1, x1) = (a1), we see that it is non-zero.

Let Fd ∶= F (x1,⋯, xd−1)((xd)) and Kd−1 be its residue field. By Proposition 2.4.28,

ind(αd⊗Fd) = 2 ind(αd−1⊗Kd−1(
√
ad)). By the induction hypothesis, ind(αd−1⊗Kd−1) =

2d−1. Note that {a1,⋯, ad−1} is linearly independent over the group of square classes of

L ∶= F (√ad), i.e., L×/(L×)2. Therefore, ind(αd) = 2d.

2.4.4 Brauer dimension of global fields

Now that the local picture is clear, a natural question arises: can we compute the Brauer

group of global fields? Or more generally, can we compute Brauer groups of function

fields of curves over any field? We will sketch an answer for F (t) in the form of the

Faddeev exact sequence. We will also state the Albert-Brauer-Hasse-Noether (ABNH)

theorem which computes the Brauer group of global fields. The ABHN theorem (see

Theorem 2.4.35) will also help us in computing the Brauer dimension of number fields.

We observed that the Witt exact sequence is a higher cohomological analogue of the

short exact sequence in 2.12.

We will denote the projective line over a perfect field k by P1
k. Since k is perfect, the

separable closure of k, ksep equals its algebraic closure k̄.

To compute the Brauer group of k(t), we start by mimicking the proof, as a first step.

There is a “globalized” form of this short exact sequence of Galois modules.

0→ k̄(t)×/k̄× → Div(P1
k̄)

deg
Ð→ Z→ 0.

Note that this sequence is split, where the splitting map is defined by sending 1 to a

rational point. Therefore the long exact sequence breaks into the following split short



45

exact sequences for every i ≥ 1:

0→ Hi(k, k̄(t)×/k̄×) → Hi(k,Div(P1
k̄)) → Hi(k,Z) → 0.

Now consider the following exact sequence of Gal(k̄∣k)-modules:

0→ k̄× → k̄(t)× → k̄(t)×/k̄× → 0.

Therefore, we have the following long exact sequence:

⋯ → Hi(k, k̄×) → Hi(k, k̄(t)×) → Hi(k, k̄(t)×/k̄×) → ⋯.

The map Hi(k, k̄×) → Hi(k, k̄(t)×) can be shown to be injective (see [G-S, Corollary

6.4.6]). Thus, one obtains the following exact sequence:

0→ Hi(k, k̄×) → Hi(k, k̄(t)×) → Hi(k,Div(P1
k̄)) → Hi(k,Z) → 0.

We shall make the last two terms of the sequence more familiar.

Note that we have the following isomorphism of Galois modules

Div(P1
k̄) ≅ ⊕

P ∈P1
k

( ⊕
Q↦P

Z).

For a closed point P in P1
k, the notation Q ↦ P means that Q lies over the point P

under the projection map P1
k̄
→ P1

k. Therefore we have the following identification:

Hi(k,Div(P1
k̄)) ≅ ⊕

P ∈P1
k

Hi(k, ⊕
Q↦P

Z).

Let {Q ↦ P} denote the set of closed points Q in P1
k̄

in the preimage of P under the

projection map. Note that the cardinality of {Q↦ P} equals [k(P ) ∶ k]. Since k(P )/K

is a separable field extension (since k is perfect), [k(P ) ∶ k] equals the number of distinct

coset representatives of Gal(k̄∣k(P )) in Gal(k̄∣k). Using this fact, one can show that we

have the following isomorphism (see [G-S, Lemma 6.4.1])

Mk
k(P )(Z) ≅ ⊕

Q↦P
Z,

where Mk
k(P )(Z) is the coinduced module of the Gal(k̄∣k(P ))-module Z (see the discus-

sion before Lemma 2.3.1 for the definition of coinduced modules). Therefore, we have
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made the following identifications for i ≥ 2:

Hi(k,Div(P1
k̄)) ≅ ⊕

P ∈P1
k

Hi(k(P ),Z) ≅ ⊕
P ∈P1

k

Hi−1(k(P ),Q/Z).

We thus obtain:

Theorem 2.4.31 (Faddeev). For i ≥ 1, we have the following exact sequence:

0→ Hi(k, k̄×) → Hi(k, k̄(t)×) ⊕∂PÐ→ ⊕
P ∈P1

Hi−1(k(P ),Q/Z) ∑CorÐ→ Hi−1(k,Q/Z) → 0.

The map in the middle is the direct sum of the ramification maps at places coming from

closed points. There are still a couple of things to check here. For example, why can we

identify the last two maps with ⊕∂P and ∑Cor? We refer the reader to [G-S, Theorem

6.4.4] for this.

We also have a version of the Faddeev exact sequence with finite coefficients:

Theorem 2.4.32. Let m > 1 be an integer coprime to the characteristic of k. Then for

i, j > 0, we have the following exact sequence:

0→ Hi(k,µ⊗jm ) → Hi(k(t), µ⊗jm ) → ⊕
P ∈A1

k

Hi−1(k(P ), µ⊗(j−1)
m ) → 0.

This comes close to the function field (over finite field) analogue of the Albert-Brauer-

Hasse-Noether Theorem (although we have only established it for function field of a

projective line). In view of the isomorphism 2.4.26 which we obtained using the Witt

exact sequence, the middle term can be identified with the Brauer group of local fields

of positive characteristic.

Theorem 2.4.33 (Hasse). Let F be the function field of a smooth curve C over a finite

field. Then the following sequence is exact:

0→ Br(K) → ⊕
P ∈C0

Br(K̂P ) → Q/Z→ 0. (2.16)

As a Corollary, we can compute the Brauer dimension of function fields of curves over

finite fields:
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Corollary 2.4.34. Let F be the function field of a smooth curve C over a finite field.

Let ` be a prime not equal to the characteristic of K. Then Brd`(F ) = 1.

Proof. In view of Lemma 2.4.8, it is sufficient to compute the indices of Brauer classes

of prime period. Let K/F be a finite field extension. Let ` be a prime not equal to

the characteristic of F and α be a Brauer class in Br(K) of period `. Let Ram(α) be

the finite set of closed points P in C such that α ⊗ K̂P ≠ 0. By Theorem 2.4.27, the

index of α⊗ K̂P equals ` for every P in Ram(α). Let L̂P /K̂P be a degree ` extension

splitting α locally. By weak approximation and Krasner’s lemma, one can construct a

global field extension L/K such that L⊗K K̂P ≅ L̂P . Note that L is the function field

of the normalization of C in L. By construction of L, α splits over every completion of

L. Therefore, α⊗L = 0. Since L/K has degree `, it follows that Brd`(F ) = 1.

Note that the we have only used the Hasse principle part of the exact sequence (2.16) in

the above proof, namely the injectivity of the first map. Using the Albert-Brauer-Hasse-

Noether Theorem, one can show that the period of every Brauer class equals its index,

provided that it is ramified at only archimedean places. This establishes the fact that

Brd`(F ) = 1 for totally imaginary number fields. However, to complete the computation,

we have to deal with archimedean completions also. To get around this, we will state

the Grunwald–Wang theorem and use it show, not only that the Brauer dimension of

number fields is 1, but also that every central simple algebra over a number field is

cyclic. At this point, let us state the Albert-Brauer-Hasse-Noether theorem:

Theorem 2.4.35 (Albert-Brauer-Hasse-Noether). Let K be a number field. Let ΩK

denote the set of places of K. Then the following sequence is exact:

0→ Br(K) → ⊕
v∈ΩK

Br(K̂v) → Q/Z→ 0.

The proof of this theorem is quite deep, using the full force of Class field theory: Hasse

Norm Theorem, the Artin reciprocity Law and Chebotarev density theorem. Since we

only need the Hasse principle bit in Theorem 2.4.35, and the Grunwald–Wang theorem,

we will only sketch proof of the Hasse principle, i.e., the injectivity of the first map in

Theorem 2.4.37 below.
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Even to show the Hasse principle is quite difficult. One shows it by first establishing an

equivalent statement, called the Hasse Norm Theorem. This theorem can be seen as

a local global principle for principal homogenous spaces under norm one tori of cyclic

extensions.

We will denote the set of valuations of F by ΩF . We will denote the completion of F at

v by Fv (dropping the hat).

Theorem 2.4.36 (Hasse Norm Theorem). Let K/F be a cyclic extension of number

fields. Let a be an element of F ×. Suppose that for every completion v, a lies in

NKv/Fv(Kv
×). Then a is an element in NK/F (K×).

In view of Example 2.3.8, we see that this is equivalent to the Hasse principle for Brauer

classes split by a cyclic extension.

Theorem 2.4.37. Let F be a number field and α in Br(F ). If α⊗ Fv = 0 for every v

in ΩF . Then α = 0.

Proof. As we remarked above, if α is split by a cyclic extension, then the statement

follows from Theorem 2.4.36. We will briefly expand on this: since α is split by a

cyclic extension, α is Brauer equivalent to a cyclic algebra (χ, b). Since (χ, b) ⊗ Fv = 0,

we have that (χv, b) = 0, where χv denotes the restriction of the character χ to Fv.

Since (χv, b) = 0, by Example 2.3.8, b is a norm of the cyclic extension corresponding

to χv. This cyclic extension can be identified with Kv. Therefore b is an element

in NKv/Fv(Kv
×) for every v in ΩF . Thus b is an element in NK/F (K×). Therefore,

(χ, b) = 0.

In general, let p be a prime dividing ind(α). Then there exists a field extension E/F

such that α⊗E is cyclic, ind(α⊗E) = p, and vp([E ∶ F ]) < vp(ind(α)). Since α⊗Fv = 0

for every v in ΩF . Therefore, (α ⊗E) ⊗Ew = 0 for every w in ΩE . Thus, α ⊗E = 0.

Therefore, ind(α) divides [E ∶ F ]. However, since vp([E ∶ F ]) < vp(ind(α)), this is

impossible. Thus α = 0.

Remark 2.4.38. With some additional work, using the fact that extensions of number
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fields are ramified at a finite number of places and the product formula for number fields

(see [Pierce]), one can show that every Brauer class is split at all but finitely many

places. This finally establishes the injectivity of the first map in Theorem 2.4.35.

We will state the Grunwald-Wang theorem (the version in [Pierce]) and use it later

to show that every central simple algebra over a number field is cyclic, and Brauer

dimension of number fields equals one.

Theorem 2.4.39. Let F be a number field. Let {(v1, n1),⋯, (nk, vk)} be a set of pairs

of natural numbers ni and valuations vi. We assume that ni = 1 if vi is a complex place

and ni ≤ 2 if vi is a real place. Then for every n divisible by lcm{n1,⋯, nk}, there exists

a cyclic extension K/F of degree n such that ni divides the degrees of the local extensions

[Kvi ∶ Fvi].

Theorem 2.4.40. If F is a number field, then every central simple algebra over F is

cyclic, and Brd`(F ) = 1 for every prime `.

Proof. Let D/F be a division algebra of degree n with Brauer class α. Let Ram(α) =

{v1,⋯, vk} be the set of places v where α⊗Fv ≠ 0. Note that by Remark 2.4.38, Ram(α)

is a finite set. Define ni ∶= ind(α⊗ Fvi) for each vi in Ram(α). Set m ∶= lcm{n1,⋯, nk}.

Note that ni divides deg(D), and therefore m divides n. By Theorem 2.4.39, there

exists a cyclic field extension K/F of degree n such that ni divides [Kvi ∶ Fvi] for every

i from 1,⋯, k. This means that K/F splits D. Since deg(D) = [K ∶ F ] = n, K can be

identified with a maximal subfield of D. Therefore, D/F is cyclic.

Again using Theorem 2.4.39, there exists a field extension L/F of degree m such that ni

divides [Lvi ∶ Fvi]. Thus, L/F splits α, implying that ind(α) divides m. By what, we

have shown in the previous paragraph, ind(α) = n =m. If k is the period of α, and since

ni also equals the period of α⊗ Fvi (see Theorem 2.4.27), each ni divides k. Therefore,

m divides k. As a result, ind(α) divides per(α), and we get that Brd`(F ) = 1.

Remark 2.4.41. Note that in the course of proving the above theorem, we obtained a

formula for ind(α) in terms of local indices:

ind(α) = lcmv∈ΩF (ind(α⊗ Fv)). (2.17)
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We will later obtain such a formula for function fields of curves over complete discretely

valued fields (and therefore, also a local-global principle).

2.5 Some Quadratic Form Theory

We will state a few basic facts about quadratic forms which we will need later. Besides

the fact that the algebraic theory of quadratic forms is extremely rich, the Milnor

conjectures inform us that there is a deep relationship between quadratic forms over a

field and the Galois cohomology of the field, and therefore also the arithmetic of the

field.

Definition 2.5.1. Let F be a field and V be a finite dimensional vector space on F .

A quadratic form is a pair (V, q) where q is a map q ∶ V → F satisfying the following

properties:

1. q(λv) = λ2v for every λ in F and v in V .

2. The pairing bq ∶ V ×V → F given by bq(v,w) = q(v+w)−q(v)−q(w) is a symmetric

bilinear pairing.

We say that q/F is non-degenerate if the pairing bq is non-degenerate. Note also

that if char(F ) ≠ 2 (which will most often be the case for us), there is a one to

one correspondence between quadratic forms and symmetric bilinear forms: given a

symmetric bilinear form b, one can obtain a quadratic form q(v) ∶= b(v, v)/2. One can

check that the corresponding bilinear form of this quadratic form is b itself. Thus, we

will not distinguish between quadratic forms and symmetric bilinear forms.

Let us choose a basis for V , say {e1,⋯, en}. Let Gb ∶= [b(ei, ej)] be the Gram matrix

associated to the symmetric bilinear form b. If X and Y are the column matrices

associated to the vectors x and y, then one sees that b(x, y) = XGbY T . Thus after

choosing a basis for V , we can associate to a quadratic form, a degree two homogenous

polynomial with coefficients in the field F . Let {e′1,⋯, e′n} be another basis. Then the

new homogenous polynomial is related to the old homogenous polynomial by a change

of variable given by the change of basis matrix. Thus we can think of quadratic forms
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as degree two homogenous polynomials up to an equivalence.

Since we are assuming that char(F ) ≠ 2, a standard Gram-Schmidt process allows us to

choose an orthogonal basis. Therefore, the Gram matrix is a diagonal matrix. After

choosing, such a basis, we use the following convenient notation for quadratic forms:

q = ⟨a1,⋯, an⟩ where the ai are the diagonal entries of the Gram matrix with respect to

the orthogonal basis. In this case, the corresponding homogenous polynomial is given

by q(x1,⋯, xn) = a1x
2
1 +⋯ + anx2

n.

Definition 2.5.2. Let q/F be a quadratic form with underlying vector space V . We say

that q is isotropic if there exists a non-zero vector v in V such that q(v) = 0. Otherwise,

we say that q is anisotropic.

Note that a quadratic form q defines a degree two hypersurface in P(V ). We see this

quite easily: if we choose a basis for V (i.e., coordinates on P(V )), then the vanishing

locus of the degree two homogenous polynomial is the hypersurface. To say that q is

isotropic is the same as saying that the corresponding hypersurface has a rational point.

If (V, q) and (W,p) are two quadratic forms, then we define their orthogonal sum to

be a quadratic form written as q ⊥ p, with underlying vector space V ⊕W satisfying

(q ⊥ p)(v,w) = q(v) + p(w). If q = ⟨a1,⋯, an⟩ and p = ⟨b1,⋯, bm⟩, then q ⊥ p is given by

q ⊥ p = ⟨a1,⋯, an, b1,⋯, bm⟩.

There is a distinguished two dimensional quadratic form, called the hyperbolic plane.

We may define it as the nondegenerate two dimensional form H = ⟨1,−1⟩ (this is not the

most satisfactory definition). The reason why hyperbolic planes are special is that they

are subforms of isotropic quadratic forms.

Theorem 2.5.3. If q/F is a non-degenerate quadratic form, then

q ≅ qan ⊥ nH,

where qan is an anisotropic form and n ≥ 0 is some non-negative integer. Here nH

denotes the orthogonal sum of n copies of H.

We will call qan, the anisotropic kernel of q. The integer n also has a name:
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Definition 2.5.4. We define the Witt index of a quadratic form q/F to be the largest

integer n such that nH is a subform of q. We will denote the Witt index of q by iW (q).

The Witt index is a measure of the extent that a given quadratic form is isotropic. It

turns out that the Witt index iW (q) is the dimension of the largest isotropic subspace

in the underlying vector space of q (see [Lam]).

We can define an arithmetic invariant of a field coming from the isotropy properties of

quadratic forms. It is yet another measure of how hard it is for polynomial equations to

have solutions.

Definition 2.5.5. Let F be a field. The u-invariant of F , denoted by u(F ) is the

supremum of the dimensions of non-degenerate anisotropic forms over F .

Thus any form with dimension greater than u(F ) is isotropic. Notice that if F satisfies

the Ci property, then u(F ) ≤ 2i. Therefore, if F is the function field of a d-dimensional

variety over a separably closed field, then u(F ) ≤ 2d. Since finite fields are C1 (see

Theorem 2.4.10), if F is the function field of a d-dimensional variety over a finite field

(of characteristic not 2), u(F ) ≤ 2d+1. A natural question in analogy with Question 1

(see subsection 2.4.1) arises: when F is the function field of a variety over a “nice” field,

can we compute the u-invariant? Is it always a power of 2 for these nice fields? This

is an open problem. It has been conjectured that the u-invariant of function fields of

curves over totally imaginary number fields, such as Q(i)(x), is 8.

There has been much progress on the u-invariants of function fields of varieties over

non-archimedian local fields. The first significant step in this direction is a result of

Parimala-Suresh (see [Pa-Su1]) where they compute the u-invariant of function fields of

curves over p-adic fields to be 8. Independently, Harbater-Hartmann-Krashen, using

their field patching technique compute the u-invariant of function fields of curves over

complete discretely valued fields (see [HHK09]). In particular, they compute that the

u-invariant of function fields of curves over m-local fields is 2m+2. We will prove this

fact using patching, but by a slightly different method in a later chapter (see Corollary

4.3.3). The u-invariant for function fields of higher dimensional varieties over p-adic
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fields was computed by Leep in [Leep] using a theorem of Heath-Brown on systems of

quadratic forms over p-adic fields. These results however have been shown when the

characteristic of the residue field is not equal to 2. In the bad, mixed characteristic

setting, Parimala-Suresh in another paper show that the u-invariant of curves over

dyadic fields is also 8.

It is not even known, whether the u-invariant of function fields of curves over totally

imaginary number fields is finite. Using Proposition 5.4.16 and a recent result of Suresh

(see [Su]), one can show that the finiteness of u-invariant of function fields in one variable

over totally imaginary number fields is equivalent to the finiteness of their Brauer

2-dimension.

One can compute u-invariants of complete discretely valued fields using Hensel’s lemma.

If F is a complete discretely valued field with parameter π, and q/F is a quadratic

form, then we may write q ≅ q1 ⊥ πq2, where q1 and q2 has units as entries in the ring of

integers R. We will need the following weak analogue of the Witt exact sequence for

that.

Proposition 2.5.6. Let F be a complete discretely valued field with parameter π and

residue field k. Let q/F be a non-degenerate quadratic form with q = q1 ⊥ πq2, where q1

and q2 have units as entries in the ring of integers of F . The form q/F is isotropic if

and only if either of the reductions, q1/k or q2/k is isotropic.

Proof. Suppose that q/F is isotropic, and both q1/k and q2/k are isotropic. Then there

exist vectors v and w such that q1(v) + πq2(w) = 0. Since, q1 and q2 are homogenous, at

least one of v and w are primitive. Reducing modulo π, we get that q1(v) = 0. Since,

q1/k is anisotropic, v = 0. This means that there exists a vector u such that v = πu.

Thus, we get that π2q1(u) + πq2(w) = 0. Therefore, πq1(u) + q2(w) = 0. Again reducing

modulo π, we get that q2(w) = 0. Since q2/k is anisotropic, w = 0. But this implies that

w is not primitive, a contradiction.

Now suppose that q1/k is isotropic. We will show that q1/F is isotropic. Let v be a

non-zero isotropic vector for q1/k. Let v be a lift of v in F . Choose a basis {v1,⋯, vn} for
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q1. With respect to this basis, we may regard q1 as a degree two homogenous polynomial

in variables x1,⋯, xn. Let bq1 be the bilinear form corresponding to q1. Note that

∂q1/∂xi(v) = bq1(v, vi). Since bq1 is non-degenerate, there exists i such that bq1(v, vi) ≠ 0.

By Hensel’s lemma, this implies that q1(v) = 0.

The above proposition shows that u(F ) = 4 when F is a nonarchimedean local field. As

a consequence, using the Hasse-Minkowski theorem, one can compute the u-invariant of

global fields with no real embeddings.

Theorem 2.5.7. If F is a totally imaginary number field, or function field of a curve

over a finite field, then u(F ) = 4.

Proof. Let q/F be a non-degenerate quadratic form with dim(q) ≥ 5. By the above

proposition, q⊗Fv is isotropic for every completion Fv. Therefore by the Hasse-Minkowski

theorem, q/F is isotropic. This shows that u(F ) ≤ 4. Note that every global field admits

a non-trivial quaternion algebra over F . The norm form of a non-trivial quaternion

algebra over F is a four dimensional anisotropic quadratic form. This shows that

u(F ) = 4.

We will now briefly introduce the Witt ring and some facts about Pfister forms which

we will need later. The following Theorem is proved in [Lam].

Theorem 2.5.8 (Witt cancellation). Let q, p, p′ be non-degenerate quadratic forms over

F . Suppose that q ⊥ p ≅ q ⊥ p′. Then p ≅ p′.

The theorem says that the monoid M(F ) of isometry classes of quadratic forms under

orthogonal sum is a cancellative monoid. Recall that one can form the Grothendieck

group of M(F ) defined by an equivalence relation on M(F )×M(F ) as: (p1, q1) ∼ (p2, q2)

if and only if p1 ⊥ q2 ≅ p2 ⊥ q1. This group is called the Grothendieck-Witt group and is

denoted by GW(F ). Note that under tensor product, GW(F ) also has a commutative

ring structure. Henceforth, we will refer to GW(F ) as the Grothendieck-Witt ring. Note

that the group generated by H is an ideal in GW(F ). In view of Theorem 2.5.3, we

may as well replace quadratic forms by their anisotropic parts. This is reflected by
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quotienting GW(F ) by its ideal Z[H]. The ring that we obtain is denoted by W (F ).

W (F ) ∶= GW(F )/Z[H].

This ring is called the Witt-ring of F . Observe that, ⟨−a⟩ = −⟨a⟩ in W (F ). By Theorem

2.5.8, anisotropic forms are in one to one correspondence with elements in W (F ).

Observe that if a quadratic form is a sum of hyperbolic planes, then its class is the 0

element in W (F ). We will call such quadratic forms split.

The Witt ring has an important filtration by powers of a special ideal I(F ), called the

fundamental ideal. Note that we have a ring homomorphism W (F ) → Z/2Z, taking a

class of q to dim(q) mod 2. By Theorem 2.5.3, this is a well defined homomorphism.

The fundamental ideal I(F ) is the kernel of this homomorphism, and consists of classes

of even dimensional quadratic forms. Notice that in W (F ), any class of a binary form

⟨a, b⟩ can be written as ⟨a, b⟩ = ⟨1, a⟩ − ⟨1,−b⟩. Thus I(F ) is additively generated by

binary forms: ⟨1,−a⟩. The form ⟨1,−a⟩ determines the square class (a) in F×/(F ×)2.

And conversely, a square class (a) gives rise to a quadratic field extension F (
√
a)/F ,

and the norm form of F (
√
a)/F is the quadratic form ⟨1,−a⟩. In fact, we have the

following isomorphism due to Pfister (see [Lam] for a proof):

I(F )
I2(F )

∼Ð→ F ×/(F×)2.

This maps the class of an even dimensional form to its signed discriminant.

Observe that I2(F ) is additively generated by forms of the shape ⟨1,−a⟩ ⊗ ⟨1,−b⟩. Such

forms are norm forms of quaternion algebras (a, b). This suggests that there must be

a relationship between I2(F ) and 2 Br(F ). In fact, the suggestion is to look at the

following filtration:

W (F ) ⊇ I(F ) ⊇ I2(F ) ⊇ I3(F ) ⊇ ⋯

and the associated graded ring since there could be a relationship between the Galois

cohomology ring with µ2 coefficients and this graded ring. It was conjectured by Milnor

that these graded rings are isomorphic. Milnor’s conjecture was finally proved by

Orlov-Vishik-Voevodsky in [OVV]. The following deep theorem of Merkurjev shows

that the degree two terms of the graded rings are isomorphic.
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Theorem 2.5.9 (Merkurjev). Let F be a field with char(F ) ≠ 2. We have the following

group isomorphism:

I2(F )
I3(F )

∼Ð→ 2 Br(F ),

which sends the generator ⟨1,−a⟩ ⊗ ⟨1,−b⟩ to the Brauer class [(a, b)].

This theorem tells us in particular that 2 Br(F ) is generated by classes of quaternion

algebras. In fact, the surjectivity of this map is the most difficult part of the proof. The

above theorem and Pfister’s theorem suggests that the additive generators of In(F )

should correspond to the cup products of elements in H1(F,µ2). These quadratic forms

are called Pfister forms:

Definition 2.5.10. An n-fold Pfister form q over F is a quadratic form of the following

shape:

q = ⟨1,−a1⟩ ⊗ ⟨1,−a2⟩ ⊗⋯⊗ ⟨1,−an⟩.

We will denote the set of non-zero values of a quadratic form q over a field F by DF (q).

If q/F is isotropic, then ⟨1,−1⟩ is a subform by Theorem 2.5.3. For any a in F×, observe

that ⟨1,−1⟩ ≅ ⟨a,−a⟩. Therefore, a is a value of q. To summarize: if q is isotropic, then

DF (q) = F×.

Note that if q/F is a Pfister form, 1 lies in DF (q). The orthogonal complement of the

one dimensional form ⟨1⟩ is called the pure subform of q and is denoted by q′.

Theorem 2.5.11. Let q/F be an n-fold Pfister form. Suppose that q/F is isotropic,

then q/F is split, i.e., a sum of hyperbolic planes.

Proof. Since q/F is isotropic, ⟨1,−1⟩ is a subform of q. Therefore by Theorem 2.5.8, −1

is a value of the pure subform q′. By the Pure Subform Theorem (see [Lam, Chapter

X, Theorem 1.5]), q ≅ H⊗ p, for some (n − 1)-fold Pfister form. Therefore q is a sum of

hyperbolic forms.
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Chapter 3

Field Patching

The field patching technique was introduced by Harbater and Hartmann in [HH] to deal

with patching problems arising in algebra. It has been extremely successful in dealing

with problems concerning central simple algebras, quadratic forms and more generally

principal homogenous spaces under a linear algebraic group, over certain types of fields,

which may be thought of as function fields of thickenings of curves. These fields are

being called semi-global in recent times (see Definition 3.0.1).

The main idea is inspired from cut-and-paste techniques in analysis and topology: we

are interested in understanding an algebraic structure over a semi-global field. We

define over-fields, called patches, coming from the geometry of the semi-global field. The

main theorem of field patching says that algebraic structures on these patches that are

compatible on their “overlaps” glue together to give a unique global algebraic structure.

One therefore obtains a local-global principle: if two algebraic structures are isomorphic

on the patches in a compatible sense, then they are isomorphic over the original field.

The technique has been subsequently improved, with many interesting applications by

Harbater, Hartmann and Krashen in a series of papers ([HHK09], [HHK15(1)], [HHK15],

[HHK15(2)]). Some of the applications include: a solution to the long-standing u-

invariant problem concerning quadratic forms, computation of Brauer dimension and

the group admissibility problem. Furthermore, the technique provides a conceptual

explanation of why local global principles for various algebraic structures hold, or do

not hold in certain situations.

We are interested in this technique because we would like to give upper bounds to the
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Generalized Brauer dimension of semi-global fields in terms of arithmetic invariants of

simpler fields. Our approach in this chapter is heavily inspired from Harbater’s notes

on field patching (see [H]).

Definition 3.0.1. Let K be a complete discretely valued field with residue field k. We

say that a field F is semi-global if it is the function field of a regular projective curve

over K.

When the characteristic of the residue field is the same as the characteristic of K, all

semi-global fields look like finite extensions of k((t))(x) (see [Serre1, section II.4]). In

the mixed characteristic situation, good examples to keep in mind are finite extensions

of Qp(t). This class of examples also explains the terminology “semi-global”. Fields

of the form Fp(t) are called global fields. Note that Qp(t) is the function field of P1
Zp .

We can view P1
Zp as an infinitesimal thickening of P1

Fp . Thus Qp(t) is somehow “epsilon

more than global”, and indeed many arithmetic properties of function fields of curves

over the residue field k carry over to the semi-global field, adding to them an additional

layer of complexity.

3.1 Patches

Let us start with making the word “thickening” precise. This will also help us in

intuitively understanding the ingredients that go in the patching technique a little

better.

We follow the maxim: to understand a space, it is enough to understand the set (sheaf)

of functions on it. Consider the following example: the two dimensional affine space

A2
k over a field k is completely determined by the polynomial ring k[x, y]. The point

at the origin is determined by the values of polynomials at the origin, or equivalently

polynomials up to the ideal (x, y), i.e., k[x, y]/(x, y). The topology of a space is the

repository of local information around points. Depending on the information we want,

the Zariski topology may not be enough. Suppose we want to know a little bit more

around the origin, say in the “horizontal direction”. Heuristically, we think of this

“bit more” information as a fuzz in the horizontal direction. A good candidate for
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the set of functions which captures this “point and fuzz” information would be those

functions that have a first-order vanishing in the horizontal direction, namely the ring

k[x, y]/(x2, y) ≅ k[x]/(x2). If we want a little more fuzz, we should look at the ring

k[x, y]/(x3, y) ≅ k[x]/(x3), and so on. Compatibly putting these rings together, we

obtain the ring that captures extremely local information in the horizontal direction,

viz: the formal power series ring in one variable lim←Ðk[x]/⟨x
n⟩ = k[[x]]. This is what we

mean by “thickening of the point in the horizontal direction”.

With this in mind, we refer to the projective line over k[[t]], P1
k[[t]], as a thickening of

the projective line over k. Note that the function field of P1
k[[t]] is the semi-global field

F ∶= k((t))(x). We want to “break” this field into simpler overfields, so that compatible

algebraic structures defined on these overfields glue together. If these fields are to be

simpler, they should somehow come from another simple field, where we have some

information about these algebraic structures. Assuming we know something about the

residue field k and function field in over variable over k, it would be useful to define

them by utilizing the special fiber of the projective line P1
k[[t]] → Spec(k[[t]]) over the

closed point, namely P1
k. Divide P1

k into the standard open affine set U ∶= A1
k and the

point at infinity P .

Note that the ring characterizing U inside P1
k[[t]] may be defined as the set of meromorphic

functions in F , that are regular on U , i.e., functions with reduced expression g/h, where

g and h are in k[[t]][x] (k[[t]][x] is a UFD) such that h mod t lies in k×. We will

denote this ring by RU . To thicken RU in the horizontal direction, we complete it

t-adically, and denote this completed ring by R̂U . Since we are interested in fields, we

take the fraction field of R̂U and denote it by FU .

The ring characterizing the point, may be taken to be the stalk of the structure sheaf at

P (or equivalently rational functions regular at P ), i.e., RP ∶= k[[t]][x](t,x). We could

thicken this point in the horizontal direction. However we also want the fraction field

of thickening of RP to have some overlap with FU . Thus we take a “two dimensional

thickening” of RP , namely the completion of RP at its maximal ideal. As one can

check, this completion turns out to be R̂P ∶= k[[t, x]]. Finally, we take its fraction field
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FP = k((t, x)).

There is an “overlap” between the thickened fields FU and FP , occurring along the

branch ℘ of the special fiber P1
k at P . This branch is given by the ideal (t) in the ring

k[[t, x]]. Thus a way to capture this overlap is by taking the localization of R̂P at the

ideal (t). We will denote this localization by R℘. Note that R℘ is a discrete valuation

ring with residue field k((x)). We will be more careful and complete R℘ at the ideal (t)

to get the complete discrete valuation ring R̂℘ ∶= k((x))[[t]]. We will denote its fraction

field by F℘.

We will setup some notation and formally define these over fields FU , FP and F℘ for

open sets U , closed points P and branches ℘ at these closed points lying on the special

fiber. We will define them quite generally, i.e., for any regular projective curve over a

complete discretely valued field. Note that models of these curves over the complete

ring need not be smooth. One can find regular models, and we could work with regular

models, however it will be extremely useful to work with just normal models at the

expense of complicating matters somewhat. For now, let us fix some notation, which we

will stick to throughout unless stated otherwise:

Notation 1. R will denote a complete discretely valued ring with parameter t, residue

field k and fraction field K. Let X/K be a regular projective curve. We will denote its

function field by F . We will denote normal models of F over R by π ∶ X → SpecR or

simply by X .

The scheme X is projective and flat over Spec(R), with generic fiber isomorphic to the

curve X/K. The special fiber, or the closed fiber is the fiber of the structure morphism

π over the closed point (t). It is isomorphic to X ×SpecR Speck, and will be denoted by

Xk.

Note that Xk need not be reduced. Since we only use the topology of Xk, we will most

often give it the reduced induced subscheme structure. Parimala-Suresh often make

the assumption that the original curve X/K is geometrically integral. The advantages

of making this assumption is that the morphism OSpecR → π∗OX is an isomorphism.
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By Zariski’s connectedness principle (see [Liu, Chapter 5, Theorem 3.15]), one may

therefore assume that the fiber Xk is geometrically connected. Further, this also implies

that F and K are linearly disjoint. We do need connectedness of the closed fiber. It is

sufficient to just assume that X/K is geometrically connected.

Let P be a nonempty finite set of closed points on the special fiber Xk which include

the set of points where distinct irreducible components of Xk meet. Let U be the set of

irreducible components of the open subscheme Xk ∖ P. Let B be the set of branches

incident at the points in P lying on the special fiber. These branches are in one to one

correspondence with the set of height one prime ideals of R̂P containing the parameter

t for every P in P.

For every U in U , define RU to be the ring of rational functions which are regular on U ,

or equivalently:

RU ∶= ⋂
Q∈U
OX ,Q.

Note that the rational function t vanishes on U . Thus the parameter t is regular on U ,

and hence lies in RU . We define R̂U to be the t-adic completion of RU . Let FU be the

fraction field of R̂U .

For every P in P, define R̂P to be the completion of OX ,P at its maximal ideal. Note

that since OX ,P is a normal, excellent domain, R̂P is a normal domain (see [Liu, Chapter

8, Proposition 2.41]).

For every branch ℘ in B incident at P , let R℘ be the localization of R̂P at the height

one prime ideal corresponding to ℘. Since OX ,P is excellent and normal, so is R̂P . Let

R̂℘ be the completion of R℘ at this prime ideal. Since R̂P is normal, R℘ is a discrete

valuation ring. Let R̂℘ be its completion at its maximal ideal. This ring is a complete

discretely valued ring. Abusively, we will denote its unique maximal ideal by ℘. Let F℘

be the fraction field of R̂℘. Note that F℘ is a complete discretely valued field.

Let P be a point in P such that P ∈ U for some U in U . Here the closure is taken in

Xk. Since the closure of U is irreducible, U is irreducible. Thus the ideal defining the

reduced subscheme U of Spec(R̂U) is prime. We will denote this prime ideal by η. Set



62

p ∶= ℘ ∩ OX ,P . The universal property of localization shows that there is a canonical

isomorphism between the localizations RU,η and RP,p. Therefore we have the canonical

inclusion RU ↪ R̂℘. Notice that the contraction of the prime ideal ℘ on RU gives η.

Note also that η is the radical ideal of the ideal (t). Thus the t-adic completion of RU

canonically sits inside R̂℘. Therefore for every P in U , we have the canonical embedding

FU ⊂ F℘. The fields of the form FU and FP will be called patches, and fields of the form

F℘ will be called branch fields.

If ℘ is a branch incident at P , then clearly FP ⊂ F℘. Summarizing the above discussion,

for every P in U and for every branch ℘ incident at P lying on U , we have the following

diamond of canonical field embeddings:

F

FU FP

F℘

(3.1)

We have seen an example of what these fields look like when we were getting an intuitive

feel for them. We will recall that example here, and point out some common mistakes

one might make if they are not cautious. We will stick to simple examples which serve

to give us a feeling about these fields.

Example 3.1.1. 1. Let X = P1
k[[t]]. Let P = {∞k}. Therefore, U = {A1

k}. Observe

that R̂U = k[x][[t]], and therefore FU = Frac(k[x][[t]]). Note that k[x][[t]] ≠

k[[t]][x]. The latter is a polynomial ring with power series coefficients. This is

quite easy to see: ∑i≥0 x
iti is contained in k[x][[t]], but not in k[[t]][x]. Also,

Frac(k[x][[t]]) ≠ k(x)((t)), unlike in the case of polynomial rings. (See the

discussion after this example)

As we have seen before, FP = k((t, x)). This is the fraction field of k[[t, x]].

Note that k[[t, x]] ⊂ k[[t]][[x]] ⊂ Frac(k[[t]][[x]]) ⊊ k((t))((x)). The latter

containment is strict (See the discussion after this example). Therefore, k((t, x)) ⊊

k((t))((x)). Finally, F℘ = k((x))((t)).

2. Let X = P1
k[[t]] with P = {P1 = 0, P2 = ∞}. Let ℘1 be the branch incident at
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P1 and ℘2 be the branch incident at P2. Therefore, U = {A1
k ∖ {0}}. Observe

that R̂U = k[x,x−1][[t]]. Further, FP1 = k((t, x)) and FP2 = k((t, x−1)), whereas

F℘1 = k((x))((t)) and F℘2 = k((x−1))((t)).

If R is a domain with field of fractions F , then K ∶= Frac(R[[t]]) ⊊ F ((t)) in general.

A typical element in K can be written as λ ∶= tj(∑i fit
i

∑ giti ), where f0 and g0 are not equal

to 0. Consider the element:

1

∑i giti
= 1

g0 − h(t)

= g−1
0

1 − h(t)/g0

= g−1
0 ∑

i

h(t)i

gi0

Thus λ has the form ∑i≥j hiti, where all hi lie in the ring R[1/g0]. Clearly this element

lies in F ((t)). However not every element in F ((t)) can be expected to have this form

in general. For example, consider R = k[x]. Let {p1, p2,⋯} be a set of primes in k[x].

Note that the element ∑i≥0
1

∏ij=1 pj
ti lies in k(x)((t)), but not in Frac(k[x][[t]]), by the

above discussion.

Even when R = k[[x]], it turns out that K ∶= Frac(R[[t]]) ⊊ k((x))((t)). Let us look

at a typical element in K:

λ ∶ = tj(∑i fit
i

∑i giti
)

= (f0

g0
)tj + (f1g0 − f0g1

g0
2

)tj+1 + (f2g0
2 − f1g1g0 + f0g1

2 − f0g0g2

g0
3

)tj+2 +⋯

Write λ as ∑i hitj+i. Denote the valuation of hi with respect to x by ni and the valuation

of g0 by m. We will assume that m > 0. Since the numerators are elements of R, notice

that ni ≥ −(i+1)m for every i. (Some of the numerators can be zero, but we are ignoring

this point here since we are interested in exhibiting just one element in k((x))((t)) which

does not lie in K). Now consider the element µ ∶= ∑i ti

xi2
. This element certainly lies

in k((x))((t)). The valuation of the ith coefficient of µ with respect to x is −i2. Note

however that −i2 < −(i + 1)m for i >> 0 for any positive constant m. Thus, µ lies in

k((x))((t)) but not in K. We learnt about this example from an answer of Tony Scholl

on MathOverflow to a question asked by Pete Clark.
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We will end this section with two facts about complete local rings that will be useful

later. We will only sketch their proofs and refer the reader to [Milne] for complete

proofs. They should be seen as examples of the meta-principle: “unramiffed algebraic

structures over complete rings uniquely come from the residue field”. The Witt exact

sequence (see Theorem 2.4.24) is another instance of this principle.

Lemma 3.1.2. Let (A,m) be a complete local ring. Let B be a finite étale A-algebra.

Let f ∶ Spec(B) → Spec(A) be the structure morphism. If there exists a point n in

Spec(B) such that k(n) = k(m), then there exists a section of f mapping m to n.

Proof. Since finite étale algebras over complete local rings are isomorphic to product

of local rings étale over A (See [Milne, Chapter 1, Theorem 4.2]), it is sufficient to

show this when B is a local A-algebra. Note that since B is finitely generated, flat

over A and A is local, B is a free A-module. Recall by hypothesis, k(y) = k(x). Thus

k(y) = B ⊗A k(y) ≅ B ⊗A k(x). Thus B ⊗A k(x) is a one dimensional vector space over

the residue field k(x) of A. Thus by Nakayama lemma, B is a free rank one A-module.

Therefore, B ≅ A as an A-algebra. This isomorphism gives the section.

The above lemma says that sections of étale morphisms over closed points can be lifted.

Theorem 3.1.3. Let A be a complete local ring with residue field k. There is an

equivalence of categories between finite étale A-algebras and finite étale k-algebras given

by the functor B ↦ B ⊗A k.

Proof. Let B1 and B2 be finite étale A-algebras. We will first show that the functor is

fully faithful, i.e.,

HomA(B1,B2) → Homk(B1 ⊗ k,B2 ⊗ k)

is a bijection. Let φ1, φ2 ∶ B1 → B2 be A-algebra homomorphisms. If φ1 ⊗ k = φ2 ⊗ k,

then the corresponding maps of affine schemes φ′1, φ
′
2 ∶ Spec(B2) → Spec(B1) agree on

the fiber over the closed point of Spec(A). Note that both φ′1 and φ′2 are separated

morphisms. Since B2 is local, Spec(B2) is connected. Since such étale morphisms are
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uniquely determined by their image on one point (see [Milne, Chapter 1, Corollary

3.13]), it follows that φ′1 = φ′2. Therefore φ1 = φ2. This shows injectivity.

For surjectivity, let ψ ∶ B1 ⊗ k → B2 ⊗ k be a k-algebra homomorphism. Composing ψ

with the map B1 → B1 ⊗ k, we obtain the homomorphism: B1 → B2 ⊗ k. Therefore

by the universal property of tensor products, we get the map: θ ∶ B1 ⊗A B2 → B2 ⊗ k

which sends b1 ⊗ b2 ↦ ψ(b1)b2. Since Spec(B2) → Spec(A) is étale and base changing

preserves étale morphisms, the map Spec(B1 ⊗A B2) → Spec(B2) is étale. Note that

the map of affine schemes corresponding to θ, Spec(B2 ⊗ k) → Spec(B1 ⊗A B2) can be

regarded as a section of Spec(B1 ⊗A B2) → Spec(B2) defined on the fiber Spec(B2 ⊗ k)

over the closed point of Spec(A). Therefore by Lemma 3.1.2, we may lift this to get a

section Spec(B2) → Spec(B1⊗AB2) of the projection map Spec(B1⊗AB2) → Spec(B2).

Composing this section with the other projection map Spec(B1 ⊗A B2) → Spec(B1), we

get the morphism in HomA(B1,B2), whose restriction to the fiber over the closed point

of Spec(A) gives ψ.

We will now show that the functor is essentially surjective. If L/k is a separable

algebra, then L/k is a product of separable field extensions. Therefore we may write

L = k[x]/(f(x)) for some monic, separable polynomial f(x). We abuse notation and

denote a lift of f(x) to A[x] by f(x). Set B ∶= A[x]/(f(x)). Note that since f ′(x) is

coprime to f(x) in k[x], one can show (using Nakayma lemma) that f(x) and f ′(x)

generate the unit ideal in A[x], (i.e., they are strictly coprime). Therefore B is a finitely

generated free A-module, and hence flat. By the way we defined B, it also turns out

that B/A is unramified. Thus B is an étale A-algebra such that B ⊗A k ≅ L.

We will also need the following generalization of Theorem 3.1.3.

Theorem 3.1.4. Let R be a Noetherian domain, complete with respect to its ideal I.

Then there is an equivalence of categories between finite étale covers of Spec(R) and

finite étale covers of Spec(R/I).

In its most raw form, the basic idea of the proof is the following: Note that finite étale

schemes over Spec(R/I) are given by finite étale R/I-algebras S0. One has a unique
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lift of S0 to an étale R/I2-algebra S1. This is since Spec(S0) → Spec(R/I) is étale, it

satisfies the so called “topological invariance” property (see [Milne, Chapter 1, Theorem

3.23]). Continuing this process, one obtains étale R/In+1-algebras Sn for every n ≥ 0,

together with compatible maps Spec(Sm) → Spec(Sn) for m > n. Taking the limit of all

the Sn, one obtains the étale R-algebra Ŝ.

3.2 Simultaneous Factorization

Recall that we want to check whether giving a compatible algebraic structure on the

patches is the same as giving the algebraic structure over the semi-global field. As a

simple example, we can view the field F as an algebraic structure over itself.

Note that for a single closed point P and its complement U on P1
R, we have the algebraic

structures FP over FP and FU over FU that are compatible on the branch ℘ incident at

P and lying on U , i.e.,, FU ⊗FU F℘ ≅ FP ⊗FP F℘. Our intuition suggests that the unique

algebraic structure that FU and FP determine over F should be F itself. If we identify

FU and FP as subfields of F℘, then proving that F is the required algebraic structure

amounts to proving that

FU ∩ FP = F. (3.2)

Thus we would want condition (3.2) to hold.

Now consider the vector spaces VU/FU and VP /FP , which are compatible on the branch

℘, i.e., there exists an isomorphism

φ℘ ∶ VU ⊗FU F℘
∼→ VP ⊗FP F℘. (3.3)

We want to find a condition that guarantees the existence of a vector space V /F so

that V ⊗F FU = VU and V ⊗F FP = VP . The following lemma finds the condition for the

existence of such a vector space V /F and the isomorphism.

Lemma 3.2.1. Let VU/FU and VP /FP be vector spaces, together with an isomorphism

φ℘ as in (3.3). An n dimensional vector space V /F satisfying V ⊗F FU ≅ VU and

V ⊗F FP ≅ VP exists if the following conditions are satisfied:
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1. For every A℘ in GLn(F℘), there exist matrices AU in GLn(FU) and AP in

GLn(FP ) such that A℘ = APAU .

2. FU ∩ FP = F .

Proof. Let V℘ ∶= VP ⊗ F℘. By the isomorphism φ℘ one may identify VU with a subset

of V℘. Let BU and BP be a basis for the vector spaces VU and VP respectively. After

extending scalars to F℘, one sees that the sets BU and BP form a basis for the vector

space V℘. Thus, there exists a matrix A℘ in GLn(F℘) such that A℘BU = BP . Since there

exist matrices AU and AP in GLn(FU) and GLn(FP ) respectively such that A℘ = APAU ,

we have the following equality B ∶= AUBU = AP −1BP . Therefore B serves as a basis for

both VU/FU and VP /FP . Finally, define V to be the F span of B.

To make matters simpler, we will introduce some formalism now.

Let X /SpecR be a normal model of F . Let P be a non-empty finite set of closed

points containing the points where distinct irreducible components of the special fiber

Xk meet. Let U be the set of irreducible components of Xk ∖ P. Let B be the set of

branches incident on points in P lying on the special fiber. The fields F ∶= {FU , FP , F℘}

form an inverse factorization system (see diagram (3.1)). Let VU/FU , VP /FP and V℘/F℘

be n dimensional vector spaces for every P in P, U in U and ℘ in B. Suppose there

exist isomorphisms

Vξ ⊗Fξ F℘
φξ,℘→ V℘ (3.4)

for every ξ in P ∪U such that either ℘ is a branch incident at ξ (if ξ is a point in P), or

℘ is a branch lying on ξ and ξ is an element in U .

Define the patching problem category PP(F) whose objects are finite dimensional

vector spaces over Fα: {Vα} for α in P ∪ U ∪ B, together with the isomorphism (3.4).

We will denote the objects by ({Vα}, φ). A morphism Θ ∶ ({Vα}, φ) → ({Wα}, ψ) is a

sequence of maps θα ∶ Vα →Wα of vector spaces over Fα, compatible with the morphisms
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φ and ψ:

Vξ ⊗ F℘ V℘

Wξ ⊗ F℘ W℘.

φξ,℘

θξ θ℘

ψξ,℘

Note that there is a functor from the category VectF of finite dimensional vector spaces

over F to PP(F):

β ∶ VectF → PP(F). (3.5)

which takes a vector space V /F to ({V ⊗F Fα}, Id⊗ Fα).

If all compatible algebraic structures are to uniquely determine an algebraic structure

over F , we should demand that β be an equivalence of categories. We say that V is a

solution to the patching problem ({Vα}, φ) if β(V ) ≅ ({Vα}, φ).

Lemma 3.2.1 gives some evidence that if one can factor matrices in GLn(F℘) into

matrices in GLn(FU) and in GLn(FP ), then β is essentially surjective. When we are

dealing with multiple patches, for the essential surjectivity of β, we require that there

should be a simultaneous factorization:

Let (U,P,℘) be a triple, with U in U , P in P, and ℘ a branch in B incident at P and

lying on U . We say that GLn satisfies the simultaneous factorization property if for

every A℘ in GLn(F℘), there exist matrices AU in GLn(FU) and AP in GLn(FP ) such

that A℘ = APAU , for every triple (U,P,℘).

Theorem 3.2.2 (Harbater-Hartmann). The functor β in (3.5) is an equivalence of

categories if and only if

1. For every n ≥ 1, GLn satisfies the simultaneous factorization property.

2. lim←Ðξ∈P∪U Fξ = F .

Therefore in order to show that every patching problem for vector spaces has a unique

solution, we need to verify that simultaneous factorization holds. We will not verify

this in complete generality. Rather, following the Luxembourg notes of Harbater ([H]),

we will stick to the projective line over k[[t]] and show that simultaneous factorization

holds in a very special case.
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Example 3.2.3. 1. Let U1 be the complement of {∞} on the special fiber of P1
k[[t]]

and U2 be the complement of {0}. Since U1 and U2 cover the special fiber, one

expects that F = FU1 ∩FU2 . Let U0 ∶= U1 ∩U2. The “overlap” between FU1 and FU2

should be given by FU0.

Note that R̂U1 = k[x][[t]], R̂U2 = k[x−1][[t]] and R̂U0 = k[x,x−1][[t]]. Let a0 be

an element in R̂U0 such that a0 ≡ 1 mod t. We will inductively show that there exist

elements a1 and a2, respectively in R̂U1/(tn) and R̂U2/(tn) such that a0 = a1a2.

Taking the limit, we obtain the desired factorization. Since a0 ≡ 1 mod t, we clearly

have a factorization mod t. Note that

a0 − 1 = t(λ0 + λ1t +⋯),

where λi are elements in k[x,x−1]. Thus there exist elements b1 and b2 respectively

in in k[x] and k[x−1], such that λ0 = b1 + b2. Therefore we have

a0 ≡ 1 + t(b1 + b2) mod t2

≡ (1 + tb1)(1 + tb2) mod t2.

Note that (1+tbi) lies in FUi for i = 1, 2. Replacing a0 by a0−(1+t(b1+b2)+t2b1b2)

and going modulo t3, one can find a better approximation to the factorization by a

similar process. Taking the limit as t→∞, we get the desired factorization. The

same process works for n × n matrices.

2. Let U1 be the complement of {∞} on the special fiber P1
k. Recall that R̂U1 =

k[x][[t]]. Let R{∞} be the ring of rational functions that are regular at the

point ∞, and let R̂{∞} be its t-adic completion. Let F{∞} be the fraction field of

R̂{∞}. One can compute that R̂{∞} = k[x−1](x−1)[[t]]. These sets are disjoint, and

therefore the “overlap” ring is R∅ = k(x)[[t]]. The overlap field is its fraction

field: F∅ = k(x)((t)). We claim that for matrices A∅ in GLn(R̂∅) such that

A∅ ≡ Id mod t, there exist matrixes AU1 and A{∞}, respectively in GLn(FU1) and

GLn(F{∞}) such that A∅ = AU1A{∞}.

We will first show that every element in k(x) can be written as a sum of el-

ements in k[x] and k[x−1](x−1). Let g(x)/h(x) be an element in k(x), where
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g(x) and h(x) are polynomials in x with degrees g and h respectively. If g ≤ h,

g(x)/h(x) = x−hg(x)/x−hh(x) is an element in k[x−1](x−1). If g > h, then write

g(x) = p(x)h(x) + r(x), where p(x) is a polynomial, and r(x) is either 0 or

deg(r(x)) < h. Thus, g(x)/h(x) is either a polynomial in x, or g(x)/h(x) =

p(x) + r(x)/h(x). Since deg(r(x)) < h, by the previous case, r(x)/h(x) lies in

k[x−1](x−1).

Since A∅ ≡ Id mod t, by a similar reasoning as before we have

A{∅} ≡ Id + t(B1 +B2) mod t2

≡ (Id + tB1)(Id + tB2) mod t2,

where B1 is a matrix with entries in k[x], and B2 is a matrix with entries in

k[x−1](x−1). Replacing A{∅} with A{∅} − (Id + tB1)(Id + tB2), and going modulo

t3, we obtain a better approximation to the factorization. Continuing this process,

one obtains the desired factorization.

To show the intersection property, viz: F = FU1 ∩ FU2 in general, we will first prove the

following proposition, and obtain the intersection property as a corollary.

Proposition 3.2.4. Let U1 be the complement of {∞} on the special fiber P1
k. For

every f in F×
U1

, there exists an element a in F× and u in R̂U
×

such that f = au.

Proof. It suffices to assume that f lies in R̂U1

×
. Let f0 be the constant term of f . Note

that f0 lies in k[x]. Note also that f/f0 ≡ 1mod t, where f/f0 is seen as an element in

k(x)[[t]].

By Example 3.2.3, we see that f/f0 = f1f2, where f1 is an element in R̂U1 = k[x][[t]],

and f2 an element in R̂{∞} = k[x−1](x−1)[[t]]. Thus, f0f2 = f/f1. Note that f0f2 is

an element of k[x−1](x−1)[[t]][x], whereas f/f1 is an element in k[x][[t]]. Thus this

element lies in k[[t]][x] ⊂ F . Therefore f = au, with a = f0f2 and u = f1.

Corollary 3.2.5. If U1 is the complement of {∞}, and U2 is the complement of {0} in

P1
k, then F = FU1 ∩ FU2.
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Proof. Let F ′ = FU1 ∩ FU2 , and let f be an element in F ′. By Proposition 3.2.4,

there exist elements ai in F × and ui in R̂Ui
×

such that f = a1u1 = a2u2. Let R′ ∶=

R̂U1[x] ∩ R̂U2 = k[[t]][x]. Since FracR′ = F , there exist elements ci and di in R′ such

that ai = ci/di. Thus, c1d2u1 = c2d1u2. Note that c1d2u1 lies in R̂U1[x] since c1 and d2

lie in R̂U1[x] and u1 is an element in R̂U1 . Also, c2d1u2 lies in R̂U2 since c2, d1 and

u2 each lie in R̂U2 . Therefore, the common element c1d2u1 = c2d1u2 lies in R′. Thus,

f = c1u1/d1 = c1d2u1/d1d2. Since both numerator and the denominator belong to R′, f

lies in F .

Proposition 3.2.6. Let U1 and U2 be open as in Corollary 3.2.5, and let U0 = U1 ∩U2.

If A0 is a matrix in GLn(F0), then there exist matrices A1 and A2 in GLn(F1) and

GLn(F2) respectively, such that A0 = A1A2.

Proof. The main idea is to first reduce to the case when U1 and U2 are disjoint sets. Let

U ′
2 be the complement of U0 in U2. Note that F0 ⊂ F∅ = k(x)((t)). Thus we may regard

A0 as an element of GLn(F∅). Suppose that factorization holds in this disjoint situation,

i.e., for U1 and U ′
2. This means that there exist matrices A′

1 in GLn(FU1) and A′
2 in

GLn(FU ′

2
) such that A0 = A′

1A
′
2. Note that A′

2 has entries in F ′
U2

, and A′
2 = A0A

′
1
−1

also

has entries in FU0 since A0 has entries in FU0 and A′
1
−1

has entries in FU1 and FU1 ⊂ FU0 .

An argument similar to the one used in the proof of the above corollary, one can show

that FU ′

2
∩ FU0 = FU2 . Thus, A′

2 is an element in GLn(FU2). We have therefore reduced

to the disjoint case.

Suppose A0 in an element in GLn(F∅). Multiplying by a sufficiently large power of t,

one may assume that A0 is an element in GLn(R̂∅). Since the ring R∅ ⊂ F is t-adically

dense in R̂∅, one may assume that there exists B in GLn(R∅) such that A0B ≡ Id mod t.

By Example 3.2.3, there exist matrices A1 in GLn(FU1) and A2 in GLn(FU ′

2
) such that

A0B = A1A
′
2. Therefore, A0 = A1A

′
2B

−1. Setting A2 = A′
2B

−1, we arrive at the desired

conclusion.

With a lot more additional work, one can show that such a simultaneous factorization

holds in the most general case. Therefore using Theorem 3.2.2, one obtains:
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Theorem 3.2.7 (Harbater-Hartmann). The functor β as in (3.5) is an equivalence

of categories. In other words, there exists a unique (up to isomorphism) solution to a

patching problem of vector spaces.

Proof. See [HH, Theorem 6.4].

We can not only patch vector spaces, but also vector spaces with additional structure

such as central simple algebras, quadratic forms, separable algebras, etc. We will show

that patching holds for principal homogenous spaces under a linear algebraic group

G. This covers the case of central simple algebras, quadratic forms and even separable

algebras of a given degree, since they are in natural bijection with principal homogenous

spaces under a group.

3.3 Local Global Principles With Respect To Patches

We want to be able to patch reasonable algebraic structures such as central simple

algebras and quadratic forms. We have seen in Theorem 2.3.11 that degree n central

simple algebras over F are classified by H1(F,PGLn). More often, algebraic structures

are in a natural bijection with principal homogenous spaces under a linear algebraic group.

It turns out that solutions exist to patching problems involving principal homogenous

spaces under linear algebraic groups.

Let G/F be a linear algebraic group. Let PPG(F) be the patching problem category

of principal homogenous spaces under G for the inverse factorization system of fields:

F = {FU , FP , F℘}. This category is defined in a very similar manner to the patching

problem category of vector spaces. The only difference is that tensor product is replaced

by fiber product. Let G −TorsF be the category of principal homogenous spaces under

F . We have the following functor:

γ ∶ G −TorsF Ð→ PPG(F). (3.6)

Recall that for any linear algebraic group, there exists a faithful representation G↪ GLn.

For any field extension E/F , by Theorems 2.3.16 and 2.3.13, we have the following
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natural bijection:

GLn(E)/H0(E,GLn /G) ←→ H1(E,G).

Therefore, a principal homogenous space under G/E are given by Galois-invariant

translates hGEsep for h in GLn(Esep). It turns out that Galois-invariant translates

also give rise to principal homogenous spaces. To see this, note first that GLn /G

has a structure of a quasi-projective variety (see [Sp, Corollary 5.5.6]). Second, the

Galois-invariant translate hGEsep can be identified with the fiber over π(h) under the

map π ∶ GLn → GLn /G. Finally, since π commutes with the action of Gal(Esep∣E),

π(h) is an E-rational point of GLn /G if and only if its fiber hGEsep is Galois-invariant.

Henceforth, we will identify principal homogenous spaces by Galois-invariant translates.

Theorem 3.3.1 (Harbater-Hartmann-Krashen). The functor γ of (3.6) is an equiva-

lence of categories.

Proof. We will only check that γ is essentially surjective. Suppose that for a triple

(P,U,℘) we have a compatibility of principal homogenous spaces, i.e., an isomorphism

µU,P ∶ hUGF sep
U

×FU F℘ → hPGF sep
P

×FP F℘ of principal homogenous spaces over F℘.

Consider the element g℘ ∶= µP,U(hU)h−1
U which lies in GLn(F sep℘ ). Multiplication by g℘

gives the isomorphism: λ℘ ∶ hUGF sep
℘
→ g℘hUGF sep

℘
. Note that λ℘ sends hU to µP,U(hU).

Therefore λ℘ = µU,P ×F℘ F
sep
℘ . Since λ℘ is multiplication by g℘, and it also descends to

F℘, g℘ lies in GLn(F℘). Since we have a simultaneous factorization for GLn, there exist

elements gU in GLn(FU) and gP in GLn(FP ) such that g℘ = g−1
P gU . Set h′U ∶= gUhU ,

and h′P ∶= gPhP . Consider the morphisms: λξ ∶ hξGF sep
ξ
→ h′ξGF sep

ξ
for ξ in {P,U}. Now

observe that λ−1
P and µU,P ○ λ−1

U agree after base changing to F℘; this is essentially

the identity g℘g
−1
U = g−1

P . Consider the projection map π ∶ GLn → GLn /G. Note that

π(h′ξ) gives an Fξ-rational point on the quasi-projective variety GLn /G. We claim

that the rational points π(h′U) and π(h′P ) determine the same point in (GLn /G)(F℘).

As we saw before, over F℘, the isomorphism µU,P agrees with multiplication by g℘.

Therefore g℘hUGF sep
℘

= hPGF sep
℘

. Multiplying both sides by gP , we get gP g℘hUGF sep
℘

=

gPhPGF sep
℘

= h′PGF sep
℘

. But gP g℘hUGF sep
℘

= gUhUGF sep
℘

= h′UGF sep
℘

. Since the system of

rational points {π(h′ξ)} are compatible, and F is the limit of the inverse system {Fξ},
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they determine a rational point over F . Denote the corresponding principal homogenous

space by hGF sep . This gives a solution to the patching problem.

Since F is the limit of the system {Fξ}, we have the following exact sequence:

0→ F → ∏
U∈U

FU × ∏
P ∈P

FP ⇉ ∏
℘∈B

F℘.

For a linear algebraic group G, we therefore have the following sequence of pointed sets:

0→ G(F ) → ∏
U∈U

G(FU) × ∏
P ∈P

G(FP ) → ∏
℘∈B

G(F℘),

where the right-most arrow sends a pair (gU , gP ) to gUg
−1
P at the components corre-

sponding to the triple (U,P,℘) where P lies in U and ℘ is a branch at P lying on

U .

We will say that G satisfies the simultaneous factorization property if the rightmost map

is surjective, i.e., for every triple (U,P,℘) and every g℘ in G(F℘), there exist elements

gU in G(FU) and gP in G(FP ) such that g℘ = gP gU .

Theorem 3.3.1 gives the following equalizer diagram of pointed sets:

H1(F,G) → ∏
U∈U

H1(FU ,G) × ∏
P ∈P

H1(FP ,G) ⇉ ∏
℘∈B

H1(F℘,G).

One has the following relation between the two equalizer diagrams:

Theorem 3.3.2. The following sequence is an exact sequence of pointed sets:

0 // H0(F,G) // ∏U∈U H0(FU ,G) ×∏P ∈P H0(FP ,G) // ∏℘∈BH0(F℘,G)

��

H1(F,G) // ∏U∈U H1(FU ,G) ×∏P ∈P H1(FP ,G) //
// ∏℘∈BH

1(F℘,G).

Proof. We only need to define the connecting map and establish exactness there. Let

(g℘) be a sequence in ∏℘∈BG(F℘). This gives rise to a principal homogenous space T

over F in the following manner. Let Tξ/Fξ be a trivial principal homogenous space over

Fξ for every ξ in P ∪ U . Note that a branch ℘ uniquely determines a pair (U,P ). Now

consider the isomorphisms µU,P ∶ TU ×FU F℘ → TP ×FP F℘ given by multiplication by g℘.



75

This defines a patching problem, for which we have a unique solution, say T on F . We

define the connecting map δ by sending (g℘) to T . By the definition of δ, the image

consists of principal homogenous spaces which become trivial over Fξ for all ξ in P ∪ U .

Thus the image of δ is contained in the kernel of the next map.

Now consider a principal homogenous space T over F such that Tξ ∶= T×FFξ is trivial, i.e.,

isomorphic to G over Fξ for every ξ in P∪U . Let φξ be that isomorphism. For every ℘ be

in B lying on U and incident at P , define an isomorphism ψU,P ∶ TU ×FU F℘ → TP ×FP F℘

compatible with the isomorphisms φU ×FU F℘ and φP ×FP F℘. Note that a morphism of

principal homogenous spaces is given by multiplication by an element in G. Therefore,

ψU,P is given by multiplication by some g℘ in G(F℘). This shows that T is in the image

of δ.

Finally, suppose (g℘) is in the kernel of δ. We will show that there exist elements gU and

gP in G(FU) and G(FP ) respectively, such that g℘ = gP g−1
U , for a triple (U,P,℘). Recall

that the isomorphism µU,P ∶ TU ×FU F℘ → TP ×FP F℘ is given by multiplication by g℘.

This patching problem gives rise to the trivial principal homogenous space over F since

(g℘) lies in the kernel of δ. Consider the patching problem Id ∶ GFU ×FU F℘ → GFP ×FP F℘.

This patching problem also gives rise to the trivial principal homogenous space over

F . Therefore the two patching problems are isomorphic, i.e, we have the following

commutative diagram for every triple (U,P,℘):

GFU ×FU F℘ GFP ×FP F℘

TU ×FU F℘ TP ×FP F℘.

Id

gU gP

g℘

The vertical arrows are given by multiplication by elements gU in G(FU) and gP in

G(FP ). Thus one obtains the factorization g℘ = gP g−1
U .

Corollary 3.3.3 (Harbater-Hartmann-Krashen). The kernel of the map

H1(F,G) → ∏
U∈U

H1(FU ,G) × ∏
P ∈P

H1(FP ,G)

is trivial if and only if G satisfies simultaneous factorization.
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Now the question becomes: which groups G satisfy the simultaneous factorization

property? Theorem 3.3.4 provides an answer. It does not cover all examples, but enough

for our purposes. Recall that we say that X/F is a rational variety if there exists an

open subset U of X such that U is isomorphic to an open subset V of some affine space

AnF over F .

Theorem 3.3.4. A connected linear algebraic group G/F that is rational as a variety

satisfies the simultaneous factorization property.

Proof. [HHK09, Theorem 3.2]

Rationality of algebraic groups is a subtle question in general. Since we are interested in

central simple algebras, we would like to know whether PGLn is rational. It is indeed

the case.

Example 3.3.5. 1. Let A/F be a central simple algebra of degree n. We claim that

PGL(A) is rational and connected.

Note that GL(A) as a variety is an open subvariety of An2
given by the equation

NrdA ≠ 0. Thus, GL(A) is rational. Since, PGL(A) is a quotient of GL(A) by

Gm, it is also rational. This also shows that PGL(A) is connected. In particular,

PGLn is also rational and connected.

2. SOn is rational and connected.

We use the well known Cayley parametrization to prove this. The Lie algebra of

SOn is given by n × n skew symmetric matrices. View its Lie algebra as the affine

space An(n−1)/2. Consider the rational map:

An(n−1)/2 ⇢ SOn,

sending a skew symmetric matrix Y to (Id + Y )(Id − Y )−1. One can define its

rational inverse:

SOn ⇢ An(n−1)/2,

sending a matrix Z in SOn to (Z − Id)(Z + Id)−1. Thus SOn is rational. It is

connected since it is the connected component of On.
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Theorem 3.3.6. Let A/F be a degree n central simple algebra. If A⊗F Fξ is split (i.e.,

isomorphic to Mn(Fξ)) for every ξ in P ∪ U , then A is split over F .

Proof. Since PGLn is connected and rational, it satisfies simultaneous factorization by

Theorem 3.3.4. By Corollary 3.3.3, the principal homogenous spaces satisfy a local to

global principle with respect to patches. As A corresponds bijectively to a principal

homogenous space under PGLn by Theorem 2.3.11, it also satisfies a local to global

principle.

There is also a local global principle for homogenous varieties under G/F , i.e., those

varieties X/F for which G(L) acts transitively on X(L) for every L/F . Examples that

we will be especially interested in are generalized Severi-Brauer varieties for PGLn and

quadrics for SOn when n ≥ 3.

Generalized Severi-Brauer varieties are twisted forms of Grassmannians. Let A/F be

a degree n central simple algebra, and let 1 ≤ d ≤ n be an integer. The dth generalized

Severi-Brauer variety SBd(A) is a variety parametrizing right ideals of A of dimension

d ⋅ deg(A) (see [KMRT]).

Theorem 3.3.7. Let X/F be a quasi-projective variety under a rational connected linear

algebraic group G/F . Suppose that X(Fξ) ≠ ∅ for every ξ in P ∪ U . Then X(F ) ≠ ∅.

Proof. Let ℘ be a branch in B. Recall that ℘ determines the pair (U,P ). Let xU be an

element in X(FU) and xP in X(FP ). Since X(FP ) and X(FU) are subsets of X(F℘),

we may view xU and xP as elements in X(F℘). Since G(F℘) acts transitively on X(F℘),

there exists an element g℘ in G(F℘) such that g℘xU = xP . Since G/F is rational and

connected, by Theorem 3.3.4, there exist elements gU in G(FU) and gP in G(FP ) such

that g℘ = gP gU . Consider the elements x′U ∶= gUxU and x′P ∶= g−1
P xP . Note that x′U and

x′P determine the same element in X(F℘) by construction. Denote this element in X(F℘)

by x′℘. Since X is quasi-projective, the rational points x′U , x′P and x′℘ are contained

in an affine open set Spec(A) ⊂X for every triple (U,P,℘). Corresponding to x′U , x′P

and x′℘, we have the ring homomorphisms θU ∶ A → FU , θP ∶ A → FP and θ℘ ∶ A → F℘
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respectively. Note that composing θU and θP with the inclusions FU ↪ F℘ and FP ↪ F℘,

we obtain θ℘. Therefore one obtains the homomorphism θ ∶ A → lim←Ðξ Fξ = F by the

universal property of inverse limits. This determines an F -rational point of X, implying

that X(F ) ≠ ∅.

This important theorem will allow us to obtain a formula similar to (2.17). We will also

be able to compute the u-invariant of function fields of curves over higher local fields.

Corollary 3.3.8. Let X be a quadric of dimension greater than or equal to one. If

X(Fξ) ≠ ∅ for every ξ in P ∪ U , then X(F ) ≠ ∅.

Proof. This follows from Theorem 3.3.7 and the fact that X is a homogenous quasi-

projective (in fact projective) variety under the action of SOn for n ≥ 3.

The next corollary establishes a local global principle for indices of Brauer classes

analogous to (2.17).

Corollary 3.3.9. If α be an element in Br(F ), then

ind(α) = lcmξ∈P∪U(ind(α⊗F Fξ)). (3.7)

Proof. Let dξ ∶= ind(α ⊗ Fξ), and d ∶= lcmξ(dξ). Note first that dξ divides ind(α).

Therefore, d divides ind(α).

Let A be a central simple algebra in the class of α, with deg(A) > d. Let SBd(A) denote

the dth generalized Severi-Brauer variety associated to A. Since dξ divides d, by [KMRT,

Proposition 1.17], SBd(A)(Fξ) ≠ ∅. Since SBd(A) is a projective variety homogenous

under the action of PGL(A), by Theorem 3.3.7, SBd(A)(F ) ≠ ∅. Again by [KMRT,

Proposition 1.17], ind(α) divides d.
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Chapter 4

Two Applications of Patching

4.1 General Strategy

We now turn our attention to computing the Brauer dimension and u-invariant of

semi-global fields. We will obtain this computation by proving local global principles

for indices of Brauer classes, and isotropy of quadratic forms, with respect to discrete

valuations. These two examples illustrate how using field patching one obtains local

global principles with respect to discrete valuations for algebraic structures, in certain

cases.

Let F be a semi-global field. We can think of an algebraic structure over F as an

algebraic structure defined generically on a model X of F . There are finitely many

closed subschemes of X which forms the “bad locus” or the “ramification” of the

structure. Often the general strategy to obtain local-global principles with respect to

discrete valuations is:

1. Use resolution of singularities to make the model X regular, and put this “ramifi-

cation” in proper position with the special fiber Xk.

2. Remove the points where this ramification locus meets the special fiber. Proposition

4.1.3 helps in showing that the algebraic structure is “trivial” on FU for suitable

open sets U of the special fiber Xk, if it is trivial on the completions of F with

respect to discrete valuations coming the generic points of Xk.

3. The complement in Xk of the union of open sets from the previous step is a finite

collection of closed points P . Note that for every P in P , FP is the fraction field of

a two dimensional complete regular local ring. Choose a system of parameters for
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this ring along the special fiber and the ramification locus (recall that the special

fiber and the ramification locus are in normal crossing position). Now prove a

local-global principle with respect to the completions in these two directions, and

conclude that the algebraic structure is trivial on FP for every P in P.

4. Putting the previous three steps together, conclude that the algebraic structure is

trivial on F by field patching.

Recall the definition of a normal crossing divisor (see [Liu, Chapter 9, Definition 1.6]).

Definition 4.1.1. Let X be a regular Noetherian scheme. Let D be an effective Cartier

divisor of X . We say that D is a normal crossing divisor on X if for every x in X ,

there exist a system of parameters {f1,⋯, fd} for OX ,x, integers m, r1,⋯, rm ≥ 1 such

that the ideal sheaf O(−D)x at x is given by {f1
r1⋯fmrm}.

In other words the prime divisors in the support of D intersect transversally. We will

state the theorem on embedded resolution of singularities and use it in our applications

and in the next chapter.

Theorem 4.1.2. Let F be a semi-global field, and let X /SpecR be a normal model of

F as in Notation 1(see Chapter 3, section 3.1).

1. There exists a regular scheme Y /SpecR and a birational morphism π ∶ Y →X

which is an isomorphism above every regular point of X , and is obtained by a

finite sequence of blowups and normalizations.

2. Let D be an effective Cartier divisor on X . We can choose Y /SpecR such that

the pullback π∗D is a normal crossing divisor on Y .

Proof. See [Liu, Chapter 9, Theorem 2.26] and [Liu, Chapter 8, Theorem 3.44].

We will apply this theorem to a normal model X and to the support of the divisor given

by the “ramification locus” and the special fiber. Note that π∗D denotes the pullback

of the divisor and not the divisor class of [D] in Pic(X ). Qing Liu (see [Liu, Chapter

7, Definition 1.34] defines the pullback π∗D to be the image of D ∈ H0(X ,K×X /O×X )

under the map K×X /O×X → f∗(K×Y /O×Y ).
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Let F be a semi-global field. The following Lemma allows us to pass from completions

at generic points of the special fiber to fields of the form FU , for some open set U on

the special fiber.

Proposition 4.1.3. Let F be a semi-global field, and let H/F be a variety. Let η be

the generic point of an irreducible component X0 of the special fiber of a normal model

of F . Let Fη be the completion of F at η. If H(Fη) ≠ ∅, then there exists an open affine

set U of X0 which does not meet any other irreducible component of the special fiber,

such that H(FU) ≠ ∅.

The main idea of the proof goes as follows: standard reductions allow us to assume

that the Fη-rational point of H can be regarded as taking values in the completion R̂η

of OX ,η. One then uses Artin approximation to approximate this point by a rational

point lying in a finite étale neighborhood SpecS of OX ,η. Spreading out SpecS, we

may assume the rational point is in an étale neighborhood of some Zariski open SpecA

of X containing η. Since our variety has an S-rational point, and this point is an

approximation to the original R̂η-rational point, we obtain a section of H over the

generic point η, or in other words a section over some open set U of the special fiber of

SpecA. Now using a variant of Hensel’s lemma (see [HHK09, Lemma 4.5]), we can lift

this section to get a R̂U -rational point of H.

4.2 Brauer Dimension Of Semi-global Fields

We now define the ramification locus of Brauer classes, in fact Galois cohomology classes

in general:

Definition 4.2.1. Let ` be a prime not equal to char(k) in the situation of Notation 1

in Chapter 3, Section 3.1. Let B be a finite subset of Hn(F,µ⊗m` ). Let X be a normal

model of F . Note that every prime divisor D of X gives rise to a discrete valuation of

F , which we denote by vD.

We define the ramification locus of B on X to be the union of the supports of prime

divisors D on X for which ∂vD(α) ≠ 0 for some α in B. We will denote it by Ram(B),
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and sometimes abusively refer to it as the ramification divisor.

We say that the ramification of B is split (or B is unramified) if ∂v(α) = 0 for all α in

B and for every discrete valuation v in ΩF which comes from a codimension one point

on some regular projective model Y of F .

We will need the following theorem, due to Saltman, to describe Brauer classes on a two

dimensional complete regular local ring. It can be seen as a two dimensional analogue of

the Witt exact sequence. Saltman shows this for any excellent two dimensional regular

local ring. We will only apply it to complete rings.

Theorem 4.2.2. Let R be a two dimensional regular local ring with fraction field F

and residue field k. Assume that char(k) is not equal to `. Then the following sequence

is exact:

0→ `Br(R) → `Br(F )
⊕∂pÐ→ ⊕

ht(p)=1

H1(k(p),Z/`Z) → H0(k,µ−1
` ) → 0.

Proof. See [Salt2, Theorem 5.2].

Remark 4.2.3. If R is a complete two dimensional regular local ring, then by [A-G,

Corollary 6.2], we have: `Br(R) ≅ `Br(k). Thus we may replace `Br(R) by `Br(k) in

the above sequence when R is complete.

Note that the map ⊕∂p is the direct sum of ramification maps. These maps factor

through the completions of F at height one primes p followed by the ramification map

of the Witt exact sequence. Let π be a prime generating a height one prime ideal of R.

Assuming that µ` is contained in F , we can identify the Galois modules Z/`Z and µ`,

and therefore H1(k(π),Z/`Z) ≅ k(π)×/(k(π)×)`. Now consider the cyclic algebra (u,π)

for u in R×
π. Then ∂π(u,π) = (u) ∈ H1(k(π),Z/`Z).

Proposition 4.2.4. Let R be a complete two dimensional regular local ring with fraction

field F and residue field k, and let ` be a prime not equal to char(k). Let {π, δ} form a

regular system of parameters of R. We will assume that the `th roots of unity µ`, are

contained in k. If α is a class in `Br(F ), unramified on R except possibly at π and

δ, then there exist units u, v in R×, an integer s, and the lift α0 of a Brauer class in
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`Br(k) to `Br(F ), such that

α = α0 + (u,π) + (v, δ) + s(π, δ).

Proof. Set θπ ∶= ∂π(α) and θδ ∶= ∂δ(α). Note that θπ is an element in k(π)×/(k(π)×)` and

θδ an element in k(δ)×/(k(δ)×)`. Note also that k(π) and k(δ) are complete discretely

valued fields with respective parameters δ and π. Since α is unramified everywhere

except possibly at π and δ, we have the following equality: ∂δ(θπ) + ∂π(θδ) = 0 by

Theorem 4.2.2. Define s ∶= ∂δ(θπ) = −∂π(θδ). Note that s lies in H0(k,µ−1
` ) = Z/`Z.

We have: θπ = uδs and θδ = vπ−s. Define β ∶= (u,π) + (v, δ) + s(π, δ) and α0 ∶= α − β.

Now ∂π(α0) = θπ(uδ
s)−1 = (1) and ∂δ(α0) = θδ(vπ−s)−1 = (1). If ρ generates any other

height one prime of R, then ∂ρ(α0) = 0. Thus α0 comes from a unique Brauer class in

`Br(k).

The next proposition helps us in computing the indices of Brauer classes with ramification

in proper position on a two dimensional complete regular local ring. This proposition

together with Proposition 4.1.3 will help us in obtaining a local global principle for

indices of Brauer classes.

Proposition 4.2.5. Let R be a complete two dimensional regular local ring with fraction

field F , residue field k and system of parameters {π, δ}. Let Fv be the completion of

F , either at π or δ. Let ` be a prime not equal to char(k). We will assume that µ` is

contained in k. Let α be a class in `Br(F ). If α is unramified on R, except possibly at

π or δ, then ind(α) = ind(α⊗ Fv).

Proof. If α is only ramified at one of π or δ, say π, we may write α = α0 + (u,π). By

Proposition 2.4.28, we have:

ind(α⊗ Fπ) = ind(α0 ⊗ k(π))[k(π)(
√̀
u) ∶ k(π)]

= ind(α0 ⊗ Fπ(
√̀
u))[Fπ(

√̀
u) ∶ Fπ].

Since α0 is unramified on F , its reduction on k(π) is also unramified and therefore

ind(α0 ⊗ Fπ(
√̀
u)) = ind(α0 ⊗ F (

√̀
u)). Note that ind(α) divides ind(α0)[F (

√̀
u) ∶ F ].
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Thus, ind(α) divides ind(α ⊗ Fπ). Since ind(α ⊗ Fπ) divides ind(α), we get that

ind(α) = ind(α⊗ Fπ).

Now suppose α is ramified at both π and δ. Then by Proposition 4.2.4, we have the

following presentation: α = α0 + (u,π) + (v, δ) + (πs, δ) = α0 + (u,π) + (vπs, δ). Set

α′0 ∶= α0 + (u,π). Note that α′0 is unramified on δ. Applying Proposition 2.4.28 to

α⊗ Fδ = α′0 + (vπs, δ), we get that:

ind(α⊗ Fδ) = ind(α′0 ⊗ k(δ)(
√̀
vπs))[k(δ)(

√̀
vπs) ∶ k(δ)]

= ind(α′0 ⊗ Fδ(
√̀
vπs))[Fδ(

√̀
vπs) ∶ Fδ]

= ind(α′0 ⊗ F (
√̀
vπs))[F (

√̀
vπs) ∶ F ].

Set π′ ∶= vπ. Now notice that α′0⊗k(δ)(
√̀
vπs) = α0−(u, v)+(u,π′). Set α′′0 ∶= α0−(u, v).

Note that α′′0 is unramified on the complete discretely valued field k(δ)(
√̀
vπs) whose

residue field is k. Thus ind(α′0⊗k(δ)(
√̀
vπs)) = ind(α′′0 ⊗k(

√̀
u))[k(

√̀
u) ∶ k]. Therefore,

we obtain:

ind(α⊗ Fδ) = ind(α′′0 ⊗ k(
√̀
u))[k(

√̀
u) ∶ k][k(δ)(

√̀
vπs) ∶ k(δ)]

= ind(α′′0 ⊗ k(
√̀
u))[Fδ(

√̀
vπs) ∶ Fδ][Fδ(

√̀
vπs,

√̀
u) ∶ Fδ(

√̀
vπs)]

= ind(α′′0 ⊗ k(
√̀
u))[Fδ(

√̀
vπs,

√̀
u) ∶ Fδ]

= ind(α′′0 ⊗ k(
√̀
u))[F (

√̀
vπs,

√̀
u) ∶ F ].

Note that ind(α) divides ind(α′′0 ⊗k(
√̀
u))[F (

√̀
vπs,

√̀
u) ∶ F ], and thus divides ind(α⊗

Fδ). Since ind(α⊗ Fδ) divides ind(α), we get that ind(α) = ind(α⊗ Fδ).

We are finally in a position to prove a local global principle for Brauer classes of prime

period `. This was first obtained by Reddy-Suresh in [Re-Su].

Theorem 4.2.6 (Suresh, Reddy). Let F be a semi-global field with residue field k.

Assume that ` is a prime not equal to char(k), and that F contains the group of `th

roots of unity. If α is a Brauer class in `Br(F ), then there exists a discrete valuation v

coming from a codimension one point of some regular model of F such that

ind(α) = ind(α⊗ Fv).
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Proof. Using Theorem 4.1.2, we may choose a regular projective model X /SpecR such

that the union of the ramification divisor Ram(α) and the support of the special fiber

of X is in normal crossing position.

Let {X1,⋯,Xk} be the irreducible components of the special fiber of Xk with respective

generic points {η1,⋯, ηk}. Let d ∶= lcmv{ind(α⊗ Fv)}, and let A/F be a central simple

algebra in the Brauer class of α with d < deg(A). We will denote the completion of

F at the codimension one point ηi by Fηi . Since ind(α ⊗ Fηi) divides d, by [KMRT,

Proposition 1.17], the dth generalized Severi-Brauer variety has an Fηi-rational point,

i.e., SBd(A)(Fηi) ≠ ∅. By Proposition 4.1.3, there exists an affine open set Ui of Xi

which does not meet any other irreducible component Xi such that SBd(A)(FUi) ≠ ∅.

Let U ′
i be the complement in Ui of the set of closed points where horizontal components

(i.e., components flat over SpecR) of Ram(α) intersects Ui. Since U ′
i ⊆ Ui, observe

that FUi ⊆ FU ′

i
. Since SBd(A)(FUi) ≠ ∅, we also have SBd(A)(FU ′

i
) ≠ ∅. Therefore

ind(A⊗ FU ′

i
) divides d.

Let P be the complement of ⋃Ui in the special fiber Xk including the points where

the ramification divisor of α meets the special fiber. Let P be a point in P. If P

does not lie in the ramification locus of α, then α is unramified on FP . Suppose that

π cuts out one component of the special fiber, say Xi. Note that the completion of

FP at π, denoted by FP,π contains Fηi . Since, SBd(A)(Fηi) ≠ ∅, SBd(A)(FP,π) ≠ ∅.

Therefore, ind(A⊗ FP,π) divides d. By Proposition 4.2.5, ind(A⊗ FP ) divides d. Thus

SBd(A)(FP ) ≠ ∅.

If P lies on the ramification locus of α, recall that the ramification of α on R̂P , forms a

normal crossing divisor with the special fiber. Choose a system of parameters {π, δ} for

R̂P , where π cuts out a component Xi of the special fiber. By an argument similar to the

one in the previous paragraph, SBd(A)(FP,π) ≠ ∅ and SBd(A)(FP,δ) ≠ ∅. Therefore by

Proposition 4.2.5, ind(A⊗ FP ) divides d.

Finally, using Theorem 3.3.9, we conclude that ind(α) divides d. Since α has prime

period `, its index is a power of `. Therefore, there exists a discrete valuation v such that

ind(α⊗ Fv) = d. Since ind(α⊗ Fv) divides ind(α), we conclude that ind(α) = d.
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The proof of the theorem above is a slight modification of that of Reddy-Suresh. The

basic idea however remains the same. As a corollary, we can provide the following upper

bound to the Brauer `-dimension of semi-global fields, first obtained in [HHK09].

Corollary 4.2.7 (Harbater-Hartmann-Krashen). Let F be a semi-global field with

residue field k with char(k) not equaling `. If Brd`(k) ≤ d and Brd`(k(t)) ≤ d + 1, then

Brd`(F ) ≤ d + 2.

Proof. By Lemma 2.4.8, it is enough to find an upper bound for the index of a Brauer

class having period `. We will first assume that µ` ⊂ F in order to apply Theorem 4.2.6.

Let α be a Brauer class of period `. Let v be a discrete valuation corresponding to a

codimension one point of a regular projective model X , where X is as in the proof

of Theorem 4.2.6, and such that ind(α) = ind(α ⊗ Fv). Let πv be a parameter of Fv.

Note that the residue field of Fv is either a finite extension of K, if the codimension

one point gives a divisor flat over SpecR (horizontal), or a finite extension of k(t) if the

codimension one point gives a divisor on the special fiber (vertical).

If the residue field is a finite extension of k(t), then α ⊗ Fv = α0 + (u,πv). Therefore,

ind(α) = ind(α ⊗ k(π)(
√̀
u)) ⋅ ` by Proposition 2.4.28. Therefore, ind(α) ≤ `d+2. If

the residue field is a finite extension of K, we have α = α0 + (u,πv). Thus ind(α) =

ind(α0 ⊗ k(π)(
√̀
u)) ⋅ `. Note that k(π) is also a complete discretely valued field, with

residue field a finite extension of k. Let π′ be a parameter of k(π)(
√̀
u). We may thus

write α0 as α0 = α′0 + (v, π′). Therefore

ind(α0 ⊗ k(π)(
√̀
u)) = ind(α′0 ⊗ k(π)(

√̀
u)(

√̀
v)) ⋅ ` ≤ `d+1.

Hence it follows that ind(α) ≤ `d+2. Since ind(α) = ind(α ⊗ Fv), ind(α) ≤ `d+2. This

shows that Brd`(F ) ≤ d + 2.

We will now remove the assumption on the `th roots of unity. Let F be a semi-global

field not containing µ`, and α a class in `Br(F ). Let F ′ ∶= F (µ`). By what we have

proved in the previous paragraph, ind(α⊗F ′) ≤ `d+2. Thus there exists a field extension

L/F ′ of degree dividing `d+2 which splits α ⊗ F ′. Recall that the degree of F ′/F is
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coprime to `. Thus, ind(α) divides [F ′ ∶ F ]`d+2. Since α has period `, ind(α) is also a

power of `. Therefore, ind(α) divides `d+2. This shows the inequality: Brd`(F ) ≤ d + 2,

in general.

Definition 4.2.8. We say that K is a 0-local field, if it is either a finite field, or a finite

extension of a complete discretely valued field with separably closed residue field.

We say that K is an m-local field (for m > 0) if it is a complete discretely valued field

with residue field an (m − 1)-local field. Thus there is a sequence of n-local fields for

n <m, associated to K.

We will denote the corresponding 0-local field by k0 and call it the smallest residue field.

If F is the function field of a curve over a finite field, then by Corollary 2.4.34 Brd`(F ) = 1.

When F is the function field of a curve over a complete discretely valued field with

separably closed residue field, one sees by Corollary 4.2.7 that Brd`(F ) ≤ 2. This is

because the Brauer group of the residue field k is trivial, and so is the Brauer group of

any finite extension of k(t). We may improve this bound to the following:

Corollary 4.2.9. Let F be the function field of a curve over a complete discretely valued

field K with separably closed residue field k, and ` be a prime co-prime to char(k). We

have the following upper bound for the Brauer `-dimension:

Brd`(F ) ≤ 1.

Proof. By Lemma 2.4.8, it suffices to show that the index of Brauer classes with period

dividing ` is at most `. Let α be a class in `Br(F ). Let v be a discrete valuation of F

coming from a codimension one point of some regular projective model of F . Note that

the residue field of v is either a function field of a curve over k, or a finite extension

of K. Thus the Brauer group of the residue field of v is trivial. By the Witt exact

sequence (see Theorem 2.4.24), α⊗ Fv may be identified with a character of the residue

field k(v) of period dividing `. Splitting α ⊗ Fv therefore amounts to splitting this

character. Since a non-trivial period ` character can be split by an extension of degree `,

one sees that ind(α⊗ Fv) ≤ `. By Theorem 4.2.6, it follows that ind(α) ≤ `, and hence
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Brd`(F ) ≤ 1.

This Corollary, together with Corollary 2.4.34 shows that if F is the function field of a

curve over a 0-local field, then Brd`(F ) ≤ 1.

Corollary 4.2.10. Let F be the function field of a curve over an m-local field, and `

be a prime not equal to the characteristic of the smallest residue field. We have the

following upper bound for the Brauer `-dimension:

Brd`(F ) ≤m + 1.

Proof. We will show this by induction on m. If m = 0, note that Brd`(F ) ≤ 1 by

Corollary 4.2.9 and Corollary 2.4.34.

If m ≥ 1, the residue field k is an (m − 1) local field. Repeatedly using Proposition

2.4.28, one can show that Brd`(k) ≤ m − 1. Since k(t) is a semi-global field, by the

induction hypothesis, Brd`(k(t)) ≤m. Therefore by Corollary 4.2.7, we conclude that

Brd`(F ) ≤m + 1.

The above corollary recovers the result proved by Saltman [Salt], that Br`(Qp(t)) ≤ 2

for ` ≠ p. Harbater-Hartmann-Krashen ([HHK09]) directly show this using Corollary

3.3.6.

4.3 Local Global Principle For Quadratic Forms

We now turn our attention to obtain a local-global principle similar to Theorem 4.2.6

for isotropy of quadratic forms over semi-global fields. This was first obtained by

Colliot-Thélène, Parimala and Suresh in [CT-Par-Su]. The general strategy remains the

same as outlined in the introduction of the chapter: first, put ramification in proper

position. Then show that there exist affine open sets U of the special fiber such that

the quadratic form becomes isotropic over FU using Proposition 4.1.3. Then establish

isotropy over FP for the remaining closed points P . Now using Corollary 3.3.8, conclude

that the form is isotropic over F . This will enable us to compute the u-invariant, a

result first obtained by Harbater-Hartmann-Krashen in [HHK09].
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We first need an appropriate definition of ramification locus of quadratic forms. This

will turn out to be easy. As we mention above, the ramification locus of an algebraic

structure is the “bad locus” where the algebraic structure is not defined. For example:

consider the quadratic form over Q: q = ⟨1,8,3,24⟩. This form is defined on SpecZ

almost everywhere, i.e., we can specialize the form to a non-degenerate form at almost

all primes in Z except at 2 and 3. Thus the ramification locus of q on SpecZ should be

the union of the support of the divisors (2) and (3). With this example in mind, we

define the ramification divisor of a quadratic form as follows:

Definition 4.3.1. Let F be a semi-global field with residue field k. Let X be a

normal projective model for F . Suppose that char(k) ≠ 2. Let q = ⟨a1,⋯, an⟩ be a

non-degenerate quadratic form. We define the ramification divisor or ramification locus

of q to be the union of the supports of prime divisors D on X such that vD(ai) is odd

for some i. We will denote it by Ram(q).

Theorem 4.3.2 (Colliot-Thélène, Parimala, Suresh). Let F be a semi-global field with

residue field k, and char(k) ≠ 2. Let q/F be a quadratic form of dimension ≥ 3. If q⊗Fv

is isotropic for every divisorial discrete valuation v of F , then q/F is isotropic.

Proof. Let X be a regular projective model of F . Using Theorem 4.1.2, one can replace

X by another regular model such that the union of the support of the special fiber and

Ram(q) are in normal crossing position. We will abuse notation and also denote this

new regular model by X .

Let {X1,⋯,Xk} be the irreducible components of the special fiber Xk with respective

generic points {η1,⋯, ηk}. Let Fηi be the completion of F at ηi. By hypothesis, q ⊗ Fηi

is isotropic. Thus by Proposition 4.1.3, there exist affine open sets Ui of Xi such that

q ⊗ FUi is isotropic for every i = 1,⋯, k, and Ui does not meet any other irreducible

component of Xk. Let U ′
i be the complement in Ui of the closed points where horizontal

components of Ram(q) intersects Ui. Observe that FUi ⊆ FU ′

i
. Since q ⊗FUi is isotropic,

so is q ⊗ FU ′

i
.

Let P be the complement of ⋃U ′
i in the special fiber Xk, and let P be in P. Suppose
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that P does not lie on the ramification locus of q. In this case, we may write q ⊗ FP =

⟨u1,⋯, un⟩, where ui lies in R̂P
×

for all i = 1,⋯, n. Let {π, δ} be a regular system of

parameters for R̂P where π cuts out one component of the special fiber, say Xi. Note

that Fηi ⊂ FP,π. Since q ⊗Fηi is isotropic, q ⊗FP,π is also isotropic. Let R̂P,π denote the

completion of the localization of R̂P at π; it is the ring of integers of FP,π. Since q⊗FP,π

is isotropic, so is its reduction q ⊗ k(π). Note that k(π) is a complete discretely valued

field with residue field k(P ). Thus again, the reduction of q ⊗ k(π) with respect to its

parameter δ is isotropic. This shows that q ⊗ k(P ) is isotropic. By Hensel’s lemma, it

follows that q ⊗ FP is isotropic.

Now suppose that P lies on only one irreducible component of the ramification locus.

Choose a regular system of parameters {π, δ} for R̂P such that π cuts out that component

of the ramification locus. One may therefore write q⊗FP = ⟨u1,⋯, um⟩ ⊥ π⟨um+1,⋯, un⟩.

Let Fπ denote the completion of F at the codimension one point given by the component

of the ramification locus. Observe that Fπ ⊂ FP,π. Since, q ⊗ Fπ is isotropic, so is

q ⊗ FP,π. Therefore by Springer’s theorem (see Proposition 2.5.6), either the reduction

of ⟨u1,⋯, um⟩ is isotropic on its residue field k(π) or the reduction of ⟨um+1,⋯, un⟩ is

isotropic on k(π). Again, k(π) is a complete discretely valued field with residue field

k(P ). Therefore the reduction of either of those forms is isotropic over k(P ). Thus by

Hensel’s lemma, q is isotropic over FP .

Let P lie on two irreducible components of the ramification locus. Choose a regular

system of parameters {π, δ} for R̂P such that π cuts out one component and δ cuts out

the other component on R̂P . We may write q = q1 ⊥ πq2 ⊥ δq3 ⊥ πδq4, where the entries

of qi are units in R̂P . Let Fπ and Fδ denote the completions of F at the respective

components. Note since q ⊗ FP,π is isotropic, the reduction of q1 ⊥ δq3 or the reduction

of q2 ⊥ δq4 is isotropic. As before, the residue field is a complete discretely valued field

with residue field k and parameter δ. Therefore the reduction of one of q1, q2, q3 or q4

is isotropic on k(P ). Hensel’s lemma then shows that q ⊗ FP is isotropic.

Finally, using Corollary 3.3.8, we conclude that q/F is isotropic.
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We are now in a position to compute the u-invariant of function fields of curves over

m-local fields.

Corollary 4.3.3 (Harbater-Hartmann-Krashen). Let F be the function field of a curve

over an m-local field with characteristic of the smallest residue field unequal to 2. The

u-invariant of F satisfies:

u(F ) ≤ 2m+2.

Proof. Let q/F be a quadratic form of dimension greater than 2m+2. Let v be a divisorial

discrete valuation of F . Note that the completion of F at v is an m + 1 local field.

We will show that q ⊗ Fv is isotropic by induction on m. For the base case m = 0: Fv

is a 1-local field, with residue field a 0-local field. Since 0-local fields are C1 fields,

their u-invariants are equal to 2. Let πv denote the parameter of Fv. We may write

q ⊗ Fv = q1 ⊥ πvq2, where the entries of q1 and q2 are units in the ring of integers. Since

the dimension of q ⊗ Fv is greater than 4, the dimension of either q1 is greater than 2,

or the dimension of q2 is greater than 2. Thus the reduction of q1 or q2 is isotropic. By

Springer’s theorem, q ⊗ Fv is isotropic for every divisorial discrete valuation v. Thus by

Theorem 4.3.2, q/F is isotropic.

When m ≥ 1: Fv is an (m + 1)-local field with residue field an m-local field. We may

write q ⊗Fv = q1 ⊥ πvq2, where the entries of q1 and q2 are units. Since the dimension of

q ⊗ Fv is greater than 2m+1, either the dimension of the reduction of q1 is greater than

2m, or the reduction of q2 is greater than 2m. By the induction hypothesis, either of

those reductions is isotropic. Therefore q ⊗ Fv is isotropic for every divisorial discrete

valuation v. Again by Theorem 4.3.2, q/F is isotropic.

The u-invariant of function fields of curves over a p-adic field (denoted by F ) was

first computed by Parimala-Suresh (see [Pa-Su1] and [Pa-Su2]), thereby settling a long

standing question. They used the results of Saltman to show that every element in

H3(F,Z/`Z) is a symbol, and obtain the computation of the u-invariant using that.

Their techniques do not obviously generalize to the case of function fields over higher

local fields. Using field patching we can not only recover their result, but also obtain a
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local-global principle for isotropy of quadratic forms.
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Chapter 5

Generalized Brauer Dimension

5.1 Introduction

Over global fields, we can simultaneously split a finite collection of Brauer classes of

prime period ` by making a degree ` extension. To see this, all we need to do is split

the ramification of this finite collection of Brauer classes simultaneously as in the proof

of Theorem 2.4.34 for function fields of curves over finite fields, and Theorem 2.4.40 for

number fields. The Hasse principle for Brauer classes is what makes things work.

Let F be a semi-global field. We might expect that if there is a uniform bound to split

an arbitrary number of Brauer classes over the residue field k and over k(t), there will

be a uniform bound to split an arbitrary collection of Brauer classes simultaneously on

F . This expectation is guided by Theorem 4.2.7. This theorem informs us that some

arithmetic properties of a field k and k(t) transmit to F . If there is such a uniform

bound for simultaneously splitting any finite collection of Brauer classes, we obtain

another arithmetic invariant of semi-global fields. Let us define it formally at this point.

Definition 5.1.1. Let F be a field, and let n be a natural number. Let B be a finite

subset in nBr(F ). The index of B, denoted by ind(B), is the minimum of the degrees

of field extensions L/F such that α⊗L = 0 for every α in B.

The Generalized Brauer n-dimension GBrdn(F ) is the supremum of ind(B) as B ranges

over finite subsets of nBr(L) and L/F ranges over finite degree field extensions.

Remark 5.1.2. 1. We defined the Brauer n-dimension to be the largest exponent

appearing in the index (which is a power of n) rather than the largest index (see

Definition 2.4.6). We do not define the Generalized Brauer n-dimension in this
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way because there is no reason for the index of a finite subset B of nBr(F ) to be

a power of n.

Let us define the index of B somewhat differently: we define the index of B to be

the gcd of degrees of field extensions which split all elements in B. We will denote

this alternative index by ind′(B). If B is a finite subset of nBr(F ), ind′(B) is

indeed a power of n. While ind′(B) divides ind(B), they need not be equal. Note

that ind′(B) equals the minimum of degrees of effective 0-cycles on the variety

∏α∈B SB(Dα), i.e., the product of Severi Brauer varieties of division algebras

associated to Brauer classes in B, whereas ind(B) is the minimum of degrees of

closed points in ∏α∈B SB(Dα). The question whether ind(B) = ind′(B) has been

asked by Totaro in a more general context, namely for principal homogenous spaces

under connected linear algebraic groups. (see [Tot]). More precisely, Totaro asked

whether the existence of an effective 0-cycle of degree dividing d on a principal

homogenous space implies the existence of a (étale) closed point of degree dividing

d. We now know that this is not true in general (see [GS-S]). We still however do

not know whether Totaro’s question has an affirmative answer for ∏α SB(Dα).

2. As we will see later, computing ind(B) is a difficult problem. The present state of

our understanding only allows us to obtain a uniform upper bound for the index of

any finite subset B over semi-global fields. Since ind′(B) ≤ ind(B), this uniform

upper-bound for ind(B) also provides us with an upper-bound for ind′(B).

As we mention in the beginning of this section, when F is a global field, the same

argument that shows that Brd`(F ) = 1 also shows that GBrd`(F ) = `. In other words,

there exists a degree ` extension which splits any finite collection of Brauer classes in

the `-torsion part of the Brauer group of F simultaneously. This begs the question

whether splitting a single Brauer class is as hard as splitting any finite collection of

Brauer classes, at least over nice fields. If that were true, we would have the following:

GBrdn(F ) = nBrdn(F ).

However the following proposition tells us this need not be true in general.
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Proposition 5.1.3. Let F = Qp((t)), with p ≠ 2. Consider the set of nontrivial

quaternion algebras B = {(u, p), (p, t), (u, t)}, where u is a unit in Zp. Then Brd2(F ) =

1, but there does not exist a quadratic field extension splitting all the classes in B

simultaneously, i.e., GBrd2(F ) ≥ 4.

Proof. We will first show that Brd2(F ) = 1. Let α be an element in 2 Br(F ). Using the

Witt exact sequence (see Theorem 2.4.24), one can write α = (u, p) + (χ, t) or α = (χ, t)

for some Z/2 character of the Galois group of Qp. Note that such characters uniquely

determine a square class in Q×
p . If α = (χ, t), clearly there is a quadratic extension

splitting it. If χ corresponds to the square classes (u) or (p), α = (u, pt) or α = (ut, p).

In either case, there exists a quadratic extension splitting α. Thus, Br2(F ) = 1.

Suppose that L/F is a quadratic extension splitting all elements of B. There are only

eight square classes in F : {1, u, p, t, up, pt, ut, upt}. Therefore L is generated by the

square root of one of these non-trivial square classes. Note that F (
√
u) does not split

(p, t), because F (
√
u)/F is unramified, with residue field extension Qp(

√
u)/Qp. Thus

∂t(p, t) = (p) is a non-square in the residue field of F (
√
u). Note also that F (√p) does

not split (u, t) by a similar reasoning. Third, F (
√
t)/F does not split (u, p), because

(u, p) is an unramified Brauer class of F (
√
t). The residue field of F (

√
t) is Qp, and

the class (u, p) is non-zero in 2 Br(Qp).

F (√up)/F does not split (p, t). Note that F (√up)/F is unramified with residue field

extension Qp(
√
up)/Qp. Further, ∂t(p, t) = (p) is a non-square in Qp(

√
up). Observe

also that F (
√
pt)/F does not split (u, p), because (u, p) is unramified on F (

√
pt), and

F (
√
pt)/F is totally ramified and hence has Qp as its residue field. Since (u, p) is non-

zero in 2 Br(Qp), it follows that (u, p) ⊗F F (
√
pt) is non-split. By a similar reasoning,

one can show also that F (
√
ut)/F does not split (p, t), and F (

√
upt)/F does not split

(u, p).

Remark 5.1.4. There is a better example of the phenomena occurring in the proposition

above. When F = C(x, y), Chapman and Tignol in [C-Tig] show that the set of quaternion

algebras {(x, y), (x, y+1), (y, x+1), (y, xy+1)} is not split by a quadratic field extension
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of F . However since F is a C2 field (see Theorem 2.4.11), it has u-invariant equal to 4.

Thus F does not admit Brauer classes of index greater than 2. Thus Brd2(F ) = 1, but

GBrd2(F ) ≥ 4.

Proposition 5.1.3 and the above remark show that the Generalized Brauer `-dimension

is another arithmetic invariant, and one can therefore ask a more general version of

Question 1 (see Subsection 2.4.1):

Question 2. Let F be the function field of a variety over either an algebraically closed

field, finite field, non-archimedean local field or a global field (any reasonably “nice”

field). Is GBrdn(F ) finite? If it is finite, compute GBrdn(F ).

For most of these nice fields, even finiteness is not known. Even when we know what

the Brauer dimension is, in some cases, there are no known upper bounds for the

Generalized Brauer dimension. For example, Lieblich has shown that when F = Fp(x, y),

Brd`(F ) ≤ 2 (see [Lie]). However we do not even know if GBrd`(F ) is finite. We also

do not know if GBrd`(C(x, y)) is finite.

The most hopeful case in tackling Question 2 is when F is a semi-global field. In [Pa-Su3],

Parimala-Suresh call the Generalized Brauer `-dimension “(2, `)-uniform bound”. Their

goal is to show finiteness of the u-invariant, in the mixed characteristic 2 situation. Along

the way, they obtain the following upper bound for the Generalized Brauer `-dimension

of a semi-global field.

Theorem 5.1.5 (Parimala-Suresh). Let F be a semi-global field with residue field k

such that char(k) ≠ `. We have the following upper bound for the Generalized Brauer

`-dimension.

GBrd`(F ) ≤ `3[GBrd`(k(t))]![GBrd`(k)]!

While this shows finiteness of GBrd`(F ) for a nice semi-global field, the bound seems

far from optimal.

To answer Question 2 for global fields, one uses the local-global principle for Brauer

classes. While we do have a local-global principle for Brauer classes on semi-global fields,

and we can split them locally at every completion by making a field extension there,
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we may not be able to put them together to get a global extension. This is because

we might have to make infinitely many local extensions where the Brauer classes are

non-trivial, and may not be able to approximate all of them simultaneously to get an

extension of the semi-global field.

Another approach could be to obtain a statement similar to Theorem 3.3.9 for index

of a finite collection of Brauer classes. The index of a Brauer class is detected by an

appropriate generalized Severi-Brauer variety of a central simple algebra in the Brauer

class: i.e., ind(α) divides d if and only if SBd(A)(F ) ≠ ∅ for A in the Brauer class

of α. These varieties are homogenous under the action of a rational, connected linear

algebraic group, and therefore satisfy a local global principle with respect to patches.

Let B be a finite subset of `Br(F ). Suppose that there exists a variety X/F which

is index detecting in the following sense: Xd(F ) ≠ ∅ if and only if there exists a field

extension of degree dividing d which splits all α in B. If further, X is homogenous under

the action of a connected linear algebraic group, that would make it easier to compute

ind(B). We do not know if there exists such a variety. While one could construct an

index detecting variety, it is not at all clear if it is homogenous.

The most promising approach is first to split ramification. Let us consider the case of

F =K(t), where K is a complete discretely valued field with residue field k. Let B be a

finite subset in `Br(F ). Let ΩF /K be the set of discrete valuations trivial on K. Recall

that they correspond to codimension one points on P1
K . The ramification locus of B

consists of a finite collection of points on P1
K . It suffices to make a degree ` extension

L/K(t) to split the ramification. Taking the normalization of P1
K in L, one obtains a

curve C/K which possibly has genus g > 1. Thus all Brauer class in B are unramified

with respect to the valuations trivial on K on this curve C/K. One has a “Fadeev like”

exact sequence (see Theorem 2.4.31) for C/K, but the first map need not be injective.

Using the Hochschild-Serre spectral sequence, one can uniquely associate to each class

α in B an element in Br(K) ⊕H1(K,Pic0(C)). There are known bounds for indices of

principal homogenous spaces under Jacobian varieties over certain fields K (see [Clark]),

but they depend on the genus of C, which in turn depends upon the number of places
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where B is ramified. This is far from optimal. For the same reason, this strategy does

not work for computing the Brauer dimension of function fields of curves over number

fields.

Splitting ramification with respect to valuations trivial on the field of constants is thus

clearly not enough. On the other hand, if we also split ramification with respect to

valuations coming from the parameter of R (recall Notation 1 from Section 3.1), we

might hope that this should make it simpler to split the Brauer classes further. In other

words, we should split the ramification on a two dimensional model of F . Clearing out

the ramification on a two dimensional model allows us to specialize the Brauer classes

on the special fiber. The function fields of curves in the special fiber are fields of lower

arithmetic complexity. For example, the function field of the special fiber of P1
Zp is Fp(t)

where we know what the Brauer dimension is. Saltman uses this idea to compute the

Brauer dimension of function fields of p-adic curves.

5.2 Splitting Ramification

We will start by gathering some evidence which makes us more confident about the

approach outlined in the previous paragraph.

Theorem 5.2.1 (Grothendieck). Let F be the function field of a curve over a p-adic

field, and α be an element in Br(F ) of period coprime to p. If α is unramified (see

Definition 4.2.1), then α = 0.

Proof. Let X be a regular projective model of F . Let {X1,⋯,Xk} be the irreducible

components of the special fiber Xk. We may also assume that each Xi is a regular curve

over the residue field k. Let {ηi,⋯, ηk} denote the corresponding generic points, and

let Fηi be the completion of F at ηi. Since α ⊗ Fηi is unramified, by the Witt exact

sequence (see Theorem 2.4.24) it follows that α ⊗ Fηi restricts uniquely to a Brauer

class on the residue field k(Xi) of Fηi . Denote this restriction by αi. Note that k(Xi)

is the function field of a curve over a finite field. We will show that αi = 0 by showing

that it is unramified on the curve Xi. Let P be a closed point of Xi. Note that α⊗ FP
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is unramified on R̂P . Thus by Theorem 4.2.2, α comes from a unique Brauer class

on the residue field k(P ). But since k(P ) is a finite field, α ⊗ FP = 0. Let π be the

parameter defining one irreducible component Xi of Xk containing P . Let FP,π denote

the completion of FP at π. Note that the residue field k(π) is the completion of k(Xi).

Since α⊗FP,π = 0, we conclude that αi⊗k(π) = 0. Therefore by Theorem 2.16, it follows

that αi = 0. This also means that α⊗Fηi = 0. By Proposition 4.1.3, there exists an affine

open set Ui which does not meet any other irreducible component such that α⊗FUi = 0.

Let P be the complement of ⋃Ui in Xk. If P is any closed point on Xk we have seen

above that α⊗ FP = 0. In particular, for every P in P, α⊗ FP = 0. By Theorem 3.3.6,

we conclude that α = 0.

Therefore if we split the ramification of a Brauer class or even a finite collection of Brauer

classes on regular two dimensional models of function fields of curves over p-adic fields,

we would be done. We do that first by having a local description of the ramification

locus by two functions. We first need the following lemma. This was proved by [AAIKL]

to split the ramification in a controlled manner. The original idea goes back to Pirutka

(See [Pir]).

Lemma 5.2.2. Let X be a two dimensional regular noetherian scheme. Let D be

a normal crossing divisor on X . Then there exists a sequence of blowups at closed

points f ∶ Y →X such that f−1(D) can be expressed as the union of two regular, not

necessarily connected divisors.

Proof. Let {C1,⋯,Cn} be the prime divisors in the support of D. By blowing up if

necessary, we may assume that each Ci is regular. Define a graph Γ with vertices vi

corresponding to Ci; an edge exists between two vertices vi and vj if Ci and Cj intersect.

Since X is two dimensional and D is normal crossing, no three curves Ci,Cj ,Ck intersect

at a point. Therefore each graph gives rise to a unique configuration of D. The partition

of D into D1 and D2 can be translated into a coloring problem for Γ: we want to color

the vertices in two different colors, say blue and green, such that no two vertices which

share an edge have the same color. We could then define D1 as the union of the divisors
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corresponding to blue and D2 as the union of divisors corresponding to green. Since

no irreducible component of Di intersect any other irreducible component, and each

component is regular, both D1 and D2 are regular since they are the disjoint union of

regular curves.

If every connected component of Γ is a tree, we can alternately color the vertices blue

and green, and we are done.

Suppose that every connected component of Γ consists of only even cycles (i.e., cycles

with even number of vertices), then we can alternately color each vertex blue and green

and obtain a graph with no two adjacent vertices having the same color, and we are

done.

Note that blowing up at an intersection of two given divisors creates a new divisor

between them. That is, we obtain a new configuration of the divisors, namely the

original divisors and the exceptional curve. Furthermore, the two intersecting divisors

now intersect on this exceptional curve (recall that the divisor is normal-crossing). The

new graph of this configuration is obtained by adding an additional vertex between the

two adjacent edges.

Now suppose that there is an odd cycle in a connected component of Γ. All we do is

blow up at any intersecting point and introduce an additional vertex. If we do this

process whenever we have an odd cycle, the new graph obtained in this manner will

only have even cycles. Thus we can alternately color each vertex and obtain the desired

coloring. Therefore there is a sequence of blowups such that f ∶ Y → X such that

f−1(D) =D1⋃D2, with D1 and D2 regular.

The authors in [AAIKL] in fact show that on any d dimensional regular scheme, one may

write a divisor as a union of d regular divisors. The proof is also pretty combinatorial.

Theorem 5.2.3. Let F be the function field of a curve over a p-adic field. Let B be a

finite subset in `Br(F ). Suppose that ` ≠ p, then there exists a field extension L/F of

degree `2 such that α⊗L is unramified on every regular model of L for every α in B.
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Proof. Let X be a regular projective model of F . Using Theorem 4.1.2, we may assume

that Ram(B) is a normal crossing divisor. Using Lemma 5.2.2, after replacing X by

another regular model, we may express Ram(B) as a union of two regular divisors D1

and D2. We will abusively denote this new model of F by X . Let P be the set of

points on every irreducible component of Ram(B) including the intersection points of

D1 and D2. Since X is quasi-projective, there exists an affine open set U containing

P . Let A be the ring obtained by semi-localizing U at the points in P. Since A is a

semi-local ring, Pic(A) is trivial. This means that there exists an f1 in F such that

divA(f1) =D1 +D2. Therefore, divX (f1) =D1 +D2 +E where E is a divisor that does

not pass through any intersection points of D1 and D2. By the same argument as above,

we may find f2 in F such that divX (f2) = D1 + F and f2 is a unit at closed points in

Supp(D2)⋂Supp(E) . Using the Chinese Remainder Theorem, we may also assume

that f2 is not an `th power in k(x) for every x in Supp(D2)⋂Supp(E).

We claim that L = F (
√̀
f1,

√̀
f2) splits the ramification of B. Let v be a discrete valuation

of L, and w be the restriction of v to F . Since X /SpecR is proper, w has a unique

center x on X . Note that since OX ,x dominates Rw, for every height one prime ideal

p of OX ,x, we have the following containments of residue fields: k(p) ⊂ k(w) ⊂ k(v).

Therefore we have the following two commutative squares by (2.15):

H2(F,µ`)

Id
��

∂p
// H1(k(p),Z/`Z)

��

H2(F,µ`)
∂w //

resL/F
��

H1(k(w),Z/`Z)

��

H2(L,µ`)
∂v // H1(k(v),Z/`Z).

If x lies on a codimension one point of either D1 or D2, or is a codimension two point,

lying on Supp(D1)⋂Supp(F ), Supp(D2)⋂Supp(F ) or Supp(D1)⋂Supp(E), we may

express α as α = α0 + (u, fi), where i lies in {1,2}, and α0 is unramified. Note that by

the two commutative squares above, ∂v(α⊗L) = ∂v(α0 ⊗L) = ∂p(α0) ⊗ k(v) = 0.

If x is a codimension two point lying on the intersection of D1 and D2, then by Theorem

4.2.2, we may write α as α = α0+(u, f2)+(u, f1/f2)+s(f2, f1/f2), where α0 is unramified
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on OX ,x and s is some integer. Again we see that α⊗L = α0⊗L. By the two commutative

squares, α⊗L splits the ramification of α.

The only remaining case is when x lies on Supp(D2) ∩ Supp(E). We may express α as

α = α0 + (u,π2), where α0 is unramified on OX ,x and π2 is a local parameter of D2. On

OX ,x, we may write f1 = λπ2δ, where λ is a unit and δ is a local parameter for E. We

may therefore rewrite α as α = α0 − (u, δ) + (u, f1) for some unramified class α0 and a

unit u. Restricting to K = F (
√̀
f1), α⊗K = α0⊗K +(u, δ). Note that ∂v(α⊗L) = ūv(δ),

where ū is an `th power class in the residue field k(v).

Let Y →X be the normalization of X in L, and let y be the center of v on Y . Note

first that k(x) is a finite field since x is a closed point. Second, the residue field extension

of k(y)/k(x) contains a degree ` extension. Thus, every element in k(x) becomes an `th

power in k(y). In particular, ū in k(x) becomes an `th power in k(y). Since k(y) ⊂ k(v),

ū is an `th power in k(v). Thus, ∂v(α⊗L) = 0. Therefore, L/F splits the ramification

of α for every α in B.

As a corollary, we obtain Saltman’s result on the Brauer dimension of F a function field

of a p-adic curve. In fact, we can also show that GBrd`(F ) ≤ `2 for ` ≠ p.

Corollary 5.2.4. Let F be the function field of a curve over a p-adic field. Suppose

that ` is a prime, not equal to p. Then, we have

GBrd`(F ) ≤ `2.

Proof. Let B be a finite subset of `Br(F ). By Theorem 5.2.3, there exists a field

extension L/F of degree `2 which splits the ramification of B. Therefore by Theorem

5.2.1, α⊗L = 0 for every α in B.

Notice that in the proof of Theorem 5.2.3, we have used that X is a model of a p-adic

curve only in the last paragraph. That is the only place where we use the arithmetic

of Zp. We use that fact that the residue fields of closed points are finite fields. This

suggests that there should be another way to split ramification of Brauer classes, on a

regular surface. Just as in the proof of Theorem 5.2.3, if we are able to locally describe
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the ramification divisor by combination of two functions, we should be able to split

the ramification by extracting `th roots. While this may not be enough to split Brauer

classes on semi-global fields, we expect that splitting their ramification should make it

easier to split them.

Theorem 5.2.5. Let F be a semi-global field. Let B be a finite subset of Brauer class

in `Br(F ). If ` ≠ 2, there exists a field extension L/F of degree `2 such that α ⊗ L is

unramified with respect to every discrete valuation of L for every α in B. If ` = 2, then

there exists a degree 8 field extension L/F such that α⊗L is unramified with respect to

every discrete valuation of L, for every α in B.

Proof. We claim that it suffices to assume that µ` ⊂ F . Suppose that F does not contain

µ`. Let K ∶= F (µ`). Let v be a non-trivial discrete valuation of K and let w ∶= v∣F . Note

that since the degree of K/F is coprime to `, the ramification index ew/v and the degree

of the residue field extension fw/v are coprime to `. Let α be in B. By the commutative

diagram (2.15), notice that ∂w(α ⊗ K) = 0 if ∂v(α) = 0. If ∂w(α ⊗ K) = 0, then

ew/vResk(w)/k(v)(∂v(α)) = 0. Since ew/v is coprime to `, Resk(w)/k(v)(∂v(α)) = 0. Since

the residue field extension has degree coprime to `, a standard restriction-corestriction

argument shows that ∂v(α) = 0. Thus we may assume that F contains a primitive `th

root of unity.

Let X be a regular projective model of F . Using Theorem 4.1.2, we may assume

that Ram(B) is a normal crossing divisor on X . Lemma 5.2.2 further allows us to

assume that Ram(B) can be written as a union of two regular, not necessarily connected

divisors, D1 and D2. Let P be a finite set of points on each irreducible component of

D1 ∪D2, including the intersection points of D1 and D2. Since X is quasi-projective,

one may find an affine open set U containing all the points in P . Let A be the semi-local

ring obtained by semi-localizing U at the points in P. Note that Pic(A) is trivial.

We will first consider the case ` ≠ 2. Consider the divisors D̃1 = D1 + 2D2 and D̃2 =

D1 +D2 on SpecA. Since Pic(A) is trivial, there exists a rational function f1 such that

divA(f1) =D1 + 2D2. Therefore on X , divX (f1) =D1 + 2D2 +E where E does not pass
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through any points in P ∶= Supp(D1)⋂Supp(D2). Let P1 be the points of intersection

of Supp(E) with Supp(D1)⋃Supp(D2). Let A′ be the semi-local ring at the points

P ∪P1. Consider the rational function f2 such that divA′(f2) =D1 +D2. Therefore on

X , divX (f2) =D1 +D2 +G where G does not pass through any points in P ⋃P1.

Consider the field extension L = F (
√̀
f1,

√̀
f2). We claim that L/F splits the ramification

of B. Let v be a divisorial discrete valuation of L. Let x be the unique center of v on X .

We may assume that x lies on the ramification divisor of B. Let α be any non-trivial

element in B. Just as in the proof of Theorem 5.2.3, it suffices to show that the residue

of α at each height one prime ideal of OX ,x is split by L.

If x is a codimension one point lying on any of the Supp(Di), or a codimension two

point on Supp(D2)⋂Supp(E), Supp(D1)⋂Supp(E) or Supp(D1)⋂Supp(G), then we

may express α = α0 + (u, fi), where α0 is unramified on OX ,x and u is a unit in OX ,x.

The subextension F (
√̀
fi) is totally ramified on the ramification locus of α in OX ,x.

Therefore, we see that ∂v(α⊗L) = 0. Thus a degree `2 extension splits the ramification

of B.

If x lies on Supp(D1) ∩ Supp(D2), then the equation for D1 on OX ,x is given by

f2
2 /f1, and for D2 is given by f1/f2. Since L = F (

√̀
f2

2 /f1,
√̀
f1/f2) is totally ramified

at the local parameters for D1 and D2 on OX ,x, we are done. Finally, if x lies on

Supp(D2) ∩ Supp(G), the local equation for 2D2 is given by f1. But because ` ≠ 2, the

local parameter for D2 is totally ramified in the extension F (
√̀
f1). Therefore α⊗L is

unramified.

For the prime ` = 2: consider three functions f1, f2 and f3 chosen as in the case for l ≠ 2

such that divX (f1) = D1 +D2 +E, divX (f2) = D1 +G and divX (f3) = D2 +H where

the support of no three divisors among D1, D2, E, G and H intersect. Just as before,

we show that the possible local parameters for Di are totally ramified by the extension

L = F (
√
f1,

√
f2,

√
f3). We will show this in one case; the rest are similar. If x lies in

Supp(D1) ∩ Supp(D2), the local equations for D1 and D2 are given by f2 and f3. Thus,

the subextension F (
√
f2,

√
f3) splits the ramification. Thus a degree 8 extension splits

the ramification of B.
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In particular, if B is a finite subset in `Br(F ) for a semi-global field F , then we can split

the ramification of B my either making a degree `2 extension or a degree 8 extension.

5.3 Generalized Brauer Dimension Of Semi-global Fields

Now that we can split the ramification of an arbitrary finite collection B of Brauer

classes in a controlled manner, we are one step closer to give a uniform upper-bound for

ind(B). Observe that we can specialize the classes in B on the special fiber and split

them, at least generically on the special fiber. We can then make extensions locally to

split the Brauer classes on every component of the special fiber. The following lemma

allows us to construct a global extension inducing the local extensions.

Lemma 5.3.1. In the situation of Notation 1 (see Section 3.1), let F be a semi-global

field, and let X /Spec(R) be a regular model of F . Let {X1,⋯,Xn} be the irreducible

components of the special fiber, and let ηi denote the generic points of Xi, and let Fηi

be the completion of F at the discrete valuation given by ηi. Suppose that Lηi/Fηi are

separable field extensions of degree d. Then there exists a field extension L/F of degree

d such that L⊗F Fηi ≅ Lηi.

Proof. Since Lηi/Fηi are separable, Lηi ≅ Fηi[x]/⟨fηi(x)⟩. By weak approximation we

may find a polynomial f(x) in F [x] sufficiently close to fηi(x). Therefore by Krasner’s

Lemma, we have Lηi ≅ F [x]/⟨f(x)⟩ ⊗F Fηi . Let L ∶= F [x]/⟨f(x)⟩. Thus we see that

L⊗F Fηi ≅ Lηi .

There is another issue of splitting B on a finite set of points on Xk. Since B is unramified,

we can specialize the classes in B on closed points and split them there. But we need to

build a global extension out of these extensions. The following lemma allows us to do

just that:

Lemma 5.3.2. Let X /Spec(R) be a normal projective model of F . Let P be a finite

non empty set of closed points on the special fibre X of X which includes points where

irreducible component of X meet. For each point P in P, let l(P )/k(P ) be a degree

d separable extension of the residue field k(P ). For each P in P, let LP /FP be the
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unramified lift of l(P )/k(P ). There exists a field extension L/F of degree d such that

L⊗F FP ≅ LP .

Proof. Let P be in P and ℘ be a branch incident at P . We will denote the ring of

integers of F℘ by R̂℘ for every branch ℘. Observe that LP ⊗FP F℘ ≅ ∏iL℘i , where L℘i/F℘

are finite field extensions of F℘. Since LP /FP is unramified, so are L℘i/F℘ for every i.

Let l(℘i)/k(℘) be the corresponding residue field extensions. Set l(℘) ∶= ∏i l(℘i) and

L℘ ∶= ∏L℘i . Thus we have that LP ⊗FP F℘ ≅ L℘.

Now to obtain an extension L/F , we need to construct a separable algebra LV /FU for

suitable open sets U such that LV ⊗FU F℘ ≅ LP ⊗FP F℘ for every triple (P,U,℘).

Let U be the set of irreducible components of the the complement of P on the special

fiber. For each U in U , let BU denote the set of branches lying on U . Note that

the function field k(U) is dense in ∏℘∈BU k(℘) for every ℘ in BU . Using Krasner’s

Lemma and weak approximation, there exists a separable algebra lU/k(U) such that

lU ⊗k(U) k(℘) ≅ l(℘) for every branch ℘ in BU .

Let V → U be the normalization of U in lU . After shrinking U if necessary, we may

assume that the map is étale. Abusing notation, we write U for this new open set. Let

P ∪P1 be the complement of these new open sets on the special fiber Xk. By Theorem

3.1.4, we may uniquely lift V → U to get an étale algebra ŜV /R̂U . Note that ŜV is

a product of domains. Let LV be the product of their fraction fields. We claim that

LV ⊗F℘ ≅ L℘ for each triple (U,P,℘), such that ℘ is a branch incident at P , lying on U

and P lies in U .

For every branch ℘ incident at P in P , we have the following sequence of isomorphisms:

ŜV ⊗R̂U R̂℘ ⊗R̂℘ R̂℘/℘ ≅ ŜV ⊗R̂U R̂U ⊗R̂U k(℘)

≅ ŜV ⊗R̂U k(U) ⊗k(U) k(℘)

≅ lU ⊗k(U) k(℘)

≅ l(℘).

Let Ŝ℘ be the integral closure of R̂℘ in L℘. Thus the R̂℘-algebras, Ŝ℘ and ŜV ⊗R̂U R̂℘,
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induce the same algebra over the residue field k(℘). By Theorem 3.1.3, there is an

equivalence of categories between étale algebras over R̂℘ and étale algebras over the

residue field k(℘). Thus we have that ŜV ⊗R̂U R̂℘ ≅ Ŝ℘ and also LV ⊗FU F℘ ≅ L℘.

The algebras LV /FU induce algebras of the same dimension on the branches incident at

the points in P1. Using weak approximation again, there exist compatible algebras at

all the closed points in P1. All this patches together to give an algebra L/F such that

L⊗F FP ≅ LP . Since LP /FP is a field extension of degree d, so is L/F .

In general, it is not true that if LP /FP are finite degree field extensions of the same

degree at a finite collection of closed points P , then they induce a global extension L/F .

When LP /FP is ramified on one branch incident on P and not the other, one can show

that such a global L/F does not exist (see [HHKPS, Remark 2.7(b)]). The authors

in [HHKPS] show that general local extensions LP /FP at closed points indeed induce

a global extension L/F , but only when the points P are unibranched. The fact that

LP /FP are unramified extensions in Lemma 5.3.2 allows us to drop the hypothesis that

the points P are unibranched.

We are finally in a position to prove our main theorem.

Theorem 5.3.3. Let F be a semi-global field with residue field k, and ` be a prime not

equal to char(k).

1. We have the following upper bound for the Generalized Brauer 2-dimension:

GBrd2(F ) ≤ 23 ⋅GBrd2(k(t)) ⋅GBrd2(k).

2. If ` ≠ 2, we obtain

GBrd`(F ) ≤ `2 ⋅GBrd`(k(t)) ⋅GBrd`(k).

Proof. If ` ≠ 2, let K/F be a degree `2 extension that splits the ramification of B, as

chosen in Theorem 5.2.5 or if ` = 2, let K/F be a degree 8 extension as chosen in

Proposition 5.2.5 which splits the ramification of B. Let X be a regular projective

model of K with {X1,⋯,Xn} being the irreducible components of its special fiber.
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We prove the statement in two steps. In Step 1, we show that there exists a field

extension M/K of degree GBrd`(k(t)) with some normal model Y such that B is split

on all but finitely many closed points of the special fibre of Y . After that, in Step 2, we

construct another extension L/M of degree GBrd`(k) which finally splits B.

Step 1: Let ηi be the generic points of Xi and let Kηi denote the completion of K

at ηi. Since B is unramified, every element α in B comes from a unique element in

`Br(k(Xi)) by Theorem 2.4.24. We will denote this element by αk(Xi). Note that there

exists a separable field extension mi/k(Xi) of degree at most GBrd`(k(t)) splitting

αk(Xi). We may as well assume that mi/k(Xi) has degree GBrd`(k(t)). Let Mi/Kηi

denote the unramified lifts of the extensions mi/k(Xi). By (2.15), α⊗Mi is split. Thus

by Lemma 5.3.1, there exists a field extension M/K of degree GBrd`(k(t)) such that

M ⊗K Kηi ≅Mi.

Now let f ∶ Y →X be the normalization of X in M . In view of our choice of M/K, note

that for i = 1,⋯, n, η′i ∶= f−1(ηi) are the generic points of Yi ∶= f−1(Xi), the irreducible

components of the special fibre of Y and Mi are the respective completions of M at

η′i. Since α⊗Mi is split, by Proposition 4.1.3, there exist non-empty dense affine open

subsets Ui ⊂ Yi which do not meet any other component and such that α⊗MUi is split.

Thus α is split everywhere on the special fibre, except possibly at the complement of

the union of the open sets Ui.

Step 2: Let U be the set of the open sets Ui from Step 1. Let P be the complement

of ⋃iUi on the special fibre Y of Y. Because α is unramified on the regular local ring

ÔX ,f(P ), by Theorem 4.2.2, it comes from a unique class on the residue field k(f(P )).

Therefore, α⊗MP comes from a class on the residue field k(P ) of ÔY,P , for all points

P in P ; we will denote this class by αk(P ). Let l(P )/k(P ) be separable field extensions

of degree GBrd`(k) splitting αk(P ). Let LP /MP be the unramified lift of l(P )/k(P ).

By [A-G, Corollary 6.2], α⊗LP is split. By Lemma 5.3.2, there exists a field extension

L/M of degree GBrd`(k) inducing l(P )/k(P ).

We claim that α⊗L is split. Let g ∶ Z → Y be the normalization of Y in L. Let P ′ be

the inverse images of the points P in P under the normalization map g. Let U ′ be the
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set of irreducible components of the complement of P ′ in the special fibre of Z . Note

that for each U ′ in U ′, there exists some Ui in U such that MUi ⊂ LU ′ . Since α⊗MUi

is split, so is α ⊗ LU ′ . Furthermore for each P ′ in P ′, LP ′ is an unramified extension

of FP for some P induced by a residue field extension l(P )/k(P ) as constructed in the

previous paragraph. Since l(P )/k(P ) splits α ⊗ k(P ), α ⊗ LP ′ is split. Thus, using

Theorem 3.3.6, α⊗L is split for every α in B.

A standard argument as in the proof of Lemma 2.4.8 shows:

Corollary 5.3.4. Let F be a semi-global field with residue field k, and let ` be a prime

not equal to char(k).

1. Let m ≥ 1; we obtain the following upper bound for the Generalized Brauer 2m-

dimension:

GBrd2m(F ) ≤ 8m ⋅ [GBrd2(k(t))]m ⋅ [GBrd2(k)]m.

2. Let m ≥ 1; for ` ≠ 2, we have

GBrd`m(F ) ≤ (`2)m ⋅ [GBrd`(k(t))]m ⋅ [GBrd`(k)]m.

Proof. We show this by induction on m. We show this only for ` ≠ 2 since the case for

` = 2 is similar. The base case, m = 1, follows from Theorem 5.3.3. Suppose that the

statement holds for m − 1. Let B be a finite subset of `m Br(F ). We denote the subset

of `Br(F ) obtained by multiplying each element in B by `m−1 by `m−1B. If L/F is a

field extension, the subset of `m Br(L) obtained by restricting each element in B to the

field L will be denoted by BL. By Theorem 5.3.3, it follows that there exists a field

extension L/F of degree at most `2 GBrd`(k(t))GBrd`(k) splitting `m−1B. Thus BL is

a subset of `m−1 Br(F ). By the induction hypothesis, there exists a field extension M/L

of degree at most (`2)m−1[GBrd`(k(t))]m−1[GBrd`(k)]m−1 splitting BL. Therefore it

follows that the extension M/F splits all elements in B. Since the degree of M/F is at

most (`2)m[GBrd`(k(t))]m[GBrd`(k)]m, we prove the claim.
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As a corollary, we can give upper-bounds to the Generalized Brauer dimension of function

fields of curves over m-local fields.

Corollary 5.3.5. Let F be the function field of a curve over an m-local field where

m ≥ 1.

1. We obtain the following upper bound for the Generalized Brauer 2-dimension:

GBrd2(F ) ≤ 2(m2+5m−2)/2.

2. For ` ≠ 2, we have:

GBrd`(F ) ≤ `(m
2+3m)/2.

Proof. Let an be the Generalized Brauer `-dimension of function fields of curves over

n-local fields. Let k be the residue field of the field of constants of F . Note that k is an

(m − 1)-local field. The Generalized Brauer `-dimension of an (m − 1) local field will

be denoted by bm−1. By Theorem 5.3.3, we have am ≤ `2am−1bm−1. Since bm−1 ≤ `bm−2,

bm−1 ≤ `m−1. Therefore it follows that am ≤ `(m2+3m)/2.

For ` = 2: am ≤ 8am−1bm−1 = 8am−12m−1 = 2m+2am−1. Therefore, am ≤ a12(m2+5m−6)/2.

By Theorem 5.2.4, we have that a1 ≤ 4. As a result, it follows that am ≤ 2(m2+5m−2)/2.

Remark 5.3.6. 1. It is difficult to say if this is the best bound. Obtaining lower

bounds for Generalized Brauer dimension is not very easy. Even when F = C(x, y),

the only known lower bound in the period 2 situation is due to Tignol-Chapman

([C-Tig]: GBrd2(F ) ≥ 4. It is not clear how to improve this, and their methods

which use some quadratic form theory, do not seem to obviously generalize to other

prime periods.

2. In the mixed, bad characteristic situation, i.e., when the characteristic of the

residue field k is ` and char(F ) = 0, Parimala and Suresh in [Pa-Su3] obtain that

GBrd`(F ) ≤ (` − 1)`4d+2, where d is a non-negative integer such that [k ∶ k`] =

`d. In another paper, in the mixed, bad characteristic situation, they show that

Brd`(F ) ≤ 2d (see [Pa-Su2]), i.e., we can split a single Brauer class of period ` by
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making a field extension of degree at most `2d. This suggests that the bound for

the Generalized Brauer dimension, even in the good characteristic case, should be

a linear function of the Brauer dimension in the exponent.

5.4 Splitting Index Of Quadratic Forms

The Generalized Brauer dimension is related to other measures of complexity of the

field. One of these measures come from quadratic forms, namely the u-invariant. The

finiteness of Generalized Brauer dimension implies the finiteness of the u-invariant. This

is not at all obvious to see. One needs the Milnor conjectures and a result of Krashen

(see [Kra]) to establish this. We will freely use the Milnor conjectures, and record the

observation in Theorem 5.4.16.

The other measure of complexity comes from Galois cohomology classes, namely the

symbol length. Again, the finiteness of the Generalized Brauer dimension implies the

finiteness of mod `-symbol length. This also needs the norm residue isomorphism

theorem, a highly non-trivial theorem and a theorem of Krashen proved in [Kra].

One could define another notion of dimension coming from quadratic forms, inspired by

the Brauer dimension.

Definition 5.4.1. Let q/F be a quadratic form of dimension n > 1. We define the

splitting index is(q) of q to be the minimum of the degrees of field extensions [L ∶ F ]

such that q ⊗F L has Witt index ⌊n2 ⌋.

The splitting dimension of a field F , is(F ) is the supremum of the i(q) as q ranges over

quadratic forms over L and L/F ranges over finite degree field extensions.

Recall that any even dimensional form q/F with trivial discriminant lies in the square

of the fundamental ideal I2F in the Witt ring W (F ). Thus one may write q = ∑i pi in

W (F ), where each pi is a two-fold Pfister form, up to a sign. A näıve way to obtain

a bound on the splitting index is(q) is to find an extension L/F which splits all the

pi simultaneously. Note that two-fold Pfister forms are norms of Quaternion algebras.

Thus splitting all the pi simultaneously amounts to splitting the corresponding Brauer
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classes simultaneously. Therefore the Generalized Brauer 2-dimension is also related to

the splitting dimension of the field.

If the u-invariant of a field is finite, there is an obvious, crude upper bound on the

splitting dimension:

Proposition 5.4.2. Let F be a field with char(F ) ≠ 2. If the u-invariant of F equals

N , then is(F ) ≤ 2⌊N/2⌋.

Proof. Let q be a non-degenerate quadratic form of dimension m. One may express

q =⊥⌊m/2⌋
i=1 ⟨ai, bi⟩ ⊥ ε,

where ε is either the 0 form or a one dimensional form. Observe that the field extension

F (
√
−a1b1,⋯,

√
−a⌊m/2⌋b⌊m/2⌋) splits q. Therefore is(q) ≤ 2⌊m/2⌋. Further, since u(F ) =

N , any quadratic form p of dimension greater than N may be written as p = pan ⊥ tH ⊥ ε,

where pan is the anisotropic part of p and ε is either a 0 form or a one dimensional form.

If L/F splits pan, it certainly splits p. One also sees that if L/F splits p, then by the

Witt cancellation theorem, L/F splits p. Notice therefore, is(p) = is(pan). Note also

that dim(pan) ≤ N . Thus, the splitting dimension of F is at most the splitting index of

anisotropic forms of dimension N . Thus, is(F ) ≤ 2⌊N/2⌋

The following question was asked in the conference on Brauer groups and deformation

theory in 2011 (see [AimPL]):

Question 3. Does there exist a field F with char(F ) ≠ 2 and u-invariant u(F ) such

that the splitting dimension

is(F ) ≤ 2(u(F )/2−1)?

By Proposition 5.4.2, the inequality is(F ) ≤ 2u(F )/2 always holds. The inequality in

Question 3 is slightly better than this owing to the fact that largest anistropic Pfister

forms over a field F are split by any quadratic field extension of F . One sees this being

used in Proposition 5.4.9.
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As an application of Theorem 5.3.5, we will show that is(F ) is considerably smaller

than 2(u(F )−1)/2 when F is the function field of a curve over an m-local fields, thereby

providing a somewhat non-trivial answer to the question. But before that, we record

the following computation of the splitting dimension of global fields:

Proposition 5.4.3. If F is a totally imaginary number field or a global field of charac-

teristic not equal to 2, then

is(F ) = 4.

Proof. If F is a totally imaginary number field or a function field of a curve over a finite

field, it is well known that u(F ) = 4. Writing an anisotropic four dimensional quadratic

form as a sum of two binary forms, we see that is(F ) ≤ 4.

To construct a quadratic form with splitting index at least 4, we use the Albert-Brauer-

Hasse-Noether theorem (see Theorem 2.4.35). Let α be a non-trivial element in 2 Br(F ),

and let v be a place where α is ramified. Construct a quadratic field extension L/F

where v is totally split using Weak approximation and Krasner’s lemma. By the Albert-

Brauer-Hasse-Noether theorem, α⊗L is non-trivial. Let p be the norm form of L/F and

pα be the norm form of a quaternion algebra in the class of α. Consider the quadratic

form q = p ⊥ pα. If M/F splits q, M contains L. Since M/L splits q ⊗L, it splits α⊗L.

Therefore, 2 divides [M ∶ L]. Therefore [M ∶ F ] ≥ 4.

We will adopt the same strategy as in the proof of Proposition 5.4.3 to give lower bounds

for splitting dimension in Propositions 5.4.11 and 5.4.13.

Proposition 5.4.4. If K be a complete discretely valued field with parameter t and

residue field k of characteristic not equal to 2, then is(K) ≤ 2is(k).

Proof. Let q/K be a quadratic form. Then q = q1 ⊥ tq2, where the entries of q1 and

q2 are units in its ring of integers. Consider the ramified extension L = K(
√
t). The

residue field of L is also k. Then q ⊗L ≅ q1 ⊥ q2. Let m/k be a field extension of degree

at most is(k) splitting the reduction q1 ⊥ q2. Let M/K be the unramified lift of the
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extension m/k. By Hensel’s lemma, (q1 ⊥ q2) ⊗L is split by M/L. Therefore, is(K) is

at most 2is(k).

Note that the above bound is not tight. When F = Qp, one can show that is(F ) = 2. This

follows from the fact that every quaternion algebra is split by any quadratic extension.

Such a phenomena only happens over 1-local fields.

Corollary 5.4.5. Let F be the function field of a curve over an n-local field. Then

is(F ) ≤ 2(n2+5n)/2.

Proof. Let L/F be a finite field extension and let q/L be a quadratic form. We may

assume that it is even dimensional. Let K/L be a quadratic extension splitting its

discriminant. One may write q ⊗K = ∑mi=1 εi⟨⟨ai, bi⟩⟩ in the Witt group W (F ) where

εi is in {1,−1}. Applying Corollary 5.3.5 to the subset B = {(a1, b1),⋯, (an, bn)} of

2 Br(K), there exists a field extension of degree 2(n2+5n−2)/2 splitting q ⊗K. Therefore,

q is split by an extension of degree 2(n2+5n)/2.

Remark 5.4.6. By Corollary 4.3.3, note that u(F ) ≤ 2n+2. Thus by Proposition 5.4.2,

we have the following crude bound for the splitting dimension: is(F ) ≤ 22(n+1). The

bound in Corollary 5.4.5 is significantly better, and thus answers Question 3.

We will now find upper bounds for the splitting dimension for other “higher dimensional

fields”, namely those satisfying the hypothesis of Proposition 5.4.9. Examples of such

fields include Qp(t) and Fp(x, y). We will start by proving some useful lemmas:

Lemma 5.4.7. Let {φ1, φ2,⋯, φn} be a set of anisotropic Pfister forms over a field F .

Let φ′i denote their pure subforms for i = 1,⋯, n. For every i, φi do not share a common

quadratic splitting field if and only if ⋂ni=1DF (φ′i) = ∅.

Proof. Suppose all the Pfister forms are split by F (
√
c). In that case ⟨1,−c⟩ is a subform

of all the φi. In which case −c ∈ ⋂ni=1DF (φ′i). Conversely, if c ∈ ∩ni=1DF (φ′i), all φi have

⟨1, c⟩ as a subform. If c ∈ F×2, all the Pfister forms are split by F (
√
−1). If c ∉ F×2,

then all φi are split by F (
√
−c).
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Corollary 5.4.8. Let φ and γ be m and n-fold anisotropic Pfister forms respectively

over a field F , and let φ′ and γ′ denote their pure subforms. Then φ and γ share a

common quadratic splitting field if and only if γ′ ⊥ ⟨−1⟩φ′ is isotropic.

Proof. Note that γ′ ⊥ ⟨−1⟩φ′ is anisotropic if and only if D(γ′)⋂D(φ′) = ∅. The rest

follows by Lemma 5.4.7.

Proposition 5.4.9. Let F be a field with char(F ) ≠ 2. Suppose that Brd2(F ) ≤ 2 and

for every finite extension L/F , u(L) ≤ 8. Then

is(F ) ≤ 8.

Proof. Let q be a quadratic form over F . We may assume it is even dimensional by

replacing the form by a codimension one subform if necessary. Let L/F be a quadratic

extension which splits its discriminant. Thus in the Witt ring W (L), q⊗L lies in I2(L).

Let α ∶= e2(q ⊗L) be its e2 invariant. By our assumption on the index of α, it follows

by Albert’s theorem (see [Lam, Chapter 4, Theorem 4.8]) that α = α1 + α2, where αi

are symbols. We will abuse notation and not distinguish the norm forms of symbols

(which are Pfister forms) and the symbols themselves. Suppose that M/L is quadratic

extension splitting α1. Thus, q ⊗M − α2 lies in I3(M). Thus q ⊗M = α2 + β, where

β lies in I3(M). Because u(M) ≤ 8, β is similar to a three-fold Pfister form by the

Arason-Pfister Hauptsatz (see, for example [Lam, Theorem 5.6]). By Corollary 5.4.8,

there is a quadratic extension K/M splitting α2 and β simultaneously. Thus M/F splits

q and its degree is 8.

Remark 5.4.10. 1. In view of results of Saltman [Salt] on period-index bounds for p-

adic curves, and of Parimala and Suresh [Pa-Su1] on the u-invariant, the splitting

dimension of function fields of curves over p-adic fields is at most 8.

2. The splitting dimension of function fields of surfaces over finite fields such as

Fp(x, y), and that of fraction fields of complete two dimensional regular local rings

with finite residue field, for example Fp((x, y)), is also 8. Note that such fields

satisfy the C3 property (see Theorem 2.4.10 and Theorem 2.4.11). Therefore the
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u-invariant of these fields is at most 8. The period-index bound for surfaces over

finite fields was proved by Lieblich [Lie].

For function fields of varieties over an algebraically closed fields, and function fields of

curves over complete discretely valued fields, we record the following lower-bounds in

Proposition 5.4.11 and Proposition 5.4.13 respectively.

Proposition 5.4.11. If F is the function field of a smooth d-dimensional variety over

an algebraically closed field K of characteristic zero, then is(F ) ≥ 2d.

Proof. We first show that there exists a Brauer class α over F of index 2d−1 and a

quadratic extension L/F such that ind(α⊗L) = 2d−1. Let p be the norm form of L/F

and pα be a form with Clifford invariant α. Then q = p ⊥ pα has spitting index at least

2d.

We construct the class and the field extension by induction on the dimension. The base

case d = 1 follows from the fact that all Brauer classes on function fields of curves over

algebraically closed fields are trivial.

Let X/K be a smooth affine variety of dimension k, and let Y ↪ X be a smooth

codimension 1 subvariety given by π, obtained by shrinking X and Y if necessary. By

the induction hypothesis, there exists α0 in 2 Br(K(Y )) of index 2k−2 and an extension

L ∶=K(Y )(
√
u) such that ind(α0 ⊗L) = 2k−2. Suppose that Y is given by the function

π in K[X], and let Fπ denote the completion of K(X) at π. The residue field of Fπ is

K(Y ). Consider the class α = α0 + (u,π) in Br(Fπ). This class descends to Br(F ). By

Proposition 2.4.28, ind(α⊗ Fπ) = 2ind(α0 ⊗ Fπ(
√
u)) = 2ind(α0 ⊗L) = 2k−1. Note also

that the extension, F (
√
π + 1)/F splits in Fπ. Thus, ind(α⊗ F (

√
π + 1)) = 2k−1.

Remark 5.4.12. As an explicit example, consider the quadratic form over C(x, y, z):

q = ⟨x, y, xy,−(y + 1),−z, z(y + 1)⟩ ⊥ ⟨1,−(z + 1)⟩.

One can check that q cannot be split by an extension of degree less than 8.
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Proposition 5.4.13. Let F be the function field of a curve over a complete discretely

valued field. If the Brauer 2-dimension of F is n, then

is(F ) ≥ 2n+1.

Proof. Let α be in 2 Br(F ) such that ind(α) = 2n. By Merkurjev’s theorem (see 2.5.9),

there is a quadratic form pα of trivial discriminant such that e2(pα) = α. By Theorem

4.2.6, there exists a non-trivial discrete valuation v such that ind(α⊗Fv) = 2n. Let L/F

be a quadratic extension which is split over v. Let p be the norm form of L/F . Then

q = p ⊥ pα is our required quadratic form. To split the discriminant of q, we need to

make the extension L/F . Since L is split at v, ind(α⊗Lv) = 2n.

We will now establish a relationship between three arithmetic invariants of fields: the

Generalized Brauer 2-dimension, mod-2 symbol length and the u-invariant. First, note

that if the Generalized Brauer dimension of a field is finite, then using the norm residue

isomorphism theorem, it follows that there is a uniform bound on the index of mod-2

Galois cohomology classes. A theorem proved in [Kra] implies that the mod-2 symbol

length is finite. As a result, one can show that the u-invariant is also finite. Therefore the

finiteness of the Generalized Brauer 2-dimension implies the finiteness of symbol length

and the finiteness of the u-invariant. We will start by recalling the Milnor conjecture,

which was proved in 2007 by Orlov-Vishik-Voevodsky in [OVV]. This is an example of

one of the many theorems in mathematics, which are easy to state and difficult to prove.

Theorem 5.4.14 (Orlov-Vishik-Voevodsky). Let F be a field with char(F ) ≠ 2. Then,

we have the following isomorphisms of graded rings which sends the class ⊗ni=1⟨1,−ai⟩ mod In+1F

to the cup-product (a1) ∪⋯ ∪ (an).

∞
⊕
n=0

InF

In+1F

∼Ð→
∞
⊕
n=0

Hn(F,Z/2Z).

Therefore, every element ζ in Hn(F,Z/2Z) can be expressed as

ζ =
m

∑
i=1

(ai1) ∪⋯ ∪ (ain). (5.1)
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Definition 5.4.15. An element ζ in Hn(F,Z/2Z) of the form ζ = (a1) ∪ ⋯ ∪ (an) is

called a symbol.

Let ζ be an element in Hn(F,Z/2Z). We define the symbol length of ζ, denoted by λ(ζ),

to be the minimum positive integer m such that ζ can be expressed as sum of m symbols

as in (5.1).

We define the mod-2, n-symbol length of F , denoted by λn2(F ), to be the supremum of

λ(ζ) as ζ varies over Hn(L,Z/2Z), and L/F varies over finite field extensions.

We will end by proving a relationship between Generalized Brauer dimension, u-invariant

and symbol length.

Theorem 5.4.16. Let F be a field of characteristic not equal to 2. Suppose that the

2-cohomological dimension cd2(F ) is finite. Consider the following statements:

1. GBrd2(F ) is finite;

2. For every n ≥ 1, λn2(F ) is finite;

3. For every finite degree field extension L/F , u(L) is finite.

Then (1) Ô⇒ (2) Ô⇒ (3).

Proof. For (1) Ô⇒ (2): Let L/F be a finite field extension. Recall that by Example

2.3.4, we have the isomorphism H1(L,Z/2Z) ∼→ L×/(L×)2. Thus every element ζ in

H1(L,Z/2Z) is a square class in L. Therefore, λ1
2(F ) = 1. Now consider the element ζ in

Hn(L,Z/2Z) for n ≥ 2. By Theorem 5.4.14, we may write ζ as ζ = ∑mi=1 βi ∪ γi, where βi

are elements in 2 Br(L) and γi lie in Hn−2(L,Z/2Z). Consider B = {β1,⋯, βm} ⊂ 2 Br(L).

Since, GBrd2(F ) is finite, ind(B) is finite. Therefore, there exists a finite degree field

extension M/L such that ζ⊗L = 0 for every ζ in Hn(L,Z/2Z). Finally, by [Kra, Theorem

4.2], it follows that λn2(F ) is finite.

For (2) Ô⇒ (3): Let L/F be a finite field extension. Since cd2(F ) < ∞, there exists

some M such that HM(L,Z/2Z) = 0. By Theorem 5.4.14, IM(L) = IM+1(L). By the

Arason-Pfister Hauptsatz (see [Lam, Corollary 5.2]), it follows that IM(L) = 0. Let N
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be the smallest positive integer such that IN(L) = 0. Let q/L be an even dimensional,

anisotropic form. Recall that q lies in the fundamental ideal I(L). Let d be the

discriminant of q. Note that the form q − ⟨1,−d⟩ has trivial discriminant, and hence lies

in I2(L). Since I2(L) is additively generated by 2-fold Pfister forms, modulo I3(L),

q − ⟨1,−d⟩ is a sum of 2-fold Pfister forms up to signs, i.e., q − ⟨1,−d⟩ = ∑k2i=1 εiπ
(i)
2

up to I3(L), where k2 = λ2
2(F ), and π

(i)
2 are 2-fold Pfister forms, and εi is in {−1,1}.

Continuing in this fashion, we have

q = ⟨1,−d⟩ +
k2

∑
i=1

ε
(i)
2 π

(i)
2 +⋯ +

kN−1

∑
i=1

ε
(i)
N−1π

(i)
N−1,

where π
(j)
i are i-fold Pfister forms, k2 = λi2(F ), and ε

(j)
i lies in {−1,1}. We will denote

the quadratic form on the right hand side by p. Since q is anisotropic, we have q ⊥ nH = p,

for some n. Therefore, dim(q) ≤ dim(p). Since dim(p) is expressible in terms of the

constants k1,⋯, kN−1 and N , we see that the dimension of every even dimensional

anisotropic form is bounded. Therefore, u(L) is finite for every finite field extension

L/F .
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