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ABSTRACT OF THE THESIS

Bayesian Optimization for Monitoring the Dynamic Environment

By Tianyu Gao

Thesis Director:

Xiaoli Bai

How to sample the data in an optimization algorithm is important in an environmental mon-

itoring problem. Ensuring the sampling method practical while obtaining useful information

as much as possible to reduce time and energy cost during optimization is the key. This the-

sis focuses on the implementation of Bayesian Optimization (BO) to monitor a time-varying

three-dimensional environment. The BO algorithm is based on the Gaussian Processes (GPs)

surrogate models which are non-parametric regression methods, and uses the reward function

for decision making. An uniquely designed kernal function is used in GPs to learn the un-

derlying pattern of spatial and temporal variations. A series of theoretical but less practical

experiments are developed to prove the capability of BO, together with presenting the impor-

tance of temporal information. A continuous path planning is designed to replace the waypoint

planning for a real path design in the environmetal monitoring. Furthermore, this planning is ef-

fective to balance the trade-off between the exploration and the exploitation in the optimization

problem.
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Chapter 1

Introduction

Environmental monitoring is widely used for the surveillance of the distribution of a certain

substance, such as the ozone concentration in the climate change and the light intensity in a par-

ticular room.[1] Furthermore, in a more severe situation such as the leakage of pollutant from

some industrial facilities, the comprehensive and accurate monitoring of the space of incident

is required more urgently to provide the information for the related governmental regulations.

Setting up a static network of sensors is one of the solutions to maintain a stable and con-

tinuous monitoring in a few scenarios mentioned above. However, besides the expense of the

preset network, it is usually not possible to deploy an extensive sensor network when the timely

information is required such as the leakage of noxious gas. A mobile robot with sensor attached

is more appropriate for such mission to obtain a timely information. It can be deployed fast and

easy to the area of interest and acquires more precise data to prominent locations based on its

environment-based path design. The method based on the autonomous planning of data acqui-

sition for the usage of environmental surveillance is called intelligent environmental monitoring

(IEM).[1]

As the mission requires building a model of the concentration over the domain based on

previously sampled area, a regression model and an optimization algorithm for sampling are

necessary. Jan Gosmann[2] implemented the Gaussian Processes (GPs) and the Bayesian Opti-

mization (BO) in monitoring a time-invariant Gaussian plume distribution. However, different

from the static and stable plume, the time-varying environment studied in our thesis is more

complicated. A new covariance function, which is critical to the use of GPs regression, is intro-

duced to independently capture the spatial and temporal variations of the data. The necessary

functional modifications and improvements are made based on the code of the GPs supplied by

Eric[3].
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On the other hand, Roman Marchant[1, 4] has made significant contributions to the applica-

tion of IEM, including monitoring the time-varying ozone concentration and static luminosity

distribution with a mobile robot. His work on designing the informative path for robot track-

ing has achieved remarkable improvement to the process of data sampling. Based on the idea

of path planning of Marchant[4], we extend the problem from a 2-D circumstance to a more

complex 3-D time-varying environment. Besides, we pay more attention on making use of the

temporal optimization, since the temporal variation is as important as the spatial variation in

the time-varying environment. In the thesis, we improve the design of monitoring step by step,

and eventually develop a practical and effective method to achieve an effective monitoring to

the realistic environment.

In the rest of the thesis, the background information about the environment, the regression

model, and the optimization algorithm are explained in Chapter. 2. The details of ideas about

how we design the experiments and evaluate them are presented in Chapter. 3. The simulation

results of those experiments are listed and analyzed in Chapter. 4. Finally, the contribution and

future work of this thesis are summarized in Chapter. 5.
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Chapter 2

Theoretical Background

2.1 Gaussian Processes

This section summarizes the basics about GPs. It is a stochastic process, meaning each finite

and linear collection of those random variables has a multivariate normal distribution. It has

been used as a well developed regression method to learn the correlation between the output

value and input variables, along with measuring the uncertainty of the output distribution be-

cause of the stochasticity of GPs. More details of GPs can be referred from Rasmussen et.

al.[5].

2.1.1 Gaussian Processes Fundamentals

The Gaussian Processes regression is one of the supervised learning methods. It learns the

pattern between inputs and corresponding target values over a continuous domain. Many ap-

plications [1, 3, 4] have proven GPs a powerful tool for non-linear regression. They are very

suitable to the optimization algorithm used in this thesis since they are non-parametric and

produce a posterior probability density function over the feasible domain. On the other hand,

they are very capable of learning both spatially and temporally correlated data. Considering the

time-varying environment this thesis focuses on, GPs will be more advantageous under the cou-

ple of spatial and temporal variances. Consequently, they are extensively used for regression in

the subsequent experiments of this thesis.

In the function that maps input to the output, GPs define a multivariate Gaussian distribution

over the space to model the objective function f (x). The model is specified by a mean function

m(x) and a covariance function k(x,x’). The observation y we acquired from the environment

is the combination of true value f (x) and the Gaussian distributed noise with covariance σ2
n ,
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where f is distributed as a GP with mean and covariance functions, i.e.,

f (x)∼ GP(m(x),k(x,x’)) (2.1)

where m(x) and k(x,x’) can be expressed as the expectation over the function space.

m(x) = E f [ f (x)] (2.2)

k(x,x’) = E f [(y(x)−m(x))(y(x’)−m(x’))] (2.3)

In the thesis, the mean function is set to zero as m(x) = 0, which is a common choice unless

the mean needs a more accurate function of representation.

During the training of the GP model in the supervised learning, a set of observations S =

{X ,y}= {xi,yi}N
i=1 is gathered from y(x), where xi ∈ RD are the N sampled locations in the D

dimensional space and yi ∈R are the N corresponding noisy outputs of objective function. The

trained GP is referred as f ∗(x∗) which can estimate the Gaussian distribution over the domain

at any specified location x∗. Considering the sampled outputs {yi}N
i=1 from environmental

objective function f (·) is noisy in the real process, the joint distribution of the observations y at

locations X and estimated value f ∗ at x∗ are given by

(
y
f ∗

)
∼N

0,

K(X ,X)+σ2
n I K(X ,x∗)

K(x∗,X) K(x∗,x∗)

 (2.4)

And the estimated mean and covariance are

m(x∗)|X ,y = K(x∗,X)[K(X ,X)+σ
2
n I]−1y (2.5)

k(x∗)|X ,y = k(x∗,x∗)−K(x∗,X)[K(X ,X)+σ
2
n I]−1K(x∗,X)> (2.6)

where K(X ,X) is the covariance matrix defined in a component-wise manner as

K(X ,X ′)(i, j) = k(xi,x′j), with xi ∈ X and x j ∈ X ′ (2.7)

In addition K(x,X) is a covariance vector regarding the training data, defined by

K(x,X)i = k(x,xi) ∈ R1×N , with xi ∈ X (2.8)

As Eq. 2.6 has presented, the covariance function with its hyper-parameters have a strong

influence on the estimation at un-sampled location. There are many kinds of covariance func-

tions, each has its own corresponding hyper-parameters. The relevant covariance functions to
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the thesis are listed in Sec. 2.1.2, and the method to determine the hyper-parameters is intro-

duced in 2.1.3.

2.1.2 Covariance Functions

In the regression problem using GPs, the covariance function directly determines the perfor-

mance of the trained model. The covariance function is also known as kernel function which

reflects the correlation between two of the locations in the input space. The covariance matrix

formed by the element-wise values of covariance function has shown how it determines the es-

timated value of GP model in Eq. 2.5. Moreover, the covariance function of posterior in Eq. 2.6

reveals a lower variance than the prior in Eq. 2.3, since more information is gained from the

samples X .

In the thesis, we will focus on stationary covariance functions, which are expressed only in

terms of the distance r ∈ R1 between two input locations. To achieve a better representation of

the distance in every dimension of input, r is defined as follows,

r =
√
(x−x′)>L(x−x′) (2.9)

where L = diag(λ−2
1 , ...,λ−2

D ) is a diagonal matrix of size D consisted of the length-scale pa-

rameters of the input variables. There are two typical classes of covariance functions used in

the thesis, the Matérn covariance and Periodic covariance. The mathematical expression and

the related hyper-parameters of the covariance functions are presented in Table.2.1.

Table 2.1: The involved covariance functions.

Name Equation Hyperparameters

Matérn 3 σ2
f (1+

√
3r)exp(−

√
3r) σ f ,L

Matérn 5 σ2
f (1+

√
5r+ 5

3 r2)exp(−
√

5r) σ f ,L

Periodic σ2
f exp(−2sin2(2πϕ(t−t ′))

γ
) σ f ,ϕ,γ

Since the environment is time-varying, it not only has spatial variations but also shows

complicated temporal pattern. In such circumstance, it is not appropriate to couple the spatial

and temporal variation together through one single covariance. So a more complex form of the
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covariance is designed in order to learn the space and time components independently, which

we call it the spatial-temporal separable covariance function[6]. Let function f (s; t) represents

the environmental objective function, where s ∈ RD is the coordinate in a spatial D-dimension

space, t ∈ R+ is the one-dimension time variable. The modeled GPs will place a prior as

follows, similar as Eq. 2.1,

f (s; t)∼ GP(m(s; t),k((s; t),(s; t)′)) (2.10)

where k((s; t),(s; t)′) is the separable covariance function. In the thesis, by a number of tests,

we finally design the separable covariance function to be the product of a spatial Matérn 5

covariance function and a temporal sum of Matérn 3 and periodic functions. The advantage to

factorize the covariance into spatial and temporal components is that the independent temporal

covariance can capture time-specific periodic behavior, which is difficult to achieve only by the

independent length-scale in one covariance function. The separable covariance is presented as

follows,

k((s; t),(s; t)′|θ) = kspace(s,s′|θs)ktime(t, t ′|θt) (2.11)

kspace(s,s′|θs) = kMatérn5(s,s′) (2.12)

ktime(t, t ′|θt) = kMatérn3(t, t ′)+ kPeriodic(t, t ′) (2.13)

where θ represents the corresponding hyper-parameters in the covariance function. Hence, the

covariance matrix in Eq. 2.7 and vector in Eq. 2.8 will become

K((S;T ),(S;T ))(i, j) = k((s; t)i,(s; t) j), with (s; t)i,(s; t) j ∈ (S;T ) (2.14)

K((s; t)∗,(S;T ))i = k((s; t)∗,(s; t)i) ∈ R1×N (2.15)

The only difference from Eq. 2.5 and 2.6 of the regular GPs is that the input changes from x to

(s; t).

2.1.3 Hyper-parameter Training

Training a GP model means determining the hyper-parameters which define the mean and the

covariance functions of the model. The full set of hyper-parameters with the separable covari-

ance is given by θ = [θs,θt ,σn]. The trained hyper-parameters is the optimal set θ ∗ that best
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describes the objective function. One of the ways to determine the optimal hyper-parameters

is by maximizing a goal function which involves the training data and the hyper-parameters.

In our work, we use one of the popular goal functions, the maximum a posteriori estimate

(MAP)[3]. We assume the independent Gaussian distributions as prior distributions on the

log-transformed hyper-parameters θ .

θ i ∼N (µi,σi), where θ i = logθi, and θi ∈ [θs,θt ,σn] (2.16)

where µi and σi are the mean and covariance that are manually set for the prior of parameters.

The MAP log likelihood is presented as follows,

LMAP(θ) =−
1
2

y>Σ
−1y− 1

2
log(|Σ|)− N

2
log(2π)

+
P

∑
i=1

(
−1

2
log(2π)− 1

2
log(σ2

i )−
1

2σ2
i
(θ i−µi)

2
) (2.17)

where Σ = K(X ,X)+σ2
n I (see Eq. 2.5) is the sum of covariance matrix and noise’s variance.

P is the number of hyper-parameters. N is the number of training data. The optimized hyper-

parameter set is estimated by the following problem

θ
∗ = argmax

θ

LMAP(θ) (2.18)

2.2 Bayesian Optimization

The Bayesian Optimization (BO) is one of the most effective algorithms used for searching for

the extreme location of an unknown function which is costly to be evaluated. More detailed de-

scriptions about the theory of BO can be found in [7, 8, 9]. The target of Bayesian optimization

is to locate the maximum x∗ of an unknown function f (·) by

x∗ = argmax
x∈RD

f (x) (2.19)

Different from regular optimization algorithms, BO is particularly suitable for the black-box

function optimization when there is no gradient information, and direct evaluation of the func-

tion is expensive.

BO is an iterative algorithm based on Bayes’ theorem. It sets up a belief for the objec-

tive function f (·) with acquired data set {X , f (X)} to produce a new estimation of f in next
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iteration. In the thesis, GPs are used to represent f over the feasible space. They provide an

expected value of f at a known location with an associate variance which evaluates the un-

certainty of estimation, as is shown in Eq. 2.3. In each iteration, the next sampled location is

tasked to maximize a certain expected improvement. The function that defines and evaluates

this improvement for sampled location over the domain is called the acquisition function, h(·),

which will be explained later. So the goal of BO is to appropriately select the location for next

step of evaluation. Through a well designed the acquisition function, BO is able to choose

the most promising location that may bring the highest improvement when having the location

samples from the unknown function.

2.2.1 Acquisition Functions

The acquisition function h(x) is a fundamental part of BO since it defines the preference of

direction for optimization. In this way it reflects the expectation from the user and guides the

decision in each iteration until the optimization completes. Generally, the acquisition function

should present the probability of finding a higher value of f . As GPs are the representation

of the unknown objective function, which offer both the estimated values and the uncertainties

over the domain, it becomes important to make a balance between exploitation and explo-

ration while searching for the maximum. The exploitation means the algorithm focusing on

a higher estimated mean to increase the maximum. On the other hand, the exploration means

the algorithm tries to find a better result through the estimated uncertainties. The most popular

acquisition functions are Information Gain (IG), Probability of Improvement (PI), Expected

Improvement (EI), and Upper Confidence Bound (UCB).

Information Gain

IG is the simplest acquisition function since it only focuses on where the variance is the

highest. Its goal is to sample where not enough understanding of the function has been known,

without considering the estimated value. Thus, the IG acquisition function is equivalent to

the variance of the GP estimation over the domain, which is not useful for many optimization

problems as it is a pure exploration function.

Probability of Improvement

PI computes the probability of improvement than the best location f (x+) in the owned data
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set. The formula is shown as follows

PI(x,ξ ) = Φ

(
µ(x)− f (x+)−ξ

σ(x)

)
(2.20)

where Φ(·) is the Cumulative Density Function (CDF) of the standard normal distribution, and

ξ ≥ 0 is the trade-off parameter balancing the exploration and exploitation. A larger ξ denotes

to a higher exploration, and the tendency turns to exploitation while ξ goes to zero.[10]

The first derivative function of PI regarding x is also presented as follows, which is neces-

sary for a gradient-based optimization algorithm.

∇PI(x,ξ ) = ∇

(
µ(x)− f (x+)−ξ

σ(x)

)
φ

(
µ(x)− f (x+)−ξ

σ(x)

)
(2.21)

=
∇µ(x)σ(x)−∇σ(x)(µ(x)− f (x+)−ξ )

σ2(x)
φ

(
µ(x)− f (x+)−ξ

σ(x)

)
(2.22)

where φ denotes to the Probability Density Function (PDF) of the standard normal distribution.

The equations of ∇µ(x) and ∇σ(x) are

∇µ(x) =
N

∑
i=1

[Σ−1y]i∇k(x,xi) (2.23)

∇σ(x) =
σ2(x)
2σ(x)

(2.24)

∇σ
2(x) =−

N

∑
j=1

N

∑
i=1

Σ
−1
i j [∇k(x,xi)k(x,x j)+ k(x,xi)∇k(x,x j)] (2.25)

Σ is the same matrix as in Eq. 2.17 where Σ = K(X ,X)+σ2
n I.

Expected Improvement

EI is the acquisition function that measures the improvement of the chosen location. As is

shown as follows, EI will always be positive, only be zero when no improvement at the point

such as at the known samples.

EI(x,ξ ) =


(µ(x)− f (x+)−ξ )Φ(Z)+σ(x)φ(Z) if σ(x)> 0

0 if σ(x) = 0
(2.26)

where

Z =


µ(x)− f (x+)−ξ

σ(x) if σ(x)> 0

0 if σ(x) = 0
(2.27)
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The parameter ξ here has the same effect as it has in Eq. 2.20. Lizotte[10] suggests ξ = 0.01

works well in most cases through the experiments.

The first derivative function of EI as σ(x)> 0 is as follows

∇EI(x,ξ ) =∇µ(x)Φ(Z)+ [µ(x)− f (x+)−ξ ]φ(Z)∇Z

+∇σ(x)φ(Z)+σ(x)[−Zφ(Z)∇Z]
(2.28)

∇Z =
∇µ(x)σ(x)−∇σ(x)(µ(x)− f (x+)−ξ )

σ2(x)
(2.29)

Although EI and PI are powerful functions on optimizing the global optimum, their com-

plex formulas bring a heavy cost of computation when the evaluation of acquisition function

increases. EI and PI with their derivative functions are powerful to locate the global maximum.

However, their potentials will be studied in future works.

Upper Confidence Bound

UCB acquisition function[11] involves the estimated mean and variance in a simple form

as

UCB(x,κ) = µ(x)+κσ(x) (2.30)

The parameter κ is related to the trade-off between exploration and exploitation.

Marchant[4] brings an idea that the distance should be considered in the reality that moni-

toring a large area with a mobile UAV, which could save energy of engine from long distance

travels. However, considering the area is small and the speed of robot is high enough to cover

the area in our problem, we will not involve the distance in the acquisition function at this time.

The regular UCB will be used in the thesis as the acquisition function.

2.2.2 Algorithm

The details of the BO algorithm is shown in Table. 2.2. The notation x is equivalent to (s, t)

from the separable covariance of GPs. Line 3 is the optimization of the acquisition function,

where we introduce the DIRECT algorithm by Finkel[12] to locate an initial guess for the

optimum, then use a MATLAB solver ’fmincon’[13] to find the global optimum starting at the
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Table 2.2: Bayesian Optimization algorithm.
Algorithm 1 Bayesian Optimization
Inputs: f , h, data samples {X ,y}
Outputs: GP model, xmax, ymax

1. while i≤ imax

2. Train GP model with data {X ,y}
3. x∗← argmaxx∈AD h(x)
4. y∗ = f (x∗)+ ε

5. Augment data set {X ,y} with [x∗,y∗]
6. if y∗ > ymax

7. ymax← y∗

8. xmax← x∗
9. end if
10. i← i+1
11.end while

initial guess. AD ∈ RD in Line. 3 is a finite vector space which is the feasible space for vector

x.

It is obvious that the original problem of maximizing the objective function f (·) has been

switched to searching the maximum of the acquisition function h(·). The acquisition function

based on GPs is like a surrogate model to the objective function. In fact, with an appropriate

selection from the acquisition function, the optimization will become easier and faster in the

domain, because the acquisition function can provide additional derivative information such as

Eq. 2.21 and 2.28, and is much cheaper to be evaluated than the objective function.

2.3 Gaussian Puff Environment

This section gives the details about the environmental model studied in the thesis. The envi-

ronment we study is a dispersion model of gas, which simulates a mass of gas released into

the space at one or multiple sources. This phenomenon is quite common in environmental

monitoring applications, such as locating the sudden leakage of pollutant gas along its pipeline

and monitoring the gas emission in the drain system of industry. Therefore the environmental

model should be dynamic, considering the wind effect, the diffusion characteristics, and the

variation in both space and time.

The Gaussian puff dispersion model[14] is chosen to be the time-varying environment in

the thesis. Different from the static Gaussian plume model with constant emission rate of gas,
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the puff model is dynamic and emits gas intermittently from its sources. The blob-like puff is

released at certain time T and blown by the constant horizontal wind with a speed of u = 1m/s,

which successfully creates a time-varying gas concentration. At a location x, y, z and time t

in the wind frame, we assume the wind is horizontal for simplicity, the concentration is the

superposition of all the puffs generated so far as follows,

c(x,y,z, t) =
I

∑
i=1

{
Qi

s

8(πa(x−Xs)b)3/2 exp
(
−(x−Xs−u(τt−T i

s ))
2 +(y−Ys)

2

2a(x−Xs)b

)
[

exp
(
− (z−Hs)

2

2a(x−Xs)b

)
+ exp

(
− (z+Hs)

2

2a(x−Xs)b

)]} (2.31)

where [Xs,Ys,Hs] are the coordinates of source s in the wind frame. a and b are the dispersion

coefficients[15] whose values are manually set. τ ∈ (0,1) is a time coefficient which equals to

1 in the original model. However, since in the original puff model the dispersion is too fast, it

can easily be monitored as the level of concentration goes down to zero too soon. So we further

make τ smaller than 1 to slow down the temporal variation of the model, to make it harder to

be monitored.

In Eq. 2.31, Qi
s is the i-th amount of emission released by source s at time T i

s ; a total number

of I emissions have been released by source s before time t. However in the thesis, only one

puff is released by each source at time zero, which is because the release of puff will bring a

sudden step change to the environment. As in reality, the sudden emission is unpredictable,

which means no information about it can be provided to the regression model, which will be

impossible to learn. So in the thesis, we only study the dynamics of environment with a single

puff at the initial time.

It should be noted that the puff model is cited from a quadrotor simulator[14], the coordinate

vector is in the NED (north, east, down) reference frame. Thus the height coordinate is on the

negative z-axis.

Table 2.3: The setting of the Gaussian puff model.
Parameter Q1

s (g/s) T 1
s (s) u (m/s) τ a b Room size (m)

Value 1.0 0 1 0.1 3.3 0.86 20×20×20

Table. 2.3 lists the set of the parameters of the time-varying environment model studied

in the thesis. The single source is located at [Xs,Ys,Hs] = [−9,0,−20] in the room. Fig. 2.1
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illustrates the environmental dispersion at time t = 0 s and t = 40 s, where the concentration of

gas is obviously decaying over time.

(a) t = 0 s (b) t = 40 s

Figure 2.1: The true gas dispersion of the environment at two instances.
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Chapter 3

Experiment Design

The Gaussian Process regression, the Bayesian Optimization algorithm, and the environment

model have been well explained in Chapter. 2. The detailed design of experiments will be in-

troduced in this chapter based on the theoretical frame that has been presented. However, some

settings are varied among different experiments. The design logic is to transfer gradually from

idealization to practical realization. It means in the beginning, the experiment is conducted the-

oretically which includes some unrealistic assumptions. The goal is to verify the effectiveness

of the proposed method. Then the assumption will be replaced to a real condition to prove the

practicability of the method.

3.1 Sampling by Discrete Data

Before using a mobile device to collect sample, we firstly assume there is no spatial or temporal

restriction to the sampling process. The sample can be measured in the environment at any

location and time as request. This is not practicable in the real world since neither the sensor

network is such intensive nor any mobile sensors is able to move such timely and precisely.

However, these experiments are conducted to show the capability of BO in monitoring a time-

varying environment. A more realistic problem will be studied in Sec. 3.2.

The experimental procedure basically follows the algorithm presented in Table. 2.2. A

constant number of imax and a sampling rate (the number of sample collected in a certain period

of time) are fixed in order to ensure the total number, N, of samples is the same. And those

sample are collected within the same time interval [0,Tend ]. The main distinction among the

experiments in this section, is the way to deal with the optimized temporal variable t∗, which is

related to Line. 3 and 4 in Table. 2.2.
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3.1.1 Free Sampling over Time

In this experiment, the procedure is exactly the same as BO but change the input format from

x to (s, t), as in Table. 3.1. Each iteration in Line. 3 of Table. 3.1, the optimized output

includes both spatial and temporal terms. By the DIRECT algorithm[12] and MATLAB solver

’fmincon’[13], the spatial and temporal variables are searched within the bounds of spatial

feasible space AD and time limit Tend , respectively.

Table 3.1: Free sampling algorithm.
Algorithm 2 Free sampling of BO
Inputs: f , h, data samples {(S,T ),y}
Outputs: GP model, (s, t)max, ymax

1. while i≤ imax

2. Train GP model with data {(S,T ),y}
3. (s∗, t∗)← argmaxs∈AD, t∈[0,Tend ]

h(s, t)
4. y∗ = f (s∗, t∗)+ ε

5. Augment data set {(S,T ),y} with [(s∗, t∗),y∗]
6. if y∗ > ymax

7. ymax← y∗

8. (s, t)max← (s∗, t∗)
9. end if
10. i← i+1
11.end while

3.1.2 Time-abandon Sampling

Sec. 3.1.1 allows the acquisition function to find the sample that brings the highest improvement

within the predefined feasible domain in Line 3, and measures the sample directly in Line.

4 of Table. 3.1. However, this design is un-practical. Because it is possible that a sample

(s∗, t∗)i+1 optimized in (i + 1)-th iteration has a smaller temporal variable than the sample

(s∗, t∗)i collected in previous i-th iteration, which means t∗i+1 < t∗i . This time travel is obviously

impossible in real sample measurement.

In the experiments performed by Marchant[1], he abandons the temporal variable t∗ and

uses the optimized spatial location s∗ only as the designated position for the UAV to sample.

Moreover, the data is measured as soon as the UAV arrives position s∗. Considering to maintain

the right order of time, a similar design is implemented in this section. We no longer use t∗

as the time for sampling, instead, an iteration-order-based time is assumed to be the time for
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sample in each iteration. The detail is presented in Table. 3.2, where δ t = Tend/imax is the time

gap between iterations.

Table 3.2: Time-abandon sampling algorithm.
Algorithm 3 Time-abandon sampling of BO
Inputs: f , h, data samples {(S,T ),y}, δ t
Outputs: GP model, (s, t)max, ymax

1. while i≤ imax

2. Train GP model with data {(S,T ),y}
3. (s∗, t∗)← argmaxs∈AD, t∈[0,Tend ]

h(s, t)
4. Get current time ti← i×δ t of i-th iteration
5. y∗ = f (s∗, ti)+ ε

6. Augment data set {(S,T ),y} with [(s∗, ti),y∗]
7. if y∗ > ymax

8. ymax← y∗

9. (s, t)max← (s∗, ti)
10. end if
11. i← i+1
12.end while

After all, this design is based on an assumption that a mobile sensor is assigned to sample

at s∗ in i-th iteration, then it arrives and measures at time ti. It should be noted that the BO with

this design is no longer be able to find a true global optimum, since the optimized temporal part

t∗ is not considered in the sampling.

3.1.3 Ascending Order Sampling

The design in this section is built on Sec. 3.1.2. In order to both make use of the optimized

temporal part t∗ and comply with the right order of time, the temporal bounds for searching

during optimization are designed to a practical interval as Table. 3.3, Line 4. This design is

based on a similar assumption as Sec. 3.1.2, that the mobile sensor is fast enough to arrive s∗

on time t∗.

3.2 Sampling over Linear Path

In Sec. 3.1, the sensor is assumed capable of arriving at any position s∗ on time t∗ as BO has

requested, which is impossible in reality when we are monitoring an environment without an

intensive sensor network. Now we assume that we are solving a real monitoring problem of
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Table 3.3: Ascending order sampling algorithm.
Algorithm 4 Ascending order sampling of BO
Inputs: f , h, data samples {(S,T ),y}, δ t
Outputs: GP model, (s, t)max, ymax

1. Current time t = 0
2. while i≤ imax

3. Train GP model with data {(S,T ),y}
4. Set bounds tlb← t and tub← i×δ t
5. (s∗, t∗)← argmaxs∈AD, t∈[tlb,tub]

h(s, t)
6. y∗ = f (s∗, t∗)+ ε

7. Augment data set {(S,T ),y} with [(s∗, t∗),y∗]
8. if y∗ > ymax

9. ymax← y∗

10. (s, t)max← (s∗, t∗)
11. end if
12. i← i+1
13. t← t∗

14.end while

the time-varying environment. An UAV is involved in this section as the mobile sensor, which

will fly following the planned path while collecting samples on the way with a constant time

interval. As the total running time T end and time interval δ t are fixed, the data collected are

still the same in different experiments. So instead of stopping the simulation after a number of

iterations in Sec. 3.1, the simulation in this section will end when the time exceeds its limit.

3.2.1 Waypoint Planning

The waypoint planning means the planned path is connected by waypoints, and the paths be-

tween each pair of waypoints are straight lines. This design is based on Sec. 3.1.3. The im-

provement is the waypoint planning considers the actual differences between the spatial dis-

tance and time span between two optimized waypoints, that makes sure the UAV with sensor

could practically fly along the path and collect additional samples on the way. The optimized

spatial location s∗ is assigned to be the next waypoint, and the UAV will arrive there at time

t∗. In order to make sure the flying speed along each straight line is reasonable, the temporal

bounds for optimization should be modified by a constant ∆t which is determined manually

considering the size of the feasible space AD. It should be noted that since the data is collected

with a fixed time interval, which is not considered in the optimization of t∗, the waypoints
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may not be included in samples. However, if the time interval is small enough, the spatial and

temporal deviations are acceptable.

Table 3.4: Linear path algorithm.
Algorithm 5 Linear path planning of BO
Inputs: f , h, data samples {(S,T ),y}, δ t, ∆t
Outputs: GP model
1. while tnow < Tend
2. Train GP model with data {(S,T ),y}
3. Set bounds tlb← tnow and tub← tnow +∆t
4. (s∗, t∗)← argmaxs∈AD, t∈[tlb,tub]

h(s, t)
5. while tnow < t∗

6. Move UAV towards (s∗, t∗)
7. tnow← tnow +δ t, update UAV position
8. Collect samples from y = f + ε

9. end while
10. Augment data set {(S,T ),y} with new samples
11. tnow← t∗

12.end while

In the algorithm with linear path planning, there are many samples are collected along the

path instead of only sampling at the optimized location as Sec. 3.1. The BO therefore will run

much less times in a same period of simulation time. Those samples collected along the path

are not happen to be the global maximum since they are not involved within the optimization

process. In this circumstance, locating the global maximum with samples as Sec. 3.1 is not

possible anymore. BO has to locate the maximum by obtaining a GP model that can best repre-

sent the environment. This realistic change makes us focus more on how to collect informative

samples that ba able to train a GP model representing the objective function f (·) accurately.

3.2.2 Continuous Path Planning

The idea of continuous path is proposed by Marchant[4] for a 2-D path planning. It generalizes

the waypoint line into a continuous path. The optimization algorithm in the waypoint planning

has not considered the majority of samples which are collected along the paths. The samples

at optimized waypoints are just a few. So in fact, most samples are not elaborated to gain

useful information for the monitoring. The continuous path planning uses a parameterized

curve to actively accumulate the most information, or reward, during the sampling along the
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curve. Then the optimization problem in Line. 3, Algorithm 2, Table. 3.1 is transformed into the

optimization of the best parameters of the continuous path, by maximizing the reward function.

Path Parameterization

In the thesis, a third order polynomial is defined to be the path function C(u|β ), where β

is the parameter vector and u ∈ [0,1] is the normalized variable of the function. Considering a

3-dimensional space, D = 3,

C(u|β ) : [0,1]→R4

u→X(u) = a1u3 +b1u2 + c1u+d1 (3.1)

Y (u) = a2u3 +b2u2 + c2u+d2 (3.2)

Z(u) = a3u3 +b3u2 + c3u+d3 (3.3)

t(u) =
1
vl

∫ u

0
‖C(γ|β )‖dγ (3.4)

where (X(u),Y (u),Z(u), t(u)) denote the corresponding coordinates and time with a variable u.

The parameter vector is β = {vl,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3}, where vl is the speed

in the current piece of path. It is important to note that according to Eq. 3.4, the temporal vari-

able needs no optimization any more, which means we won’t bother to determine the temporal

bounds for optimization process. With continuous path, the designated time t∗ is now obtained

by the length of the curve (determined by the curve parameters) and the optimized speed vl .

There are some initial conditions that could help to reduce the number of parameters, such

as a known initial position as Eq. 3.5 and first partial derivative as Eq. 3.6.

Xi−1(1) = Xi(0) = d1, Yi−1(1) =Yi(0) = d2, Zi−1(1) = Zi(0) = d3 (3.5)

X ′i−1(1)
‖C′i−1(1)‖

= X ′i (0) = c1,
Y ′i−1(1)
‖C′i−1(1)‖

=Y ′i (0) = c2,
Z′i−1(1)
‖C′i−1(1)‖

= Z′i(0) = c3 (3.6)

where the subscript i−1 denotes to the (i−1)-th piece of path, and the subscript i is to the i-th

piece who starts at where the (i−1)-th piece ends. In Eq. 3.6, ‖C′(1)‖ indicates the magnitude

of the vector of the first derivative. This management of the first derivative maintains the

information of the heading direction of the UAV, while avoiding the problem that the next

designed curve rushes out of the domain with an over-large first derivative. These conditions

left seven parameters β = {vl,a1,b1,a2,b2,a3,b3}.

Reward Function
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The reward function r(·) is associated with the decision. In Table. 3.4, the reward func-

tion, which is also the acquisition function h(·), is evaluated at a single location. But in the

continuous path, the reward function is designed to accumulate all reward of sampling along

the continuous path. Thus, its expression corresponds to an integral of the acquisition function

h(·). Marchant[4] has proposed a form of reward function as Eq. 3.7.

r(C(u|β )|h) =
∫

C(u|β )
h(v)dv (3.7)

However, optimizing Eq. 3.7 respect to β may lead to a problem which will produce an endless

stretching of the curve. This is because when h(·) is a positive acquisition function, any exten-

sion of the curve will always increase the value of integral, which weakens the benefit from the

optimization.

So we decide to subtract a baseline b from the acquisition function, which makes the reward

function to Eq. 3.8, where h(v) is designed to be the UCB (Eq. 2.30) when we implement the

continuous path in the thesis.

r(C(u|β )|h,b) =
∫

C(u|β )
[h(v)−b]dv (3.8)

=
∫ 1

0
[µ(C(u|β ))+κσ(C(u|β ))−b]‖C′(u|β )‖du (3.9)

b is a scalar. It helps to change the positive domain of acquisition function to a domain has

both positive and negative values. Although there are many methods to determine its value,

we eventually set it as the mean of acquisition values of current data samples. The function of

integral may not have an analytical solution, particularly depending on the choice of acquisi-

tion function and covariance function. So the integral is numerically computed using a global

adaptive quadrature approximation.

Thus the optimization problem is transformed to maximizing the reward respect to all possi-

ble paths. The optimal path parameters β ∗ will determine the curve function C(u,β ∗) including

the path and speed that the UAV should track.

β
∗ = argmax

β

r(C(u,β )|h,b) (3.10)

In the thesis, this optimization of reward is solved the same way as the Algorithm. 1, with

DIRECT algorithm[12] and a MATLAB solver ’fmincon’[13].
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Algorithm

The algorithm of continuous path planning is presented in Table. 3.5.

Table 3.5: Continuous path algorithm.
Algorithm 6 Continuous path planning of BO
Inputs: f , h, data samples {(S,T ),y}, δ t
Outputs: GP model
1. while tnow < Tend
2. Train GP model with data {(S,T ),y}
3. Update b = mean(h(S,T ))
4. β ∗← argmaxβ r(C(u,β )|h,b)
5. (s∗, t∗)←C(u,beta∗)
6. while tnow < t∗

7. Move UAV along C
8. tnow← tnow +δ t, update UAV position
9. Collect samples from y = f + ε

10. end while
11. Augment data set {(S,T ),y} with new samples
12. tnow← t∗

13.end while

3.3 Metrics

A better BO algorithm leads to a more informative sample collection that could train a GP

model that precisely represent the environment monitored. Various experiments are quantita-

tively evaluated using four different performance indicators, to present the error between the

true concentration of the environment µt(x) and the estimated value µ(x) from the GP model.

The GP model is trained with a fixed number of data after enough samples of data have been

collected during the simulation. Then the performance of GP is evaluated over the whole

domain using a fine grid resolution with M samples. The evaluation is conducted at several

moments of time to see its variation with time.

Root Mean Squared Error

The first metric is the Root Mean Squared Error (RMSE), that reveals the mean error of the

estimated values.

RMSE =

√
1
M

M

∑
i=1

(µ(xi)−µt(xi))2 (3.11)
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with x = (s, t) for the spatial-temporal case. However, the averaged error means that the in-

dicator has treated the low values of concentration equally as the high peaks in the domain.

Therefore we propose two methods to give more attention to the error at the high concentra-

tion, which is more important to our problem. The first method is using the DIRECT algorithm

to locate the place of high concentration based on the environment model in Eq. 2.31, then eval-

uating the metrics within the 1-meter cube surrounding that place. Although this method is not

practical in real application, because we are not able to possibly know the place of high concen-

tration without the accurate environment model, still, it is only for the performance evaluation

of GP at the high concentration.

Weighted Root Mean Squared Error

The second method is using a developed metric called Weighted Root Mean Squared Error

(WRMSE).

WRMSE =

√
M

∑
i=1

α(xi)(µ(xi)−µt(xi))2 (3.12)

where α(xi) is a weight coefficient as

α(xi) =
µt(xi)

∑
M
j=1 µt(x j)

(3.13)

WRMSE is in fact similar to RMSE but the weight for the squared errors is changed from an

identical 1
M to Eq. 3.13 that depends on the local true concentration. This modification gives

more importance to the error whose true concentration of the studied phenomenon is higher.

Then the evaluation by WRMSE will become more convincing over the domain. This concern

is from a logical assumption that in a leakage of some dangerous gas, it is more important for

the monitoring to locate and have precise estimation in the high concentrated area than in the

entire domain when the time and source are short. On the other hand, by comparing the RMSE

and WRMSE, we can determine whether the BO has found the high concentration, so these

two metrics will be analyzed together.

Mean Log Loss

As GP model is one of the probability-based stochastic models. The Mean Log Loss (MLL)
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is used to evaluate the negative log probability of the true concentration under the model esti-

mation. The estimated error and associated uncertainty are both taken into account.

MLL =
1
M

M

∑
i=1

(− log p(µt(xi)|µ,σ))2

=
1
M

M

∑
i=1

(
1
2

log(2πσ
2(xi))+

(µ(xi)−µt(xi))
2

2σ2(xi)

(3.14)

Weighted Mean Log Loss

Similar to WRMSE, the Weighted Mean Log Loss (WMLL) weights over the MLL. This

metric gives more importance to the high concentrated area as well, taking the variance of GP

model into account. The weight coefficient is the same as Eq. 3.13.

WMLL =
M

∑
i=1

(
α(xi)(

1
2

log(2πσ
2(xi))+

(µ(xi)−µt(xi))
2

2σ2(xi)

)
(3.15)

Relative Difference

Relative difference (RD) is one of the relative metrics that imply the scale of the relative

error. The definition of RD is shown in Eq. 3.16.

RD =
µ(xi)−µt(xi)

(|µ(xi)|+ |µt(xi)|)/2
= 2× µ(xi)−µt(xi)

|µ(xi)|+ |µt(xi)|
(3.16)

It reveals that the value of RD is between -2 and 2. The RD tells the ratio of error to the

total of the estimated and the true values, while maintaining the sign of the error. Moreover,

its advantage than the Relative Error (the ratio of error to the true concentration) is the value

of relative difference will not become a singularity when the true concentration is zero. The

zero value of concentration in a particular area is not avoidable in the gas dispersion model.

However, it should be noted that because the denominator of Eq. 3.16, the absolute value of RD

can easily become large (close to 2) where the true value µt is small and the error is relatively

big. So it is not appropriate to use RD as one of the performance indicators in the entire domain,

since the mean of RDs from M samples can be easily effected by the small change of error at

where the true concentration is small.
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Chapter 4

Simulation Results

In this chapter, the proposed tests are simulated and the results are analyzed in two parts:

the discrete sampling experiments which include three scenarios, and the continuous sampling

experiments including two scenarios. The order of scenarios follows Sec. 3.1 and 3.2. Some

parameters of the objective function of the environment model are presented in Table. 2.3.

The acquisition function used is UCB in Eq. 2.30 with κ = 0.1 determined by a trail and

error process. The environment are using the same settings as Table. 2.3, and the UCB is

implemented as the acquisition function h in all scenarios in this chapter.

4.1 Discrete Samplings

In each iteration of BO, the GP model is trained and only one sample is obtained by optimizing

the acquisition function, as is shown in Table. 2.2, Algorithm 1. The sample optimized is

believed to bring the most improvement on exploitation and exploration for the next GP model,

which means the simulation is aiming to explore the environment more efficiently and locate

the global optimum as fast as possible. It is clear in Fig. 2.1 that the high concentration of the

environment is changing with time, both quantitatively and spatially. So a desired result in this

section has to estimate precisely at the position of high concentration, or at least in the area

surrounding that place.

The environment settings are shown in Table. 2.3. And the information of simulations in this

section are presented in Table. 4.1. The settings are all the same in the following experiments

in Sec. 4.1. The test interval means the temporal interval where the performance of GP is

Table 4.1: The setting of the discrete sampling experiments.
Sampling Tend (s) δ t (s) Iteration imax Test interval (s)

10 0.1 100 [0, 10]
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evaluated. The GP is trained with 101 data points after the simulation stops, which includes 1

initial data and 100 samples collected by 100 times of iteration.

4.1.1 Free Sampling

The highest concentration found by the method is shown in Table. 4.2. tmax is 0.001 s, meaning

the method has found a maximum very early in the timeline. This is not surprised because the

time-free sampling can sample any location at any time. fmax(tmax) denotes to the value of true

global maximum at time tmax, which is used to assess the maximum found by the method.

Table 4.2: The maximum found by the free sampling method.
f (smax, tmax) (mg/m3) smax (m) tmax (s) Iteration serial fmax(tmax)

1277.218 [-6.46, -0.01, -19.99] 0.001 99 1277.224

Fig. 4.1 presents the collected samples by colored points. The color of each point indicates

the time variable of the sample, which is the optimized temporal variable by BO in the free

sampling method. It should be noted that as BO with free sampling can sample freely along the

timeline, the distribution of samples are not necessarily uniform along the timeline.

Figure 4.1: The samples collected by free sampling, colored by the time.

Fig. 4.2 and 4.3 present the performance of GP near the high concentration (global max-

imum) and in the entire domain, respectively. It should be noted that Fig. 4.2 (a) shows the

trend of error instead of RMSE or MLL, because it is the performance at the point of high

concentration. Moreover, as the location and value of the high concentration is time varying, it
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is reasonable that a continuous sampling is necessary to maintain an accurate monitoring to the

high concentration.

(a) Error and RD (b) RMSE and RD

Figure 4.2: The performance (a) at and (b) around the time-varying global maximum by free
sampling.

(a) (b)

Figure 4.3: The overall performance of (a) RMSE & WRMSE and (b) MLL & WMLL by free
sampling.

Fig. 4.2 illustrates that the GP has a nearly zero error at the high concentration when the

time begins (t ∈ [0,1] s), then the error increases with time. Considering the concentration of

blue points in Fig. 4.1 near the global maximum and Table. 4.2, this method has obviously

collected many samples whose temporal variable is small at the right location that is the global

maximum. This ability of finding the global maximum both spatially and temporally has proven

the capability of BO in searching the global maximum in a 4-dimensional problem (spatial 3-D

plus temporal 1-D).
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However, this method also reveals some disadvantages when we examine the performance

related to the temporal variation. Besides ignoring the real time order of sampling process,

the BO has lost interest to the high concentration once it has found the global maximum at

t = 0.001 s, which induces the increase of error at the global maximum in Fig. 4.2. Although

there is another good time at t = 7 s, this is resulted by several samples near the maximum

whose temporal variable is around 7. The overall error at the global maximum is obviously

getting worse after t = 1 s. And since the only element that encourages BO to explore other

places in the room is the exploration from the acquisition function, the performances in the

room in Fig. 4.3 are just decent. However, the weighted performances are much better because

of the contribution from finding the global maximum.

4.1.2 Time-abandon Sampling

The highest concentration found by the method is shown in Table. 4.3. Compared with Ta-

ble. 4.2, this method has not temporally found the global maximum, which is comprehensible

since the concentration is decaying with time and it is impossible to find the maximum at the

beginning of iterations. Anyway, at time tmax, the value of concentration found is close enough

to the true global maximum at the same time.

Table 4.3: The maximum found by the time-abandoned sampling method.
f (smax, tmax) (mg/m3) smax (m) tmax (s) Iteration serial fmax(tmax)

1140.340 [-5.87, 0.08, -19.92] 3.3 34 1145.956

Fig. 4.4 presents the collected samples by colored points. Although the optimized temporal

variable is abandoned during sampling in this method, BO still has successfully find the location

of global maximum as the concentration of points has revealed.

Fig. 4.5 presents a wonderful decrease of error around the global maximum. It is achieved

by a continuous sampling in that area. Why BO has a persistent interest in the high concen-

tration area than Sec. 4.1.1? We presume it is because the temporal variation brings significant

change to the value of acquisition function. In the experiment, since the actual sample has a

different temporal variable from the optimized sample that BO wants, the actual sample cannot

gain enough knowledge to the area of high concentration. BO has to keep asking for the same
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Figure 4.4: The samples collected by time-abandon sampling, colored by the time.

location at a different time whose corresponding value of acquisition function is still high.

In the meantime, as the optimized sample always locates near the global maximum, the BO

losses its exploration to the rest of the room, which induces a high error in the room in Fig. 4.6.

Both the regular and weighted performances of this method are worse than Sec. 4.1.1 in Fig. 4.3

(a) Error and RD (b) RMSE and RD

Figure 4.5: The performance (a) at and (b) around the time-varying global maximum by time-
abandon sampling.

4.1.3 Ascending Order Sampling

The highest concentration found by the method is shown in Table. 4.4. This maximum is also

not the temporally global maximum. But if we comparing it with Table. 4.3, this maximum
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(a) (b)

Figure 4.6: The overall performance of (a) RMSE & WRMSE and (b) MLL & WMLL by
time-abandon sampling.

found is closer to the global maximum at the same time. This proves the advantage of involve-

ment of the optimized temporal variable. Since BO in this method has the ability to make use of

both the optimized spatial and temporal variables in the next sample, it will be easier to obtain

a true global maximum than Sec. 4.1.2.

Table 4.4: The maximum found by the ascending order sampling method.
f (smax, tmax) (mg/m3) smax (m) tmax (s) Iteration serial fmax(tmax)

1145.899 [-6.11, 0.01, -19.99] 3.3 42 1145.920

Fig. 4.7 presents a more dispersed distribution of points. As we bring the optimized tempo-

ral variable back in use, the BO seems less interested in the area of high concentration than in

Sec.4.1.2.

However, this change has little influence on the performance around the global maximum,

as Fig. 4.8 has illustrated. The error at the point of global maximum only increases from 10−1

to 100, and RD still stays close to zero. In addition, the overall performances in the room in

Fig. 4.9 are much better than in Fig. 4.6. The weighted performances of both WRMSE and

WMLL become as good as in Fig. 4.3.

The design of this method has presented its advantages on both finding the global maxi-

mum and monitoring the entire domain. However, because the bounds of spatial and temporal

variables in the optimization are not well designed base on the concern that whether a mobile

sensor has the ability to arrive the spatial location before the temporal variable, this method is
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Figure 4.7: The samples collected by ascending order sampling, colored by the time.

still not practical enough for a monitoring application with UAV. A really practical result of

sampling method will be presented in the following chapter.

(a) Error and RD (b) RMSE and RD

Figure 4.8: The performance (a) at and (b) around the time-varying global maximum by as-
cending order sampling.

4.2 Continuous Samplings

In this section, each time of iteration of BO will provide a path. And most of the samples are

collected along the path instead of only at the optimized points as Sec. 4.1. In this circumstance,

the expectation of potential improvement induced by the optimized sample is not dominant

anymore. Learning the variation based on the samples collected on the path, in order to model

the environment well both spatially and temporally, has become the main goal of this section.
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(a) (b)

Figure 4.9: The overall performance of (a) RMSE & WRMSE and (b) MLL & WMLL by
ascending order sampling.

The maximum point as Table. 4.2, 4.3, or 4.4 among the samples collected during simulation,

will not be shown in this section. In the meantime, more data samples than Sec. 4.1 will be

collected in the experiments of this section.

The settings of the experiments in Sec. 4.2 is presented in Table. 4.5.

Table 4.5: The setting of the continuous sampling experiments.
Sampling Tend (s) δ t (s) Iteration imax Test interval (s)

40 0.1 400 [0, 40]

4.2.1 Waypoint Planning

As the waypoint is optimized with a similar method in Sec. 4.1.3, both spatial and temporal

variables are included. Some samples are collected on the way to the waypoint with a constant

rate of sampling. (0.1 s per point) The number of them are determined by the time difference

between starting time and the optimized time of the waypoint.

Fig. 4.10 presents the paths obtained in this simulation. It is clear that the dark blue path

goes aimlessly in the beginning. Then the high concentration is found and the paths become

stationary in that area (yellow paths). Although it takes more samples before finding the area of

high concentration than the experiments in Sec. 4.1, it is better because the method runs much

less times of the optimization of waypoint.

The performance of this method is similar to Sec. 4.1.2, which achieves high accuracy at
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Figure 4.10: The samples collected by waypoint planning, colored by the time.

the global maximum once the global maximum is found as Fig. 4.11, while maintaining large

errors in the room as Fig. 4.12. This problem is induced by the inappropriate balance between

exploitation and exploration of the acquisition function. When we set κ = 0.1 in Eq. 2.30, in

the environment studied, the high concentration at the maximum is always able to overwhelm

the value of uncertainty in other places. As the paths planned later decide to concentrate around

the global maximum, BO has lost its ability to know the rest of the room.

In a real leakage of a toxic gas, BO with the waypoint planning already has enough exploita-

tion to fast locate the high concentration. But after that, the exploration should be preferred for

a precise monitoring to the rest disaster area. To improve the ability of exploration of BO,

increasing κ will be a good idea. However, the balance should be taken care of depending on

the environment, because an over-large exploration will weaken the ability of finding the global

optimum if the value of optimum is relatively small than the expected improvement brought by

exploring the uncertainty. Balancing the exploration and exploitation is always a hard work.

Another idea is to design a dynamic system to switch among several acquisition functions un-

der certain conditions[16, 17]. The acquisition functions with high exploitation or exploration

will be chosen independently to meet different requirements of BO. However, this balancing

method is not further studied in this section, because the path planning proposed in next section

has solved the problem.
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(a) Error and RD (b) RMSE and RD

Figure 4.11: The performance (a) at and (b) around the time-varying global maximum by
waypoint planning.

(a) (b)

Figure 4.12: The overall performance of (a) RMSE & WRMSE and (b) MLL & WMLL by
waypoint planning.

4.2.2 Continuous Path Planning

Based on the waypoint planning, the continuous planning will not only focus on the potential

improvement from the target waypoint, but also the improvement that may brought by the

samples along the path. Fig. 4.13 illustrates the path designed by this method. As the figure

has revealed, the path starts at one edge of the room and end at another, while pass through the

center of the room where the global maximum is. Although this method implements the same

acquisition function as Sec. 4.2.1, it overcomes the disadvantage by taking the reward of the

path into consideration.

In Sec. 4.2.1, it has been explained that a balancing method in order to switch between
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Figure 4.13: The samples collected by continuous planning, colored by the time.

exploitation and exploration is necessary to maintain an accurate monitoring of the environment

at all time. But the continuous path can pay less attention on the balance, since it will try to

collect reward as much as possible from both exploitation and exploration along the path as long

as the value of the acquisition function is positive. Because increasing the value of integral of

the reward function is the goal of optimization, the optimized curve parameters will extend the

path to any location whose value of acquisition function is positive, no matter this value is based

on a higher exploitation or a preference of exploration. In such a circumstance, switching from

exploitation to exploration while the global maximum has been found is not essential in the

continuous path planning, since the curve will eventually be optimized to explore the unknown

area for a higher reward. This is a significant advantage of the continuous path planning than

the previous waypoint planning.

In Fig. 4.14, it takes more time for BO to reduce error and RMSE to the level of 101, than in

Fig. 4.11. But the errors are still in an acceptable interval since the corresponding RD is close to

zero. Moreover, this loss on exploitation brings great improvement on the performances in the

room as Fig. 4.15 has shown. The RMSE and MLL are gradually reduced while maintaining a

continuous decrease of WRMSE in Fig. 4.15 (a), which indicates the method keeps approaching

the area of high concentration before finding it.

The continuous path planning has proven itself a practical and effective method in the prob-

lem of monitoring a time-varying environment with a mobile sensor. The path designed is

practical for a UAV to track in a 3-D room. And the simulation results of the method have
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(a) Error and RD (b) RMSE and RD

Figure 4.14: The performance (a) at and (b) around the time-varying global maximum by
continuous planning.

(a) (b)

Figure 4.15: The overall performance of (a) RMSE & WRMSE and (b) MLL & WMLL by
continuous planning.

presented the capability of a fast optimum location and the subsequent precise modeling to the

entire domain. Comparing with the waypoint planning, the continuous path planning is more

efficient on sample collection because the reward function considers the samples gathered along

the path to be informative. Moreover, the continuous plan is a more reliable method since it re-

quires less attention on balancing the trade-off between exploration and exploitation to achieve

a continuously precise monitoring to the environment.
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Chapter 5

Conclusion

This thesis presents a few designs of sampling methods to use Bayesian Optimization (BO)

monitoring a time-varying environment. The experimental results show that with more realis-

tic assumptions added to the design, the method is more practical but less capable of finding

the true global optimum. However, a balance can be achieved between locating the particu-

lar global optimum and modeling the entire environment in the process. The core algorithm

is Bayesian Optimization, a sequential design strategy for global optimization of black-box

functions, particularly suitable for optimizing expensive-to-evaluate functions. The underlying

regression model is Gaussian Processes (GPs). We study a case for which there is a pollu-

tant gas leakage in an open area, which is modeled by a Gaussian puff model, a single source

time-varying dispersion model. A mobile sensor is deployed in that 3-D area to locate the high

concentration of leakage and to collect samples for modeling the environment.

Two sampling methods including 5 scenarios are studied. In the first discrete sampling

method, three experiments are implemented corresponding to three different treatments to the

optimized temporal component of the samples. In the second continuous sampling method,

two kinds of path planning are implemented to collect data for environmental modeling. The

continuous path planning of the second scenario is developed from the waypoint planning of

the first scenario.

The results from the first method have shown that with a more realistic design of sam-

pling, a more balanced performance can be achieved between fast locating the global optimum

and precise modeling the entire environment, in terms of Root Mean Squared Error (RMSE),

Weighted Root Mean Squared Error (WRMSE), Mean Log Loss (MLL), Weighted Mean Log

Loss (WMLL), and Relative Difference (RD). The results of continuous path planning have
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proven the method a practical design of monitoring the time-varying environment, as its algo-

rithm can efficiently collect informative samples for the GP model and requires less work on

the balance of exploration and exploitation.

Future work will be based on the extension of application of the continuous path planning.

More complex environment with multi sources and multi emissions of puff will be studied in

the future.
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