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Thesis Director:

Sheng Wei

Deep neural networks (DNNs) have been increasingly adopted in many mobile applica-

tions involving security/privacy sensitive data and inference models. Therefore, there

is an urgent demand for security and privacy protection of DNN execution on mo-

bile devices. Catering to this demand, hardware-based trusted execution environments

(TEEs), such as ARM TrustZone, have recently been considered for secure mobile DNN

execution. However, none of the existing attempts of running DNN in TrustZone have

been successful due to the stringent resource and performance limitations posed by the

mobile TEE. We develop HybridTEE, a novel hardware-based security framework to

securely execute DNN in the resource-constrained local TEE (i.e., ARM TrustZone),

by offloading a part of the DNN model to a resource-rich remote TEE (i.e., Intel SGX).

The key design of HybridTEE is two-fold. First, it strategically divides the DNN

model into privacy-aware local (TrustZone) and remote (SGX) partitions by employing

two privacy-oriented metrics based on object recognition and Scale Invariant Feature

Transform (SIFT). Second, it builds a trustworthy communication channel bridging

TrustZone and SGX to enable secure offloading of the DNN model between the two

TEEs. Our evaluations based on a prototype implementation of HybridTEE and 4
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popular DNN models indicate enhanced security and a 1.75x - 3.5x speedup compared

to mobile-only DNN execution without TEE.
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Chapter 1

Introduction

Deep neural networks (DNNs) have been widely adopted in various mobile applications

to accomplish critical inference tasks, such as healthcare [16], authentication [32, 9], and

computer vision [13, 27]. Many of these applications interact with security or privacy

sensitive data that require protection, such as the biometrics used by an authentica-

tion app and the medical information involved in a healthcare app. In addition, the

confidentiality and integrity of the mobile DNN model itself are subject to a variety of

security threats [17, 33, 10] that must be addressed.

Recently, hardware-based trusted execution environments (TEEs), such as ARM

TrustZone [1], have been developed to address mobile security challenges in general.

ARM TrustZone can create a hardware-isolated secure world to seal the sensitive data,

which remains secure even if the operating system (OS) has been compromised by

an attacker. Such exclusion of OS from the trusted computing base (TCB) makes

TrustZone a strong hardware security primitive and a viable option for securing mobile

DNN executions.

However, in reality, it is very challenging to execute DNN in TrustZone due to

the huge gap between the limited computing resources (e.g., memory space or hard-

ware/software accelerators) in the TrustZone secure world and the high demand of the

DNN models that are both data and computation intensive. Although it is physically

feasible to deploy more resources into the secure world, doing so is directly against the

security principle of maintaining a small TCB and would result in an increased level

of exploitable security vulnerabilities. In fact, due to this fundamental challenge, the

existing efforts in the community attempting to execute DNN in TrustZone have not

been able to reach satisfactory solutions. Figure 1.1 summarizes the existing categories
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of research efforts targeting mobile DNN execution. For example, several works [31,

22] proposed to partition the DNN model and run all the partitions sequentially within

the limited memory space of TrustZone. Although they could achieve the desired se-

curity, the resulting timing overhead is huge even for simple DNN models (i.e., the

high-security, low-performance category). Another approach [7] proposed to partition

the DNN model into a small secure component which runs in the local device TEE

and a large non-secure component that runs on a remote non-TEE server. However,

the non-secure portion of the model often leaves traceable information for the attacker

to reverse engineer and compromise the security of the entire DNN model (i.e., the

medium-security, high-performance category). In addition, the conventional approaches

run the DNN model in non-TEE environments either with (i.e., [14, 26]) or without

offloading (i.e., the baseline approach). These approaches would achieve low security

without the protection provided by TEE.

Figure 1.1: Illustration of the novel contribution made by HybridTEE compared to
the existing works on mobile DNN execution. The existing works contain 4 main
categories: (1) Baseline (non-TEE); (2) Offload (non-TEE) [14, 26]; (3) Partition
(TEE) [31, 22]; and (4) Partition (TEE) + Offload (non-TEE) [7].

To address the security and performance challenges in the existing approaches of

DNN execution in TrustZone, we propose to adhere to two design principles for an ef-

fective defense approach. First, for the consideration of security, the entire DNN model

must remain in TEE. Second, to boost the performance of DNN execution in TEE, a

second heterogeneous TEE (e.g., Intel SGX [20]) may be leveraged to compensate for
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the limited computation resources in TrustZone. The two design principles combined

lead to our proposed solution HybridTEE, which offloads a strategically partitioned part

of the DNN to a remote SGX enclave. In this way, HybridTEE ensures the security of

the DNN model as it is entirely executed in TEEs. Also, it has the potential of signif-

icantly improving the performance given the higher amount of computation resources

and capacity in the remote SGX server. Figure 1.1 illustrates the novel contribution

made by HybridTEE compared to the existing approaches. In particular, HybridTEE

creates a new category of approach for secure mobile DNN execution, namely high se-

curity, medium performance, which aims to meet the high security requirement in the

sensitive applications while providing acceptable performance.

HybridTEE involves two key technical components with novel research contribu-

tions to realize the aforementioned design objectives. First, we develop a novel privacy-

preserving partitioning algorithm to eliminate the potential privacy concerns while of-

floading the data and model from the local mobile device to the remote server. Second,

we develop a HybridTEE framework by bridging the two singular TEEs, namely Trust-

Zone and SGX, via a cryptography-based secure handshake. HybridTEE ensures that

there is no data or model exposed in the clear during the secure offloading and execution

of the DNN model across the two TEEs.

The key design challenge in the partitioning algorithm is to determine the particular

DNN layer, namely the partition point, after which the data involved in the DNN model

would contain least amount of identifiable information about the original inputs and

thus can be offloaded to the remote server without privacy concerns. We develop two

partitioning algorithms to determine such partition point for a given DNN model: (1)

We employ an auxiliary DNN model to determine the confidence level of the current

layer output being successfully identified as the original input (i.e., a confidence score),

and we select the layer that has a sufficiently low confidence score as the partition point

to prevent the adversary from directly identifying privacy-sensitive information. (2) We

adopt a scale invariant feature transform (SIFT)-based method to match the keypoints

between the input and output images at each layer of the DNN model, and we select

the layer that causes significant mismatch in the key points as the partition point, to
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prevent the adversary from inferring and reconstructing the original input.

We evaluate HybridTEE on real system implementations of the two singular TEEs,

including the TrustZone using OP-TEE [15] on a Raspberry Pi and the SGX on a server.

Our evaluation results on 4 popular DNN models indicate that HybridTEE enables

TEE-based secure DNN execution with a 1.75x-3.5x performance speedup compared to

mobile-only DNN execution without TEE.
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Chapter 2

Background

2.1 Deep Neural Networks

A deep neural network (DNN) belongs to the broad category of artificial neural net-

works, which are used for representation learning. DNN uses multiple layers to predict

several high-level features from the raw input data [2, 25]. It has multiple hidden layers

between the input and output. Each layer contains multiple neurons, and the connec-

tions between the neurons are associated with weight vectors. The main component

of DNN inference phase is the feed forward network, which maps a given input to its

respective prediction label or class. Figure 2.1 illustrates a sample DNN for image

classification [2].

Figure 2.1: Deep Neural Network for image classification [2].

A feed forward network can be represented as a function fθ : X → Y , where X

is a high dimensional vector and Y is a set of class labels for prediction. For a DNN

network fθ with input Xk, the feed forward network predicts the output Yk after a series

of sequential computations fnfn−1...f1(Xk), across multiple hidden layers with weight

vectors WN
i=1 and activation function Ak, where k is the sample input and N is the

number of neurons in the corresponding hidden layer. The top k entries are extracted
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from Yk and mapped to a set of class labels L.

2.2 Trusted Execution Environment

The security community has developed and deployed hardware-based trusted execution

environment (TEE) to protect sensitive computations and data [1, 20]. A TEE pro-

vides isolated execution of the application along with confidentiality and integrity for

the code and data, which cannot be exploited even if the OS has been compromised.

This excludes the OS from the trusted computing base (TCB) of the system and signif-

icantly reduces the possible attack surface. A TEE’s ability to provide safe execution

of authorized software is known as trusted application (TA). The contents of the TA

are isolated from the untrusted components of the system, and also from the other TAs

running within the TEE. Any modification to a TA can be performed only by an au-

thenticated entity. The TEE also provides secure storage where all the TAs code/data

will be stored in a protected memory block. In our proposed HybridTEE framework,

we primarily focus on the combination of two TEEs: ARM TrustZone [1] for mobile

devices and Intel SGX [20] for server/PC platforms.

2.2.1 ARM TrustZone

ARM TrustZone [1] is a hardware isolation technology present in ARM based devices.

TrustZone provides a TEE which contains three main components: secure world, nor-

mal world, and secure monitor, on a single processor core. The secure world can access

the resources in the normal world, but the normal world cannot directly access any re-

sources in the secure world. The secure monitor takes responsibility of context switching

between the two worlds. Access to the secure monitor is triggered by executing a ded-

icated instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the

hardware exception mechanisms. TrustZone provides isolation using an extended AXI

bus design with an additional NS (non-secure) bit, which is a control signal for read

and write accesses on the main system bus. Figure 2.2 shows the architecture of ARM

TrustZone with secure and unsecure regions [1].
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Figure 2.2: ARM TrustZone architecture [1].

2.2.2 Intel SGX

Intel SGX [20] is a security extension on the traditional Intel architecture that provides

confidentiality and integrity protection for the sensitive user data. It provides security

by encryption of a portion of the memory by the CPU. In particular, SGX protects

the confidentiality and integrity of the data in the secure container, also known as

the enclave, by isolating the enclave’s code and data from the untrusted components,

including the system OS and hypervisor. The processor sets aside a region of mem-

ory called Protected Reserved Memory (PRM) which contains the Enclave Page Cache

(EPC) to store the enclave code and data. Each page in the EPC belongs to exactly

one enclave. The state of all EPC pages is maintained in the Enclave Page Cache Map

(EPCM). When an enclave is loaded, the CPU computes a cryptographic hash of its

contents. During the enclave initialization and before running any applications, this

hash acts as a verification or attestation metric to validate the status of the enclave.

The communication between the enclaves and the untrusted applications is performed

using enclave calls (i.e., ecalls) and outside calls (i.e., ocalls). The communication chan-

nels are also encrypted to guarantee the confidentiality of the data. SGX also involves

remote attestation, where the enclave establishes a trust relationship with a remote

third party service provider. Figure 2.3 describes the Intel SGX architecture [20].
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Figure 2.3: Intel SGX architecture [20].

2.3 DNN Offloading

DNNs have been widely deployed in mobile or IoT-based devices for computation-

intensive AI applications [8, 29, 32, 9, 13, 27, 16], which often overwhelm the limited

computation capacities of the mobile devices, significantly affecting the performance.

To address this issue at the system level, recent studies have adopted DNN offloading

as a means to execute the mobile DNN applications under the resource constraints [14,

26].

Consider the case that the user needs to run N applications on a mobile device.

Each of these applications needs to perform a prediction task using a DNN inference

model. Let the total amount of resources on the device be R and each model needs

r resources for running the inference. If
∑k

i=1 ri ≥ R, then the device cannot run all

inference models at the same time, causing a performance bottleneck. The solution that

is widely deployed to address this problem is to find an application fk in which resource

usage rk ≥ T , where T is the threshold, and offload the computation-intensive part of

fk to a resource-rich cloud platform [34]. Some of the previously suggested methods

use a cost-driven strategy to offload the DNN computation at run time [14], where the

profiling on the mobile device is performed by monitoring the CPU utilization rate.

While offloading is a plausible way to enable efficient execution of DNNs on mobile

devices, various design challenges must be addressed such as the content and timing of
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the offloading, as well as the potential performance degradation caused by the round-

trip communication. In the design of HybridTEE, we explore and address these design

challenges under the unique security context.

2.4 Remote Attestation

Remote attestation is a method used to establish handshake between the service provider

and an enclave in the remote server [28, 5, 11]. This process enables the service provider

to authenticate and build the trust relationship with the remote enclave, which can be

used to address various trust problems including guaranteed invocation of software on

the server, delivery of privacy sensitive content to trusted clients, detection of malicious

unauthorized access to the service provider, etc.

Figure 2.4: Remote attestation handshake between a service provider and an au-
thentic enclave. A Quote is a combination of token and Enclave ID signed by the
enclave [11].

Figure 2.5: Remote attestation blocking a fake enclave from getting unauthorized
access to the service provider [11].

In our work, we consider Intel SGX as the remote server and ARM TrustZone as

the service provider. Figure 2.4 shows the normal scenario where an authentic enclave

is attested by the service provider. A quote signed using a private key by the enclave

is verified by the attestation server [11]. Also, a random token is used by the service
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provider to prevent replay attacks [19]. Figure 2.5 illustrates the case of a fake enclave

or adversary trying to establish connection with the service provider [11]. As part of

the remote attestation process, the attestation server will detect this malicious quote

and notify the service provider about the discrepancy. If the attestation is unsuccessful,

the handshake process is terminated.
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Chapter 3

Threat Models

We assume the goals of the adversary are to (1) gain access to the sensitive input data

that is fed into the DNN, (2) reconstruct the model by using confidential information

obtained during the model execution, (3) uncover the final prediction results generated

after the classification process, and (4) modify the input or model proprietary infor-

mation, that can alter the final prediction outcome. In this work, we aim to leverage

the strong security features and performance improvements brought by HybridTEE to

address all the above confidentiality and integrity threat models.

On the other hand, we assume that both ARM TrustZone and Intel SGX are not

compromised by the attackers. In other words, we do not consider side channel attacks

or hardware physical attacks that could compromise the trusted execution environ-

ments. Also, we assume that the DNN training for the model has been done in a secure

environment and the adversary does not have any information about the training pro-

cess or the model proprietary information prior to the application deployment.

In addition to the security threat models, we also consider a privacy threat model,

in which the users are concerned about their private images (e.g., the input images of

the DNN model) being offloaded to a remote server and accessed by the non-malicious

service provider. In the scenario of offloading, the privacy threat model determines that

the input images, either in the original form or with downgraded but still identifiable

quality, should not be offloaded to the remote SGX enclave, even if the enclave remains

intact without being compromised. This creates a significant challenge to the design

of the offloading mechanism in HybridTEE, which we aim to address with the privacy-

aware partitioning algorithm presented in Chapter 5.
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Chapter 4

Problem Definition: Mobile DNN Execution

A pre-trained DNN model contains proprietary information such as model runtime

configuration parameters and weights. Exposure of this information to an adversary

can leak sensitive information about the intellectual property of the model. Also, input

data that is fed into the model and the final prediction results are security sensitive.

In order to protect the intellectual property, input data and prediction results, it is

desirable to execute the DNN models in a hardware-based TEE [31, 22].

However, the design principle of TEEs is to protect the sensitive code/data using

small Trusted Computing Base (TCB) sizes [1, 20]. Such design principle minimizes

the potential security vulnerabilities of the TEE, thus making it more challenging for

attackers to compromise. This indicates that the amount of data or code that can be

securely stored or run within the TEE is limited. On the other hand, the size of a

DNN model is typically huge containing 3 major components: neural network layers,

weight vectors, and input data. In particular, the weight vectors of popular DNNs are

can be up to a few hundred megabytes, as summarized in Table 4.1. As a comparison,

the memory capacity of a typical TrustZone implementation, such as OP-TEE [15] on

Raspberry pi 3, is in the range of a few megabytes. The huge gap between the demand

and supply creates the research problem we must address with the design of HybridTEE.

DNN model Number of layers Total weight vector size in MB

Darknet19 26 80

VGG-16 25 528

Resnet152 205 220

GoogLeNet 27 90

Table 4.1: Typical DNN model weight vector sizes in megabytes [24].
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Let us consider the mathematical representation of the problem definition. Let D(θ)

be the DNN model with total N layers. Let Sli be the size of the ith layer. Let wi be

the weight vector at layer i with size Swi . Let Rw×h×c be the high dimensional input

vector with length SR, and T be the TCB size of the TEE for the device. The entire

DNN model can be run in the TrustZone secure world if and only if -

N∑
i=1

Sli +
N∑
i=1

Swi + SR ≤ T (4.1)

However, the total size of the layers, weights and input data St >> T , since the DNN

model’s memory requirement is very high, and T is expected to be as small as pos-

sible. This creates a challenging problem that we aim to address with the proposed

HybridTEE.

In a nutshell, HybridTEE offloads a part of the DNN model from the local TEE

(TrustZone) to a remote TEE (SGX) to address the aforementioned demand & supply

problem. The realization of HybridTEE involves two major components. (1) Algorith-

mic component: a privacy-aware DNN partitioning algorithm (discussed in Chapter 5)

to determine the partition point between the sub-models at local and remote TEEs; and

(2) System component: a system-level HybridTEE framework (discussed in Chapter 6)

to securely bridge the two TEEs and jointly accomplish the secure DNN execution.
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Chapter 5

Privacy-Aware DNN Partitioning

In our HybridTEE system we deploy a three-way sequential partitioning technique.

The DNN model is divided into 3 partitions, namely LocalNet(L1), RemoteNet(L2),

and PredNet(L3), as shown in Figure 5.1. First, LocalNet or local partition contains

the most sensitive layers of the network that are vulnerable to privacy exposure about

the input data. The code and data of LocalNet and its feed forward function should

reside in the local TEE for privacy protection. Second, RemoteNet or remote partition

contains the next set of sequential layers in the network. It is stored and executed

in the remote TEE. In order to maximize the overall performance of the application,

RemoteNet should contain the most number of layers in the network, since the SGX

server is a faster and resource rich device. However, due to privacy considerations, there

is critical information in the DNN model that must stay in LocalNet, and the partition

point for the transition from LocalNet to RemoteNet is determined by our privacy-

aware partitioning algorithm that will be discussed next. Finally, PredNet or prediction

partition contains the final layer of the DNN that performs the final prediction of the

labels for the given input. This layer runs in the local TEE, considering the privacy

sensitive nature of the prediction result for the user.

The mathematical representation of the partitioning approach is as follows. Consider

a DNN model with feed forward function fθ : X → Y. The network partitions for

LocalNet, RemoteNet and PredNet can be formulated as fθ = fθl ⊕ fθr ⊕ fθp , where

fθl , fθr and fθp are the respective feed forward functions of LocalNet, RemoteNet and

PredNet, and n be the total number of layers in the network. LocalNet obtains the

high dimensional input vector Rw×h×c and generates the partial outputs in the form of

fθl(pp− 1), where pp represents the partition point. These outputs are then encrypted
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using symmetric encryption before being sent to RemoteNet.

fθl = f(Rw×h×c) (5.1)

f∗θl = Enc(fθl(pp− 1)) (5.2)

The encrypted outputs of LocalNet act as inputs to RemoteNet, which decrypts and

computes the results up to the (n− 1)th layer of the network.

fθr = Dec(f∗θl) (5.3)

f∗θr = Enc(fθr(n− 1)) (5.4)

The encrypted outputs from RemoteNet act as inputs to PredNet partition, which

decrypts the partial outputs and performs the final prediction Y based on the class

labels.

fθp = Dec(f∗θr) (5.5)

Y = fθ = Predlabels(fθp) (5.6)

While designing the partitioning algorithm, our key idea is to automatically detect

the privacy exposure in each layer of the DNN execution and identify the last layer that

still exposes privacy-sensitive information as the partition point pp. While there is no

common standard of privacy defined for this domain-specific application, we consider

the privacy of the user by regarding all the original input images as privacy-sensitive,

and the intermediate inputs/outputs that could reveal the original input images should

remain in LocalNet without being offloaded. Following this privacy model, we develop

two systematic methods to find the optimal partition point. First, We conduct object

detection at the intermediate layers to identify potential exposure of meaningful, iden-

tifiable information of the original input images (discussed in Chapter 5.1). Second,

we employ the Scale Invariant Feature Transform (SIFT) method to detect localized

keypoints in the intermediate inputs/outputs and quantify the potential privacy expo-

sure (discussed in Chapter 5.2). In each method, the optimal partition point can be

determined as the DNN layer that results in significantly low exposure of the original
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Figure 5.1: Three-way DNN partitioning with LocalNet and PredNet partitions
running in ARM TrustZone and RemoteNet partition running in Intel SGX.

input images. Algorithm 1 describes the steps involved in determining the partition

point using these two methods. Both partitioning methods are executed offline prior to

deployment of the application on the user device.

5.1 Object Detection Using an Auxiliary DNN

The objective of the partition point detection algorithm is to find the last layer in the

DNN model that is still susceptible to information exposure about the original input

images. If the unencrypted input image is recovered, the adversary can gain critical and

sensitive information about the user, thus invading the user’s privacy. Based on this

point of view, we develop an algorithm to determine the partition point by employing

an auxiliary DNN to detect the objects in the intermediate input/output images. The

idea is based on the assumption that the adversary is able to identify any object that

is distinctly visible. Specifically, the auxiliary DNN acts as an adversary attempting to

classify the key object in the intermediate images. We argue that if the auxiliary DNN

is not able to classify the image with a certain degree of confidence, then the image is

considered as free of privacy exposure for offloading.

In particular, we use YOLO [24] as the auxiliary DNN model, which is a state-of-the-

art, real-time object detection mechanism. The YOLO model predicts the bounding

boxes using dimension clusters, with 4 coordinates for each box. Then, each box predicts
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the classes that are related to the objects present in the box with a confidence score.

We run the target DNN model offline and save the images of each channel in every

layer. Then, we feed each image into the YOLO model to find its confidence score

of object detection. We select the maximum confidence score among all channels as

the confidence score in an individual layer, and we repeat this process over all the

layers. Finally, we select the partition point based on one of the two criteria: (1) the

layer achieves sufficiently low confidence score, or (2) the layer reaches the cumulative

memory requirement for the local TEE. The first layer that fulfills either standard is

then treated as the partition point for the DNN model.

Let fθ be the DNN model function under consideration. Let {li}Ni=1 be the layers of

the DNN and {ci}Ci=1 be the number of channels in each layer. Therefore, {{Xcl}Cc=1}Nl=1

are the images of respective layers and channels. Let {φ}Nl=1 be the maximum confidence

scores generated at each layer and lTCB be the cutoff layer with memory usage below

TCB threshold. Let η be the partition point of localNet. With gθl(c) = fθ(l)(c) for all

1 ≤ c ≤ C, we obtain the maximum confidence score of object detection among all

channels in every layer i.e. φi.

{φi}Ni=1 = max
1≤c≤C

gθl(Xc) (5.7)

Then, we find the layer with the minimum confidence score among all the layers, and

compare this value to the TCB cutoff layer lTCB. We then select the minimum value

between the two as the partition point η.

η = min( min
1≤i≤N

φi, lTCB) (5.8)

5.2 Scale Invariant Feature Transform

In addition to object detection, we also employ SIFT [18] as another means of iden-

tifying the privacy exposure at intermediate DNN layers. SIFT is a feature detection

algorithm to detect local features or keypoints in images, which goes through four key

steps: feature detection, feature matching and indexing, cluster identification and model

verification. In feature detection, an image is transformed into a large collection of fea-

ture vectors that are agnostic to image scaling or rotation. The features are detected
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Figure 5.2: SIFT keypoint matching between two images. The image in the left
half is the DNN input image, and the image in the right half is generated by the
feed forward network at layer 0 channel 7. The green lines represent the keypoints
matched.

using a staged filtering process to identify stable points. Each point is used to generate

a feature vector that describes the local image region [18]. In order to index a new ob-

ject in the image, the SIFT keys for similar images are stored in a database. In cluster

identification, an object is recognized in the new image by comparing to the features in

the original database. Finally, model verification uses least-squares method to deter-

mine the closest parameters from the projected model locations to the corresponding

image locations [18].

In order to determine the similarity between two images, the keypoints of both

images are computed using a keypoint descriptor. We now remove the unnecessary or

approximate matches using the ratio test given by [18] and only select the matches

with distance less than 0.75x of the feature distance in the original image. The number

of matches obtained indicates the degree of similarity between the images. Figure 5.2

demonstrates the keypoints matched between the input image in the left half of the

figure, and the output generated at layer 0 channel 7 in the right half. The red dots

indicate the features in the respective images, and the green lines indicate the matches

detected. The images have 221 matching keypoints.

Mathematically, let R1 and R2 be the high dimensional vectors representing the
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Algorithm 1 Partition Point Detection

1: function GenerateImages(void) . Save the images of every channel and layer
2: for layer = 1, 2, . . . , N do
3: for channel = 1, 2, . . . , C do
4: image← GetNetworkImage(layer, channel)
5: Save network image
6: end for
7: end for
8: end function
9: function Partition AuxDnn(void) . Compute partition point using auxiliary

DNN
10: for layer = 1, 2, . . . , N do
11: for channel = 1, 2, . . . , C do
12: conf score, label← Y olo detectobject(image)
13: end for
14: Ml ← max

1≤c≤C
conf score

15: end for
16: η ← fthresh(Ml)
17: return η
18: end function
19: function Partition SIFT(image1) . Compute partition point using SIFT

keypoint matching
20: for layer = 1, 2, . . . , N do
21: for channel = 1, 2, . . . , C do
22: kp1, kp2← detect keypoints(image1, image2)
23: matches← Ratiotest(SIFT match(kp1, kp2))
24: end for
25: end for
26: η ← fthresh(matches)
27: return η
28: end function

two input images. Let fθ be the function to compute and detect the keypoints in the

image, and Y be the keypoint descriptor. Let gθ be the function to detect the number of

matches between the images using k-nearest neighbours, and len represents the length

of the vector. We compute the keypoint descriptors of the input image Y1 and the layer

output image Y2 using the SIFT keypoint detection function.

Y1 = fθ(R1) (5.9)

Y2 = fθ(R2) (5.10)
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Then, we determine the similarity between features by comparing the k-nearest neigh-

bours of Y1 and Y2.

Y∗ = gθ(Y1,Y2, k) (5.11)

Finally, we use the ratio test to remove approximate matches and determine the number

of features matched, which represents the degree of similarity ε.

ε = len(Y∗) (5.12)

In order to determine the partition point, we set a threshold on the degree of similarity

T . The layer at which εl < T is selected as the partition point η.
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Chapter 6

HybridTEE Framework

In this chapter, we describe the system-level design of HybridTEE, where the key goal

is to bridge the two TEEs and jointly accomplish the offloading of DNN execution in a

secure manner. Figure 6.1 shows the architecture and system workflow of HybridTEE,

which consists of the Local TEE (TrustZone) and the Remote TEE (SGX) with a secure

communication channel. we adopt two solutions, namely remote attestation and sym-

metric encryption to conduct a secure handshake between the local and remote TEEs

and establish the secure communication channel for DNN offloading. First, we employ

remote attestation [20] to authenticate the SGX enclave to eliminate the possibility of

local TEE communicating with a fake enclave staged by an adversary. The offloading

of the DNN execution can be initiated if and only if the remote attestation procedure

has been accomplished successfully. Also, the communications between the two TEEs

is encrypted to ensure confidentiality.

6.1 System Workflow

The application developer runs the DNN model offline and determines the optimum

partition point for each model using the partitioning algorithms presented in Chapter 5.

Then, based on the partition point, the developer deploys the model on the local TEE

with the capability of executing layers 1 to pp, i.e., LocalNet and the final prediction

layer N , i.e., PredNet, where pp represents the partition point. Next, the developer

deploys the model on the remote TEE with the capability of executing layers pp+ 1 to

N − 1, i.e., the RemoteNet.

Step 1. Before the DNN model is executed, the local TEE verifies the remote TEE
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Figure 6.1: System architecture and workflow of HybridTEE.

via remote attestation, and a shared secret key between the two TEEs is established.

Step 2: If the attestation process is successful, the local TEE creates the DNN layers

in the secure world based on the model configuration file.

Step 3. The application runs the first pp layers of the model (i.e., LocalNet) in the

local TEE for the input provided by the user.

Step 4. The intermediate outputs of the LocalNet are then encrypted using AES-GCM

and sent to the remote TEE.

Step 5. The remote TEE decrypts the partial results and executes layers pp + 1 to

N − 1 of the DNN model, i.e., RemoteNet.

Step 6. The intermediate outputs of the RemoteNet are encrypted using the shared

symmetric key and sent back to the local TEE.

Step 7. The local TEE decrypts the results obtained from the remote TEE and runs

the PredNet partition, i.e., the N th layer, to generate the final inference results.

6.2 System Implementation

In our HybridTEE prototype, we adopt OP-TEE [15] as the Local TEE. OP-TEE is an

open source TEE which is designed as companion to a non-secure Linux kernel running
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on ARM [15]. It implements the TEE Internal Core API which acts as the secure world

for trusted applications, and the TEE client API which acts as the secure monitor.

We use Darknet [23] as the DNN implementation. We create a new trusted appli-

cation (TA) with a universally unique identifier (UUID) for the Darknet code/data.

The normal world OS can only access the application using the UUID of the TA, which

is equivalent to the NS (non-secure) bit in TrustZone. The entire layer creation and

computation code resides in the TA, and it is encrypted before being shared with the

rich OS.

We use an open source cryptographic library for AES-GCM encryption with tag

validation [4] and a 128-bit symmetric key. The key has been shared between the two

TEEs using SIGMA [12] key exchange protocol before the offloading session begins.

Once shared, the key is hard coded in the secure world of TrustZone and the enclave

of SGX, which cannot be accessed by attackers. Also, we implement a lightweight

attestation procedure in our prototype considering the limited computation resources

in TrustZone. In the remote attestation, an enclave ID is hardcoded in the application

running in both TrustZone and SGX. A pseudorandom token is generated by TrustZone

and sent to SGX. SGX appends its enclave ID to the token, encrypts the combined string

using the previously shared key, and sends it back to TrustZone. TrustZone decrypts the

data and verifies the token and Enclave ID. The remote attestation process is completed

if the verification is successful.
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Chapter 7

Experimental Results

7.1 Experimental Setup

In the experiments, we use a Raspberry pi 3 Model B board with Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU and 1 GB RAM as the mobile device. It runs OP-

TEE [15] with a Linux OS as the local TEE. Also, the remote TEE is deployed on

a server with 4-core Intel Core i7-6700 3.4GHz CPU, where SGX is enabled in the

hardware mode. We use Darknet [23] as the reference DNN implementation. We

perform our experiments using 4 DNN models (i.e., Darknet19, VGG-16, Resnet152,

and GoogLeNet) with 5 images (i.e., Eagle, Dog, Cat, Horse, and Giraffe).

7.2 Security and Privacy Evaluation

We consider two representative cases in the security and privacy evaluation of Hybrid-

TEE :

• Reconstruction (Security). An adversary attempts to reconstruct the model by ac-

cessing the unsecured regions of TrustZone and SGX.

• Object Identification (Privacy). An adversary attempts to identify the object in the

input image based on the results sent by the local device.

For the reconstruction-based security attack, the model configuration and weight

vectors are stored in the local and remote TEEs and, therefore, the hardware-based

isolation provided by TEEs ensures that the attacker does not have access to such

information to reconstruct the network. For the object identification-based privacy

attack, the partitioning algorithm in HybridTEE ensure that the input image sent to
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(a) Darknet19 confidence scores (b) Darknet19 SIFT similarity scores

(c) VGG-16 SIFT similarity scores (d) GoogLeNet SIFT similarity scores

(e) Resnet152 SIFT similarity scores

Figure 7.1: (a) represents the confidence scores of YOLO object detection for
5 images for the Darknet19 DNN model; and (b)(c)(d)(e) represent the SIFT
similarity scores for 4 DNN models.

the remote TEE has minimum information exposure about the privacy-sensitive input

data from the user. We define the degree of information exposure based on a) the

relative ability of an auxiliary DNN model to detect the object in the data sent to the

server and b) the degree of similarity between the input image and the layer output

image, determined by the number of SIFT features matched between these images.

Figure 7.1(a) shows the confidence scores for object detection using the auxiliary

DNN model. We assume that with a non-zero confidence score, the adversary can

recover the original input using this model. In other words, we set the confidence

score threshold at 0 for partitioning, to provide the strongest privacy guarantee. As
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illustrated in Table 7.1, for the Darknet19 model, the confidence score drops to 0 at

the output of layer 4, indicating that the object detection algorithm was not able to

detect any image from all channels of layer 4 for all the 5 images under evaluation.

Therefore, we select layer 4 as the partition point. We perform the similar procedure

for VGG-16, Resnet152 and GoogLeNet. Interestingly, for these models, the object

detection algorithm was not able to detect the image from the output of any layer.

This indicates that the configuration of these models makes them inherently immune

to information exposure, as compared to the Darknet19 model. For these models, the

attacker needs an advanced object recognition method to recover the input image. In

order to corroborate our observation for this method, we used the second technique to

find the partition points for these models, which is SIFT [18].

Image L0 L1 L2 L3 L4 L5 L6 L7

Eagle 0.9988 0.986 0.9716 0 0 0 0 0

Dog 0.9907 0.9083 0.7279 0 0 0 0 0

Cat 0.9971 0.9975 0.9957 0 0 0 0 0

Horses 0.8172 0.8362 0.6104 0 0 0 0 0

Giraffe 0.9992 0 0 0 0 0 0 0

Table 7.1: Confidence scores of the Darknet19 model for 5 images and first 8 layers
(L0 - L7).

Image L0 L1 L2 L3 L4 L5 L6 L7

Eagle 10.86 2.03 0.33 0.09 0.09 0.09 0.09 0.04

Dog 34.86 3.53 0.32 0.11 0.11 0.07 0.11 0.07

Cat 36.91 8.81 5 0.71 1.67 0.71 0.71 0.47

Horses 9.62 2.68 0.67 0.09 0.14 0.09 0.14 0.09

Giraffe 38.37 3.53 0.12 0.05 0.05 0.07 0.05 0.05

Table 7.2: Matched SIFT features of the Darknet19 model for 5 images and first 8
layers (L0 - L7). All values are in terms of % match.

Figure 7.1(b)(c)(d)(e) show the SIFT percentage features matched between the in-

put image and the images generated at the output of each layer. Let good featureslayer img

be the features of the layer output image with distance less than 0.75x of the feature

distance in the original image, and featuresinput img be the total number of features in



27

the input image. The percentage match is the ratio of

percent match←
length(good featureslayer img)

length(featuresinput img)
× 100

Table 7.2 demonstrates the percentage match of the SIFT scores for the layer output

image with respect to the input image for the Darknet19 model. We set the threshold on

the percentage features matched as 5%. Figure 7.1(b) indicates the features matched

for the Darknet19 model. We observe that the features matched value dropped below

the threshold after layer 3. Therefore, we select layer 4 as the partition point. Similarly,

we select layer 3 for VGG-16, layer 2 for GoogLeNet, and layer 1 for Resnet152 as the

partition points.

7.3 Performance Evaluation

We evaluate the performance of HybridTEE by measuring the overall prediction time as

compared to the baseline version, which is to execute the DNN model on the raspberry

pi in a non-TEE environment. In HybridTEE, the overall execution time comprises

of 5 components: LocalNet, RemoteNet, PredNet, Encryption/Decryption and Network

Send/Receive.

DNN model Baseline (sec) HybridTEE (sec) Speedup

Darknet19 21.55 12.27 1.75x

GoogLeNet 94.14 26.86 3.5x

Table 7.3: Performance evaluation of HybridTEE compared to the baseline non-
TEE system.

For the Darknet19 model, the partition point is at layer 4, so we run 4 layers in

LocalNet and 21 layers in RemoteNet. Similarly, for the GoogLeNet model, the partition

point is at layer 2, so we run 2 layers in LocalNet and 24 layers in RemoteNet. The

PredNet partition only runs the last layer. Table 7.3 shows the timing measurements,

which indicate a significant speedup (1.75x to 3.5x) of our HybridTEE prototype as

compared to the non-TEE baseline. Note that we were not able to run VGG-16 and

Resnet152 in the baseline version due to their high memory requirement, which further

promotes our idea of using a hybrid TEE environment. In our prototype, we use
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Ethernet as the communication medium between local and remote partitions due to

the lack of WiFi support in OP-TEE. The actual speedup on the system deployed on

a mobile device may be slightly lower than our prototype, given the wireless network

latency.
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Chapter 8

Limitations

We acknowledge the limitations in our HybridTEE framework, namely a) Small sample

size used for partition point computation and b) Algorithmically computed partition

point may be greater than TCB size limit of the local device TEE.

We test our partition point computation algorithm using a small subset of images.

The possibility of the partition point being dependent on the image semantics makes it

vulnerable to change as per the type of image under consideration. The partition point

computed using our offline approach provides a static value for each DNN model. This

value acts as a configuration parameter while running the DNN inference on the local

device. Since this value is predetermined, it does not take into account the characteris-

tics of the input image for partitioning. Partitioning the DNN based on an inaccurate

partition point may cause privacy sensitive information being available to the remote

SGX server. The solution to address this issue is to convert this offline method to

online. This will ensure that the partition point is calculated for each input image

separately. However, the challenge to deploy such an online approach is the complexity

of the partition point detection algorithms, versus the TCB size limit of the TEE.

The second limitation of our design is handling the case where the partition point

computed by the offline process is greater than the TCB size threshold of the TEE. Cur-

rently, we choose the minimum value between the two as the final partition point. This

leaves the possibility of privacy exposure if TCB size is the lesser value. The solution

to address this problem is to degrade the image quality at the TCB size threshold to

trade-off accuracy for privacy. For example, Shredder [21] suggests an inference privacy

protection method. It targets at finding additive noise distributions that can be added

to the intermediate results on the local device, to preserve the privacy of input data.
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It aims to strike a balance between accuracy and inference privacy. A similar solution

can be deployed in HybridTEE, where we can add noise to the intermediate layer-image

at the TCB size threshold. The goal of this method would be to reach the same level

of privacy that is guaranteed by the partitioning algorithm with an acceptable level of

accuracy.
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Chapter 9

Related Work

Since the execution of deep learning applications requires substantial computational

resources and involves sensitive information, security researchers have been working on

the model/data protection by leveraging TEE in the edge/cloud computing platforms.

For example, HETEE is a heterogeneous TEE framework where the deep-learning ap-

plications are offloaded from singular CPU based TEE to accelerators [34]. However,

the size of TCB in a TEE must be minimized to avoid potential security vulnerabili-

ties. In this case, offloading entire DNN computation to the accelerators might not be

practical. To minimize the workload of TEE and prevent sensitive data from leaking to

accelerators, researchers have used several DNN partitioning techniques [6][22][30][31].

Darknet executes a set of sensitive layers sequentially to minimize resource usage in

the TEE [22]. Slalom allocates the integrity-verifiable linear layers into an untrusted

GPU, and protects the remaining layers in SGX [30]. To prevent the data from being

tampered, Chen et al. propose DeepAttest [3], a TEE-based attestation method to

verify the model integrity. Different from the previous work, HybridTEE employs a

combination of two TEEs, i.e., a local TEE and a remote TEE to reduce the workload

of singular TEE for secure DNN computations, together with the privacy consideration.
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Chapter 10

Conclusion

We have developed HybridTEE, a novel hardware-based security framework that uses

a combination of ARM TrustZone and Intel SGX TEE platforms to securely execute

DNN inference. We systematically studied the layer-wise privacy exposure of the DNN

about input data and devised an offline DNN partitioning strategy using image sim-

ilarity metrics based on object detection and SIFT. We implemented a prototype of

HybridTEE on real hardware systems. Our security and performance evaluations with

4 DNN models demonstrated that HybridTEE can successfully defend against model re-

construction and object identification attacks and achieve 1.75-3.5x speedup compared

to the non-TEE baseline system.
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