WORRY OR PEACE OF MIND:

CONSUMER DECISION-MAKING UNDER RISK IN LOSS DOMAIN

By

MINJI JUNG

A Dissertation submitted to the

Graduate School-Newark

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Management

Written under the direction of

Dr. S. Chan Choi

And approved by

Newark, New Jersey

October, 2020

© 2020

Minji Jung

ALL RIGHTS RESEREVED

ABSTRACT OF THE DISSERTATION

WORRY OR PEACE OF MIND: CONSUMER DECISION-MAKING UNDER RISK IN LOSS DOMAIN By MINJI JUNG

Dissertation Director:

Professor S. Chan Choi

This research studies how individuals perceive risky situations, and after that, how they make choices.

Decisions are not decided by a single trait. However, they vary as a function of what the decision is about, which the decision domain (gain domain vs. loss domain), who is a subject facing a risky event, the situational difference (for example, the level of risk probability or the type of risky event, respectively, or their interaction), the extent of loss/damage, whether emotions are involved in the decision and so on. Understanding this mechanism behind decision-making under risk is particularly important in preventing loss (enjoy peace of mind) and inducing precautionary behavior in advance.

Unlike existing economic models or marketing studies related to hedonic vs. utilitarian consumption, this research found that people having low-probability risk with hedonic-event showed the strongest risk-averse attitude. In the gain domain, hedonicbenefit seeks for risk-taking attitudes. However, in the loss domain, when people perceive a risk as an emotion, they want to sustain their positive feeling activated from hedonic-benefit, increase their attention to an even low-probability risky situation, and actively engage in precautionary behavior (risk-averse attitude). Therefore, as like *Prospect Theory* and *Construal Level Theory*, people may tend to risk aversion at a low-probability risk. *'Risk-As-Feelings hypothesis,*' which emphasizes the role of activated emotion and affection when judging risks, also explain that people perceive risk as feelings; they become insensitive to the objective probability of occurrence.

The four test results revealed that people's choice was influenced by the moment they were exposed to risk and had to make decisions (based on either *System 1* or *System* 2) rather than their usual personality or propensity.

Next, under small-loss conditions, people follow relatively rational judgment (*System 2*) to avoid risk, whereas, under big-loss status, they listen to relatively emotional judgment (*System 1*) to avoid risk.

Finally, this research found out impressive results that people trigger negative feelings to avoid risk in a big-loss condition, whereas they activate positive feelings to avoid risk in a small-loss scenario. These findings will present effective risk communication methods.

Keywords: Decision-Making under Risk, Probability, Utilitarian vs. Hedonic, Emotional vs. Rational Decision-Making, Prospect Theory, Construal Level Theory, Risk-As-Feelings hypothesis, System 1 (Heart) vs. System 2 (Head), Positive vs. Negative Feelings

iii

Preface

The thesis entitled "Worry or Peace of Mind: Consumer Decision-Making under Risk in Loss Domain" is prepared by Mnji Jung through her Ph.D. program from 2012 to 2020, in the Department of Marketing at Rutgers University, The State University of New

Jersey.

Acknowledgements

As the last touch of the dissertation, writing this note of thanks is a very overwhelming moment. This dissertation expresses the cohesion of painstaking efforts of several years of work and could not have been accomplished without many people's love and support. Here I would like to express my deepest gratitude to all the people who provided me tremendous support and help during my Ph.D. program.

I am deeply grateful to my advisor Dr. S. Chan Choi. From the very first moment of my Ph.D. program to now (and in the future), I would like to express my infinite gratitude to my supervisor for instilling unlimited opportunities, learning, inspiration, motivation, encouragement, and passion. Thank you very much, Dr. Choi, for everything you have done for me.

I would like to express my sincere appreciation for my committee members, Dr. Kent Harber, Dr. Kristina Durante, and Dr. Gabriela Tonietto. Thank you very much, my committee, for helping me to complete this without giving up and supporting me in growing as an independent scholar. I also want to express my great appreciation to Dr. Oscar Moreno.

I especially want to thank my advisors, Dr. Jae-Bong Kim and Dr. Yong Sik Oh, in Korea. Dr. Jae-Bong Kim guided me to the Lord and made me hope as a scholar. Every time I get frustrated and fall apart, Dr. Kim and Dr. Oh have encouraged me and gave me the strength to move forward.

Thanks to my colleagues, Dr. Hyun Gon Kim, Dr. Changhee Lee, Dr. Se Ho Cho, Dr. Kwon Gi Mun, for all the encouragement and advice. Thanks to peers in the doctoral

v

program at Rutgers, Dr. Tyrha Lindsey, Dr. Hyun Sang Ah, Dr. Kyungwon Lee, Dr. Serdar Yayla, Dr. Sevincgul Ulu, and Aziza Jones, and ChangHoon Ahn.

Thank you to Dr. Priscilla Elsass for your support at my first academic job placement.

I thank you to all my prayer supporters, Pastor In-Geon Lee, Rev. Paul C. Yang, Pastor Joo Seok Kang, Pastor Stella H. Kim, Diane Seonmi Lee SNN, Charles Yung SNN, and all Pilgrim Mission Church families. Thanks to my friend, Yoon Ji Hyun.

I am indebted to my parents, Hyun-Jae Chung and Sung-Ja Noh. I couldn't complete my degree without your endless sacrifice, support, love, and understanding. I love you two so much. Both of you have always been the greatest examples for me and gave me great wisdom to have in living the world, and have made me have a great heart of love. I respect you two so much, and I will work hard to become like you.

I thank my proud genius brother, Dr. Seong-Yeob Jeong, for your encouragement and support. I love your sense of humor. Your achievements have always been a great stimulus and motivation for me. I hope you will continue to fulfill your role as a scientist who leads Korea and the world.

My only daughter, my lovely sweetheart, Vivian Haeun Choi. You are the only reason I breathe. You always make me happy and smile. Through you, I am learning more about the world. Without your love, help, and understanding, I could not complete this process. You always understood, encouraged me without a single complaint, and gave me countless support to make this work possible. I love you, my daughter. I love you, Vivian, forever and ever.

vi

Last but not least, I gave thanks and glory for all this to my Lord. And I confess. Let me praise you now, and I will worship you forever.

I can do all this through him who gives me strength. Philippians 4:13.

Surely your goodness and love will follow me all the days of my life, and I will dwell in the house of the LORD forever. Psalm 23:6

ABST	RAC	CT OF THE DISSERTATION	ii
Prefa	ce		iv
Ackno	owled	lgements	v
Table	of C	ontents	viii
List of	f Tal	bles	x
List of	f Illu	strations	xii
CHAI	PTEI	R 1 INTRODUCTION	1
CHAI	PTEI	R 2 LITERATURE REVIEW	5
2.1	Do	main-Specificity of Decision-Making under Risk (Gains vs. Losses)	5
2.2	De	cision-Making under Risk	10
2.	2.1	Cognitive Biases in Decision-Making	12
2.	2.2	Framing Effect and Probability Levels in Decision-Making	12
2.	2.3	Memory in Decision-Making	13
2.	2.4	Experience vs. Information in Decision-Making	13
2.	2.5	Emotions vs. Reasons in Decision-Making	14
2.	2.6	Hormonal Correlates in Decision-Making	15
CHAI	PTEI	R 3 THEORETICAL BACKGROUND AND HYPOTHESES	17
3.1	His	storical Theory Development of Decision-Making under Risk	17
3.	1.1	Expected Utility (EU) Theory	17
3.	1.2	Prospect Theory (PT)	18
3.	1.3	Construal Level Theory (CLT)	19
3.	1.4	Risk-as-Feelings Hypothesis	21
3.2	Sys	stem 1 (Heart) versus System 2 (Head), Dual-System Theory	23
3.3	Uti	ilitarian vs. Hedonic Attributes	24
3.4	La	y Rationalism (LR)	26
3.5	Po	sitive and Negative Affect Schedule (PANAS) Scale	27
3.6	Hy	potheses	27
CHAI	PTEI	R 4 METHODOLOGY AND MEASUREMENT	29
4.1	Stu	dy 1: Perceived Risk Attitudes and Decisions under Risk	29

Table of Contents

4.1.1	Method and Procedure	29
4.1.2	Results and Discussion	32
4.2 Stu	dy 2: Small-Loss versus Big-Loss, Consumer Decision-Making under Risk	48
4.2.1	Method and Procedure	49
4.2.2	Results and Discussion	51
4.3 Stu	dy 3: Emotional versus Rational Decision-Making under Risk	73
4.3.1	Method and Procedure	73
4.3.2	Results and Discussion	77
4.4 Stu	dy 4: Positive versus Negative Emotions in Decision-Making under Risk . 10	00
4.4.1	Method and Procedure	00
4.4.2	Results and Discussion	04
СНАРТЕН	R 5 GENERAL DISCUSSION	27
REFEREN	NCES	33

List of Tables

Table 1_Domain-Specificity and Variables of Decision-Making under Risk	6
Table 2_The Fourfold Pattern of Choice that Prospect Theory can explain	. 19
Table 3_Construal Level Theory under Risk	. 21
Table 4_Expected Risk Attitudes under Risk in Loss Domain	. 21
Table 5_Utilitarian vs. Hedonic Benefits and Derived Emotion	
Table 6_Expected Risk Attitudes based on Chitturi et al. (2008)'s Research	. 25
Table 7_Expected Risk Attitudes under Risk in Loss Domain	. 25
Table 8_Expected Risk Attitudes Matrix by Interaction between Type of Event and Ty	NO
Levels of Risk Probability (2 Independent Variables)	. 26
Table 9_(Study 1) Event Type and Risky Probability Level	. 31
Table 10_(Study 1) Test of Between-Subjects Effects	. 34
Table 11_(Study 1) ANOVA Results	. 34
Table 12_(Study 1) Risk Attitude per condition interpreted through Willingness to	
Purchase Insurance of Figure 3	. 35
Table 13_(Study 1) Post Hoc Analysis	. 36
Table 14_(Study 1) Post Hoc Analysis: Multiple Comparisons	. 36
Table 15_(Study 1) Binary Choice	. 37
Table 16_(Study 1) Factor Analysis and Reliability Analysis	. 39
Table 17_(Study 1) Correlation Table	. 41
Table 18_(Study 1) Tests of Between-Subjects Effects	. 43
Table 19_(Study 1) ANOVA Results	. 43
Table 20_(Study 1) Decision-Making Reliance	. 44
Table 21_(Study 1) Post Hoc Analysis	. 45
Table 22_(Study 1) Post Hoc Analysis: Multiple Comparisons	. 45
Table 23_(Study 1) Research Model and Results	. 47
Table 24_(Study 2) Event Type, Risk Probability Level, and The Amount of Loss	. 50
Table 25_(Study 2) Tests of Between-Subjects Effects	. 53
Table 26_(Study 2) Risk Attitude per condition interpreted through Willingness to	
Purchase Insurance of Figure 10	. 55
Table 27_(Study 2) ANOVA Results	
Table 28_(Study 2) Post Hoc Analysis	. 56
Table 29_(Study 2) Post Hoc Analysis: Multiple Comparison	. 56
Table 30_(Study 2) Binary Choice	. 58
Table 31_(Study 2) Factor Analysis and Reliability Analysis	. 60
Table 32_(Study 2) SLRUE Correlation Table	
Table 33_(Study 2) Tests of Between-Subjects Effects	. 66
Table 34_(Study 2) Decision-Making Reliance	
Table 35_(Study 2) ANOVA Results	. 68

Table 36_(Study 2) Post Hoc Analysis	. 68
Table 37_(Study 2) Post Hoc Analysis: Multiple Comparisons	. 68
Table 38_(Study 3) Lay Rationalism (LR) Scale	. 74
Table 39_(Study 3) Event Type, Risk Probability Level, and The Amount of Loss	. 76
Table 40_(Study 3) Tests of Between-Subjects Effects	. 79
Table 41_(Study 3) ANOVA Results	. 79
Table 42_(Study 3) Risk Attitude per condition interpreted through Willingness to not	
take risky action of Figure 18	. 80
Table 43_(Study 3) Post Hoc Analysis	. 81
Table 44_(Study 3) Post Hoc Analysis: Multiple Comparisons	. 81
Table 45_(Study 3) Binary Choice	. 83
Table 46_(Study 3) Factor and Reliability Analysis	. 85
Table 47_(Study 3) SLRUE Correlation Table	. 89
Table 48_(Study 3) Tests of Between-Subjects Effects	. 91
Table 49_(Study 3) ANOVA Results	. 92
Table 50_(Study 3) Decision-Making Reliance	. 92
Table 51_(Study 3) Post Hoc Analysis	. 93
Table 52_(Study 3) Post Hoc Analysis: Multiple Comparisons	. 93
Table 53_(Study 3) Moderated Regression Analysis Results	. 97
Table 54_(Study 4) Lay Rationalism Means	. 98
Table 55_(Study 4) Positive and Negative Affect Schedule (PANAS-SF)	101
Table 56_(Study 4) Event Type, Risk Probability Level, and The Amount of Loss	103
Table 57_(Study 4) Tests of Between-Subjects Effects	106
Table 58_(Study 4) Risk Attitude per condition interpreted through Willingness to not	
take risky action of Figure 18	108
Table 59_(Study 4) ANOVA Results	108
Table 60_(Study 4) Post Hoc Analysis	108
Table 61_(Study 4) Post Hoc Analysis: Multiple Comparisons	109
Table 62_(Study 4) Binary Choice	111
Table 63_(Study 4) Factor and Reliability Analysis	113
Table 64_(Study 4) Correlation Table	117
Table 65_(Study 4) Tests of Between-Subjects Effects	119
Table 66_(Study 4) ANOVA Results	119
Table 67_(Study 4) Decision-Making Reliance	
Table 68_(Study 4) Post Hoc Analysis	121
Table 69_(Study 4) Post Hoc Analysis: Multiple Comparisons	121
Table 70_(Study 4) Moderated Regression Analysis Results	124
Table 71_(Study 4) PANAS-SF Means	

List of Illustrations

Figure 1_(Study 1) Research Model	29
Figure 2_(Study 1) Manipulation Check of Event Type and Risk Probability Level	33
Figure 3_(Study 1) Willingness to Purchase Travel Insurance	35
Figure 4_(Study 1) Binary Choice	38
Figure 5_(Study 1) Component Plot in Rotated Space	41
Figure 6_(Study 1) Decision-Making Reliance Between Emotion vs. Reason	44
Figure 7_(Study 1) Risk Attitude vs. Decision-Making Reliance	46
Figure 8_(Study 2) Research Model	48
Figure 9_(Study 2) Manipulation Check of Event Type, Risk Probability Level, and I	Loss
Amount	52
Figure 10_(Study 2) Willingness to Purchase Flood Insurance	54
Figure 11_(Study 2) Binary Choice	59
Figure 12_(Study 2) Component Plot in Rotated Space	63
Figure 13_(Study 2) Decision-Making Reliance between Emotion vs. Reason	67
Figure 14_(Study 2) Risk Attitude vs. Decision-Making Reliance	70
Figure 15_(Study 2) Research model and Results	71
Figure 16_(Study 3) Research Model	73
Figure 17_(Study 3) Manipulation Check of Event Type, Risk Probability Level, and	
Loss Amount	77
Figure 18_(Study 3) Willingness Not to Go to Risky Place	80
Figure 19_(Study 3) Binary Choice	84
Figure 20_(Study 3) Component Plot in Rotated Space	88
Figure 21_(Study 3) Decision-Making Reliance between Emotion vs. Reason	92
Figure 22_(Study 3) Risk Attitude vs. Decision-Making Reliance	95
Figure 23_(Study 3) Research Model and Results	96
Figure 24_(Study 4) Lay Rationalism (LR) Scale	98
Figure 25_(Study 4) Research Model	. 100
Figure 26_(Study 4) Manipulation Check of Event Type, Risk Probability Level, and	
Loss Amount	. 105
Figure 27_(Study 4) Willingness to Purchase Warranty	. 107
Figure 28_(Study 4) Binary Choice	. 112
Figure 29_(Study 4) Component Plot in Rotated Space	. 116
Figure 30_(Study 4) Decision-Making Reliance between Emotion vs. Reason	. 120
Figure 31_(Study 4) Risk Attitude vs. Decision-Making Reliance	. 123
Figure 32_Research Model and Results	. 124

CHAPTER 1 INTRODUCTION

We face countless risky situations from trivial to death during our lives, and we have to make decisions, either risk-taking or risk-aversion. Each person perceives and reacts to such a risky situation differently. Do you prefer worry or peace of mind from unforeseen, unexpected, unplanned, or sudden risky situations? Even though such risky situations have a low-probability of occurrence, the consequence would be vast and catastrophic (e.g., whole property loss or even loss of life) such as a new virus (e.g., COVID-19) outbreak, 911 attacks, Boston Marathon Bombing, or natural disasters.

First of all, how can we define decisions? Decisions can be interpreted as an attempt to evaluate the probabilities associated with various options and choose the one that best suits the situation (Newell, 2015). Of course, the various options involve somewhat risk. Then, how do people make 'best' decision-making?

Economic models (e.g., *Expected-Utility Theory*) of decision-making allude that decision-makers should make decisions that accomplish utility maximization (von Neumann and Morgenstern, 1947). However, this assumption that decision-makers might show reasonable (or rational) economic behavior has occasionally been disproving in the literature. Indeed, as pointed out by *Bounded Rationality Theory*, people do not always rationally make the optimal choices. Sometimes they depend on their intuitions or heuristics to make decisions, and therefore, these decisions often lead to better outcomes (Raue et al., 2015). However, we should know that biases may arise during this process can distort our judgments, known as the *framing effect* of Tversky and Kahneman (1974; 1981). Objectively, it means the same decision-making problem, but the opposite

decision is made under the condition of gain and loss frames (Tversky and Kahneman,1974; 1981).

Especially, how about a 'decision-making under risk'? 'Decision-making under risk' does not necessarily mean exposure to danger or harm. That risk should generally be viewed as uncertainty about the gain or loss we face due to that decision (Newell, 2015, p. 163). Thus, in order to understand consumer decision-making under risk, we must first look at the process of risk perception. Loewenstein et al. (2001) proposed *the 'Risk-As-Feelings hypothesis*' which emphasizes the role of activated emotion and affection when judging risks. The moment people perceive risk as feelings, they become insensitive to the objective probability of occurrence (Loewenstein et al., 2001; Rottenstreich and Hsee, 2001). Kahneman and Frederick (2007) demonstrated that people who make decisions by relying on intuitions are susceptible to the *framing effect* (Raue et al., 2015).

Back to the origin, how do people make 'best' decision-making? Making the best or at least the right decision is not always easy. The decisions are not decided by a single trait. However, they vary as a function of what the decision is about, which the decision domain (gain domain versus loss domain), who is a subject facing a risky event, the situational difference (for example, the level of risk probability or risky event type, respectively, or their interaction), the extent of loss/damage, whether emotions are involved in the decision and so on. Understanding this mechanism behind decisionmaking under risk is particularly important in preventing loss and inducing precautionary behavior in advance.

In particular, each of these factors is a very import area, and each research has been conducted, but not all of them have been actively studied organically. For example, even

- 2 -

though the level of risk probability (low-probability risk versus medium-probability risk) and risky event type (utilitarian-purpose event or hedonic-purpose event) are two crucial factors affecting decision-making, there is no research exploring the interplay between these two variables on consumer decision-making under risk. Many researchers have shown that decision-making studies under risk have been successful in the area of gain, but the study of losses was not easy (Raue et al., 2015). For that reason, this study focuses on consumer decision-making under risk in the area of loss. Therefore, this research investigated these questions in four (4) studies that illuminate how people perceive risky situations and make decisions under risk. They are affected by the interplay of risk probability level and risky event type, the amount of loss, the influence between emotions versus rationality on decision-making process, and specific emotions such as positive feelings versus negative feelings.

That is to say, the goal of this study is how to increase individuals' attention to risky situations, which are even having a low-probability risk of occurrence, and draw their choices to engage in precautionary behavior actively. I believe that this preventive behavior can reduce the burden of cost to society. Furthermore, based on the results of this research, effective risk communication can be proposed. Therefore, this research starts with the following four (4) research questions.

Research Question 1: How do people perceive risk and make decisions under risk in the loss domain? (Study 1)

Research Question 2: If the amount of loss (Small-Loss versus Big-Loss) is different, do people make different decisions under risk in the loss domain? (Study 2)

- 3 -

Research Question 3: Do people rely on emotions or reasons in decision-making under risk in the loss domain? (Study 3)

Research Question 4: What emotions (positive versus negative) drive the best decision-making under risk in the loss domain? (Study 4)

The answers to the above research questions will materialize this research's purpose and provide a direction for effective communication under risk. I hope everyone will make the right choices under risk and enjoy peace of mind even if they face risks.

CHAPTER 2 LITERATURE REVIEW

2.1 Domain-Specificity of Decision-Making under Risk (Gains vs. Losses)

As many studies have shown, decision-making realms can be broadly divided into two areas: gain versus loss domain. Imagine, when you purchase a new cellphone, you would get positive benefits (e.g., the pleasure of possession and utilization, etc.) thanks to the consumption. Here, decision-making takes place in the gain domain. On the other hand, you would also get negative benefits (e.g., loss of your property or money). For example, when you are purchasing a cellphone, a sales clerk could ask you whether you want to buy a warranty or not, and you adamantly said, "No." Then, a few days later, you dropped the cellphone on a marble tile. Without the warranty, you must pour a bunch of money into fixing it or buying a new one. If then, the decision-making you did not buy any warranty for the cellphone in advance pushes you into the loss domain.

Theoretically, *Prospect Theory* (Kahneman and Tversky, 1979), a theory of decision-making under conditions of risk, describes the decision processes in two stages (gain or loss domain) using a value function. The value function's S-shaped curve shows that a concave shape of the top-right quadrant depicts the diminishing marginal utility of the gains domain. Similarly, the bottom-left quadrant's convex shape illustrates the diminishing marginal utility of the losses domain (Kahneman and Tversky, 1979; Newell, 2015; Tversky and Kahneman, 1981; 1992).

Kurnianingsih and Mullette-Gillman (2015) also used the domain distinction between gains and losses using a monetary gamble task to test decision-makers' risk preferences and choice strategies. Respondents showed on average risk-averse in the gains domain, whereas risk-neutral or -seeking in the losses domain similar to the results of *Prospect Theory* (Kahneman and Tversky, 1979; Kurnianingsih and Mullette-Gillman, 2015; Tversky and Kahneman, 1981; 1986; 1992).

From *Prospect Theory* up to comparatively recent research, many studies prioritize and focus on the domain of gains to explore people's risk perception and their attitudes toward the perceived risk rather than the domain of losses.

Paper (Year)	Domain	Theory	Variables	Test/Experiment
von Neumann John and Oskar Morgenstern (1947)	Gain	Expected- Utility Theory, Game Theory	Monetary amount and objective probabilities	Maximizing Winning
Kahneman, Daniel and Amos Tversky (1979)	Gain & Loss	Prospect Theory	Outcome and probability, framing effect	Monetary gamble task
Tversky, Amos and Daniel Kahneman (1981)	Gain & Loss	Framing Effect	Outcome and probability, framing effect	Monetary gamble task
Evan, J. ST., Julie L. Barston, and Paul Pollard (1983)	Gain	Evans (1982) two- factor theory	Cognitive bias	Categorical syllogisms
Tversky, Amos and Daniel Kahneman (1986)	Gain & Loss	Framing Effect	Outcome and probability, framing effect	Monetary gamble task
Slovic, Paul (1987)	Gain & Loss	_	Memory	Psychometric paradigm
Tversky, Amos and Daniel Kahneman (1992)	Gain & Loss	Prospect Theory	Monetary amount and probability, framing effect	Monetary gamble task

 Table 1_Domain-Specificity and Variables of Decision-Making under Risk

 (Chronological Order)

Tversky Amos and Peter P. Wakker (1995)	Gain & Loss	Cumulative Prospect Theory	Monetary amount and probability, framing effect, memory	Weighted function
Levin, Irwin P., Sandra L. Schneider, and Gary J. Gaeth (1998)	Gain & Loss	Framing Effect	Risk choice, attribute, goal, framing effect	Meta-Analysis
Pham, Michel Tuan (1998)	-	-	Feelings	Decision task
Byrnes, James P., David c. Miller, and William D. Schafer (1999)	-	-	Hormone	Meta-Analysis
Shiv, Baba and Alexander Fedorikhin (1999)		Berkowitz's theory	Emotion vs. Reason	Decision task
Hsee, Christopher and Yuval Rottenstreich (2004)	Gain	-	Emotion vs. Reason	Priming task
Schwarz, Norbert and Gerald Clore (2007)	-	Naïve theory	Feeling vs. Reason, memory, experience	Meta-Analysis
Hertwig, Ralph, Greg Barron, Elke. U.Weber, and Ido Erev (2004)	Gain	Prospect Theory and Recency Effect	Description, experience, rare event	Decision task
Jullisson, E.Asgeir, Niklas Karlsson, and Tommy Garling (2005)	Gain & Loss	-	Experience vs. Information	Investment scenarios
Stewart, Neil, Nick Chater, and Gordon D. A. Brown (2006)	Gain & Loss	decision by sampling (DbS)	Memory, experience vs. information, delays	Cognitive tools
Zak, Paul J., Angela A. Stanton, and Sheila Ahmadi (2007)	Gain & Loss	-	Hormone	Decision task

Shah, Anuj K. and Daniel M. Oppenheimer (2008)	-	Effort- reduction framework	Cognitive bias, heuristics	Decision task
West, Richard F., Maggie E. Toplak, and Keith E. Stanovich (2008)	Gain	-	Cognitive bias	Watson-Glaser Critical Thinking Assessment (WGCTA)
Croson, Rachel and Uri Gneezy (2009)	Gain	-	Emotions, hormone	Decision Task
Kusev Petko, Paul van Schaik, Peter Ayton, John Dent, and Nick Chater (2009)	Gain & Loss	Prospect Theory	Memory, experience, frequency, probability	Monetary Gamble Task
Kuhberger, Anton and Carmen Tanner (2010)	Gain & Loss	Prospect Theory, Fuzzy-Trace Theory	Framing effect and probability	Decision task
Dietrich, Cindy (2010)	Gain & Loss	-	Cognitive bias, framing effect, probability, memory, experience vs. information, emotion vs. reasons, hormone	Meta-Analysis
Vlaev, Ivo, Petko Kusev, Neil Stewart, Silvio Aldrovandi, and Nick Chater (2010)	Gain & Loss	-	Memory	Risky choice task
Kuhberger, Anton (2011)	Gain & Loss	Prospect Theory	Framing effect	Decision Task
Kusev, Petko and Paul van Schaik (2011)	-	-	Outcome and probability	Meta-Analysis
Harries, Tim (2012)	Loss	-	Emotion vs. Reasons, Experience	Risk protection measure

Kusev, Petko, Paul van Schaik, and Silvio Aldrovandi (2012)	Loss	Priming	Memory, experience	Semantic- priming paradigm
Mishra, Sandeep and Laurence Fiddick (2012)	Gain & Loss	Prospect theory, Risk- Sensitivity Theory	Framing effect	Decision Task
Kandasamy, Narayanan, Ben Hardy, Lionel Page, Markus Schaffner, Johann Graggaber, Andrew S. Powlson, Paul C. Fletcher, Mark Gurnell, and John Coates (2014)	Gain	-	Hormone	Cortisol measure, computerized risk task
Petrova, Dafina G., Joop van der Pligt, and Rocio Garcia- Retamero (2014)	Gain & Loss	-	Emotions vs Reasons (Negative)	Reappraisal task
Tennyson, Sharon and Hae Kyung Yang (2014)	Loss	-	Emotions vs Reasons	Insurance demand task
Hsee, Christopher, Yang Yang, Xingshan Zheng, and Hanwai Wang (2015)	Gain	Lay Rationalism	Emotion vs. Reason	Decision Task
Kurnianingsih, Y. A. and Mullette-Gillman O. A. (2015)	Gain & Loss	Reflection Effect, Prospect Theory	Risk preference and choice strategies	Monetary Gamble Task
Newell, B. R. (2015)	Gain & Loss	Prospect Theory	probability	Monetary Gamble Task
Newall, Philip. W. S. (2015)	Loss	Support Theory	Advertising and choice	Gambling Task per Advertising type

Kusev, Petko, Paul van Schaik, Shrooq Alzahrani, Samantha Lonigro, and Harry Purser (2016)	Loss	Moral dual- process model	Memory, experience	Moral-dilemma scenario
Kusev, Petko, Harry Purser, Renata Heilman, Alex J. Cooke, Paul van Schaik, Victoria Baranova, Rose Martin, and Peter Ayton (2017)	Gain & Loss	-	Cognitive bias, framing effect, probability, memory, experience vs. information, emotion vs. reasons, hormone	Meta-Analysis
May, Frank (2017)	Gain	-	Emotion vs. Reason, time	Decision Task
Kusev, Petko, Paul van Schaik, Krasimira Tsaneva-Atanasova, Asgeir Juliusson, and Nick Chater (2018)	-	-	Experience vs. Information	-

2.2 Decision-Making under Risk

What is 'decision-making under risk'? Rather than involving exposure to actual danger or harm, risk can be considered more generally as uncertainty about the monetary amount you might lose or gain from making a particular choice. A decision is made by an attempt to evaluate probabilities related to different alternatives and choose what is regarded as the best given the situation (Newell, 2015).

The ultimate purpose of decision-making is to choose the best result among alternatives. von Neumann and Morgenstern (1947) and Tversky and Kahneman (1992) have suggested that economic theories of decision-making can be constructed computational combinations of two representative attributes; monetary amount and probability. In other words, Kahneman and Tversky (1979) and Tversky and Kahneman (1992) also have indicated that rational decision-making for such as protection or investment is affected by economic expectations (e.g., the highest utility) between alternatives. Essentially, the economic theory emphasizes that any variable not related to computing the expected highest outcomes among several options could not affect the choice problem (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; von Neumann and Morgenstern, 1947).

Generally, decision-making's economic models (for example, *Expected-Utility Theory*) allude that a decision-maker should make a choice that achieves utility maximization (von Neumann and Morgenstern, 1947). According to *Expected-Utility Theory*, the nature of diminishing marginal utility means that people avoid risk (Loewenstein et al., 2001; von Neumann and Morgenstern, 1947). That risk-averse attitude creates the demand for insurance for peace of mind (O' Donoghue and Somerville, 2018). However, this assumption in which the decision-maker might show rational economic behavior has been occasionally confuted in the literature. Indeed, as pointed out by *Bounded Rationality Theory*, individuals do not always rationally analyze decision-making problems. Instead, they sometimes depend on intuitions and heuristics when making decisions (Raue et al., 2015). Rather than showing utility maximization, their behaviors will be distorted by information type (different descriptions from the perspectives of context or content such as *Framing Effect*), probability level, cognitive biases, memory, experience, emotions versus reasons, hormonal correlates, etc. in the process of decision (Hertwig et al., 2004; Kahneman and Tversky, 1979; Kusev et al., 2009; Tversky and Kahneman, 1974; 1981; 1992).

2.2.1 Cognitive Biases in Decision-Making

Cognitive biases may affect decision-making. Cognitive biases are defined as thinking patterns from observation and their generalizations that may generate memory errors, inaccurate judgments, and faulty logic (Dietrich, 2010; Evans, Barston, and Pollard, 1983; West, Toplak, and Stanovich, 2008).

In decision-making, cognitive biases impact that individuals can have more credence to expected outcomes and previous experience/knowledge while expelling uncertain information or outcomes. Therefore, it may occasionally lead to a poor decision without looking at the bigger picture (Dietrich, 2010; Kusev et al., 2017; Shah and Oppenheimer, 2008).

2.2.2 Framing Effect and Probability Levels in Decision-Making

Framing effect was defined by Kahneman and Tversky (1979, *Prospect Theory*). *The framing effect* is an example of cognitive bias and indicates irrationality in decision- making. People show inconsistent choices even though they have been exposed to equivalent options depending on how the options are linguistically different described; for example, gain or loss are defined in the scenario as descriptions of outcomes (Kahneman and Tversky, 1979; Kuhberger and Tanner, 2010; Tversky and Kahneman, 1974; 1981; 1992). In *framing effect* and *Prospect Theory*, people show risk-averse attitude under a positive frame (gain domain), whereas they show risk-taking attitude under a negative frame (loss domain) with different levels of probability, respectively (Kahneman and Tversky, 1979; Tversky and Kahneman, 1974; 1981; 1986; 1992). Namely, the *framing effect* leads to different risk attitudes (Kuhberger, 2011; Levin et al., 1998; Mishra and Fiddick, 2012).

Besides, researchers (Kusev and van Schaik, 2011) pointed out that the specific combination of context, content, and task type in the studies would lead to either rational or irrational choice. In conclusion, many studies have necessarily employed a factor, a difference of probability-level, to recall respondents' memory and active their emotions toward the perceived risk in the context and the content.

2.2.3 Memory in Decision-Making

Recently, scholars have studied memory and decision-making under risk. Different context of risk probability levels, domain (gains or losses) effects, monetary amount, and retrospection such as vividness of events in memory and activated feelings/emotions can distort people's risk attitudes and decision-making (e.g., Kusev et al., 2009; 2012; 2017; Slovic, 1987; Tversky and Wakker, 1995; Vlaev et al., 2010).

2.2.4 Experience vs. Information in Decision-Making

One crucial factor that may influence future decision-making is past experiences (Juliusson, Karlsson, and Garling, 2005). Some studies (Hertwig et al., 2004; Kusev et al., 2018; Steward et al., 2006) have well-argued that decision-making depends on the

experience itself rather than descriptions of information regarding risky events. Specifically, individuals' experiences of past events will have a more substantial effect than when they have economics information (Kusev et al., 2009).

However, future decisions made by past experiences would not necessarily produce the best results. For example, in financial decision-making, highly successful investors make their investment decisions based on precise examination rather than past experiences. This approach is at odds with what one may predict (Dietrich, 2010, p.2; Juliusson et al., 2005)

Kusev et al. (2009), a study about insurance choice, proved that past experience and descriptions, respectively, affect risky choice. Still, there is a continuous argument to the effect between experience and information on decision-making under risk.

2.2.5 Emotions vs. Reasons in Decision-Making

Sometimes consumer decision-making depends on rational thinking through costbenefit analysis, whereas it relies on emotions (Hsee and Rottenstreich, 2004; Hsee et al., 2004; May, 2017; Pham, 1998; Schwarz and Clore, 2007; Shive and Fedorikhin, 1999). This research posits that this difference can also apply to consumer decision-making under risk.

Recently, researchers try to dynamically explain the role of affective factors in decision-making and predict consumers' choices with some models and theories. For example, Tennyson and Yang (2014) revealed that respondents with high life satisfaction show higher insurance purchasing intentions. The researchers concluded that strong (positive) emotional ties within a family might result in a stronger desire to take

prevention actions against risky events. Therefore, respondents' willingness to purchase insurance is affected by an economic factor and an emotional one.

However, Petrova et al. (2014) have a conflicting opinion on the subject that respondents would like to purchase when having affective descriptions like fear of losing. Additionally, flood insurance data of UK households shows that policyholders' protective behaviors were affected more by affective reactions (anxiety or insecurity; anticipated negative emotions) and experience (either already had experienced flooding or at risk of flooding) than by material and financial considerations (Harries, 2012; Kusev et al., 2018).

Additionally, the existing literatures allude that decision-making under risk may be influenced by a composite image of positive and negative emotion. Accordingly, there has been much controversy about which emotion has more influence on decision-making under risk. Therefore, it is necessary to continually study which emotions (positive versus negative) are more active and intervene in the decision-making process under risk.

2.2.6 Hormonal Correlates in Decision-Making

Some researchers have recently investigated a few essential hormones (e.g., cortisol, testosterone, and oxytocin) that correlate and determine decision-making. Chronic continued elevation of cortisol makes people more risk-averse (Kandasamy et al., 2014), whereas naturally high testosterone increases risky behavior-men tend to make riskier decisions in situations (Byrnes et al., 1999; Croson and Gneezy, 2009). According to the experiment by Zak et al. (2007), oxytocin would increase in generosity resembled a risk-aversion attitude. However, more research is required to increase confidence in these interpretations (Kusev et al., 2017, p.10).

CHAPTER 3 THEORETICAL BACKGROUND AND HYPOTHESES

3.1 Historical Theory Development of Decision-Making under Risk

3.1.1 Expected Utility (EU) Theory

Expected-Utility Theory implies that individuals should make decisions that accomplish utility maximization (von Neumann and Morgenstern, 1947). This was because researchers believed that maximizing expected utility was rationality with two justifications. One is maximizing expected utility is a profitable long-term policy. The other one is representation theorems in which all rational agents maximize the expected utility when there are certain rational restrictions on preferences (Briggs, 2014). *Expected-Utility Theory* became the dominant theory of rational choice in the analysis of decision-making under risk since the 1950s (Newell, 2015; Robert, 2018).

However, decision-makers do not always opt for higher expected value investment options in situations with risky consequences. *St. Petersburg paradox* of Nicolas 1 Bernoulli showed how the concept of expected value as an indicator of decision-making has failed to capture the way people actually choose (Newell, 2015; Newell, Lagnado, and Shanks., 2007). Besides, some violations have been systematically shown in subsequent empirical applications (Ellsberg, 1961; Markowitz, 1952), and these falsifications have raised the need for a deep understanding of how people actually make decisions. In 1979, Kahneman and Tversky showed the gap between choice based on *Expected-Utility Theory* and people's real choice and proposed *Prospect Theory* as an alternative (descriptive) decision theory (Kahneman and Tversky, 1979; Robert 2018).

3.1.2 Prospect Theory (PT)

Prospect Theory is still based on the *Expected-Utility Theory* but suggests significant modifications; the 'value function' and the 'weighting function.' In other words, the 'value function' and 'weighting function' of Prospect Theory maximize the expectation by converting the 'objective monetary utility' into 'subjective values' and the 'objective probabilities of outcomes' into 'subjective decision-weights,' respectively (Newell, 2015). Adding a nonlinear probability weight function to the existing Markowitz's model (1952) was developed into Prospect Theory.

In particular, *Prospect Theory* over-weighted the low (or small) probability on both gain and loss domains (Loewenstein et al., 2001). That is, *Prospect Theory* of Kahneman and Tversky (1979) has shown that people are more sensitive to losses than equal gains when making decisions in hypothetical monetary gambling experiments. *Prospect Theory* can explain why people want to purchase insurance to avoid risk through overweight, even though they are aware of the low-probability in the area of loss (Kahneman and Tversky, 1979; Loewenstein et al., 2001; Tversky and Kahneman, 1974, 1981).

However, decision-makers should be aware that despite objectively equivalent decision-making problems, the inconsistent choice is made in terms of gain or loss frame (Tversky and Kahneman,1974; 1981). It has become known as the *framing effect*

Thus, in order to choose the best decision from a variety of alternatives, individuals must consider two factors together in consumer decision-making under risk: different levels of risk probability and framing effects (Gains vs. Losses framing and two probability risk levels employed in the monetary gambles experiments: see Table 2).

Risk Probability Level	Gain Domain	Loss Domain
Small-Probabilities	Risk-seeking	Risk-aversion
Medium/Large-Probabilities	Risk-aversion	Risk-seeking

Table 2_The Fourfold Pattern of Choice that Prospect Theory can explain

Source: Newell, Ben R. (2015), "Decision making under risk: Beyond Kahneman and Tversky's Prospect Theory," in *Cognitive Psychology: Revisiting The Classic Studies*, eds. Michael W. Eysenck and David Groome, CA: SAGE, p. 169.

3.1.3 Construal Level Theory (CLT)

Construal Level Theory indicates that objects, events, or individuals are expressed as proximal or distant. Thus, the reference point is now and here, and how far away the object is temporally, spatially, socially, or probabilistically from it. In CLT, high versus low levels are expressed as psychological distance-near (proximal) versus far (distant). A high-level of CLT is a broad concept of an object and has an abstract perspective, whereas a low-level of CLT, which means close psychologically, is interpreted as a concrete point of an object (Trope and Liberman, 2010). In other words, these two construal levels of CLT proposed by Trope and Liberman (2010) can be explained as follows. One is low-level construal, which focuses on the feasibility of an action (e.g., probability of a positive outcome) based on a concrete mindset. The other is high-level construal, focusing on action's desirability (e.g., attractive of the outcome) based on an abstract mindset.

Many empirical studies prove the notion that psychological distance by activated a certain level of construal interpretation is related to decision-making (Raue et al., 2015; Trope and Liberman, 2010; Trope, Liberman, and Wakslak, 2007). When people make important decisions, they always keep the consequences in mind and are influenced by

the construal level that was active in the process. This is why CLT has received attention (Kim, Schnall, and White, 2013).

For example, in gambling experiment tasks at a temporal distance, respondents prefer gambling with a high-probability of winning (risk-averse) in the near future while preferring gambling with high-returns (risk-seeking) from a long-term perspective (highlevel construal). That is, from this long-term perspective, it can be interpreted as showing an attitude that favors risk as people focus on the desirability of outcomes (Sagristano, Trope, and Liberman, 2002). This can be linked to the *framing effect* discussed earlier. In other words, individuals intuitively prospect the outcomes of decision-making under risk as either desirable or feasible (Trautmann and van de Kuilen, 2012) about the objectively equivalent choice problem.

Many researchers have examined the interaction of construal level manipulated by priming at various levels and risk attitudes (Lermer, Streicher, Sachs, Raue, and Frey, 2014; Raue et al., 2015; Streicher, Lermer, Sachs, and Frey, 2012). For instance, in the scenario framed with a high-level construal, participants judged the possibility of risk occurrence as low and showed an attitude to seek more risk. This is also consistent with the results of Wakslak and Trope (2009). In the neurological experiment setting, respondents judged that exposure to a high-level construal would be less likely to be at risk than exposed to a low-level construal (Raul et al., 2015; Wakslak and Trope, 2009). The results of the studies are summarized in the following table (see Table 3).

Construal Level	Psychological (Hypothetical) Distance	Risk Probability Level (Wakslak and Trope (2009))	Gain Domain	Loss Domain
Low-Construal	Probable	High-Probability	Risk-Averse	Risk-Taking
Level (Proximal)	(likely event)	Risk	KISK-AVEISE	KISK-Taking
High-Construal	Improbable	Low-Probability	Risk-Taking	Risk-Averse
Level (Distant)	(unlikely event)	Risk	KISK-Taking	KISK-Aveise

 Table 3_Construal Level Theory under Risk

Source: a. Armor, David A. and Aaron M. Sackett (2006), "Accuracy, Error, and Bias in Predictions for Real versus Hypothetical Events," *Journal of Personality and Social Psychology*, 91, 583-600.

- b. Wakslak, Cheryl and Yaacov Trope (2009), "The Effect of Construal Level on Subjective Probability Estimates," *Psychological Science*, 20 (1), 52-58.
- c. Raue, Martina, Bernhard Streicher, Eva Lermer, and Dieter Frey (2015), "How far does if feel? Construal level and decisions under risk," *Journal of Applied Research in Memory and Cognition*, 4, 256-264.

Construal Level Theory and Prospect Theory predict the same outcome in the loss

domain, as shown in the following table (see Table 4).

Theory	The Level of Risk Probability	
	Low-Probability Risk	High-Probability Risk
Construal Level Theory	Risk-Averse	Risk-Taking
Prospect Theory	Risk-Averse	Risk-Taking

Table 4_Expected Risk Attitudes under Risk in Loss Domain (Combination Table 2 and 3)

3.1.4 Risk-as-Feelings Hypothesis

Existing economic models or cognitive assessment models only rely on more

objective features of risky situations, such as assessing outcome probability and outcome

severity for risk. However, people do not make decisions only by these economic models, and this logic is insufficient to explain irrational behavior. As an alternative to explain this, some researchers (Loewenstein et al., 2001) have proposed the '*Risk-as-Feelings Hypothesis*.'

Emotional responses toward perceived risky situations sometimes would separate cognitive assessments from those risks. When such isolation happens, emotional responses can be a driving force to make a choice under risk (Damasio, 1994; Loewenstein et al., 2001). Loewenstein et al. (2001)'s study stressed the relation between probability and emotion as a basis of explaining the main paradox that arises from decision-making under risk.

The '*Risk-as-Feelings Hypothesis*' assumes that the direct emotional influences dominate decisions under risky situations felt in those situations (Damasio, 1994; Lerner and Keltner, 1999, 2000; Loewenstein et al., 2001; Raghunathan and Pham, 1999). What drives these emotions include the vividness of the resulting image, personal exposure or experience of the result, and a past history of conditioning (Loewenstein et al., 2001).

Therefore, it has been demonstrated that risk as either emotional assessment or cognitively evaluation sometimes drive different attitudes. For example, when people cognitively assess risk, they pay much attention to the probability of the occurrence, but the emotionally perceived risk does not depend much on the probability of occurrence (Loewenstein et al., 2001; Rottenstreich and Hsee, 2001). Thus, some people are actively preparing for and avoiding risks even with low-probability happening (e.g., purchasing insurance or warranty).

3.2 System 1 (Heart) versus System 2 (Head), Dual-System Theory

Psychologist, neuroscientist, behavioral economist, etc. have developed the concept of '*Dual-System Theory*' or so-called the '*Two Minds Hypothesis*' by explaining that human being's (sometimes irrational) behavior is structurally and conceptually driven by two different system sets (Kahneman, 2011; Turel and Qahri-Saremi, 2016).

These studies come to two consensus points. The first point highlights the unique properties of each of the two systems. One is called '*System 1*', and the decision of *System 1* is made based on the heart because it has characteristics such as intuitive and fast dependence on the sound from the heart. The other is named '*System 2*', and the choice of *System 2* is based on the head. *System 2*'s choice is defined as being slow, precise, and focusing on the head's sound. The second point is how the two systems interact and play different roles in decision-making (Kahneman, 2011; Turel and Qahri-Saremi, 2016).

In particular, studies in recently published papers have shown that the dual-system theory has been distinctly helpful in describing the causes of problematic behaviors such as problem gambling, overacting, drinking problems, smoking, etc. (Turel and Qahri-Saremi, 2016).

Therefore, this research will examine how *System 1* and *System 2* work in the decision-making process in the area of loss and what system it is useful to rely on to make the best choice under risk.

3.3 Utilitarian vs. Hedonic Attributes

A critical variable in the marketing field is the study of utilitarian versus hedonic benefits. Chitturi et al. (2008) well summarized the 'utilitarian' versus 'hedonic' concepts by synthesizing several works of literature as follows (see Table 5) (Batra and Ahtola 1990; Chitturi, Raghunathan, and Mahajan 2007; Chitturi et al., 2008; Dhar and Wertenbroch 2000; Strahilevitz and Myers 1998).

The Chitturi et al. (2008)' study also shows that focusing on the hedonic attributes evokes greater promoted feelings like excitement and cheerfulness, while consuming utilitarian benefits increase the preventive feelings such as confidence and security (Chitturi et al., 2008, p. 50).

Type of Benefits		Attributes	Emotion
Utilitarian Benefits	necessities- needs-utilitarian	Functional, Instrumental, Practical, etc.	Avoid Pain, Confidence, Security
Hedonic Benefits	luxuries-wants- hedonic	Aesthetic, Experiential, and Enjoyment, etc.	Cheerfulness, Excitement

Table 5_Utilitarian vs. Hedonic Benefits and Derived Emotion

Source: Chitturi, Ravindra, Rajagopal Raghunathan, and Vijay Mahajan (2008), "Delight by Design: The Role of Hedonic Versus Utilitarian Benefits," *Journal* of Marketing, 72 (3), 48-63.

From the above study, I can predict consumers' attitudes as follows (see Table 6). A utilitarian event will arouse risk-averse, whereas a hedonic event will stir up a risktaking attitude. Furthermore, this expectation can also be linked to decision-making under risk by borrowing the 'Prevention' and 'Promotion' conditions of the 'Regulatory Focus Theory' used in the work of Chitturi et al. (2008) (see Table 7).

Event Types	Emotion	Expected Risk Attitudes
Utilitarian Event	Confidence, Security	Risk-Averse
Hedonic Event	Cheerfulness, Excitement	Risk-Taking

Table 6_Expected Risk Attitudes based on Chitturi et al. (2008)'s Research

Source: Chitturi, Ravindra, Rajagopal Raghunathan, and Vijay Mahajan (2008),

"Delight by Design: The Role of Hedonic Versus Utilitarian Benefits," *Journal of Marketing*, 72 (3), 48-63.

Therefore, this research can organize the first independent variable by arranging

several papers' results and theories as follows.

8).

Table 7_Expected Risk Attitudes under Risk in Loss Domain

Consumption	Related-Emotions	Focus of Self-	Expected Risk
Purpose	Related-Emotions	Regulation	Attitudes
Utilitarian Benefits	Confidence,	Prevention	Risk-Averse
Utilitarian Benefits	Security	(avoiding loss)	NISK-AVEISE
Hedonic Benefits	Cheerfulness,	Promotion	Risk-Taking
Hedoliic Belletits	Excitement	(attaining gains)	KISK-TAKIIIg

Source: a. Chitturi, Ravindra, Rajagopal Raghunathan, and Vijay Mahajan (2008), "Delight by Design: The Role of Hedonic Versus Utilitarian Benefits," *Journal of Marketing*, 72 (3), 48-63.

b. Bryant, Peter and Richard Dunford (2008), "The Influence of Regulatory Focus on Risky Decision-Making," *Applied Psychology*, 57 (2), 335-359.

As explained earlier, decision-making is not driven by a single factor. To achieve better results, this research would like to add one more important factor, utilitarian versus hedonic benefits, to framing effect and probability, which were the main variables of decision-making under risk. That is to say, this research strives to establish a better matrix, as shown below the table. This study wants to fill out the below matrix (see Table

Errort	The Level of Risk Probability							
Event	Low-Probability Risk			High-Probability Risk				
Туре	CLT & PT	HED/UTI	Interplay	CLT & PT	HED/UTI	Interplay		
Litilitarian	Risk-	Risk-	2	Risk-Taking	Risk-	9		
Utilitarian	Aversion	Aversion	•	KISK-Taking	Averse	•		
Hadamia	Risk-	Risk-	9	Risk-Taking	Risk-	9		
Hedonic	Aversion	Taking	•	Risk-Taking	Taking	4		

 Table 8_Expected Risk Attitudes Matrix by Interaction between Type of Event and

 Two Levels of Risk Probability (2 Independent Variables)

CLT: Construal Level Theory, PT: Prospect Theory, HED/UTI: Hedonic/Utilitarian

3.4 Lay Rationalism (LR)

As discussed in the literature review in 2.2.6 and the theoretical background in 3.2, there is an ongoing discussion about whether it should be based on emotion or reason when making a decision. One of the concepts that suggest another theoretical background is *Lay Rationalism*-the concept that uses reason rather than emotions to draw final choices (Hsee et al., 2015).

Lay rationalism can be used a little differently from the concept of the rationality of existing decision-making theories or dominant behavior economics. Lay rationalism does not counter emotions but treats them as part of a person's rational utility function (Hsee et al., 2015). This point is interpreted differently for rationalities in the existing dominant economic theory or decision-making theories. This aspect, like the Dual-System Theory, discussed earlier in 3.2, leads people into the dilemma of whether to follow the 'head (reasons)' or 'mind (emotion)' in the choice (Hsee et al., 2015).

Therefore, this study will examine how laypeople can make decisions under risk by operating this factor (decision-making reliance between heart vs. head) as an essential variable and how to derive effective risk communication.

3.5 Positive and Negative Affect Schedule (PANAS) Scale

As a result of the previous literature review (see 2.2.5), it continues to be controversial as to which emotions (positive versus negative) were more effective in making a decision under risk. To test this dispute, this study examines the decisionmaking process using the PANAS scale (Watson et al., 1998) as a moderated variable.

Watson, Clark, and Tellegen (1998) proposed the Positive and Negative Affect Schedule (PANAS), which consists of two mood scale rating positive and negative feelings with personality status and traits. Twenty (20) descriptors are used to measure respondents' Positive Affect (PA) and Negative Affect (NA).

Respondents will respond to each of the ten (10) positive and the ten (10) negative words using a 5-point scale that is close to the emotions they had at the time of the experiment or over the past few weeks (see 4.4)

3.6 Hypotheses

From the literature review and theory background, this research can expand the research questions (Chapter 1) to the following hypotheses.

Hypothesis 1. The interaction effect of risk probability level (low vs. medium) and event type (utilitarian vs. hedonic) on the perceived risk in the loss domain will induce

people to engage in risk-averse behavior. Significantly if the risk-taking hedonic-benefits interact with the perception of low-probability risk level, the opposite risk attitude (risk-averse) can occur.

Hypothesis 2: There will be an interaction effect of risk probability level (low vs. medium), event type (utilitarian vs. hedonic), and the amount of loss on the perceived risk in the loss domain. Significantly, unlike traditional economic models, people having hedonic-event with low-probability risk in small-loss conditions can exhibit a strong risk-averse attitude.

Hypothesis 3. The decision-making attitude under risk depends on the person's usual personality and traits, either emotional or rational.

Hypothesis 4. When making decisions based on emotion, people tend to avoid risk more than those made by logical thinking.

Hypothesis 5: Risk attitudes in dealing with big-loss versus small-loss are based on different emotions (positive vs. negative).

Hypothesis 6. People tend to be more risk-averse when making a decision that relies on negative emotions rather than positive emotions under risk in the loss domain. Even if they show the same risk attitudes, the decisions relied on different emotions per the amount of loss.

CHAPTER 4 METHODOLOGY AND MEASUREMENT

4.1 Study 1: Perceived Risk Attitudes and Decisions under Risk

Even though the level of risk probability (Low-Probability Risk vs. Medium-Probability Risk; IV 1) and the type of risky event (Utilitarian-Purpose Event vs. Hedonic-Purpose Event; IV 2) are two critical factors affecting decision-making, there is no research exploring the interplay between these two variables on consumer decisionmaking under risk. This study applies to these two independent variables to investigate how people perceive risky situations and make decisions under risk in the loss domain.

Figure 1_(Study 1) Research Model

4.1.1 Method and Procedure

This study employed a 2 (Risk Probability Level: Low-Probability Risk vs. Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose Event vs. Hedonic-Purpose Event) between-subjects design. Participants (n = 252) were recruited from Amazon Mechanical Turk (MTurk). I removed participants who failed to answer the attention check question correctly ("Please select strongly disagree."). The final sample had 234 participants. 65.8% (154 participants) were male.

First, participants were randomly assigned and asked to read one of four (4) scenario conditions (LRUE: Low-Probability Risk with Utilitarian-Purpose Event, LRHE: Low-Probability Risk with Hedonic-Purpose Event, MRUE: Medium-Probability Risk with Utilitarian-Purpose Event, and MRHE: Medium-Probability Risk with Hedonic-Purpose Event) of travel insurance choice. In the conditions of low (vs. medium) probability of trip cancellation risk and utilitarian-purpose (vs. hedonicpurpose) event, participants read the following:

Imagine. You will go to the *City M* three (3) weeks later in order to attend a <u>nationwide job fair (vs. for a sightseeing); event type</u>. You will stay there for one (1) week. The round-trip flight costs from New York, USA to *City M*, USA \$450 for non-stop service. Then, <u>you would have a 5% (vs. 45%) chance of needing to cancel your trip; risk probability level</u>. If you inevitably cancel the flight without travel insurance, you will lose \$450 plane ticket costs. However, with this insurance, you will get 100% of the ticket price returned to you. Right after purchasing the ticket, the website asks whether you want to buy travel insurance or not. You will be charged an additional \$30 per ticket. Would you want to buy travel insurance?

Event	Туре	Risk Probability Level		
Utilitarian-Purpose	Hedonic-Purpose	Low-Probability	Medium-	
Event Event		Risk	Probability Risk	
A trip to attend a	A trip to attend a A trip for a		45% chance of trip	
nationwide job fair sightseeing		cancellation	cancellation	

 Table 9_(Study 1) Event Type and Risky Probability Level

After reading one of four (4) scenarios, as a manipulation check for event type and risk level, I asked participants to rate their perception of event type (utilitarian-purpose event vs. hedonic-purpose event) and risk probability level (low-probability risk vs. medium-probability risk) and use on a 7-point scale: "The scenario's event is close to the attributes of" (1 = Practical/Productive Event' to 7 = Enjoyable/Fun Event'; HED/UTI scale (Voss et al., 2003)) and "From the scenario, what do you think the probability of risk?" (1 = Low-Probability Risk', 4 = Medium-Probability Risk', 7 = High-Probability Risk', respectively.

Next, I asked participants to mark their relative willingness to purchase insurance by answering the question: "Please rate your willingness to purchase Travel Insurance." on a 7-point scale (1 = 'Definitely Won't Buy (No)', 4 = 'Neutral', 7 = 'Definitely WillBuy (Yes)'). In addition, I measured participants' binary choice: "Do you want to buyTravel Insurance?" (<math>1 = 'No', 2 = 'Yes').

On the next page of the survey, to gain insight about participants' decision-making reliance on between *System 1 (Heart)* versus *System 2 (Head)*, participants were asked to indicate how they made their choices on seven (7) items (Levine et al., 2018) which were assessed on a 7-point scale (1 = '*Strongly Disagree*' to 7 = '*Strongly Agree'*): "You made your decision *intuitively*," "You made your decision *deliberately*," "You made your decision *by relying*

on your heart," and "You made your decision by relying on your brain". Moreover, comprehensively, I asked this additional question: "Overall, how did you make your decision?" (1 = Using only Emotion' to 7 = Using only Reason'). For each item, they indicated the degree to which they agree or disagree with the statement. Responses to these seven (7) items formed an index of participants' relative reliance on *System 1* (*Heart*) versus *System 2* (*Head*).

Finally, participants answered standard demographic questions. Participants received \$0.50 for their participation.

4.1.2 Results and Discussion

4.1.2.1 Manipulation Check.

The manipulation of event types was successful in showing that participants perceived 'a trip to attend a nationwide job fair' (M = 2.57) as significantly utilitarianpurpose event than that in the hedonic condition 'a trip for a sightseeing' (M = 5.79; F (1, 233) = 277.549, p < .000). And, the manipulation of risk probability levels was also successful in showing that participants perceived two distinct probability of trip cancellation risk; low-probability risk (M = 1.92) verse medium-probability risk (M =5.11; F = (1, 233) = 380.744, p < .000).

Figure 2_(Study 1) Manipulation Check of Event Type and Risk Probability Level

Event Type: 1 = '*Practical/Productive Event*' to 7 = '*Enjoyable/Fun Event*'. Risk Probability Level: 1 = '*Low-Probability Risk*' to 7 = '*High-Probability Risk*'.

4.1.2.2 Willingness to Purchase Travel Insurance

Main and Interaction Effects

A two-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) ANOVA conducted on participants' willingness to purchase travel insurance yielded the expected interaction ($F(1, 233) = 14.610, p < .000, \eta^2 = .060$). The main effect for event type ($F(1, 233) = 21.133, p < .000, \eta^2 = .084$) was significant, whereas the main effect for risk level ($F(1, 233) = .427, p < .514, \eta^2 = .002$) was not significant.

Table 10_(Study 1) Test of Between-Subjects Effects

Design. Intercept + Risk Dever + Dvent Type + Risk Dever + Dvent Type								
	Type III Sum		Mean			Partial Eta		
Source	of Squares	df	Square	F	Sig.	Squared		
Corrected Model	74.602 ^a	3	24.867	11.731	.000	.133		
Intercept	5530.774	1	5530.774	2609.115	.000	.919		
RiskLevel	.906	1	.906	.427	.514	.002		
EventType	44.797	1	44.797	21.133	.000	.084		
RiskLevel *								
EventType	30.971	1	30.971	14.610	.000	.060		
Error	487.551	230	2.120					
Total	6116.000	234						
Corrected Total	562.154	233						

Dependent Variable: Willingness to Purchase Travel Insurance Design: Intercept + Risk Level + Event Type + Risk Level * Event Type

a. R Squared = .133 (Adjusted R Squared = .121).

Two-way ANOVA

In low-probability risk condition, participants with hedonic-purpose event (M = 5.60, SD = 1.521) showed statistically greater willingness to purchase travel insurance than those with utilitarian-purpose event (M = 4.00, SD = .915). In medium-probability risk condition, participants with hedonic-purpose event (M = 5.00, SD = 1.781) also statistically showed a little greater willingness to purchase travel insurance than those with utilitarian-purpose event (M = 4.85, SD = 1.447; F (3, 230) = 11.731, p < .000)

Table 11_(Study 1) ANOVA Results

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	74.602	3	24.867	11.731	.000
Within Groups	487.551	230	2.120		
Total	562.154	233			

Overall, it indicated that they showed relatively strong risk-averse attitudes, excluding the LRUE (risk-neutral) condition. Significantly, participants with a hedonicpurpose event presented a higher willingness to purchase travel insurance attitudes than those with a utilitarian-purpose event regardless of the risk level. In detail, the condition

of LRHE showed the highest mean to buy travel insurance (see Figure 3 and Table 12).

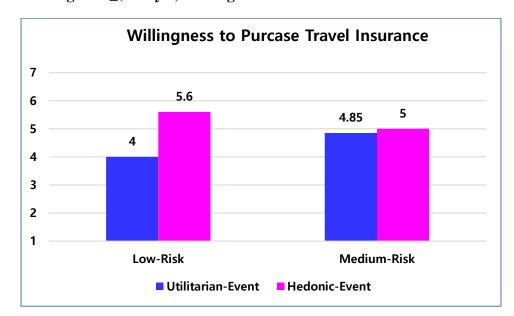


Figure 3_(Study 1) Willingness to Purchase Travel Insurance

Willingness: 1 = 'Definitely Won't Buy (No)' to 7 = 'Definitely Will Buy (Yes)'.

Table 12_(Study 1) Risk Attitude per condition interpreted through Willingness to Purchase Insurance of Figure 3

Conditions	Risk Attitude
LRUE (Low Risk + Utilitarian Event)	Risk Neutral
LRHE (Low Risk + Hedonic Event)	(the strongest) Risk-Averse
MRUE (Medium Risk + Utilitarian Event)	Risk Averse
MRHE (Medium Risk + Hedonic Event)	Risk-Averse

Post Hoc Analysis

According to the Post Hoc results, the significance value was .000, so the hypothesis was accepted. It was found that there was a significant difference in willingness to purchase depending on the groups/conditions.

Since equal variances were not assumed, the Dunnett T3 test was applied instead of Scheffe. As a result of Dunnett T3 analysis, there was a significant difference among groups in LRHE, LURE, and MRUE in willingness to purchase travel insurance.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Dunnett T3	
Willingness	LRUE (a)	4.00	.915			
to Purchase	LRHE (b)	5.60	1.521	11.731/ .000	h > a a	
Travel	MRUE (c)	4.85	1.447	11.731/.000	b > a, c	
Insurance	MRHE (d)	5.00	1.781			

Table 13_(Study 1) Post Hoc Analysis

Table 14_(Study 1) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Willingness to Purchase Travel Insurance Dunnett T3

					95% Co	nfidence
		Mean			Inte	erval
(I)	(J)	Difference	Std.		Lower	Upper
Conditions	Conditions	(I-J)	Error	Sig.	Bound	Bound
	LRHE	-1.603*	.234	.000	-2.23	97
LRUE	MRUE	852*	.222	.001	-1.45	26
	MRHE	-1.000*	.262	.002	-1.70	30
	LRUE	1.603*	.234	.000	.97	2.23
LRHE	MRUE	.751*	.272	.040	.02	1.48
	MRHE	.603	.306	.267	22	1.42
	LRUE	.852*	.222	.001	.26	1.45
MRUE	LRHE	751*	.272	.040	-1.48	02
	MRHE	148	.297	.997	94	.65
MRHE	LRUE	1.000*	.262	.002	.30	1.70

LRHE	603	.306	.267	-1.42	.22
MRUE	.148	.297	.997	65	.94

* The mean difference is significant at the 0.05 level.

4.1.2.3 Binary Choice

A logistic regression was performed to ascertain binary choice whether respondents wanted to buy travel insurance or not. The logistic regression model was statistically significant, $x^2(3) = 19.377$, p < .000. The model explained 13.4% (Nagelkerke R^2) of the variance in binary choice and correctly classified 83.3% of cases.

Especially, I found significant effects on LRUE (B = -1.173, S.E = .526, OR = .309,

p < .026) and MRUE (*B* = -1.144, *S*.*E* = .520, *OR* = .318, *p* < .028).

Table 15_(Study 1) Binary Choice

Variable	ariable B S.E	SΕ	Wald Ex	Exp(B)	95%	Sig.		
v allable	D	5. Ľ	vv alu	Lxp(D)	Lower	Upper	Sig.	
MRHE	-	-	13.748	1.000	-	-	.003	
LRUE	-1.173	.526	4.975	.309*	.110	.867	.026	
LRHE	1.154	.839	1.892	3.170	.613	16.403	.169	
MRUE	-1.144	.520	4.846	.318*	.115	.882	.028	
Constant	2.179	.431	25.580	8.833	-	-	.000	
Chi-square (df), Sig.				19.3	377 (3), .00	0		
Chi-so	quare (df) o	f Hosmer-I	Lemeshow T	Sest, Sig.	0.00	00 (2), 1.00	0	

log (Binary Choice) = 2.179 – 1.173 * (LRUE) – 1.144 * (MRUE)

* *p* < .05.

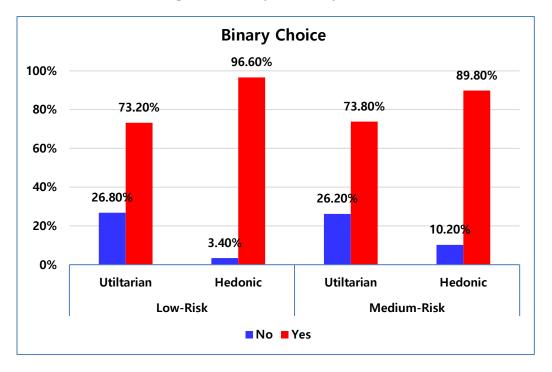


Figure 4_(Study 1) Binary Choice

Overall, participants showed that they wanted to buy travel insurance to avoid risk (risk-averse attitudes) across conditions. More specifically, those having hedonic-purpose events presented a higher willingness to purchase travel insurance attitudes than utilitarian-purpose events regardless of the risk level. Like the above two-way ANOVA results of willingness to purchase travel insurance, the strongest risk-aversion attitude was found in the condition of LRHE.

4.1.2.4 Decision-Making Reliance on System 1 (Heart) vs. System 2 (Head)

Factor Analysis, Reliability Analysis, and Correlations per Condition

Below, I examine how an individual's relative reliance on decision-making (*System 1* (Heart) vs. *System 2* (Head)) has a decisive effect on the risk attitudes per condition.

When extracting six (6) questions (Intuitively, Deliberately, Quickly, Slowly,

Heart, and Head) into two (2) fixed numbers of factors, it was clearly divided into System

1 (Heart, Intuitively, Quickly) or System 2 (Head, Deliberately, Slowly) as follows.

In factor analysis, KMO > .5 and Bartlett p < .05 are considered appropriate. The Eigen-value must be greater than 1.0, and the factor load value should be greater than 0.4. If the Cronbach α value was too low, the factor was removed, and reliability analysis was conducted again to derive the results.

				Factor Analysis				
	Factor	Variable						
	1 actor		Factor	Communality	Eigen-	% of	Cronbach α	
т			Load	Communanty	value	Variance	Cronbach a	
L R	System	Deliberately	.868	.757	1.465	36.633	$\alpha = .612$	
K U	2	Head	.820	.711	1.403	30.035	u = .012	
E U	System	Intuitively	.858	.738	1.426	35.652	$\alpha = .574$	
Е	1	Heart	.806	.686	1.420	55.052	u = .374	
		KN	/IO (Kaise			.535		
		Partlatt' Test	ofSphari	aitu	Chi	-Square	24.864	
	Bartlett' Test of Sphericity $df(p)$						6 (.000)	

Table 16_(Study 1) Factor Analysis and Reliability Analysis

				Factor Analysis					
	Factor	Variable		i actor i maryoro					
	Tactor		Factor	Communality	Eigen-	% of	Cronbach α		
т			Load	Communality	value	Variance	Cronbach u		
L R	System	Slowly	.847	.720	1.447	36.186	α = .595		
к Н	2	Deliberately	.836	.714		50.100			
п Е	System	Intuitively	.845	.719	1.410	35.258	$\alpha = .573$		
Е	1	Heart	.825	.704	1.410	55.258			
		KN	AO (Kaise			.510			
						-Square	22.789		
	Bartlett' Test of Sphericity				df (<i>p</i>)		6 (.001)		

	Factor	Variable		Factor Analysis				
	Factor	variable	Factor	Communality	Eigen-	% of	Cronbach α	
			Load	Communanty	value	Variance	Ciolibacii u	
Μ	System	Heart	.882 .779 1.79		1.798	35.966	$\alpha = .738$	
R	1	Intuitively	.853	.756	1.790	55.700	u – .738	
U	Sustam	Head	.828	.707	1.709		$\alpha = .645$	
E	System 2	Slowly	.825	.683		34.178		
	L	Deliberately	.558	.583				
		KN	AO (Kaise	er-Meyer-Olkin)			.577	
		Bartlett' Test of Sphericity				-Square	68.962	
		Dartiett Test	or spheri	City	df (<i>p</i>)		10 (.000)	

	Factor	Variable		Factor Analysis				
			Factor	Communality	Eigen-	% of	Cronbach α	
7			Load	Communanty	value	Variance	Ciolibacii u	
M R	System	Intuitively	.924	.853	1.672	41.788	$\alpha = .794$	
к Н	1	Heart	.888	.831	1.072		u – ./94	
п Е	System	Deliberately	.909	.827	1.644	41.100	α = .757	
Ľ	2	Head	.881	.805	1.044	41.100	$\alpha = .757$	
		KN	10 (Kaise	er-Meyer-Olkin)			.533	
		Bartlett' Test	of Spheri	city	Chi-Square		65.864	
		Dartiett Test	or spheri	of Sphericity		f (<i>p</i>)	6 (.000)	

The below plots (Figure 5) show the items/variables of *System 1* versus *System 2* in the rotated factor space. It helps us to understand how the items are organized in the common factor space. As shown in Figure 5, it can be seen that the variables of *System 1* versus *System 2* are distantly divided into two areas. It can be explained that respondents clearly understood and answered each question about decision-making reliance on *System 1* versus *System 2*. Table 17 depicts the correlation between all measures.

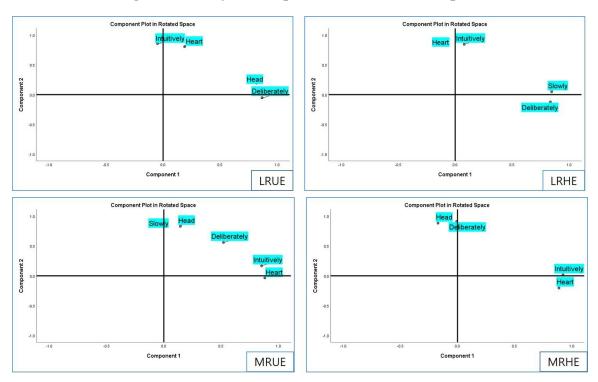


Figure 5_(Study 1) Component Plot in Rotated Space

 Table 17_(Study 1) Correlation Table

	Variable	Correlation							
L	v allable	1. Intuitively	2. Deliberately	3. Heart	4. Head				
R	1. Intuitively	1	015	.407**	.131				
U	2. Deliberately		1	.125	.449**				
Е	3. Heart			1	.222				
	4. Heart				1				

	Variable	Correlation							
L	v allable	1. Intuitively	2. Deliberately	3. Slowly	4. Heart				
R	1. Intuitively	1	035	.030	.402**				
Н	2. Deliberately		1	.431**	172				
Е	3. Slowly			1	066				
	4. Heart				1				

	Variable	Correlation						
Μ	v allable	1. Intuitively	2. Deliberately	3. Slowly	4. Heart			
R	1. Intuitively	1	.389**	.079	.585**			
U	2. Deliberately		1	.318*	.353**			
Е	3. Slowly			1	.506			
	4. Heart				1			

	Variable	Correlation							
Μ	v allable	1. Intuitively	2. Deliberately	3. Slowly	4. Heart				
R	1. Intuitively	1	.663**	020	152				
Η	2. Deliberately		1	195	286*				
Е	3. Slowly			1	.623**				
	4. Heart				1				

Note: Cells display Pearson's Correlation.

** p < .01. Correlation is significant at the 0.01 level (2-tailed).

* p < .05. Correlation is significant at the 0.05 level (2-tailed).

Main and Interaction Effects

A two-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) ANOVA conducted on individual's relative reliance on decision-making between *System 1* (Heart, Emotion) versus *System 2* (Head, Reason). This test yielded the expected interaction (F (1, 233) = 4.797, p < .030, $\eta^2 = .020$). The main effects for risk level (F (1, 233) = 20.483, p < .000, $\eta^2 = .082$) and even type (F (1, 233) = 8.217, p < .005, $\eta^2 = .034$) were significant.

Table 18_(Study 1) Tests of Between-Subjects Effects

Design: Intercept + Risk Level + Event Type + Risk Level * Event Type									
Type III					Partial				
Sum of		Mean			Eta				
Squares	df	Square	F	Sig.	Squared				
41.356 ^a	3	13.785	11.215	.000	.128				
6392.889	1	6392.889	5200.847	.000	.958				
25.177	1	25.177	20.483	.000	.082				
10.101	1	10.101	8.217	.005	.034				
5.897	1	5.897	4.797	.030	.020				
282.716	230	1.229							
6737.000	234								
324.073	233								
	Type III Sum of Squares 41.356 ^a 6392.889 25.177 10.101 5.897 282.716 6737.000	Type III Type III Sum of Gamma Squares df 41.356 ^a 3 6392.889 1 25.177 1 10.101 1 5.897 1 282.716 230 6737.000 234	Type III Mean Sum of Mean Squares df 41.356 ^a 3 6392.889 1 6392.889 1 25.177 1 10.101 1 5.897 1 282.716 230 6737.000 234	Type III Mean Sum of Mean Squares df 41.356 ^a 3 6392.889 1 6392.889 1 6392.889 1 25.177 1 10.101 1 5.897 1 5.897 1 282.716 230 6737.000 234	Type III Mean Mean Squares df Square F Sig. 41.356 ^a 3 13.785 11.215 .000 6392.889 1 6392.889 5200.847 .000 25.177 1 25.177 20.483 .000 10.101 1 10.101 8.217 .005 5.897 1 5.897 4.797 .030 282.716 230 1.229				

Dependent Variable: Decision-Making Reliance Design: Intercept + Risk Level + Event Type + Risk Level * Event T

a. R Squared = .128 (Adjusted R Squared = .116).

Two-way ANOVA

In the case of LRHE (M = 4.53, SD = .959; F(3, 230) = 11.215, p < .000), it was

notable that the decision-making was statistically most emotionally dependent (emotion-

based decision-making) than other conditions appear (see Figure 6 and Table 12).

Regardless of the level of risk, individuals with hedonic events showed relative emotional reliance when making decisions than those with utilitarian events.

 Table 19_(Study 1) ANOVA Results

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	41.356	3	13.785	11.215	.000
Within Groups	282.716	230	1.229		
Total	324.073	233			

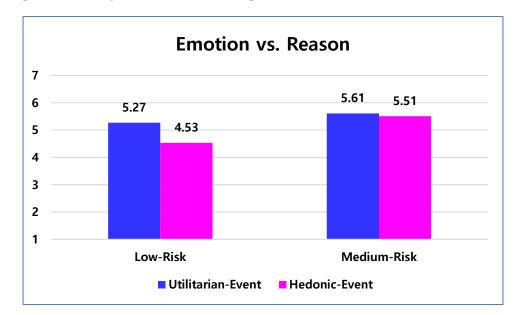


Figure 6_(Study 1) Decision-Making Reliance Between Emotion vs. Reason

Decision-Making Reliance: 1 = 'Using only Emotion' to 7 = 'Using only Reason'.

Conditions	Decision-Making Reliance
LRUE (Low Risk + Utilitarian Event)	Reason
LRHE (Low Risk + Hedonic Event)	Emotion
MRUE (Medium Risk + Utilitarian Event)	Reason
MRHE (Medium Risk + Hedonic Event)	Reason

Table 20_(Study 1) Decision-Making Reliance

Post Hoc Analysis

According to the Post Hoc results, the significance value was .000, so the hypothesis was accepted. It presented that there was a significant difference in relative decision-making reliance depending on the groups/conditions. As a result of Scheffe analysis (equal variances assumed), there was a significant difference in all groups.

Also, the condition of LRHE showed the lowest mean on individuals' relative choice reliance (the most emotional decision-making). Furthermore, it can be interpreted that such decision-making led to the most risk-averse attitudes.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Scheffe
Desision	LRUE (a)	5.27	1.036		
Decision- Making	LRHE (b)	4.53	.959	11.215/ .000	b > a, d, c
Reliance	MRUE (c)	5.61	1.159	11.213/ .000	0 ≥ a, u, c
Kenalice	MRHE (d)	5.51	1.251		

Table 21_(Study 1) Post Hoc Analysis

Table 22_(Study 1) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Decision-Making Relative Reliance between Emotion vs. Reason Scheffe

		Mean			95% Confid	ence Interval
	(J)	Difference	Std.		Lower	Upper
(I) Conditions	Conditions	(I-J)	Error	Sig.	Bound	Bound
	LRHE	.733*	.208	.007	.15	1.32
LRUE	MRUE	339	.205	.438	92	.24
	MRHE	241	.207	.717	82	.34
	LRUE	733*	.208	.007	-1.32	15
LRHE	MRUE	-1.072*	.203	.000	-1.64	50
	MRHE	974*	.205	.000	-1.55	40
	LRUE	.339	.205	.438	24	.92
MRUE	LRHE	1.072*	.203	.000	.50	1.64
	MRHE	.098	.202	.972	47	.67
	LRUE	.241	.207	.717	34	.82
MRHE	LRHE	.974*	.205	.000	.40	1.55
	MRUE	098	.202	.972	67	.47

* The mean difference is significant at the 0.05 level.

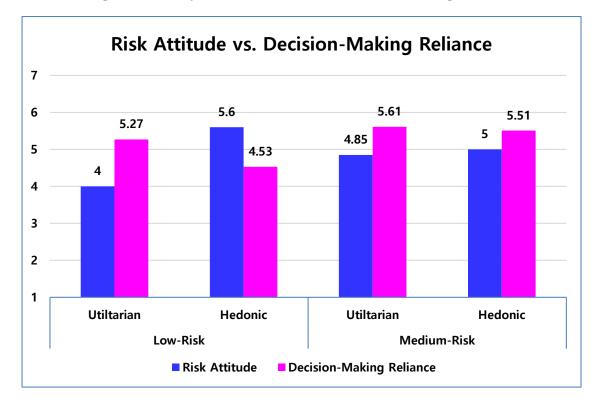
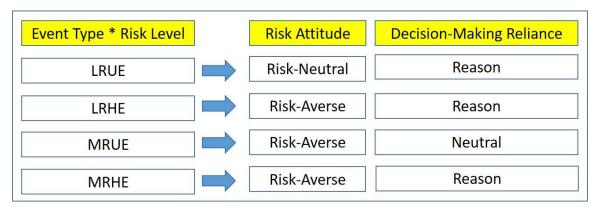
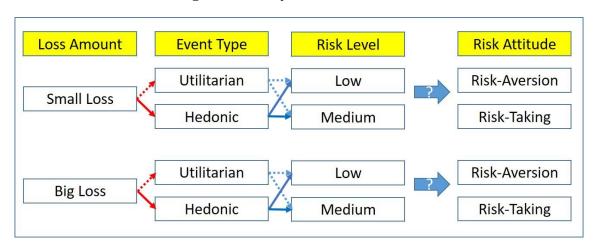


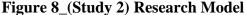
Figure 7_(Study 1) Risk Attitude vs. Decision-Making Reliance

Risk Attitude: 1 = '*Risk-Taking*' to 7 = '*Risk-Averse*' Decision-Making Reliance: 1 = '*Using only Emotion (System 1)*' to 7 = '*Using only Reason (System 2)*'.

In conclusion, while the LRHE condition showed the strongest willingness to purchase travel insurance in order to avoid risk, the reliance on the choice turned out to be more dependent on emotion than other conditions. Strikingly, under low-risk probability level, when comparing utilitarian-purpose event and hedonic-purpose event, the decision was made based on relative emotions in the case of a hedonic-purpose event reliance (*System 1*). On the other hand, under the medium-risk probability level, the decision-making base was similar (*System 2*).




 Table 23_(Study 1) Research Model and Results


In conclusion, as shown in the above table, how people perceive risks and show their attitudes in different situations. Above all, LRHE shows that highest willingness to purchase insurance and risk-averse attitude, which is particularly remarkable (the core of this study, LOW RISK + HEDONIC EVENT), can be explained through *Construal Level Theory* and *Prospect Theory* in the background theory of this study (see Table 4). It is noteworthy that even at a low-probability risk level, people tend to avoid it, especially in HEDONIC events than in UTILITARIAN events. Moreover, these results also strongly support *Risk-as-Feeling Hypothesis*. This hypothesis is that if people perceive a risk emotionally, it becomes insensitive to the level of risk probability. Therefore, individuals show strong risk-averse attitudes even at a low-level of risk probability. This will be discussed more in the following study.

4.2 Study 2: Small-Loss versus Big-Loss, Consumer Decision-Making under Risk

In general, decisions are not decided by a single trait. However, they vary as a function of which the decision domain (gain domain versus loss domain), what the decision is about, who is a subject facing a risky event, the situational difference (for example, the level of risk probability or risky event type, respectively, or their interaction), the extent of loss/damage, the decision is emotionally applied or not, etc. In particular, each of these factors is a very import area, and each research has been conducted, but not all of them have been actively studied organically. No existing research dealt with the interaction among risk probability level, risky event type, and the extent of loss to consumer decision-making under risk in the loss domain.

In Study 1, the interaction between risk probability level and risky event type for decision-making under risk in the loss domain was investigated. We have successfully observed that the combination of these two variables yields different results than conventional economic theory.

In Study 2, this research adds one more crucial independent variable (the amount of loss-big loss versus small loss; IV 3) to explore how people make decisions under risk.

4.2.1 Method and Procedure

This study employed a 2 (Risk Probability Level: Low-Probability Risk vs. Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose Event vs. Hedonic-Purpose Event) X 2 (Loss Amount: Small-Loss vs. Big-Loss) between-subjects design. Participants (n = 480) were recruited from Amazon Mechanical Turk (MTurk). I removed participants who failed to answer the attention check question correctly ("Please select strongly disagree."). The final sample had 395 participants. 65.8% (260 participants) were male.

First, participants were randomly assigned and asked to read one of eight (8) scenario conditions (SLRUE: Small Loss + Low-Probability Risk + Utilitarian-Purpose Event, SLRHE: Small Loss + Low-Probability Risk + Hedonic-Purpose Event, SMRUE: Small Loss + Medium-Probability Risk + Utilitarian-Purpose Event, SMRHE: Small Loss + Medium-Probability Risk + Hedonic-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRHE: Big Loss + Low-Probability Risk + Hedonic-Purpose Event, BMRUE: Big Loss + Medium-Probability Risk + Utilitarian-Purpose Event, and BMRHE: Big Loss + Medium-Probability Risk + Hedonic-Purpose Event) of flood insurance choice. In the condition of small-loss (vs. big-loss), low (vs. medium) probability of flood risk, and utilitarian-purpose (vs. hedonic-purpose) event, participants read the following: Imagine. You will buy a duplex (\$300,000) in *City Y* as your everyday house (vs. as your vacation house; event type). For this reason, you have a concern about flood insurance. According to FEMA (Federal Emergency Management Agency), *City Y* has a low-risk flood area (vs. a medium-risk flood area; risk probability level) compared to most other states in the US. However, national statistics show that <u>if a</u> flood occurs in a certain area, an average flood claim was \$3,000 (vs. you will lose all of your property (\$300,000); loss amount). You have a chance of whether to buy flood insurance or not. With flood insurance, your property damage can be recovered. The average cost of a flood insurance policy is \$12.5 per month (\$150 per year). Would you want to buy flood insurance?

Event	Туре	Risk Proba	bility Level	The Amount of Loss		
Utilitarian- Purpose Event	Hedonic- Purpose Event	Low- Probability Risk	Medium- Probability Risk	Small-Loss	Big-Loss	
Everyday House	Vacation House	Low- Probability Flood Risk Area	Medium- Probability Flood Risk Area	Small/Limited Loss (\$3,000)	Whole Property Loss (\$300,000)	

Table 24_(Study 2) Event Type, Risk Probability Level, and The Amount of Loss

After reading one of eight (8) scenarios, as a manipulation check for event type, risk probability level, and loss amount, I asked participants to rate their perception of event type (utilitarian-purpose event vs. hedonic-purpose event), risk probability level (low-probability risk vs. medium-probability risk), and the amount of loss (small-loss vs. big-loss) and use on a 7-point scale: "The scenario's event is close to the attributes of" (1 = '*Practical/Productive Event*' to 7 = '*Enjoyable/Fun Event*'), "From the scenario, what do you think the probability of risk?" (1 = 'Low-Probability Risk', 4 = 'Medium-

Probability Risk', 7 = 'High-Probability Risk'), and "From the scenario, if the flood risk happens, what do you think the amount of the loss?" (1 = 'Small-Loss' to 7 = 'Big-Loss'), respectively.

Next, I asked participants to mark their relative willingness to purchase insurance by answering the question: "Please rate your willingness to purchase Flood Insurance." on a 7-point scale (1 = 'Definitely Won't Buy (No)', 4 = 'Neutral', 7 = 'Definitely WillBuy (Yes)'). In addition, I measured participants' binary choice: "Do you want to buyFlood Insurance?" (<math>1 = 'No', 2 = 'Yes').

On the next page of the survey, subsequent questions about decision-making reliance and demographic questions used the same method as Study 1.

Finally, participants answered standard demographic questions. Participants received \$0.50 for their participation.

4.2.2 Results and Discussion

4.2.2.1 Manipulation Check.

The manipulation of event types was successful in showing that participants perceived 'everyday house' (M = 2.84) as significantly utilitarian-purpose event than that in the hedonic condition 'vacation house' (M = 5.01; F(1, 393) = 180.840, p < .000). And, the manipulation of risk probability levels was also successful in showing that participants perceived two distinct probability of flood risk; low-probability risk (M =2.32) verse medium-probability risk (M = 4.96; F = (1, 393) = 551.518, p < .000). Finally, the manipulation of loss amount was also successful in showing that participants perceived two distinct amount of loss; small-loss (M = 2.46) verse big-loss (M = 5.34; F = (1, 393) = 546.882, p < .000).

Figure 9_(Study 2) Manipulation Check of Event Type, Risk Probability Level, and Loss Amount

Event Type: 1 = '*Practical/Productive Event*' to 7 = '*Enjoyable/Fun Event*'. Risk Probability Level: 1 = '*Low-Probability Risk*' to 7 = '*High-Probability Risk*'. The Amount of Loss: 1 = '*Small-Loss*' to 7 = '*Big-Loss*'.

4.2.2.2 Willingness to Purchase Flood Insurance

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2

(Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on participants'

willingness to purchase flood insurance yielded the expected interaction (F(1, 394) =

9.324, p < .002, $\eta^2 = .024$).

Table 25_(Study 2) Tests of Between-Subjects Effects

Dependent Variable: Willingness to Purchase Flood Insurance Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event Type + Bisk Level * Loss Amount + Event Type * Loss Amount + Bisk Level * Design - Design

Type + Risk Lev	vel * Loss Ai	mount +	- Event	Туре	* Loss Am	ount + 1	Risk Leve	I
* Event Type *	Loss Amoun	t						

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	146.270 ^{<i>a</i>}	7	20.896	12.563	.000	.185
Intercept	10997.136	1	10997.136	6611.972	.000	.945
RiskLevel	4.028	1	4.028	2.422	.120	.006
EventType	108.021	1	108.021	64.947	.000	.144
LossAmount	19.647	1	19.647	11.812	.001	.030
RiskLevel * EventType	.001	1	.001	.001	.977	.000
RiskLevel * LossAmount	.001	1	.001	.001	.977	.000
EventType *	.485	1	.485	.292	.589	.001
LossAmount						
RiskLevel * EventType *	15.508	1	15.508	9.324	.002	.024
LossAmount						
Error	643.665	387	1.663			
Total	11859.000	395				
Corrected Total	789.934	394				

a. R Squared = .185 (Adjusted R Squared = .170).

The main effects for event type (*F* (1, 394) = 64.947, *p* < .000, η^2 = .144) and loss amount (*F* (1, 394) = 11.812, *p* < .001, η^2 = .030) were significant, whereas the main effect for risk level (*F* (1, 394) = 2.422, *p* < .120, η^2 = .006) was not significant.

Multi-Way ANOVA

Overall, the results of multi-way ANOVA indicated that participants showed relatively strong risk-averse attitudes across all conditions. When comparing small-loss and big-loss, individuals were more willing to purchase insurance to protect against risks in the case of small-loss.

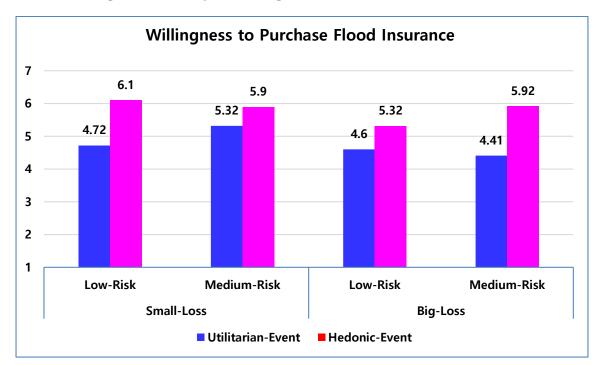


Figure 10_(Study 2) Willingness to Purchase Flood Insurance

Willingness: 1 = 'Definitely Won't Buy (No)' to 7 = 'Definitely Will Buy (Yes)'.

Cond	itions	Risk Attitude
	LRUE	(weak) Risk-Averse
Small-Loss	LRHE	(the strongest) Risk-Averse
Siliali-Loss	MRUE	Risk-Averse
	MRHE	Risk-Averse
	LRUE	(weak) Risk-Averse
Big Loss	LRHE	Risk-Averse
Big-Loss	MRUE	(the weakest) Risk-Averse
	MRHE	Risk-Averse

 Table 26_(Study 2) Risk Attitude per condition interpreted through Willingness to Purchase Insurance of Figure 10

In particular, participants with SLRHE presented statistically the greatest willingness to purchase flood insurance than those with other conditions (F (7, 387) = 12.563, p < .000). Inversely, unlike the existing economic theory, those with BMRUE (M = 4.41, SD = 1.148) showed the lowest intention to buy flood insurance compared to other conditions.

Table 27_(Study 2) ANOVA Results

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	146.270	7	20.896	12.563	.000
Within Groups	643.665	387	1.663		
Total	789.934	394			

Post Hoc Analysis

According to the Post Hoc results, the significance value was .000, so the hypothesis was accepted. It was found that there was a significant difference in willingness to purchase insurance per condition.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Scheffe
	SLRUE (a)	4.72	1.591		
	SLRHE (b)	6.10	1.375		
Willingness	SMRUE (c)	5.32	1.235		
to Purchase	SMRHE (d)	5.90	1.372	12.563/ .000	h > a a a
Flood	BLRUE (e)	4.60	1.272	12.303/ .000	b > g, e, a
Insurance	BLRHE (f)	5.32	.872		
	BMRUE (g)	4.41	1.148		
	BMRHE (h)	5.92	1.338		

 Table 28_(Study 2) Post Hoc Analysis

Since equal variances assumed, Scheffe was applied for Post Hoc analysis. In detail, as the result of Scheffe analysis, there was a significant difference among groups in SLRHE, SLRUE, BLRUE, and BMRUE in willingness to purchase flood insurance against risks.

Table 29_(Study 2) Post Hoc Analysis: Multiple Comparison

Dependent variable: Willingness to Purchase Flood Insurance Scheffe

		Mean			95% Confidence		
(I)	(J)	Difference	Std.	Sig.	Interval		
Conditions	Conditions	(I-J)	Error	515.	Lower	Upper	
		(1-3)			Bound	Bound	
	SLRHE	-1.378*	.257	.000	-2.35	41	
	SMRUE	599	.262	.632	-1.59	.39	
	SMRHE	-1.176*	.261	.006	-2.16	19	
SLRUE	BLRUE	.124	.255	1.000	84	1.09	
	BLRHE	601	.254	.590	-1.56	.36	
	BMRUE	.311	.267	.987	69	1.32	
	BMRHE	-1.200*	.258	.003	-2.17	23	
	SLRUE	1.378*	.257	.000	.41	2.35	
SLRHE	SMRUE	.779	.261	.262	20	1.76	
	SMRHE	.202	.259	.999	78	1.18	
	BLRUE	1.502*	.254	.000	.54	2.46	

	BLRHE	.777	.253	.226	18	1.73
	BMRUE	1.689*	.265	.000	.10	2.69
	BMRHE	.178	.203	1.000	79	1.15
	SLRUE	.599	.262	.632	39	1.19
	SLRHE	779	.261	.262	-1.76	.20
	SMRHE	577	.265	.690	-1.58	.42
SMRUE	BLRUE	.723	.260	.357	26	1.70
SWIKEL	BLRHE	002	.258	1.000	98	.97
	BMRUE	.002	.271	.129	11	1.93
	BMRHE	601	.262	.629	-1.59	.39
	SLRUE	1.176*	.261	.006	.19	2.16
	SLRE	202	.259	.999	-1.18	.78
	SMRUE	.202	.265	.690	42	1.58
SMRHE	BLRUE	1.300*	.258	.001	.33	2.27
	BLRHE	.575	.257	.659	39	1.54
	BMRUE	1.487*	.269	.000	.47	2.50
	BMRHE	024	.261	1.000	-1.01	.96
	SLRUE	124	.255	1.000	-1.09	.84
	SLRHE	-1.502*	.254	.000	-2.46	54
	SMRUE	723	.260	.357	-1.70	.26
BLRUE	SMRHE	-1.300*	.258	.001	-2.27	33
	BLRHE	725	.252	.311	-1.67	.23
	BMRUE	.187	.264	.999	81	1.18
	BMRHE	-1.324*	.255	.000	-2.29	36
	SLRUE	.601	.254	.590	36	1.56
	SLRHE	777	.253	.226	-1.73	.18
	SMRUE	.002	.258	1.000	97	.98
BLRHE	SMRHE	575	.257	.659	-1.54	.39
	BLRUE	.725	.252	.311	23	1.67
	BMRUE	.912	.263	.104	08	1.90
	BMRHE	599	.254	.593	-1.56	.36
	SLRUE	311	.267	.987	-1.32	.69
	SLRHE	-1.689*	.265	.000	-2.69	69
	SMRUE	910	.271	.129	-1.93	.11
BMRUE	SMRHE	-1.487*	.269	.000	-2.50	47
	BLRUE	187	.264	.999	-1.18	.81
	BLRHE	912	.263	.104	-1.90	.08
	BMRHE	-1.511*	.267	.000	-2.52	51
BMRHE	SLRUE	1.200*	.258	.003	.23	2.17

SLRHE	178	.257	1.000	-1.15	.79
SMRUE	.601	.262	.629	39	1.59
SMRHE	.024	.261	1.000	96	1.01
BLRUE	1.324*	.255	.000	.36	2.29
BLRHE	.599	.254	.593	36	1.56
BMRUE	1.511*	.267	.000	.51	2.52

* The mean difference is significant at the 0.05 level.

4.2.2.3 Binary Choice

A logistic regression was performed to confirm binary choice whether individuals wanted to buy insurance or not. The logistic regression model was statistically significant, $x^2(7) = 21.155$, p < .000. The model explained 10% (Nagelkerke R^2) of the variance in binary choice and correctly classified 87.6% of cases.

Table 30_(Study 2) Binary Choice

log (Binary Choice) = 3.892 – 2.739 * (SLRUE) - 2.308 * (SMRUE) - 2.187 * (BLRUE) - 2.433 (BLRHE)

Variable	В	S.E	Wald	Exp(B)	95%	5 CI	Sig.						
v allable	Б	S.E	vv alu	Ехр(Б)	Lower	Upper	Sig.						
BMRHE			15.398				.031						
SLRUE	-2.739	1.063	6.639	.065*	.008	.519	.010						
SLRHE	-1.673	1.115	2.252	.188	.021	1.668	.133						
SMRUE	-2.308	1.082	4.548	.099*	.012	.830	.033						
SMRHE	756	1.242	.371	.469	.041	5.353	.542						
BLRUE	-2.187	1.081	4.095	.112*	.013	.934	.043						
BLRHE	-2.433	1.069	5.177	.088*	.011	.714	.023						
BMRUE	-1.277	1.174	1.183	.279	.028	2.784	.277						
Constant	3.892	1.010	14.843	49.000			.000						
	21.	.155 (7), .0	000										
Chi-square (df) of Hosmer-Lemeshow Test, Sig.					0.0	00 (6), 1.0	000						
* 05	-												

* p < .05.

Especially, I found significant effects on SLRUE (B = -2.739, S.E = 1.063, OR = .065, p < .010), SMRUE (B = -2.308, S.E = 1.082, OR = .099, p < .033), BLRUE (B = -2.187, S.E = 1.081, OR = .112, p < .043), and BLRHE (B = -2.433, S.E = 1.069, OR = .088, p < .023).

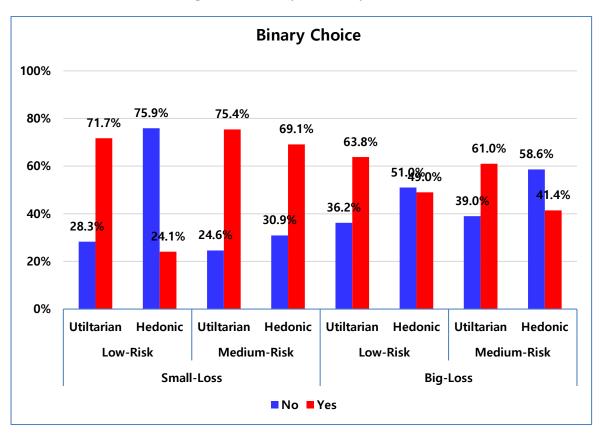


Figure 11_(Study 2) Binary Choice

Binary Choice: 1 = No', 2 = Yes'.

In all scenarios, participants responded that they would insure insurance. These results showed much stronger risk-aversion attitudes in binary choice than in the willingness to purchase questions (see 4.2.2.2). Interestingly, it turned out that

respondents with hedonic-event showed a stronger buying intention compared to

utilitarian-event across all conditions, excluding Big-Loss with Low-Risk condition.

4.2.2.4 Decision-Making Reliance on System 1 (Heart) vs. System 2 (Head)

Factor Analysis, Reliability Analysis, and Correlations per Condition

As in Study 1, the same analysis was conducted. In factor analysis, KMO (>.5),

Bartlett (p < .05), Eigen-value (> 1.0), and the factor load value (> .4) were considered appropriate.

	Factor	Variable		Factor Analysis				
	Factor	variable	Factor	Communality	Eigen-	% of	Cronbach α	
S			Load	Load Communality		Variance	Cronbach d	
L	System	Heart	.937	.883	1.764	44.108	$\alpha = .853$	
R	1	Intuitively	.936	.878	1.704	44.100	u – .833	
U	System	Head	.911	.837	1 667	41.670	$\alpha = .790$	
Е	2	Deliberately	.911	.834	1.667	41.070	$\alpha = .790$	
		KN	AO (Kaise	er-Meyer-Olkin)			.489	
		Bartlett' Test	of Spheri	Chi-	Square	69.115		
		Darnett Test	or spheri	city	d	f (<i>p</i>)	6 (.000)	

Table 31_(Study 2) Factor Analysis and Reliability Analysis

	Factor	Variable		Factor An	alysis		Reliability Analysis	
s			Factor Load	Communality	Eigen- value	% of Variance	Cronbach α	
L	System	Heart	.912	.833	1.625	40.634	$\alpha = .754$	
R	1	Intuitively	.876	.810	1.025	40.034	u = .734	
H	System	Head	.887	.800	1.611	40.275	$\alpha = .743$	
E	2	Deliberately	.883	.793	1.011	40.275	u – .743	
		KN	AO (Kaise	er-Meyer-Olkin)			.560	
		Bartlett' Test	of Spheri	city	Chi-Square		49.719	
		Dartiett Test	or spheri	city	d	f (<i>p</i>)	6 (.000)	

	Factor	Variable		Factor An	alysis		Reliability Analysis
	Pactor	v allable	Factor	Communality	Eigen-	% of	Cronbach α
			Load		value	Variance	Cronoach u
S	System	Heart	.846	.738			
Μ	System 1	Intuitively	.839	.715	2.140	35.660	$\alpha = .800$ $\alpha = .720$
R		Quickly	.819	.692			
U	System	Slowly	.841	.724			
E	2	Head	.792	.649	1.938	32.300	
	2	Deliberately	.740	.559			
		KN	MO (Kaise	er-Meyer-Olkin)			.704
		Bartlett' Test	of Spheri	city	Chi-Square		75.850
		Darnett Test	or spiteri	df (<i>p</i>)		15 (.000)	

	Factor	Variable		Factor An	alysis		Reliability Analysis
			Factor	Communality	Eigen-	% of	Cronbach α
C			Load	Communanty	value	Variance	Cronoach u
S	System 1	Intuitively	.819	.691			
M R		Heart	.728	.661	1.775	35.492	$\alpha = .628$
к Н		Quickly	.721	.559			
E	System	Head	.871	.765	1.640	32.809	. (01
Б	2	Deliberately	.832	.739	1.040	32.809	$\alpha = .691$
		KN	AO (Kaise	er-Meyer-Olkin)			.504
		Bartlett' Test	ofSphari	oity	Chi-Square		43.815
		Darnen Test	or spiteri	City	df (<i>p</i>)		10 (.000)

	Factor	Variable		Factor An	alysis		Reliability Analysis
	racion		Factor	Communality	Eigen-	% of	Cronbach α
В			Load Communality		value	Variance	Cronbach a
L	System	Heart	.904	.818	1.629	40.737	$\alpha = .758$
R	1	Intuitively	.895	.811	1.029	40.737	u = .738
U	System	Deliberately	.859	.738	1.461	36.522	$\alpha = .627$
Е	2	Head	.844	.724	1.401	30.322	u = .027
		KN	AO (Kaise	er-Meyer-Olkin)			.520
		Bartlett' Test	of Spheri	city	Chi-Square		37.198
		Darnett Test	or spheri	City	d	f (<i>p</i>)	6 (.000)

B L	Factor	Variable		Factor Analysis				
R H	Pactor	v arrable	Factor Load	Communality	Eigen- value	% of Variance	Cronbach α	

E	E System	Heart	.892	.693			
		Intuitively	.792	.662	1.809	36.171	$\alpha = .692$
		Quickly	.663	.625			
	System	Head	.896	.816	1.795	35.899	$\alpha = .790$
	2	Deliberately	.880	.808	1.775	55.077	u = .790
		KN	AO (Kaise	er-Meyer-Olkin)			.711
		Bartlett' Test	of Spheri	Chi-	Square	66.911	
		Darnett Test	or spheri	df (<i>p</i>)		10 (.000)	

				Factor Ana	alveie		Reliability		
	Factor	Variable		Pactor Ana	ary 515		Analysis		
	racion		Factor	Communality	Eigen-	% of	Crophoch a		
В			Load	Load Communality		Variance	Cronbach α		
Μ	System	Deliberately	.858	.737	1.542	38.551	α = .648		
R	2	Head	.844	.728	1.342	36.331			
U	System	Heart	.883	.800	1.488	37.196	α = .637		
E	1	Intuitively	.832	.765	1.400	57.190			
		KI	MO (Kaise	er-Meyer-Olkin)			.516		
		Partlatt' Tag	Square	25.887					
		Bartlett' Test of Sphericity $df(p)$							

	Factor	Variable		Factor Analysis				
	racioi	variable	Factor	Communality	Eigen-	% of	Cronbach α	
В			Load	Communality	value	Variance	Cronbach d	
Μ	System	Head	.931	.876	1.794	44.850	$\alpha = .871$	
R	2	Deliberately	.911	.890	1./94	44.830	u = .071	
Η	System	Intuitively	.909	.771	1.577	39.418	$\alpha = .733$	
Е	1	Quickly	.825	.833	1.377	39.410	$\alpha = .755$	
		KN	MO (Kaise	er-Meyer-Olkin)			.617	
		Bartlett' Test	of Spheri	city	Chi-Square		71.558	
		Dartiett Test	or spiter	city	d	f (<i>p</i>)	6 (.000)	

As shown in Figure 12, it presented that the variables between System

1 versus *System 2* are clearly divided into two areas. Like Study 1, respondents distantly understood and answered each question about decision-making reliance on *System 1* versus *System 2*.

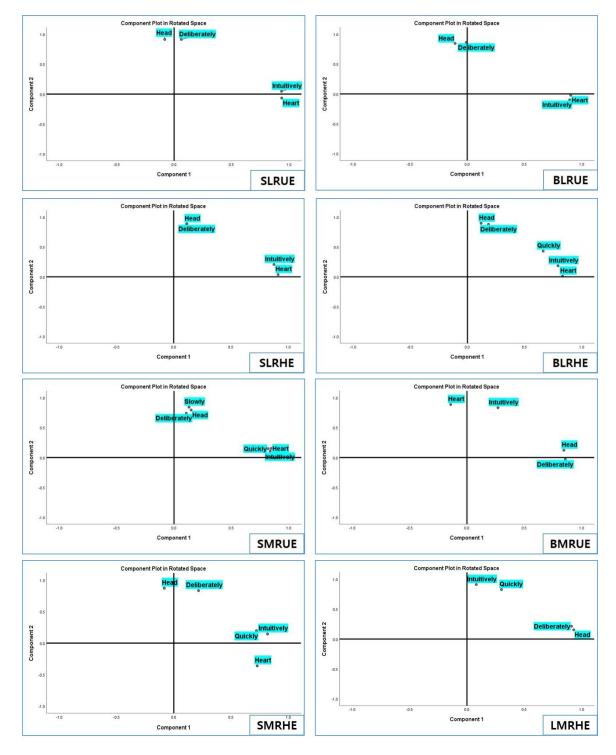


Figure 12_(Study 2) Component Plot in Rotated Space

C	Variable	Correlations						
S	v allable	1. Intuitively	2. Heart	3. Head	4. Deliberately			
R	1. Intuitively	1	.756**	013	.064			
	2. Heart		1	133	.009			
E	3. Head			1	.661**			
E	4. Deliberately				1			

Table 32_(Study 2) SLRUE Correlation Table

S	Variable	Correlations							
	v allable	1. Heart	2. Intuitively	3. Head	4. Deliberately				
R R	1. Heart	1	.629**	.142	.166				
к Н	2. Intuitively		1	.279*	.249				
н Е	3. Head			1	.597**				
	4. Deliberately				1				

	Variable		Correlations									
s		1. Intuitively	2. Deliberately	3. Quickly	4. Slowly	5. Heart	6. Head					
Μ	1. Intuitively	1	.143	.540**	.234	.597**	.214					
R	2. Deliberately		1	.240	.459**	.197	.373**					
U	3. Quickly			1	.156	.579**	.268					
Е	4. Slowly				1	.279	.559**					
	5. Heart					1	.202					
	6. Head						1					

	Variable	Correlations								
S	v arrable	1. Head	2. Deliberately	3. Quickly	4. Intuitively	5. Heart				
Μ	1. Head	1	.528**	001	.120	255				
R	2. Deliberately		1	.268	.171	049				
Η	3. Quickly			1	.432**	.231				
Е	4. Intuitively				1	.427**				
	5. Heart					1				

В	Variable	Correlations						
D	v allable	1. Head	2. Deliberately	3. Heart	4. Intuitively			
R	1. Head	1	.458**	113	151			
U K	2. Deliberately		1	047	104			
E	3. Heart			1	.627**			
Ľ	4. Intuitively				1			

	Variable	Correlations								
В	v arrable	1. Head	2. Deliberately	3. Quickly	4. Intuitively	5. Heart				
L	1. Head	1	.659**	.383**	.272*	.169				
R	2. Deliberately		1	.428**	.290*	.217				
Н	3. Quickly			1	.478**	.406**				
Е	4. Intuitively				1	.443**				
	5. Heart					1				

р	Variable	Correlations						
B	v allable	1. Intuitively	2. Heart	3. Deliberately	4. Head			
M R	1. Intuitively	1	.484**	.168	.258			
L K	2. Heart		1	070	.009			
E	3. Deliberately			1	.479**			
L	4. Head				1			

р	Variable	Correlations						
B M	v allable	1. Intuitively	2. Quickly	3. Deliberately	4. Head			
R	1. Intuitively	1	.579**	.299*	.235			
к Н	2. Quickly		1	.406**	.395**			
E	3. Deliberately			1	.772**			
Б	4. Head				1			

Note: Cells display Pearson's Correlation.

** p < .01. Correlation is significant at the 0.01 level (2-tailed).

* p < .05. Correlation is significant at the 0.05 level (2-tailed).

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2

(Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on individuals' relative

reliance on decision-making between emotion vs. reason. This test yielded the expected

interaction (F (1, 394) = 4.351, p < .038, $\eta^2 = .011$). The main effects for event type (F

 $(1, 394) = 3.979, p < .047, \eta^2 = .010$ and loss amount (F(1, 394) = 37.617, p < .000,

 η^2 = .089) were significant, whereas the main effect for risk level (*F* (1, 394) = 1.168, *p*

 $< .280, \eta^2 = .003$) was not significant.

Table 33_(Study 2) Tests of Between-Subjects Effects

Dependent Variable: Decision-Making Reliance

Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event

Type + Risk Level * Loss Amount + Event Type * Loss Amount + Risk Level * Event Type * Loss Amount

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	84.003 ^{<i>a</i>}	7	12.000	10.801	.000	.163
Intercept	6311.664	1	6311.664	5680.666	.000	.936
RiskLevel	1.298	1	1.298	1.168	.280	.003
EventType	4.421	1	4.421	3.979	.047	.010
LossAmount	41.796	1	41.796	37.617	.000	.089
RiskLevel * EventType	3.312	1	3.312	2.981	.085	.008
RiskLevel * LossAmount	29.694	1	29.694	26.726	.000	.065
EventType * LossAmount	.604	1	.604	.543	.462	.001
RiskLevel * EventType *	4.835	1	4.835	4.351	.038	.011
LossAmount						
Error	429.987	387	1.111			
Total	6850.000	395				
Corrected Total	513.990	394				

a. R Squared = .163 (Adjusted R Squared = .148).

Multi-way ANOVA

The most striking result is that when comparing the small-loss and the big-loss, in the case of the big-loss, decisions were made based on emotions relatively more than the small-loss conditions. Excluding only the case for SLRHE condition, big-loss conditions tended to make decisions based on emotions relatively more than small-loss ones. In particular, BMRHE (M = 3.26, SD = 0.723; F(7, 387) = 10.801, p < .000) seems to have made the most emotional decision.

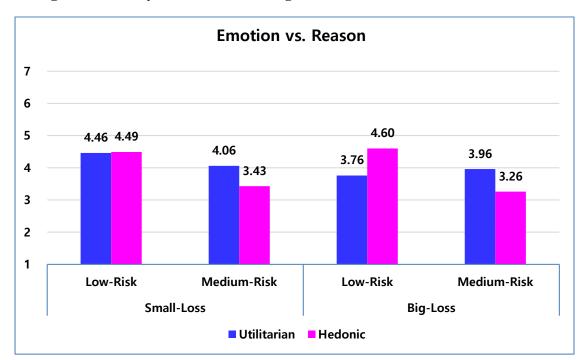


Figure 13_(Study 2) Decision-Making Reliance between Emotion vs. Reason

Decision-Making Reliance: 1 = 'Using only Emotion' to 7 = 'Using only Reason'.

Cond	itions	Decision-Making Reliance
	LRUE	Reason
Small-Loss	LRHE	Reason
Siliali-Loss	MRUE	Neutral
	MRHE	Emotion
	LRUE	Emotion
Big-Loss	LRHE	Reason
Dig-L088	MRUE	Emotion
	MRHE	Emotion

Table 34	_(Study	2)	Decision-Making	g Reliance
----------	---------	----	------------------------	------------

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	84.003	7	12.000	10.801	.000
Within Groups	429.987	387	1.111		
Total	513.990	394			

Table 35_(Study 2) ANOVA Results

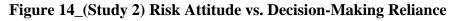
Post Hoc Analysis

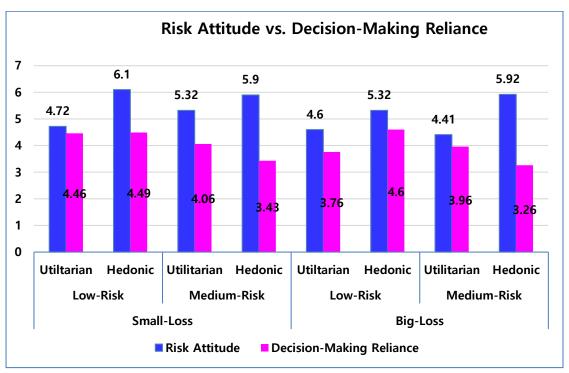
It was found that there was a significant difference in the decision-making base, depending on the groups/conditions (p < .000). In detail, the condition of BMRHE showed the lowest mean on the participant's relative emotional choice reliance. As a result of Dunnett T3 (equal variances not assumed), there was a significant difference among SLRUE, BMRHE, BMRUE, and SLRHE conditions.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Dunnett T3	
	SLRUE (a)	4.46	1.232		as h a h	
	SLRHE (b)	3.76	.681			
Decision-	SMRUE (c)	4.49	1.214			
Making	SMRHE (d)	4.60	1.364	10.801/ .000		
Reliance	BLRUE (e)	4.06	1.110	10.801/ .000	a > h, g, b	
Kenance	BLRHE (f)	3.96	1.109	1		
	BMRUE (g)	3.43	.759			
	BMRHE (h)	3.26	.723			

 Table 36_(Study 2) Post Hoc Analysis

Table 37_(Study 2) Post Hoc Analysis: Multiple Comparisons


Dependent variable: Decision-Making Relative Reliance between Emotion vs. Reason Dunnett T3


(I) Conditions	(J)	Mean Difference Std. Sig.	Sig	95% Con Inter		
	Conditions	(I-J)	Error	~-8.	Lower	Upper
		(1-3)			Bound	Bound
SLRUE	SLRHE	.695*	.199	.021	.06	1.34

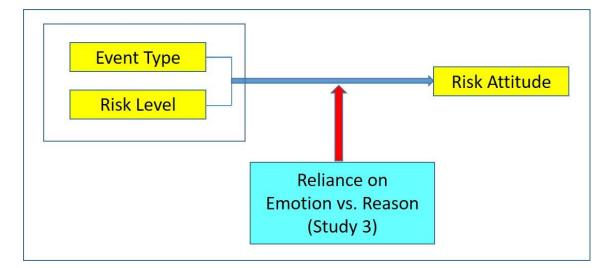
	SMRUE	029	.248	1.000	82	.77
	SMRHE	144	.263	1.000	99	.70
	BLRUE	.402	.233	.903	34	1.15
	BLRHE	.498	.231	.596	24	1.24
	BMRUE	1.028*	.209	.000	.36	1.70
	BMRHE	1.200*	.202	.000	.55	1.85
	SLRUE	695*	.199	.021	-1.34	06
	SMRUE	725*	.201	.016	-1.37	08
	SMRHE	839*	.219	.008	-1.55	13
SLRHE	BLRUE	293	.181	.947	87	.29
	BLRHE	198	.180	1.000	77	.38
	BMRUE	.333	.149	.524	15	.81
	BMRHE	.505*	.140	.013	.06	.95
	SLRUE	.029	.248	1.000	77	.82
	SLRHE	.725*	.201	.016	.08	1.37
	SMRHE	115	.265	1.000	96	.73
SMRUE	BLRUE	.432	.235	.841	32	1.18
	BLRHE	.527	.234	.504	22	1.27
	BMRUE	1.058*	.211	.000	.38	1.74
	BMRHE	1.229*	.204	.000	.57	1.89
	SLRUE	.144	.263	1.000	70	.99
	SLRHE	.839*	.219	.008	.13	1.55
	SMRUE	.115	.265	1.000	73	.96
SMRHE	BLRUE	.546	.250	.565	25	1.35
	BLRHE	.642	.249	.267	16	1.44
	BMRUE	1.172*	.228	.000	.44	1.91
	BMRHE	1.344*	.222	.000	.63	2.06
	SLRUE	402	.233	.903	-1.15	.34
	SLRHE	.293	.181	.947	29	.87
	SMRUE	432	.235	.841	-1.18	.32
BLRUE	SMRHE	546	.250	.565	-1.35	.25
	BLRHE	.095	.217	1.000	60	.79
	BMRUE	.626*	.192	.042	.01	1.24
	BMRHE	.798*	.185	.001	.20	1.39
	SLRUE	498	.231	.596	-1.24	.24
	SLRHE	.198	.180	1.000	38	.77
BLRHE	SMRUE	527	.234	.504	-1.27	.22
	SMRHE	642	.249	.267	-1.44	.16
	BLRUE	095	.217	1.000	79	.60

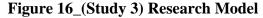
	BMRUE	.530	.191	.162	08	1.14
	BMRHE	.702*	.183	.007	.11	1.29
	SLRUE	-1.028*	.209	.000	-1.70	36
	SLRHE	333	.149	.524	81	.15
	SMRUE	-1.058*	.211	.000	-1.74	38
BMRUE	SMRHE	-1.172*	.228	.000	-1.91	44
	BLRUE	626*	.192	.042	-1.24	01
	BLRHE	530	.191	.162	-1.14	.08
	BMRHE	.172	.154	1.000	32	.66
	SLRUE	-1.200*	.202	.000	-1.85	55
	SLRHE	505*	.140	.013	95	06
BMRHE	SMRUE	-1.229*	.204	.000	-1.89	57
	SMRHE	-1.344*	.222	.000	-2.06	63
	BLRUE	798*	.185	.001	-1.39	20
	BLRHE	702*	.183	.007	-1.29	11
	BMRUE	172	.154	1.000	66	.32
		• • • •				

* The mean difference is significant at the 0.05 level.

Risk Attitude: 1 = '*Risk-Taking*' to 7 = '*Risk-Averse*' Decision-Making Reliance: 1 = '*Using only Emotion (System 1)*' to 7 = '*Using only Reason (System 2)*'.

In the case of small-loss versus big-loss, which was the core of Study 2, it was to determine whether the reliance on consumer decisions under risk was emotion (*System 1;* Heart) or reason (*System 2;* Head). As shown in the above results, it was revealed that the decision-making base in big-loss was much more dependent on emotion (*System 1*) than that of small-loss.


Event Type * Risk Level * Loss Amount	Risk Attitude	Decision-Making Reliance
SLRUE	(weak) Risk-Averse	Reason Base
SLRHE	(the strongest) Risk-Averse	Reason Base
SMRUE	Risk-Averse	Neutral
SMRHE	Risk-Averse	Emotion Base
BLRUE	(weak) Risk-Averse	Emotion Base
BLRHE	Risk-Averse	Reason Base
BMRUE	(the weakest) Risk-Averse	Emotion Base
BMRHE	Risk-Averse	Emotion Base


Figure 15_(Study 2) Research model and Results

This repeatedly shows that people tend to strongly avoid risk in the hedonic event with low-probability risk level like the previous study. However, the decision-making reliance showed a slightly different pattern between the utilitarian-event and hedonicevent, which seems to be evidence of whether decision-making depends on the size of the loss, which was the purpose of the second study. It is explained that the amount of loss acts as an essential variable in risk perception, and it can be explained that people's reliance on decision-making has changed after recognizing the extent of the loss. Therefore, in the following study 3, I examine whether the reliance on decisionmaking triggered when people perceive a risk depends on the situation at the time of the risk perception or not the usual tendency.

4.3 Study 3: Emotional versus Rational Decision-Making under Risk

In study 2, I investigated whether consumer choice based on emotion or reason according to the amount of loss under risk in loss domain. In Study 3, to examine this in more detail, I first measure whether an individual's decision-making reliance is based on emotion or reason using a Lay Rationalism (LR) Scale (moderating variable) that measures in general situations. Although some researchers have done this study, they still research the gain area. And I try to identify individual differences in using emotions versus reasons to make decisions under risk in loss domain. For example, would a logical person avoid risk? Or emotional person?

4.3.1 Method and Procedure

This study employed a 2 (Risk Probability Level: Low-Probability Risk vs. Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose Event vs. HedonicPurpose Event) X 2 (Loss Amount: Small-Loss vs. Big-Loss) between-subjects design. Participants (n = 480) were recruited from Amazon Mechanical Turk (MTurk). I removed participants who failed to answer the attention check question correctly ("Please select strongly disagree."). The final sample had 454 participants. 68.3% (310 participants) were male.

First, to gain insight into participants' decision-making process, participants were asked to indicate how they made their choices on six (6) items of the Lay Rationalism Scale (LR Scale, Hsee et al., 2014), which was assessed on a 6-point scale (1 = `Strongly Disagree' to 6 = `Strongly Agree'). For each item, they indicated the degree to which they agree or disagree with the statement. Responses to these six (6) items formed an index of participants' relative reliance on feelings versus reasons.

No	Item
1	When making decisions, I like to analyze financial costs and benefits and
1	resist the influence of my feelings.
	When choosing between two options, one of which makes me feel better and
2	the other better serves the goal I want to achieve, I choose the one that makes
	me feel better. (R)
3	When making decision, I think about what I want to achieve rather than how
5	I feel.
4	When choosing between two options, one of which is financially superior
4	and other "feels" better to me, I choose the one that is financially better.
5	When choosing between products, I rely on my gut feelings rather than on
5	product specifications (numbers and objective descriptions). (R)
6	When making decisions, I focus on objective facts rather than subjective
0	feelings.

Table 38_(Study 3) Lay Rationalism (LR) Scale

Notes: (R) denotes a reverse-coded item.

Source: Christopher K. Hsee, Yang Yang, Xingshan Zheng, and Hanwei Wang (2014), "Lay Rationalism: Individual Differences in Using Reason Versus Feelings to Guide Decisions," *Journal of Marketing Research*, 52 (1), 134-146. Second, participants were randomly assigned and asked to read one of eight (8) scenario conditions (SLRUE: Small Loss + Low-Probability Risk + Utilitarian-Purpose Event, SLRHE: Small Loss + Low-Probability Risk + Hedonic-Purpose Event, SMRUE: Small Loss + Medium-Probability Risk + Utilitarian-Purpose Event, SMRHE: Small Loss + Medium-Probability Risk + Hedonic-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRHE: Big Loss + Low-Probability Risk + Hedonic-Purpose Event, BMRUE: Big Loss + Medium-Probability Risk + Utilitarian-Purpose Event, and BMRHE: Big Loss + Medium-Probability Risk + Hedonic-Purpose Event) whether the participants would want to go to a risky place or not. In the condition of small-loss (vs. big-loss), low (vs. medium) probability of new virus infection, and utilitarian-purpose (vs. hedonic-purpose) event, participants read the following:

Imagine. You will go to *City K* in the coming months <u>in order to attend a</u> <u>nationwide job fair (vs. for sightseeing); event type</u>. You will stay there for 5 days. Then, you have realized that currently the city is being threatened by a new virus. <u>The new virus shows a low-infection rate (vs. a medium-infection rate); risk</u> <u>probability level</u>. <u>However, if you get infected with the virus, you may sick, and</u> <u>hospitalization is required (vs. you may die because still there is no vaccine and</u> <u>exact treatment of it); the amount of loss</u>. Are you willing to go to the place or cancel your trip?

Event Type		Risk Proba	The Amount of Loss		
Utilitarian- Purpose Event	Hedonic- Purpose Event	Low- Probability Risk	Medium- Probability Risk	Small- Loss	Big- Loss
A trip to attend a nationwide job fair	A trip for a sightseeing	Low-Infection Area	Medium- Infection Area	Sick	Death

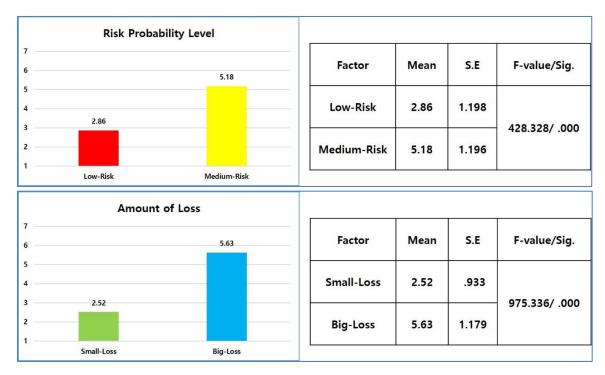
Table 39_(Study 3) Event Type, Risk Probability Level, and The Amount of Loss

After reading one of eight (8) scenarios, as a manipulation check for event type, risk probability level, and loss amount, I asked participants to rate their perception of event type (utilitarian-purpose event vs. hedonic-purpose event), risk level (lowprobability risk vs. medium-probability risk), and the amount of loss (small-loss vs. bigloss) and use on a 7-point scale: "The scenario's event is close to the attributes of" (1 =*'Practical/Productive Event'* to 7 = *'Enjoyable/Fun Event'*), "From the scenario, what do you think the probability risk?" (1 = '*Low-Probability Risk'*, 4 = '*Medium-Probability Risk'*, 7 = '*High-Probability Risk'*), and "From the scenario, if the risk happens, what do you think the amount of the loss?" (1 = '*Small-Loss'* to 7 = '*Big-Loss'*), respectively.

Next, I asked participants to mark their relative willingness to purchase insurance by answering the question: "Please rate your willingness to go to the risky place, *City K*." on a 7-point scale (1 = 'Definitely Won't Go (No)', 4 = 'Neutral', 7 = 'Definitely Will Go(Yes)'). In addition, I measured participants' binary choice: "Are you willing to go to therisky place,*City K*?" (<math>1 = 'No', 2 = 'Yes').

On the next page of the survey, subsequent questions about decision-making reliance and demographic questions used the same method as previous studies.

Finally, participants answered standard demographic questions. Participants received \$0.50 for their participation.


4.3.2 Results and Discussion

4.3.2.1 Manipulation Check.

The manipulation of event types was successful in showing that participants perceived 'a trip to attend a nationwide job fair' (M = 2.85) as significantly utilitarianpurpose event than that in the hedonic condition 'a trip for a sightseeing' (M = 5.46; F (1, 452) = 371.043, p < .000). And, the manipulation of risk levels was also successful in showing that participants perceived two distinct probability of infection rate; lowprobability risk (M = 2.86) verse medium-probability risk (M = 5.18; F = (1, 452) =428.328, p < .000). Finally, the manipulation of loss amount was also successful in showing that participants perceived two distinct amount of loss; small-loss (M = 2.52) verse big-loss (M = 5.63; F = (1, 452) = 975.336, p < .000).

Figure 17_(Study 3) Manipulation Check of Event Type, Risk Probability Level, and Loss Amount

	Event	Туре			4	
6		5.46	Factor	Mean	S.E	F-value/Sig.
5 4 3	2.85		Utilitarian- Event	2.85	1.375	271 042 / 000
2			Hedonic- Event	5.46	1.515	371.043/ .000
1	Utiltarian-Event	Hedonic-Event	Event	5.40	1.5	5

Event Type: 1 = '*Practical/Productive Event*' to 7 = '*Enjoyable/Fun Event*'. Risk Probability Level: 1 = '*Low-Probability Risk*' to 7 = '*High-Probability Risk*'. The Amount of Loss: 1 = '*Small-Loss*' to 7 = '*Big-Loss*'.

4.3.2.2 Willingness Not to Go to Risky Place

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2 (Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on participants' willingness not to go to risky place yielded the expected interaction (F(1, 453) = 4.800, p $< .029, \eta^2$.011). The main effect for event type ($F(1, 453) = 4.172, p < .042, \eta^2 = .009$ was significant.

Table 40_(Study 3) Tests of Between-Subjects Effects

Dependent Variable: Willingness Not to Go to Risky Place

Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event

Type + Risk Level * Loss Am	ount + Event Type * Loss Amount + Risk Level
* Event Type * Loss Amount	

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	33.748 ^a	7	4.821	3.433	.001	.051
Intercept	4332.381	1	4332.381	3084.745	.000	.874
RiskLevel	2.230	1	2.230	1.588	.208	.004
EventType	5.860	1	5.860	4.172*	.042	.009
LossAmount	.299	1	.299	.213	.645	.000
RiskLevel * EventType	.895	1	.895	.637	.425	.001
RiskLevel * LossAmount	12.216	1	12.216	8.698*	.003	.019
EventType * LossAmount	5.934	1	5.934	4.225*	.040	.009
RiskLevel * EventType *	6.742	1	6.742	4.800*	.029	.011
LossAmount						
Error	626.386	446	1.404			
Total	5033.000	454				
Corrected Total	660.134	453				

a. R Squared = .051 (Adjusted R Squared = .036).

Multi-Way ANOVA

Overall, the results of the multi-way ANOVA indicated that participants showed relatively strong risk-averse attitudes across all conditions (see Figure 18 and Table 42). In particular, individuals with SMRHE presented statistically the greatest willingness not to go to a risky place than those with other conditions (F (7, 446) = 3.433, p < .001).

Here, the answers were reversely transformed.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	33.748	7	4.821	3.433	.001
Within Groups	626.386	446	1.404		
Total	660.134	453			

Table 41_(Study 3) ANOVA Results

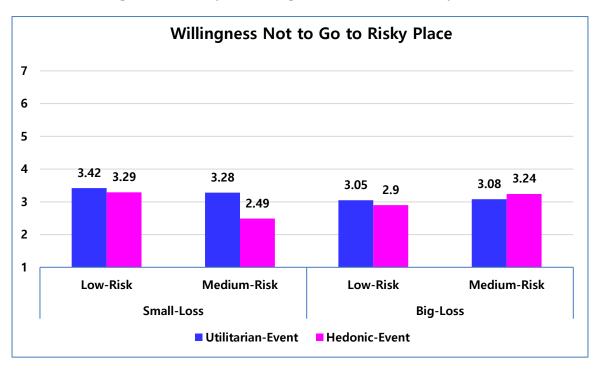


Figure 18_(Study 3) Willingness Not to Go to Risky Place

Willingness: 1 = 'Definitely Won't Go (No)' to 7 = 'Definitely Will Go (Yes)'.

Table 42_(Study 3) Risk Attitude per condition interpreted through Willingness to
not take risky action of Figure 18

Cond	itions	Risk Attitude
	LRUE	Risk-Averse
Small-Loss	LRHE	Risk-Averse
Silian-Loss	MRUE	Risk-Averse
	MRHE	(the strongest) Risk-Averse
	LRUE	Risk-Averse
Big-Loss	LRHE	Risk-Averse
DIg-Loss	MRUE	Risk-Averse
	MRHE	Risk-Averse

Post Hoc Analysis

According to the below results, the significance value was 0.000, so the hypothesis was accepted. Since equal variances assumed, Scheffe was applied for Post Hoc analysis.

In detail, as the result of Scheffe analysis, there was a significant difference between groups in SLRUE and SMRHE in willingness not to go to a risky place.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Scheffe
	SLRUE (a)	3.42	1.062		
	SLRHE (b)	3.29	1.108		
Willingnood	SMRUE (c)	3.28	1.161		
Willingness Not to Go to	SMRHE (d)	2.49	1.069	3.433/ .001	a > d
Risky Place	BLRUE (e)	3.05	1.369	5.455/ .001	
	BLRHE (f)	2.90	1.195		
	BMRUE (g)	3.08	1.250		
	BMRHE (h)	3.24	1.233		

Table 43_(Study 3) Post Hoc Analysis

Table 44_(Study 3) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Willingness Not to Go to Risky Place Scheffe

(I)	(J)	Mean Difference	Std.	Sig	95% Confidence Interval	
Conditions	Conditions	(I-J)	Error	Sig.	Lower Bound	Upper Bound
	SLRHE	.124	.218	1.000	70	.95
	SMRUE	.136	.219	1.000	69	.96
	SMRHE	.926*	.221	.016	.09	1.76
SLRUE	BLRUE	.365	.218	.903	46	1.19
	BLRHE	.519	.228	.640	34	1.38
	BMRUE	.332	.217	.939	49	1.15
	BMRHE	.175	.218	.999	65	1.00
	SLRUE	124	.218	1.000	95	.70
	SMRUE	.012	.221	1.000	82	.85
	SMRHE	.802	.223	.077	04	1.64
SLRHE	BLRUE	.241	.220	.991	59	1.07
	BLRHE	.395	.230	.889	47	1.26
	BMRUE	.208	.219	.996	62	1.03
	BMRHE	.052	.220	1.000	78	.88
SMRUE	SLRUE	136	.219	1.000	96	.69

	1	1				
	SLRHE	012	.221	1.000	85	.82
	SMRHE	.790	.224	.090	05	1.63
	BLRUE	.229	.221	.993	60	1.06
	BLRHE	.383	.231	.907	49	1.25
	BMRUE	.196	.220	.997	63	1.03
	BMRHE	.039	.221	1.000	79	.87
	SLRUE	926*	.221	.016	176	09
	SLRHE	082	.223	.077	-1.64	.04
	SMRUE	790	.224	.090	-1.63	.05
SMRHE	BLRUE	561	.223	.504	-1.40	.28
	BLRHE	407	.233	.879	-1.28	.47
	BMRUE	594	.222	.415	-1.43	.24
	BMRHE	750	.223	.128	-1.59	.09
	SLRUE	365	.218	.903	-1.19	.46
	SLRHE	241	.220	.991	-1.07	.59
	SMRUE	229	.221	.993	-1.06	.60
BLRUE	SMRHE	.561	.223	.504	28	1.40
	BLRHE	.154	.230	1.000	71	1.02
	BMRUE	033	.219	1.000	86	.79
	BMRHE	190	.220	.998	-1.02	.64
	SLRUE	519	.228	.640	-1.38	.34
	SLRHE	395	.230	.889	-1.26	.47
	SMRUE	383	.231	.907	-1.25	.49
BLRHE	SMRHE	.407	.233	.879	47	1.28
	BLRUE	154	.230	1.000	-1.02	.71
	BMRUE	187	.229	.999	-1.05	.68
	BMRHE	343	.230	.946	-1.21	.52
	SLRUE	332	.217	.939	-1.15	.49
	SLRHE	208	.219	.996	-1.03	.62
	SMRUE	196	.220	.997	-1.03	.63
BMRUE	SMRHE	.594	.222	.415	24	1.43
	BLRUE	.033	.219	1.000	79	.86
	BLRHE	.187	.229	.999	68	1.05
	BMRHE	157	.219	.999	98	.67
	SLRUE	175	.218	.999	-1.00	.65
	SLRHE	052	.220	1.000	88	.78
BMRHE	SMRUE	039	.220	1.000	87	.79
	SMRHE	.750	.223	.128	09	1.59
	BLRUE	.190	.220	.998	64	1.02
		.170	.220	.,,,0	.01	1.02

BLRHE	.343	.230	.946	52	1.21
BMRUE	.157	.219	.999	67	.98

^{*} The mean difference is significant at the 0.05 level.

4.3.2.3 Binary Choice

A logistic regression was performed to ascertain binary choice whether participants would go to risky place or not. The logistic regression model was statistically significant, $x^2(7) = 51.698$, p < .000. The model explained 14% (Nagelkerke R^2) of the variance in binary choice and correctly classified 66.1% of cases.

Table 45_(Study 3) Binary Choice

log (Binary Choice) = -0.348 +1.276 * (SLRUE) – 0.797 * (SLRHE) + 1.470 * (SMRUE) + 1.153 * (SMRHE) + 0.915 * (BLRUE) + 0.796 * (BMRUE)

Variable	D	СБ	Wald	$\mathbf{E}_{\mathbf{rrr}}(\mathbf{D})$	95%	o CI	C: ~		
Variable	В	S.E	Wald	Exp(B)	Lower	Upper	Sig.		
BMRHE			45.700				.000		
SLRUE	1.276	.391	10.636	3.583*	1.664	7.716	.001		
SLRHE	797	.406	3.843	.451*	.203	1.000	.050		
SMRUE	1.470	.407	13.044	4.351*	1.959	9.664	.000		
SMRHE	1.153	.395	8.505	3.167*	1.459	6.871	.004		
BLRUE	.915	.382	5.742	2.496*	1.181	5.275	.017		
BLRHE	.307	.391	.619	1.360	.632	2.926	.431		
BMRUE	.796	.377	4.455	2.217*	1.059	4.645	.035		
Constant	348	.267	1.707	.706			.191		
	Chi-square (df), Sig.						00		
Chi-squa	Chi-square (df) of Hosmer-Lemeshow Test, Sig.						0.000 (6), 1.000		

* *p* < .05.

Especially, I found significant effects on SLRUE (B = 1.276, S.E = .391, OR = 3.583, p < .001), SLRHE (B = -.797, S.E = .406, OR = .451, p < .050), SMRUE (B = 1.470, S.E = .407, OR = 4.351, p < .000), SMRHE (B = 1.153, S.E = .395, OR = 3.167, p < .004), BLRUE (B = .915, S.E = .382, OR = 2.496, p < .017), and BMRUE (B = .796, S.E = .377, OR = 2.217, p < .035).

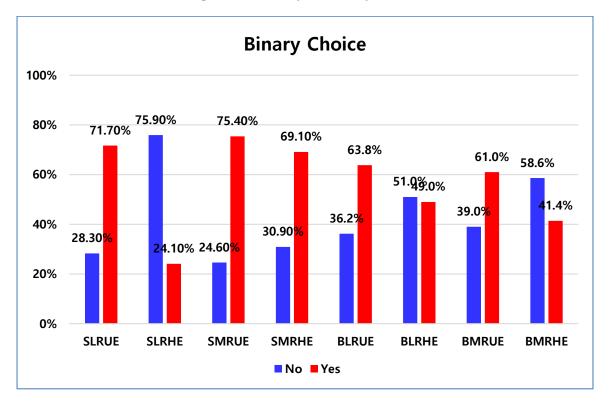


Figure 19_(Study 3) Binary Choice

From this study's scenario, 'No' means a risk-averse attitude, whereas 'Yes' indicates a risk-taking attitude. Hedonic-events tend to be more risk-averse than utilitarian-event on SLRHE, BLRH, and BMRHE. Especially in the case of SLRHE, respondents showed the strongest risk-averse attitude. Surprisingly, in SLRHE condition

(small-loss, low-probability risk level, and hedonic event), people have been shown to avoid risk like the previous studies.

4.3.2.4 Decision-Making Reliance on System 1 (Heart) vs. System 2 (Head)

Factor Analysis, Reliability Analysis, and Correlations per Condition

As in Study 1 and 2, the same analysis was conducted.

				Factor Ana	alveie		Reliability
	Factor	Variable		Pactor Ana	aly 515		Analysis
	Pactor	Variable	Factor	Communality	Eigen-	% of	Cronbach
S			Load	Communanty	value	Variance	α
L	System	Intuitively	.894	.805	1.596	39.902	α = .853
R	1	Heart	.882	.779	1.390		u – .833
U	System	Head	.852	.729	1.452	36.303	a. 700
E	2	Deliberately	.848	.735	1.452		$\alpha = .790$
			.446				
	Bartlett' Test of Sphericity Chi-Square						
		Dartiett Tes	i or spiler	ieity	di	f (<i>p</i>)	6 (.000)

	Factor	Variable -		Factor An	alysis		Reliability Analysis
	Factor		Factor	Communality	Eigen-	% of	Cronbach
S			Load		value	Variance	α
L	System	Heart	.870	.767	1.535	38.376	$\alpha = .668$
R	1	Intuitively	.855	.732			u – .008
Η	System	Head	.881	.786	1.531	38.278	α = .690
E	2	Deliberately	.863	.782			u – .090
		KI	MO (Kaise	er-Meyer-Olkin)			.470
	Bartlett' Test of Sphericity Chi-Square						39.476
		6 (.000)					

	Factor	Variable		Factor An	alysis		Reliability Analysis
			Factor	Communality	Eigen-	% of	Cronbach
c			Load	Communality	value	Variance	α
S M	System 1	Intuitively	.890	.793			
R		Heart	.863	.761	2.257	45.148	$\alpha = .833$
		Quickly	.848	.769			
E	System	Deliberately	.870	.757	1.446	28.929	$\alpha = .570$
	2	Head	.789	.623	1.440	20.929	u = .370
		KI	MO (Kaise	er-Meyer-Olkin)			.575
		Bortlett' Tes	t of Spheri	Chi-Square		86.981	
	Bartlett' Test of Sphericity				df (<i>p</i>)		10 (.000)

				Factor An	alvsis		Reliability	
	Factor	Variable			ury 515		Analysis	
	Factor	v arrable	Factor	Communality	Eigen-	% of	Cronbach	
S		Load	Communanty	value	Variance	α		
Ν	System	Intuitively	.963	.937	1.872	46.812	α = .933	
R	1	Heart	.962	.938	1.872	40.012	u – .955	
Η	System	Deliberately	.907	.831	1.664	41.608	$\alpha = .788$	
E	2	Head	.905	.830	1.004		u – .700	
		KI	MO (Kaise	er-Meyer-Olkin)			.506	
	Bartlett' Test of Sphericity Chi-Square							
		Dartiett Tes	t of Spheri	City	df (<i>p</i>)		6 (.000)	

				Factor An	alysis		Reliability Analysis	
	Factor	Variable	E .		D .	o/ C		
			Factor	Communality	Eigen-	% of	Cronbach	
В			Load	Communanty	value	Variance	α	
L	System	Intuitively	.942	.888	1.657	41.423	$\alpha = .804$	
R	1	Heart	.864	.826	1.037	41.423	u – .804	
U	System	Head	.871	.758	1.223	30.572	$\alpha = .298$	
Ε	2	Deliberately	.619	.407	1.223	30.372	u – .298	
		K	MO (Kaise	er-Meyer-Olkin)			.421	
		Bartlett' Test of Sphericity Chi-Square						
		Dartiett Tes	i or spheri	City	df	df (<i>p</i>)		

	Factor	Variable		Factor Ana	alysis		Reliability Analysis	
	Factor	variable	Factor	Communality	Eigen-	% of	Cronbach	
В			Load	Communanty	value	Variance	α	
L	System	Deliberately	.925	.858	1.694	42.347	$\alpha = .812$	
R	2	Head	.912	.833	1.094	42.347	u = .012	
Η	System	Intuitively	.908	.828	1.634	40.851	$\alpha = .771$	
E	1	Heart	.898	.810	1.034		u = .771	
		KI	MO (Kais	er-Meyer-Olkin)			.323	
	Bartlett' Test of Sphericity Chi-Square							
		Dartiett Tes	t of Spher	licity	df (<i>p</i>)		6 (.000)	

	-	Variable		Factor Ana	alysis		Reliability Analysis
	Factor		Factor	Communality	Eigen-	% of	Cronbach
В			Load	Communality	value	Variance	α
Ν	System	Intuitively	.885	.783	1.554	38.843	$\alpha = .702$
R	1	Heart	.869	.759	1.554	50.045	u = .702
U	System	Head	.836	.701	1 267	34.166	
E	2	Deliberately	.816	.677	1.367	34.100	$\alpha = .523$
		KI	MO (Kais	er-Meyer-Olkin)			.475
	Bartlett' Test of Sphericity 29.747						
		Darnett Tes	t of spher	letty	6 (.000)		6 (.000)

				Factor An	alveie		Reliability	
	Factor	Variable		Tactor An	ary 515		Analysis	
	Pactor	v arrabic	Factor	Communality	Eigen-	% of	Cronbach	
В			Load		value	Variance	α	
Μ	System	Head	.892	.798	1.560	38.992	$\alpha = .678$	
R	2	Deliberately	.863	.758	1.300	30.992	u = .078	
Η	System	Heart	.879	.776	1.507	37.670	α = .664	
E	1	Intuitively	.847	.735	1.307		u – .004	
		KN	MO (Kais	er-Meyer-Olkin)			.448	
	Bartlett' Test of Sphericity Chi-Square							
		Dartiett Tes	t of Spher	icity	df	(<i>p</i>)	6 (.000)	

- 87 -

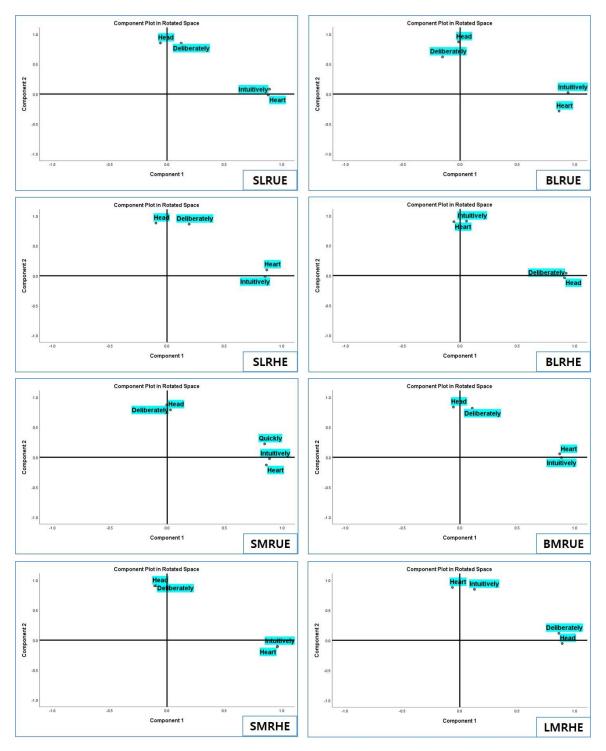


Figure 20_(Study 3) Component Plot in Rotated Space

As shown in Figure 20, it presented that the variables between *System 1* versus *System 2* are clearly divided into two areas. Like Study 1 and 2, respondents distantly

understood and answered each question about decision-making reliance on *System 1* versus *System 2*.

s	Variable	Correlations						
ь т	v allable	1. Intuitively	2. Heart	3. Head	4. Deliberately			
R	1. Intuitively	1	.585**	022	.196			
TT	2. Heart		1	.031	.024			
E U	3. Head			1	.449**			
Е	4. Deliberately				1			

Table 47_(Study 3) SLRUE Correlation Table

c	Variable	Correlations						
5	v allable	1. Intuitively	2. Heart	3. Head	4. Deliberately			
R R	1. Intuitively	1	.504**	.000	.086			
к Н	2. Heart		1	020	.246			
E	3. Head			1	.528**			
Б	4. Deliberately				1			

	Variable	Correlations							
S	v arrable	1. Deliberately	2. Head	3. Quickly	4. Intuitively	5. Heart			
Μ	1. Deliberately	1	.398**	.250	058	130			
R	2. Head		1	.046	.056	.008			
U	3. Quickly			1	.652**	.582**			
Е	4. Intuitively				1	.652**			
	5. Heart					1			

s	Variable	Correlations							
S M	v allable	1. Head	2. Deliberately	3. Intuitively	4. Heart				
R	1. Head	1	.662**	177	226				
к Н	2. Deliberately		1	208	175				
E	3. Intuitively			1	.875**				
Е	4. Heart				1				

В	Variable	Correlations					
L	v allable	1. Head		2. Heart	3. Deliberately	4. Intuitively	
R	1. Head		1	317*	.175	.005	
U	2. Heart			1	143	.673**	
E	3. Deliberately				1	.154	

4. Intuitively	4. Intuitively	1
----------------	----------------	---

В	Variable	Correlations						
D	v allable	1. Intuitively	2. Heart	3. Deliberately	4. Head			
R L	1. Intuitively	1	.632**	.155	073			
к Н	2. Heart		1	098	.023			
E	3. Deliberately			1	.689**			
L	4. Head				1			

В	Variable	Correlations						
ь М	v allable	1. Intuitively	2. Heart	3. Head	4. Deliberately			
R	1. Intuitively	1	.546**	057	.109			
	2. Heart		1	.057	.060			
E	3. Head			1	.365**			
Ľ	4. Deliberately				1			

В	Variable	Correlations						
ь М	variable	1. Heart	2. Intuitively	3. Deliberately	4. Head			
R	1. Heart	1	.497**	.102	106			
к Н	2. Intuitively		1	.105	.115			
E E	3. Deliberately			1	.547**			
Ľ	4. Head				1			

Note: Cells display Pearson's Correlation.

** p < .01. Correlation is significant at the 0.01 level (2-tailed).

* p < .05. Correlation is significant at the 0.05 level (2-tailed).

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2

(Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on participants' relative

reliance on decision-making between emotion versus reason yielded the expected

interaction (*F* (1, 453) = 7.349, *p* < .007, η^2 = .016). The main effects for risk level (*F* (1,

453) = 84.277,
$$p < .000$$
, $\eta^2 = .159$), event type (F (1, 453) = 7.411, $p < .007$, $\eta^2 = .016$),

and loss amount (*F* (1, 453) = 5.143, *p* < .024, η^2 = .011) were significant.

Table 48_(Study 3) Tests of Between-Subjects Effects

Dependent Variable: Decision-Making Reliance

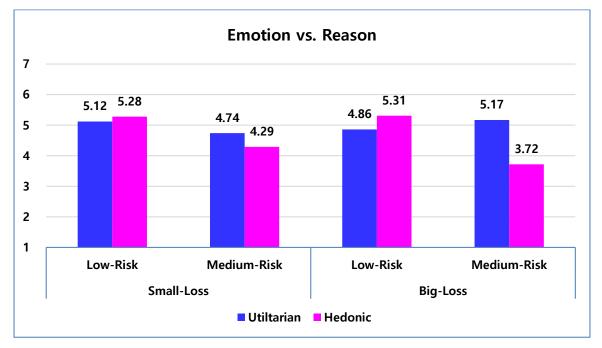
Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event

Type + Risk Level * Loss Amount + Event Type * Loss Amount + Risk Level

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	112.667 ^{<i>a</i>}	7	16.095	20.917	.000	.247
Intercept	10256.465	1	10256.465	13328.850	.000	.968
RiskLevel	64.859	1	64.859	84.277	.000	.159
EventType	5.703	1	5.703	7.411	.007	.016
LossAmount	3.958	1	3.958	5.143	.024	.011
RiskLevel * EventType	31.312	1	31.312	40.691	.000	.084
RiskLevel * LossAmount	.635	1	.635	.825	.364	.002
EventType * LossAmount	.745	1	.745	.969	.326	.002
RiskLevel * EventType *	5.655	1	5.655	7.349	.007	.016
LossAmount						
Error	343.194	446	.769			
Total	10723.000	454				
Corrected Total	455.861	453				

* Event Type * Loss Amount

a. R Squared = .247 (Adjusted R Squared = .235).


Multi-way ANOVA

Under medium-probability risk level, participants having hedonic-event showed relatively emotional decision-making based compared to utilitarian-event. In particular, BMRHE (M = 3.72, SD = .894; F(7, 446) = 20.917, p < .000) seems to have made the most emotional decision.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	112.667	7	16.095	20.917	.000
Within Groups	343.194	446	.769		
Total	455.861	453			

Table 49_(Study 3) ANOVA Results

Figure 21_(Study 3) Decision-Making Reliance between Emotion vs. Reason

Decision-Making Reliance: 1 = 'Using only Emotion' to 7 = 'Using only Reason'.

Cond	onditions Decision-Making Reliance			
	LRUE	Reason		
Small-Loss	LRHE	Reason		
	MRUE	Reason		
	MRHE	Neutral		
	LRUE	Reason		
Big-Loss	LRHE	Reason		
	MRUE	Reason		
	MRHE	Emotion		

Post Hoc Analysis

It was found that there was a significant difference in the decision-making base, depending on the conditions/groups (p < .000). In particular, as the result of Dunnett TE (equal variances not assumed), there was a significant difference among groups. In detail, the condition of BMRHE showed the lowest mean on the participant's relative emotional choice reliance.

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Dunnett T3	
Decision- Making Reliance	SLRUE (a)	5.12	.904			
	SLRHE (b)	5.28	.874		b > h, d, c, g	
	SMRUE (c)	4.74	.813			
	SMRHE (d)	4.29	.712	20.917/ .000		
	BLRUE (e)	4.86	.511			
	BLRHE (f)	5.31	1.432			
	BMRUE (g)	4.78	.696			
	BMRHE (h)	3.72	.894			

Table 51_(Study 3) Post Hoc Analysis

Table 52_(Study 3) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Decision-Making Relative Reliance between Emotion vs. Reason Dunnett T3

(I) Conditions	(J) Conditions	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence	
					Interval	
Conditions					Lower	Upper
					Bound	Bound
	SLRHE	159	.164	1.000	68	.36
SLRUE	SMRUE	.380	.159	.392	13	.89
	SMRHE	.826*	.151	.000	.34	1.31
	BLRUE	.255	.135	.806	18	.69
	BLRHE	189	.235	1.000	95	.57
	BMRUE	.337	.148	.483	13	.81
	BMRHE	1.393*	.166	.000	.87	1.92
SLRHE	SLRUE	.159	.164	1.000	36	.68

	SMRUE	.539*	.157	.024	.04	1.04
	SMRHE	.985*	.150	.000	.51	1.46
	BLRUE	.414	.133	.066	01	.84
	BLRHE	030	.235	1.000	79	.73
	BMRUE	.496*	.146	.027	.03	.96
	BMRHE	1.552*	.164	.000	1.03	2.08
	SLRUE	380	.159	.392	89	.13
	SLRHE	539*	.157	.024	-1.04	04
	SMRHE	.446	.144	.067	01	.91
SMRUE	BLRUE	125	.127	1.000	53	.28
	BLRHE	569	.231	.347	-1.32	.18
	BMRUE	043	.141	1.000	49	.41
	BMRHE	1.013*	.159	.000	.50	1.52
	SLRUE	826*	.151	.000	-1.31	34
	SLRHE	985*	.150	.000	-1.46	51
	SMRUE	446	.144	.067	91	.01
SMRHE	BLRUE	571*	.117	.000	95	20
	BLRHE	-1.015*	.226	.001	-1.75	28
	BMRUE	489*	.132	.009	91	07
	BMRHE	.567*	.152	.008	.08	1.05
	SLRUE	255	.135	.806	69	.18
	SLRHE	414	.133	.066	84	.01
	SMRUE	.125	.127	1.000	28	.53
BLRUE	SMRHE	.571*	.117	.000	.20	.95
	BLRHE	444	.215	.671	-1.14	.26
	BMRUE	.082	.113	1.000	28	.44
	BMRHE	1.138*	.135	.000	.70	1.57
BLRHE	SLRUE	.189	.235	1.000	57	.95
	SLRHE	.030	.235	1.000	73	.79
	SMRUE	.569	.231	.347	18	1.32
	SMRHE	1.015*	.226	.001	.28	1.75
	BLRUE	.444	.215	.671	26	1.14
	BMRUE	.526	.224	.431	20	1.25
	BMRHE	1.582*	.236	.000	.82	2.34
	SLRUE	337	.148	.483	81	.13
	SLRHE	496*	.146	.027	96	03
BMRUE	SMRUE	.043	.141	1.000	41	.49
	SMRHE	.489*	.132	.009	.07	.91
	BLRUE	082	.113	1.000	44	.28

	BLRHE	526	.224	.431	-1.25	.20
	BMRHE	1.056*	.148	.000	.58	1.53
BMRHE	SLRUE	-1.393*	.166	.000	-1.92	87
	SLRHE	-1.552*	.164	.000	-2.08	-1.03
	SMRUE	-1.013*	.159	.000	-1.52	50
	SMRHE	567*	.152	.008	-1.05	08
	BLRUE	-1.138*	.135	.000	-1.57	70
	BLRHE	-1.582*	.236	.000	-2.34	82
	BMRUE	-1.056*	.148	.000	-1.53	58

* The mean difference is significant at the 0.05 level.

Risk Attitude: 1 = '*Risk-Taking*' to 7 = '*Risk-Averse*'

Decision-Making Reliance: 1 = 'Using only Emotion (System 1)' to 7 = 'Using only Reason (System 2)'. Across the conditions, participants responded that they would not go to a risky place (risk-averse attitude). When reviewed the decision-making reliance, they said that they made a choice under relatively reasonably thinking.

Event Type * Risk Level * Loss Amount	Risk Attitude	Decision-Making Reliance
SLRUE	Risk-Averse	Reason Base
SLRHE	Risk-Averse	Reason Base
SMRUE	Risk-Averse	Reason Base
SMRHE	(the strongest) Risk-Averse	Neutral
BLRUE	Risk-Averse	Reason Base
BLRHE	Risk-Averse	Reason Base
BMRUE	Risk-Averse	Reason Base
BMRHE	Risk-Averse	Emotion Base

Figure 23_(Study 3) Research Model and Results

4.3.2.5 Decision-Making Reliance with LR Scale

Moderated Regression Analysis

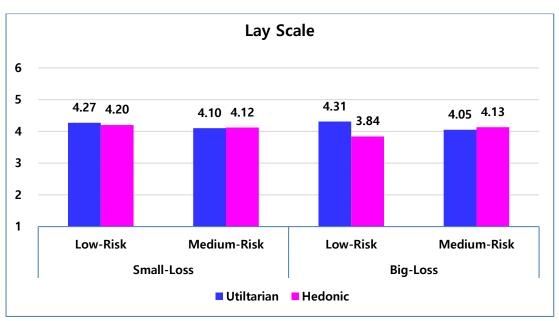
When the regression analysis was completed by intervening LR Scale as a moderated variable, it was found that the LR Scale showed a significant difference in seven (7) conditions/groups except for BLRUE.

As for the moderated regression analysis results, it is necessary to check whether the R^2 value increases as the model proceeds from step 1 to step 3, and check whether the significant F change is less than .05. Thus, excluding BLRUE, in other conditions/groups, it was found that the LR Scale, which is a moderated variable, has a positive (+) moderated effect.

				Adjusted	Std. Error		Change S	tatisti	cs	
Condition	Model	R	R ²	R ²	of the	R ²	E Change	df	df	Sig F.
				K-	Estimate	Change	F Change	1	2	Change
	1	.377 ^a	.142	.127	.992	.142	9.618	1	58	.003
SLRUE	2	. 403 ^b	.162	.133	.989	.020	1.369	1	57	.242
3	. 468 ^c	.219	.177	.964	.057	4.067	1	56	.049	
	1	.343 ^a	.117	.102	.941	.117	7.452	1	56	.008
SLRHE	2	.366 ^b	.134	.103	.941	.017	1.061	1	55	.307
	3	. 489 ^c	.239	.196	.890	.105	7.421	1	54	.009
	1	.403 ^a	.162	.147	1.072	.162	10.672	1	55	.002
SMRUE	2	. 430 ^b	.185	.155	1.068	.022	1.487	1	54	.228
	3	. 495 ^c	.245	.202	1.037	.060	4.187	1	53	.046
	1	.159 ^a	.025	.008	11.294	.025	1.423	1	55	.238
SMRHE	2	. 181 ^b	.033	003	11.353	.088	.427	1	54	.516
	3	.960 ^c	.921	.917	3.269	.888	598.436	1	53	.000
	1	.557 ^a	.310	.298	1.147	.310	25.155	1	56	.000
BLRUE	2	. 595 ^b	.354	.331	1.120	.044	3.762	1	55	.058
	3	.601 ^c	.361	.325	1.125	.007	.563	1	54	.456
	1	.247 ^a	.061	.041	6.97834	.061	3.055	1	47	.087
BLRHE	2	. 386 ^b	.149	.112	6.71522	.088	4.755	1	46	.034
	3	.982 ^c	.965	.963	1.37171	.816	1057.428	1	45	.000
	1	.097 ^a	.009	008	8.148	.009	.544	1	57	.464
BMRUE	2	. 667 ^b	.444	.425	6.157	.435	43.834	1	56	.000
	3	.992 ^c	.983	.982	1.075	.539	1781.835	1	55	.000
	1	.050 ^a	.003	015	10.984	.003	.142	1	56	.707
BMRHE	2	. 390 ^b	.152	.121	10.218	.150	9.707	1	55	.003
	3	.988 ^c	.976	.975	1.721	.824	1885.940	1	54	.000

Table 53_(Study 3) Moderated Regression Analysis Results

a: Predictors: (Constant), each condition


b: Predictors: (Constant), each condition, LR Scale per each condition

c: Predictors: (Constant), each condition, LR Scale per each condition, Moderated LR Scale per each condition

	Conditions	Mean	Std. Deviation	F-vale/Sig.
	SLRUE (a)	4.27	.732	
	SLRHE (b)	4.20	.731	
	SMRUE (c)	4.10	.581	
LR Scale	SMRHE (d)	4.12	.751	2.482/ .017
	BLRUE (e)	4.31	.672	2.462/ .017
	BLRHE (f)	3.84	.705	
	BMRUE (g)	4.05	.551	
	BMRHE (h)	4.13	.663	

Table 54_(Study 4) Lay Rationalism Means

Figure 24_(Study 4) Lay Rationalism (LR) Scale

LR Scale: 1 = '*Close to Emotion*' to 6 = '*Close to Reason*'.

Like the above figure, participants answered they were relatively rational thinking bases in a general setting. This result conflicts with the answer to what your decision base (Figure 21) was like in experiments. That is to say, rather than being an extremely rational person or an emotional person with a particular condition prominently, it is defined as a somewhat neutral and slightly rational person. Therefore, this study summarized that LR Scale would work as a moderated variable rather than an independent variable.

In conclusion, whether an individual depends on the heart's sound or the logic in the head when making a decision is more dependent on the variable context of each experimental condition.

4.4 Study 4: Positive versus Negative Emotions in Decision-Making under Risk

In Study 4, this research delves deeper into the emotions. There has been much controversy about which emotion (positive versus negative; moderating variable) influences decision-making under risk. Therefore, it is judged that it is necessary to continually study which emotion (positive versus negative) is more active and intervene in the decision-making process under risk. That is, which emotion, positive or negative, helps explicitly people make the best decision under risk in the loss domain.

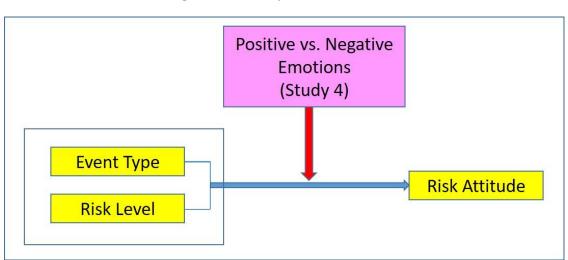


Figure 25_(Study 4) Research Model

4.4.1 Method and Procedure

This study employed a 2 (Risk Probability Level: Low-Probability Risk vs.

Medium-Probability Risk) X 2 (Event Type: Utilitarian-Purpose Event vs. Hedonic-

Purpose Event) X 2 (Loss Amount: Small-Loss vs. Big-Loss) between-subjects design.

Participants (n = 480) were recruited from Amazon Mechanical Turk (MTurk). I removed

participants who failed to answer the attention check question correctly ("Please select strongly disagree."). The final sample had 420 participants. 66.7% (280 participants) were male.

First of all, in order to know which emotions (positive vs. negative) work in the process of making decisions under risk, I first measured emotions of participants on twenty (20) items of Positive and Negative Affect Schedule (PANAS-SF, Watson, Clark, and Tellegen, 1998) which were assessed on a 5-point scale (1 = `Very Slightly or Not At *All*' to 6 = `Extremely`). For each item, the intent is to indicate to what extent they feel these emotions at the moment or how they felt over the past week. Response to these twenty (20) items formed an index of individuals' emotional type between positive versus negative. The term used in the scale are as follows (underlined items are emotions that display positive affect).

Indicate the extent you have f	felt this way over the past week.
PANAS 1	Interested
PANAS 2	Distressed
PANAS 3	Excited
PANAS 4	Upset
PANAS 5	Strong
PANAS 6	Guilty
PANAS 7	Scared
PANAS 8	Hostile
PANAS 9	Enthusiastic
PANAS 10	Proud
PANAS 11	Irritable
PANAS 12	Alert
PANAS 13	Ashamed
PANAS 14	Inspired
PANAS 15	Nervous

 Table 55_(Study 4) Positive and Negative Affect Schedule (PANAS-SF)

PANAS 16	Determined
PANAS 17	Attentive
PANAS 18	Jittery
PANAS 19	Active
PANAS 20	Afraid

Source: Watson, D., Clark, L. A., and Tellegen, A. (1998). "Development and Validation of Brief Measure of Positive and Negative Affect: the PANAS scale," *Journal of Personality and Social Psychology*, 54 (6), 1063.

Second, participants were randomly assigned and asked to read one of eight (8) scenario conditions (SLRUE: Small Loss + Low-Probability Risk + Utilitarian-Purpose Event, SLRHE: Small Loss + Low-Probability Risk + Hedonic-Purpose Event, SMRUE: Small Loss + Medium-Probability Risk + Utilitarian-Purpose Event, SMRHE: Small Loss + Medium-Probability Risk + Hedonic-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRUE: Big Loss + Low-Probability Risk + Utilitarian-Purpose Event, BLRHE: Big Loss + Low-Probability Risk + Hedonic-Purpose Event, BMRUE: Big Loss + Medium-Probability Risk + Utilitarian-Purpose Event, and BMRHE: Big Loss + Medium-Probability Risk + Hedonic-Purpose Event) whether the participants would want to buy used car warranty. In the condition of small-loss (vs. big-loss), low (vs. medium) breakdown risk probability, and utilitarianpurpose (vs. hedonic-purpose) event, participants read the following:

Imagine. You will buy a second car <u>to travel to and from your work (vs. to</u> <u>drive for your pleasure); event type</u>. The vehicle will be a used car. Therefore, the dealer recommends you purchase the used extended warranty together. <u>Buying a</u> <u>used car involves a low-level (vs. medium-level) breakdown risk probability; risk</u> probability level. According to RepairPal.com, the average annual cost for unexpected repairs on used cars runs about \$418 (vs. \$1,018): the amount of loss.

By purchasing an extended warranty, you can avoid expensive repair bills down the road. The warranty is approximately \$350. Would you want to buy a used extended warranty?

Event Type		Risk Proba	The Amount of Loss		
Utilitarian- Purpose Event	Hedonic- Purpose Event	Low- Probability Risk	Medium- Probability Risk	Small- Loss	Big- Loss
To travel to and from your work	To drive for your pleasure	Low-level of breakdown risk	Medium-level of breakdown risk	\$418	\$1,018

Table 56_(Study 4) Event Type, Risk Probability Level, and The Amount of Loss

After reading one of eight (8) scenarios, as a manipulation check for event type, risk probability level, and loss amount, I asked participants to rate their perception of event type (utilitarian-purpose event vs. hedonic-purpose event), risk level (lowprobability risk vs. medium-probabili3ty risk), and the amount of loss (small-loss vs. bigloss) and use on a 7-point scale: "The scenario's event is close to the attributes of" (1 =*'Practical/Productive Event'* to 7 = *'Enjoyable/Fun Event'*), "From the scenario, what do you think the probability of risk?" (1 = *'Low-Probability Risk'*, 4 = *'Medium-Probability Risk'*, 7 = *'High-Probability Risk'*), and "From the scenario, if the risk happens, what do you think the amount of the loss?" (1 = *'Small-Loss'* to 7 = *'Big-Loss'*), respectively.

Next, I asked participants to mark their relative willingness to purchase insurance by answering the question: "Please rate your willingness to purchase extended used-car warranty." on a 7-point scale (1 = `Definitely Won't Buy (No)', 4 = `Neutral', 7 = '*Definitely Will Buy (Yes)*'). In addition, I measured participants' binary choice: "Do you want to buy an extended used-car warranty?" (1 = No', 2 = Yes').

On the next page of the survey, subsequent questions about decision-making reliance and demographic questions used the same method as previous studies.

Finally, participants answered standard demographic questions. Participants received \$0.50 for their participation.

4.4.2 Results and Discussion

4.4.2.1 Manipulation Check.

The manipulation of event types was successful in showing that participants perceived 'to travel to and from your work' (M = 2.73) as significantly utilitarian-purpose event than that in the hedonic condition 'To drive for your pleasure' (M = 5.41; F(1, 418) = 391.120, p < .000). And, the manipulation of risk levels was also successful in showing that participants perceived two distinct probability of breakdown risk; lowprobability risk (M = 2.87) verse medium-probability risk (M = 4.89; F = (1, 418) =295.480, p < .000). Finally, the manipulation of loss amount was also successful in showing that participants perceived two distinct amount of loss; small-loss (M = 2.28) verse big-loss (M = 5.11; F = (1, 418) = 701.824, p < .000).

Figure 26_(Study 4) Manipulation Check of Event Type, Risk Probability Level, and Loss Amount

Event Type: 1 = '*Practical/Productive Event*' to 7 = '*Enjoyable/Fun Event*'. Risk Probability Level: 1 = '*Low-Probability Risk*' to 7 = '*High-Probability Risk*'. The Amount of Loss: 1 = '*Small-Loss*' to 7 = '*Big-Loss*'.

4.4.2.2 Willingness Not to Go to Risky Place

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2

(Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on individuals'

willingness to purchase used-car warranty yielded the expected interaction (F(1, 419) =

5.556, p < .019, $\eta^2 = .013$).

Table 57_(Study 4) Tests of Between-Subjects Effects

Dependent Variable: Willingness to Purchase Warranty Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event

Type + Risk Level * Loss Amount + Event Type * Loss Amount + Risk Level * Event Type * Loss Amount

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	48.811 ^a	7	6.973	2.367	.022	.039
Intercept	11630.354	1	11630.254	3947.701	.000	.905
RiskLevel	.619	1	.619	.210	.647	.001
EventType	21.894	1	21.894	7.431	.007	.018
LossAmount	.288	1	.288	.098	.755	.000
RiskLevel * EventType	1.550	1	1.550	.526	.469	.001
RiskLevel * LossAmount	4.685	1	4.685	1.590	.208	.004
EventType * LossAmount	2.540	1	2.540	.862	.354	.002
RiskLevel * EventType *	16.369	1	16.369	5.556	.019	.013
LossAmount						
Error	1213.786	412	2.946			
Total	12923.000	420				
Corrected Total	1262.598	419				

a. R Squared = .039 (Adjusted R Squared = .022).

The main effect for event type ($F(1, 419) = 7.431, p < .007, \eta^2 = .018$) was significant, whereas the main effects for risk level ($F(1, 419) = .210, p < .647, \eta^2 = .001$) and loss amount ($F(1, 419) = .098, p < .775, \eta^2 = .000$) were not significant.

Multi-Way ANOVA

Overall, the results of multi-way ANOVA indicated that participants showed relatively strong risk-averse attitudes across all conditions. In particular, individuals with SMRHE presented statistically the greatest willingness to purchase extended used-car warranty than those with other conditions (F (7, 412) = 2.367, p < .022).

Figure 27_(Study 4) Willingness to Purchase Warranty

Willingness: 1 = 'Definitely Won't Buy (No)' to 7 = 'Definitely Will Buy (Yes)'.

Conc	litions	Risk Attitude
Small-Loss	LRUE	Risk-Averse
	LRHE	Risk-Averse
	MRUE	Risk-Averse
	MRHE	(the strongest) Risk-Averse
	LRUE	Risk-Averse
Big-Loss	LRHE	Risk-Averse
	MRUE	Risk-Averse
	MRHE	Risk-Averse

Table 58_(Study 4) Risk Attitude per condition interpreted through Willingness to not take risky action of Figure 18

Table 59_(Study 4) ANOVA Results

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	48.811	7	6.793	2.367	.022
Within Groups	1213.786	412	2.946		
Total	1262.598	419			

Post Hoc Analysis

It was found that there was a significant difference in willingness to purchase

extended used-car warranty depending on the conditions/groups (p < .000). In particular,

as the result of Dunnett T3 (equal variances not assumed), there was a significant

difference between groups in SMRUE and SMRHE.

Table 60_(Study 4) Post Hoc Analysis

DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Dunnett T3	
	SLRUE (a)	5.18	1.964		c > d	
Willingnood	SLRHE (b)	5.27	1.868			
Willingness to Purchase	SMRUE (c)	4.80	1.571	2.367/ .022		
Warranty	SMRHE (d)	5.93	1.912	2.3077 .022		
vv arrainty	BLRUE (e)	5.10	1.652			
	BLRHE (f)	5.67	1.665			

BMRUE (g)	5.08	1.456
BMRHE (h)	5.11	1.513

Table 61_(Study 4) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Willingness to Purchase Warranty Dunnett T3

		Mean			95% Confidence		
(I)	(J)	Difference	Std.	Sig.	Inter	rval	
Conditions	Conditions	(I-J)	Error	~-8.	Lower	Upper	
	GLDUE		070	1 000	Bound	Bound	
	SLRHE	096	.373	1.000	-1.29	1.09	
	SMRUE	.382	.339	1.000	70	1.46	
	SMRHE	747	.370	.706	-1.93	.43	
SLRUE	BLRUE	.081	.350	1.000	-1.04	1.20	
	BLRHE	495	.350	.989	-1.61	.62	
	BMRUE	.095	.336	1.000	98	1.17	
	BMRHE	.067	.334	1.000	-1.00	1.13	
	SLRUE	.096	.373	1.000	-1.09	1.29	
	SMRUE	.478	.340	.989	61	1.57	
	SMRHE	651	.371	.891	-1.84	.53	
SLRHE	BLRUE	.176	.351	1.000	95	1.30	
	BLRHE	399	.351	1.000	-1.52	.72	
	BMRUE	.191	.338	1.000	89	1.27	
	BMRHE	.163	.335	1.000	91	1.24	
	SLRUE	382	.339	1.000	-1.46	.70	
	SLRHE	478	.340	.989	157	.61	
	SMRHE	-1.130*	.337	.030	-2.21	05	
SMRUE	BLRUE	302	.315	1.000	-1.31	.70	
	BLRHE	877	.315	.159	-1.88	.13	
	BMRUE	287	.300	1.000	-1.25	.67	
	BMRHE	315	.297	1.000	-1.26	.63	
	SLRUE	.747	.370	.706	43	1.93	
	SLRHE	.651	.371	.891	53	1.84	
	SMRUE	1.130*	.337	.030	.05	2.21	
SMRHE	BLRUE	.828	.348	.404	28	1.94	
	BLRHE	.253	.348	1.000	86	1.36	
	BMRUE	.843	.334	.303	23	1.91	
	BMRHE	.815	.332	.346	25	1.88	

	SLRUE	081	.350	1.000	-1.20	1.04
	SLRHE	176	.351	1.000	-1.3	.95
	SMRUE	.302	.315	1.000	70	1.31
BLRUE	SMRHE	828	.348	.404	-1.94	.28
	BLRHE	575	.327	.889	-1.62	.47
	BMRUE	.015	.313	1.000	99	1.01
	BMRHE	013	.310	1.000	-1.00	.98
	SLRUE	.495	.350	.989	62	1.61
	SLRHE	.399	.351	1.000	72	1.52
	SMRUE	.877	.315	.159	13	1.88
BLRHE	SMRHE	253	.348	1.000	-1.36	.86
	BLRUE	.575	.327	.889	47	1.62
	BMRUE	.590	.312	.809	41	1.59
	BMRHE	.562	.309	.857	43	1.55
	SLRUE	095	.336	1.000	-1.17	.98
	SLRHE	191	.338	1.000	-1.27	.89
	SMRUE	.287	.300	1.000	67	1.25
BMRUE	SMRHE	843	.334	.303	-1.91	.23
	BLRUE	015	.313	1.000	-1.01	.99
	BLRHE	590	.312	.809	-1.59	.41
	BMRHE	028	.294	1.000	97	.91
	SLRUE	067	.334	1.000	-1.13	1.00
	SLRHE	163	.335	1.000	-1.24	.91
	SMRUE	.315	.297	1.000	63	1.26
BMRHE	SMRHE	815	.332	.346	-1.88	.25
	BLRUE	.013	.310	1.000	98	1.00
	BLRHE	562	.309	.857	-1.55	.43
	BMRUE	.028	.294	1.000	91	.97
		a significant a			-	

* The mean difference is significant at the 0.05 level.

4.4.2.3 Binary Choice

A logistic regression was performed to test binary choice whether participants

would want to bur used-car extended warranty or not. The logistic regression model was

statistically significant, $x^2(7) = 17.312$, p < .015. The model explained 6% (Nagelkerke R^2) of the variance in binary choice and correctly classified 69.8% of cases.

Especially, I found significant effects on SLRUE (B = -.1.194, S.E = .442, OR

= .303,
$$p < .030$$
), SLRHE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $p < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$), SMRUE ($B = -.960$, S. $E = .455$, $OR = .383$, $P < .035$, $P < .035$, $P = .035$

-.951, *S*.*E* = .450, *OR* = .386, *p* < .034), and SMRHE (*B* = -.951, *S*.*E* = .450, *OR* = .386, *p*

< .034) in all small-loss conditions.

Table 62_(Study 4) Binary Choice

log (Binary Choice) = 1.482 - .971 * (SLRUE) - .960 * (SLRHE) - .951 * (SMRUE) - .951 * (SMRUE)

Variable	В	S.E	Wald	$E_{vn}(\mathbf{D})$	95%	o CI	Sig	
variable	D	S.E	vv alu	Exp(B)	Lower	Upper	Sig.	
BMRHE			16.224				.058	
SLRUE	-1.194	.442	7.286	.303*	.127	.721	.030	
SLRHE	960	.455	4.463	.383*	.157	.933	.035	
SMRUE	951	.450	4.474	.386*	.160	.933	.034	
SMRHE	951	.450	4.474	.386*	.160	.933	.034	
BLRUE	510	.470	1.175	.601	.239	1.510	.278	
BLRHE	.082	.507	.026	1.086	.402	2.933	.871	
BMRUE	269	.491	.300	.764	.292	2.000	.584	
Constant	1.482	.350	17.886	4.400			.000	
	17.3	312 (7), .0	15					
Chi-squar	Chi-square (df) of Hosmer-Lemeshow Test, Sig.						00	

* p < .05.

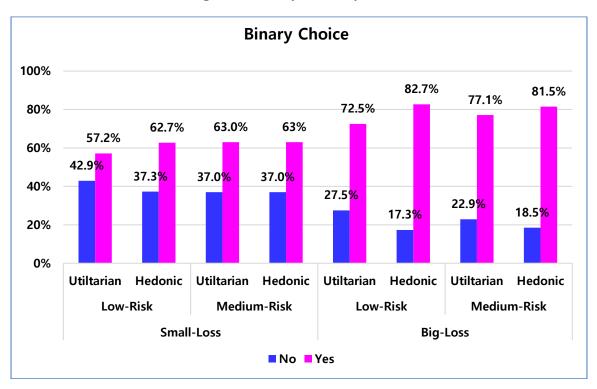


Figure 28_(Study 4) Binary Choice

As a result of binary choice logistics regression analysis, it reveals that people tend to avoid risk more strongly in the scenario of all big-loss conditions. Also, hedonicevents tend to be more risk-averse than utilitarian-event. Especially in the case of SLRHE, both showed strong risk-averse attitudes regardless of the amount of the loss.

4.4.2.4 Decision-Making Reliance on System 1 (Heart) vs. System 2 (Head)

Factor Analysis, Reliability Analysis, and Correlations per Condition

Like previous studies, the same analysis was conducted.

	Faator	Variable		Factor An	alysis		Reliability Analysis
	Factor	variable	Factor	Communality	Eigen-	% of	Cronbach
S			Load		value	Variance	α
L	System	Intuitively	.917	.845	1.653	41.334	$\alpha = .787$
R	1	Heart	.887	.803	1.035	41.554	u – .787
U	System	Deliberately	.868	.754	1.453	36.327	$\alpha = .621$
E	2	Head	.824	.704	1.455	30.327	u = .021
		K	MO (Kais	er-Meyer-Olkin)			.370
		Bartlett' Tes	quare	56.655			
		Bartiett Tes	t of Spher	icity	df	(<i>p</i>)	6 (.000)

	Factor	Variable		Factor Analysis				
	Factor		Factor	Communality	Eigen-	% of	Cronbach	
S			Load		value	Variance	α	
L	System	Heart	.922	.853	1.696	42.410	α = .818	
R	1	Intuitively	.919	.852	1.070	42.410	u – .010	
Η	System	Head	.857	.735	1.477	36.923	a: 626	
E	2	Deliberately	.856	.733	1.4//		$\alpha = .636$	
		K	MO (Kaise	er-Meyer-Olkin)			.498	
	Bartlett' Test of Sphericity					Square	44.577	
		Darnett Tes	t of spher	icity	d	f (<i>p</i>)	6 (.000)	

				Factor Analysis				
	Factor	Variable	Factor	Communality	Eigen-	% of	Cronbach	
S		Load	value	Variance	α			
Ν	System	Heart	.892	.798	1.618	40.444	α = .721	
R	1	Intuitively	.861	.749	1.018	40.444	u = .721	
U	System	Deliberately	.896	.809	1.494	37.349	α = .661	
E	2	Head	.825	.754	1.494			
		K	MO (Kais	er-Meyer-Olkin)			.505	
		Bartlett' Tes	t of Spher	icity	Chi-Square		40.988	
		Darnett Tes	t of spher	icity	df (<i>p</i>)		6 (.000)	

	Γ. (Variable		Factor An	alysis		Reliability Analysis	
	Factor	variable	Factor	Communality	Eigen-	% of	Cronbach	
S			Load	Communality	value	Variance	α	
Ν	System	Heart	.905	.828	1.641	41.027	$\alpha = .765$	
R	1	Intuitively	.903	.819	1.041	71.027	u = .703	
Η	System	Head	.862	.748	1.484	37.102	$\alpha = .646$	
E	2	Deliberately	.854	.731	1.404	57.102	u – .040	
	KMO (Kaiser-Meyer-Olkin)							
		Bartlett' Tes	t of Spher	Chi-Square		42.616		
		Dartiett Tes	t of Spher	icity	df (<i>p</i>)		6 (.000)	

	Factor	Variable		Factor An	nalysis		Reliability Analysis
			Factor	Communality	Eigen-	% of	Cronbach
B L R			Load	Communanty	value	Variance	α
	System	Heart	.940	.884	1.837	36.736	$\alpha = .831$
	1	Intuitively	.872	.760	1.037	50.750	u – .031
к U	System	Deliberately	.729	.532	1.489	29.787	
E	2	Head	.703	.542			$\alpha = .480$
L	2	Slowly	.680	.607			
		K	MO (Kais	er-Meyer-Olkin)			.401
		Bartlett' Tes	t of Spher	icity	Chi-Square		59.589
		Dartiett Tes	i or spiler	df (<i>p</i>)		10 (.000)	

		Variable -		Factor Ana	alvsis		Reliability
	Factor				J ***		Analysis
	Pactor		Factor	Communality	Eigen-	% of	Cronbach
В			Load	Communanty	value	Variance	α
L	System	Deliberately	.921	.849	1.812	45.310	$\alpha = .829$
R	2	Head	.897	.851	1.012	+J.J10	u = .029
Η	System	Heart	.929	.864	1.547	38.667	α = .709
E	1	Quickly	.797	.795	1.547	38.007	
		KI	MO (Kais	er-Meyer-Olkin)			.587
		Bartlett' Tes	Chi-S	Square	67.116		
		Barnett Tes	t of Spher	icity	df (<i>p</i>)		6 (.000)

	Factor	Variable		Factor A	nalysis		Reliability Analysis
			Factor	Communality	Eigen	% of	Cronbach
В			Load	Communanty	-value	Variance	α
Μ	System	Heart	.844	.801	1.664	41.067	
R	1	Intuitively	.770	.813			$\alpha = .757$
	System	Deliberately	.830	.775	1.467	36.680	α = .617
E	2	Head	.624	.742	1.407	30.080	u = .017
		.514					
		Bartlett' Test	of Spheri	city	Chi-Square		36.178
		Dartiett Test	or spheri	lotty	df (<i>p</i>)		6 (.000)

	Factor	Variable		Factor An	alysis		Reliability Analysis	
В			Factor Load	Communality	Eigen - value	% of Variance	Cronbach α	
Μ	System Incart	Heart	.922	.852	1.670	41.745		
R H		Intuitively	.871	.771			$\alpha = .763$	
E	System	Deliberately	.895	.807	1.505	37.619	$\alpha = .670$	
	2	Head	.831	.745	1.505	37.019	$\alpha = .070$	
		KMO (Kaiser-Meyer-Olkin)						
		Bartlett' Tes	t of Spher	icity	Chi-Square		54.738	
		Bartlett' Test of Sphericity				df (<i>p</i>)	6 (.000)	

As shown in Figure 26, it presented that the variables between *System 1* versus *System 2* are clearly divided into two areas. As in previous studies, respondents distantly understood and answered each question about decision-making reliance on *System 1* versus *System 2*.

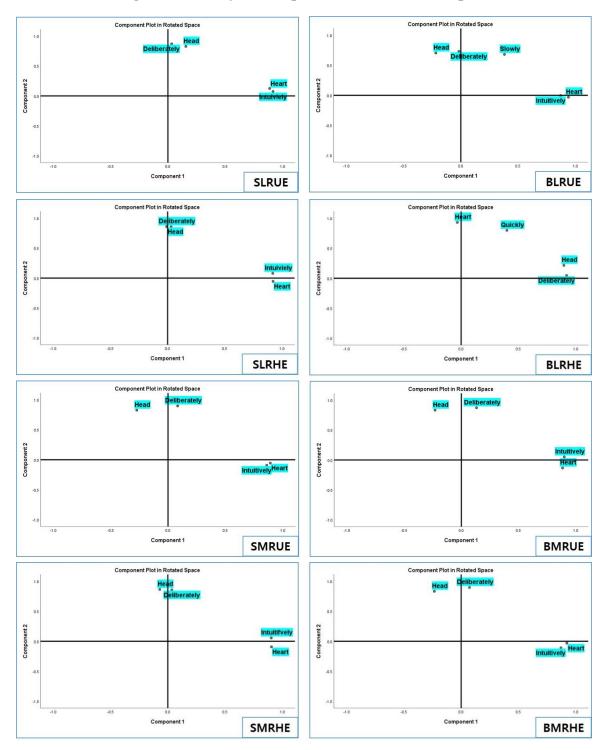


Figure 29_(Study 4) Component Plot in Rotated Space

c	Variable		Correlations					
S	v allable	1. Intuitively	2. Deliberately	3. Heart	4. Head			
R R	1. Intuitively	1	.023	.650**	.290*			
к U	2. Deliberately		1	.248	.451**			
E	3. Heart			1	.420			
Г	4. Head				1			

Table 64_(Study 4) Correlation Table

S	Variable	Correlations						
		1. Intuitively	2. Deliberately	3. Heart	4. Head			
R	1. Intuitively	1	.077	.696**	.056			
	2. Deliberately		1	010	.470**			
H E	3. Heart			1	040			
	4. Head				1			

S	Variable	Correlations						
S M	v allable	1. Intuitively	2. Deliberately	3. Heart	4. Head			
R	1. Intuitively	1	084	.567**	217			
U K	2. Deliberately		1	.013	.500**			
E	3. Heart			1	284*			
Ľ	4. Head				1			

c	Variable	Correlations						
S M	v allable	1. Intuitively	2. Deliberately	3. Heart	4. Head			
R	1. Intuitively	1	.008	.637**	.024			
к Н	2. Deliberately		1	008	.476**			
н Е	3. Heart			1	154			
	4. Head				1			

		Correlations							
В	Variable	1. Intuitively	2. Deliberately	3. Heart	4. Head	5. Slowly			
L	1. Intuitively	1	077	.712**	.020	.166			
R	2. Deliberately		1	.041	.233	.283*			
U E	3. Heart			1	257	.284*			
E	4. Head				1	.225			
	5. Slowly					1			

В			Correlations						
		1. Deliberately	2. Quickly	3. Heart	4. Head				
R R	1. Deliberately	1	.349*	.080	.708**				
к Н	2. Quickly		1	.563**	.488**				
E	3. Heart			1	.176				
Ľ	4. Head				1				

р	Variable	Correlations					
B M	v allable	1. Intuitively	2. Heart	3. Head	4. Deliberately		
R	1. Intuitively	1	.617**	135	.099		
	2. Heart		1	241	028		
E E	3. Head			1	.456**		
	4. Deliberately				1		

B M	Variable	Correlations						
		1. Intuitively	2. Heart	3. Deliberately	4. Head			
R	1. Intuitively	1	.634**	142	155			
к Н	2. Heart		1	.069	291*			
E	3. Deliberately			1	.506**			
L	4. Head				1			

Note: Cells display Pearson's Correlation.

** p < .01. Correlation is significant at the 0.01 level (2-tailed).

* p < .05. Correlation is significant at the 0.05 level (2-tailed).

Main and Interaction Effects

A multi-way 2 (Risk Probability Level: Low-Probability Risk vs. Medium-

Probability Risk) X 2 (Event Type: Utilitarian-Purpose vs. Hedonic-Purpose) X 2

(Amount of Loss: Small-Loss vs. Big-Loss) ANOVA conducted on participants' relative

reliance on decision-making between emotion versus reason yielded the expected

interaction (*F* (1, 419) = 4.231, p < .040, $\eta^2 = .010$). The main effects for risk level (*F* (1,

419) = 7.246,
$$p < .007$$
, $\eta^2 = .017$) and amount loss ($F(1, 419) = 13.652$, $p < .000$,

 η^2 = .032) were significant.

Table 65_(Study 4) Tests of Between-Subjects Effects

Dependent Variable: Decision-Making Reliance

Design: Intercept + Risk Level + Event Type + Loss Amount + Risk Level * Event

Type + Risk Level * Loss Amount + Event Type * Loss Amount + Risk Level	l
---	---

	Type III					Partial
	Sum of		Mean			Eta
Source	Squares	df	Square	F	Sig.	Squared
Corrected Model	35.985 ^a	7	5.141	3.864	.000	.062
Intercept	10278.036	1	10278.036	7725.085	.000	.949
RiskLevel	9.641	1	9.641	7.246	.007	.017
EventType	.061	1	.061	.046	.831	.000
LossAmount	18.163	1	18.163	13.652	.000	.032
RiskLevel * EventType	1.082	1	1.082	.814	.368	.002
RiskLevel * LossAmount	1.155	1	1.155	.868	.352	.002
EventType * LossAmount	.263	1	.263	.197	.657	.000
RiskLevel * EventType *	5.629	1	5.629	4.231	.040	.010
LossAmount						
Error	548.156	412	1.330			
Total	10895.000	420				
Corrected Total	584.140	419				

* Event Type * Loss Amount

a. R Squared = .062 (Adjusted R Squared = .046).

Multi-way ANOVA

Like Study 2, excluding only the case for SLRHE condition, big-loss conditions showed a tendency to make decisions based on emotions relatively more than small-loss ones. In particular, BLRHE (M = 4.46, SD = 1.188; F(7, 412) = 3.864, p < .000) seems to have made the most emotional decision.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	35.985	7	5.141	3.864	.000
Within Groups	548.156	412	1.330		
Total	584.140	419			

Table 66_(Study 4) ANOVA Results

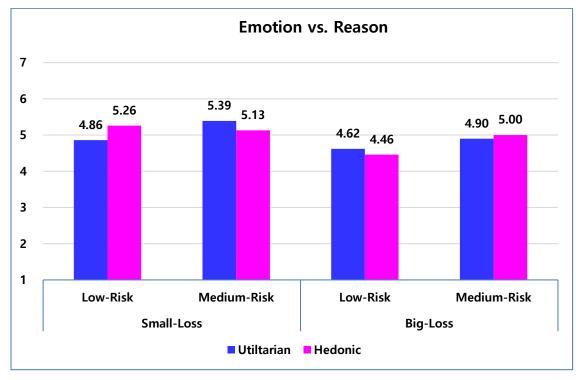


Figure 30_(Study 4) Decision-Making Reliance between Emotion vs. Reason

Decision-Making Reliance: 1 = 'Using only Emotion' to 7 = 'Using only Reason'.

Conditions		Decision-Making Reliance
	LRUE	Reason
Small-Loss	LRHE	Reason
Siliali-L088	MRUE	Reason
	MRHE	Reason
	LRUE	Neutral
Big Loss	LRHE	Neutral
Big-Loss	MRUE	Reason
	MRHE	Reason

Table 67_(Study 4) Decision-Making Reliance

Post Hoc Analysis

It was found that there was a significant difference in the decision-making base, depending on the conditions (p < .000). In particular, as the result of Dunnett T3 (equal variances not assumed), there was a significant difference among groups in SMRUE, BLRHE, and BLRUE. In detail, the condition of BLRHE showed the lowest mean on the participant's relative emotional choice reliance.

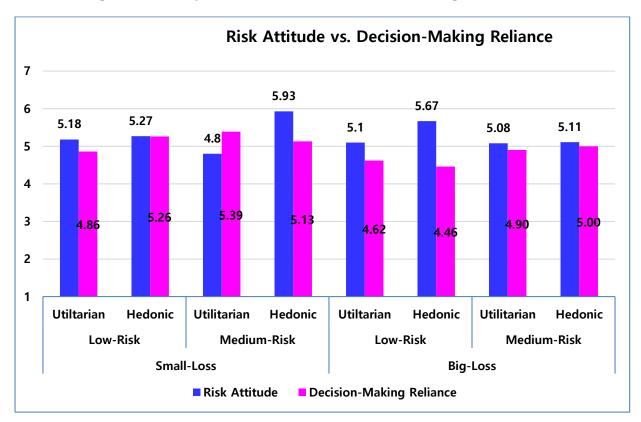
DV	Conditions	Mean	Std. Deviation	F-vale/Sig.	Dunnett T3
	SLRUE (a)	4.86	1.313		
	SLRHE (b)	5.26	.839		c > f, e
Decision-	SMRUE (c)	5.39	1.369	3.864/ .000	
Making	SMRHE (d)	5.13	1.087		
Reliance	BLRUE (e)	4.62	.887	5.804/ .000	
Kenance	BLRHE (f)	4.46	1.188		
	BMRUE (g)	4.90	1.180		
	BMRHE (h)	5.00	1.125		

Table 68_(Study 4) Post Hoc Analysis

Table 69_(Study 4) Post Hoc Analysis: Multiple Comparisons

Dependent variable: Decision-Making Relative Reliance between Emotion vs. Reason Dunnett T3

		Mean			95% Confidence		
(I)	I) (J) Difference		Std.	Sig.	Interval		
Conditions	Conditions	(I-J)	Error	515.	Lower	Upper	
		(1-3)			Bound	Bound	
	SLRHE	408	.211	.779	-1.08	.27	
	SMRUE	532	.256	.659	-1.35	.29	
	SMRHE	272	.229	.999	-1.01	.46	
SLRUE	BLRUE	.239	.215	1.000	45	.93	
	BLRHE	.396	.241	.940	37	1.16	
	BMRUE	039	.245	1.000	82	.74	
	BMRHE	143	.242	1.000	92	.63	
SLRHE	SLRUE	.408	.211	.779	27	1.08	


	SMRUE	124	.220	1.000	83	.58
	SMRHE	.135	.189	1.000	47	.74
	BLRUE	.647*	.171	.007	.10	1.19
	BLRHE	.803*	.202	.004	.16	1.45
	BMRUE	.369	.207	.874	30	1.03
	BMRHE	.532	.204	.996	39	.92
	SLRUE	.532	.256	.659	29	1.35
	SLRHE	.124	.220	1.000	58	.83
	SMRHE	.259	.238	1.000	50	1.02
SMRUE	BLRUE	.771*	.224	.024	.05	1.49
	BLRHE	.927*	.249	.009	.13	1.72
	BMRUE	.493	.252	.761	31	1.30
	BMRHE	.389	.250	.966	41	1.19
	SLRUE	.272	.229	.999	46	1.01
	SLRHE	135	.189	1.000	74	.47
	SMRUE	259	.238	1.000	-1.02	.50
SMRHE	BLRUE	.512	.193	.223	11	1.13
	BLRHE	.668	.221	.084	04	1.38
	BMRUE	.234	.226	1.000	49	.96
	BMRHE	.130	.223	1.000	58	.84
	SLRUE	239	.215	1.000	93	.45
	SLRHE	647*	.171	.007	-1.19	10
	SMRUE	771*	.224	.024	-1.49	05
BLRUE	SMRHE	512	.193	.223	-1.13	.11
	BLRHE	.156	.206	1.000	50	.82
	BMRUE	278	.211	.995	95	.40
	BMRHE	382	.208	.841	-1.05	.28
	SLRUE	396	.241	.940	-1.16	.37
	SLRHE	803*	.202	.004	-1.45	16
	SMRUE	927*	.249	.009	-1.72	13
BLRHE	SMRHE	668	.221	.084	-1.38	.04
	BLRUE	156	.206	1.000	82	.50
	BMRUE	434	.237	.846	-1.19	.32
	BMRHE	538	.234	.469	-1.29	.21
	SLRUE	.039	.245	1.000	74	.82
	SLRHE	369	.207	.874	-1.03	.30
BMRUE	SMRUE	493	.252	.761	-1.30	.31
	SMRHE	234	.226	1.00	96	.49
	BLRUE	.278	.211	.995	40	.95

	BLRHE	.434	.237	.846	32	1.19
	BMRHE	104	.238	1.000	87	.66
	SLRUE	.143	.242	1.000	63	.92
	SLRHE	265	.204	.996	92	.39
	SMRUE	389	.250	.996	-1.19	.41
BMRHE	SMRHE	130	.223	1.000	84	.58
	BLRUE	.382	.208	.841	28	1.05
	BLRHE	.538	.234	.469	21	1.29
	BMRUE	.104	.238	1.000	66	.87

* The mean difference is significant at the 0.05 level.

In the big-loss condition, the participant made their decisions relatively emotion-

based compared to the small-loss condition.

Figure 31_(Study 4) Risk Attitude vs. Decision-Making Reliance

Risk Attitude: 1 = '*Risk-Taking*' to 7 = '*Risk-Averse*' Decision-Making Reliance: 1 = '*Using only Emotion (System 1)*' to 7 = '*Using only Reason (System 2)*'.

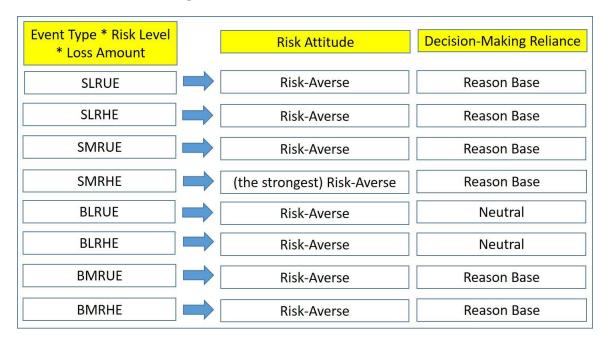


Figure 32_Research Model and Results

4.4.2.5 Decision-Making Reliance with LR Scale

Moderated Regression Analysis

When the regression analysis was completed by intervening PANAS-SF scale as a moderated variable, it was found that the PANAS scale showed a significant difference in seven (8) conditions; SLRHE (PA, NA), SMRUE (PA, NA), BLRUE (PA, NA), BLRHE (PA, NA) (see Table 70). As in Study 4 (4.3.2.5), the same analysis was conducted.

				Adjusted	Std. Error of	Change Statistics				
Condition	Model	R	R ²	R ²	the Estimate	R ²	F	df	df	Sig F.
				R ² the Estimate	Change	Change	1	2	Change	
SLRUE	1	.315 ^a	.099	.082	1.88154	.099	5.944	1	54	.018
(PA)	2	.360 ^b	.130	.097	1.86693	.030	1.848	1	53	.180
(IA)	3	. 368 ^c	.135	.085	1.87854	.006	.347	1	52	.558
SLRUE	1	.315 ^a	.099	.082	1.88154	.099	5.944	1	54	.018

(NA)	2	.315 ^b	.099	.065	1.89910	.000	.066	1	53	.939
(117)	3	.315 .330 ^c	.1099	.003	1.99711	.000	.000	1	52	.939
	1	.530	.262	.037	1.75520	.262	17.422	1	49	.000
SLRHE	2	.512 .529 ^b	.202	.247	1.75157	.202	1.203	1	49	.000
(PA)	3	.529°	.280	.230	1.68322	.018	4.978	1	40	.030
	1	.591	.262	.308	1.08322	.009	17.422	1	47	.030
SLRHE	2	. 606 ^b	.202	.247	1.642	.105	7.980	1	49	.000
(NA)	3	.649 ^c	.307	.341	1.588	.103	4.308	1	48	.007
	1	.521 ^a	.421	.384	1.35374	.033	19.351	1	52	.043
SMRUE			.359	.237	1.28198	.088	6.984	1	51	.000
(PA)	2	.599 ^b								
	3	.641 ^c	.411	.376	1.24.97	.052	4.426	1	50	.040
SMRUE	1	.521 ^a	.271	.257	1.35374	.271	19.351	1	52	.000
(NA)	2	.521 ^b	.272	.243	1.36667	.000	8.021	1	51	.006
	3	.525 ^c	.276	.233	1.37006	.004	5.307	1	50	.038
SMRHE	1	.301 ^a	.090	.073	1.84079	.090	5.165	1	52	.027
(PA)	2	. 309 ^b	.095	.060	1.85337	.005	.274	1	51	.603
. ,	3	.315 ^c	.099	.045	1.86802	.004	.255	1	50	.637
SMRHE	1	.301 ^a	.090	.073	1.84079	.090	5.165	1	52	.027
(NA)	2	.369 ^b	.136	.102	1.81168	.045	2.685	1	51	.107
(1 (1 1)	3	.374 ^c	.140	.088	1.82526	.004	.244	1	50	.624
BLRUE	1	.460 ^a	.211	.195	1.48231	.211	13.128	1	49	.001
(PA)	2	. 542 ^b	.294	.264	1.41731	.082	5.597	1	48	.022
(171)	3	. 598 ^c	.358	.317	1.36537	.064	4.721	1	47	.035
BLRUE	1	.460 ^a	.211	.195	1.48231	.211	13.128	1	49	.001
(NA)	2	.466 ^b	.217	.184	1.49252	.005	.332	1	48	.567
(111)	3	. 558 ^c	.311	.267	1.41448	.094	6.441	1	47	.015
BLRHE	1	.257 ^a	.066	.047	1.626	.066	13.524	1	50	.066
(PA)	2	.257 ^b	.066	.028	1.642	.000	7.004	1	49	.652
(IA)	3	. 258 ^c	.067	.008	1.658	.001	1.033	1	48	.040
	1	.257 ^a	.066	.047	1.626	.066	3.524	1	50	.066
BLRHE (NA)	2	. 257 ^b	.066	.028	1.642	.000	.001	1	49	.979
(INA)	3	. 295 ^c	.087	.030	1.640	.021	1.099	1	48	.030
DMDUE	1	.548 ^a	.300	.285	1.23118	.300	19.751	1	46	.000
BMRUE	2	. 552 ^b	.304	.274	1.24114	.004	.265	1	45	.609
(PA)	3	. 553 ^c	.306	.258	1.25399	.001	.082	1	44	.775
	1	.548 ^a	.300	.285	1.23118	.300	19.751	1	46	.000
BMRUE	2	.556 ^b	.309	.278	1.23715	.009	.557	1	45	.459
(NA)	3	. 588 ^c	.345	.301	1.21770	.036	2.449	1	44	.125
D) (7	1	.505 ^a	.255	.241	1.31829	.255	17.816	1	52	.000
BMRHE	2	.613 ^b	.376	.352	1.21818	.121	9.898	1	51	.003
(PA)	3	.616 ^c	.379	.342	1.22728	.003	.246	1	50	.622
	1	.505 ^a	.255	.241	1.31829	.255	17.816	1	52	.000
BMRHE	2	.544 ^b	.296	.269	1.29403	.041	2.968	1	51	.091
(NA)	3	.556 ^c	.310	.268	1.29438	.013	.972	1	50	.329
	5			.200	1.27130	.015	.,,,_	-	20	.527

Conditions	PA	NA
SLRHE	4.13	2.91
SMRUE	3.7	2.66
BLRUE	2.79	3.87
BLRHE	3.8	4.43

Table 71_(Study 4) PANAS-SF Means

LR Scale: 1 = 'Strongly Disagree' to 6 = 'Strongly Agree'.

The table above shows the comparison of the mean of the PANAS-SF scale between groups showing the significant differences in moderated regression analysis. These results derive the following results. When comparing the loss size, the tendency to avoid risk in the case of big-loss appears to be a negative emotion, whereas, in small-loss, the tendency to avoid risk is based on positive emotions.

CHAPTER 5 GENERAL DISCUSSION

This research studies how individuals perceive risky situations, and after that, how they make choices.

Many studies have been conducted to understand, interpret, and predict human behavior, but errors that deviate from predictions have always appeared. People do not always rationally make optimal choices. Sometimes their decision based on intuitions or heuristics leads to better outcomes. Thus, what factors influence human decision-making, especially under risk?

Although many researchers have made great efforts to find variables that influence decision-making, errors still occur, and situational variables hinder prediction optimization. My dissertation also started to solve these problems. Notably, under risk, how people's decisions are made, what variables are affected, and how to increase an individual's attention to (even low-probability) risky situation and draw their choice to actively engage in precautionary behavior before misfortune arise. I believe that this preventive behavior can reduce the burden of cost to society. Furthermore, based on the results of this research, effective risk communication can be proposed.

To this purpose, this research has been examined decision-making under risk such as travel insurance (study 1), flood insurance (study 2), will you go to a risky place? (study 3), and used-car extended warranty choice (study 4) through Amazon Mechanical Turk (Survey-based experiments).

In Study 1, I tested hypothesis 1. Even though the level of risk probability and the type of risky event are two essential factors affecting decision-making, respectively, there is no research exploring the interplay between these two variables on consumer decision-

making under risk. I have successfully observed that the interaction of two variables yields different results, unlike conventional economy theory (e.g., *Expected Utility Theory*). LRHE (low-risk with hedonic-event) showed the highest willingness to purchase insurance to avoid risk (risk-averse attitude). *Construal Level Theory* and *Prospect Theory* has introduced this explanation before; however, in reality, people might disregard a low-probability risk event and tend to take the low-probability risk.

Moreover, people showed risk-taking behavior with hedonic-benefits because they seek cheerfulness and excitement (Chitturi, 2008). However, in Study 1, we should note that people want to avoid it even at low-probability risk levels, especially in HEDONIC events rather than utilitarian events. Moreover, these results also strongly support *Risk-as-Feeling Hypothesis*. This hypothesis is that if people perceive a risk emotionally, it becomes insensitive to the level of risk probability. Therefore, individuals show strong risk-averse attitudes even at a low-level of risk probability. As the last part of Study 1, when asking the basis for the decision-making reliance, it was found that the most emotional judgment made LRHE (the strongest risk-averse attitude)'s decision. Therefore, hypothesis 1 was accepted.

In Study 2, I tested hypothesis 2. Study 2 also reputedly proved that people having hedonic-event with low-probability risk tend to avoid risk strongly. After applying one more variable, the amount of loss, people show a slightly different attitude. When comparing big-loss versus small-loss, people tend to be more risk-averse when they perceived small-loss. Furthermore, it turns out that this judgment is based on more rational thinking than on a big-loss condition. It is explained that the amount of loss acts as an essential variable in risk perception, and it can be linked to the explanation that people's reliance on decision-making has changed after recognizing the extent of the outcome loss. Therefore, hypothesis 2 was accepted.

In Study 3, I examined the hypothesis; the decision-making under risk depends on the person's usual personality and traits, either emotional or rational. When analyzing attitudes under risk through Study 1 and Study 2, it was confirmed that the choice was made by emotion or reason-based. However, in order to test whether such rational or emotional judgment is determined by what people feel at the moment of the experiment or is due to the usual individual's personality, the experiment was conducted by introducing a Lay Rationalism (LR) Scale representing the degree of rationalization of an individual as a moderated variable. The test results revealed that human beings depend on the sound of the heart (*System 1*) or the logic from the head (*System 2*) at the moment of exposure to risk rather than their usual personality or propensity.

In conclusion, whether an individual depends on the heart's sound or the logic in the head when making a decision is more dependent on the variable context of each experimental condition. Therefore, this result presents an essential message on risk communication. No matter how reasonable or emotional you are usually, you can make different choices when making choices under risk, depending on the variable of information you have. Thus, hypothesis 3 was rejected.

For hypothesis 4, all studies (studies 1 to 4 tested decision-making reliance between emotion vs. reason, but the result was partly accepted across the studies. Under small-loss, people follow rational judgment (*System 2*) to avoid risk, whereas, under big-loss,

- 129 -

they listen to emotional judgment (*System 1*) to avoid risk. There is a need to continue research in this area.

In the previous studies, the effect of interaction between various variables was confirmed, and it was proved that the final choice was changeable in reliance (emotion vs. reason) generated while decision-making. Here, more specifically, I have a desire to study which emotion is most effective and most influential in making optimal choices under risk. For this purpose, Study 5 was tested. This study makes impressive results that people activate negative emotions to avoid risk under the big-loss area, whereas they activate positive emotions to avoid risk under small-loss.

When comparing the loss size, the tendency to avoid risk in the case of big-loss appears to be a negative emotion, whereas, in small-loss, the tendency to avoid risk is based on positive emotions. The result of this study also presents necessary signals for risk communication. To prepare for the risk under big-loss, it is possible to show a riskaverse attitude by conveying negative emotions to people. On the other hand, in a small loss scenario, raising positive emotions can lead to a risk-averse attitude.

Hedonic benefit seeks to maintain positive emotions. Thus, even though people have a low-probability risky event, but the event has hedonic benefit, people would try to avoid risk not to lose positive emotions. Besides, as in *Risk-as-Feelings*, if individuals perceive risk as an emotion, it is interpreted that people feel it strongly and take action regardless of the probability level of occurrence. Therefore, hypotheses 5 and 6 were accepted. The contributions of this research are six fold.

First of all, most research papers about consumer decision-making under risk have been studied in the gain domain, whereas this study has examined it in the field of loss domain.

Secondly, even though considering utilitarian or hedonic attributes as one variable is a prevalent and useful concept from marketing, it hardly has been used in the research about consumer decision-making under risk. Therefore, I have employed it as an independent variable.

Thirdly, the amount of loss could affect consumers' risk perception and attitudes.

Fourthly, one suggestion for effective risk communication is that people are more dependent on their condition when decision-making than their usual personality or propensity (either emotion person or rational person). According to the results of this study, it was confirmed that people are strongly trying to avoid the risk in a design in which all of these variables (even a hedonic consumption, a low-probability risk occurrence, and small-loss risk) have interacted.

Next, this research suggests a salient, fresh, and new approach (Listen to your Head or Heart?) to interpret people's risk perception and to predict precautionary behavior under risk. The results show that even though people have a low-probability risk and hedonic event, their decision-making about big-loss risk depends on emotional factors (*System 1*, from Heart), whereas the choice about small-loss risk relies on rational thoughts (*System 2*, from Head).

Finally, the experiment gives an exciting result: to avoid risk in big-loss (negative emotion) and small-losses (positive emotions), people trigger different emotions.

As a limitation of this paper, it is necessary to further analyze consumers' risk perceptions and attitudes by diversifying loss areas. Each variable (e.g., event type, risk probability level, loss amount, decision-making reliance) was continuously measured through four studies, but further research is needed to determine what emotion (positive versus negative) is more active and intervene in the final decision-making under risk.

REFERENCES

- Armor, David A. and Aaron M. Sackett (2006), "Accuracy, Error, and Bias in Predictions for Real versus Hypothetical Events," *Journal of Personality and Social Psychology*, 91, 583-600.
- Batra, Rajeev and O.T. Ahtola (1990), "Measuring the Hedonic and Utilitarian Sources of Consumer Attitudes," *Marketing Letters*, 2 (2), 159-70.
- Briggs, R. A. https://plato.stanford.edu/entries/rationality-normative-utility/
- Bryant, Peter and Richard Dunford (2008), "The Influence of Regulatory Focus on Risky Decision-Making," *Applied Psychology*, 57 (2), 335-59.
- Byrnes, James P., David C. Miller, and William D. Schafer (1999), "Gender differences in risk taking: A meta-analysis," *Psychological Bulletin*, 125 (3), 367-83.
- Chitturi, Ravindra, Rajagopal Raghunathan, and Vijay Mahajan (2007), "Form Versus Function: How the Intensities of Specific Emotions Evoked in Functional Versus Hedonic Trade-Offs Mediate Product Preferences," *Journal of Marketing Research*, 44 (11), 702-14.

_ (2008), "Delight by

Design: The Role of Hedonic Versus Utilitarian Benefits," *Journal of Marketing*, 72 (3), 48-63.

- Croson, Rachel and Uri Gneezy (2009), "Gender Differences in Preferences," *Journal of Economic Literature*, 47 (2), 448-74.
- Damasio AR (1994), *Descartes' error: emotion, reason, and the human brain*, New York: Grosset/Putnam.
- Dhar, Ravi and Klaus Wertenbroch (2000), "Consumer Choice Between Hedonic and Utilitarian Goods," *Journal of Marketing Research*, 37 (2), 60-71.

- Dietrich, Cindy (2010), "Decision Making: Factors that Influence Decision Making, Heuristics Used, and Decision Outcomes," *Inquiries Journal/Student Pulse*, 2 (2). Retrieved from http://www.studentpulse.com/a?id=180
- Ellsberg, Daniel (1961), "Risk, Ambiguity, and the Savage Axioms," *Journal of Economics*, 75 (4), 643-69.
- Evan, J. ST., Julie L. Barston, and Paul Pollard (1983), "On the conflict between logic and belief in syllogistic reasoning," *Memory and Cognition*, 11 (3), 295-306.
- Harries, Tim (2012), "The anticipated emotional consequences of adaptive behaviorimpacts on the take-up household flood-protection protective measures," *Environmental Planning A: Economy and Space*, 44, 649-68.
- Hertwig, Ralph, Greg Barron, Elke. U.Weber, and Ido Erev (2004), "Decisions from experience and the effect of rare events in risky choice," *Psychological Science*, *15*, 534–39.
- Hsee, Christopher, Yang Yang, Xingshan Zheng, and Hanwai Wang (2015), "Lay Rationalism: Individual Difference in Using Reason Versus Feelings to Guide Decisions," *Journal of Marketing Research*, 52 (1), 134-46.
- Hsee, Christopher and Yuval Rottenstreich (2004), "Music, Pandas, and Muggers: On the Affective Psychology of Value," *Journal of Experimental Psychology: General*, 133 (1), 23-30.
- Jullisson, E.Asgeir, Niklas Karlsson, and Tommy Garling (2005), "Weighing the past and the future in decision making," *European Journal of Cognitive Psychology*, 17 (4), 561-75.
- Kahneman, Daniel (2011), Thinking, Fast and Slow, Farrar, Straus, and Giroux.
- Kahneman, Daniel and Amos Tversky (1979), "Prospect Theory: an analysis of decision under risk," *Econometrica*, 47, 263-91.

- Kahneman, Daniel and Shane Frederick (2007), "Frames and brains: Elicitation and control of response tendencies," *Trends in Cognitive Sciences*, 11 (2), 45-46.
- Kandasamy, Narayanan, Ben Hardy, Lionel Page, Markus Schaffner, Johann
 Graggaber, Andrew S. Powlson, Paul C. Fletcher, Mark Gurnell, and John Coates
 (2014), "Cortisol shifts financial risk preferences," *Proceedings of the National Academy of Sciences of the United States of America*, 111 (9), 3608-13.
- Kim, Hyunji, Simone Schenall, and Mathew P. White (2013), "Similar psychological distance reduces temporal discounting," *Personality and Social Psychology Bulletin*, 39 (8), 1005-16.
- Kuhberger, Anton (2011), "Framing effects in theory and in practice," *Optimization and Operations Research*, 5.
- Kuhberger, Anton and Carmen Tanner (2010), "Risky choice framing: Task versions and a comparison of prospect theory and fuzzy-trace theory," *Journal of Behavioral Decision Making*, 23 (3), 314-29.
- Kurnianingsih, Yoanna A. and O'Dhaniel A. Mullette-Gillman (2015), "Divergence and Convergence of Risky Decision Making Across Prospective Gains and Losses: Preferences and Strategies," *Frontiers in Neuroscience*, 9 (457).
- Kusev, Petko, Harry Purser, Renata Heilman, Alex J. Cooke, Paul van Schaik, Victoria Baranova, Rose Martin, and Peter Ayton (2017), "Understanding Risky Behavior: The Influence of Cognitive, Emotional and Hormonal Factors on Decision-Making under Risk," *Frontiers in Psychology*, 8 (102).
- Kusev, Petko and Paul van Schaik (2011), "Preferences under risk: content-dependent behavior and psychological processing," *Frontiers in Psychology*, 2 (269).
- Kusev, Petko, Paul van Schaik, Krasimira Tsaneva-Atanasova, Asgeir Juliusson, and Nick Chater (2018), "Adaptive anchoring model: how static and dynamic

presentation of time series influence judgements and prediction," *Cognitive Science*, 42 (1), 77-102.

- Kusev Petko, Paul van Schaik, Peter Ayton, John Dent, and Nick Chater (2009),
 "Exaggerated risk: prospect theory and probability weighting in risky choice,"
 Journal of Experimental Psychology Learning Memory and Congition, 35 (5), 1487–1505.
- Kusev, Petko, Paul van Schaik, Shrooq Alzahrani, Samantha Lonigro, and Harry Purser (2016), "Juding the morality of utilitarian actions: how poor utilitarian accessibility makes judges irrational," *Psychonomic Bulletin and Review*, 23 (6), 1961-67.
- Kusev, Petko, Paul van Schaik, and Silvio Aldrovandi (2012), "Preferences induced by accessibility: evidence from priming," *Journal of Neuroscience Psychology and Economics*, 5, 250-58.
- Lermer, Eva, Bernhard Streicher, Rainer Sachs, Martina Raue, and Dieter Frey (2014), "The effect of construal level on risk-taking," *European Journal of Social Psychology*, 45, 99-109.
- Lerner, Jennifer S. and Dacher Keltner (1999). "How much risk can you handle? Testing the appraisal tendency hypothesis with fearful, angry, and happy people," Manuscript submitted for publication.

(2000), "Beyond valence: Toward a model of emotion-specific influences on judgement and choice," *Cognition and Emotion*, 14 (4), 473-93.

- Levin, Irwin P., Sandra L. Schneider, and Gary J. Gaeth (1998), "All frames are not created equal; A typology and critical analysis of framing effects," *Organizational Behavior and Human Decision Processes*, 76(2), 149-88.
- Loewenstein, George F., Elke U. Weber, Christopher. K. Hsee, and Ned Welch (2001), "Risk as feelings," *Psychological Bulletin*, 127 (2), 267-86.

- May, Frank (2017), "The Effect of Future Event Markers on Intertemporal Choice Is Moderated by the Reliance on Emotions versus Reason to Make Decision," *Journal* of Consumer Research, 44, 313-31.
- Mishra, Sandeep and Laurence Fiddick (2012), "Beyond Gains and Losses: The Effect of Need on Risky Choice in Framed Decision," *Journal of Personality and Social Psychology*, 102 (6), 1136-47.
- Newell, Benjamin R. (2015), "Decision making under risk: Beyond Kahnemann and Tversky's (1979) prospect theory," *Cognitive Psychology: Revisiting The Classic Studies*, eds. Michael W. Eysenck and David Groome, CA: SAGE, 162-78.
- Newell, Benjamin R, David A. Lagnado, and David R. Shanks (2007), *Straight Choices: The Psychology of Decision Making*. Psychology Press.
- Newall, Philip. W. S. (2015), "How bookies make your money," *Judgement and Decision Making*, 10 (3), 225-31.
- O'Donoghue, Ted and Jason Somerville (2018), "Modeling Risk Aversion in Economics," *Journal of Economic Perspectives*, 32 (2), 91–114
- Petrova, Dafina G., Joop van der Pligt, and Rocio Garcia-Retamero (2014), "Feeling the numbers: on the interplay between risk, affect, and numeracy," *Behavioral Decision Making*, 27, 191-99.
- Pham, Michel (1998), "Representativeness, Relevance, and the Use of Feelings in Decision Making," *Journal of Consumer Research*, 25 (2), 144-59.
- Raghunathan, Rajagopal and Michel Tuan Pham (1999), "All negative moods are not equal: Motivational influences of anxiety and sadness on decision-making,"
 Organizational Behavior and Human Decision Processes, 79 (1), 56-77.

- Raue, Martina, Berhnhard Streicher, Eva Lermer, and Dieter Frey (2015), "How far does it feel? Construal level and decisions under risk," *Journal of Applied Research in Memory and Cognition*, 4, 256-64.
- Robert, David (2018), "Expected Comparative Utility Theory: A New Theory of Rational Choice," *Philosophical Forum*, 49 (1), 19-37.
- Rottenstreich, Yuval and Christopher K. Hsee (2001), "Money, Kisses, and Electric Shocks: On the Affective Psychology of Risk," *Psychological Science*, 12 (3), 185-90.
- Sagristano, Michael. D., Trope, Yaacov, and Nira Liberman (2002). "Time dependent gambling: Odds now, money later," *Journal of Experimental Psychology General*, 131, 364-76.
- Schwarz, Norbert and Gerald Clore (2007), "Feelings and Phenomenal Experiences," in Social Psychology: Handbook of Basic Principles, ed. Torry Higgins and Arie Kruglanski, New York: Guilford, 385-407.
- Shah, Anuj K. and Daniel M. Oppenheimer (2008), "Heuristics made easy: An effortreduction framework," *Psychological Bulletin*, 134 (2), 207-222.
- Shiv, Baba and Alexander Fedorikhin (1999), "Hear and Mind in Conflict: The Interplay of Affect and Cognition in Consumer Decision Making," *Journal of Consumer Research*, 26 (3), 278-92.
- Slovic, Paul (1987), "Perception of Risk," Science, 236, 280-85.
- Stewart, Neil, Nick Chater, and Gordon D. A. Brown (2006), "Decision by sampling," Cognitive Psychology, 53 (1), 1-26.
- Strahilevitz, Michal and John G. Myers (1998), "Donations to Charity as Purchase Incentives: How Well They Work May Depend on What You Are Trying to Sell," *Journal of Consumer Research*, 24 (4), 434-4

- Streicher, B, E. Lermer, R. Sachs, D. Frey (2012) "How abstract and concrete thinking helps to improve risk assessment and risk behavior," Paper presented at the seventh national science foundation (NSF)-Deutsche Forschungsgemeinschaft (DFG) research conference, reckoning with the risk of catastrophe, October 3-5, Washington, DC.
- Tennyson, Sharon and Hae Kyung Yang (2014), "The role of life experience in long-term care insurance decision," *Journal of Economic Psychology*, 42, 175-88.
- Trautmann, S. T. and G. van de Kuilen (2012), "Prospect Theory or Construal Level Theory? Diminishing Sensitivity vs. Psychological Distance in Risky Decision," Acta Psychologica, 139, 254-60.
- Trope, Yaacov and Nira Liberman (2010), "Construal-level theory of psychological distance," *Psychological Review*, 117 (2), 440-63.
- Trope Yaacov, Nira Liberman, and Cheryl J Wakslak (2007), "Construal levels and psychological distance: Effects on representation, prediction, evaluation, and behavior," *Journal of Consumer Psychology*, 17 (2), 83-95.
- Turel, Ofir and Hamed Qahri-Saremi, "Problematic Use of Social Networking Sites: Antecedents and Consequences from a Dual-System Theory Perspective," *Journal of Management Information System*, 33 (4), 1087-1116.
- Tversky, Amos and Daniel Kahneman (1974), "Judgment under uncertainty: Heuristics and biases," *Science*, 185 (4157), 1124–31.

_____ (1981), "The framing of decisions and the psychology of choice," *Science*, 21 (1), 453-58.

_____ (1986), "Rational Choice and the Framing of Decision," *The Journal of Business*, 59 (4), Part 2: The Behavioral Foundations of Economic Theory, 251-78.

______ (1992), "Advances in prospect theory: cumulative representation of uncertainty," *Journal of Risk and Uncertainty*, 5, 297–323.

- Tversky Amos and Peter P. Wakker (1995), "Risk attitudes and decision weights," *Econometrica*, 63, 1255-80.
- Vlaev, Ivo, Petko Kusev, Neil Stewart, Silvio Aldrovandi, and Nick Chater (2010), "Domain effects and financial risk attitudes," *Risk Analysis*, 30, 1374–86.
- von Neumann John and Oskar Morgenstern (1947), *Theory of Games and Economic Behavior*. Princeton, NJ: Princeton University Press.
- Wakslak, Cheryl and Yaacov Trope (2009), "The effect of construal level on subjective probability estimates," *Psychological Science*, 20 (1), 52-58.
- Watson, D., Clark, L. A., and Tellegen, A. (1998). "Development and Validation of Brief Measure of Positive and Negative Affect: the PANAS scale," *Journal of Personality* and Social Psychology, 54 (6), 1063.
- West, Richard F., Maggie E. Toplak, and Keith E. Stanovich (2008), "Heuristics and biases as measures of critical thinking: Associations with cognitive ability and thinking dispositions," *Journal of Educational Psychology*, 100 (4), 930-41.
- Zak, Paul J., Angela A. Stanton, and Sheila Ahmadi (2007), "Oxytocin increases generosity in humans," *PLoS ONE*, 2 (11).