
ON ASYMPTOTICALLY OPTIMAL REINFORCEMENT
LEARNING

by

DANIEL PIRUTINSKY

A dissertation submitted to the

Graduate School - Newark

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Management

written under the direction of

Professors Michael N. Katehakis and C. Wesley Cowan

and approved by

Newark, New Jersey

October, 2020

c© 2020

Daniel Pirutinsky

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

On Asymptotically Optimal Reinforcement Learning

By Daniel Pirutinsky

Dissertation Director:

Professors Michael N. Katehakis and C. Wesley Cowan

We consider the problem of minimizing the long term average expected regret of an agent

in an online reinforcement learning environment. In particular, we model this as a Markov

Decision Process (MDP) where the underlying transition laws are unknown. There have been

many recent successful applications in this area as well as many recent advances in theoretical

techniques. However, there still is a significant gap between rigorous theoretical techniques

and those that are in actual use. This work represents a step towards shrinking that gap.

In the first part we develop a set of properties sufficient to guarantee that any policy satis-

fying them will achieve asymptotically minimal regret (up to constant factor of the logarithmic

term). The goal in this is to, rather than simply add one more learning policy to the mix, build

a flexible framework that may be adapted to a variety of estimative and adaptive policies that

are already in use and grant confidence in the performance. To that aim, this work lays the

groundwork for what we believe is a useful technique for proving asymptotically minimal rate

of regret growth. The conditions are presented here along with hints for how a verifier may

prove that their particular algorithm satisfies these conditions. The ideas in this work build

strongly on those of [1].

In the second part of this work, we derive an efficient method for computing the indices as-

sociated with an asymptotically optimal upper confidence bound algorithm (MDP-UCB) of [1]

ii

that only requires solving a system of two non-linear equations with two unknowns, irrespective

of the cardinality of the state space of the MDP. In addition, we develop the MDP-Deterministic

Minimum Empirical Divergence (MDP-DMED) algorithm extending the ideas of [2] for the

Multi-Armed Bandit (MAB-DMED) and we derive a similar acceleration for computing these

indices that involves solving a single equation of one variable. We provide experimental results

demonstrating the computational time savings and regret performance of these algorithms. In

these comparison we also consider the Optimistic Linear Programming (OLP) algorithm [3]

and a method based on Posterior (Thompson) sampling (MDP-PS).

iii

Acknowledgements

This dissertation and my entire educational journey has only been possible because of the assi-

tance of many. While impossible to name everyone who has contributed, I will do my best. I

acknowledge and thank the following.

Dr. Michael Katehakis, for taking a chance on me despite my non-traditional background

and encouraging me to pursue a doctorate. Your decision to support me has changed my life

for the better in ways that are hard to overstate. Thank you for believing in me.

Dr. Wesley Cowan, without whom I would never have completed this work. Thank you

for the countless hours spent discussing the topics herein, arguing over technical minutiae, and

helping form the foundation that this thesis is built upon. Your friendship is one that I will

always cherish.

Luz Kosar and Monnique DeSilva your assistance in getting things done and navigating

campus issues as they came up has been invaluable. James Poinsett for introducing me to

the wider world of ’secular’ higher education, helping me forge connections, and giving me

confidence in my own abilities.

Footsteps for being the resource I continue to lean on when things get rough. I cannot think

of another group of humans who have collectively done more to help me grow into who I am

today. Jewish Queer Youth, Eshel, and Young Advocates for Fair Education, both for what

you have done for me personally, and for what you do to assist others like me. Your work is

honorable, valuable, and sadly, desperately needed.

My co-parent Esti, who, battered by the storm of my changing personal life, met the chal-

lenge with kindness, love, and understanding. You have always put the needs of our children

first and kept them healthy, happy, stable, and loved. I know it has not been easy for you. Thank

you for making our kids life, and by extension mine, so rewarding.

Lastly, my children Aliza and Nechama, who consistently inspire me to do better.

iv

Dedication

To those who bend the arc of the moral universe towards greater equality.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

1. Introduction, Background, and Formulation 1

1.1. Introduction . 1

1.2. Reinforcement Learning Related Works . 2

1.3. Formulation . 2

1.3.1. MDPs under Complete Information 4

1.3.2. MDPs under Partial Information and Regret 5

2. Sufficient Conditions for Asymptotically Optimal Reinforcement Learning . . . 7

2.1. Introduction . 7

2.1.1. Related Work . 7

2.1.2. Chapter Structure . 8

2.2. Sampling Rates . 8

2.3. Estimating the Unknown Probabilities . 11

2.4. Preliminaries . 15

2.4.1. Regularity . 15

2.4.2. MDP Ordering . 17

2.5. Optimal Balancing of Exploration and Exploitation 17

2.5.1. Sufficient Exploration . 18

2.5.2. Sufficient Exploitation . 19

2.6. Sufficient Conditions . 19

2.7. Main Theorem and Proof . 23

vi

2.8. Future Work . 29

2.9. Event Lemmas and Proofs . 30

2.9.1. Minimally Sampled Counts . 30

2.9.2. Good Estimation Lemmas and Proofs 31

2.9.3. Regularity Lemmas and Proofs . 35

3. Accelerating the Computation of UCB and Related Indices for Reinforcement

Learning . 38

3.1. Introduction . 38

3.1.1. Related Work . 38

3.1.2. Chapter Structure . 40

3.1.3. Notation . 41

3.2. Algorithms for Optimal Exploration . 41

3.2.1. A UCB-Type Algorithm for MDPs Under Uncertain Transitions 42

3.2.2. A Deterministic Minimum Empirical Divergence Type Algorithm for

MDPs Under Uncertain Transitions 44

3.2.3. Optimistic Linear Programming, Another UCB-Type Algorithm for

MDPs Under Uncertain Transitions 45

3.2.4. A Thompson-Type Algorithm for MDPs Under Uncertain Transitions . 46

3.3. Accelerating Computation . 47

3.3.1. MDP-UCB . 47

3.3.2. MDP-DMED . 49

3.3.3. OLP . 50

3.3.4. MDP-PS . 51

3.3.5. Computation Time Comparison . 51

3.4. Comparison of Performance . 53

3.4.1. Algorithm Robustness—Inaccurate Priors 55

3.5. Conclusion and Future Work . 56

3.6. Proof of Theorems of Section 3.3 . 57

vii

3.6.1. Proof of Theorem 2 . 57

3.6.2. Proof of Theorem 3 . 58

3.6.3. Proof of Theorem 4 . 63

3.6.4. Proof of Theorem 5 . 64

3.7. KL Divergence Optimization Lemmas . 71

viii

1

Chapter 1

Introduction, Background, and Formulation

1.1 Introduction

Reinforcement learning is a rapidly growing area of research with new techniques, problem

specifications, and applications being constantly being developed. There have been many suc-

cessful applications in this area, including Atari games [4], Go [5], currency trading [6], op-

timizing trade execution [7], clinical trials [8] and many more [9]. Although these seem to

enjoy significant empirical success, lack a rigorous theoretical foundation that can give perfor-

mance guarantees remains an issue. The increasing reliance in industry, government, health-

care, safety, robotics on these successful techniques come with an increasing concern about

edge cases, safety, and performance guarantees. As noted in [10], among others, there still is a

significant gap between rigorous theoretical results and techniques and those that are in actual

use. This work represents an attempt to start closing that gap.

In Chapter 2 we approach this by developing a set of properties sufficient to guarantee that

any policy satisfying them will achieve asymptotically minimal regret (up to constant factor of

the logarithmic term). The goal in this is to, rather than simply add one more learning policy to

the mix, build a flexible framework that may be adapted to a variety of estimative and adaptive

policies and grant confidence in the performance. To that aim, work lays the groundwork for

what we believe is a very useful technique for proving asymptotically minimal rate of regret

growth. The conditions are presented here along with hints for how a verifier may prove that

their particular algorithm satisfies these conditions. The ideas in this work build strongly on

those of [1].

The practical use of the asymptotically optimal UCB algorithm (MDP-UCB) of [1] has been

hindered [3, 11] by the computational burden of the upper confidence bound indices c.f. Eq.

(3.1). In Chapter 3 we derive an efficient method for computing these indices that only requires

2

solving a system of two non-linear equations with two unknowns, irrespective of the cardinality

of the state space of the MDP. In addition, we develop a similar acceleration for computing the

indices for the MDP-Deterministic Minimum Empirical Divergence (MDP-DMED) algorithm

developed in [12], based on ideas from [2], that involves solving a single equation of one

variable. We provide experimental results demonstrating the computational time savings and

regret performance of these algorithms. In these comparison we also consider the Optimistic

Linear Programming (OLP) algorithm [3] and a method based on Posterior sampling (MDP-

PS).

The particular problem under consideration in this work is the online maximization of the

expected average long run reward for an agent in an MDP with unknown transition probabil-

ities. First introduced in [13] and later studied by [1] among others. The particulars of the

problem are an important part of the results and the problem is of interest in itself. Long term

average reward is ideally suited to online applications and long term training. We also be-

lieve that the techniques used here can be extended to other related forms of RL problems,

for example, those with unknown rewards. Other criteria for evaluating the effectiveness of a

particular RL algorithm include Probably Approximately Correct [14], Minimax regret [15],

among others.

1.2 Reinforcement Learning Related Works

As this is a fast growing area of research, there is a lot of recent work. A good resource

for reinforcement learning problems and their potential solution methods is [16]. For a more

bandit focused approach, [17] has a nice overview of the current state of the art. Most directly

relevant to this paper are Chapters 8, 10, and 38 therein. [18] discuss online learning while

minimizing regret for predicting individual sequences of various forms, with Chapter 6 (bandit

related problems) therein being most relevant here.

1.3 Formulation

Reinforcement learning problems are commonly expressed in terms of a controllable, proba-

bilistic, dynamic system, where the dynamics must be learned over time. The classical model

3

for this is that of a discrete time, finite state and action Markov decision process (MDP). See

for example, [19] and [11]. In particular, learning is necessary when the underlying dynamics

(the transition laws) are unknown, and must be learned by observing the effects of actions and

transitions of the system over time.

A finite MDP is specified by a quadruple (S,A,R,P), where S is a finite state space, A =

[A(x)]x∈S is the action space, with A(x) being the finite set of admissible actions in state x,

R = [rx,a]x∈S,a∈A(x), is the expected reward structure and P = [pa
x,y]x,y∈S,a∈A(x) is the transition

law. Here rx,a and pa
x,y are respectively the one step expected reward and transition probability

from state x to state y under action a. Stated more explicitly, when in state x, taking action

a ∈ A(x) yields a fixed reward of rx,a and a transition to state y with probability pa
x,y.

It is convenient to denote subsets of the full set of action A, by A′ ⊂ A which is taken to

mean A′(x)⊂ A(x) (and A′(x) is non-empty) for all x ∈ S.

The central problem of interest is then to determine, for each state, which action the agent

should take in that state. In this work, we consider the problem of identifying the optimal

actions to maximize the long term expected average returns. Taking Xt to be the state at time

t and Ht the total history up to time t, and π(x,h) ∈ A(x) to be the action taken in state x given

history h, the problem can be stated as follows: Find a policy π to realize the maximum

φ
∗ = max

π
lim
n→∞

1
n
E

[
n−1

∑
t=0

rXt ,π(Xt ,Ht)

]
. (1.1)

When all elements of (S,A,R,P) are known the model is said to be an MDP with complete

information (CI-MDP). In this case, optimal polices can be obtained via the appropriate version

of Bellman’s equations, given the prevailing optimization criterion, state, action, time condi-

tions and regularity assumptions; c.f. [20], [21]. When some of the elements of (S,A,R,P) are

unknown the model is said to be an MDP with incomplete or partial information (PI-MDP).

This is the primary model of interest for reinforcement learning, when some aspect of the dy-

namics must be learned through interaction with the system.

For the body of this work we consider the following partial information model: the transi-

tion probability vector pa
x
= [pa

x,y]y∈S is taken to be an element of the parameter space

Θ =

{
p ∈ R|S| : ∑

y∈S
py = 1,∀y ∈ S, py > 0

}
,

4

that is, the space of all |S|-dimensional probability vectors.

The assertion of this parameter space deserves some unpacking. It is at first simply a the-

oretical convenience—it ensures that for any control policy, the resulting Markov chain is irre-

ducible. It also represents a complete lack of prior knowledge about the transition dynamics of

the MDP. Knowing that certain state-state transitions are impossible requires prior model spe-

cific knowledge (such knowing the rules of chess). Learning based purely on finite observed

data could never conclude that a given transition probability is zero. Thus, we assert a uniform

Bayesian prior on the transition probabilities and therefore the likelihood associated with p = 0

is 0. In this way, asserting this parameter space starting out represents a fairly agnostic initial

view of the underlying learning problem. A possible future direction of study is to examine

how to efficiently incorporate prior knowledge, for instance modifying the specified parame-

ter space, into the learning process without compromising on the learning rate. [22] and [23]

discuss hidden parameterized transition models, for example, which leverage additional prior

knowledge about the transition probability space.

We will take this unknown transition law to be the only source of incomplete information

about the underlying MDP. The reward structure R = [rx,a]x∈S,a∈A(x) is taken to be known (at

least in expectation), and constant. Much of the discussed algorithms will generalize to the

situation where the distribution of rewards must also be learned, but we reserve this for future

work.

As final notation, it is convenient to define the specific data available at any point in time,

under a given (understood) policy π: let Tx(t),T a(t),T a
x,y(t) be, respectively, the number of

visits to state x, the number of times action a was taken in state x, and the number of transitions

from x to y under action a, that are observed in the first t rounds.

In the next subsection, we consider the case of the controller having complete information

(the best possible case) and use this to motivate notation and machinery for the remainder of

the work.

1.3.1 MDPs under Complete Information

A classical result of [19] is that in order to maximize the long-term expected average value, as

in Eq. (1.1), it suffices for the agent to choose actions based only on the current state. Hence,

5

we can restrict ourselves to policies that depend only on the current state Xt . Indeed, in the

irreducible case, the optimal policy can be derived from the solution (φ ∗,v∗) to the following

system of Bellman’s equations:

Π(A,P) = (φ ,v)

such that

{
∀x ∈ S : φ + vx = max

a∈A(x)

[
rx,a + ∑

y∈S
pa

x,yvy

]
and ∑

y∈S
vy = 0

}
.

(1.2)

Given such a solution (φ ∗,v∗) to the above, an optimal policy (i.e., one that realizes the

maximal long term average expected value) may be realized by the agent taking the maximizing

action in every state, i.e.,

π
∗(x) = arg max

a∈A(x)

[
rx,a + ∑

y∈S
pa

x,yv∗y

]
. (1.3)

It is worth noting that in the case there are multiple such actions, any arbitrary selection of them

will suffice. Indeed, any optimal deterministic policy will realize equality in this system [19].

The constant φ ∗ above represents the maximal long term average expected reward of an

optimal policy. The vector v∗, or more precisely, v∗x for any x ∈ S, represents in some sense

the immediate value of being in state x relative to the long term average expected reward. The

value vx essentially encapsulates the future opportunities for value available due to being in

state x [19].

1.3.2 MDPs under Partial Information and Regret

Determining the policy π∗ as in Eq. (1.3) depends on having complete knowledge of the tran-

sition law P. If it is unknown, or only approximately known, the underlying optimality values

(φ ∗,v∗) will be unknown, and the optimal actions cannot be determined with certainty. This

may frequently be the case, especially when the transition law must be learned via experimen-

tation or approximated based on available data. In this case, the agent need not only attempt to

determine the optimal actions, but also determine the actions worth experimenting with so as

to collect more data - the classical exploration vs exploitation dilemma.

To quantify the performance of a policy, we utilize the concept of regret or regretful actions:

the number of times an agent takes an action that is sub-optimal. For any policy π , since

6

T a(n) ≤ n we immediately get that for all policies π , and any transition law P, for any sub-

optimal action, a, we have:

E [T a(n)] = O(n). (1.4)

This is trivial. A good policy should therefore achieve a tighter bound (e.g. o(n)) for all possible

P. In [1], they consider policies that are “uniformly fast” for all P, that is, for all sub-optimal

actions a, E [T a(n)] grows slower than any polynomial function of n. Formally,

E [T a(n)] = o(nα) ∀α > 0. (1.5)

The central result there is that for any uniformly fast policy, logarithmic regret is the best that

can be achieved universally, i.e., for any uniformly fast policy π ,

liminf
n→∞

E [T a(n)]
lnn

≥C∗(S,A,R,P), (1.6)

for some positive constant C∗(S,A,R,P). One interpretation of this lower bound is that learning

requires mistakes. Some amount of experimentation with sub-optimal actions is necessary to

be able to correctly identify the true optimum, and this will incur mistakes at least at this rate.

This is in fact tight, as that paper goes on to show, demonstrating both rate constants on this

lower bound, and a specific MDP policy that achieves this lower bound.

7

Chapter 2

Sufficient Conditions for Asymptotically Optimal Reinforcement
Learning

2.1 Introduction

This chapter can be seen as an extension or generalization of the ideas in [1]. Rather than fo-

cusing on specific index policy, we use the insights and structure of the analysis in [1] to guide

the development of sufficient conditions that will guarantee asymptotic logarithmic growth of

regret for a wide range of algorithmic techniques. We present a set of sufficient conditions such

that if a verifier can show that their algorithm satisfies them, they can enjoy guaranteed asymp-

totic minimal regret. Armed with these results the verifier can be confident that their technique

is actually optimal. Where appropriate we include hints for how the verifier may show these

conditions, and why we think these can be more widely applied to existing techniques in prac-

tice.

2.1.1 Related Work

Early work in [21], [24], and [25], focused on establishing conditions under which consistent

algorithms could be derived. For conditions on the algorithms, the main result of [26] is that

under some general conditions, value iteration methods (e.g. Q-learning [27]) will converge to

true state-action values. The problem they study is a finite MDP with the goal of minimizing

total expected discounted cost. Their goal of simplifying the proof of the convergence of value

iteration RL methods dovetails nicely with the results presented here. Their results can be seen

as a step towards proving condition 2. Namely, if the technique that an algorithm uses for

value estimation is a value iteration method of the type discussed and can then be shown to

converge fast enough, it will satisfy condition 2. An important caveat is that their results show

8

that these methods will converge with probability 1 but fail to address the rate at which these

methods converge, which is of central importance here. [26] addresses the estimation of the

value function. This is an important part of the reinforcement learning problem, but doesn’t

address the exploration vs exploitation aspect. In other words, at what rate are we converging?

Can we go faster? How are we choosing the specific actions to take? In fact, we conjecture that

our technique here, coupled with strong results about the convergence rate of value function

estimators, can be used to provide further rigorous guarantees for the growth rate of regret for

a wide range of algorithms.

2.1.2 Chapter Structure

This chapter is organized as follows. Section 2.2 introduces the concept of over-sampling and

minimally sampling, which aside from being important to the results of this work, are of inter-

est in themselves as they give some nice intuition about the underlying learning problem. In

Section 2.3 we leverage the previous discussion about sampling rates to formalize the effective

estimation of the unknown quantities, namely the transition probabilities and the state values,

and introduce the concept of the 3 different versions of the MDP, Π∗, Πt , and Π̂t . This section

is the basis for conditions 1 and 2. In Section 2.4 we establish some general notation, some

regularity events, and convenient results. The basis for condition 3 is established here as well.

The fundamental problem of exploration and exploitation is discussed in Section 2.5 which lead

to conditions 4 and 5. Section 2.6 is where the conditions are explicitly stated along with hints

for a verifier on how they might proceed to establish them. In Section 2.7 we state the main

theorem of this paper and give the proof. In Section 2.8 we conclude by discussing possible

future directions that this research can take. Finally, Section 2.9 establishes and proves some

useful lemmas about various events for this reinforcement learning problem.

2.2 Sampling Rates

As was hinted at in Section 1.3.2, the logarithmic lower bound of regret from [1], suggests

that for each action there is a logarithmic sampling rate, dependent on the unknown transition

probabilities, at which the action must be taken in order to distinguish it from the optimal

9

actions. For any action a, let ga(n) = β a ln(n), where β a is some positive constant that may

depend on the unknown underlying MDP instance, be this minimal sampling rate. We say an

action has been minimally sampled at time n if it has been taken at least ga(n) times. Formally,

Definition 1. Minimally Sampled Events

Let the event minimally sampled, MSn,a denote the event that action a has been sampled at

least ga(n) = β a ln(n) times by time n. More precisely,

MSn,a = {T a(n)≥ ga(n)} (2.1)

Next we introduce a useful lemma relating this minimal sampling rate to regret.

Lemma 1. Minimally Sampled Counts

The expected number of times an action a has been taken when it has not been sampled

ga(t) times by time n is less than ga(n) = O(ln(n)). Formally,

E

[
n

∑
t=0
1
{

πt = a,MSc
t,a
}]

< ga(n) = O(ln(n)) (2.2)

Proof of this lemma is provided in Section 2.9.1.

This minimal sampling rate also implies that if we are to achieve logarithmic regret, the

only actions that should be taken super-logarithmically are the truly optimal actions. With

this as motivation we define the over-sampled rate. Let b(n) be a sub-linear, super-logarithmic

function, for example b(n) = ln2(n). We say an action is over-sampled at time n if it has been

sampled at least b(n) times. Formally,

Definition 2. Over-Sampled Action

For a sub-linear, super-logarithmic function b(n), we say an action a is over-sampled at

time n, if it has been sampled at least b(n) times. That is,

T a(n)≥ b(n) (2.3)

Figure 2.1 is an illustrative plot of these rates to give a better intuitive sense of these rates.

Consider some action a and plot the number of times it has been been sampled by time n, T a(n).

We can divide this plot into three distinct areas.

10

Time, n

Sa
m

pl
e C

ou
nt

 T
a (n

)

Sampling Rates

Figure 2.1:

The bottom green area represents a sub-logarithmic sampling rate. If the number of sam-

ples, T a(n), is in that area, we know that we do not have enough information to have ruled it

out as being optimal. That is, we have under sampled the action and regardless of our current

estimates we should continue to sample it in order to collect more information. The top red

area represents a super-logarithmic sampling rate that is greater than or equal to b(n). If the

number of samples, T a(n), is in that area, then we know have more than enough information

to determine if it is optimal or not. Indeed, only optimal actions should be sampled more than

b(n) times, so if we estimate that action a is sub-optimal, we should stop taking it. Both of these

rates are in some sense “obvious”. That is, they hold, independent of the unknown transition

probabilities, and thus the controller can make decisions about these directly. This insight will

motivate Definition 7 and lead us to condition 3, explicitly defined in Section 2.6.

The key difficulty is the yellow area in the middle. For a controller to achieve minimal

regret they must ensure that all actions are minimally sampled, ga(n), but not over-sample sub-

optimal actions (top red area). We plot three example possible forms of ga(n) in that area.

Since the minimal sampling rate ga(n), depends on the unknown transition probabilities, it is

11

within this band that the controller must learn the transition probabilities, attempt to identify

the necessary minimal sample rate, and balance exploration and exploitation. This balancing

act will be discussed in more detail in Section 2.5. First, however, we discuss ensuring that we

use the data we collect to effectively and efficiently estimate the properties of the MDP.

2.3 Estimating the Unknown Probabilities

As indicated previously, knowledge of P and v is sufficient to define and utilize the true optimal

policy. However, if that information is not available, it must be estimated from the data available

at a given time, i.e., observed transitions for actions taken up to a given time. This makes

separating the action policy from the estimators difficult - the data available to construct the

estimators at any time depends explicitly on the policy through the actions taken. Further,

while the transition probabilities for a given state and action represent local information, a

control policy might construct estimators for those transition probabilities based on globally

sampled data (i.e., transitions observed from other potentially related states and actions). In

both these cases, the properties of estimators for P and v at a specific time may depend heavily

on the properties of the policy that brought the controller to that point. However, we can at least

require that our estimators use the data that they have collected to efficiently estimate what they

can. Let P̂t be an estimate of P, constructed from whatever information is available at time t (the

implicit dependence on π is suppressed). The estimate P̂t is a fast local ε-effective estimator

if for all sufficiently small ε > 0, it quickly provides accurate estimates for the local transition

vectors as more data is collected. Formally, Comment

[CWC1]: only

serious

isssue is

all the

1/ek order

bounds

are wrong

needs to be

something

like O(1/ηk)

for some

η > 1 ↑

Definition 3. Fast local ε-effective estimators

P̂t is a fast local ε-effective estimator if for all sufficiently small ε > 0, for sufficiently large

local time k = T a(t), if the estimator depends solely on local time k,

P
(
||P̂a

x(t)−Pa
x ||> ε and T a(t) = k

)
≤ O

(
1
ek

)
. (2.4)

If the estimator depends on global time, we require,

P
(
∃t ′ ≥ t : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)
≤ O

(
1
ek

)
(2.5)

12

This is indeed condition 1 discussed in Section 2.6.

Either of the above are natural properties for any worthwhile estimator to satisfy, essentially

guaranteeing that the decision to take a given action will improve knowledge at least about

that action. This guarantees that actions are always locally well-informed, but this does not

guarantee global performance. Constructing a worthwhile policy then depends on successfully

integrating this local information to infer global knowledge.

We can begin this process with the following observation, if every action is better known

the more often it is taken, there must be some subset of actions over which the estimator is

accurate. Indeed, recalling our discussion on sampling rates in Section 2.2, if an action is

minimally sampled it will be well estimated. However, determining the minimal sampling

rate ga(t) requires knowledge about the unknown transition probabilities, which requires us

to sample at the minimal sampling rate! To address this dilemma, recall that if an action is

over-sampled it will be minimally sampled regardless of its unknown transition probabilities.

Thus, if we restrict our attention to just over-sampled actions we are guaranteed to be using

well estimated actions. This motivates the following definition.

Definition 4. The set of over-sampled actions At , is the set of actions such that, for each x ∈ S:

At(x) = {a ∈ A(x) : T a(t)≥ b(Tx(t))}. (2.6)

Where b(t) is the over-sample rate function defined in Section 2.2. 1

Hence, the locally informative estimator P̂t can be said to give globally accurate informa-

tion, at least about the restricted problem on actions in At . This definition is independent of the

underlying policy - it simply states that whatever actions are used sufficiently often (b-often),

the transition estimates for those actions are good. It is straightforward to construct and verify

such estimators in this environment but it is worth taking a more general probabilistic view

for the following reason. In applications, an agent may take any number of approaches toward

approximating the transition law (naive estimates, neural networks, etc) and in fact prior infor-

mation as to the structure of the transition law (probabilities peaking around related or similar

1If a given x has been visited sufficiently rarely that T a(t) < b(Tx(t)) for all such a, it is convenient to take
At(x) = A(x). Recalling that b increases sub-linearly and with high probability we have visited every state linearly
often (see Lemma 8) this will occur rarely.

13

states, dropping for distant or dissimilar states) may inform and tighten the resulting estimates.

Whatever the case, all results to follow depend simply on the agent’s estimators converging in

the indicated way, however the agent arrives at that construction.

In particular, if we have an effective estimator of the underlying transition law, then with

high probability, we have good estimates of at least some of the available actions in each state.

While there may be uncertainty about the entire MDP, we can use these estimates to derive

good information about a restricted MDP.

This can be summarized in the following way. There are essentially three MDP problems

we are interested in at any point in time, and therefore three sets of Bellman’s Equations (1.2)

we are interested in solving:

• Π∗: the full ‘unrestricted’ problem Π(A,P) over action set A and transition law P,

• Πt : the ‘restricted’ problem at time t, Π(At ,P[At]), over action set At and transition law

P[At],

• Π̂t : the ‘estimated’ restricted problem at time t, Π(At , P̂t [At]), over action set At and

transition law P̂t [At].

Note that at any time, Π∗ the true unknown MDP problem. The problem Π̂t is a known

MDP and solvable, as it depends only on the known estimates available at any time. The

problem Πt is an interesting midpoint between these two, as it is an unknown MDP which is

restricted to actions that are over-sampled, and therefore have good estimates for their transition

laws. We will show that solving Π̂t serves as a good estimate for Πt , and how to leverage this

information about Πt into discovering the solution for Π∗.

For Πt and Π∗, we may take the solutions to the Bellman equations to be (φt ,vt) and (φ ∗,v∗)

respectively. For Π̂t , it is convenient to potentially consider approximate solutions (φ̂t , v̂t),

as solving the full system of Bellman equations may be expensive. Based on the solutions

(φ ∗,v∗),(φt ,vt), and (φ̂t , v̂t), it is convenient to denote the optimal action sets corresponding

with each as O∗ ⊂ A,O∗t ⊂ At , and Ô∗t ⊂ At , respectively. As the solution (φ̂t , v̂t) may only be

an estimate, like the estimators P̂t above, we introduce the following definition. The estimate

(φ̂t , v̂t) is a fast global δ -effective estimator if for all sufficiently small δ > 0, it quickly

provides accurate estimates for the global state values as more data is collected. Formally,

14

Definition 5. Fast global δ -effective estimators

For all sufficiently small δ > 0, for sufficiently large global time t,

P
(
||Π̂t −Πt ||> δ

)
≤ O

(
1
et

)
. (2.7)

This is indeed condition 2 discussed in Section 2.6.

As in the case of the estimators P̂t above, the existence and an explicit construction of such

an approximate solution can be easily shown, but these results will hold regardless of how such

a solution is obtained.

The following result summarizes what knowledge effective estimators grant about the un-

derlying restricted problem.

Definition 6. Good Estimation Event

The Good Estimation event, GEt is defined to be

GEt =


|P̂a

x,t ′−Pa
x | ≤ ε|| for all a such that MSt ′,a,

||(φ̂t ′ , ĥt ′)− (φt ′ ,ht ′)|| ≤ δ ,

Ô∗t ′ ⊂ O∗t ′ for all t ′ ≥ t

 (2.8)

Lemma 2. Good Estimation is likely

Under fast local ε-effective estimators and fast global δ -effective estimators, then for suffi-

ciently large t,

P(GEc
t)≤ O

(
1
t

)
. (2.9)

Proof of this lemma is given in Section 2.9.2

This result warrants some remarks both on its strength and its shortcomings: as to its

strengths, this result holds under any policy. If the estimators are good, there will always

be some subset of actions over which not only are the transitions and optimality values well-

estimated, but as a result, the optimal actions for this restricted problem are known. If we could

additionally guarantee that the restricted problem Πt converges to the true problem Π∗, this

would guarantee (probabilistic) discovery of the truly optimal actions.

It is worth noting as well - the growing confidence in the restricted optimal actions does not

necessarily translate to discovery of the unrestricted optimal actions. Consider the hypothetical

15

policy that always takes the same (sub-optimal) action in every state. Under this policy, the

single actions taken will be extremely over-sampled, the transitions for these actions well-

estimated, and the optimality values well-estimated as well. Indeed, we can easily determine

the specific optimal actions for this restricted problem (as there would be only one available

action for each state under the restricted problem). However, this policy would fail to discover

the truly optimal actions, as it performs no experimentation at all. But, under a guarantee of

sufficient exploration and exploitation, we can guarantee that v̂t → v∗, and ultimately that for

any sub-optimal action a, we have

E [T a(n)] = O(lnn). (2.10)

This will be discussed in Section 2.5, but we first need to establish some regularity results

about the estimation process.

2.4 Preliminaries

Before we discuss the main portion of this chapter, namely the optimal balancing of explo-

ration and exploitation, it is useful to establish some general notation and results related to the

regularity of the estimation of an MDP.

2.4.1 Regularity

Recall from the discussion in Section 2.2 that only optimal actions should be sampled more

than b(t) times, and thus stay in the over-sampled set At . It is convenient to define the following

event.

Definition 7. Retainment and Release Events, REt

Let the retainment and release event, REt denote that for all current and future time, be-

lieved optimal actions are retained in the over-sampled set and believed sub-optimal actions

are not taken. Formally,

REt =
{

Ô∗t ′ ⊂ At ′+1,πt ′ /∈ At ′ \ Ô∗t ′ for all t ′ ≥ t
}

(2.11)

A good algorithm should guarantee that this event occurs with high probability. Indeed,

this will be condition 3 explicitly defined in Section 2.6.

16

In order to be able to discuss the local visits to a state over some interval in global time,

we define a mesh that represents the global times over the interval at which the state has been

visited. Formally,

Definition 8. Mesh over an Interval

The mesh of state x over the time interval I = [I−, I+] is the ordered set,

Mx(I) = {m | Xm = x, I− ≤ m≤ I+} (2.12)

In this way Mx(I) represents the ordered global times over the interval I that we have visited

state x. Having thus established a notional way to refer to the visits to a particular state, we now

address how often a state is visited over an interval.

Definition 9. Frequent Visits Events, FVt

Let the event frequent visits, FVt denote the event that over any interval I with lower bound

I− = O(t + t/b(t)≥ t and width (O(t/b(t)), for any state x, we have visited that state linearly

often. Formally,

FVt =

{
Tx(I+)−Tx(I−)≥ ρ ·O

(
t

b(t)

)}
(2.13)

Results of [1] that this event is occurs with high probability. This claim is made more

precise in Section 2.9.3

Next, recall the definition of the Good Estimation event GEt , Definition 6 and the fact that

this event also occurs with high probability, Lemma 2.

For simplicity, we combine all these events into one regularity event, Rt .

Definition 10. Regularity Events, Rt

Let the event regularity, Rt denote the event that all the events GEt ,REt , and FVt hold. That

is,

Rt = {GEt ,REt ,FVt} (2.14)

So under regularity Rt , for all future time after t, we have good estimates for any minimally

sampled action, retainment and release is in effect, and we have frequent visits to every state.

The conditions that we will place on the algorithms will guarantee that with high probability,

the regularity event will occur. This claim is made precise and proven in Section 2.9.3.

17

2.4.2 MDP Ordering

For the following discussion, it is convenient to introduce an ordering relation for MDPs. For

action sets A′,A′′ ⊂ A, systems of Bellman’s equations Π′ = Π(A′,P), Π′′ = Π(A′′,P), with

respective solutions (φ ∗′,v∗′), (φ ∗′′,v∗′′), and respective optimal action sets O∗′ , O∗′′

• if φ ∗′ < φ ∗′′, then take Π′ < Π′′

• if φ ∗′ = φ ∗′′ and O∗′ ⊂ O∗′′, then take Π′ = Π′′

Thus, two MDPs are taken to be equal if and only if they yield equivalent optimal φs, and share

at least one optimal policy. Note that we have, by the uniqueness of the solution to Bellman’s

equations that

Π
′ = Π

′′ =⇒ v∗′ = v∗′′ (2.15)

This provides a convenient language for discussing the progression {Πt ,Πt+1, . . .}. In fact this

progression can be achieved using the notion of improving actions.

Definition 11. Improving Action

For an MDP Π′ restricted to some subset of actions A′ ⊂ A, with solution (φ ∗′,v∗′), an

improving action a+ ∈ A\A′ is such that,

rx,a+ + ∑
y∈S

pa+
x,yv∗′y > max

a∈A′

[
rx,a + ∑

y∈S
pa

x,yv∗′
]
. (2.16)

That is, adding the action a+ to the restricted action set strictly improves the optimality

values (φ ∗,v∗). Using our language of ordering MDPs, we can write Π′ = Π(A′,P) < Π′′ =

Π(A′ ∩ a+,P). Incidentally, this notion is the basis of policy iteration schemes for solving

known MDPs.

2.5 Optimal Balancing of Exploration and Exploitation

As was mentioned in the end of Section 2.2, the key component of a good algorithm is managing

the exploration and exploitation within the middle portion of Figure 2.1. In this section we

present two conditions that if an algorithm can satisfy under relatively simple circumstances, it

will optimally balance these two competing interests.

18

2.5.1 Sufficient Exploration

The goal of exploration is to discover actions that perform better than those currently available.

In particular, since over-sampled actions and the restricted MDP are highly likely to be well-

understood, as in Lemma 2, better actions must be found outside the over-sampled set. If

the transition law was known, then these actions could be computed as the basis of a policy-

iteration based scheme for computing the unrestricted optimal policy. However, the transition

law is not known, and thus at any time t the improving actions may be unknown. Sufficient

exploration should guarantee that improving actions will be discovered over time. This will lead

to overall improvement of the optimality values for the restricted problem and convergence to

and discovery of the true, unrestricted, optimal actions. In an effort to make this as simple as

possible for a verifier to satisfy this condition we attempt to quantify this in its purest form.

Consider a growing interval of time, under which things behave regularly, our MDP prob-

lem is constant and sub-optimal, where there is a single action outside the over-sampled set,

and that action is an improving action. We want to guarantee that the probability of never tak-

ing such an action (i.e. never exploring when we should) decreases over time. Thus, we may

quantify sufficient exploration in the following way:

Sufficient Exploration

For sufficiently large t, for any interval I = [I−, I+] with a lower bound I− =

O(t + t/b(t)) and width O(t/b(t)), under the regularity conditions RI− , Πt ′ = Π <

Π∗ for all t ′ ∈ I, for at least one improving action a+ in state xa+ , and where for ev-

ery action a except a+, T a
x+a
(t ′)≥ b(I+), we have,

P
(
πm 6= a+ for all m ∈Mxa+

(I)
)
≤ O

(
1

I+b(I+)

)
. (2.17)

This property guarantees (with high probability) that if there is an improving action to be

found, over a growing time interval we are performing at least some exploration to find it.

Indeed, this will be condition 4, discussed more in Section 2.6.

19

2.5.2 Sufficient Exploitation

The goal of exploitation is to leverage our knowledge to gather the maximum rewards. Put

another way, if we know enough about all action to determine that it is sub-optimal we should

stop taking it.

Similarly to the exploration condition above, consider a growing interval of time, under

which things behave regularly, but now we have a constant but optimal MDP. We have thus

correctly identified the optimal actions. To ensure that we exploit our correct identification of

the optimal actions, we want to guarantee that the probability of taking a sub-optimal action

decreases over time. Thus, we may quantify sufficient exploitation in the following way:

Sufficient Exploitation

For sufficiently large t, for any interval I = [I−, I+] with a lower bound I− = O(t +

t/b(t)) and width O(t/b(t)), under the regularity conditions RI− , Πt ′ = Π∗ for all t ′ ∈ I,

for any sub-optimal action a 6∈ O∗(XI+) with, MSI+,a, we have,

P(πI+ = a)≤ O
(

1
I+

)
. (2.18)

This property guarantees that if we have sampled an action enough to determine it is sub-

optimal (minimally sampled), the probability that we continue to take it decreases over time.

Indeed, this will be condition 5, discussed more in Section 2.6.

2.6 Sufficient Conditions

In this section we provide an explicit statement of each of the conditions presented in this paper,

give some intuition to aid the reader, and explain how a verifier might use the specifics of these

conditions to bound their own algorithm’s performance.

The first two conditions are related to the efficiency and accuracy of our estimators as

discussed in Section 2.3. Firstly, we must have fast local (transition) ε-effective estimators. Let

P̂t be an estimate of P, constructed from whatever information is available at time t, then the

condition is,

20

Condition 1. P̂t is a fast local ε-effective estimators

For all sufficiently small ε > 0, for sufficiently large local time k = T a(t), if the estimator

depends solely on local time k,

P
(
||P̂a

x(t)−Pa
x ||> ε and T a(t) = k

)
≤ O

(
1
ek

)
. (2.19)

If the estimator depends on global time, we require,

P
(
∃t ′ ≥ t : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)
≤ O

(
1
ek

)
(2.20)

Intuitively this condition guarantees that after gathering sufficient data, we are able to

quickly and accurately estimate the transition probabilities. This can be achieved by a direct

tabular form of estimation. Note however, that this condition allows for other potential esti-

mation techniques which may, for example, take into account a priori knowledge of the MDP

structure, or use non-tabular methods for example as in a neural network approach.

Secondly, we must have fast global (restricted MDP) δ -effective estimators. Let (φ̂t , v̂t) be

an estimated solution to the restricted MDP, Πt , then the condition is,

Condition 2. (φ̂t , v̂t) is a fast global δ -effective estimators,

For all sufficiently small δ > 0, for sufficiently large global time t,

P
(
||Π̂t −Πt ||> δ

)
≤ O

(
1
et

)
. (2.21)

In a similar way to the condition above, this guarantees that if we have collected enough

data, we can quickly and accurately estimate the state values of the restricted MDP Πt . That is,

considering only the actions which have been over-sampled, can we at least accurately estimate

the state values of that version of the MDP? This can be accomplished directly, namely by

explicitly solve the restricted MDP using our estimates of the transition probabilities. Note

however, that this condition allows for other potential estimation techniques which may not

require explicitly solving the MDP, may allow the incorporation of a priori knowledge, etc..

The third condition, which is the first condition on how the algorithm actually takes actions,

is that the algorithm must retain what it is almost sure is optimal and must release what it is

21

sure is sub-optimal. Recall the discussion motivating this particular form in Section 2.2, the

related Definition 7, and the definition of the good estimation event, GEt , Definition 6.

Condition 3. Retainment and Release,

For sufficiently large global time t, under the good estimation event GEt , our best guess

at the optimal is taken at least b(t) times (Retainment) and our best guess at the sub-

optimals are taken at most b(t) times (Release). Formally, Retainment,

P
(
Ô∗t 6⊂ At+1

)
≤ 1

et (2.22)

and Release,

P
(
πt ∈ At \ Ô∗t

)
≤ 1

et (2.23)

Intuitively, this condition can be thought of as follows Ensure the optimal action stays

over-sampled (retainment) and don’t over sample clearly sub-optimal actions (release). We

know that if we want to obtain minimal regret the only actions that should be taken more than

logarithmically often are the optimal actions and we only need to take sub-optimal actions

logarithmically often (up to a constant factor) to determine that they are sub-optimal. Thus,

if we have taken an action more than logarithmically often (and thus we as the controller are

guaranteed to have a good estimate of it) if it seems sub-optimal, don’t take it anymore (release)

and if it seems optimal, keep our estimate of it accurate (retainment).

How can a verifier ensure that their algorithm satisfies this? Firstly, this can easily be

satisfied by fiat in any policy. Take your arbitrary MDP policy layer these two rules on top.

Note that this is not in general necessary. Under the good estimates event GEt , everything we

think we know about Πt is accurate, thus any good algorithm should, with high probability not

take clearly sub-optimal actions and at least super logarithmically often it should take a clearly

optimal action.

The last two conditions pertain to balancing exploration and exploitation within the “log-

arithmically often” band, introduced in Section 2.2 and made more explicit in Section 2.5.

The fourth condition, is that the algorithm must be explore sufficiently often to ensure it will

eventually discover the true optimal action.

22

Condition 4. Sufficient Exploration

For sufficiently large t, for any interval I = [I−, I+] with a lower bound I− =

O(t + t/b(t)) and width O(t/b(t)), under the regularity conditions RI− , Πt ′ = Π <

Π∗ for all t ′ ∈ I, for at least one improving action a+ in state xa+ , and where for ev-

ery action a except a+, T a
x+a
(t ′)≥ b(I+), we have,

P
(
πm 6= a+ for all m ∈Mxa+

(I)
)
≤ O

(
1

I+b(I+)

)
. (2.24)

Intuitively, this condition states that if all actions except one are over-sampled, and thus

we know they are well estimated, and that one action is in truth an improving action, there

shouldn’t be long stretches of time where we don’t take it. In other words, the probability of

not exploring the one action that will yield improvement at all, over longer and longer stretches

of time should decrease.

How can a verifier ensure that their algorithm satisfies this and why is it relatively straight-

forward? Notice that the improving actions set is constant, the estimated values of states, vx

are constant within some small δ , there are linear visits to a state with improving actions, every

action except the improving action is over-sampled and all actions taken at least ga(I−) are

well-estimated. Thus the only reason we should be not taking the improving action is because

it has not been sampled enough to obtain good estimates. A verifier must now show that the

probability of going for long stretches of time without ever taking the under sampled improving

action decreases at the appropriate rate.

The fifth, and last condition is that the algorithm must exploit often enough to guarantee

that it will maximize its expected average reward or equivalently, incur minimal regret.

Condition 5. Sufficient Exploitation

For sufficiently large t, for any interval I = [I−, I+] with a lower bound I− = O(t +

t/b(t)) and width O(t/b(t)), under the regularity conditions RI− , Πt ′ = Π∗ for all t ′ ∈ I,

for any sub-optimal action a 6∈ O∗(XI+ with, MSI+,a, we have,

P(πI+ = a)≤ O
(

1
I+

)
. (2.25)

23

Intuitively this condition states that if we have indeed discovered the optimal actions, and

have minimally-sampled a sub-optimal action and thus have an accurate estimation for its value,

the probability that we take this sub-optimal action decreases over time.

How can a verifier ensure that their algorithm satisfies this and why is it relatively straight-

forward? Since Πt ′ = Π∗ we can assume that all optimal actions have been taken at least b(t)

times. Recall that any action we take was taken at least ga(I+) times. In particular for the

sub-optimal action a we have MSI+,a and thus transition probability estimates are good, so why

did we take it?

2.7 Main Theorem and Proof

These conditions are enough to guarantee that an algorithm has at most asymptotic logarithmic

regret.

Theorem 1. Given Fast Local ε-effective Estimators, Fast Global δ -effective Estima-

tors, and a policy that satisfies Retainment and Release, Sufficient Exploration, and

Sufficient Exploitation, we have at most asymptotic logarithmic regret, i.e. For any

sub-optimal action a, in state x,

E [T a(n)] = E

[
n−1

∑
t=0
1{πt = a}

]
= O(lnn) (2.26)

Proof. We first split this expectation in to two events, where action a has been minimally

sampled (MSt,a), and where it has not been minimally sampled
(
MSc

t,a
)
.

E [T a(n)] = E

[
n−1

∑
t=0
1{πt = a}

]

≤ E

[
n−1

∑
t=0
1{πt = a,MSt,a}

]
+E

[
n−1

∑
t=0
1
{

πt = a,MSc
t,a
}]

≤ E

[
n−1

∑
t=0
1{πt = a,MSt,a}

]
+O(ln(n))

(2.27)

Where the last line follow directly from Lemma 1.

We continue splitting the first event in to two events, regular
(
Rt/2

)
, and non-regular

24

(
Rc

t/2

)
.2

E

[
n−1

∑
t=0
1{πt = a,MSt,a}

]

=E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+E

[
n−1

∑
t=0
1

{
πt = a,MSt,a,Rc

t/2

}]

≤E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+E

[
n−1

∑
t=0
1

{
Rc

t/2

}]

≤E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+O(ln(n))

(2.28)

Where this time the last line follows directly from Lemma 6. It remains to show that the

first term, sub-optimal activations of a minimally sampled action, under regular circumstances,

happens at most logarithmically often. Focusing on that term,

E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

=
n−1

∑
t=0
P
(
πt = a,MSt,a,Rt/2

)
(2.29)

We will proceed by bounding the probability P
(
πt = a,MSt,a,Rt/2

)
for sufficiently large

t. Consider the interval [t/2, t]. Recalling the definition of Rt/2 (Definition 10), we have good

estimation over the entire interval, i.e. GEt/2. In particular, actions that are estimated to be

optimal for the estimated restricted MDP, Π̂t ′ are indeed optimal for the true restricted MDP

Πt ′ . More precisely,

Ô∗t ′ ⊂ O∗t ′ for all t ′ ≥ t/2 (2.30)

Under Rt/2 we also have retainment, REt/2. That is, for all t ′ ≥ t/2, actions that are optimal

to the restricted problem are kept from leaving the over-sampled set. Thus, if φt ′ is the restricted

optimality value at time t ′, there is a set of actions in Ô∗t ′ capable of achieving this optimality

value. Retainment ensures that Ô∗t ′ ⊂ At ′+1, hence there are actions in the over-sampled set at

time t ′+ 1 capable of achieving φt ′ as well. Since φt ′ is at least achievable with over-sampled

actions at time t ′, we must have that φt ′ ≤ φt ′+1.

2The t/2 is a somewhat arbitrary value. As will become apparent later in the proof, we will be looking backwards
from t over some interval with lower bound, I− = O(t). We also technically are considering bt/2c instead of t/2
but we suppress this detail so as not to obscure the important portions of the proof.

25

We can summarize this with the following:

Πt/2 ≤Πt/2+1 ≤ . . .≤Πt (2.31)

Hence we have monotonically non-decreasing (in terms of the optimality values) sequence

of restricted problems. The exploration condition will guarantee sufficient exploration to push

improving actions into the over-sampled set, resulting in a steady increase in the optimality

values of the restricted problem, until the unrestricted optimum is discovered. Then the ex-

ploitation condition will guarantee that we are taking this truly optimal action sufficiently often

so as to incur at most logarithmic regret.

Let D be the number of possible unequal Πt ′ , looking at every possible restricted action set

of A. Since D must be finite, we can split the interval [t/2, t] into D intervals of equal width,

I1, I2, . . . ID, where the lower bound of the ith interval is I−i = t/2+(i− 1) t
2

1
D , upper bound

I+i = t/2+ i t
2

1
D , and width |Ii|= t

2
1
D . We also note that I−1 = t/2 and I+D = t.

Now, for sufficiently large t such that t
2 ≥D, there must be at least one interval Ii over which

the restricted problem is constant. That is, Πt ′ = ΠI−i
for t ′ ∈ Ii. To see this, recall that there are

at most D possible values of Πt ′ , we have a monotonic non-decreasing sequence of Πt ′ , and we

have D different intervals. For an interval to not be constant the restricted MDP must increase

at some point in that interval, that is ΠI−i
< ΠI+i

. So we have at most D−1 increases (remember

that we start with some Πt/2) but we have D intervals. Thus, there must be at least one interval

with no increase and therefore constant Πt ′ .

We can further split the event of interest,
{

πt = a,MSt,a,Rt/2
}

into two events3. Let the

bad exploitation event Ft denote the event that the last interval was the optimal MDP, but we

still took the sub-optimal action a at the last point. That is,

Ft =
{

πt = a,MSt,a,πD+ 6∈ O∗(XD+),Rt/2,Πt ′ = ΠI−D
= Π

∗ for t ′ ∈ ID

}
⊆
{

πt = a,MSt,a,Rt/2,Πt ′ = ΠI−D
= Π

∗ for t ′ ∈ ID

} (2.32)

Where the second line follows, by noting that a was assumed to be a sub-optimal action and

D+ = t.

3These events are not mutually exclusive but we will still be able to use them to get an upper bound on the
probability.

26

Let the bad exploration event St,i denote the event that there exists some interval Ii with a

constant sub-optimal restricted MDP. That is,

St,i =
{

πt = a,MSt,a,Rt/2,Πt ′ = ΠI−i
< Π

∗ for t ′ ∈ Ii

}
(2.33)

In this manner we have,

P
(
πt = a,MSt,a,Rt/2

)
≤P(Ft)+

D

∑
i=1
P(St,i) (2.34)

First we turn to bounding the probability of the first event, P(Ft). Noting that we have

regularity, REt/2, Πt ′ = Π∗ (constant optimal MDP) over the interval ID with lower bound O(t)

and width O(t), and a was minimally sampled MSt,a. This is exactly what is assumed in the

exploitation condition 5. Thus we can bound this probability by,

P(Ft)≤ O
(

1
I+D

)
= O

(
1
t

)
(2.35)

Next we look at the bad exploration event St,i, where we have an interval Ii for which we

had a constant sub-optimal restricted MDP. As noted previously in Eq. (2.15), this implies

that over this interval the ht are constant and thus from Definition 11, the set of improving

actions for each state is non-empty and constant for at least one state, since by assumption the

optimality values are sub-optimal. Let a+ be one such improving action and xa+ be the state

with that improving action.

Divide the interval Ii into |A|b(I+i) sub-intervals of equal width, Ii1 , Ii2 , . . . Ii|A|b(I+i)
. The lower

bound for the kth interval is,

I−ik = I−i +(k−1)I+i
1

|A|b(I+i)

=
(t

2
+(i−1)

t
2D

)
+(k−1)

(t
2
+ i

t
2D

) 1
|A|b

(t
2 + i t

2D

)
= O

(
t +

t
b(t)

) (2.36)

the upper bound is,

I+ik = I−i + kI+i
1

|A|b(I+i)

=
(t

2
+(i−1)

t
2D

)
+ k
(t

2
+ i

t
2D

) 1
|A|b

(t
2 + i t

2D

)
= O

(
t +

t
b(t)

) (2.37)

27

and the width is,

|Iik |= I+i
1

|A|b(I+i)

=
(t

2
+ i

t
2D

) 1
|A|b

(t
2 + i t

2D

)
= O

(
t

b(t)

)
.

(2.38)

In order to be able to discuss the visits to this state over each sub-interval recall the definition

of the mesh for a state x over an interval I, Mx(I) (Definition 8). By the frequent visits event

FVt/2 of the regularity condition Rt/2, |Mxa+
(Iik)| ≥ ρ|Iik |. That is, we have visited the state xa+

and taken an action in A(xa+), at least ρO
(

t
b(t)

)
≥ 1 times in each sub-interval.

Now, we must have at least one such sub-interval for which the improving action is never

taken, all other actions are over-sampled, and only the believed to be optimal actions a∗ ∈ Ô∗t ′

are taken.

To see this we argue as follows. Firstly, any sub-optimal action that is in the over-sampled

set At ′ \ Ô∗I−i
will not be taken by the “Release” condition of the Retainment and Release event.

Any sub-optimal and thus non-improving action that would be outside the over-sampled set

T a(I−i) < b(I+i) by the end of the interval if not taken, was taken at most b(I+i) times. This is

because, if at any point in Ii it was taken b(I+i) times, it would enter the over-sampled set and

stay there, not taken, for the rest of the interval. Lastly any improving action a+ must have been

taken less than b(I+i) times, because otherwise it would enter the over-sampled set and improve

the restricted MDP ΠI−i
(by the good estimation event, GEt/2 and the retainment event, REt/2

of the regularity condition Rt/2) which we have already assumed to be constant. Recalling that

we have |A|b(I+i) sub-intervals, with at least 1 visit (and thus 1 action taken) to state xa+ in

each, there must be at least one sub-interval k, over which all actions except improving actions

are in the over-sampled set, and the only action taken on the mesh of that interval, Mxa+
(Iik) is

believed optimal actions in Ô∗I−i
.

Next we argue that the probability of never taking the improving action over a sub-interval

is small. The probability of never taking the improving action over some sub-interval Iik is

given by,

P
(
πm 6= a+ for all m ∈Mxa+

(Iik)
)
. (2.39)

28

Recall that we are assuming the regularity condition, Rt/2, a constant sub-optimal restricted

MDP, Πt ′ = ΠI−i
< Π∗, all other actions are over-sampled, only the believed to be optimal

actions in Ô∗t ′ are taken, and we are looking over an interval of lower bound O
(

t +
t

b(t)

)
and

width O
(

t
b(t)

)
. This is exactly what we assumed in the exploration condition 4. Thus we can

bound this probability like so,

P
(
πm 6= a+ for all m ∈Mxa+

(Iik)
)
≤ O

(
1

I+ik b(I+ik)

)
(2.40)

Summing over all |A|b(I+i) sub-intervals,

P(St,i)≤
|A|b(I+i)

∑
k=1

P
(
πm 6= a+ for all m ∈Mxa+

(Iik)
)

|A|b(I+i)

∑
k=1

O

(
1

I+ik b(I+ik)

)

≤ |A|b(I+i)O
(

1
I+i b(I+i)

)
= O

(
1
I+i

)
(2.41)

and so,

P
(
πt = a,MSt,a,Rt/2

)
≤

D

∑
i=1
P(St,i)+P(Ft)

≤
D

∑
i=1

O
(

1
I+i

)
+P(Ft)

≤ D ·O
(

1
I+1

)
+P(Ft)

= O
(

1
t

)
+P(Ft)

(2.42)

Thus,

P
(
πt = a,MSt,a,Rt/2

)
≤ O(1/t)+P(Ft)

≤ O(1/t)+O(1/t)

= O(1/t)

(2.43)

29

Putting it all together,

E [T a(n)] = E

[
n−1

∑
t=0
1{πt = a}

]

≤ E

[
n−1

∑
t=0
1{πt = a,MSt,a}

]
+E

[
n−1

∑
t=0
1
{

πt = a,MSc
t,a
}]

≤ E

[
n−1

∑
t=0
1{πt = a,MSt,a}

]
+O(ln(n))

≤ E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+E

[
n−1

∑
t=0
1

{
πt = a,MSt,a,Rc

t/2

}]
+O(ln(n))

≤ E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+E

[
n−1

∑
t=0
1

{
Rc

t/2

}]
+O(ln(n))

≤ E

[
n−1

∑
t=0
1
{

πt = a,MSt,a,Rt/2
}]

+O(ln(n))

≤
n−1

∑
t=0
P
(
πt = a,MSt,a,Rt/2

)
+O(ln(n)

≤
n−1

∑
t=0

D

∑
i=0
P(St,i)+

n−1

∑
t=0
P(Ft)+O(ln(n))

≤
n−1

∑
t=0

O
(

1
t

)
+

n−1

∑
t=0

O
(

1
t

)
+O(ln(n))

≤ O(ln(n))

(2.44)

and we have finally the main result,

E [T a(n)]≤ O(lnn) (2.45)

2.8 Future Work

The most immediate extension of this work would be to apply these conditions to algorithms

that are in actual use to demonstrate their effectiveness. It is also of import to extend these

results to the case with unknown rewards or additional apriori knowledge about the structure of

states, rewards, and transitions.

30

2.9 Event Lemmas and Proofs

The purpose of this section is to hold various lemmas and proofs for events that are ultimately

used in the proof of Theorem 1.

2.9.1 Minimally Sampled Counts

We restate Lemma 1

Lemma 1. Minimally Sampled Counts

The expected number of times an action a has been taken when it has not been sampled

ga(t) times by time n is less than ga(n) = O(ln(n)). Formally,

E

[
n

∑
t=0
1
{

πt = a,MSc
t,a
}]

< ga(n) = O(ln(n)) (2.2)

Proof.

n−1

∑
t=0
1
{

πt = a,MSc
t,a
}
=

n−1

∑
t=0
1{πt = a,T a(t)< ga(t)}

≤
n−1

∑
t=0
1{πt = a,T a(t)< ga(n)} (because ga(t)< ga(n))

=
n−1

∑
t=0
1{πt = a}1{T a(t)< ga(n)}

≤
n−1

∑
t=0
1{πt = a}

ga(n)

∑
k=0

1{T a(t) = k}

=
n−1

∑
t=0

ga(n)

∑
k=0

1{πt = a}1{T a(t) = k} (because a(b+ c) = ab+ac)

=
ga(n)

∑
k=0

n−1

∑
t=0
1{πt = a}1{T a(t) = k} (because ab+ac = ba+ ca)

(2.46)

We proceed by noting that for a fixed k, both events can only simultaneously occur for at

most one value of t. To see this suppose that πt = a and T a(t) = k, then T a(t+1) = T a(t)+1 =

k+1 and T a(t + i) for any positive integer i is ≤ k+1. Thus,

31

=
ga(n)

∑
k=0

n−1

∑
t=0
1{πt = a}1{T a(t) = k}

≤
ga(n)

∑
k=0

(1)

= ga(n)

(2.47)

Recalling that ga(n) = βa ln(n) = O(ln(n)) the proof is complete.

2.9.2 Good Estimation Lemmas and Proofs

Instead of proving Lemma 2 directly. It is convenient to first break it into individual events and

then bound the total probability by the sum of the probabilities of each individual event.

Definition 12. Good Local Estimates

Let the event good local estimates, GLEt denote that for any future time t ′≥ t and minimally

sampled action a with
(
MSt ′,a

)
, transition estimators are accurate. More precisely,

GLEt =
{
|P̂a

x,t ′−Pa
x | ≤ ε|| for all t ′ ≥ t, for all a such that MSt ′,a

}
(2.48)

Definition 13. Good Global Estimates

Let the event good global estimates, GGEt denote that for any future time t ′ ≥ t our esti-

mates of the restricted MDP Πt are accurate. More precisely,

GGEt =
{
||(φ̂t ′ , ĥt ′)− (φt ′ ,ht ′)|| ≤ δ for all t ′ ≥ t

}
(2.49)

Definition 14. Good Optimal Beliefs

Let the event good optimal beliefs, GOBt denote that for any future time t ′ ≥ t actions that

we estimate to be optimal for the restricted MDP Πt are indeed optimal. More precisely,

GOBt =
{

Ô∗t ′ ⊂ O∗t ′ for all t ′ ≥ t
}

(2.50)

Armed with these definitions, the good estimation event GEt = {GLEt ,GGEt ,GOBt}. Next

we state and prove lemmas that bound the probability of each individual event.

Lemma 3. Under fast local ε-effective estimators the following is true.

P(GLEc
t)≤ O

(
1
t

)
(2.51)

32

Proof. Let Gt be the set of actions a such that MSt,a i.e., T a(t)≥ ga(t).

P(GLEc
t) = P

(
∃t ′ ≥ t : ||P̂t ′ [Gt ′]−P[Gt ′]||> ε

)
≤ P

(
∃t ′ ≥ t,x,a : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′)≥ ga(t ′)
)

≤ P
(
∃t ′ ≥ k ≥ ga(t ′),x,a : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)

≤∑
x∈S

∑
a∈A(x)

∞

∑
k=dga(t)e

P
(
∃t ′ ≥ k : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)

(2.52)

For sufficiently large t, we will have sufficiently large minimum local time T a(t)≥ ga(t). If

the local estimators depend solely on the local time k then the estimator P̂a
x(t
′) remains constant

for a fixed local time k. Let t ′′ = min{t ′ ≥ t | T a(t ′) = k}, that is the first global time that we

have a local time k, then by the definition of fast local estimators we have,

P
(
||P̂a

x(t
′′)−Pa

x ||> ε and T a(t ′′) = k
)
≤ 1

ek . (2.53)

and thus we can bound the existence probability directly.

P
(
∃t ′ ≥ t : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)

≤ P
(
||P̂a

x(t
′′)−Pa

x ||> ε and T a(t ′′) = k
)

≤ 1
ek

(2.54)

If however, the local estimators depend on global information, and thus global time, we

appeal to the second version of the fast local estimators condition

P
(
∃t ′ ≥ t : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)
≤ 1

ek (2.55)

In either case we have,

∑
x∈S

∑
a∈A(x)

∞

∑
k=dga(t)e

P
(
∃t ′ ≥ k : |P̂a

x(t
′)−Pa

x |> ε and T a(t ′) = k
)

≤∑
x∈S

∑
a∈A(x)

∞

∑
k=dga(t)e

1
ek

≤ |A||S|
∞

∑
k=dga(t)e

1
ek

= O
(

1
t

)
.

(2.56)

Where the last line follows by recalling that ga(t) = O(ln(t)).

33

Bounding the probability of the next event,

Lemma 4. Under fast global δ -effective estimators the following is true.

P(GGEc
t)≤ O

(
1
t

)
(2.57)

Proof.

P(GGEc
t) = P

({
||(φ̂t ′ , ĥt ′)− (φt ′ ,ht ′)||> δ for some t ′ ≥ t

})
= P

{
||Π̂t −Πt ||> δ for some t ′ ≥ t

}
≤

∞

∑
t ′=t

P
{
||Π̂t ′−Πt ′ ||> δ

}
≤

∞

∑
t ′=t

1
et ′

≤ O
(

1
t

)
(2.58)

Where the penultimate line follows directly from the definition of fast global estimators.

Lemma 5. Under fast local and fast global estimators the following is true.

P(GOBc
t)≤ O

(
1
t

)
(2.59)

Proof. To show the result, it suffices to argue that in the event that we have good local and

global estimates (GLEt and GGEt), then the actions that realize the maximum for the estimated

case will also realize the maximum for the true (restricted) case. In particular, if P̂t is a fast local

estimator, and (φ̂t , ĥt) is a fast global estimator, and we have good local and global estimates

34

(GLEt and GGEt), we have for any state x and action a,

∣∣∣(rx,a + ∑
y∈S

Pa
x,yhy,t

)
−

(
rx,a + ∑

y∈S
P̂a

x,y(t)ĥy,t

)∣∣∣
=
∣∣∣(∑

y∈S
Pa

x,yhy,t −∑
y∈S

Pa
x,yĥy,t

)
−

(
∑
y∈S

P̂a
x,y(t)ĥy,t −∑

y∈S
Pa

x,yĥy,t

)∣∣∣
=
∣∣∣(∑

y∈S
Pa

x,y
[
hy,t − ĥy,t

])
−

(
∑
y∈S

[
P̂a

x,y(t)−Pa
x,y
]

ĥy,t

)∣∣∣
≤∑

y∈S
Pa

x,y|hy,t − ĥy,t |+ ∑
y∈S
|P̂a

x,y(t)−Pa
x,y||ĥy,t |

≤∑
y∈S

Pa
x,yδ + ∑

y∈S
ε (|hy,t |+δ)

≤ δ + ε ∑
y∈S
|hy,t |+ |S|εδ

(2.60)

Let D = δ + ε ∑y∈S|hy,t |+ |S|εδ , be this gap. From the above, we get that if ε and δ are suffi-

ciently small (i.e., the estimates are sufficiently good), then the gap, D, between the estimated

action value and the true action value can be made arbitrarily small.

For any state x, let Va and Vs be the true values of the maximal action and the second largest

action, respectively, i.e.

Va = max
c∈At(x)

[
rx,c + ∑

y∈S
Pc

x,yhy,t

]
and

Vs = max
c∈{At(x)\O∗t (x)}

[
rx,c + ∑

y∈S
Pc

x,yhy,t

]
Let V̂a be the minimum estimated value of any truly optimal action and V̂b be the largest

estimated action value of any truly sub-optimal action, i.e.

V̂a = min
c∈O∗t (x)

[
rx,c + ∑

y∈S
P̂c

x,y(t)ĥy,t

]

and

V̂b = max
c∈{At(x)\O∗t (x)}

[
rx,c + ∑

y∈S
P̂c

x,y(t)ĥy,t

]
If we can show that V̂b < V̂a, we will have shown that given Good Estimators, actions

estimated to be optimal are indeed optimal (i.e. if a ∈ Ô∗t , then we must have a ∈ O∗t)

Taking ε and δ sufficiently small such that, D <
1
2
(Va−Vs), and noting that 0 <Va−Vs ≤

Va−Vc for any c ∈ {At(x)\O∗t (x)}, we have,

35

|V̂b−Vb|<
1
2
(Va−Vs)≤

1
2
(Va−Vb) =⇒ V̂b <Vb +

1
2
(Va−Vb)

and

|V̂a−Va|<
1
2
(Va−Vs)≤

1
2
(Va−Vb) =⇒ −V̂a <

1
2
(Va−Vb)−Va =⇒ Va−

1
2
(Va−Vb)< V̂a

and together we have,

V̂b <Vb +
1
2
(Va−Vb) =Va−

1
2
(Va−Vb)< V̂a.

This, combined with the probability bounds on good local and global estimates, GLEt and

GGEt from Lemmas 3 and 4 respectively, yields the result.

Finally we restate Lemma 2

Lemma 2. Good Estimation is likely

Under fast local ε-effective estimators and fast global δ -effective estimators, then for suffi-

ciently large t,

P(GEc
t)≤ O

(
1
t

)
. (2.9)

Proof. Recalling that GEt = {GLEt ,GGEt ,GOBt} the result is immediate from Lemmas 3,

4 and 5, by bounding the total probability by the sum of the probabilities of each individual

event.

2.9.3 Regularity Lemmas and Proofs

Lemma 6. Under local ε-effective estimators, fast global δ -effective estimators, and the Re-

tainment and Release condition 3 , then non-regularity contributes at most O(ln(n)) expected

regret. Formally,

E

[
n−1

∑
t=0
1{Rc

t }
]
≤ O(ln(n)) (2.61)

Similarly to 2.9.2, instead of proving Lemma 6 directly, it is convenient to bound the prob-

ability of individual events and then bound the total probability by their sum.

36

Lemma 7. If an adaptive policy satisfies the Retainment and Release condition 3 then the

Retainment and Release event 7 is likely. Formally,

P(REc
t)≤ O

(
1
t

)
(2.62)

Proof.

P(REc
t)≤ P

(
Ô∗t ′ ⊂ At ′+1 for some t ′ ≥ t

)
+P

(
πt ′ /∈ At ′ \ Ô∗t ′ for some t ′ ≥ t

)
≤

∞

∑
t ′=t

P
(
Ô∗t ′ ⊂ At ′+1

)
+P

(
πt ′ /∈ At ′ \ Ô∗t ′

)
≤

∞

∑
t ′=t

O
(

1
et ′

)
≤ O

(
1
t

)
(2.63)

Where the penultimate line follows directly from the definition the retainment and release

condition 3.

Lemma 8. Frequent visits are likely. Formally,

P(FVc
t)≤ O

(
1
t

)
(2.64)

Proof. The proof relies on the following proposition on MDPs from [1], given there as Prop. 2

(i):

Proposition 1. There exist A > 0,β > 0 such that for all x ∈ S, t ≥ |S|, ρ > 0, and all policies

π ,

P(Tx(t)≤ ρt)≤ Ae−β t . (2.65)

This implies that, with high probability, every state is visited roughly linearly often. Con-

sider “restarting” the MDP at time I−. For sufficiently large t, |I| = O(t/b(t)) will be greater

than |S|. By Proposition 1 we know that regardless of the policy π with high probability we

visit any state a, ρ|I| times. In particular,

P
(
Tx(I+)−Tx(I−)< ρ|I|

)
< Ae−β |I|

= Ae−β
t

b(t)

≤ O(1/t)

(2.66)

37

Restating Lemma 6

Lemma 6. Under local ε-effective estimators, fast global δ -effective estimators, and the Re-

tainment and Release condition 3 , then non-regularity contributes at most O(ln(n)) expected

regret. Formally,

E

[
n−1

∑
t=0
1{Rc

t }
]
≤ O(ln(n)) (2.61)

Proof. The proof directly follows from the previous lemmas 2, 7, 8.

E

[
n−1

∑
t=0
1{Rc

t }
]

≤ E

[
n−1

∑
t=0
1{GEc

t }
]
+E

[
n−1

∑
t=0
1{REc

t }
]
+E

[
n−1

∑
t=0
1{FVc

t }
]

≤
n−1

∑
t=0
P(GEc

t)+
n−1

∑
t=0
P(REc

t)+
n−1

∑
t=0
P(FVc

t)

≤
n−1

∑
t=0

(P(GEc
t)+P(REc

t)+P(FVc
t))

≤
n−1

∑
t=0

(
O
(

1
t

)
+O

(
1
t

)
+O

(
1
t

))
≤ O(ln(n))

(2.67)

38

Chapter 3

Accelerating the Computation of UCB and Related Indices for
Reinforcement Learning

3.1 Introduction

The practical use of the asymptotically optimal UCB algorithm (MDP-UCB) of [1] has been

hindered [3, 11] by the computational burden of the upper confidence bound indices c.f. Eq.

(3.1), that involves the solution of a non-linear constrained optimization problem of dimension

equal to the cardinality of the state space of the MDP under consideration. In this chapter

we derive an efficient computational method that only requires solving a system of two non-

linear equations with two unknowns, irrespective of the cardinality of the state space of the

MDP. In addition, we develop a similar acceleration for computing the indices for the MDP-

Deterministic Minimum Empirical Divergence (MDP-DMED) developed in [12], that involves

solving a single equation of one variable. In Section 3.3 we present these computationally

efficient formulations and provide experimental results demonstrating the computational time

savings.

The body of the paper is devoted to presenting and discussing four computationally simple

algorithm that are either provably asymptotically optimal, or at least appear to be. While no

proofs of optimality are presented, the results of numerical experiments are presented demon-

strating the efficacy of these algorithm. Proof of optimality for these algorithm will be discussed

in future works.

3.1.1 Related Work

In addition to the papers upon which the algorithms here are explicitly based, there are many

other approaches for adaptively learning MDPs while minimizing expected regret. [28] propose

39

an algorithm, UCRL2, a variant of the UCRL algorithm of [11], that achieves logarithmic

regret asymptotically, as well as uniformly over time. UCRL2, defines a set of plausible MDPs

and chooses a near-optimal policy for an optimistic version of the MDP through so called

“extended value iteration”. This approach, while similarly optimistic in flavor, is sufficiently

different than the algorithms presented here that we will not be comparing them directly. The

algorithms in this chapter act upon the estimated transition probabilities of actions for only our

current state, for a fixed estimated MDP. Specifically, MDP-UCB and OLP inflate the right

hand side of the optimality equations by perturbing the estimated transition probabilities for

actions in the current state. MDP-DMED estimates the rates at which actions should be taken

by exploring nearby plausible transition probabilities for actions in the current state. Finally,

MDP-PS obtains posterior sampled estimates, again, only for, the transition probabilities for

actions in the current state.

Recently, [29] show that model-based algorithms (which all the algorithms discussed here

are), that use 1-step planning can achieve the same regret performance as algorithms that per-

form full-planning. This allows for a significant decrease in the computational complexity of

the algorithms. In particular they propose UCRL2-GP, which uses a greedy policy instead of

solving the MDP as in UCRL2, at the beginning of each episode. They find that this policy

matches UCRL2 in terms of regret (up to constant and logarithmic factors), while benefiting

from decreased computational complexity. The setting under consideration however, is a finite

horizon MDP and the regret bounds are in PAC terms [14] and optimal minimax [30]. Further

analysis is required to transfer these results to the setting of this paper. Namely, an infinite

horizon MDP with bounds on the asymptotic growth rate of the expected regret. A fruitful

direction of study would be to examine the relationship between UCRL2-GP, UCRL2, and the

algorithms presented here, more closely, paying particular attention to the varying dependen-

cies on the dimensionality of the state space.

[31] analyze and compare the expected regret and computational complexity of PS-type

algorithms (PSRL therein) versus UCB-type (OFU therein) algorithms, in the setting of finite

horizon MDPs. The PSRL algorithm presented there is similar to MDP-PS here. However,

their optimistic inflation or stochastic optimism is done across the MDP as a whole, either over

plausible MDPs in the case of OFU, or for a fixed MDP in the PSRL case. By contrast, in this

40

paper we present non-episodic versions where the inflations are done only for the actions of

our current state for a fixed estimated MDP. They also argue therein that any OFU approach

which matches PSRL in regret performance will likely result in a computationally intractable

optimization problem. Through that lens, the main result of this paper, proving a computation-

ally tractable version of the optimization problem shows that actually a provably asymptotically

optimal UCB approach can compete with a PS approach both in terms of regret performance as

well as computational complexity. A more thorough analysis is required in order to determine

what parts of our analysis here, with an undiscounted infinite horizon MDP, can carry over to

the finite horizon MDP setting of [31] and [30].

3.1.2 Chapter Structure

This chapter is organized as follows. In Section 3.2 we present four simple algorithms for

adaptively optimizing the average reward in an unknown irreducible MDP. The first is the

asymptotically optimal UCB algorithm (MDP-UCB) of [1] that uses estimates for the MDP

and choose actions by maximizing an inflation of the estimated right hand side of the average

reward optimality equations. The second (MDP-DMED) is inspired by the DMED method for

the multi-armed bandit problem developed in [32, 2] and estimates the optimal rates at which

actions should be taken and attempts to take actions at that rate. The third is the Optimistic

Linear Programming (OLP) algorithm [3] which is based on MDP-UCB but instead of using

the KL divergence to inflate the optimality equations, uses the L1 norm. The fourth (MDP-PS)

is based on ideas of greedy posterior sampling that go back to [33] and similar to PSRL in [31].

The main contribution of this chapter is in Section 3.3, where we present the efficient formula-

tions and demonstrate the computational time savings. Various computational challenges and

simplifications are discussed, with the goal of making these algorithms practical for broader

use. In Section 3.4 we compare the regret performance of these algorithms in numerical exam-

ples and discuss the relative advantages of each. While no proofs of optimality are presented,

the results of numerical experiments are presented demonstrating the efficacy of these algo-

rithms. Proof of optimality for these algorithms will be discussed in future works, especially in

light of the conditions in Chapter 2.

41

3.1.3 Notation

It will be convenient in what is to follow to define the following notation:

L(x,a, p,v) = rx(a)+ ∑
y∈S

pyvy.

The function L represents the value of a given action in a given state, for a given transition

vector—both the immediate reward, and the expected future value of whatever state the MDP

transitions into. The value of an asymptotically optimal action for any state x is thus given by

L∗(x,A,P) = L(x,a∗(x,P), pa∗(x,P)
x

,v(A,P)).

In general, for the unknown transition laws case, we have the following bound due to [1],

for any uniformly fast policy π , any sub-optimal action must be sampled at least at a minimum

rate. In particular, for a suboptimal action a,

liminf
T

E [T a
x (T)]

lnT
≥ 1

Kx,a(P)
.

where Kx,a(P) represents the minimal Kullback-Leibler divergence between pa
x

and any q ∈ Θ

such that substituting q for pa
x
x in P renders a the unique optimal action for x. Recall, the

Kullback-Leibler divergence is given by I(p,q) = ∑x∈S px ln(px/qx).

This can be interpreted in the following way: for a sub-optimal action, the “closer” the

transition law is to an alternative transition law that would make it the best action, the more

data we need to distinguish between the truth and this plausible alternative hypothesis, and

therefore the more times we need to sample the action to distinguish the truth. Anything less

than this “base rate”, we risk convincing ourselves of a plausible, sub-optimal hypothesis and

therefore incurring high regret when we act on that belief.

Policies that achieve this lower bound, for all P, are referred to as asymptotically optimal.

Achieving this bound, or at least the desired logarithmic growth requires careful exploration of

actions. In the next section, we present four algorithms to accomplish this.

3.2 Algorithms for Optimal Exploration

Common reinforcement learning algorithms solve the exploration/exploitation dilemma in the

following way: most of the time, select an action (based on the current data) that seems best,

42

otherwise select some other action. This alternative action selection is commonly done uni-

formly at random. As long as this is done infrequently, but not too infrequently, the optimal

actions and policy will be discovered, potentially at the cost of high regret. Minimizing regret

requires careful consideration of which alternative actions are worth taking at any given point

in time. The following algorithms are methods for performing this selection; essentially, in-

stead of blindly selecting from the available actions to explore, each algorithm evaluates the

currently available data to determine which action is most worth exploring. Each accomplishes

this through an exploration of the space of plausible transition hypotheses.

The benefit of this is that through careful exploration, optimal (minimal) regret can be

achieved. The cost however, is additional computation. The set of alternative transition laws is

large and high dimensional, and can be difficult to work with. In Section 3.3 we show several

simplifications, however, that make this exploration practical.

3.2.1 A UCB-Type Algorithm for MDPs Under Uncertain Transitions

Classical upper confidence bound (UCB) decision algorithms (for instance as in multi-armed

bandit problems, c.f. [34], [35], [36]), approach the problem of exploration in the following

way: in each round, given the current estimated transition law, we consider “inflated” esti-

mates of the values of each actions, by finding the best (value-maximizing) plausible hypothe-

sis within some confidence interval of the current estimated transition law. The more data that

is available for an action, the more confidence there is in the current estimate, and the tighter

the confidence interval becomes; the tighter the confidence interval becomes, the less explo-

ration is necessary for that action. The algorithm we present here is a version of the MDP-UCB

algorithm presented in [1].

At any time t ≥ 1, let xt be the current (given) state of the MDP. We construct the following

estimators:

• Transition Probability Estimators: for each state y and action a∈A(xt), construct P̂t based

on

p̂a
xt ,y =

T a
xt ,y(t)+1

T a
xt
(t)+ |S|

.

Note the biasing terms (the 1 in the numerator, |S| in the denominator). Including these,

43

biases the estimated transition probabilities away from 0, so that our estimates pa
xt

will

be in Θ. Additionally, these guarantee that the above is in fact the maximum likelihood

estimate for the transition probability, given the observed data and uniform priors.

• “Good” Action Sets: construct the following subset of the available actions A(xt),

Ât =
{

a ∈ A(xt) : T a
xt
(t)≥ (lnTxt (t))

2
}
.

The set Ât represents the actions available from state xt that have been sampled frequently

enough that the estimates of the associated transition probabilities should be “good”. In

the limit, we expect that sub-optimal actions will be taken only logarithmically, and hence

for sufficiently large t, Ât will contain only actions that are truly optimal. If no actions

have been taken sufficiently many times, we take Ât = A(xt) to prevent it from being

empty.

• Value Estimates: having constructed these estimators, we compute φ̂t = φ(Ât , P̂t) and

v̂t = v(Ât , P̂t) as the solution to the optimality equations in Eq. (1.2), essentially treating

the estimated probabilities as correct and computing the optimal values and policy for

the resulting estimated MDP.

At this point, we implement the following decision rule: for each action a ∈ A(xt), we

compute the following index over the set of possible transition laws:

ua(t) = sup
q∈Θ

{
L(xt ,a,q, v̂t) : I(p̂a

xt
,q)≤ ln t

Txt ,a(t)

}
, (3.1)

where I(p,q) = ∑y py ln(py/qy) is the Kullback-Leibler divergence, and take action

π(t) = arg maxa∈A(xt)ua(t).

This is a natural extension of several classical KL-divergence based UCB algorithms for the

multi-armed bandit problem c.f. [13], [35], [36] taking the view of the L function as the ‘value’

of taking a given action in a given state, estimated with the current data. In [35], a modified

version of the above algorithm is in fact shown to be asymptotically optimal. The modification

is largely for analytical benefit however, the pure index algorithm as above shows excellent

performance c.f. Figure 3.3. Further discussion of the performance of this algorithm is given

in Section 3.4.

44

An important and legitimate concern to the practical usage of the MDP-UCB algorithm

that has been noted in [3] among others, is actually calculating the index in Eq. (3.1). This

and other issues are discussed in more depth in Section 3.3, where a computationally efficient

formulation is presented. Additionally, in Section 3.4, we highlight beneficial behavior of this

algorithm that makes it worth pursuing.

3.2.2 A Deterministic Minimum Empirical Divergence Type Algorithm for MDPs

Under Uncertain Transitions

In the classical DMED algorithm for multi-armed bandit problems [32], rather than consid-

ering (inflated) values for each action to determine which should be taken, DMED attempts

to estimate how often each action ought to be taken. Recall the interpretation of [35] given

previously, that for any uniformly fast policy π , for any sub-optimal action a we have

liminf
T

E [T a
x (T)]

lnT
≥ 1

Kx,a(P)
,

where Kx,a(P) measures (via the Kullback-Leibler divergence) how much the transition law for

action a would need to be changed to make action a optimal.

DMED proceeds by the following reasoning. If we estimate that the sub-optimal action a

is close to being optimal (low Kx,a), make sure we take it often enough to differentiate between

them (ensure T a
x is high). If, on the other hand, we estimate that the sub-optimal action a is far

from being optimal (high Kx,a), we don’t need to take is as often (ensure T a
x is low). As with

the MDP-UCB and OLP algorithms, this requires an exploration of the possible transition laws

“near” the current estimated transition law.

In general, computing the function Kx,a(P) is not easy. We consider the following substi-

tute, then:

K̃x,a(P,v,a∗) = inf
q∈Θ

{
I(pa

x
,q) : L(x,a,q,v)≥ L(x,a∗, pa∗

x
,v)
}
.

This is akin to exploratory policy iteration. That is, determining, based on the current value

estimates, how much modification would produce an improving action.

The function K measures how far the transition vector associated with x and a must be

45

perturbed (under the KL-divergence) to make a the optimal action for x. The function K̃ mea-

sures how far the transition vector associated with x and a must be perturbed (under the KL-

divergence) to make the value of a, as measured by the L-function, no less than the value of an

optimal action a∗. As will be shown in Section 3.3, K̃ may be computed fairly simply, in terms

of the root of a single non-linear equation.

In this way, we have the following approximate MDP-DMED algorithm (see [32] and [2]

for the multi-armed bandit version of this algorithm).

At any time t ≥ 1, let xt be the current state, and construct the estimators as in the MDP-

UCB algorithm in Section 3.2.1, P̂t , Ât , and utilize these to compute the estimated optimal

values, φ̂t = φ(Ât , P̂t) and v̂t = v(Ât , P̂t).

Let â∗t = arg maxa∈A(xt)L(xt ,a, p̂a
xt
, v̂t) be the estimated “best” action to take at time t. For

each a 6= â∗t , compute the discrepancies

Dt(a) = ln t/K̃xt ,a(P̂t , v̂t , â
∗
t)−Txt ,a(t).

If maxa6=â∗t Dt(a)≤ 0, take π(t) = â∗t , otherwise, take π(t) = arg maxa6=â∗t Dt(a).

Following this algorithm, we perpetually reduce the discrepancy between the estimated

sub-optimal actions, and the estimated rate at which those actions should be taken. The ex-

change from K to K̃ sacrifices some performance in the pursuit of computational simplicity,

however it also seems clear from computational experiments that MDP-DMED as above is not

only computationally tractable, but also produces reasonable performance in terms of achieving

small regret c.f. Figure 3.3. Further discussion of the performance of this algorithm is given in

Section 3.4.

3.2.3 Optimistic Linear Programming, Another UCB-Type Algorithm for MDPs

Under Uncertain Transitions

As we have previously noted, [3] raises some legitimate computational concerns. They pro-

pose an alternative, algorithm which they term “optimistic linear programming” (OLP), which

is closely related to the MDP-UCB algorithm presented here. The main difference between

OLP and MDP-UCB is that OLP does not use the KL divergence to determine the confidence

interval. Instead, OLP uses L1 distance, which allows the resulting index to be computed via

46

solving linear programs. This reduces the computational complexity at the cost of performance.

As we will show in Section 3.3, the MDP-UCB optimization problem can be simplified drasti-

cally, to render the use of OLP, at least with respect to the computational issues, unnecessary.

The algorithm we present here is a version of OLP algorithm presented in [3].

At any time t ≥ 1, let xt be the current state, and construct the estimators as in the MDP-

UCB algorithm in Section 3.2.1, P̂t , Ât , and utilize these to compute the estimated optimal

values, φ̂t = φ(Ât , P̂t) and v̂t = v(Ât , P̂t).

At this point, we implement the following decision rule: for each action a∈ A(xt), we com-

pute the following index, again maximizing value within some distance of the current estimates:

ua(t) = sup
q∈Θ

{
L(xt ,a,q, v̂t) : ||p̂a

xt
−q||1 ≤

√
2ln t
T a

xt
(t)

}
,

and take action

π(t) = arg maxa∈A(xt)ua(t).

3.2.4 A Thompson-Type Algorithm for MDPs Under Uncertain Transitions

In MDP-UCB, MDP-DMED, and OLP, above, we realized the notion of “exploration” in terms

of considering alternative hypotheses that were “close” to the current estimates within Θ, in-

terpreting closeness in terms of “plausibility”. In this section, we consider an alternative form

of exploration through random sampling over Θ, based on the current available data. Given a

uniform prior over Θ, the posterior for pa
x

is given by a Dirichlet distribution with the observed

occurrences. Posterior Sampling (MDP-PS) proceeds in the following way:

At any time t ≥ 1, let xt be the current state, and construct the estimators as in the MDP-

UCB algorithm in Section 3.2.1, P̂t , Ât , and utilize these to compute the estimated optimal

values, φ̂t = φ(Ât , P̂t) and v̂t = v(Ât , P̂t). In addition, generate the following random vectors:

For each action a∈A(xt), let T a
xt
(t)= [T a

xt ,y(t)]y∈S be the vector of observed transition counts

from state xt to y under action a. Generate the random vector Q according to

Qa(t)∼ Dir(T a
xt
(t)).

The Qa(t) are distributed according to the joint posterior distribution of pa
xt

with a uniform

prior.

47

At this point, define the following values as posterior sampled estimates of the potential

value L of each action:

Wa(t) = rxt ,a +∑
y

Qa
y(t)v̂y,

and take action π(t) = arg maxa∈A(xt)Wa(t).

In this way, we probabilistically explore likely hypotheses within Θ, and act according to

the action with best hypothesized value.

3.3 Accelerating Computation

All of the above algorithms require computing the estimated optimality values φ̂t , v̂t each round.

This is an issue, but efficient linear programming formulations exist to solve the optimality

equations in Eq. (1.2) see for example [19]. It may also be possible to adapt the method of [37]

for approximately solving MDPs, among others, to our undiscounted and potentially changing

MDP setting.

However, each of these algorithms additionally has unique computational challenges, through

computations over the high dimensional parameter space Θ due to the typically high cardinality

of the state space.

3.3.1 MDP-UCB

We will first examine the MDP-UCB algorithm from Section 3.2.1. Recalling the notation

that I(p,q) = ∑x px ln(px/qx), MDP-UCB has to repeatedly solve the following optimization

problem:

C(p,v,δ) = sup
q∈Θ

{
∑
x

qxvx : I(p,q)≤ δ

}
.

The index of the MDP-UCB algorithm may be efficiently expressed in terms of the C func-

tion above, ua(t) = rxt (a) +C
(

pa
xt
, v̂t ,

ln t
Txt ,a(t)

)
. We will refer to this formulation as the q-

Formulation.

This represents an |S|-dimensional non-linear constrained optimization problem which is

not, in general, easy to solve.

48

For mathematical completeness, as well as for practical implementation, we first analyze

some trivial cases. Let µp = ∑x pxvx and V = maxx vx, then

Theorem 2. The value of C(p,v,δ) can be easily found in the following cases:

• If δ < 0 then the optimization problem, C(p,v,δ) is infeasible and we say C(p,v,δ) =

−∞.

• If δ = 0, then C(p,v,δ) = µp.

• If δ > 0 and vx1 = vx2 for all x1,x2 ∈ S, then C(p,v,δ) = µp.

Proof of this theorem is provided in Section 3.6.1.

For other cases, we can reduce this to solving a 2 dimensional system of non-linear equa-

tions, with unknowns µ∗q and λ as follows.

Theorem 3. For any δ > 0 and v such that vx1 6= vx2 for some x1,x2 ∈ S,

C(p,v,δ) = µ
∗
q ,

where

∑
x∈S

px ln
(

1+
vx−µ∗q

λ

)
= δ ,

∑
x

px
λ

λ + vx−µ∗q
= 1,

µp < µ
∗
q <V and λ < µ

∗
q −V.

Proof of this theorem is provided in Section 3.6.2.

Solving these systems, which we will refer to as the (µ∗q ,λ)-Formulation, provides dramatic

speed increases for the implementation of the algorithm (Figure 3.1). We also note that the

(µ∗q ,λ)-Formulation scales manageably with the dimension of the state space, as opposed to

the q-Formulation. Additionally, the structure of the equations admits several nice solution

methods since, for a given µq, the second equation has a unique solution for λ in the indicated

range, and given that solution, the summation in the first equation is increasing to infinity as a

function of µq.

49

3.3.2 MDP-DMED

Next we examine the MDP-DMED algorithm from Section 3.2.2. Again, recalling the notation

that I(p,q) = ∑x px ln(px/qx), MDP-DMED has to repeatedly solve the following optimization

problems:

D(p,v,ρ) = inf
q∈Θ

{
I(p,q) : ∑

x
qxvx ≥ ρ

}
.

The rate function K̃ of the MDP-DMED algorithm may be efficiently expressed in terms

of the D function above, K̃xt ,a(P̂t , v̂t , â
∗
t) = D(pa

xt
, v̂t ,L(xt ,a∗, pa∗

x
, v̂t)− rxt (a)). We will refer to

as the q-Formulation. This represents an |S|-dimensional non-linear constrained optimization

problems, which is not, in general, easy to solve.

As before, we consider some trivial cases first. Let µp = ∑x pxvx and V = maxx vx, then

Theorem 4. The value of D(p,v,ρ) and by extension Dt(a) can be easily found in the following

cases:

• If ρ >V then the optimization problem, D(p,v,ρ) is infeasible and we say D(p,v,ρ) =∞

and Dt(a) =−Txt ,a(t).

• If ρ ≤ µp then D(p,v,ρ) = 0 and we say Dt(a) = ∞.

• If vx1 6= vx2 for some x1,x2 ∈ S and ρ =V , then optimization problem D(p,v,ρ) diverges

to infinity and we say D(p,v,ρ) = ∞ and Dt(a) =−Txt ,a(t).

Proof of this theorem is provided in Section 3.6.3.

For other cases, this optimization problem reduces to solving a 1-dimensional system of

non-linear equations with one unknown, λ , as follows:

Theorem 5. For any v such that vx1 6= vx2 for some x1,x2 ∈ S and µp < ρ <V ,

D(p,v,ρ) = ∑
x

px ln(1+(ρ− vx)λ),

where

∑
x

px
ρ− vx

1+(ρ− vx)λ
= 0,

0 < λ <
1

V −ρ
.

50

Proof of this theorem is provided in Section 3.6.4.

As with the MDP-UCB case, solving this system, which we will refer to as the λ -Formulation,

provides dramatic speed increases for the implementation of the algorithm (Figure 3.1). We

also note that the λ -Formulation scales manageably with the dimension of the state space, as

opposed to the q-Formulation. Additionally, the λ -Formulation structurally lends itself well

to solutions. Over the indicated range, the summation is positive and constant in the limit as

λ → 0, and monotonically decreasing, diverging to negative infinity as λ → 1/(V −ρ). Hence

the solution is unique, and can easily be found via bisection.

3.3.3 OLP

Next we examine the OLP algorithm from Section 3.2.3. OLP has to repeatedly solve the

following optimization problem:

B(p,v,δ) = sup
q∈Θ

{
∑
x

qxvx : ||p̂xt −q||1 ≤ δ

}
.

The index of the OLP algorithm may be efficiently expressed in terms of the B function above,

ua(t) = rxt (a)+B
(

p̂a
xt
, v̂t ,
√

2ln t
T a

xt (t)

)
. B(p,v,δ) is equivalent to the following linear program:

maxq+,q− ∑
x∈S

vx(q−x−q+x + px),

s.t.

∑
x∈S

q+x +q−x ≤ δ ,

∑
x∈S

q−x−q+x = 0,

q+x−q−x ≤ px ∀x ∈ S,

q+x,q−x ≥ 0 ∀x ∈ S.

This represents an |S|-dimensional linear program, which can generally be computed quite

efficiently. However, as the dimension of the state space increases we incur a greater computa-

tional burden (Figure 3.1).

51

3.3.4 MDP-PS

The most attractive advantage of MDP-PS is the reduced computational cost, relative to the

other three proposed algorithms (Figure 3.2). Notice there is no extra optimization problem

that needs to be solved. In the MDP-UCB algorithm, at every time t, we had to iteratively

solve |A(xt)| instances of C(p,v,δ), for OLP |A(xt)| instances of B(p,v,δ), and for MDP-

DMED, |A(xt)| instances of D(p,v,ρ). Under MDP-PS, the computational burden stems from

sampling from the Dirichlet distribution for each action (again, |A(xt)| steps), but this is a well

studied problem with many efficiently implemented solutions (see for example [38]). Specific

properties of the MDP-PS algorithm may still make these other algorithms worth pursuing,

however, as seen in Section 3.4.

3.3.5 Computation Time Comparison

To demonstrate the computational time savings achieved by these simplifications we randomly

generated the parameters for 15 different action indices and timed how long each algorithm

took to solve. We repeated this for 4 different values of |S|, the dimension of the state space,

10, 100, 1,000, and 10,000. In Figure 3.1, we plot the mean computation time as |S| increases,

for each algorithm, [1] MDP-PS, [2] MDP-DMED λ -Formulation, [3] MDP-UCB (µ∗q ,λ)-

Formulation , [4] MDP-DMED q-Formulation , [5] MDP-UCB q-Formulation, and [6] OLP,

along with a 95% confidence interval.

In order to keep the comparisons as equitable as possible, the optimization problem for all

the algorithms (with the exception of MDP-PS) were solved to within 4 digits of accuracy using

TensorFlow for Python [39]. MDP-PS used SciPy’s random Dirichlet generator. They were all

run on a MacBook Pro with a 3.1 Ghz i7 processor with 16GB DDR3 RAM.

The top three fastest algorithms were [1] MDP-PS, [2] MDP-DMED λ -Formulation, and

[3] MDP-UCB (µ∗q ,λ)-Formulation. Figure 3.2 shows these three in more detail.

From Figure 3.1 we can see the dramatic savings achieved by [2] MDP-DMED using the

λ -Formulation, and [3] MDP-UCB using the (µ∗q ,λ)-Formulation as compared to [4,5] the q-

Formulations. [6] OLP also suffers from increasing computation time as the dimension of the

state space increases. OLP performs the worst in terms of computational time which is likely

52

Figure 3.1: Computation time as |S| increases

Figure 3.2: Computation time as |S| increases for the top three performers

53

due to the fact that we are not using a specialized fast LP solver but rather TensorFlow.

In Figure 3.2 we can see the relative performances of the top three algorithms. [1] MDP-PS,

unsurprisingly with the fastest, followed by [2] MDP-DMED using the λ -Formulation with its

single unknown, and then [3] MDP-UCB using the (µ∗q ,λ)-Formulation with its two unknowns.

The absolute time is not as important as the relative time. There are numerous ways to

achieve significantly faster absolute time but our focus here is to demonstrate the relative speed

increase gained by using our simplifications. In addition, one can get raw computational time

savings by developing a devoted optimizer for problems of this type but if we restrict to using

a generic black box optimizer, the method we employed seems a reasonable reflection of what

one would do.

3.4 Comparison of Performance

In this section we discuss the results of our simulation test of these algorithms on a small

example problem. There is nothing particularly special about the values for this example, and

we observe similar results under other values. Our example had 3 states (x1,x2, and x3) with 2

available actions (a1 and a2) in each state. Below we show the transition probabilities, as well

as the reward, returned under each action.

P[a1] =

x1 x2 x3

x1 0.04 0.69 0.27

x2 0.88 0.01 0.11

x3 0.02 0.46 0.52

,

P[a2] =

x1 x2 x3

x1 0.28 0.68 0.04

x2 0.26 0.33 0.41

x3 0.43 0.35 0.22

,

R =

x1 x2 x3

a1 0.13 0.47 0.89

a2 0.18 0.71 0.63

.

If these transition probabilities were known, the optimal policy for this MDP would be

π∗(x1) = a1,π
∗(x2) = a2, and π∗(x3) = a1.

54

Figure 3.3: Average cumulative regret over time for each algorithm

We simulated each algorithm 100 times over a time horizon of 10,000 and for each time step

we computed the mean regret as well as the variance. In Figure 3.3, we plot the mean regret

over time for each algorithm, [1] MDP-PS, [2] MDP-UCB, [3] OLP, and [4] MDP-DMED,

along with a 95% confidence interval for all sample paths.

We can see that all algorithms seem to have logarithmic growth of regret. There are a few

interesting differences that the plot highlights, at least for these specific parameter values:

MDP-DMED has not only the highest finite time regret, but also large variance that seems

to increase over time. This seems primarily due to the “epoch” based nature of the algorithm,

which results in exponentially long periods when the algorithm may get trapped taking sub-

optimal actions, incurring large regret until the true optimal actions are discovered. The benefit

of this epoch structure is that once the optimal actions are discovered, they are taken for expo-

nentially long periods, to the exclusion of sub-optimal actions.

As expected, see [3], OLP has a higher finite time regret when compared to MDP-UCB, but

still achieves logarithmic growth.

MDP-PS seems to perform best, exhibiting lowest finite time regret as well as the tightest

55

variance. This seems largely in agreement with the performance of PS-type algorithms in other

bandit problems as well, in which they are frequently asymptotically optimal c.f. [36] and

references therein.

3.4.1 Algorithm Robustness—Inaccurate Priors

How do these algorithms respond to potentially “unlucky” or non-representative streaks of

data? How does bad initial estimates effect their performance? Can these algorithms be fooled,

and what are the resulting costs before they recover? This is a practically important question,

in terms of data security and risk assessment, but also an important element of evaluating a

learning algorithm. How does the learning agent respond to non-ideal conditions?

To test these algorithms, we “rigged” or biased the first 60 actions and transitions, such

that under the estimated transition probabilities the optimal policy would be to activate the sub-

optimal action in each state. In more detail, let T a
x,y be the number of times we transitioned from

state x to state y under action a. Then we rigged T a so that it started like so,

T [a1] =

x1 x2 x3

x1 8 1 1

x2 1 1 8

x3 8 1 1

,

T [a2] =

x1 x2 x3

x1 1 1 8

x2 8 1 1

x3 1 1 8

Under the resulting (bad) estimated transition probabilities, we have that the (estimated)

optimal policy is π̂∗(x1) = a2, π̂
∗(x2) = a1, and π̂∗(x3) = a1, which in fact chooses the sub-

optimal action in each state.

The subsequent performances of the MDP algorithms are plotted in Figure 3.4. All algo-

rithms still appear to have logarithmic growth in regret, suggesting they can all ‘recover’ from

the initial bad estimates. It is striking though, the extent to which the average regrets for MDP-

DMED and MDP-PS are affected, increasing dramatically as a result, MDP-PS demonstrating

56

Figure 3.4: Robustness test. MDP-UCB seems to be largely unaffected by the inaccurate priors.

an increase in variance as well. However, the MDP-UCB algorithm seems relatively stable:

its average regret has barely increased, and maintains a small variance. Empirically, this phe-

nomenon appears common for the MDP-UCB algorithm under other extreme conditions. The

underlying cause and a rigorous examination of these intuitions, will be explored in a future

work.

3.5 Conclusion and Future Work

We have presented four algorithms adapted from classical multi-armed bandit algorithms that

either are provably asymptotically optimal or at least give that appearance in practice. The sim-

plifications for MDP-UCB and MDP-DMED presented here have been shown to dramatically

reduce the computational burden for these algorithms, rendering them more useful in practice.

As a result, the provably worse performing OLP, no longer has any advantage over them. MDP-

DMED under the λ -Formulation is fast and possibly optimal, but has a high variance for regret

that increases over time. While MDP-PS is very fast and appears to be optimal, it is highly

sensitive to incorrect priors or extreme sampling errors. MDP-UCB is provably optimal has

57

stable performance under various extreme conditions, and can be computed quickly using the

(µ∗q ,λ)-Formulation.

The most immediately obvious extension of this work is to show how the algorithms here

satisfy the sufficient conditions developed in Chapter 2. This will not only provide guarantees

about the algorithms themselves, but also potentially allow these algorithms to be modified to

use other state value estimators (for example, Q-learning [40]) while maintaining their theoret-

ical guarantees.

There are various interesting directions to continue this work, we mention a few potential

avenues here. The idea of “exploring the hypothesis space” is something that extends imme-

diately to the case of unknown rewards. Each of the algorithms presented here can generalize

immediately to such situations, though the computational simplifications would need to be

modified significantly.

From a practical computational point of view we could consider systems where we can’t

easily iterate over all possible states, and how these algorithms can be modified to address this.

3.6 Proof of Theorems of Section 3.3

3.6.1 Proof of Theorem 2

First we restate Theorem 2:

The value of C(p,v,δ) can be easily found in the following cases:

• If δ < 0 then the optimization problem, C(p,v,δ) is infeasible and we say C(p,v,δ) =

−∞.

• If δ = 0, then C(p,v,δ) = µp.

• If δ > 0 and vx1 = vx2 for all x1,x2 ∈ S, then C(p,v,δ) = µp.

Proof. Recall that I(p,q) is the KL Divergence from p to q. We then have by Gibb’s inequality

that I(p,q) ≥ 0, with equality if and only if p = q. Thus, if δ < 0 then the optimization

problem is infeasible. If δ = 0 then it has the trivial solution q∗ = p. We therefore take δ > 0.

Now, if vx1 = vx2 for all x1,x2 ∈ S then any feasible probability vector q is also optimal with

C(p,v,δ) = vx = µp.

58

3.6.2 Proof of Theorem 3

In this section we will prove Theorem 3, which we restate here.

Let µp = ∑x pxvx and V = maxx vx. Then for any v such that vx1 6= vx2 for some x1,x2 ∈ S

and δ > 0,

C(p,v,δ) = µ
∗
q ,

where

∑
x∈S

px ln
(

1+
vx−µ∗q

λ

)
= δ ,

∑
x

px
λ

λ + vx−µ∗q
= 1,

µp < µ
∗
q <V and λ < µ

∗
q −V.

Before giving the formal proof, it may be helpful to understand the overall conception of

the proof. The main idea is the use of Lagrange multiplier techniques, which greatly reduces

the dimensionality of the problem to be solved. We are able to exchange from trying to find

the optimal probability vector q∗, to a problem where we need only find two moments of the

optimal q∗, a dramatic dimension reduction. In the MDP-UCB case, it suffices to find the

unknown optimal mean of the optimal distribution, q∗, µ∗q , and a value λ = σ2
q∗/(µp− µ∗q)

which depends on the optimal, unknown variance.

Proof. Recall that,

C(p,v,δ) = sup
q∈Θ

{
∑
x

qxvx : I(p,q)≤ δ

}
(3.2)

Since {q : q ∈ Θ,I(p,q) ≤ δ} is a closed compact set, the supremum will be realized by a

59

maximum, and we may express the problem of computing C(p,v,δ) in the following form:

maxq µq = ∑
x∈S

qxvx, (3.3)

s.t.

∑
x∈S

px ln
(

px

qx

)
≤ δ , (3.4)

∑
x∈S

qx = 1,

qx > 0 x ∈ S.

Let µ∗q = ∑x∈S q∗xvx be the optimal value of the objective function, µp = ∑x∈S pxvx, and

V = maxx vx. First we will argue that,

µp ≤ µ
∗
q <V.

To see the first inequality, observe that q = p satisfies the constraints and is therefore feasi-

ble, hence the objective function at q = p is less than or equal to the optimum: µp ≤ µ∗q . To see

the second, note that µ∗q will be an expected value over the {vx}, and hence less than or equal

to the maximum, V . Because the probabilities in q∗ are strictly positive, the expected value µ∗q

must actually be strictly less than the maximum: µ∗q <V .

Utilizing Lemma 9 in Appendix 3.7, for any feasible q such that the KL Divergence con-

straint is not achieved with equality, a different feasible q′ exists with an improved value of the

objective function. Hence we can rewrite the optimization problem as,

maxq µq = ∑
x∈S

qxvx,

s.t.

∑
x∈S

px ln
(

px

qx

)
= δ , (3.5)

∑
x∈S

qx = 1, (3.6)

qx > 0 x ∈ S. (3.7)

60

We now turn to the main task, reducing the dimension of the optimization problem. Using

Lagrange multipliers we have the following auxiliary function,

L(q,λ ,µ) = ∑
x∈S

qxvx +λ

(
∑
x∈S

px ln
(

px

qx

)
−δ

)
+µ

(
∑
x∈S

qx−1

)
.

Note that when using the Lagrange multipliers, we can safely ignore the positivity inequal-

ity constraints in Eq. (3.7) because they are strict inequalities, thus inactive, and removing them

will not change the local optimum.

Taking partial derivatives, we get,

L′qx
(q,λ ,µ) = vx−

λ px

qx
+µ , ∀x ∈ S,

L′
λ
(q,λ ,µ) = ∑

x∈S
px ln

(
px

qx

)
−δ ,

L′µ(q,λ ,µ) = ∑
x∈S

qx−1.

Setting them to zero, results in the following system of equations for the optimal solution,

q∗,

vx +µ =
λ px

q∗x
, ∀x ∈ S, (3.8)

∑
x∈S

px ln
(

px

q∗x

)
= δ ,

∑
x∈S

q∗x = 1.

We are looking for a solution q∗ to this system, and any such solution will be a global max-

imum. To see this, observe that our optimization problem is a convex optimization problem.

This can be seen more easily when put in its original form, as in Eq. (3.2). We are maximizing

a linear (and thus concave) function, the inequality constraint is convex, and the equality con-

straints are affine. Thus, any stationary point will be a local maximum and any local maximum

will be a global maximum. [41]

Multiplying Eq. (3.8) through by q∗x , we have,

λ px = q∗x(vx +µ) , ∀x ∈ S. (3.9)

Summing Eq. (3.9) over x, we have

61

λ = µ
∗
q +µ. (3.10)

We now introduce a quantity, σ2
q∗ , the variance under transition law q∗, explicitly defined as

follows

σ
2
q∗ = ∑

x∈S
q∗xv2

x−µ
2
q∗ . (3.11)

Looking at Eq. (3.9) again, but this time, multiplying through by vx we get,

λ pxvx = q∗xv2
x +q∗xvxµ , ∀x ∈ S.

Summing this over x yields,

µpλ = σ
2
q∗+µ

2
q∗+µµq∗ . (3.12)

Equations (3.10) and (3.12) form a system of equations with two unknowns µ and λ . Solv-

ing this system yields,

µ =
σ2

q∗+µ2
q∗−µpµq∗

µp−µq∗
,

λ =
σ2

q∗

µp−µq∗
.

Substituting them into the first equation in the original system Eq. (3.8), and recalling the

relationship between λ and µ from Eq. (3.10), we get that for each x:

px

q∗x
=

vx

λ
+

µ

λ

=
vx

λ
+

µ

µq∗+µ

=
vx

λ
+

µq∗+µ−µq∗

µq∗+µ

= 1+
vx−µq∗

λ
. (3.13)

We can now rewrite the optimization problem in Eq. (3.2) in terms of our new variables

using Eq. (3.13).

The positivity constraint in Eq. (3.7) and recalling that px > 0 for all x ∈ S, yields,

px

q∗x
= 1+

vx−µq∗

λ
> 0,

62

the normalization constraint in Eq. (3.6) yields,

∑
x

px

1+
vx−µq∗

λ

= 1,

and the KL divergence constraint in Eq. (3.5) yields,

∑
x∈S

px ln
(

1+
vx−µ∗q

λ

)
= δ .

Observe that µp must be strictly less than µ∗q . To see this, take q = p, then q is feasible and

the left hand side of Eq. (3.4) is 0 which is less than δ . Lemma 9 implies there exists some

feasible q′ with a strictly greater objective function, i.e. µp = µq < µ ′q ≤ µ∗q . We also know that

λ < 0 because σ2
q∗ > 0 by definition in Eq. (3.11).

Thus we can rewrite the optimization problem in Eq. (3.2) as, follows:

maxµq,λ µq,

s.t.

∑
x∈S

px ln
(

1+
vx−µq

λ

)
= δ ,

∑
x

px
λ

λ + vx−µq
= 1,

1+
vx−µq

λ
> 0 ∀x ∈ S, (3.14)

µp < µq <V and λ < 0.

Having established that λ is strictly less than zero we can simplify the last constraint, Eq.

(3.14), as follows. Let V = maxx vx

1+
vx−µq

λ
> 0, ∀x ∈ S

vx−µq

λ
>−1, ∀x ∈ S

vx−µq <−λ , ∀x ∈ S

µq− vx > λ , ∀x ∈ S

=⇒ µq−V > λ .

63

Thus we have,

maxµq,λ µq,

s.t.

∑
x∈S

px ln
(

1+
vx−µq

λ

)
= δ ,

∑
x

px
λ

λ + vx−µq
= 1,

µp < µq <V and λ < µq−V.

Which is just two equations with two unknowns. Recalling that any feasible solution will

be a global maximum by our discussion of the convexity of the optimization problem, we have

the desired result,

C(p,v,δ) = µ
∗
q ,

Where the only unknowns are µ∗q and λ , and they satisfy these constraints:

∑
x∈S

px ln
(

1+
vx−µ∗q

λ

)
= δ ,

∑
x

px
λ

λ + vx−µ∗q
= 1,

µp < µ
∗
q <V and λ < µ

∗
q −V.

3.6.3 Proof of Theorem 4

First we restate Theorem 4:

The value of D(p,v,ρ) and by extension Dt(a) can be easily found in the following cases:

• If ρ >V then the optimization problem, D(p,v,ρ) is infeasible and we say D(p,v,ρ)=∞

and Dt(a) =−Txt ,a(t).

• If ρ ≤ µp then D(p,v,ρ) = 0 and we say Dt(a) = ∞.

64

• If vx1 6= vx2 for some x1,x2 ∈ S and ρ =V , then optimization problem D(p,v,ρ) diverges

to infinity and we say D(p,v,ρ) = ∞ and Dt(a) =−Txt ,a(t).

Proof. For ρ >V = maxx vx, the optimization problem is infeasible because there is no feasible

q that will have an average more than V (i.e. ∑x qxvx ≤V). In that case we take D(p,v,ρ) = ∞

and the corresponding DMED discrepancy index Dt(a) =−Txt ,a(t).

For any ρ ≤ µp, i.e. less than or equal to the expected value under the current estimates,

D(p,v,ρ) = 0 by simply taking q∗ = p and we take the corresponding DMED discrepancy

index Dt(a) = ∞.

If vx1 = vx2 for all x1,x2 ∈ S then µp = vx = V and depending on the value of ρ one of the

previous two situations apply.

If vx1 6= vx2 for some x1,x2 ∈ S and ρ =V we have the following. Any feasible q such that

∑x qxvx = V must have qx = 0 for some x ∈ S such that vx < V , in which case q falls outside

of Θ - and it is in fact not feasible. We therefore take D(p,v,ρ) = ∞ and the corresponding

DMED discrepancy index Dt(a) =−Txt ,a(t).

3.6.4 Proof of Theorem 5

In this section we will prove Theorem 5, which we restate here. Let V = maxx vx. Then, for any

v such that vx1 6= vx2 for some x1,x2 ∈ S and for ∑x∈S pxvx < ρ <V ,

D(p,v,ρ) = ∑
x

px ln(1+(ρ− vx)λ),

where

∑
x

px
ρ− vx

1+(ρ− vx)λ
= 0,

0 < λ <
1

V −ρ
.

Before giving the formal proof, it may be helpful to understand the overall conception of

the proof. The main idea is the use of Lagrange multiplier techniques, which greatly reduces

the dimensionality of the problem to be solved. We are able to exchange from trying to find

the optimal probability vector q∗, to a problem where we need only find two moments of the

optimal q∗, a dramatic dimension reduction. In the MDP-DMED case we are able to simplify

65

even further, because the optimal unknown mean µ∗q is given as ρ , and it suffices to find λ =

(µ∗q −µp)/σ2
q∗ which is a function of the unknown optimal variance.

The proof follows along similar lines as the one for MDP-UCB in Appendix 3.6.2.

Proof. Recall that,

D(p,v,ρ) = inf
q∈Θ

{
I(p,q) : ∑

x
qxvx ≥ ρ

}
. (3.15)

We want to show that the infimum in EQ. (3.15) is realized by a minimum.

Let 0 < ε < 1 and x∗ = argmaxvx. Consider the probability vector q′ defined as q′x∗ = 1−ε

and q′x = ε/|S| for x 6= x∗. For the appropriate choice of ε , we will have ∑x q′xvx = ρ <V with

finite valued I(p,q′). Thus, D(p,v,ρ)≤ I(p,q′) and we can restrict to only considering q ∈ Θ

such that I(p,q) ≤ I(p,q′). This feasible set is closed and compact, and hence the infimum

is realized by a minimum over this set. Since I(p,q′) is diverging to infinity as ε → 0, this

minimum must occur in the interior of the constrained feasible region. Hence the infimum

without the additional constraint on feasibility will also be realized by a minimum within the

interior of the set {q ∈Θ,∑x qxvx ≥ ρ}.

Thus, we can rewrite the problem of computing D(p,v,ρ) in the following form:

minq ∑
x∈S

px ln
px

qx
,

s.t.

∑
x∈S

qxvx ≥ ρ, (3.16)

∑
x∈S

qx = 1,

qx > 0 x ∈ S.

Here we can use Lemma 10 in Appendix 3.7 to observe that for any feasible q where the

constraint in Eq. (3.16) is strict, we can construct a feasible q′ with a strictly smaller objective

function (KL divergence w.r.t. p). As such, the optimum must occur when this constraint is

satisfied with equality, and the optimization problem can be re-written as so:

66

minq ∑
x∈S

px ln
px

qx
,

s.t.

∑
x∈S

qxvx = ρ, (3.17)

∑
x∈S

qx = 1, (3.18)

qx > 0 x ∈ S. (3.19)

We now turn to the main task, reducing the dimension of the optimization problem. Using

Lagrange multipliers we have the following auxiliary equation,

L(q,λ ,µ) =−∑
x∈S

px ln
px

qx
+λ

(
∑
x∈S

qxvx−ρ

)
+µ

(
∑
x∈S

qx−1

)
.

Note when using the Lagrange multipliers, we can safely ignore the positivity constraints in

Eq. (3.19) because they are strict inequalities, thus inactive, and thus have a Lagrange multiplier

of zero.

Taking partial derivatives, we get,

L′qx
(q,λ ,µ) =

px

qx
+λvx +µ , ∀x ∈ S,

L′
λ
(q,λ ,µ) = ∑

x∈S
qxvx−ρ,

L′µ(q,λ ,µ) = ∑
x∈S

qx−1.

Setting them to zero, results in the following system of equations for the optimal solution,

q∗,

− px

q∗x
= λvx +µ , ∀x ∈ S, (3.20)

∑
x∈S

q∗xvx = ρ,

∑
x∈S

q∗x = 1.

67

We are looking for a solution q∗ to this system, and any such solution will be a global

minimum. To see this, observe that our optimization problem is a convex optimization problem.

We are minimizing a convex function, with affine equality constraints. Thus, any stationary

point will be a local minimum, and any local minimum will be a global minimum. [41]

Consider the first equation: multiply through by q∗x to get −px = λvxq∗x + µq∗x . Summing

this over x and simplifying accordingly, we get −1 = λρ +µ .

If we take −px = λvxq∗x +µq∗x and multiply through by vx, we get −vx px = λv2
xq∗x +µvxq∗x .

We now introduce two new quantities, ρp, the mean under transition law p, and σ2
q∗ , the variance

under transition law q∗, explicitly defined as follows

ρp = ∑
x

pxvx,

σ
2
q∗ = ∑

x
v2

xq∗x−ρ
2. (3.21)

Summing −vx px = λv2
xq∗x + µvxq∗x over x and simplifying accordingly, we get −ρp =

λ (σ2
q∗+ρ2)+µρ . So we have two equations and two unknowns,

−1 = λρ +µ,

−ρp = λ (σ2
q∗+ρ

2)+µρ.

Solving these for λ and µ we have,

λ =
ρ−ρp

σ2
q∗

,

µ =−1−
ρ−ρp

σ2
q∗

ρ.

(3.22)

Substituting them into the first equation in the original system Eq. (3.20), and noting that

Eq. (3.22) implies µ =−1−λρ , we get that for each x:

px

q∗x
=−λvx−µ

=−λvx +1+λρ

= 1+(ρ− vx)λ . (3.23)

68

In order to reduce the original problem to a 1-dimensional problem, we now express each

of the constraints in terms of our new variables using Eq. (3.23). The positivity constraint in

Eq. (3.19) and recalling that px > 0 for all x ∈ S, yields,

px

q∗x
= 1+(ρ− vx)λ > 0,

the normalization constraint in Eq. (3.18) yields,

∑
x

px

1+(ρ− vx)λ
= 1,

and the mean constraint in Eq. (3.17) yields,

∑
x∈S

px

1+(ρ− vx)λ
vx = ρ.

Therefore, we can express the problem in Eq. (3.15), noting Eq. (3.23) above for the px/q∗x

term, as follows:

minλ ∑
x

px ln(1+λ (ρ− vx)) ,

s.t.

∑
x

px

1+(ρ− vx)λ
= 1,

∑
x∈S

px

1+(ρ− vx)λ
vx = ρ,

1+λ (ρ− vx)> 0 ∀x ∈ S. (3.24)

We next establish feasible bounds for λ . Observe that the variance, σ2
q∗ is strictly greater

than 0 by definition in Eq. (3.21) and by recalling that there exists some x1,x2 ∈ S such that

vx1 6= vx2 . We also know that ρ > ρp = ∑x pxvx by assumption. Thus, λ > 0.

Having established that λ is strictly greater than zero we can simplify the last constraint,

Eq. (3.24), as follows. Let V = maxx vx,

69

1+λ (ρ− vx)> 0, ∀x ∈ S

=⇒ 1+λ (ρ−V)> 0

1+λρ−λV > 0

1+λρ > λV

1 > λ (V −ρ)

1
(V −ρ)

> λ .

Where the last step is justified by recalling that by assumption V is strictly greater than ρ .

So, 0 < λ <
1

(V −ρ)
and our optimization problem becomes,

minλ ∑
x

px ln(1+λ (ρ− vx)) ,

s.t.

∑
x

px

1+(ρ− vx)λ
= 1, (3.25)

∑
x∈S

px

1+(ρ− vx)λ
vx = ρ,

0 < λ <
1

(V −ρ)
.

Taking a closer look at the normalization constraint, Eq. (3.25),

0 = ∑
x

px

1+λ (ρ− vx)
−1

= ∑
x

px

(
1

1+λ (ρ− vx)
−1
)

= ∑
x

px

(
1

1+λ (ρ− vx)
− 1+λ (ρ− vx)

1+λ (ρ− vx)

)
= ∑

x
px

(
1−1−λ (ρ− vx)

1+λ (ρ− vx)

)
=−λ ∑

x
px

(
(ρ− vx)

1+λ (ρ− vx)

)
.

However, recalling that λ is strictly positive, it must be that ∑x px

(
(ρ−vx))

1+λ (ρ−vx)

)
= 0. Hence

70

we have:

minλ ∑
x

px ln(1+λ (ρ− vx)) ,

s.t.

∑
x

px

(
(ρ− vx))

1+λ (ρ− vx)

)
= 0, (3.26)

∑
x∈S

px

1+(ρ− vx)λ
vx = ρ, (3.27)

0 < λ <
1

(V −ρ)
.

Next we show that any λ that satisfies Eq. (3.26) will also satisfy Eq. (3.27) and thus we

can remove that constraint,

0 = ∑
x

px

(
(ρ− vx))

1+λ (ρ− vx)

)
= ∑

x

−pxvx

1+λ (ρ− vx)
+∑

x

pxρ

1+λ (ρ− vx)

= ∑
x

−pxvx

1+λ (ρ− vx)
+ρ ∑

x

px

1+λ (ρ− vx)

= ∑
x

−pxvx

1+λ (ρ− vx)
+ρ ·1.

Where the last line is justified by recalling Eq. (3.25). Thus we have established that,

∑
x

−pxvx

1+λ (ρ− vx)
=−ρ =⇒ ∑

x

pxvx

1+λ (ρ− vx)
= ρ,

which is Eq. (3.27).

Thus we can write the optimization problem as,

minλ ∑
x

px ln(1+λ (ρ− vx)) ,

s.t.

∑
x

px

(
(ρ− vx))

1+λ (ρ− vx)

)
= 0, (3.28)

0 < λ <
1

V −ρ
.

71

Recall that any feasible solution will be a global minimum, by our discussion of the con-

vexity of the optimization problem. To find a feasible solution, notice that the derivative of the

objective function with respect to λ is simply the first constraint, Eq. (3.28). Therefore any

stationary point of the objective function will satisfy the constraint, be feasible, and thus be a

global minimum. Hence, we may replace the original optimization problem with the problem

of solving,

∑
x

px

(
(ρ− vx))

1+λ (ρ− vx)

)
= 0,

subject to 0 < λ < 1
V−ρ

.

Thus we have the desired result,

D(p,v,ρ) = ∑
x

px ln(1+(ρ− vx)λ),

Where the only unknown is λ , and it satisfies these constraints:

∑
x

px
ρ− vx

1+(ρ− vx)λ
= 0,

0 < λ <
1

V −ρ
.

3.7 KL Divergence Optimization Lemmas

The purpose of this section is to state and prove a number of lemmas associated with convex

optimization problems involving KL-Divergence terms. They are relevant, but tangential to

most of the content of the paper.

In this section, we take p ∈ Θ to be a distribution over S, with v to be the vector of inter-

mediate state values. It is convenient to define µp = ∑x pxvx and V = maxx vx. The vector q is

taken to be another distribution over S, with possibly zero-valued elements. The KL Divergence

between p and q is given by

I(p,q) = ∑
x

px ln
px

qx
.

Lemma 9. Let q ∈ Θ be such that I(p,q)< δ < ∞, and suppose vx1 > vx2 for some x1,x2 ∈ S.

Then there is a valid probability distribution q′ such that I(p,q′)≤ δ , and

∑
x∈S

qxvx < ∑
x∈S

q′xvx.

72

Proof. Consider constructing an alternative q′ ∈ Θ in the following way. Define q′x1
= qx1 +∆,

q′x2
= qx2−∆, and q′x = qx for x 6= x1,x2. Note that for 0≤ ∆ < min(qx1 ,qx2), q′ will be a valid

probability distribution vector over S.

We have that for ∆ > 0,

∑
x

q′xvx−∑
x

qxvx = (qx1 +∆)vx1 +(qx2−∆)vx2−qx1vx1−qx2vx2

= ∆(vx1− vx2)

> 0.

It remains to show that the KL Divergence I(p,q′) does not exceed δ . Note the following

relations,

I(p,q′) = ∑
x

px ln
px

q′x

= ∑
x 6=x1,x2

px ln
px

qx
+ px1 ln

px1

qx1 +∆
+ px2 ln

px2

qx2−∆

= ∑
x

px ln
px

qx
+ px1 ln

px1

qx1 +∆
− px1 ln

px1

qx1

+ px2 ln
px2

qx2−∆
− px2 ln

px2

qx2−∆

= I(p,q)+ px1 ln
qx1

qx1 +∆
+ px2 ln

qx2

qx2−∆
.

So, if ∆ = 0 then I(p,q′) = I(p,q)< δ . Noting that additional terms in the last equation above

are smooth functions of ∆, I(p,q′) will not exceed δ in a neighborhood of ∆ = 0. Thus for

sufficiently small ∆ > 0, the Lemma holds.

Lemma 10. For any q such that

∑
x∈S

qxvx > ρ ≥∑
x∈S

pxvx, (3.29)

if vx1 6= vx2 for some x1,x2 ∈ S, there exist distributions q′ such that I(p,q′)≤ I(p,q) and

∑
x∈S

qxvx > ∑
x∈S

q′xvx ≥ ρ.

Proof. As a consequence of our assumption that ∑x qxvx >∑x pxvx, there must be some vx1 6= vx2

such that q puts more weight on the larger and p puts more weight on the smaller. Let vx1 > vx2 ,

with qx1 > px1 and qx2 < px2 .

Consider constructing an alternative distribution q′ ∈ Θ in the following way. For 0≤ ∆ <

qx1 , define q′ by q′x1
= qx1−∆, q′x2

= qx2 +∆, and q′x = qx for x 6= x1,x2. As before, for ∆ in this

range, q′ ∈Θ represents a valid probability distribution on S.

73

As in the proof of Lemma 9, we have that for ∆ > 0,

∑
x

q′xvx−∑
x

qxvx = (qx1 +∆)vx1 +(qx2−∆)vx2−qx1vx1−qx2vx2

= ∆(vx1− vx2)

> 0.

Taking ∆ sufficiently small (so that the mean does not drop below ρ), we have that

∑
x∈S

qxvx > ∑
x∈S

q′xvx ≥ ρ.

It remains to show that I(p,q′)≤ I(p,q). Similar to the proof of Lemma 9, we have that

I(p,q′) = I(p,q)+ px1 ln
qx1

qx1−∆
+ px2 ln

qx2

qx2 +∆
.

Hence we see that I(p,q′) = I(p,q) when ∆ = 0. Looking at the derivative of I(p,q′) with

respect to ∆ at ∆ = 0, we see

d
d∆

I(p,q′)|∆=0 =
px1

qx1

− px2

qx2

< 0,

where the last step follows since px1/qx1 < 1 and px2/qx2 > 1, as discussed initially. Hence

while the KL divergences are equal for ∆ = 0, I(p,q′) is decreasing within some small neigh-

borhood, and the KL divergence between p and q′ is reduced.

74

Bibliography

[1] A. N. Burnetas and Michael N. Katehakis. “Optimal Adaptive Policies for Markov De-

cision Processes”. In: Mathematics of Operations Research 22.1 (1997), pp. 222–255.

ISSN: 0364-765X.

[2] Junya Honda and Akimichi Takemura. “An Asymptotically Optimal Policy For Finite

Support Models In The Multiarmed Bandit Problem”. In: Machine Learning 85.3 (Dec.

2011), pp. 361–391. ISSN: 1573-0565. URL: https://doi.org/10.1007/s10994-

011-5257-4.

[3] Ambuj Tewari and Peter L. Bartlett. “Optimistic Linear Programming gives Logarithmic

Regret for Irreducible MDPs”. In: Advances in Neural Information Processing Systems

20. Ed. by J. C. Platt et al. Vol. 25. Curran Associates, Inc., 2008, pp. 1505–1512. URL:

http://papers.nips.cc/paper/3329-optimistic-linear-programming-

gives-logarithmic-regret-for-irreducible-mdps.pdf.

[4] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:

Nature 518.7540 (2015), pp. 529–533.

[5] David Silver et al. “Mastering the game of go without human knowledge”. In: nature

550.7676 (2017), pp. 354–359.

[6] Ralph Neuneier. “Enhancing Q-learning for optimal asset allocation”. In: Advances in

neural information processing systems. 1998, pp. 936–942.

[7] Zhiyong Tan, Chai Quek, and Philip Y. K. Cheng. “Stock trading with cycles: A financial

application of ANFIS and reinforcement learning”. In: Expert Systems with Applications

38.5 (2011), pp. 4741–4755. ISSN: 0957-4174. URL: http://www.sciencedirect.

com/science/article/pii/S095741741000905X.

https://doi.org/10.1007/s10994-011-5257-4
https://doi.org/10.1007/s10994-011-5257-4
http://papers.nips.cc/paper/3329-optimistic-linear-programming-gives-logarithmic-regret-for-irreducible-mdps.pdf
http://papers.nips.cc/paper/3329-optimistic-linear-programming-gives-logarithmic-regret-for-irreducible-mdps.pdf
http://www.sciencedirect.com/science/article/pii/S095741741000905X
http://www.sciencedirect.com/science/article/pii/S095741741000905X

75

[8] Sofia S. Villar, Jack Bowden, and James Wason. “Multi-armed bandit models for the

optimal design of clinical trials: benefits and challenges”. In: Statistical science: a review

journal of the Institute of Mathematical Statistics 30.2 (2015), p. 199.

[9] Djallel Bouneffouf and Irina Rish. “A survey on practical applications of multi-armed

and contextual bandits”. In: arXiv preprint arXiv:1904.10040 (2019).

[10] Ian Osband et al. Behaviour Suite for Reinforcement Learning. 2019. arXiv: 1908 .

03568 [cs.LG].

[11] Peter Auer and Ronald Ortner. “Logarithmic Online Regret Bounds for Undiscounted

Reinforcement Learning”. In: Advances in Neural Information Processing Systems 19.

Ed. by B. Schölkopf, J. C. Platt, and T. Hoffman. MIT Press, 2007, pp. 49–56. URL:

http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-

for-undiscounted-reinforcement-learning.pdf.

[12] Wesley Cowan, Michael N. Katehakis, and Daniel Pirutinsky. “Reinforcement Learn-

ing: a Comparison of UCB Versus Alternative Adaptive Policies”. In: Proceedings of

First Congress of Greek Mathematicians. De Gruyter Proceedings in Mathematics. 2019.

ISBN: 978-3110663075. eprint: arXiv:1909.06019. URL: https://www.degruyter.

com/view/product/533848 (visited on 11/23/2019).

[13] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”.

In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[14] Christoph Dann, Tor Lattimore, and Emma Brunskill. “Unifying PAC and regret: Uni-

form PAC bounds for episodic reinforcement learning”. In: Advances in Neural Infor-

mation Processing Systems. 2017, pp. 5713–5723.

[15] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. “Minimax regret bounds

for reinforcement learning”. In: Proceedings of the 34th International Conference on

Machine Learning-Volume 70. JMLR. org. 2017, pp. 263–272.

[16] Dimitri Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, 2019.

ISBN: 1886529396. URL: https://www.amazon.com/Reinforcement-Learning-

Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&

https://arxiv.org/abs/1908.03568
https://arxiv.org/abs/1908.03568
http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.pdf
http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.pdf
arXiv:1909.06019
https://www.degruyter.com/view/product/533848
https://www.degruyter.com/view/product/533848
https://www.amazon.com/Reinforcement-Learning-Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1886529396
https://www.amazon.com/Reinforcement-Learning-Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1886529396

76

tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=

1886529396.

[17] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. 2018. URL: https://tor-

lattimore.com/downloads/book/book.pdf (visited on 07/10/2019).

[18] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, 2006. ISBN: 0521841089. URL: https://www.amazon.com/Prediction-

Learning-Games-Nicolo-Cesa-Bianchi/dp/0521841089?SubscriptionId=

AKIAIOBINVZYXZQZ2U3A & tag = chimbori05 - 20 & linkCode = xm2 & camp = 2025 &

creative=165953&creativeASIN=0521841089.

[19] Cyrus Derman. Finite State Markovian Decision Processes. Vol. 19. Orlando, FL, USA:

Academic Press, Inc., 1970, pp. 389–390. ISBN: 0122092503.

[20] Eugene A. Feinberg, Pavlo O. Kasyanov, and Michael Z. Zgurovsky. “Partially observ-

able total-cost Markov decision processes with weakly continuous transition probabili-

ties”. In: Mathematics of Operations Research 41.2 (2016), pp. 656–681.

[21] H. Robbins. “Some Aspects of the Sequential Design of Experiments”. In: Bull. Amer.

Math. Monthly 58 (1952), pp. 527–536.

[22] Taylor W. Killian et al. “Robust and efficient transfer learning with hidden parameter

Markov decision processes”. In: Advances in Neural Information Processing Systems.

2017, pp. 6250–6261.

[23] Finale Doshi-Velez and George Konidaris. “Hidden parameter Markov decision pro-

cesses: A semiparametric regression approach for discovering latent task parametriza-

tions”. In: IJCAI: proceedings of the conference. Vol. 2016. NIH Public Access. 2016,

p. 1432.

[24] Bennett L. Fox, John E. Rolph, et al. “Adaptive policies for Markov renewal programs”.

In: The Annals of Statistics 1.2 (1973), pp. 334–341.

[25] R. Agrawal. “Adaptive Control of Markov Chains under the Weak Accessibility Condi-

tion”. In: Proc. 29th Conf. on Decision and Control. 1990, pp. 1426–1431.

https://www.amazon.com/Reinforcement-Learning-Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1886529396
https://www.amazon.com/Reinforcement-Learning-Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1886529396
https://www.amazon.com/Reinforcement-Learning-Optimal-Control-Bertsekas/dp/1886529396?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1886529396
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://www.amazon.com/Prediction-Learning-Games-Nicolo-Cesa-Bianchi/dp/0521841089?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521841089
https://www.amazon.com/Prediction-Learning-Games-Nicolo-Cesa-Bianchi/dp/0521841089?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521841089
https://www.amazon.com/Prediction-Learning-Games-Nicolo-Cesa-Bianchi/dp/0521841089?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521841089
https://www.amazon.com/Prediction-Learning-Games-Nicolo-Cesa-Bianchi/dp/0521841089?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521841089

77

[26] Csaba Szepesvári and Michael L. Littman. “A Unified Analysis of Value-Function-

Based Reinforcement-Learning Algorithms”. In: Neural Computation 11.8 (Nov. 1999),

pp. 2017–2060. URL: https://doi.org/10.1162/089976699300016070.

[27] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8.3

(May 1992), pp. 279–292. ISSN: 1573-0565. URL: https://doi.org/10.1007/

BF00992698.

[28] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal regret bounds for rein-

forcement learning”. In: Journal of Machine Learning Research 11.Apr (2010), pp. 1563–

1600.

[29] Yonathan Efroni et al. “Tight Regret Bounds for Model-Based Reinforcement Learning

with Greedy Policies”. In: CoRR abs/1905.11527 (2019). arXiv: 1905.11527. URL:

http://arxiv.org/abs/1905.11527.

[30] Ian Osband and Benjamin Van Roy. “On Lower Bounds for Regret in Reinforcement

Learning”. In: arXiv preprint arXiv:1608.02732 (2016).

[31] Ian Osband and Benjamin Van Roy. “Why is posterior sampling better than optimism

for reinforcement learning?” In: Proceedings of the 34th International Conference on

Machine Learning-Volume 70. JMLR. org. 2017, pp. 2701–2710.

[32] Junya Honda and Akimichi Takemura. “An Asymptotically Optimal Bandit Algorithm

for Bounded Support Models.” In: vol. 85. Jan. 2010, pp. 67–79.

[33] William R Thompson. “On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples”. In: Biometrika 25.3/4 (1933), pp. 285–294.

[34] Peter Auer and Ronald Ortner. “UCB revisited: Improved regret bounds for the stochas-

tic multi-armed bandit problem”. In: Periodica Mathematica Hungarica 61.1-2 (2010),

pp. 55–65. ISSN: 0031-5303.

[35] A. N. Burnetas and Michael N. Katehakis. “Optimal Adaptive Policies for Sequential

Allocation Problems”. In: Advances in Applied Mathematics 17 (1996), pp. 122–142.

ISSN: 0196-8858.

https://doi.org/10.1162/089976699300016070
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://arxiv.org/abs/1905.11527
http://arxiv.org/abs/1905.11527

78

[36] Wesley Cowan, Junya Honda, and Michael N. Katehakis. “Normal bandits of unknown

means and variances”. In: The Journal of Machine Learning Research 18.1 (2017),

pp. 5638–5665.

[37] Chandrashekar Lakshminarayanan, Shalabh Bhatnagar, and Csaba Szepesvári. “A Lin-

early Relaxed Approximate Linear Program for Markov Decision Processes”. In: IEEE

Transactions on Automatic Control 63.4 (2017), pp. 1185–1191.

[38] David McKay. Information Theory, Inference and Learning Algorithms. 2003. Chap. 23.

URL: http://www.inference.org.uk/mackay/itila/book.html (visited on

07/09/2019).

[39] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016,

pp. 265–283. URL: https://www.usenix.org/system/files/conference/

osdi16/osdi16-abadi.pdf.

[40] Christopher John Cornish Hellaby Watkins. “Learning from Delayed Rewards”. PhD

thesis. Cambridge, UK: King’s College, May 1989. URL: http://www.cs.rhul.ac.

uk/~chrisw/new_thesis.pdf.

[41] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university

press, 2004.

http://www.inference.org.uk/mackay/itila/book.html
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

	Abstract
	Acknowledgements
	Dedication
	Introduction, Background, and Formulation
	Introduction
	Reinforcement Learning Related Works
	Formulation
	MDPs under Complete Information
	MDPs under Partial Information and Regret

	Sufficient Conditions for Asymptotically Optimal Reinforcement Learning
	Introduction
	Related Work
	Chapter Structure

	Sampling Rates
	Estimating the Unknown Probabilities
	Preliminaries
	Regularity
	MDP Ordering

	Optimal Balancing of Exploration and Exploitation
	Sufficient Exploration
	Sufficient Exploitation

	Sufficient Conditions
	Main Theorem and Proof
	Future Work
	Event Lemmas and Proofs
	Minimally Sampled Counts
	Good Estimation Lemmas and Proofs
	Regularity Lemmas and Proofs

	Accelerating the Computation of UCB and Related Indices for Reinforcement Learning
	Introduction
	Related Work
	Chapter Structure
	Notation

	Algorithms for Optimal Exploration
	A UCB-Type Algorithm for MDPs Under Uncertain Transitions
	A Deterministic Minimum Empirical Divergence Type Algorithm for MDPs Under Uncertain Transitions
	Optimistic Linear Programming, Another UCB-Type Algorithm for MDPs Under Uncertain Transitions
	A Thompson-Type Algorithm for MDPs Under Uncertain Transitions

	Accelerating Computation
	MDP-UCB
	MDP-DMED
	OLP
	MDP-PS
	Computation Time Comparison

	Comparison of Performance
	Algorithm Robustness—Inaccurate Priors

	Conclusion and Future Work
	Proof of Theorems of Section 3.3
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	KL Divergence Optimization Lemmas

