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ABSTRACT OF THE DISSERTATION

Towards Stable-Stable Transfer Involving Symplectic Groups

By John Thomas

Dissertation Director:

Diana Shelstad

This thesis investigates the transfer formulas for orbital integrals, in the context of the

modern Langlands’ program for reductive algebraic groups. In the modern theory,

there are two very different transfer theorems to be accomplished. First, there is

endoscopic transfer, which relates, via an appropriate embedding of their L-groups,

a given group to a particular family of groups, its endoscopic groups. Here, deep

theorems are known in great generality. Such a theory, however, is preliminary to the

second transfer, which is much less understood. At the same time, this second transfer

is generally viewed as the more fundamental of the two, involving any connected

reductive group related to the given group by an L-homomorphism.

Prompted by the results for endoscopic transfer, our study focuses first on groups

defined over an archimedean field. To do so, we study the geometric objects, orbital

integrals, on real or complex reductive Lie groups, for which there is a basic theory due

to Harish-Chandra on which to build, focusing on the split and hyperbolic symplectic

groups to develop details. Concrete expressions of the final transfer formulas are

notably different from those for endoscopic transfer, and the algebraicity condition

on the ambient group is critical in their development.

Specifically, our main focus is on a refined version of the structure of the lattice

of maximal tori and on the role this plays in developing the concrete expressions for

transfer. Our structural results apply to symplectic groups of all sizes and their inner

forms, and we develop an explicit transfer formula in the rank one case.
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1 Introduction

To begin, we establish the context for our work by providing a brief discussion of

relevant work by Shelstad within the scope of the Langland’s program. Our work

is situated in the study of the geometric transfer of orbital integrals. To reach the

notion of stable-stable transfer, we begin with a discussion of endoscopic transfer,

following [She83] primarily and other sources where noted.

Let G denote a connected reductive linear algebraic group defined over R, and

G(R) the group of R-rational points on G. Let σ denote the nontrivial element of the

Galois group Gal(C/R). Then, we view G(R) as the elements of G(C) that are fixed

under the Galois action, i.e., G(R) = {g ∈ G(C) ; σ(g) = g}. Let T be a maximal

torus in G defined over R, so that T (R) is a Cartan subgroup of G(R), and every

Cartan subgroup of G(R) is realized in this sense. Denote by ST , or S if the context

is clear, the maximal R-split torus in T and MT , or M , the centralizer of S in G.

Regard the set of roots ∆(G, T ), or ∆, of T in G as a subset of the group of rational

characters on T , X∗(T ). A root, α, is imaginary if σα = −α, real if σα = α, or

complex if σα 6= ±α. The imaginary Weyl group, Ω(M,T ), of T is the subgroup of

the Weyl group, Ω(G, T ), generated by the reflections with respect to the imaginary

roots.

Take T and T ′ to be maximal tori over R in G, and denote by {T} and {T ′} their

stable conjugacy classes. Define {T} � {T ′} if the unique maximal R-split torus ST

in T is G(R)-conjugate to an R-split torus in T ′, or equivalently if ∃g ∈ G(R) such

that ad(g−1) maps ST into ST ′ . Then, define T and {T} to be adjacent to T ′ and

{T ′}, respectively, if {T} � {T ′} and dimST ′ = dimST + 1. Adjacency implies that

there is an imaginary root α of T and s ∈ G(C) such that T ′ = s−1Ts and σ(s)s−1

realizes the Weyl reflection with respect to α. Such an s is a Cayley transform with

respect to this root.

A root α determines a three-dimensional simple complex Lie algebra, CXα+CHα+
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CX−α, where X±α are root vectors and Hα = [Xα, X−α] [She79]. If α is imaginary,

then this algebra is invariant under the Galois action and its σ-fixed points form a

three-dimensional simple real Lie algebra that corresponds to SU(2) if α is compact

or SL(2) if α is noncompact.

Fix a Cartan subgroup T (R) of G(R) and Haar measures dt and dg on each,

respectively. Let Greg denote the set of regular elements in G and T (R)reg = T (R) ∩

Greg. Fix γ ∈ T (R)reg and f ∈ C∞c (G(R)). The orbit of γ is the conjugacy class of γ

in G(R). Then the orbital integral is defined

ΦT (γ, f) =

∫
T (R)\G(R)

f(g−1γg)
dg

dt

Let O be an open subset of G(R). A C∞-function on O is a Schwartz func-

tion on O if all of its left and right derivatives are rapidly decreasing, in the sense

of Harish-Chandra. Harish-Chandra defined the ′Ff transform for the Schwartz

space C(G(R)). The orbital integral above, when multiplied by a suitable function

of the regular element, becomes this ′Ff (γ) transform. Specifically, via [She08b],

′Ff (γ) = ∆′(γ)ΦT (γ, f), where ∆′(γ) is a modified Weyl denominator that serves as

a normalizing factor and may be taken with respect to all positive roots as

∆′(γ) =
∏
α

pos.,real

∣∣∣α(γ)
1
2 − α(γ)

−1
2

∣∣∣ ∏
α

pos.,comp.

∣∣∣α(γ)
1
2 − α(γ)

−1
2

∣∣∣ ∏
α

pos.,imag.

(α(γ)− 1)

For G semisimple and simply-connected, the stable orbit of γ ∈ T (R)reg is the

intersection of G(R) with the orbit of γ in G(C). Define

A(T ) = {g ∈ G(C); gTg−1 ⊂ G(R)} = G(R) ·Norm(M,T )

If g ∈ A(T ), then gTg−1 is G(C)-conjugate to T , and, moreover, this can be re-

alized in G(R). The elements of A(T ) serve to establish the stable orbit. Also,
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D(T ) = G(C)\A(T )/T . If γ is strongly regular, where a strongly regular element is a

regular semisimple element whose centralizer is a torus, then D(T ) parametrizes the

orbits in the stable orbit of γ. Furthermore, there is a bijection between D(T ) and

Ω(M,T )/Ω(M(R), T (R)). Then, for f ∈ C(G(R)), γ ∈ T (R)reg, and Haar measures

dt on T (R) and dg on G(R), the stable orbitabl integral is given by

Φst
T (γ, f) = Ω(M(R), T (R))−1

∑
ω∈Ω(M,T )

ΦT (γω, f)

where γω = w−1γw, for a w ∈ G(C) that realizes ω.

Then, following [She79], consider an isomorphism ψij : Gi → Gj of connected

reductive linear algebraic groups defined over R, for which ψij : Ti(R) → Tj(R) is

defined over R. Assume that Gj is quasi split, Gi is an inner form of Gj, and fix ψij

so that σ(ψij)ψ
−1
ij is inner. A suitable collection of such groups and isomorphisms is

an extended group over R. Furthermore, ψij realizes a mapping of real (respectively,

imaginary, complex) roots of Ti(R) to real (respectively, imaginary, complex) roots of

Tj(R). Let tst(Gi) be the set of stable-conjugacy classes of Cartan subgroups of Gi.

Then a consequence of the above is that there is a mapping ψtij : tst(Gi) → tst(Gj).

The map ψt is order preserving in the sense of adjacency and specifically serves to

map tst(Gi) to an initial segment of tst(Gj). Specifically, ψt is injective and maps the

class of fundamental maximal tori over R in Gi to the corresponding class in Gj.

Rather than working with an extended group directly it is preferable to work

with the L-group of the extended group. Specifically, the Weil group version of the

L-group of the extended group {(Gi, ψij)} is given by LG = G∨ o WR. Then the

primary datum for an endoscopic transfer is the pair (s, LH � LG), where s is a

semisimple element of G∨ and LH = Cent(s,G∨)0 oWR.

The set of very regular pairs forms a subset of the product of the set of strongly reg-

ular stable conjugacy classes in H(R) with the set of strongly regular conjugacy classes
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in G(R). For each regular pair (ΓstH ,ΓG), we define a complex number ∆(ΓstH ,ΓG) such

that for a well-chosen function fG on G(R) there exists a suitable function fH on H(R)

satisfying

Ost(ΓstH , fH) =
∑

∆(ΓstH ,ΓG)O(ΓG, fG)

for all ΓstH contributing to a very regular pair. This leads to a well-defined geomet-

ric transfer in the endoscopic setting, and leads to the desired dual transfer in the

tempered case.

With these preliminary ideas established, we defer a discussion of how endoscopic

transfer points to stable-stable transfer until section 8. But, the endoscopic ideas

above indicate that we should explore notions of conjugacy classes of maximal tori,

their adjacency relations, and the corresponding extended groups in order to reach

the novel results of this paper.

As such, the structure of this paper is as follows: Section two establishes the basic

objects of our study. Section three provides a simple perspective on the establishment

of the conjugacy classes of maximal tori, while deferring much of the reasoning until

we establish our notion of the Cayley transforms. Section four builds on previous work

to provide a general discussion on the construction of the lattices of conjugacy classes

of maximal tori. Section five uses the previous sections of the paper to construct

these lattices for the case Cr. In section six, we combine all of our concepts into a

complete workflow, thus providing a roadmap for the reader to develop the details of

a particular case they may need. Section seven establishes the extended groups for

the case Cr. Finally, in section eight, we discuss some results towards stable-stable

transfer involving symplectic groups and develop an explicit transfer formula in the

rank one case. This principal case develops explicit aspects that will be necessary

for extending our results to symplectic groups of any rank and, then, to stable-stable

transfer involving symplectic groups and other algebraic groups.
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2 Algebraic Groups, Algebraic Tori, and Real Forms

We concern ourselves with linear algebraic groups G defined over R. Hence, there

is a Galois, Gal(C/R), action on G. G possesses a group of complex points, G(C),

and G(C) contains a subgroup, G(R), of real points of G, the latter of which we view

as the fixed points under the Galois action. If G is connected and reductive, then

G(C) is a connected reductive complex Lie group, which is an algebraic subgroup of

SL(n,C) for some n, while G(R) is a reductive real Lie group, which is not necessarily

a subgroup of SL(n,R).

If G is also abelian, then we will write T instead and call it an algebraic torus.

Then T (C) is isomorphic to the product of several copies of C×,

T (C) ∼= C× × · · · × C× = (C×)r.

We refer to r, necessarily positive integral, as the rank of the torus. However, T (R)

is isomorphic to the product of several copies of R×,

T (R) ∼= R× × · · · × R× = (R×)r,

only in certain, but crucial, cases. In these cases, we will say that T is split over R,

R-split, or simply split if the context is clear, and that the rank r is equal to the R-

split rank of T . The real points on a split torus are not connected unless the torus is

trivial. If T is a split torus, this, in turn, indicates that any G in which T is maximal

is also split over R. The rank of any split group must necessarily match the split rank

of the maximal split torus. In the event that a torus defined over R has split rank

zero, we call such a torus anisotropic over R. Then, T (R) is necessarily compact

and connected. [BT65] is a helpful resource for these ideas. As we will leverage in

section 3, there are tori that are neither anisotropic nor split and possess, in a sense
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we will describe, R-split ranks in between these two extremes.

In general, a torus T defined over R contains a maximal torus split over R, Ts,

and a maximal torus anisotropic over R, Tan. Furthermore,

T = Tan · Ts, (2.1)

and this product need not be direct on either real or complex points.

Proposition [BT65]: Let k be a field, T a k-torus, and S a k-subtorus. There

exists a k-subtorus S ′ of T such that T is the almost direct product of S and S ′. If

S is the unique split-torus of T , then S ′ is the unique anisotropic torus of T .

Proof: for example, in [Bor62]

We are concerned with the case where G is a symplectic group. These come in

two types.

For the first, G = Sp(n,−), we denote G(C) = Sp(n,C) and G(R) = Sp(n,R),

which agree with the usual Lie group notation. The latter is the split real form, which

has split rank n
2
.

For the second, G = Sp(p, q), we denoteG(C) = Sp(n,C) andG(R) = Sp(p, q)(R).

The latter corresponds to the usual Lie group notation Sp(p, q). It is necessarily the

case that p+ q = n and the group, again, has rank n
2
. For a given rank, there are

⌊
rank

2

⌋
+ 1

nonisomorphic real forms of this type [Sug59]. If we takeKp,q = diag(I p
2
,−I q

2
, I p

2
,−I q

2
),

then the inner automorphism group of Kp,q is equivalent to that of Kq,p. In addition,

because all automorphisms of the symplectic group are inner, we view Sp(p, q) as

equivalent to Sp(q, p). As such, we will work with Sp(p, q) and insist that p > q. We

realize the compact symplectic group as Sp(n, 0).

In what follows, we will develop low-rank cases explicitly. For these cases, the
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complex and real points are:

rank 1, G(C) = Sp(2,C)

G(R) = Sp(2,R) or Sp(2, 0)(R)

rank 2, G(C) = Sp(4,C)

G(R) = Sp(4,R) or Sp(2, 2)(R) or Sp(4, 0)(R)

rank 3, G(C) = Sp(6,C)

G(R) = Sp(6,R) or Sp(4, 2)(R) or Sp(6, 0)(R)

rank 4, G(C) = Sp(8,C)

G(R) = Sp(8,R) or Sp(4, 4)(R) or Sp(6, 2)(R) or Sp(8, 0)(R)

rank 5, G(C) = Sp(10,C)

G(R) = Sp(10,R) or Sp(6, 4)(R) or Sp(8, 2)(R) or Sp(10, 0)(R)
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3 Conjugacy Classes of Maximal Tori

As we will leverage heavily in this section, the real points of any algebraic torus may

be expressed as

T (R) ∼= (R×)c1 · (C×)c2 · (S1)c3 , ci ∈ Z≥0 (3.1)

The sum c1 + c2 indicates the R-split rank. Any two elements t1, t2 ∈ T (R) that

adhere to the same instance of 3.1 are stably conjugate. As such, we will use various

instances of this expression to track the stable conjugacy classes in which we are

interested.

Take σ to be the nontrivial element of Gal(C/R). Then a root α of T in G is

classified as real if σ(α) = α, imaginary if σ(α) = −α, or complex if σ(α) 6= ±α.

We will denote the set of imaginary positive roots as ∆im and the set of real positive

roots ∆re.

This section, guided by (3.1), the split rank, and dimensional considerations, es-

tablishes the basic structure of and basic facts about the conjugacy classes of maximal

tori. We will develop the details of these ideas as we increase the rank of the group.

The two sections subsequent to this will establish how these conjugacy classes relate

to one another. Specifically, this section presents an unsophisticated perspective of

the relevant conjugacy classes, while acknowledging that these conjugacy classes are,

more precisely, classified by the appropriate Cayley transforms. This latter perspec-

tive will reach full fruition in subsequent sections.

3.1 Rank 1 Groups

We begin with the split form, Sp(2,R), which has two conjugacy classes of maximal

tori, corresponding to the anisotropic and split tori.
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We take the real points of the anisotropic torus to be

Tan(R) =

{ cos(θ) sin(θ)

− sin(θ) cos(θ)

 ; θ ∈ R
}

As such, Tan(R) ∼= S1 and has R-split rank zero. Should we, in the subsequent,

need to think of the matrix associated to an element of S1, we do so in terms of this

rotational matrix, observing that it occupies two rows and columns. As will be the

case for all anisotropic tori, the set of positive imaginary roots is equivalent to the

root system of G(C) and the set of positive real roots is empty. Here, specifically,

∆im = A1 , ∆re = ∅

Proposition: Any anisotropic torus contains only imaginary roots.

Proof: Viewing the roots as unitary characters, this is immediate (cf. [War12] for

arguments from the Lie algebra perspective).

We take the real points of the split torus to be

Ts(R) =

{x
x−1

 ;x ∈ R×
}

As such, Ts(R) ∼= R× and has split rank equivalent to that of the group, i.e., rank

one. Should we, in subsequent sections, need to think of the matrix associated to an

element of R×, we do so in terms of this diagonal matrix, observing that it occupies

two rows and columns. As will be the case for all split tori, the set of positive

imaginary roots is empty and the set of positive real roots is equivalent to the root

system of G(C) . Here, specifically,

∆im = ∅ , ∆re = A1
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Proposition: Any split torus contains only real roots.

Proof: Viewing the roots as real-valued characters, this is immediate.

The real form Sp(2, 0)(R) is compact and, hence, there is only one conjugacy class

of maximal tori, as will be the case for all subsequent compact forms. Here, this is

represented by S1, which has split rank zero, and

∆im = A1 , ∆re = ∅.

We end this section, and all subsequent sections, by summarizing our findings,

which may be found, here, in table 1.

Split Rank

0 1

Sp(2,R) S1 R×

Sp(2, 0)(R) S1 -

Table 1: Rank 1 Conjugacy Classes

3.2 Rank 2 Groups

We begin with the split form, Sp(4,R), starting with the anisotropic and split tori,

which build off of the work in the rank one case above.

Take the real points of the anisotropic torus to be

Tan(R) =

{


cos(θ1) sin(θ1)

cos(θ2) sin(θ2)

− sin(θ1) cos(θ1)

− sin(θ2) cos(θ2)


; θi ∈ R

}
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This is such that Tan(R) ∼= (S1)2 and has split rank zero. Additionally,

∆im = C2 , ∆re = ∅

Take the real points of the split torus to be

Ts(R) =

{


x1

x2

x−1
1

x−1
2


;xi ∈ R×

}

This is such that Ts(R) ∼= (R×)2 and has split rank two. Additionally,

∆im = ∅ , ∆re = C2

This establishes, what we think of, as the minimum and maximum split rank cases,

in a sense that will reach full fruition in subsequent sections. There are, additionally,

two conjugacy classes of maximal tori corresponding to split rank one.

First, consider GL1 · SL2, for which there is a subgroup of real points of the form



∗

∗ ∗

∗

∗ ∗
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We realize this subgroup of real points as

T1(R) =

{


x

cos(θ) sin(θ)

x−1

− sin(θ) cos(θ)


;x ∈ R× , θ ∈ R

}

This is such that T1(R) ∼= R× · S1 and has split rank one. Additionally,

∆im = A1 , ∆re = A1

Next, consider GL2, for which there is a subgroup of real points of the form



∗ ∗

∗ ∗

∗ ∗

∗ ∗


We realize this subgroup of real points, in block diagonal form, as

T2(R) =

{

c

 cos(θ) sin(θ)

− sin(θ) cos(θ)


c−1

 cos(θ) sin(θ)

− sin(θ) cos(θ)




; c ∈ R>0 , θ ∈ R

}

This is such that T2(R) ∼= C×. Note, as we indicated in (2.1), every torus defined
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over R is such that T = Tan × Ts. This idea is realized here as

T2 = (T2)an × (T2)s

∼= (T2)an × (T2)s/{(I, I), (−I,−I)}.

This indicates that T2(R), and by extension the C× terms that will appear in higher

group rank cases, has split rank one. Observe that, for this instance of split rank one,

it occupies four rows and columns. Additionally,

∆im = A1 , ∆re = A1

Having established this last case, we detour to make important general remarks.

First, in completing the above, we have produced the basic building blocks of our

starting point for this section, namely

T (R) ∼= (R×)c1 · (C×)c2 · (S1)c3

These will combine in straightforward ways for the remainder of our constructions.

Specifically, their repeated contributions will be as follows:

i) R× has split rank one and occupies two rows and columns in the relevant

matrices

ii) C× has split rank one and occupies four rows and columns

iii) S1 has split rank zero and occupies two rows and columns

As such, we will de-emphasize the explicit matrices moving forward, noting that they

may be easily constructed, as need be, from the discussion above.

Secondly, two additional restrictions will aid our constructions of the conjugacy

classes in the real forms that are not split. The split forms contain all possible
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conjugacy classes for a given group rank, i.e.,

{
conj. classes of max.

tori of Sp(p, q)(R)

}
⊂
{

conj. classes of max.

tori of Sp(n,R)

}

We delay formally establishing this result until we realize our Cayley transforms.

Furthermore, no conjugacy class of a real form that is not split may contain R×

terms. This is because Sp(n, 0) and Sp(p, q) may be realized as subgroups of the

special unitary group, for which S1 is isomorphic to a subgroup of SU(2) for which

there exists an embedding into Sp(2) and C× embeds into SU(2, 2) which in turn

embeds into Sp(2, 2).

With these general comments established, we continue our discussion with the

real form Sp(2, 2)(R). This contains only two conjugacy classes of maximal tori. The

first corresponding to its anisotropic torus, for which we represent the real points as

Tan(R) ∼= (S1)2,

has split rank zero. Additionally,

∆im = C2 , ∆re = ∅.

For the second conjugacy class, we represent the real points as

T1(R) ∼= C×,

which has split rank one. Additionally,

∆im = A1 , ∆re = A1.

Note, this real form is nonsplit. As such, it does not contain a torus of split rank 2.
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Finally, the compact real form Sp(4, 0)(R) has one conjugacy class of maximal

tori. We realize the real points as

Tan(R) ∼= (S1)2,

which has split rank zero. Additionally,

∆im = C2 , ∆re = ∅.

And, we summarize our work for this section in table 2.

Split Rank

0 1 2

Sp(4,R) (S1)2 R× · S1 ;
C× (R×)2

Sp(2, 2)(R) (S1)2 C× -

Sp(4, 0)(R) (S1)2 - -

Table 2: Rank 2 Conjugacy Classes
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3.3 Rank 3 Groups

We begin with the split real form Sp(6,R), which has six conjugacy classes of maximal

tori. The anisotropic and split cases amount to the ideas of the previous cases, with

an extra copy of S1 and R×, respectively, added. Specifically, the anisotropic torus

has real points represented by

Tan(R) ∼= (S1)3,

which has split rank zero. Additionally,

∆im = C3 , ∆re = ∅.

The split torus has real points represented by

Ts(R) ∼= (R×)3,

which has split rank three. Additionally,

∆im = ∅ , ∆re = C3.

There are two conjugacy classes corresponding to split rank one. The first has

real points represented by

T1(R) ∼= R× · (S1)2.

Recall that the R× contributes two rows and columns to the attached matrices and

that two copies of S1 each contribute two rows and columns, giving the full six rows

and columns needed in this case. Additionally,

∆im = C2 , ∆re = A1.
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The second has real points represented by

T2(R) ∼= C× · S1.

Considering again the attached matrices, recall that the C× contributes four rows

and columns and the S1 contributes two rows and columns, giving the full requisite

six rows and columns. Additionally,

∆im = A1 × A1 , ∆re = A1.

There are two conjugacy classes corresponding to split rank two. The first has

real points represented by

T3(R) ∼= (R×)2 · S1.

Additionally,

∆im = A1 , ∆re = C2.

The second has real points represented by

T4(R) ∼= R× · C×.

Additionally,

∆im = A1 , ∆re = A1 × A1.

Because of the repetitive nature of these results, it is worth making a potentially

obvious comment on the thinking underlying this work. If one is not being careful, it

is tempting to conclude that, for example, (C×)2 has the correct split rank and must

be an option here. But, this would require a matrix of eight rows and columns and,

hence, cannot occur in the rank three case, but will indeed occur in the rank four

case of the next section. The perspective we develop here requires agreement both in
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split rank and the size of the attached matrices.

Next, the real form Sp(4, 2)(R) contains only two conjugacy classes of maximal

tori. The first corresponding to its anisotropic torus, for which we represent the real

points as

Tan(R) ∼= (S1)3,

has split rank zero. Additionally,

∆im = C3 , ∆re = ∅.

For the second conjugacy class, we represent the real points as

T1(R) ∼= C× · S1,

which has split rank one. Additionally,

∆im = A1 × A1 , ∆re = A1.

Finally, the compact real form Sp(6, 0)(R) has one conjugacy class of maximal

tori. We realize the real points as

Tan(R) ∼= (S1)3,

which has split rank zero. Additionally,

∆im = C3 , ∆re = ∅.

And, we summarize our work for this section in table 3.
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Split Rank

0 1 2 3

Sp(6,R) (S1)3 R× · (S1)2 ;
C× · S1

(R×)2 · S1 ;
R× · C× (R×)3

Sp(4, 2)(R) (S1)3 C× · S1 - -

Sp(6, 0)(R) (S1)3 - - -

Table 3: Rank 3 Conjugacy Classes

3.4 Rank 4 Groups

We begin with the split real form Sp(8,R), which has nine conjugacy classes of max-

imal tori. Much as before, the anisotropic torus has real points represented by

Tan(R) ∼= (S1)4,

which has split rank zero. Additionally,

∆im = C4 , ∆re = ∅.

The split torus has real points represented by

Ts(R) ∼= (R×)4,

which has split rank three. Additionally,

∆im = ∅ , ∆re = C4.



20

There are two conjugacy classes corresponding to split rank one. The first has

real points represented by

T1(R) ∼= R× · (S1)3.

Additionally,

∆im = C3 , ∆re = A1.

The second has real points represented by

T2(R) ∼= C× · (S1)2.

Additionally,

∆im = A1 × C2 , ∆re = A1.

We observe that, in general for any higher group rank, the split rank one conjugacy

classes will always amount to a copy of R× or C× combined with a sufficient number

of copies of S1 to ”fill-in” the underlying dimensional considerations.

There are three conjugacy classes corresponding to split rank two. The first has

real points represented by

T3(R) ∼= (R×)2 · (S1)2.

Additionally,

∆im = C2 , ∆re = C2.

The second has real points represented by

T4(R) ∼= R× · C× · S1.

Additionally,

∆im = A1 × A1 , ∆re = A1 × A1.
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The third has real points represented by

T5(R) ∼= (C×)2.

Additionally,

∆im = A1 × A1 , ∆re = A1 × A1.

Finally, there are two conjugacy classes corresponding to split rank three. The

first has real points represented by

T6(R) ∼= (R×)3 · S1.

Additionally,

∆im = A1 , ∆re = C3.

The second has real points represented by

T7(R) ∼= (R×)2 · C×.

Additionally,

∆im = A1 , ∆re = C2 × A1.

Next, the real form Sp(4, 4)(R) contains only three conjugacy classes of maximal

tori. The first corresponding to its anisotropic torus, for which we represent the real

points as

Tan(R) ∼= (S1)4,

has split rank zero. Additionally,

∆im = C4 , ∆re = ∅.
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For the second conjugacy class, we represent the real points as

T1(R) ∼= C× · (S1)2,

which has split rank one. Additionally,

∆im = C2 × A1 , ∆re = A1.

For the third conjugacy class, we represent the real points as

T2(R) ∼= (C×)2,

which has split rank two. Additionally,

∆im = A1 × A1 , ∆re = A1 × A1.

Next, the real form Sp(6, 2)(R) contains only two conjugacy classes of maximal

tori. The first corresponding to its anisotropic torus, for which we represent the real

points as

Tan(R) ∼= (S1)4,

has split rank zero. Additionally,

∆im = C4 , ∆re = ∅.

For the second conjugacy class, we represent the real points as

T1(R) ∼= C× · (S1)2,
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which has split rank one. Additionally,

∆im = C2 × A1 , ∆re = A1.

Finally, the compact real form Sp(6, 0)(R) has one conjugacy class of maximal

tori. We realize the real points as

Tan(R) ∼= (S1)4,

which has split rank zero. Additionally,

∆im = C4 , ∆re = ∅.

And, we summarize our work for this section in table 4.

Split Rank

0 1 2 3 4

Sp(8,R) (S1)4 R× · (S1)3 ;
C× · (S1)2

(R×)2 · (S1)2 ;
R× · C× · S1 ;

(C×)2

(R×)3 · S1 ;
(R×)2 · C× (R×)4

Sp(4, 4)(R) (S1)4 C× · (S1)2 (C×)2 - -

Sp(6, 2)(R) (S1)4 C× · (S1)2 - - -

Sp(8, 0)(R) (S1)4 - - - -

Table 4: Rank 4 Conjugacy Classes
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3.5 Rank 5 Groups

As the discussion of the preceding ranks has firmly established all potential patterns,

for this case we list our results directly in table 5.

Split Rank

0 1 2 3 4 5

Sp(10,R) (S1)5 R× · (S1)4 ;
C× · (S1)3

(R×)2 · (S1)3 ;
R× · C× · (S1)2 ;

(C×)2 · S1

(R×)3 · (S1)2 ;
(R×)2 · C× · S1;

R× · (C×)2

(R×)4 · S1 ;
(R×)3 · C× (R×)5

Sp(6, 4)(R) (S1)5 C× · (S1)3 (C×)2 · S1 - - -

Sp(8, 2)(R) (S1)5 C× · (S1)3 - - - -

Sp(10, 0)(R) (S1)5 - - - - -

Table 5: Rank 5 Conjugacy Classes
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3.6 Comments on the General Case

In the above discussion, we aimed to draw attention to the notion that, once one has

come to understand the details of the lower rank cases, the work involved in higher

rank cases amounts to repeated application of the same details. We did so because

this same notion applies to cases of any general rank. In this final section, we aim to

draw out some of these patterns in more detail, so that our work may be applied as

needed.

We begin with one of the more elegant patterns. In split real forms, the number of

conjugacy classes of each split rank form grow in a organized arrangement. First, Let

N represent the total number of conjugacy classes of maximal tori, and the results of

our above work are summarized in table 6.
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Number of Conj.
Classes of Max.

Tori of Split Rank

0 1 2 3 4 5 N

Sp(2,R) 1 1 - - - - 2

Sp(4,R) 1 2 1 - - - 4

Sp(6,R) 1 2 2 1 - - 6

Sp(8,R) 1 2 3 2 1 - 9

Sp(10,R) 1 2 3 3 2 1 12

Table 6: Number of Low-Split-Rank Conjugacy Classes

Then, for r equal to the rank of the group, we may express

N =


(r+2)2

4
, r even

(r+1)(r+3)
4

, r odd

which is consistent with the results of Sugiura [Sug59]. And, the number of conju-

gacy classes of maximal tori of each split rank follows the symmetric ascending then

descending pattern shown. For example, the rank ten split real form would entail the

details of table 7.
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Number of Conj.
Classes of Max.

Tori of Split Rank

0 1 2 3 4 5 6 7 8 9 10 N

Sp(20,R) 1 2 3 4 5 6 5 4 3 2 1 36

Table 7: Number of Conjugacy Classes, Sp(20,R), by Split Rank

In the case of a real form that is not split, Sp(p, q)(R), there are q
2

+ 1 conjugacy

classes of maximal tori [Sug59]. And, the number of conjugacy classes for each relevant

split rank is always one, as we have seen.

We have already included methods in the discussion above for finding a represen-

tative of each of these conjugacy classes.

Next, we look to the positive imaginary and positive real root systems for each of

the conjugacy classes, but delay the reasoning for a subsequent section. Of course,

the root system for the complex points, Sp(n,C), and all of its real forms is given by

Cn
2
. For easy reference, we collect in table 8 some of the results of our above work.
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∆im ∆re ∆im ∆re

Group
Rank

1

S1 A1 ∅

Group
Rank

4

(S1)4 C4 ∅

R× ∅ A1 R× · (S1)3 C3 A1

Group
Rank

2

(S1)2 C2 ∅ C× · (S1)2 A1 × C2 A1

R× · S1 A1 A1 (R×)2 · (S1)2 C2 C2

C× A1 A1 R× · C× · S1 A1 × A1 A1 × A1

(R×)2 ∅ C2 (C×)2 A1 × A1 A1 × A1

Group
Rank

3

(S1)3 C3 ∅ (R×)3 · S1 A1 C3

R× · (S1)2 C2 A1 (R×)2 · C× A1 C2 × A1

C× · S1 A1 × A1 A1 (R×)4 ∅ C4

(R×)2 · S1 A1 C2

R× · C× A1 A1 × A1

(R×)3 ∅ C3

Table 8: ∆im and ∆re for Low-Split-Rank

Furthermore, once again recall the fundamental expression that has underpinned

our work thus far:

(R×)c1 · (C×)c2 · (S1)c3

The exponents ci for each term determine a straightforward contribution to the two

root systems with which we are concerned. Specifically, these are as follows:
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i) c1 indicates a contribution of Cc1 to ∆re

ii) c2 indicates a contribution of c2 copies of A1 to each of ∆im and ∆re

iii) c3 indicates a contribution of Cc3 to ∆im

Noting that, in the previous, we have simply written A1 for C1.

Finally, it is interesting to observe that our work does imply a notion of working

the other direction. If one were to choose specific values of ci for the expression

(R×)c1 · (C×)c2 · (S1)c3 ,

then there exists a symplectic group of some rank in which this expression would

demarcate a conjugacy class of maximal tori for the split real form of that group. For

example, choose

(R×)5 · (C×)5 · (S1)3.

This has split rank ten and requires a matrix with 36 rows and columns, and does

occur in Sp(36,R)
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4 General Discussion of Lattice Construction

Guided by Shelstad [She79], this section develops the general notions of how the

conjugacy classes of maximal tori relate to each other. The next section develops the

details for symplectic groups.

Take G to be a connected reductive linear algebraic group defined over R and T

to be a maximal torus in G and defined over R. The Weyl group of this torus is given

by

ΩG(T ) := Norm(T (C), G(C))/T (C).

Each gT (C) ∈ ΩG(T ) acts on T (C) by

gT (C) · t = gtg−1,

for t ∈ T (C) and g ∈ Norm(T (C), G(C)). However, it is not necessarily the case that

every element of the normalizer of the complex points T (C) also normalizes the real

points T (R). To identify which elements have this additional property, we must check

for a correspondence between their direct action on a real point of the torus and their

action composed with a Galois action on a real point. Precisely, g normalizes T (R)

if and only if

gtg−1 = σ(gtg−1) , t ∈ T (R) , σ ∈ Gal(C/R)

gtg−1 = σ(g)tσ(g)−1

t = g−1σ(g)tσ(g)−1g

t = (g−1σ(g))t(g−1σ(g))−1

i.e., g−1σ(g) ∈ Cent(T (R), G(C)) = Cent(T (C), G(C))
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As such, write gσ for g−1σ(g). Then

gσσ(gσ) = g−1σ(g)σ(g−1σ(g))

= g−1σ(g)σ(g)−1σ(σ(g))

= g−1σ(g)σ(g)−1g

= 1 ,

indicates that 
1→ 1

σ → gσ

is a 1-cocycle of Gal(C/R) with values in T (C). As a 1-cocycle of Gal(C/R) with

values in G(C), this is a 1-coboundary. Via Shelstad, gT (C) normalizes T (R) if and

only if

g ∈ Norm(T (R), G(R)) ·Norm(T (C),M(C)),

where M is the centralizer of the maximal R-split torus ST in T , a connected reductive

subgroup of G. The roots of T in M are precisely the roots α of T of G for which

σα = −α, i.e., the imaginary roots. Thus, ΩM(T ) is generated by the Weyl relfections

wα for the imaginary roots α of T . Notice that

{±α} = {α, σα}

determines a single Weyl reflection.

We can also consider the orbit of an imaginary root α under ΩM(T ). In an

irreducible root system, all roots of same length lie in a single Weyl group orbit.

Now we develop our algebraic notion of Cayley transform. Recall, via Shelstad,

stable conjugacy for maximal tori over R is the same as G(R)-conjugacy. Consider

the partially ordered set tst(G) of stable conjugacy classes of maximal tori T over R
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in G. Write {T} for the stable conjugacy class of T . We have {T} � {T ′} if and only

if ST is G(R)-conjugate to a subtorus of ST ′ . We say {T} is adjacent to {T ′}, and

T is adjacent to T ′, if {T} � {T ′} and dim(ST ′) = 1 + dim(ST ). Furthermore,

Proposition: T is adjacent to T ′ if and only if there is g ∈ G(C) such that Int(g)

carries T to T ′ and Int(g−1σ(g)) normalizes T (C) and acts on T (C) as the Weyl

reflection wα for an imaginary root α that is not totally compact.

Proof: see [She83]

If α is an imaginary root of T , then α determines a certain 3-dimensional sub-

group Gα isogenous over R to either SL(2) or SU(2). We call α noncompact if

Gα ∼ SL(2) or compact if Gα ∼ SU(2). We call α totally compact if and only if

every root in the its imaginary Weyl group orbit is compact. Assume T is anisotropic

modulo the center of G. Then,

Proposition: totally compact roots exist for T if and only if G is not quasi-split

over R

Proof: see [She]

Also,

Proposition: two noncompact roots in the same Weyl group orbit must be conju-

gate under G(R)

Proof: see [She12]

We return to general maximal torus T defined over R. Assume {T} � {T ′} and

dim(ST ′) = 1 + dim(ST ). Suppose g ∈ Norm(T (C), G(C)) carries T (R) to T ′(R),

and that the attached cocycle 
1→ 1

σ → gσ

is such that gσ acts on T (C) as the Weyl reflection wα for the imaginary root α that

is not totally compact. Write sα for the restriction of Int(g) to T (C) so that s−1
α σ(sα)
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preserves T (C) and acts on T (C) as wα. Often we write s in place of sα. This s is

our Cayley transform. We emphasize that our definition is based purely on algebraic

group considerations, and notably we have not fixed a Cartan involution on G(C).

Notice that if we replace α by wα, w ∈ ΩM(T ), and sα by swα , then we get swα(T )

stably (or G(R)-) conjugate to sα(T ).
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5 Lattices of Conjugacy Classes of Maximal Tori

for Groups of Type Cr

Leveraging the results of the previous two sections, here we construct the lattices of

conjugacy classes of maximal tori for the various real forms of interest.

As a starting point, we view the results of section 3.6 to establish the nodes of

our lattice, where each node represents one of our conjugacy classes. We will always

fix the top node as the element of split rank zero, i.e., the anisotropic torus, and

the bottom node as the element of maximal split rank. It is here that we realize

our aforementioned notions of these as minimal and maximal elements, respectively.

Given a particular level of our lattice, every node in the next level down indicates a

conjugacy class of split rank plus one. In rough generality, the nodes of our lattice

will appear as

◦ split rank 0

◦ ◦ split rank 1

◦ ◦ ◦ split rank 2

...

◦ ◦ ◦ max. split rank r-2

◦ ◦ max. split rank r-1

◦ max. split rank r

Note, the lattices of the real forms that are not split are significantly simpler. With

the nodes established, our primary task is to populate the edges of our lattice, where

each edge represents a Cayley transform between adjacent tori. It is important to

note that not every torus represented in a given level is adjacent to every torus in the

next level, and contrariwise. Ultimately, within the scope of our work, there are three

”types” of Cayley transforms. These allow for descending the lattice, which we will
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develop in the rank one and rank two cases. There are cases where the root system

is such that there is no associated Cayley transform, which we will see in each rank

for real forms that are not split and in the rank four case, for the first time, in the

split case.

We realize our root system Cr = Cn
2

as

∆ = {±(ei ± ej) ; 1 ≤ i < j ≤ n

2
} ∪ {±2ek ; 1 ≤ k ≤ n

2
},

for which we refer to roots of the form ei ± ej as short and roots of the form 2ek as

long. Specifically, we make use of the positive imaginary roots and their associated

Cayley transforms.

Each subsequent level of our lattice indicates that the split rank increases by one,

which Cayley transforms achieve, by definition. Thus, in order to fully descend the

lattice along some path, successive Cayley transforms must correspond to maximal

orthogonal sets of roots, which we will leverage heavily as we develop the details.

In each subsequent section, we will begin our work with establishing the maximal

set of orthogonal positive roots relevant to the given rank and with providing the

general framework of our lattice. For the latter, we will begin by using the repre-

sentatives of each conjugacy classes established in section 3 for each node in place of

the circles utilized above. In establishing the appropriate Cayley transforms, we will

initially make specific choices to our sets of roots. But, we will end each discussion

with a generalized lattice that shows the equivalence of all such choices, in a sense to

be made precise in the course of our discussion.

Finally, we note that our work focuses on imaginary roots to establish the notion

of descending the lattice. It is possible to perform the same work, mutatis mutandis,

to ascend the lattice using the real roots.
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5.1 Rank 1 Groups

The root system for the group rank 1 case is given by A1, for which we express the

positive root as

∆+ = {α}

Naturally, leveraging an orthogonal set of roots is not relevant here.

We begin with the case of the split form, where the basic structure of our lattice

is given by

S1

R×

S1 has a set of positive imaginary roots given by ∆im = A1 = {α}, which is noncom-

pact. As such, to α is associated a Cayley transform that maps S1 → R×. In doing

so, the corresponding action of the Weyl element makes α a real root. Hence, we have

that ∆im = ∅ for R×. It is in this sense that we meant our claim in section 3.6 that

the exponent c1 of R× indicates a contribution of Cc1 to ∆re and that the exponent c3

of S1 indicates a contribution of Cc3 to ∆im. Furthermore, these results indicate that

there can not exist a Cayley transform with which we can descend further and, along

with the fact that R× achieves the full split rank, that our lattice must terminate

here.

This accomplishes two of our goals. First, we have realized the first of our Cayley

transforms, S1 → R×, which in all subsequent sections will be identified with those

Cayley transforms that are associated to long roots.

Secondly, we have completed the lattice for Sp(2,R), which is given in figure 5.1.
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S1

R×

Figure 1: Lattice of Conjugacy Classes of Maximal Tori, Sp(2,R)

And, while we were restricted from making any specific choices in this case, the

general lattice is given by

◦

◦

Next, the real form Sp(2, 0)(R) is compact and, hence, only has one conjugacy

class of maximal tori. The imaginary root system, again, consists of a singleton,

i.e., ∆im = A1. In this context, this imaginary root is compact and totally compact.

Hence, their is no associated Cayley transform and the lattice for Sp(2, 0)(R) is simply

given by the single node:

S1

5.2 Rank 2 Groups

The root system for the group rank 2 case is given by C2, for which we express the

positive roots as

∆+ = {e1 + e2, e1 − e2, 2e1, 2e2},

and for which all maximal orthogonal sets of positive roots are given by

{e1 ± e2} ; {2e1, 2e2}.

We begin with the case of the split form, where the basic structure of our lattice

is given by
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(S1)2

R× · S1 C×

(R×)2

(S1)2 has a set of imaginary roots given by ∆im = C2, all of which are noncompact.

Associated to each of these is a Cayley transform that map to a conjugacy class of

split rank one. Guided by the notion that our orthogonal sets provide two potential

paths of descent, we will choose first to consider those Cayley transforms associated

with the roots 2e1 and e1− e2. The Cayley transform associated to the long root 2e1

will, as indicated in the rank one case, map one copy of S1 to R×, and will provide the

edge of our lattice corresponding to a mapping from (S1)2 → R× ·S1. The associated

Weyl element acting on the set of roots will leave the root 2e2 imaginary, make the

root 2e1 real, and make the two short roots e1 ± e2 complex. Hence, we have that

∆im = A1 = {2e2} for R× ·S1. Next, the Cayley transform associated to the short root

e1 − e2 will map (S1)2 → C×. Here, the associated Weyl element will leave the root

e1 +e2 imaginary, make the root e1−e2 real, and make the two long roots 2e1 and 2e2

complex. Hence, we have that ∆im = A1 = {e1 + e2} for C×. Furthermore, this latter

idea is the second of our Cayley transforms, (S1)2 → C×, which in all subsequent

sections will be identified with those Cayley transforms that are associated to short

roots that are the difference of the basis elements. Furthermore, it is in this sense that

we meant our claim in section 3.6 that the exponent c2 of C× indicates a contribution

of c2 copies of A1 to each of ∆im and ∆re.

Thus, so far we have accomplished the following with our lattice:

(S1)2

R× · S1 C×

(R×)2

2e1 e1−e2
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The result that R× · S1 has ∆im = A1 = {2e2}, which is noncompact, indicates that

there can be only one Cayley transform by which we may map to (R×)2. By doing

so, the associated Weyl element will make the root 2e2 real, yielding that (R×)2 has

∆im = ∅. Similarly, the result that C× has ∆im = A1 = {e1 + e2} indicates that

there can be only one Cayley transform by which we may map to (R×)2. Here, the

associated Weyl element will make the root e1 + e2 real, again yielding that (R×)2

has ∆im = ∅. Note, that both of these results are consistent with our insistence that,

to fully descend the lattice, successive Cayley transforms must be associated with

a set of orthogonal roots. Furthermore, this latter transform idea is the third and

final of our Cayley transforms, C× → (R×)2, which in all subsequent sections will be

identified with those Cayley transforms that are associated to short roots that are the

sum of the basis elements. Recall the perspective we established that building our

conjugacy classes amounted to repeatedly leveraging our three basic building blocks,

S1, R×, and C×, of real points of maximal tori. In very much the same way, our

three ”types” of Cayley transforms that correspond to descending the lattice will be

applied repeatedly to establish the manner in which are conjugacy classes may relate

and, consequently, establishing the edges of our lattices.

Thus, the lattice for Sp(4,R) is given in figure 5.2.

(S1)2

R× · S1 C×

(R×)2

Figure 2: Lattice of Conjugacy Classes of Maximal Tori, Sp(4,R)

We have indicated that an orthogonal set of positive imaginary noncompact roots

provides guidance on which Cayley transforms may be made in succession. However,

this does not specify in which order they must be applied. If we were so inclined,
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we could choose to establish that the Cayley transform associated to 2e1 would map

(S1)2 → R× · S1 and the one associated to 2e2 would map (S1)2 → S1 · R×. But,

because we are concerned only with the conjugacy classes of our tori, these are equiv-

alent choices, and the order in which they are applied has no effect in our setting. In

the next section, where our set of orthogonal roots will be slightly more complicated,

we will return to this point to make the clarification that some choices do matter.

For now, we will simply establish the necessary decorations, l and s for a Cayley

transform associated to a long or short root, respectively, in our general lattice.

As such, the general lattice is given by

◦

◦ ◦

◦

l s

l s

Next, for the real form, Sp(2, 2)(R), the two conjugacy classes indicate that the

nodes of our lattice are given by

(S1)2

C×

As in the split case, (S1)2 has an imaginary set of roots given by ∆im = C2. However,

unlike the split case, not all of the imaginary roots are noncompact. More specifically,

here, the long roots are imaginary compact roots, are totally compact, and do not

have an associated Cayley transform. This has the effect of reducing the available

choices for Cayley transforms with which to descend the lattice and will give these

lattices a significantly simpler structure.

To establish the details, we consider the results under the Cayley transform as-

sociated to the short root e1 − e2, This will map (S1)2 → C×, which has ∆im =

A1 = {e1 + e2}. This imaginary root is compact and totally compact, and our lattice

terminates here.
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Thus, the lattice for Sp(2, 2)(R) is given by:

(S1)2

C×

Finally, because the real form Sp(4, 0)(R) is compact and only has one conjugacy

class of maximal tori, its lattice is given by:

(S1)2

5.3 Rank 3 Groups

The root system for the group rank 3 case is given by C3, for which we express the

positive roots as

∆+ = {e1 ± e2, e2 ± e3, e1 ± e3, 2e1, 2e2, 2e3},

and for which all maximal orthogonal sets of positive roots are given by

{e1 ± e2, 2e3} ; {e2 ± e3, 2e1} ; {e1 ± e3, 2e2} ; {2e1, 2e2, 2e3}

We begin with the case of the split form, where the basic structure of our lattice

is given by

(S1)3

R× · (S1)2 C× · S1

(R×)2 · S1 R× · C×

(R×)3
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To establish the first version of our lattice, we will work with the specific choices for

the orthogonal sets of

{e2 ± e3, 2e1} ; {2e1, 2e2, 2e3}

(S1)2 has a set of imaginary roots given by ∆im = C3, all of which are noncompact.

We choose to consider the Cayley transforms associated to the roots 2e1 and e2− e3,

which will map to conjugacy classes of split rank one. First, the one associated with

2e1 maps (S1)3 → R× · (S1)2, and the corresponding Weyl element acts on the set

of imaginary roots to make 2e1 real and leaves e2 ± e3, 2e2, and 2e3 as noncompact

imaginary. Hence, we have that ∆im = C2 for R× · (S1)2, indicating for future work

that we will have multiple potential Cayley transforms with which we may map to

the conjugacy classes of split rank two. Next, the Cayley transform associated with

e2−e3 maps (S1)3 → C× ·S1, and the corresponding Weyl element makes e2−e3 real,

makes 2e2 and 2e3 complex, and leaves e2 +e3 and 2e1 noncompact imaginary. Hence,

we have that ∆im = A1 × A1 for C× · S1, which is our first example of a resulting

imaginary root system that is not nonsingular. This indicates that the roots e2 + e3

and 2e1 have distinct Galois orbits within the root system, thus limiting the potential

choices of applicable Cayley transforms. With these results, our lattice is now

(S1)3

R× · (S1)2 C× · S1

(R×)2 · S1 R× · C×

(R×)3

2e1 e2−e3

Then, again, R× · (S1)2 has ∆im = C2 = {e2 ± e3, 2e2, 2e3}, and we may choose

Cayley transforms associated to either of the short or long roots. We will choose those

associated with 2e2 and e2 − e3. The one associated with 2e2, as a long root, maps
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R× · (S1)2 → (R×)2 · S1, and the associated Weyl element leaves only 2e3 imaginary.

Hence, we have ∆im = A1 for (R×)2 ·S1. Next, the Cayley transform associated with

e2 − e3, as a short root including a difference, maps R× · (S1)2 → R× · C×, and the

associated Weyl element leaves only e2 + e3 imaginary. Before we turn to the other

split rank one conjugacy class, our lattice is

(S1)3

R× · (S1)2 C× · S1

(R×)2 · S1 R× · C×

(R×)3

2e1 e2−e3

e2−e3
2e2

Next, the other split rank 1 conjugacy class, C× · S1, has ∆im = A1 × A1 = {e2 +

e3, 2e1}. Based on their separate Galois orbits, each of these will correspond to a

mapping to a different adjacent torus of split rank 2. The Cayley transform associated

with 2e1, as a long root, maps C×·S1 → (R×)2·S1 and the Cayley transform associated

with e2 +e3, as a short including a sum, maps C× ·S1 → R× ·C×, both with imaginary

root systems as just discussed. As such, our lattice is now,

(S1)3

R× · (S1)2 C× · S1

(R×)2 · S1 R× · C×

(R×)3

2e1 e2−e3

e2−e3
2e2 e2+e3 2e1

Both of the conjugacy classes of split rank 2 have singletons for their set of imaginary

roots, and we conclude that the lattice for Sp(6,R) is given in figure 5.3.
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(S1)3

R× · (S1)2 C× · S1

(R×)2 · S1 R× · C×

(R×)3

Figure 3: Lattice of Conjugacy Classes of Maximal Tori, Sp(6,R)

As discussed in the last section, while we made some specific choices to showcase

specific details, we have only done so for the sake of clarity and all such choices of

orthogonal sets are ultimately equivalent. However, unlike the last case, we have

seen that the order in which successive Cayley transforms are applied does create

different paths of descent through the various conjugacy classes. The only exception

to this here is in the strongly orthogonal set of long roots. Ultimately, the four

paths of descent that we have established correspond to one the following orders of

application: lll, lss, sls, and ssl. As such, the general lattice is given by

◦

◦ ◦

◦ ◦

◦

l s

s

l s l

l s

Next, for the real form Sp(4, 2)(R), the general form of our lattice is given by:

(S1)3

C× · S1
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(S1)3 has ∆im = C3, but this contains a mixture of compact and noncompact roots.

Specifically, the compact imaginary roots are 2e1, 2e2, 2e3, and e1 ± e3, and the

noncompact imaginary roots are e1 ± e2 and e2 ± e3. Choosing one of these, say

e1 − e2, the associated Cayley transform maps (S1)3 → C× · S1, which has ∆im =

A1 × A1 = {e1 + e2} × {e2 − e3}. But, because these both become totally compact

roots in this context, our lattice must terminate. Hence, the lattice for Sp(4, 2)(R) is

given by:

(S1)3

C× · S1

Finally, as in previous cases, the lattice for the compact real form Sp(6, 0)(R) is

given by:

(S1)3

5.4 Rank 4 Groups

The root system for the group rank 4 case is given by C4, for which we express the

positive roots as

∆+ = {e1 ± e2, e1 ± e3, e1 ± e4, e2 ± e3, e2 ± e4, e3 ± e4, 2e1, 2e2, 2e3, 2e4},

and for which all maximal orthogonal sets of positive roots are given by

{e1±e2, 2e3, 2e4} ; {e1±e3, 2e2, 2e4} ; {e1±e4, 2e2, 2e3} ; {e2±e3, 2e1, 2e4} ; {e2±e4, 2e1, 2e3} ;

{e3±e4, 2e1, 2e2} ; {2e1, 2e2, 2e3, 2e4} ; {e1±e2, e3±e4} ; {e1±e3, e2±e4} ; {e1±e4, e2±e3}

We begin with the case of the split form, where the basic structure of our lattice

is given by
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(S1)4

R× · (S1)3 C× · (S1)2

(R×)2 · (S1)2 R× · C× · S1 (C×)2

(R×)3 · S1 (R×)2 · C×

(R×)4

In light of the results of the previous section, and in an effort to vary our presen-

tation, in this case we will follow each path of descent, instead of building our work

by increasing the split rank. To accomplish this, we will choose to work with the

orthogonal sets

{e3 ± e4, 2e1, 2e2} ; {e1 ± e2, e3 ± e4} ; {2e1, 2e2, 2e3, 2e4}

There are nine paths of descent, corresponding to

llll ; llss ; lsls ; lssl ; ssll ; ssss ; slsl ; slls ; ssss,

and noting that the two instances of ssss are distinct paths that dependent on whether

the short root includes a sum or difference. Finally, because the discussions of the

last few sections have established almost all of the ideas applicable to the scope of

our work, we will highlight the working components of each of the nine cases within

the context of the general lattice, and limit our discussion.
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Case llll:

(S1)4

R× · (S1)3 ◦

(R×)2 · (S1)2 ◦ ◦

(R×)3 · S1 ◦

(R×)4

2e1

2e2

2e3

2e4

for which the imaginary root systems are described in table 9.

R× · (S1)3 : ∆im = C3 = {2e2, 2e3, 2e4, e2 ± e3, e3 ± e4, e2 ± e4}

(R×)2 · (S1)2 : ∆im = C2 = {2e3, 2e4, e3 ± e4}

(R×)3 · S1 : ∆im = A1 = {2e4}

Table 9: ∆im: Case llll

Note, the Cayley transform associated with the root 2e1 maps (S1)4 → R× · (S1)3.

And, the corresponding Weyl element yields compact roots e2 ± e3, e2 ± e4 and

noncompact roots 2e2, 2e3, 2e4, e3 ± e4, all of which are imaginary. Because the

Weyl group orbits of these compact imaginary roots include noncompact imaginary

roots, the Cayley transforms associated to these compact imaginary roots will have

the same effect as those associated to the noncompact imaginary roots. And, as

we have seen, those associated to the noncompact imaginary roots map to a torus

to which this one is adjacent. Note, in the event that all of the roots in its Weyl

group orbit are compact, we call them totally compact, and there is no associated

Cayley transform. But, this latter point does not occur in quasi-split groups, i.e., for

a quasi-split group every imaginary root for every T has a Cayley transform [She83].
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Case llss:

(S1)4

R× · (S1)3 ◦

(R×)2 · (S1)2 ◦ ◦

◦ (R×)2 · C×

(R×)4

2e1

2e2

e3−e4

e3+e4

for which the imaginary root systems are described in table 10.

R× · (S1)3 : ∆im = C3 = {2e2, 2e3, 2e4, e2 ± e3, e3 ± e4, e2 ± e4}

(R×)2 · (S1)2 : ∆im = C2 = {2e3, 2e4, e3 ± e4}

(R×)2 · C× : ∆im = A1 = {e3 + e4}

Table 10: ∆im: Case llss
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Case lsls:

(S1)4

R× · (S1)3 ◦

◦ R× · C× · S1 ◦

◦ (R×)2 · C×

(R×)4

2e1

e3−e4

2e2

e3+e4

for which the imaginary root systems are described in table 11.

R× · (S1)3 : ∆im = C3 = {2e2, 2e3, 2e4, e2 ± e3, e3 ± e4, e2 ± e4}

R× · C× · S1 : ∆im = A1 × A1 = {2e2} × {e3 + e4}

(R×)2 · C× : ∆im = A1 = {e3 + e4}

Table 11: ∆im: Case lsls
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Case lssl:

(S1)4

R× · (S1)3 ◦

◦ R× · C× · S1 ◦

(R×)3 · S1 ◦

(R×)4

2e1

e3−e4

e3+e4

2e2

for which the imaginary root systems are described in table 12.

R× · (S1)3 : ∆im = C3 = {2e2, 2e3, 2e4, e2 ± e3, e3 ± e4, e2 ± e4}

R× · C× · S1 : ∆im = A1 × A1 = {2e2} × {e3 + e4}

(R×)3 · S1 : ∆im = A1 = {2e2}

Table 12: ∆im: Case lssl
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Case ssll:

(S1)4

◦ C× · (S1)2

(R×)2 · (S1)2 ◦ ◦

(R×)3 · S1 ◦

(R×)4

e3−e4

e3+e4

2e1

2e2

for which the imaginary root systems are described in table 13.

C× · (S1)2 : ∆im = A1 × C2 = {e3 + e4} × {2e1, 2e2, e1 ± e2}

(R×)2 · (S1)2 : ∆im = C2 = {2e1, 2e2, e1 ± e2}

(R×)3 · S1 : ∆im = A1 = {2e2}

Table 13: ∆im: Case ssll
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Case ssss:

(S1)4

◦ C× · (S1)2

(R×)2 · (S1)2 ◦ ◦

◦ (R×)2 · C×

(R×)4

e3−e4

e3+e4

e1−e2

e1+e2

for which the imaginary root systems are described in table 14.

C× · (S1)2 : ∆im = A1 × C2 = {e3 + e4} × {2e1, 2e2, e1 ± e2}

(R×)2 · (S1)2 : ∆im = C2 = {2e1, 2e2, e1 ± e2}

(R×)2 · C× : ∆im = A1 = {e1 + e2}

Table 14: ∆im: Case ssss
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Case slsl:

(S1)4

◦ C× · (S1)2

◦ R× · C× · S1 ◦

(R×)3 · S1 ◦

(R×)4

e3−e4

2e1

e3+e4

2e2

for which the imaginary root systems are described in table 15.

C× · (S1)2 : ∆im = A1 × C2 = {e3 + e4} × {2e1, 2e2, e1 ± e2}

R× · C× · S1 : ∆im = A1 × A1 = {2e2} × {e3 + e4}

(R×)3 · S1 : ∆im = A1 = {2e2}

Table 15: ∆im: Case slsl
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Case slls:

(S1)4

◦ C× · (S1)2

◦ R× · C× · S1 ◦

◦ (R×)2 · C×

(R×)4

e3−e4

2e1

2e2

e3+e4

for which the imaginary root systems are described in table 16.

C× · (S1)2 : ∆im = A1 × C2 = {e3 + e4} × {2e1, 2e2, e1 ± e2}

R× · C× · S1 : ∆im = A1 × A1 = {2e2} × {e3 + e4}

(R×)2 · C× : ∆im = A1 = {e3 + e4}

Table 16: ∆im: Case slls
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Case ssss:

(S1)4

◦ C× · (S1)2

◦ ◦ (C×)2

◦ (R×)2 · C×

(R×)4

e3−e4

e1−e2

e1+e2

e3+e4

for which the imaginary root systems are described in table 17.

C× · (S1)2 : ∆im = A1 × C2 = {e3 + e4} × {2e1, 2e2, e1 ± e2}

(C×)2 : ∆im = A1 × A1 = {e3 + e4} × {e1 + e2}

(R×)2 · C× : ∆im = A1 = {e3 + e4}

Table 17: ∆im: Case ssss
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Finally, the complete lattice for Sp(8,R) is given in figure 5.4.

(S1)4

R× · (S1)3 C× · (S1)2

(R×)2 · (S1)2 R× · C× · S1 (C×)2

(R×)3 · S1 (R×)2 · C×

(R×)4

Figure 4: Lattice of Conjugacy Classes of Maximal Tori, Sp(8,R)

And the general lattice is given by:

◦

◦ ◦

◦ ◦ ◦

◦ ◦

◦

l s

l
s

s

l

s

s

l
s l

s

l s

Next, for the real form Sp(4, 4)(R), the general form of our lattice is given by

(S1)4

C× · (S1)2

(C×)2

(S1)4 has ∆im = C4, of which e1 ± e3, e2 ± e4, 2e1, 2e2, 2e3, 2e4 are compact

and of which e1 ± e2, e1 ± e4, e2 ± e3, e3 ± e4 are noncompact. Taking the Cayley
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transform associated with one of the noncompact imaginary roots, say e1−e2, will map

(S1)4 → C× ·(S1)2, which has ∆im = A1×C2 = {e1+e2}×{e3±e4, 2e3, 2e4}. Of these,

we now choose the Cayley transform associated to the noncompact imaginary root

e3−e4, which maps C×·(S1)2 → (C×)2. This has ∆im = A1×A1 = {e1+e2}×{e3+e4},

for which both singletons are totally compact and our descent terminates. Thus, the

lattice for Sp(4, 4)(R) is given by:

(S1)4

C× · (S1)2

(C×)2

Next, for the real form Sp(6, 2)(R), the Weyl element corresponding to any of the

Cayley transforms associated to the noncompact imaginary roots of (S1)4, will yield

all imaginary roots of C× · (S1)2 as compact. Hence, the lattice for Sp(6, 2)(R) is

given by:

(S1)4

C× · (S1)2

Finally, the lattice for the compact real form Sp(8, 0)(R) is given by:

(S1)2

5.5 Rank 5 Groups

In this case, we list our results directly.

The lattice for Sp(10,R) is given in figure 5.5.
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(S1)5

R× · (S1)4 C× · (S1)3

(R×)2 · (S1)3 R× · C× · (S1)2 (C×)2 · S1

(R×)3 · (S1)2 (R×)2 · C× · S1 R× · (C×)2

(R×)4 · S1 (R×)3 · C×

(R×)5

Figure 5: Lattice of Conjugacy Classes of Maximal Tori, Sp(10,R)

Next, the lattice for Sp(6, 4)(R) is given by:

(S1)5

C× · (S1)3

(C×)2 · S1

Next, the lattice for Sp(8, 2)(R) is given by:

(S1)5

C× · (S1)3

Finally, the lattice for Sp(10, 0)(R) is given by:

(S1)5
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6 A Complete Example: Sp(12,C)

So that the interested reader may have a more direct workflow of constructing the

lattice for their case of interest, we combine the ideas of the previous three sections

into a simplified discussion in order to construct the lattices corresponding to the real

forms of Sp(12,C). We will discuss first the more involved lattice of the split real

form and then use this result to establish those of the other real forms. We will do so

by first setting up some basic ideas and, then, by establishing the representatives of

the conjugacy classes and the appropriate Cayley transforms for each sequential split

rank.

The relevant root system is C6, for which the set of positive roots may be realized

as

∆+ = {ei ± ej ; 1 ≤ i < j ≤ 6} ∪ {2ek ; 1 ≤ k ≤ 6}.

It is an exercise in linear algebra to establish the sets of orthogonal roots. The reader

may find it helpful to follow the subsequent discussion by having these at hand, but

we will not utilize them explicitly.

To begin, for the split real form Sp(12,R), we use the results of section 3.6 to

observe that the orders of the sets of conjugacy classes of each split rank are as

described in table 18.

Number of Conj.
Classes of Max.

Tori of Split Rank

0 1 2 3 4 5 6 N

Sp(12,R) 1 2 3 4 3 2 1 16

Table 18: Number of Conjugacy Classes in Sp(12,R)
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From this, and by further recalling the standard representatives of the anisotropic

and split tori, we can establish the basic structure of our lattice as

(S1)6 split rank 0

◦ ◦ split rank 1

◦ ◦ ◦ split rank 2

◦ ◦ ◦ ◦ split rank 3

◦ ◦ ◦ split rank 4

◦ ◦ split rank 5

(R×)6 split rank 6

Furthermore, the Cayley transforms associated to the set of strongly orthogonal

long roots provide a path of descent for which each sequential actions maps a copy

of S1 to a copy of R×. As such, before beginning with any gritty details, we can

establish our lattice as

(S1)6

R× · (S1)5 ◦

(R×)2 · (S1)4 ◦ ◦

(R×)3 · (S1)3 ◦ ◦ ◦

(R×)4 · (S1)2 ◦ ◦

(R×)5 · S1 ◦

(R×)6

Note that each of these representatives both agree with the appropriate split rank

and satisfy the necessary 12× 12 structure of the associated matrices. While we will
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repeat some of these details as our discussion progresses, because this path of descent

exists for every rank, we include this as a reasonable starting point should the reader

need to quickly find representations of each split rank.

Beginning again at (S1)6, we may choose to map by a Cayley transform associated

to either a long or a short simple root. That associated with the long root will map

to R× · (S1)5 and that associated with the short root based on the difference of basis

elements will map to C× · (S1)4, both of which are split rank one. As such, our lattice

is now

(S1)6

R× · (S1)5 C× · (S1)4

(R×)2 · (S1)4 ◦ ◦

(R×)3 · (S1)3 ◦ ◦ ◦

(R×)4 · (S1)2 ◦ ◦

(R×)5 · S1 ◦

(R×)6

Next, observe that the only possibilities for representatives of conjugacy classes of

split rank two are given by (R×)2 · (S1)4, R× ·C× · (S1)3, and (C×)2 · (S1)2. R× · (S1)5

may map to the first two of these by Cayley transforms associated to a long and short

(of difference of basis elements) root, respectively. C× · (S1)4 may map to all three of

these by Cayley transforms associated to a short (of sum of basis elements), a long,

and a short (difference), respectively. As such, our lattice is now
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(S1)6

R× · (S1)5 C× · (S1)4

(R×)2 · (S1)4 R× · C× · (S1)3 (C×)2 · (S1)2

(R×)3 · (S1)3 ◦ ◦ ◦

(R×)4 · (S1)2 ◦ ◦

(R×)5 · S1 ◦

(R×)6

Next, the only possibilities for representatives of split rank 3 are given by (R×)3 ·

(S1)3, (R×)2 ·C× · (S1)2, R× · (C×)2 ·S1, and (C×)3. (R×)2 · (S1)4 may map to the first

two of these by Cayley transforms associated to a long and a short (difference) root,

respectively. R× · C× · (S1)3 may map the first three of these by Cayley transforms

associated to a short (sum), a long, and a short (difference) root, respectively. And,

(C×)2 · (S1)2 may map to the last three of these by Cayley transforms associated to

a short (sum), a long, and a short (difference) root, respectively. As such, our lattice

is now
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(S1)6

R× · (S1)5 C× · (S1)4

(R×)2 · (S1)4 R× · C× · (S1)3 (C×)2 · (S1)2

(R×)3 · (S1)3 (R×)2 · C× · (S1)2 R× · (C×)2 · S1 (C×)3

(R×)4 · (S1)2 ◦ ◦

(R×)5 · S1 ◦

(R×)6

Next, the representatives of split rank 4 are given by (R×)4 · (S1)2, (R×)3 ·C× ·S1,

and (R×)2 ·(C×)2. (R×)3 ·(S1)3 may map to the first two of these by Cayley transforms

associated to a long and a short (difference) root, respectively. (R×)2 ·C× · (S1)2 may

map to all three of these by Cayley transforms associated to a short (sum), a long,

and a short (difference) root, respectively. R× · (C×)2 ·S1 may map to the last two of

these by Cayley transforms associated to a short (sum) and a long root, respectively.

And, (C×)3 may map to the last of these by Cayley transforms associated to a short

(sum) root. As such, our lattice is now
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(S1)6

R× · (S1)5 C× · (S1)4

(R×)2 · (S1)4 R× · C× · (S1)3 (C×)2 · (S1)2

(R×)3 · (S1)3 (R×)2 · C× · (S1)2 R× · (C×)2 · S1 (C×)3

(R×)4 · (S1)2 (R×)3 · C× · S1 (R×)2 · (C×)2

(R×)5 · S1 ◦

(R×)6

Next, the representatives of split rank 5 are given by (R×)5 · S1 and (R×)4 · C×.

(R×)4 · (S1)2 may map to both of these by Cayley transforms associated a long and

a short (difference) root, respectively. (R×)3 · C× · S1 may map to both of these

by Cayley transforms associated a short (sum) and a long root, respectively. And,

(R×)2 · (C×)2 may map to the last of these by Cayley transforms associated a short

(sum) root. As such, our lattice is now
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(S1)6

R× · (S1)5 C× · (S1)4

(R×)2 · (S1)4 R× · C× · (S1)3 (C×)2 · (S1)2

(R×)3 · (S1)3 (R×)2 · C× · (S1)2 R× · (C×)2 · S1 (C×)3

(R×)4 · (S1)2 (R×)3 · C× · S1 (R×)2 · (C×)2

(R×)5 · S1 (R×)4 · C×

(R×)6

Finally, the complete lattice for the split real form Sp(12,R) is given in figure 6.
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With the split form lattice established, we turn our attention to the lattices of the

other real forms. Based on the results of section 3.6, the four real forms that are not

split are Sp(6, 6)(R), Sp(8, 4)(R), Sp(10, 2)(R), and Sp(12, 0)(R). As we have done

in previous discussions, by choosing the representatives of conjugacy classes that do

not include any copies of R× and by identifying the various paths of descent, the

associated lattices are given by:

Sp(6, 6)(R)

(S1)6

C× · (S1)4

(C×)2 · (S1)2

(C×)3

Sp(8, 4)(R)

(S1)6

C× · (S1)4

(C×)2 · (S1)2

Sp(10, 2)(R)

(S1)6

C× · (S1)4

Sp(12, 0)(R)

(S1)6
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7 D(T ), E(T ), and Extended Groups

7.1 General Notions in the Unitary Case

We begin by summarizing the ideas of Shelstad in [She08a] to establish the general

notions of these objects in the unitary case. Let U(p, q), with p + q = n, be the real

unitary groups of n × n matrices. Set Gj = U(n − j, j), so that G0 is the compact

form and Gm is the quasi-split form, with m =
⌊

n
2

⌋
.

Fix a group Gj. Given a regular elliptic stable conjugacy class in Gj(R), fix an

element δ of T (R) in this class. Then, g−1δg, for g ∈ GL(n,C), is also in this class if

and only if gσ(g)−1 is in T (C). As such, the Gj(R)-conjugacy classes are parametrized

by the set Dj(T ) of elements in H1(Γ, T ) that become trivial in H1(Γ, Gj) under the

map determined by inclusion. Note that this is a set and not a group, and its elements

vary depending on the chosen form. The set is trivial for the compact form and is

largest for the quasi-split form. Furthermore, each Dj(T ) is contained in the group

E(T ) = Im(H1(Γ, Tsc)→ H1(Γ, T )),

where Tsc is the maximal torus anisotropic over R in the simply-connected covering

of the derived group of G. There is a partition for this group, E(T ) = tjDj(T ). To

describe this partition, identify Dj(T ) with its image in E(T ) under the twist from Gj

to Gm. Then, D′j(T ) is the translate of Dj(T ) by the class of the twisting cocycle xjσ

or xj,1σ , and D′′j (T ) is defined relative to the second twist and cocycle, both of which

are explained in more detail below. And, the size of this group and this set are given

by |E(T )| = 2n−1 and |Dj(T )| = (n
j
), respectively.

Then, Tate-Nakayama duality is used to identify E(T ) with

Im(H−1(Γ, X∗(Tsc))→ H−1(Γ, X∗(T ))).
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The roots of T are given by

tk − tl : diag(t1, ..., tn)→ tk
tl
,

and corresponding coroots are given by

ek − el : t→ diag(t1, ..., tn),

where tk = t = t−1
l and all other entries are 1. Each element of E(T ) can be written

as a sum of coroots

(ek1 − el1) + (ek2 − el2) + · · ·+ (ekr − elr)

modulo 2X∗(Tsc). The root tk− tl is compact in Gj if the kth and lth diagonal entries

in the matrix In−j,j are the same and noncompact otherwise. If tk − tl is compact,

then the Weyl reflection ωk,l relative to tk−tl determines the trivial element of Dj(T ).

If tk − tl is noncompact, then ωk,l determines the nontrivial element ek − el of Dj(T ).

These ideas are a consequence of her construction of the extended groups, which

we now summarize. In the unitary case, there are two related constructions for n odd

or even. First, take n to be odd. Then G is given by G0 tG1 t · · · tGm with twists

ψi,j : Gi → Gj each equal to the identity map. Additionally, take ψ : Gm → G∗, then

there is the twist ψ◦ψj,m = ψj : Gj → G∗. Specify a 1-cocycle of Γ in a group X by an

element xσ ∈ X such that xσσ(xσ) = 1. Then ψjσ(ψj)
−1 is equivalent to conjugation

by ψ(xjσ), where xmσ = I and xjσ is the cocycle diag(1, · · · , 1,−1, · · · ,−1, 1, · · · , 1),

for which the change of terms occur at the m+ 1 and n− j positions, in Gm.

Next, take n even. As in the odd case, there are m + 1 cocycles ψ(xjσ) in G∗, for

which the negative entries in xjσ begin at the m + 1 position. If m − j is even and

j < m, then there are two distinct classes, ±ψ(xjσ). When j = m, these two classes
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are trivial. Hence, we have G is given by Gm t Gm−2 t Gm−2 t · · · . The remaining

inner forms establish G′ = Gm−1 tGm−1 tGm−3 tGm−3 t · · · .

7.2 Details of Relevant Unitary Cases

Here we establish the details of the previous section for those cases that are relevant

to our work.

rank 1:

Corresponding to U(2, 0), we have

D0(T ) = {0}.

Adjusting this, we take

D′0(T ) = e1 − e2 +D0(T ).

As such, for the rank 1 case

E(T ) = D0(T ) t D′0(T ) (2 = 1 + 1)

And, the extended group is given by

G′ = U(2, 0) t U(2, 0)

rank 2:

Corresponding to U(4, 0), we have

D0(T ) = {0}.
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Corresponding to U(2, 2), we have

D2(T ) = {0, e1 − e4, e1 − e3, e2 − e4, e2 − e3, e1 − e4 + e2 − e3}

Adjusting the above, we take

D′0(T ) = e1 − e2 +D0(T ).

D′′0 (T ) = e3 − e4 +D0(T ).

As such, for the rank 2 case

E(T ) = D′0(T ) t D′′0 (T ) t D2(T ) (8 = 1 + 1 + 6)

And, the extended group is given by

G = U(4, 0) t U(4, 0) t U(2, 2)

rank 3:

Corresponding to U(6, 0), we have

D0(T ) = {0}.

Corresponding to U(4, 2), we have

D2(T ) = {0, e1 − e5, e1 − e6, e2 − e5, e2 − e6, e3 − e5, e3 − e6, e4 − e5, e4 − e6,

e1 − e5 + e3 − e6, e1 − e5 + e4 − e6, e1 − e5 + e2 − e6,

e2 − e5 + e3 − e6, e2 − e5 + e4 − e6, e3 − e5 + e4 − e6, }
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Adjusting the above, we take

D′0(T ) = e1 − e2 +D0(T ).

D′′0 (T ) = e5 − e6 +D0(T ).

D′2(T ) = e3 − e4 + {0, e1 − e3, e1 − e4, e1 − e5, e1 − e6,

e2 − e3, e2 − e4, e2 − e5, e2 − e6,

e1 − e3 + e2 − e4, e1 − e3 + e2 − e5, e1 − e3 + e2 − e6,

e1 − e4 + e2 − e5, e1 − e4 + e2 − e6, e1 − e5 + e2 − e6, }

As such, for the rank 3 case

E(T ) = D′0(T ) t D′′0 (T ) t D′2(T ) t D2(T )

(32 = 1 + 1 + 15 + 15)

And, the extended group is given by

G′ = U(6, 0) t U(6, 0) t U(4, 2) t U(4, 2)

rank 4:

Corresponding to U(8, 0), we have

D0(T ) = {0}.
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Corresponding to U(6, 2), we have

D2(T ) = {0, e1 − e7, e2 − e7, e3 − e7, e4 − e7, e5 − e7, e6 − e7,

e1 − e8, e2 − e8, e3 − e8, e4 − e8, e5 − e8, e6 − e8,

e1 − e7 + e2 − e8, e1 − e7 + e3 − e8, e1 − e7 + e4 − e8, e1 − e7 + e5 − e8,

e1 − e7 + e6 − e8,

e2 − e7 + e3 − e8, e2 − e7 + e4 − e8, e2 − e7 + e5 − e8, e2 − e7 + e6 − e8,

e3 − e7 + e4 − e8, e3 − e7 + e5 − e8, e3 − e7 + e6 − e8,

e4 − e7 + e5 − e8, e4 − e7 + e6 − e8,

e5 − e7 + e6 − e8, }
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Corresponding to U(4, 4), we have

D4(T ) = {0, e1 − e5, e1 − e6, e1 − e7, e1 − e8, e2 − e5, e2 − e6, e2 − e7, e2 − e8,

e3 − e5, e3 − e6, e3 − e7, e3 − e8, e4 − e5, e4 − e6, e4 − e7, e4 − e8,

e1 − e5 + e2 − e6, e1 − e5 + e2 − e7, e1 − e5 + e2 − e8, e1 − e5 + e3 − e6,

e1 − e5 + e3 − e7, e1 − e5 + e3 − e8, e1 − e5 + e4 − e6, e1 − e5 + e4 − e7,

e1 − e5 + e4 − e8,

e1 − e6 + e2 − e7, e1 − e6 + e2 − e8, e1 − e6 + e3 − e7, e1 − e6 + e3 − e8,

e1 − e6 + e4 − e7, e1 − e6 + e4 − e8,

e1 − e7 + e2 − e8, e1 − e7 + e3 − e8, e1 − e7 + e4 − e8,

e2 − e5 + e3 − e6, e2 − e5 + e3 − e7, e2 − e5 + e3 − e8, e2 − e5 + e4 − e6,

e2 − e5 + e4 − e7, e2 − e5 + e4 − e8,

e2 − e6 + e3 − e7, e2 − e6 + e3 − e8, e2 − e6 + e4 − e7, e2 − e6 + e4 − e8,

e2 − e7 + e3 − e8, e2 − e7 + e4 − e8,

e3 − e5 + e4 − e6, e3 − e5 + e4 − e7, e3 − e5 + e4 − e8,

e3 − e6 + e4 − e7, e3 − e6 + e4 − e8, e3 − e7 + e4 − e8,

e1 − e5 + e2 − e6 + e3 − e7, e1 − e5 + e2 − e6 + e3 − e8,

e1 − e5 + e2 − e6 + e4 − e7, e1 − e5 + e2 − e6 + e4 − e8,

e1 − e5 + e2 − e7 + e3 − e8, e1 − e5 + e2 − e7 + e4 − e8,

e1 − e5 + e3 − e6 + e4 − e7, e1 − e5 + e3 − e6 + e4 − e8,

e1 − e5 + e3 − e7 + e4 − e8, e1 − e6 + e2 − e7 + e3 − e8,

e1 − e6 + e2 − e7 + e4 − e8, e1 − e6 + e3 − e7 + e4 − e8,

e2 − e5 + e3 − e6 + e4 − e7, e2 − e5 + e3 − e6 + e4 − e8,

e2 − e5 + e3 − e7 + e4 − e8, e2 − e6 + e3 − e7 + e4 − e8,

e1 − e5 + e2 − e6 + e3 − e7 + e4 − e8 }

Adjusting the above, we take

D′0(T ) = e1 − e2 +D0(T ).
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D′′0 (T ) = e7 − e8 +D0(T ).

D′2(T ) = e3 − e6 + {0, e1 − e3, e1 − e4, e1 − e5, e1 − e6, e1 − e7, e1 − e8,

e2 − e3, e2 − e4, e2 − e5, e2 − e6, e2 − e7, e2 − e8,

e1 − e3 + e2 − e4, e1 − e3 + e2 − e5, e1 − e3 + e2 − e6,

e1 − e3 + e2 − e7, e1 − e3 + e2 − e8, e1 − e4 + e2 − e5,

e1 − e4 + e2 − e6, e1 − e4 + e2 − e7, e1 − e4 + e2 − e8,

e1 − e5 + e2 − e6, e1 − e5 + e2 − e7, e1 − e5 + e2 − e8,

e1 − e6 + e2 − e7, e1 − e6 + e2 − e8, e1 − e7 + e2 − e8 }

D′′2 (T ) = e4 − e5 + {0, e1 − e3, e1 − e4, e1 − e5, e1 − e6, e1 − e7, e1 − e8,

e2 − e3, e2 − e4, e2 − e5, e2 − e6, e2 − e7, e2 − e8,

e1 − e3 + e2 − e4, e1 − e3 + e2 − e5, e1 − e3 + e2 − e6,

e1 − e3 + e2 − e7, e1 − e3 + e2 − e8, e1 − e4 + e2 − e5,

e1 − e4 + e2 − e6, e1 − e4 + e2 − e7, e1 − e4 + e2 − e8,

e1 − e5 + e2 − e6, e1 − e5 + e2 − e7, e1 − e5 + e2 − e8,

e1 − e6 + e2 − e7, e1 − e6 + e2 − e8, e1 − e7 + e2 − e8 }

As such, for the rank 4 case

E(T ) = D′0(T ) t D′′0 (T ) t D′2(T ) t D′′2 (T ) t D4(T )

(128 = 1 + 1 + 28 + 28 + 70)
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And, the extended group is given by

G = U(8, 0) t U(8, 0) t U(6, 2) t U(6, 2) t U(4, 4)

rank 5:

Because of the size of the underlying sets, in this case, we directly state the results,

which are:

E(T ) = D′0(T ) t D′′0 (T ) t D′2(T ) t D′′2 (T ) t D′4(T ) t D4(T )

(512 = 1 + 1 + 45 + 45 + 210 + 210)

And, the extended group is given by

G′ = U(10, 0) t U(10, 0) t U(8, 2) t U(8, 2) t U(6, 4) t U(6, 4)

7.3 Extended Groups for Groups of Type Cr

The symplectic case slightly differs from the unitary case. First, for groups of type C,

the split form realizes E(T ) = D(T ). We see this below in that the extended group

may simply be taken to be the split form. Secondly, there are three types of roots:

2tk : diag(t1, ..., tn)→ (tk)
2

tk − tl : diag(t1, ..., tn)→ tk
tl

tk + tl : diag(t1, ..., tn)→ tktl.

As we have seen in section 5, for the nonsplit forms, the long roots are always compact

and the noncompact roots will always come in the pairs tk±tl. Specifically, this implies

that it cannot be the case that tk − tl is noncompact and tk + tl is compact, and vice
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versa. In this context, we see this idea realized in that tk± tl will both depend on the

same kth and lth diagonal entries. As such, they will realize the same element of the

group E(T ), and the results for the unitary case are the same for the symplectic case.

Finally, the extended groups, for nonsplit forms, follow the general pattern that the

odd rank cases will have two copies of each real form and the even rank cases will

have one copy of Gr and two copies the other real forms. The results for our specific

cases are given by:

rank 1, G = Sp(2,R) or

G = Sp(2, 0)(R) t Sp(2, 0)(R)

rank 2, G = Sp(4,R) or

G = Sp(4, 0)(R) t Sp(4, 0)(R) t Sp(2, 2)(R)

rank 3, G = Sp(6,R) or

G = Sp(6, 0)(R) t Sp(6, 0)(R) t Sp(4, 2)(R) t Sp(4, 2)(R)

rank 4, G = Sp(8,R) or

G = Sp(8, 0)(R) t Sp(8, 0)(R) t Sp(6, 2)(R) t Sp(6, 2)(R) t Sp(4, 4)(R)

rank 5, G = Sp(10,R) or

G = Sp(10, 0)(R) t Sp(10, 0)(R) t Sp(8, 2)(R) t Sp(8, 2)(R)

t Sp(6, 4)(R) t Sp(6, 4)(R)
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8 Towards Stable-Stable Transfer

Following notions Shelstad establishes in [Shear], we use this section to discuss some

results towards stable-stable transfer involving symplectic groups.

The notion of transfer is at the heart of Langlands functoriality. Broadly speaking,

algebraic functoriality is the idea that homomorphisms between dual groups induce

a transfer of the irreducible representations of these groups. For reductive groups,

the classification of irreducible representations is sufficient to classify all algebraic

representations. Langlands functoriality, specifically in the local setting, claims that

homorphisms of L-groups induce a transfer of the isomorphism classes of irreducible

automorphic representations. Such L-homomorphisms lead to a geometric transfer

of orbital integrals, and any geometric transfer uniquely determines a dual transfer

of distributions. While it is reasonable to assume that we may instead start with

a transfer of characters that would yield a uniquely determined transfer of orbital

integrals, to do so in practice would require a deep understanding of the representation

theory of the group. The constructive methods on the orbital integrals are more

accessible and lead to simplified arguments on the spectral side.

Endoscopic transfer, for a given reductive group G, instantiated the ideas of func-

toriality by fixing a well-chosen quasi-split group, the endoscopic group H, and con-

siders an injective L-homomorphism LH → LG. It is crucial that, in endoscopy, the

lattice of stable conjugacy classes play a dominant role in various constructions and

proofs of results. Notably, it is mappings of the lattices, stemming from the L-group

construction, that establish the notion of Cartan subgroups in an endoscopic group H

originating in G, giving a relation between the regular elements of both groups. Then,

the parameters defined by classes of adjacent tori establish the character theory for a

transfer of orbital integrals. We also see their utility in establishing various technical

details, such as how the notion of adjacency aids in understanding jump behavior and

establish the smoothness of suitable variants of Harish Chandra’s Ff -transform.
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Ultimately, endoscopy comes in two kinds, ordinary and twisted, where the former

is a special case of the latter and reached a complete theory more quickly. Because

this is not a paper on endoscopy, we provide the reader with some resources for

material beyond the basic framework we established in section 1. Details on standard

endoscopy may be found in, for example, [She82], [K+84], and [LS87], and on twisted

endoscopy in [KS99]. Relevant to our group of interest, an expansive discussion of

endoscopy and symplectic groups may be found in [Art13].

While endoscopic transfer allowed for substantial progress, it has at least one

aspect that indicates another construction of transfer is needed. That is, for some

groups, the set of conjugacy classes in the stable conjugacy classes of a strongly

regular element in G(R) has the structure of a finite abelian group, but this group

structure is not uniquely determined by the stable conjugacy class. Despite this, for

our purposes, endoscopic transfer has one distinguished achievement. Specifically, it

indicates that orbital integrals along conjugacy classes in G(R) can be expressed in

terms of orbital integrals along stable conjugacy classes from a certain related finite

collection of groups H(R). For the attached dual transfer, if we consider the HCS-case

then we know that all tempered characters on G(R) are nicely expressed in terms of

stable characters on these H(R).

Finally, before actually coming to our case of interest, we discuss some heuristics,

in a general setting, of Shelstad that lead to a statement of stable-stable transfer. In

order to fix notation, take Γ to be the space of stable orbital integrals and dΓ the

measure on it. Write O(Γ, f) for the stable orbital integral of a suitable function along

the stable conjugacy class Γ, and Ô(Γ, f) for the normalized version. Let Π denote

the space of tempered packets with measure dΠ, Tr(Π, ∗) the stable trace for the

packet Π, and Ch(Π, ∗) the real analytic function on the regular semisimple elements

of G(R) that represents the stable trace, for which Ĉh(Π, ∗) is the normalized version.

Label our two groups of interest H and G; we do not assume that H is endoscopic
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for G, but we do assume that they have same rank and there is a primary datum ξ

that embeds LH in LG. This determines a map ΠH → ΠG, in which we will denote

the image of ΠH as ΠH→G.

The heuristics are developed as follows. For each appropriate function fG on G(R)

there exists a function fH = (fG)H on H(R) such that

Ô(ΓH , (fG)H) =

∫
ΓG

Θ(ΓH ,ΓG)Ô(ΓG, fG)dΓG

and

Ĉh(ΠH→G,ΓG) =

∫
ΓH

Ĉh(ΠH ,ΓH)Θ(ΓH ,ΓG)dΓH

for all strongly regular semisimple ΓH and ΓG. Then,

Tr(ΠH→G, fG) given by

∫
ΠG

Ĉh(ΠH→G,ΓG)Ô(ΓG, fG)dΓG

=

∫
ΠG

∫
ΠG

Ĉh(ΠH ,ΓH)Θ(ΓH ,ΓG)Ô(ΓG, fG)dΓHdΓG

=

∫
ΠH

Ĉh(ΠH ,ΓH)

∫
ΠG

Θ(ΓH ,ΓG)Ô(ΓG, fG)dΓGdΓH

=

∫
ΠH

Ĉh(ΠH ,ΓH)Ô(ΓH , (fG)H)dΓH

= Tr(ΠH , (fG)H),

which is the final stable-stable transfer formula at the level of traces. This includes

the term

Θ(ΓH ,ΓG) =

∫
ΠH

∆(ΓH ,ΠH)Ĉh(ΠH→G,ΓG)dΠH

where ∆(ΓH ,ΠH) is the coefficient term that appears in the Fourier inversion of the

stable orbital integral:

Ô(ΓH , fH) =

∫
ΠH

∆(ΓH ,ΠH)Tr(ΠH , fH)dΠH
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It will be helpful below that, in general, stable-stable transfer for orbital integrals

may be summarized by the following three statements: ∀fG, ∃fH , ∀ΓH

Ô(ΓH , fH) =

∫
ΓG

Θ(ΓH ,ΓG)Ô(ΓG, fG)dΓG (1a)

where

Θ(ΓH ,ΓG) =

∫
ΠH

∆(ΓH ,ΠH)Ĉh(ΠH→G,ΓG)dΠH (1b)

and

Ô(ΓH , fH) =

∫
ΠH

∆(ΓH ,ΠH)Trace(ΠH(fH))dΠH (1c)

For our context here, we consider a pair of connected reductive algebraic groups, H

and G, defined over R, and a morphism between their L-groups. We can reduce this,

via arguments involving endoscopic transfer and other technical details, to considering

the case in which both H and G are quasi-split over R, where the morphism is

injective. Here, it may be that H is an endoscopic group for G, but that has no

bearing on the development of stable-stable transfer. A helpful starting place is to

consider an H that is endoscopic only in some special cases. As such, we start by

taking H to be any maximal torus over R in G. Specifically, we take H to be the

elliptic maximal torus in Sp2, i.e.,

H(R) = S1 and G(R) = Sp(2,R).

Here, H is abelian, each conjugacy class is a singleton, and, hence, we may write

either of the terms ΓH = r(θ). This implies that the orbital integral with respect

to the function fH is simply the value of the function at the point ΓH in H(R), i.e.,

Ô(ΓH , fH) = fH(ΓH). In this context, (1c) is the Fourier inversion for the function fH

on the connected compact abelian group H(R). The integral is, here, the sum over

all unitary characters. In light of these observations, we may rephrase the statements
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in (1) as

∀fG, ∃fH , ∀ΓH

fH(ΓH) =

∫
ΓG

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG (2a)

where

Θ(ΓH ,ΓG) =
∑
n∈Z

einθ Ĉh(ΠH→G,ΓG) (2b)

and

fH(ΓH) =
∑

unitary
char.

einθ ΠH(fH) (2c)

The first statement, (2a), establishes that there is way to attach to a fixed and

suitable function fG on G(R) a smooth function fH on H(R). Thus, it needs to be

verified that the right-hand side of (2a) is smooth at any particular point ΓH . To do

so, it is useful to explicitly inspect the elements involved.

Theorem: Let H = S1 and G = Sp(2,R). Then, for all suitable choices of fG,

there exists a function fH such that, for all points ΓH

fH(ΓH) =

∫
ΓG

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG

and fH is smooth.

Proof: The initial hurdle is the divergence of the Θ term. For each pair (ΓH ,ΓG),

the expression Θ(ΓH ,ΓG) is given by the series

Θ(ΓH ,ΓG) =
∑
n∈Z

einθ Ĉh(ΠH→G,ΓG).

Recalling that the Weyl group for Tan and Tsp have orders one and two, respectively,
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the normalized characters in this series are given by

Ĉh(ΠH→G,ΓG) =


∓einθ

|eiθ − e−iθ|
if ΓG ∈ Tan

xn + x−n

|x− x−1|
if ΓG ∈ Tsp

As such, Θ(ΓH ,ΓG) is an infinite divergent series.

We analyze this divergence in more detail. We inspect both conjugacy classes

of maximal tori in G, and we may break our integral according to ΓG being regular

elliptic or regular hyperbolic:

fH(ΓH) =

∫
ΓG

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG

=

∫
ΓG∈Tan

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG +

∫
ΓG∈Tsp

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG.

We may inspect these terms separately now. In Tsp, because it is abelian, each

conjugacy class is comprised of a single element, i.e., {X} for X = diag(x, x−1). So,

take ΓG = X for x ∈ R>0. Then,

Θ(ΓH ,ΓG) =
∑
n∈Z

e−inθ Ĉh(ΠH→G,ΓG)

=
∑
n∈Z≥0

e−inθ (xn + x−n)

= lim
n→∞

N∑
n

e−inθ (xn + x−n),

in which we will refer to the partial sum as ΘN(ΓH ,ΓG). We may further break up
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this integral as

∫
ΓG∈Tsp

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG =

∫
0<x<1

lim
n→∞

N∑
n

e−inθ (xn + x−n) Ô(X, fG)d×x

+

∫
x>1

lim
n→∞

N∑
n

e−inθ (xn + x−n) Ô(X, fG)d×x,

where d×x denotes the Haar measure dx
x

. Observe that the x−n terms on 0 < x < 1

and the xn terms on x > 1 will both grow with N . As such, on x > 1 consider the

change of variable u = x−1, for which some small manipulations yield −du
u

= dx
x

, and

∫
x>1

lim
n→∞

N∑
n

e−inθ (xn + x−n) Ô(X, fG)d×x

=

∫
0<u<1

lim
n→∞

N∑
n

e−inθ (u−n + un) Ô(X, fG)(−d×u)

=

∫
0<u<1

lim
n→∞

N∑
n

e−inθ (−u−n − un) Ô(X, fG)d×u.

Then, placed together

∫
ΓG∈Tsp

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG =

∫
0<x<1

lim
n→∞

N∑
n

e−inθ (xn + x−n) Ô(X, fG)d×x

+

∫
0<u<1

lim
n→∞

N∑
n

e−inθ (−u−n − un) Ô(X, fG)d×u,

achieving a cancellation of the problematic terms in light of their reciprocal nature

over the two intervals of integration.

Finally, we realize

∫
ΓG∈Tsp

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG = lim
n→∞

∫
x>0

N∑
n

2e−inθ Ô(X, fG) d×x,

which is smooth.
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Then, for the term corresponding to the regular elliptic elements, we observe

∫
ΓG∈Tan

Θ(ΓH ,ΓG) Ô(ΓG, fG)dΓG =

∫
ΓG∈Tan

∑
n∈Z

e−inθ(∓einθ)fG(ΓG) dΓG

=

∫
r(θ)∈Tan

fG(r(θ)) dθ,

which is also smooth, yielding the theorem.

Thus, we have achieved the requisite smoothness and successfully established

stable-stable transfer for orbital integrals for our case of interest. With these principal

ideas resolved, additional adjustments will be made to extend our explicit formula-

tions to any maximal torus and, subsequently, to symplectic groups of any rank. We

will be able to then extend notions of stable-stable transfer to cases involving other

algebraic groups.
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