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ABSTRACT OF THE DISSERTATION

A Few Results Regarding Thresholds

By KEITH FRANKSTON

Dissertation Director: Jeff Kahn

This thesis consists of four parts, each regarding a topic from extremal combinatorics.

While only Chapters 3 and 4 are directly related, each in some way concerns the concept

of thresholds, whether providing a new sharp threshold result for regular properties

(in the case of Chapter 2), proving specific graph theoretic thresholds (in the case of

Chapter 5), or showing how different thresholds are related (as in Chapters 3 and 4).

In Chapter 2, we answer a question of Cameron, Frankl, and Kantor from 1989,

extending a result of Ellis and Narayanan. They verified a conjecture of Frankl, that

any 3-wise intersecting family of subsets of {1, 2, . . . , n} admitting a transitive automor-

phism group has cardinality o(2n). However, a construction of Frankl demonstrates that

the same conclusion need not hold under the weaker constraint of being regular. We

show that the restriction of admitting a transitive automorphism group may be relaxed

significantly: we prove that any 3-wise intersecting family of subsets of {1, 2, . . . , n}

that is regular and increasing has cardinality o(2n).

In Chapter 3, we prove a conjecture of Talagrand, itself a fractional version of the

“expectation-threshold” conjecture of Kahn and Kalai. We show that for any increasing

family F on a finite set X, we have pc(F) = O(qf (F) ln `(F)), where pc(F) and qf (F)

are the threshold and “fractional expectation-threshold” of F , and `(F) is the maximum

size of a minimal member of F . This easily implies several heretofore difficult results and
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conjectures in probabilistic combinatorics, including thresholds for perfect hypergraph

matchings (Johansson–Kahn–Vu), bounded degree spanning trees (Montgomery), and

bounded degree graphs (new). We also resolve (and vastly extend) the “axial” version

of the random multi-dimensional assignment problem (earlier considered by Martin–

Mézard–Rivoire and Frieze–Sorkin). Our approach builds on a breakthrough of Alweiss,

Lovett, Wu and Zhang on the Erdős–Rado “Sunflower Conjecture.”

In Chapter 4, we address a special case of a conjecture of Talagrand relating the

“expectation” and “fractional-expectation” thresholds of an increasing family F of a

finite set X. The full conjecture implies the equivalence of the so-called “fractional

expectation-threshold” conjecture shown in Chapter 3 to the “expectation-threshold”

conjecture of Kahn and Kalai. The conjecture discussed in this chapter states there is

a fixed J such that if p ∈ [0, 1] admits λ : X → [0, 1] with

∑
S⊆F λS ≥ 1 ∀F ∈ F

and ∑
S λSp

|S| ≤ 1/2

(a.k.a. F is weakly p-small), then p/J admits such a λ taking values in {0, 1} (F is

(p/J)-small). Talagrand showed this when λ is supported on singletons and suggested,

as a more challenging test case, proving it when λ is supported on pairs. This chapter

presents such a proof.

Expanding on work on the rigidity of random graph structures going back to Erdős

and Rényi, Chapter 5 introduces a new notion of “local” rigidity. Say H is locally

t-rigid if all its induced subgraphs on t vertices are rigid. Then for what t = t(n, p)

is Gn,p is locally t-rigid? To answer this question, we produce machinery which allows

for more careful analysis of the probability of appearance of non-trivial automorphisms

based on their “type.” In particular, for any cycle type, λ, we give a threshold t(λ)

for the appearance of automorphisms of that type such that, if m(λ) is the size of the

largest induced subgraph of Gn,1/2 whose automorphism group has a permutation of

type λ, then with high probability m < t+
√

5n log n for all λ (and with high probability

|t−m| <
√

5n log n for any fixed choice of λ).
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Preface

The result given in Chapter 2 is joint work with Jeff Kahn and Bhargav Narayanan and

has previously been published as [20]. The results in Chapter 3 are joint work with Jeff

Kahn, Bhargav Narayanan, and Jinyoung Park and are contained in [21] which is under

review for publication. The result given in Chapter 4 is joint work with Jeff Kahn and

Jinyoung Park.
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Chapter 1

Introduction

This thesis consists of four papers, each of which is given its own chapter. Here we give

a brief high-level overview of each topic, leaving details to their individual chapters. At

the end of this chapter we collect some common notation and conventions that are used

throughout.

Chapter 2 is primarily concerned with intersecting families: for an integer r ≥ 2,

a family of sets A is said to be r-wise intersecting if any r of the sets in A have

nonempty intersection. There is by now a large body of work studying the extremal

properties of families of sets under various intersection requirements; we refer the reader

to the surveys [9, 45] for an overview. A common theme that arises when studying the

extremal properties of intersecting families is that the extremal constructions are often

highly asymmetric; indeed, this is the case with many of the classical results in the field,

such as the Erdős–Ko–Rado theorem [13] and the Ahlswede–Khachatrian theorem [1]

to name just two. It is therefore natural to ask what, if anything, changes when one

considers intersecting families subject to requirements of “symmetry”, and this is the

line of questioning that we pursue here.

Specifically, we expand upon work of Ellis and Narayanan to answer a question of

Cameron, Frankl, and Kantor from 1989, showing that any 3-wise intersecting family of

subsets of {1, 2, . . . , n} that is regular and increasing has cardinality o(2n). The main

technical tool that we develop to prove this is a lemma demonstrating the existence of

threshold-type behaviour for increasing regular families.

Chapters 3 and 4 both address the so-called “expectation-threshold” and fractional
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“expectation-threshold” of an increasing family. Thresholds have been a—maybe the—

central concern of the study of random discrete structures (random graphs and hy-

pergraphs, for example) since its initiation by Erdős and Rényi [15], with much work

around identifying thresholds for specific properties (see [4, 30]), though it was not ob-

served until [5] that every increasing F admits a threshold (in the Erdős–Rényi sense;

see below). See also [24] for developments, since [23], on the very interesting question

of sharpness of thresholds.

The focus of Chapter 3 is the proof of a conjecture of Talagrand [53] that is a

fractional version of the “expectation-threshold” conjecture of Kalai and Kahn [33].

For an increasing family F on a finite set X, we write (with definitions below) pc(F),

qf (F), and `(F) for the threshold, fractional expectation-threshold, and size of a largest

minimal element of F . In this language, our main result is the following.

Theorem 1.0.1. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kqf (F) ln `(F).

As we will see, qf (F) is a more or less trivial lower bound on pc(F), and Theorem 1.0.1

says this bound is never far from the truth. (Apart from the constant K, the upper

bound is tight in many of the most interesting cases; see 3.7.)

The second main result in Chapter 3 is Theorem 3.1.6, which was motivated by

work of Frieze and Sorkin [26] on the “random multi-dimensional assignment problem.”

The statement is postponed until the chapter itself.

In Chapter 4, we present initial work towards another conjecture of Talagrand which,

together with Theorem 1.0.1, would give the Kahn-Kalai “expectation-threshold” con-

jecture. Specifically, Talagrand proposed that q(F) = O(qf (F)) for any increasing

family F of a finite set X. We approach this statement from a slightly different point

of view and verify it for a special case.

We say a non-negative weight assignment λ : 2X → R+ certifies F is weakly p-small

if for every F ∈ F we have
∑

S⊆F λS ≥ 1 and
∑

S λsp
|S| ≤ 1/2. If, additionally, λ is

the indicator function for some collection G, then we say the collection G certifies F is
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p-small. q(F) (or qf (F)) is the largest p such that there exists a collection G (resp. λ)

certifying F is p-small (resp. weakly p-small).

Thus, the statement q(F) = O(qf (F)) is equivalent to showing that there is some

universal J > 0 such that given any λ and p, if λ certifies F is weakly p-small, then

there is a G which certifies F is p/J-small. Talagrand showed the statement holds when

λ is supported on singletons and suggested pairs as a further test case. We verify that

the statement holds when restricted to supp(λ) ⊆
(
X
2

)
.

Finally, in Chapter 5 we present a method for analyzing the appearance of non-trivial

automorphisms in random graphs. We say a graph H is rigid (sometimes referred to as

asymmetric) if its automorphism group, denoted Aut(H), is trivial (i.e. consists only of

the identity map). The Erdős-Rényi random graph, denoted Gn,p, is the random graph

on n vertices where edges are present independently, each with probability p. Early

in their work on these random structures, Erdős and Rényi [16] showed the following

result.

Theorem 1.0.2 (Erdős-Rényi ’63). Asymptotically almost all labelled graphs on n

vertices are rigid, i.e.

Pr
[∣∣Aut(Gn,1/2)

∣∣ = 1
]

= 1− o(1).

This result has since been extended to Gn,p as follows1.

Theorem 1.0.3. For 1/2 ≥ p = lnn+ω(1)
n ,

Pr [|Aut(Gn,p)| = 1] = 1− o(1).

(Note that the lower bound on p is best possible as isolated vertices begin to appear in

Gn,p when p is below this threshold.)

An analogous result for the random graph with m edges, Gn,m, was originally an-

nounced by Erdős and Rényi in [16], though we are unaware of its subsequent publica-

tion. Wright’s work counting unlabelled m-edge graphs [57, 58] produced the following

stronger result.

1As the automorphism group of G is identical to that of its complement, G, we will usually assume
p ≤ 1/2.
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Theorem 1.0.4 (Wright ’74). For
(
n
2

)
/2 ≥ m = n

2 (lnn+ ω(1)), asymptotically almost

all unlabelled m-edge graphs on n vertices are rigid.

More recently, the random d-regular graph, Gn,d, was shown to be rigid by Kim,

Vu, and Sudakov [36].

Theorem 1.0.5. For 3 ≤ d ≤ n− 4,

Pr [|Aut(Gn,d)| = 1] = 1− o(1).

See also [39, 6] for other recent work.

The work in this chapter was motivated by a desire to extend these lines of inquiry

to a notion of “local” rigidity. Say H is locally t-rigid if all its induced subgraphs on

t vertices are rigid. The question is then, for what t = t(n, p) is Gn,p is locally t-rigid

w.h.p.2?

We expand upon techniques in [36, 46] to show the following essentially optimal

result in the case p = 1/2.

Lemma 1.0.6. Gn,1/2 is locally (n/2 +
√

5n log n)-rigid w.h.p.

This follows from a much stronger general result on what “types” of automorphisms

exist among all induced subgraphs of a given size t (stated formally as Theorem 5.3.1).

We also give a similar (but weaker) result for general p (which we expect can be strength-

ened to produce a similar result to our main theorem for some restricted ranges of p).

Notation and Conventions. Given a finite set X, write 2X for the power set of X

and, for p ∈ [0, 1], µp for the product measure on 2X given by µp(S) = p|S|(1− p)|X\S|.

An F ⊆ 2X is increasing if B ⊇ A ∈ F ⇒ B ∈ F . For G ⊆ 2X we use 〈G〉 for the

increasing family generated by G, namely {B ⊆ X : ∃A ∈ G, B ⊇ A}.

If F is increasing (and F 6= 2X , ∅), then µp(F)(:=
∑
{µp(S) : S ∈ F}) is strictly

increasing in p, and we define the threshold, pc(F), to be the unique p for which µp(F) =

1/2. (This is finer than the original Erdős–Rényi notion, according to which p∗ = p∗(n)

2With high probability, i.e. with probability tending to 1 as n→∞.
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is a threshold for F = Fn if µp(F) → 0 when p � p∗ and µp(F) → 1 when p � p∗.

That pc(F) is always an Erdős–Rényi threshold follows from [5].)

Throughout we use ln for the natural logarithm and reserve log for log2.
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Chapter 2

On regular 3-wise intersecting families

Joint work with Jeff Kahn and Bhargav Narayanan.

2.1 Introduction

For a positive integer n ∈ N, let us write [n] for the set {1, 2, . . . , n}, and 2[n] for the

power-set of [n]. We say that a family A ⊆ 2[n] is symmetric if the automorphism group

of A is transitive on [n], regular if every element of [n] belongs to the same number

of sets in A, and increasing if A is closed under taking supersets. We stress that the

families we shall study in this chapter will be non-uniform, i.e., their members need not

all be of the same size; for related work on uniform intersecting families, see the paper

of Ellis, Kalai and Narayanan [11] addressing the symmetric case, and the results of

Ihringer and Kupavskii [29] addressing the regular case.

The family {x ⊆ [n] : |x| > n/2} is a symmetric 2-wise intersecting family containing

a positive fraction of all the sets in 2[n]. Ellis and Narayanan [12], verifying a conjecture

of Frankl [19], proved that symmetric r-wise intersecting families must be significantly

smaller when r ≥ 3; more precisely, they showed the following.

Theorem 2.1.1. If A ⊆ 2[n] is a symmetric 3-wise intersecting family, then |A| =

o(2n).

On the other hand, a projective-geometric construction of Frankl [19] shows that

there exist regular 3-wise intersecting subfamilies of 2[n] containing a positive fraction

of all the sets in 2[n], so the conclusion of Theorem 2.1.1 no longer holds when one

considers regular families instead of symmetric ones.

Here, we investigate the middle ground between symmetric and regular families
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following Cameron, Frankl and Kantor [7]: they proved that if A ⊆ 2[n] is a 4-wise

intersecting family that is both regular and increasing, then |A| = o(2n), and asked

what one can say about regular 3-wise intersecting families. Our main result answers

this question by showing that the conclusion of Theorem 2.1.1 does hold for regular

families, provided again that they are increasing.

Theorem 2.1.2. If A ⊆ 2[n] is a 3-wise intersecting family that is both regular and

increasing, then |A| = o(2n).

Of course, Theorem 2.1.2 implies Theorem 2.1.1; to see this, note that if A ⊆ 2[n]

is a symmetric 3-wise intersecting family, then {y : x ⊆ y for some x ∈ A} is a 3-wise

intersecting family containing A that is both regular and increasing.

It is worth highlighting that in both [12] and the present work, Fourier analysis

plays a crucial, if invisible, role: indeed, the proof of Theorem 2.1.1 hinges on a sharp

threshold result of Friedgut and Kalai [25], while here, to prove the stronger assertion of

Theorem 2.1.2, we in turn rely on the somewhat heavier machinery of Friedgut’s junta

theorem [22]. The main new technical tool that we develop to prove Theorem 2.1.2 is

a lemma demonstrating the existence of threshold-type behaviour under some rather

mild conditions; this result (see Lemma 2.3.1) might be of some independent interest.

This chapter is organised as follows. We collect the various tools we require in Sec-

tion 2.2. The proof of Theorem 2.1.2 follows in Section 2.3. We conclude in Section 2.4

with a brief discussion of open problems.

2.2 Preliminaries

In this section, we briefly describe the notions and tools we shall require for our argu-

ments.

We abbreviate µ 1
2

by µ, and note that this is just the normalised counting measure.

For a family A ⊆ 2[n], we write I(A) = {x ∩ y : x, y ∈ A} for the family of all

possible intersections of pairs of sets from A. We require the following proposition

from [12]; we include a short proof for completeness.

Proposition 2.2.1. For any A ⊆ 2[n], if µp(A) ≥ δ, then µp2(I(A)) ≥ δ2.
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Proof. Let x and y be two random elements of 2[n] drawn independently according to

the distribution µp. It is then clear that x ∩ y has distribution µp2 , so we have

µp2(I(A)) = P(x ∩ y ∈ I(A)) ≥ P(x, y ∈ A) = µp(A)2,

proving the proposition.

We shall require the notions of influences and juntas. First, given A ⊆ 2[n], we say

that an element i ∈ [n] is pivotal for A at x ∈ 2[n] if exactly one of x and x 4 {i}

lies in A, and for 0 ≤ p ≤ 1, we define the total influence Ip(A) of A at p to be the

expected number of pivotal elements for A at a random set x ∈ 2[n] drawn according

to the distribution µp. The following fundamental formula was originally observed

independently by Margulis [42] and Russo [48].

Proposition 2.2.2. If A ⊆ 2[n] is increasing, then

d

dp
µp(A) = Ip(A)

for all 0 < p < 1.

Next, for J ⊆ [n], a family A ⊆ 2[n] is said to be a J-junta if the membership of

a set in A is determined by its intersection with J , or in other words, if x ∈ A and

x ∩ J = y ∩ J for some y ∈ 2[n], then this implies that y ∈ A. The following result due

to Friedgut [22] will be our main tool.

Theorem 2.2.3. For each C > 0 and 0 < ε < 1, there exists K > 0 such that the

following holds for all ε ≤ p ≤ 1−ε and n ∈ N. For any A ⊆ 2[n] with Ip(A) ≤ C, there

exists a set J ⊆ [n] with |J | ≤ K and a J-junta B ⊆ 2[n] such that µp(A4B) ≤ ε.

Finally, we say that two families A,B ⊆ 2[n] are cross-intersecting if x ∩ y 6= ∅ for

all x ∈ A and y ∈ B. We need the following simple fact also used in [12].

Proposition 2.2.4. If A,B ⊆ 2[n] are cross-intersecting, then

µp(A) + µ1−p(B) ≤ 1

for any 0 ≤ p ≤ 1.
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Proof. Since A and B are cross-intersecting, it is clear that A ⊆ 2[n] \ B̃, where B̃ =

{[n] \ x : x ∈ B}. Therefore,

µp(A) ≤ µp(2[n] \ B̃) = 1− µp(B̃) = 1− µ1−p(B).

2.3 Proof of the main result

Our proof of Theorem 2.1.2 borrows ideas from both [7] and [12]. Before turning to the

proof, let us briefly explain what is lost, relative to the argument in [12], by dropping the

requirement of symmetry: for a family A ⊆ 2[n] that is both symmetric and increasing,

a result of Talagrand [49] guarantees that the total influence Ip(A) is large whenever

µp(A) is bounded away from both 0 and 1, which ensures, by Proposition 2.2.2, that

the derivative of µp(A) with respect to p is also large under these circumstances; this is

no longer the case when one considers regular families as opposed to symmetric ones. A

replacement for this fact, the main new ingredient here, is the following lemma asserting

a somewhat weaker version of this threshold behaviour under milder conditions.

Lemma 2.3.1. For any ε, δ > 0, the following holds for all sufficiently large n ∈ N. If

A ⊆ 2[n] is both regular and increasing, and µ(A) ≥ δ, then µ 1
2

+ε(A) ≥ 1− ε.

Proof. In what follows, we fix η = εδ/(2 + δ) and additionally suppose that n is large

enough for all our estimates to hold; in particular, constants suppressed by the asymp-

totic notation may depend on ε and δ but, of course, not on n.

Since µ(A) = µ 1
2
(A) ≥ δ and µ 1

2
+ε(A) ≤ 1, it follows from Proposition 2.2.2 that

there exists q ∈ [1/2, 1/2 + ε] such that Iq(A) ≤ 1/ε. Theorem 2.2.3 now implies that

there exists J ⊆ [n] with |J | = K and a J-junta B ⊆ 2[n] such that µq(A 4 B) ≤ η,

where K is a constant depending only on ε and δ.

Let us set up some notation before we proceed. For i ∈ [n], let Ai denote the family

of those sets in A containing i, and for y ⊆ J , define the fibre A(y) of A over y by

A(y) = {x \ y : x ∈ A and x ∩ J = y}.

Also, let B′ be the family on J determining B, i.e., x ∈ 2[n] belongs to B if and only if

x ∩ J belongs to B′.
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We first note that, as A is regular, the sets Ai are all roughly half as large as A; a

similar observation is used in [7].

Claim 2.3.2. For each i ∈ [n], we have µ(A)/2 ≤ µ(Ai) ≤ µ(A)/2 +O(1/
√
n).

Proof. The first inequality follows from the fact that A is increasing, so it suffices to

verify the second. Let Z be a set drawn uniformly at random from A, and for i ∈ [n],

let Zi be the indicator of the event {i ∈ Z}. We shall rely on the properties of the

binary entropy H(·) of a random variable; see [43] for the basic notions. It follows from

the sub-additivity of entropy that H(Z) ≤
∑n

i=1H(Zi). Clearly, we have

H(Z) = log |A| = n+ log(µ(A)) ≥ n+ log δ,

and, writing ϑ for the common value of |Ai|/|A| for all i ∈ [n], we also have

H(Zi) = −ϑ log ϑ− (1− ϑ) log(1− ϑ)

for each i ∈ [n]. It is now easy to verify from the sub-additivity estimate above that

ϑ = 1/2 +O(1/
√
n), proving the claim.

Next, we observe that all the fibres of A have roughly the same size as well. Let us

write σp for the p-biased measure on the power set of J and τp for the p-biased measure

on the power set of [n] \ J , so that µp = σp × τp, and again, we abbreviate σ 1
2

and τ 1
2

by σ and τ respectively.

Claim 2.3.3. For all y ⊆ J , we have τ(A(y)) = µ(A) + o(1).

Proof. We note that

µ(A) =
∑
y⊆J

σ(y)τ(A(y)),

and that σ(y) = 2−K for all y ⊆ J . For any i ∈ y ⊆ J , we have A(y \ {i}) ⊆ A(y)

because A is increasing, so

τ(A(y)) ≥ τ(A(y \ {i})).

Since |J | = K = O(1), to prove the claim, it clearly suffices to show that for any

i ∈ y ⊆ J , we have

τ(A(y)) ≤ τ(A(y \ {i})) + o(1);
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indeed, this would imply that

τ(A(y)) = τ(A(∅)) + o(|y|) = τ(A(∅)) + o(1)

for each y ⊆ J , and the claim would follow.

Fix i ∈ J , and note that

µ(Ai) =
∑
i∈y⊆J

σ(y)τ(A(y)),

so we have

µ(Ai)− µ(A)/2 = 2−K−1
∑
i∈y⊆J

(τ(A(y))− τ(A(y \ {i}))) .

We know from Claim 2.3.2 that µ(Ai) − µ(A)/2 = O(1/
√
n), so for each y ⊆ J con-

taining i, we have

τ(A(y))− τ(A(y \ {i})) = O(1/
√
n),

as required.

We may now complete the proof of the lemma. Recall that we earlier fixed q ∈

[1/2, 1/2 + ε] and a J-junta B ⊆ 2[n] such that µq(A4B) ≤ η, and defined B′ to be the

family on J determining B.

First, note that

µq(A4B) =
∑
y∈B′

σq(y) (1− τq(A(y))) +
∑
y 6∈B′

σq(y) (τq(A(y))) .

Since A is increasing, we see from Claim 2.3.3 that τq(A(y)) ≥ τ(A(y)) ≥ δ/2 for all

y ⊆ J . Therefore, since µq(A4B) ≤ η, we see that∑
y 6∈B′

σq(y) ≤ 2η/δ,

which implies that

µq(B) =
∑
y∈B′

σq(y) ≥ 1− 2η/δ.

Again, since µq(A4B) ≤ η and η = εδ/(2 + δ), it follows that

µ 1
2

+ε(A) ≥ µq(A) ≥ 1− 2η/δ − η = 1− ε,

proving the lemma.
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Armed with Lemma 2.3.1, we may now prove Theorem 2.1.2; the proof below by

and large follows the argument in [12], with Lemma 2.3.1 serving as a substitute for

the sharp threshold result used there.

Proof of Theorem 2.1.2. We need to show for any fixed δ > 0, that for all but finitely

many n ∈ N, if A ⊆ 2[n] is a 3-wise intersecting family that is both regular and

increasing, then µ(A) < δ; hence, suppose for a contradiction that n is sufficiently large

and that A ⊆ 2[n] is a family as just described with µ(A) ≥ δ.

Let us fix ε = min{1/4, δ2/2}. First, since A is increasing, Lemma 2.3.1 tells us

that

µ 3
4
(A) ≥ µ 1

2
+ε(A) ≥ 1− ε > 1− δ2.

Next, by Proposition 2.2.1, we have

µ 1
4
(I(A)) ≥ δ2.

Finally, since A is a 3-wise intersecting family, A and I(A) are cross-intersecting, so

we conclude from Proposition 2.2.4 that

µ 3
4
(A) ≤ 1− µ 1

4
(I(A)) ≤ 1− δ2,

yielding a contradiction, and establishing the result.

2.4 Conclusion

The best bound for Theorem 2.1.2 that we may read out of the argument here is rather

poor on account of our reliance on the junta theorem; it would therefore be interesting

to improve this. Concretely, it would be good to decide if any 3-wise intersecting family

A ⊆ 2[n] that is both regular and increasing must satisfy

log |A| ≤ n− cnδ,

where c, δ > 0 are universal constants; as evidenced by the constructions in [12], a

bound of this type would be the best one could hope for. We ought to point out that

we do not yet know how to prove an estimate of the above form even for symmet-

ric 3-wise intersecting families; what is known however is that such an estimate does
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hold for symmetric 4-wise intersecting families, as was shown by Cameron, Frankl and

Kantor [7].
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Chapter 3

Thresholds versus fractional expectation-thresholds

Joint work with Jeff Kahn, Bhargav Narayanan, and Jinyoung Park.

3.1 Preliminaries

Following [50, 51, 53], we say F is p-small if there is a G ⊆ 2X such that F ⊆ 〈G〉 :=

{T : ∃S ∈ G, S ⊆ T} and ∑
S∈G p

|S| ≤ 1/2. (3.1)

Then q(F) := max{p : F is p-small}, which we call the expectation-threshold of F (note

the term is used slightly differently in [33]), is a trivial lower bound on pc(F), since for

G as above and T drawn from µp,

µp(F) ≤ µp(〈G〉) ≤
∑

S∈G µp(T ⊇ S) =
∑

S∈G p
|S| (= E[|{S ∈ G : S ⊆ T}|]). (3.2)

The following statement, the main conjecture (Conjecture 1) of [33], says that for any

F , this trivial lower bound on pc(F) is close to the truth.

Conjecture 3.1.1. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kq(F) ln |X|.

We should emphasize how strong this is (from [33]: “It would probably be more

sensible to conjecture that it is not true”). For example, it easily implies—and was

largely motivated by—Erdős–Rényi thresholds for (a) perfect matchings in random r-

uniform hypergraphs, and (b) appearance of a given bounded degree spanning tree in

a random graph. These have since been resolved: the first—Shamir’s Problem, circa

1980—in [31], and the second—a mid-90’s suggestion of Kahn—in [44]. Both arguments
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are difficult and specific to the problems they address (e.g. they are utterly unrelated

either to each other or to what we do here). See Section 3.7 for more on these and

other consequences.

Talagrand [50, 53] suggests relaxing “p-small” by replacing the set system G above

by what we may think of as a fractional set system, g: say F is weakly p-small if there

is a g : 2X → R+ such that

∑
S⊆T g(S) ≥ 1 ∀T ∈ F and

∑
S⊆X g(S)p|S| ≤ 1/2.

Then qf (F) := max{p : F is weakly p-small}, the fractional expectation-threshold for

F , satisfies

q(F) ≤ qf (F) ≤ pc(F) (3.3)

(the first inequality is trivial and the second is similar to (3.2)), and Talagrand [53,

Conjectures 8.3 and 8.5] proposes a sort of LP relaxation of Conjecture 3.1.1, and

then a strengthening thereof. The first of these, the following, replaces q by qf in

Conjecture 3.1.1; the second, which adds replacement of |X| by the smaller `(F), is our

Theorem 1.0.1.

Conjecture 3.1.2. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kqf (F) ln |X|.

Talagrand further suggests the following “very nice problem of combinatorics,”

which implies equivalence of Conjectures 3.1.1 and 3.1.2, as well as of Theorem 1.0.1

and the corresponding strengthening of Conjecture 3.1.1.

Conjecture 3.1.3. There is a universal K such that, for any increasing F on a finite

set X, q(F) ≥ qf (F)/K.

(That is, weakly p-small implies (p/K)-small.)

Note the interest here is in Conjecture 3.1.3 for its own sake and as the most likely

route to Conjecture 3.1.1; all applications of the latter that we’re aware of follow just

as easily from Theorem 1.0.1.
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Spread hypergraphs and spread measures. In this chapter, a hypergraph on the

(vertex ) set X is a collection H of subsets of X (edges of H), with repeats allowed. For

S ⊆ X, we use 〈S〉 for {T ⊆ X : T ⊇ S}, and for a hypergraph H on X, we write

〈H〉 for ∪S∈H〈S〉. We say H is `-bounded (resp. `-uniform or an `-graph) if each of its

members has size at most (resp. exactly) `, and κ-spread if

|H ∩ 〈S〉| ≤ κ−|S||H| ∀S ⊆ X. (3.4)

(Note that edges are counted with multiplicities on both sides of (3.4).)

A major advantage of the fractional versions (Conjecture 3.1.2 and Theorem 1.0.1)

over Conjecture 3.1.1—and the source of the present relevance of [3]—is that they admit,

via linear programming duality, reformulations in which the specification of qf (F) gives

a usable starting point. Following [53], we say a probability measure ν on 2X is q-spread

if

ν(〈S〉) ≤ q|S| ∀S ⊆ X.

Thus a hypergraph H is κ-spread iff uniform measure on H is q-spread with q = κ−1.

As observed by Talagrand [53], the following is an easy consequence of duality.

Proposition 3.1.4. For an increasing family F on X, if qf (F) ≤ q, then there is a

(2q)-spread probability measure on 2X supported on F .

This allows us to reduce Theorem 1.0.1 to the following alternate (actually, equiva-

lent) statement. In this chapter, with high probability (w.h.p.) means with probability

tending to 1 as `→∞.

Theorem 3.1.5. There is a universal K such that for any `-bounded, κ-spread hyper-

graph H on X, a uniformly random ((Kκ−1 ln `)|X|)-element subset of X belongs to

〈H〉 w.h.p.

The easy reduction is given in Section 3.2.

Assignments. The second main result of this chpater provides upper bounds on the

minima of a large class of hypergraph-based stochastic processes, somewhat in the spirit

of [52] (see also [51, 54]), saying that in “smoother” settings, the logarithmic corrections

of Conjectures 3.1.1 and 3.1.2 and Theorem 1.0.1 are not needed.
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For a hypergraph H on X, let ξx (x ∈ X) be independent random variables, each

uniform from [0, 1], and set

ξH = min
S∈H

∑
x∈S

ξx (3.5)

and ZH = E[ξH].

Theorem 3.1.6. There is a universal K such that for any `-bounded, κ-spread hyper-

graph H, we have ZH ≤ K`/κ, and ξH ≤ K`/κ w.h.p.

These bounds are often tight (again up to the value of K). The distribution of the ξx’s

is not very important; e.g. it’s easy to see that the same statement holds if they are

Exp(1) random variables, as in the next example.

Theorem 3.1.6 was motivated by work of Frieze and Sorkin [26] on the “axial” version

of the random d-dimensional assignment problem. This asks (for fixed d and large n)

for estimation of

ZAd (n) = E

[
min

∑
x∈S

ξx

]
, (3.6)

where the ξx’s (x ∈ X := [n]d) are independent Exp(1) weights and S ranges over “axial

assignments,” meaning S ⊆ X meets each axis-parallel hyperplane ({x ∈ X : xi = a} for

some i ∈ [d] and a ∈ [n]) exactly once. For d = 2 this is classical; see [26] for its rather

glorious history. For d = 3 the deterministic version was one of Karp’s [34] original

NP-complete problems. Progress on the random version has been limited; see [26] for

a guide to the literature.

Frieze and Sorkin show (regarding bounds; they are also interested in algorithms)

that for suitable c1 > 0 and c2

c1n
−(d−2) < ZAd (n) < c2n

−(d−2) lnn. (3.7)

(The lower bound is easy and the upper bound follows from the Shamir bound of [31].)

In present language, ZAd (n) is essentially (that is, apart from the difference in the

distributions of the ξx’s) ZH, with H the set of perfect matchings of the complete,

balanced d-uniform d-partite hypergraph on dn vertices (that is, the collection of d-

sets meeting each of the pairwise disjoint n-sets V1, . . . , Vd). This is easily seen to be
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κ-spread with κ = (n/e)d−1 (apart from the nearly irrelevant d-particity, it is the H of

Shamir’s Problem), so the correct bound is an instance of Theorem 3.1.6:

Corollary 3.1.7. ZAd (n) = Θ(n−(d−2)).

Frieze and Sorkin also considered the “planar” version of the problem, in which S

in (3.6) meets each line ({x ∈ X : xj = yj ∀j 6= i} for some i ∈ [d] and y ∈ X)

exactly once; and one may of course generalise from hyperplanes/lines to k-dimensional

“subspaces” for a given k ∈ [d− 1]. It’s easy to see what to expect here, and one may

hope Theorem 3.1.6 will eventually apply, but we at present lack the technology to say

the relevant H’s are suitably spread (see Section 3.8).

Organisation. Section 3.2 includes minor preliminaries and the derivation of Theo-

rem 1.0.1 from Theorem 3.1.5. The heart of our argument, Lemma 3.3.1, is proved in

Section 3.3. Our approach here strengthens that of the recent breakthrough of Alweiss,

Lovett, Wu and Zhang [3] on the Erdős–Rado “Sunflower Conjecture” [14]. Section 3.4

adds one small technical point (more or less repeated from [3]), and the proofs of The-

orems 3.1.5 and 3.1.6 are given in Sections 3.5 and 3.6. Finally, Section 3.7 outlines a

few applications and Section 3.8 discusses unresolved questions.

3.2 Little things

Usage. As is usual, we use [n] for {1, 2, . . . , n}, 2X for the power set of X,
(
X
r

)
for the

family of r-element subsets of X, and [S, T ] for {R : S ⊆ R ⊆ T}. Our default universe

is X, with |X| = n.

In what follows we assume ` and n are somewhat large (when there is an ` it will be

at most n), as we may do since smaller values can by handled by adjusting the K’s in

Theorems 3.1.5 and 3.1.6. Asymptotic notation referring to some parameter λ (usually

`) is used in the natural way: implied constants in O(·) and Ω(·) are independent of λ,

and f = o(g) (also written f � g) means f/g is smaller than any given ε > 0 for large

enough values of λ. Following a standard abuse, we usually pretend large numbers are

integers.
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For p ∈ [0, 1] and m ∈ [n], Xp and Xm are (respectively) a p-random subset of

X (drawn from µp) and a uniformly random m-element subset of X. The latter is

not entirely kosher, since we will also see sequences Xi; but we will never see both

interpretations in close proximity, and the overlap should cause no confusion.

In a couple places it will be helpful to assume uniformity, which we will justify using

the next little point.

Observation 3.2.1. If H is `-bounded and κ-spread, and we replace each S ∈ H by M

new edges, each consisting of S plus `− |S| new vertices (each used just once), then for

large enough M , the resulting `-graph G is again κ-spread.

Derivation of Theorem 1.0.1 from Theorem 3.1.5. Let F be as in Theorem 1.0.1 with

G its set of minimal elements, let ` with `(F) ≤ ` = O(`(F)) be large enough that the

exceptional probability in Theorem 3.1.5 is less than 1/4 and let ν be the (2q)-spread

probability measure promised by Proposition 3.1.4, where q = qf (F). We may assume

ν is supported on G (since transferring weight from S to T ⊆ S doesn’t destroy the

spread condition) and that ν takes values in Q. We may then replace G by H whose

edges are copies of edges of G, and ν by uniform measure on H.

Setting m = ((2Kq ln `)n) and p = 2m/n (with n = |X| and K as in Theorem 3.1.5),

we then have (using Theorem 3.1.5 with κ = 1/(2q))

µp(F) ≥ P(Xp ∈ 〈H〉) ≥ P(|Xp| ≥ m)P(Xm ∈ 〈H〉) ≥ 3P(|Xp| ≥ m)/4 > 1/2,

implying pc(F) < p = 4Kq ln `. (Note H q-spread with ∅ 6∈ H implies q ≥ 1/n, so that

m is somewhat large and P(|Xp| ≥ m) ≈ 1.)

Remark 3.2.2. This was done fussily to cover smaller ` in Theorem 1.0.1; if `→∞,

then it gives P(Xp ∈ 〈H〉)→ 1.

3.3 Main Lemma

Let γ be a slightly small constant (e.g. γ = 0.1 suffices), and let C0 be a constant

large enough to support the estimates that follow. Let H be an r-bounded, κ-spread
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hypergraph on a set X of size n, with r, κ ≥ C2
0 . Set p = C/κ with C0 ≤ C ≤ κ/C0 (so

p ≤ 1/C0), r′ = (1− γ)r and N =
(
n
np

)
. Finally, fix ψ : 〈H〉 → H satisfying ψ(Z) ⊆ Z

for all Z ∈ 〈H〉; set, for W ⊆ X and S ∈ H,

χ(S,W ) = ψ(S ∪W ) \W ;

and say the pair (S,W ) is bad if |χ(S,W )| > r′ and good otherwise.

The heart of our argument is the following lemma (improving [3, Lemma 5.7]),

regarding which a little orientation may be helpful. We will (in Theorems 3.1.5 and

3.1.6) be choosing a random subset of X in small increments and would like to say we

are likely to be making good progress toward containing some S ∈ H. Of course such

progress is not to be expected for a typical S, but this is not the goal: having chosen

a portion W of our eventual set, we just need the remainder to contain some S \W ,

and may focus on those that are more likely (basically meaning small). The key idea

(introduced in [3] and refined here) is that a general S \W , while not itself small, will,

in consequence of the spread assumption, typically contain some small S′ \W . (In fact

χ(S,W ) will usually be one of these: an S′ \W contained in S \W will typically be

small, so we don’t need to steer this choice.) We then replace each “good” S \W by

χ(S,W ) and iterate, a second nice feature of the spread condition being that it is not

much affected by this substitution.

Lemma 3.3.1. For H as above, and W chosen uniformly from
(
X
np

)
,

E[|{S ∈ H : (S,W ) is bad}|] ≤ |H|C−r/3.

Proof. It is enough to show, for s ∈ (r′, r],

E [|{S ∈ H : (S,W ) is bad and |S| = s}|] ≤ (γr)−1|H|C−r/3, (3.8)

or, equivalently, that

|{(S,W ) : (S,W ) is bad and |S| = s}| ≤ (γr)−1N |H|C−r/3. (3.9)

(Note γr = r−r′ bounds the number of s for which the set in question can be nonempty,

whence the negligible factors (γr)−1.)
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We now use Hs = {S ∈ H : |S| = s}. Let B =
√
C and for Z ⊇ S ∈ Hs say (S,Z)

is pathological if there is T ⊆ S with t := |T | > r′ and

|{S′ ∈ Hs : S′ ∈ [T,Z]}| > Br|H|κ−tps−t. (3.10)

From now on we will always take Z = W ∪ S (with W as in Lemma 3.3.1); thus |Z| is

typically roughly np and, since H is κ-spread, |H|κ−tps−t is a natural upper bound on

what one might expect for the l.h.s. of (3.10).

Note that in proving (3.9) we may assume s ≤ n/2: we may of course assume |Hs|

is at least the r.h.s. of (3.8); but then for an S ∈ Hs of largest multiplicity, say m, we

have

m ≤ κ−s|H| ≤ κ−sγrCr/3|Hs| ≤ κ−sγrCr/3m2n,

which is less than m if s > n/2 (since κ > C).

We bound the nonpathological and pathological parts of (3.9) separately; this (with

the introduction of “pathological”) is the source of our improvement over [3].

Nonpathological contributions. We first bound the number of (S,W ) in (3.9) with

(S,Z) nonpathological. This basically follows [3], but “nonpathological” allows us to

bound the number of possibilities in Step 3 below by the r.h.s. of (3.10), where [3]

settles for something like |H|κ−t.

Step 1. There are at most

s∑
i=0

(
n

np+ i

)
≤
(
n+ s

np+ s

)
≤ Np−s (3.11)

choices for Z = W ∪ S.

Step 2. Given Z, let S′ = ψ(Z). Choose T := S ∩ S′, for which there are at most

2|S
′| ≤ 2r possibilities, and set t = |T | > r′. (If t ≤ r′ then (S,W ) cannot be bad, as

χ(S,W ) = S′ \W ⊆ T .)

Step 3. Since we are only interested in nonpathological choices, the number of possibil-

ities for S is now at most

Br|H|κ−tps−t.
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Step 4. Complete the specification of (S,W ) by choosing W ∩ S, the number of possi-

bilities for which is at most 2s.

In sum, since s ≤ r and t > r′ = (1−γ)r, the number of nonpathological possibilities

is at most

2r+sN |H|Br(pκ)−t ≤ N |H|(4B)rC−t < N |H|[4BC−(1−γ)]r. (3.12)

Pathological contributions. We next bound the number of (S,W ) as in (3.9) with

(S,Z) pathological. The main point here is Step 4.

Step 1. There are at most |H| possibilities for S.

Step 2. Choose T ⊆ S witnessing the pathology of (S,Z) (i.e. for which (3.10) holds);

there are at most 2s possibilities for T .

Step 3. Choose U ∈ [T, S] for which

|Hs ∩ [U, (Z \ S) ∪ U ]| > 2−(s−t)Br|H|κ−tps−t. (3.13)

(Here the left hand side counts members of Hs in Z whose intersection with S is

precisely U . Of course, existence of U as in (3.13) follows from (3.10).) The number of

possibilities for this choice is at most 2s−t.

Step 4. Choose Z \ S, the number of choices for which is less than N(2/B)r. To see

this, write Φ for the r.h.s. of (3.13). Noting that Z \S must belong to
(
X\S
np

)
∪
(
X\S
np−1

)
∪

· · · ∪
(
X\S
np−s

)
, we consider, for Y drawn uniformly from this set,

P(|Hs ∩ [U, Y ∪ U ]| > Φ). (3.14)

Set |U | = u. We have

|Hs ∩ 〈U〉| ≤ |H ∩ 〈U〉| ≤ |H|κ−u,

while, for any S′ ∈ Hs ∩ 〈U〉,

P(Y ⊇ S′ \ U) ≤
(

np

n− s

)s−u
(of course if S′ ∩ S 6= U the probability is zero); so

ϑ := E [|Hs ∩ [U, Y ∪ U ]|] ≤ |H|κ−u
(

np

n− s

)s−u
≤ |H|κ−u (2p)s−u
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(since n− s ≥ n/2). Markov’s Inequality then bounds the probability in (3.14) by ϑ/Φ,

and this bounds the number of possibilities for Z \ S by N(ϑ/Φ) (cf. (3.11)), which is

easily seen to be less than N(2/B)r.

Step 5. Complete the specification of (S,W ) by choosing S ∩W , which can be done in

at most 2s ways.

Combining (and slightly simplifying), we find that the number of pathological pos-

sibilities is at most

|H|N(16/B)r. (3.15)

Finally, the sum of the bounds in (3.12) and (3.15) is less than the (γr)−1N |H|C−r/3

of (3.9).

3.4 Small uniformities

As in [3, Lemma 5.9], very small set sizes are handled by a simple Janson bound:

Lemma 3.4.1. For an r-bounded, κ-spread G on Y , and α ∈ (0, 1),

P(Yα 6∈ 〈G〉) ≤ exp

−( r∑
t=1

(
r

t

)
(ακ)−t

)−1
 . (3.16)

Proof. We may assume G is r-uniform, since modifying it according to Observation 3.2.1

doesn’t decrease the probability in (3.16). Denote members of G by Si and set ζi =

1{Yα⊇Si}. Then

µ :=
∑

E[ζi] = |G|αr

and

Λ :=
∑∑

{E[ζiζj ] : Si ∩ Sj 6= ∅} ≤ |G|
r∑
t=1

(
r

t

)
κ−t|G|α2r−t = µ2

r∑
t=1

(
r

t

)
(ακ)−t

(where the inequality holds because G is κ-spread), and Janson’s Inequality (e.g. [30,

Thm. 2.18(ii)]) bounds the probability in (3.16) by exp[−µ2/Λ].

Corollary 3.4.2. Let G be as in Lemma 3.4.1, let t = α|Y | be an integer with ακ ≥ 2r,

and let W = Yt. Then

P(W 6∈ 〈G〉) ≤ 2 exp[−ακ/(2r)].
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Proof. Lemma 3.4.1 gives

exp[−ακ/(2r)] ≥ P(Yα 6∈ 〈G〉) ≥ P(|Yα| ≤ t)P(W 6∈ 〈G〉) ≥ P(W 6∈ 〈G〉)/2,

where we use the fact that any binomial ξ with E[ξ] ∈ Z satisfies P(ξ ≤ E[ξ]) ≥ 1/2;

see e.g. [40].

3.5 Proof of Theorem 3.1.5

It will be (very slightly) convenient to prove the theorem assuming H is (2κ)-spread.

Let γ and C0 be as in Section 3.3 and H as in the statement of Theorem 3.1.5, and

recall that asymptotics refer to `. We may of course assume that κ ≥ 2γ−1C0 ln ` (or

the result is trivial with a suitably adjusted K).

Fix an ordering “≺” of H. In what follows we will have a sequence Hi, with H0 = H

and

Hi ⊆ {χi(S,Wi) : S ∈ Hi−1},

where Wi and χi will be defined below (with χi a version of the χ of Section 3.3). We

then order Hi by setting

χi(S,Wi) ≺i χi(S′,Wi)⇔ S ≺i−1 S
′.

(So each member of Hi ultimately inherits its position in ≺i from some member of

H. This is not very important: we will be applying Lemma 3.3.1 repeatedly, and the

present convention just provides a concrete ψ for each stage of the iteration.)

Set C = C0 and p = C/κ, define m by (1−γ)m =
√

ln `/`, and set q = ln `/κ. Then

γ−1 ln ` ∼ m ≤ γ−1 ln ` and Theorem 3.1.5 will follow from the next assertion.

Claim 3.5.1. If W is a uniform ((mp+ q)n)-subset of X, then W ∈ 〈H〉 w.h.p.

Proof. Set δ = 1/(2m). Let r0 = ` and ri = (1 − γ)ri−1 = (1 − γ)ir0 for i ∈ [m]. Let

X0 = X and, for i = 1, . . . ,m, let Wi be uniform from
(
Xi−1
np

)
and set Xi = Xi−1 \Wi.

(Note the assumption κ ≥ 2γ−1C0 ln ` ensures |Xm| ≥ n/2.)

For S ∈ Hi−1 let χi(S,Wi) = S′\Wi, where S′ is the first member of Hi−1 contained

in Wi ∪ S (with Hi−1 ordered by ≺i−1). Say S is good if |χi(S,Wi)| ≤ ri (and bad



25

otherwise), and set

Hi = {χi(S,Wi) : S ∈ Hi−1 is good}.

Thus Hi is an ri-bounded collection of subsets of Xi and inherits the ordering ≺i as

described above.

Finally, choose Wm+1 uniformly from
(
Xm
nq

)
. Then W := W1 ∪ · · · ∪ Wm+1 is as

in Claim 3.5.1. Note also that W ∈ 〈H〉 whenever Wm+1 ∈ 〈Hm〉. (More generally,

W1 ∪ · · · ∪Wi ∪ Y ∈ 〈H〉 whenever Y ⊆ Xi lies in 〈Hi〉.)

So to prove the claim, we just need to show

P(Wm+1 ∈ 〈Hm〉) = 1− o(1) (3.17)

(where the P refers to the entire sequence W1, . . . ,Wm+1).

For i ∈ [m] call Wi successful if |Hi| ≥ (1− δ)|Hi−1|, call Wm+1 successful if it lies

in 〈Hm〉, and say a sequence of Wi’s is successful if each of its entries is. We show a

little more than (3.17):

P(W1, . . . ,Wm+1 is successful) = 1− exp
[
−Ω(
√

ln `)
]
. (3.18)

For i ∈ [m], according to Lemma 3.3.1 (and Markov’s Inequality),

P(Wi is not successful |W1, . . . ,Wi−1 is successful) < δ−1C−ri−1/3,

since W1, . . . ,Wi−1 successful implies |Hi−1| > (1−δ)m|H| > |H|/2, which, since |Hi−1∩

〈I〉| ≤ |H ∩ 〈I〉| and we assume H is (2κ)-spread), gives the spread condition (3.4) for

Hi−1. Thus

P(W1, . . . ,Wm is successful) > 1− δ−1
m∑
i=1

C−ri−1/3 > 1− exp
[
−
√

ln `
]

(3.19)

(using rm =
√

ln `).

Finally, if W1, . . . ,Wm is successful, then Corollary 3.4.2 (applied with G = Hm,

Y = Xm, α = nq/|Y | ≥ q, r = rm, and W = Wm+1) gives

P(Wm+1 6∈ 〈Hm〉) ≤ 2 exp
[
−
√

ln `/2
]
, (3.20)

and we have (3.18) and the claim.
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3.6 Proof of Theorem 3.1.6

We assume the setup of Theorem 3.1.6 with γ and C0 as in Section 3.3 and κ ≥ C2
0 (or

there is nothing to prove). We may assume H is `-uniform, since the construction of

Observation 3.2.1 produces an `-uniform, κ-spread G with ξG ≥ ξH. In particular this

gives

|H|` =
∑
x∈X
|H ∩ 〈x〉| ≤ nκ−1|H|. (3.21)

We first assume κ is slightly large, precisely

κ ≥ ln3 `; (3.22)

the similar but easier argument for smaller values will be given at the end. (The bound

in (3.22) is convenient but there is nothing delicate about this choice.)

Claim 3.6.1. For κ as in (3.22) and C0 ≤ C ≤ γκ/(4 ln `),

P(ξH > (3C/γ)`/κ) < exp[−(ln ` lnC)/4].

Proof of Theorem 3.1.6 in regime (3.22) given Claim 3.6.1. The “w.h.p.” statement is

immediate (take C = C0). For the expectation, ZH, set t = (3C0/γ)`/κ and T =

3`/(4 ln `). By Claim 3.6.1 we have, for all x ∈ [t, T ],

P(ξH > x) ≤ f(x) := exp [− ln ` ln(γκx/3`)/4] = (bx)a = baxa,

where a = −(ln `)/4 and b = γκ/3`. Noting that ξH ≤ `, we then have

ZH ≤ t+

∫ T

t
P(ξH > x)dx+ `P(ξH > T ) ≤ t+

∫ T

t
f(x)dx+ `f(T ) = O(`/κ).

Here t = O(`/κ) and the other terms are much smaller: the integral is less than

−1/(a+1)bata+1 = O(1/ ln `)Ca0 t , while (3.22) easily implies that f(T ) = (γκ/(4 ln `))a

is o(1/κ).

Proof of Claim 3.6.1. Terms not defined here (beginning with p = C/κ and Wi; note C

is now as in Claim 3.6.1, rather than set to C0) are as in Section 3.5, but we (re)define

m by (1− γ)m = ln `/` and set q = lnC ln2 `/κ, noting that (3.21) gives p ≥ C`/n.
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It’s now convenient to generate the Wi’s using the ξx’s in the natural way: let

ai =

 (ip)n if i ∈ {0} ∪ [m],

(mp+ q)n if i = m+ 1,

and let Wi consist of the x’s in positions ai−1 + 1, . . . , ai when X is ordered according

to the ξx’s.

Proposition 3.6.2. With probability 1− e−Ω(C`),

ξx ≤ εi :=

 2ip if i ∈ {0} ∪ [m]

2(mp+ q) if i = m+ 1

 for all i and x ∈Wi. (3.23)

Proof. Failure at i ≥ 1 implies

|ξ−1[0, εi]| < ai. (3.24)

But |ξ−1[0, εi]| is binomial with mean εin = 2ai ≥ 2C`, so the probability that (3.24)

occurs for some i is less than exp[−Ω(C`)] (see e.g. [30, Theorem 2.1]).

We now write W i for W1 ∪ · · · ∪Wi.

Proposition 3.6.3. If Wm+1 ∈ 〈Hm〉, then W contains some S ∈ H with

|S \W i| ≤ ri ∀i ∈ [m].

Proof. SupposeW ⊇ Sm ∈ Hm. By construction (of theHi’s) there are Sm−1, . . . , S0 =:

S with Si ∈ Hi and Si = Si−1 \Wi, whence Si = S \W i for i ∈ [m]; and Si ∈ Hi then

gives the proposition.

We now define “success” for (ξx : x ∈ X) to mean that W1, . . . ,Wm+1 is successful

in our earlier sense and (3.23) holds. Notice that with our current values of m and

q (and rm = `(1 − γ)m = ln `), we can replace the error terms in (3.19) and (3.20)

by essentially δ−1C− ln `/3 and e−(lnC ln `)/2, which with Proposition 3.6.2 bounds the

probability that (ξx : x ∈ X) is not successful by (say) exp[−(ln ` lnC)/4].

We finish with the following observation.

Proposition 3.6.4. If (ξx : x ∈ X) is successful then ξH ≤ (3C/γ)`/κ.
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Proof. For S as in Proposition 3.6.3, we have (with W0 = ∅ and ε0 = 0)

ξH ≤
m+1∑
i=1

εi|S ∩Wi| =
m+1∑
i=1

(εi − εi−1)|S \W i−1|

≤ 2

[
m∑
i=1

(1− γ)i−1p+ (1− γ)mq

]
`

≤ 2[C/(γκ) + (ln `/`)(lnC ln2 `/κ)]` < (3C/γ)`/κ.

This completes the proof of Claim 3.6.1 (and of Theorem 3.1.6 when κ satisfies

(3.22)).

Finally, for κ below the bound in (3.22) (actually, for κ up to about `/ ln `), a subset

of the preceding argument suffices. We proceed as before, but now only with C = C0

(so p = C0/κ), stopping at m defined by (1 − γ)m = 1/κ (so m ≈ γ−1 lnκ). The

main difference here is that there is no “Janson” phase: W1, . . . ,Wm is successful with

probability 1 − exp[−Ω(`/κ)], and when it is successful we have (as in the proof of

Proposition 3.6.4, now just taking Wm+1 = X \Wm)

ξH ≤
m∑
i=1

(εi − εi−1)|S \W i−1|+ |S ∩Wm+1| < 2(C0/(γκ))`+ `/κ

(so also ZH ≤ O(`/κ) + exp[−Ω(`/κ)]` = O(`/κ)).

3.7 Applications

Much of the significance of Theorem 1.0.1—and of the skepticism with which Conjec-

ture 3.1.1 was viewed in [33]—derives from the strength of their consequences, a few of

which we discuss (briefly) here.

For this discussion, Krn =
(
V
r

)
is the complete r-graph on V = [n], and Hrn,p is the

r-uniform counterpart of the usual binomial random graph Gn,p. Given r, n and an

r-graph H, we use GH for the collection of (unlabeled) copies of H in K and FH for

〈GH〉. As usual, ∆ is maximum degree.

As noted earlier, Conjecture 3.1.1 was motivated especially by Shamir’s Problem

(since resolved in [31]), and the conjecture that became Montgomery’s theorem [44].

Very briefly: for n running over multiples of a given (fixed) r, Shamir’s Problem asks
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for estimation of pc(FH) when H is a perfect matching (n/r disjoint edges), and [31]

proves the natural conjecture that this threshold is Θ(n−(r−1) lnn); and [44] shows that

for fixed d, the threshold for Gn,p to contain a given n-vertex tree with maximum degree

d is Θ(n−1 lnn), where the implied constant in the upper bound depends on d (though

it probably shouldn’t). In both of these—and in most of the other examples mentioned

following Theorem 3.7.1 (all but the one from [37])—the lower bounds derive from the

coupon-collectorish requirement that the (hyper)edges cover the vertices, and it is the

upper bounds that are of interest. See [31, 44] for some account of the history of these

problems.

In fact, Theorem 1.0.1 gives not just Montgomery’s theorem, but its natural ex-

tension to r-graphs and more. (Strictly speaking, Montgomery proves more than the

original conjecture—see Section 3.8—and we are not so far recovering this stronger

result.) Say an r-graph F is a forest if it contains no cycle, meaning distinct vertices

v1, . . . , vk and distinct edges e1, . . . , ek such that vi−1, vi ∈ ei ∀i (with subscripts mod

k). A spanning tree is then a forest of size (n− 1)/(r − 1). For a (general) r-graph F ,

let ρ(F ) be the maximum size of a forest in F and set

ϕ(F ) = max{1− ρ(F ′)/|F ′| : ∅ 6= F ′ ⊆ F}.

Theorem 3.7.1. For each r and c there is a K such that if H is an r-graph on [n]

with ∆(H) ≤ d and ϕ(H) ≤ c/ lnn, then

pc(FH) < Kdn−(r−1) ln |H|.

This gives pc(FH) = Θ(n−(r−1) lnn) ifH is a perfect matching (as in Shamir’s Problem),

or a “loose Hamiltonian cycle” (a result of [10], to which we refer for definitions and

history of the problem), and pc(FH) < Kdn−(r−1) lnn if H is a spanning tree with

∆(H) ≤ d. For fixed d the latter is the aforementioned r-graph generalization of [44]

(or a slight improvement thereof in that the dependence on d—which, again, is probably

unnecessary—is explicit), and for d = nΩ(1) it is a result of Krivelevich [37, Theorem

1], which is again tight up to value of K see [37, Theorem 2]).

The last application we discuss here was suggested to us by Simon Griffiths and

Rob Morris. Set cd = (d!)2/(d(d+1)) and p∗(d, n) = cdn
−2/(d+1)(lnn)2/(d(d+1)).



30

Theorem 3.7.2. For fixed d and H any graph on [n] with ∆(H) ≤ d,

pc(FH) < (1 + o(1))p∗(d, n). (3.25)

When (d+1) |n and H is a Kd+1-factor (that is, n/(d+1) disjoint Kd+1’s), p∗(d, n)

is the asymptotic value of pc(FH). Here (3.25) with O(1) in place of 1+o(1) was proved

in [31], while the asymptotics are given by the combination of [32] and [47, 27]; we state

this in a form convenient for use below:

Theorem 3.7.3. For fixed d and ε > 0, and n ranging over multiples of d + 1, if

p > (1 + ε)p∗(d, n), then Gn,p contains a Kd+1-factor w.h.p.

Interest in pc(FH) for H as in Theorem 3.7.2 dates to at least 1992, when Alon and

Füredi [2] showed the upper bound O(n−1/d(lnn)1/d), and has intensified since [31],

motivated by the idea that Kd+1-factors should be the worst case. See [17, 18] for

history and the most recent results; with O(1) in place of 1 + o(1), Theorem 3.7.2 is

conjectured in [18] and in the stronger “universal” form (see Section 3.8) in [17].

Theorem 3.7.3 probably extends to r-graphs and d of the form
(
s−1
r−1

)
. This just

needs extension of Theorem 1 of [47] to r-graphs (suggested at the end of [47]), which

(with [32]) would give asymptotics of the threshold for Hrn,p to contain a Kr
s -factor

(where Kr
s is the complete r graph on s vertices).

Each of Theorems 3.7.1 and 3.7.2 begins with the following easy observations. (The

first, an approximate converse of Proposition 3.1.4, is the trivial direction of LP duality.)

Observation 3.7.4. If an increasing F supports a q-spread measure, then qf (F) < q.

(More precisely, qf (F) is the least q such that F supports a probability measure ν with

ν(〈S〉) ≤ 2q|S| ∀S.)

Observation 3.7.5. Uniform measure on GH is q-spread if and only if: for S ⊆ Krn

isomorphic to a subhypergraph of H, σ a uniformly random permutation of V and

H0 ⊆ Krn a given copy of H,

P(σ(S) ⊆ H0) ≤ q|S|. (3.26)
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Proving Theorem 3.7.1 is now just a matter of verifying (3.26) with q = O(dn−(r−1)),

which we leave to the reader. (It is similar to the proof of (3.28).)

Proof of Theorem 3.7.2. The next assertion is the main thing we need to check here.

Lemma 3.7.6. There is ε = εd > 0 such that if H is as in Theorem 3.7.2 and has no

component isomorphic to Kd+1, then

qf (FH) ≤ n−(2/(d+1)+ε) =: q. (3.27)

Proof. We just need to show (3.26) for q as in (3.27) and S,H0 as in Observation 3.7.5,

say with W = V (S), s = |S|, and f the size of a spanning forest of S. We may of course

assume S has no isolated vertices, so w := |W | ≤ 2f . We show

P(σ(S) ⊆ H0) < (e2d/n)f (3.28)

and

f

s
≥ 2(d+ 1)

(d+ 2)d
=

2

d+ 1
+ ε0, (3.29)

where ε0 = 1/((d + 2)(d + 1)d), implying that for any ε < ε0, (3.26) holds for large

enough n.

Proof of (3.28). Let α, β : W → V be, respectively, a uniform injection and a uniform

map. Then

(d/n)f ≥ P(β(S) ⊆ H0) ≥ P(β is injective)P(β(S) ⊆ H0|β is injective)

= (n)wn
−wP(α(S) ⊆ H0) > e−2fP(σ(S) ⊆ H0).

Proof of (3.29). We may of course assume S is connected, in which case we have f =

w − 1 and upper bounds on s:
(
w
2

)
if w ≤ d;

(
d+1

2

)
− 1 if w = d + 1; and wd/2 if

w ≥ d + 2. The corresponding lower bounds on f/s are 2/d, 2d/((d + 2)(d + 1) − 2)

and 2(d+ 1)/((d+ 2)d), the smallest of which is the last.

This completes the proof of Lemma 3.7.6.

We are now ready for Theorem 3.7.2. Let ς = ςn be some slow o(1) (e.g. 1/ lnn).

By Theorem 3.7.3 there is p1 ∼ p∗(d, n) such that if (d+ 1) |m > (1− ς)n then Gm,p1
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contains a Kd+1-factor w.h.p., while by Lemma 3.7.6 and Theorem 1.0.1 (or, more

precisely, Remark 3.2.2), there is p2 with p∗(d, n) � p2 � n−(2/(d+1)+ε) such that if

m ≥ ςn then for any given m-vertex H ′ with ∆(H ′) ≤ d, Gm,p2 contains (a copy of) H ′

w.h.p.

Let H1 be the union of the copies of Kd+1 in H (each of which must be a component

of H), H2 = H−H1, and ni = |V (Hi)| (so n1+n2 = n). Let G1 ∼ Gn,p1 and G2 ∼ Gn,p2

be independent on the common vertex set V = [n] and G = G1 ∪G2. Then G ∼ Gn,p

with p = 1 − (1 − p1)(1 − p2) ∼ p∗(d, n), and we just need to show G ⊇ H w.h.p. In

fact we find each Hi in the corresponding Gi, in order depending on n2: if n2 ≥ ςn,

then w.h.p. G1 contains H1, say on vertex set V1, and w.h.p. G2[V \ V1] contains H2;

and if n2 < ςn, then w.h.p. G2 contains H2 on some V2, and w.h.p. G1[V \ V2] contains

H1.

3.8 Concluding remarks

In closing we briefly mention (or recall) a few unresolved issues related to the present

work.

A. First, of course, it would be nice to prove Conjecture 3.1.3, which now implies

Conjecture 3.1.1. In Chapter 4 we present some progress towards this result.

B. It would be interesting to understand whether, in Shamir’s and related problems,

the ln ` emerging from our argument somehow reflects the coupon-collector requirement

(edges cover vertices) that drives the lower bounds. Partly as a way of testing this, one

might try to see if the present machinery can be extended to apply directly (rather

than via [47, 27]) to questions where coupon collector considerations (correctly) predict

a smaller gap, as in the fractional powers of lnn in Theorem 3.7.3.

C. The arguments of [44] and [18] give stronger “universality” results; e.g. [44] says that

the appropriate Gn,p w.h.p. contains every tree respecting the degree bound. Whether

this can be proved along present lines remains unclear; if so, it would seem to be more

a question of managing some understanding of the class of universal graphs (with, of

course, a view to the spread) than of extending Theorem 1.0.1.
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D. As mentioned following Corollary 3.1.7, what prevents us from extending to other

values of the dimension k is inadequate control of the spread. (Here it doesn’t really

matter whether we think of “assignments” or of the threshold for containing a member

of the H in (3.5).) The difficulty is the same for the related problem of thresholds for

existence of designs. We don’t have anything to suggest in the way of a remedy and

just indicate one issue, for simplicity sticking to Steiner triple systems (STS’s; see [55]

for background); thus X = K3
n (with n ≡ 1 or 3 (mod 6)), H is the hypergraph of

STS’s, and for the spread (which should be Θ(1/n)), we may take

κ = min
S⊆X

(|H|/|H ∩ 〈S〉|)1/|S| . (3.30)

Results of Linial and Luria [38] (upper bound) and Keevash [35] (lower bound) give

|H| = ((1 + o(1))n/e2)n
2/6. (3.31)

Viewed enumeratively this is very satisfactory, having been an old conjecture of Wil-

son [56]. But for present purposes, even ignoring our weaker understanding of |H∩〈S〉|

(the number of completions of a partial STS S), it is not enough: even if this quantity

is, as one expects, roughly (n/e2)n
2/6−|S|, the r.h.s. of (3.30) can be dominated by the

“error” factor (1 + o(1))n
2/(6|S|) if S is slightly small and the o(1) in (3.31) is negative.

E. Finally, we recall a related conjecture from [33] (stated there only for graphs, but

this shouldn’t matter). For F = FH as in Section 3.7, let pE(F) be the least p such that

for every H ′ ⊆ H the expected number of (unlabeled) copies of H ′ in Hrn,p is at least

1. Then pE(F)/2 is again a trivial lower bound on pc(F)—and, where it makes sense,

probably more intuitive than q(F) or qf (F)—and from [33, Conjecture 2] we have:

Conjecture 3.8.1. There is a universal K such that for every F = FH as above,

pc(F) ≤ KpE(F) ln |X|.

Again, we can presumably replace ln |X| by ln |H|, as would now follow from a positive

answer to the obvious question: do we always have qf (F) = O(pE(F))?



34

Chapter 4

On a problem of M. Talagrand

Joint work with Jeff Kahn and Jinyoung Park.

4.1 Introduction

The main concern of this chapter is the relation between the following two notions

of M. Talagrand [50, 51, 53]. (Our focus is Conjecture 4.1.4 and our main result is

Theorem 4.1.6; we will come to these following some motivation.)

We assume throughout that F ⊆ 2V is increasing and not equal to 2V , ∅. Say F is

p-small if there is a G ⊆ 2V such that

〈G〉 ⊇ F (4.1)

(that is, each member of F contains a member of G) and

∑
S∈G

p|S| ≤ 1/2, (4.2)

and set q(F) = max{p : F is p-small}. Say F is weakly p-small if there is a λ : 2V \{∅} →

[0, 1] such that ∑
S⊆F

λS ≥ 1 ∀F ∈ F (4.3)

and ∑
S

λSp
|S| ≤ 1/2, (4.4)

and set qf (F) = max{p : F is weakly p-small}. As in Chapter 3, we refer to q(F) and

qf (F) (respectively) as the expectation-threshold and fractional expectation-threshold of

F . Notice that

q(F) ≤ qf (F) ≤ pc(F). (4.5)
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Here the first inequality is trivial and the second holds since for λ as in (4.3) and (4.4),

µp(F) ≤
∑
F∈F

µp(F )
∑
S⊆F

λS ≤
∑
S

λSµp(〈S〉) =
∑
S

λSp
|S| ≤ 1/2 (4.6)

(where 〈S〉 = 〈{S}〉).

Thus each of q, qf is a lower bound on pc (and one that’s easily understood in many

cases of interest; see [21]). The next two conjectures—respectively the main conjecture

(Conjecture 1) of [33] and a sort of LP relaxation thereof suggested by Talagrand [53,

Conjecture 8.3]—say that these bounds are never far from the truth.

Conjecture 4.1.1. There is a universal K such that for every finite V and increasing

F ⊆ 2V ,

pc(F) < Kq(F) ln |V |.

Conjecture 4.1.2. There is a universal K such that for every finite V and increasing

F ⊆ 2V ,

pc(F) < Kqf (F) ln |V |.

Talagrand [53, Conjecture 8.5] also proposes the following strengthening of Conjec-

ture 4.1.2, in which `(F) is the maximum size of a minimal member of F .

Conjecture 4.1.3. There is a universal K such that for every finite V and increasing

F ⊆ 2V ,

pc(F) < Kqf (F) ln `(F).

Conjecture 4.1.3 is shown in Chapter 3, to which we also refer for discussion of the

very strong consequences that originally motivated Conjecture 4.1.1, but follow just as

easily from Conjecture 4.1.2.

Here we are interested in the following conjecture of M. Talagrand [53, Conjecture

6.3], which says that the parameters q and qf are in fact not very different.

Conjecture 4.1.4. There is a fixed L such that, for any F , q(F) ≥ qf (F)/L.

(In other words, weakly p-small implies (p/L)-small.) This of course implies equivalence

of Conjectures 4.1.2 and 4.1.1, as well as of Conjecture 4.1.3 and the corresponding
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strengthening of Conjecture 4.1.1, so in particular, in view of [21], would now supply

a proof of Conjecture 4.1.1. (At present this implication is probably the strongest

motivation for Conjecture 4.1.4, but we have long been interested in the conjecture for

its own sake.)

The following mild reformulation of Conjecture 4.1.4 will be convenient.

Conjecture 4.1.5. There is a fixed J such that for any V, p and λ : 2V \ {∅} → R+,

{A ⊆ V :
∑
S⊆A

λS ≥
∑
S

λS(Jp)|S|}

is p-small.

As Talagrand observes, even simple instances of Conjecture 4.1.4 are not easy to

establish. He suggests two test cases, which in the formulation of Conjecture 4.1.5

become:

(i) V =
(

[n]
2

)
= E(Kn) and (for some k) λ is the indicator of {copies of Kk in Kn};

(ii) λ is supported on 2-element sets.

(He does show that Conjecture 4.1.4 holds if λ is supported on singletons; see Proposi-

tion 4.2.1 for a quantified version that will be useful in what follows.)

The very specific (i) above was treated in [8]. Here we dispose of the less structured

(ii):

Theorem 4.1.6. Conjecture 4.1.5 holds when supp(λ) ⊆
(
V
2

)
; in other words, there is

a J such that for any graph G = (V,E), p ∈ [0, 1] and λ : E → R+,

{U ⊆ V : λ(G[U ]) ≥ J2λ(G)p2}

is p-small (where G[U ] is the subgraph induced by U).

It seems not out of the question that the ideas involved in proving Theorem 4.1.6

can be extended to give Conjecture 4.1.4 in full, but we don’t yet see this.

The rest of this chapter is devoted to the proof of Theorem 4.1.6. The most impor-

tant part of this turns out to be (a quantified version of) the “unweighted” case, where
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λ takes values in {0, 1}, though deriving Theorem 4.1.6 from this still needs some ideas.

A precise statement is given at the end of Section 4.2, following a few preliminaries,

and the unweighted and weighted arguments are then given in Sections 4.3 and 4.4

respectively.

4.2 Framework

We use [n] for {1, 2, . . . , n}, 2X for the power set of X, and
(
X
r

)
for the family of r-

element subsets of X, and recall from above that 〈A〉 is the increasing family generated

by A ⊆ 2X . For a set X and p ∈ [0, 1], Xp is the “p-random” subset of X in which each

x ∈ X appears with probability p independent of other choices. We assume throughout

that p has been specified and usually omit it from our notation.

Graphs here are always simple, and are mainly thought of as sets of edges; thus |G|

is |E(G)|. We use ∇G(v) or ∇v for {e ∈ E(G) : v ∈ e}; so the degree of v is dv = |∇v|.

(We also use NG(v) for the neighborhood of v in G.)

The following convention will be helpful. Given a graph G on V , we associate with

each U ⊆ V a “weighted subset” D(U) = DG(U) of E(G) that assigns to each e the

weight |e ∩ U |/2. (We also use Dv or DG(v) for D({v}).) We then have, for any

λ : G→ R+,

λ(D(U)) = 1
2

∑
v∈U λ(∇v)

(e.g. |D(U)| := 1
2

∑
v∈U dv). To see why this is natural, notice that

Eλ(G[Vp]) = Eλ(D(Vp))p

(e.g. E|G[Vp]| = E|D(Vp)|p), so that λ(D(U))p is a natural benchmark against which

to measure λ(G[U ]).

For A ⊆ 2V , the cost of A (w.r.t. our given p) is C(A) =
∑

S∈A p
|S|. We say A

witnesses B ⊆ 2V if 〈A〉 ⊇ B; set

C∗(B) = min{C(A) : A witnesses B},

and say B is witnessable at cost γ if C∗(B) ≤ γ. Talagrand’s observation that Conjec-

ture 4.1.4 holds for λ supported on singletons may now be stated as:
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Proposition 4.2.1. For all ζ : V → R+ and J > 2e,

C∗({U ⊆ V : ζ(U) ≥ Jζ(V )p}) < 2e/(J − 2e). (4.7)

(The dependence on J is best possible up to constants.)

Proof. We may take V = [n] and assume ζ is non-increasing (and positive) and Jp ≤ 1

(since the proof is trivial when Jp > 1). Define R by

1

Rp
= d 1

Jp
e =: a.

We claim that the collection

A =
⋃
k≥1

(
[ak]

k

)
witnesses the family in (4.7); this gives the proposition since the l.h.s. of (4.7) is then

at most

C(A) =
∑
k≥1

(
ak

k

)
pk <

∑
k≥1

( e
R

)k
<

e

R− e
<

2e

J − 2e

(the last inequality holding since Jp ≤ 1 implies R > J/2.)

To see that the claim holds, observe that its failure implies the existence of some

U = {u1 < u2 < · · · < u`} ⊆ [n] with ζ(U) ≥ Jζ(V )p such that |U ∩ [ak]| < k for all

k > 0. But then ui > ia for all i ∈ [`], yielding the contradiction

ζ(V ) >
`−1∑
i=0

∑
j∈[a]

ζ(j + ia) ≥ aζ(U) ≥ ζ(V ).

We further define

C∗J(µ, T )

to be the infimum of those γ’s for which, for every p and (simple) graph G (on V ) with

|G|p2 ≤ µ,

{U ⊆ V : |G[U ]| ≥ max{T, J |DG(U)|p}} (4.8)

is witnessable at cost γ. In Section 4.4 we will need cost bounds that improve as T

grows, even if T/µ does not, and this need not be the case without the extra condition

involving |DG(U)| in (4.8). License to use this condition will be provided in Section 4.4

via the reduction of Theorem 4.1.6 to the following unweighted statement, which we

regard as our main point.
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Theorem 4.2.2. For any µ and T = cJ2µ with

c ≥ 256e/J and J ≥ 8e, (4.9)

and J1 = J/(8e),

C∗J(µ, T ) ≤ 32c−1 min{J−2
1 , J

−
√
T/16

1 }. (4.10)

(Here and throughout we don’t worry about getting good constants, and try instead to

keep the argument fairly clean.)

4.3 Proof of Theorem 4.2.2

Aiming for simplicity, we first bound the cost in (4.10) assuming

T = 22k+3

for some positive integer k and

c = T/(µJ2) ≥ 64e/J, (4.11)

showing that in this case

C∗J(µ, T ) ≤ 8c−1J−2k−1−1
1 . (4.12)

Before proving this, we show that it implies Theorem 4.2.2, which, since C∗J(µ, t)

is decreasing in t, just requires showing that the r.h.s. of (4.10) bounds C∗J(µ, T0) for

some T0 ≤ T . If T < 32 this follows from the trivial

C∗J(µ, 1) ≤ µ (4.13)

(take G = {x, y} : xy ∈ G}), since µ = T/(cJ2) < 32c−1J−2
1 , matching the bound in

(4.10). Suppose then that T ≥ 32 and let T0 = c0J
2µ be the largest integer not greater

than T of the form 22k+3 (with positive integer k). We then have c0 > c/4 (supporting

(4.11)) and 2k−1 >
√
T0/8 >

√
T/16, and it follows that the bound on C∗J(µ, T0) given

by (4.12) is less than the bound in (4.10).

Proof of (4.12). We have T = 22k+3 (= cJ2µ with J as in (4.9) and c as in (4.11)),

and, with

U := {U ⊆ V : |G[U ]| > max{T, J |DG(U)|p}}, (4.14)
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want to show that C∗(U) is no more than the bound in (4.12).

A basic challenge for Conjecture 4.1.4 in general is identifying a suitable G. In the

present instance, each member of G will be a disjoint union of stars, where for present

purposes a star at v in W (⊆ V ) is some {v} ∪ S ⊆ W with S ⊆ NG(v). (Where

convenient we will also refer to this as the “star (v, S).”) We say such a star is good if

|S| ≥ Jdvp/4. (4.15)

Given L, we define

Lv = max{L, Jdvp/4} (4.16)

and say a star (v, S) is L-special if |S| = Lv.

For positive integers b and L, let G(b, L) (⊆ 2V ) consist of all disjoint unions of b

L-special stars in G. We will specify a particular collection C of pairs (b, L) and set

G = ∪{G(b, L) : (b, L) ∈ C}.

Theorem 4.2.2 is then given by the following two assertions.

Claim 4.3.1. G witnesses U .

Claim 4.3.2. C(G) is at most the bound in (4.12).

Set (with i ∈ [k] throughout) Li = 2i−1 and

δi = max{2−(i+2), 2i−k−3} ≥ 1/(8Li), (4.17)

and notice that ∑
δi ≤

∑
2−(i+2) +

∑
2i−k−3 ≤ 1/2. (4.18)

Let

bi = δi4
−iT ≥ 2k−i. (4.19)

Finally, set

C = {(bi, Li) : i ∈ [k]}.
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Proof of Claim 4.3.1. We are given U ∈ U and must show it contains a member of G.

Let U0 = U and for j = 1, . . . until no longer possible do: let (vj , Sj), with Sj = NG(vj)∩

Uj−1, be a largest good star in Uj−1, and set dj = |Sj | and Uj = Uj−1 \ ({vj} ∪ Sj).

The passage from Uj−1 to Uj deletes at most d2
j edges containing vertices of Sj

of Uj−1-degree at most dj ; any other edge deleted in this step contains u ∈ Sj with

Uj−1-degree less than Jdup/4 (or u, having Uj−1-degree greater than dj , would have

been chosen in place of vj); and of course each vertex u of the final Uj has Uj-degree

less than Jdup/4. We thus have

|G[U ]| ≤
∑
j

d2
j +

∑
v∈U

Jdvp/4 ≤
∑
j

d2
j + |G[U ]|/2

(using the second bound in (4.14)), so

∑
j

d2
j ≥ T/2. (4.20)

Set

Bi =

 {j : dj ∈ [2i−1, 2i)} if i ∈ [k − 1],

{j : dj ≥ 2k−1} if i = k.

(It may be worth noting that, while the dj ’s are decreasing, the degrees corresponding

to Bi increase with i.) In view of (4.20), either |Bk| ≥ 1 or

∑
i∈[k−1]

|Bi|4i ≥ T/2 ≥
∑

i∈[k−1]

δiT

(using (4.18)). Recalling that bk = 1, it follows that for some i ∈ [k] we have

|Bi| ≥ bi. (4.21)

On the other hand, since |Sj | ≥ Lvi for j ∈ Bi, the set
⋃
{Sj ∪ {vj} : j ∈ Bi} contains

some W ∈ G(bi, Li)(⊆ G) whenever i is as in (4.21). This completes the proof of

Claim 4.3.1.

Proof of Claim 4.3.2. We first bound the cost, say C(b, L), of the collection G(b, L).

Set

qv = p

(
edvp

Lv

)Lv
.
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Then qv bounds the total cost of the set of L-special stars at v (as
(
dv
Lv

)
≤ (edv/L

v)L
v
),

and it follows that

C(b, L) ≤
∑{∏

v∈B
qv : B ∈

(
V
b

)}
. (4.22)

For a given value of ϕ :=
∑

v∈V qv, the r.h.s. of (4.22) is largest when the qv’s are all

equal (this just uses xy ≤ [(x+ y)/2]2), whence

C(b, L) ≤
(
|V |
b

)(
ϕ

|V |

)b
≤
(eϕ
b

)b
. (4.23)

Recalling (4.16), we have

qv ≤ dvp2 · e
L

(
4e

J

)L−1

,

so

ϕ ≤ 2µ · e
L

(
4e

J

)L−1

. (4.24)

Now using (4.23) and (4.24), recalling that T = cJ2µ, Li = 2i−1, bi = δi4
−iT =

δiT/(4L
2
i ) and J1 = J/(8e), and for the moment omitting the subscript i, we have (with

the final inequality (4.25) justified below)

C(b, L) ≤

[
2e2µ

L

4L2

δT

(
4e

J

)L−1
]b

=

[
8e2L · 1

cJ2δ

(
4e

J

)L−1
]b

=

[
c−1 L

2δ

(
4e

J

)L+1
]b

≤
[ c

4
· JL+1

1

]−b
. (4.25)

For (4.25), or the equivalent

2L+4δ ≥ L, (4.26)

it is enough to show 2L+1 ≥ L2 (since δ ≥ 1/(8L); see (4.17)), which is true for positive

integer L.

Finally, returning to Claim 4.3.2 (and recalling that L and b in the display ending

with (4.25) are really Li and bi), we have

C(G) =

k∑
i=1

C(bi, Li) ≤
k∑
i=1

[ c
4
· JLi+1

1

]−bi
. (4.27)
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Since (4.11) implies that cJ1/4 ≥ 2, we can use bi ≥ 2k−i from (4.19) to bound the

r.h.s. of (4.27) by

k∑
i=1

[
cJ2i−1+1

1

4

]−2k−i

=
k∑
i=1

J−2k−1

1

[
cJ1

4

]−2k−i

=

k−1∑
j=0

( c
4
J2k−1+1

1

)−1
[
cJ1

4

]1−2j

< 8c−1J−2k−1−1
1 ,

matching (4.12) as desired.

4.4 proof of Theorem 4.1.6

We prove the following quantified version of Theorem 4.1.6.

Theorem 4.4.1. For any graph G on V, λ : G→ R+ and

R ≥ 4096
√

2e, (4.28)

the set

U0 = {U ⊆ V : λ(G[U ]) ≥ R2λ(G)p2}

is witnessable at cost O(1/R).

Proof. We take G,λ,R to be as in the theorem, use D(U) for DG(U) (defined in

Section 4.2), and assume throughout that

U ∈ U0.

We first observe that it is enough to prove the theorem assuming

λ takes only values θi := 2−i, i = 1, 2, . . . , (4.29)

with (4.28) slightly weakened to

R ≥ 4096e. (4.30)

Then for a general λ (which we may of course scale to take values in [0, 1]) and λ′ given

by

λ′S = max{θi : θi ≤ λS},
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U0 as in the theorem is contained in the corresponding collection with λ and R2 replaced

by λ′ and R2/2 (which supports (4.30)), since U ∈ U0 implies 2λ′(G[U ]) > λ(G[U ]) ≥

R2λ(G)p2 ≥ R2λ′(G)p2. So we assume from now on that λ and R are as in (4.29) and

(4.30) (respectively).

Note also that Proposition 4.2.1, with ζ(v) = λ(Dv) (for which we have ζ(V ) =∑
ζ(v) = 1

2

∑
λ(∇v) = λ(G) and ζ(U) = λ(D(U))), says that the set

{U ⊆ V : λ(D(U)) ≥ Rλ(G)p}

admits a witness of cost less than 6/R. So we specify such a witness as a first installment

on G and it then becomes enough to show that

U∗ := {U ∈ U0 : λ(D(U)) < Rλ(G)p}

can be witnessed at cost O(1/R); in fact we will show

C∗(U∗) = O(R−2). (4.31)

Set Gi = {e ∈ G : λ(e) = θi} and write Di(U) for DGi(U). We then observe, for

any H ⊆ G,

λ(H) =
∑
i

θi|H ∩Gi|,

and abbreviate

wi = λ(Gi) = θi|Gi|, w = λ(G) =
∑

wi.

Given U , define L = L(U), K = K(U), Li = Li(U) and Ki = Ki(U) by

λ(D(U)) = Lwp,

λ(G[U ]) = KLwp2,

|Di(U)| = Li|Gi|p, (4.32)

and

|Gi[U ]| = KiLi|Gi|p2. (4.33)

Then

Lwp =
∑

θi|Di(U)| =
∑

Liwip (4.34)
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and

KLwp2 =
∑

θi|Gi[U ]| =
∑

KiLiwip
2.

Since U ∈ U0, we have ∑
KiLiwi ≥ R2w, (4.35)

while U ∈ U∗ gives

L < R. (4.36)

Note also that, with

I = I(U) = {i : Ki > R/2},

we have ∑
{KiLiwi : i ∈ I} > R2w/2, (4.37)

as follows from (4.35) and (using (4.34) and (4.36))

∑
{KiLiwi : i 6∈ I} ≤ (R/2)Lw < R2w/2.

Now let Ei = |Gi|p2 and, for integer α,

Eα = {i : Ei ∈ (2α−1, 2α]}.

We arrange the i’s in an array, with columns indexed by α’s (in increasing order) and

column α consisting of the indices in Eα, again in increasing order. (So wi’s within a

column decrease as we go down. Note column lengths may vary.) Define Bβ to be the

set of indices in row β.

· · · α− 1 α α+ 1 · · ·
1
...

β i
...

Table 4.1: i is the βth smallest index in Eα (when |Eα| ≥ β).

Set yi = θi2
α/p2 (for i ∈ Eα) and y =

∑
i≥1 yi, noting that

yi/2 < wi ≤ yi.
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Set

c∗β = (3/2)β−1R2/16 (β ≥ 1)

and ci = c∗β if i ∈ Bβ. Let w∗β and y∗β be (respectively) the sums of the wi’s and yi’s

over i ∈ Bβ, and notice that

y∗β+1 ≤ y∗β/2 for β ≥ 1

(since i = Bβ+1∩Eα (where we abusively use i for {i}) implies i > j := Bβ ∩Eα, whence

2yi ≤ yj).

Claim 4.4.2. For each U ∈ U∗ there is an i ∈ I(U) with Ki(U)Li(U) > ci.

Proof. With
∑? denoting summation over I, we have (using (4.37) at the end)∑?
ciwi ≤

∑
c∗βw

∗
β ≤

∑
c∗βy
∗
β

≤ y∗1(c∗1 + c∗2/2 + c∗3/2
2 + · · · )

≤ y(c∗1 + c∗2/2 + c∗3/2
2 + · · · )

≤ (R2/4)y < (R2/2)w <
∑?

Ki(U)Li(U)wi.

It follows that if, for each i, Gi witnesses

Ui := {U ⊆ V : i ∈ I(U); Ki(U)Li(U) > ci},

then ∪Gi witnesses U∗; so we have

C∗(U∗) ≤
∑
i

C∗(Ui). (4.38)

On the other hand, if (α, β) is the pair corresponding to i (that is, i is the βth entry in

column α of our array), then (see (4.8) for C∗J)

C∗(Ui) ≤ C∗R/2(2α, Tα,β), (4.39)

where Tα,β = max{c∗β2α−1, 1}; namely, |Gi|p2 = Ei ≤ 2α, while U ∈ Ui implies (using

(4.32), (4.33) and i ∈ I(U))

|Gi[U ]| = Ki(U)Li(U)|Gi|p2

 > ci|Gi|p2 > c∗β2α−1

= Ki|Di(U)|p > (R/2)|Di(U)|p.
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So it is enough to show that the sum of the r.h.s. of (4.39) (over β ≥ 1 and integer α)

is O(R−2).

For Tα,β = 1 we bound the r.h.s. of (4.39) by the trivial (4.13), which—since Tα,β = 1

iff 2α ≤ 32R−2(2/3)β−1—bounds the contribution of such pairs (to the sum in (4.38))

by ∑
β≥1

∑
{α:2α≤2/c∗β}

2α ≤ 64R−2
∑
β≥1

(2/3)β−1 = 3 · 64R−2. (4.40)

For Tα,β > 1 we use Theorem 4.2.2 with T = Tα,β(= 2α−1c∗β), µ = 2α, J = R/2,

and (thus)

c = T/(µJ2) = c∗β/(2J
2) = (3/2)β−1/8.

Note that (4.30) gives J ≥ 8e and c ≥ 256e/J , so (4.9) holds.

For each integer s ≥ 0 let Ts = {(α, β) : Tα,β ∈ (2s, 2s+1]}. For each β ≥ 1 there

is a unique α such that (α, β) ∈ Ts, and every (α, β) with Tα,β > 1 is in some Ts. Let

f(s) = min{J−2
1 , J−2s/2−4

1 }. Then for fixed s, we have (see (4.10))

∑
(α,β)∈Ts

C∗J(2α, Tα,β) ≤
∑
β≥1

32c−1f(s) =
∑
β≥1

256

(
2

3

)β−1

f(s) < 3 · 256f(s), (4.41)

and summing over all s we get

∑
Tα,β>1

C∗J(2α, Tα,β) <
∑
s≥0

768f(s) =
∑
s≥0

768 min{J−2
1 , J−2s/2−4

1 } = O(J−2
1 ). (4.42)

Finally, combining (4.42) and (4.40) gives (4.31).
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Chapter 5

Automorphisms of Induced Subgraphs of Gn,p

Keith Frankston

5.1 Organization

We introduce our core machinery in Section 5.2 (leaving a couple small details to Sec-

tion 5.5) and use it to prove a slight weakening of Theorem 1.0.3 as an orienting example.

In Section 5.3 we prove our main result, Theorem 5.3.1, as well as the more general,

but weaker, Theorem 5.3.2. Finally, in Section 5.4 we present some directions for future

study, including possibilities for strengthening our current results.

5.2 Machinery

Conventions. Throughout this chapter, G = Gn,p is taken to have vertex set V = [n]

unless otherwise specified; all subgraphs are induced, with G[W ] denoting the induced

subgraph of G on W ⊆ V ; and we view a graph H on V as a subset of
(
V
2

)
, so

H[W ] = H ∩
(
W
2

)
.

We say ϕ is a subautomorphism of G if ϕ ∈ Aut(G[W ]) for some W ⊆ V ; ϕ is said

to be of size |ϕ| := |W |.

We denote a partition of ` by λ = (λ1, λ2, . . . , λr) ` ` (meaning λ1 ≥ λ2 ≥ · · · ≥

λr > 0 are integers with
∑

i λi = `). We use subpartition of X to mean a collection

S = {S} of disjoint subsets of X, each of size at least 2 and say S is of type λ ` ` if

{λi} = {|S|}S∈S as multisets. We use the shorthand ∪S = ∪S∈SS and `(S) = |∪S|.

W.h.p. statements and asymptotic notation are with respect to n; so f = o(g) and

f = ω(g) (also written f � g and f � g) mean f/g and g/f respectively are smaller
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than any given ε > 0 for large enough n.

For ϕ ∈ SX (the symmetric group on X), we use Fix(ϕ) = {x ∈ X : ϕ(x) = x} for

the set of fixed points of ϕ, and O(ϕ) = { {ϕk(x) : k ∈ Z} : x ∈ X \ Fix(ϕ)} for the set

of non-trivial orbits of ϕ. We refer to elements of ∪O(ϕ) = X \ Fix(ϕ) as the mobile

points of ϕ. We say ϕ is of type λ ` ` if O(ϕ) is of type λ (note that the type of ϕ

depends only on its mobile points).

For a permutation ϕ of V , we denote by ϕ′ the permutation it induces on
(
V
2

)
.

Observe that ϕ induces a graph automorphism on H ⊆
(
V
2

)
iff H ∩T ∈ {∅, T} for every

T ∈ O(ϕ′). If |T | = k, we have

P[G ∩ T ∈ {∅, T}] = pk + (1− p)k =: qp(k) (5.1)

(recall G = Gn,p; we will write q for qp when p is known), with these events occurring

independently for the various T ∈ O(ϕ′) (since the orbits partition
(
V
2

)
).

Note that for ϕ ∈ Aut(H), S ∈ O(ϕ), and x ∈ Fix(ϕ),

{{x, y} : y ∈ S} ∈ O(ϕ′)

and therefore

NH(x) ∩ S ∈ {∅, S} (5.2)

(where NH(x) = {y : {x, y} ∈ H} denotes the neighborhood of x in H).

For S ⊆ V , we write

coG(S) = co(S) = {x ∈ V \ S : NG(x) ∩ S ∈ {∅, S} }, (5.3)

and, more generally, for a subpartition S (of V ),

co(S) =
⋂
S∈S

co(S). (5.4)

Notice that ϕ is a subautomorphism of G iff

co(O(ϕ)) ⊇ Fix(ϕ) (5.5)

and ϕ|∪O(ϕ) is an automorphism of G[∪O(ϕ)].
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Hence, for a given subpartition S (of V ), if ϕ is a subautomorphism of G with

O(ϕ) = S, then

|ϕ| ≤ |co(S)|+ `(S)

and, clearly, any σ ∈ Aut(G[∪S]) with O(σ) = S extends to an automorphism of

G[co(S) ∪
⋃
S].

Therefore, G admits a size t subautomorphism of type λ ` ` iff there is some

derangement (permutation with no fixed points) σ with S := O(σ) a subpartition of

type λ, satisfying:

G ∈ A(S, t) := {H : |coH(S)| ≥ t− `(S)}; and

G ∈ B(σ) := {H : σ is a subautomorphism of H}.
(5.6)

We would like to bound, for a given derangement σ, the probability that both these

conditions hold. To do so, we bound their probabilities separately and use the fact that

they are independent (since they are determined by G ∩ A and G ∩ B respectively for

some disjoint A,B ⊆
(
V
2

)
).

We first observe that |co(S)| is distributed binomially. For S ⊂ V and x ∈ V \ S,

we have

P[x ∈ co(S)] = q(S) := q(|S|)
(

= p|S| + (1− p)|S|
)

(5.7)

and, more generally, for a subpartition S of type λ ` ` and x 6∈ ∪S,

P[x ∈ co(S)] = q(S) :=
∏
S∈S

q(S)

=
∏(

pλi + (1− p)λi
)

=: q(λ) = q.

(5.8)

Therefore, since |V \ ∪S| = n− `,

|co(S)| ∼ Bin(n− `, q). (5.9)

This will allow us to bound

P[G ∈ A(S, t)] = P[Bin(n− `, q) ≥ t− `] (5.10)

using a tail bound.
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We then bound P[G ∈ B(σ)] for a derangement σ. Let σ be a derangement with

O(σ) = S = {Si} of type λ ` ` (where |Si| = λi). By (5.1), we have

P[G ∈ B(σ)] = P[σ ∈ Aut(G[∪S]) ] = q(O(σ′)).

So to bound P[G ∈ B(σ)], we want to understand the structure of O(σ′) in terms of the

λ′is.

We observe that
(
Si
2

)
is partitioned in O(σ′) according to cyclic distance. Let Si =

{v1, . . . , vλi} with σ(vi) = vi+1 (indices taken modulo λi). Then

Ed := { {vk, vk+d} : k ∈ [λi]} ∈ O(σ′)

for each 1 ≤ d ≤ λ/2. Note that |Ed| = λi for d < λ/2 and, if λi is even,
∣∣Eλi/2∣∣ = λi/2.

Thus tEd =
(
Si
2

)
is a partition into bλi−1

2 c blocks of size λi, plus a block of size λi/2

when λi is even.

For any i 6= j, O(σ′) partitions { {x, y} : x ∈ Si, y ∈ Sj} into (λi, λj) blocks of size

[λi, λj ] (where (·, ·) and [·, ·] denote greatest common divisor and least common multiple

respectively).

Therefore

q(O(σ′)) =
∏
i

g(λi)
∏
j

q([λi, λj ])
(λi,λj)/2 (5.11)

where

g(s) =


q(s/2)
q(s) if s is even,

1√
q(s)

if s is odd.

For any s ≥ 2 and r > 1,

q(s · r) = psr + (1− p)sr < (ps + (1− p)s)r = q(s)r (5.12)

(see 5.5.1).
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Applying this to (5.11) with r =
[λi,λj ]
λi
≥ 1, we get

q(O(σ′)) ≤
∏
i

g(λi)
∏
j

q(λi)
λj/2

=
∏
i

g(λi)q(λi)
`/2

≤
∏
i

q(λi)
`/2−1

= q(λ)
`−2
2 (5.13)

(since g(s) ≤ 1/q(s)). Note that we have equality iff λi = 2 for all i (in which case

q(O(σ′)) = (1− 2p(1− p))`(`−2)/4).

In fact, for any s ≥ 2, (5.12) implies

q(s) ≤ q(2)s/2,

and thus

q(λ) =
∏
i

q(λi) ≤
∏

q(2)λi/2 =
∏

(1− 2p(1− p))λi/2 = (1− 2p(1− p))`/2 . (5.14)

Combining (5.14) with (5.13), we get

P[σ ∈ Aut(G[∪S]) ] ≤ (1− 2p(1− p))
`(`−2)

4 . (5.15)

Similarly, we use (5.11) to produce a lower bound for P[G ∈ B(σ)]:

q(O(σ′))2 ≥
∏
i

g(λi)
2
∏
j

q(λiλj) (5.16)

>
∏
i

q(λi`) (5.17)

>
∏
i

(1− p)λi`
(

= (1− p)`2
)

≥
∏
i

q(λi)
2` (5.18)

= q(λ)2`,

where (5.16) and (5.17) are implied by the trivial inequality q(a)q(b) > q(ab), and (5.18)

holds since (1− p)s ≥ q(s)2 for p ≤ 1/2 and s ≥ 2 (see 5.5.2). (We may opt to use the

lower bound (1− p)`2 when an expression in terms of p is useful.)



53

Putting everything together, we get the following two-sided bound for a fixed de-

rangement σ of type λ ` `:

q(λ)` ≤ P[G ∈ B(σ)] ≤ q(λ)
`−2
2 . (5.19)

As an easy application, we show the following slightly weaker version of Theo-

rem 1.0.3.

Lemma 5.2.1. For all 1/2 ≥ p = 2 lnn+ω(1)
n , w.h.p. G = Gn,p is rigid.

Proof. Let p = 2(lnn+c)
n for c = c(n) = ω(1). Given S of type λ ` `, we can crudely

bound

q(S) =
∏
i

q(λi) ≤ q(2)
`
2 (5.20)

(see (5.14)), implying

P[ |co(S)| = n− ` ] ≤ (1− 2p(1− p))
`
2

(n−`). (5.21)

We can bound the number of derangements on ` vertices by
(
n
`

)
`! < n`. Taking a

union bound over all such derangements and combining (5.15) with (5.21), this gives

n`(1− 2p(1− p))
`
2 [(n−`)+( `−2

2 )] ≤ exp [` (lnn− p(1− p)(n− `/2− 1))]

≤ exp

[
`

(
lnn− 2(lnn+ c)

n
· n

2

)]
= exp[−c`]

(5.22)

(since p(1− p) is increasing for p ≤ 1/2).

Therefore the probability that G is rigid is

1−
∑
`≥2

exp[−c`] = 1− o(1).

This result is essentially best possible with the present approach, as

E |Aut(G)| > P[G = ∅] · n! = exp[(n(lnn− pn/2−O(1))]� 1

for p = 2 lnn−ω(1)
n .
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5.3 Main Results

We start with an essentially tight result in the special case p = 1/2. In this case, we

define the weight of ϕ, a subautomorphism of type λ ` `, to be

w(ϕ) = w(λ) :=
∑
i

(λi − 1) (5.23)

(i.e. the number of mobile points minus the number of non-trivial orbits) and observe

that

q(λ) = 2−w(λ). (5.24)

Theorem 5.3.1. W.h.p. every subautomorphism ϕ of G = Gn,1/2 satisfies w(ϕ) ≤

(2 + o(1)) log n and |ϕ| ≤ 2−wn+
√

5n log n.

Proof. We will actually show that w.h.p. every ϕ satisfies

w(ϕ) ≤ 2 log n+ 5

and

|ϕ| < 2−w(ϕ)n+ ∆(n,w(ϕ)), (5.25)

where

∆(n,w) = max{2w(log n− w/2 + log log n), 3
√

w2−wn log n}. (5.26)

Since there are fewer than n` derangements on ` vertices, it suffices to show, for every

derangement σ of size `, that the probability that σ extends to a subautomorphism of

size t = t(n,w(σ)) := 2−w(σ)n+ ∆(n,w(σ)) is less than δ(`)n−` where
∑

`≥2 δ(`) = o(1)

(here we take δ(`) = 2−`/ log n for ease).

Given λ ` `, we set w = w(λ), ∆ = ∆(n,w) and t = t(n,w) and note that

`/2 ≤ w < `. (5.27)

Thus, given a derangement σ with S = O(σ) of type λ ` ` ≥ 2, we want to show

(recall (5.6))

P[G ∈ A(S, t)] · P[G ∈ B(σ)] · (2n)` log n ≤ 1.
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Combining (5.19) with (5.24) gives

P[G ∈ B(σ)] ≤ 2−w
`−2
2 . (5.28)

Since w < ` (see (5.27)), we have

−w`− 2

2
= −`w

2
+ w < −`(w

2
− 1).

Therefore

log
[
P[G ∈ B(σ)] · (2n)` log n

]
≤ log

[
2−w

`−2
2 (2n)` log n

]
= `(log n+ 1)− w(`/2− 1) + log log n

< `(log n+ 2− w/2 + log log n/`), (5.29)

which is less than 0 for w > 2 log n+ 5. Hence, when w > 2 log n+ 5,

P[G ∈ B(σ)] · (2n)` log n ≤ 1,

so w.h.p. every subautomorphism of G has weight at most 2 log n+ 5.

We may therefore assume w ≤ 2 log n+ 5, so (using ` ≤ 2w and (5.26))

`/∆ ≤ 1/(log n− w/2 + log log n) < 2/ log log n =: ε(n)� 1.

Thus (see (5.10))

P[G ∈ A(S, t)] = P[|co(S)| ≥ t− `]

= P[Bin(n− `, q) ≥ nq + ∆− `]

≤ P[Bin(n, q) ≥ nq + (1− ε)∆].

(5.30)

We use Chernoff’s inequality [30, Theorem 2.1],

P[Bin(n, q) ≥ nq + ∆] ≤ exp

[
−∆2

2(nq + ∆/3)

]
, (5.31)

the r.h.s. of which we bound by

B(n, q,∆) := max{exp

[
−∆2

4nq

]
, exp

[
−3∆

4

]
}. (5.32)

Using the two alternatives for ∆ (see (5.26)), we show that either expression in (5.32)

is strong enough to imply

B(n, q, (1− ε)∆) · 2−w
`−2
2 (2n)` log n ≤ 1.
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We use ∆ ≥ 2w(log n− w/2 + log log n) to show

exp

[
−3(1− ε)∆

4

]
2−w

`−2
2 (2n)` log n ≤ 1,

which is equivalent to each of(
−3(1− ε)∆ log e

4

)
+ log

[
2−w

`−2
2 (2n)` log n

]
≤ 0

and

4

3 log e
log
[
2−w

`−2
2 (2n)` log n

]
≤ (1− ε)∆. (5.33)

Using (5.29), we have

4

3 log e
log
[
2−w

`−2
2 (2n)` log n

]
<

4

3 log e
`(log n+ 2− w/2 + log log n/`)

< (1− ε)2w(log n− w/2 + log log n) (5.34)

≤ (1− ε)∆

(where (5.34) holds since (1− ε) > 4/(3 log e), 2w ≥ `, and log logn > 2 + log log n/`),

giving (5.33) as desired.

Similarly, we use ∆ ≥ 3
√

w2−wn log n to show

exp

[
−(1− ε)2∆2

4nq

]
(2n)` log n ≤ 1,

which is implied by each of(
−(1− ε)2∆2 log e

4nq

)
+ log

[
(2n)` log n

]
≤ 0

and √
4n2−w

log e
` (log n+ 1 + log log n/`) ≤ (1− ε)∆. (5.35)

Since log n+ 1 + log log n < (1 + ε) log n (very crudely) and ` ≤ 2w,√
4

log e
`2−wn (log n+ 1 + log log n/`) <

√
8(1 + ε)

log e
w2−wn log n

< 3(1− ε)
√

w2−wn log n (5.36)

≤ (1− ε)∆

(where (5.36) holds since 3(1− ε) >
√

8(1 + ε)/ log e), giving (5.35).
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A couple remarks regarding Theorem 5.3.1:

• A relatively straightforward argument shows that ∆ is essentially tight for fixed

`. In particular, for fixed λ ` `, there exists C = C(λ) such that w.h.p. G

admits a subautomorphism ϕ of type λ with |ϕ| > n2−w + ∆/C. (Note ∆/C =

Θ(
√
n log n).)

• Similarly, we get |ϕ| ≤ (1 + o(1))2 log2 n for w(ϕ) ≈ log n, which is off by at most

log n since w.h.p. ω(G) ∼ 2 log n (where ω(G) is the size of a largest clique in G).

We close this section with a weaker result for general p = p(n).

Theorem 5.3.2. Fix ε > 0 and let G = Gn,p with 1/2 ≥ p� ln2 n
n . W.h.p.

|ϕ| < (q(O(ϕ)) + ε)n (5.37)

for every subautomorphism ϕ of G.

Proof. We may assume p > 20 ln2 n
ε2n

. We want to show that w.h.p. no ϕ violating (5.37)

is a subautomorphism of G. It suffices to show, for any derangement σ on ` vertices

and t = t(n, σ) := (q(O(σ)) + ε)n, that P[G ∈ B(σ)] · P[G ∈ A(O(σ), t)] is less than

δ(`)n−` for
∑

`≥2 δ(`) = o(1) (here δ(`) = n−` for simplicity).

We split into two cases depending on `. If `p > 10 lnn, then (5.15) gives

P[G ∈ B(σ)] ≤ exp

[
−`

(
`− 2

2

)
p(1− p)

]
< exp

[
−`2p/5

]
< n−2`.

We are left with cases where ` ≤ 10 lnn/p < ε2n/(2 lnn). In such cases, we use

P[G ∈ A(O(σ), t)] = P[Bin(n− `, q) ≥ (q + ε)n− `] (5.38)

(see (5.10)). We apply Hoeffding’s inequality [28]

P[Bin(n, q) ≥ k] ≤ exp

[
−2

(k − nq)2

n

]
to bound (5.38) by

exp

[
−2

(εn− (1− q)`)2

n

]
< exp[−ε2n] < n−2`

(since 2` lnn < ε2n).
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We give the following as an immediate corollary.

Corollary 5.3.3. For any ε, p > 0, w.h.p. Gn,p is locally ((1− 2p(1− p) + ε)n)-rigid.

Proof of Corollary 5.3.3. For p as in Theorem 5.3.2, we simply observe that

q(O(ϕ)) ≤ (1− 2p(1− p))

for any non-trivial permutation ϕ. If p = O( ln2 n
n ), then n(1 − 2p(1 − p) + ε) > n and

the statement holds vacuously.

5.4 Further Questions

A. While Theorem 5.3.2 holds vacuously for p � 1/n (since then qp(λ) ≥ q(n) =

1− o(1), so (q + ε)n > n), it is unclear what can be said for Ω(1/n) = p = O(ln2 n/n).

B. It would be interesting to extend our results to Gn,d in analogy with Kim-Sudakov-

Vu [36]. There has also been work on the rigidity of Preferential Attachment graphs

(see e.g. [41]) and it would be interesting to see if an analogous result regarding local

rigidity is possibly there.

C. It seems likely that existing results on the asymmetry of Gn,p (e.g. Theorem 1.0.3

as well as the much stronger theorem on the rigidity of the 2-core of G due to Linial

and Mosheiff [39]) can be extended to the following “hitting time” result.

Conjecture 5.4.1. Let e1, . . . , eN be a uniformly random ordering of the pairs
(
V
2

)
(where |V | = n and N =

(
n
2

)
) and Gt = {e1, . . . , et}. Let

T0 = min{t : Gt has at most one isolated vertex}; and

T1 = max{t : Gt has at most one isolated vertex}.

Then w.h.p. Gt is rigid for all t ∈ [T0, T1].

Clearly Gt is non-rigid for all t < T0. Although GT0 is non-rigid when it has no

isolates (as this implies the exposure process went from 2 isolates to 0 isolates at step T0,

so GT0 contains vertices x, y adjacent only to each other), this occurs with probability

O(1/n). (Of course, the same comments apply to GT1 .)



59

While our machinery seems promising for showing GT0 is rigid, it seems not so easy

to couple Gt and Gn,p (for p = t/N) in a manner which respects rigidity (as rigidity is

a highly non-monotone property).

5.5 Minor Inequalities

5.5.1

We want to show

psr + (1− p)sr < (ps + (1− p)s)r

for s, r ≥ 1. It suffices to show

(a+ b)r

ar + br
=

(1 + b/a)r

1 + (b/a)r
=

(1 + γ)r

1 + γr
> 1

for γ = b/a > 0 and r > 1. Taking derivatives of top and bottom w.r.t. γ and

comparing, we get r(1 + γ)r−1 > rγr−1 and are done as the ratio is 1 for γ = 0.

5.5.2

We want to show

(1− p)s/2 ≥ ps + (1− p)s

for s ≥ 2 and 0 ≤ p ≤ 1/2. Setting s = 2r, this is equivalent to showing

1 ≥
(

p2

1− p

)r
+ (1− p)r (5.39)

for r ≥ 1. At r = 1, this becomes

(1− p) ≥ p2 + (1− p)2

p(1− 2p) ≥ 0,

which holds for p ≤ 1/2. Thus it suffices to show that the derivative of the r.h.s. of

(5.39) with respect to r is negative:

∂

∂r

(
p2

1− p

)r
+ (1− p)r =

(
p2

1− p

)r
ln

(
p2

1− p

)
+ (1− p)r ln(1− p) < 0.

This clearly holds since p2/(1− p) < 1.
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