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With President Trump’s decision to withdraw from the Paris Agreement on climate 

change, some local governments and states are taking their own initiatives to reduce 

greenhouse gas (GHG) emissions. But with interstate trade, state environmental policies 

may cause emission rises in neighboring states as goods can be shipped from anywhere to 

meet local consumption needs. This would undermine the intentions of such subnational 

climate policies. Given that states can set up their own policies to reduce greenhouse 

gases, state-level accounting is important within the U.S. The primary objectives of this 

research are to measure GHG emissions associated with the consumption of goods and 

services in each state and how state emissions might change with state environmental 

policies, e.g. carbon taxes. Moreover, regarding the close relationships between interstate 

trade and freight transportation, this research allocates interstate freight emissions to 

industries within each state. As freight emissions increase much faster than transportation 

emissions as well as overall emissions in the U.S., by identifying the state responsibility, 

interstate freight emissions can be regulated by state environmental policies. This 
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research also examines whether fuel price increases could drive substantial mode shifts 

away from emissions-intensive modes (i.e. truck and air) to reduce interstate freight 

emissions. 

This research uses a multiregional input-output (MRIO) framework that provides 

a concise and accurate means for articulating the interrelationships among industries of 

different states. Building a state-level MRIO model within the U.S. requires two sets of 

data: state input-output (I-O) tables and interstate trade flows. This research estimates 

state I-O tables based on the 2012 U.S. benchmark I-O tables (the most recent ones with 

405 sectors at the highest level of disaggregation) (BEA, 2018a). Due to limited interstate 

trade data, gravity models are used to estimate trade flows based on the Freight Analysis 

Framework 4 State Database for 2012 (BTS, 2016).  

Comparing state consumption-based emissions to the corresponding production-

based ones, states along the east and west coasts are net importers of GHG emissions and 

states in the Central and Mountain regions are net exporters. The emissions embodied in 

state consumption are mainly from within the home-state and nearby states. Texas and 

California pollute for all other states as they export a relatively large amount of embodied 

emissions nationwide. For interstate freight emissions, emissions-intensive states, e.g. 

Wyoming, North Dakota, and Nebraska, have the highest inbound and outbound 

transportation emissions per capita, besides Hawaii and Alaska. Mining (except oil and 

gas), food and beverage and tobacco products, and wood products involve both large 

transportation emissions and significant shares of trade-related emissions from 

transportation. 
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The MRIO framework is applied to examine the sensitivity of state consumption-

based GHG emissions to potential state carbon taxes. Besides the taxing state, nearby 

states and states with strong economic connections with the taxing one have larger 

emission reductions and bear more economic loss in the short run. The MRIO framework 

also allows me to estimate changes in interstate freight emissions due to fuel price 

increases. Emission reductions from interstate freight transportation are very limited with 

fuel price increases alone. The findings of this research can be used to advise policy-

making that accounts for both producer and consumer responsibilities. 
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1 Introduction 

1.1 Motivation 

Greenhouse gases (GHGs) like carbon dioxide, methane, nitrous oxide, and fluorinated 

gases warm the earth by trapping heat in the lower atmosphere. Due to human activity, 

the amount of major greenhouse gases (GHGs) in the atmosphere have increased 

exponentially since the mid-20th century (IPCC, 2007). The rapid increase of GHGs has 

caused global warming, which experts predict will lead to serious climate change. 

Climate change will cause abrupt changes in forest and agriculture systems, increasing 

loss of biodiversity, accelerated sea-level rise, and more-frequent extreme weather events 

which could be disastrous for human development (Rockström et al., 2009). The U.S. 

emits about 13% of the global GHG emissions annually and is the second largest emitter 

worldwide (UNEP, 2019). As one of the top global GHG emitters as well as one of the 

world’s largest consumer economies, the U.S. could play a key role in controlling global 

GHG emissions. But it has failed to commit to emissions reduction, except for some 

states (e.g. California), according to the United Nations Environment Emissions Gap 

Report 2018.  

After a continuing growth of GHGs from 1990 to 2007, there has been a gradual 

reduction in annual GHG emissions in the U.S. with some fluctuations since 2008, after 

the great recession (EPA, 2020). The recent reductions do not necessarily suggest that the 

U.S. is doing enough to control GHGs, as it is the largest net emissions importer among 

developed countries (Peng et al. 2016). Trade enables the geographical separation 

between the consumption of goods and services and the environmental burdens of 
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production (Peng et al., 2016). In 2018, GHG emissions in the U.S. increased almost 3% 

(EPA, 2020). 

Due to the U.S. decision to withdraw from the Paris Agreement on climate 

change, more local and state governments within the U.S. are likely to create their own 

policies to reduce GHG emissions (Worland, 2017). So far, 22 U.S. states and the District 

of Columbia set their own emissions reduction targets ("State Climate Policy Maps," 

n.d.). But with interstate trade, state environmental policies may cause emission increases 

in neighboring states since goods can be shipped from anywhere to meet local 

consumption needs. For example, California’s cap-and-trade program and the Regional 

Greenhouse Gas Initiative (RGGI) of northeastern states both increase emissions in 

surrounding regions through the import of electricity (Caron et al., 2015; Fell & Maniloff, 

2018). Given that states can design policies to reduce greenhouse gases, state-level 

accounting is important within the U.S. It informs decision makers on the potential of 

alternative designs of state and regional environmental policies from the perspective of 

both producer and consumer responsibilities. This research measures GHG emissions 

associated with the consumption of goods and services by state using a multi-regional 

input-output (MRIO) framework, which depicts interindustry relationships among states.  

Traditional production-based emissions are measured based on where emissions 

are generated. Consumption-based accounting captures emissions in local consumption as 

embodied in local production as well as those involved in the inflow of goods from other 

states to meet local consumption; traditional production-based accounting involves only 

the local consumption as embodied in local production plus the export of local production 
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to other states. The differences between consumption- and production-based emissions 

are the net emissions embodied in trade (Aichele & Felbermayr, 2012). 

Many researchers have measured consumer responsibility for GHG emissions at 

the national level, using readily available international trade data (Munksgaard & 

Pedersen, 2001; Weber & Matthews, 2007; 2008; Ackerman et al., 2007; Wiedmann, 

2009; Feng et al., 2013; Peng et al., 2016). For example, Weber and Mathews (2008) 

report that 30% of the CO2 emissions due to American household consumption were 

generated outside the U.S. in 2004. The increase of CO2 embodied in U.S. imports 

outweighs the increase of emissions embodied in its exports from 1997 to 2004 (Weber & 

Matthews, 2007). But few researchers focus on state-level consumption-based emissions, 

due to limited data on domestic trade. Some researchers have estimated interstate trade 

flows (Jackson et al., 2006; Lindall et al., 2006; Park et al., 2009; Caron et al., 2013, 

2017). So far, the latest analysis of U.S. state-level consumption-based emissions is for 

2004 (Caron et al., 2013, 2017), and it was performed at a 52-sector level. My research 

examines a more recent data for the year 2016 and with more sectoral detail—403 

industries. 

With state consumption-based GHG emissions, emissions embodied in interstate 

trade are clear. This allows me to examine the impacts of state environmental policies. 

Some researchers examine the leakage problem (the emission reductions of carbon-

constrained regions could be partially offset by the increased emissions of other regions) 

due to subnational climate policies, e.g., California’s cap-and-trade program and the 

RGGI (Caron et al., 2015; Fell & Maniloff, 2018). These two programs are both market-

based environmental policies that cap the amount of allowable GHG emissions and allow 
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trading between producers. Another common market-based measure is a carbon tax, 

which puts a price on emissions. Market-based measures let the market decide the cost of 

reducing emissions, and let firms and households adjust their behaviors without 

specifying how (Center on Budget and Policy Priorities, 2015). Theoretically, cap-and-

trade programs and carbon taxes cost the same to achieve a given emissions-reduction 

objective (Hanemann, 2009). This work investigates the environmental and economic 

impacts of potential state carbon taxes. 

Besides GHGs emitted in the production process, freight transportation also 

contributes to trade-related emissions. Although only accounting for less than 10% of the 

total U.S. GHG emissions, emissions from freight transportation have been rising rather 

rapidly of late (EPA, 2019a). From 2000 to 2017, freight emissions rose about 11% as 

total transportation emissions decreased by 2.6% and overall U.S. emissions decreased 

by 10.8% (EPA, 2019a). The rapid growth of freight emissions is largely due to the 

increase in the volume of freight movement and the rising use of trucks (Davies et al., 

2008; Wu & Pienaar, 2019; EPA, 2019a). Current research mainly analyzes emissions 

from freight transportation by major modes (Horvath, 2006; Davies et al., 2008; Nealer et 

al., 2012; Wu & Pienaar, 2019). There is little research that links emissions from freight 

transportation to trade flows, especially domestic trade. Again, this is due to the limited 

amount of data available on domestic shipments within the U.S. (Giuliano et al., 2010). 

Given that freight transportation is driven by demands of trade, this research fills the gap 

to examine the magnitude of freight transportation’s contribution to trade-related 

emissions. Moreover, as a major source of mobile emissions, freight transportation is 

difficult to regulate or monitor with state-level policies, especially interstate freight 
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transportation. This research allocates emissions from interstate freight transportation to 

industries in each state with the help of a MRIO framework; in this way it enables me to 

identify the state share of interstate freight transportation emissions. 

There are many strategies to reduce transportation emissions, e.g., two examples 

are improving fuel economy (Greene et al., 2020) and enabling green supply chains 

(Tiwari et al., 2015). Since truck usage is rising and grabbing an ever-greater share of 

freight transport, it is mostly responsible for the rapid growth of freight transportation 

emissions. In this vein, one obvious strategy would be to shift to a less emissions-

intensive mode, e.g. truck to rail. Many researchers use scenario analysis to investigate 

the extent to which a mode shift might enable achievement of emissions-reduction goals 

(Nealer et al., 2012; Llano et al., 2018). Rather than examine explicit mode-shift 

scenarios, I investigate possible fuel price changes due to extra fuel taxes. The carbon 

intensity of each mode is related to its technology, fuel mix, vehicle loading, and traffic 

(Kamakate & Schipper, 2009). Regarding fuel mix, the U.S. transportation sector relies 

heavily upon petroleum-related products—more than 90% of the total transportation 

energy use (EIA, 2020b). Extra fuel taxes would drive fuel prices increase and induce 

modal shifts. I focus on the extent to which rising crude oil prices could trigger mode 

shifts that might reduce transportation GHG emissions. 

1.2 Research Objectives 

My work integrates economy, transportation, and environment through the estimation of 

GHG emissions embodied in domestic trade, especially interstate trade. This is because 

interstate trade flows—in other words, interstate freight movements—reflect the 

economic structure of each state as well as the relationships among industries, 
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households, and government across states (Park et al. 2011). The main purpose of this 

work is to provide a detailed and comprehensive picture of GHG emissions in the U.S. 

from both consumption and production perspectives.  

The second chapter focuses on building consumption-based accounting of GHG 

emissions for each state to complement the traditional production-based accounting. 

Consumption-based emissions underline consumer responsibilities. Differences between 

state consumption- and production-based emissions are the emissions embodied in state’s 

inflows (from other states) minus those embodied in state’s outflows (to other states). I 

develop a state-level MRIO model which simulates state economies and the interstate 

supply chain in the U.S. Emissions generated in the production process can be traced to 

final consumers. Moreover, I estimate the total emission intensity for each industry by 

state (GHG emissions per unit of industry’s output) accounting for emissions generated in 

the upstream supply chain. The objective of Chapter 2 is to identify who pollutes for 

whom among states within the U.S. through estimation of emissions embodied in 

interstate trade by industry. The model results shed light on which state economies will 

be most affected by a new federal emissions policy, and which states are most and least 

able to afford to take independent environmental action. 

The third chapter extends the analysis of interstate trade-related GHG emissions 

to freight transportation. Trade-related emissions come from two sources: emissions 

generated during production and emissions emitted while transporting. Given the close 

relationship between trade and freight transportation, it is important to link transportation 

emissions to trade flows in order to investigate freight transportation’s contribution to 

trade-related emissions in detail. Only goods-producing industries that require freight 
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transportation services are included in the analysis; Other industries are not traded nearly 

so much across state boundaries. Interstate trade flows are converted into freight 

movements by mode. I consider all five major modes: truck, rail, water, air, and pipeline. 

The domestic part of international trade is excluded in this analysis because the 

destination of imports is unknown as is the port of call for exports. By multiplying ton-

mile emission factor by mode and freight movements, emissions from freight 

transportation are estimated for each interstate trade flow by industry. The objective of 

Chapter 3 is to identify the responsibilities for interstate freight transportation emissions 

by state and by industry so that this mobile source of emissions can be regulated by state 

environmental policies. 

After the comprehensive evaluation of the current trends of state-level GHG 

emissions, the fourth chapter examines how might emissions change in responding to 

potential state carbon taxes and new fuel taxes. Since state environmental policies not 

only affect emissions within a state but also emissions of surrounding regions, I 

investigate the short-term environmental and economic impacts of potential carbon taxes 

in one state on all states holding state economic structure and interstate trade patterns 

constant. While carbon tax scenarios examine the sensitivity of overall emissions by state 

and by industry, fuel price scenarios focus on emissions from interstate freight 

transportation alone. I explore whether fuel price changes can trigger modal shifts away 

from emission-intensive modes (e.g. truck and air) to environmentally friendly modes 

(e.g. rail and water). In this way, I examine the likely extent to which emission reductions 

might be achieved via freight transportation. The objective of this chapter is to enable a 

better understanding of the relationships between economic systems and environmental 
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impacts. To clarify, the model results of Chapter 4 are not a forecast of future nor a 

thorough impact analysis. This analysis is necessarily rough and ceteris paribus, as I do 

not consider substitution effects in carbon tax scenarios nor changes in state supplies and 

demands in the course of effecting the fuel price scenarios. Still, I identify the industries 

and states that likely would be most and least affected by state carbon tax policy, impacts 

on state GDP and employment, and the set of interstate freight shipments that are likely 

to be most sensitive to changes in fuel prices. 

1.3 Research Approach 

Figure 1-1 Research Approach 

Figure 1-1 shows the research approach for this work. The core is a MRIO framework 

(yellow part) strengthened by a transportation module (blue part) and an environment 

module (green part). The orange part in Figure 1-1 shows the scenarios included in this 

work. The MRIO model treats each U.S. state as an independent economic region and 

includes 403 industries from the U.S. benchmark input-output (I-O) tables (BEA, 2018a). 

States are connected through interstate trade in the MRIO model. The transportation 

module includes regression models to estimate freight transportation mode choice. In the 
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environmental module, I use emissions intensities by industry and ton-mile emission 

factors for freight transportation to estimate GHG emissions.  

In Chapter two, I estimate state I-O tables based on the 2012 U.S. benchmark I-O 

tables with 405 sectors (BEA, 2018a); and use the Freight Analysis Framework version 4 

(FAF4) 2012 State Database to estimate interstate trade flows (BTS, 2016). Estimates of 

freight transportation mode choice are fed into the calculation of interstate travel costs, 

which are used in interstate trade flow estimation. I then estimate consumption- and 

production-based GHG emissions for each state by combining the MRIO model and 

emission intensities by industry. The interstate trade of goods-producing industries that 

require freight transportation services are converted into freight flows in ton-mile by 

mode in Chapter 3 with the help of transportation multinomial logit regression model for 

mode choice. The interstate freight movements multiplied by ton-mile emission factors 

generates estimates of transportation emissions. In Chapter 4, I apply the state economic 

structure and interstate trade patterns from the MRIO model for state carbon tax 

scenarios. Sectoral supply and demand for each state as produced by the MRIO model 

together with the mode choice regression model are used for estimating the fuel price 

scenarios. Details of the methods are explained in the following chapters. 

1.4 Contribution 

This research will contribute to the literature by conducting a more current analysis for 

the year 2016 at the highest possible level of industry disaggregation (403 industries, 

available in the 2012 U.S. benchmark I-O tables). This level of disaggregation is 

important since economic models tend to assume that a given sector has the same 

production technology; thus, analysis of a more fine-grained set of industries can 
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significantly minimize the potential for aggregation bias. The MRIO framework built in 

this research can be used for future analysis to construct general equilibrium model. 

The United Nations Environment Programme (2018) calls for all nations to 

strengthen domestic emission reduction policies. In this regard, this research has 

important policy implications. Firstly, it yields a comprehensive picture of consumption-

based GHG emissions within the U.S.—one that complements the better-known 

geographic portrait of production-based emissions. Such state-level consumption-based 

accounting would help policymakers to better understand the effects of incentives to 

adopt state or regional climate policies and to design policies in a way that accounts for 

consumer responsibility. Secondly, by identifying how much freight transportation 

contributes to interstate trade-related GHG emissions, I allocate transportation 

emissions—mobile source of emissions to industries within states. This will enable the 

regulation of interstate freight transportation emissions by state policies (e.g. improve 

efficiency of supply chains for industries with large transportation emissions). Thirdly, 

this research provides a blueprint for evaluating the environmental and economic impacts 

of state/regional climate policies, e.g. state carbon taxes and state fuel taxes (rising fuel 

prices could be the result of extra fuel taxes to control energy usage and then emissions). 
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2 Consumption- and Production- Based Greenhouse Gas Emissions for 

U.S. States 

2.1 Introduction 

Many U.S. states have established their own targets for reducing greenhouse gas (GHG) 

emissions ("State Climate Policy Maps," n.d.). Given that states can design their own 

policies to reduce greenhouse gases, state-level accounting is important as some states are 

national pollution havens. States with stiffer regulations can import goods and services 

from other unconstrained states, thereby negating some of the benefits of state-level 

emissions reductions. Traditional production-based emissions are those emissions from 

local production, which include emissions embodied in local products that consumed 

locally plus the exports to other states and nations. Emissions embodied in local 

consumption include emissions generated by local producers plus emissions embodied in 

the imports from other states and nations. State-level accounting of GHG emissions can 

help in designing of alternative state and regional environmental policies via perspectives 

of both producer and consumer responsibility.  

The differences between consumption- and production-based accounting are the 

emissions embodied in the imports minus those in exports. The availability of pertinent 

trade data makes it possible to examine emissions embodied in U.S. international trade 

(Ackerman et al., 2007; Weber & Matthews, 2007, 2008). The U.S. exports low-energy 

commodities while importing energy-intensive goods (Weber & Matthews, 2007). On 

net, the U.S. imports emissions and is the largest net emissions importer among 

developed countries (Peng et al., 2016; Weber & Matthews, 2007). Due to limited data on 

domestic trade, little research has focused on emissions embodied in U.S. domestic trade. 
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Available data are based on a limited survey—U.S. Commodity Flow Survey (Census 

Bureau, 2015). That is, there is no census of interstate trade; and the limited survey might 

not cover all possible commodities, let alone all shipments for any given commodity. 

Moreover, data for trade in services are not available at all. While we cannot directly 

observe all shipments for all commodities, some researchers have estimated trade flows 

among U.S. states (Jackson et al., 2006; Lindall et al., 2006; Park et al., 2009; Caron et 

al., 2013, 2017).  

In fact, Caron et al. (2013, 2017) performed a fairly detailed analysis of U.S. state 

level consumption-based CO2 emissions. They combined U.S. state-level data with data 

outside of the U.S. at a country level. They find that domestic trade explains most of the 

differences in state responsibilities for emissions. State-level consumption-based 

emissions are quite different from the equivalent production-based emissions. For 

example, they find New England and New York are both net importers of embodied CO2 

while the Midwest is almost balanced with similar imports and exports of emissions. The 

differences in state-level CO2 intensity of consumption (kg/$) are mainly due to 

differences in CO2 intensity of production rather than differences in state consumption 

patterns (Caron et al. 2017). The base year of their research is 2004, however, so it does 

not reflect more recent trends in emissions, especially cannot reflect many states’ recent 

GHG-emissions mitigation strategies. Their model also contains only 52 sectors, so it 

lacks the technology detail required to accurately track interregional commodity trade, let 

alone direct energy resource use and, hence, emissions discharges. 

Due to the nation’s strong economic integration and geographic size, domestic 

trade within the U.S. is much larger than that of its international trade. The larger volume 
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of domestic trade suggests that the potential carbon leakage due to interstate trade 

(emission reductions of states with stronger emissions policies partially offset by the 

increase of emissions from other states due to imports from those states) may be larger 

than its international equivalent (Caron et al., 2015). Following Caron et al. (2013, 2015, 

2017), my research focuses on GHG emissions embodied in interstate trade by estimating 

state-level consumption-based emissions using a multiregional input-output (MRIO) 

framework. I assume that detailed production technologies (at the 403-industry level) are 

homogeneous within the U.S. This assumption clearly understates any differences in 

state-level emissions responsibilities that may exist in real technological differences for a 

certain industry among states (Caron et al., 2017). Still, the MRIO framework allows me 

to account for the different production and trade patterns among states. Compared to 

Caron et al. (2013, 2015, 2017), I measure the state-level GHG emissions at a more 

detailed level of industry (403 industries versus their 52 sectors) for a more current year 

(2016 versus 2004). In this chapter, I discuss how I develop the model including any data 

sources I use. I then show model results and end with discussion of research limitations. I 

then summarize and conclude. 

2.2 Methods and Data 

The goal of my research is to measure GHG emissions associated with the consumption 

of goods and services by state. The MRIO framework is suitable toward achieving this 

goal since it provides a concise, accurate means for articulating the interrelationships 

among industries across all states. The input-output (I-O) model has been widely used for 

environmental issues and as early as Leontief (1970). Emissions can be tracked through 

and across both industries and states to final consumers. The MRIO approach allows me 
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to trace the origins of emissions due to final consumption through the production chain 

no matter where the emissions are produced. Thus, I can answer the question “who 

pollutes for whom?” Figure 2-1 shows the flow of building a 2016 U.S. state-level MRIO 

model and estimating state GHG emissions. 

Figure 2-1 Flow Chart of the Research Approach for Chapter 2 

 

2.2.1 MRIO model development 

I construct a multiregional input-output (MRIO) model for 50 states plus the District of 

Columbia within the U.S. for the year 2016. Similar to the standard I-O framework, the 

total output of the economy, 𝐱, is the sum of intermediate consumption, 𝐂𝐀𝐱, and final 

demand, 𝐂𝐟.  

 𝐱 = 𝐂𝐀𝐱 + 𝐂𝐟 (1) 

Assuming there are 𝑛 industries and 𝑝 regions, 𝐱 is a 51𝑛 vector of output (net taxable 

business income) by state for each industry. The variable 𝐟 also denotes a 51𝑛 vector, but 

for final demand by state for each industry. 𝐀 is a 51𝑛 × 51𝑛 matrix (Eq. 2) in which 𝐀𝑟 

(𝑛 × 𝑛 matrix) is the direct requirements table for state 𝑟. The element in 𝐀𝑟, 𝑎𝑖𝑗
𝑟 , 

suggests the amount of inputs of industry 𝑖 needed to produce one unit of output of 
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industry 𝑗 in state 𝑟 including those inputs from outside of state 𝑟. 𝐂 is a 51𝑛 × 51𝑛 trade 

share matrix (Eq. 3).  

 𝐀 = [

𝐀1 0 … 0
0 𝐀2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐀𝑝

] (2) 

 𝐂 = [

�̂�11 �̂�12 … �̂�1𝑝

�̂�21 �̂�22 ⋯ �̂�2𝑝

⋮ ⋮ ⋱ ⋮
�̂�𝑝1 �̂�𝑝2 ⋯ �̂�𝑝𝑝

] (3) 

In the trade-share matrix 𝐂, �̂�𝑟𝑠 is a 𝑛 × 𝑛 diagonal matrix (Eq. 4) in which the 

nonzero element, 𝑐𝑖
𝑟𝑠, indicates the share of products of industry 𝑖 consumed in state 𝑠 

that come from state 𝑟 (Eq. 5). 𝑧𝑖
𝑟𝑠 is value of shipments from industry 𝑖 in state 𝑟 that is 

shipped to 𝑠. By multiplying the trade share matrix with both state intermediate demand 

and final demand (Eq. 1), the MRIO model assumes the same proportion of intermediate 

and final demand in state 𝑠 are fulfilled by state 𝑟. 

 �̂�𝑟𝑠 = [

𝑐1
𝑟𝑠 0 … 0

0 𝑐2
𝑟𝑠 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑐𝑛

𝑟𝑠

] (4) 

 𝑐𝑖
𝑟𝑠 =

𝑧𝑖
𝑟𝑠

∑ 𝑧𝑖
𝑟𝑠𝑝

𝑟=1

 (5) 

Eq.1 can also be written as follows. The output is the result of pre-multiplying final 

demand by the Leontief inverse, (𝐈 − 𝐂𝐀)−1, where 𝐈 is a 51𝑛 × 51𝑛 identity matrix. 

 𝐱 = (𝐈 − 𝐂𝐀)−1𝐂𝐟 (6) 

Since survey-based state I-O tables are not available in the U.S. (in fact, 

subnational A matrices are rarely available for nations), I explain how I estimate them in 

the following subsection. In particular, I estimate states’ industry outputs, direct 
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requirements, final demands, and interstate trade flows. I use all 403 industries included 

in the 2012 U.S. benchmark I-O tables. 

2.2.1.1 The 2016 detail level U.S. I-O tables 

In order to build the state level MRIO model for 2016, two steps are necessary: 

estimating the 2016 detail-level U.S. I-O accounts and subsequently for each state. There 

are three main parts of the I-O tables: the inter-industry transactions, value added, and 

final demand. 

Each column of the industry transaction table shows the value of shipments 

purchased from all other industries by a specific industry. The 𝐀 matrix, “direct 

requirements matrix,” is calculated by dividing each column of industry transaction table 

by that specific industry’s output. To apply 2012 production technology to 2016, I 

assume production technology is on average stable as suggested by Carter (1970). The 

2012 U.S. 𝐀 matrix is modified to account for shifts in production values, which reflect 

the differences in value added (𝑤𝑗) and output (𝑥𝑗) by industry (Round, 1972, 1983) as 

follows: 

 𝑎𝑖𝑗
2016 = 𝑎𝑖𝑗

2012 ×
1 − (𝑤𝑗

2016 𝑥𝑗
2016⁄ )

1 − (𝑤𝑗
2012 𝑥𝑗

2012⁄ )
 (7) 

While value added, also known as gross domestic product (GDP) by the income 

approach, and output by industry are available for 2016 from the BEA in 71 industries 

(BEA, 2019a), they are not available at the same extreme detail as in 2012 benchmark 

U.S. I-O tables (405 industries) (BEA, 2018a). Fortunately, payroll data for 2016 are 

available at a very detailed industry level; and payroll data tend to closely approximate 

BEA’s labor compensation estimates for most industries except for agriculture, railroad, 

private households, etc. (BLS, 2017b). Labor compensation is a component in both the 
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less-detailed 2016 GDP data as well as in the more detailed data available in the 2012 

benchmark tables. I therefore use annual payroll data from the Quarterly Census of 

Employment and Wages (QCEW) published by the U.S. Bureau of Labor Statistics (BLS, 

2017b) to convert 2016 compensation of employees (GDP component) into the same 

detailed industry level as the benchmark I-O tables. I do so by assuming the share of 

annual payroll for a detailed industry in the aggregate sector is the same as that of 

compensation suggested by Lahr (2001). I then estimate 2016 GDP and output at the 

detailed industry level using a compensation to output ratio and a compensation to GDP 

ratio by industry (both ratios are obtained from 2012 I-O tables) and adjust them 

proportionally to match official data in more aggregated form (again, see Lahr, 2001, for 

estimation details). 

Personal consumption expenditures (PCE) compose a substantial part of the final 

demand (about 68% in 2016) (BEA, 2019a). They too are available from BEA for 2016 

but in 398 categories and purchasers’ value (BEA, 2019c) rather than by industry in 

producers’ value as in the final demand of I-O table. Differences between purchasers’ and 

producers’ value are transportation costs and trade margins from wholesale and retail 

(BEA, 2018b). I convert these PCE categories into the model industries using a PCE 

bridge table available from BEA (BEA, 2018b). The 2016 PCE bridge table also has a 

more-aggregate set of industries, so I use the 2012 detailed bridge table as a reference by 

assuming commodity composition in an aggregated expenditure category remained stable 

between 2012 and 2016; I made similar assumptions for shares of transportation costs 

and trade margins in purchasers’ value to estimate PCE in producers’ value. I 

subsequently adjusted the results of this translation to match totals in the more-aggregate 
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2016 bridge table. Other final-demand sectors—government consumption, private and 

public investment, change in private inventories, imports and exports —are established 

from the more-aggregate 2016 I-O tables. I again use benchmark 2012 final-demand data 

to convert these totals to the model’s industry detail by assuming stable expenditure 

shares.  

My focus is the domestic accounting among states, however. So, I “domesticate” 

the U.S. direct requirements matrix by proportionally removing imports from both 

intermediate and final demand assuming no exports derive from imports (Jackson, 1998; 

Lahr, 2001). 

2.2.1.2 State industry transaction table 

Assuming production technologies are spatially constant, I estimate the state direct-

requirements matrix (𝐀𝑟) by adjusting the 2016 U.S. direct requirements matrix to 

account for the regional fabrication effects—the relative differences in regional factor 

payments for labor by industry (Round, 1972, 1983). Similar to Eq. 7, the adjusting 

parameter for each column of 𝐀𝑟 uses state value added (𝑤𝑗
𝑟) and output (𝑥𝑗

𝑟), as well as 

national value added (𝑤𝑗
𝑛) and output (𝑥𝑗

𝑛) as follows:  

 𝑎𝑖𝑗
𝑟 = 𝑎𝑖𝑗

𝑛 ×
1 − (𝑤𝑗

𝑟 𝑥𝑗
𝑟⁄ )

1 − (𝑤𝑗
𝑛 𝑥𝑗

𝑛⁄ )
 (8) 

While state GDP data are readily available from BEA—albeit for aggregate 

industries akin to those in the 2016 national I-O table—state output data are not available 

at all (BEA, 2019b). So, I assume a similar compensation/output ratio by industry within 

the U.S. (obtained from the previous step) to estimate state output by industry as 

compensation suggests a worker’s marginal value product (Lahr, 2001). For state GDP by 

industry, I apply national compensation/GDP ratio to state compensation to estimate the 
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share of GDP for a detailed industry in an aggregate sector. These shares are then used to 

allocate the official state GDP data from BEA in aggregate sectors to the detailed 405 

industries. To produce state compensation estimates, I use a parallel process to that I used 

to update the national data. I use state annual payroll data from QCEW to estimate state 

compensation at the detail level of industry (BLS, 2017b). State compensation estimates 

must match those available by aggregated industry. Meanwhile, the compensation by 

industry across states must sum to the national compensation by industry. I apply the 

iterative biproportional adjustment procedure (the RAS technique, see Miller & Blair, 

2009, for details) to assure state compensation by industry satisfies both requirements. 

The same data constraints also apply to state GDP estimates by detailed industry which 

are adjusted using RAS as well. Moreover, state output estimates by industry are adjusted 

to assure output is not smaller than GDP because GDP is only the value-added part of 

industry output.  

The electric power sector is one of the largest sources of GHG emissions, and 

each state uses mixes of energy resources to generate electricity. So, I adjust the energy 

inputs for the power industry in the 51 state 𝐀𝑟 matrices using the State Energy Data 

System (SEDS) of the U.S. Energy Information Administration (EIA, 2016a). The SEDS 

provides the state annual energy expenditure estimates for the electric power sector 

including coal, natural gas, petroleum, nuclear fuel and biomass (other renewable energy 

such as hydro, solar, wind, etc. not have direct expenditures). But the definition of the 

electric power sector used by the EIA is broader than that of the BEA, even after federal, 

state, and local government electric utilities are combined with electric power generation, 

transmission, and distribution (North American Industry Classification System (NAICS) 
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221100) in the I-O tables. So, instead, I use the state share of each energy expenditure 

from the SEDS to reallocate the state energy inputs for the power industry. I adjust the 

results by using RAS to assure the sum of state energy expenditures are equal to those at 

the national level while retaining state total energy expenditures for the power industry. 

Through this aggregation of the electric power sector, my model has 403 industries, 

instead of the original 405 industries in the 2012 benchmark I-O tables. 

2.2.1.3 State final demand 

State personal consumption expenditures (PCE) are available from the BEA, but only for 

24 aggregate categories (BEA, 2019b). I, thus, use the Consumer Expenditure Surveys 

Public-use Microdata (CE-PUMD) (BLS, 2017a) to parse state PCE shares into more 

detail. The CE-PUMD provides monthly household expenditures in more than 500 

categories by universal classification codes (UCC) (BLS, 2017a). I use these monthly 

consumer spending data across 2016 to estimate annual state household expenditures into 

detailed PCE categories. There are a few small states (e.g. Montana, Wyoming, Vermont, 

Maine, etc.) without identified data in CE-PUMD; thus, I proxy their expenditure detail 

by using the average spending patterns of surrounding states. The state PCEs are then 

converted into 403 industries using the national PCE bridge table that I obtained when 

converting the 2016 U.S. PCE into industries (see Section 2.2.1.1).  

Note, the PCE are in terms of purchasers’ value while data in the I-O tables are in 

terms of producers’ value. As mentioned earlier for the national case, the differences 

between the two values are transportation costs and trade margins—purchaser’s value 

include these items, while producer’s value excludes them (BEA, 2018b). By using the 

national PCE bridge table to convert state PCEs, I actually assume the commodity 
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composition in each PCE category, and the shares of transportation costs and trade 

margins in purchasers’ value are similar among states. 

For other parts of state final demand, I assume homogenous personal-income-

based state preferences for U.S. Government expenditures and private investment. That 

is, I allocated these national expenditures to states by their shares of aggregate national 

personal income in 2016. I similarly allocated international exports and change in private 

inventories to states according to the states’ shares of national output for each industry. 

2.2.1.4 Interstate trade flow estimation 

In order to obtain the trade share matrix 𝐂, I use a gravity-model formula to estimate 

interstate trade flows by industry. Gravity models are very useful and popular empirical 

tools to calibrate trade flows. They are typically mathematically simple and intuitive in 

nature (Sen & Smith, 2012). The basic idea is that the interactions between any two 

regions (e.g. bilateral trade flows) are proportional to the amount of activities in each 

region, and inversely proportional to impeding frictions (freight related costs) between 

them (c.f. Kockelman et al. 2005).  

I use the following gravity model (Eq. 9), where 𝑔𝑖 is a constant by industry, 𝑠𝑖
𝑟 is 

the excess supply of state 𝑟 (outbound supply), 𝑑𝑖
𝑠  is the excess demand of state 𝑠 

(inbound demand), with 𝛼 and 𝛽 as weights, respectively. 𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠  represents the travel 

cost between state 𝑟 and 𝑠, with 𝜔 as distance decay parameter that measures the 

sensitivity of trade flow to spatial friction. Intervening opportunities typically rule in 

gravity models; that is, product demanders prefer to have their needs fulfilled by 

suppliers who are closer. 
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 𝑧𝑖
𝑟𝑠 = 𝑔𝑖

(𝑠𝑖
𝑟)𝛼(𝑑𝑖

𝑠)𝛽(𝑙𝑖
𝑟)𝛾

(𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 )𝜔

 (9) 

The degree of specialization, 𝑙𝑖
𝑟, is measured by the location quotient of state 𝑟; 

this measure indicates the degree of excess supply by industry (Eq. 10). 𝑠𝑖
𝑟 is the excess 

supply of industry 𝑖 in state 𝑟, ∑ 𝑠𝑖
𝑟𝑛

𝑖=1  is the excess supply of all industries in state 𝑟, 

∑ 𝑠𝑖
𝑟51

𝑟=1  is the excess supply of industry 𝑖 from all states, and ∑ ∑ 𝑠𝑖
𝑟51

𝑟=1
𝑛
𝑖=1  is the excess 

supply of all industries from all states. Sargento (2009) suggests that adding this variable 

improves trade-flow estimates of simpler gravity models. 

 𝑙𝑖
𝑟 =

𝑠𝑖
𝑟 ∑ 𝑠𝑖

𝑟𝑛
𝑖=1⁄

∑ 𝑠𝑖
𝑟51

𝑟=1 ∑ ∑ 𝑠𝑖
𝑟51

𝑟=1
𝑛
𝑖=1⁄

 (10) 

Before estimating the excess supply and the excess demand by industry, I first 

estimate each state’s regional purchase coefficients (RPC) following Treyz and Stevens 

(1985). An RPC is the share of state demand that is fulfilled by supplies produced within 

the state (𝑐𝑖
𝑟𝑟 in trade-share matrix). After domesticating the I-O tables (removing 

international imports), the state total supply is state output minus international exports, 

and change in private inventories (Treyz & Stevens, 1985; Lahr, 2001; Horowitz & 

Planting, 2006); the state total demand is the sum of intermediate demand (𝐀𝑟𝐱𝑟), 

personal consumption expenditures, government consumption, and investment. 

Industries’ excess supplies are calculated as the state total supply minus local demand 

(the product of the state total demand and RPC). And their excess demands are states’ 

total demands minus their local demands. 

Travel costs are represented by the weighted average of the fuel cost to ship one 

unit of product from certain industry (Eq. 11). The weight is a freight transportation 

mode’s share (𝑠𝑚
′ ) of each industry’s products. By doing so, I account for the 
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characteristics of the industry (𝑤𝑖, weight/value ratio), the transportation network distances 

of different modes (𝑑𝑚
𝑟𝑠), and the different fuel cost by mode (𝜆𝑚, fuel cost per ton-mile). 

The calculations of mode share, transportation network distances, and fuel cost are 

presented in Chapter 3. The weight/value ratios of the 403 industries are from the 2012 

Commodity Flow Survey (CFS) (Census Bureau, 2015). 

 𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 = ∑ 𝑠𝑚

′ ‧𝑤𝑖‧𝑑𝑚
𝑟𝑠‧𝜆𝑚

𝑚
 (11) 

For the goods industries, also I use the Freight Analysis Framework version 4 

(FAF4) State Database for 2012 (BTS, 2016) to calibrate the gravity model. FAF4 

incorporates data from the CFS, agriculture, utility, construction, and other sectors and 

provided interstate trade values by commodity (Standard Classification of Transported 

Goods (SCTG)). Anderson et al.’s (2013) cross-reference between SCTG and North 

American Industry Classification System (NAICS) (the industry code of the I-O tables) 

enables an initial trade matrix for goods by industry. 

Trade information on services is lacking in the U.S. But Sargento et al. (2012) 

suggest that gravity results on trade flows look empirically reasonable and tend to be 

suitable in the absence of actual trade flows. Following Sargento et al. (2012), I use the 

simple gravity model for all service industries. That is, I assign 1.0 to parameters 𝛼, 𝛽, γ 

and 𝜔, as well as the constant 𝑔𝑖 in Eq. 9. I also use the straight-line distances between 

state population centers rather than freight travel costs. This is because services tend to be 

delivered either via broadband or passenger transportation both of which have relatively 

less-expensive and, yet, thicker networks than do freight transportation modes. Interstate 

trade-flow estimates of the gravity model are adjusted using the RAS technique. 
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2.2.2 GHG Emissions Estimation 

I use the U.S. Environmental Protection Agency’s (EPA) United States Environmentally-

Extended Input-Output (USEEIO) v1.1 dataset (Ingwersen et al., 2017) to generate the 

direct GHG emission intensity to estimate GHG emissions in CO2 equivalent. The direct 

emissions intensity by industry (𝛜𝒅) is the amount of GHGs generated in the process of 

producing one unit of the industry output. For states, I apply the U.S. GHG emissions 

intensity based on the energy resources used as inputs for each industry except for the 

electric power industry. This assumption follows the general assumption of homogeneous 

technologies across states within the U.S. that I apply in the MRIO model. The 

production-based GHG emissions by state by industry, 𝐄𝒑, are calculated as the state 

output by industry, 𝐱, multiplied with the corresponding direct emission intensity, 𝛜𝒅 (a 

51 × 403 vector). 

 𝐄𝒑 = 𝛜𝒅𝐱 (12) 

The USEEIO dataset fulfills the detail level of industry for my analysis but are for 

the year 2013. By using this dataset, I assume relative stable emissions per unit of 

industry output from 2013 to 2016. I should note that the USEEIO dataset does not 

include direct emissions from households’ direct consumption of fossil fuels, e.g., via 

personal vehicle use and home heating; so, the USEEIO understates the annual total GHG 

emissions in the U.S. Fortunately, such household emissions are included in both 

consumption-based and production-based accounting of a given state, so omitting this bit 

of emissions will not affect the relationship of “who pollutes for whom” among states.  

Again, knowing the electric power industry is a dominant polluter that must report 

its emissions, I obtained direct GHG emissions from power plants by state through the 
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EPA Facility Level Information on Greenhouse Gases Tool (FLIGHT) (EPA, 2019b). So, 

in the case of the electric power sector by state, I estimated their direct emission 

intensities as the direct emissions from a state’s power plants divided by the electric 

power sector’s output for that state. 

I calculate consumption-based GHG emissions for each state (𝐄𝒄
𝒓, a 51 × 403 

vector as state 𝑟 could consume products from all industries in all states) are calculated as 

the state final demand (𝐂𝐟𝒓 in which 𝐂 is the trade share matrix as in Eq. 3, 𝐟𝒓 is a 

51 × 403 vector with the nonzero elements from (403(𝑟 − 1) + 1)th to 403𝑟th indicating 

the final demand by industry in state 𝑟) multiply with the corresponding total emission 

intensity (𝛜𝒕, a 51 × 403 vector) (Eq. 13; Kitzes, 2013). The total emission intensity (𝛜𝒕) 

is the total GHG emissions associated with one unit of output to final demand. The total 

intensity includes the total emissions emitted in the upstream supply chain to produce one 

unit of output to final consumers. It can be obtained by multiplying direct emission 

intensity, 𝛜𝒅 ( 51𝑛– sector vector), with the Leontief inverse matrix (Eq. 14), where the 

prime (') denotes an array transpose.  

 𝐄𝒄
𝒓 = 𝛜𝒕𝐂𝐟𝒓 (13) 

 𝛜𝒕
′ = 𝛜𝒅

′ (𝐈 − 𝐂𝐀)−𝟏 (14) 

2.3 Results 

2.3.1 State consumption- and production-based GHG emissions 

Figure 2-2 shows the differences between state consumption- and production-based GHG 

emissions. The consumption-based emissions vary from 7.6 million metric tons (MMT) 

(Vermont) to 473.1 MMT (California), while the production-based emissions vary from 

5.4 MMT (District of Columbia) to 580.6 MMT (Texas). Nine of the top ten states in 
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consumption-based emissions are also among the largest production-based emitters 

(Table 2-1, Table 2-2). California, Texas, and Florida are the top three states in GHG 

emissions via both production- and consumption-based accounting; they are followed by 

New Yok, Pennsylvania, Ohio, Michigan, Illinois, and Georgia. These nine states account 

for 45% to 49% of the nation’s total GHG emissions. Eight of the ten bottom-most states 

in terms of consumption-based emissions also yield the least production-based emissions 

(Table 2-1, Table 2-2). Not surprisingly, these states also have small populations, and 

include South Dakota, Alaska, and some states in the Northeast U.S. 

After normalizing consumption- and production-based emissions by aggregate 

state GDP and total state population, California and New York score among the least 

emissions-intense states, despite their large amount of total emissions; meanwhile West 

Virginia, Wyoming, Kentucky, Montana, and North Dakota have among the highest 

emissions intensity via such measures (Figure 2-3). Other states with low consumption- 

and production-based emissions per unit of GDP are in the Northeast and along the 

Pacific Coast (Washington) of the U.S. Based on per capita emissions measurements, the 

ten states with the lowest production emissions are concentrated in the Northeast (New 

York, New Jersey, Maryland, District of Columbia, and New England); four of the New 

England states also have very low consumption emissions intensities, as do states in the 

West (Oregon, Washington, Idaho, and Arizona) (Table 2-1, Table 2-2). 

Interestingly, Alaska has one of the highest production emissions per capita 

despite its small total emissions. District of Columbia has one of the highest consumption 

emissions per capita in contrast to its lowest emissions per unit of GDP (both 

consumption and production). Compared with production-based accounting, differences 
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of GHG emissions per capita and per unit of GDP among states are much smaller when 

using consumption-based accounting. The ratio of highest to lowest consumption-based 

emissions per capita is about 3.0 while the ratio for production accounting is about 20.0. 

For emissions per unit of GDP, the ratio of highest to lowest using consumption 

accounting is less than 7.0 while the ratio for production accounting is more than 45.0. 

Table 2-1 Consumption-based GHG Emissions of Selected States 

Top 10 Consumption-based Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

California 473.1 West Virginia  680.1 Wyoming  35.8 

Texas 434.4 Wyoming  579.5 West Virginia  25.9 

Florida  311.7 Kentucky  537.2 North Dakota  25.7 

New York  260.1 Mississippi  431.2 Kentucky  23.7 

Ohio 198.7 Montana  430.5 Louisiana 19.7 

Pennsylvania 198.7 Arkansas  401.5 Indiana 19.6 

Illinois  193.0 Louisiana 401.0 District of Columbia  19.4 

Michigan 150.0 Indiana 380.7 Montana  19.2 

North Carolina 145.0 Missouri  372.6 Iowa  18.4 

Georgia  140.3 North Dakota  370.8 Missouri  18.2 

Bottom 10 Consumption-based Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

Vermont  7.6 District of Columbia  98.5 Idaho 11.3 

South Dakota  12.3 New York  168.8 Vermont  12.1 

District of Columbia  12.8 California 177.5 California 12.2 

Alaska  13.2 Washington  184.1 Oregon  12.3 

Rhode Island  14.0 Massachusetts  195.1 Maine  12.4 

Delaware  14.0 Delaware  198.7 Washington  12.8 

Maine  16.5 Connecticut 199.5 Arizona  12.9 

New Hampshire  17.7 Maryland  211.5 New York  13.2 

Idaho 18.5 New Hampshire  225.5 Rhode Island  13.3 

North Dakota  18.9 New Jersey 227.4 New Hampshire  13.3 
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Figure 2-2 Consumption- and Production-based GHG Emissions by State (MMT CO2 

Eq.) 
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Table 2-2 Production-based GHG Emissions of Selected States 

Top 10 Production-based Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

Texas 580.6 Wyoming  1915.2 Wyoming  118.2 

California 367.5 West Virginia  1277.4 North Dakota  65.8 

Florida  210.1 Montana  1045.6 West Virginia  48.6 

Pennsylvania 198.9 North Dakota  948.4 Montana  46.6 

Ohio 198.2 Nebraska  695.7 Nebraska  43.0 

Illinois  192.7 Kentucky  595.9 Alaska  30.5 

Indiana 164.7 Arkansas  554.3 Kansas  28.9 

New York  149.1 Kansas  537.8 Kentucky  26.3 

Michigan 140.1 New Mexico  533.4 Indiana 25.0 

Georgia  137.3 Oklahoma  525.3 Iowa  24.3 

Bottom 10 Production-based Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

District of Columbia  5.4 District of Columbia  41.8 New Hampshire  6.4 

Vermont  5.5 New York  96.7 Rhode Island  7.0 

Rhode Island  7.3 Massachusetts  101.4 Maine  7.4 

New Hampshire  8.5 Connecticut 106.9 New York  7.6 

Maine  9.9 New Hampshire  108.9 Massachusetts  7.8 

Delaware  10.7 Maryland  126.5 Connecticut 7.8 

South Dakota  17.4 Rhode Island  126.8 Maryland  8.2 

Alaska  22.5 California 137.9 District of Columbia  8.3 

Hawaii  23.0 New Jersey 144.8 Vermont  8.7 

Connecticut 28.1 Washington  151.3 New Jersey 9.5 
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Figure 2-3 Per Capita Consumption- and Production-based GHG Emissions of Selected 

States (Metric Ton CO2 Eq. per capita) 

 

I divide the consumption-based emissions into three parts: household 

consumption (PCE), government consumption and investment (Gov & Invest), 

international exports and inventory changes (Export & Inventory) (Figure 2-2). 

Household consumption accounts for the largest share of the state consumption-based 

emissions, ranging from 49% (Nebraska) to 73% (Florida). This suggests that 

encouraging people to consume green goods should help reduce emissions. International 

exports account for a small proportion of state-level emissions since the U.S. in general 

exports less-energy-intensive commodities (Weber and Matthews, 2007). 

I also calculate the average GHG emissions (consumption-based) per dollar of 

consumption by state, which includes the states final demands from household, 

government, and investment. This measure ranges from 0.177 kg/$ (California) to 0.486 

kg/$ (West Virginia). States with lowest emission intensity of consumption are in the 
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west coast (California, Washington, Idaho) and northeast (Vermont, New York, New 

Hampshire). There are two reasons for the differences in the emission intensity: 

differences in consumption patterns and the state origins of commodities and services. 

The high production emission per unit of GDP combined with the large share of 

consumption-based emissions from within the state contribute to the highest emission 

intensity of consumption for states such as West Virginia, Wyoming and North Dakota. 

States with low consumption emission per unit of GDP and relatively large share of 

imported consumption emissions have low emission intensity of consumption, such as 

California and New York. 

2.3.2 GHG emissions embodied in interstate trade 

The differences between production- and consumption-based emissions are net GHG 

emissions embodied in trade. Figure 2-4 shows that net domestic importers of embodied 

emissions are concentrated along the east and west coasts. New York is the largest net 

importer with 111 million metric tons (MMT) of embodied emissions, followed by 

California (105.5 MMT) and Florida (101.7 MMT). In the case of net domestic import of 

emissions per unit of GDP and per capita, New York, Florida, New Jersey, Maryland, 

and some states in New England are still among the largest (Table 2-3). The net domestic 

exporters are concentrated in the Central and Mountain regions (Figure 2-4). Texas is the 

largest net exporter with 146.1 MMT emissions, followed by Wyoming (48.1 MMT) and 

Nebraska (47.4 MMT). Except for Texas, states with top net domestic export of 

emissions also have the largest emissions per unit of GDP and per capita, such as 

Wyoming, West Virginia, and Nebraska (Table 2-3). If GHG emissions-reduction targets 
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are set up based on state production-based emissions, these net exporting states are less 

likely to set such targets independently.  

Figure 2-4 Major Interstate Flows of GHG Emissions Embodied in Trade 

 

The MRIO model not only allows me to estimate the state consumption-based 

emissions but also to identify the emissions embodied in interstate trade, suggesting “who 

pollutes for whom.” Figure 2-4 shows that Texas is the top “polluter” for all other states, 

due to its rich fossil fuel resources. The largest interstate flow of GHG emissions as 

embodied in trade are from Texas to California with 42.3 MMT. California also exports 

large embodied emissions to states nationwide because of its farming industry. At the 

same time, California imports large amount of emissions embodied in trade from not only 

nearby states but also from Great Lakes states. Florida is another major importer of 
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embodied emissions, mainly from surrounding states in addition to Texas and California. 

Other major flows of embodied emissions mainly occur among nearby states, such as 

those in the Mid-Atlantic region (largely Pennsylvania, New York, New Jersey) and 

Great Lakes states. With the exception of Texas, net exporting states in the Central region 

have smaller emissions embodied in trade among one another. 

Table 2-3 Net Domestic Import and Export of GHG Emissions 

Top 10 Net Domestic Import of Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

New York  111.0 New Hampshire  116.6 District of Columbia  11.2 

California 105.5 Rhode Island  114.9 Massachusetts  7.2 

Florida  101.7 Maine  111.6 New Hampshire  6.9 

Massachusetts  48.7 Florida  108.4 Connecticut 6.8 

New Jersey 48.1 Massachusetts  93.7 Rhode Island  6.3 

Virginia  41.4 Connecticut 92.7 New York  5.6 

Maryland  32.7 Maryland  85.0 Maryland  5.5 

North Carolina 31.4 Virginia  83.8 New Jersey 5.4 

Connecticut 24.4 New Jersey 82.6 Florida  5.1 

Washington  16.1 New York  72.0 Maine  5.0 

Top 10 Net Domestic Export of Emissions 

by state (MMT CO2 Eq.) 

per $ GDP (g CO2 Eq. / 

$GDP) per capita (MT CO2 Eq.) 

Texas 146.1 Wyoming  1335.7 Wyoming  82.4 

Wyoming  48.1 Montana  615.1 North Dakota  40.1 

Nebraska  47.4 West Virginia  597.3 Montana  27.4 

West Virginia  41.9 North Dakota  577.6 Nebraska  25.2 

Indiana 35.8 Nebraska  407.8 West Virginia  22.7 

Alabama  34.4 Idaho 225.2 Alaska  12.5 

Kansas  32.6 Kansas  209.6 Kansas  11.3 

Oklahoma  32.3 Alaska  186.6 Idaho 9.5 

North Dakota  29.5 Oklahoma  180.2 Oklahoma  8.3 

Montana  28.0 New Mexico  178.2 New Mexico  7.8 

Figure 2-5 shows the share of emissions embodied in the exports of state 

production-based emissions and the share of emissions embodied in the imports of state 

consumption-based emissions. For example, 51% of the consumption emissions in 
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California are imported from other states, while 37% of its production emissions are 

exported to other states. The share of emissions embodied in the exports (to other states) 

varies from 26.1% (Florida) to 75.7% (Wyoming) with an average of 48%. The share of 

emissions embodied in the imports (from other states) varies from 19.5% (Wyoming) to 

85.6% (District of Columbia) with an average of 46.6%. These large shares suggest the 

strong interactions among states. States in the Northeast (New England, New York, New 

Jersey, Maryland, and District of Columbia) have the largest shares (more than 57%) of 

emissions embodied in imports. Wyoming, Nebraska, Montana, Idaho and North Dakota 

have the largest shares (more than 70%) of emissions embodied in exports. Another proof 

of the strong interactions among states comes from the large share of emissions embodied 

in intermediate goods. The average share of emissions embodied in outbound 

intermediate goods of emissions embodied in state exports is 79.5% with a range of 

58.3% (District of Columbia) to 91.3% (Kansas). For emissions embodied in inbound 

intermediate goods, the average share is 80.8% with a range of 70.5% (Nevada) to 86.6% 

(Oklahoma). 
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Figure 2-5 Share of Emissions Embodied in Trade 
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2.3.3 Consumption- and production-based GHG emissions by industry 

Although I only include state-specific direct emission intensity for the electric power 

industry, state total emission intensities by industry vary widely, suggesting sources of 

goods (the supply chain) matters within the U.S. Table 2-4 shows the summary statistics 

of the top 15 industries (out of 403 industries) with total GHG emissions intensity, 

ordered by the U.S. total emission intensity. Cement manufacturing has the highest 

emission intensity on average. Electric power is second highest but has the largest 

standard deviation. Agriculture and energy industries all have high total emission 

intensities. For manufacturing, lime and gypsum, fertilizer, and aluminum are the most 

polluting industries after including emissions of upstream supply chain. Although 

pipeline transportation has the lowest direct emission intensity among the freight 

transportation modes, its total emission intensity is pretty high for all states. 

Figure 2-6 shows the 15 industries (aggregated) with top consumption-based 

GHG emissions. Among all industries, these 15 industries included in Figure 2-6 account 

for more than 86% of total national GHG emissions in both production- and 

consumption-based accounting. Some industries have larger production-based than 

consumption-based emissions, such as, the electric power, transportation, agriculture, and 

natural gas distribution, as they supply intermediate inputs to support other industries. 

Service industries (health care, accommodation, retail, wholesale, etc.) and government, 

in contrast, have much larger consumption-based emissions. Food and beverage and 

tobacco products have the second highest consumption-based emissions (much higher 

than the production-based), suggesting people’s food choices can affect total emissions. 
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Table 2-4 Total GHG Emission Intensity (kg CO2 eq. per thousand dollars) 

Summary Statistics across States for Selected Industries 

Industry 

U.S. total 

emission 

intensity 

Mean Std. dev. Min Max 

Cement manufacturing 7901.2 7816.5 536.8 7063.6 9495.5 

Electric power  4523.5 5381.0 4833.6 194.8 24542.2 

Beef cattle ranching and 

farming 
4356.2 4310.4 460.3 2875.4 4975.3 

Lime and gypsum product 

manufacturing 
3605.6 3540.9 262.0 3053.9 4184.8 

Dairy cattle and milk 

production 
3167.8 3173.3 187.7 2496.1 3625.8 

Grain farming 2460.9 2451.6 154.9 1953.9 2746.8 

Wet corn milling 2353.9 1530.8 796.3 819.1 2788.1 

Industrial gas 

manufacturing 
2104.4 2384.6 999.0 1216.1 6336.5 

Animal (except poultry) 

slaughtering, rendering, 

and processing 

2058.9 2075.3 325.8 33.7 2569.4 

Fertilizer manufacturing 1945.2 1977.4 167.9 1443.1 2326.5 

Pipeline transportation 1939.0 1941.3 51.5 1880.5 2052.4 

Alumina refining and 

primary aluminum 

production 

1860.7 1395.8 857.3 682.2 5074.5 

Natural gas distribution 1777.0 1776.0 107.0 1567.4 2123.0 

Flour milling and malt 

manufacturing 
1649.4 1418.5 599.4 87.1 2435.4 

Coal mining 1636.9 1421.7 209.3 1216.8 1853.8 

In Figure 2-7, I compare the shares of consumption- and production-based 

emissions by industry for selected states. I show findings for the same set of industries as 

in Figure 2-7. GHG emissions from these industries account for more than 80% of the 

state total emissions in both production- and consumption-based accounting for all 

selected states. I select states with large amount of emissions (California, Texas, Florida, 

New York, Pennsylvania, New Jersey) as well as states with the highest emission 

intensity of consumption (West Virginia and Wyoming). Figure 2-7 shows that 

differences in the selected states’ shares of emissions by industry are much larger in   
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Figure 2-6 Consumption- and Production-based GHG Emissions of Selected Industries 

(MMT CO2 Eq.) 

 

production-based emissions (bottom) as production-based emissions suggest the state 
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power industry (Figure 2-7). The larger the share of consumption emissions from electric 

power production, the higher the GHG emission intensity of consumption for the state. 

Figure 2-7 Percentage of Consumption- (upper) and Production-based (bottom) GHG 

Emissions of Selected Industries for Selected States 
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be revisited. When domesticating the U.S. I-O tables, I assume that states have similar 

shares of imports; this surely is not the actual case. Surely coastal states use more 

imports, particularly Hawaii and Alaska. I say this because these two states are quite 

isolated from the rest of the nation, and thus are more likely to use higher shares of 

imported inputs. In addition, I assume that production processes are spatially invariant 

and are well represented by the nation’s average technology for detailed industries when 

estimating state I-O tables. Jackson (2001) found evidence that this is a strong 

assumption, at least at a rather aggregated two digit-SIC (Standard Industrial 

Classification) level. Although MRIO analysis accounts for the heterogeneity of 

production patterns among states, each industry has the same and constant cost 

production functions; they, thus, cannot account for either the different production 

patterns (or at least differences in within-industry commodity production mix) within the 

sector or the use of alternative technologies used to abate emissions. Moreover, I did not 

fully explore differences among state consumption patterns, I only attempted to articulate 

state household consumption very well. Admittedly, it accounts for the lion’s share of 

total state final demand—around 60% to 70% of it. 

Data limitations pose uncertainties. I estimated interstate trade flows using a 

gravity model. For goods, I used the FAF4 state database to calibrate my gravity model. 

But, FAF4 only has 40 commodity categories while my MRIO model include 257 goods-

producing industries. Each goods industry is mapped to a single FAF4 commodity. Since 

the FAF4 commodity categories are much more aggregated than are industries in my 

model, products of some industries belong to the same FAF4 commodity category. For 

example, the FAF4 trade flows of electronic and other electrical equipment and 



41 
 

 
 

components include electronic computer, and small electric appliances, which are 

products of two separate industries in my model. Applying such aggregated trade flows to 

a model with more-refined industries induces error to model estimates by industry (Lahr 

& Stevens, 2002). For service industries, no trade data are available for model 

calibration. As a result, I used a simple gravity model for service industries following 

Sargento et al. (2012). While those parameters that I use may be reasonable, I am unable 

to verify the veracity of my approach. Interstate movements of electricity are also 

estimated by gravity model. But the power transmission network is comprised of 

interconnections that operate independently/separately with very limited power exchange 

in-between (EIA, 2016b). Interstate trade estimates of electric power generated by a 

gravity model may introduce interconnections between states that have few or no 

exchanges. Moreover, I use RAS to assure state outflows do not exceed state supplies and 

that state inflows do not exceed state demands. RAS minimizes changes from the 

structure of the initial trade matrix (Sargento et al., 2012). Thus, when I use travel cost or 

Euclidean distances to proxy transport costs between states, changes in state GHG 

emissions inventories are inevitably very small. Future work should use different 

approaches other than the gravity models to estimate interstate trade flow and to examine 

the robustness of the MRIO framework. 

By applying the national direct emission intensity to the states, I ignore real 

differences in emission intensities among states, some of which is undoubtedly due to 

different environmental regulations across states. Future work should use real state-level 

direct emissions intensity based on the state energy consumption obtained from the 

SEDS. In my model, I find that even just using state direct emission intensity for the 
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electric power production would generate significant state-to-state differences in total 

emissions intensity by industry. Differences in the state direct emission intensity for the 

electric power industry are based on the energy source used for generation. While the 

share of coal consumed decreased in the U.S., most of that which remains is consumed by 

the electric power industry. Coal-producing states, like Wyoming and West Virginia, 

which use coal for generation, naturally have much higher GHG emission intensity of 

consumption. In addition, the USEEIO data do not include direct emissions from 

household fossil fuel consumption. In this vein, the state inventory of GHG emissions is 

underestimated in this work. The total U.S. GHG emissions from my analysis is 4,843.2 

MMT for 2016, which is substantially less than the one reported by EPA (6,445.7 MMT). 

This is because emissions from household direct consumption of fossil fuels (e.g. natural 

gas for heating, gasoline for driving, etc.) are missing in my estimates. 

2.5 Conclusions 

I build a state-level MRIO model for the U.S. with 403 industries that roughly simulates 

domestic supply chains. I use the model to compare state-level consumption- and 

production-based GHG emissions. In general, states with highest consumption emissions 

also have high production emissions; states with lowest consumption emissions also have 

low production emissions. States in the Northeast and Pacific Coast have the lowest 

emissions per unit of GDP in both consumption- and production-based accounting and 

also are top net domestic importers of emissions. Some states in the interior of the U.S. 

(e.g. Wyoming, North Dakota, etc.) have the highest emissions per unit of GDP in both 

forms of accounting and, hence, are among the top net domestic exporters. In answer to 

the core research question “who pollutes for whom?” the largest amount of emissions 
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embodied in consumption derive from within each state. Not surprisingly, nearby states 

are far more likely to exchange embodied emissions between each other than with states 

further away. Texas and California spread their exports of a relatively large amount of 

embodied emissions across states nationwide.  

The importance of consumer versus producer responsibility is critical from a 

policy perspective. My findings point out which states are likely willing to take actions to 

control GHG emissions, and the kinds of actions that they would likely take. Net 

importing states, such as California and states in the Northeast, should be willing to 

regulate production-based emissions since more emissions are embodied in their 

consumption. But states with low production emission intensities per unit of GDP are 

likely to object to further attempts to reduce their emissions. Some of these states 

undoubtedly already deploy substantial shares of renewable energy resources to generate 

electric power. Further expansion of the capacity of renewable energy may raise the costs 

of their electric power, at least in the near term. In this vein, without external nudging, net 

exporting states are unlikely to be willing to reduce their production-based GHG 

emissions as it is likely to come at a cost to their net wealth (GDP levels). While costs 

can be passed along to final consumers elsewhere, it is just as likely, if not more so, that 

rising costs will make their products less competitive on both interstate and international 

stages. Net exporting states are therefore more likely to be inclined to adopt policies that 

target consumption-based emissions. If the federal government opts to regulate GHG 

emissions via consumption-based accounting across all states, states with higher-than-

average emissions intensities of consumption will undoubtedly suffer cost burdens that 

will affect their economies. Therefore, some federal compensation to net exporting states 
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may provide enough incentive for firms in these states to mitigate emissions. Moreover, 

since nearby states have more economic exchange, regional polices of emissions 

management are likely to be more effective than strictly state-based policies. Such 

regional emissions management policies do exist. One example is the cooperative effort 

of northeastern states called the “Regional Greenhouse Gas Initiative” (RGGI, 2020). 

Most GHG emissions are emitted by the industries that closely relate to our daily 

lives. Thus, changing people’s consumption patterns can be another way to effectively 

reduce GHG emissions. As Weber and Matthews (2008) find out that emissions 

embodied in household consumption are not necessarily related to household income, so 

policies can be designed to change consumption patterns towards low-carbon intensive 

goods. For example, encourage people to reduce consumption of meat, especially beef, 

since livestock farming and animal processing are among the set of industries with the 

highest total emission intensity.  
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3 U.S. Interstate Trade-Related Greenhouse Gas Emissions from 

Freight Transportation 

3.1 Introduction 

This chapter examines the magnitude of trade-related greenhouse gas emissions (GHG) 

emissions from inter-state freight transportation through the MRIO framework which 

offers a link between economic activities and freight. Many researchers study emissions 

from freight transportation through its major modes (Horvath, 2006; Davies et al., 2008; 

Nealer et al., 2012; Wu & Pienaar, 2019). There is little research that links emissions 

from freight transportation to U.S. interstate trade flows, however. Given the inseparable 

relationship between trade and freight transportation, my research fills this gap and 

compares emissions from transportation with emissions from production of traded goods. 

This helps reveal the impact of state economic structure on freight transportation and the 

magnitude (by industry and by state) of freight transportation’s contribution to GHG 

emissions. 

Transportation is a major contributor of GHG emissions in the U.S.— 28.5% of 

the total emissions in 2017 (EPA, 2019a). About 30% of the transportation emissions are 

due to freight. Emissions from transportation are growing much faster than overall U.S. 

emissions. Between 1990 and 2017, GHG emissions from transportation increased 21% 

even though total U.S. GHG emissions rose by less than 1% (EPA, 2019a). Within the 

transportation sector, the GHG emissions from freight transportation grew 11% from 

2000 to 2017 while that from passenger transportation has decreased by 6% (EPA, 

2019a).  
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Transportation emissions mainly derive from the combustion of petroleum-based 

products (EPA, 2019a). Many factors contribute to the rapid growth of GHG emissions 

from freight transportation, e.g., emission factor, energy intensity, energy structure, 

freight volume, mode share (Davies et al., 2008; Wu & Pienaar, 2019). The core 

contributor has been an increase in demand for freight and, hence, its transportation: the 

growth has been due to both enhanced demand for international and domestic goods 

(Davies et al., 2008; EPA, 2019a). My research focuses on the link between freight 

transportation and domestic trade, specifically interstate trade. Some states are taking 

more active roles in controlling GHG emissions; but it is difficult to regulate emissions 

from interstate freight transportation via state policies since freight transportation is not 

regulated or monitored and since transportation is a mobile source of emissions. My 

research suggests that the responsibility for GHG emissions from interstate freight 

transportation can be assigned to industries within states. In this vein, my research should 

inform state environmental policy makers as they attempt to regulate emissions. 

Freight transportation, as derived demand, is closely related to economic 

activities. Some researchers use input-output (I-O) tables to analyze the environmental 

impacts of freight transport by industry. Nealer et al. (2012) find that food, construction, 

and vehicle manufacturing are main sectors emitting GHGs as embodied in freight 

transportation (include freight emissions in the upstream portions of their supply chains). 

But O’Rourke et al. (2013) suggests the top consuming sectors should be responsible for 

the GHG emissions and that they are personal consumption expenditure (households), 

construction, food manufacturing, and government. Cadarso et al. (2010) assess CO2 

emissions from international freight transport used in Spain; they find that sectors (such 
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as motor vehicles) with a greater value content of international intermediate inputs are 

responsible for the larger increases in international transport emissions.  

A few researchers link emissions from freight transport to trade flows. Cristea et 

al. (2013) examine how much international freight transport contributes to trade-related 

emissions by industry and by trading partner. Moreover, using scenario analysis, they 

find that lower tariffs combined with economic growth in China and India has led to 

emissions growth from transportation growing faster than growth of the trade value. They 

attribute the differential to ever more-distant trading partners (Cristea et al., 2013). Llano 

et al. (2018) estimated GHG emissions from intra- and inter-provincial freight 

transportation within Spain and find that the emission reductions from 1995 to 2015 are 

due to the economic downturn of 2008-2012. They further show how shifts from road to 

rail reduce freight transportation emissions. 

In line with the approach used by Cristea et al. (2013) and Llano et al. (2018) for 

international and intra-national trade, I estimate the GHG emissions from interstate 

freight transportation in the U.S. Unfortunately, insufficient data for analysis are typically 

available for domestic freight transport (Cristea et al., 2013; Southworth, 2018). That is, 

while there is plenty of information on import/export flows, little data typically exist on 

intra-regional shipments, and this is particularly the case within the U.S. The lack of 

regulation in interstate commerce explains the dearth of information. While some data are 

available on domestic port and airport inflows/outflows, few data are available on truck 

or rail interstate inflows/outflows (Giuliano et al., 2010). Because of this, I use a 

multiregional I-O (MRIO) framework based on a gravity model formulation to estimate 
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interstate trade flows. It is guided by information from the Freight Analysis Framework 

version 4 (FAF4) State Database (BTS, 2016). 

Even if data were not lacking, heterogeneity of both the services that freight 

transportation renders (different modes, different types of carriers, etc.) and the customers 

it serves (different commodities and different uses: intermediate industries, government, 

households, exports) makes the analysis of freight transportation somewhat more 

complicated than that of passenger transportation (Boyer 1997). Herein, I account for the 

five major freight transportation modes (truck, rail, water, air, and pipeline) for 257 

commodities (that require freight transportation services from among 405 goods and 

services in the 2012 U.S. benchmark input-output tables) to estimate the interstate supply 

and demand for transported goods (interstate trade). Despite this detail, I estimate 

aggregate behavior: I do not examine the motivations behind decisions of individual 

agents (such as producers, shippers, carriers, receivers, households, etc.). That is, I 

estimate aggregate interstate freight flows by industry not individual shipments. This 

chapter lays out how I estimate interstate freight flows and the GHG emissions that 

correspond to them. This is followed by an analysis of trade and emissions patterns by 

state, industry, and mode. I then discuss the uncertainties involved in the estimation 

approach. The chapter concludes with a summary of findings and a few policy 

recommendations. 

3.2 Methods and Data 

In freight flow modeling, I-O tables are often used. I-O tables contain industry-specific 

estimates of the total value of commodities produced and consumed (supplied and 

demanded) for specific geographies. Estimates of supply and demand across all industries 
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across two or more regions are needed to estimate freight flows (Giuliano, et al. 2010; 

Southworth, 2018). For this reason, MRIO frameworks are often used to estimate freight 

flows.  

Through the MRIO framework described in Chapter 2, I estimate supply and 

demand for each of 403 industries for each state. Then I use a gravity model to estimate 

interstate trade flows for 2016 using estimates of excess supplies and excess demands 

(the amount of each industry’s supplies and demands that the state does not fulfill on its 

own). I then convert the trade flow values (𝑧𝑖
𝑟𝑠) to interstate freight in ton-mile by mode 

(𝑓𝑖m
𝑟𝑠) (Eq. 1). I multiply the trade flow of industry 𝑖 between state 𝑟 and state 𝑠 (𝑧𝑖

𝑟𝑠) 

using the weight/value ratio of each industry’s main commodity (𝑤𝑖) to estimate the 

aggregate interstate shipment weight by industry. The shipment weight is then multiplied 

by the freight mode share of the commodity (𝑠𝑚) and an estimate of the modal shipping 

distance (𝑑𝑚
𝑟𝑠) to estimate freight transportation activity of industry 𝑖 between states 𝑟 and 

𝑠 by mode (𝑓𝑖m
𝑟𝑠). I then apply ton-mile emission factors by mode to estimate the GHG 

emissions for interstate freight transportation. GHG emissions are measured in CO2 

equivalent (CO2 eq.).  

 𝑓𝑖𝑚
𝑟𝑠 = 𝑧𝑖

𝑟𝑠‧𝑤𝑖‧𝑠𝑚‧𝑑𝑚
𝑟𝑠 (1) 

In the following, I further explain these interstate trade flow estimates, freight 

transportation mode shares, GHG emission estimates, and related data. 

3.2.1 Inter-State Trade Flow Estimation 

Given limited data on interstate trade, I first apply a gravity model to estimate trade 

flows. The basic idea of a gravity model is that the magnitude of economic or social 

interaction between any two regions (e.g. bilateral trade flows) is proportional to the 
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amount of relevant activity in each region, inversely proportional to impeding frictions 

(e.g. transportation costs) between them (c.f. Kockelman et al., 2005; Sen & Smith, 

2012), and, further, dampened by intervening opportunities available to both regions. 

Gravity models are very useful and, hence, popular empirical tools for calibrating trade 

flows by industry, i.e., the spatial distribution of freight flows (NASEM, 2008; Llano et 

al., 2018). 

The interstate trade flows of an industry 𝑖 (𝑧𝑖
𝑟𝑠) are proportional to the excess 

supply (𝑠𝑖
𝑟) of the origin state 𝑟 (state total supply minus locally supplied demand) and 

excess demand (𝑑𝑖
𝑠) of the destination state 𝑠 (state total demand minus locally supplied 

demand), and inversely proportional to the carrying costs between the two states 

(𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 ) (Eq. 2). As Sargento (2009) suggests, I add the degree of specialization (𝑙𝑖

𝑟) to 

the model, i.e., the industry location quotient of supplying state 𝑟 (see Eq. 10 in Chapter 

2). I calculate the excess supply, excess demand, and degree of specialization of all 50 

states plus the District of Columbia under the MRIO framework (details can be found in 

Chapter 2). Domestic freight transportation triggered by international trade is not 

included in my analysis. 

 𝑧𝑖
𝑟𝑠 = 𝑔𝑖

(𝑠𝑖
𝑟)𝛼(𝑑𝑖

𝑠)𝛽(𝑙𝑖
𝑟)𝛾

(𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 )𝜔

 (2) 

The travel cost (𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 ) is the weighted-average fuel cost to ship one unit of the 

main commodity produced by industry 𝑖 (Eq. 3). Freight transportation mode shares (𝑠𝑚
′ ) 

are used as weights. The travel cost not only accounts for the interstate shipping distance 

by mode (𝑑𝑚
𝑟𝑠), but also includes the fuel cost by mode (𝜆𝑚, $ per ton-mile) and the 

characteristics of the industry’s commodities (𝑤𝑖, weight/value ratio).  
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 𝑐𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑟𝑠 = ∑ 𝑠𝑚

′ ‧𝑤𝑖‧𝑑𝑚
𝑟𝑠‧𝜆𝑚

𝑚
 (3) 

I use the transportation network to estimate interstate shipping distances by mode. 

The network of each of three main transportation modes are considered: truck, rail, and 

water. I used transportation network geospatial data from the National Transportation 

Atlas Database (NTAD) provided by the U.S. Bureau of Transportation Statistics (BTS). 

I use the Freight Analysis Framework (FAF) Network (including National Highway 

System, National Network, and state primary and secondary roads) for trucking distances, 

North American Rail Lines for rail freight distances, and Navigable Waterway Lines for 

water freight distances. For each state, I use its population centroid (the center of 

concentration based on population of census tracts within the state) as the point of 

origin/destination. This is because supply and demand are more likely to occur in 

population centers. By using GIS network analysis, I estimated network distances 

between state population centroids as the average interstate shipping distances by mode. 

For the other two transportation modes--air freight and pipelines--I use aerial distances 

between state population centroids. This likely grossly understates pipeline distances, but 

the overall costs per mile for pipelines are extraordinarily low in any case. 

The fuel cost per ton-mile, 𝜆𝑚, is calculated as the product of fuel consumption by 

mode multiplied by the fuel price, all divided by the ton-miles of freight (Table 3-1). Fuel 

consumption by mode were collected from BTS (2018b), and the U.S. ton-miles of 

freight from BTS (2018a) –publicly available as National Transportation Statistics. The 

annual fuel prices come from the U.S. Energy Information Administration (EIA, 2020a). 

In addition, the weight/value ratios for each industry (𝑤𝑖) are estimated from BTS’s 2012 

Commodity Flow Survey data. 
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Table 3-1 Fuel Cost per Ton-Mile by Mode, 2016 

Transportation 

mode 

Ton-mile 

(million) 
Fuel consumption 

Fuel cost per 

ton-mile ($) 

Truck 2,010,881 
Gasoline, diesel and other fuels 

(million gallons) 
44,893 0.03237 

Rail 1,585,440 
Distillate / diesel fuel (million 

gallons) 
3,385 0.00295 

Water 477,861 
Residual fuel oil (million 

gallons) 
2,930 0.01929 

Air 13,157 Jet fuel (million gallons) 11,167 1.12037 

Pipeline 896,320 Natural gas (million cubic feet) 686,732 0.00200 
Source: U.S. ton-miles of freight and fuel consumption by mode are from BTS, annual fuel prices are from EIA. 

I use FAF4 State Database for 2012 (BTS, 2016) for interstate trade values by 

commodity (domestic trade only) to calibrate the gravity model, i.e., to obtain estimates 

of constant 𝑔𝑖 and other parameters in Eq. 2. This process netted estimates of interstate 

trade flows for 257 goods-producing industries (excluding utilities) that require freight 

transportation services. 

3.2.2 Freight Transportation Mode Share 

Freight transportation mode shares (𝑠𝑚 in Eq. 1 and 𝑠𝑚
′  in Eq. 3) are needed to calculate 

interstate freight transportation activities and travel costs between states. I use 

multinomial logit models to estimate mode shares for each state by industry. Rational 

choice theory underlies the choice among transportation modes. It is originated from 

consumer utility theory (Shen & Wang, 2012). Basically, a shipper’s choice is 

determined by various characteristics of each mode and s/he chooses the mode that is 

most satisfactory among different alternatives (Shen & Wang, 2012). In the case of 

freight transportation mode choice, shippers/carriers select the mode that minimizes total 

overall carrying costs of the shipment (NASEM, 2008). I cannot identify individual 

shippers/carriers’ choice because I work with data that are industry aggregates of 

shippers’ behaviors. So, I instead assume that all shippers in an industry within a state 
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make similar mode-choice decisions. Aggregate models focus on group behavior, so 

estimates of aggregate mode-choice shares for freight must be made for specific 

geographic sets (Shen & Wang, 2012; Wang et al., 2013). For example, Southworth et al. 

(2007) use a logit model of truck–rail/truck–water mode choice for wheat shipments 

originating in the Pacific Northwest; Shen and Wang (2012) use binary logit and 

regression models of truck/rail mode choice for cereal grain shipments between states; 

Wang et al. (2013) use binary probit and logit models of truck/rail mode choice for 

freight movements in Maryland. As I consider all major freight modes (truck, rail, water, 

air, and pipeline) in this research, I apply multinomial logit models based on state-level 

data.  

Freight transportation mode choice depends on the characteristics of each mode 

and what is being shipped (Southworth et al., 2007; Shen & Wang, 2012; Wang et al., 

2013). Key characteristics of transportation modes are network distances and fuel costs. 

Key characteristics of shipments are the type of commodity shipped, the volume of the 

shipment, the relative weight of what is being shipped, and the fragility of the shipment. 

This last includes the propensity for hazards associated with the product, such as its 

breakability, flammability, and environmental toxicity. I include shipment value and a 

dummy variable that identifies the product as petroleum-related. In addition, I use the 

product’s weight/value ratio to represent the commodity’s characteristics of each industry 

(assuming each industry produces similar commodities). It is a common rule of thumb to 

use commodity weight/value ratio to estimate freight mode choice proportions, especially 

at the planning level when detailed shipment data is not available (Sou & Ong, 2015). 

Carrying costs of high value/weight products tend to be relatively high, forcing shippers 
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to send them via more expensive transportation modes like air or truck to reduce overall 

shipping costs (Treyz & Sevens, 1985; Harrigan, 2010; Shabani & Figliozzi, 2012). 

I use slightly different independent variables for the mode share models in the 

travel costs and freight activities and a different dataset for model calibration. For the 

mode share in the travel costs (𝑠𝑚
′  in Eq. 3), I use weight/value ratio by industry (𝑤), 

network distance by mode (𝑑𝑚), and a dummy variable denoting petroleum-related 

products (𝑝) to estimate the shipping costs by mode (𝑐𝑚
′ ) (Eq. 4). In Eq. 4, 𝜇𝑚

′  is the 

mode specific constant, 𝜇𝑚
′ , 𝑎1𝑚

′ , 𝑎2𝑚
′ , and 𝑎3𝑚

′  are empirically derived mode specific 

parameters. Then the proportion by mode other than truck (Eq. 5) and by truck (Eq. 6) 

can be estimated using the utilities. 

 𝑐𝑚
′ = 𝜇𝑚

′ + 𝑎1𝑚
′ 𝑤 + 𝑎2𝑚

′ 𝑑𝑚 + 𝑎3𝑚
′ 𝑝 (4) 

 𝑠𝑚
′ =

𝑒𝑐𝑚
′

1 + ∑ 𝑒𝑐𝑚
′

𝑚≠𝑡𝑟𝑢𝑐𝑘

 (5) 

 𝑠𝑡𝑟𝑢𝑐𝑘
′ =

1

1 + ∑ 𝑒𝑐𝑚
′

𝑚≠𝑡𝑟𝑢𝑐𝑘

 (6) 

When estimating travel costs between states, shipment values are unavailable and, 

thus, not included in Eq. 4. I use 2012 Commodity Flow Survey (CFS) Public Use 

Microdata sample to derive parameters in Eq. 4 (see Appendix A). The CFS provides 

detailed information for more than four million shipments with ancillary data on 

transportation mode, shipment value, weight, routed distance between origin and 

destination, commodity type, etc. (Census Bureau, 2015). These data are the first 

generation of CFS Public Use Microdata, so they include data for only one year. When I 

added 2012 fuel costs by mode to the CFS data for model calibration, I can only use fuel 

costs per ton-mile as shipment values are unavailable at this stage. The model cannot 
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produce parameter estimates (model not concave) because all shipments using the same 

mode have the same fuel costs per ton-mile. So, I remove fuel costs from the model (Eq. 

4). The multiple modes in the CFS are converted to single mode (Table 3-2). Although 

pipeline is a mode included in the CFS, its sample size of shipments is relatively very 

small compared to that of other modes. It, therefore, might not provide reasonable 

parameter estimates. Since pipelines are mainly used to transport petroleum-related 

products and the cost of adding more pipeline infrastructure is expensive, the share of 

pipelines is relatively stable overtime compared to other modes (BTS, 2016). I therefore 

used the pipeline mode shares (𝑠𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒
′ ) between states directly from FAF4 rather than 

via estimates in Eq. 5. Rail services have similar constrains of infrastructure as pipelines 

but are used to ship various types of commodities thus have a relatively large sample size 

in the CFS. 

Table 3-2 Multiple mode to single mode allocation 

Multiple mode Allocated to single mode 

Truck and rail Rail 

Rail and water Water 

Truck and water Water 

Parcel Truck 

For the mode share of freight transportation activities (𝑠𝑚 in Eq. 1), I use the 

industry weight/value ratio (𝑤), network distance by mode (𝑑𝑚), a dummy variable 

indicating whether petroleum-related products (𝑝), interstate trade value (𝑣 = 𝑧𝑖
𝑟𝑠), and 

fuel costs of shipping one unit of commodity by mode (𝜆𝑚 × 𝑤 × 𝑑𝑚) to estimate the 

costs of shipping commodities of a certain industry by mode (𝑐𝑚) (Eq. 7). In Eq. 7, 𝜇𝑚 is 

the mode specific constant, 𝜆𝑚 is the fuel cost per ton-mile by mode, 𝜇𝑚, 𝑎1𝑚, 𝑎2𝑚, 𝑎3𝑚, 
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𝑎4𝑚, and 𝑎5𝑚 are empirically derived mode specific parameters. The mode share (𝑠𝑚) 

then is estimated using the shipping cost by mode (𝑐𝑚) (similar to Eq. 5 and Eq. 6). 

 𝑐𝑚 = 𝜇𝑚 + 𝑎1𝑚𝑤 + 𝑎2𝑚𝑑𝑚 + 𝑎3𝑚𝑝 + 𝑎4𝑚𝑣 + 𝑎5𝑚(𝜆𝑚 × 𝑤 × 𝑑𝑚) (7) 

I use the FAF4 State Database to derive parameters in Eq. 7 (see Appendix A). 

Although the CFS Public Use Microdata provide detailed information for individual 

shipments, it has just one-year of data and a relatively small sample size of shipments for 

pipelines. Therefore, when using the CFS data for model calibration, the model cannot 

account for changes in fuel costs by mode through time and cannot provide reasonable 

estimates for the pipeline share. I tried to use the CFS data for model calibration in Eq. 7 

using the total fuel costs (𝜆𝑚 × 𝑣 × 𝑤 × 𝑑𝑚) of each interstate trade flow by industry so 

that the model can derive parameter estimates. But the estimated share of air freight was 

unreasonably high. This is because the parameter estimates for air freight when using the 

CFS data suggest the higher the total fuel costs for a certain shipment, the more likely air 

is used. But the total fuel costs in my model are for the interstate trade flow by industry 

rather than for any individual shipment, which are obviously much higher than individual 

shipment. This leads to the unreasonably high estimates of air usage when using 

parameter estimates derived by the CFS data. 

The FAF4 State Database incorporates data from the CFS, agriculture, utility, 

construction, and other sectors for the year of 2002, 2007, and 2012 (BTS, 2016). It 

provides origin-destination state, aggregate shipment weight and value between states by 

mode for each commodity group rather than individual shipment information. So, FAF4 

has a much smaller number of observations (360,013) compared to the CFS. As I tried to 

estimate aggregate mode share for commodities of a certain industry at state level, I 
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chose the FAF4 State Database combined with interstate network distances by mode 

(self-calculated see Section 3.2.1) and fuel costs by mode to calibrate the model. 

3.2.3 GHG Emissions Estimation 

I use ton-mile emission factors (𝜖𝑚) to estimate GHG emissions from interstate freight 

transportation assuming a linear relationship between emissions and freight (Eq. 8). 𝜖𝑚 is 

the amount of GHG emissions generated by mode 𝑚 to ship one ton-mile of freight. 

Multiplying 𝜖𝑚 by the freight activity for mode 𝑚 to ship commodities of industry 𝑖 from 

state 𝑟 to state 𝑠 (𝑓𝑖𝑚
𝑟𝑠), and summing over all modes yields the transportation emissions 

for industry 𝑖 from state 𝑟 to state 𝑠 (𝑒𝑖𝑇
𝑟𝑠).  

 𝑒𝑖𝑇
𝑟𝑠 = ∑ 𝜖𝑚 × 𝑓𝑖𝑚

𝑟𝑠

𝑚
 (8) 

In addition, I estimate GHG emissions generated in producing the traded 

commodities so that I can compare transportation emissions with production emissions 

and identify how much transportation emissions contribute to trade related GHG 

emissions. In Eq. 9, 𝜖𝑖 is the emission factor of industry 𝑖 indicating the GHG emissions 

generated in the process of producing one dollar of commodities by industry 𝑖. 

Multiplying 𝜖𝑖 with the trade value of industry 𝑖 from state 𝑟 to state 𝑠 (𝑧𝑖
𝑟𝑠) yields the 

production emissions 𝑒𝑖𝑃
𝑟𝑠. The trade-related GHG emissions of industry 𝑖 from state 𝑟 to 

state 𝑠 (𝑒𝑖
𝑟𝑠) are the sum of transportation emissions and production emissions (Eq. 10). 

 𝑒𝑖𝑃
𝑟𝑠 = 𝜖𝑖 × 𝑧𝑖

𝑟𝑠 (9) 

 𝑒𝑖
𝑟𝑠 = 𝑒𝑖𝑇

𝑟𝑠 + 𝑒𝑖𝑃
𝑟𝑠 (10) 

The ton-mile emission factor by mode (𝜖𝑚) is developed using domestic freight 

transportation GHG emissions from the U.S. GHG Inventory (EPA, 2019a) and the U.S. 

ton-miles of freight from the National Transportation Statistics (BTS, 2018a) (Table 3-3). 
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GHG emissions due to domestic freight transportation from EPA include both direct 

emissions from transportation as well as electricity-related emissions distributed to 

transportation (EPA, 2019a). Air and truck have the highest emissions factors, while rail 

and water are more environmentally friendly. By assigning a single emission factor to 

each mode, I do not account for the heterogeneity of emissions within a mode due to 

differences in transportation equipment types, their vintages, operating status, etc. The 

production emission factor by industry (𝜖𝑖) is developed using the U.S. Environmentally-

Extended Input-Output (USEEIO) v1.1 dataset (Ingwersen et al., 2017) and U.S. I-

Otables (BEA, 2015). USEEIO provides the GHG emissions in producing one dollar of 

commodity (Ingwersen et al., 2017). I convert the USEEIO emission intensities to 

emission factor by industry using the U.S. I-O tables. By using the national-average 

production emission factors, I do not account for the heterogeneity of emissions 

intensities by industry within or across states. 

Table 3-3 GHG Emissions per Ton-mile of Domestic Freight Transport Services, 2016 

Mode 
GHG emissions 

(MMT) 

Ton-mile  

(million) 

Intensity  

(gram CO2 eq. per ton-

mile) 

Truck 420.9 2,010,881 209.31 

Rail 35.6 1,585,440 22.45 

Water 16.4 477,861 34.32 

Air 16.8 13,157 1,276.89 

Pipeline 39.2 896,320 43.73 
Source: GHG emissions from domestic freight transportation are from EPA, U.S. ton-miles of freight are from BTS. 

3.3 Results 

Based on my estimates, annual total interstate trade-related GHG emissions in the U.S. 

are about 911 million metric tons (MMT) CO2 eq. in which 37% (333.7 MMT CO2 eq.) 

are from interstate freight transportation alone. These transportation emissions are linked 
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to each origin-destination-industry-mode freight flow in ton-mile. This estimate is based 

on 3,276,750 freight flows (51 𝑠𝑡𝑎𝑡𝑒𝑠 × 50 𝑠𝑡𝑎𝑡𝑒𝑠 × 257 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠 ×

5 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑠). In this section, I compare the transportation 

emissions to production emissions affiliated with interstate trade by industry. I then 

perform a similar comparison by state. I highlight the top origin-destination-industry 

freight flows and their corresponding emissions. Moreover, I analyze these emissions by 

mode. 

3.3.1 Transportation Emissions versus Production Emissions by Industry 

I examine the contribution of transportation emissions to interstate trade-related 

emissions by industry first. I aggregate the 257 goods industries into 25 sectors for ready 

presentation. Figure 3-1 shows the contributions of both transportation and production to 

interstate trade-related GHG emissions by industry. There are substantial variations 

across industries with respect to both transportation and production emissions. 

Transportation emissions by industry vary from 0.17 MMT (apparel and leather and 

allied products) to 88.39 MMT (mining, except oil and gas). The range of production 

emissions by industry is from 0.08 MMT (apparel and leather and allied products) to 

199.53 MMT (farms). Top sectors with respect to transportation emissions are mining, 

food and beverage and tobacco products, farms, chemical products, nonmetallic mineral 

products, and petroleum and coal products (Figure 3-1). Combined they account for more 

than 70% of the total transportation emissions. Products of these sectors are relatively 

heavier per unit of value compared to those sectors that produce the least transportation 

emissions (apparel and leather products, textile products, computer and electronic 

products, etc.). Among the top ten sectors of transportation emissions, five generate more 
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emissions from transportation services than from production alone: mining, food and 

beverage and tobacco products, wood products, forestry, fishing, and related activities, 

and motor vehicles and parts. 

Figure 3-1 Interstate Trade Related GHG Emissions by Industry (MMT CO2 eq.) 

 

In order to compare transportation and production emissions on a per dollar basis, 

I aggregate the transportation/production emissions by industry from all state pairs then 

divide by the total trade values by industry. Figure 3-2 shows the results sorted by 

transportation emission intensity. The transportation emission intensity varies from 8.5 

grams CO2 eq. per dollar (computer and electronic products) to 2,236.1 grams CO2 eq. 

per dollar (Forestry, fishing, and related activities). Farms have the highest production 

emission per dollar (1,590.3 grams CO2 eq.). Mining, and nonmetallic mineral products 
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are among the top in both transportation and production emission intensity. Per dollar, 

emissions due to the transport of wood products and natural gas distribution become 

more prominent, while the contribution from machinery and motor vehicles and parts fall 

precipitously due to their relatively low weight/value ratio. 

Figure 3-2 Interstate Trade Related GHG Emissions Intensities by Industry (gram CO2 

eq./$) 

 

Figure 3-3 shows the contribution of transportation to trade-related GHG 

emissions through transportation emission intensity shares (transportation emission 

intensity divided by sum of transportation and production emission intensity by industry). 

The share of each industry’s transportation emissions in the total transportation emissions 

is also presented in Figure 3-3. While emissions from interstate freight transportation 

account for about 37% of trade-related emissions, it varies widely across industries: from 
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12% (farms) to 93.8% (publishing industries). On the low end, farms, natural gas 

distribution, primary metals, paper products, oil and gas extraction, and chemical 

products all have low shares of trade-related emissions from transportation despite 

owning large transportation emissions. In contrast, more than 65% of trade-related 

emissions of publishing industries, apparel and leather products, and miscellaneous 

manufacturing are from transportation but contribute relatively few transportation 

emissions. Mining, and food and beverage and tobacco products have large shares in both 

transportation emissions and emission intensity.  

Figure 3-3 The Contribution of Transport to Interstate Trade-related GHG Emissions 

 

3.3.2 Transportation Emissions versus Production Emissions by State 

There are large variances in trade-related emissions across states. This is in part due to 

differences in the size of the states, their economic reliance on trade, the commodity 
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composition of their trade, the economic structure of their trading partner states, etc. The 

outbound trade-related emissions (production plus transportation) range from 0.86 MMT 

CO2 eq. (District of Columbia) to 117.03 MMT (Texas), while the inbound trade-related 

emissions vary from 2.47 MMT (Wyoming) to 97.59 MMT (California). 

Figure 3-4 shows the contribution of selected states to interstate trade-related 

emissions: the left-hand side of the figure presents the top ten states in terms of 

production emissions; the center of the figure presents the top ten states in terms of 

outbound transportation emissions; and the right-hand side of the figure presents the top 

ten states in terms of inbound transportation emissions. Texas, California, and Ohio have 

significant shares of all three. Texas and California account for about 25% of trade-

related production emissions and more than 16% of the outbound transportation 

emissions. California alone is responsible for 17% of the inbound transportation 

emissions. Some states with large production emissions have significant outbound 

transportation emissions as well, for example, Indiana, Wisconsin, Wyoming, and Iowa. 

In contrast, Hawaii, New York, New Jersey, and Massachusetts are responsible for few 

production emissions but substantial inbound transportation emissions. Some states 

contribute large shares of both inbound and outbound transportation emissions, e.g., 

Illinois, Florida, and Washington. Most states display a substantial imbalance between 

inbound and outbound transportation emissions. For example, New York is only 

responsible for 3.39 MMT of outbound transportation emissions but for 16.53 MMT of 

inbound transportation emissions, while Wyoming is responsible for 11.96 MMT of 

outbound transportation emissions but only 1.27 MMT of inbound transportation 

emissions. 
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Figure 3-4 Interstate Trade-related GHG Emissions Shares (Top Ten States) 

 

After normalizing interstate trade-related emissions by state population, states 

with substantial production emissions per capita have highest outbound transportation 

emissions per capita as well, such as Wyoming, Montana, Nebraska, North Dakota and 

West Virginia. Wyoming, North Dakota, and Nebraska are also among the top with 

largest inbound transportation emissions per capita. Hawaii and Alaska both have quite 

large inbound and outbound transportation emissions per capita as these two states are 

distant from all other states. Some small states in the east coast (i.e. Vermont, Maine, and 

District of Columbia) have highest per capita inbound transportation emissions. States 

with significant total trade-related emissions (e.g. California, Texas, Ohio, New York, 

and Florida) are not among the top with per capita trade-related emissions. 
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Figure 3-5 Per Capita Interstate Trade-related GHG Emissions by State (Top Ten States) 

(Kilogram CO2 equivalent per capita) 

 

I calculate the emission intensities (gram CO2 eq. per dollar) for each state’s 

inbound and outbound trade by dividing trade-related emissions by trade value (Table 3-

4). On average, the emission intensity of U.S. interstate trade is 347 grams CO2 eq. per 

dollar of which 220 grams are from production and 127 grams are from transportation. 

After controlling for the volume of trade, there are still large differences in emission 

intensities by state due to the commodity composition of trade. The emission intensities 

of outbound trade vary from 109 grams per dollar (New Hampshire) to 2,353 grams per 

dollar (Hawaii). States with top outbound emission intensities are among the top in both 

production and transportation emission intensities, e.g., Hawaii, Wyoming and Montana. 

For inbound trade, emission intensities range from 236 grams per dollar (District of 

Columbia) to 1,268 grams per dollar (Hawaii), about half that for the remote state’s 

outbound trade. This is because inbound trade is determined by state consumption 

patterns while outbound trade aligns with state production. Among states with top 
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inbound emission intensities, some have large production emission intensities but small 

transportation emission intensities (such as, Iowa, Nebraska, and Illinois) while others 

have large transportation emissions but small production emissions on a per dollar basis 

(more-remote states like, Hawaii, Alaska, and California). Moreover, states with large 

trade-related emissions need not have high emission intensities. For example, despite 

their large total outbound transportation emissions, the outbound transportation emission 

intensities for Texas and California are close to the national average. Similarly, many 

states leading the nation in inbound transportation emissions have average emission 

intensities, e.g., Texas, Florida, and Pennsylvania.  

When comparing the contributions of transportation versus production interstate 

trade-related emissions, I find that Georgia, Oregon, Missouri, and Utah have larger 

outbound transportation emissions than their corresponding production emissions. The 

same applies to New Mexico, California, Wyoming, and Maine with regard to inbound 

transportation emissions. Hawaii, Alaska, Washington, and Nevada contribute more than 

half of the trade-related emissions from transportation for both inbound and outbound 

trade. Hawaii and Alaska are far more distant from all other states; so, the extreme 

shipping distances undoubtedly explain their transportation emissions variance. 
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Table 3-4 Production and Transportation Emission Intensities by State (gram CO2 eq./$) 

State 

Outbound Inbound 

Total 
Product

ion 

Trans

port 

Transpor

t share 

(%) 

Total 
Product

ion 

Trans

port 

Transpor

t share 

(%) 

Alabama 296 189 107 36 247 181 66 27 

Alaska 860 278 583 68 770 183 587 76 

Arizona 409 316 93 23 292 152 140 48 

Arkansas 383 248 136 35 288 188 100 35 

California 402 288 114 28 415 176 239 58 

Colorado 582 394 188 32 300 181 119 40 

Connecticut 114 80 34 30 263 161 102 39 

Delaware 244 216 27 11 292 197 96 33 

D.C. 351 304 47 13 236 161 75 32 

Florida 773 417 356 46 257 142 116 45 

Georgia 308 120 189 61 301 219 82 27 

Hawaii 2,353 1,096 1,257 53 1,268 155 1,114 88 

Idaho 1,231 911 319 26 365 218 147 40 

Illinois 190 112 78 41 451 377 74 16 

Indiana 205 145 60 29 316 241 74 24 

Iowa 380 203 177 47 651 536 115 18 

Kansas 583 446 138 24 391 296 95 24 

Kentucky 230 121 109 47 243 183 60 25 

Louisiana 399 283 117 29 327 226 101 31 

Maine 334 223 111 33 372 184 188 51 

Maryland 138 122 16 12 245 169 77 31 

Massachusetts 117 70 46 40 333 206 126 38 

Michigan 151 99 52 35 314 235 80 25 

Minnesota 261 135 126 48 447 327 120 27 

Mississippi 231 147 84 36 257 181 75 29 

Missouri 245 101 144 59 335 262 73 22 

Montana 1,887 1,385 503 27 333 202 130 39 

Nebraska 685 523 162 24 505 394 111 22 

Nevada 1,072 477 596 56 327 151 176 54 

New Hampshire 109 75 34 31 274 169 105 38 

New Jersey 169 135 34 20 331 226 105 32 

New Mexico 1,543 1,068 476 31 281 110 172 61 

New York 152 87 65 43 288 190 97 34 

North Carolina 160 85 75 47 337 247 90 27 

North Dakota 1,201 673 527 44 361 190 170 47 

Ohio 212 132 80 38 361 269 92 25 

Oklahoma 542 389 153 28 273 177 96 35 

Oregon 493 202 291 59 365 196 169 46 

Pennsylvania 268 190 78 29 394 270 125 32 

Rhode Island 116 81 34 30 334 220 114 34 

South Carolina 224 141 83 37 307 221 86 28 

South Dakota 721 480 241 33 414 312 102 25 

Tennessee 204 111 93 46 323 251 72 22 

Texas 480 346 133 28 316 194 122 39 

Utah 392 162 229 59 457 270 187 41 

Vermont 426 301 125 29 414 242 171 41 

Virginia 206 121 85 41 257 161 95 37 

Washington 327 161 166 51 398 165 232 58 

West Virginia 912 479 434 48 249 173 76 31 

Wisconsin 323 179 144 45 460 345 115 25 

Wyoming 2,094 1,080 1014 48 355 172 183 52 

U.S. 347 220 127 37 347 220 127 37 
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3.3.3 Industry-State Trade Pairs 

Within 655,350 (51 𝑠𝑡𝑎𝑡𝑒𝑠 × 50 𝑠𝑡𝑎𝑡𝑒𝑠 × 257 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠) possible interstate trade 

pairs by industry, 553,674 display non-zero interstate trade flows. About 67% of these 

non-zero trade flows (370,485) generate more GHG emissions via transportation services 

than via production. But trade flows with the highest trade-related emissions are those 

with high shares of production emissions (Table 3-5). Among the top ten trade flows with 

emissions, seven occur between distant trading partners, including Texas, California, 

New York, Illinois, Florida, and Virginia. The remaining three occur between 

neighboring states (Texas-Louisiana, Nebraska- Iowa, Kansas-Nebraska). These top 

paths are mainly in the form of energy goods–oil and gas extraction, petroleum refineries, 

and natural gas distribution. Besides energy goods, beef cattle ranching and farming 

generates substantial emissions via production processes, which account for more than 

95% of trade-related emissions for the corresponding three trade flows in Table 3-5. 

Table 3-6 shows the top twenty freight flows by mode with transportation GHG 

emissions. The transportation emissions per ton-mile for each freight flow are determined 

by the freight modes used (see Table 3-3). The Texas-California path shipping oil and gas 

extraction products not only has the highest trade-related emissions but also the highest 

emissions via water transportation through Panama Canal. Other similar flows with both 

top trade-related emissions and top transportation emissions are California-Virginia by 

water and Texas-New York by truck both shipping petroleum refinery products. Fifteen 

of these twenty freight flows are shipped to California (state with highest inbound 

transportation emissions). Among these twenty flows, most are shipped between distant



 
 

69 
 

Table 3-5 Top Ten Interstate Trade Flows with GHG Emissions, 2016 

Rank 
Origin 

State 

Destination 

State 
Industry 

Trade 

Value 

(Million) 

Total Trade-

related GHG 

Emissions 

(MMT CO2 eq.) 

Transportation  Production 

Emissions 

(MMT 

CO2 eq.) 

Share 

(%) 

Emissions 

(MMT CO2 

eq.) 

Share 

(%) 

1 Texas California Oil and gas extraction 15,400 8.994 3.100 34% 5.894 66% 

2 Texas Louisiana Oil and gas extraction 12,100 5.077 0.446 9% 4.631 91% 

3 Texas New York  Petroleum refineries 13,208 4.352 1.154 27% 3.197 73% 

4 Nebraska  Iowa  
Beef cattle ranching 

and farming 
1,356 3.941 0.043 1% 3.898 99% 

5 Texas Illinois  
Beef cattle ranching 

and farming 
1,306 3.899 0.142 4% 3.757 96% 

6 California Florida  Natural gas distribution 2,120 3.881 0.583 15% 3.298 85% 

7 California New York  Natural gas distribution 2,059 3.833 0.629 16% 3.204 84% 

8 Texas Illinois  Oil and gas extraction 7,650 3.588 0.660 18% 2.928 82% 

9 California Virginia  Petroleum refineries 7,748 3.253 1.377 42% 1.876 58% 

10 Kansas  Nebraska  
Beef cattle ranching 

and farming 
1,084 3.149 0.032 1% 3.117 99% 
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trading partners, requiring longer-than-average shipping distances. Regarding shipped 

goods, more than half of these top twenty flows ship stone mining and quarrying 

products, which have a high weight/value ratio. Other goods include energy goods (oil 

and gas extraction, petroleum refineries, and coal mining) and fertilizer (fertilizer 

manufacturing). Most flows are shipped by truck, which has a higher emission factor. 

Still, there are several water-based freight flows (e.g. Texas-California shipping products 

of oil and gas extraction) or rail freight flows (e.g. Wisconsin-California shipping stone 

mining and quarrying products), which have lower emission factors. 

Table 3-6 Top Twenty Interstate Freight Flows by Mode with Transportation GHG 

Emissions, 2016 

Rank 
Origin 

State 

Destination 

State 
Industry Mode 

Transportati

on 

Emissions 

(MMT CO2 

eq.) 

1 Texas California Oil and gas extraction Water 2.089 

2 Wisconsin California Stone mining and quarrying Truck 1.179 

3 Missouri California Stone mining and quarrying Truck 0.880 

4 Iowa California Stone mining and quarrying Truck 0.866 

5 Kentucky California Stone mining and quarrying Truck 0.836 

6 Wisconsin California Stone mining and quarrying Rail 0.808 

7 Georgia California Stone mining and quarrying Truck 0.746 

8 California Virginia Petroleum refineries Water 0.729 

9 Wisconsin California Stone mining and quarrying Water 0.706 

10 Wyoming California Coal mining Truck 0.699 

11 
North 

Carolina 
California Stone mining and quarrying Truck 0.635 

12 Oklahoma California Oil and gas extraction Water 0.583 

13 Florida California Fertilizer manufacturing Truck 0.563 

14 Kentucky California Stone mining and quarrying Rail 0.507 

15 
West 

Virginia 
Michigan Coal mining Truck 0.505 

16 Florida Hawaii Fertilizer manufacturing Air 0.502 

17 Georgia Florida Stone mining and quarrying Truck 0.482 

18 Alaska Washington Oil and gas extraction Truck 0.481 

19 Texas New York Petroleum refineries Truck 0.472 

20 Indiana California Stone mining and quarrying Truck 0.471 
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3.3.4 Interstate Freight Transportation Emissions by Mode 

Table 3-7 shows the interstate freight ton-miles and the corresponding GHG emissions by 

mode. Interstate freight accounts for about 57% of the U.S. ton-miles (4,983.7 trillion) 

and about 63% of the total emissions from domestic freight transportation (528.9 MMT 

CO2 eq.). Most GHG emissions are due to trucking. Freight by truck accounts for 39.9% 

of the interstate ton-miles but more than 70% of the GHG emissions from interstate 

freight transportation. In contrast, freight by rail accounts for a third of the interstate ton-

miles but only 6.3% of emissions from interstate freight transportation as rail has the 

lowest emission factor. My model grossly underestimates freight by pipeline: 84.53 

trillion ton-miles (my estimation) versus 896.32 trillion ton-miles (U.S. ton-miles from 

BTS). There are several reasons for this. First, I do not include freight movements within 

states nor for domestic aspects of international trade. Second, as I mentioned previously 

(in Section 3.2.1) I understate pipeline mileages because I represent them via aerial 

distance rather than by actual network pipeline distances. And, third, I only permit 

petroleum-related products to be shipped by pipeline in my model. This unfortunately 

means that freight by water and air are likely overestimated in my model compared to the 

total U.S. ton-miles by mode. For water, when I observed multiple modes (rail and water, 

truck and water) I assigned them strictly to water in the dataset used for model 

calibration, which overstates the share of freight by water. As I use the Navigable 

Waterway Lines from the NTAD to decide whether states can be connected by water, I 

do not consider heterogeneity in the types of vessels used or even whether they could 

navigate specific waterways all year round (e.g., due to shallowness in summer). The 

navigable paths for some commodities in my model are longer than they actually are; this 
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clearly leads to the overestimation of freight by water. For air, I use aerial distances 

between states and do not consider the airport location or an airline’s use of its hub-spoke 

system. This leads to the underestimation of air shipping distances and substantial 

underestimation of total fuel cost by air, resulting in overestimates of the use of air 

freight. 

Table 3-7 Ton-miles and GHG Emissions of Interstate Freight by Mode 

 Truck Rail Water Air Pipeline Total 

Inter-State Freight  

(Trillion ton-miles) 

1,129.91 942.20 636.06 39.55 84.53 2,832.24 

39.9% 33.3% 22.5% 1.4% 3.0% 100.0% 

U.S. Freight 

(Trillion ton-miles) 
2,010.88 1,585.44 477.86 13.16 896.32 4,983.66 

GHG Emissions 

(MMT CO2 eq.) 

236.50 21.16 21.83 50.50 3.70 333.68 

70.9% 6.3% 6.5% 15.1% 1.1% 100.0% 

3.4 Discussion 

Due to limited data on domestic freight flows, it is difficult to ground truth estimates 

from the model I have developed. So, in this section, I discuss some uncertainties 

inherent to the model estimates. 

First, each state’s supply and demand of goods by industry are estimated through 

the MRIO framework. The quality of the state I-O tables determines the accuracy of 

estimates for supply and demand. The weakness of the I-O modeling is that usually only 

spatially aggregate I-O tables are available (Southworth, 2018). Survey-based state I-O 

tables are rarely available in the U.S. Still, I account for differences in production mix 

and magnitude across states in developing the MRIO framework. I gauge them via labor 

income estimates (see Section 2.2.1), so my estimates of supplies are reasonable 

approximates. I use each state’s excess supply and demand to estimate interstate trade. 

This requires removing (from both supply and demand) that part of demand that is 
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fulfilled by instate supplies. I estimate this quantity by industry using regional purchase 

coefficients (RPCs) as detailed in Treyz and Stevens (1985).1  

Second, when I applied the gravity model to estimate trade flow, I tried different 

formulas for travel costs—aerial distances between states, weighted-average shipping 

distances that account for mode shares and using network distances by mode (except air 

and pipeline), and weighted-average fuel costs as in Eq. 3. The estimates for interstate 

trade flow were surprisingly robust to these variations in travel costs. Undoubtedly this 

was because I used the same dataset to calibrate the various models (the same initial trade 

pattern) and used the same biproportional adjustment technique (RAS) to assure that all 

the outbound flows sum to the state’s excess supply and all the inbound flows sum to the 

state’s excess demand. RAS tends to minimize change to patterns that underly the data 

that it works upon (Sargento et al., 2012). Thus, initial guesses of trade patterns are 

critical to interstate trade-flow estimation when RAS is employed.  

I derived initial trade patterns from the 2012 FAF4 State Database that was 

derived from 2012 Commodity Flow Survey data and other data from agriculture, 

extraction, utility, construction, etc. (BTS, 2016). Although FAF4 provides transportation 

origins and destinations, they are not necessarily same as places of production and 

consumption. I choose 2012 FAF4 data rather than 2016 data because 2012 data 

incorporates survey data while 2016 data are merely updates of it developed by BTS. By 

doing so, I assume the interstate trade patterns are relatively stable from 2012 to 2016, 

which might not be the case. More recent data of freight movements in the U.S. should be 

used for interstate trade flow estimates when it is available. 

 
1 While I update the economic data therein and deflate it appropriately, their formulation is quite old (35 years old, in 

fact) and might no longer accurately capture current consumption patterns of instate supplies.  
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Third, in the multinomial regression that I used to model mode choice, I only 

include as industry characteristics the main commodity’s weight/value ratio and whether 

or not the industry produces petroleum-related products. In addition, I used network 

distances by mode as calculated by GIS software; I did not consider the capacity of the 

transportation system. Moreover, I used aerial distances rather than network distances for 

air freight and pipelines. All of this contributes to the underestimates of pipeline usage 

and the overestimates for water and air freight. As I only include limited independent 

variables, the pseudo R2 for the two mode share models are relatively low: .128 for 𝑠𝑚
′  in 

the travel costs and .174 for 𝑠𝑚 in estimating freight activities (see Appendix A). I tried 

to add binary variables that indicate products could be shipped by air or water. But after 

doing so, the coefficient for fuel costs by mode (𝜆𝑚 × 𝑤 × 𝑑𝑚) became statistically 

insignificant for some modes. Wang et al. (2013) came to similar conclusions; in their 

model weight, value, distance, or fuel cost become statistically insignificant in explaining 

mode choice between truck and rail after controlling the commodity type and origin. 

Other than commodity type, variables of shipment characteristics can be added in the 

model in further study to improve the mode share estimates, such as, shipment origin and 

value of time by industry (perishable products have high value of time and are more 

likely shipped by air and truck). Moreover, other data sources are needed to better 

represent the characteristics of transportation modes, such as the pipeline network, hub-

spoke system of airline, speed limit of highways, etc. 

Finally, for the estimation of GHG emissions from freight transportation, I use a 

constant ton-mile emission factor for each mode. I also assume a linear relationship 

between emissions and the weight of goods, distance traveled, and the mode used. I do 
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not account for much heterogeneity. Such heterogeneity can be particularly important if it 

plays out differently across economic and geographic space in the form of different 

vehicle types, fuel efficiencies, loading factors, and fixed costs. In estimating production 

emissions, I use the national-average emission factor by industry so could not account for 

any state differences. The average emission factor by each industry helps to show the 

overall contribution of freight transport in trade-related emissions (production plus 

transportation emissions). But it is worth mentioning that, for the same industry, the 

actual commodities produced and shipped could be different, as could the production 

technology, specifically the energy it uses (type and amount). Either could cause a 

substantial difference in emission factors within the same industry and across states. 

3.5 Conclusion 

This chapter allocates the GHG emissions from interstate freight transport to freight 

flows, considering 51 states (including District of Columbia) within the U.S., 257 

industries and five modes (truck, rail, water, air, and pipeline) for the year 2016. In total, 

interstate freight transport contributes to 37% of interstate trade related GHG emissions 

in the U.S. About 67% of the non-zero interstate trade flows by industry have more 

emissions from transportation than production. But trade flows with the highest trade-

related emissions have a larger share of production emissions and mainly ship energy 

goods. Regarding the freight flows with the highest transportation emissions, most are 

between distant trading partners. Freight by truck accounts for the largest share of the 

GHG emissions (about 70%) from interstate freight transportation. This mode of 

transport has a high emission factor, one exceeded only by air transport.  
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The bottom-up approach that I use to estimate emissions due to interstate trade 

reveals the responsibility for interstate freight transportation emissions by state and by 

industry. Texas, California, Ohio, Florida, Washington, and Illinois are among the top in 

both inbound and outbound transportation emissions. After normalizing trade related 

emissions by state population, Wyoming, North Dakota, and Nebraska have the highest 

inbound and outbound transportation emissions per capita, besides Hawaii and Alaska. 

Industries with both large transportation emissions and significant shares of trade-related 

emissions from transportation are mining (except oil and gas), food and beverage and 

tobacco products, wood products, forestry, fishing, and related activities, and motor 

vehicles and parts. Better accountability makes better coordination between state 

government, government and private sectors, shippers and carriers possible. Trading 

partners with top transportation emissions (e.g. Texas and California) as well as 

industries with substantial freight emissions (e.g. food and beverage and tobacco 

products) can work on improving the efficiency of the supply chain to reduce emissions. 
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4 A Scenario Analysis of State Greenhouse Gas Emissions 

4.1 Introduction 

In this chapter, I apply scenario analysis to examine how might state consumption- and 

production-based greenhouse gas emissions change for state environmental policies. 

Following the analysis of previous chapters, I include two sets of scenarios. In the first, I 

apply state-based carbon tax to examine economywide emissions by industry for a pair of 

states. In the second, I examine how alternative fuel prices (due to fuel tax) might affect 

emissions from interstate freight transportation. 

Many countries and regions adopt market-based environmental policies to address 

climate change, e.g. the European Union Emissions Trading System, Spain’s carbon tax, 

and California’s cap-and-trade program (World Bank, 2020). The principle of market-

based measures is that an increase in costs of emitting environmental pollutants generally 

reduces the demand for the production of goods and services that generates pollution. 

There is an economic advantage to market-based measures in that the market decides the 

cost of emissions reduction (Center on Budget and Policy Priorities, 2015). In the U.S., in 

addition to federal emissions standards, states can set up their own greenhouse gas 

emissions reduction goals, I investigate the environmental and economic impacts of 

potential state carbon tax.  

Many researchers have studied the impacts of market-based environmental 

policies. Some have examined the leakage problem, i.e., that emission reductions in 

carbon-constrained regions is often partially offset by a rise in emissions elsewhere. 

Within a nation, this can be due to different subnational climate policies as well as 

variations in industry mix across regions. Caron et al. (2015) modeled 15 regions within 
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the U.S. and 15 regions overseas to examine carbon leakage from California’s cap-and-

trade program. They found that leakage is mainly intra- as opposed to inter-national, and 

largely via the electricity grid. Fell and Maniloff (2018) investigate carbon leakage from 

the regional greenhouse gas initiative (RGGI) and found that lowering carbon-intensive 

(coal-fired) power generation in RGGI states enables rises of less carbon-intensive 

(natural gas combined cycle) power generation in states that surround them.  

Some research focuses on the economic and environmental impacts of national 

climate policies. Choi et al. (2010) find that increasing the cost of U.S. carbon-based 

emissions causes coal- and petroleum-fired electric power to decline vis-à-vis other 

commodities and that CO2 emissions decrease even faster, suggesting that more 

inefficient power plants should be retired first. In my research effort, I attempt to examine 

the impacts of subnational climate policies—a state carbon tax—by using a multiregional 

input-output (MRIO) framework. 

Input-output (I-O) analysis has long been widely used for environmental issues 

(Leontief and Ford, 1972). It provides straightforward engineering-economic connections 

between the economic system, resource usage, and externalities associated with their use. 

But the fixed average technology of I-O models usually makes them more applicable to 

short-term analyses. Still, the history of this policy-model pairing is rich and deep. Most 

relevant to my work are Chen et al. (2015) and Chang and Han (2020), who investigate 

the environmental costs of coal burning and price effects by sector of a carbon tax in 

China. Labandeira and Labeaga (2002) and Gemechu et al. (2014) estimate short-term 

price effects and environmental impacts of CO2 taxation in Spain. Choi et al. (2010; 

2016) study the economic and environmental implications of energy policies, e.g. fuel 
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taxes and subsidies in the U.S. Following Choi et al. (2010; 2016), I use a MRIO 

framework that combines price and quantity changes. 

Freight transportation is a mobile source of GHG emissions, and different freight 

transport modes contribute quite differently to GHG emissions. Thus, enabling a shift 

across freight transport modes is one potential strategy a government could apply to 

reduce environmental emissions. One way to effect such a shift is to induced a fuel tax of 

some sort; so I examine the sensitivity of freight transportation mode shares to fuel prices 

and discover changes in GHG emissions that emanate from interstate freight 

transportation.  

Many studies have been performed to examine how to reduce U.S. transportation 

emissions, e.g., by reducing travel demand, improving vehicle efficiency, reducing 

carbon intensities, fuel taxes, mode shifts, etc. (Yang et al., 2009; McCollum & Yang, 

2009; Morrow et al., 2010; Nealer et al., 2012). For freight transportation emissions, 

some have examined the impacts of trade (Cadarso et al., 2010; Cristea et al., 2013; 

Llano et al., 2018), others have, instead, examined the greenness of international supply 

chains (e.g. efficient vehicle loading) (Tiwari et al., 2015), others selected improved fuel 

economy (i.e., fleet configuration, vehicle technology, and fuel mix) as a solution 

(Greene et al., 2020), and yet others have examined the potential effects of mode shifts 

(Nealer et al., 2012; Nelldal & Andersson, 2012; Llano et al., 2018).  

Of particular interest, Nealer et al. (2012) compare freight GHG emission 

reductions of different extreme scenarios, including a shift of all trucked freight to rail 

and, alternatively, limiting such a shift only to sectors with the top 20% emissions using 

trucked freight. Nelldal and Andersson (2012) investigate a scenario in which they shift 
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freight in the European Union from road to rail only for those shipments over 100 

kilometers, since rail is really only more competitive over longer distances due to its 

higher transshipment costs (short drays are required to rail loading zones). Llano et al. 

(2018) examine a moderate mode shift from truck to rail (maximum share of rail is 40% 

for travel distance over 600 kilometer) and an extreme mode shift from truck to rail 

(maximum share of rail is 60% for travel distance over 150 kilometer). Rather than 

establish arbitrary shifts, I investigate the extent to which mode shifts can be triggered by 

fuel price changes due to fuel taxes. Thus, I probe how much fuel prices would need to 

change (rise) to enable sizeable mode shift away from emission-intensive modes in order 

to reduce freight emissions noticeably. I assume such mode shifts are possible without 

considering the capacity constraints of the transportation system, especially for rail and 

pipeline. 

In the following, I start by explaining the set of state carbon tax and fuel price 

scenarios that I examine, as well as the corresponding research approaches. I then present 

and analyze results for the two sets of scenarios. I also briefly discuss the uncertainties 

and frailties of my research approach. The chapter conclude with a summary of major 

findings and concordant policy recommendations. 

4.2 Methods and Data 

4.2.1 State Carbon Tax Scenarios 

The design of a carbon tax involves the jurisdictional allocation, tax rate, and an 

assumption about the size of the tax base (Labandeira & Labeaga, 2002). Since my 

purpose is to examine the impacts of state climate policies on the overall emissions, I 

allocate a single jurisdiction in my scenarios—a single state. I opt for the State of Texas 
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and New York State. Among states, Texas has the largest production-based emissions 

(580.6 MMT CO2 equivalent) and second largest consumption-based emissions (434.4 

MMT). It also is the highest net exporter of emissions (146.1 MMT). In contrast, New 

York State is the top net importer of emissions (111 MMT) and is also among the highest 

in production- and consumption-based emissions. As a Pigouvian tax, a socially optimal 

carbon tax rate is set so that it maximizes social welfare (Labandeira & Labeaga, 2002; 

Chen et al., 2015). But tax rate setting is not the focus of this study. Instead, I apply a rate 

suggested by the World Bank (2020): $50-$100 per metric ton of CO2 equivalent by 

2030, which should effectively enable achievement of global emission reduction goals as 

set out in the Paris Agreement. I select the lower bound $50 per ton of CO2 equivalent in 

my scenarios as current carbon prices in the U.S. are quite low; they are now about $15 

per ton in California’s cap-and-trade program and $5 per ton for RGGI (World Bank, 

2020). I choose state production- and consumption-based GHG emissions as the tax base. 

I estimated them in in Chapter 2, although they do not include emissions directly 

consumed by households burning fossil fuels (e.g., via the use of automobiles and home 

heating). This will not affect outcomes for the purpose of my research, which is to show 

the impacts of production- or consumption-based carbon taxes as they apply to state 

GHGs as embodied in freight outflows and inflows (Table 4-1). Figure 4-1 charts the 

flow of my approach to analyze the short-term economic and environmental impacts of 

state carbon taxes. 
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Table 4-1 State Carbon Tax Scenarios 

State Carbon Tax Scenarios Description 

Texas Production-based Tax 
New Carbon Tax applies to industries in Texas according 

to GHG emissions generated in their production process. 

Texas Consumption-based Tax 
New Carbon Tax applies to final consumers in Texas 

according to GHG emissions embodied in their 

consumption of goods and services. 

New York Production-based Tax 
New Carbon Tax applies to industries in New York 

according to GHG emissions generated in their production 

process. 

New York Consumption-based 

Tax 

New Carbon Tax applies to final consumers in New York 

according to GHG emissions embodied in their 

consumption of goods and services. 

Figure 4-1 Flow Chart of the Research Approach for Chapter 4 

 

4.2.1.1 Cost-push Price Model 

When a carbon tax is applied to industries within a state based upon GHG emissions 

generated in production, prices of the commodities produced within the state clearly 

increase by the amount of that tax. Industries that use that commodity as an intermediate 

input then suffer an indirect price rise from the carbon tax. In turn, their commodity 

prices rise as well. Further, prices of commodities produced by those industries in all 

other states would also increase as the carbon-taxing state’s commodities are used as 

interindustry inputs within domestic supply chains. It is generally assumed that price 

increases are completely transferred to consumers within short period. Afterall, in the 

short run, few technology innovations are likely and quick substitution of interindustry 

inputs is rare (Wiebe et al., 2018). I use Leontief’s cost-push I-O price model 

(Dietzenbacher, 1997) to identify likely price impacts of a new state carbon tax. The 
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unitary price of each commodity is determined by the cost of intermediate inputs from 

other industries (𝐩′𝐂𝐀), primary inputs (𝐯′�̂�−1, value added per unit of output), and 

imported inputs (𝐦′�̂�−1, imports per unit of output) (Eq. 1) (Miller & Blair, 2009). 

 𝐩′ = 𝐩′𝐂𝐀 + 𝐯′�̂�−1 + 𝐦′�̂�−1 (15) 

Assuming there are 𝑛 industries, 𝐩′ is a 1 × 51𝑛 row vector of price for products of each 

industry by state. 𝐀 is a 51𝑛 × 51𝑛 matrix with direct requirements table for each state 

(see Eq. 2 in Chapter 2). 𝐂 is a 51𝑛 × 51𝑛 trade share matrix (see Eq. 3 in Chapter 2). 𝐯′ 

is a 1 × 51𝑛 row vector of value added for each industry by state. 𝐦′ is a 1 × 51𝑛 row 

vector of imported inputs for each industry by state. �̂�−1 is a 51𝑛 × 51𝑛 diagonal matrix 

in which the nonzero element, 𝑥𝑖𝑟
−1, is the inverse of the output for each industry (𝑖) by 

state (𝑟). Eq. 1 can also be written as follows using the Leontief inverse, (𝐈 − 𝐂𝐀)−1 (Eq. 

2). 

 𝐩′ = (𝐯′�̂�−1 + 𝐦′�̂�−1)(𝐈 − 𝐂𝐀)−1 (2) 

After the new production-based state carbon tax, the value added of the taxed 

state changes (∆𝐯′) induces price changes for commodities of all states (∆𝐩′) (Eq. 3). ∆𝐯′ 

is a 1 × 51𝑛 row vector (Eq. 4) in which the nonzero element, ∆𝑣𝑖𝑟 indicating the new 

carbon tax for industry 𝑖 in state 𝑟, which is calculated as the product of carbon tax rate 

(𝜏) and the GHG emissions of industry 𝑖 in state 𝑟 (𝜖𝑑,𝑖𝑟𝑥𝑖𝑟) (Eq. 5). Emissions of 

industry 𝑖 in state 𝑟 are determined by the direct emission intensity (𝜖𝑑,𝑖𝑟, GHG emissions 

per unit of output) and the industry output (𝑥𝑖𝑟). The price change instigated by a new 

carbon tax is determined by the carbon tax rate and direct emission intensities by industry 

within the emissions-regulating state (Eq. 6). 

 ∆𝐩′ = ∆𝐯′�̂�−1(𝐈 − 𝐂𝐀)−1 (3) 
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 ∆𝐯′ = [0,0,0, ⋯ , ∆𝑣1𝑟 , ∆𝑣2𝑟 , ⋯ , ∆𝑣𝑛𝑟 , ⋯ ,0,0] (4) 

 ∆𝑣𝑖𝑟 = 𝜏𝜖𝑑,𝑖𝑟𝑥𝑖𝑟 (5) 

 ∆𝑣𝑖𝑟 𝑥𝑖𝑟⁄ = 𝜏𝜖𝑑,𝑖𝑟 (6) 

Conventionally within the Leontief cost-push model, the current price of products 

by industry is assumed to be $1, which is achieved by normalizing via the physical unit 

of measurement (Miller & Blair, 2009). In this regard, it is more like a price index or, in 

economics parlance, “numeraire.” Then ∆𝐩′ is a 1 × 51𝑛 row vector indicating the 

percentage increase of the price for each commodity by state (Eq. 7) in which 𝐩1
,
 is the 

vector of price after the carbon tax and 𝐩0
,
 is the vector of current price. 

 
∆𝐩′ =

𝐩1
, − 𝐩0

,

𝐩0
,  

(7) 

When state carbon taxes directly apply to final consumers, the price changes 

realized by final consumers in the taxing state 𝑟 for the products of industry 𝑖 in state 𝑠 is 

determined by the product of the tax rate (𝜏) and consumption-based emissions 

(𝜖𝑡,𝑖𝑠𝑦0𝑟,𝑖𝑠) divided by the final demand (𝑦0𝑟,𝑖𝑠) (Eq. 8). 𝜖𝑡,𝑖𝑠 is the total emission 

intensity, indicating the GHG emissions per unit of final demand for products of industry 

𝑖 in state 𝑠. The final consumers in the taxing state not only consume within-state 

products but also spend on products produced outside of their home state. Consumers 

outside the taxing state are not directly affected. Since I assume a numeraire for all 

commodities of $1, the percentage price increase for a consumption-based carbon tax is 

identified by the tax rate and total emission intensities by industry in all states (Eq. 8). 

 𝑝1𝑟,𝑖𝑠 − 𝑝0𝑟,𝑖𝑠 = 𝜏𝜖𝑡,𝑖𝑠𝑦0𝑟,𝑖𝑠 𝑦0𝑟,𝑖𝑠⁄ = 𝜏𝜖𝑡,𝑖𝑠 (8) 
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4.2.1.2 Changes in Quantity Demanded 

Consumers’ behaviors change quickly in response to the price change. I use price 

elasticities of demand to quantify the changes in final demand quantities. The elasticity 

for products of industry 𝑖 in state 𝑟 (𝜀𝑖𝑟) is the ratio of changes in final demand quantities 

to the corresponding price changes (∆𝑝𝑖𝑟) (Eq. 9). 𝑓0,𝑖𝑟 is the current physical amount of 

final demand for products of industry 𝑖 in state 𝑟, and 𝑓1,𝑖𝑟 is the demand quantities after 

price changes.  

 
𝜀𝑖𝑟 = −

(𝑓1,𝑖𝑟 − 𝑓0,𝑖𝑟) 𝑓0,𝑖𝑟⁄

∆𝑝𝑖𝑟
 

(9) 

It is very difficult to obtain the price elasticities for all commodities. Following 

Choi et al. (2010), I use a fixed elasticity of 0.3 for all commodities in all states. By doing 

so, I assume consumers’ behaviors to price changes are identical across states and that a 

given commodity produced in one state cannot substitute for the same commodity 

produced by another state. This can seem like an overly strong assumption, but, even 

with 403-industry detail, there is a great deal of commodity variety within an industry. 

For example, potato farmers in one state may produce baking potatoes and another might 

produce those for boiling. In any case, the final demand quantities after price changes 

(𝑓1,𝑖𝑟) can be calculated using the price elasticities of demand and percentage price 

changes from the price model (Eq. 10). 

 𝑓1,𝑖𝑟 = (1 − ∆𝑝𝑖𝑟𝜀𝑖𝑟)𝑓0,𝑖𝑟 (10) 

The final demand change can come from two sources: price changes and quantity 

changes. In order to remove the impacts of price changes, I calculate the value changes of 

final demand in original prices ($1 for all commodities) by multiplying its current final 
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demand value (𝑦0,𝑖𝑟, estimated in Chapter 2) by percentage changes in prices and price 

elasticities of demand (Eq. 11). 

 ∆𝑦𝑖𝑟 = 𝑓1,𝑖𝑟𝑝0,𝑖𝑟 − 𝑓0,𝑖𝑟𝑝0,𝑖𝑟 = −∆𝑝𝑖𝑟𝜀𝑖𝑟𝑓0,𝑖𝑟𝑝0,𝑖𝑟 == −∆𝑝𝑖𝑟𝜀𝑖𝑟𝑦0,𝑖𝑟 (11) 

4.2.1.3 Demand-pull Quantity Model 

With changes in final demand, I use the traditional demand-pull I-O model to estimate 

changes of output (Eq. 12) (Miller & Blair, 2009). As I assume no technology changes or 

substitutions among intermediate inputs in the short-term, the Leontief inverse is 

unchanged given values are in original prices. ∆𝐱 is a 51𝑛 vector of output changes by 

state for each industry. ∆𝐲 is a 51𝑛 vector of total final demand changes (from all states) 

for products of each industry by state. 

 ∆𝐱 = (𝐈 − 𝐂𝐀)−1∆𝐲 (12) 

Changes of state GDP by industry (∆𝐺𝐷𝑃𝑖𝑟) can be estimated using the ratio of GDP to 

state output (𝐺𝐷𝑃𝑖𝑟 𝑥𝑖𝑟⁄ ) (Eq. 13). Similarly, changes in compensation of employees and 

employment by industry for each state can be estimated using the corresponding ratio 

(Eq. 14, 15). State GDP, compensation of employees and employment are estimated in 

Chapter 2. 

 ∆𝐺𝐷𝑃𝑖𝑟 = (𝐺𝐷𝑃𝑖𝑟 𝑥𝑖𝑟⁄ )∆𝑥𝑖𝑟 (13) 

 ∆𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑖𝑟 = (𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑖𝑟 𝑥𝑖𝑟⁄ )∆𝑥𝑖𝑟 (14) 

 ∆𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑟 = (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑟 𝑥𝑖𝑟⁄ )∆𝑥𝑖𝑟 (15) 

4.2.1.4 Changes in GHG Emissions 

With output changes in original values, changes of production-based emissions (∆𝐄𝒑) by 

state can be estimated using the direct emission intensities (𝛜𝒅) (Eq. 16).  

 ∆𝐄𝒑 = 𝛜𝒅∆𝐱 (16) 
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Consumption-based emission changes for each state (∆𝐄𝒄
𝒓) are estimated using total 

emission intensities (𝛜𝒕) multiply changes of state final demand in original prices (∆𝐲𝒓) 

(Eq. 17). 

 ∆𝐄𝒄
𝒓 = 𝛜𝒕∆𝐲𝒓 (17) 

The direct emission intensities and total emission intensities remain the same as estimated 

in Chapter 2 because I assume the constant production recipe in the short run. 

4.2.2 Fuel Price Scenarios 

Different transportation modes use different energy resource mixes, e.g. gasoline, diesel 

fuel, electricity, jet fuel, etc. In order to develop scenarios of fuel price changes, I 

examined trends of real fuel prices from 2000 to 2020 (EIA, 2020a). With the exception 

of natural gas, energy prices—gasoline, diesel fuel, and jet fuel—are highly related to 

crude oil prices (Figure 4-2). I did not include coal as it is not directly used for freight 

transportation. Crude oil prices increased more than 20% from 2001 to 2008, then remain 

in the relatively high level until 2014. The crude oil prices dropped to 2001 level in 2015 

and increased slightly after. The prices in 2020 decline to the bottom again. 

Since my purpose is to examine whether fuel price changes could drive mode 

shifts away from emission-intensive modes and my baseline is for the year 2016, I based 

my scenarios on variations from 2016 levels. Given that different modes use different 

types of fuels and the prices of all fuels except natural gas are linked to crude oil prices, I 

chose crude oil prices as the reference for any fuel price rises. Considering past fuel price 

fluctuations, I examine three moderate increments (50%, 100%, and 200%) and two 

extremes (300% and 500%). 
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Figure 4-2 Fuel Prices from 2000 to 2020 (year 2000 Prices) 

 

Source: U.S. Energy Information Administration 

Using annual fuel prices from 2000 to 2017 (EIA, 2020a), I build the relationship 

between crude oil price (𝑝𝑜𝑖𝑙) and fuel cost per ton-mile by mode (𝜆𝑚). The fuel cost per 

ton-mile, 𝜆𝑚, is calculated as the product of fuel consumption by mode and the fuel price, 

all divided by the ton-miles of freight. The U.S. ton-miles of freight and fuel 

consumption by mode from 2000 to 2017 are publicly available as National 

Transportation Statistics (BTS, 2018a; 2018b). The fuel cost per ton-mile by mode in 

each scenario (𝜆𝑚
′ ) is then calculated using the corresponding increased crude oil price 

(𝑝𝑜𝑖𝑙
′ ) (Eq. 18). In Eq. 18, 𝑎𝑚 and 𝑏𝑚 are empirically derived mode specific parameters 

using historical data for crude oil prices and fuel cost per ton-mile between 2000 and 

2017. 

 𝜆𝑚
′ = 𝑎𝑚 + 𝑏𝑚𝑝𝑜𝑖𝑙

′  (18) 
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I use Eq. 18 to estimate the fuel cost per ton-mile for truck, rail, water, and air. 

For pipeline, whose energy source is mainly natural gas, crude oil price is not a good 

predictor of natural gas price. I keep the fuel cost per ton-mile of pipeline at 2016 levels 

in all scenarios since pipelines are limited to transporting petroleum-related products and 

substantive cost rises would require substantial infrastructure additions that are not 

presently scheduled. For this reason, perhaps, pipeline’s mode share has remained 

relatively stable compared to other modes over the past few years (BTS, 2016). Thus, 

although pipeline’s fuel cost per ton-mile is the lowest among all modes, fuel costs are 

not a prime determinant for a commodity’s mode shift to pipelines. Table 4-2 presents the 

fuel cost per ton-mile by mode in each scenario. Based on the historical relationship 

between crude oil prices and fuel costs per ton-mile by mode (except for pipeline), the 

percentage increases in fuel costs per ton-mile are different from that of crude oil price 

increases. The fuel mix varies among different modes as well (Eq. 18). 

Table 4-2 Fuel Costs per Ton-mile ($/ton-mile) by Mode for Scenarios 

Fuel Price Scenarios Truck Rail Water Air Pipeline 

Baseline (2016) 0.0324 0.0029 0.0193 1.1204 0.0020 

Crude Oil Price Increases 50% 0.0351 0.0042 0.0246 1.6865 0.0020 

Crude Oil Price Increases 100% 0.0463 0.0054 0.0329 2.2259 0.0020 

Crude Oil Price Increases 200% 0.0687 0.0078 0.0496 3.3046 0.0020 

Crude Oil Price Increases 300% 0.0912 0.0103 0.0663 4.3833 0.0020 

Crude Oil Price Increases 500% 0.1360 0.0152 0.0997 6.5407 0.0020 

In each scenario, I first estimate interstate trade flows by industry using gravity 

models. These flows are then converted into interstate freight by mode (ton-miles) based 

on the aggregate interstate mode shares of each commodity. I estimate GHG emissions 

from interstate freight transportation by multiplying interstate freight flows by mode (ton-

mile) and ton-mile emission factors by mode. For details see Section 3.2 of Chapter 3. I 
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hold state supplies and demands by industry constant when estimating interstate trade 

flows for each scenario. Emission factors by mode remain the same as well. Recall, the 

purpose of this exercise is strictly to identify the impacts of fuel price changes on freight 

mode shares.  

Here I explain how my approach diverges from that in Section 3.2 where I used a 

multinomial logit model (Eq. 4, 5, 6 of Chapter 3) to estimate mode shares in interstate 

travel cost estimates (𝑠𝑚
′  in Eq. 3, gravity model in Chapter 3). In the previous chapter, I 

used the 2012 Commodity Flow Survey (CFS) Public Use Microdata sample to calibrate 

the model (Census Bureau, 2015). But since 2012 CFS data are for a single year with a 

very small sample of pipeline shipments, the model cannot include fuel costs by mode as 

an independent variable and, most importantly, cannot validly predict pipeline usage. For 

fuel price scenarios, I calibrate mode shares using the Freight Analysis Framework 

version 4 (FAF4) State Database of 2002, 2007, and 2012 (BTS, 2016) so that I can 

include fuel costs of shipping one unit of commodity by mode (𝜆𝑚 × 𝑤 × 𝑑𝑚) (see 

Appendix A). It also enables estimates of pipeline usage. This is at the expense of 

substantial shipment detail, however. The FAF4 State Database incorporates data from 

the CFS, agriculture, utility, construction, and other sectors (BTS, 2016). So, the sectoral 

details of the FAF4 and CFS are the same: about 40 groups of commodities. But the 

FAF4 data only provides aggregate shipment weight and value between origin-

destination state by mode for each commodity group rather than individual shipment 

information as in 2012 CFS data. In fact, the FAF4 has far fewer observations (360,013) 

compared to the CFS.  

  



91 
 

 
 

4.3 Results 

4.3.1 Carbon tax scenarios 

Table 4-3 presents a summary of the environmental and economic impacts for the state 

carbon tax scenarios. The reductions of GHG emissions (production-based) in both Texas 

carbon tax scenarios are much larger than those in the two New York scenarios (Table 4-

3). The emission reductions are mainly in the taxing state. New York’s emission 

reductions only account for 36% of the total U.S. reductions in the New York 

consumption-based carbon tax scenario (smallest in all scenarios) because New York 

imports the largest amount of emissions as embodied in trade from other states.  

The short-term GDP loss due to the state carbon taxes are also mainly from the 

taxing state (Table 4-3). Texas suffer larger GDP loss in its production-based carbon tax 

scenario compared to its consumption-based carbon tax scenario, while the opposite is 

true for the New York. The total national GDP loss in the two Texas carbon tax scenarios 

are also much larger than those in the two New York scenarios.  

Consumer expenditures increase after implementation of the state carbon taxes as 

the carbon taxes elevate the overall price level. In Texas and New York production-based 

carbon tax scenarios, increases in expenditure not only arise directly within the focal state 

but also unfold indirectly across all other states. For consumption-based carbon tax 

scenarios, expenditures only increase for final consumers within the taxing state and the 

amount of increase is larger compared to the expenditure rise in the taxing state in the 

corresponding production-based carbon tax scenarios. This is because final consumers in 

the taxing states have to pay carbon taxes directly according to the GHG emissions 

embodied in the goods and services regardless of their origins. While in production-based 
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carbon tax scenarios, consumers ultimately pay the carbon tax via higher prices that 

emerge downstream in the supply chain when taxes are paid for emissions in the taxing 

state only.  

Table 4-3 Environmental and Economic Impacts for State Carbon Tax 

State Carbon Tax Policy 
Texas 

Production-

based Tax 

Texas 

Consumption-

based Tax 

New York 

Production-

based Tax 

New York 

Consumption-

based Tax 

GHG 

Emission 

Reductions 

(thousand tons 

of CO2 Eq.) 

Taxing 

State 
10,698.0 7,944.7 839.6 936.1 

U.S. 12,468.8 11,670.1 1,125.1 2,572.7 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

86% 68% 75% 36% 

GDP Loss 

(millions $)  

Taxing 

State 
4,578.9 3,956.9 1,468.4 1,928.6 

U.S. 7,877.0 6,169.7 2,067.1 3,478.9 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

58% 64% 71% 55% 

Increases in 

Expenditures 

(millions $)  

Taxing 

State 
9,615.6 15,269.8 3,733.0 8,759.0 

U.S. 19,785.5 15,269.8 5,175.9 8,759.0 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

49% 100% 72% 100% 

State Carbon Tax Revenues 

(millions $) 
28,494.3 22,064.0 7,412.2 12,567.9 

Increases in expenditures in both Texas carbon tax scenarios are larger than those 

of the two New York scenarios. The same applies to the state carbon tax revenues. 

Revenues from state carbon taxes are calculated using negative changes in both output 

and final demand in original prices. The amount of new tax revenues in each scenario is 

larger than the sum of the increases in expenditures by final consumers (suggest 

reductions of real income) and GDP loss (without carbon taxes) in the U.S. This suggests 

that the rises in state tax revenues could be used to compensate agents for any losses 
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attached to the taxation. For Texas, revenues from its production-based carbon taxes are 

larger than those from consumption-based taxes because Texas is a net exporting state of 

GHGs. The opposite is true for New York as it is a net importing state of GHGs. 

In the following subsection, I explain the price increases due to the new carbon 

tax, final demand declines due to the price rises, which causes output and GDP to fall, not 

to mention also drops in employment and labor compensation. Of course, GHG emission 

reductions are also achieved in each carbon tax scenario. 

4.3.1.1 Price and Production Changes 

Figure 4-3 shows percentage price increases in the wake of a carbon tax of $50 per ton of 

CO2 equivalent that applies to GHG emissions in all production in Texas. The price 

increase varies from 0.08% (insurance) to 28.3% (electric power industry) among 

industries within Texas. The price rises incurred by industries outside of Texas are, not 

surprisingly, substantially lower, from 0.01% (housing) to 0.31% (petroleum and coal 

products). Industries suffering the price increases most in Texas are the electric power 

industry, farms, pipeline transportation, natural gas distribution, and truck transportation. 

Most industries incur high price increases in Texas due to direct taxation, but food, 

beverage and tobacco products, other real estate, and warehousing and storage are harder 

hit via their supply chains, which heavily embody goods and services that are produced 

by firms that pay the tax directly. Industries in other states suffering the highest price 

rises due to the “new tax” in Texas are petroleum and coal products, food, beverage and 

tobacco products, chemical products, farms, warehousing and storage. 



94 
 

 
 

Figure 4-3 Percentage Price Increase of Top Industries for Production-based State 

Carbon Tax in Texas (%) 

 

When a similar carbon tax is applied to production-based GHG emissions in New 

York, price increases by industry within New York range from 0.02% (insurance) to 

9.4% (pipeline transportation). As in Texas, the price increase outside New York are 

much smaller, averaging from 0.0015% (housing) to 0.03% (funds, trusts, and other 

financial vehicles). New York industries with the highest percentage rise in prices are 

pipeline transportation, farms, natural gas distribution, waste management, and truck 

transportation (Figure 4-4). As in Texas, the increases mainly derive from changes in 

direct taxation. In New York, however, only prices of food, beverage and tobacco 

products rise substantially in an indirect manner. The highest average percentage price 

increases suffered by out-of-state industries due to New York taxation arise in the 
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following: trusts and funds, food, beverage and tobacco products, farms, warehousing 

and storage, and other real estate. 

Figure 4-4 Percentage Price Increase of Top Industries for Production-based State 

Carbon Tax in New York (%) 

 

When the carbon tax applies to final consumers directly, total emission intensity 

(GHG emissions per unit of final demand) determines the percentage price increase by 

industry (Eq. 8). Since consumers tend to purchase more goods and services that are 

within their home state (results from Chapter 2), they are naturally affected most by price 

increases from home state-based producers. Figure 4-5 shows the percentage price 

increase when carbon taxes apply to state consumption-based emissions. For both Texas 

and New York, industries with the highest percentage price increases parallel those to 

which carbon taxes are most heavily applied on production due to emissions. The range 
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industry); while the range in New York is somewhat lower from 0.05% (insurance) to 

9.8% (farms). The ranges nearly equate to those for the sources of production-based 

carbon taxes. The average percentage price increases by industry for all states 

encountered by consumers in the taxing state vary from 0.11% (housing) to 26.8% 

(electric power industry) due to the same carbon tax rate. 

Figure 4-5 Percentage Price Increase of Top Industries for Consumption-based State 

Carbon Tax 

 

The percentage price increases are much larger for Texas carbon taxes than those 

of New York. This is because the emission intensity (GHG emissions per unit of output) 

of the electric power industry in Texas is much higher than that for New York: New 

York’s power industry uses more renewables (e.g., wind and hydroelectric power) and 

lower-carbon fossil fuels, like natural gas. When the carbon tax applies to industries, the 

price of Texas electricity increases more than 27% due to direct taxation. It is transferred 

to all other industries within and outside Texas through their direct and indirect usage of 
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Texas electricity in their supply chains. When the carbon tax applies to final consumers, 

the total emission intensities by industry in Texas also account for the use of in-state 

emission-intensive electricity. 

After the price increases, final demand quantities decrease due to the price 

elasticities of demand. When state carbon taxes apply to production-based emissions, 

final consumers of states other than the taxing one (Texas / New York) would also 

encounter the price increases through the supply chain, resulting in the reductions of final 

demands in those states. In the Texas production-based carbon tax scenario, the 

percentage decreases of state final demands vary from 0.016% (Oregon) to 0.268% 

(Texas). Texas final demand declines by $4.281 billion in original prices (about $159 per 

capita), accounting for about half of the nation’s final demand change (Table 4-4). Other 

states suffering large percentage decreases in final demands are Louisiana (0.064%), 

Mississippi (0.041%), Arkansas (0.038%), and Florida (0.034%). These states also bear 

significant decreases in per capita final demand, as well as some states in the Northeast 

(e.g. District of Columbia, Massachusetts, etc.), ranging from $18 to $35 per person. 

Final consumers in Idaho, Oregon, West Virginia and Wyoming only decrease their 

consumption slightly—about $10 per person. In the New York production-based carbon 

tax scenario, the percentage decreases of state final demands range from 0.001% 

(Arizona) to New York (0.112%), which are smaller compared to those in the Texas 

production-based carbon tax scenario. New York ($1.616 billion, about $82 per capita) 

accounts for more than 70% of the nation’s total decline in final demand (Table 4-4). 

Surrounding states—New Jersey, Connecticut and Pennsylvania, and other Northeastern 

states also suffer mightily (state final demands decrease by 0.004% to 0.015%) since 
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firms there trade heavily with those in New York. Arizona, Utah, and Colorado suffer 

little reductions in final demands (around 0.001%). Except for New York, the decreases 

in per capita final demands of all other states are smaller than $11. When consumption-

based carbon taxes are applied, only consumers within the taxing state pay the price 

increase, but the taxes applied equally to commodities whether they are produced in-state 

or out-of-state. Only final demands of the taxing states decrease: Texas’s declines by 

0.426% ($6.794 billion, $252 per capita) and New York’s by 0.265% ($3.809 billion, 

$193 per capita). 

Reductions in output resulting from final demand decreases are mainly in the 

taxing states (more than 50% of total U.S. reductions). Of course, these translate into 

reductions in GDP, labor compensation, and employment (Table 4-4). Although final 

demand reductions in the Texas are smaller in its production-based tax scenario 

compared to its consumption-based tax scenario, its output declines due to the former are 

much larger since Texas is a net GHGs exporting state. The opposite is true for New 

York: it suffers a greater economic contraction via a consumption-based carbon tax since 

it is a net GHGs importing state (Table 4-4). 
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Table 4-4 Economic Impacts of State Carbon Tax 

State Carbon Tax Policy 
Texas 

Production-

based Tax 

Texas 

Consumption-

based Tax 

New York 

Production-

based Tax 

New York 

Consumption-

based Tax 

Final Demand 

Reductions 

(millions $)  

Taxing 

State 
4,280.7 6,794.3 1,616.1 3,809.0 

U.S. 8,708.8 6,794.3 2,236.3 3,809.0 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

49% 100% 72% 100% 

Output 

Reductions 

(millions $) 

Taxing 

State 
9,016.8 7,842.0 2,755.9 3,644.3 

U.S. 15,575.5 12,268.7 3,948.4 6,896.7 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

58% 64% 70% 53% 

GDP Loss 

(millions $)  

Taxing 

State 
4,578.9 3,956.9 1,468.4 1,928.6 

U.S. 7,877.0 6,169.7 2,067.1 3,478.9 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

58% 64% 71% 55% 

Compensation 

Reductions  

(millions $)  

Taxing 

State 
2,117.2 1,902.4 833.6 1,121.1 

U.S. 3,926.5 3,037.9 1,155.2 1,911.4 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

54% 63% 72% 59% 

Employment 

Loss (jobs)  

Taxing 

State 
43,380 40,909 14,103 19,208 

U.S. 79,922 63,457 20,573 35,372 

Share of Reductions in the 

Taxing State to Total U.S. 

Reductions 

54% 64% 69% 54% 

In the Texas production-based carbon tax scenario, the percentage decreases of 

state output range from 0.013% (Maryland) to 0.325% (Texas). Texas bears the largest 

loss in output as well as in GDP (0.292%), labor compensation (0.26%), and employment 

(0.26%) (Table 4-4). The surrounding states bear the highest percentage decreases in 

output: Louisiana (0.064%), Arkansas (0.056%), Oklahoma (0.048%), and Mississippi 

(0.044%); while states in the east and west coast (e.g. Maryland, New Hampshire, New 
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Jersey, Oregon and Washington) suffer the lowest percentage decreases (smaller than 

0.017%). The surrounding states also suffer substantial losses in GDP (0.03% to 

0.054%), labor compensation (0.03% to 0.049%), and employment (0.03% to 0.048%). 

In contrast, states with small percentage decreases in output display small declines in 

GDP, labor compensation, and employment—smaller than 0.015%. The upper part of 

Figure 4-6 presents the per capita state GDP loss for the Texas production-based carbon 

tax. Besides Texas with about $170 loss per capita in GDP, District of Columbia, 

California, New York, and the surrounding states also bear relatively large GDP loss per 

capita ($12 to $29). 

When the carbon taxes directly apply to Texas final consumers, the percentage 

decreases of state output vary from 0.004% (Maine) to 0.283% (Texas). The large 

reductions in the Texas output translate into substantial loss in GDP (0.253%), labor 

compensation (0.234%), and employment (0.245%) (Table 4-4). Neighboring states are 

among those suffering the highest percentage decrease in output, e.g. Arkansas, 

Oklahoma, and Kansas, as well as Wyoming and North Dakota, ranging from 0.05% to 

0.083%. These states also bear relatively large percentage decrease in GDP (0.038% to 

0.083%), labor compensation (0.03% to 0.62%), and employment (0.032% to 0.055%). 

States in the Northeast are seemingly unhampered with percentage decrease in output, 

GDP, labor compensation and employment all smaller than 0.01%. The lower part of 

Figure 4-6 shows the per capita state GDP loss for the Texas consumption-based carbon 

tax. Texas ($146.8), Wyoming ($51.5), and North Dakota ($32.1) bear the largest per 

capita loss in GDP. The surrounding states and District of Columbia also suffer relatively 

large GDP loss per capita ($15 to $26). 
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Figure 4-6 GDP Reductions per Capita for State Production-based (Upper) and 

Consumption-based (Lower) Carbon Tax in Texas ($) 
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In the case of a New York production-based carbon tax, the percentage decreases 

in state output are much smaller (from 0.002% (Arizona) to 0.108% (New York)) 

compared to those in the Texas carbon tax scenarios. The largest decrease occurs in the 

taxing state—New York ($2.76 billion), which translates into the largest percentage 

decrease in its GDP (0.095%), labor compensation (0.106%), and employment (0.115%). 

The surrounding states, e.g. New Jersey, Pennsylvania, and Connecticut, also receive 

large percentage decreases in output (0.01% to 0.015%), as well as GDP (0.009% to 

0.012%), labor compensation (0.009% to 0.013%), and employment (0.009% to 0.013%). 

But the economies of states in the West (e.g. Arizona, Utah, Nevada, and Colorado) 

almost do not contract at all with output, GDP, labor compensation and employment 

decline by about 0.002%. The upper part of Figure 4-7 shows the per capita GDP loss in 

the New York production-based carbon tax scenario. The surrounding states (e.g. New 

Jersey, District of Columbia, and Connecticut) bear the relatively large GDP reductions 

per capita ($5 to $8), besides New York ($75). 
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Figure 4-7 GDP Reductions per Capita for State Production-based (Upper) and 

Consumption-based (Lower) Carbon Tax in New York ($) 
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When the carbon tax applies to New York final consumers, the percentage 

decreases in state output vary from 0.004% (Arizona) to 0.143% (New York), slightly 

larger than those in the New York production-based carbon tax scenario. Besides output, 

New York also suffer the largest loss in GDP (0.125%), labor compensation (0.142%), 

and employment (0.157%). In addition to those surrounding states in the Northeast (e.g. 

New Jersey, Pennsylvania), emissions-intensive states (e.g. West Virginia, North Dakota, 

and Wyoming) also bear relatively large percentage decrease in output (0.022% to 

0.029%), GDP (0.02% to 0.025%), labor compensation (0.015% to 0.024%), and 

employment (0.015% to 0.022%). States in the West (e.g. Arizona, Utah, Oregon) as well 

as California and Florida change very little with percentage decreases in output, GDP, 

labor compensation, and employment all smaller than 0.006%. The lower part of Figure 

4-7 displays the per capita GDP loss in the New York consumption-based carbon tax 

scenario. New York bears the largest GDP loss per capita—$98. The neighboring states, 

as well as District of Columbia, Wyoming, North Dakota, and Nebraska also suffer 

relatively large GDP loss per capita ($10 to $18). 

Regarding output reductions by industry in different carbon tax scenarios, the two 

Texas scenarios have similar sets of industries that are most affected: electric power 

industry, chemical products, petroleum and coal products, construction, farms, food, 

beverage and tobacco products, etc. In Texas, the electric power industry has the highest 

percentage decreases in output: 3.6% in the production-based carbon tax scenario and 

2.6% in the consumption-based carbon tax scenario. While for the two carbon tax 

scenarios in New York, industries with large reductions of output concentrate in food, 

beverage and tobacco products, construction, state and local general government, 
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wholesale trade, and electric power industry. In New York, the industries with the largest 

percentage decreases in output (1.1% to 1.4% in both carbon tax scenarios) are farms, 

natural gas distribution, and truck transportation. 

4.3.1.2 GHG Emissions Changes 

I calculate changes in both production- and consumption-based GHG emissions for each 

state in the state carbon tax scenarios. Table 4-5 presents a summary for Texas and New 

York. When carbon taxes apply to production-based emissions in Texas, the reductions of 

total U.S. emissions are the largest among all scenarios (12.5 MMT, 0.26%), in which 

reductions of emissions in Texas (10.7 MMT) account for 86%. The reductions of Texas 

consumption-based emissions are relatively smaller—7.9 MMT. The percentage 

decreases in Texas production- and consumption-based emissions are around 1.8%. In 

contrast, in the New York production-based carbon tax scenario, reductions of its 

production-based emissions (0.84 MMT accounting for 75% of total U.S. reductions) are 

smaller than those of consumption-based (0.94 MMT). The New York production-based 

emissions decline by 0.56%. 

Table 4-5 GHG Emission Reductions for State Carbon Tax (thousand tons of CO2 Eq.) 

State Carbon Tax Policy 
Texas 

Production-

based Tax 

Texas 

Consumpti

on-based 

Tax 

New York 

Productio

n-based 

Tax 

New York 

Consumpt

ion-based 

Tax 

GHG Emissions 

Reductions in the 

Taxing State 

Production-based 10,698.0 7,944.7 839.6 936.1 

Consumption-based 7,944.7 11,670.1 936.1 2,572.7 

GHG Emissions Reductions in the U.S. 12,468.8 11,670.1 1,125.1 2,572.7 

% Decrease of 

GHG Emissions in 

the Taxing State 

Production-based 1.843% 1.368% 0.563% 0.628% 

Consumption-based 1.829% 2.686% 0.360% 0.989% 

Percentage Decrease of GHG Emissions 

in the U.S. 
0.257% 0.241% 0.023% 0.053% 
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For both consumption-based carbon tax scenarios, reductions of consumption-

based emissions for the taxing state are equal to total U.S. emission reductions as only 

final consumers in Texas or New York have to pay the carbon tax. Reductions of 

production-based emissions in these two states are smaller than those of consumption-

based. Texas production-based emissions decline by 1.4% (7.9 MMT accounting for 68% 

of the total U.S. reductions). In the New York consumption-based carbon tax scenario, 

reductions of emissions in New York (0.94 MMT, decline by 0.63%) only account for 

36% of the total U.S. reductions. 

In the Texas production-based carbon tax scenario, the production-based emission 

reductions are mainly in Texas. Other than Texas, the nearby states (e.g. Kansas, 

Oklahoma, Arkansas) have the largest percentage decreases (around 0.09%) in their 

production-based GHG emissions. States in the Northeast (e.g. Maryland, New Jersey, 

Rhode Island) have the smallest percentage decreases in production-based emissions 

(around 0.025%). For consumption-based emissions, states with the largest percentage 

decreases are Louisiana (0.28%), Nevada (0.23%), Florida (0.21%), Mississippi (0.18%), 

and Rhode Island (0.15%). Wyoming, North Dakota, and West Virginia have the smallest 

percentage decrease in consumption-based emissions (around 0.03%).  

Figure 4-8 shows the per capita reductions in state production- (upper) and 

consumption-based (lower) emissions. Besides the surrounding states, Texas (397 kg), 

Wyoming (61 kg), and North Dakota (30 kg) have the largest decline in their production-

based emissions per capita. For reductions in state consumption-based emissions per 

capita, the largest decline occurs in Texas (295 kg), Louisiana (55 kg), Nevada (35 kg), 

Florida (33 kg), and some northeastern states (i.e. Rhode Island, Virginia, and District of 
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Columbia) (around 20 kg). This is because Texas products and services are exported to 

other states all over the country. 

Figure 4-8 Per Capita GHG Emission Reductions by state for the Texas Production-

based Carbon Tax (Kilogram CO2 Eq. per capita) 

 

 
 



108 
 

 
 

For the New York production-based carbon tax scenario, the percentage decreases 

in state production-based emissions vary from 0.002% (Utah) to 0.56% (New York) and 

the range of the percentage decrease in state consumption-based emissions is 0.001% 

(Utah) to 0.36% (New York). States close to New York (e.g. New Jersey, Connecticut, 

and Pennsylvania) have relatively large percentage decrease in both production- (0.019% 

to 0.022%) and consumption-based emissions (0.011% to 0.033%). Utah, Nevada, 

Missouri, and Florida have relatively small percentage decrease in production-based 

emissions (around 0.003%); while Utah, Arizona, Colorado, and Wyoming have 

relatively small percentage decrease in consumption-based emissions (around 0.001%). 

Figure 4-9 presents the per capita reductions in state production- (upper) and 

consumption-based (lower) emissions for the New York production-based carbon tax 

scenario. New York (43 kg), Wyoming (6.2 kg), North Dakota (5.4 kg), Montana (4.3 

kg), and Alaska (3.7 kg) have the largest reductions in production-based emissions per 

capita. For reductions in state consumption-based emissions per capita, the largest decline 

occurs in New York (47.5 kg) and its nearby states (e.g. New Jersey, Connecticut, 

Delaware, etc.) (1kg to 5 kg).  
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Figure 4-9 Per Capita GHG Emission Reductions by state for the New York Production-

based Carbon Tax (Kilogram CO2 Eq. per capita) 
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When Texas or New York adopt carbon taxes predicated upon consumption-based 

emissions, consumer expenditures in other states remain the same as the new tax only 

applies to final consumers in the taxing states. Thus, the consumption-based emissions 

remain the same for states other than the taxing one. In the Texas consumption-based 

carbon tax scenario, Texas production-based emissions decline 1.4% and its 

consumption-based emissions decline 2.7%. Other than Texas, its surrounding states (e.g. 

New Mexico, Arkansas, Oklahoma) (0.24% to 0.34%) as well as Wyoming (0.9%), North 

Dakota (0.5%), and West Virginia (0.3%) have the largest percentage decrease in 

production-based emissions. States in the Northeast (e.g. Vermont, New York) have the 

smallest percentage decrease in production-based emissions (around 0.006%). The upper 

part of Figure 4-10 shows the reductions in state production-based emissions per capita 

for the Texas consumption-based carbon tax scenario. States with large percentage 

decrease in production-based emissions also have large per capita reductions in 

production-based emissions. Emission-intensive states, such as Wyoming, North Dakota, 

and West Virginia, as well as Texas have the highest decline in production-based 

emissions per capita. 

In the New York consumption-based carbon tax scenario, New York production-

based emissions decline 0.63% and its consumption-based emissions decline about 1%. 

Besides New Jersey and Pennsylvania (both decline about 0.08%), Wyoming (0.124%), 

North Dakota (0.12%), and West Virginia (0.2%) still have the largest percentage 

decrease in production-based emissions as in the Texas consumption-based carbon tax 

scenario. Utah, Florida, and Nevada have the smallest percentage decrease in their 

production-based emissions (around 0.012%). For the reductions in state production-
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based emissions per capita, the lower part of Figure 4-10 suggests that emission-intensive 

states (e.g. Wyoming, North Dakota, and West Virginia) still have the largest per capita 

reductions in production-based emissions, besides New York. 

Figure 4-10 Per Capita GHG Emission Reductions by state for the Consumption-based 

Carbon Tax in Texas (Upper) and New York (Lower) (Kilogram CO2 Eq. per capita) 
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Regarding emission reductions by industry, Figure 4-11 shows the industries with 

the largest emission reductions for the two Texas carbon tax scenarios. When the tax is 

applied to Texas production-based GHG emissions, the largest emission reductions are 

from the electric power industry (8.5 MMT), farms (1.4 MMT), truck transportation (0.6 

MMT), and oil and gas extraction (0.2 MMT). The majority of the reductions occur 

within Texas. For example, Texas emission reductions account for more than 90% of the 

total reductions from the electric power industry and oil and gas extraction. In the Texas 

consumption-based carbon tax scenario, industries with the largest emission reductions 

are the electric power industry (8.4 MMT), farms (1.3 MMT), truck transportation (0.5 

MMT), and chemical products (0.2 MMT). But the proportions of Texas emission 

reductions in the total U.S. emission reductions by industry become smaller compared to 

those in the Texas production-based carbon tax scenario. For example, Texas emission 

reductions from the electric power industry only account for 67% of the total U.S. 

reductions from the power industry. 

For the two New York carbon tax scenarios, Figure 4-12 presents the most 

affected industries from the state carbon tax. Still, the electric power industry, farms, and 

truck transportation achieve the largest GHG emission reductions in both scenarios. The 

magnitude of reductions is much larger in the consumption-based tax scenario, as well as 

the proportions of emission reductions from other states (Figure 4-12). In the production-

based tax scenario, New York emission reductions account for more than 70% of the total 

reductions of those three industries. But in the consumption-based tax scenario, emission 

reductions from New York only account for 19% of the total U.S. reductions in the 

electric power industry.  
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Figure 4-11 GHG Emissions Reductions of Top Industries for State Carbon Tax in Texas 

(thousand tons of CO2 Eq.) 
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Figure 4-12 GHG Emissions Reductions of Top Industries for State Carbon Tax in New 

York (thousand tons of CO2 Eq.) 
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cause shipments by truck and by air to increase and those by rail and water to decrease 

(Table 4-6). This seems unreasonable which I provide explanations in the following part. 

In S2, S3, S4, and S5, the ton-miles by pipeline slightly increase compared to S0 and S1. 

The GHG emissions from interstate freight transportation by mode follow the same 

pattern of changes as ton-miles but are less exaggerated (Table 4-6). The largest decrease 

of total transportation GHG emissions are between S5 and S1—only 16.4 thousand tons 

of CO2 equivalent (Eq.), while the annual changes of U.S. freight transportation 

emissions are usually in million tons of CO2 Eq. (EPA, 2020). 

Table 4-6 Ton-miles and GHG Emissions of Interstate Freight by Mode for Scenarios 

Fuel Price Scenarios Truck Rail Water Air Pipeline Total 

Ton-miles (millions) 

Baseline (2016) 1,135,896 932,800 613,310 39,871 81,766 2,803,644 

Crude Oil Price Increases 

50% 
1,138,062 932,710 612,728 39,891 81,764 2,805,156 

Crude Oil Price Increases 

100% 
1,138,054 932,727 612,597 39,891 81,774 2,805,044 

Crude Oil Price Increases 

200% 
1,138,045 932,745 612,463 39,892 81,785 2,804,930 

Crude Oil Price Increases 

300% 
1,138,041 932,754 612,396 39,892 81,790 2,804,872 

Crude Oil Price Increases 

500% 
1,138,036 932,763 612,328 39,892 81,795 2,804,815 

GHG Emissions (thousand tons of CO2 Eq.) 

Baseline (2016) 237,755.8 20,945.4 21,048.6 50,911.4 3,576.0 334,237.2 

Crude Oil Price Increases 

50% 
238,209.2 20,943.4 21,028.6 50,936.8 3,575.9 334,694.0 

Crude Oil Price Increases 

100% 
238,207.5 20,943.8 21,024.1 50,936.9 3,576.4 334,688.6 

Crude Oil Price Increases 

200% 
238,205.6 20,944.2 21,019.5 50,937.0 3,576.8 334,683.1 

Crude Oil Price Increases 

300% 
238,204.7 20,944.4 21,017.2 50,937.0 3,577.0 334,680.3 

Crude Oil Price Increases 

500% 238,203.8 20,944.6 21,014.9 50,937.0 3,577.3 334,677.6 

To figure out why shipments by truck and air increase when fuel prices rise, I 

calculated the percentage changes of fuel costs per ton-mile and percentage changes of 
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GHG emissions by mode (Table 4-7). Because I use a single ton-mile emission factor for 

each mode, the percentage changes in ton-miles by mode across scenarios are the same as 

those of GHG emissions in Table 4-7. Although the ton-miles by truck and air as well as 

the corresponding GHG emissions increase in all scenarios compared to the baseline 

(S0), the ton-miles by truck decrease while those by rail increase in S2, S3, S4, and S5 

compared to S1 (crude oil prices increase 50%). This is due to the different percentage 

changes of fuel cost per ton-mile by mode in scenarios. When crude oil price increases 

50% (S1), compared to S0, the fuel cost per ton-mile by truck increases the least—8.5% 

among all modes. This explains why trucking rises as does its GHG emissions—0.19%. 

The fuel cost per ton-mile by air increases the most—50.5%. But due to the constraints of 

rail and water transportation networks (not all states can be connected through railway or 

waterway), air shipments and their corresponding emissions still increase slightly—

0.05%. When comparing S2, S3, S4, S5 to S1, the percentage increases of fuel cost per 

ton-mile by truck are larger than those by rail (Table 4-7), which drives mode shifts away 

from truck to rail, albeit negligibly. The percentage rise in fuel cost per ton-mile by air 

are larger than those by rail but smaller than those by water (Table 4-2, 4-7). The ton-

miles by air and its emissions still increase but very little (from 0.0001% (S2) to 0.0004% 

(S5)). As I keep fuel costs per ton-mile by pipeline stable, the pipeline usage and its 

emissions increase in S2, S3, S4, and S5 compared to S1. The range of the increase is 

from 0.0124% (S2) to 0.0381% (S5). 
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Table 4-7 Changes in GHG Emissions and Fuel Costs of Interstate Freight by Mode for 

Scenarios 

Fuel Price Scenarios Truck Rail Water Air Pipeline 

Changes of GHG Emissions 

(S1-S0)/S0 0.1907% -0.0096% -0.0949% 0.0500% -0.0021% 

(S2-S1)/S1 -0.0007% 0.0019% -0.0215% 0.0001% 0.0124% 

(S3-S1)/S1 -0.0015% 0.0038% -0.0433% 0.0003% 0.0251% 

(S4-S1)/S1 -0.0019% 0.0048% -0.0543% 0.0003% 0.0316% 

(S5-S1)/S1 -0.0023% 0.0057% -0.0653% 0.0004% 0.0381% 

Changes of Fuel Costs per Ton-mile 

(S1-S0)/S0 8.5% 42.2% 27.3% 50.5% 0.0% 

(S2-S1)/S1 31.9% 29.1% 34.0% 32.0% 0.0% 

(S3-S1)/S1 95.7% 87.2% 102.0% 95.9% 0.0% 

(S4-S1)/S1 159.5% 145.3% 170.0% 159.9% 0.0% 

(S5-S1)/S1 287.1% 261.5% 306.0% 287.8% 0.0% 

4.3.2.1 Changes in Interstate Trade by Industry  

Recall, state supplies and demands are constant across scenarios. But travel costs among 

states change with fuel prices, which should affect interstate trade patterns. Table 4-8 

shows the industry-state trade pairs with largest trade value changes when crude oil 

prices increase 50%. The largest decrease occurs in the Texas-California pair for oil and 

gas extraction products (117 million). But the amount of decline is very small compared 

to the original trade value of this industry-state trade pair (16.6 billion). Table 4-8 

suggests that states switch suppliers to different states in S1 compared to the baseline. 

Some states switch to suppliers in nearby states. For example, in S1, part of the demand 

for oil and gas extraction products in California are fulfilled by Colorado suppliers 

instead of suppliers in Texas or Oklahoma. But some states obtain supplies from further 

away. For products of petroleum refineries, Michigan switches supplies from Indiana to 

Texas, and New York switches supplies from Texas to California. Changes also happen 

between nearby states: part of Michigan’s demand for animal processing products are 

fulfilled by Wisconsin suppliers in S1 instead of Illinois suppliers. 
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Table 4-8 Industry-State Trade Pairs with Top Trade Value Changes between S1 and S0 

Rank 
Origin 

State 

Destination 

State 
Industry 

Trade Value 

Change 

(S1-S0) 

(millions $) 

Percentage 

Change in 

Trade Value 

(%) 

Largest Decrease in Trade Value    

1 Texas California Oil and gas extraction -117.08 -0.7% 

2 Texas New York  Petroleum refineries -86.26 -0.6% 

3 Indiana Michigan Petroleum refineries -61.96 -4.3% 

4 Alaska  Hawaii  Oil and gas extraction -50.47 -5.0% 

5 Ohio Michigan Oil and gas extraction -45.81 -4.6% 

6 Texas Illinois  
Beef cattle ranching and 

farming 
-40.58 -2.9% 

7 Arkansas  California Poultry processing -38.03 -2.6% 

8 Oklahoma  California Oil and gas extraction -37.82 -2.7% 

9 Texas Washington  Oil and gas extraction -36.53 -1.5% 

10 Illinois  Michigan 

Animal (except poultry) 

slaughtering, rendering, 

and processing 

-35.61 -5.7% 

Largest Increase in Trade Value    

1 Colorado  California Oil and gas extraction 120.26 4.5% 

2 Texas Michigan Petroleum refineries 86.32 2.7% 

3 Nebraska  California 

Animal (except poultry) 

slaughtering, rendering, 

and processing 

69.85 2.0% 

4 California New York  Petroleum refineries 62.83 2.1% 

5 Nebraska  Texas Grain farming 49.48 14.0% 

6 Texas Hawaii  Oil and gas extraction 47.76 22.8% 

7 Ohio Indiana Oil and gas extraction 38.64 1.8% 

8 Wisconsin  Michigan 

Animal (except poultry) 

slaughtering, rendering, 

and processing 

37.37 8.2% 

9 Alaska  Washington  Oil and gas extraction 35.30 1.5% 

10 Texas Michigan Oil and gas extraction 33.70 4.2% 

 

When comparing S2, S3, S4, S5 to S1, the largest changes in trade value are from 

trading energy goods from petroleum refineries and oil and gas extraction (Table 4-9). 

The more crude-oil prices increase, the larger the changes in trade values. More 

California demands for oil and gas extraction products are fulfilled by Colorado suppliers 

when fuel prices increase further rather than supplies from Texas or Oklahoma. Table 4-9 

also shows that states switch suppliers to different states when fuel prices rise more. For 
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example, part of Indiana’s demand for oil and gas extraction products are fulfilled by 

suppliers in Ohio rather than Texas suppliers; part of Kentucky’s demand for petroleum 

refinery products are fulfilled by supplies from Indiana instead of Texas. States switch to 

supplies from nearby states and from further away as well. 
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Table 4-9 Industry-State Trade Pairs with Top Trade Value Changes Comparing S2, S3, S4, S5 to S1 

Rank Origin State 
Destination 

State 
Industry 

Trade Value Change (millions $) 

S2-S1 S3-S1 S4-S1 S5-S1 

Largest Decrease in Trade Value      

1 Indiana Michigan Petroleum refineries -10.62 -21.44 -26.94 -32.48 

2 Texas California Oil and gas extraction -7.72 -15.61 -19.62 -23.67 

3 Ohio Michigan Oil and gas extraction -6.12 -12.38 -15.55 -18.76 

4 Texas Indiana Oil and gas extraction -6.06 -12.25 -15.38 -18.55 

5 Oklahoma  California Oil and gas extraction -4.90 -9.86 -12.37 -14.90 

6 Minnesota  Wisconsin  Petroleum refineries -4.85 -9.80 -12.32 -14.87 

7 Texas Kentucky  Petroleum refineries -3.67 -7.41 -9.32 -11.25 

8 Texas Iowa  Petroleum refineries -3.01 -6.10 -7.68 -9.27 

9 Texas Ohio Petroleum refineries -2.90 -5.85 -7.35 -8.86 

10 Colorado  Montana  Oil and gas extraction -2.82 -5.71 -7.18 -8.66 

Largest Increase in Trade Value      

1 Texas Michigan Petroleum refineries 9.70 19.61 24.65 29.74 

2 Colorado  California Oil and gas extraction 9.64 19.47 24.46 29.49 

3 Ohio Indiana Oil and gas extraction 8.24 16.65 20.91 25.21 

4 Indiana Kentucky  Petroleum refineries 7.27 14.72 18.50 22.33 

5 Minnesota  Iowa  Petroleum refineries 5.02 10.15 12.76 15.40 

6 Indiana Ohio Petroleum refineries 4.84 9.78 12.28 14.80 

7 Texas Michigan Oil and gas extraction 3.93 7.95 9.99 12.05 

8 Louisiana Michigan Petroleum refineries 3.61 7.29 9.17 11.06 

9 Texas New Jersey Oil and gas extraction 3.51 7.10 8.92 10.76 

10 Texas New York  Oil and gas extraction 3.37 6.82 8.57 10.34 
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4.3.2.2 Transportation Emission Changes by State 

Although changes in interstate trade value of industry-state trade pairs can be as large as 

$100 million, after aggregation by state, changes in state inbound and outbound trade 

values are very small across scenarios. The changes between S1 and S0 are largest when 

crude oil prices increase by 50%. The changes of state outbound trade vary from  

-$15,000 (Illinois) to $13,000 (Florida), while that of inbound trade varies from -$22,000 

(California) to $8,000 (Michigan). When comparing S2, S3, S4, S5 to S1, changes in 

state inbound and outbound trade are less than $1,000, almost negligible given the 

aggregate size of interstate trade. 

For interstate freight transportation emissions, when comparing S1 to S0, total 

emissions increase about 457,000 tons of CO2 Eq. For outbound transportation emissions, 

Georgia, Iowa, Kansas, Missouri and California have the largest increase (larger than 

30,000 tons of CO2 Eq. each); Oklahoma, Wisconsin, and West Virginia have the largest 

decrease (larger than 20,000 tons of CO2 Eq. each). For inbound transportation emissions, 

the largest increases occur in Florida, Washington, Colorado, and California (larger than 

30,000 tons of CO2 Eq.); while the largest decreases happen in New York, Maine, Ohio, 

and West Virginia (larger than 5,000 tons of CO2 Eq.). California has substantial rise in 

both inbound and outbound transportation emissions. In contrast, West Virginia has 

sizeable decline in both. Regarding per capita outbound transportation emissions, the 

largest increases are from Wyoming, North Dakota, Montana, as well as Iowa and Kansas 

(15 kg to 45 kg); West Virginia, Oklahoma, Alaska, and South Dakota have the largest 

decreases in per capita emissions (6 kg to 13 kg). For per capita inbound transportation 

emissions, North Dakota, Wyoming, and Hawaii have the largest increase (12 kg to 17 
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kg); Vermont, Maine, and West Virginia have the largest decreases in per capita 

emissions (3 kg to 7.5 kg). Most of these states with large changes in per capita 

transportation emissions originally have substantial transportation emissions per capita.  

When comparing S2, S3, S4, S5 to S1, total emissions decreases are 5.4, 10.9, 

13.6, and 16.4 thousand tons of CO2 Eq. correspondingly. The reductions in 

transportation emissions become larger when the fuel prices rise further. For outbound 

transportation emissions, the largest increases occur in Michigan, Georgia, and Montana, 

and the increased amount gets bigger as fuel price goes up for each state. In contrast, 

Alaska, Oklahoma, California, and Texas have the largest amount of decrease in 

outbound emissions. The decreases also rise with fuel prices. Regarding inbound 

transportation emissions, Michigan, New Jersey, and Montana have the largest increases 

while California, Indiana, and Ohio have the largest decreases. Similarly, the amount of 

changes become larger as the fuel prices go up. When fuel prices increase further, 

California’s inbound and outbound transportation emissions decline significantly; 

Michigan and Montana have sizeable increases in both. For changes in outbound 

transportation emissions per capita, like changes between S1 and S0, Montana, 

Wyoming, and North Dakota still have the largest increases; Alaska, Oklahoma, West 

Virginia, and South Dakota still have the largest decreases in per capita emissions. For 

per capita inbound transportation emissions, Montana, Michigan and North Dakota have 

the largest increases; Hawaii, Delaware, and West Virginia have the largest decreases. 

The changes in per capita transportation emissions by state when comparing S2, S3, S4, 

S5 to S1 are much smaller than those between S1 and S0. 
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4.3.2.3 Transportation Emission Changes by Industry 

Regarding aggregate transportation emission changes by industry, mode shifts away from 

emission-intensive modes does not necessarily result in transportation emission 

reductions with rising fuel prices. There are only three aggregated sectors that obtain 

emission reductions when fuel prices increase: oil and gas extraction, natural gas 

distribution, and petroleum and coal products. All other sectors’ aggregate transportation 

emissions increase in all five scenarios. Rises in fuel prices should drive freight away 

from emission-intensive modes; they are also likely to force producers in some states to 

switch to more localized supplies (in nearby states). Shorter-distance shipments tend to 

be made by truck, as opposed to rail, water or air freight. For example, part of Texas’s 

demand for grains switches from North Dakota to Nebraska supplies in S1 (Table 4-8). 

Although the share of truck shipments from Nebraska to Texas for grains decreases in S1 

(61.2%) compared to S0 (62.3%), the ton-miles by truck increase by 108 million in S1 as 

the trade value increases. Thus, this pair of economic forces emanating from fuel price 

rises suggest no clear expectation for changes in the ton-miles of shipments by truck. 

Thus, aggregate transportation emissions for other sectors can conceivably increase with 

the rise of fuel prices. When crude oil prices increase 50%, the increase in transportation 

emissions is the largest among all scenarios: from 0.14 (apparel and leather products) to 

191.7 (mining) thousand tons of CO2 Eq. Transportation emissions for petroleum and 

coal products also increase in S1 compared to S0. The large amount of increase is mainly 

due to the rising truck ton-miles for all sectors except natural gas distribution. 

When comparing S2, S3, S4, S5 to S1, the decreases in transportation emissions 

become larger for oil and gas extraction, natural gas distribution, and petroleum and coal 
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products as the fuel prices rise. This is achieved by the decline in truck and water ton-

miles together with the increased usage of rail and pipeline. For oil and gas extraction, 

more emission reductions come from the decrease in shipments by water. Actually, 

shipments by water decrease for all sectors in S2, S3, S4, and S5. For sectors other than 

those producing energy goods, as the fuel prices rise, their transportation emissions 

increase more. But the increased amount is smaller than emission reductions from 

shipping energy goods. The largest increases are from shipments of food and beverage 

and tobacco products (329 tons), nonmetallic mineral products (262 tons), and farms (232 

tons) in S5 when crude oil price increases 500%. This is mainly due to more usage of 

trucks. 

4.3.2.4 Industry-State Trade Pairs 

I examine the changes of transportation GHG emissions from each freight flow (origin-

destination-industry-mode) for the five fuel price scenarios. Table 4-10 shows the freight 

flows by mode with the largest changes of transportation emissions when crude oil price 

increases 50% (S1) compared to baseline (S0). The largest reductions are from the Texas-

California path for shipping oil and gas extraction products via water transportation 

through Panama Canal, which is the freight flow with largest transportation emissions in 

2016 (see Table 3-6). There are several freight flows shipping stone mining and 

quarrying products to California, which create significant changes in transportation 

emissions: reductions from Kentucky-California (by rail, truck, and water), Oklahoma-

California (by truck and water) and Tennessee-California (by truck and rail); and rise 

from Georgia-California (by truck and rail) and Missouri-California (by truck and rail). 

The largest increase is on the Nebraska-Texas path, upon which grains ship by truck. 
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Several flows originating from Wyoming have significant increases in transportation 

emissions: the Wyoming-Florida path shipping nonmetallic mineral products and coal by 

truck, and the Wyoming-California path shipping coal by truck. This is because the 

percentage increase of fuel cost per ton-mile by truck is higher than that of rail in S1 

compared to the baseline. Shipments of mining products originating in Wyoming by 

truck increase as well as the corresponding transportation emissions. 

Table 4-10 Changes of Transportation GHG Emissions of Top Industry-State Trade Pairs 

by Mode between S1 and S0 

Rank 
Origin 

State 

Destinatio

n State 
Industry Mode 

Change of GHG 

Emissions (S1-S0) 

(thousand tons of 

CO2 Eq.) 

Largest Decrease of Transportation GHG Emissions 

1 Texas California Oil and gas extraction Water -15.706 

2 Kentucky  California Stone mining and quarrying Rail -14.720 

3 Kentucky  California Stone mining and quarrying Truck -14.694 

4 Oklahoma  California Stone mining and quarrying Truck -13.465 

5 Kentucky  California Stone mining and quarrying Water -11.111 

6 Tennessee  California Stone mining and quarrying Truck -10.524 

7 Georgia  Texas Stone mining and quarrying Truck -8.474 

8 Alaska  Hawaii  Oil and gas extraction Water -8.234 

9 Oklahoma  California Stone mining and quarrying Water -7.676 

10 Tennessee  California Stone mining and quarrying Rail -7.519 

Largest Increase of Transportation GHG Emissions 

1 Nebraska  Texas Grain farming Truck 22.538 

2 Wyoming  Florida  
Other nonmetallic mineral 

mining and quarrying 
Truck 20.397 

3 Texas Hawaii  Oil and gas extraction Water 19.030 

4 Georgia  California Stone mining and quarrying Truck 14.348 

5 Wyoming  Florida  Coal mining Truck 12.355 

6 Missouri  California Stone mining and quarrying Truck 11.457 

7 Wyoming  California Coal mining Truck 9.848 

8 Georgia  California Stone mining and quarrying Rail 9.600 

9 Missouri  California Stone mining and quarrying Rail 9.402 

10 Kansas  California Stone mining and quarrying Truck 9.221 
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Table 4-11 Changes of Transportation GHG Emissions of Top Industry-State Trade Pairs by Mode Comparing S2, S3, S4, S5 to S1 

Rank 
Origin 

State 
Destination State Industry Mode 

Change of GHG Emissions (thousand tons of CO2 Eq.) 

S2-S1 S3-S1 S4-S1 S5-S1 

Largest Decrease of Transportation GHG Emissions 

1 Texas California Oil and gas extraction Water -1.036 -2.094 -2.632 -3.176 

2 Oklahoma  California Oil and gas extraction Water -0.817 -1.644 -2.063 -2.483 

3 Texas Hawaii  Oil and gas extraction Water -0.697 -1.393 -1.740 -2.087 

4 Texas Indiana Oil and gas extraction Truck -0.315 -0.637 -0.800 -0.965 

5 Texas Ohio Oil and gas extraction Truck -0.252 -0.508 -0.637 -0.768 

6 Texas Washington  Oil and gas extraction Water -0.236 -0.477 -0.599 -0.722 

7 California Wisconsin  Petroleum refineries Water -0.237 -0.477 -0.598 -0.720 

8 Texas Kentucky  Petroleum refineries Truck -0.211 -0.427 -0.537 -0.649 

9 California Minnesota  Petroleum refineries Water -0.206 -0.416 -0.522 -0.628 

10 Ohio Michigan Oil and gas extraction Water -0.188 -0.379 -0.476 -0.575 

Largest Increase of Transportation GHG Emissions 

1 Colorado  California Oil and gas extraction Truck 0.572 1.154 1.449 1.747 

2 California Michigan Natural gas distribution Water 0.444 0.891 1.116 1.342 

3 Texas Montana  Oil and gas extraction Truck 0.376 0.760 0.954 1.151 

4 Texas Michigan Petroleum refineries Truck 0.344 0.696 0.875 1.055 

5 Alaska  Hawaii  Oil and gas extraction Water 0.301 0.602 0.752 0.902 

6 Texas Michigan Oil and gas extraction Truck 0.278 0.561 0.704 0.849 

7 Colorado  California Oil and gas extraction 
Pipelin

e 
0.218 0.441 0.554 0.669 

8 California Massachusetts  Petroleum refineries Water 0.208 0.419 0.526 0.633 

9 Colorado  California Oil and gas extraction Rail 0.206 0.416 0.522 0.630 

10 Texas Michigan Petroleum refineries Water 0.205 0.414 0.521 0.629 
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When crude oil prices increase further (S2, S3, S4, and S5), the total 

transportation emissions start to decrease compared to S1. Table 4-11 shows the freight 

flows with largest changes in transportation emissions comparing S2, S3, S4, S5 to S1. 

These top freight flows remain the same with greater extent of changes as fuel prices rise. 

Substantial increase and decrease are both from shipping energy goods: oil and gas 

extraction, petroleum refineries, and natural gas distribution. The largest transportation 

emission reductions are via water transportation shipping products from oil and gas 

extraction: Texas-California, Oklahoma-California, and Texas-Hawaii. Several freight 

flows by truck also have significant emission reductions: Texas-Indiana and Texas-Ohio 

both for products from oil and gas extraction. The largest increases are via truck, rail, 

water, and pipeline transportation. The Colorado-California path shipping products of oil 

and gas extraction has significant transportation emission increase via three modes: truck, 

pipeline, and rail. This is because part of California’s demand for oil and gas extraction 

products switches from Texas to Colorado supplies. 

4.4 Discussion 

There are some uncertainties inherent to the model estimates. For state carbon tax 

scenarios, I use the I-O cost-push model and quantity model to estimate the short-term 

economic and environmental impacts of possible state carbon taxes. Since economic 

structures are relatively stable over short periods (Wiebe et al., 2018), I use a static MRIO 

model. I assume a state carbon tax would completely pass on to final consumers through 

the supply chain (forward linkage) in the cost-push model and changes in final demand 

would result in changes in output without supply constraints (backward linkage) in the 

quantity model. These are strong assumptions. Although average production technologies 
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are unlikely to change in the short-run, producers might use fossil fuels more efficiently 

so that price increases from a new tax would be a bit sticky and not completely pass 

through to final consumers. The improvement of fuel efficiency would affect the 

backward linkage as well. In the long-run, industries would change their input structures 

to some degree and emission intensities would change accordingly. Then the long-term 

economic and environmental impacts would be quite different as both forward and 

backward linkages differ from the baseline. 

In addition, I apply a constant price elasticity of demand that is the same for all 

commodities in all states to estimate the final demand changes after the price increase. I 

do this because it is difficult to obtain price elasticities for all commodities in all states. It 

is, nonetheless, quite a strong assumption as price elasticities undoubtedly differ across 

industries and geography. Future studies should test different price elasticities of demand, 

especially for energy goods, to examine the economic and environmental impacts. 

The state carbon tax scenario analysis is ceteris paribus. That is, I do not consider 

substitution effects. I do not even allow for the substitution of the same commodity from 

a different state, let alone substitution among different commodities. This is undoubtedly 

unrealistic as final consumers typically do not differentiate between commodities by their 

production point. Consumers would be expected to switch to other products when price 

changes substantially, e.g., switch from rice to noodles when rice gets too expensive. 

Moreover, trade patterns across states remain constant in my model although trade 

structures can change quickly depending on policies (Wiebe et al., 2018). With a new 

state carbon tax, state supply and demand change as well as the interstate travel costs 
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since the carbon tax would drive the increase in fuel prices. All these undoubtedly lead to 

changes in interstate trade patterns which I did not account for in the model.  

My approach does simplify interpretation of results, however. By holding 

economic structures, interstate trade patterns, and GHG emission intensities by industry 

constant, I am able to focus instead on state- and industry-specific economic and 

environmental impacts of possible state carbon taxes. But I only test a partial equilibrium. 

My findings cannot examine the extent of carbon leakage due to state environmental 

policies. In this vein, it is not a thorough policy impact analysis since I do not consider 

how revenues from carbon taxes are spent (Dietzenbacher & Velázquez, 2007). 

The extent of GHG emission reductions with a state carbon tax rate of $50 per ton 

of GHG emissions (in CO2 equivalent) in this work is relatively small compared to other 

researchers’ findings. The largest percentage decrease is about 1.8% for Texas 

production-based emissions in the Texas production-based carbon tax scenario. Choi et 

al. (2010) suggest that an economywide tax of $50 per ton of CO2 could enable about 7% 

reductions in the U.S. CO2 emissions based on an I-O framework as well. There are 

several reasons for the differences. First, I use a constant price elasticity of demand (-0.3) 

for all commodities in all states while Choi et al.’s (2010) estimates are based on a 

smaller price elasticity of demand (<-0.3) for all commodities other than the electricity. A 

smaller price elasticity of demand suggests final consumers are more sensitive to price 

changes. Thus, reductions in final demand would be larger with the same price increase, 

which would result in larger reductions in the output as well as the corresponding 

emissions. I tested a price elasticity of demand of -0.7 for all commodities in the Texas 

production-based carbon tax scenario. The resulting reduction in Texas production-based 
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GHG emissions is about 4.3%, much closer to Choi et al.’s (2010) estimates. Another 

reason is that I apply the carbon tax to GHG emissions from a certain state (e.g. Texas) 

while Choi et al. (2010) apply the tax to the U.S. CO2 emissions. Compared to the 

nationwide coverage, a single state exchanges much larger share of goods and services 

with other states. This leads to smaller reductions in the final demand of the taxing state 

as consumers can purchase commodities from other states with much lower price 

increases compared to the home state. The smaller reductions in state final demand lead 

to smaller reductions in state output as well as the GHG emissions. Other researchers 

suggest that an economy-wide carbon tax of $50 per ton on U.S. CO2 emissions could 

achieve around 30% reductions from 2005 levels in the near future using computable 

general equilibrium (CGE) models (Kaufman & Gordon, 2018; Chen & Hafstead, 2019). 

These researchers make assumptions about technology innovations and how to spend tax 

revenues, thus have more profound emission reductions compared to my estimates for a 

state carbon tax in the short run. 

Regarding fuel price scenarios, my analysis is also ceteris paribus, as I fix state 

supplies and demands despite obvious price changes across states that unfold with the 

change in fuel prices. Less problematic is that I maintain ton-mile emission factors 

constant across modes, and I did not include emissions due to pipeline leakage over the 

scenarios examined. But fuel price rises do not only affect freight transportation. Other 

industries and final consumers would alter their energy consumption behavior too. Fuel 

price rises would trigger some detectable price rises in other industries. The demand for 

commodities produced by these industries would likely decline, leading to further 

shrinking of supply. In this vein, the modeling assumption of constant state supply and 
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demand by industry is, unfortunately, quite unrealistic. In addition to altering the demand 

for freight transportation, fuel prices would also likely reduce intermediate industry 

supplies and demands, which would undoubtedly further limit emissions in light of likely 

decreases in concomitant interstate trade declines. But changes in interstate trade patterns 

can unfold in two ways: firms could switch to nearby suppliers, and firms could also 

search further afield to meet their input needs at even lower cost.  

This may explain the limited reductions even increases in transportation emissions 

with the fuel price increases in my model. When firms switch to nearby suppliers, the 

shorter shipping distance may derive more truck usage and, thus, higher emissions. Even 

the share of truck shipments for this particular trade flow decreases as the fuel price rises, 

the ton-miles by truck may still increase due to the larger trade value also resulting in the 

emission rises. If firms switch to suppliers further away, the longer shipping distance 

together with the fuel price increases could lead to a greater use of less-emissions-

intensive freight transport modes (e.g. rail). But longer distances and increases in trade 

could also enable more ton-mileage of freight being shipped by less-emissions-intensive 

modes, which could result in an increase in transportation emissions.  

In addition, energy inputs from various fuels typically account for only a very 

small part in producing transportation services (an exception is air transport). Figure 4-13 

shows the energy inputs required for transportation services by mode in the U.S. from 

2016 U.S. I-O tables (self-calculated). The required energy inputs for all five major 

modes are smaller than 0.08%. This also helps explain the limited changes in 

transportation emissions with fuel price increases. 
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Figure 4-13 Energy Inputs for Transportation in the U.S. 

 
Source: U.S. BEA, 2016 U.S. I-O tables 

Moreover, my model assumes the mode shifts are possible without accounting for 

capacity constraints of each mode. Future work should consider the capacity constraints, 

especially for rail and pipeline. For example, rail is now mainly used to ship coal and oil 

products. As the coal consumption decreases, the available capacity of rail might be used 

to ship other products. Capacity constraints of pipeline might prevent further expansion 

in shipments for petroleum-related products. 

My model results suggest that without changes in travel demand, rising fuel prices 

alone have limited power in reducing GHG emissions from interstate freight 

transportation. This echoes Yang et al. (2009) and McCollum and Yang (2009) who 

suggest no individual “silver bullet” strategy can enable deep cuts in the U.S. 

transportation emissions. Other limitations involving the use of an MRIO model to 

estimate state supplies and demands, using gravity model to estimate interstate trade 

flows, and multinomial logit models for mode choice, and single and constant emission 

factor for each mode are detailed in Chapter 3. 
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4.5 Conclusions 

This chapter uses state carbon tax scenarios and fuel price scenarios to examine the 

sensitivity of the overall GHG emissions by state and by industry and emissions from 

freight transportation. For GHGs net exporting states like Texas, when carbon tax is 

applied to production-based emissions, the reductions in state emissions as well as total 

U.S. emissions are greater compared to adopting a similar consumption-based carbon tax. 

The opposite is true for GHGs in net importing states like New York. The amount of 

emission reductions depends on the state economic structure. Texas carbon tax scenarios 

would induce larger emission reductions compared to New York scenarios with the same 

carbon tax rate because the inventory of Texas GHG emissions (in both production- and 

consumption-based accounting) is greater and Texas electricity is more emissions-

intensive. Moreover, the largest emission reductions and economic impacts (e.g. output 

reduction, GDP loss, employment cut, etc.) occur in the taxing state. Impacts on other 

states depend on their economic connections with the taxing state. The most affected 

states are those close to the taxing states (e.g. Arkansas and Oklahoma for the Texas 

carbon tax scenarios, New Jersey, and Pennsylvania for the New York carbon tax 

scenarios) as well as emissions-intensive states (e.g. Wyoming and North Dakota). 

District of Columbia suffers relatively large per capita GDP losses in all scenarios. 

Regarding impacts by industry, the electric power industry, food, beverage and tobacco 

products, and construction are among those with the largest reductions of output in all 

carbon tax scenarios. The largest GHG emission reductions concentrate in the electric 

power industry, farms, and truck transportation. The differences among scenarios are the 

extent of reductions and the contribution from the taxing state. 



134 
 

 
 

With a new state carbon tax, final consumers would suffer from the increase in 

expenditures. My model estimates suggest that the revenues from state carbon taxes can 

cover the increase in expenditures and GDP loss. Thus, how the tax revenues are spent is 

very important: either compensate final consumers or support investment in green 

technology or subsidize key industries. In addition, the feasibility of a carbon tax is 

another significant factor. My scenarios choose either state production- or consumption-

based GHG emissions as the tax base, which is troublesome and contentious because 

direct emission intensities and total emission intensities by industry are required. Total 

emission intensities by industry, in particular, are measured per unit of final demand and 

account for the complete upstream supply chains, which are relatively complicated. 

Current carbon tax policies are normally set according to the fossil-fuel consumption 

given the majority of GHG emissions are created in the course of fossil-fuel combustion 

(Labandeira & Labeaga, 2002; World Bank, 2020). Although my carbon tax scenarios 

cover economywide GHG emissions, future work should examine the impacts when 

carbon tax is only applied to fossil-fuel consumption. Also, future work should test 

different price elasticities of demand and different state carbon tax rates as emission 

reductions are limited in my model. Other factors need to be considered including 

substitution effects, technology innovation, and the use of tax revenues, in order to 

conduct a thorough impact analysis of state carbon taxes. 

For the fuel price scenarios, results show that fuel price changes alone would not 

trigger substantial mode shifts away from emission-intensive modes (e.g. truck and air) 

resulting in limited emission reductions from interstate freight transportation. This is 

because the extent of changes in fuel costs per ton-mile by mode differ with the same 
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amount of changes in crude oil prices. When crude oil prices increase 50% from the 2016 

level, the overall shipments by truck increase because the percentage increase in fuel 

costs per ton-mile by truck is the lowest among all modes. Even when fuel price increases 

drive mode shifts away from truck (comparing S2, S3, S4, S5 to S1), the reductions in 

GHG emissions are very limited, even with very high fuel prices (crude oil prices 

increase 500%). Compared to intrastate freight, typically interstate freight flows traverse 

longer distances and, thus, more apt to shift from truck and toward rail (Nelldal & 

Andersson, 2012). But my scenario analysis suggest that mode shifts are very limited via 

fuel price rises alone, when state supply and demand are held constant. Thus, in order to 

achieve ambitious transportation emission reduction goals, combining different strategies 

is necessary, e.g., use alternative fuels, improve fuel efficiency, reduce travel demand 

through land use, etc. (Yang et al., 2009).  

When using mode shift as a strategy for transportation emission mitigation, one 

option might be to impose taxes specifically on fuels for trucks and airplanes. This might 

help reduce the shipments by truck and air. Besides fuel taxes, other policy tools are 

needed to encourage more shifts to more-environmentally friendly modes. Future work 

should also account for the capacity constraints of the transportation system, especially 

for rail and pipeline. 
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5 Summary and Conclusions 

5.1 Summary 

In this dissertation, I try to answer three research questions. What are the consumption-

based GHG emissions for each U.S. state? How much does freight transportation 

contribute to interstate trade related GHG emissions? And how might these emissions 

change in response to a state carbon tax or fuel price increases.  

I estimate state-level consumption-based GHG emissions in the U.S. to 

complement the traditional production-based accounting. The differences between the 

two are the net emissions embodied in trade (Aichele and Felbermayr, 2012). Traditional 

production-based accounting involves emissions by local producers, including those 

exporting to other regions. Consumption-based emissions are emissions embodied in the 

consumption of locally produced goods and services as well as in the inflows of products 

required to fulfill local demands.  

To make these estimates, I build, almost from scratch, a state-level MRIO model 

with 403 industries for the U.S. It roughly simulates interstate supply chains. The model 

enables me to track emissions from the producers to final consumers (i.e. household, 

government, investment, etc.). My estimates suggest substantial differences exist between 

states’ consumption- and production-based emissions. Even without accounting for 

international imports and exports, I find that coastal states tend to be net importers of 

GHG emissions, largely because their consumption-based emissions are larger than their 

corresponding production-based emissions. It logically follows that states in the Central 

and Mountain regions are, therefore, net exporters of emissions. After normalizing 

consumption- and production-based emissions by state populations and, alternatively, 
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GDP, it appears that California, New York, and some Northeastern states are among the 

nation’s least emission-intensive states in both forms of accounting. But, West Virginia, 

Wyoming, Kentucky, Montana, and North Dakota have the highest emissions intensities 

in both forms of accounting due to their industry structures, since I use national emissions 

intensities by industry except for the electric power industry. That is, differences in state 

consumption-based emissions are mainly due to the production sources of consumed 

products as opposed to differences of consumption patterns across states, which do vary 

with geography. 

By tracking emissions via interstate supply chains, I identify who pollutes for 

whom among states within the U.S. Although the largest amount of emissions embodied 

in consumption almost always derive from within each state, many states are quite 

interconnected via interstate trade. For example, more than 70% of Wyoming, Nebraska, 

Montana, Idaho and North Dakota’s production-based emissions are embodied in their 

outflows to other states; about 60% of the emissions embodied in the consumption of 

Northeastern states derive from the inflow of goods. Naturally, neighboring states tend to 

be far more likely to exchange goods embodying emissions as opposed to states that are 

further away. Texas and California pollute for all other states as they are large states that 

export relatively large amounts of embodied emissions to nearly all other states. 

GHG emissions embodied in interstate trade come from two sources. Besides 

production, emissions also derive from freight transportation, which contributes to trade 

related emissions (about 37% in the U.S.). By linking transportation emissions to 

interstate trade, I identify responsibilities for interstate freight transportation emissions by 

state and by industry. Texas, California, Ohio, Florida, Washington, and Illinois are 
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among the top in both inbound and outbound freight transportation emissions. After 

normalizing trade related emissions by state population, emissions-intensive states, e.g. 

Wyoming, North Dakota, and Nebraska, have the highest inbound and outbound 

transportation emissions per capita, besides Hawaii and Alaska. Industries with both large 

transportation emissions and sizeable shares of trade-related emissions from freight 

transportation are mining (except oil and gas), food and beverage and tobacco products, 

wood products, forestry, fishing, and related activities, and motor vehicles and parts. 

Many states set up their own emissions-reduction goals. So, I decided to test the 

sensitivity of emissions if one state opted to implement carbon taxes while the rest did 

not. I selected Texas (big producer) and New York (big consumer) as candidates for my 

experiments. For a GHG net-exporting state, e.g. Texas, I found that a carbon tax of $50 

per ton of CO2 equivalent on production-based emissions would reduce emissions in both 

the taxing state (10.7 MMT, a reduction of 1.8% in the Texas) and the U.S. (12.5 MMT,  

a reduction of 0.26%) more so than would a similar consumption-based carbon tax (7.9 

MMT, a reduction of 1.4%  in the Texas and 11.7 MMT, a reduction of 0.24% in the 

U.S.), at least in the short-run. The opposite is true for a GHG net-importing state like 

New York. There GHG emissions decline 0.9 MMT (a reduction of 0.63%) in New York 

and 2.6 MMT (a reduction of 0.05%) in the U.S. for consumption-based carbon taxes vis-

à-vis 0.8 MMT (a reduction of 0.6%) in New York and 1.1 MMT (a reduction of 0.02%) 

in the U.S. via the same production-based carbon tax. Impacts in states other than the 

taxing one are larger when their economic connections with the taxing state are stronger. 

The most affected states are those close to the taxing states (e.g. Arkansas and Oklahoma 

for the Texas carbon tax scenarios, New Jersey, and Pennsylvania for the New York 
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carbon tax scenarios) as well as emissions-intensive states (e.g. Wyoming and North 

Dakota). Major trading-partner states also bear relatively large losses in GDP per capita: 

e.g. California and New York in the Texas production-based carbon tax scenario. But 

compared to state and total U.S. emissions (i.e. production-based, 580.6 MMT in Texas, 

149.1 MMT in New York, and 4,843.2 MMT in the U.S.), the emission reductions are 

quite limited in the short-run when a state carbon tax of $50 per ton of CO2 equivalent 

alone is introduced (with no technological change possible).  

Moreover, I investigate whether fuel price increases (e.g., due to fuel taxes) could 

trigger significant mode shifts that might reduce emissions from interstate freight 

transportation. Results in Chapter 3 suggest that freight by truck accounts for the lion’s 

share of interstate freight transportation emissions (about 70%). And it has the second 

highest emission factor after air transport. Thus, it would seem mode shifts away from 

truck and air would be an ideal strategy to reduce freight emissions. But results suggest 

that fuel price increases alone without changes in state supply and demand enable only 

limited emissions reductions via interstate freight movements. This is partially because 

shipments by truck do not necessarily decline as fuel prices rise. States may switch to 

suppliers in nearby states since travel costs among states change with fuel prices. This 

may introduce more shipments by truck. Thus, fuel taxes must be accompanied by other 

policy tools to achieve substantial reductions in transportation emissions.  

5.2 Contribution 

My contribution starts with the construction of a multiregional input-output (MRIO) 

model that covers all 50 states plus the District of Columbia. It is built on the most recent 

2012 U.S. benchmark input-output (I-O) table with 405 industries (BEA, 2018a), which I 
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update to 2016 using official interindustry flows in the U.S. (BEA, 2019a), state GDP, 

employment, wage, personal income and consumption expenditures data (BEA, 2019b; 

BLS, 2017b).  

The MRIO model of recent vintage helps to reveal recent conditions with respect 

to state-level consumption-based GHG emissions. Not only is my model more recent than 

Caron et al.’s (2013, 2017) but it also has substantially more sectoral detail (403 versus 

52).  Since I-O models assume a given industry has the same production technology, my 

model’s greater detail minimizes effects of potential aggregation bias that might be 

inherent to the work by Caron et al. (2013, 2017). For example, Caron et al. (2017) 

indicate that Texas has the highest consumption-based CO2 emissions per capita in the 

U.S. in 2006, while my model suggests Texas’s consumption-based GHG emissions per 

capita is barely above the national average in 2016. 

The MRIO framework enables state-level consumption-based accounting of GHG 

emissions. This approach can inform policy design of state or regional environmental 

policies that should consider both consumption and production responsibilities. 

Moreover, it provides a more comprehensive picture of “who pollutes for whom” among 

states. By linking GHG emissions with economic interconnections among states, the net 

impacts of regional climate and state economic policies is much clearer.  

Regarding the close relationship between trade and freight transportation, the 

model enables me to allocate GHG emissions from interstate freight transportation—the 

mobile source of emissions to industries among states. The magnitude of interstate 

freight transportation’s contribution to trade-related emissions is elaborated in detail. My 

approach enables the exploration of alternative ways to control freight transportation 
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emissions, such as state environmental policies that target supply chains of industries 

with top freight emissions. 

After establishing the baseline of state consumption-based emissions and 

interstate freight emissions, I apply the model to examine how state GHG emissions 

might vary with potential state carbon taxes and how interstate freight emissions might 

change with fuel price increases (due to new fuel taxes). This research showcases how to 

evaluate the environmental and economic impacts of state/regional environmental 

policies. This is particularly important as the impacts of such subnational policies are not 

only in the home-state but also in other states and nationwide. 

5.3 Recommendations 

My first recommendation is to improve the state I-O tables by integrating state-specific 

economic data, such as international imports and exports by state, production 

technologies of key industries for each state as well as better government spending for 

each state (particularly at federal and state level) among others. Survey-based state I-O 

tables are now rare in the U.S. My state I-O tables rely heavily on the U.S. benchmark  

I-O table. This means assuming spatially constant production technology for a particular 

industry. This may bias estimates of state supplies and demands by industry. More 

information on state technology by industry would allow better estimates of state I-O 

tables. 

Estimating interstate trade flow is another essential part in building MRIO 

models. Mine for 2016 are based on relationships inherent to the Freight Analysis 

Framework version 4 (FAF4) State Database for 2012 (BTS, 2016). Thus, my model 

assumes interstate trade patterns were unchanged from 2012 to 2016, which is unlikely to 
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be the case, although variations between them might be small. So, it would be helpful to 

have more and up-to-date information on trade flows. When the 2017 Commodity Flow 

Survey data become available, the estimates of interstate trade flows can be updated to 

reflect more current trade patterns. 

Third, modelers of state emissions need more information on state production-

based GHG emissions by industry. My work suggests that differences in state 

consumption-based emissions are mainly due to the production locations of goods and 

services consumed. So, differential direct emission intensities by industry among states 

would clearly yield more precise estimates of state consumption-based emissions than 

those I employed based upon nationwide averages by industry. Note, however that I did 

use specialized information for energy use by electric utilities to better inform emissions 

in that industry. In that vein, a greater amount of state energy consumption information 

from the State Energy Data System (SEDS) (EIA, 2016a) could more fully inform state-

specific emissions by industry. 

For interstate freight emissions estimation, I have two recommendations: one on 

mode choice, the other on ton-mile emissions factor by mode. To improve mode choice 

estimates by industry among states, information on the interstate pipeline network, airport 

locations, and categories of waterways (shallow water or not) could be used to better 

inform the shipping distances by mode. In addition, other mode-specific variables, 

industry specific variables, and shipment specific variables could be added. In addition, 

instead of using one single ton-mile emission factor for each mode, a range of emission 

factors or different emission factors by shipping distance or freight path could improve 

freight emission estimates by mode. 
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To better evaluate the impacts of state environmental policies (e.g. carbon tax), 

improvements to the current model could include accounting for substitution among 

commodities as well as interstate substitution of the same commodities; using unique 

price elasticities of demand by industry by state, and allowing for changes in interstate 

trade patterns. Such improvements would enable better estimation of overall emission 

reductions due to state policies. For the analysis of fuel price scenarios, my assumption of 

fixed state supplies and demands in the face of changes in energy prices could be relaxed 

and, perhaps, enable more realistic simulations. Path capacity constraints of different 

freight transport modes (like northern-tier rail freight lines), especially those of 

environmentally friendly modes, should also be considered. 

5.4 Policy Implications 

My work has some important policy implications for achieving GHG emissions reduction 

goals. I suggest that U.S. states should consider both producer and consumer 

responsibilities when choosing environmental policies. There are several factors need to 

be considered for a state climate policy either targeting production- or consumption-

based emissions, such as feasibility, emission reduction goals, economic impacts, and 

social impacts (Labandeira & Labeaga, 2002; Aldy, 2017). Net importing states of GHG 

emissions might prefer to regulate production-based emissions since they import more 

emissions as embodied in goods and services from other states. In contrast, net exporting 

states are more likely to adopt policies that apply to the consumption end to reduce the 

risk of their own GDP decline. As in my state carbon tax scenario analysis, although 

emission reductions are relatively smaller when GHG net-importing states regulate 

production-based emissions and net-exporting states regulate consumption-based 
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emissions, the negative economic impacts (i.e. GDP loss, labor compensation decline, 

and employment loss) are lessened as well. However, due to the clear trade-offs between 

emission reductions and the structure and growth of a state’s economy, other measures 

are needed to complement state environmental policies. For example, the revenues from 

state carbon taxes could be used to compensate households or subsidize key industries 

within the state or invest in cleaner technology innovations.  

A core problem of policies that target consumption-based GHG emissions is the 

feasibility of their implementation. Unlike production-based emissions, which are 

generally quite readily measured where they are generated, estimating consumption-

based emissions requires tracing consumed goods and services from their production 

point, something not typically performed for most commodities. If a new carbon tax 

directly applies to final consumers, it is difficult to collect taxes as emissions embodied in 

the same commodities could be different due to different places of origin within the U.S. 

and even overseas. Moreover, even it is possible to adopt consumption-based carbon tax, 

it may turn out to be regressive; that is, low-income households may suffer the burden of 

such tax (Haug et al., 2010). Such policy may not be welcomed by the public. Policies 

targeting production-based emissions also need to consider policy feasibility. For 

example, it is better to apply a production-based carbon tax to upstream fossil fuel 

suppliers or based on fossil fuel consumption to ensure broad coverage and reduce the 

costs of administration. 

Although market-based climate policies (e.g. cap-and-trade program, carbon tax, 

emission trading system) are the most cost-efficient measures in reducing GHG 

emissions, such policies may lack public support as disadvantaged group might bear 
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larger burden (Haug et al., 2010). Other state climate policies include investing in green 

technologies, energy efficiency, and renewable energy (e.g. wind, solar, biomass), 

phasing out emission-intensive manufacturers (e.g. coal-fired power generation), making 

comprehensive emission mitigation plans, etc. According to state consumption-based 

GHG emissions, states can design policies such as labeling green products to make 

people aware of the emissions embodied in their consumed goods and take actions 

correspondingly. States may also tax emission-intensive products. 

Second, regional GHG policies should be developed via a collective of 

neighboring states and major trading partners. My findings suggest that such a strategy 

would be more effective than would the same policy implemented by a single state. This 

is due to the intensive economic exchanges among neighboring states and major trading 

partners. Neighboring states appear to bear substantial economic loss when an adjacent 

state adopts environmental policies, yet they are uncompensated for this, unlike the state 

invoking the policy. By collaborating, neighboring states and major trading partners (e.g. 

Texas, California, New York, and Florida) could achieve more ambitious emissions 

reduction goals and, perhaps, facilitate expansion of investments in more environmentally 

friendly production technologies. For example, the “Regional Greenhouse Gas Initiative” 

(RGGI, 2020) is a cap-and-trade program among northeastern states to reduce CO2 

emissions from the electric power industry. This program enables more investments in 

energy efficiency and renewable energy and creates green jobs in the participating states. 

To control interstate freight emissions, major trading partners could also collaborate to 

improve supply-chain efficiency in industries with high transportation emissions (e.g. 

energy goods, food and beverage and tobacco products, etc.). 
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Third, national environmental policies can cover all states (solve the incomplete 

coverage of state/regional policies) but may raise equity issues. For example, the GHG 

emissions intensities of consumption by state vary from 0.177 kg/$ (California) to 0.486 

kg/$ (West Virginia) (results from Chapter 2). If the U.S. federal government opts to 

regulate GHG emissions via consumption-based accounting, states with higher-than-

average emissions intensities of consumption will undoubtedly suffer more and, hence, 

object to the legislation. Although carbon taxes and cap-and-trade programs theoretically 

cost the same to achieve a given emissions-reduction objective, cap-and-trade program 

allows those industries that can most cost-efficiently reduce emissions sell credits to 

others. In this way, cap-and-trade program can alleviate some extra burden on emissions-

intensive states. Federal environmental policies should consider the heterogeneity of state 

emissions intensities (either of production or consumption) and, so, provide incentives for 

firms in emissions-intensive states to mitigate emissions. 

Regarding emissions by industry in each state, several industries contribute more 

than 80% of the total GHG emissions after accounting for emissions from their upstream 

supply chain: cement manufacturing, electric power, agriculture (e.g. beef cattle, farming, 

diary, grain, etc.) and energy goods (i.e. natural gas and coal). State carbon tax scenario 

analysis also shows that the largest GHG emission reductions concentrate in the electric 

power industry, farms, and truck transportation. These imply that industry-specific 

environmental policies should be implemented to efficiently achieve emissions reduction 

goals. For example, the Clean Power Plan and the RGGI are targeting the electric power 

industry; and fuel efficiency and GHG emission program for medium- and heavy-duty 

trucks are targeting truck transportation. 



147 
 

 
 

Above all else, my research suggests that in order to achieve substantial GHG 

emissions reductions, it is necessary to apply multiple policy tools simultaneously. My 

scenario analysis shows overall emissions reductions are limited via state carbon taxes 

alone and reductions of interstate freight emissions via fuel prices increase alone are even 

weaker. Thus, it appears that no single environmental policy is a panacea for mitigating 

climate change. Policies like carbon taxes need to be combined with industry-specific 

policies, subsidizing renewable energy, encouraging innovations in the green 

technologies, etc. To control freight emissions, increasing trucking efficiencies, using 

alternative fuels, and strategies to reduce travel demand must be combined. 

5.5 Future Work 

Interstate trade patterns play an essential role in the MRIO framework. However, with 

limited data of domestic freight movements, it is hard to verify the estimated interstate 

trade flows. Thus, future work should improve the gravity model or use other regression 

models for interstate trade flow estimation. More recent Commodity Flow Survey data 

should be used for model calibration. The robustness of the MRIO framework need to be 

tested. 

Moreover, the U.S. MRIO model that I built could be connected to the world 

input-output models account for the international trade. This is very important as the U.S. 

economy relies heavily on imports: firms import intermediate inputs; households buy 

imported commodities. By linking a U.S. MRIO to a world model like that available 

through the World Input-Output Database (Timmer et al. 2015), impacts of international 

environmental policies or even climate policies of other regions/countries in U.S. states 

can be examined.  
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Another future line of research is to relax some assumptions in my scenario 

analysis. In order to provide more realistic estimates of the impacts due to a state carbon 

tax or a new fuel tax, computable general equilibrium (CGE) models could be used to 

account for the substitution effects, changes in state supply and demand, production 

technology improvements, changes in interstate trade patterns, and the application of tax 

revenues. With the MRIO framework, other scenarios can be analyzed to further explore 

the sensitivity of state GHG emissions, such as, reducing coal-fired electricity generation 

plants, improving energy efficiency for some industries, increasing usage of renewable 

energy, adopting autonomous driving technologies or electric trucks for truck 

transportation, etc. Evaluating various scenarios will provide greater insight into selecting 

environmental policy tools and enable a better understanding of the relationships between 

the economy and the environment. 

Similar models can be developed and applied to other countries (particularly 

larger ones like Russia, Canada, China, Brazil, India) with substantial regional 

differences within the country. As the COVID pandemic strikes the world economy, this 

might be a good opportunity to reboot the economy in a more environmentally friendly 

way. 

  



149 
 

 
 

Bibliography 

Abraham, K. G., & Taylor, S. K. (1996). Firms' use of outside contractors: Theory and 

evidence. Journal of Labor Economics, 14(3), 394-424. 

Ackerman, F., Ishikawa, M., Suga, M. (2007). The carbon content of Japan–US trade. 

Energy Policy 35 (9), 4455–4462. doi:10.1016/j.enpol.2007.03.010. 

Aichele, R., and Felbermayr, G. (2012). Kyoto and the carbon footprint of 

nations. Journal of Environmental Economics and Management, 63(3), 336-354. 

Aldy, Joseph E. (2017). “The Political Economy of Carbon Pricing Policy Design.” 

Discussion Paper ES 2017-7. Cambridge, Mass.: Harvard Project on Climate 

Agreements. 

Almer, C., & Winkler, R. (2017). Analyzing the effectiveness of international 

environmental policies: The case of the Kyoto Protocol. Journal of Environmental 

Economics and Management, 82, 125-151. 

Anderson, M., Blanchard, L., Neppel, L., and Khan, T. (2013). Validation of 

Disaggregate Methodologies for National Level Freight Data. International 

Journal of Traffic and Transportation Engineering, 2(3), 51-54. DOI: 

10.5923/j.ijtte.20130203.05 

Andrew, R., Peters, G. P., & Lennox, J. (2009). Approximation and regional aggregation 

in multi-regional input–output analysis for national carbon footprint 

accounting. Economic Systems Research, 21(3), 311-335. 

Boyer, K. D. (1997). Principles of Transportation Economics. New York: Addison-

Wesley. 

Cadarso, M. Á., López, L. A., Gómez, N., and Tobarra, M. Á. (2010). CO2 emissions of 

international freight transport and offshoring: Measurement and 

allocation. Ecological Economics, 69(8), 1682-1694. 

Carbone, J. C., Helm, C., and Rutherford, T. F. (2009). The case for international 

emission trade in the absence of cooperative climate policy. Journal of 

Environmental Economics and Management, 58(3), 266-280. 

Caron, J. and S. Rausch (2013). A Global General Equilibrium Model with U.S. State-

Level Detail for Trade and Environmental Policy Analysis -- Technical Notes, 

Cambridge, MA: MIT Joint Program on the Science and Policy of Global Change, 

Joint Program Technical Note 13. 

Caron, J., Rausch, S., and Winchester, N. (2015). Leakage from sub-national climate 

policy: The case of California’s cap-and-trade program. Energy Journal, 36(2), 

167-190. 

Caron, J., Metcalf, G. E., & Reilly, J. (2017). The CO2 content of consumption across US 

regions: a multi-regional input-output (MRIO) approach.  Energy Journal, 38(1). 

Carter, Anne P. (1970). Structural Change in the American Economy. Cambridge, MA: 

Harvard University Press. 



150 
 

 
 

Center on Budget and Policy Priorities. (2015). Policy Basics: Policies to Reduce 

Greenhouse Gas Emissions. Retrieved from 

http://www.cbpp.org/sites/default/files/atoms/files/PolicyBasic_CapTrade.pdf 

Chang, N., & Han, C. (2020). Cost-push impact of taxing carbon in China: A price 

transmission perspective. Journal of Cleaner Production, 248, 119194. 

Chen, Z. M., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, G., ... & Zheng, X. (2015). 

Environmental externality of coal use in China: Welfare effect and tax 

regulation. Applied Energy, 156, 16-31. 

Chen, Y., & Hafstead, M. A. (2019). Using a carbon tax to meet US international climate 

pledges. Climate Change Economics, 10(01), 1950002. 

Cho, J., Gordon, P., Moore II, J. E., Pan, Q., Park, J., & Richardson, H. W. (2015). 

TransNIEMO: economic impact analysis using a model of consistent inter-

regional economic and network equilibria. Transportation Planning and 

Technology, 38(5), 483-502. 

Choi, J. K., Bakshi, B. R., & Haab, T. (2010). Effects of a carbon price in the US on 

economic sectors, resource use, and emissions: An input–output approach. Energy 

Policy, 38(7), 3527-3536. 

Choi, J. K., Bakshi, B. R., Hubacek, K., & Nader, J. (2016). A sequential input–output 

framework to analyze the economic and environmental implications of energy 

policies: Gas taxes and fuel subsidies. Applied Energy, 184, 830-839. 

Corbett, J. J., & Winebrake, J. J. (2008). International trade and global 

shipping. Handbook on Trade and the Environment, 33, 48. 

Cristea, A., Hummels, D., Puzzello, L., and Avetisyan, M. (2013). Trade and the 

greenhouse gas emissions from international freight transport. Journal of 

Environmental Economics and Management, 65(1), 153-173. 

Davies, J. (2007). Greenhouse Gas Emissions of the US Transportation 

Sector. Transportation Research Record: Journal of the Transportation Research 

Board, No. 2017, Transportation Research Board of the National Academies, 

Washington, D.C., pp. 41-46. DOI: 10.3141/2017-06. 

Davies, J., Facanha, C., and Aamidor, J. (2008). Greenhouse gas emissions from US 

freight sources: using activity data to interpret trends and reduce uncertainty. In 

Transportation Research Board 87th Annual Meeting (No. 08-2594). 

de Jong, G., Gunn, H., & Walker, W. (2004) National and International Freight Models: 

An Overview and Ideas for Further Development. Transport Reviews, 24(1), 103–

124.  

Dietzenbacher, E. (1997). In vindication of the Ghosh model: a reinterpretation as a price 

model. Journal of regional science, 37(4), 629-651. 

Dietzenbacher, E., & Velázquez, E. (2007). Analysing Andalusian virtual water trade in 

an input–output framework. Regional Studies, 41(2), 185-196.  

http://www.cbpp.org/sites/default/files/atoms/files/PolicyBasic_CapTrade.pdf


151 
 

 
 

Fell, H., and Maniloff, P. (2018). Leakage in regional environmental policy: The case of 

the regional greenhouse gas initiative. Journal of Environmental Economics and 

Management, 87, 1-23. 

Feng, Kuishuang, Davis, Steven J., Sun, Laixiang, Li, Xin, Guan, Dabo, Liu, Weidong, 

Liu, Zhu, and Klaus Hubacek. (2013). Outsourcing CO2 within China. PNAS 

110(28), 11654-11659. 

Gemechu, E. D., Butnar, I., Llop, M., & Castells, F. (2014). Economic and environmental 

effects of CO2 taxation: an input-output analysis for Spain. Journal of 

Environmental Planning and Management, 57(5), 751-768. 

Giuliano, G., Gordon, P., Pan, Q., Park, J., & Wang, L. (2010). Estimating freight flows 

for metropolitan area highway networks using secondary data sources. Networks 

and Spatial Economics, 10(1), 73-91. 

Greene, D. L., Greenwald, J. M., & Ciez, R. E. (2020). US fuel economy and greenhouse 

gas standards: What have they achieved and what have we learned?. Energy 

Policy, 146, 111783.  

Hanemann, M. (2009). The role of emission trading in domestic climate policy. The 

Energy Journal, 79-114. 

Harrigan, J. (2010). Airplanes and comparative advantage. Journal of International 

Economics, 82(2), 181-194. 

Haug, C., Rayner, T., Jordan, A. et al. (2010). Navigating the dilemmas of climate policy 

in Europe: evidence from policy evaluation studies. Climatic Change 101, 427–

445 https://doi.org/10.1007/s10584-009-9682-3 

Hoekstra, R., Michel, B., & Suh, S. (2016). The emission cost of international sourcing: 

using structural decomposition analysis to calculate the contribution of 

international sourcing to CO2-emission growth. Economic Systems 

Research, 28(2), 151-167. 

Horowitz, Karen J., & Planting, Mark A. (2006). Concepts and Methods of the us Input-

Output Accounts (No. 0066). Bureau of Economic Analysis. 

Horvath, A. (2006). Environmental assessment of freight transportation in the US. The 

International Journal of Life Cycle Assessment, 11(4), 229-239. 

IPCC (2007). Summary for Policymakers. In: Climate Change 2007: The Physical 

Science Basis. Contribution of Working Group I to the Fourth Assessment Report 

of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. 

Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA. 

International Transport Forum (ITF) (2010). Transport Greenhouse Gas Emissions 2010. 

ITF/OECD. 

International Energy Agency (IEA) (2010). CO2 Emissions from Fuel Combustion 2010. 

IEA/OECD. 



152 
 

 
 

Ingwersen, W., Y. Yang, and D. Meyer. (2017). USEEIO v1.1-Matrices. U.S. 

Environmental Protection Agency, Washington, DC. Retrieved from 

http://doi.org/10.23719/1369615 

Jackson, R. W. (1998). Regionalizing national commodity-by-industry 

accounts. Economic Systems Research, 10(3), 223-238.  

Jackson, R. W. (2001). Assessing the spatial variation in U.S. technology. In M Lahr and 

RE Miller (eds), Perspectives in Regional Analysis: A Festschrift in Memory of 

Benjamin H. Stevens. North Holland: Amsterdam. pp. 323-344. 

Jackson, R. W., Schwarm, W. R., Okuyama, Y., & Islam, S. (2006). A method for 

constructing commodity by industry flow matrices.  Annals of Regional 

Science, 40(4), 909-920. 

Kamakate, F., & Schipper, L. (2009). Trends in truck freight energy use and carbon 

emissions in selected OECD countries from 1973 to 2005. Energy Policy, 37(10), 

3743-3751. 

Kaufman, N., & Gordon, K. (2018). The Energy, Economic, and Emissions Impacts of a 

Federal US Carbon Tax. New York, NY: Center on Global Energy Policy, Columbia 

University. 

Kitzes, J. (2013). An introduction to environmentally-extended input-output 

analysis. Resources, 2(4), 489-503. 

Kockelman, K. M., Jin, L., Zhao, Y., & Ruíz-Juri, N. (2005). Tracking land use, 

transport, and industrial production using random-utility-based multiregional input–

output models: Applications for Texas trade. Journal of Transport Geography, 13(3), 

275-286. 

Krugman, P., Cooper, R. N., & Srinivasan, T. N. (1995). Growing world trade: causes 

and consequences. Brookings papers on economic activity, 1995(1), 327-377. 

Labandeira, X., & Labeaga, J. M. (2002). Estimation and control of Spanish energy-

related CO2 emissions: an input–output approach. Energy policy, 30(7), 597-611. 

Lahr, M. L. (1993). A review of the literature supporting the hybrid approach to 

constructing regional input–output models. Economic Systems Research, 5, 277–293. 

doi:10.1080/09535319300000023 

Lahr, M. L. (2001). Reconciling domestication techniques, the notion of re-exports and 

some comments on regional accounting. Economic Systems Research, 13(2), 165-

179. 

Lahr, M. L., & Stevens, B. H. (2002). A study of the role of regionalization in the 

generation of aggregation error in regional input–output models. Journal of Regional 

Science, 42(3), 477-507. 

Leontief, W. (1970). Environmental repercussions and the economic structure: an input-

output approach. Review of Economics and Statistics, 262-271. 

Leontief, W., & Ford, D. (1972). Intersectorial analysis of the influence of economic 

structure into the environment. Economics and mathematical methods, 8(3), 370-399. 

http://doi.org/10.23719/1369615


153 
 

 
 

Lindall, S. A., Olson, D. C., & Alward, G. S. (2006). Deriving multi-regional models 

using the IMPLAN national trade flows model. Journal of Regional Analysis and 

Policy, 36(1), 76-83. Available online at 

https://ageconsearch.umn.edu/record/132316/files/06-1-6.pdf  

Llano, C., Pérez-Balsalobre, S., & Pérez-García, J. (2018). Greenhouse gas emissions 

from intra-national freight transport: Measurement and scenarios for greater 

sustainability in Spain. Sustainability, 10(7), 2467.  

Llop, M. (2008). Economic impact of alternative water policy scenarios in the Spanish 

production system: An input–output analysis. Ecological Economics, 68(1-2), 288-

294. 

McCallum, J. (1995). National borders matter: Canada-US regional trade 

patterns.  American Economic Review, 85(3), 615-623. 

McCollum, D., & Yang, C. (2009). Achieving deep reductions in US transport 

greenhouse gas emissions: Scenario analysis and policy implications. Energy 

Policy, 37(12), 5580-5596. 

Miller, Ronald E., & Blair, Peter D. (2009). Input-Output Analysis: Foundations and 

Extensions. Cambridge University Press. 

Morrow, W. R., Gallagher, K. S., Collantes, G., & Lee, H. (2010). Analysis of policies to 

reduce oil consumption and greenhouse-gas emissions from the US transportation 

sector. Energy Policy, 38(3), 1305-1320. 

Munksgaard, J., and Pedersen, K. A. (2001). CO2 accounts for open economies: producer 

or consumer responsibility? Energy Policy, 29(4), 327-334. 

National Academies of Sciences, Engineering, and Medicine. (2008). National 

Cooperative Highway Research Program (NCHRP) Report 606: Forecasting 

Statewide Freight Toolkit. Washington, DC: The National Academies Press. 

https://doi.org/10.17226/14133. 

Nealer, R., Weber, C. L., Hendrickson, C., and Matthews, H. S. (2011). Modal freight 

transport required for production of US goods and services. Transportation 

Research Part E: Logistics and Transportation Review, 47(4), 474-489. 

Nealer, R., Matthews, H. S., and Hendrickson, C. (2012). Assessing the energy and 

greenhouse gas emissions mitigation effectiveness of potential US modal freight 

policies. Transportation Research Part A: Policy and Practice, 46(3), 588-601. 

Nelldal, B. L., & Andersson, E. (2012). Mode shift as a measure to reduce greenhouse 

gas emissions. Procedia-Social and Behavioral Sciences, 48, 3187-3197. 

O'Rourke, L., Read, K., & Johnston, E. (2013). US Freight Emissions Segmented by 

BCO Industry. In Transportation Research Board 2013 Annual Meeting (No. 13-

4191). 

Park, J., Gordon, P., Moore, J. E., & Richardson, H. W. (2009). A two-step approach to 

estimating state-to-state commodity trade flows. The Annals of Regional 

Science, 43(4), 1033. 

https://ageconsearch.umn.edu/record/132316/files/06-1-6.pdf
https://doi.org/10.17226/14133


154 
 

 
 

Park, J., Cho, J., Gordon, P., Moore II, J. E., Richardson, H. W., & Yoon, S. (2011). 

Adding a freight network to a national interstate input–output model: a 

TransNIEMO application for California. Journal of Transport Geography, 19(6), 

1410-1422. 

Peng, S., Zhang, W., and Sun, C. (2016). ‘Environmental load displacement from the 

North to the South: A consumption-based perspective with a focus on 

China. Ecological Economics, 128, 147-158. 

Peters, G. P., and Hertwich, E. G. (2008). CO2 embodied in international trade with 

implications for global climate policy. Environmental Science and 

Technology, 42(5), 1401-1407. 

RGGI. (2020). The Regional Greenhouse Gas Initiative: an initiative of the New England 

and Mid-Atlantic States of the US. Retrieved from https://www.rggi.org/ 

Rockström, J., Steffen, W., Noone, K. et al. (2009). A safe operating space for 

humanity. Nature, 461, 472–475. https://doi.org/10.1038/461472a 

Round, J. I. (1972). Regional input–output models in the U.K.: A reappraisal of some 

techniques. Regional Studies, 6, 1–9. doi:10. 1080/09595237200185011 

Round, J. I. (1983). Nonsurvey techniques: A critical review of the theory and the 

evidence. International Regional Science Review, 8, 189–212. 

doi:10.1177/016001768300800302 

Sato, M. (2014). Embodied carbon in trade: a survey of the empirical literature. Journal 

of Economic Surveys, 28(5), 831-861. 

Sargento, A. L. (2009). Regional Input–Output Tables and Models: Inter-Regional Trade 

Estimation and Input– Output Modelling based on Total Use Rectangular Tables. 

PhD dissertation, University of Coimbra, Portugal. 

Sargento, A. L., Ramos, P. N., & Hewings, G. J. (2012). Inter-regional trade flow 

estimation through non-survey models: An empirical assessment. Economic 

Systems Research, 24(2), 173-193. 

Sen, A., & Smith, T. (2012). Gravity Models of Spatial Interaction Behavior. Springer 

Science & Business Media. 

Shabani, K., & Figliozzi, M. (2012). A statistical study of commodity freight 

value/tonnage trends in the United States. Unpublished paper presented at the 

Transportation Research Board 91st Annual Meeting, Washington DC, January 

22-26. Available online at 

http://web.cecs.pdx.edu/~maf/Conference_Proceedings/2012_A_Statistical_Study

_of_Commodity_Freight_ValueTonnage_Trends_in_the_United_States.pdf  

Shen, G., & Wang, J. (2012). A freight mode choice analysis using a binary logit model 

and GIS: The case of cereal grains transportation in the United States. Journal of 

Transportation Technologies, 2(02), 175. 

Shiftan, Y., Kaplan, S., & Hakkert, S. (2003). Scenario building as a tool for planning a 

sustainable transportation system. Transportation Research Part D: Transport 

and Environment, 8(5), 323-342. 

https://www.rggi.org/
http://web.cecs.pdx.edu/~maf/Conference_Proceedings/2012_A_Statistical_Study_of_Commodity_Freight_ValueTonnage_Trends_in_the_United_States.pdf
http://web.cecs.pdx.edu/~maf/Conference_Proceedings/2012_A_Statistical_Study_of_Commodity_Freight_ValueTonnage_Trends_in_the_United_States.pdf


155 
 

 
 

Sim, S., Barry, M., Clift, R., & Cowell, S. J. (2007). The relative importance of transport 

in determining an appropriate sustainability strategy for food sourcing. The 

International Journal of Life Cycle Assessment, 12(6), 422. 

SOU, W. S., & ONG, G. P. (2015). Effect of Trade Data Aggregation on International 

Commodity Mode Choice. Journal of the Eastern Asia Society for Transportation 

Studies, 11(0), 2459-2471. 

Southworth, F. (2018). Freight Flow Modeling in the United States. Applied Spatial 

Analysis and Policy, 11, 669-691. https://doi.org/10.1007/s12061-018-9273-7 

Southworth, F., Peterson, B. E., & Lambert, B. P. (2007). Development of a regional 

routing model for strategic waterway analysis. Transportation Research Record, 

1993, 109–116. 

State Climate Policy Maps. (n.d.). Retrieved from https://www.c2es.org/content/state-

climate-policy/ 

Steenhof, P., Woudsma, C., & Sparling, E. (2006). Greenhouse gas emissions and the 

surface transport of freight in Canada. Transportation Research Part D: 

Transport and Environment, 11(5), 369-376. 

Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An 

illustrated user guide to the world input–output database: the case of global 

automotive production. Review of International Economics, 23(3), 575-605. 

Tinbergen, J. (1962). Shaping the World Economy; Suggestions for an International 

Economic Policy. Twentieth Century Fund, NY. Available online at 

http://hdl.handle.net/1765/16826  

Tiwari, M. K., Chang, P. C., & Choudhary, A. (2015). Carbon-efficient production, 

supply chains and logistics. International Journal of Production Economics, 

(164), 193-196. 

Trade Analysis Branch (TAB), Division on International Trade in Goods and Services, 

and Commodities (DITC). (2013). Key Trends in International Merchandise 

Trade. In UNCTAD–United Nations Conference on Trade and Development. 

Treyz, G. I., & Stevens, B. H. (1985). The TFS regional modelling methodology. 

Regional Studies, 19(6), 547-562. 

UNEP (2018). The Emissions Gap Report 2018. United Nations Environment 

Programme, Nairobi 

UNEP (2019). The Emissions Gap Report 2019. United Nations Environment 

Programme, Nairobi 

U.S. Bureau of Economic Analysis. (2015). Detailed Make and Use Tables in Producer 

Prices, 2007, Before Redefinitions. Retrieved from 

https://apps.bea.gov/iTable/itable.cfm 

U.S. Bureau of Economic Analysis. (2018a). 2012 Benchmark Input-Output Accounts. 

[Data file]. Retrieved from https://apps.bea.gov/iTable/itable.cfm  

https://doi.org/10.1007/s12061-018-9273-7
https://www.c2es.org/content/state-climate-policy/
https://www.c2es.org/content/state-climate-policy/
http://hdl.handle.net/1765/16826
https://apps.bea.gov/iTable/itable.cfm?reqid=58&step=1
https://apps.bea.gov/iTable/itable.cfm?reqid=58&step=1


156 
 

 
 

U.S. Bureau of Economic Analysis. (2018b). PCE Bridge: Commodity composition of 

Personal Consumption Expenditures (PCE) from the National Income and 

Product Accounts (NIPAs). [Data file]. Retrieved from 

https://www.bea.gov/industry/industry-underlying-estimates 

U.S. Bureau of Economic Analysis. (2019a). Industry Economic Accounts Data: Input-

Output (Make-Use), 2016, Before Redefinitions, in Producer Prices. [Data file]. 

Retrieved from https://apps.bea.gov/iTable/itable.cfm  

U.S. Bureau of Economic Analysis. (2019b). Regional Data: Annual GDP by State, 

Annual Personal Income and Employment by State, Personal Consumption 

Expenditures by State. [2016 Data file]. Retrieved from 

https://apps.bea.gov/itable/iTable.cfm   

U.S. Bureau of Economic Analysis. (2019c). Table 2.4.5U. Personal Consumption 

Expenditures by Type of Product. [Data file]. Retrieved from 

https://apps.bea.gov/iTable/index.cfm  

U.S. Bureau of Labor Statistics. (2017a). Consumer Expenditure Surveys Public-use 

microdata (PUMD). [2016 Interview file]. Retrieved from 

https://www.bls.gov/cex/pumd_data.htm#csv  

U.S. Bureau of Labor Statistics. (2017b). Quarterly Census of Employment and Wages. 

[2016 annual single file]. Retrieved from https://www.bls.gov/cew/downloadable-

data-files.htm 

U.S. Bureau of Transportation Statistics. (2016). Freight Analysis Framework (Version 

4). [State Database]. Retrieved from https://www.bts.gov/faf 

U.S. Bureau of Transportation Statistics. (2018a). National Transportation Statistics 

2018. [Table 1-50]. Retrieved from https://www.bts.gov/us-ton-miles-freight 

U.S. Bureau of Transportation Statistics. (2018b). National Transportation Statistics 

2018. [Table 4-5]. Retrieved from https://www.bts.gov/content/fuel-consumption-

mode-transportation-physical-units 

U.S. Census Bureau. (2015). 2012 Commodity Flow Survey Public Use Microdata File. 

[Data file and code book]. Retrieved from 

http://www.census.gov/econ/cfs/pums.html.  

U.S. Energy Information Administration. (2016a). State Energy Data System (SEDS): 

1960-2016. [Data file]. Retrieved from 

https://www.eia.gov/state/seds/sep_prices/total/csv/ex_all.csv  

U.S. Energy Information Administration. (2016b). U.S. electric system is made up of 

interconnections and balancing authorities. Retrieved from 

https://www.eia.gov/todayinenergy/detail.php?id=27152 

U.S. Energy Information Administration. (2020a). Short-Term Energy Outlook, Energy 

Prices. [Data file]. Retrieved from 

https://www.eia.gov/outlooks/steo/data/browser/#/?v=8&f=A&s=0&start=1997&

end=2020&linechart=WTIPUUS&maptype=0&ctype=linechart  

https://www.bea.gov/industry/industry-underlying-estimates
https://apps.bea.gov/iTable/itable.cfm
https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1
https://apps.bea.gov/iTable/index.cfm
https://www.bls.gov/cex/pumd_data.htm#csv
https://www.bls.gov/cew/downloadable-data-files.htm
https://www.bls.gov/cew/downloadable-data-files.htm
https://www.bts.gov/faf
https://www.bts.gov/us-ton-miles-freight
https://www.bts.gov/content/fuel-consumption-mode-transportation-physical-units
https://www.bts.gov/content/fuel-consumption-mode-transportation-physical-units
http://www.census.gov/econ/cfs/pums.html
https://www.eia.gov/state/seds/sep_prices/total/csv/ex_all.csv
https://www.eia.gov/todayinenergy/detail.php?id=27152
https://www.eia.gov/outlooks/steo/data/browser/#/?v=8&f=A&s=0&start=1997&end=2020&linechart=WTIPUUS&maptype=0&ctype=linechart
https://www.eia.gov/outlooks/steo/data/browser/#/?v=8&f=A&s=0&start=1997&end=2020&linechart=WTIPUUS&maptype=0&ctype=linechart


157 
 

 
 

U.S. Energy Information Administration. (2020b). Monthly Energy Review, Tables 2.5, 

3.8c, and 10.2b, preliminary data. 

U.S. Environmental Protection Agency. (2019a). Inventory of US greenhouse gas 

emissions and sinks: 1990-2017. https://www.epa.gov/ghgemissions/inventory-

us-greenhouse-gas-emissions-and-sinks-1990-2017 

U.S. Environmental Protection Agency. (2019b). 2016 Greenhouse Gas Emissions from 

Large Facilities. [Data file]. Retrieved from 

https://ghgdata.epa.gov/ghgp/main.do#  

U.S. Environmental Protection Agency. (2020). Inventory of US greenhouse gas 

emissions and sinks: 1990-2018. https://www.epa.gov/ghgemissions/inventory-

us-greenhouse-gas-emissions-and-sinks-1990-2018 

Wang, Y., Ding, C., Liu, C., & Xie, B. (2013). An analysis of Interstate freight mode 

choice between truck and rail: A case study of Maryland, United States. Procedia-

Social and Behavioral Sciences, 96, 1239-1249. 

Weber, C. L., and Matthews, H. S. (2007). Embodied environmental emissions in US 

international trade, 1997− 2004. Environmental Science and Technology, 41, 

4875-4881. 

Weber, C.L., Matthews, H.S. (2008). Quantifying the global and distributional aspects of 

American household carbon footprint. Ecological Economics, 66 (2–3), 379–391. 

http://dx.doi.org/10.1016/j.ecolecon.2007.09.021. 

Wiebe, K.S., Bjelle, E.L., Többen, J. & Wood R. (2018). Implementing exogenous 

scenarios in a global MRIO model for the estimation of future environmental 

footprints. Journal of Economic Structures 7, 20. https://doi.org/10.1186/s40008-

018-0118-y 

Wiedmann, T., 2009. A Review of Recent Multi-Regional Input-Output Models Used for 

Consumption-Based Emission and Resource Accounting. Ecological Economics, 

69, 211-222. 

Williams, S. E., Davis, S. C., & Boundy, R. G. (2018). Transportation Energy Data 

Book: Edition 36.2 (No. ORNL/TM-2017/513). Oak Ridge National Lab 

(ORNL), Oak Ridge, TN (United States). 

Winebrake, J. J., Green, E. H., Comer, B., Li, C., Froman, S., & Shelby, M. (2015). Fuel 

price elasticities in the US combination trucking sector. Transportation Research 

Part D: Transport and Environment, 38, 166-177. 

World Bank. (2020). State and Trends of Carbon Pricing 2020. Washington, DC: World 

Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/33809 

License: CC BY 3.0 IGO. 

Worland, J., (2017, Jun). A new U.S. environmental alliance is trying to take trump’s 

place on the world stage. Time Magazine. Available online in August 2020 at 

https://time.com/4806118/michael-bloomberg-states-climate-change/ 

Wu, P., & Pienaar, J. (2019). Investigating the Influence Factors of Carbon Emissions of 

the US Road Transport Sector: A Research Agenda. Proceedings of the 43rd 

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2017
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2017
https://ghgdata.epa.gov/ghgp/main.do
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018
http://dx.doi.org/10.1016/j.ecolecon.2007.09.021
https://time.com/4806118/michael-bloomberg-states-climate-change/


158 
 

 
 

Australasian Universities Building Education Association (AUBEA) Conference, 

571-577. 

Yang, C., McCollum, D., McCarthy, R., & Leighty, W. (2009). Meeting an 80% 

reduction in greenhouse gas emissions from transportation by 2050: A case study 

in California. Transportation Research Part D: Transport and 

Environment, 14(3), 147-156. 

Yang, Y., Ingwersen, W. W., Hawkins, T. R., Srocka, M., & Meyer, D. E. (2017). 

USEEIO: A new and transparent United States environmentally-extended input-

output model. Journal of Cleaner Production, 158, 308-318. 

  



159 
 

 
 

Appendices 

Appendix A Multinomial Logistic Regression Models for Freight Mode Share 

Table A-1 Estimated Effects of Log-transformed Weight/Value Ratio, Log-transformed 

Shipping Distance, and Petroleum-related Products on Freight Mode Choice, 

Multinomial Logistic Regression Mode (sm
′ ), 2012 CFS 

Freight Transportation Mode B Sig. Exp(B) 

(Reference Category is Truck and Parcel) 

Rail ln (Weight/Value Ratio) 0.852 0.000 2.345 
 ln (Distance) 0.905 0.000 2.471 

 Petroleum 1.103 0.000 3.013 
 Intercept -10.771 0.000  

Water ln (Weight/Value Ratio) 0.559 0.000 1.748 
 ln (Distance) 0.593 0.000 1.809 
 Petroleum 1.522 0.000 4.581 
 Intercept -10.848 0.000  

Air ln (Weight/Value Ratio) -0.245 0.000 0.783 
 ln (Distance) 0.687 0.000 1.988 
 Petroleum -4.223 0.000 0.015 
 Intercept -9.556 0.000  

N   4,347,692 

Pseudo-R2  0.1281 

Table A-2 Estimated Effects of Log-transformed Weight/Value Ratio, Log-transformed 

Shipping Distance, Petroleum-related Products, Log-transformed Trade Value and Fuel 

Costs of Shipping $1000 of Commodity on Freight Mode Choice, Multinomial Logistic 

Regression Model (sm), FAF4 State Database 

Freight Transportation Mode B Sig. Exp(B) 

(Reference Category is Truck, Multiple Modes and Mail) 

Rail ln (Weight/Value Ratio) 0.574 0.000 1.775 
 ln (Distance) 0.490 0.000 1.633 

 Petroleum 0.700 0.000 2.014 

 ln (Trade Value) 0.375 0.000 1.455 

 
Fuel Costs of Shipping $1000 of 

Commodity 
-3.99E-12 0.000 1.000 

 Intercept -11.708 0.000  

Water ln (Weight/Value Ratio) 0.566 0.000 1.761 
 ln (Distance) 0.918 0.000 2.505 
 Petroleum 2.912 0.000 18.398 

 ln (Trade Value) 0.363 0.000 1.437 
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Fuel Costs of Shipping $1000 of 

Commodity 
-1.34E-13 0.006 1.000 

 Intercept -17.459 0.000  

Air ln (Weight/Value Ratio) -0.138 0.000 0.871 
 ln (Distance) -0.126 0.000 0.882 
 Petroleum -2.604 0.000 0.074 

 ln (Trade Value) -0.067 0.000 0.935 

 
Fuel Costs of Shipping $1000 of 

Commodity 
1.53E-14 0.024 1.000 

 Intercept -0.980 0.000  

Pipeline ln (Weight/Value Ratio) 0.723 0.000 2.061 
 ln (Distance) -0.194 0.000 0.823 
 Petroleum 6.000 0.000 403.394 

 ln (Trade Value) 0.476 0.000 1.609 

 
Fuel Costs of Shipping $1000 of 

Commodity 
-4.56E-09 0.341 1.000 

 Intercept -14.658 0.000  

N   360,013 

Pseudo-R2  0.1740 

Table A-3 Estimated Effects of Log-transformed Weight/Value Ratio, Log-transformed 

Shipping Distance, and Petroleum-related Products on Freight Mode Choice, 

Multinomial Logistic Regression Model (sm
′ ), FAF4 State Database 

Freight Transportation Mode B Sig. Exp(B) 

(Reference Category is Truck, Multiple Modes and Mail) 

Rail ln (Weight/Value Ratio) 0.128 0.000 1.137 
 ln (Distance) 0.005 0.624 1.005 

 Petroleum 0.625 0.000 1.869 

 
Fuel Costs of Shipping $1000 of 

Commodity 
-1.26E-12 0.000 1.000 

 Intercept -2.829 0.000  

Water ln (Weight/Value Ratio) 0.116 0.000 1.123 
 ln (Distance) 0.400 0.000 1.492 
 Petroleum 2.806 0.000 16.536 

 
Fuel Costs of Shipping $1000 of 

Commodity 
8.96E-16 0.929 1.000 

 Intercept -8.516 0.000  

Air ln (Weight/Value Ratio) -0.144 0.000 0.866 
 ln (Distance) -0.073 0.000 0.930 
 Petroleum -2.395 0.000 0.091 

 
Fuel Costs of Shipping $1000 of 

Commodity 
2.23E-14 0.001 1.000 

 Intercept -2.307 0.000  

Pipeline ln (Weight/Value Ratio) 0.103 0.000 1.109 
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 ln (Distance) -0.793 0.000 0.453 
 Petroleum 6.121 0.000 455.283 

 
Fuel Costs of Shipping $1000 of 

Commodity 
-9.50E-08 0.000 1.000 

 Intercept -3.288 0.000  

N   360,013 

Pseudo-R2  0.1041 

 

 


