
c© 2020

Zachary Alan Daniels

ALL RIGHTS RESERVED

EXPLANATION-DRIVEN LEARNING-BASED
MODELS FOR VISUAL RECOGNITION TASKS

by

ZACHARY ALAN DANIELS

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Dimitris N. Metaxas

and approved by

New Brunswick, New Jersey

October, 2020

ABSTRACT OF THE DISSERTATION

Explanation-Driven Learning-Based Models for Visual

Recognition Tasks

By Zachary Alan Daniels

Dissertation Director:

Dimitris N. Metaxas

Safety-critical applications (e.g., autonomous vehicles, human-machine teaming, and

automated medical diagnosis) often require the use of computational agents that are

capable of understanding and reasoning about the high-level content of real-world scene

images in order to make rational and grounded decisions that can be trusted by humans.

Many of these agents rely on machine learning-based models which are increasingly

being treated as black-boxes. One way to increase model interpretability is to make

explainability a core principle of the model, e.g., by forcing deep neural networks to

explicitly learn grounded and interpretable features. In this thesis, I provide a high-

level overview of the field of explainable/interpretable machine learning and review some

existing approaches for interpreting neural networks used for computer vision tasks. I

also introduce four novel approaches for making convolutional neural networks (CNNs)

more interpretable by utilizing explainability as a guiding principle when designing the

model architecture. Finally, I discuss some possible future research directions involving

explanation-driven machine learning.

ii

Acknowledgements

I owe the success of my PhD to many people. I would like to express my sincere

gratitude to my advisor, Prof. Dimitris N. Metaxas, for his support and guidance

throughout the course of my PhD. I would also like to thank the other members of my

PhD committee, Profs. Konstantinos Michmizos, George Moustakides, and Fuxin Li,

for reviewing my thesis and providing useful feedback that improved my research and

presentation capabilities. Additionally, I would like to thank Prof. Apostolos Gerasoulis

who served as the fourth member of my qualifying exam committee in addition to

Profs. Metaxas, Michmizos, and Moustakides. I’d like to thank the Air Force Research

Laboratory (AFRL) and Wright State University’s Autonomy Technology Research

Center (ATRC) where I interned for two summers. In particular, I’d like to thank my

mentors at the AFRL and ATRC, Dr. Donald Venable, Mr. Christopher Menart, Dr.

Pascal Hitzler, and Dr. Michael Raymer as well as all of the other people who made the

internships possible. I’d especially like to thank the other interns who I worked closely

with: Dylan Bowald, Logan Frank, Ashwin Kanhere, and Charlie Veal. I’d also like to

thank all of the students at the Center for Computational Biomedicine, Imaging, and

Modeling (CBIM), many of whom I’ve had the pleasure of collaborating with. I’d like

to thank all of my other collaborators, teachers, and mentors who I’ve had the pleasure

of learning from throughout my PhD studies. I also want to thank the administrative

and support staff at Rutgers and especially, those in the computer science department.

Finally, I’d like to thank all of the members of my family who have encouraged and

supported me over the course of this PhD.

Funding: Parts of this work were supported by the Dynamic Data-Driven Applications

Systems (DDDAS) program of the Air Force Office of Scientific Research (AFOSR)

and by the National Science Foundation Graduate Research Fellowship Program (NSF

GRFP) under Grant No. DGE-1433187.

iii

Dedication

To my family, especially my wife, parents, and siblings who encouraged and supported

me over the duration of my PhD.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . xiii

List of Figures . xv

1. Introduction . 1

1.1. Motivation . 1

1.1.1. A Brief Overview of Existing Interpretation Methods for Convo-

lutional Neural Networks . 3

1.1.2. Issues with Post-Hoc Explanations 4

1.1.3. Towards Grounded Explanation-Driven Models for Visual Recog-

nition Tasks . 5

1.1.4. A Simplified Example Application: Scene Classification Using

Object-Based Representations . 8

1.2. Contributions of the Dissertation . 9

1.2.1. Augmenting Visual Concepts: Incorporating Knowledge into Deep

Neural Networks Using External Knowledge Graphs 10

1.2.2. Deriving New Visual Concepts: Discovering a Novel Representa-

tion for Explanation-Driven Visual Recognition 10

1.2.3. Deriving New Visual Concepts from Auxiliary Data Sources: Jointly

Learning Topic Models and Visual Classifiers 12

v

1.2.4. Adapting Visual Concepts: Utilizing Scenario-Based Models in

Dynamic Settings . 12

1.3. Outline of the Dissertation . 13

2. Background: Interpretable Models in Machine Learning and Com-

puter Vision . 15

2.1. Why is Model Important? . 16

2.2. Defining Model Interpretability . 20

2.2.1. Lipton’s Definition: Transparency and Post-Hoc Interpretability 21

2.2.2. Murdoch et al.’s Definition: The Predictive, Descriptive, Relevant

Framework for Model Interpretability 23

2.2.3. Doran et al.’s Definition: Opaque, Interpretable, and Compre-

hensible Systems . 25

2.2.4. Doshi-Velez and Kim’s Definition: Data-Driven Operational Def-

initions of Interpretability . 26

2.2.5. Ras et al.’s Definition: Users, Laws, Explanations, and Algo-

rithms as Considerations of Interpretable Models 28

2.2.6. Other Discussions on Interpretable Machine Learning and Ex-

plainable Artificial Intelligence 30

2.3. Existing Approaches for Interpreting Deep Neural Networks for Com-

puter Vision-Related Tasks . 30

2.3.1. Understanding the Internal Components and Mechanisms of the

Model . 31

Visualizing Learned Filters . 31

Understanding the Feature Space via Clustering, Nearest Neigh-

bors, and Dimensionality Reduction 32

Visualizing Activation Maps . 33

Discovering Maximally-Activating Image Patches 34

Relating Pixels and Neurons . 34

vi

Activation Maximization and Extensions for Visualizing the Pre-

ferred Input of a Neuron 36

Perturbation-Based Approaches 37

Inverting Learned Representations 37

Ascribing Human-Understandable Concepts to Specific Neurons 38

Other Approaches for Understanding the Behavior of Neurons in

Deep Neural Networks 39

Improving Transparency via Model/Knowledge Distillation . . . 40

2.3.2. Understanding the Decisions/Predictions Output by the Model . 40

Methods Related to Work Discussed in Section 2.3.1 41

Sliding Window- and Sliding Occlusion-Based Approaches 42

Other Methods Based on Perturbing the Input Image and/or In-

termediate Representations 43

Class Activation Mapping and Extensions 43

Other Attention-Based Approaches 45

Other Approaches Capable of Generating Visual Explanations . 45

Combining Deep Learning with Prototype Learning 45

Counterfactual and Contrastive Explanations 46

Grounding Learning-Based Models to Visual Concepts and Visual

Attributes . 47

Other Models that Learn to Explain Decisions Beyond Pixels . . 50

2.4. Acknowledgment of Additional Resources 50

3. Augmenting Visual Concepts: Incorporating Knowledge into Deep

Neural Networks Using External Knowledge Graphs 52

3.1. Introduction . 52

3.2. Related Work . 56

3.2.1. Combining Knowledge Graphs and Deep Neural Networks for

Computer Vision Tasks . 56

vii

3.2.2. Exploiting Object Information for Visual Recognition Tasks . . . 57

3.3. Problem . 58

3.4. Data . 59

3.4.1. ADE20K . 59

3.4.2. WordNet . 60

3.5. Methodology . 60

3.5.1. Summary of our Approach . 60

3.5.2. Classifying Scene Images Using an Object-Based Model 61

3.5.3. Aligning ADE20K to WordNet 62

3.5.4. Calibrating Object Recognition Scores 65

3.5.5. Exploiting the Hierarchical Structure of the Knowledge Graph to

Refine Object Predictions . 66

3.5.6. Training the Scene Classification Model 67

3.6. Experimental Results and Analysis . 67

3.6.1. The Importance of Utilizing Grounded, Semantic Information . . 67

3.6.2. Understanding the Limitations and Impact of Noisy Object Recog-

nition . 69

3.6.3. Improving Performance by Utilizing Knowledge Graphs 70

3.6.4. Understanding the Effects of Object Prediction Score Calibration 72

3.6.5. Refining Object Predictions by Exploiting the Known Structure

of the Knowledge Graph . 73

3.6.6. Qualitative Results . 74

4. Deriving New Visual Concepts: Discovering a Novel Representation

for Explanation-Driven Visual Recognition 79

4.1. Introduction . 79

4.2. Related Work . 83

4.2.1. Learning Meaningful Groups of Objects 84

4.3. Problem . 85

viii

4.4. Data . 85

4.5. Methodology . 86

4.5.1. Identifying Scenarios from Data: Pseudo-Boolean Matrix Factor-

ization . 86

Formulation of Pseudo-Boolean Matrix Factorization 87

Selecting the Number of Scenarios 91

Initializing the Dictionary and Encoding Matrices 93

Solving the Pseudo-Boolean Matrix Factorization Optimization

Problem (without Visual Feedback) 94

4.5.2. ScenarioNet: Identifying and Recognizing Scenarios from Visual

Data . 95

Training ScenarioNet . 97

Generating Explanations: Interpreting the Output of ScenarioNet 97

4.6. Experimental Results and Analysis . 101

4.6.1. Examples of Learned Scenarios 101

4.6.2. Content-Based Comparison . 102

4.6.3. Identifying Some Failure Cases of ScenarioNet 103

4.6.4. Reconstruction Error of Pseudo-Boolean Matrix Factorization . . 106

4.6.5. Comparison to a Model that Bottlenecks Through Object Pre-

dictions . 108

4.6.6. Comparisons to Other Methods for Scene Classification 109

Comparison to Baseline CNNs 110

Comparison to Other Object-Based Representations 111

Comparison to Visual Attribute-Based Representations 111

4.6.7. Evaluating ScenarioNet’s Explanations via Human Subject Ex-

periments . 112

5. Deriving New Visual Concepts from Auxiliary Data Sources: Jointly

Learning Topic Models and Visual Classifiers 116

ix

5.1. Introduction . 116

5.2. Related Work . 118

5.3. Problem . 119

5.4. Data . 120

5.5. Methodology . 120

5.5.1. Pre-Training the Feature Extraction Neural Network 121

5.5.2. Extracting Key Terms from Natural Language Text 122

5.5.3. Learning Topic Models using Matrix Factorization 124

5.5.4. Incorporating Topic Modeling into Convolutional Neural Networks126

5.6. Experimental Results and Analysis . 128

5.6.1. Evaluation Metrics . 128

5.6.2. Text-Based Experiments . 128

5.6.3. Imaging-Based Experiments . 129

5.6.4. Analysis of Quantitative Results 130

5.6.5. Qualitative Results . 133

6. Adapting Visual Concepts: Utilizing Scenario-Based Models in Dy-

namic Settings . 135

6.1. Introduction . 135

6.2. Related Work . 138

6.2.1. Active Vision and Dynamic Data-Driven Applications Systems . 138

6.2.2. High-Level Information Fusion 139

6.2.3. Open Set Recognition . 139

6.3. Problem . 139

6.4. Data . 140

6.5. Methodology . 141

6.5.1. Neural Network Training Procedure 142

6.5.2. Sensing: Understanding the Input Data 143

x

6.5.3. Processing: From Pixels to Human-Understandable Representa-

tions . 143

Scenarios as Grounded and Interpretable Representations 143

Mapping from Scene Views to Scenarios 146

Fusing View-Level Scenarios into Scene-Level Scenarios 147

6.5.4. Decision Making/Predicting: Classifying Scenes 148

The Weibull-Calibrated Support Vector Machine for Open Set

Classification . 148

6.5.5. Updating: Adapting the Models and Adjusting the Sensors . . . 150

Updating the Scenario Representation 151

Updating ScenarioNet . 153

Updating the Scene Classification Model 154

Formulating a Policy for Exploring the Scene 154

6.6. Experimental Results and Analysis . 155

6.6.1. Understanding the Importance of Object-Based Representations 155

6.6.2. Understanding the Limitations of Using Object Presence as Fea-

tures . 156

6.6.3. Justifying Scenarios as Discriminative, Human-Understandable

Features . 157

6.6.4. Evaluating the W-SVM for Identifying Unknown Scene Categories 159

6.6.5. Evaluating the Dynamic-Variant of Pseudo-Boolean Matrix Fac-

torization and the Branching Scenario-Recognition Neural Network161

6.6.6. Understanding the Necessity of Exploration 162

6.6.7. Evaluating the Exploration Component of our Proposed Framework163

6.6.8. Qualitative Results . 164

7. Conclusion and Future Work . 177

7.1. Conclusion . 177

7.2. Future Work . 182

xi

7.2.1. Expanding Scenarios Beyond Co-Occurrence Relations 182

7.2.2. Outputting Richer, Easier-to-Interpret Explanations 183

7.2.3. Exploring Prototype-Based Approaches 184

7.2.4. Utilizing Interpretable Non-Linear Classifiers 184

References . 186

xii

List of Tables

3.1. Accuracy on the scene classification task for several baseline models. We

compare visual features to ground truth semantic features. 68

3.2. We evaluate the performance of various approaches for scene classifica-

tion including an unconstrained ResNet-18 model and two-stage models

involving object recognition (OR) (using object labels from the initial ob-

ject set and expanded object set) followed by a logistic regression (LR)

classifier. 71

3.3. We evaluate how object recognition and scene classification are affected

by calibrating the object prediction scores. Specifically, we look at the

three stage model consisting object recognition (OR), followed by object

score calibration, and finally, followed by logistic regression (LR) for

scene classification. In all cases, we consider the expanded object set. . . 73

3.4. We evaluate the effect of the object refinement strategy on scene classifi-

cation accuracy. Specifically, we look at the four stage model consisting

object recognition (OR), followed by object score calibration, followed

by object refinement using the mined object hierarchy, and finally, fol-

lowed by logistic regression (LR) for scene classification. In all cases, we

consider the expanded object set. 74

4.1. We evaluate how easily objects and scenarios can be recognized from

visual data. We also evaluate the predictive power of the object- and

scenario-based features are for the downstream scene classification task. 109

4.2. We evaluate scene classification accuracy on a number of different fea-

tures for the SUN-RGBD and ADE20K datasets. 110

xiii

5.1. We evaluate the predictive power of various features extracted from nat-

ural language medical reports for diagnosing chest-related illnesses. . . . 128

5.2. We evaluate the performance of learned visual classifiers. The top ta-

ble looks at the overall predictive performance of the model while the

bottom table looks at predictive performance on individual diagnostic

labels (bottom). We compare a standard ResNet-22 architecture with

our modified architecture that bottlenecks through the topic modeling

layer. 130

6.1. Object-based representations for scene classification are very discrimina-

tive, especially when compared to purely visual features (using a fine-

tuned ResNet-18). It is also apparent that using all views of a scene

results in significant performance gains compared to using just a single

view. 155

6.2. Classification performance diminishes when noisy predicted object pres-

ence features are used for scene classification. 156

6.3. We measure the performance of logistic regression and W-SVM (using

30 predicted scenario probabilities as features) when all classes are known.160

6.4. We measure the performance of combining scenarios with various popular

classifiers for open set recognition task using 30 scenarios and all views

with 7 known classes and 7 unknown classes. Results are averaged over

10 random trials. 160

6.5. We compare the quality of a dictionary learned by Dynamic PBMF to

one learned with regular PBMF. 161

6.6. Understanding the the performance of the branching convolutional neu-

ral network model for scenario recognitionin combination with different

classifiers. 161

6.7. We explore how well the learned policy performs on the task of active

explanation-driven classification of indoor scenes. We show the trade-offs

between maximizing predictive performance and minimizing unnecessary

exploration. 163

xiv

List of Figures

1.1. An example of an insufficient and incorrect explanation of a decision

made by a deep neural network. The network focuses on the meaningful

parts of the image when predicting the correct label “dog” (e.g., it fo-

cuses on the mouth). This would make one think that the net generates

reasonable explanations. However, the network uses the similar parts of

the image as evidence when predicting the completely unrelated “snake”

class, suggesting that the explanations might not be trustworthy. 4

1.2. Examples of different types of visual attributes (a type of visual con-

cept): 1) group-level, hand-labeled attributes where every instance of

the same class shares the same attributes, 2) hand-labeled attributes

for individual instances, and 3) instance-level attributes extracted from

natural language descriptions. 6

1.3. Comparing the traditional visual recognition pipeline to a pipeline con-

structed around using visual concepts as interpretable features in com-

bination with interpretable classifiers. 7

2.1. A visualization of some of the learned filters in the first convolutional

layer of AlexNet trained on the ImageNet dataset. 31

2.2. Visualizing the activation maps (and positive component of the activa-

tion maps) of the learned filters at multiple layers in a simple convolu-

tional neural network. 33

xv

2.3. Left: An input image of a snake; Center: A visualization of the im-

portance of each pixel for predicting the scene category “snake” based

on vanilla backpropagation; Right: A visualization of the importance

of each pixel for predicting the scene category “snake” based on guided

backpropagation. 35

2.4. The reconstructed image (right) of a tree (left) based on inverting the

feature representation learned by a deep neural network. 38

2.5. Left: Grad-CAM applied to an image of a cat and dog, conditioned on the

“dog” class. Using Grad-CAM, one can see that the net learns to attend

to features related to the dog’s face and paws. Right: Guided Grad-CAM

(which involves combining Grad-CAM with Guided Backpropagation)

provides a more fine-grained explanation. 44

3.1. An overview of the scene classification task, which involves using a model

to map from an image to the image’s scene category. Image from [1]. . . 58

3.2. Left: A histogram relating each object to the number of times it appears

in the subset of the ADE20K dataset used in our experiments. Right:

The scene class distribution used in our experiments. Image from [1]. . . 59

3.3. Here we show a small subgraph of the aligned knowledge graph between

ADE20K and WordNet after extensive pruning. Note how much addi-

tional semantic information is captured by even this small portion of the

full knowledge graph. Image from [1]. 64

3.4. We evaluate how well a deep neural network can perform on the multi-

object recognition task for objects that appear in at least 25 training

instances in the subset of the ADE20K dataset used in our experiments.

Image from [1]. 70

xvi

3.5. We attempt to quantify the effect of sample size on multi-object recog-

nition. Left: We see how many objects are selected as we set different

thresholds for the minimum number of times an object must appear in

the dataset to not be pruned. Right: We see how object recognition

performance is positively impacted as the minimum number of times an

object appears in the dataset increases. Image from [1]. 71

3.6. We quantify how scene classification performance is affected by the object

set size and quality. We evaluate scene classification performance as we

set different thresholds for the minimum number of times an object must

appear in the dataset to not be pruned. Left: We train and test models

using the ground truth object data. Right: We train and test models

when using predicted object recognition scores. Image from [1]. 72

3.7. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a dining room scene instance. We

show the scene class prediction, the model’s confidence in its scene class

prediction, and the top-10 strongest pieces of evidence in favor of the

prediction. Correct concept predictions are highlighted in green, and

incorrect concept predictions are highlighted in red. 76

3.8. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a street scene instance. We show

the scene class prediction, the model’s confidence in its scene class pre-

diction, and the top-10 strongest pieces of evidence in favor of the predic-

tion. Correct concept predictions are highlighted in green, and incorrect

concept predictions are highlighted in red. 76

3.9. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a living room scene instance. We

show the scene class prediction, the model’s confidence in its scene class

prediction, and the top-10 strongest pieces of evidence in favor of the

prediction. Correct concept predictions are highlighted in green, and

incorrect concept predictions are highlighted in red. 77

xvii

3.10. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a bathroom scene instance. We

show the scene class prediction, the model’s confidence in its scene class

prediction, and the top-10 strongest pieces of evidence in favor of the

prediction. Correct concept predictions are highlighted in green, and

incorrect concept predictions are highlighted in red. 77

3.11. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a bedroom scene instance. We

show the scene class prediction, the model’s confidence in its scene class

prediction, and the top-10 strongest pieces of evidence in favor of the pre-

diction. Correct concept predictions are highlighted in green, and incor-

rect concept predictions are highlighted in red. One interesting thing to

note with this instance is that the concept “cushion” is missing whereas

the parent class “cushion.n.03” is present. This is because “cushion”

specifically refers to the cushion of a sofa whereas “cushion.n.03” is an

ancestor of the“pillow” concept. 78

3.12. We show an example annotated explanation of the output of our knowl-

edge graph-based approach applied to a kitchen scene instance. We show

the scene class prediction, the model’s confidence in its scene class pre-

diction, and the top-10 strongest pieces of evidence in favor of the predic-

tion. Correct concept predictions are highlighted in green, and incorrect

concept predictions are highlighted in red. 78

4.1. A visual representation of the pseudo-Boolean matrix factorization, which

takes a binary matrix representing which visual concepts appear in each

scene instance and decomposes it into a dictionary matrix, which assigns

visual concepts to scenarios, and an encoding matrix, which assigns sce-

narios to each scene instance. 81

xviii

4.2. An overview of the ScenarioNet architecture. The key contribution of the

architecture is the scenario block, which replaces the final fully connected

layers of a standard convolutional neural network. The scenario block

consists of three parts: 1) a set of layers that predict the presence of each

scenario in a given image and are compatible with the class activation

mapping technique [2], enabling the network to identify which parts of

an image ScenarioNet attends to when recognizing whether or not a

scenario is present in a given image, 2) layers that use a pseudo-Boolean

matrix factorization-based loss function to fine-tune the dictionary of

scenarios and provide feedback to the scenario recognition layers, and 3)

layers equivalent to a multinomial logistic regression classifier that use

scenarios as low-dimensional, interpretable features for the downstream

classification task. 82

4.3. Above, we show the difference between traditional matrix multiplication

and Boolean matrix multiplication. Boolean multiplication replaces the

addition operator with a union operator. It is important that the matrix

factorization for identifying scenarios uses Boolean matrix multiplication

instead of traditional matrix multiplication because when reconstructing

the objects-scene instances matrix, we only care about object presence

and not object counts. 88

4.4. We show an example annotated explanation of the output of Scenari-

oNet applied to an outdoor highway scene instance. We show the scene

class prediction and top-3 strongest predicted scenarios with the high-

est influence scores for the downstream classification task along with the

corresponding activation maps. 98

4.5. We show example explanations output by ScenarioNet when ScenarioNet

is applied to two dining room scenes. We show the scene class prediction

and the top-3 strongest predicted scenarios with the highest influence

scores for the downstream classification task along with the correspond-

ing activation maps. Top image from [3]. 99

xix

4.6. We show an example explanation output by ScenarioNet when Scenari-

oNet is applied to an art gallery scene. We show the scene class prediction

and the top-3 strongest predicted scenarios with the highest influence

scores for the downstream classification task along with the correspond-

ing activation maps. 100

4.7. We show an example explanation output by ScenarioNet when Scenari-

oNet is applied to a bathroom scene. We show the scene class prediction

and the top-2 strongest predicted scenarios with the highest influence

scores for the downstream classification task along with the correspond-

ing activation maps. 100

4.8. We show several example scenarios learned by ScenarioNet on the ADE20K

dataset. 102

4.9. ScenarioNet can be used to compare two images based on high-level

similarities and differences. Image from [3] 103

4.10. We show an example where ScenarioNet doesn’t perform as expected.

ScenarioNet is highly confident that the {book, bookcase} is present in

the above image, but when looking at the parts of the image that the

network attends to when making this decision, we see that it exploits

contextual clues using objects outside the scenario. It completely ignores

focusing on the actual bookcase and instead attends to the desk object. 104

4.11. We evaluate the reconstruction error between a recovered and ground

truth matrix as the dimensionality of the reduced representation is varied

using a variety of methods on the SUN-RGBD dataset. 105

4.12. We evaluate the reconstruction error between a recovered and ground

truth matrix as the dimensionality of the reduced representation is varied

using a variety of methods on the ADE20K dataset. 106

4.13. We show an example question for evaluating whether a human partici-

pant believes a scenario is meaningful. 112

xx

4.14. We show an example question for evaluating whether a human partic-

ipant can predict the scene class of a given scene instance based only

on detected scenarios that the network deems important for making the

true classification decision. 114

5.1. We show an example ground-truth medical report for the chest x-ray

analysis problem. Image from [4]. 117

5.2. We show the pipeline for extracting a set of key terms from a natural

language medical report. The pipeline consists of four stages: negative

scope detection, basic pre-processing, key term extraction using SGRank,

and vectorizing the key terms in a bag-of-key terms representation. . . . 123

5.3. We present the structure of the proposed neural network model for com-

bining topic modeling with convolutional networks. Image from [4]. . . . 127

5.4. We show an example of an x-ray and some of its highly-ranked topics. . 132

5.5. We show an example of the net attending to a topic relating to enlarged

hearts. 133

5.6. We show several examples of some of the more interesting topics learned

by our approach on the OpenI dataset. Many of the learned topics make

sense from a visual diagnosis perspective. However, we also see that the

model sometimes extracts topics that make sense from a natural language

processing perspective but not from a diagnostic or visual perspective.

For example, our model learns to group different terms related to the

spine, but this group doesn’t express any information about the visual

appearance of the spine. Similarly, it groups terms related to view of an

x-ray, but this topic is visually and diagnostically meaningless. Lastly,

we see it group terms related to examinations (in particular “prior exam-

inations”), which once again, doesn’t offer any meaningful information

for the diagnosis, and it also picks on the keyword “prior” and incorrectly

groups the term “prior granulomatous disease” with other terms about

“prior examinations”. 134

xxi

6.1. We show a visual overview of the problem of active explanation-driven

classification of indoor scenes. In this problem, an agent is placed in the

center of an indoor room and with few sensor adjustments, must assign

a label to the scene or identify that the scene is atypical and and update

its internal models and knowledge base. 140

6.2. A visual representation of the max-pooling operator of view-level scenario

predictions to determine scene-level scenario predictions. 147

6.3. A visual representation of the continuous learning variant of PBMF

where when a new class is encountered, the existing scenario dictionary

is frozen, and we learn a new dictionary of scenarios specific to the new

class that gets appended to the existing scenario dictionary. 151

6.4. As new class-specific scenarios are discovered via the dynamic-variant

of pseudo-Boolean matrix factorization, the scenario-predicting neural

network is updated by learning new branches consisting of layers designed

to recognize the new class-specific scenarios. 153

6.5. Results show that the majority of objects in our extended SUN360 dataset

cannot accurately recognized from scene images. 156

6.6. Left: We attempt to measure how scenario recognition performance is

affected by the number of scenarios. We also see that refining the dictio-

nary based on visual feedback is useful for improving scenario recognition.

Right: We train a model to learn to recognize 30 scenarios. Results show

that scenarios can be relatively accurately recognized from scene images,

especially when compared to predicting individual object classes (Figure

6.5). 157

6.7. We attempt to understand how well a scenario-based model works for

scene classification when using only single-views and when using all avail-

able views of a scene. 158

xxii

6.8. We show an example of a bathroom scene decomposed into eight views

in order to highlight both the explanatory power of our proposed ap-

proach and the utility of using information from multiple views for scene

understanding and classification. For each view, we show the predicted

scenarios. This example presents an interesting case. If an agent were

to start with the first view, it wouldn’t be able to predict a bathroom

scene because it only detects the “closet/door” scenario. However, if the

agent looks at views 3, 4, 5, 6, and 8, then there is strong evidence that

the scene is a bathroom. Another interesting property of this example is

that it includes an uninformative view, specifically view 7 which is essen-

tially a blank wall. In this case, our neural network doesn’t detect any

useful semantic information and as a result, doesn’t output any scenario

prediction with high confidence. 168

6.9. We show an example of a church scene decomposed into eight views in

order to highlight both the explanatory power of our proposed approach

and the utility of using information from multiple views for scene un-

derstanding and classification. For each view, we show the predicted

scenarios. 172

6.10. We show an example of an office scene decomposed into eight views in

order to highlight both the explanatory power of our proposed approach

and the utility of using information from multiple views for scene un-

derstanding and classification. For each view, we show the predicted

scenarios. In this case, we see that our method is good but not perfect.

The proposed model detects some scenarios that aren’t present in the

actual image, e.g., the computer scenario in view 2. Similarly, in views

6 and 7, we see that the model predicts a scenario related to kitchen

appliances because it sees a cabinet, but most of the other concepts in

the scenario are missing. 176

xxiii

1

Chapter 1

Introduction

1.1 Motivation

In recent years, machine learning has played an increasingly important role in modern

society, powering many technologies that are used every day by millions of people (e.g.,

web search, machine translation, image/video editing, and recommender systems for

e-commerce and media). Machine learning is used when it is impossible or extremely

difficult to code explicit instructions for some given task. Instead, machine learning is

concerned with teaching machines (computers) how to perform a given task based on

past experiences and observations (often, a large collection of data samples). For ex-

ample, nobody has figured out how to write an explicit program capable of accurately

recognizing hundreds of objects in images because there are too many variations of

appearance (e.g., differences in viewpoint, illumination, deformation, occlusion, back-

ground clutter, and intraclass variation) to conceptualize and subsequently, hard-code

all of the relevant information about a given object class. In contrast, one can cre-

ate machine learning-based approaches capable of performing object recognition with

near human-level accuracy. Unlike traditional software development, machine learning

involves specifying the general form of a mathematical model and adjusting the compo-

nents of the model form (e.g., its parameters) by minimizing some error function on a

collection of “training” data. In the object recognition task, this means fitting the pa-

rameters of a classification model based on large collections of images where each image

contains a single object and a corresponding label for the object. After the model is

“trained”, during deployment/execution, a new image gets fed as input to the trained

model, which then outputs a predicted label.

In particular, the growing importance of machine learning-based technologies in

2

recent years has been and continues to be driven mainly by the rapidly advancing sub-

field of machine learning known as deep learning. The deep neural network (DNN),

the most common implementation of a deep learning architecture, is currently the gold

standard for solving challenging problems involving mapping some input data consisting

of complex sensor data (e.g., images and video) to one or more output labels. Deep

neural networks perform so well at this task because they learn how to transform the

raw input data into a form that can be exploited by the classification/regression model

while simultaneously learning the classification/regression model. This is in contrast

to most classic machine learning models (e.g., support vector machines, decision trees,

linear regression), which typically rely on transforming the raw input data to some

useful hand-engineered “features”.

Deep neural networks often learn features that are much better suited for a given

problem than traditional hand-engineered features, which are frequently suboptimal

because they are primarily created via human instinct and (incomplete) domain knowl-

edge. Thus, these deep learned features are often more discriminative than hand-

engineered features for a given target task. However, this typically comes at the cost of

less interpretability. Hand-engineered features are designed to extract some meaning-

ful, human-understandable properties from raw input signals. In contrast, deep learned

features are extracted via a complex series of computations and often take the form of

unconstrained numerical vectors where the meaning of these vectors is not immediately

apparent. As such, many deep learning models are treated as black-boxes: models that

take in data and output decisions without the user understanding the inner mecha-

nisms of how the decisions were reached and without providing evidence to support

predictions, i.e., why certain decisions were made.

In this thesis, we consider general problems related to visual recognition, the task of

automatically assigning some label to an image or video. Visual recognition problems

often appear in safety-critical applications such as autonomous driving, human-machine

teaming, and medical image analysis. Such safety-critical applications often require

interpretable models, and thus, are incompatible with black-box models like deep neural

networks. Furthermore, such applications require the use of computational agents that

3

are capable of understanding and reasoning about the high-level content of real-world

scene images in order to make rational and grounded decisions that can be trusted by

humans. Thus, for these applications, one would want to modify deep neural networks

to increase their interpretability while maintaining their high predictive power. One way

to increase model interpretability and encourage the model to make rational, human-

like decisions is to make explainability a core principle of the model, e.g., by forcing

deep neural networks to explicitly learn grounded and interpretable features. In this

thesis, we introduce several novel approaches for making convolutional neural networks

(CNNs), a type of deep neural network that is particularly well-suited for analyzing

visual data, more interpretable by utilizing explainability as a guiding principle when

designing the model architecture.

1.1.1 A Brief Overview of Existing Interpretation Methods for Con-

volutional Neural Networks

Before we introduce the specific methods proposed in this thesis, we first consider the

most popular methods for interpreting the decision-making process of convolutional

neural networks. There are many ways to define model interpretability, many of which

will be discussed in the next chapter. For now, consider the definition provided by

Lipton [5]. Lipton defines model interpretability based on two properties: post-hoc

explainability and model transparency. Post-hoc explainability focuses on generating

explanations from trained models. Transparency focuses on constructing models where

humans can understand each component of the model, including the inputs, parameters,

learning process, and shape of the decision boundary.

The most popular methods for understanding the predictions of deep convolutional

neural networks are based on post-hoc explainability. For example, recent work has fo-

cused on looking at local linear approximations of the model’s behavior [6], generating

visual explanations of deep neural network features and attention maps (e.g., [2, 7, 8]),

and training auxiliary models that generate natural language explanations for the de-

cisions made by another model [9,10]. Post-hoc explanation is a powerful tool because

it can be applied to off-the-shelf models with minimal additional training and little to

4

no modification of the model structure/architecture. For example, Grad-CAM [8] can

be used to generate attention maps for any convolutional neural network (CNN) archi-

tecture. This method has an additional benefit: because the structure and parameters

of the model remain unchanged, there is no loss in accuracy.

1.1.2 Issues with Post-Hoc Explanations

Figure 1.1: An example of an insufficient and incorrect explanation of a decision made
by a deep neural network. The network focuses on the meaningful parts of the image
when predicting the correct label “dog” (e.g., it focuses on the mouth). This would
make one think that the net generates reasonable explanations. However, the network
uses the similar parts of the image as evidence when predicting the completely unrelated
“snake” class, suggesting that the explanations might not be trustworthy.

However, post-hoc explainability is not without its limitations. Rudin [11] offers

a discussion about why post-hoc explainability is often ill-suited for high-stakes appli-

cations. Methods for post-hoc explainability sometime provide explanations that are

not faithful to what the original model computes. For example, Hendricks et al. [9] try

to generate natural language descriptions that explain the output of a trained visual

recognition model by training a separate recurrent neural network (RNN) to map the

features learned by the recognition model to natural language explanations. However,

sometimes Hendricks’ method will generate explanations that express false information

about the contents of an image (e.g., it might output “the bird is a cardinal because of

its red head” when, in reality, the image contains a cardinal with a brown head). An-

other issue with post-hoc explainability brought up by Rudin is that explanations often

5

do not make sense or do not provide enough detail to understand what the black box

model is doing. For example, when generating attention maps, sometimes the network

focuses on parts of an image that seem irrelevant (to a human) when making a specific

classification decision. Figure 1.1 which shows an example where a neural network at-

tends to the similar parts of an image when predicting the correct class (“dog”) and

an incorrect class (“snake”). Likewise, sometimes the visual explanations make sense

to a human but require human interpretation. For example, suppose a neural network

is trained for scene classification. The neural network predicts that a scene belongs to

the category “bathroom” and attends to a “toilet” object when making this decision.

This seems like a reasonable explanation; however, a human cannot understand why

the net chooses to attend to this region. Is it because the net understands the concept

of “toilet”? Is it because the net is focusing on the “porcelain” texture? Is it because

the net is focusing on other information such as shape and color? Finally, Rudin argues

that post-hoc explainable methods often lead to overly complicated explanations that

lead to human error in subsequent decision making; e.g., the biases of the model are

often misunderstood (which leads to “unfair” models), and errors in the model can

be challenging to debug. Instead, Rudin argues that models must be designed from

the ground-up with explainability as a guiding principle (i.e., transparency should be

prioritized over post-hoc explainability).

Recent work has shown that others agree with this philosophy, and many works

have been proposed that attempt to ground the decisions of complex models to human-

understandable concepts (e.g., see [1, 3, 9, 12–16]). Learning grounded explanation-

driven models for visual recognition tasks is the primary focus of this dissertation.

1.1.3 Towards Grounded Explanation-Driven Models for Visual Recog-

nition Tasks

One way to make explainability a core principle of the model is by forcing the model to

explicitly learn grounded and interpretable features. Visual concepts make up one class

of human-understandable features. We define visual concepts as semantic properties

that are shared across different categories (e.g., objects, scenes, etc.) and are able to

6

Figure 1.2: Examples of different types of visual attributes (a type of visual concept):
1) group-level, hand-labeled attributes where every instance of the same class shares the
same attributes, 2) hand-labeled attributes for individual instances, and 3) instance-
level attributes extracted from natural language descriptions.

be recognized from visual data. Visual concepts can include properties such as the

presence of specific objects or events in a scene or visual attributes [17–20] such as

those appearing in Figure 1.2.

The most basic way to construct transparent models using visual concepts is to first

learn a mapping between visual input to a set of visual concepts (e.g., using a DNN) and

then train simple, easy-to-interpret classification models (e.g., linear models, decision

trees, rule sets) that use these visual concepts as features for some target task. This

approach forms the foundation of the methods proposed in this dissertation. A visual

representation of this approach appears in Figure 1.3. However, the aforementioned

approach is not without its flaws.

Existing visual concept-based models face two significant issues. First, errors can

be made during visual concept extraction/recognition phase due to 1) limited training

7

Figure 1.3: Comparing the traditional visual recognition pipeline to a pipeline con-
structed around using visual concepts as interpretable features in combination with
interpretable classifiers.

data that cannot capture all variations of appearance needed to accurately recognize

a wide range of classes, 2) incomplete, ambiguous, and imperfect label information

that makes the training process noisy and imperfect, and 3) visual subtlety of certain

concepts that prevents these concepts from being learned without injecting additional

human knowledge into the system. To extract visual concepts from images, one must

train a classifier to recognize each visual concept from visual data, and occasionally, the

classifier will make mistakes (e.g., recognizing an image of a bird as “furry” or failing to

recognize an image of a dog as “furry”). Some visual concepts will have particularly low

“ease-of-recognizability” (i.e., are frequently incorrectly predicted), and this informa-

tion is typically not known before the concept recognition models are trained. A lack of

confidence in the predictions for hard-to-recognize visual concepts is a big problem in

terms of model transparency because models that use these visual concepts as features

can no longer be trusted, which, in turn, limits ease of interpretability. Second, many

existing visual concept-based models consider large sets of concepts, many of which are

redundant or uninformative with respect to some target task, and it is rarely known a

priori how discriminative a concept will be with respect to the target task. Uninforma-

tive and redundant attributes add unnecessary complexity to the model, making it more

difficult to conceptualize the model’s decision-making process. In this dissertation, we

propose several methods to overcome these limitations.

8

1.1.4 A Simplified Example Application: Scene Classification Using

Object-Based Representations

Before we introduce the contributions of this thesis, we want to briefly discuss the par-

ticular application used to evaluate the effectiveness of most (but not all) of the work in

this thesis. In the majority of the work introduced in this thesis, we restrict the visual

recognition task to scene classification (assigning a label to an image whose contents

consist of one or more objects, e.g., classifying the content of images into categories such

as “bathroom”, “kitchen”, “park”, and “city street”). Likewise, we generally restrict

the set of visual concepts to include only 1) the presence or absence of a known set of

objects or 2) some representation derived from the presence or absence of a known set

of objects. Restricting the application and visual concepts is done for several reasons.

First, humans have an intuitive understanding of how specific objects relate to specific

scenes. For example, if a human is told that a scene contains a shower, sink, and bath-

tub, then the human is likely to hypothesize that the scene is a bathroom. Because

humans understand how objects and scenes relate to one another, scene classification

is an excellent task for evaluating the explanations output by machine learning models

that use object-based representations as the building blocks for the explanations. Sec-

ond, there are many large-scale, well-curated, and publicly-available datasets for scene

classification, and there are several publicly-available ontologies and knowledge graphs

that relate objects to one another. Thus, from a logistics perspective, scene classifica-

tion is a problem that is easy to evaluate and aligns well with our proposed methods.

Third, scene classification is more challenging of a problem than object recognition (e.g.,

due to clutter, wider diversity in appearance between images of the same scene class,

etc.) and thus, is useful for better understanding some of the strengths and limitations

of the methods introduced in this thesis.

It should be noted that while we focus on scene classification using object-based

representations as the motivating example application for most of this thesis, the meth-

ods introduced in this thesis are much more general. For example, these same methods

can be easily adapted for and applied to different applications and can easily utilize

9

different visual concepts (e.g., visual attributes instead of object presence information).

For example, in Chapter 5, we take the method introduced in Chapter 4 for scene

classification using object-based representations and apply it to a completely different

domain. Specifically, the method is applied to the classification of biomedical images

using visual concepts extracted from natural language medical reports.

1.2 Contributions of the Dissertation

In this dissertation, we introduce several approaches for making convolutional neural

networks more interpretable by utilizing explainability as a guiding principle when de-

signing the model architecture. The purpose of these neural networks is to address

tasks involving a visual recognition component. Specifically, “explainability” is im-

posed by explicitly forcing these neural networks to learn features that are grounded

to semantic concepts that are well-understood by humans. The methods introduced

in this thesis all rely on a pipeline consisting of two parts. The deep neural network

learns two components: 1) a mapping from visual input to a set of visual concepts and

2) a classification model mapping the visual concepts to class assignments. However,

as was previously mentioned, the visual concepts used in the introduced methods must

satisfy two properties to maximize interpretability and trust; the set of visual attributes

must be 1) able to be easily recognized from visual data given some dataset, and 2)

discriminative for the given target task.

Our research is guided by the following questions:

1. How can we identify or derive a small subset of visual concepts that remain easy-

to-recognize from visual data and discriminative for some target task?

2. How can we use existing human knowledge (in the form of knowledge graphs) to

augment an initial set of visual concepts and eliminate noise in the visual concepts

caused by imperfect, incomplete, and ambiguous labeling?

3. How can we exploit relationships between visual concepts to learn more robust

yet still interpretable representations which can be used for higher-level visual

recognition tasks?

10

4. How can we minimize human labeling effort by automatically extracting visual

concepts from auxillary data sources?

5. How can we adapt visual concepts for use in dynamic settings?

In the following subsections, we offer brief overviews for each of the proposed meth-

ods that address the aforementioned set of question.

1.2.1 Augmenting Visual Concepts: Incorporating Knowledge into

Deep Neural Networks Using External Knowledge Graphs

Large quantities of meaningful, formalized knowledge are available in the form of pub-

lic knowledge graphs. At present, the information captured in these knowledge graphs

is inaccessible to most deep neural networks, which can only exploit patterns in the

signals they are given to classify. In this research direction, we explore how combining

deep neural networks with external knowledge graphs can result in more robust and

explainable models. Specifically, we align the atomic visual concepts present in the

ADE20K dataset [21] (i.e., objects) to WordNet [22], a hierarchically-organized lexical

database. Using this knowledge graph, we expand the set of visual concepts which

can be identified in ADE20K and subsequently, exploit the hierarchical relationships

between these concepts to improve the recognition of the visual concepts. A convolu-

tional neural network is trained to recognize the expanded set of visual concepts, and

the hierarchical organization of the concept labels is used to create a graphical model

that can identify and correct inconsistencies in the visual concept predictions. The

expanded set of predicted visual concepts is then used as features in combination with

a linear classifier in order to perform scene classification.

1.2.2 Deriving New Visual Concepts: Discovering a Novel Represen-

tation for Explanation-Driven Visual Recognition

In the second research direction, we introduce “scenarios” as a new way of representing

the semantic content of images. The scenario is an interpretable, low-dimensional,

data-driven representation consisting of sets of frequently co-occurring visual concepts.

11

Consider the example task of scene classification where our visual concepts will consist

of the presence of a known set of objects. Scenarios should satisfy a few key properties:

1. Scenarios are composed of one or more visual concepts.

2. The same visual concept can appear in multiple scenarios, and this should reflect

the context in which the visual concept appears, e.g., {keyboard, screen, mouse}

and {remote control, screen, cable box} both contain the “screen” object, but in

the first scenario, the screen is a computer monitor, and in the second scenario,

it is a television screen.

3. The semantic content of images can be decomposed as combinations (i.e., the

union) of scenarios, e.g., a bathroom scene instance might decompose into: {shower,

bathtub, shampoo} ∪ {mirror, sink, toothbrush, toothpaste} ∪ {toilet, toilet pa-

per}.

4. Scenarios are flexible and robust to missing visual concepts. A scenario can be

present in an image without all of its constituent visual concepts being present.

For example to determine that a “computer” scenario (e.g., {monitor, keyboard,

mouse, cpu tower}) is present in a scene image, it is sufficient if only a few of the

objects in this set are present (e.g., maybe the mouse is missing).

Scenarios are learned from data using a novel matrix factorization method which is

integrated into a new neural network architecture, the ScenarioNet. Using ScenarioNet,

we can recover semantic information about real world images at three levels of granu-

larity: 1) the image class, 2) the scenarios, and 3) the atomic visual concepts. Because

ScenarioNet uses scenarios as human-interpretable features in combination with a linear

classifier, it can generate explanations for all decisions made, and furthermore, Scenar-

ioNet can be combined with post-hoc interpretation methods such as class activation

mapping (CAM) [2] to further improving the interpretability of the model.

12

1.2.3 Deriving New Visual Concepts from Auxiliary Data Sources:

Jointly Learning Topic Models and Visual Classifiers

The previous two research directions rely on humans manually labeling the presence or

absence of a set of visual concepts in an image for every image in the training dataset.

Furthermore, human experts must explicitly specify this set of visual concepts. This

labeling process is incredibly time-consuming. Instead, in certain domains, images com-

monly come paired with natural language descriptions highlighting key characteristics

of the image. For example, in medical domains, doctors frequently summarize (as a

natural language report) their impressions and findings, which they derive from med-

ical images. In this third research direction, we explore how visual concepts can be

automatically extracted from paired images and text with minimal human supervision.

Specifically, we extend the ScenarioNet architecture, so it can jointly learn topic mod-

els and visual classifiers from data sources consisting of images paired with natural

language text.

1.2.4 Adapting Visual Concepts: Utilizing Scenario-Based Models in

Dynamic Settings

In the previous research directions, we assumed that once a representation is learned or

specified, it cannot be updated. This assumption is ill-suited for many real world

problems where things change over time, and the model must have the capability

to adapt with these changes. The final research direction that we explore in this

dissertation focuses on how to learn adaptable representations that remain human-

understandable. Specifically, we focus on a particular use case in scene understanding:

the active explanation-driven classification of indoor scenes. This task involves placing

an agent in some environment, and based on its sensory input, the agent must assign a

label to the perceived scene and generate a human-understandable explanation for this

decision. The agent can adjust its sensor(s) to capture more details about the scene,

but there is a cost associated with manipulating the sensor(s), and when the agent

encounters unknown scene categories, it must be capable of refusing to assign a label to

13

the scene, requesting aid from a human, and updating its underlying knowledge base

and machine learning models. We qualitatively and empirically justify why exploration

is important for scene classification. We explore the strengths and weaknesses of object-

based representations and thoroughly investigate using the “scenario” representation

for explanation-driven scene classification. We show how scenarios can be combined

with existing methods for open set recognition and propose methods for efficiently up-

dating scenario-based models as new scene categories are encountered. Lastly, we show

how to frame active explanation-driven scene classification as a reinforcement learning

problem.

1.3 Outline of the Dissertation

The remainder of this thesis is laid out as follows:

• In Chapter 2, we offer a thorough introduction to the field of interpretable machine

learning. This chapter focuses on three components: 1) defining the importance

of interpretability in machine learning, 2) defining the meaning of interpretabilty

with respect to machine learning, and 3) highlighting the existing approaches

for interpreting the internal behavior of deep neural networks and explaining the

decisions made by deep neural networks, specifically for visual recognition tasks.

• In Chapter 3, we introduce a framework for integrating deep neural networks with

external knowledge graphs in order to augment some initial set of visual concepts.

• In Chapter 4, we introduce the “scenario” representation, a data-driven repre-

sentation for finding meaningful groups of visual concepts, and we introduce the

ScenarioNet architecture which embeds scenarios into deep neural networks.

• In Chapter 5, we extend the ScenarioNet architecture to enable it to jointly learn

topic models and visual classifiers from data sources consisting of images paired

with natural language text.

• In Chapter 6, we extend scenarios and ScenarioNet to dynamic settings involving

active exploration and out-of-distribution data. In such settings, the model must

14

be periodically updated in an efficient manner to account for novel data and

shifting distributions.

• In Chapter 7, we offer brief concluding remarks and discuss potential future re-

search directions.

15

Chapter 2

Background: Interpretable Models in Machine Learning

and Computer Vision

In the last decade, machine learning, and in particular, deep learning, has played an

increasingly important role in modern society. Machine learning algorithms form the

backbone for many technologies that are used every day by millions of people. For

example, machine learning plays a vital role in technologies such as web search, rec-

ommender systems (e.g., for news, social media, music, and e-commerce applications),

machine translation, speech transcription, image and video editing, and medical image

analysis. However, many modern learning-based models (especially neural network-

based approaches) are treated as black-box models: models that take in data and

output decisions without the user understanding the inner mechanisms of how the de-

cisions were reached and without providing evidence to support predictions, i.e., why

certain decisions are made. In contrast, safety-critical applications (e.g., self-driving

cars, human-machine teaming, automated medical diagnosis) often require interpretable

models for decision-making. Understanding the decision-making process of machine

learning models is an incredibly important problem that has seen a lot of interest in the

machine learning research community and in related communities that rely heavily on

machine learning such as the computer vision, natural language processing, bioinfor-

matics, and biomedical imaging research communities [23–32]. The focus of this thesis

is on designing interpretable models for visual recognition tasks. In this chapter, we

examine the existing literature related to interpretable machine learning, specifically in

the context of complex models sucInterpretabilityh as deep neural networks and applied

to visual recognition tasks.

16

2.1 Why is Model Important?

Before discussing the technical details of model interpretability, we start by highlight-

ing the importance of model interpretability. In “The Mythos of Model Interpretabil-

ity” [33], Lipton discusses several use cases where model interpretability is especially

important. These use cases highlight six important properties of interpretable models:

• Trust: Many applications require a human to trust the decisions made by a ma-

chine learning model. For example, in the autonomous driving setting, human

participants must have faith that the models that control the vehicle will operate

in safe and reliable ways. In such applications, a human must have confidence

that a model will perform well when it encounters novel real-world scenarios.

This means the model must exhibit high accuracy on the given target task both

at training and test time, and subsequently, the model must exhibit high gener-

alizability and robustness with respect to unseen data. Another way of thinking

about whether or not a model is trustworthy is by determining if a human is con-

fident enough in a machine learning model that he or she feels safe relinquishing

control to the model. In this case, it is important to consider whether the model

makes the same mistakes or ideally, fewer/less severe mistakes compared to a hu-

man, i.e. one must consider whether there is any cost associated with replacing a

human with a machine learning model. Typically, trust in the model is strongly

correlated with how well humans understand the inner workings of the model.

• Causality: Models are typically optimized to make associations, but researchers

often use them in hopes of inferring novel properties or generating hypotheses

about some given domain or task. Some classes of interpretable models have the

potential to illuminate such strong associations and by doing so, could be useful

for guiding humans in formulating hypotheses about causal effects between vari-

ables present in some dataset. Consider a simple example in the medical domain.

Suppose a model is trained to predict the likelihood that a patient will develop

lung cancer in the future. If the model has the capability of highlighting which

17

features are strongly indicative that a person will develop lung cancer, then a hu-

man could examine the identified set of highly-relevant features, see that smoking

is strongly correlated with developing lung cancer, and finally hypothesize that

smoking might cause lung cancer. This hypothesis could then be validated via

additional experimentation, data collection, and statistical testing.

• Transferability: Humans exhibit a rich capacity for generalizing and transfer-

ring learned skills to unfamiliar situations. For example, humans can quickly

learn to grasp objects that they’ve never seen before based on very limited inter-

actions with these objects, and similarly, humans can learn to categorize novel

breeds of dogs after seeing just a few examples. Humans are capable of performing

these tasks because they have the ability to generalize their previous experiences

and knowledge to new situations. In contrast, machine learning models often

struggle with efficiently adapting to new domains and tasks. This is because

machine learning models are trained on datasets designed for very specific tasks

and tested using data sampled from the same distribution. Grounded and inter-

pretable models are useful in understanding how a model will generalize/adapt to

new and changing environments/settings. By understanding the computational

procedure of a model and how the model represents abstract concepts and fea-

tures, one can begin to understand how robust a model will be to small (or even

large) changes in the underlying distribution of the training data. This property

of transferability is also necessary for understanding the robustness of specific

models to adversarial attacks. It is important to understand how specific inputs

affect the decision-making process of a model. Otherwise, one can manipulate

the data to force the model to output specific decisions. This is an especially

big problem when machine learning models are very complex (i.e., as is the case

with deep learning models which have large numbers of parameters and are com-

posed of many small computational units) [34–38]. For example, much research

has been done which shows that changing the pixels of an image in imperceptible

ways can cause deep neural networks to output completely nonsensical predictions

with high confidence. The more interpretable a model is, the easier it is for the

18

human model architect to know how to modify the model to correct for these

vulnerabilities and prevent future vulnerabilities.

• Informativeness: In general, a machine learning model’s objective is to mini-

mize some sort of error, and this is frequently done at the expense of the model’s

interpretability. For example, deep neural networks typically achieve very high

predictive accuracy but are difficult to interpret, whereas linear models, decision

trees, and graphical models are often less powerful in terms of predictive per-

formance, but provide humans with additional insight about the problem being

addressed. In many applications, the model interpretability is more important

than a few extra percentage points of accuracy. Machine learning models are

often used in intelligent decision support systems where machine learning mod-

els are designed to augment and aid humans in performing a given task rather

than replace them. In these intelligent decision support systems, machine learn-

ing models provide additional information as a means of helping humans in the

decision-making process. For example, in computer-assisted medical diagnosis,

machine learning models must provide specific evidence in favor or against a spe-

cific diagnosis, so a human can make the final decision about the diagnosis with

as much useful information as possible. Similarly, this information is important

not only for making a decision about which label to assign (e.g., a diagnosis) but

also for helping the human decide which action should be taken in response to

the decision (e.g., which treatment plan should be taken given the diagnosis and

context). For example, the same disease can manifest via different symptoms

(e.g., the common cold can manifest through sneezing and stuffy noses but also

via coughing), and the proper treatment is dependent on both the diagnosis as

well as the key symptoms (e.g., using a decongestant if the symptoms are local-

ized in the nose or an expectorant if the symptoms are localized in the lungs). In

essence, intelligent decision support systems necessitate the use of machine learn-

ing models capable of generating explanations specifying why specific decisions

were made.

• Fair and Ethical Decision-Making: Machine learning models are often used

19

for applications which require fair and ethical decision-making, e.g., credit scor-

ing, job application filtering, criminal justice sentencing and bail determination,

and news and social media curation. In such applications, it is very important to

verify that these machine learning algorithms do not capture and utilize illegal or

unethical biases present in the training data. For example, when using machine

learning models for deciding who is worthy of receiving a loan and determining

the interest rate on the loan, it is illegal to consider (and discriminate based on)

a person’s gender, race, and disabilities. In other cases, the model might capture

biases that are not as obvious to the designer of the machine learning algorithm.

For example, researchers have shown that highly accurate face matching algo-

rithms can be biased for different demographic groups [39] because the training

data was unintentionally sampled from a very specific population.

• Ability to Debug and Improve the Model: Model interpretability is also

necessary in order to be able to debug and improve the model. For example, if a

self-driving car makes a fatal error, it is important to understand why the error

was made, so the model can be corrected. Debuggability via interpretability is also

related to the properties of transferability and fair and ethical decision-making

because by understanding a model and its flaws (e.g., lack of generalizability

and unethical biases), one can more efficiently design new models or update the

existing model in order to fix such flaws.

Doshi-Velez and Kim [40] offer another perspective on why interpretability is im-

portant in machine learning. They argue that interpretable machine learning models

are necessary for domains where incompleteness in the problem formulation is a key

characteristic. Consider several example domains marked by “incompleteness”, and as

an aside, note how these domains often require models satisfying the properties out-

lined by Lipton. In scientific understanding via machine learning models, humans try

to gain some sort of knowledge about a domain or phenomena from some set of data by

examining the patterns captured by the model. Because it isn’t necessarily clear what

constitutes “knowledge” and because there is no optimal formulation for how knowledge

20

should be extracted from data, knowledge is typically derived using the explanations

output by the model (e.g., in the same way, interpretable models can be used to hy-

pothesize about causal relations as discussed above). In safety-driven applications, it

is generally infeasible or impossible to create a complete list of scenarios in which a

machine learning model may fail because one cannot test every fringe case. Instead,

one needs to rely on explanations output by the model to verify that the model is

trustworthy and performing as expected. When constructing machine learning models

that must consider ethical constraints, it is impossible to encode a perfect notion of

fairness into a model because “fairness” is too abstract of a concept. Instead, explana-

tions are necessary to identify if the model is capturing unethical biases, so the model

can subsequently be updated in order to make it more fair. Interpretable models are

also useful for validating that the objective used to train a model is the same as what

is necessary to solve a given problem. Often times proxy objective functions do not

completely capture the complexity of the desired true problem. Interpretable models

enable humans to understand how far the model’s objective strays from the desired

objective. Finally, machine learning models often must balance multiple objectives,

and it isn’t always clear how to encode the proper balance. In this case, interpretable

models enable humans to evaluate the trade-offs being made by the model.

2.2 Defining Model Interpretability

It is clear that interpretable models are useful in many situations. However, it is not

clear what exactly an “interpretable machine learning model” is. In fact, there is no

mathematical or universally agreed upon definition of what interpretability means as

it relates to machine learning models. Instead, every researcher has a slightly different

definition of interpretability in the context of machine learning. In this section, we

review several of the more popular definitions.

21

2.2.1 Lipton’s Definition: Transparency and Post-Hoc Interpretabil-

ity

Lipton [33] defines an interpretable model based on two properties: transparency

and post-hoc interpretability. Transparency involves understanding how a machine

learning model works at the level of 1) the entire model, 2) the individual components of

the model (e.g., features, parameters, etc.), and 3) the learning algorithm. Transparency

can be further defined by three additional properties: simulatability, decomposabil-

ity, and algorithmic transparency. Simulatability is concerned with answering the

question: “Can a person contemplate the entire model at once?” A model exhibiting

simulatability means a human can take the input data and the parameters of the model

and in a reasonable amount of time, step through every calculation required to produce

a prediction. Examples of traditional machine learning models that exhibit simulatabil-

ity include low-dimensional and sparse linear models, shallow decision trees, and small

decision sets/ rule-based classifiers. Simulatable models are the models that are best

understood by humans; however, this property comes at a cost: only very simple models

are simulatable, which generally limits predictive power, and even for simple models,

working through the model computations can still be very time-consuming. Decompos-

ability is less strict of a property. A decomposable model requires that each part of the

model (the inputs, parameters, and calculation) admits an intuitive explanation. For

example, each node in a decision tree can be easily expressed by a plain-text description,

and each weight in a linear model correlates with the importance/influence of the corre-

sponding feature. Linear models, decision trees, rule-based classifiers, and decision sets

are all examples of models exhibiting decomposability. However, decomposable models

still have their disadvantages. Decomposable models can sometimes be misleading in

terms of interpretability. For example, linear models, which are considered to be very

decomposable, rely on linear weights that can be very fragile to small perturbations,

which can sometimes make them a bit difficult to interpret. As with simulatable models,

decomposable models often require sacrificing some predictive power. Finally, algorith-

mic transparency, as the name suggests, involves understanding the learning algorithm.

22

This might involve understanding the shape of the decision boundary, understanding

whether the model will provably converge to a unique solution or local/global optimum,

and understanding theoretical bounds on generalizability. Once again, models that are

algorithmically transparent have their disadvantages. For certain applications, it isn’t

sufficient enough to just know properties of the model; for example, it might be more

important to know how each feature effects the overall decision (e.g. credit scoring).

Once again, predictive power might be limited with algorithmically transparent mod-

els; e.g., deep neural networks are very powerful models, but the theoretic properties

of the learning algorithms used to train them (typically backpropagation) are often not

well-understood.

Post-hoc explainability is very different than transparency. Post-hoc explainabil-

ity deals with justifying the decisions of already trained models without truly under-

standing the inner mechanisms of the machine learning model. Examples of post-hoc

explainability includes visualizing feature importance, looking at the local behavior of

trained models, generating natural language explanations using pre-learned features,

and explaining by example (including counter-factual explanations). Post-hoc interpre-

tation methods have an advantage over transparent interpretation methods: post-hoc

explainable methods can be used off-the-shelf with already trained models without sac-

rificing predictive performance. However, post-hoc explanations are not without their

flaws. According to Rudin [11], methods for post-hoc explainability sometime provide

explanations that are not faithful to what the original model computes; explanations

often do not make sense or do not provide enough detail to understand what the black-

box model is doing; and post-hoc explainable methods often lead to overly complicated

explanations that lead to human error in subsequent decision-making [11].

Relation to the proposed work: The methods presented in this thesis uti-

lize both transparent methods (specifically, decomposability by grounding features

to human-understandable visual concepts and combining these features with human-

understandable classifiers like linear models) and post-hoc explainable methods (specif-

ically, by visualizing which parts of an image our models attend to when recognizing

visual concepts).

23

2.2.2 Murdoch et al.’s Definition: The Predictive, Descriptive, Rele-

vant Framework for Model Interpretability

Murdoch et al. [41] provide an alternative definition of interpretability in machine learn-

ing based on a desiderata consisting of three properties: predictive accuracy, de-

scriptive accuracy, and relevancy. Predictive accuracy captures how well the model

approximates the underlying relationships present in the data and is usually measured

by examining how well the model fits the data given some type of supervision. However,

unlike in standard supervised learning, it is important that interpretable models have

high predictive accuracy for all classes; otherwise, the model can’t be trusted. In con-

trast, descriptive accuracy quantitatively measures how well the interpretation method

captures the relationships learned by machine learning models; i.e., descriptive accuracy

measures how well the interpretation method actually explains the decision-making pro-

cess of the model. This is often an issue that must be considered by post-hoc methods

of interpretability, some of which rely on auxiliary models that try to explain the model

of interest. In such cases, one must carefully verify that the auxiliary model is actually

capturing the decision-making process of the model of interest and not generating plau-

sible but inaccurate explanations. Accuracy is not the only important characteristic

when determining which interpretation method to use for a machine learning model

of interest. Relevancy is another important factor. An interpretation method is said

to be relevant if the method provides some useful insight for a specific audience for a

given problem. For example, patients, doctors, biologists, and statisticians may all be

interested in understanding a model that makes predictions about a given genome, but

these actor might prioritize different (yet still consistent) interpretations given the same

model. It should be noted that there are often trade-offs between predictive accuracy,

descriptive accuracy, and relevancy.

Like Lipton, Murdoch et al. further analyze interpretability by examining model-

based approaches (transparent methods in Lipton’s definition) and post-hoc approaches.

In terms of model-based interpretability, Murdoch et al. also stresses the importance of

24

simulatability and modularity (Lipton’s decomposability) but also introduce the con-

cepts of sparsity, domain-based feature engineering, and model-based feature

engineering. Sparsity suggests that the explanations produced by machine learning

models should be as simple as possible and involve as few components (e.g., features) of

the model as is absolutely necessary for a given decision. For example, an explanation

that relies on just ten features is typically much easier for humans to conceptualize and

understand than an explanation based on millions of features. Domain-based feature

engineering is another important concept related to interpretable models. If the features

of a model are well-understood, then these features can act as the atomic elements used

in the explanations generated by the model. Likewise, using expert-crafted features

enables humans to test specific hypotheses when the purpose of the machine learning

model is to discover novel knowledge. In contrast, model-based feature engineering is

also feasible (e.g., deep neural networks achieve such high predictive performance in

part because they automatically perform feature engineering). However, model-based

feature engineering needs to be carefully implemented in order to maintain the inter-

pretability of the model.

In terms of post-hoc explainable methods, Murdoch et al. stress the importance of

considering both dataset-level interpretability and prediction-level interpretabil-

ityl. Dataset-level interpretability tries to understand how patterns learned by a ma-

chine learning model relate to a particular response or sub-population of the dataset

(e.g., understanding which features are correlated with positively or negatively pre-

dicting a specific class). Prediction-level interpretability deals with understanding how

certain relationships learned by the model affect a specific prediction (e.g., understand-

ing how a prediction would change as some feature is manipulated).

Relation to the proposed work: The work introduced this thesis tries to main-

tain high predictive accuracy while constructing interpretable models with high descrip-

tive accuracy. The models proposed in this thesis rely on a combination of domain-

based feature engineering (by grounding features to human-understandable visual con-

cepts) and model-based feature engineering (by deriving novel data-driven human-

understandable representation). Likewise, the explanations produced by the proposed

25

models tend to incorporate elements of sparsity. Often the proposed models operate

over very low-dimensional, sparse, and human-understandable feature vectors. The

proposed models focus on prediction-level interpretability but are also compatible with

dataset-level interpretability.

2.2.3 Doran et al.’s Definition: Opaque, Interpretable, and Compre-

hensible Systems

Doran et al. [42] also defines interpretability by categorizing machine learning mod-

els. These categories are very similar to Lipton’s categorizations, but there are some

differences. These categorizations include opaque systems where machine learning

systems do not provide any insights into their algorithmic mechanisms, interpretable

systems which enable users to mathematically analyze the algorithmic mechanisms

of the system, and comprehensible systems which output symbolic explanations of

how a decision is made by the model. Doran also stresses that interpretable models

should exhibit several important properties similar to those discussed in Section 2.1.

Specifically interpretable models should instill “confidence” and “trust” in a user, and

interpretable models should embody “safety”, “ethicality”, and “fairness”. Finally,

Doran et al. argue that truly explainable artificial intelligence (which supersedes in-

terpretable machine learning) should have a reasoning component so that models truly

explain their decisions instead of leaving it up to humans to figure out how to interpret

a model’s decision.

Relation to the proposed work: By Doran et al.’s definition, most of the pro-

posed models presented in this thesis would fall under the category of “comprehensible

systems”. Our proposed models rely on recognizing intermediate representations that

are human-understandable and symbolic. These symbolic representations are then used

as atomic elements for composing explanations which explain how a machine learning

model arrives at some decision.

26

2.2.4 Doshi-Velez and Kim’s Definition: Data-Driven Operational Def-

initions of Interpretability

Doshi-Velez and Kim [40] attempt to provide a more principled way of defining and

measuring the interpretability of machine learning models. Their definition of model

interpretability relies on the idea that model interpretability is intrinsically tied to the

application that the model is being used for and as such, can be measured via eval-

uation metrics that are tied to that application. These evaluation procedures can be

further broken down into a taxonomy consisting of application-grounded evalua-

tion, human-grounded evaluation, and functionally-grounded evaluation.

Application-grounded evaluation is primarily concerned with conducting human ex-

periments embedded within the context of a real application. For example, for medical

decision support systems, this involves having a machine learning model make sugges-

tions about diagnoses and generate explanations for why these diagnoses were made.

A doctor can then evaluate this information and use it in a downstream task (i.e.,

making a final decision and creating a treatment plan). In this setting, it is important

to compare the quality of the decisions and explanations output by the machine learn-

ing model with those created by human experts. In the medical diagnosis example, a

doctor can evaluate both the output of a machine learning model as well as medical

reports generated by other doctors. A machine learning model would be considered

useful and interpretable if the “user” doctor has no preference between the machine

learning explanations and the human expert-produced explanations or in the best case,

prefers the machine learning-based decisions and explanations.

Human-grounded evaluation involves conducting simpler human-subject experiments

which still capture the essence of the target application. Often, these experiments can

be completed by lay people, which allows for a larger subject pool and is less expensive

than experiments requiring domain experts. These experiments might involve binary

forced choice problems (where a human must choose the better of two explanations),

forward simulation and prediction problems (where a human must use the explanations

27

produced by the model to recreate the prediction/output of the model), and counter-

factual simulation where a user must take an explanation, the input, and the output

and determine what needs to be changed in order to change the model’s prediction to

some desired output.

Finally, functionally-grounded evaluation minimizes human involvement in the eval-

uation procedure. In this case, some formal definition of interpretability is used as a

proxy for explanation quality. Such evaluation methods are good for evaluating initial

prototype systems but should usually be followed up with human-subject experiments.

In addition to defining how to evaluate the interpretability of machine learning

models, Doshi-Velez and Kim also discuss some potential task-related and method-

related latent dimensions of interpretability which should be considered when evalu-

ating interpretable machine learning models. Task-related latent dimensions of

interpretability consider the following questions:

• Does the explanation offer a global or local interpretation of the task? Global

interpretability means the model can identify meaningful patterns that are present

in general for a given task; i.e., the model identifies information that is useful

for extracting general knowledge about the application domain, which is useful

for tasks such as improving the scientific understanding of a given domain. In

contrast, local interpretability means models can produce explanations which offer

justifications/reasons for why specific decisions were made by the model.

• In what ways is a problem formulation incomplete? What is the severity of the

incompleteness?

• How much time can a user devote to understanding the explanation? Some ap-

plications are time-critical and require humans to immediately understand the

output of a model whereas others allow humans a plenitude of time to thoroughly

study and validate the explanations output by a model. If an explanation takes

too long to understand for a given task then the model has limited intepretability

and utility.

28

• What level of expertise does the user need with respect to a given task? Inter-

pretability is dependent in part on who is using the system and how familiar the

user is with the given domain/task.

Method-related latent dimensions of interpretability deal with understand-

ing what the basic unit of the explanation is (i.e., is it raw features, prototypes, or some

derived semantic concepts?), how many of these basic units need to be combined in or-

der to generate an explanation, how these units are combined/structured in relation to

one another in order to produce an explanation, and how to express the uncertainty

and stochasticity of the explanation.

Relation to the proposed work: Proper evaluation is a core component of the

proposed work. The experiments in this thesis utilize both human-grounded evaluation

and functionally-grounded evaluation. The proposed models also consider some of the

latent dimensions of interpretability described by Doshi-Velez and Kim. The models

typically generate local intepretations, are simple and can be understood in a short

amount of time, and do not require much domain expertise by the user. In terms of

method-related latent dimensions of interpretability, the key component of the pro-

posed research is defining the basic units of the explanation (e.g., we consider visual

concepts/attributes, objects, scenarios, and topics) and how to combine these units.

2.2.5 Ras et al.’s Definition: Users, Laws, Explanations, and Algo-

rithms as Considerations of Interpretable Models

Like Doshi-Velez and Kim, Ras et al. [43] argue that the interpretability of a model is

largely dependent on who is using the model, what application the model is addressing,

and how the model is being used. Specifically, Ras et al. contend that explainable arti-

ficial intelligence involves four components: users, laws and regulations, explanations,

and algorithms. Each of these components is necessary to provide a context where the

adequacy of various explanation methods can be evaluated. We briefly define what each

component means:

• Users: The first consideration (according to Ras et al.) when determining how

29

interpretable a model is focuses on how much technical knowledge a user must

have in order to understand the model for their use cases. An expert user might

include a machine learning engineer who understands the model at a deep level,

including how the algorithm works and the intricacies of training the model. On

the opposite end of the spectrum is a lay user who does not have any knowledge of

how the model was implemented and doesn’t care about underlying mathematical

principles or how the model integrates with other software components. The lay

user only cares about how to use the model for practical applications.

• Laws and Regulations: The interpretability of a model is also guided by exist-

ing laws and regulations. For example, on one hand, the model cannot reveal too

much personal information captured by the model during training. On the other

hand, for many applications (e.g., loan approval/rejection), the model legally

needs to be able to generate concise and easy-to-understand explanations, and

these explanations must be accessible to the lay person.

• Explanations: The interpretability of the model is also dependent on the type

of explanation that the model produces and the applications in which these ex-

planations will be used. The type of explanation then influences the algorithm

used to generate the explanation. For example, when evaluating a convolutional

neural network for image classification, if all a user cares about is that the model

is training properly, it might be enough for the model to just highlight which parts

of the image are important for making a given prediction, but in other applica-

tions, the user might require much more fine-grained explanations that explain

both where the net is looking and why it looks at these regions.

• Algorithms: In all cases, Ras et al. state that explainable models should have

several important properties: high fidelity (the faithfulness of the explanation

method with respect to the actual decision-making process of the model, i.e., high

descriptive accuracy in terms of Murdoch et al.’s definition of interpretability),

high clarity (the explanation is unambiguous), high parsimony (the explana-

tion should be as simple as possible), high generalizability (the explanation

30

method should be useful for a wide range of models/algorithms), and high ex-

planatory power (the explanations should be able to capture and express all

relevant and necessary information). Furthermore, Ras et al. provide a taxon-

omy of explanation methods for complex machine learning models. These include

rule-based explanations, attribution-based explanations which highlight the in-

fluence of each feature, and intrinsic explanations which are specific to a given

architecture.

Relation to the proposed work: The proposed methods discussed in this the-

sis consider many of these properties, e.g., who is using the system and what is the

appropriate explanation for some given task. The proposed models are designed keep-

ing in mind trade-offs between high fidelity, clarity, parsimony, generalizability, and

explanatory power.

2.2.6 Other Discussions on Interpretable Machine Learning and Ex-

plainable Artificial Intelligence

The aforementioned definitions of interpretability are only a sampling of all possible

definitions. It should be noted there are many other works that consider issues re-

lated to defining the meaning of interpretability in the context of machine learning,

understanding the importance and use cases of interpretable machine learning and

explainable artificial intelligence, clarifying the limitations of existing approaches for

interpretable machine learning, and proposing general guidelines for evaluating inter-

pretability. Other work in this direction includes [11,29,44–61].

2.3 Existing Approaches for Interpreting Deep Neural Networks for

Computer Vision-Related Tasks

In the previous sections, we discussed the importance of interpretable machine learning

models and how to define interpretability based on desirable properties of the machine

learning model or interpretation method. In this section, we highlight some existing

31

Figure 2.1: A visualization of some of the learned filters in the first convolutional layer
of AlexNet trained on the ImageNet dataset.

approaches for interpreting complex machine learning models, specifically in the con-

text of analyzing models designed to perform computer vision-related tasks. Since the

majority of modern approaches in computer vision rely on deep neural networks, the

approaches discussed in this section are primarily concerned with 1) interpreting the

internal behavior of deep neural networks and 2) interpreting the decisions and predic-

tions output by deep neural networks.

2.3.1 Understanding the Internal Components and Mechanisms of the

Model

Deep neural networks are incredibly complex models. Many of these models have

hundreds of layers with millions of parameters. As such, it is incredibly difficult for

humans to understand what patterns and information these parameters are capturing.

In this section, we explore some existing methods for probing the network in order to

understand the internal components and mechanisms of the model. In general, these

discussions will focus on convolutional neural networks [62,63]. It should be noted that

the methods proposed later in this thesis do not directly address this type of model

interpretability; however, understanding the internal components and mechanisms of

the model is an extremely important related topic and thus, is worth briefly discussing.

Visualizing Learned Filters

The simplest method for understanding the learned parameters of a convolutional neu-

ral network are to directly visualize the filters (a.k.a. kernels) learned by the model.

32

In Figure 2.1, some of the learned filters of the first convolutional layer of AlexNet

trained on the ImageNet dataset are visualized. In general, the filters learned in the

first layers of a convolutional neural network consist of edge and spot detectors, and

offer some interpretability about the types of features being learned by the neural net-

work. Likewise, visualizing the early layers of a neural network can provide a good

sanity check to verify that the network is training appropriately. However, as one looks

at the filters learned by deeper and deeper layers of a neural network, these filters be-

come less understandable by humans and often appear meaningless. As such, directly

visualizing the learned features of a neural network often offers limited interpretability,

and better methods are needed to understand the information captured by filters (and

more generally, other types of “neurons”) that appear deeper in the network.

Understanding the Feature Space via Clustering, Nearest Neighbors, and

Dimensionality Reduction

Visualizing the learned filters provides a useful tool for understanding the first layer of a

convolutional neural network. Simple methods also exist for understanding some of the

information captured by the final layer of the feature extraction portion of the neural

network that directly precedes layers of the network responsible for classification or

regression. The output of this layer is often a high-dimensional (hundreds to thousands

of dimensions) feature vector. One can extract these feature vectors from the training

set, and then construct a reference database mapping the learned features to individual

images. Then, one can apply a clustering algorithm to see if images belonging to the

same class also belong to the same cluster. One can also query the nearest neighbors

of a specific image to see if similar images are close in the feature space. It should be

noted, however, that there is no guarantee that the learned features are well-suited to

a particular distance metric (e.g., Euclidean distance), so interpretation via clustering

and nearest neighbors might be misleading. A related and common technique in the

machine learning community is to apply a dimensionality reduction technique such as T-

SNE [64] and see if classes form natural clusters and exhibit some meaningful structure

in the low-dimensional space. The aforementioned methods are useful for verifying that

33

Figure 2.2: Visualizing the activation maps (and positive component of the activation
maps) of the learned filters at multiple layers in a simple convolutional neural network.

the neural network learns meaningful feature spaces, but most of the parameters of the

model are still not well-understood.

Visualizing Activation Maps

Each filter in a convolution layer outputs an activation map showing how well the filter

matches an input image at each location in the image. Figure 2.2 shows an example

of the activation maps of a simple convolutional neural network trained to classify

handwritten digits. By visualizing the activation maps of a given filter, one can begin

to understand what types of features activate a particular filter (e.g., [65] shows how

visualizing the activation maps throughout a neural network for a given image can be

useful in understanding the information captured by the neural network). Unlike the

previously discussed methods, these activation maps can be generated for any filter

in the network, and the activation maps remain equally interpretable throughout the

network. However, it is still hard to quantify exactly what information is being captured

based on filter responses on a single image. Instead, it is more important to understand

what types of image features generally activate each the filter/neuron.

34

Discovering Maximally-Activating Image Patches

One way to understand what types of image features generally activate each neuron

is by finding the set of image patches from the training set that maximally activates

a specific neuron [66]. To find these patches, one first identifies a neuron of interest,

then each image in the training set is run through the network, the maximum response

(both value and location) for the neuron is recorded, and the top-N image patches with

the highest response for the given neuron are stored and presented to the user. Often

times, these neurons will activate for some specific visual concept. For example, a net

trained to perform face recognition might have neurons that activate for specific parts

of the face (i.e., one neuron might activate for eyes, another for noses, and another

for ears). Several problems exist with this method. First, it is very computationally

expensive because the neural network must be run over a large subset of the training

images. Second, it is not known a priori which neurons will activate for meaningful (i.e.,

human-understandable) concepts and thus, this procedure is time-consuming because

it requires examining many neurons in order to discover useful information about what

the network is learning.

Relating Pixels and Neurons

An alternative approach to understanding what types of data activates a given neuron

is by studying the sensitivity of a given neuron to changes in specific pixels of an input

image. In particular, this requires understanding which pixels in the input image most

affect the response of a given neuron. This can be done by looking at the gradient

of the neuron with respect to a given input image. This can be computed by per-

forming a forward pass through the network and then computing the gradient of the

neuron of interest using backpropagation. However, often the “images” produced by

this method look very noisy because the gradient captures information about how pixels

affect the neuron in both positive (via activation) and negative (via suppression) ways.

In practice, users often care more about understanding which pixels are responsible

35

Figure 2.3: Left: An input image of a snake; Center: A visualization of the importance
of each pixel for predicting the scene category “snake” based on vanilla backpropagation;
Right: A visualization of the importance of each pixel for predicting the scene category
“snake” based on guided backpropagation.

for activating a given neuron. This idea led to the creation of guided backpropaga-

tion [66]. In guided backpropagation, when backpropagating the gradient, all of the

negative components of the gradient are set to zero. This has the effect of producing

“images” which sharply highlight which parts of an image are responsible for activating

a given neuron. Figure 2.3 shows the visualizations using vanilla backpropagation and

guided backpropagation when analyzing a neuron that activates when predicting the

“snake” category from an image.

An alternative approach is based on the idea of systematically undoing the opera-

tions performed by the neural network to reach a specified neuron. In this approach,

one desires to map the responses of neurons back to the input image space (as was done

with guided backpropagation) in order to visualize the important input patterns that

trigger a response by the specified neuron. The Deconvolutional Network [67,68] is

a special convolutional neural network architecture that performs the operations (e.g.,

pooling, convolution, etc.) of the original neural network of interest in reverse (i.e.,

using a topologically-reversed ordering of the layers and through the use unpooling

and transposed convolution), to map activations to pixels instead of mapping pixels to

activations.

36

Activation Maximization and Extensions for Visualizing the Preferred Input

of a Neuron

Activation maximization [65,69–72] is another way of evaluating what types of image

features are most likely to activate some target neuron. Activation maximization works

by finding the synthetic input image I that maximizes the activation of a specific neuron

j (subject to some type of regularization on the input image R(I)) by utilizing the fact

that the activation of neuron j, Aj(I), is a function of the input image I (α denotes

the strength of the regularization):

arg max
I

Aj(I)− αR(I)

The synthetic image is then found via gradient ascent. One would hope that some of

the important semantic features that are being captured by the neuron might become

apparent in the generated image, which provides useful information to the human user

of the model.

Several extensions exist for activation maximization. Nguyen et al. [73] realized that

the same neuron often activates for multiple types of features, but traditional activation

maximization methods don’t account for the multifaceted nature of neurons. In response

to this limitation, Nguyen et al. propose an algorithm that generates multiple synthetic

images, each of which is designed to explicitly uncover a different type of image that

activates the target neuron. Cadena et al. [74] are interested in a similar problem:

discovering invariances in the responses of a given neuron. They propose an approach

that searches for a batch of images that strongly activate a target neuron where the

images in the batch are maximally distinct from each other. By doing so, they hope

to find whether the neuron is invariant to some specific transformations in the image

space. Another limitation of activation maximization is that it doesn’t assume any

knowledge of what an input image is supposed to look like, and as such, can often

produce very unusual visualizations. This realization led to several works that try to

impose priors on the image generating process, typically using Generative Adversarial

Neural Networks [75]. Examples of methods that use generator networks to produce the

preferred input of a neuron include [76, 77]. Another extension was proposed by Godi

37

et al. [78] where activation maximization-like methods were used for finding a mask for

a given image that highlights the parts of the image which can maximally activate a

target neuron. It should be noted that similar approaches for visualizing the preferred

input of some neuron exist, e.g., the popular inceptionism/DeepDream [79] method.

Perturbation-Based Approaches

Instead of finding the input that maximizes the activation of a specific neuron, one

can make small perturbations in the input space to see how these neurons change or

similarly, understand how the performance of the network is affected on the target task

(i.e., understanding the robustness of the network). These perturbations can involve

making changes to individual pixels, transforming the input image geometrically (e.g.,

by affine transformations such as rotation, skewing, stretching, shearing, translation,

scaling, etc.) or in the color space (e.g., by manipulating contrast, hue, saturation,

etc.), and masking different parts of the image. Work in this direction includes [80–83].

Inverting Learned Representations

Another way one can evaluate what type of information is being captured by a deep

neural network is to figure out how much information about the original image is pre-

served by the representations learned at various layers in the model (including the

final feature representation preceding the classification layers). Inversion [84] is one

approach for addressing this problem, and it involves learning how to invert represen-

tations by finding a mapping from some representation to image space. One way of

understanding how much information is preserved and compressed by the neural net-

work is to take the representation output by every layer in the neural network and see

how well the original image can be recovered from each of these representations. Figure

2.4 shows an example of reconstructing an image of a tree based on inverting the feature

representation learned by a deep neural network. In general, the representations that

appear deeper in the neural network capture more invariant and abstract information.

There are still a lot of open questions related to inversion, e.g., determining the best

architecture/optimization problem for performing the inversion [85–88], using inversion

38

Figure 2.4: The reconstructed image (right) of a tree (left) based on inverting the
feature representation learned by a deep neural network.

in clever ways to better understand the behavior of the model (e.g., understanding the

intra-class knowledge captured by deep neural networks [89]), and using inversion for

specific applications (e.g., face analysis [90]).

Ascribing Human-Understandable Concepts to Specific Neurons

So far, methods have been introduced for evaluating what neurons are learning by pri-

marily looking at the types of visual input that activate specific neurons. In this section,

we discuss some methods for assigning meaningful human-understandable concepts to

specific neurons. Some basic work has been done studying whether specific neurons en-

code specific classes of representations for neural networks trained on specific problem

domains. For example, some research has shown that deep networks trained for scene

classification naturally encode information about objects [91], and deep networks for

object recognition naturally capture parts-based detectors [92]. Other works propose

more general methods for ascribing human-understandable concepts to specific neurons.

Alain and Bengio [93] offer one framework for understanding the information cap-

tured by individual neurons based on linear probes of the hidden layers. In this

work, a linear classifier is trained after every layer in a pre-trained network for the orig-

inal problem domain. By examining each linear classifier, one can see which neurons

are important for making a decision, and which classes can be accurately predicted as

one moves deeper and deeper into the network.

39

Network Dissection is an alternative framework for evaluating how well individual

neurons align with a set of pre-specified semantic concepts [94–97]. Network dissection

consists of three parts: 1) identifying a large set of human-understandable visual con-

cepts, 2) recording the neurons’ responses to each of these concepts, and 3) quantifying

how well each neuron’s response aligns with each concept. The goal of network dis-

section is to see how well deep neural networks disentangle meaningful representations

(i.e., can semantic concepts be captured by single neurons or is this information dis-

tributed across multiple neurons?). Other work has extended network dissection for

interpreting special cases of deep learning architectures such as GANs [98].

Fong and Vedaldi [99] propose yet another approach for understanding how the

neurons in a deep neural network align with a set of known semantic concepts. Their

method, Net2Vec [99], maps semantic concepts to vector embeddings by discovering

relationships with filter activations. Unlike network dissection, Net2Vec isn’t concerned

with finding how individual neurons correlate with semantic concepts, but instead,

it focuses on understanding what information is captured by combinations of neural

network filters.

Several other works exist along the direction of characterizing the neurons of deep

neural networks by aligning them to semantic concepts. In particular, [100,101] will be

examined in later sections.

Other Approaches for Understanding the Behavior of Neurons in Deep Neu-

ral Networks

Other methods exist for characterizing the meaning and importance of specific neu-

rons/layers in deep learning architectures. In this section, we highlight several of these

approaches. One example of such an approach is the Singular Vector Canonical

Correlation Analysis [102] which can be used to measure the intrinsic dimension-

ality of layers in a neural network, to probe the learning dynamics of a network as it

trains, and for showing where class-specific information forms in the network. Saini and

Papalexakis [103] propose a factorization-based approach for understanding how deep

neural networks operate. Their approach provides a tool for understanding how well a

40

network has been trained, and can provide information about how different high-level

patterns are transformed as the these patterns progress through the hidden layers of

the network. Dhamdhere et al. propose a method for [104] understanding the impor-

tance of specific neurons in a deep neural network based on conductance, the flow of

Integrated Gradients’ [105] attribution via this hidden unit.

Improving Transparency via Model/Knowledge Distillation

In this section, we discuss a very different approach for improving the model trans-

parency of complex machine learning models. This approach is based on the idea of

taking a complex model like a deep neural network and distilling it into a simpler,

more interpretable model. Model distillation (also known as knowledge distilla-

tion) is based on the idea that one can take a very complex model (e.g., a very deep

neural network) and train a much simpler model to mimic the larger model’s behav-

ior/output (e.g., by training the simpler model to output the same value as the larger

network) [106–108]. In early work, model distillation was used to compress a large neu-

ral network into a smaller neural network for improved computational efficiency with

little loss of predictive accuracy [108]. However, recent work has built off the idea of

model distillation and applied it in order to improve the interpretability of complex

machine learning models instead of (or in addition to) improving computational effi-

ciency. These models take deep neural networks and distill them into simpler, better

understood, more interpretale models such as decision trees [109–111] and other classes

of simpler models [112,113].

2.3.2 Understanding the Decisions/Predictions Output by the Model

The second way one can interpret a machine learning model is by trying to figure out

how a given model arrives at a specific decision. For example, consider a model trained

to predict whether a CT image of the lungs contains cancer or not. If the model is

a deep neural network, while understanding which neurons activate for the concept of

“cancer” is interesting and useful for verifying the utility and reliability of the model,

it doesn’t provide the user with too much interesting additional information about the

41

problem being addressed by the model and only promotes limited trust in the model

for nontechnical users who are unfamiliar with how neural networks work. Instead, it is

more useful for the model to output a prediction (that the image contains cancer) and

an explanation for that decision (e.g., by highlighting which parts of an image contain

the cancerous mass and what properties of the image make the model think that the

highlighted region is tumorous; e.g., is it the color, shape, texture, etc.?). The work

proposed in this thesis focuses on this problem of explaining the decisions output by

a deep convolutional neural network in ways that are able to be easily understood by

humans. In this section, we highlight some of the existing and state-of-the-art methods

for explaining specific decisions and predictions output by complex machine learning

models, typically convolutional neural networks.

Methods Related to Work Discussed in Section 2.3.1

It should be noted that many of the works discussed in the previous section (Section

2.3.1: Understanding the Internal Components and Mechanisms of the Model) can be

easily adapted for explaining specific decisions output by the neural network. In fact,

in practice, many of these methods are more frequently used for understanding specific

decisions instead of specific internal neurons. Examples of methods that can be used

to understand both decisions and hidden neurons include Guided Backpropagation and

Deconvolutional Networks. Generally, in these methods, the only technical difference

between understanding a specific neuron and a specific decision is conditioning the

explanation on a neuron in a hidden layer or an output neuron in the classification layer,

respectively. On the opposite end of the spectrum, several techniques introduced in the

following sections can be adapted to help understand specific internal neurons, and so

it should be noted that while a careful effort was made to thoroughly categorize various

methods for interpreting complex machine learning models, this chapter provides just

one of many potential taxonomies for categorizing these methods.

42

Sliding Window- and Sliding Occlusion-Based Approaches

Perhaps the simplest and most intuitive method for understanding the decisions output

by deep neural networks is by understanding which individual pixels (or regions of

pixels) in the input image are most influential with respect to a given decision [114].

There are two näıve ways of discovering this information. Oquab et al. [115,116] propose

an approach based on sliding windows. A window is slid across an image. The image

is cropped to each window, and these individual patches of images are passed through

a pre-trained neural network classifier. Patches with high classification scores for the

target class are important for making the target decision, and oppositely, patches with

low classification scores for the target class are unimportant for making the target

decision. By recording this information for the center pixel as the window slides over

the entire image, one can generate a heatmap showing which parts of the image are

most informative for the output decision. A similar approach was proposed by Zeiller

and Fergus [68]. Instead of using a sliding window, they use a sliding occlusion.

Their method perturbs the input image by sliding a grey box across the image, and

then classifying the entire image. If the classification score for the target class decreases

when some region is occluded, the occluded region is important for making the decision.

As before, by recording this information for the center pixel as the occlusion slides over

the entire image, one can generate a heatmap showing which parts of the image are

most informative for the output decision. While these methods typically do a good

job of discovering which parts of the image are important for making specific decisions

about assigning some target class, they are very computationally expensive because the

neural network must perform a forward pass for each perturbed image. Prediction

Difference Analysis (PDA) [117] is a similar approach to [68] because PDA also

involves examining how perturbations of small patches of an image affect a given model’s

output, but PDA is much more rigorous in how it removes information from the image.

43

Other Methods Based on Perturbing the Input Image and/or Intermediate

Representations

The sliding occlusions approach is one simple way of perturbing the image in order to

understand how changes in the input affects the output decision. The RISE (Ran-

domized Input Sampling for Explanation of Black-box Models) method [118]

sequentially applies many random occlusion masks on the image and then learns how

to weigh each of these masks to generate a heatmap of the important parts of the im-

age. [119] expands on RISE by iteratively, adaptively, and intelligently sampling image

masks. Several other perturbation approaches exist which involve using more complex

perturbations such as blurring, masking, and in-painting the important regions of an

image [120–125]. Furthermore, these methods also learn to identify the important re-

gions of an image without relying on sliding windows. Several methods also explore

how perturbing intermediate representations in the hidden layers affect the output as

well [126,127].

Class Activation Mapping and Extensions

Oquab et al. [7] and concurrently, Zhou et al. [2] realized that it’s possible to identify

the parts of an image a neural network attends to when making a decision using just

a single forward pass through the network. These methods are capable of providing

localized explanations without expensive, post-processing ad hoc steps. Class Activa-

tion Mapping (CAM) exploits the fact that the convolutional layers in convolutional

neural networks preserve (some) spatial information in their activation maps. In par-

ticular, the last convolutional layers should have a good compromise between high-level

semantics and detailed spatial information. Global pooling compresses the information

present in each of the final activation maps and expresses this information as a single

value per map. A linear classifier is trained on the compressed feature vector output

by the global pooling. The weights of the linear classifier are then used to perform a

weighted summation of the original activation maps, and this weighted combination

of activation maps (after re-scaling back to the size of the original image) highlights

44

Figure 2.5: Left: Grad-CAM applied to an image of a cat and dog, conditioned on the
“dog” class. Using Grad-CAM, one can see that the net learns to attend to features re-
lated to the dog’s face and paws. Right: Guided Grad-CAM (which involves combining
Grad-CAM with Guided Backpropagation) provides a more fine-grained explanation.

which portions of an image the network is attending to when making a specific de-

cision/prediction. If global max pooling [7] is used to compress the activation maps,

then CAM highlights the most discriminative areas of an image with respect to some

decision. If global average pooling [2] is used, then CAM highlights a larger portion of

the relevant areas of a image with respect to some decision. As an example to show the

difference between these two pooling operators, global max pooling might focus on the

ears and teeth of a dog whereas global average pooling might focus on the entire body

of a dog. Figure 2.5 shows an attention-based explanation. CAM is not without its dis-

advantages; namely, it requires using a specific class of network architectures. Selvaraju

et al. [8] proposed an extension to CAM (Grad-CAM) which used the gradients of the

network during backpropagation to discover how to weigh the activation maps instead

of requiring the use of a linear classifier to find the weights. As such, Grad-CAM is

more general than CAM (and Grad-CAM has actually explicitly been shown to be a

generalization of CAM), and can be applied to general convolutional neural network

architectures. Subsequently, other extensions have been proposed to further improve

upon CAM and Grad-CAM, e.g., Grad-CAM++ [128], Smooth Grad-CAM++ [129],

and others [130–134].

45

Other Attention-Based Approaches

Perturbation-based approaches and CAM-related approaches are not the only methods

for generating heatmap-like visualizations of which parts of an image is important for

making a specific decision. Alternative methods exist that incorporate attention into

the network training/decision process in order to improve performance on the target

task, and as a result, the learned attention masks capture different types of information

than those generated using post-hoc methods like CAM. Examples of such approaches

include [135–137].

Other Approaches Capable of Generating Visual Explanations

It should be noted that there are many other techniques that attempt to produce ex-

planations in the input space (e.g., by quantifying the importance of specific pixels or

regions of pixels) beyond those that have already been discussed. Examples of such

techniques include Layerwise-Relevance Propagation (LRP) [138,139] and exten-

sions [140,141], Local Interpretable Model-Agnostic Explanations (LIME) [6],

Integrated Gradients [105] (which are utilized and extended by several methods

previously discussed), DeepLIFT [142], Excitation Backpropagation [143], An-

chors [144], Shapley Additive Explanations (SHAP) [145], and others [146–148].

Combining Deep Learning with Prototype Learning

Up to this point, discussions have almost exclusively focused on visual explanations for

understanding the decisions and predictions output by the deep neural network; i.e., the

explanations highlight which pixels or regions of pixels are most important for making

specific decisions. While these methods are useful and as it currently stands, are the

most popular methods used in practiced, they are not without their flaws [11,149–151].

One particular flaw with most of these visual explanations is that they highlight where

a network is attending without explaining why the network cares about these regions.

One way to overcome this flaw is by tightly integrating the explanation process with

the model training process and making explainability and human-understandability of

46

the explanation a priority of the model. Several methods have been proposed along

this direction. In this section, we introduce one such method: combining deep learning

with prototype learning.

One way to integrate explanations into the learning process is by integrating deep

neural networks with prototype learning [14,15]. These methods involve training a neu-

ral network that learns to either identify “prototypical” images/image patches from the

training set or to generate prototypical images/image patches via some encoder-decoder

mechanism. Prototypical images are defined as the images that are most representa-

tive of a given class, and in practice, one learns to identify or generate such images

by learning how to cluster the training images in some feature space satisfying some

distance metric. Once these prototypical images/image patches are learned, an input

image can be encoded as a feature vector by computing similarities between the input

image and all other prototypes, and then classification layers can be used to map from

the similarity-based feature vectors to the decision/prediction. [14] dealt with learning

prototypical images whereas [15] proposed a similar framework capable of learning pro-

totypical image patches. By considering prototypical patches, Chen et al. created a

neural network architecture capable of justifying its decisions by identifying the parts of

the input image that were visually similar to prototypical parts of other images in the

training set (e.g., the wing of the bird in the input image is similar to the prototypical

wing of a cardinal in the training set, so the input image likely contains a cardinal).

Counterfactual and Contrastive Explanations

Other approaches rely on explaining machine learning models using counterfactual

[152–156] and contrastive [157–161] explanations. Counterfactual explanations aim

to identify how a given input image can be changed in order to change the class predic-

tion to some other desired class prediction. Contrastive explanations are very closely

related to counterfactual explanations and attempt to answer the question: “which

properties of the input caused the model to classify the input as X and not Y?” Coun-

terfactual and contrastive explanations are useful because they can take the form: “This

is an instance of X because it has property A and doesn’t have property B.” Unlike most

47

of the other explanation methods that have been discussed so far, counterfactual and

contrastive explanations rely on providing evidence based on both the presence and

absence of certain properties when generating explanations. Similarly, such types of

explanations are more useful for verifying whether a model is working properly be-

cause they provide more fine-grained explanations and enable humans to ground the

explanations to reasoning mechanisms that humans are already comfortable with (i.e.,

comparisons are easier to understand and validate than purely “additive” explanations

which only provide evidence in favor of a given class based on the presence of certain

properties).

Grounding Learning-Based Models to Visual Concepts and Visual Attributes

The previous two classes of approach improved the interpretability of the learning-based

models by grounding the generated explanations to examples in the dataset (or derived

from the training set). In particular, prototype-based models ground explanations

to other images (or patches of images) that are representative of a given class, and

methods based on counterfactual/contrastive explanations ground the explanations to

comparisons with other classes. In this section, we discuss some methods that ground

explanations explicitly to human-understandable concepts (much like what was done

in Section 2.3.1). It should be noted that the methods discussed in this section are the

most similar to the methods that are the focus of this dissertation.

Recently, a number of approaches have been introduced that are designed to make

neural networks more transparent by grounding the decisions of the networks to some

source of semantic knowledge. Interpretable Basis Decomposition (IBD) [162] is

a technique that expands upon class activation mapping by decomposing the attention

maps of a neural network for some target task as a weighted combination of attention

maps focusing on individual semantically-meaningful visual concepts (e.g., for scene

classification, this involves decomposing the scene-level attention map into a set of

attention maps, each of which focuses on a different object). In order to discover

this decomposition, first, separate classifiers are trained for each individual concept in

a set of known concepts. Then, a completely separate classifier is trained using the

48

same features for the target task. In an iterative process, the concept classifier that

explains most of the direction of the target classifier is greedily selected and a residual

is computed. Next, the concept classifier that explains most of the direction of the

residual is selected, once again in a greedy manner, and a new residual is computed.

This process repeats until the residual cannot be decreased anymore by any of the

remaining concept classifiers.

Kim et al.’s approach, Quantitative Testing with Concept Activation Vector

(TCAV) [100] is a similar approach capable of providing an interpretation of a neural

net’s internal state in terms of human-friendly concepts. TCAV involves using direc-

tional derivatives to quantify the degree to which a user-defined concept is important

to a desired classification result. For example, TCAV might highlight the fact that the

prediction of the “zebra” class is sensitive to the presence of stripes.

Ghorbani et al. propose the Automated Concept-based Explanation (ACE)

[101] method to to identify and extract higher-level human-understandable concepts

by aggregating related local image segments across a diverse dataset. ACE learns

concepts that satisfy three properties important for interpretability: meaningfulness

(humans can assign some meaning to the concepts learned by the model), coherency

(instances of the same concept should appear perceptually similar while instances of

different concepts should appear perceptually differenct), and importance (the object

should play some role in the decisions output by the network; i.e., ignoring the concepts

would meaningfully impact model performance).

Hendricks et al. [9] proposes an approach for improving model transparency by

learning an auxiliary model that uses the features of a trained convolutional neural

network as input to a language-based model (e.g., a recurrent neural network) that

generates natural language explanations for the decisions made by the visual

recognition model. This approach suffers a significant flaw: it is not known how well

the explanations output by the model match the features that are truly being used by

the visual classification model. It could be the case that the explanation model finds

explanations that seem plausible, but are not truly explaining what the base network is

doing; e.g., the generated explanations might point to evidence that isn’t even present

49

in the input image. In follow up work [13], Hendricks et al. corrected for this flaw by

grounding the natural language explanations to visual cues. This is done by selecting

explanations that are both image- and class-relevant.

A lot of other work has been done in the direction of grounding explanations to

human-understandable concepts. For example, Sarker et al. [12] propose grounding the

decisions of neural networks to knowledge graphs, and Xie et al. [163] discuss a method

for grounding neural networks to pre-specified, human-understandable input concepts.

Qi et al. [164] propose an explanation module which embeds high-dimensional infor-

mation captured by a deep neural network layer into a low-dimensional explanation

space. The predictions output by the network can then be constructed from just the

few concepts extracted by the explanation module, and these concepts can be visual-

ized, showing which high-level concepts the neural network model uses when making

decisions.

in general, many methods in the computer vision literature (including many of the

methods discussed in this section) ground models to some sort of visual concept or

visual attributes [17]. Visual attributes consist of semantic properties that are shared

across various categories (e.g., objects, scenes, etc.) that should be easily recognized

from visual data [18–20,165]. Visual attributes can include visual characteristics, affor-

dances/functionality, sentimental or emotional state, and the presence of objects and

parts-of-objects. Attributes can be binary (is wooden:true), discrete (wing color:red),

continuous (number of legs:2), or even relative (dogs:fuzzier than:turtles) [166]. Vi-

sual attributes have been applied to many domains including object recognition [167],

scene classification [168,169], animal identification [20,170], fashion analysis [171], and

face recognition [172]. They have also been applied to a wide range of tasks including

visual recognition [173], zero-shot learning [165, 174], image retrieval [175], active an-

notation [176], image editing [177], and conditional image generation [178]. Attributes

can be identified by explicit human input and crowd-sourcing [167], by mining web

data [179, 180], and by unsupervised vision methods [181]. One easy way to improve

model interpretability is by predicting which visual attributes are present in an image

and then making decisions based on these human-understandable visual attributes.

50

The work presented in this thesis is very closely related to a number of the afore-

mentioned methods [1,3,4]. For example, one of our proposed approaches [1] focuses on

using knowledge graphs to improve deep learning explainability like Sarker et al. [12].

Another of our approaches is similar to interpretable basis decomposition, but instead

of learning the concept classifiers disjointly from the target classifiers, we train a single

model that first identifies and predicts meaningful sets of objects (termed “scenar-

ios”) and then use these scenarios as interpretable features that are fed into a linear

classification model for the target task. In general, all of our proposed methods rely

on the idea that a machine learning model must make decisions grounded to some

human-understandable intermediate representation (e.g., visual attributes). The meth-

ods introduced in this thesis focus on some of the issues caused by this approach, and

how these issues can be overcome in order to make learning-based models for visual

recognition tasks easier-to-understand and more trustworthy.

Other Models that Learn to Explain Decisions Beyond Pixels

Other models exist that attempt to learn how to explain the decisions of complex ma-

chine learning models for visual recognition tasks beyond just pixel-based explanations

and using more complex reasoning. For example, [182] presents an unsupervised method

to learn an explainer neural network which tries to explain the decisions/predictions

of some other pre-trained convolutional neural network by disentangling the target net-

work’s feature maps into object-part features and then uses these object-part features to

reconstruct features in the higher layers of the network. Another example includes the

Self-Explaining Neural Network [183] where explanations are intrinsic to the model

and satisfy three desiderata for explanations: explicitness, faithfulness, and stability.

2.4 Acknowledgment of Additional Resources

The structure and content of this chapter was informed in part by a number of valuable

online resources that highlight the state-of-the-art with regards to interpretability and

51

interpretation methods in the context of machine learning, deep learning, and com-

puter vision. These resources include [184–189]. Several images were generated with

code/software provided by [190,191].

52

Chapter 3

Augmenting Visual Concepts: Incorporating Knowledge

into Deep Neural Networks Using External Knowledge

Graphs

Note: This chapter consists of joint work with Logan Frank (Ohio State University),

Christopher Menart (Air Force Research Laboratory, Sensors Directorate), Dr. Michael

Raymer (Wright State University), and Dr. Pascal Hitzler (Kansas State University).

This chapter is based on work originally published as “A Framework for Explainable

Deep Neural Models Using External Knowledge Graphs” [1].

3.1 Introduction

The focus of this thesis is developing several approaches for grounding deep neural

networks to human-understandable visual concepts. However, several issues exist when

utilizing a neural network that bottlenecks through a visual concept recognition layer.

Namely, some of these visual concepts cannot be recognized with high accuracy from

images, and even those concepts that can be recognized with high accuracy might not

be discriminative for the target classification task. In order to overcome the two issues

mentioned above, this thesis presents several major methodological topics for identifying

improved representations based on a given initial set of visual concepts. Specifically,

the thesis consists of four parts: augmenting an existing set of visual concepts using

knowledge graphs, deriving new representations from an existing set of visual concepts,

deriving new representations from auxiliary data sources consisting of images paired

with textual descriptions of the images, and adapting the learned representations as

new data is encountered. In this chapter, we focus on the first topic: augmenting an

existing set of visual concepts using knowledge graphs.

53

Over the last decade, deep neural networks (DNNs) have become the standard class

of algorithms for solving challenging supervised machine learning problems, especially

when the input consists of complex sensor data (e.g., images and video). As has been

discussed in previous chapters, one of the prominent differences between DNNs and

older machine learning algorithms is that DNNs are significantly more opaque in their

decision-making. Prior work [192] has shown that deep convolutional neural networks

used for visual recognition tasks frequently capture and rely on patterns in the data

that are very different from those utilized by the human visual system. Subsequently,

DNNs are often (incorrectly) overly confident when they classify images. In this chapter,

we propose integrating deep neural networks with external sources of human-generated

semantic knowledge via external knowledge graphs. We hypothesize and experimentally

validate that incorporating background knowledge from an external knowledge graph

can improve a neural model’s explainability and robustness.

At present, DNNs are only capable of capturing semantic information by identifying

statistical patterns from large sets of observational data. While many DNNs demon-

strate impressive capabilities when it comes to learning complex tasks, such as image

recognition, they rarely learn to perform these tasks in ways that are very different from

human reasoning and decision-making. Thus, DNNs often learn obfusicated forms of

basic knowledge of the world rather than directly learning semantic concepts. Even

state-of-the-art neural network-based models for visual recognition tasks rely on dis-

covering features capturing lower-level patterns (e.g., texture and color information)

rather than the high-level knowledge (e.g., information about shape, structure, seman-

tics, and relationships) which humans use to make similar decisions [193].

By aligning neural networks with external semantic knowledge, we hope to help

constrain the DNNs to behave in a human-like manner when making decisions and

predictions. Enforcing this human-like decision-making process, we hope to alleviate

many of the notable flaws previously discussed. Specifically, by grounding neural net-

works to human knowledge, we enable them to generate high-level explanations that

are comprehensible to human beings.

54

In this chapter, we explore the effectiveness of aligning and integrating neural net-

works with external sources of knowledge (in the form of knowledge graphs). Ex-

periments are conducted on the ADE20K dataset [21], focusing on the task of scene

classification. The ADE20K dataset consists of images of general indoor and outdoor

scenes captured at ground-level using standard RGB cameras. We choose this dataset

because it provides both 1) scene category labels for each image and 2) information

about which objects (and their parts) are present in each image. This object infor-

mation can be used as an additional form of supervision which ties the sensor data

(images) to external semantic symbols.

We propose a framework that integrates external knowledge (from knowledge graphs)

with a deep convolutional neural network. Furthermore, we investigate how our pro-

posed approach affects explainability and robustness compared to traditional DNN

architectures. We use WordNet, a hierarchically-organized lexical database, as our

source of external knowledge [22]. We align the 1,268 object types (not including ob-

ject parts) labeled in the ADE20K [21] dataset with their corresponding terms (synsets)

in the WordNet ontology. Once this alignment is complete, we construct a hierarchy of

objects and their ancestor categories based on subclass-superclass relationships. This

hierarchy enables us to model information about the objects in ADE20K at different

levels of granularity. By modeling hierarchical relations between object labels, we can

derive an expanded label set for each image, which provides much more information

than the flat set of object labels that come with ADE20K. For example, if we know

that a “silver bird statue” is present in an image, then our hierarchy would also tell

us that there are also instances of “statue”, “decoration”, and “artwork” present in

the image because each of these new labels is an ancestor class of “silver bird statue”.

We can then train an object recognizer on this expanded object set, and use the pre-

dicted object probabilities as features that subsequently feed into a logistic regression

model that performs scene classification. Because the features (object probabilities) are

interpretable and the logistic regression model is a simple linear classifier, the model

can generate easy-to-understandable explanations. We also explore how to exploit the

structure of the hierarchy to improve object recognition accuracy. To do so, we propose

55

a structured prediction model designed to correct mistakes between object predictions

involving parent-child relationships.

One might question why it is necessary to use WordNet to expand the set of objects

beyond just those provided with the dataset. The rationale for this expansion is that

object labels included in many datasets are often noisy and incomplete. Because these

datasets are often created via crowdsourcing, labels can sometimes be redundant and

ambiguous, e.g., objects that are semantically equivalent might be labeled differently

because humans have different names for the same objects. Sometimes labels are overly

specific, e.g., an object might be labeled as a “wooden statue” while not being labeled

using higher-level categories such as “statue” and “artwork”. Humans also occasionally

make mistakes, so they occasionally incorrectly label objects that do not exist in a

scene and vice versa. Some mistakes are not due to human error but are instead due

to limited training data. For example, the majority of objects in the ADE20K dataset

appear fewer than ten times, and thus, there is often not enough training data for the

model to learn how to recognize these sparsely-appearing objects because deep neural

networks are incredibly data-hungry. Similarly, some objects appear so small in the

images (i.e., only hundreds of pixels in area), that DNNs cannot learn the fine-grained

visual patterns necessary to accurately them.

By using a knowledge graph to expand the object set, some of the aforementioned

issues can be addressed:

• Ambiguous labels are merged.

• Object information is captured at multiple levels of granularity.

• Ancestral categories appear more frequently than some of their children, so while

there may not be enough training data to learn to recognize some object, there

might be enough training data to recognize one of its ancestors.

Thus, the proposed method for augmenting visual concepts is useful in many ways for

reducing noise in the visual concept recognition stage of a semantically-grounded model.

56

3.2 Related Work

We present our work in the context of existing efforts to combine human knowledge

with neural networks. Some of these efforts exploit knowledge graphs directly; other

work utilizes prior knowledge imposed directly by the creator of the model; and other

work learns how to automatically discover knowledge graphs directly from the data. We

do not discuss existing methods for making deep learning models more interpretable as

such methods are already thoroughly discussed in Chapter 2.

3.2.1 Combining Knowledge Graphs and Deep Neural Networks for

Computer Vision Tasks

Some recent efforts have attempted to combine knowledge graphs with neural networks

for visual recognition tasks. Marino et al. [194] train a neural network to predict every

node in a given knowledge graph and then propagate information between nodes to

refine predictions. Goo et al. [195] relate objects to one another based on taxonomies

consisting of subclass-superclass relations in order to learn better features that are

useful for distinguishing between classes that share the same superclass but are often

confused with one another. Guo et al. [196] learn a hierarchical classifier consisting of a

convolutional neural network for feature extraction and a recurrent neural network that

improves predictions by exploiting relationships between the predicted classes. Yan et

al. [197] is another approach that utilizes DNNs for hierarchical classification. Srivastava

et al. [198], Fan et al. [199], Kuang et al. [200], and Zhang et al. [201] propose differ-

ent tree-structured concept ontologies that organize large numbers of concept classes

(often objects) using coarse-to-fine labels, and some of these approaches automatically

discover inter-related learning tasks. Roy et al. [202] is another approach that learns

fine-to-coarse tree-structured DNN classifiers but learns these structures incrementally,

enabling the addition of new classes without retraining the entire network. Deng et

al. [203] introduce Hierarchy and Exclusion (HEX) graphs. HEX graphs are capable of

capturing semantic relations by examining mutual exclusion, overlap, and subsumption

between two labels applied to the same object. Other approaches [204,205] attempt to

57

learn semantic embeddings driven by the existing information present in hierarchies and

knowledge graphs. Finally, some approaches attempt to exploit ontologies to improve

the explainability and interpretability of deep neural networks [12], and improve deep

learning-based image interpretation (extracting structured semantic descriptions from

images) [206].

While not as related to our approach as the previously mentioned methods, it is

worth mentioning that there are a number of approaches that try to learn to predict

or exploit instance-level “scene graphs”, e.g., see references 207–213. Likewise, another

interesting direction that involves fusing neural networks with knowledge is designing

deep networks capable of performing neural-symbolic reasoning over very simple scenes,

e.g., see references 214–217. Finally, it is also worth noting that there has been some

interest in constructing ontologies that are useful for visual recognition tasks. ImageNet

[218] is a very popular ontology that is based on WordNet, and it is very useful for

training hierarchical classification models for general object recognition. SceneNet [219]

is an ontology for relating different scene categories based on perceptual similarity.

3.2.2 Exploiting Object Information for Visual Recognition Tasks

As has been mentioned previously in Section 1.1.4, we use scene classification using

object-based features as our motivating application. Incorporating object-based in-

formation into visual recognition pipelines is a well-studied problem in the computer

vision community. One common approach for exploiting object information for scene

understanding-related tasks is to model contextual information about scenes based on

object relations using a probabilistic graphical model [220–226]. These graphical model-

based approaches generally follow one of two paradigms. The first paradigm involves

exploiting information about multiple, related tasks (e.g., scene classification, object

recognition, semantic segmentation) as a means for improving performance on each

of the individual tasks. The second paradigm utilizes information about relationships

between objects and the scene category to improve performance on a target task.

There are other ways of using relationships between objects in order to improve

scene understanding. One way to do so is by learning how to organize objects into

58

Figure 3.1: An overview of the scene classification task, which involves using a model
to map from an image to the image’s scene category. Image from [1].

hierarchies and taxonomies, and then employing the learned hierarchies in order to

improve performance on the target scene understanding task [227–229]. Similarly, one

can learn how objects naturally assemble into tree structures (which do not necessarily

consist of the same types of hierarchies as discussed above) and sets, e.g., see 230–

232. In particular, tree-based context models have shown promise [225, 230, 231] for

refining object predictions and detecting out-of-context objects. Other methods exploit

hierarchies of concepts for more specific and niche applications such as content-based

image retrieval [233–235].

ObjectBank [236, 237] is yet another way of utilizing object-based information for

scene understanding tasks. ObjectBank involves using the output of generic object

detectors as feature extractors for scene classification tasks.

3.3 Problem

In our experiments, we consider the problem of scene classification, a standard visual

recognition task where the goal is to learn a model capable of mapping from an input

image to the image’s scene category. Please see Section 1.1.4 for more details. Figure

3.1 shows the typical pipeline for scene classification where an image is fed into a model,

and the model makes a prediction about the identity of the scene category (e.g., dining

room, kitchen, park, street, etc.).

59

Figure 3.2: Left: A histogram relating each object to the number of times it appears
in the subset of the ADE20K dataset used in our experiments. Right: The scene class
distribution used in our experiments. Image from [1].

3.4 Data

3.4.1 ADE20K

The ADE20K dataset [21] consists of images of indoor and outdoor scenes captured

at ground-level using a standard RGB camera. Each image in the dataset is paired

with a scene label (e.g., bedroom, bathroom, park), the set of objects and their parts

present in the image, and pixel-level segmentations for these objects and parts. We

utilize information associated with all 1,268 unique first-level objects provided by the

dataset and exclude parts-based information. We ignore the pixel-level segmentation

information. In Figure 3.2, we show how often each object appears in the dataset.

For our experiments, we use the subset of scene classes that have at least 100

images in the combined training, validation, and test set. This filtering results in 16

scene classes and 8,446 total images. 7,131 images are used for training, 876 for testing,

and 439 for validation. Figure 3.2 lists the scene classes used in the majority of our

experiments and shows how images are distributed between these classes.

We artificially inflate the size of our training data using data augmentation. When

an image is sampled from the dataset, we pass it through a data augmentation pipeline

consisting of the following steps. First, the image is randomly cropped in such a way

that the area of the cropped image is 80% of the original image. Next, the image is

60

flipped with 50% probability. The brightness, contrast, and saturation are randomly

jittered. Each image is resized to 224 pixels-by-224 pixels and normalized using the

mean pixel value and standard deviation derived from the training dataset.

3.4.2 WordNet

WordNet [22], a hierarchically-organized lexical database, is used as our source of ex-

ternal knowledge. WordNet groups nouns, verbs, adjectives, and adverbs into sets of

“cognitive synonyms” called synsets. Subsequently, these synsets are connected into a

hierarchical structure using hypernym-hyponym (a.k.a. superclass-subclass) relations.

We align the objects in the ADE20K dataset to their corresponding synsets in Word-

Net. This alignment enables us to 1) expand the set of object labels to include all

parent objects, resulting in more complete, less noisy, and richer semantic information,

and 2) hierarchically organize the objects, and exploit the structure of the hierarchy to

improve the capabilities of the proposed model.

3.5 Methodology

3.5.1 Summary of our Approach

Our approach consists of several stages, which can be summarized as:

1. Align the objects in the ADE20K dataset to synsets in the WordNet lexical

database.

2. Generate and prune an object hierarchy.

3. Using the mined hierarchy, generate an expanded object label set.

4. Train an object recognition CNN to predict the expanded object label set.

5. Calibrate the object prediction scores.

6. Refine the object prediction scores to fix violations in constraints imposed by the

mined object hierarchy.

7. Using the refined object prediction scores as features, train a linear multinomial

logistic regression model for the scene classification task.

61

In the following sections, we introduce the specific technical details of our approach.

3.5.2 Classifying Scene Images Using an Object-Based Model

The first stage of our proposed method involves learning a model capable of recognizing

the objects that are present in each scene image. This can be done using deep convolu-

tional neural networks (CNNs) [62, 238]. In this work, we employ the ResNet-18 [239]

architecture, a popular off-the-shelf CNN architecture, as our object recognition model.

A CNN can be trained to predict the scene class directly from pixel-level data, but

this limits the model’s explainability. Instead, the approach introduced in this chapter

decomposes the classification problem into multiple steps. First, the neural network

predicts all of the objects (and their parent classes) present in a scene (discussed in

this section and the next). Second, a separate model calibrates the scores output by

the object recognition model to account for issues with imbalanced and limited data

(discussed in Section 3.5.4). Third, the object recognition results are refined using a

structured prediction model that exploits the structure of the hierarchy derived from

WordNet (discussed in Section 3.5.5). Finally, the calibrated and refined predictions

are used as features that are input to a (linear) multinomial logistic regression model

that performs the actual scene classification (discussed in Section 3.5.6). Note that

each of the aforementioned models needs to be trained seperately. Otherwise, we’ve

found that the neural network tends to learn to circumvent our desired representations,

leading to intermediate features that might encode hidden, uninterpretable, and brittle

information.

By learning a model that bottlenecks through object predictions, we arrive at in-

termediate “features” that are discriminative for the scene classification task while still

being understandable to humans. Since a simple linear model is used as the classifier,

the classification model is also interpretable. Thus, we have interpretable features, each

of which represents some measure of how likely an object is to be present in a given

image, and an interpretable classifier that specifies the importance of each object for

making specific decisions.

Traditional object recognition involves predicting a single object that is typically

62

the focal point of an image. It is assumed that the object is centered within the frame

of the image, and the object makes up the majority of the image’s pixels. In contrast,

our proposed method requires learning a model capable of simultaneously predicting

the presence of all objects in a scene (multi-object recognition). Likewise, these objects

vary widely in size and placement within the image. Thus, the task of multi-object

recognition in scene images is a much more challenging problem than traditional object

recognition, and experimental results in later sections will show that there are many

challenges with training a standard deep neural network to solve this problem. That

being said, for now we treat the multi-object recognition problem as a binary multi-

label classification problem, and we optimize our network by trying to minimize the

multi-label binary cross entropy loss:

Goal: min
~̂o
lossbmce, lossbmce = − 1

MN

M∑
i=1

N∑
j=1

(
o
(j)
i log(ô

(j)
i) + (1− o(j)i)log(1− ô(j)i)

)
(3.1)

where o
(j)
i ∈ {0, 1} is the true label for an object i in a given scene instance j, ô

(j)
i ∈ [0, 1]

is the probability output by the neural network that object i is present in scene instance

j, M is the total number of objects, and N is the total number of training examples

in a mini-batch. We train the network using a learning rate of 1.0e-3, a weight decay

value of 1.0e-5, and a batch size of 16. ADAM is used as our optimization algorithm.

We train the net until convergence is achieved on a held out validation set.

3.5.3 Aligning ADE20K to WordNet

The basic approach discussed in the previous section is not without its flaws. The object

labels included in the ADE20K dataset are often noisy and incomplete. Labels are often

ambiguous. As an example, “bowl” and “bowls” are treated as separate labels despite

being semantically equivalent. Another potential issue is that some labels are overly

specific. For example, “silver bird statue” is a label in the dataset, whereas there is

limited practicality to having such fine-grained labels. Issues with imperfect annotation

are another challenge. Since the dataset is annotated by humans who occasionally make

mistakes, sometimes, errors are made by incorrectly labeling objects that do not exist

63

in a scene or vice versa. There are also challenges that arise due to limited training

data. For example, some objects are challenging to learn to recognize from visual

data because they appear infrequently. In fact, the majority of objects in the dataset

appear fewer than ten times. Deep neural networks are incredibly data-hungry and as

such, cannot capture all of the variations of appearance for data-limited object classes.

Similarly, some objects are so small in the images, that the neural network cannot learn

the fine-grained visual patterns necessary to accurately these objects.

Many of the aforementioned issues can be alleviated by aligning the object labels

in ADE20K to the WordNet database. To do this alignment, we begin by semi-

automatically mapping (with manual corrections) each of the 1,268 objects in the

ADE20K dataset to their corresponding synsets in WordNet. If the object cannot

be mapped directly to a synset, it is instead mapped to its closest matching ancestor

synset (hypernym). After the mapping is complete, an object hierarchy is constructed

by recursively traversing the direct hypernyms of each term in WordNet until the root

node for WordNet is reached. Then, the hierarchy is pruned to remove redundant nodes

and edges. Specifically, we prune parent nodes when the instances of parent node ex-

actly match the instances of the child node. For example, if “wall” is the only example

of “partition” in the dataset because of how the dataset was initially labeled, and the

set of instances for“partition” in the dataset exactly matches the set of instances for

“wall”, we can remove “partition” and connect “wall” directly to the parent class of

“partition”: “structure”. Furthermore, we can perform additional pruning to remove

nodes if their corresponding object appears fewer than k times in the subset of the

ADE20K dataset used in our experiments because it is often necessary to have some

minimum number of examples in order to train an accurate object recognition model.

In Figure 3.3, we show a small subgraph of the aligned knowledge graph to highlight

how much semantic information can be gained by aligning the objects in the ADE20K

dataset to WordNet.

An expanded object set can be generated from the final pruned object hierarchy.

Unlike the original object set, which consisted largely of the leaf nodes of the object

64

Figure 3.3: Here we show a small subgraph of the aligned knowledge graph between
ADE20K and WordNet after extensive pruning. Note how much additional semantic
information is captured by even this small portion of the full knowledge graph. Image
from [1].

hierarchy, the expanded object set treats every node in the hierarchy as its own ob-

ject/label. An object recognition model can then be trained to predict the expanded

object set. By expanding the graph and predicting the expanded object set, some of

the previously mentioned issues can be addressed:

• Ambiguous labels are merged, e.g., “bowl” and “bowls” are mapped to the same

synset in WordNet.

• Object information is captured at multiple levels of granularity. Instead of relying

on predicting only extremely fine-grained labels such as “silver bird statue”, more

general parent classes such as “statue” and “art” can be predicted as well.

• Ancestral categories appear more frequently than some of their children, so while

there may not be enough training data to learn to recognize some object, there

might be enough training data to recognize one of its ancestors. This preserves

65

some information about the object that may have otherwise been lost when prun-

ing for rare objects.

3.5.4 Calibrating Object Recognition Scores

Deep neural networks are powerful tools for making predictions and decisions, but since

they have a considerable number of parameters and are highly nonlinear, they have

issues overfitting to the training data resulting in overconfidence in their predictions.

Many real world applications, especially safety-critical applications, require learning-

based models to be highly accurate while also being capable of outputting realistic

measures of confidence for each prediction (i.e., a calibrated confidence [240]). Using

calibrated confidences is exceptionally important from an interpretability viewpoint. If

a model says an object is present with a probability larger than 0.5, it should mean

that the net believes the object is more likely present in the image than not. Thus, it

is important to calibrate the object prediction scores output by our object recognition

model, and in this section, we discuss one approach for doing so.

First, the neural network is trained for object recognition on the training data.

The parameters of the trained neural network are frozen. Then, the logits (the values

output by the network before the sigmoid function) are extracted for each object for

each validation instance. Our goal is to learn scaling a and shift b parameters for a

sigmoid function that maps the logits li to a calibrated score ô′i for each object i.:

ô′i =
1

1 + e−ai(li−bi)
(3.2)

Traditional confidence calibration methods like Platt scaling [241] and temperature

scaling [240] use the negative log-likelihood as the supervisory single (i.e., they perform

maximum likelihood estimation). In contrast, we calibrate by minimizing a continuous

approximation [242] of the F1-measure:

Goal: min
~a,~b

lossf1, lossf1 = − 1

M

M∑
i=1

(
2 ∗
∑N

j=1 ô
′(j)
i o

(j)
i∑N

j=1 ô
′(j)
i +

∑N
j=1 o

(j)
i

)
(3.3)

where M is the total number of objects, N is the number of validation instances,

o
(j)
i ∈ {0, 1} is the true label for object i in instance j, and ô

′(j)
i is the calibrated score

66

for object i in instance j. A continuous approximation of the F1-measure is used as

the loss function for the calibration model because the F1-measure is better suited for

problems involving class imbalance than the negative log-likelihood, and our object

labels tend to be very imbalanced (i.e., many objects appear very infrequently). The

f1-measure considers the trade-off between precision and recall, which makes it less

aggressive than maximum likelihood estimation, which often pushes probabilities closer

to zero for very rare classes.

3.5.5 Exploiting the Hierarchical Structure of the Knowledge Graph

to Refine Object Predictions

The mined object hierarchy is useful beyond providing a mechanism for generating

the expanded object set. The hierarchy is also useful for helping humans understand

when the network makes specific mistakes. Using the object hierarchy, we can treat the

problem as a structured prediction problem, and we can refine the object predictions

output by the neural network. In this section, we propose a structured prediction model

that exploits the structure of the object hierarchy to correct object predictions.

The object hierarchy tells us that a child object should never be predicted as being

present when its parent class is predicted as being absent. Up to this point, we have

modeled the prediction of the expanded object set as a flat classification problem, i.e.,

the network does not directly utilize the information about how different objects in

our expanded object set relate to one another. Since the network is not constrained to

perform hierarchical classification, it occasionally (in ∼ 1% of predictions) makes the

error mentioned above: predicting a child object when some of its ancestral classes are

not present. To correct these easily identifiable mistaken predictions, we formulate the

following optimization problem:

Goal: min
~̂o′′

lossrefine,

lossrefine =

N∑
j=1

√√√√ M∑

i=1

(ô
′′(j)
i − ô′(j)i)2 +

∑
(q,r)∈(child,parent)

max(ô′′(j)q − ô′′(j)r , 0)

 (3.4)

where M is the number of objects, N is the number of instances, ô
′′(j)
i is the refined

67

prediction score for object i in instance j, ô
′(j)
i is the calibrated prediction score for

object i in instance j, and (child, parent) is the set of all (child, parent) object relations.

The idea behind this optimization problem is to minimally change the scores of the

predictions (enforced by the first term of the optimization objective) while correcting

cases where the score for the child is larger than the score for the parent (enforced

by the second term of the optimization objective). Essentially, the model is trying to

figure out how the predictions can be changed to satisfy the knowledge graph-based

constraints in a minimally-disruptive manner.

3.5.6 Training the Scene Classification Model

Once the multi-object recognition, calibration, and refinement models are trained/encoded,

we can train a separate linear multinomial logistic regression model to perform scene

classification using the refined object recognition probabilities as input features. To

train this scene classification model, we can use the standard multi-class variant of the

cross entropy loss:

Goal: min
~̂s
lossce, lossce = − 1

N

N∑
j=1

log
(
ŝ
(j)
true

)
(3.5)

where ŝ
(j)
true ∈ [0, 1] is the score output by the model for the true scene class for a

given scene instance j, and once again, N is the total number of training examples in

a mini-batch.

3.6 Experimental Results and Analysis

In the sections that follow, we quantitatively investigate the effectiveness of each com-

ponent of the proposed approach.

3.6.1 The Importance of Utilizing Grounded, Semantic Information

In this first set of experiments, we aim to see if any benefit can be gained in terms of

predictive accuracy by using features grounded to semantic information (e.g., object

68

Approach Scene Classification Accuracy

Unmodified ResNet 0.817

Ground Truth Objects (Initial Set) + Logistic Regression 0.910

Ground Truth Objects (Expanded Set) + Logistic Regression 0.910

Table 3.1: Accuracy on the scene classification task for several baseline models. We
compare visual features to ground truth semantic features.

presence) instead of using features purely discovered by a neural network. An unmod-

ified ResNet-18 CNN trained for end-to-end scene classification serves as our baseline.

In order to evaluate the importance of semantic information, we also train a linear

multinomial logistic regression model whose features consist of the ground truth object

labels for each scene image. Initially, the model only considers the objects present in

the ADE20K dataset, but we also want to see how much additional utility can be gained

by using the expanded object set derived from WordNet. Thus, we train an additional

logistic regression model for scene classification that uses the expanded object set as

features. Results appear in Table 3.1.

We can glean some useful insight from this experiment. First, while the unmodified

ResNet model performs well, it notably under-performs (by about 10%) the linear

model that has access to perfect information about the objects present in a scene.

Second, we see that if we have perfect knowledge of the initial set of objects, then

little is gained (with respect to scene classification) by using the expanded object set

derived from WordNet. A plausible explanation for this result is that when the machine

learning model has access to perfect information, the model might plausibly discover

and, subsequently, exploit the relevant relationships that exist between objects.

Note that, in practice, the model does not have perfect knowledge of the objects

in a scene. Instead, this information must be recovered from some sensor (in this

case, a camera) via object recognition or detection. This requires a separate learning-

based model (in our case, we will use another ResNet-18 neural network). In the

next several experiments, we will make the following observations: 1) multi-object

recognition in scene images is extremely error-prone, and 2) by integrating information

from the mined object hierarchy into the proposed framework, we can learn models that

are more reliable, encourage greater trust in the model, and achieve higher predictive

69

performance.

3.6.2 Understanding the Limitations and Impact of Noisy Object Recog-

nition

Multi-object recognition from scene images can be highly prone to error for several

reasons. First, the object recognition model is trained using imperfect and occasionally

ambiguous labels. Second, in order to recognize that an object exists in an image,

the model must be capable of either approximately localizing the object in the image

or detecting surrounding context clues. Third, some objects make up a very small

portion of the image (i.e., sometimes only hundreds of pixels). If the object is too

small, then there might not be enough details to learn the fine-grained patterns needed

to distinguish between similar objects. Fourth, and perhaps most importantly, there is

often not enough training data for many of the objects. Without a sufficient amount

of data, the network cannot learn features capable of capturing all of the variations of

appearance for a given object.

To get a basic understanding of how well a deep neural network can learn to perform

multi-object recognition from scene images for our data, we train a ResNet-18 model to

predict all objects that appear at least 25 times in the training data. Once the model

is trained, we evaluate it by computing the average precision (a summary statistic of

the area under the precision-recall curve) for each object on the test dataset. Results

appear in Figure 3.4.

We see from these experimental results (Figure 3.4) that most of the objects in the

dataset (even after heavily pruning to at least 25 appearances per object) are recognized

with poor accuracy. Unsurprisingly, we’ve also observed that the quality of the object

recognition model tends to correlate with the number of training instances for each

object class. In Figure 3.5, as we prune the object set to include only those objects

that appear most frequently, the object recognition mean average precision (mAP) value

increases.

Next, we attempt to understand how pruning the object set based on the minimum

number of appearances affects performance on the scene classification task. The left

70

Figure 3.4: We evaluate how well a deep neural network can perform on the multi-
object recognition task for objects that appear in at least 25 training instances in the
subset of the ADE20K dataset used in our experiments. Image from [1].

graph in Figure 3.6 shows the degradation of classification quality as objects are pruned

when using the ground truth object data as features, and the right graph this degrada-

tion as objects are pruned when using the predicted object probabilities as features.

3.6.3 Improving Performance by Utilizing Knowledge Graphs

In Section 3.5.3, we discussed how aligning the objects in the ADE20K dataset to

WordNet is beneficial for improving the robustness and explainability of the model.

Namely, ambiguous labels are merged; object information is captured at multiple levels

of granularity; and while there might not be enough training data to learn how to

recognize some objects, there might be enough data to learn how to recognize their

ancestors, preserving some information that might have otherwise been lost. We can

experimentally validate some of these claims.

Figure 3.5 shows that as objects are pruned based on the number of times they

appear in the training dataset, the expanded object set generally achieves equal or

slightly higher object recognition results despite working with a larger set of selected

71

Figure 3.5: We attempt to quantify the effect of sample size on multi-object recog-
nition. Left: We see how many objects are selected as we set different thresholds for
the minimum number of times an object must appear in the dataset to not be pruned.
Right: We see how object recognition performance is positively impacted as the mini-
mum number of times an object appears in the dataset increases. Image from [1].

Approach Min. Obj. Appears. Obj. Rec. mAP Scene Class. Acc.

Unmodified ResNet N/A N/A 0.817

OR + LR: Initial 400 0.599 0.751

OR + LR: Expanded 400 0.601 0.788

OR + LR: Initial 800 0.776 0.752

OR + LR: Expanded 800 0.777 0.764

Table 3.2: We evaluate the performance of various approaches for scene classification
including an unconstrained ResNet-18 model and two-stage models involving object
recognition (OR) (using object labels from the initial object set and expanded object
set) followed by a logistic regression (LR) classifier.

objects. Figure 3.6 shows that while performance on the scene classification task still

degrades as objects are pruned, the effect is significantly less severe when employing

the expanded object set. In Table 3.2, we summarize how the initial object set-based

model (OR + LR: Initial), expanded object set-based model (OR + LR: Expanded),

and unmodified ResNet-18 DNN all compare for the scene classification task. While the

unmodified ResNet-18 model outperforms the object-based models, it only outperforms

the best object-based model by a few percentage points. Additionally, the object-based

models remain significantly more interpretable than the unmodified ResNet model.

72

Figure 3.6: We quantify how scene classification performance is affected by the object
set size and quality. We evaluate scene classification performance as we set different
thresholds for the minimum number of times an object must appear in the dataset to
not be pruned. Left: We train and test models using the ground truth object data.
Right: We train and test models when using predicted object recognition scores. Image
from [1].

3.6.4 Understanding the Effects of Object Prediction Score Calibra-

tion

Up to this point, the experiments have assumed that each model outputs uncalibrated

probability estimates. In this set of experiments, we validate the effectiveness of the

calibration method proposed in Section 3.5.4. We also want to understand the effect

of employing calibrated object prediction scores on the scene classification task. In

this set of experiments, we use the macro-f1-measure over all object classes as our

evaluation metric because we want to know how the object recognition model performs

when the prediction scores are thresholded at 0.5. We’re interested in this quantity

because it aligns well with human expectations; most humans intuitively assume a

score higher than 0.5 means the object is present in an image, and a score lower than

0.5 means the object is absent from an image. Table 3.3 shows that calibration on the

validation data improves the f1-measure by several percentage points in each tested case,

suggesting that the calibration is effective. However, the calibration method does come

with drawbacks; namely, since the calibration method manipulates the parameters of a

sigmoid function, some information is lost near the asymptotes of the sigmoid. This loss

73

Approach Min. Obj. Appears. Calib.? Obj. Rec. Macro-F1 Scene Class. Acc.

OR + LR: Expanded 400 No 0.557 0.788

OR + LR: Expanded 400 Yes 0.587 0.773

OR + LR: Expanded 800 No 0.723 0.764

OR + LR: Expanded 800 Yes 0.741 0.754

Table 3.3: We evaluate how object recognition and scene classification are affected by
calibrating the object prediction scores. Specifically, we look at the three stage model
consisting object recognition (OR), followed by object score calibration, and finally,
followed by logistic regression (LR) for scene classification. In all cases, we consider the
expanded object set.

of information is a possible explanation for why there is a minor (about 1%) decrease

in scene classification performance.

3.6.5 Refining Object Predictions by Exploiting the Known Structure

of the Knowledge Graph

In our final set of experiments for this chapter, we evaluate the effectiveness of the

object prediction refinement strategy introduced in Section 3.5.5.

We begin by considering the calibrated model for the object recognition neural

network trained to predict the expanded set of objects with at least 400 examples in

the training data. On the test dataset, the model makes 150,325 total predictions

about the presence of objects. Of these predictions, we identify 784 violations of the

constraints imposed by the known knowledge graph (i.e., a child is predicted present

whereas its parent is predicted absent). 1,547 object predictions are involved in these

784 violations. Initially, 730 of these object predictions are correct, and 817 of these

object predictions are incorrect. After refinement, 828 of the 1,547 violating object

predictions are correct, and 719 of the violating object predictions are incorrect.

We can also consider the calibrated model for the object recognition neural network

trained to predict the expanded set of objects with at least 800 examples in the training

data. On the test dataset, the model makes 85,041 total predictions about the presence

of objects. Of these predictions, we identify 441 violations of the constraints imposed by

the known knowledge graph. 876 object predictions are involved in these 441 violations.

Initially, 418 of these object predictions are correct, and 458 of these object predictions

are incorrect. After refinement, 484 of the violating object predictions are correct, and

74

Approach Min. Obj. Appears. Refined? Scene Class. Acc.

OR + LR: Expanded 400 No 0.773

OR + LR: Expanded 400 Yes 0.774

OR + LR: Expanded 800 No 0.754

OR + LR: Expanded 800 Yes 0.758

Table 3.4: We evaluate the effect of the object refinement strategy on scene classifi-
cation accuracy. Specifically, we look at the four stage model consisting object recog-
nition (OR), followed by object score calibration, followed by object refinement using
the mined object hierarchy, and finally, followed by logistic regression (LR) for scene
classification. In all cases, we consider the expanded object set.

392 of the violating object predictions are incorrect.

We can make several noteworthy observations. First, the object recognition models

very rarely make predictions (about 1-2% of object predictions) that violate the knowl-

edge graph constraints despite having no prior knowledge of the relationships that exist

between objects. Second, the proposed refinement strategy seems to be capable of cor-

recting some of the incorrect object predictions. 98 of 817 mistakes are fixed in the

first experiment, and 66 of 458 mistakes are fixed in the second experiment), providing

additional evidence that it is useful to combine knowledge graphs with learning-based

models for visual recognition tasks. However, it should be noted that the refinement

strategy corrects such a small proportion of the total number of object recognition mis-

takes that the refinement doesn’t significantly affect the downstream scene classification

task (see Table 3.4 for empirical validation of this).

3.6.6 Qualitative Results

Finally, we want to show some qualitative results highlighting the explanatory power

of the proposed approach. We show several examples in Figures 3.7, 3.8, 3.9, 3.10,

3.11, and 3.12. In each example, we state the predicted class, the model’s confidence

in its prediction, and a list of the top ten concepts that serve as the strongest evidence

in favor of the model’s decision. We report a score for each concept (object) which

is the score representing the model’s belief that the concept exists in the image after

calibration and refinement multiplied by the corresponding weight in the multinomial

logistic regression relating the given concept to the predicted class. Correct concept

75

predictions are highlighted in green, and incorrect concept predictions are highlighted

in red. While the model isn’t perfect, for most instances, when the model predicts

the correct class, it does so based on valid evidence. Concepts with the suffix “.n.xx”

are derived from the WordNet lexical database. Other concepts without this suffix are

taken directly from the ADE20K initial set of concepts. Note that in some cases, we see

repeated objects. For example, in Figure 3.7, see both “chair” and “chair.n.01”. This is

because “chair.n.01” is the ancestor class of all chairs whereas “chair” corresponds to the

specific subset of chairs labeled as “chair” in the ADE20K dataset, and the mapping is

not one-to-one (e.g., because ADE20K might treat “chair” and “armchair” as different

objects, whereas “chair.n.01” includes “chair”, “armchair”, and all other types of chairs

annotated in ADE20K). Note that in some cases, the label in the ADE20K initial set

of objects and the parent class from WordNet are one-to-one. In such cases, we discard

the WordNet label, and only keep the ADE20K label; details about this pruning are

discussed in earlier sections of this chapter.

76

Figure 3.7: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a dining room scene instance. We show the scene
class prediction, the model’s confidence in its scene class prediction, and the top-10
strongest pieces of evidence in favor of the prediction. Correct concept predictions are
highlighted in green, and incorrect concept predictions are highlighted in red.

Figure 3.8: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a street scene instance. We show the scene class
prediction, the model’s confidence in its scene class prediction, and the top-10 strongest
pieces of evidence in favor of the prediction. Correct concept predictions are highlighted
in green, and incorrect concept predictions are highlighted in red.

77

Figure 3.9: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a living room scene instance. We show the scene class
prediction, the model’s confidence in its scene class prediction, and the top-10 strongest
pieces of evidence in favor of the prediction. Correct concept predictions are highlighted
in green, and incorrect concept predictions are highlighted in red.

Figure 3.10: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a bathroom scene instance. We show the scene class
prediction, the model’s confidence in its scene class prediction, and the top-10 strongest
pieces of evidence in favor of the prediction. Correct concept predictions are highlighted
in green, and incorrect concept predictions are highlighted in red.

78

Figure 3.11: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a bedroom scene instance. We show the scene class
prediction, the model’s confidence in its scene class prediction, and the top-10 strongest
pieces of evidence in favor of the prediction. Correct concept predictions are highlighted
in green, and incorrect concept predictions are highlighted in red. One interesting thing
to note with this instance is that the concept “cushion” is missing whereas the parent
class “cushion.n.03” is present. This is because “cushion” specifically refers to the
cushion of a sofa whereas “cushion.n.03” is an ancestor of the“pillow” concept.

Figure 3.12: We show an example annotated explanation of the output of our knowledge
graph-based approach applied to a kitchen scene instance. We show the scene class
prediction, the model’s confidence in its scene class prediction, and the top-10 strongest
pieces of evidence in favor of the prediction. Correct concept predictions are highlighted
in green, and incorrect concept predictions are highlighted in red.

79

Chapter 4

Deriving New Visual Concepts: Discovering a Novel

Representation for Explanation-Driven Visual Recognition

Note: This chapter is based on work originally published as “ScenarioNet: An Inter-

pretable Data-Driven Model for Scene Understanding” [3].

4.1 Introduction

Recall once again that the focus of this thesis is to present several approaches for

grounding deep neural networks to human-understandable visual concepts. Also, recall

that several issues exist when employing a neural network that bottlenecks through a

visual concept recognition layer, and as a result, we propose several major method-

ological extensions for improving visual concept-based neural network models. In the

last chapter, we focused on the first extension: augmenting an existing set of visual

concepts using knowledge graphs. In this chapter, we focus on the second extension:

deriving new representations from an existing set of visual concepts. Specifically, the

new derived representation should satisfy several properties: the representation should

be easily understood when presented to human participants; the representation should

be extracted from visual input data with reasonable accuracy, and the representation

should be discriminating for the downstream target task. In this chapter, we present a

novel interpretable data-driven representation that satisfies these properties.

As a rule of thumb, explainable machine learning models should satisfy two proper-

ties: 1) the input features should be low-dimensional and able to be easily understood

by humans, and 2) the model (e.g., a classifier) should be transparent, i.e., structurally

and computationally simple (e.g., with few parameters), easy for a human to inspect

every component, and operate in a principled manner. The method proposed in this

80

chapter satisfies these two requirements. We introduce a new feature representation,

the scenario, which satisfies the first property because scenarios are low-dimensional

and grounded to human-understandable semantic concepts. We also discuss how to

integrate scenarios with convolutional neural networks (CNNs) to improve their trans-

parency, thus satisfying the second property.

We introduce scenarios, an interpretable, data-driven representation derived from

an initial set of visual concepts. Scenarios are based on sets of frequently co-occurring

visual concepts. Scenarios should satisfy a few key properties:

1. Scenarios are composed of one or more visual concepts.

2. The same visual concept can appear in multiple scenarios, and this should reflect

the context in which the concept appears. For example, if our visual concepts

consist of objects as in the previous chapter, then {keyboard, screen, mouse} and

{remote control, screen, cable box} might make up two distinct scenarios. Notice

that both of these example scenarios contain the “screen” object, but in the first

scenario, the screen is a computer monitor, and in the second scenario, it is a

television screen.

3. Scenes can be decomposed as combinations of scenarios. If we once again use

objects as the base visual concepts, a bathroom scene instance might decompose as

the union of {shower, bathtub, shampoo}, {mirror, sink, toothbrush, toothpaste},

and {toilet, toilet paper}.

4. Scenarios are flexible and robust to missing objects. A scenario can be present in

a scene instance without requiring all of its constituent objects to also be present.

Scenarios can be identified from training data via our novel pseudo-Boolean matrix

factorization (PBMF). PBMF takes a binary matrix relating visual concepts to indi-

vidual scene instances and decomposes it into two matrices: a dictionary matrix and

an encoding matrix. Each basis vector of the dictionary represents one scenario. The

encoding matrix assigns scenarios to each individual scene instance. Figure 4.1 presents

a visual representation of the decomposition. PBMF is integrated into the proposed

81

Figure 4.1: A visual representation of the pseudo-Boolean matrix factorization, which
takes a binary matrix representing which visual concepts appear in each scene instance
and decomposes it into a dictionary matrix, which assigns visual concepts to scenarios,
and an encoding matrix, which assigns scenarios to each scene instance.

ScenarioNet model, a special convolutional neural network (CNN) architecture that re-

fines the scenario dictionary based on visual feedback and predicts scenarios from visual

data.

ScenarioNet replaces the final convolutional layers in standard CNNs with the sce-

nario block (see Figure 4.2). The scenario block consists of three parts. The first set

of layers in the scenario block is responsible for predicting which scenarios are present

in an image and additionally, are compatible with the Class Activation Mapping tech-

nique [2] introduced in Chapter 2, so the model can identify which parts of an image

are attended to by ScenarioNet when recognizing the presence of each scenario. The

second set of layers in the scenario block use a PBMF-based loss function to guide the

learning/refinement of the dictionary of scenarios and provide feedback to the scenario

recognition layers, enabling the model to predict the presence and strength of each sce-

nario in a given image. The final set of layers in the scenario block are equivalent to a

multinomial logistic regression model that takes scenarios predictions as input features

and outputs predictions for the downstream classification task.

It should be noted that during training, ScenarioNet only requires information about

the presence (not location) of visual concepts in an image. For the downstream classifi-

cation task, ground truth class labels are needed during training. During testing, only

82

Figure 4.2: An overview of the ScenarioNet architecture. The key contribution of the
architecture is the scenario block, which replaces the final fully connected layers of
a standard convolutional neural network. The scenario block consists of three parts:
1) a set of layers that predict the presence of each scenario in a given image and are
compatible with the class activation mapping technique [2], enabling the network to
identify which parts of an image ScenarioNet attends to when recognizing whether or
not a scenario is present in a given image, 2) layers that use a pseudo-Boolean matrix
factorization-based loss function to fine-tune the dictionary of scenarios and provide
feedback to the scenario recognition layers, and 3) layers equivalent to a multinomial
logistic regression classifier that use scenarios as low-dimensional, interpretable features
for the downstream classification task.

images are provided.

As in the previous chapter, we once again use scene classification as our motivating

application. Furthermore, we again use object presence as our base visual concepts.

However, it should be noted that the framework can be applied to other applications

and utilize other types of visual concepts, and the extension provided in the next chapter

will highlight a very different application.

ScenarioNet has some advantages over other convolutional neural network architec-

tures. Specifically, it’s more interpretable than traditional CNNs because it is capa-

ble of producing semantically- and visually-grounded evidence when making decisions

and predictions. For example, consider the scene classification task. By bottlenecking

through a scenario recognition layer, the network can use the predicted scenarios as

low-dimensional semantic features for the downstream scene classification task. These

scenarios are generally easy-to-interpret by humans, and subsequently, humans can ver-

ify the existence of each predicted scenario in a given image by inspecting the scenario-

localizing attention maps output by the model. Finally, the model provides the level of

influence each scenario exerts when assigning a class, so humans can understand how

important each of the predicted scenarios is for making the downstream classification.

All of these tools provided by ScenarioNet help humans to better understand how the

model arrives at each of its decisions.

83

One might question why it is necessary to bottleneck through the scenario represen-

tation instead of using the base visual concept predictions. As was seen in the previous

chapter, many of the base visual concepts are often hard to recognize from visual data.

In contrast, we will show that scenarios can be recognized from visual data with much

higher accuracy; thus, decisions based on scenarios can be trusted with much higher

confidence than using the predicted base visual concepts. Another advantage of the

scenario representation is that it is much lower-dimensional than a representation de-

rived from predicting the entire initial set of visual concepts. Likewise, the scenario

representation groups visual concepts that co-occur with high frequency, and the sce-

narios during the learning process are constrained to be approximately orthogonal to

one another, so the scenario representation has very little redundancy in the informa-

tion it encodes compared to the representation consisting of predictions over the initial

set of visual concepts. Thus, it is much easier for a human to evaluate decisions based

on tens of scenarios compared to hundreds or thousands of the initial visual concepts.

Similarly, by the formulation of ScenarioNet, in contrast to purely human-specified vi-

sual concepts, scenarios are naturally discriminative for the downstream target task. To

summarize, recall the major flaws with visual concept-based models mentioned several

times throughout this thesis: visual concepts can be difficult to recognize from visual

data, and many visual concepts are often redundant because the set of visual concepts

might be very high-dimensional, and a significant portion of the visual concepts will

not be discriminative for the downstream task. Scenarios suffer from neither of these

issues.

4.2 Related Work

In this section, we present our work in the context of existing efforts to learn meaningful

groups of objects for scene understanding tasks since this is very similar to the example

use case discussed in this chapter. We do not discuss existing approaches for improving

the interpretability of machine learning models nor do we discuss methods related to

exploiting visual concepts as these methods have already been thoroughly discussed in

Chapter 2.

84

4.2.1 Learning Meaningful Groups of Objects

Our proposed method is not the first method for discovering meaningful groups of

objects and exploiting context between objects. The simplest class of object-based rep-

resentations are those that utilize pairwise co-occurrence relationships between objects

(e.g., [222]) in order to model context between objects. Scenarios can capture informa-

tion beyond pairwise relationships by efficiently learning groups of objects that vary in

size.

Many other works focus on modeling hierarchical relationships between objects.

Feng and Bhanu [243] propose a method for constructing tree-based hierarchies of

concepts based on object co-occurrence graphs. In their method, objects sharing an

ancestor node make up scene concepts, which are similar to our scenarios but different

in key ways. Specifically, to compute explicit scenarios from these scene concepts, one

must identify where the object tree should be cut. Moreover, while it is possible to

assign individual concepts to multiple scene concepts by cutting the tree at different

ancestor nodes, it is challenging, if not impossible, to assign an object to multiple scene

concepts where the object serves different functions within each scene concept. For

example, recall how a “screen” object can take on different meanings when paired with

a keyboard and mouse versus a cable box and remote. A tree structure cannot capture

this type of context, but our scenarios can easily handle this situation. Furthermore, our

method provides information beyond clustering objects, e.g., PBMF (and by extension,

ScenarioNet) can tell us how important each object is to a given scenario and how to

decompose scene instances as the union of scenarios.

There are a number of other tree-based and hierarchical models for scene under-

standing applications. Choi et al. [231] introduces a method for organizing objects into

a tree structure where the edges of the tree express positive and negative correlations

between objects and latent variables. Fan et al. [234] construct ontologies for content-

based image retrieval using visual concept-based hierarchies. Lan et al. [229] explore

modeling context at three levels: parts of objects, objects, and visual composites.

Past work has also explored how to use sets of objects to improve object detection.

85

Li et al. [244] propose a method for finding groups of objects of arbitrary size and

detecting these groups within images by employing deformable parts model. Cinbis and

Sclaroff [232] construct classifiers that exploit object-object and object-scene relations

within sets of objects to re-score and remove noisy detections.

4.3 Problem

As has been mentioned previously, in this chapter, we will use scene classification with

object-based representations as our motivating example application. Please see Sections

1.1.4 and 3.3 for more details. Scene classification with object-based representations is

an especially good application for evaluating the interpretability of scenarios. This is

because humans have an intuitive understanding of how objects relate to one another

and to specific scene categories. For example, humans naturally understand that show-

ers, sinks, and toilets frequently co-occur, and if a swimming pool were to be added

to this set of objects, humans would likely think that something is unusual/anomalous

about the grouping. Similarly, if humans know that a scene contains a shower, sink,

and toilet, then they can quickly hypothesize that the scene is a bathroom. In other

applications and with other types of visual concepts, humans might not have such a

natural understanding of the domain, and thus, it would be more difficult to run human

validation experiments.

It should be noted that further discussions in this chapter will be targeted more

specifically in terms of objects instead of visual concepts and scene classification instead

of general classification tasks.

4.4 Data

We conduct experiments on the SUN-RGBD [245] and ADE20K [21] datasets, both

of which are benchmark datasets designed for evaluating scene classification models.

Each dataset is divided into separate training and test sets using the recommended

splits for the SUN-RGBD and a random split for the ADE20K dataset. Furthermore,

we only consider objects that appear in at least fifty instances for both datasets. This

86

pruning results in using 118 objects for the SUN-RGBD dataset and 339 objects for

the ADE20K dataset. To augment our training data, we apply random cropping and

horizontal mirroring. On the SUN-RGBD dataset, we restrict our class labels to the 15

most frequently occurring scene classes, reserving 100 samples per class for test data,

and generating 1000 samples per class (via applying data augmentation to the training

instances) for the training data. For the ADE20K dataset, we restrict our class labels

to the 31 most frequently occurring scene classes, reserving 25 samples per class for

test data, and generating 500 samples per class (via applying data augmentation to the

training instances) for training data. This careful stratified sampling of training and test

instances ensures that we can evaluate the performance of our proposed model without

having to worthy about issues of class imbalance. Furthermore, for both datasets, we use

twenty percent of the training instances as validation data for tuning hyperparameters.

We use the ResNet-18 architecture [239] as our backbone CNN architecture and replace

the final fully-connected layers with the scenario block.

4.5 Methodology

4.5.1 Identifying Scenarios from Data: Pseudo-Boolean Matrix Fac-

torization

In this section, we consider the problem of how to form scenarios from the base visual

concepts; i.e., we propose a method for clustering objects into scenarios based on co-

occurrence statistics.

Assume that there exists a training set of scene instances and a finite set of pre-

specified objects. For each scene instance in the training set, ground-truth annotations

for the presence (or absence) of every object in the object set are provided via human

labeling. For each of the training instances, we encode object presence information in

the form of a binary vector. In this vector, an element is one if the corresponding object

is present in the scene instance; otherwise, if the corresponding object is absent in the

image, the element is zero. The vectors for all training instances are concatenated to

form a matrix A. Each row of A corresponds to a specific object, and each column

87

corresponds to a specific training instance.

Next, we specify the number of desired scenarios k. Details of how to estimate this

value from the data are discussed in Section 4.5.1. Then, A is decomposed into two

approximately binary matrices. The first matrix resulting from this decomposition is a

dictionary matrix W which assigns objects to scenarios. The second matrix resulting

from this decomposition is an encoding matrix H that tells us how each scene instance

can be represented as a combination of the learned scenarios. Each column of W

represents a single scenario, and each row of W represents a specific object. If element

Wij is zero (or very small), object i does not belong in scenario j. The closer Wij is to

one, the stronger influence object i exerts on scenario j. Each column of H represents

a specific scene instance, and each row of H represents a specific scenario. If element

Hij is zero (or very small), then scenario i is not a component of scene instance j. The

closer Hij is to one, the more influence scenario i exerts on scene instance j.

Formulation of Pseudo-Boolean Matrix Factorization

We propose a novel matrix factorization-based approach for identifying scenarios. Our

approach approximates Boolean matrix factorization (BMF) [246] in a differentiable

framework. In BMF, A, W , and H are binary matrices and the matrix multiplication

is Boolean (denoted as ◦), i.e., instead of using summation (1 + 1 = 2), we take the

union instead (1 ∪ 1 = 1). The rationale behind this modeling decision is presented

in Figure 4.3. To summarize the figure, Boolean matrix multiplication is important

for our problems because we only care about recovering the absence or presence of

each object in a scene during the reconstruction and we do not care about object

counts. Taking the union of all of the objects in all of the present scenarios has the

effect of assigning an object to a scene instance only once, instead of counting every

time it appears in a constituent scenario of the given scene instance. Thus, Boolean

matrix multiplication prevents the problem of overcounting objects when all we care

about is object presence and not object count. However, Boolean matrix factorization

is not ideal for our specific use case; namely, we want to integrate it into a neural

network architecture which requires an optimization formulation that is continuous,

88

Figure 4.3: Above, we show the difference between traditional matrix multiplication and
Boolean matrix multiplication. Boolean multiplication replaces the addition operator
with a union operator. It is important that the matrix factorization for identifying
scenarios uses Boolean matrix multiplication instead of traditional matrix multiplication
because when reconstructing the objects-scene instances matrix, we only care about
object presence and not object counts.

and we want the learned dictionary to satisfy several other properties specific to our

problem of interest. As such, we need to make several approximations to Boolean

matrix factorization. In this section, we start with the basic formulation of BMF and

step-by-step transform it into a novel matrix factorization that is better suited for our

specific use case.

Suppose we have m objects, n scene instances, and k scenarios. The basic formula-

tion of Boolean matrix factorization is as follows:

min
W,H
||(A−W ◦H)||1 s.t. W ∈ {0, 1}m×k, H ∈ {0, 1}k×n (4.1)

Beyond modeling the problem more realistically than a traditional unconstrained

or non-negative matrix factorization, BMF is well-suited for identifying scenarios from

data for several reasons. First, it efficiently compresses and preserves semantic informa-

tion about the scene contents into a low-dimensional representation. Second, the basis

vectors can be easily understood by humans. Third, it discovers meaningful interactions

between objects and thus, enables us to systematically identify powerful contextual re-

lationships that exist between specific sets of objects. Fourth, the encoding vectors tend

to be sparse, meaning each scene instance is expressed as the union of a small subset

of scenarios.

Ultimately, we want to integrate the matrix factorization with a neural network.

89

Neural networks require differentiable functions. Thus, it is important that the opti-

mization problem for the matrix factorization is differentiable and can be solved by

gradient descent. The formulation in Equation 4.1 is not continuous, and thus, cannot

be solved via gradient descent. Instead, we need to approximate Boolean matrix mul-

tiplication as a continuous function, and in the optimization formulation, we need to

relax the values of W and H to lie in [0, 1] instead of being perfectly binary. The obvious

way of converting from Boolean matrix multiplication to a continuous approximation

of Boolean matrix multiplication is to replace the logical operators with those from

infinite-valued/fuzzy logic [247, 248]. In infinite-valued logic, the conjunction operator

is replaced by the weak conjunction operator x ∩ y ≈ min{x, y}, and the disjunction

operator is replaced by the weak disjunction operator x ∪ y ≈ max{x, y}. When x

and y are binary, then these operators are identical to their Boolean logic counter-

parts, and when x and y instead belong to the interval [0, 1], then the output of these

operators remain in the interval [0, 1]. However, using these operators is difficult in

practice. W and H are very large matrices, and so there are many operations that need

to be replaced by the aforementioned infinite-valued logic operators. Because the max

and min operators are not easy to optimize over (requiring the use of subgradients),

and because these operators are used many times in the optimization formulation, the

optimization landscape can become very jagged, which is difficult to optimize over,

and the computational graph needed to perform backpropagation becomes very large,

making the optimization resource-heavy in terms of memory and computation. Also,

the infinite-valued logic operators can only be used when the H matrix is binary. To

clarify, if we know that scenario a and scenario b are present in a given scene, then for

each object, we can take the weak disjunction of their real-valued scores for scenario a

and b, so if object x has a score of 0.85 in scenario a and a score of 0.75 in scenario b,

then Wx,a ∪Wx,b ≈ max{Wx,a,Wx,b} = max{0.85, 0.75} = 0.85. However, if H is not

binary, then there is no way to say that “scenario a and scenario b are present in a given

scene”; instead, we must say scenario a is present in a scene with score Ha, and scenario

b is present in a scene with score Hb. There is no obvious way to incorporate these

scores in the matrix factorization. Instead, we would likely need to threshold the H

90

matrix which further complicates the optimization problem, making the optimization

landscape much more difficult to optimize over when using gradient descent, and once

again, increasing the size of the computation graph needed for backpropagation.

Instead, we can approximate Boolean matrix multiplication in such a way that the

approximation is still continuous, W and H can both be real-valued in the interval

[0, 1], and the matrix multiplication (and backpropagation over the matrix multiplica-

tion) can be computed much more efficiently by vectorizing many operations. We can

approximate Boolean matrix multiplication (in an ad hoc way) as W ◦H ≈ min(WH, 1).

When W and H are binary, this is equivalent to Boolen matrix multiplication; however,

it can still handle cases where W and H lie in [0, 1]. Yet, this approximation is not

without its flaws. We highlight one major flaw with a simple example. Suppose we have

three scenarios present in a scene with encoding coefficients close to one, and suppose

that object x in scenario a takes on a value of 0.3, object x in scenario b takes on a value

of 0.35, and object x in scenario c takes on a value of 0.25. Using the weak disjunction

from the infinite-valued logic operators, we would find that max(0.3, 0.35, 0.25) = 0.35

which says the object isn’t likely present in the image, and this agrees with common

sense. Using the new formulation, we would find: min(0.3 + 0.35 + 0.25, 1) = 0.9,

which suggests that the object is present in the scene, and this is disagrees with our

expectations. Thus, our formulation is flawed when many scenarios contribute small

amounts of evidence in favor of a specific object. However, we found that, in practice,

this problem is relatively uncommon, and later we discuss how to impose additional

constraints on W and H to push values close to zero and one, helping to further al-

leviate this problem. Another issue with using min(WH, 1) to approximate Boolean

matrix multiplication is that it results in cases where the gradient vanishes. Instead,

we adjust the approximation even further to avoid the vanishing gradient problem:

min(WH, 1) ≈ min(WH, 1 + 0.01WH). Our basic pseudo-Boolean matrix factor-

ization (PBMF) formulation is as follows:

min
W,H
||(A−min(WH, 1 + 0.01WH))||2F s.t. W ∈ [0, 1]m×k, H ∈ [0, 1]k×n (4.2)

Equation 4.2 can be further improved, specifically for finding better scenarios. We

91

modify the basic formulation of pseudo-Boolean matrix factorization to include three

additional terms: an orthogonality penalty that encourages diversity between scenarios,

a penalty that forces the dictionary matrix to be as close to binary as possible, and a

penalty that forces the encoding matrix to be as close to binary as possible. It should

be noted that the penalties for binarizing the dictionary and encoding matrices can

also be replaced by penalties encouraging sparsity (e.g., the `1-norm) in the dictionary

and encoding matrices which accomplishes similar purposes while traditionally being

more friendly to optimize over since sparse penalty functions be written as convex

functions. We also introduce a weight matrix Ω, which can be determined via an

inverse document frequency weight scheme, that decreases the importance of common

objects and increases the importance of rare objects during the factorization.

min
W,H
||Ω • (A−min(WH, 1 + 0.01WH))||2F

+ α1||W ᵀW − diag(W ᵀW)||2F + α2||W −W 2||2F + α3||H −H2||2F

s.t. W ∈ [0, 1]m×k, H ∈ [0, 1]k×n,

Ωij = max

(
Aij ∗

(
1 + log

(
n

fn(i)

))
, β

)
(4.3)

• denotes element-wise matrix multiplication. The αs represent trade-off hyperparam-

eters that can be determined via hyperparameter-tuning methods (we use sequential

model-based optimization [249], a.k.a. Bayesian optimization, to set these values). fn(i)

is a function that recovers the number of scene instances in which object i is present in

the training dataset. β is a constant value representing the lower bound of the inverse

document frequency set as a hyperparameter. We set β = 0.5 in our experiments.

There are several questions we need to address with regard to how to formulate

and solve the PBMF optimization problem. These include how to select the num-

ber of scenarios, how to initialize the dictionary and encoding matrices, and how to

computationally solve the PBMF optimization problem.

Selecting the Number of Scenarios

The formulation of scenarios presented in this chapter requires the number of scenarios k

to be pre-specified. There are several methods available that can aid in determining the

92

proper number of scenarios. However, it should be noted that there is not necessarily a

correct number of scenarios. By varying the number of scenarios, the model can capture

information about a scene at different levels of granularity. For example, consider

using objects as our base visual concepts. If the number of scenarios is set to two,

one scenario might represent indoor scenes while the second might represent outdoor

scenes. If the number of scenarios is set to the number of classes in the dataset, then the

learned scenarios will likely be class-correlated scenarios where each scenario captures

the objects most common to a specific class. If the number of scenarios is set to much

larger than the number of classes, the model will capture more information about local

context; e.g., it might capture a computer scenario consisting of a keyboard, monitor,

mouse, computer tower, and computer screen. That being said, some methods exist for

identifying the number of scenarios by considering the trade-off between finding a low-

dimensional representation while preserving as much semantic information as possible.

The simplest approach for estimating the number of scenarios is to generate scenar-

ios using different values of k and have a human manually inspect the output scenarios.

The human can then pick the value of k where the identified scenarios are most consis-

tent with his or her expectations (i.e., where the objects don’t appear to be under- or

over-clustered). A more principled and quantitative approach is to generate scenarios at

different values of k, plot the optimum of the objective function of the PBMF optimiza-

tion problem (or alternatively, just the reconstruction error component of the objective

function) at evenly-spaced intervals of k, and identify the elbow in the graph where the

values begin to plateau. A third approach makes use of the orthogonal non-negative

matrix tri-factorization [250]. This is the non-negative counterpart to the singular value

decomposition: A ≈ USV ᵀ, s.t. U � 0, S � 0, V �, UUᵀ = I, V ᵀV = I, S is diagonal.

Then, k can be determined by finding the number of elements in S greater than or equal

to some threshold. Fourth, we can implement scenario selection directly into PBMF by

imposing an `2, 1-norm on W and/or H.

In this work, we take a fifth approach that is specifically useful for finding k when

PBMF is integrated into a convolutional neural network. We treat k as a hyperparam-

eter, and we use sequential model-based optimization (a.k.a. Bayesian optimization)

93

using Tree-Structured Parzen Estimators [249] to efficiently find “good” values of k.

Specifically, we find the value of k such that the (weighted) sum of the evaluation

metrics for scenario recognition and scene classification are maximized on a held-out

validation set.

Initializing the Dictionary and Encoding Matrices

The PBMF optimization problem is highly non-convex. Thus, the solution achieved

via gradient descent is sensitive to the initial choice of W and H. While it is possible

to initialize W and H randomly, we have found that the method converges faster and

to better solutions if we employ a more careful initialization scheme. We present one

such scheme in this section.

Non-negative matrix factorization (NMF) finds basis vectors that decompose scenes

into their parts by finding clusters of objects. NMF is an easier optimization problem

than PBMF, and many libraries exist for efficiently performing NMF. However, NMF

is ill-suited for our problem for two reasons. First, it uses traditional matrix multipli-

cation instead of Boolean matrix multiplication, and as discussed previously, this type

of matrix multiplication is not ideal for our applications. Second, the dictionary and

encoding matrices output by NMF are only constrained to be non-negative, meaning

elements of the learned basis can take arbitrarily large values, which makes interpret-

ing the dictionary and encoding matrices more challenging than the matrices output by

PBMF. However, the bases produced by NMF with some re-scaling of the output ma-

trices can provide a good initialization for pseudo-Boolean matrix factorization, which

can then subsequently be used to refine the dictionary and encodings output by NMF

to meet the constraints of our problem while continuing to lower the reconstruction

error.

To rescale the matrices output by NMF, we can repurpose the diagonal scaling trick

introduced by Zhang et al. [251]. Zhang et al. showed that if A is binary and can be

factored exactly as A = WH where W and H are non-negative, then there exists W ∗

and H∗ such that every element of W ∗ and H∗ are in the (inclusive) interval between

zero and one, and A = W ∗H∗. Furthermore, there exist linear transformations from

94

W to W ∗ and from H to H∗ using a diagonal matrix D: W ∗ = WD and H∗ = D−1H.

We now show how to apply this to initialize W and H for our pseudo-Boolean matrix

factorization.

We begin by using standard non-negative matrix factorization to find Wnmf and

Hnmf . We then rescale Wnmf and Hnmf using Zhang et al.’s method.

Winitial = WnmfD = WnmfD
− 1

2
W D

1
2
H ,

Hinitial = D−1Hnmf = D
− 1

2
H D

1
2
WHnmf ,

DW = diag([max(wnmf 1), ...,max(wnmf k)]),

DH = diag([max(hnmf 1), ...,max(hnmf k)]),

(4.4)

where max(wnmf i) is the maximum value of column i of W , and max(hnmf j) is the

maximum value of column j of H.

It should be noted that if A cannot be factored exactly as A = WnmfHnmf , which

is common in practice, then the elements of Winitial and Hinitial are not guaranteed to

fall within the interval [0, 1]. However, the rescaling still pushes the elements of Winitial

and Hinitial much closer to the desired interval than the arbitrary solution output by

non-negative matrix factorization. This leads to much faster convergence since the

variable matrices are properly scaled. It should also be noted that this initialization

procedure is computationally expensive because it requires solving an additional matrix

factorization problem, but we’ve found that it leads to qualitatively better solutions

with faster convergence than randomly initializing W and H and directly solving for

the pseudo-Boolean matrix factorization.

Solving the Pseudo-Boolean Matrix Factorization Optimization Problem

(without Visual Feedback)

We’ve talked about how to select the number of scenarios and how to initialize the

dictionary and encoding matrices. In this section, we consider how the PBMF problem

can be solved without any visual feedback, i.e., outside of the neural network. In this

case, we’re interested in decomposing the ground truth A matrix (for the training data)

into W and H. In later sections, we discuss how to integrate the PBMF into a neural

95

network in order to map visual data to scenarios.

Since we ensured that all of the components of PBMF are differentiable, the PBMF

optimization problem can be solved with methods based on gradient descent. Specif-

ically, the problem can be solved in two ways. The first way it can be solved is via

alternating optimization, where we solve for W and H separately in an alternating

fashion until convergence, as is done with traditional non-negative matrix factoriza-

tion. Alternatively, W and H can be jointly solved for by using standard gradient

descent. We’ve verified that both methods work and produce similar results, but the

alternating optimization approach is generally a bit more stable during the optimization

and tends to be more robust to sensitivity in the hyperparameters of the optimization

algorithm.

Likewise, to enforce the boundary constraints on W and H (i.e., all elements of

W and H must fall in the interval between zero and one, inclusive), we can employ

either projected gradient descent or explicitly enforce the boundaries using sigmoids:

W = sigmoid(Wunconstrained) and H = sigmoid(Hunconstrained). Once again, we have

observed that, in practice, both approaches produce similar results. However, the

sigmoid-based approach enables us to more easily integrate PBMF into a neural network

(further details will be discussed in later sections).

4.5.2 ScenarioNet: Identifying and Recognizing Scenarios from Visual

Data

To this point, we have assumed that we have perfect knowledge of all ground-truth

object data. This assumption enables us to directly solve for the encoding vector when

presented with a previously unseen scene instance. To do so, we just need to hold the

scenario matrix constant and directly solve for the encoding vector (or matrix if we’re

recovering the ground truth scenarios for multiple scene instances).

In practice, ground truth object data is never given at test time. Instead, the

scenario encoding for a specific scene instance must be recovered entirely from visual

data. To perform this recovery, we integrate pseudo-Boolean matrix factorization with

96

convolutional neural networks. We introduce the ScenarioNet architecture, a neu-

ral network-based model that jointly learns to identify and recognize scenarios from

real-world visual data while using the predicted scenario encoding as features for the

downstream scene classification task. During training, ScenarioNet learns how to map

pixels to an estimated scenario encoding matrix Ĥ while fine-tuning the dictionary W

to adapt to the imperfect Ĥ. Furthermore, W also changes based on feedback from

the scene classification task in order to improve the discriminating power of the learned

scenarios. The key architectural difference between ScenarioNet and traditional convo-

lutional neural networks is the scenario block (see Figure 4.2).

The scenario block replaces the final fully-connected classification layers in tradi-

tional CNNs. Instead of passing the output of the final convolutional layers of a neural

network directly into the classification layers, we pass them through the scenario block.

The first set of layers in the scenario block is responsible for recognizing scenarios from

visual data. This set of layers consists of a global average pooling (GAP) layer, fol-

lowed by a fully-connected layer that feeds into a sigmoid layer. This combination of

layers makes the network compatible with the class activation mapping technique [2],

which enables humans to identify which parts of an image ScenarioNet attends to when

deciding whether or not each scenario is present in the image. The output of the sig-

moid layer is the scenario encoding vector (or matrix, when multiple images are passed

through the net simultaneously): Ĥ. The sigmoid forces each element of the vector to

be between zero and one, enabling the net to perform constrained optimization over

Ĥ. This vector estimates which scenarios are likely to be in a given image. The output

of the scenario encoding layers then feeds into a PBMF loss layer. The PBMF loss

layer is the second component of the scenario block, and it is responsible for fine-tuning

the scenario dictionary (once again constrained via a sigmoid function) and providing

supervisory feedback to the network to adjust the feature extraction portion of the net-

work and the scenario recognition layers. The output of the scenario encoding layers

simultaneously feeds into the third component of the scenario block: a sequence of layers

equivalent to a multinomial logistic regression model. This final set of layers performs

scene classification by using the scenarios as low-dimensional, human-understandable

97

features in combination with an easy-to-interpret linear classifier.

Training ScenarioNet

Now that we’ve defined the ScenarioNet model, we discuss how to train the model. Dur-

ing training, ScenarioNet is provided with images paired with ground truth information

about the presence (not location) of objects in each image and the class labels of each

image. During testing, ScenarioNet only requires images (and not object information).

The training process has several stages. First, an initial scenario dictionary is learned

without any visual feedback using the ground-truth object presence data. Next, the

net is trained to predict the scenario encodings while the dictionary is fine-tuned, but

we do not yet incorporate any feedback from the scene classification task. Then, we

freeze the network, and we train a softmax classifier for scene classification on top of

the frozen network. Finally, we jointly fine-tune the net to perform scenario recognition

and scene classification while also continuing to fine-tune the dictionary. Each step of

the training process takes between 10 and 20 epochs.

In our experiments, instead of learning the entire network from scratch, we fine-tune

a modified ResNet-18 model initially trained on ImageNet [218]. To train our network,

we use the ADAM optimizer [252]. We use a learning rate of 1.0e− 4, a weight decay

of 1.0e− 5, and a mini-batch size of 16.

Generating Explanations: Interpreting the Output of ScenarioNet

In this section, we focus on how to interpret the output of ScenarioNet and understand

how the network arrives at a given prediction.

Given an input image, ScenarioNet outputs several useful pieces of information.

First, it provides a probabilistic scene class assignment. Second, it provides a vector of

scenario encoding coefficients, which tells us a list of potential scenarios that are likely

to be present in an image. Third, the network outputs the dictionary of scenarios, which

tells us which objects belong to which scenarios as well as how influential each object

is to each of its “parent” scenarios. Fourth, since the network is compatible with the

Class Activation Mapping technique, we can extract attention maps that can localize

98

Figure 4.4: We show an example annotated explanation of the output of ScenarioNet
applied to an outdoor highway scene instance. We show the scene class prediction and
top-3 strongest predicted scenarios with the highest influence scores for the downstream
classification task along with the corresponding activation maps.

the parts of each scenario important for predicting the presence of the scenario.

In Figures 4.4, 4.5, 4.6, and 4.7 we show several examples of the explanations output

by ScenarioNet. In each case, we show a scene instance decomposed into the strongest

detected scenarios that are most influential for the downstream classification, as deter-

mined by ScenarioNet. Let us examine the top graphic in Figure 4.5 in more detail.

ScenarioNet correctly predicts that the scene category is “dining room” and does so

with high confidence. The top-3 scenarios provide evidence to support this conclusion.

The first scenario focuses on dining areas; the second scenario focuses on kitchen ap-

pliances; and the third scenario focuses on decorative flowers. Furthermore, we can

look at the encoding coefficients for each scenario to get an idea of how strongly the

net predicts a given scenario. Note that all of the encoding coefficients for the dining

room example are close to one because we are specifically examining only the strongest

detected scenarios. Recall that ScenarioNet uses scenarios as features for the down-

stream scene classification task. We define scenarioi’s influence score for a specific

class j to be the weight in the multinomial logistic regression model relating scenario i

with class j. If the value of the influence score is a large positive number, the scenario

provides strong evidence in favor of predicting the specified class. If the influence score

99

Figure 4.5: We show example explanations output by ScenarioNet when ScenarioNet
is applied to two dining room scenes. We show the scene class prediction and the top-
3 strongest predicted scenarios with the highest influence scores for the downstream
classification task along with the corresponding activation maps. Top image from [3].

100

Figure 4.6: We show an example explanation output by ScenarioNet when ScenarioNet
is applied to an art gallery scene. We show the scene class prediction and the top-
3 strongest predicted scenarios with the highest influence scores for the downstream
classification task along with the corresponding activation maps.

Figure 4.7: We show an example explanation output by ScenarioNet when ScenarioNet
is applied to a bathroom scene. We show the scene class prediction and the top-
2 strongest predicted scenarios with the highest influence scores for the downstream
classification task along with the corresponding activation maps.

101

is a large negative number, the scenario provides strong evidence against predicting a

specific class. For the dining room image example, scenario 1 provides strong support

for the “dining room” scene class, whereas scenarios 2 and 3 provide weaker support.

We can also examine the influence each object exerts on each scenario. In scenario 1,

the “chandelier” and “chair” objects play a larger role in defining the scenario than

the “buffet counter” object. Finally, we can verify that the net is truly learning to

recognize scenarios and does not rely entirely on contextual clues by examining the

scenario attention maps. We see that each of the predicted scenarios is indeed present

in the image. Furthermore, the regions that the net attends to do contain objects that

partially constitute the scenarios.

4.6 Experimental Results and Analysis

In this section, we show some qualitative and quantitative results demonstrating the

utility of pseudo-Boolean matrix factorization and ScenarioNet. We begin by highlight-

ing some example scenarios identified via ScenarioNet. Next, we show an example of

how scenarios can be used for comparing images at a semantic level. Then, we explore

some cases where ScenarioNet doesn’t perform as expected that we qualitatively ob-

served as we were analyzing our model and results. We then evaluate how well the

input matrix can be reconstructed from PBMF compared to other matrix factorization

methods. Next, we show that ScenarioNet is competitive with existing methods for the

scene classification task. Finally, we present some human validation studies to show

the interpretability of the scenario representation and plausibility of the explanations

output by the network.

4.6.1 Examples of Learned Scenarios

Up to this point, we’ve discussed scenarios mostly in a conceptual manner while only

presenting a few examples of actual scenarios learned via PBMF or ScenarioNet. In this

section, we show some examples of scenarios learned using ScenarioNet on the ADE20K

dataset (see Figure 4.8). By doing so, we hope to qualitatively highlight the diversity,

102

Some Example Scenarios:

• {Ceiling, Floor, Wall}
• {Fog Bank, Mountain Pass, River, Snow}
• {Grass, Bench, Path}
• {Bicycle, Manhole, Railing, Sidewalk/Pavement, Stairs}
• {Apparel/Clothes, Bag/Handbag/Pocketbook/Purse, Closet Hangers,

Hat, Jacket, Shirt, Shoes, Sweater, Trousers/Pants, Chest of Drawers}
• {Computer Case, Computer, Desk, Keyboard, Monitor, Mouse,

Mousepad, Printer, Screen, Speaker}
• {Head, Left Arm, Left Foot, Left Hand, Left Leg, Neck, Person, Right

Arm, Right Foot, Right Hand, Right Leg, Torso}
• {Bathtub, Cistern, Countertop, Faucet, Lid, Screen Door, Shower, Sink,

Soap Dispenser, Tap, Toilet Paper, Toilet, Towel, Towel Rack}

Figure 4.8: We show several example scenarios learned by ScenarioNet on the ADE20K
dataset.

meaningfulness, and ease-of-interpretation of the learned scenario representation.

4.6.2 Content-Based Comparison

Because ScenarioNet bottlenecks through features explicitly grounded in

human-understandable concepts, it is useful for quickly providing a high-level overview

of the similarities and differences between two scene images. Furthermore, this can

be done without making comparisons based on individual objects, which, as we have

shown in previous chapters and will show in later this chapter, can be difficult to detect

from visual data accurately. Figure 4.9 shows an example of comparing two images

based on their semantic content. ScenarioNet correctly identifies that both images are

park scenes containing people and grassy areas. It also correctly picks up on the fact

that the humans in the top image appear in much more detail (i.e., it expresses humans

as a combination of their body parts), whereas the humans in the second image appear

further away, and thus, it only detects the concept of “person” without making a note of

the individual body parts. Similarly, the network picks up on the fact that the second

image contains some man-made outdoor features such as buildings and pathways in

contrast to the first image.

103

Figure 4.9: ScenarioNet can be used to compare two images based on high-level simi-
larities and differences. Image from [3]

4.6.3 Identifying Some Failure Cases of ScenarioNet

We feel that it is important to highlight a few cases that we’ve observed when analyzing

our model and results where ScenarioNet fails to perform as expected.

The first flaw that we’ve observed is that ScenarioNet sometimes is overly aggressive

in creating single-object scenarios. While the number of single-object scenarios increases

as the number of scenarios increases (i.e., as k grows larger) as would be expected, it

should be noted that even for low values of k, PBMF and ScenarioNet still find a

significant number of single-object scenarios. While single-object scenarios are valid

with respect to our formulation of PBMF, if the network produces too many single-

object scenarios, it defeats the purpose and minimizes the advantages of using scenarios

for generating explanations.

The second flaw is the opposite: sometimes PBMF/ScenarioNet combines what

would logically be two scenarios into one scenario. For example, on one dataset, PBMF

finds the scenario: {bed, coffee table, end table, footrest, lamp, nightstand, pillow,

remote, blanket, smoke detector, sofa}. In practice, this scenario should likely be split

into: {bed, lamp, nightstand, pillow, blanket} and {coffee table, end table, footrest,

lamp, pillow, remote, blanket, sofa} and smoke detector should likely not be assigned

to either scenario.

104

Figure 4.10: We show an example where ScenarioNet doesn’t perform as expected.
ScenarioNet is highly confident that the {book, bookcase} is present in the above image,
but when looking at the parts of the image that the network attends to when making
this decision, we see that it exploits contextual clues using objects outside the scenario.
It completely ignores focusing on the actual bookcase and instead attends to the desk
object.

The third flaw is that ScenarioNet is still far from perfect in its predictions. As

such, it makes mistakes in two ways: 1) by predicting scenarios as being present when

they are actually absent in the image and 2) by predicting scenarios as being absent

when they are actually present in the image.

The fourth flaw is that when ScenarioNet predicts the scenarios present in an image,

it sometimes focuses on context clues using objects that exist outside of the scenario.

By looking at the attention maps output by the network, we can see that sometimes the

network ignores the objects that are in a scenario, and attends to context clues instead.

For example, in Figure 4.10, ScenarioNet is highly confident that the {book, bookcase}

is present in a scene, but when looking at the parts of the image that the network

attends to when making this decision, we see that it completely ignores focusing on the

actual bookcase and instead attends to the desk object.

The fifth common flaw that we encountered was that when correctly predicting the

presence of a scenario, the network will often attend to limited parts of the scene. To

clarify, it might attend to parts of objects (e.g., in Figure 4.7, the network attends to

only a portion of the toilet and not the entire toilet). Similarly, if there are multiple

objects indicative of a scenario, the network might attend to just one of the objects

105

Figure 4.11: We evaluate the reconstruction error between a recovered and ground truth
matrix as the dimensionality of the reduced representation is varied using a variety of
methods on the SUN-RGBD dataset.

(e.g., in the top graphic of Figure 4.5, when predicting the dining area scenario, it

focuses mostly on the chandelier and not the chairs despite both objects being in the

scenario and both objects being in the image).

Finally, the sixth flaw encountered is that the network struggles with detecting

“stuff” (i.e., non-rigid, ill-defined objects) versus “things” (i.e., rigid, well-defined ob-

jects). For example, in Figure 4.6 despite being a better examples of where the network

can approximately localize the {floor, ceiling, window} scenario, the network still strug-

gles with localizing the structural elements such as floors and walls. Similarly, we’ve

found that the network struggles with attending to scenarios involving visually tricky

objects such as mirrors and windows.

These are a few select flaws that we encountered as we analyzed our model and

results; however, we acknowledge that this list is not exhaustive. We hope to improve

the model and overcome some of these flaws in future work.

106

Figure 4.12: We evaluate the reconstruction error between a recovered and ground truth
matrix as the dimensionality of the reduced representation is varied using a variety of
methods on the ADE20K dataset.

4.6.4 Reconstruction Error of Pseudo-Boolean Matrix Factorization

In our first quantitative experiment, we look at how well pseudo-Boolean matrix fac-

torization can reconstruct the input object-scene matrix from the learned dictionary

and encoding matrices. PBMF is a lossy decomposition, meaning the original matrix

typically cannot be exactly recovered from the learned dictionary and encoding matri-

ces. The purpose of this experiment is to measure the information loss (with respect to

recovering the ground truth object presence matrix) as a result of the decomposition.

We assume the input consists of the perfect, ground-truth object presence matrix A,

and we reconstruct A using the reconstruction term of the desired matrix factorization

optimization problem, e.g., for the basic PBMF formulation (Equation 4.2), this would

be A ≈ min(WH, 1 + 0.01WH).

We consider three cases of PBMF: PBMF-Basic (Equation 4.2), PBMF-Full (Equa-

tion 4.3) with uniform weighting instead of Ω, and PBMF-Full using the proposed

107

inverse document frequency-based weight matrix. We compare PBMF to several other

matrix factorization methods that are either commonly used in practice or also work

with binary matrices. These methods include the singular value decomposition (SVD),

non-negative matrix tri-factorization (a.k.a. non-negative singular value decomposition,

or NNSVD) [250], nonnegative matrix factorization (NMF) [253], greedy Boolean ma-

trix factorization [246], and binary matrix factorization [251]. We also see how PBMF

compares to “reconstructed” matrices consisting of all-zeros and all-mean values as

baselines.

We initialize the basis and encoding matrices using the method described in Section

4.5.1. Results are plotted in Figure 4.11 for the SUN-RGBD dataset and Figure 4.12

for the ADE20K dataset. On both of these datasets, the reconstruction resulting from

PBMF-Basic exhibits low reconstruction error. In general, it only performs slightly less

well than the much less constrained SVD, and often performs very slightly better than

NMF (i.e., the lines essentially overlap in the Figure).

Reconstruction error is not the only metric we should consider. If the model were

to only focus on minimizing reconstruction error, it would give too much importance

to common objects and often leads to learning basis vectors that lack diversity. In-

stead, we need to add orthogonality constraints and reweigh the importance of all of

the object classes (so rare objects gain more importance during when reconstructing

the input matrix, and common objects lose some importance when reconstructing the

input matrix). Figures 4.11 and 4.12 demonstrate how adding orthogonality constraints

and reweighing rare classes impacts the reconstruction error. Namely, as constraints

and penalties are added to the PBMF formulation, the model sacrifices some recon-

struction accuracy but remains competitive with other, similar matrix factorization

approaches like greedy Boolean matrix factorization and binary matrix factorization.

In practice, we found that dictionaries learned using the PBMF-Full formulation are

better suited for higher-level tasks such as scene classification and image retrieval than

the dictionaries learned via PBMF.

108

4.6.5 Comparison to a Model that Bottlenecks Through Object Pre-

dictions

We now conduct a set of experiments to justify why bottlenecking through a scenario

recognition layer should be preferred to directly bottlenecking through the object recog-

nition layer (e.g., as was done in the previous chapter). We train a multi-object recog-

nition model using ResNet-18 as our backbone network, and the predictions from the

object recognition model are fed into a linear multinomial logistic regression model to

perform scene classification. The multi-object recognition predicts all 118 objects for

the SUN-RGBD dataset and all 339 objects from the ADE20K dataset. We consider

15 scene classes for the SUN-RGBD dataset and 31 scene classes for the ADE20K

dataset (see Section 4.4 for more details). We measure the mean average precision for

evaluating the multi-object recognition task and the accuracy for evaluating the scene

classification task. It should be noted that there is not a true “ground truth” scenario

encoding for the test data. In order to approximate a “ground truth” scenario encoding

matrix for the test data, we learn the dictionary on the training data using ScenarioNet

and solve the PBMF encoding on the test data, holding the dictionary constant, but

this approximation is not perfect because it does not account for any visual feedback

on the test data, and the trade-off parameters for the PBMF formulation need to be

adapted for differences in size (i.e., number of elements) between the input matrices

Atraining and Atest. We set the number of scenarios based on sequential model-based

optimization (see Section 4.5.1 for more details). We find that using 11 scenarios for the

SUN-RGBD dataset and 36 for ADE20K dataset results in the best trade-off between

scenario recognition and scene classification. However, this means there is approxi-

mately one scenario associated with every scene class, which is not incredibly useful

to consider in terms of the generated explanations because class-correlated scenarios

do not allow for highlighting the differences in semantic content for instances of the

same class; thus, the explanation is too coarse. Thus, we also constrain the number of

scenarios to be at least one and a half times the number of scene classes and re-run

the sequential model-based optimization to find a more realistic number of scenarios

109

SUN-RGBD ADE20K

Concept Type Concept Recog. mAP Scene Class. Acc. Concept Recog. mAP Scene Class. Acc.

Objects (SUN: 118, ADE: 339) 0.233 0.551 0.333 0.724

Scenarios (SUN: 11, ADE: 36) 0.511 0.517 0.642 0.802

Scenarios (SUN: 23, ADE: 67) 0.488 0.555 0.537 0.760

Table 4.1: We evaluate how easily objects and scenarios can be recognized from visual
data. We also evaluate the predictive power of the object- and scenario-based features
are for the downstream scene classification task.

for practical applications. With this constraint, we find that using 23 scenarios for the

SUN-RGBD dataset and 67 for ADE20K dataset results in the best trade-off between

scenario recognition and scene classification. Results appear in Table 4.1.

As in the previous chapter, we see that the average object cannot be recognized with

high accuracy from visual data. In contrast, the average scenario can be recognized

with much higher accuracy; albeit, there is still much room for improvement. Thus,

decisions and predictions made based on scenarios can be trusted much more than

those based on object predictions. Similarly, the scenarios are much lower-dimensional

than the initial set of objects, and the scenario encoding for a scene tends to be sparse.

Subsequently, compared to the explanations based on the initial object set, the scenario-

based explanations are much simpler for humans to interpret. The scenario-based model

also generally matches or outperforms the object-based model in terms of accuracy on

the downstream scene classification task. This improved accuracy is likely because

scenarios are explicitly designed to be discriminative, it is harder for the scenario-

based model to overfit since it is so low-dimensional, and scenarios capture contextual

information, which is useful for scene classification.

4.6.6 Comparisons to Other Methods for Scene Classification

In the next set of experiments, we frame the predictive accuracy of ScenarioNet on

the scene classification task in the context of other models. In particular, we compare

ScenarioNet to traditional convolutional neural network architectures, other object-

based features, and visual attribute-based methods. For experiments not involving a

CNN, we train a logistic regression model on top of the given features. We report our

experimental results in Table 4.2.

110

Method SUN-RGBD ADE20K

Baseline CNNs

AlexNet 0.469 0.786

GoogLeNet 0.541 0.796

VGG-16 0.531 0.809

ResNet-18 0.548 0.802

ResNet-18 + Dimensionality Reduction 0.490 0.776

Object-Based Representations

Object Bank + PCA 0.296 0.511

Object Detection (YOLOv2) 0.399 0.639

ResNet-18-Objects 0.551 0.724

Visual Attribute-Based Representations

SUN-Attribute 0.429 0.705

Classemes 0.309 0.581

Meta-Classes 0.360 0.635

Proposed Model

ScenarioNet 0.555 0.760

Table 4.2: We evaluate scene classification accuracy on a number of different features
for the SUN-RGBD and ADE20K datasets.

Comparison to Baseline CNNs

In this set of experiments, we compare ScenarioNet to the AlexNet [238], GoogLeNet

[254], VGG-16 [255], and ResNet-18 [239] convolutional neural networks. AlexNet,

GoogLeNet, and VGG-16 are pre-trained on the Places dataset [256] and fine-tuned

on the SUN-RGBD and ADE20K datasets. ResNet-18 is pre-trained on the ImageNet

dataset [218] and fine-tuned on the SUN-RGBD and ADE20K datasets. Recall that

the experimental results in Table 4.2. ScenarioNet outperforms all of the other models

on the SUN-RGBD dataset in terms of accuracy. ScenarioNet underperforms the other

models on the ADE20K data by about 3-4%, but ScenarioNet has several advantages

over these models. In particular, ScenariNet can generate human-understandable ex-

planations for all predictions, and the scenario encodings are useful for tasks beyond

scene classification, e.g., semantic comparison of two images.

The baseline convolutional neural networks operate over feature spaces with dimen-

sionality in the hundreds and thousands, whereas ScenarioNet generates an encoding

space that is much lower dimensionality (23 scenarios for the SUN-RGBD dataset and

67 scenarios for the ADE20K dataset). For more fair comparisons, we modify the

111

ResNet-18 network such that the output of the final feature layer is the same dimen-

sionality as the scenario-based representation. In this case, we see sharp decreases (of

about 3-6%) of the predictive accuracy of the ResNet-18 network on both the SUN-

RGBD and ADE20K datasets. In this case, ScenarioNet outperforms the compressed

ResNet-18 network by about 6-7% on the SUN-RGBD dataset and decreases the gap

in accuracy to only 1-2% on the ADE20K dataset.

Comparison to Other Object-Based Representations

In Section 4.6.5, we compared ScenarioNet to a neural network that bottlenecks through

an object recognition layer. In this set of experiments, we look at several alternative

object-based representations. We consider a logistic regression model that uses Object

Bank features [236] compressed to 8000 dimensions using PCA and a logistic regres-

sion model that uses the object probability scores output by a trained YOLOv2 object

detector [257] as features. The YOLOv2 detector is trained to detect all objects in the

SUN-RGBD and ADE20K datasets that appear in at least one percent of the data (55

objects for the SUN-RGBD dataset and 193 objects for the ADE20K dataset). For con-

text regarding how well the object detector performs: on the multi-object recognition

task, YOLOv2 results in a mean average precision of 0.442 on the SUN-RGBD dataset

and a mean average precision of 0.379 on the ADE20K dataset.

ScenarioNet outperforms these two other object-based representations for the scene

classification task in terms of predictive accuracy. We hypothesize that this increase

in accuracy is a result of the scenario representation’s ability to better capture global

scene information compared to individual object-based representations. This increase

in accuracy is also likely due in part to the fact that ScenarioNet is trained to recognize

objects and scenes jointly, and thus, the scenario representation receives feedback from

the scene classification task.

Comparison to Visual Attribute-Based Representations

Our final set of experiments for the scene classification task involves comparing Scenar-

ioNet to visual attributes. As introduced in Chapter 2, visual attributes are high-level

112

Figure 4.13: We show an example question for evaluating whether a human participant
believes a scenario is meaningful.

semantic properties shared between multiple classes [18]. We feel these comparisons

are important because attributes are a common alternative semantically-grounded rep-

resentation. We consider three attribute-based representations: SUN Attributes [168]

(attributes designed for scene classification), Classemes [258], and Meta-Classes [259].

ScenarioNet outperforms all of these methods in terms of accuracy on the scene classi-

fication task.

4.6.7 Evaluating ScenarioNet’s Explanations via Human Subject Ex-

periments

In our final set of experiments for this chapter, we want to verify that humans find

the learned scenarios meaningfully group objects, and we also want to verify that the

explanations output by ScenarioNet are plausible (i.e., we want to ensure that the

explanations output by ScenarioNet are meaningful to humans). It should be noted

that we use a small sample size in this set of experiments, but in Chapter 6, we will

repeat similar experiments on a similar dataset with much larger sample sizes.

We start by asking the question: do the object groupings make sense? In the first

experiment, we want to evaluate if the scenarios learned using PBMF (i.e., with no

visual feedback and outside of the ScenarioNet) form logical groups of objects. Using

Amazon’s Mechanical Turk (AMT) service, we collect data from five English-speaking

annotators with no knowledge of the dataset or method. We generate 100 scenarios

on the ADE20K using only PBMF and the ground truth object data, and we discard

113

scenarios containing only one object. The human participants are shown one scenario

at a time where each scenario is represented as a set of objects. For each scenario, the

participants are asked to determine how likely the majority of the objects in the set

would be seen together based on their prior knowledge. Specifically, they are asked

if 1) the objects form a meaningful group, 2) the objects might form a meaningful

group, but the group does not align with the participant’s expectations, 3) the objects

form a meaningless group, or 4) the group consists of objects that the participant is not

familiar with. They were further asked to assign a label to the set of objects, if possible.

This additional labeling task was to ensure that the participants were carefully studying

the scenarios and to aid in post-hoc analysis of the experimental results. An example

question is shown in Figure 4.13. After taking the modal response for each question,

respondents found 75.0% of the scenarios were meaningful, 15.3% might

be meaningful, and 9.7% were meaningless. Upon examining the meaningless

scenarios, we found that these were often considered “meaningless” for several reasons.

Sometimes, a scenario would cluster two sets of objects that shouldn’t go together;

sometimes, the scenarios captured context between objects that was very specific to the

ADE20K dataset; and sometimes, the dataset uses obscure, verys specific, or foreign

(i.e., British English vs. American English) terminology for specific objects that make

the scenarios appear meaningless. For example, the felt part of a pool table is referred

to as a “bed”, and without knowing this information, people might be confused about

why the “bed” object is clustered with “pool cue” and “pool ball”.

We then repeated this experiment using 75 scenarios output by ScenarioNet (dis-

carding all scenarios with just one object). Unlike in the previous experiment, the

learning of these scenarios is influenced by visual feedback. Once again using Amazon’s

Mechanical Turk (AMT) service, we collect data from five English-speaking annotators

with no knowledge of the dataset or method. These annotators are not the same as the

ones used in the previous experiments. The human participants are shown one scenario

at a time where each scenario is represented as a set of objects, and for each scenario,

each participant was once again asked to rate the meaningfulness of the object grouping

was and to assign a label to the grouping, if possible. After taking the modal response

114

Figure 4.14: We show an example question for evaluating whether a human participant
can predict the scene class of a given scene instance based only on detected scenarios
that the network deems important for making the true classification decision.

for each question, we see similar results as before. Respondents found 80.6% of the

scenarios were meaningful, 8.3% might be meaningful, 9.7% were meaning-

less, and 1.4% contained objects the participants were not familiar with.

In the final experiment for this section, we evaluated whether humans could ac-

curately identify the category of a scene when presented with only the most influen-

tial scenarios and their influence score. Recall that the influence score consists of the

predicted scenario probability output by the neural network multiplied by the corre-

sponding weight in the logistic regression model. We identified all scenarios detected

by the network for a given image. We then identified which of these scenarios were

positive indicators of the true class as determined by ScenarioNet (i.e., which scenarios

provided positive evidence of the true class). For thirty random scenes that were cor-

rectly classified by ScenarioNet, given only the “positive evidence” scenarios, humans

were then asked to predict the target class from a choice of one true class and four false

classes. The humans never saw any of the images. An example question is shown in

Figure 4.14. After taking the modal response for each question, 86.7% of the scene

classifications made by humans were correct, suggesting that the model output

plausible explanations. It should be noted that the network does make mistakes about

which scenarios are present in a scene instance and might be able to generate plausible-

sounding explanations that are not 100% percent accurate. Thus, we conclude that the

115

explanations output by ScenarioNet is often plausible, but not necessarily totally accu-

rate. That being said, because scenarios are recognized with much higher accuracy than

individual objects, the scenario-based explanations should be more trustworthy than

individual object-based representations. Thus, ScenarioNet is a good first step towards

creating neural networks that are capable of generating grounded explanations.

116

Chapter 5

Deriving New Visual Concepts from Auxiliary Data

Sources: Jointly Learning Topic Models and Visual

Classifiers

Note: This chapter is based on work originally published as “Exploiting Visual and

Report-Based Information for Chest X-Ray Analysis by Jointly Learning Visual Clas-

sifiers and Topic Models” [4].

5.1 Introduction

In the previous two chapters, we introduced two approaches for grounding the decisions

made by convolutional neural networks to human-understandable visual concepts. How-

ever, these methods made many assumptions that do not always hold in practice. First,

these two approaches assumed that for every training image, a human hand-labeled the

presence or absence of all of the relevant visual concepts from a human-curated pre-

specified set of visual concepts. Often, acquiring such fine-grained annotations is a

costly and time-consuming procedure, and thus, it is often not feasible to collect im-

ages paired with visual concept information. Second, we tested our methods on the

relatively simple task of scene classification with relatively clean data. Most images in

the dataset are very prototypical views of the given scene, and most images are labeled

with care, and thus, the annotations are relatively accurate. In this chapter, we look

at a harder problem that is more representative of the types of problems encountered

in real-world applications. Furthermore, we consider an application where clean anno-

tations for visual concepts are not directly provided with the image data. Instead, we

focus on extending the ScenarioNet model introduced in the previous chapter to extract

meaningful and grounded representations from noisier auxiliary data sources.

117

Figure 5.1: We show an example ground-truth medical report for the chest x-ray anal-
ysis problem. Image from [4].

Specifically, the data we consider in this chapter consists of images paired with

natural language text that describes the content of the image. Such data is avail-

able from many sources including encyclopedia entries paired with images, images from

news stories paired with captions, and medical images paired with medical reports. In

this chapter, our motivating application consists of making computer-aided diagnoses

of chest-related diseases based on chest x-ray data paired with medical reports writ-

ten by expert doctors. In particular, these medical reports highlight the important

characteristics of the chest x-rays that explain the specific diagnoses made by a doctor.

We now describe the basic problem addressed in this chapter and our proposed

approach. The data consists of frontal-view x-rays, a set of corresponding natural lan-

guage findings, and one or more Medical Subject Headings (MeSH) labels that describe

the diagnosis using a controlled vocabulary. An example of a medical report provided

by the data set is shown in Figure 5.1.

Our goal is to predict the illnesses present in each chest x-ray image. The diagnoses

we consider consist of “normal/no findings”, “atelectasis”, “cardiomegaly”, “effusion”,

and “emphysema”, and one or more of these illnesses may be present in the chest x-ray.

We propose an extension of the ScenarioNet architecture introduced in the previous

chapter. Instead of bottlenecking through the scenario recognition layer, our proposed

convolutional neural network bottlenecks through a topic modeling layer that learns to

118

cluster key terms from the findings into meaningful groups. For example, the network

might learn to cluster “lungs”, “clear”, and “expanded” to form a topic. See [260] for

an overview of topic modeling.

During training, our proposed convolutional neural network architecture simultane-

ously 1) constructs a topic model, 2) predicts the presence or absence of each topic for

a given image based on learned visual features, and 3) uses an image’s predicted topic

encoding as features for predicting one or more diagnoses. At test time, using only

images as input, the network predicts which topics are present in each image, and using

these topic predictions, predicts one or more diagnoses. Since the neural network jointly

learns both the topic model and the classifier for the downstream diagnosis task, it is

useful for investigating which semantic concepts the CNN might be exploiting during

the decision-making process for the diagnosis task. Likewise, since the neural network

predicts topics based on expert-annotated reports and uses the learned topics to make

diagnoses, the net is forced to “think” like an expert. It should be noted that the orig-

inal goal of this work was to improve automated diagnosis and inject expert knowledge

into the neural network by grounding it to information typically accessible only through

medical reports. The explainability aspect of our approach was a secondary focus. As

such, throughout this chapter, we make some sacrifices in terms of explainability in

order to focus on improving the predictive power of the model on the diagnosis task.

5.2 Related Work

Most related work dealing with interpretable models for visual recognition tasks has

been covered in previous chapters. In this section, we will specifically highlight some

existing work demonstrating how deep neural networks can be used for chest x-ray

analysis and other work combining natural language processing with biomedical image

and text analysis.

Chest x-rays are often used for diagnosing certain life-threatening diseases such as

pneumonia. However, manually inspecting chest x-rays is a time-consuming process and

requires significant time and effort by expert radiologists. In recent years, computer

119

vision and machine learning have been shown to be necessary for developing power-

ful support tools for (semi-)automated chest x-ray analysis. Machine learning-based

decision support systems allow radiologists to make faster diagnoses, and as a result,

radiologists can spend more time focusing on challenging cases. Deep learning, in par-

ticular, has significantly pushed the field forward. Most recent work in this area has

focused on learning how to map from images to multi-label diagnoses using deep neural

networks (e.g. [261–263]). However, these models are generally treated as black boxes.

In models where interpretability is important, typically, an attention mechanism is used

to explain the model’s decision-making process by showing the parts of the image that

the network attends to when predicting a specific diagnosis. However, these attention

maps are insufficient because they do not explain why the attended areas are important.

Similarly, neural networks learn everything from raw visual data and are not designed

to incorporate expert knowledge. Thus, they do not exploit the rich medical knowledge

that humans have developed over hundreds of years and must learn to make diagnoses

virtually entirely from scratch.

Some of this knowledge comes in the form of radiologist-dictated reports that jus-

tify a doctor’s diagnostic impressions. It should be noted that natural language pro-

cessing (NLP) has been used extensively to analyze biomedical text (e.g. [264–267]).

However, typically the information extracted from this natural language data has not

been combined with visual data. Recently, this has started to change. Several new

methods have been proposed that integrate information extracted from medical reports

with deep neural networks in order to improve automated biomedical image analysis

(e.g. [268–270]). Furthermore, another currently popular research topic in the medical

analysis community involves generating natural language reports directly from images

(e.g. [271–279]).

5.3 Problem

We briefly review the problem that we are addressing. Our data consists of frontal-view

x-rays, a set of corresponding natural language findings, and one or more Medical Sub-

ject Headings (MeSH) labels that describe the diagnosis using a controlled vocabulary

120

(see Figure 5.1 for an example data instance). During training, we have access to all

three of the aforementioned pieces of information (images, reports, and labels). At

test time, we only have access to the chest x-ray images, and we aim to predict which

illnesses are present in a given chest x-ray image using only visual data as input. We

consider five common chest-related illnesses: “normal/no findings”, “atelectasis”, “car-

diomegaly”, “effusion”, and “emphysema”. Multiple illnesses may appear present in the

same chest x-ray; thus, we need to train a model to perform multi-label classification.

5.4 Data

We work with two datasets. For most of our experiments, we work with the OpenI

dataset [280]. From the OpenI dataset, we use 3,821 frontal-view chest x-ray images

along with their corresponding “FINDINGS” annotations. Since the OpenI dataset is

relatively small, and deep neural networks often require large amounts of data to learn

good features, we pre-train the feature extraction portion of neural network on 86,524

training images from the ChestX-Ray14 dataset [261] using all 14 diagnosis labels. We

cannot use the ChestX-Ray14 dataset for evaluating our proposed method because it

contains only images and not medical reports. Instead, we subsequently finetune the

feature extraction layers, learn the top modeling layers, and learn the final classification

layers on the OpenI dataset. We do not consider all of the labels in the OpenI dataset.

We restrict our experiments to the five diagnosis labels shared between the OpenI and

Chest X-Ray14 datasets that appear most often. These labels include “normal/no

findings”, “atelecstasis”, “cardiomegaly”, “effusion”, and “emphysema”. We split the

data based on 5-fold cross validation using splits based on individual patients, not

individual images.

5.5 Methodology

We now present an overview of our method including how to pre-train the feature

extraction neural network, how to extract key terms from natural language text, how

to learn topic models using matrix factorization, and how to integrate topic modeling

121

with convolutional neural networks.

5.5.1 Pre-Training the Feature Extraction Neural Network

In order to evaluate our method, we need both frontal-view chest x-ray images and

medical reports describing the contents of these images. There are not many publicly

available datasets that include both of these components. The OpenI dataset [280] is

the most commonly used dataset that includes both image and text data for chest x-ray

analysis. However, the OpenI dataset is not without its issues. Large amounts of data

are needed when training deep neural networks, and the subset of OpenI that we use

in our experiments contains very limited data: only includes 3,821 images. A popular

approach to overcoming the limited data problem is by using transfer learning [281]. In

the context of deep neural networks, transfer learning is often done by training a neural

network on a huge source of data similar to the dataset of interest, and then, finetuning

the feature extraction portion of the network and relearning the classification layers on

the smaller dataset of interest. We employ this practice in this chapter by pre-training

the feature extraction layers of a ResNet-22 model [239] on the larger ChestX-Ray14

dataset [261] and subsequently fine-tuning the entire network on the OpenI dataset. We

use a weighted variant of the multi-label cross-entropy as our loss function for training

the initial network:

Lc =
∑
l∈L

 1

|Pl|
∑
yli∈Pl

−yli log ŷli +
1

|Nl|
∑

ylj∈Nl

−(1− ylj) log (1− ŷlj)

 (5.1)

L is the set of all labels. l is an individual label. Pl and Nl are the sets of positive

examples and negative examples in a batch for label l, respectively. |X| denotes the

number of examples in a batch for set X. yli ∈ {0, 1} is the label of ith positive

instance of label l, and ylj ∈ {0, 1} represents the jth negative instance. ŷli ∈ [0, 1] and

ŷlj ∈ [0, 1] are the predicted scores of instances i and j.

For many illnesses, the population of people with the illness is often much lower

than the population of people without the illness. As a result, when training machine

learning models for automated medical diagnosis tasks, it is crucial to consider that the

data is frequently imbalanced in terms of the class label; i.e., there will often be many

122

more negative training examples for a given illness than positive training examples. We

make some adjustments to our training procedure to address the issue of imbalanced

multi-label classification. In particular, in our loss function, we weigh the entropies for

the positive instances by 1
|Pl| , and we weigh the entropies for the negative instances by

1
|Nl| . Furthermore, we use stratified sampling with replacement to construct each mini-

batch, whereas the standard procedure for constructing mini-batches entails random

sampling without replacement. Specifically, for each mini-batch, we select one label,

and subsequently, we randomly select an even number of positive examples and negative

examples for this label. This process is repeated by iterating through all of the labels.

The rationale behind this sampling scheme is that it allows the net to see instances

with rare labels more frequently than the traditional sampling scheme.

To pre-train our feature extracting neural network, we 2,703 total mini-batches

per epoch where each batch contains 32 training instances. We train the network for

50 epochs. We also carefully apply data augmentation via random cropping and small

perturbations to the brightness, contrast, and saturation of the cropped images. Images

are of size 512-by-512 pixels.

5.5.2 Extracting Key Terms from Natural Language Text

Our goal is to use information that has been extracted from natural language text

reports to improve the predictive performance and interpretability of deep neural net-

works. Specifically, we are most curious if grounding the decision-making process of

a deep learning model to semantic information present in both images and text (i.e.,

forcing the network to “think” more like an expert when evaluating medical images)

will improve the network’s capability for discovering more discriminative features. To

accomplish this objective, we propose extending the ScenarioNet architecture that was

introduced in the previous chapter. Specifically, instead of learning how to group a

base set of visual concepts into scenarios, we use a ScenarioNet-like architecture to

learn how to group key terms present in the medical reports into topics, each of which

should express some meaningful semantic concept. We propose a novel deep neural net-

work architecture that learns to predict one or more diagnoses as it concurrently builds

123

Figure 5.2: We show the pipeline for extracting a set of key terms from a natural
language medical report. The pipeline consists of four stages: negative scope detection,
basic pre-processing, key term extraction using SGRank, and vectorizing the key terms
in a bag-of-key terms representation.

a topic model consisting of 1) a dictionary which clusters related key terms together

and 2) an encoding matrix that decomposes each input instance into a set of topics. In

this section, we explain how to extract the initial set of key terms from a collection of

natural language medical reports.

We present the pipeline for extracting a set of key terms from natural language

medical reports in Figure 5.2. The first stage of the pipeline performs simple rule-based

negative scope detection for each report in the training set. Negative scope detection

involves determining which phrases are affected by negation (i.e., we want to determine

which words are modified by words like “no” and “not”). For example, the phrase “no

pleural effusion” is parsed as “pleural neg effusion neg”, meaning that pleural effusion

124

cannot be seen in the corresponding medical image. The second stage of the key term

extraction pipeline is applying basic natural language pre-processing to each report

in the training set in order to remove stop words (i.e., common words like “the”),

remove punctuation, remove capitalization, and a number of other common operations

to remove unnecessary information and structure from the text. The third stage of

the key term extraction pipeline involves using SGRank [282] to identify important

phrases from all documents in the training set (e.g., “pleural effusion”, “focal airspace

disease”, and “pneumothorax”). In the final stage of the key term extraction pipeline,

a bag-of-key terms (BOKT) representation is extracted from all documents, and the

dictionary for the bag-of-key terms is pruned so that terms must appear at least ten

times in the training dataset. It should be noted that in our experiments, we use k-fold

cross validation, so when we refer a “training set”, we mean a training fold. In total,

the key term extraction process results in 600-700 key terms per fold.

5.5.3 Learning Topic Models using Matrix Factorization

The näıve way to incorporate text information into a visual DNN is to treat each key

term as its own visual concept and directly predict the bag-of-key terms for each im-

age. However, this approach is flawed. First, the key term extraction process is far from

perfect. For example, “pleural effusion”, “pleural effusions”, and “effusion” are all ex-

tracted as different key terms, but each of these terms is semantically equivalent. Thus,

in the bag-of-key terms representation, they are incorrectly treated as independent vi-

sual concepts. As such, it is too tough to learn a visual classifier for each individual key

term since there is too much noise in the training labels. Furthermore, synonyms and

abbreviations pose the same problem, e.g. “copd” and “chronic obstructive pulmonary

disease”. The second problem with directly predicting the bag-of-key terms is that

many times individual terms are not useful by themselves. Instead, many key terms

become useful when paired with other key terms; i.e., context between key terms is

necessary. For example, “cardiac silhouette” by itself offers no useful information for

the downstream diagnosis task, but when it is paired with the key term“oversized” it

becomes strongly indicative of cardiomegaly (a condition characterized by the abnormal

125

enlargement of the heart). Finally, the bag-of-key terms representation includes a great

deal of redundancy as a result of co-occuring key terms. For example, “normal cardiac

silhouette” and “normal mediastinum size” frequently appear together, and thus, by

knowing one of these concepts is present in an image strongly suggests that the other

is also present. As discussed in previous chapters, to maximize the interpretability of

the model, we desire grounded representations that are as succinct as possible. The

bag-of-key terms representation does not satisfy this property. The last issue with di-

rectly predicting the bag-of-key terms representation is that for many of the key terms,

there aren’t enough training examples to learn a key term extraction model that can

be trusted with any degree of confidence. To overcome these problems, we can exploit

context between key terms. By doing so, we can identify a lower-dimensional set of

topics and use a convolutional neural network to predict the presence of each topic in

a given x-ray image.

As in the previous chapter, we will use pseudo-Boolean matrix factorization (PBMF)

to discover how to group the key terms into topics. Suppose we’re given a binary input

matrix A where each row represents a key term and each column represents a medical

report. Aij is 1 if key term i is present in document j and 0, otherwise. The A matrix

can then be decomposed into two other matrices: the dictionary matrix W , which

clusters key terms into topics, and the encoding matrix H, which decomposes reports

into the union of topics. In this chapter, we use the following formulation of PBMF

where m is the number of key terms, k is the number of documents, and n is the number

of medical reports:

min
W,H
||Ω • (A−min(WH, 1 + 0.01WH))||2F + α1||W ||1

+ α2||H||1 + α3||W ᵀW − diag(WW)||2F s.t. W ∈ [0, 1]m×k, H ∈ [0, 1]k×n (5.2)

The first term penalizes for bad reconstructions of the key term-report matrix. The

second and third terms encourage sparsity in the encoding and dictionary matrices. The

fourth term encourages orthogonality between topics, forcing similar topics to merge.

The αs are hyperparameters designed to balance the different penalty functions. The

model must pay attention to rare key terms because, in medicine, one often cares more

126

about rare occurrences, which tend to be more indicative of medical problems. To

force the net to pay more attention to the rare key terms, we adjust the reconstruction

error using the inverse document frequency (idf): Ωi,j = max(idfi •Ai,j , 0.25), idfterm =

(1 + log
(

Nall
Nterm

)
) where Nall is the total number of training instances and Nterm is the

number of training instances containing a specific term.

In Figure 5.6, we show examples of the topics learned by our approach.

5.5.4 Incorporating Topic Modeling into Convolutional Neural Net-

works

The PBMF optimization problem (Equation 5.2) can be reformulated as a loss function

Lt. The goal will be to use a convolutional neural network to estimate the encoding

matrix Ĥ for one or more scenes from some set of input images X. Furthermore, the

dictionary W is treated as a variable of the network. As in the last chapter, the elements

of W are constrained to lie in the interval [0, 1] using a sigmoid function. The topic

model loss can be combined with the classification loss via weighted summation to get

the total loss function that guides the learning of the neural network: L = Lt + βLc.

We make minor changes to the neural network architecture introduced in the pre-

vious chapter. As mentioned previously, the network is designed to predict the topic

encoding for each training instance based on an input chest x-ray image, update the

dictionary to adjust for the noise in the predicted topic encodings and based on feedback

from the downstream diagnosis task, and use the topic encodings as the input features

to a classifier for the diagnosis task. Ultimately, the goal is to force the network to

make decisions in a manner similar to expert radiologists by encouraging the network

to attend to properties derived from the radiologist-annotated natural language reports.

The model proposed in the previous chapter used a linear logistic regression classifier

because the primary goal of the previous chapter was maximizing the interpretabil-

ity of the network. In contrast, for the network proposed in this chapter, we replace

the linear classification block with a non-linear block because we prioritize predictive

performance on the diagnosis task. As in the previous chapter, we solve for an initial

dictionary outside of the network and finetune it inside the net on order to promote

127

Figure 5.3: We present the structure of the proposed neural network model for com-
bining topic modeling with convolutional networks. Image from [4].

faster convergence to a better topic dictionary. Our architecture appears in Fig. 5.3.

Our final network is trained for 100 epochs with 166 batches per epoch using a

batch size of 16. We use the same sampling and data augmentation strategies that

were introduced in Section 5.5.1. We set α1 = 0.01, α2 = 0.001, α3 = 0.1, and β = 10.

These values were determined experimentally on the first fold of the data using a holdout

validation set.

128

Features m-AUROC mAP

All Key Terms 0.969 0.814

Doc2Vec 0.927 0.613

Our Approach 0.928 0.674

Table 5.1: We evaluate the predictive power of various features extracted from natural
language medical reports for diagnosing chest-related illnesses.

5.6 Experimental Results and Analysis

In this section, we evaluate the strengths and weaknesses of the various components

of our model. We evaluate the predictive power of the topics learned using only the

ground truth text in order to get a basic understanding of how much useful information

is contained in the natural language reports. We also evaluate the effect of integrating

the topic modeling component with a convolutional neural network.

5.6.1 Evaluation Metrics

Before we begin evaluating the strengths and weaknesses of the proposed model ex-

perimentally, we introduce the evaluation metrics used in our experiments. Typically,

the macro-area under the receiver-operator curve (macro-AUROC) is used to evaluate

automated chest x-ray analysis systems. However, this metric is often ill-suited for

problems exhibiting large amounts of class imbalance, as is the case with this problem.

In automated chest x-ray analysis, there is a higher priority associated with identifying

rare positive cases (i.e., patient X has disease Y) than common negative cases (i.e.,

patient X does not have disease Y). Ideally, in such cases, it is better to use metrics

based on the precision-recall curve. Thus, when evaluating our methods, we also use

the mean average precision (mAP). The mean average precision provides a single value

that summarizes the precision-recall curve over all labels.

5.6.2 Text-Based Experiments

First, we want to get a basic understanding of how much useful information is embedded

in the medical reports without considering image data. Moreover, we want to see how

much of this information can be preserved via our proposed PBMF-based topic model.

129

We train classifiers to predict the chest-related illnesses mentioned in earlier sections

using various text-based features. Results are reported in Table 5.1.

We achieve the highest high macro-AUROC (about 0.97) and mAP(about 0.81)

when we use the full bag-of-key term vectors as features. We also compare with the

distributed bag-of-words Doc2Vec embedding [283] with 200 dimensions trained on the

reports as a baseline method. Doc2Vec is a very common method in the natural lan-

guage processing community for embedding text as a numerical vector. Finally, we

evaluate our approach: a PBMF topic model with 200 topics. Our approach and the

Doc2Vec representation lose a significant amount of predictive power compared to the

raw bag-of-key terms representation, but results are still promising. It is worth men-

tioning that while our PBMF-based representation matches the Doc2Vec embedding in

terms of macro-AUROC, our representation outperforms the Doc2Vec representation

by about 6% in terms of mean average precision. Overall, our results show that if

possible, we should train a model to recover the full bag-of-key terms representation

from visual data if no text report is provided. Unfortunately, as we have discussed in

previous sections, it is virtually impossible to recover this information with any degree

of accuracy for a number of reasons.

5.6.3 Imaging-Based Experiments

Next, we consider how well a set of diagnostic labels can be predicted from visual

inputs (chest x-ray images). We train and test a standard ResNet-22 neural network

and a modified ResNet-22 neural network that bottlenecks through the topic modeling

layer (using 200 topics). We report the experimental results in Table 5.2. On average,

our proposed model outperforms the standard model by about 1% in terms of the

macro-AUROC and 2% in terms of the mAP. We also outperform the standard neural

network in terms of AUROC for three of the five diagnostic labels, and we outperform

the standard neural network in terms of average precision for four of the five diagnostic

labels, sometimes by several percentage points.

The improvements made by our model are relatively small compared to what Table

5.1 suggests should be possible. This is because the topic recognition component is

130

Standard Our Approach

macro-AUROC 0.857 0.867

mAP 0.459 0.477

Standard Our Approach

Diagnosis # Instances AUROC AP AUROC AP

Normal 1395 0.774 0.647 0.783 0.655

Atelectasis 309 0.785 0.303 0.812 0.332

Cardiomegaly 329 0.930 0.592 0.927 0.587

Effusion 148 0.926 0.514 0.921 0.535

Emphysema 110 0.868 0.241 0.892 0.276

Table 5.2: We evaluate the performance of learned visual classifiers. The top table
looks at the overall predictive performance of the model while the bottom table looks
at predictive performance on individual diagnostic labels (bottom). We compare a stan-
dard ResNet-22 architecture with our modified architecture that bottlenecks through
the topic modeling layer.

far from perfect. If we compare our visually recognized topic encodings to approxi-

mate ground-truth encodings (i.e., using the dictionary learned on the training data,

we encode the ground truth test data), we only achieve an mAP of about 0.24 when

considering all 200 topics. This means most topics are not recognized with high accu-

racy, and this is likely because the net overfits the rare topics. To better understand the

limitations of our model, we can focus on topics that appear in at least 75 (about 2%) of

the training instances which accounts for about 60% of the learned topics. In this case,

the mAP for topic recognition significantly rises to 0.39, suggesting that the network

is encoding some useful information. However, these numbers are far from desirable

(especially for medical applications) and also significantly limit the interpretability of

the model.

5.6.4 Analysis of Quantitative Results

The proposed model’s biggest weakness is its ability to overfit to rare topics, which are

often “noisy” because of the imperfection extraction of the key terms This tendency

to overfit ultimately leads to suboptimal performance when recovering topics from test

data and prevents the model from reaching its full potential on the downstream diag-

nosis task. There are several ways to mitigate this flaw. First, better methods can be

131

applied during the key term extraction phase. For example, our negative scope detec-

tion method is overly simplistic and makes a non-trivial number of mistakes. Second,

the method sometimes produces topics that make sense from a semantic perspective but

are visually meaningless. For example, we saw that the network learned one topic that

grouped words relating to the direction (e.g., “left”, “right”, “top”, and “bottom”);

while it makes sense why these words were grouped, there is no way to map visual data

to this topic. Third, and similar to the previous solution, we can prune topics that are

recognized with poor accuracy. This would significantly improve the interpretability

of the model and might improve performance on the downstream classification task

by forcing the model to rely on more stable and better-grounded features. Fourth, we

could implement some quality control on the key term annotations to ensure that they

accurately reflect the text that they are extracted from and to improve the information-

completeness of the annotations. One issue we have not addressed is that doctors have

different philosophies about what they find important. Some doctors will record all

relevant information, whereas other doctors focus on only reporting the abnormal char-

acteristics of an image while ignoring reporting the normal characteristics. For example,

they might assume that saying the heart size is normal should be assumed and not ex-

plicitly stated. Thus, medical reports are often information-incomplete. Adding quality

control would likely require the addition of a human-in-the-loop component of the sys-

tem. Fifth and finally, the most important way to prevent the network from overfitting

to rare topics is to collect more training data. We are working with a very small dataset

(for deep learning), and a large portion of the topics appear in very few training sam-

ples. Thus, there is simply not enough data to capture the intricate patterns needed to

properly recognize many of the topics.

Despite the flawed topic recovery from visual data, some improvement is still seen in

terms of performance on the target task. We hypothesize that there are several potential

reasons for this. First, our approach employs privileged information during training in

the form of expert-annotated “findings”. This privileged information might guide the

neural network to explore different regions of the feature and parameter space beyond

the regions that would be explored when only considering visual data. By injecting

132

Figure 5.4: We show an example of an x-ray and some of its highly-ranked topics.

expert-annotated prior knowledge into the system, the model can learn patterns it

otherwise would not. Second, forcing the neural network to jointly learn the topic model

and classifier might act as a form of regularization. Third, there are minor differences

in the base network architecture between the standard ResNet-22 architecture and our

proposed architecture. For example, we use a non-linear classification layer because

there is no guarantee that the topics will result in a feature space that ensures different

diagnosis classes are linearly separable. In contrast, the standard ResNet-22 network

explicitly enforces this assumption with respect to the learned feature space. Even these

small changes might affect performance.

It should also be noted that while the topics are recovered with too low accuracy,

and thus, the explanations output by the network cannot be trusted with high confi-

dence, bottlenecking through the topic modeling layers does help us better understand

what the network might be attempting to do during its decision-making process. The

topic model learned by the network tells us something about what the network thinks

it is learning in order to make decisions, even if it fails to actually learn this informa-

tion. This information could be beneficial for debugging the behavior of the model and

developing improvements to correct flaws in the decision-making process.

133

Figure 5.5: We show an example of the net attending to a topic relating to enlarged
hearts.

There are other changes that can be made to our model that are more application-

specific. Promising future work includes exploring how multi-view data can be utilized

(i.e., using both frontal- and lateral-view x-ray images), including patient history and

demographics into the learning process, and going beyond topic models and instead

generating complete sentences from the topic encoding.

5.6.5 Qualitative Results

Finally, we want to show some qualitative results highlighting how when the topics can

be accurately recognized from visual data, they provide useful information. Figure 5.4

shows an example of an x-ray and some of its highly-ranked topics. This highlights

some of the types of concepts the network attempts to recognize while also calling

attention to the utility and potential of using the predicted topics as an interpretable

intermediate feature representation. It should also be noted that, as in the previous

chapter, our proposed model is compatible with the class activation mapping (CAM)

technique [2]. As such, for each topic, we can generate attention maps showing which

parts of an image the network focuses on when predicting a specific topic. Figure

5.5 shows an example attention map for a category relating to the “enlarged heart”

topic. Figure 5.6 shows some additional example topics (some diagnostically relevant

and others diagnostically irrelevant) learned on the OpenI dataset using our proposed

model.

134

Some Example Topics
Diagnostically Relevant:

• {changes, degenerative changes, degenerative, spine, minimal degenera-
tive changes}
• {aorta, tortuous, ectatic, tortuous aorta}
• {normal heart size, normal heart size mediastinal, normal, normal heart,

clear lungs}
• {focal lung consolidation: NEG, pulmonary consolidation: NEG, focal air

space consolidation: NEG, consolidation: NEG, alveolar consolidation:
NEG, upper mediastinum}
• {atelectasis, subsegmental atelectasis, xxxx atelectasis, basilar atelecta-

sis}
• {lung, low, low lung volumes, lung volumes}
• {cardiomegaly, stable cardiomegaly, mild cardiomegaly}
• {focal infiltrate, focal airspace disease, focal}
• {airspace opacities, xxxx opacities, opacities}

Diagnostically Irrelevant:

• {thoracolumbar spine, cervical spine, lumbar spine, spine, midthoracic
spine}
• {view, pa view, lateral, lateral view, frontal view}
• {examination, prior exam. similar, prior examination, prior granuloma-

tous disease, prior}

Figure 5.6: We show several examples of some of the more interesting topics learned
by our approach on the OpenI dataset. Many of the learned topics make sense from a
visual diagnosis perspective. However, we also see that the model sometimes extracts
topics that make sense from a natural language processing perspective but not from a
diagnostic or visual perspective. For example, our model learns to group different terms
related to the spine, but this group doesn’t express any information about the visual
appearance of the spine. Similarly, it groups terms related to view of an x-ray, but this
topic is visually and diagnostically meaningless. Lastly, we see it group terms related
to examinations (in particular “prior examinations”), which once again, doesn’t offer
any meaningful information for the diagnosis, and it also picks on the keyword “prior”
and incorrectly groups the term “prior granulomatous disease” with other terms about
“prior examinations”.

135

Chapter 6

Adapting Visual Concepts: Utilizing Scenario-Based

Models in Dynamic Settings

6.1 Introduction

Up to this chapter, we have only considered problems that involve learning or utilizing

human-understandable representations in static settings. In such settings, once the

representation is learned or specified, it is never updated after-the-fact. The static

nature of such representation is often insufficient for real-world problems. In the real-

world, things change over time. For example, if an agent is deployed in a real-world

environment, we cannot assume that it will have perfect knowledge of all of the types

of scenes it might encounter. Instead, we must assume that any model that underlies

the agent must have the capability to adapt to unforeseen scenes and situations. In

this chapter, we develop a model similar to the ScenarioNet architecture introduced

in Chapter 4 that can operate in dynamic settings where new types of scenes may

be encountered. The model must be capable of identifying if a scene is atypical and

subsequently, have the ability to efficient update its structure and parameters.

We once again consider scene classification as our motivating application. Scene

classification is a critical computer vision problem with many practical use cases in a

wide range of domains, including remote sensing, robotics, autonomous driving, defense,

and surveillance. Many approaches to scene classification make simplifying assumptions

about the data, and many of the algorithms for scene classification are ill-suited for real-

world use cases. We begin by discussing some of the reasons existing methods for scene

classification are insufficient for real-world use cases.

The first issue with existing approaches for scene classification is that they assume

136

the input data is always highly representative of the scene’s category. This issue be-

comes apparent when one examines many of the popular datasets used to train scene

classification models (e.g., [21, 245, 256, 284, 285]). Most of these datasets only con-

sider single views that are extremely representative of a limited set of known scene

categories. In real-world applications, such perfect data is rarely, if ever, encountered.

Consider a robot exploring an indoor environment. If the robot is randomly placed

within the environment, it will likely observe both views that are uninformative (e.g.,

the robot is facing a blank wall) and views that are adversarial (e.g., the robot is looking

through a doorway or window into a different type of scene). When constructing agents

for real-world settings, one must assume such antagonistic views will be encountered

and instead embed the agents with the ability to explore unexpected and adversarial

environments in an intelligent and efficient manner.

The second issue with existing approaches for scene classification is that they make

closed set assumptions about the types of scenes a model might encounter. However,

closed set assumptions about scene categories are rarely satisfied in real-world applica-

tions. Sometimes, an agent will meet with a scene unlike any it has previously encoun-

tered. Instead of making a misleading and incorrect prediction about the scene category

based on the false assumption of a closed world, the agent should have the capability

to refuse to make a prediction. Subsequently, the agent should have the capability to

query a human for help. The human would then collect more data about the new type

of scene. Finally the agent can update its internal knowledge and machine learning

models using this new data. In summary, the agent should be capable of performing

open set recognition [286,287] and continuous/active learning [288].

The third issue with existing approaches for scene classification is that most do

not prioritize interpretability of the model’s decision-making process. Most modern

approaches for scene classification rely on complex, black-box models such as deep

convolutional neural networks [63]. Deep neural networks are such complex models with

such a large number of parameters that humans often find it difficult to understand their

decision-making process [5, 42]. However, many very important applications of scene

classification (especially safety-critical tasks) require models that can be debugged and

137

models that can generate explanations to help support decisions that must ultimately

be made by humans. For example, in the autonomous driving setting, it is vitally

important to understand the limitations of a model to prevent fatal mistakes by the

autonomous vehicle. In military applications, where machine learning models are used

for decision support systems, models that provide poor recommendations for action

based on inaccurate and unreliable evidence can cost the loss of (often innocent civilian)

lives.

The focus of this chapter is on building explainable models for scene classification

in dynamic settings. Specifically, it addresses the case where an agent with an imaging

sensor is placed in some environment, and based on its sensory input, the agent needs

to assign a label to the perceived scene. The agent can adjust its sensor to capture

more details about the scene, but there is a cost associated with manipulating the

sensor. Ideally, the agent must understand the scene in an efficient manner. In order

to understand the global state of a scene (i.e., the scene category), the agent must

extract properties about the scene from multiple views and use these properties to

generate human-understandable explanations about why it made specific predictions.

If the agent encounters an unknown type of scene, it should reject assigning a label

to the scene, request additional data about the new scene category from a human,

and update its underlying knowledge base and machine learning models. Specifically,

this chapter is motivated by a specific application in scene understanding: the active

explanation-driven classification of indoor scenes.

To address the problem mentioned above, we present an approach based on the

ScenarioNet architecture introduced in Chapter 4. For each view encountered by the

agent, ScenarioNet is used to extract a human-understandable feature representation.

As the agent encounters new views in the same scene, it fuses the predicted scenarios

from each view using max-pooling. It then uses Weibull-calibrated support vector ma-

chines (W-SVMs) [289] to determine if a scene belongs to an unknown category and

for assigning a class prediction. The exploration process (i.e., determining whether to

assign a label to a scene or change views) is facilitated using reinforcement learning.

138

Specifically, our reinforcement learning algorithm consists of linear function approxi-

mation of the Q-value with experience replay. Finally, we present extensions of the

pseudo-Boolean matrix factorization and ScenarioNet for use in a continuous learning

paradigm.

6.2 Related Work

The work in this chapter touches upon many subjects. Some of these subjects include

active vision, dynamic data-driven applications systems, high-level information fusion,

and open set recognition. In this section, we frame our approach in the context of all

of the aforementioned subjects.

6.2.1 Active Vision and Dynamic Data-Driven Applications Systems

Our work is closely related to the active vision/perception paradigm [290–294], which

considers the task of visual perception as a dynamic and purpose-driven process whereby

observers actively control some imaging sensor. In particular, our work is similar to

Li and Guo’s work on active learning for scene classification [295]. In Li and Guo’s

work, object-based features are used for explainable scene classification, and an active

learning component is introduced in order to improve the model based on unexpected

scenes. Unlike our model, [295] relies on classic methods for feature extraction (e.g.,

bags-of-patches and SIFT) and only operates on data consisting of clean, single views

(i.e., there is no exploration of the scene). Our work is also similar to active scene

recognition [296], which employs object-based high-level knowledge to actively guide

attention in scene images and videos for improved scene classification. Once again,

this method relies on classic visual features and assumes clean, single view images and

videos. They do not address the case where unknown scenes are encountered. There

are a number of other less-related works which attempt to merge active learning/vision

with scene classification [297–301]. Our work also shares similarities to active scene

exploration [302,303], viewpoint selection [304–307], and active object localization and

recognition (e.g., [308–312]). Finally, it is worth mentioning that our approach follows

139

the dynamic data-driven applications systems paradigm [313] where there is a feedback

loop between sensor manipulation and data-driven modeling.

6.2.2 High-Level Information Fusion

Our work is also related to the problem of high-level information fusion (HLIF) (e.g.,

see [314–316]). HLIF involves fusing information captured by multiple sensors based

on high-level symbolic information. Our approach follows this paradigm by making

predictions about the global states of scenes based on symbolic semantic information

captured from different views obtained by manipulating a sensor.

6.2.3 Open Set Recognition

One task that is a central focus of our approach is automatically understanding when

new, previously unseen situations are encountered by an agent. This involves construct-

ing models capable of quantifying uncertainty in their predictions and operating based

on an open set assumption. Open set recognition (e.g., [286, 287, 289, 317–321]) is a

task whereby a classification model can either 1) assign a label from a known closed

set of labels, or if confronted with an instance of a new class, 2) reject making a de-

cision about the class assignment and flag the instance as belonging to a new class.

Some recent work introduces methods capable of incrementally updating as new classes

are encountered [286, 320, 322–328]. Unlike other methods, our model utilizes open set

recognition to update both the underlying machine learning models and the underlying

knowledge representation.

6.3 Problem

We consider the problem of active explanation-driven classification of indoor scenes (see

Fig. 6.1). In this setting, an agent is placed in the center of an indoor room and with

few sensor adjustments, must assign a label to the scene (e.g., kitchen, bathroom, office)

or identify the scene as atypical and update its internal models and knowledge base.

After the agent is situated, it 1) captures an image, 2) based on the captured image,

140

Figure 6.1: We show a visual overview of the problem of active explanation-driven
classification of indoor scenes. In this problem, an agent is placed in the center of
an indoor room and with few sensor adjustments, must assign a label to the scene or
identify that the scene is atypical and and update its internal models and knowledge
base.

extracts relevant human-understandable semantic information about the scene, and 3)

using this information must make a grounded decision about which action to take next.

The agent can 1) assign a label to the scene, 2) adjust the orientation of its camera to

gather more information about the scene, or 3) determine that the scene is unlike any

it has seen before and request additional feedback from humans. If the agent adjusts its

sensor, it must be capable of fusing existing measurements/information with the newly

obtained measurements/information. If the agent identifies a new type of scene, it must

be able to 1) augment/update its existing knowledge base, and 2) augment/update its

visual recognition models.

6.4 Data

We extend the SUN360 dataset [329] of panoramic scene images. This dataset enables

us to easily simulate manipulating an agent with a camera in order to obtain different

views. We select 14 common scene categories: atrium, bathroom, bedroom, child’s

room, church, classroom, conference room, dining room, kitchen, living room, office,

restaurant, theater, and workshop. We annotate 35 instances for each scene category.

141

For each instance, we extract eight views at evenly spaced intervals. Thus, our dataset

consists of a total of 3,920 images. Furthermore, for each image, we annotate the pres-

ence or absence of 316 unique object classes (e.g., bed, chair, lamp). In our experiments,

we only consider the 201 objects that appear in at least five images. For each scene

category, we use twenty scene instances for training (160 images), five scene instances

for validation (40 images), and ten scene instances for testing (80 images), for a total

of 280 training scenes (2,240 images), 70 validation scenes (560 images), and 140 test

scenes (1,120 images).

6.5 Methodology

We now provide a summary of our proposed approach:

1. The agent captures an image.

2. The agent extracts human-understandable semantic information from the visual

data. This conversion from visual data to human-understandable features is per-

formed using ScenarioNet.

3. The view-level semantic information is fused with existing scene-level semantic

information discovered from earlier exploration (i.e., in earlier time steps).

4. The agent computes the predicted probabilities for each scene category based

on the scene-level semantic information. This is done using a Weibull-calibrated

support vector machine (W-SVM) [289].

5. The agent must then make a decision about which action to take.

(a) If the agent is highly confident about the category of the scene, it can output

a final prediction for the scene category.

(b) If the agent is highly confident that the scene is atypical, i.e., the agent

has never encountered the scene category in the past, it can reject making

any decision about the scene category, end exploration, and request human

intervention.

142

(c) If the agent is not confident enough to assign a label to the scene or reject

assigning a label to the scene, it can adjust its sensor to either the nearest

unseen view or furthest unseen view.

6. If the agent adjusts its sensor, the process begins anew from step 1.

7. If the agent rejects making a decision about the scene category, it queries the

human to collect additional data about the unknown scene category, and using this

newly collected data, the agent updates the knowledge representation and visual

recognition models. This involves extending pseudo-Boolean matrix factorization

and ScenarioNet to be compatible with a continuous learning paradigm.

To decide which action to take, we formalize a Markov Decision Process (MDP), and

use a linear function approximation of the Q-value with experience replay as our rein-

forcement learning algorithm for addressing this MDP.

We can break the our proposed framework into four major stages: sensing, process-

ing, decision making/predicting, and updating. Throughout this portion of the chapter,

we consider each stage of our proposed framework in more detail. Before we discuss

each of these stages, we first present the common training procedure for all neural

networks discussed in this chapter.

6.5.1 Neural Network Training Procedure

As a preliminary, we define the standard procedure we follow for training all neural

networks in this paper. When a neural network is used, it consists of a ResNet-18 [239]

which is pre-trained on the Places-365 scene classification dataset [256] and fine-tuned

on individual images from our dataset. The CNN is trained for a maximum of 100

epochs with early stopping based on the validation data. Typically the model converges

in fewer than ten epochs. A batch size of 16, learning rate of 1.0e-4, and a weight decay

of 1.0e-5 are used. The AMSGRAD optimizer [330] is used. The learning rate is reduced

when the training loss plateaus.

143

6.5.2 Sensing: Understanding the Input Data

The first stage of our framework is to collect data from some set of sensors about a

single “view”. We define a view as the set of sensor measurements at a single point

in time focused on a specific region of interest; i.e., in this work, a view consists of a

single image capturing a specific portion of a scene. This stage is relatively simple and

does not require us to propose any technical innovations. Therefore, in this section, we

will briefly describe the sensing capabilities of our agent. We assume that our agent

can capture individual RGB images of single views every time some action is taken.

We simulate an active agent with a single camera that is capable of pivoting on some

central axis. The agent can capture views at eight positions spaced at even intervals

as shown in Figure 6.1. We choose to simulate the agent in order to thoroughly and

systematically evaluate our method in a controlled manner.

6.5.3 Processing: From Pixels to Human-Understandable Represen-

tations

Next, each image captured by the camera needs to be processed in order to extract

representations that are grounded to semantic concepts and which can be understood

by humans. As in our earlier chapters, these human-understandable, semantic repre-

sentations will be used as input features for the machine learning models that decide

which action to take next. The processing stage involves three parts. First, we must

define the representation. Second, we must define and train a model to map from the

raw sensor data to the representation. Third, as new views are encountered, we must

define a way to fuse the view-level semantic features to form scene-level features.

Scenarios as Grounded and Interpretable Representations

As is a common theme throughout this thesis, we need to specify a representation

grounded to human-understandable visual concepts that is discriminative for the scene

classification task and capable of being extracted from visual data with acceptable levels

of accuracy. We once again return to using scenarios as this representation. To extract

144

the scenarios, we once again use the formulation introduced in Chapter 4 with some

minor adjustments.

We re-introduce our pseudo-Boolean matrix factorization (PBMF). The problem

setup is the same as in Chapter 4, except, instead of decomposing an entire scene

instance into its scenarios, we decompose a single view into its constituent scenarios.

From Chapter 4:

Assume that there exists a training set of scene instances and a finite set

of pre-specified objects. For each scene instance [view] in the training set,

ground-truth annotations for the presence (or absence) of every object in the

object set are provided via human labeling. For each of the training [views],

we encode object presence information in the form of a binary vector. In this

vector, an element is one if the corresponding object is present in the scene

instance [view]; otherwise, if the corresponding object is absent in the image,

the element is zero. The vectors for all training [views] are concatenated to

form a matrix A. Each row of A corresponds to a specific object, and each

column corresponds to a specific training [view].

Next, we specify the number of desired scenarios k... Then, A is decomposed

into two approximately binary matrices. The first matrix resulting from this

decomposition is a dictionary matrix W which assigns objects to scenarios.

The second matrix resulting from this decomposition is an encoding matrix

H that tells us how each scene instance [view] can be represented as a

combination of the learned scenarios. Each column of W represents a single

scenario, and each row of W represents a specific object. If element Wij is

zero (or very small), object i does not belong in scenario j. The closer Wij is

to one, the stronger influence object i exerts on scenario j. Each column of

H represents a specific scene instance [view], and each row of H represents

a specific scenario. If element Hij is zero (or very small), then scenario i is

not a component of scene instance [view] j. The closer Hij is to one, the

more influence scenario i exerts on scene instance [view] j.

145

Our formulation of PBMF is similar to the formulation from Chapter 4:

min
W,H

P0 + α1 ∗ P1 + α2 ∗ P2 + α3 ∗ P3 + α4 ∗ P4

s.t. W ∈ [0, 1]m×k, H ∈ [0, 1]k×n,

Ωij = max

(
Aij ∗

(
1 + log

(
Ninstances all

Ninstances object

))
, 0.5

)
,

P0 = ||Ω • (A−min(WH, 1 + 0.01WH))||F ,

P1 = ||H −H2||F , P2 = ||W −W 2||F ,

P3 = ||Hᵀ||2,1, P4 = ||W ᵀW − diag(W ᵀW)||F

(6.1)

m is the number of objects. n is the number of training instances. k is the number of

scenarios. Ω is a weight matrix that decreases the importance of common objects and

increases the importance of rare objects during the factorization. • denotes element-

wise matrix multiplication. The αs represent tradeoff parameters. The key differences

between the factorization introduced in Chapter 4 and the one introduced in this chap-

ter is that we impose an `2, 1-norm on the scenario encodings to automatically prune

unnecessary scenarios. Another difference is that instead of solving a single optimiza-

tion problem where hyperparameters are determined via a Bayesian optimization-based

hyperparameter tuning process, we partially solve a series of optimizations problems in

order to automatically adapt the trade-off parameters αs in order to enforce an ordering

between the importance of each component of the loss function:

α
(t)
1 = 0.5 ∗min(P0(t)/P1(t), 1)

α
(t)
2 = 0.5 ∗min(P0(t)/P2(t), 1)

α
(t)
3 = α

(t)
1 ∗ 0.5 ∗min(P1(t)/P3(t), 1)

α
(t)
4 = α

(t)
2 ∗ 0.5 ∗min(P2(t)/P4(t), 1)

(6.2)

t represents the current iteration of the optimization problem. After the optimization

concludes, we prune the scenario dictionary based on the `2, 1-norm of Hᵀ.

146

Mapping from Scene Views to Scenarios

As before, we also require a method for mapping visual data to the scenario encodings.

We explore two ways of predicting the scenario encodings H for each image that differs

significantly from Chapter 4. In the first method, we threshold H at a value of 0.5

(where a scenario i is considered present in image j if its encoding value Hij is greater

than the threshold), and then train a standard ResNet-18 model to perform multi-label

recognition (using weighted binary multi-label cross-entropy as the loss function). In

this case, the dictionary is always held static and does not receive any feedback from

the visual data. In the second method, we refine the dictionary as we train ResNet-18

to predict H ≥ 0.5:

1. Perform PBMF to obtain an initial dictionary W (0) and ground truth scenarios

H(0).

2. Prune the scenarios based on the `2, 1-norm of H(0)ᵀ.

3. Threshold H(t) ≥ 0.5.

4. Train a CNN to estimate scenario presence from images.

5. Extract the predicted scenario probabilities Ĥ(t) from all training examples.

6. Refine the dictionary by holding Ĥ(t) constant and solving for W (t)

7. Get new ground truth scenarios by holding W (t) constant and solving for H(t+1)

8. Repeat 2-7 until the stopping criteria on the validation data is met.

Our experiments (discussed in later sections) show that updating the scenario dictionary

based on visual feedback does improve the performance of the network with respect to

how well scenarios can be recognized from previously unseen test data.

Unlike in previous chapters, in this chapter, we do not learn a model for both

scenario recognition and scene classification in an end-to-end manner. By separating

these two components of the model, we can much more easily adapt the scenario learning

process and scene classification process in a continuous learning setting and for open

set classification.

147

Figure 6.2: A visual representation of the max-pooling operator of view-level scenario
predictions to determine scene-level scenario predictions.

Fusing View-Level Scenarios into Scene-Level Scenarios

We have defined a grounded and interpretable representation (the scenario), and we

have defined a method for mapping from images to view-level scenarios. Now, we

need to address the last component of the processing stage of our framework: how to

fuse information as new views are encountered. When the representation consists of

scenarios, this task becomes trivial. If a scenario is recognizing as being present in a

view, it should have a value close to one, and if it is recognized as being absent, it should

have a value close to zero. This property enables a simple method for performing high-

level information fusion between views. For a given scenario, its scene-level encoding

coefficient can be extracted by taking the maximum value for the view-level scenario

encoding coefficient over all of the views encountered up to this current time step.

Essentially, we assume that if a scenario is detected as being present in any view, then

we assume it is present in the scene as a whole. Our max-pooling based fusion scheme

is visually depicted in Figure 6.2. While there are likely better fusion schemes that are

more robust to noisy scenario predictions, our experiments will show that this simple

max-pooling scheme works well in practice.

148

6.5.4 Decision Making/Predicting: Classifying Scenes

Once the scenarios have been extracted for a given view or sequence of views, the model

uses the extracted scenarios as features for deciding which action to take next. Three

actions can be taken. First, the model can decide to assign a label to the scene with

high confidence. Second, the model can determine that the scene is atypical of the scene

classes encountered during training. Third, the model can conclude that there is not

enough evidence to confidently make a prediction in favor of assigning a known class

or identifying the scene as atypical. In such cases, the sensor must be manipulated to

collect additional information about the contents of the scene from different viewpoints

before making a decision. In this section, we explore utilizing the Weibull-calibrated

support vector machine (W-SVM) [289] as a means of performing open set recognition.

The Weibull-Calibrated Support Vector Machine for Open Set Classification

Explainability is an important component of the proposed framework. As mentioned in

other chapters, there are two crucial characteristics that define the interpretability of a

classification model. The input features should be understandable to humans, and the

classifier should be easy to interpret, e.g., by probing its components. In the case of our

proposed framework, scenarios serve as the human-understandable features. In other

chapters, we have used linear multinomial logistic regression models as the interpretable

classifier. However, logistic regression is not ideal for the framework introduced in this

chapter because logistic regression is not designed for open set classification, where the

model must be capable of either outputting a class prediction or rejecting making a

decision.

Instead, we employ a Weibull-Calibrated Support Vector Machine (W-SVM) [289].

The W-SVM is an extension of the popular support vector machine (SVM) [331] de-

signed for open set multi-class classification. The W-SVM is grounded in extreme value

theory. Unlike logistic regression, the W-SVM is capable of refusing to assign a label

when it encounters a novel type of scene without ever seeing an example of the unknown

scene category in the training data.

149

The W-SVM formulation makes use of both a one-class SVM (OC-SVM) [332] and

a one-vs-rest SVM. The two SVMs are trained for each of the known classes. After

the SVMs are trained, Weibull distributions are fit based on the distances between a

training sample (in feature space) and each decision boundary. For the one-class SVM,

this enables us to compute the probability of inclusion for a given class PO(y|f(x)). For

the one-vs-rest SVMs, we fit two Weibull distributions. The first of these two distributes

allows us to compute the probability of inclusion in the target class:

PR+(y|f(x)) = 1− e
−
(
f(x)−vR+

γR+

)κR+

(6.3)

The second distribution is a reverse Weibull distribution, and it enables the model

to compute the probability that the data does not belong to any of the other known

classes:

PR−(y|f(x)) = e
−
(
f(x)−vR−

γR−

)κR−
(6.4)

It should be noted that the parameters of the aforementioned Weibull distributions

(the location ν, scale γ, and shape κ parameters) can be fit using maximum likelihood

estimation.

In our implementation, we use a radial basis function kernel for the one class-SVM,

and we use a linear kernel for the one-vs-rest SVM. Because we use a linear kernel for

the one-vs-rest SVM, we have a classifier that is relatively simple to understand, and

it is used in combination with human-understandable features, so the entire model can

be considered to be relatively interpretable. At test time, to determine if a new data

point belongs to one of our known classes, we run the following procedure:

1. We begin by testing PO(y|f(x)) > δO for each class y where δO is a small threshold.

If no class satisfies this condition, then we can reject making a class assignment

and say the scene is atypical.

2. For those classes that pass the first test, we perform a second test by checking

PR+(y|f(x)) ∗ PR−(y|f(x)) > δR where δR is some threshold. This tests the

probability that the input is 1) from the positive class and 2) not from any of

the known negative classes. If no class satisfies this condition, then we can reject

making a class assignment and say the scene is atypical.

150

3. Finally, we select our predicted class y∗ from the remaining classes by selecting

y∗ as the argmax of PR+(y|f(x)) ∗ PR−(y|f(x)).

In our experiments, the thresholds (δs) are determined empirically via cross-validation.

Furthermore, we can compute class-specific probabilities by calculating PR+(y|f(x)) ∗

PR−(y|f(x)) ∗ I(PO(y|f(x)) > δO) for each y (note: I(.) is the indicator function).

These probabilities will become useful in later sections when we start discussing how

to incorporate exploration into the proposed pipeline.

It is briefly worth mentioning why we select the W-SVM as our algorithm of choice

for the open set recognition problem. We do so for several reasons. First, it is a

probabilistic approach, so not only do we gain the capability to reject a class, but we

also get a quantitative and principled measure of how likely the class should be rejected.

Second, W-SVM is designed for multi-class classification whereas other methods are

designed to handle only binary decisions (e.g., methods like the one-class SVM designed

for anomaly/outlier detection). Third, if we utilize linear SVMs for the one-vs-rest

component of the one class SVM, then we can use it to get an understanding of which

features are most important for predicting specific classes. Fourth, experimentally, we

have found that the W-SVM is a very competitive method, even when compared to more

modern approaches like the extreme value machine [320] and OpenMax classifier [317].

6.5.5 Updating: Adapting the Models and Adjusting the Sensors

In the previous section, we discussed how to detect out-of-distribution scenes. In this

section, we talk about what to do once we know that a scene is atypical; namely, we

discuss how to update our representations and machine learning models to account

for new types of scenes. It should be noted that we propose methods for updating

our representations and models on a per-class basis, not a per-instance basis (i.e., the

traditional streaming machine learning setting). Furthermore, in addition to updating

the models, we also need to consider the problem of how to “update” an agent’s sensors

by adjusting their position. Thus, this section is also concerned with specifying the

exploration component of our proposed framework and introducing some methods from

reinforcement learning to implement this specification in practice. We can categorize

151

Figure 6.3: A visual representation of the continuous learning variant of PBMF where
when a new class is encountered, the existing scenario dictionary is frozen, and we learn
a new dictionary of scenarios specific to the new class that gets appended to the existing
scenario dictionary.

the main topics of this section into three topics: 1) updating the scenario representation,

2) updating ScenarioNet and the scene classifier, and 3) exploring the scene.

Updating the Scenario Representation

In this section, we propose a simple extension to pseudo-Boolean matrix factorization.

Specifically, we show how the scenario dictionary can be augmented using only instances

from a new scene category. This augmentation involves solving for a small matrix W (c),

which represents scenarios that are specific to the new class c. To discover W (c), we

152

only need to use ground truth object data from the new class instances A(c):

min
W (c),H(c)

P0 + α1 ∗ P1 + α2 ∗ P2 + α3 ∗ P3 + α4 ∗ P4

s.t. W (new) = [W,W (c)],W (new) ∈ [0, 1]m×(k+kc),W (c) ∈ [0, 1]m×kc , H(c) ∈ [0, 1]kc×nc

Ωij = max

(
A

(c)
ij ∗

(
1 + log

(
Ninstances

Nobjects

))
, 0.5

)
,

P0 = ||Ω • (A(c) −min(W (new)H(c), 1 + 0.01W (new)H(c)))||F ,

P1 = ||H(c) −H(c)2||F , P2 = ||W (new) −W (new)2||F ,

P3 = ||H(c)ᵀ||2,1,

P4 = ||W (new)ᵀW (new) − diag(W (new)ᵀW (new))||F

(6.5)

Every time a new class c (with nc training instances) is added, we solve for kc new class-

specific scenarios W (c) and append them to the old dictionary W (new) = [W,W (c)]. See

Figure 6.3 for a visual overview of this process. The intuition behind this formulation

is that if we have enough “seed” classes when learning the initial dictionary, then

the scenarios that are common throughout multiple types of scenes should already be

captured in the initial dictionary and require little to no fine-tuning. The remaining

scenarios in the initial dictionary should be essentially class-specific to scene classes

that we have already seen, so these do not need to be updated either. Then, all

that remains is learning how to augment the initial dictionary with scenarios that are

specific to the new classes. Likewise, since we impose orthogonality constraints on the

dictionary, little redundancy should be encoded within the new scenarios. The scenario

selection penalty (using the `2, 1-norm) is also useful in this situation because if the

number of class-specific scenarios is estimated incorrectly, the unnecessary scenarios

can be automatically pruned. Furthermore, we make the observation that we do not

need to relearn using all existing data if we only care about class-specific scenarios, so

we can save a significant amount of computational time by only optimizing using the

new class-specific training instances.

153

Figure 6.4: As new class-specific scenarios are discovered via the dynamic-variant of
pseudo-Boolean matrix factorization, the scenario-predicting neural network is updated
by learning new branches consisting of layers designed to recognize the new class-specific
scenarios.

Updating ScenarioNet

We have proposed a method for updating the scenario dictionary in a dynamic man-

ner; however, the agent also needs the capability to efficiently learn models that can

recognize these new scenarios from visual data without having to retrain the convolu-

tional neural network from scratch using all previously collected data. We propose a

branching convolutional neural network model. Whenever a new class is encountered,

a new set of class-specific scenarios is learned using the dynamic-variant of PBMF, and

subsequently, a branch of the convolutional neural network is trained to perform multi-

scenario recognition on just the new scenarios using only data for the new classes. This

process results in separate scenario recognition models for each class-specific scenario

dictionary. Then, the scenario predictions for each branch can be concatenated to form

a unified scenario prediction. We show the model architecture in Figure 6.4.

In our proposed architecture, we have a set of shared layers that feed into class-

specific scenario prediction layers. We assume these shared layers are learned on a

diverse set of initial scene classes (i.e., the same classes used to learn the initial dictio-

nary), and do not need to be fine-tuned as new classes are encountered. Our experiments

show that this is a relatively safe assumption for the given dataset. However, if such

an assumption cannot be made, then we would have to employ techniques for mini-

mizing catastrophic forgetting [333, 334] in deep neural network such as elastic weight

consolidation [335].

154

Updating the Scene Classification Model

Training the scene classification W-SVM is significantly less computationally expen-

sive than training the scenario-recognizing neural network. Likewise, while there exist

machine learning models capable of performing open world recognition [286] (where

the model is updated as new classes are encountered), it is a much harder problem to

perform open-world recognition when the dimensionality of the feature space is also

changing (as is the case in this instance where the number of scenarios grows as new

classes are encountered). As such, we do not make any major changes to the W-SVM

formulation, and simply retrain the W-SVM from scratch every time a new class is

encountered. However, we feel this is inefficient and as such, is important future work.

Formulating a Policy for Exploring the Scene

Finally, we need to model the exploration component of our approach. We define a

Markov Decision Process for the problem of active explanation-driven classification of

indoor scenes. We define a state to be the vector of class probabilities output by W-

SVM (see Section 6.5.4) concatenated with the rejection score (one minus the maximum

probability output by W-SVM), and the number of views seen. There are four actions:

1) make a class prediction and end exploration, 2) reject making any decision and end

the exploration process, 3) adjust the camera to the nearest unseen view, and 4) adjust

the camera to the furthest unseen view. We define the rewards as: -1 if the view is

changed when the agent would have made the correct prediction, -#maximum views if

the model predicts an incorrect class, -#maximum views if the model refuses to make

a prediction and ends exploration when it would have predicted the correct class, and

#maximum views + (number of remaining unseen views)v if a correct classification is

made. v is a parameter which controls the trade-off between accuracy and exploration.

The terminal states are when a prediction is made, when the agent rejects making

a prediction and ends exploration, or when there are no more views left to consider.

We use a linear function approximation of the Q-value with experience replay as our

reinforcement learning algorithm.

155

Method Single-View Accuracy All-View Accuracy

Standard ResNet-18 0.504 0.586
Ground Truth Object Presence + Log. Regression 0.654 0.793

Table 6.1: Object-based representations for scene classification are very discriminative,
especially when compared to purely visual features (using a fine-tuned ResNet-18). It
is also apparent that using all views of a scene results in significant performance gains
compared to using just a single view.

6.6 Experimental Results and Analysis

In this section, we empirically justify the various components of our system. We begin

by reiterating the importance of object-based representations.

6.6.1 Understanding the Importance of Object-Based Representations

As in previous chapters, we begin by justifying the use of object-based representations.

In Table 6.1, we investigate the discriminative power of object-based representations for

scene classification. We train a multinomial logistic regression model using the ground-

truth presence of objects as a binary feature vector. As a baseline, we consider purely

visual features that are extracted using a ResNet-18 convolutional neural network fine-

tuned on individual images from our dataset. We examine performance when we treat

every single view as its own scene and also when we fuse information about all of the

views for a scene. For the object-based classifier, it is trivial to fuse information for

all views by making a binary feature vector signifying which objects exist in any of the

views and then training a logistic regression model on the scene-level object vectors. For

the ResNet-18 baseline, we näıvely fuse information from all views by outputting the

scene category that has the maximum predicted probability when all individual view

prediction probabilities are max-pooled. Results suggest object presence is a powerful

representation for scene classification, outperforming the visual features.

156

Figure 6.5: Results show that the majority of objects in our extended SUN360 dataset
cannot accurately recognized from scene images.

Method Single-View Accuracy All-View Accuracy

Ground Truth Object Presence + Log. Regression 0.654 0.793
Predicted Object Probabilities + Log. Regression 0.473 0.564

Table 6.2: Classification performance diminishes when noisy predicted object presence
features are used for scene classification.

6.6.2 Understanding the Limitations of Using Object Presence as Fea-

tures

In practice, we do not have access to ground truth object information, and instead, the

object presence information must be estimated from visual data. If a ResNet-18 convo-

lutional neural network is trained to perform multi-object recognition (using weighted

binary multi-label cross-entropy as the loss function) from scene images, we start to

see some of the problems with using object presence as features for scene classification.

Unsurprisingly, results are consistent with those obtained in earlier chapters on similar

datasets. Figure 6.5 shows us that the majority of objects in our dataset cannot be

accurately recognized. We hypothesize that this is because there is not enough data to

learn all possible deformations and variations of appearances for most of the objects.

157

Figure 6.6: Left: We attempt to measure how scenario recognition performance is
affected by the number of scenarios. We also see that refining the dictionary based on
visual feedback is useful for improving scenario recognition. Right: We train a model to
learn to recognize 30 scenarios. Results show that scenarios can be relatively accurately
recognized from scene images, especially when compared to predicting individual object
classes (Figure 6.5).

Furthermore, if the predicted object probabilities are used as features for scene classifi-

cation, the model can no longer be considered explainable because the features can no

longer be trusted. Similarly, in Table 6.2, we see that scene classification performance

diminishes when noisy predicted objects are used as features for scene classification.

This provides justification for why converting from an object presence-based represen-

tation to a scenario-based representation is a reasonable action.

6.6.3 Justifying Scenarios as Discriminative, Human-Understandable

Features

In Figure 6.6, we evaluate how scenario recognition is affected by the number of scenarios

as well as how the recognition of scenarios is affected by the use of visual feedback. The

average scenario is much easier to recognize than the average object, suggesting that

a scenario-based model is more trustworthy than a model that relies only on object

presence. This is further validated by comparing Figures 6.5 and 6.6.

We also evaluate the use of scenarios for scene classification by training a logistic

regression model on the predicted scenario probabilities. Information about scenar-

ios over multiple views can be easily fused by simple max-pooling. Fig. 6.7 shows

158

Figure 6.7: We attempt to understand how well a scenario-based model works for scene
classification when using only single-views and when using all available views of a scene.

that visual scenario-based models can achieve scene classification accuracy on par with

standard CNNs and object-based representations despite being low-dimensional. This

property is likely due to the scenarios’ ability to compress semantic information by

efficiently exploiting context between objects effectively. Scenario-based models have

the additional benefit that the features are human-understandable, and since logistic

regression is a simple linear model, it is easy to evaluate the importance of each scenario

when making a specific classification decision.

We also conducted human evaluation experiments to justify that humans are capa-

ble of understanding scenarios and understanding scenario-based explanations for scene

classification. This set of experiments is very similar to those conducted in Chapter

4, but we use a different dataset and a much larger sample size. In the first exper-

iment, we presented 30 scenarios (learned by our model with visual feedback) to 20

English-speaking participants using Amazon’s Mechanical Turk (AMT) service. We

asked participants to say whether each scenario “is a meaningful group of objects”,

“might be a meaningful group of objects but doesn’t align with my expectations”, “is a

meaningless group of objects”, or “consists of objects I’m not familiar with”. After tak-

ing the modal response for each question, respondents found 74.1% of the scenarios

were meaningful, 11.1% might be meaningful, and 14.8% were meaningless.

Upon examining the meaningless scenarios, we found that these were often considered

“meaningless” because sometimes the PBMF would add one or two seemingly random

159

objects to a meaningful scenario or accidentally merge two meaningful scenarios. These

problems could likely be solved by using a slightly larger number of scenarios.

We then evaluated if humans could accurately identify the category of a scene when

presented with only the most influential scenarios and their influence score (the pre-

dicted scenario probability output by the CNN multiplied by the corresponding weight

in the logistic regression model). For this experiment, scenarios were pooled over all

views. We gathered 15 English-speaking participants using AMT and for 50 random

test scenes that were correctly classified by our model, the participants were given a list

of all scenarios with an influence score greater than one and asked to predict the scene

class from four choices (one true, three randomly chosen). After taking the modal re-

sponse for each question, 98% of the scene classifications were correct, suggesting

that the model output plausible explanations.

6.6.4 Evaluating the W-SVM for Identifying Unknown Scene Cate-

gories

Next, we consider how predictive performance is affected when our problem shifts from

the traditional classification paradigm to the open set classification paradigm. We

conduct an experiment to discern whether performance is gained, lost, or remains un-

changed when using a Weibull-calibrated support vector machine instead of a logistic

regression model when all classes are known (i.e., the traditional classification setting).

The scenario recognition model (with 30 scenarios) is trained on all classes, and then

the predicted scenario probabilities are used as features for both a logistic regression

model and a W-SVM for scene classification. From Table 6.3, we see that the W-SVM

slightly underperforms the logistic regression model by 1-2%.

We also want to see how well using scenarios with W-SVM works for scene classifi-

cation when there are unknown scene categories (i.e., the open set classification setting.

Ten trials are run. In each trial, seven known and seven unknown classes are randomly

selected. The scenario recognition model is trained using only the known classes. In-

formation from all views is used. The thresholds for rejection are determined based on

the held-out validation set. We measure the accuracy with respect to the known classes

160

Method Single-View Accuracy All-View Accuracy

Predicted Scenario Probabilities + Log. Regression 0.476 0.607
Predicted Scenario Probabilities + W-SVM 0.459 0.593

Table 6.3: We measure the performance of logistic regression and W-SVM (using 30
predicted scenario probabilities as features) when all classes are known.

Method Known Class Acc. Unknown Class Rec. Unknown Class Prec. Unknown Class AUPRC

Predicted Scenarios + NN-CAP 0.424 0.489 0.581 0.563

Predicted Scenarios + PI-SVM 0.511 0.594 0.613 0.594

Predicted Scenarios + EVM 0.513 0.542 0.632 0.615

Predicted Scenarios + OpenMax 0.460 0.554 0.609 0.574

Predicted Scenarios + W-SVM 0.525 0.577 0.617 0.603

Table 6.4: We measure the performance of combining scenarios with various popular
classifiers for open set recognition task using 30 scenarios and all views with 7 known
classes and 7 unknown classes. Results are averaged over 10 random trials.

as well as the precision, recall, and area under the precision-recall-curve (AUPRC) for

the unknown classes. Table 6.4 shows that using W-SVM as the classifier, results in a

decrease in performance in terms of known class accuracy, but we gain the ability to

perform open set recognition, achieving promising results in terms of the unknown class

precision, recall, and AUPRC. We hypothesize that the likely reason for the decrease in

accuracy on the known classes is that only half of the data is used for training compared

to the previous experiment.

We also compare the W-SVM to several other popular open set recognition models,

specifically the nearest neighbor + compact abating probability (NN-CAP) model [289],

“probability of inclusion” support vector machine (PI-SVM) [318], extreme value ma-

chine (EVM) [320], and OpenMax classifier [317] (albeit using a single-layer neural

network, which it was not designed for). Results appear in Table 6.4. In general, the

W-SVM is competitive with all of the aforementioned methods, and compared to the

other models, does an especially good job balancing performance on the known class

multi-class classification task and unknown class rejection task.

161

Method Single-View Accuracy All-View Accuracy Reconstruction Error

Ground Truth Scenarios (Static) + Logistic Regression 0.620 0.684 205.2
Ground Truth Scenarios (Dynamic) + Logistic Regression 0.573 0.678 247.6

Table 6.5: We compare the quality of a dictionary learned by Dynamic PBMF to one
learned with regular PBMF.

Method Scenario Recognition mAP Single-View Accuracy All-View Accuracy

Pred. Scenario Scores (Dynamic PBMF + Trad. Model) + Log. Reg. 0.414 0.503 0.649
Pred. Scenario Scores (Dynamic PBMF + Branch. Model) + Log. Reg. 0.410 0.543 0.648
Pred. Scenario Scores (Dynamic PBMF + Trad. Model) + W-SVM 0.414 0.488 0.587
Pred. Scenario Scores (Dynamic PBMF + Branch Model) + W-SVM 0.410 0.525 0.634

Table 6.6: Understanding the the performance of the branching convolutional neural
network model for scenario recognitionin combination with different classifiers.

6.6.5 Evaluating the Dynamic-Variant of Pseudo-Boolean Matrix Fac-

torization and the Branching Scenario-Recognition Neural Net-

work

In the next set of experiments, we evaluate our proposed approach for updating the

scenario dictionary using a dynamic-variant of pseudo-Boolean matrix factorization and

our proposed approach for updating the scenario-recognizing convolutional neural net-

work (our branching neural network). To validate our method for dynamically updating

the scenario dictionary (Dynamic PBMF), we run experiments over ten trials where an

initial dictionary is learned using seven classes and twenty scenarios. For each remaining

class, ten class-specific scenarios are learned, pruned based on the `2, 1-norm of H(c)ᵀ,

and appended to the existing dictionary. For each trial, as a baseline, we learn a set of

scenarios using all data for an equal number of scenarios as Dynamic PBMF outputs.

We compare Dynamic PBMF to regular PBMF in terms of 1) reconstruction error on

the entire dataset and 2) discriminability on both the single-view and all-view scene

classification tasks. Results appear in Table 6.5. On average, Dynamic PBMF learns

43.5 scenarios. As expected, regular PBMF results in a lower reconstruction error and

higher scene classification accuracies, but Dynamic PBMF is very competitive. The

reconstruction error of Dynamic PBMF is only 1.2 times larger than regular PBMF,

and scene classification accuracy is within 1% on the all-view classification task, and

162

within 5% on the single-view classification task.

Next, we evaluate using the dynamic-variant of pseudo-Boolean matrix factorization

in combination with the branching scenario-recognizing neural network. Ten trials are

run where an initial model was trained on data from half of the scene categories and

then a cascade of models were learned on the remaining seven scene categories. Results

appear in Table 6.6. On average, 39.3 scenarios are learned per trial. The branching

CNN achieves comparable scenario recognition performance compared to a single model

trained on all data at once. The branching model achieves superior single-view scene

classification performance and equivalent all-view scene classification performance when

compared to the traditional model. These results provide promising evidence that since

class-specific scenarios are ideally independent between different scene categories, they

can be learned with significantly limited data. It should be noted that the ability of the

model to generalize quickly might be due in part because the ResNet feature extraction

portion of the network is pre-trained on Places-365, a large-scale scene dataset, before

being fine-tuned on the SUN360 dataset.

6.6.6 Understanding the Necessity of Exploration

As has been previously mentioned, most datasets for scene classification (e.g., [21,245,

256, 284, 285]) consider “clean” single views that are very representative of a limited

set of known scene categories. In real-world applications, if an agent (e.g., a robot) is

placed in a new scene, it might encounter 1) views that are uninformative (e.g., the

agent is facing a wall) or 2) views that are adversarial (e.g., the agent is looking through

a doorway into a different type of scene). Thus, it is necessary for the agent to examine

multiple views to understand its surroundings better. This is validated in the results

in many of the previous experiments. For example, in Table 6.1, we see that for simple

baselines, using information from all views of a scene results in significantly improved

classification performance. Similar results are shown in Figure 6.6 and Tables 6.2, 6.3,

and 6.6, which highlight how performance improves when all views are considered (over

just single views) when the features are scenarios and not objects, regardless of what

classification model is used (logistic regression or W-SVM), in both static and dynamic

163

v Mean Number of Actions Known Class Accuracy Unknown Class Recall Unknown Class Precision

0 6.66 0.49 0.78 0.61
1.5 4.19 0.46 0.56 0.59

Table 6.7: We explore how well the learned policy performs on the task of active
explanation-driven classification of indoor scenes. We show the trade-offs between max-
imizing predictive performance and minimizing unnecessary exploration.

problem settings.

6.6.7 Evaluating the Exploration Component of our Proposed Frame-

work

Next, we need to see if the reinforcement learning formulation for addressing the prob-

lem of the active explanation-driven classification of indoor scenes introduced earlier

(see Section 6.5.5) is beneficial or a waste of time and computational resources. Ten

trials are run. In each trial, we randomly select seven known classes and seven unknown

classes. A single W-SVM model is trained using scene-level feature vectors, each con-

structed from 1-8 randomly sampled views per randomly sampled training instance. We

then learn a policy as described in Section 6.5.5 and apply the policy to the unseen test

data. We measure several important metrics including the average number of actions

taken, the accuracy of the predictions on the known classes, and the precision and recall

of rejecting the unknown classes. Results are reported in Table 6.7. Compared to the

results in Table 6.4, which involved no active exploration and used all scene views, if we

set v = 0 (i.e., exploration is not penalized), similar known class accuracy and unknown

class precision are achieved while unknown class recall significantly improves. If we set

v = 1.5 (we relatively heavily penalize unnecessary exploration), similar known class

accuracy, unknown class precision, and unknown class recall are achieved as compared

to the results in Table 6.4 while we only need to consider about four views on average.

These results suggest that exploration is useful, and our proposed reinforcement learn-

ing formulation is a promising approach towards addressing the problem of the active

explanation-driven classification of indoor scenes.

164

6.6.8 Qualitative Results

Finally, we want to show some qualitative results in order to highlight both the explana-

tory power of the proposed approach and the utility of using information from multiple

views for scene understanding and classification. In Figures 6.8, 6.9, and 6.10 we show

two scenes with eight views each. For each scene, we show the predicted scenarios.

It should be noted that the scenarios learned on this dataset tend to be much denser

(i.e., contain more objects) than those of Chapter 4. Specifically, there tend to be

more class-correlated scenarios where one scenario covers most of the common objects

for a specific class (e.g., there is a scenario that covers general bathroom appliances,

another one that covers kitchen appliances, another one for tools that would appear in

a workshop, etc.). As such, the scenarios produced on this dataset tend to result in less

fine-grained, but still useful explanations.

165

View 1:

Scenario #1

View 2:

Scenario #1

closet
displaycase
door

closet
displaycase
door

166

View 3:

Scenario #1

View 4:

Scenario #1

bathmat
bathtub
bidet
counter
exhaustfan
hook
lantern
mirror

scale
shower
sink
soapbar
soapdispenser
supportbar
tissuebox
toilet

toiletpaper
toiletpaperholder
towel
towelrack
towelring
trashcan
washingmachine

bathmat
bathtub
bidet
counter
exhaustfan
hook
lantern
mirror

scale
shower
sink
soapbar
soapdispenser
supportbar
tissuebox
toilet

toiletpaper
toiletpaperholder
towel
towelrack
towelring
trashcan
washingmachine

167

View 5:

Scenario #1

View 6:

Scenario #1

bathmat
bathtub
bidet
counter
exhaustfan
hook
lantern
mirror

scale
shower
sink
soapbar
soapdispenser
supportbar
tissuebox
toilet

toiletpaper
toiletpaperholder
towel
towelrack
towelring
trashcan
washingmachine

bathmat
bathtub
bidet
counter
exhaustfan
hook
lantern
mirror

scale
shower
sink
soapbar
soapdispenser
supportbar
tissuebox
toilet

toiletpaper
toiletpaperholder
towel
towelrack
towelring
trashcan
washingmachine

168

View 7:

View 8:

Scenario #1
bathmat
bathtub
bidet
counter
exhaustfan
hook
lantern
mirror

scale
shower
sink
soapbar
soapdispenser
supportbar
tissuebox
toilet

toiletpaper
toiletpaperholder
towel
towelrack
towelring
trashcan
washingmachine

Figure 6.8: We show an example of a bathroom scene decomposed into eight views in
order to highlight both the explanatory power of our proposed approach and the utility
of using information from multiple views for scene understanding and classification. For
each view, we show the predicted scenarios. This example presents an interesting case.
If an agent were to start with the first view, it wouldn’t be able to predict a bathroom
scene because it only detects the “closet/door” scenario. However, if the agent looks
at views 3, 4, 5, 6, and 8, then there is strong evidence that the scene is a bathroom.
Another interesting property of this example is that it includes an uninformative view,
specifically view 7 which is essentially a blank wall. In this case, our neural network
doesn’t detect any useful semantic information and as a result, doesn’t output any
scenario prediction with high confidence.

169

View 1:

Scenario #1

View 2:

Scenario #1 Scenario #2 Scenario #3 Scenario #4

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

hangingart_painting barrier_gate_fence
decal_mural
rope
stairs
supportbar

closet
displaycase
door

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

170

View 3:

Scenario #1

View 4:

Scenario #1

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

171

View 5:

Scenario #1 Scenario #2

View 6:

Scenario #1 Scenario #2

hangingart_painting altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

barrier_gate_fence
decal_mural
rope
stairs
supportbar

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

172

View 7:

Scenario #1

View 8:

Scenario #1

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

altar
bench
booth
ceilingfan
cross
fireplace

paintedceiling
pew
pulpit
rope
stainedglass
statue_model

Figure 6.9: We show an example of a church scene decomposed into eight views in order
to highlight both the explanatory power of our proposed approach and the utility of
using information from multiple views for scene understanding and classification. For
each view, we show the predicted scenarios.

173

View 1:

Scenario #1

View 2:

Scenario #1 Scenario #2

closet
displaycase
door

blackboard_whiteboard
desk
remote
television

computer
desktop
keyboard
laptop
monitor
mouse
mousepad
printer_copier_scanner
projector
telephone

174

View 3:

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

View 4:

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

chair
window
windowshade

table bulletinboard
paper

blackboard_whiteboard
desk
remote
television

computer
desktop
keyboard
laptop
monitor
mouse
mousepad
printer_copier_scanner
projector
telephone

chair
window
windowshade

table___ bulletinboard
paper

blackboard_whiteboard
desk
remote
television

computer
desktop
keyboard
laptop
monitor
mouse
mousepad
printer_copier_scanner
projector
telephone

175

View 5:

View 6:

Scenario #1 Scenario #2 Scenario #3
hangingart_painting closet

displaycase
door

cabinet
coffeemaker
dishrack
drawer
dresser
exhausthood
fridge
kettle

kitchenisland
mediaplayer
microwave
oven
sink
stovetop
toaster

176

View 7:

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

View 8:

Scenario #1

hangingart_painting closet
displaycase
door

cabinet
coffeemaker
dishrack
drawer
dresser
exhausthood
fridge
kettle

kitchenisland
mediaplayer
microwave
oven
sink
stovetop
toaster

bowl
cuttingboard
decoration
dish_pot
hook
horn
lid
pan

disk
shelf

closet
displaycase
door

Figure 6.10: We show an example of an office scene decomposed into eight views in
order to highlight both the explanatory power of our proposed approach and the utility
of using information from multiple views for scene understanding and classification. For
each view, we show the predicted scenarios. In this case, we see that our method is
good but not perfect. The proposed model detects some scenarios that aren’t present
in the actual image, e.g., the computer scenario in view 2. Similarly, in views 6 and 7,
we see that the model predicts a scenario related to kitchen appliances because it sees
a cabinet, but most of the other concepts in the scenario are missing.

177

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we focused on general problems related to visual recognition, the task of

automatically assigning some label to an image or video. Visual recognition problems

often appear in safety-critical applications such as autonomous driving, human-machine

teaming, and medical image analysis. The deep neural network [63], and specifically

the convolutional neural network [62, 238] is a recent machine learning method that

has revolutionized the field of computer vision and is now considered the defacto stan-

dard for solving visual recognition tasks. However, deep neural networks are typically

treated as black-box models: models that take in data and output decisions without the

user understanding the inner mechanisms of how the decisions were reached and with-

out providing evidence to support predictions, i.e., why certain decisions were made.

Black-box models are often incompatible with safety-critical applications such as those

mentioned earlier. Safety-critical applications often require interpretable models and

require the use of computational agents that are capable of understanding and reason-

ing about the high-level content of real-world scene images in order to make rational

and grounded decisions that can be trusted by humans. As such, improving the in-

terpretability of deep neural networks has emerged as a popular topic in the computer

vision research community recently. Many of the more popular approaches for im-

proving the interpretability of deep neural networks for visual recognition tasks take

a given model that is already trained and try to explain the decision-making process

of the model in a post-hoc (after-the-fact) manner. However, post-hoc explanations

suffer from several problems. Namely, the post-hoc explanations are not always faith-

ful to what the original model computes; sometimes the post-hoc explanations do not

178

make sense or provide enough detail to understand what the black box model is truly

doing; and the post-hoc explanations are often overly complicated, leading to human

error in subsequent decision making. Furthermore, many of the post-hoc explanation

models for deep learning-based visual recognition models operate by highlighting which

parts of an image are important when the model makes a specific decision and thus,

highlight where the network is looking but not why the attended areas are important.

To overcome the previously discussed weaknesses of existing explanation methods, we

propose several novel alternative approaches for making convolutional neural networks

more interpretable by utilizing explainability as a guiding principle when designing the

model architecture. Specifically, our methods make explainability a core principle of

the model by forcing the model to explicitly learn grounded and interpretable features.

The methods introduced in this thesis all rely on deep neural network that learn

two components: 1) a mapping from visual input to a set of visual concepts and 2)

a classification model mapping the visual concepts to class assignments. However,

the visual concepts used in the introduced methods must satisfy two properties to

maximize interpretability and trust; the set of visual attributes must be 1) able to be

easily recognized from visual data given some dataset, and 2) discriminative for the

given target task. As such, simply training a model to predict some known set of

visual concepts and then using these visual concepts as features for the downstream

classification task is insufficient. Instead, we must make non-trivial modifications to

this pipeline.

In the first technical approach that we discussed, we demonstrated that when train-

ing a model to recognize a large set of visual concepts, there are often large subsets of

visual concepts that can’t be recognized from visual data with acceptable accuracy. The

inability to recognize these visual concepts is due to several reasons. First, the object

labels included in many datasets are often noisy and incomplete. Because these datasets

are often created via crowdsourcing, labels can sometimes be redundant and ambiguous,

e.g., if we use objects as our visual concepts, then many objects that are semantically

equivalent might be labeled differently because humans have different names for the

same objects. Sometimes labels are overly specific, e.g., if we use objects as our visual

179

concepts, an object might be labeled as a “wooden statue” while not being labeled

using higher-level categories such as “statue” and “artwork”. Humans also occasionally

make mistakes, so they occasionally incorrectly label visual concepts that do not exist

in a image and vice versa. Some mistakes are not due to human error but are instead

due to limited training data. For example, the majority of objects (which can serve as

our visual concepts) in the ADE20K dataset appear fewer than ten times, and thus,

there is often not enough training data for the model to learn how to recognize these

sparsely-appearing objects because deep neural networks are incredibly data-hungry.

Similarly, some objects appear so small in the images (i.e., only hundreds of pixels in

area), that deep neural networks cannot learn the fine-grained visual patterns necessary

to accurately them. To overcome these issues, we propose expanding the set of visual

concepts using an external knowledge graph relating visual concepts in a hierarchy, and

then filtering out very rare concepts. By using a knowledge graph to expand and prune

the visual concept set, some of the aforementioned issues can be addressed:

• Ambiguous concepts are merged.

• Concept information is captured at multiple levels of granularity.

• Ancestral categories appear more frequently than some of their children, so while

there may not be enough training data to learn to recognize some visual concept,

there might be enough training data to recognize one of its ancestors.

Thus, the proposed method for augmenting visual concepts is useful in many ways for

reducing noise in the visual concept recognition stage of a semantically-grounded model.

Furthermore, by exploiting the known structure of the visual concept hierarchy, we can

improve the recognition of the individual visual concepts.

However, the method proposed in the first technical approach is not without its

flaws. Predicting all of the visual concepts in the expanded set of visual concepts re-

sults in a very high-dimensional representation. The more information that a human

has to consider for an explanation, the more the interpretability of the model is reduced.

Likewise, many visual concepts express similar information, so the aforementioned rep-

resentation often contains large amounts of redundant information. Finally, many of the

180

visual concepts are not discriminative for the downstream classification task, and thus,

the model exerts unnecessary effort and computational resources trying to recognize

concepts that are not necessary for our true task of interest.

To overcome these issues, we introduce the scenario representation, a novel low-

dimensional, interpretable data-driven representation. Scenarios identify sets of fre-

quently co-occurring visual concepts. We introduce the pseudo-Boolean matrix factor-

ization to find these scenarios and propose a convolutional neural network architecture

(the ScenarioNet) that bottlenecks through a scenario recognition layer in order to gen-

erate low-dimensional, human-understandable explanations for visual recognition tasks.

As has been mentioned, many of the base visual concepts are often hard to recognize

from visual data. In contrast, scenarios can be recognized from visual data with much

higher accuracy; thus, decisions based on scenarios can be trusted with much higher

confidence than those based on the base visual concepts. The scenario representation

is also much lower-dimensional than a representation derived from predicting the entire

base set of visual concepts, and the scenario representation has very little redundancy

in the information it encodes compared to the representation consisting of predictions

over the initial set of visual concepts. Thus, it is much easier for a human to eval-

uate decisions based on tens of scenarios compared to hundreds or thousands of the

initial visual concepts. Similarly, by the formulation of ScenarioNet, in contrast to

purely human-specified visual concepts, scenarios are naturally discriminative for the

downstream target task.

A significant flaw exists with the scenario representation and ScenarioNet. In order

to learn to identify and recognize scenarios, a human must hand-label the presence or

absence of all of the relevant visual concepts from a human-curated pre-specified set of

visual concepts for every training image. Often, acquiring such fine-grained annotations

is a costly and time-consuming procedure, and thus, it is often not feasible to collect

images paired with visual concept information. Second, we tested our methods on

the relatively simple task of scene classification with relatively clean data. The third

method we introduce attempts to circumvent this problem by extending the ScenarioNet

model to extract meaningful and grounded representations from noisier auxiliary data

181

sources. Specifically, the auxiliary data we consider in our third approach is restricted to

images paired with natural language text that describes the content of the image. This

approach involves learning a convolutional neural network architecture simultaneously

capable of 1) constructing a topic model, 2) predicting the presence or absence of

each topic for a given image based on learned visual features, and 3) using an image’s

predicted topic encoding as features for a downstream classification task. Of course,

this approach also has its flaws. Namely, we showed that grounding the decision-making

process of the neural network to concepts hidden in the natural text resulted in models

that have higher predictive power for the downstream classification task, but the topic

extraction and recognition process was much noisier than the scenario extraction and

recognition process, so the interpretability of the proposed model was much more limited

than the original ScenarioNet.

In all of the previously discussed research directions, we assumed relatively simple

classification settings. We assumed that the data consists of individual images where

each image is very representative of its class. We also assumed all classes are known to

the model a priori, and the model never needs to be updated to account for unexpected

data. In our fourth research direction, we looked at a much harder problem domain: the

active explanation-driven classification of indoor scenes. In this problem, an agent with

an imaging sensor is placed in some environment, and based on its sensory input, the

agent needs to assign a label to the perceived scene. The agent can adjust its sensor to

capture more details about the scene, but there is a cost associated with manipulating

the sensor. Ideally, the agent must understand the scene in an efficient manner. In

order to understand the global state of a scene (i.e., the scene category), the agent

must extract properties about the scene from multiple views and use these properties

to generate human-understandable explanations about why it made specific predictions.

If the agent encounters an unknown type of scene, it should reject assigning a label to the

scene, request additional data about the new scene category from a human, and update

its underlying knowledge base and machine learning models. To address this much more

challenging problem, we extend the ScenarioNet architecture for use in setting requiring

multi-sensor fusion and continuous learning. For each view encountered by the agent,

182

ScenarioNet is used to extract a human-understandable feature representation. As the

agent encounters new views in the same scene, the predicted scenarios from each view

are fused to obtain scene-level scenarios. A Weibull-calibrated support vector machine

(W-SVM) [289] is then used to determine if a scene belongs to an unknown category and

for assigning a class prediction. To facilitate the exploration process (i.e., determining

whether to assign a label to a scene or change views), we formulate a Markov Decision

Process and apply reinforcement learning.

In this thesis, we thoroughly discussed the importance of interpretable machine

learning models for visual recognition tasks. We presented four technical approaches

for grounding neural networks to human-understandable visual concept-based repre-

sentations in order to improve the interpretability of the networks. We highlighted

the strengths and weaknesses of each model, and while the models are far from per-

fect, we demonstrated their potential. In the following and final section of this thesis,

we highlight some promising future directions of research for further improving the

interpretability of deep neural networks.

7.2 Future Work

We now discuss several potential avenues of future research related to improving the

interpretability of deep neural networks.

7.2.1 Expanding Scenarios Beyond Co-Occurrence Relations

Most of the methods introduced in this thesis are based on the scenario representa-

tion, which finds groups of visual concepts based on co-occurrence relations. However,

many other relationships might lead to discovering more expressive yet semantically-

meaningful representations. For example, even if we restrict our set of visual concepts

to objects once again, there are many different types of relationships that might en-

code essential information. Spatial relationships are important because objects that are

physically close to each other often are connected by some functionality, e.g., a com-

puter mouse and keyboard are necessary for using a desktop computer, and so, they

183

will often be found together. Relative position between objects also provide subtle clues

about how objects are used, e.g., a mouse is often to the right of a keyboard because

most people are right-handed. We can also specifically consider functional/interactional

relationships between objects. For example, the entire purpose of a baseball bat is to

hit a baseball, so this “hitting” relationship is very important when attempting to

deeply understand baseball bats, baseballs, the game of baseball, and the arrangement

of baseball fields. We can also consider temporal relationships, or how objects move in

relation to one another. As with spatial relationships, temporal relationships are useful

for understanding how objects interact with one another and also for understanding

the actions present in a scene. For example, the fact that darts move towards the

dartboard and away from people tells us how darts are used, tells us that darts may be

dangerous (because people avoid them), and tells us something about the functionality

of the parent scene (e.g., sports bars are places people go to play darts). Finally, we

can consider causal relationships, i.e., if a specific action is applied to an object, how

will the object be affected? Once again, this helps inform us about how two objects

might interact with, and causal relationships might also tell us something about how

an object is supposed to be used. For other types of visual concepts, we might need

to consider other types of relationships. As such, figuring out which relationships are

important for various visual recognition problems and figuring out how to constrain

neural networks (e.g., ScenarioNet) to make use of these relationships in a principled

manner (especially for improving the interpretability of the neural network) are still

very much important open research problems.

7.2.2 Outputting Richer, Easier-to-Interpret Explanations

The explanations output by our proposed methods are often very simple and sometimes

too abstract for a human to understand. One interesting and important direction for

future work is developing novel neural network architectures that can output explana-

tions in forms that are very intuitive to humans. For example, can we train a neural

network to output natural language explanations that we still ensure are grounded to

184

some known set of visual concepts? Similarly, we might be interested in developing neu-

ral networks that output graph-based explanations. For example, maybe future neural

networks will be capable of outputting scene graphs and highlighting which nodes in

the scene graph were most useful for making some prediction about a scene class.

7.2.3 Exploring Prototype-Based Approaches

As we have mentioned multiple times throughout this thesis, our methods often rely

on predicting some set of visual concepts. The set of visual concepts must be defined

by humans, and subsequently, large amounts of training must be collected via a time-

and resource-intensive process in order to learn recognition models that can accurately

recover these visual concepts from visual data. Even in the models introduced in this

thesis, there is still a large amount of noise in the concept predictions, leading to models

that cannot fully be trusted. These issues lead us to ask whether there are other ways

to ground neural networks to some human-understandable representation that are more

robust to noise and require less annotation effort by humans. One promising direction

is incorporating prototype learning with deep neural networks [14, 15]. In this case,

instead of grounding the decision-making process of deep neural networks to visual

concepts, the network is grounded to other images (or parts of images) in the training

set.

7.2.4 Utilizing Interpretable Non-Linear Classifiers

Lastly, in all of our work we’ve paired some semantically-meaningful and human-

understandable representation with a linear classifer. We chose to use a linear clas-

sifier because it is among the simplest machine learning models to interpret, and it

generally is trivially easy to implement in neural networks. However, there are many

other machine learning models that are similarly interpretable while potentially having

more predictive power because they can express more complex (i.e., non-linear) decision

boundaries. Examples of such methods include decision trees, decision sets, and nearest

neighbor classifiers, among others. However, it is difficult to integrate most of these

methods with deep neural networks. One very interesting non-linear, but potentially

185

interpretable classifier that is compatible with deep neural networks are deep neural

decision trees and forests [336, 337]. In these models, the linear classifier is replaced

with a tree-structured classifier, and the routing probabilities for how information flows

through the tree-model to arrive at a decision are learned parameterized functions of

the model. This interesting structure results in models that learn fascinating decision

boundaries while maintaining some possibility of interpretability.

186

References

[1] Z. A. Daniels, L. D. Frank, C. J. Menart, M. Raymer, and P. Hitzler, “A frame-
work for explainable deep neural models using external knowledge graphs,” Ar-
tificial Intelligence and Machine Learning for Multi-Domain Operations Applica-
tions, vol. 11413, p. 1141338, 2020.

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” in Computer Vision and Pattern Recog-
nition (CVPR), 2016 IEEE Conference on. IEEE, 2016, pp. 2921–2929.

[3] Z. A. Daniels and D. Metaxas, “Scenarionet: An interpretable data-driven model
for scene understanding,” XAI 2018, p. 33, 2018.

[4] Z. Daniels and D. Metaxas, “Exploiting visual and report-based information for
chest x-ray analysis by jointly learning visual classifiers and topic models,” in
IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

[5] Z. C. Lipton, “The mythos of model interpretability,” ICML Workshop on Human
Interpretability in Machine Learning, 2016.

[6] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining
the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 1135–1144.

[7] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for free?-
weakly-supervised learning with convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
685–694.

[8] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion.” in ICCV, 2017, pp. 618–626.

[9] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell,
“Generating visual explanations,” in European Conference on Computer Vision.
Springer, 2016, pp. 3–19.

[10] D. H. Park, L. A. Hendricks, Z. Akata, B. Schiele, T. Darrell, and M. Rohrbach,
“Attentive explanations: Justifying decisions and pointing to the evidence,” arXiv
preprint arXiv:1612.04757, 2016.

[11] C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature Machine Intelligence,
vol. 1, no. 5, pp. 206–215, 2019.

187

[12] M. K. Sarker, N. Xie, D. , M. Raymer, and P. Hitzler, “Explaining trained neural
networks with semantic web technologies: First steps,” International Workshop
on Neural-Symbolic Learning and Reasoning, 2017.

[13] L. Anne Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding visual explana-
tions,” European Conference on Computer Vision, pp. 264–279, 2018.

[14] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-based reason-
ing through prototypes: A neural network that explains its predictions,” AAAI
Conference on Artificial Intelligence, 2018.

[15] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, “This looks like
that: deep learning for interpretable image recognition,” in NeurIPS, 2019, pp.
8928–8939.

[16] Z. A. Daniels and D. N. Metaxas, “Exploiting visual and report-based information
for chest x-ray analysis by jointly learning visual classifiers and topic models,”
IEEE ISBI, pp. 1270–1274, 2019.

[17] R. S. Feris, C. Lampert, and D. Parikh, Visual Attributes. Springer, 2017.

[18] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their
attributes,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, 2009, pp. 1778–1785.

[19] V. Ferrari and A. Zisserman, “Learning visual attributes,” in Advances in Neural
Information Processing Systems, 2008, pp. 433–440.

[20] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object
classes by between-class attribute transfer,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 951–958.

[21] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing
through ade20k dataset,” CVPR, pp. 633–641, 2017.

[22] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[23] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and un-
derstanding deep neural networks,” Digital Signal Processing, vol. 73, pp. 1–15,
2018.

[24] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel, and
S. Gumhold, “Visualizations of deep neural networks in computer vision: A sur-
vey,” in Transparent Data Mining for Big and Small Data. Springer, 2017, pp.
123–144.

[25] Z. Qin, F. Yu, C. Liu, and X. Chen, “How convolutional neural network see
the world-a survey of convolutional neural network visualization methods,” arXiv
preprint arXiv:1804.11191, 2018.

[26] I. Chalkiadakis, “A brief survey of visualization methods for deep learning models
from the perspective of explainable ai,” 2018.

188

[27] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi,
“A survey of methods for explaining black box models,” ACM computing surveys
(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[28] A. Nguyen, J. Yosinski, and J. Clune, “Understanding neural networks via fea-
ture visualization: A survey,” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. Springer, 2019, pp. 55–76.

[29] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining explanations: An overview of interpretability of machine learning,” in
2018 IEEE 5th International Conference on data science and advanced analytics
(DSAA). IEEE, 2018, pp. 80–89.

[30] C. Molnar, “A guide for making black box models explainable,” URL:
https://christophm. github. io/interpretable-ml-book, 2018.

[31] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,”
Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[32] T. Miller, P. Howe, and L. Sonenberg, “Explainable ai: Beware of inmates running
the asylum or: How i learnt to stop worrying and love the social and behavioural
sciences,” arXiv preprint arXiv:1712.00547, 2017.

[33] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, no. 3, pp.
31–57, 2018.

[34] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” International Conference on Learning Representations (ICLR), 2015.

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[36] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial ex-
amples,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 135–147.

[37] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting clas-
sifiers against adversarial attacks using generative models,” arXiv preprint
arXiv:1805.06605, 2018.

[38] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” International Conference on
Learning Representations (ICLR), 2018.

[39] K. Kärkkäinen and J. Joo, “Fairface: Face attribute dataset for balanced race,
gender, and age,” arXiv preprint arXiv:1908.04913, 2019.

[40] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv preprint arXiv:1702.08608, 2017.

[41] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “In-
terpretable machine learning: definitions, methods, and applications,” arXiv
preprint arXiv:1901.04592, 2019.

189

[42] D. Doran, S. Schulz, and T. R. Besold, “What does explainable ai really mean? a
new conceptualization of perspectives,” arXiv preprint arXiv:1710.00794, 2017.

[43] G. Ras, M. van Gerven, and P. Haselager, “Explanation methods in deep learning:
Users, values, concerns and challenges,” in Explainable and Interpretable Models
in Computer Vision and Machine Learning. Springer, 2018, pp. 19–36.

[44] G. Shmueli et al., “To explain or to predict?” Statistical science, vol. 25, no. 3,
pp. 289–310, 2010.

[45] B. Herman, “The promise and peril of human evaluation for model interpretabil-
ity,” arXiv preprint arXiv:1711.07414, 2017.

[46] M. Ashoori and J. D. Weisz, “In ai we trust? factors that influence trustworthiness
of ai-infused decision-making processes,” arXiv preprint arXiv:1912.02675, 2019.

[47] P. Hall, On Explainable Machine Learning Misconceptions: A More Human-
Centered Machine Learning, Jul 2019. [Online]. Available: https://github.com/
jphall663/xai misconceptions/blob/master/xai misconceptions.pdf

[48] P. Hall and N. Gill, Introduction to Machine Learning Interpretability. O’Reilly
Media, Incorporated, 2018.

[49] P. J. Lisboa, “Interpretability in machine learning–principles and practice,” in
International Workshop on Fuzzy Logic and Applications. Springer, 2013, pp.
15–21.

[50] A. Bibal and B. Frénay, “Interpretability of machine learning models and repre-
sentations: an introduction.” in ESANN, 2016.

[51] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models,” arXiv preprint
arXiv:1708.08296, 2017.

[52] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on explainable
artificial intelligence (xai),” IEEE Access, vol. 6, pp. 52 138–52 160, 2018.

[53] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A
survey,” in 2018 41st International convention on information and communication
technology, electronics and microelectronics (MIPRO). IEEE, 2018, pp. 0210–
0215.

[54] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence program,”
AI Magazine, vol. 40, no. 2, pp. 44–58, 2019.

[55] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garćıa, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[56] W. Samek and K.-R. Müller, “Towards explainable artificial intelligence,” in Ex-
plainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
2019, pp. 5–22.

https://github.com/jphall663/xai_misconceptions/blob/master/xai_misconceptions.pdf
https://github.com/jphall663/xai_misconceptions/blob/master/xai_misconceptions.pdf

190

[57] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): To-
wards medical xai,” arXiv preprint arXiv:1907.07374, 2019.

[58] T. Miller, “” but why?” understanding explainable artificial intelligence,” XRDS:
Crossroads, The ACM Magazine for Students, vol. 25, no. 3, pp. 20–25, 2019.

[59] F. Emmert-Streib, O. Yli-Harja, and M. Dehmer, “Explainable artificial in-
telligence and machine learning: A reality rooted perspective,” arXiv preprint
arXiv:2001.09464, 2020.

[60] A. Kirsch, “Explain to whom? putting the user in the center of explainable ai,”
2017.

[61] N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learning: A
field guide for the uninitiated,” arXiv preprint arXiv:2004.14545, 2020.

[62] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[63] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[64] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[65] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neural
networks through deep visualization,” arXiv preprint arXiv:1506.06579, 2015.

[66] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[67] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks
for mid and high level feature learning,” in 2011 International Conference on
Computer Vision. IEEE, 2011, pp. 2018–2025.

[68] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” European Conference on Computer Vision, pp. 818–833, 2014.

[69] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer
features of a deep network,” University of Montreal, vol. 1341, no. 3, p. 1, 2009.

[70] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[71] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural networks
using natural pre-images,” International Journal of Computer Vision, vol. 120,
no. 3, pp. 233–255, 2016.

[72] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, vol. 2,
no. 11, p. e7, 2017.

191

[73] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted feature visualization: Un-
covering the different types of features learned by each neuron in deep neural
networks,” arXiv preprint arXiv:1602.03616, 2016.

[74] S. A. Cadena, M. A. Weis, L. A. Gatys, M. Bethge, and A. S. Ecker, “Diverse
feature visualizations reveal invariances in early layers of deep neural networks,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 217–232.

[75] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[76] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks,” in
Advances in neural information processing systems, 2016, pp. 3387–3395.

[77] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play
generative networks: Conditional iterative generation of images in latent space,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017, pp. 4467–4477.

[78] M. Godi, M. Carletti, M. Aghaei, F. Giuliari, and M. Cristani, “Understanding
deep architectures by visual summaries,” in Proceedings of the British Machine
Vision Conference (BMVC), 2018.

[79] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neural
networks,” 2015.

[80] C. Szegedy, W. Zaremba, I. Sutskever, J. B. Estrach, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

[81] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry, “A rotation and a
translation suffice: Fooling cnns with simple transformations,” arXiv preprint
arXiv:1712.02779, vol. 1, no. 2, p. 3, 2017.

[82] R. Fong, M. Patrick, and A. Vedaldi, “Understanding deep networks via extremal
perturbations and smooth masks,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019, pp. 2950–2958.

[83] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so
poorly to small image transformations?” Journal of Machine Learning Research,
vol. 20, pp. 1–25, 2019.

[84] A. Mahendran and A. Vedaldi, “Understanding deep image representations by
inverting them,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 5188–5196.

[85] A. Dosovitskiy and T. Brox, “Inverting visual representations with convolutional
networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4829–4837.

192

[86] E. Wong and J. Z. Kolter, “Neural network inversion beyond gradient descent.”

[87] B.-L. Lu, H. Kita, and Y. Nishikawa, “Inverting feedforward neural networks us-
ing linear and nonlinear programming,” IEEE Transactions on Neural networks,
vol. 10, no. 6, pp. 1271–1290, 1999.

[88] C. A. Jensen, R. D. Reed, R. J. Marks, M. A. El-Sharkawi, J.-B. Jung, R. T.
Miyamoto, G. M. Anderson, and C. J. Eggen, “Inversion of feedforward neural
networks: algorithms and applications,” Proceedings of the IEEE, vol. 87, no. 9,
pp. 1536–1549, 1999.

[89] D. Wei, B. Zhou, A. Torrabla, and W. Freeman, “Understanding intra-class
knowledge inside cnn,” arXiv preprint arXiv:1507.02379, 2015.

[90] A. Zhmoginov and M. Sandler, “Inverting face embeddings with convolutional
neural networks,” arXiv preprint arXiv:1606.04189, 2016.

[91] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors
emerge in deep scene cnns,” arXiv preprint arXiv:1412.6856, 2014.

[92] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari, “Do semantic parts emerge in
convolutional neural networks?” International Journal of Computer Vision, vol.
126, no. 5, pp. 476–494, 2018.

[93] G. Alain and Y. Bengio, “Understanding intermediate layers using linear classifier
probes,” arXiv preprint arXiv:1610.01644, 2016.

[94] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network dissection:
Quantifying interpretability of deep visual representations,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 6541–6549.

[95] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting deep visual representa-
tions via network dissection,” IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 9, pp. 2131–2145, 2018.

[96] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting visual representations
of neural networks via network dissection,” Journal of Vision, vol. 18, no. 10, p.
1244, 2018.

[97] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Comparing the interpretability of
deep networks via network dissection,” in Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning. Springer, 2019, pp. 243–252.

[98] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Freeman, and
A. Torralba, “Visualizing and understanding generative adversarial networks,” in
International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=Hyg X2C5FX

[99] R. Fong and A. Vedaldi, “Net2vec: Quantifying and explaining how concepts are
encoded by filters in deep neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 8730–8738.

https://openreview.net/forum?id=Hyg_X2C5FX

193

[100] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas et al., “Inter-
pretability beyond feature attribution: Quantitative testing with concept activa-
tion vectors (tcav),” International Conference on Machine Learning, pp. 2673–
2682, 2018.

[101] A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim, “Towards automatic concept-
based explanations,” in Advances in Neural Information Processing Systems,
2019, pp. 9273–9282.

[102] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability,” in
Advances in Neural Information Processing Systems, 2017, pp. 6076–6085.

[103] U. S. Saini and E. E. Papalexakis, “A peek into the hidden layers of a
convolutional neural network through a factorization lens,” arXiv preprint
arXiv:1806.02012, 2018.

[104] K. Dhamdhere, M. Sundararajan, and Q. Yan, “How important is a neuron,” in
International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=SylKoo0cKm

[105] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” in Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 3319–3328.

[106] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2006, pp. 535–541.

[107] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances in
neural information processing systems, 2014, pp. 2654–2662.

[108] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” arXiv preprint arXiv:1503.02531, 2015.

[109] N. Frosst and G. Hinton, “Distilling a neural network into a soft decision tree,”
arXiv preprint arXiv:1711.09784, 2017.

[110] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu, “Interpreting cnns via decision trees,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 6261–6270.

[111] X. Liu, X. Wang, and S. Matwin, “Improving the interpretability of deep neural
networks with knowledge distillation,” in 2018 IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE, 2018, pp. 905–912.

[112] S. Tan, R. Caruana, G. Hooker, and Y. Lou, “Distill-and-compare: Auditing
black-box models using transparent model distillation,” in Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 303–310.

[113] S. Tan, R. Caruana, G. Hooker, and Y. Lou, “Detecting bias in black-box models
using transparent model distillation,” arXiv preprint arXiv:1710.06169, 2017.

https://openreview.net/forum?id=SylKoo0cKm

194

[114] F. Grün, C. Rupprecht, N. Navab, and F. Tombari, “A taxonomy and library
for visualizing learned features in convolutional neural networks,” arXiv preprint
arXiv:1606.07757, 2016.

[115] M. Oquab, L. Bottou, I. Laptev, J. Sivic et al., “Weakly supervised object recogni-
tion with convolutional neural networks,” in Proc. of NIPS, 2014, pp. 1545–5963.

[116] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level
image representations using convolutional neural networks,” Computer Vision
and Pattern Recognition, pp. 1717–1724, 2014.

[117] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep neural
network decisions: Prediction difference analysis,” 2017.

[118] V. Petsiuk, A. Das, and K. Saenko, “Rise: Randomized input sampling for ex-
planation of black-box models,” British Machine Vision Conference, 2018.

[119] B. Vasu and C. Long, “Iterative and adaptive sampling with spatial attention for
black-box model explanations,” in The IEEE Winter Conference on Applications
of Computer Vision, 2020, pp. 2960–2969.

[120] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes by mean-
ingful perturbation,” arXiv preprint arXiv:1704.03296, 2017.

[121] C. Agarwal, D. Schonfeld, and A. Nguyen, “Removing input features via a gener-
ative model to explain their attributions to classifier’s decisions,” arXiv preprint
arXiv:1910.04256, 2019.

[122] R. Fong, M. Patrick, and A. Vedaldi, “Understanding deep networks via extremal
perturbations and smooth masks,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019, pp. 2950–2958.

[123] C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud, “Explaining image
classifiers by counterfactual generation,” arXiv preprint arXiv:1807.08024, 2018.

[124] J. Wagner, J. M. Kohler, T. Gindele, L. Hetzel, J. T. Wiedemer, and S. Behnke,
“Interpretable and fine-grained visual explanations for convolutional neural net-
works,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9097–9107.

[125] Z. Qi, S. Khorram, and F. Li, “Visualizing deep networks by optimizing with
integrated gradients,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019, pp. 1–4.

[126] K. Schulz, L. Sixt, F. Tombari, and T. Landgraf, “Restricting the flow: Informa-
tion bottlenecks for attribution,” in International Conference on Learning Rep-
resentations, 2019.

[127] A. Khakzar, S. Baselizadeh, S. Khanduja, S. T. Kim, and N. Navab, “Improv-
ing feature attribution through input-specific network pruning,” arXiv preprint
arXiv:1911.11081, 2019.

195

[128] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks,” IEEE Winter Conference on Applications of Computer Vision, pp.
839–847, 2018.

[129] D. Omeiza, S. Speakman, C. Cintas, and K. Weldermariam, “Smooth grad-
cam++: An enhanced inference level visualization technique for deep convolu-
tional neural network models,” arXiv preprint arXiv:1908.01224, 2019.

[130] L. Chen, J. Chen, H. Hajimirsadeghi, and G. Mori, “Adapting grad-cam for em-
bedding networks,” in The IEEE Winter Conference on Applications of Computer
Vision, 2020, pp. 2794–2803.

[131] K. Fu, W. Dai, Y. Zhang, Z. Wang, M. Yan, and X. Sun, “Multicam: Multi-
ple class activation mapping for aircraft recognition in remote sensing images,”
Remote Sensing, vol. 11, no. 5, p. 544, 2019.

[132] K. Gao, H. Shen, Y. Liu, L. Zeng, and D. Hu, “Dense-cam: Visualize the gender
of brains with mri images,” in 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019, pp. 1–7.

[133] B. J. Kim, G. Koo, H. Choi, and S. W. Kim, “Extending class activation mapping
using gaussian receptive field,” arXiv preprint arXiv:2001.05153, 2020.

[134] H. Wang, M. Du, F. Yang, and Z. Zhang, “Score-cam: Improved vi-
sual explanations via score-weighted class activation mapping,” arXiv preprint
arXiv:1910.01279, 2019.

[135] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang,
“Residual attention network for image classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 3156–3164.

[136] S. Jetley, N. A. Lord, N. Lee, and P. Torr, “Learn to pay attention,” in
International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=HyzbhfWRW

[137] L. Wang, Z. Wu, S. Karanam, K.-C. Peng, R. V. Singh, B. Liu, and D. N.
Metaxas, “Sharpen focus: Learning with attention separability and consistency,”
in Proceedings of the IEEE International Conference on Computer Vision, 2019,
pp. 512–521.

[138] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek,
“On pixel-wise explanations for non-linear classifier decisions by layer-wise rele-
vance propagation,” PloS one, vol. 10, no. 7, 2015.

[139] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller, “Layer-
wise relevance propagation: an overview,” in Explainable AI: Interpreting, Ex-
plaining and Visualizing Deep Learning. Springer, 2019, pp. 193–209.

[140] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, “Explain-
ing nonlinear classification decisions with deep taylor decomposition,” Pattern
Recognition, vol. 65, pp. 211–222, 2017.

https://openreview.net/forum?id=HyzbhfWRW

196

[141] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, and
S. Dähne, “Learning how to explain neural networks: Patternnet and patternat-
tribution,” arXiv preprint arXiv:1705.05598, 2017.

[142] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in International Conference on Ma-
chine Learning, 2017, pp. 3145–3153.

[143] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down
neural attention by excitation backprop,” International Journal of Computer Vi-
sion, vol. 126, no. 10, pp. 1084–1102, 2018.

[144] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in AAAI Conference on Artificial Intelligence,
2018. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16982

[145] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” in Advances in Neural Information Processing Systems, 2017, pp. 4765–
4774.

[146] C. Burns, J. Thomason, and W. Tansey, “Interpreting black box models via
hypothesis testing,” arXiv preprint arXiv:1904.00045, 2019.

[147] J. Oramas, K. Wang, and T. Tuytelaars, “Visual explanation by interpretation:
Improving visual feedback capabilities of deep neural networks,” in International
Conference on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=H1ziPjC5Fm

[148] D. Seo, K. Oh, and I.-S. Oh, “Regional multi-scale approach for visually pleasing
explanations of deep neural networks (december 2019),” IEEE Access, 2019.

[149] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne,
D. Erhan, and B. Kim, “The (un) reliability of saliency methods,” in Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. Springer, 2019, pp.
267–280.

[150] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “Sanity
checks for saliency maps,” in Advances in Neural Information Processing Systems,
2018, pp. 9505–9515.

[151] W. Nie, Y. Zhang, and A. Patel, “A theoretical explanation for perplexing be-
haviors of backpropagation-based visualizations,” in International Conference on
Machine Learning, 2018, pp. 3809–3818.

[152] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee, “Counterfactual
visual explanations,” in International Conference on Machine Learning, 2019,
pp. 2376–2384.

[153] S. Liu, B. Kailkhura, D. Loveland, and Y. Han, “Generative counterfactual intro-
spection for explainable deep learning,” arXiv preprint arXiv:1907.03077, 2019.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://openreview.net/forum?id=H1ziPjC5Fm
https://openreview.net/forum?id=H1ziPjC5Fm

197

[154] L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Generating counterfactual ex-
planations with natural language,” in ICML Workshop on Human Interpretability
in Machine Learning, 2018, pp. 95–98.

[155] X. Zhang, A. Solar-Lezama, and R. Singh, “Interpreting neural network judg-
ments via minimal, stable, and symbolic corrections,” in Advances in Neural
Information Processing Systems, 2018, pp. 4874–4885.

[156] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers
through diverse counterfactual explanations,” in Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, 2020, pp. 607–617.

[157] M. Pazzani, A. Feghahati, C. Shelton, and A. Seitz, “Explaining contrasting
categories.” in IUI Workshops, 2018.

[158] A. Feghahati, C. R. Shelton, M. J. Pazzani, and K. Tang, “CDeepex: Contrastive
deep explanations,” 2019. [Online]. Available: https://openreview.net/forum?
id=HyNmRiCqtm

[159] S. Rathi, “Generating counterfactual and contrastive explanations using shap,”
arXiv preprint arXiv:1906.09293, 2019.

[160] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam, and
P. Das, “Explanations based on the missing: Towards contrastive explanations
with pertinent negatives,” in Advances in neural information processing systems,
2018, pp. 592–603.

[161] R. Luss, P.-Y. Chen, A. Dhurandhar, P. Sattigeri, K. Shanmugam, and C.-C. Tu,
“Generating contrastive explanations with monotonic attribute functions,” arXiv
preprint arXiv:1905.12698, 2019.

[162] B. Zhou, Y. Sun, D. Bau, and A. Torralba, “Interpretable basis decomposition
for visual explanation,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 119–134.

[163] N. Xie, M. K. Sarker, D. Doran, P. Hitzler, and M. Raymer, “Relating input con-
cepts to convolutional neural network decisions,” NIPS Workshop on Interpreting,
Explaining, and Visualizing Deep Learning, 2017.

[164] Z. Qi and F. Li, “Learning explainable embeddings for deep networks,” in
NIPS Workshop on Interpreting, Explaining and Visualizing Deep Learning. Long
Beach, CA, December, vol. 9, 2017.

[165] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for
zero-shot visual object categorization,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 3, pp. 453–465, 2014.

[166] D. Parikh and K. Grauman, “Relative attributes,” in Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE, 2011, pp. 503–510.

[167] G. Patterson and J. Hays, “Coco attributes: Attributes for people, animals, and
objects,” in European Conference on Computer Vision. Springer, 2016, pp. 85–
100.

https://openreview.net/forum?id=HyNmRiCqtm
https://openreview.net/forum?id=HyNmRiCqtm

198

[168] G. Patterson and J. Hays, “Sun attribute database: Discovering, annotating,
and recognizing scene attributes,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2751–2758.

[169] S. Wang, J. Joo, Y. Wang, and S.-C. Zhu, “Weakly supervised learning for at-
tribute localization in outdoor scenes,” in Computer Vision and Pattern Recog-
nition (CVPR), 2013 IEEE Conference on. IEEE, 2013, pp. 3111–3118.

[170] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-
UCSD Birds-200-2011 Dataset,” California Institute of Technology, Tech. Rep.
CNS-TR-2011-001, 2011.

[171] H. Chen, A. Gallagher, and B. Girod, “Describing clothing by semantic at-
tributes,” in European conference on computer vision. Springer, 2012, pp. 609–
623.

[172] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the
wild,” in Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 3730–3738.

[173] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and S. Be-
longie, “Visual recognition with humans in the loop,” in European Conference on
Computer Vision. Springer, 2010, pp. 438–451.

[174] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, “Zero-shot learn-
ing with semantic output codes,” in Advances in neural information processing
systems, 2009, pp. 1410–1418.

[175] A. Kovashka, D. Parikh, and K. Grauman, “Whittlesearch: Interactive image
search with relative attribute feedback,” International Journal of Computer Vi-
sion, vol. 115, no. 2, pp. 185–210, 2015.

[176] A. Kovashka, S. Vijayanarasimhan, and K. Grauman, “Actively selecting anno-
tations among objects and attributes,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1403–1410.

[177] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays, “Transient attributes for
high-level understanding and editing of outdoor scenes,” ACM Transactions on
Graphics (TOG), vol. 33, no. 4, p. 149, 2014.

[178] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image: Conditional image
generation from visual attributes,” in European Conference on Computer Vision.
Springer, 2016, pp. 776–791.

[179] Z. Al-Halah and R. Stiefelhagen, “Automatic discovery, association estimation
and learning of semantic attributes for a thousand categories,” in CVPR, 2017.

[180] T. L. Berg, A. C. Berg, and J. Shih, “Automatic attribute discovery and char-
acterization from noisy web data,” in European Conference on Computer Vision.
Springer, 2010, pp. 663–676.

199

[181] M. Rastegari, A. Farhadi, and D. Forsyth, “Attribute discovery via predictable
discriminative binary codes,” in European Conference on Computer Vision.
Springer, 2012, pp. 876–889.

[182] Q. Zhang, Y. Yang, Y. Liu, Y. N. Wu, and S.-C. Zhu, “Unsupervised learning of
neural networks to explain neural networks,” arXiv preprint arXiv:1805.07468,
2018.

[183] D. A. Melis and T. Jaakkola, “Towards robust interpretability with self-explaining
neural networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 7775–7784.

[184] F. F. Li, J. Johnson, and S. Yeung, “Cs 231n: Visualizing and understanding,”
University Lecture, 2019.

[185] S. Lazebnik, “University of illinois’ cs 498: Visualizing and explaining neural
networks,” University Lecture, 2019.

[186] M. Lopuszyński, “Awesome interpretable machine learning.” [Online]. Available:
https://github.com/lopusz/awesome-interpretable-machine-learning

[187] Y. Dong, “Robust-and-explainable-machine-learning.” [Online]. Available:
https://github.com/dongyp13/Robust-and-Explainable-Machine-Learning

[188] A. Nguyen, “Papers on explainable artificial intelligence.” [Online]. Available:
https://github.com/anguyen8/XAI-papers

[189] “Sig xai: Special interest group on explainable ai a special interest group
within the association neural-symbolic learning and reasoning (nesy).” [Online].
Available: http://people.cs.ksu.edu/∼hitzler/nesy/sig-xai/

[190] A. Karpathy, “Convnetjs: Deep learning in your browser,” 2020.

[191] U. Ozbulak, “Pytorch cnn visualizations,” https://github.com/utkuozbulak/
pytorch-cnn-visualizations, 2019.

[192] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” International
Conference on Learning Representations, 2014. [Online]. Available: http:
//arxiv.org/abs/1312.6199

[193] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Bren-
del, “Imagenet-trained cnns are biased towards texture: Increasing shape bias
improves accuracy and robustness,” International Conference on Learning Rep-
resentations, 2018.

[194] K. Marino, R. Salakhutdinov, and A. Gupta, “The more you know: Using knowl-
edge graphs for image classification,” Computer Vision and Pattern Recognition,
pp. 2673–2681, 2017.

[195] W. Goo, J. Kim, G. Kim, and S. J. Hwang, “Taxonomy-regularized semantic deep
convolutional neural networks,” European Conference on Computer Vision, pp.
86–101, 2016.

https://github.com/lopusz/awesome-interpretable-machine-learning
https://github.com/dongyp13/Robust-and-Explainable-Machine-Learning
https://github.com/anguyen8/XAI-papers
http://people.cs.ksu.edu/~hitzler/nesy/sig-xai/
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

200

[196] Y. Guo, Y. Liu, E. M. Bakker, Y. Guo, and M. S. Lew, “Cnn-rnn: a large-scale
hierarchical image classification framework,” Multimedia Tools and Applications,
vol. 77, no. 8, pp. 10 251–10 271, 2018.

[197] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and Y. Yu,
“Hd-cnn: hierarchical deep convolutional neural networks for large scale visual
recognition,” International Conference on Computer Vision, pp. 2740–2748, 2015.

[198] N. Srivastava and R. R. Salakhutdinov, “Discriminative transfer learning with
tree-based priors,” Advances in Neural Information Processing Systems, pp. 2094–
2102, 2013.

[199] J. Fan, T. Zhao, Z. Kuang, Y. Zheng, J. Zhang, J. Yu, and J. Peng, “Hd-mtl:
Hierarchical deep multi-task learning for large-scale visual recognition,” IEEE
Transactions on Image Processing, vol. 26, no. 4, pp. 1923–1938, 2017.

[200] Z. Kuang, J. Yu, Z. Li, B. Zhang, and J. Fan, “Integrating multi-level deep learn-
ing and concept ontology for large-scale visual recognition,” Pattern Recognition,
vol. 78, pp. 198–214, 2018.

[201] J. Zhang, K. Mei, Y. Zheng, and J. Fan, “Learning multi-layer coarse-to-fine
representations for large-scale image classification,” Pattern Recognition, vol. 91,
pp. 175–189, 2019.

[202] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A hierarchical deep convolutional
neural network for incremental learning,” arXiv preprint arXiv:1802.05800, 2018.

[203] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven, and
H. Adam, “Large-scale object classification using label relation graphs,” European
Conference on Computer Vision, pp. 48–64, 2014.

[204] W. Ge, “Deep metric learning with hierarchical triplet loss,” European Conference
on Computer Vision, pp. 269–285, 2018.

[205] Z. Zhang and V. Saligrama, “Zero-shot learning via semantic similarity embed-
ding,” International Conference on Computer Vision, pp. 4166–4174, 2015.

[206] I. Donadello, L. Serafini, and A. D. Garcez, “Logic tensor networks for semantic
image interpretation,” International Joint Conference on Artificial Intelligence,
pp. 1596–1602, 2017.

[207] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by itera-
tive message passing,” Computer Vision and Pattern Recognition, pp. 5410–5419,
2017.

[208] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, “Scene graph generation from
objects, phrases and region captions,” International Conference on Computer
Vision, pp. 1261–1270, 2017.

[209] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual relationship detection
with language priors,” European Conference on Computer Vision, pp. 852–869,
2016.

201

[210] Y. Li, W. Ouyang, X. Wang, and X. Tang, “Vip-cnn: Visual phrase guided
convolutional neural network,” Computer Vision and Pattern Recognition, pp.
1347–1356, 2017.

[211] H. Zhang, Z. Kyaw, J. Yu, and S.-F. Chang, “Ppr-fcn: Weakly supervised vi-
sual relation detection via parallel pairwise r-fcn,” International Conference on
Computer Vision, pp. 4233–4241, 2017.

[212] S. Woo, D. Kim, D. Cho, and I. S. Kweon, “Linknet: Relational embedding for
scene graph,” Advances in Neural Information Processing Systems, pp. 560–570,
2018.

[213] E. Belilovsky, M. Blaschko, J. Kiros, R. Urtasun, and R. Zemel, “Joint embed-
dings of scene graphs and images,” ICLR Workshops, 2017.

[214] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick, “Inferring and executing programs for
visual reasoning,” International Conference on Computer Vision, pp. 2989–2998,
2017.

[215] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum, “Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 1039–1050.

[216] S. Aditya, Y. Yang, and C. Baral, “Explicit reasoning over end-to-end neural
architectures for visual question answering,” AAAI Conference on Artificial In-
telligence, 2018.

[217] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Gir-
shick, “Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning,” in Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on. IEEE, 2017, pp. 1988–1997.

[218] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

[219] I. Kadar and O. Ben-Shahar, “Scenenet: A perceptual ontology for scene under-
standing,” Workshop on Computer vision + ONTology Applied Cross-disciplinary
Technologies (CONTACT), pp. 385–400, 2014.

[220] C. Galleguillos and S. Belongie, “Context based object categorization: A critical
survey,” Computer Vision and Image Understanding, vol. 114, no. 6, pp. 712–722,
2010.

[221] C. Galleguillos, A. Rabinovich, and S. Belongie, “Object categorization using co-
occurrence, location and appearance,” Computer Vision and Pattern Recognition,
pp. 1–8, 2008.

[222] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. J. Belongie,
“Objects in context,” International Conference on Computer Vision, vol. 1, no. 2,
p. 5, 2007.

202

[223] K. Murphy, A. Torralba, W. Freeman et al., “Using the forest to see the trees:
A graphical model relating features, objects and scenes,” Advances in Neural
Information Processing Systems, vol. 16, pp. 1499–1506, 2003.

[224] P. Carbonetto, N. de Freitas, and K. Barnard, “A statistical model for general
contextual object recognition.” Springer, 2004, pp. 350–362.

[225] M. J. Choi, A. Torralba, and A. S. Willsky, “Context models and out-of-context
objects,” Pattern Recognition Letters, vol. 33, no. 7, pp. 853–862, 2012.

[226] A. Singhal, J. Luo, and W. Zhu, “Probabilistic spatial context models for scene
content understanding,” Computer Vision and Pattern Recognition, vol. 1, pp.
I–235, 2003.

[227] N. Ahuja and S. Todorovic, “Learning the taxonomy and models of categories
present in arbitrary images,” International Conference on Computer Vision, pp.
1–8, 2007.

[228] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky, “Learning hi-
erarchical models of scenes, objects, and parts,” International Conference on
Computer Vision, vol. 2, pp. 1331–1338, 2005.

[229] T. Lan, M. Raptis, L. Sigal, and G. Mori, “From subcategories to visual compos-
ites: A multi-level framework for object detection,” International Conference on
Computer Vision, pp. 369–376, 2013.

[230] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, “Exploiting hierarchical
context on a large database of object categories,” Computer Vision and Pattern
Recognition, pp. 129–136, 2010.

[231] M. J. Choi, A. Torralba, and A. S. Willsky, “A tree-based context model for object
recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 2, pp. 240–252, 2012.

[232] R. G. Cinbis and S. Sclaroff, “Contextual object detection using set-based classi-
fication.” Springer, 2012, pp. 43–57.

[233] J. Fan, Y. Gao, and H. Luo, “Hierarchical classification for automatic image an-
notation,” ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 111–118, 2007.

[234] J. Fan, Y. Gao, and H. Luo, “Integrating concept ontology and multitask learning
to achieve more effective classifier training for multilevel image annotation,” IEEE
Transactions on Image Processing, vol. 17, no. 3, pp. 407–426, 2008.

[235] J. Fan, Y. Gao, H. Luo, and R. Jain, “Mining multilevel image semantics via
hierarchical classification,” IEEE Transactions on Multimedia, vol. 10, no. 2, pp.
167–187, 2008.

[236] L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, “Object bank: A high-level image
representation for scene classification & semantic feature sparsification,” Advances
in Neural Information Processing Systems, pp. 1378–1386, 2010.

203

[237] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei, “Object bank: An object-level image rep-
resentation for high-level visual recognition,” International Journal of Computer
Vision, vol. 107, no. 1, pp. 20–39, 2014.

[238] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[239] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[240] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” International Conference on Machine Learning, pp. 1321–1330,
2017.

[241] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods,” Advances in Large Margin Classifiers, vol. 10,
no. 3, pp. 61–74, 1999.

[242] N. Ye, K. Chai, W. Lee, and H. Chieu, “Optimizing f-measures: A tale of two
approaches,” International Conference on Machine Learning, vol. 1, pp. 289–296,
2012.

[243] L. Feng and B. Bhanu, “Semantic concept co-occurrence patterns for image an-
notation and retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 4, pp. 785–799, 2015.

[244] C. Li, D. Parikh, and T. Chen, “Automatic discovery of groups of objects for
scene understanding,” in CVPR, 2012.

[245] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 567–576.

[246] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, “The discrete
basis problem,” IEEE TKDE, 2008.

[247] J. Lukasiewicz, “O logice trójwartościowej,” 1988.

[248] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353,
1965.

[249] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in NIPS, 2011.

[250] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative matrix t-
factorizations for clustering,” in SIGKDD, 2006.

[251] Z. Zhang, T. Li, C. Ding, and X. Zhang, “Binary matrix factorization with ap-
plications,” in ICDM, 2007.

[252] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

204

[253] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values,” Environmetrics,
vol. 5, no. 2, pp. 111–126, 1994.

[254] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR, 2015.

[255] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv, 2014.

[256] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10
million image database for scene recognition,” IEEE TPAMI, 2017.

[257] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” CVPR, 2017.

[258] L. Torresani, M. Szummer, and A. Fitzgibbon, “Efficient object category recog-
nition using classemes,” ECCV, 2010.

[259] A. Bergamo and L. Torresani, “Meta-class features for large-scale object catego-
rization on a budget,” in CVPR, 2012.

[260] D. M. Blei and J. D. Lafferty, “Topic models,” in Text Mining. Chapman and
Hall/CRC, 2009, pp. 101–124.

[261] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 2097–2106.

[262] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,
C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia de-
tection on chest x-rays with deep learning,” arXiv preprint arXiv:1711.05225,
2017.

[263] L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, and K. Lyman,
“Learning to diagnose from scratch by exploiting dependencies among labels,”
arXiv preprint arXiv:1710.10501, 2017.

[264] P. Spyns, “Natural language processing in medicine: an overview,” Methods of
information in medicine, vol. 35, no. 04/05, pp. 285–301, 1996.

[265] M. Krallinger and A. Valencia, “Text-mining and information-retrieval services
for molecular biology,” Genome biology, vol. 6, no. 7, p. 224, 2005.

[266] E. Pons, L. M. Braun, M. M. Hunink, and J. A. Kors, “Natural language process-
ing in radiology: a systematic review,” Radiology, vol. 279, no. 2, pp. 329–343,
2016.

[267] Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu,
Y. Zeng, S. Mehrabi, S. Sohn et al., “Clinical information extraction applications:
a literature review,” Journal of biomedical informatics, 2017.

205

[268] H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. M. Summers, “Interleaved
text/image deep mining on a very large-scale radiology database,” in CVPR,
2015, pp. 1090–1099.

[269] H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. M. Summers, “Interleaved
text/image deep mining on a large-scale radiology database for automated image
interpretation,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 3729–
3759, 2016.

[270] X. Wang, Y. Peng, L. Lu, Z. Lu, and R. M. Summers, “Tienet: Text-image
embedding network for common thorax disease classification and reporting in
chest x-rays,” in CVPR. IEEE, 2018, pp. 9049–9058.

[271] H.-C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, and R. M. Summers,
“Learning to read chest x-rays: Recurrent neural cascade model for automated
image annotation,” in CVPR, 2016, pp. 2497–2506.

[272] B. Jing, P. Xie, and E. Xing, “On the automatic generation of medical imaging
reports,” arXiv preprint arXiv:1711.08195, 2017.

[273] Z. Zhang, Y. Xie, F. Xing, M. McGough, and L. Yang, “Mdnet: A semantically
and visually interpretable medical image diagnosis network,” in CVPR, 2017, pp.
6428–6436.

[274] M. Moradi, A. Madani, Y. Gur, Y. Guo, and T. Syeda-Mahmood, “Bimodal
network architectures for automatic generation of image annotation from text,”
in International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2018, pp. 449–456.

[275] Y. Xue, T. Xu, L. R. Long, Z. Xue, S. Antani, G. R. Thoma, and X. Huang,
“Multimodal recurrent model with attention for automated radiology report gen-
eration,” in MICCAI. Springer, 2018, pp. 457–466.

[276] G. O. Gajbhiye, A. V. Nandedkar, and I. Faye, “Automatic report generation
for chest x-ray images: A multilevel multi-attention approach,” in International
Conference on Computer Vision and Image Processing. Springer, 2019, pp. 174–
182.

[277] S. Biswal, C. Xiao, L. Glass, B. Westover, and J. Sun, “Clinical report auto-
completion,” in Proceedings of The Web Conference 2020, 2020, pp. 541–550.

[278] M. M. A. Monshi, J. Poon, and V. Chung, “Deep learning in generating radiology
reports: A survey,” Artificial Intelligence in Medicine, p. 101878, 2020.

[279] Y. Zhang, X. Wang, Z. Xu, Q. Yu, A. Yuille, and D. Xu, “When radiology report
generation meets knowledge graph,” arXiv preprint arXiv:2002.08277, 2020.

[280] D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, L. Ro-
driguez, S. Antani, G. R. Thoma, and C. J. McDonald, “Preparing a collection of
radiology examinations for distribution and retrieval,” Journal of the American
Medical Informatics Association, vol. 23, no. 2, pp. 304–310, 2015.

206

[281] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep trans-
fer learning,” in International conference on artificial neural networks. Springer,
2018, pp. 270–279.

[282] S. Danesh, T. Sumner, and J. H. Martin, “Sgrank: Combining statistical and
graphical methods to improve the state of the art in unsupervised keyphrase
extraction,” in *SEM, 2015, pp. 117–126.

[283] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in International Conference on Machine Learning, 2014, pp. 1188–1196.

[284] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 413–420.

[285] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep fea-
tures for scene recognition using places database,” in NIPS, 2014.

[286] A. Bendale and T. Boult, “Towards open world recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1893–1902.

[287] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open
set recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 7, pp. 1757–1772, 2012.

[288] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison
Department of Computer Sciences, Tech. Rep., 2009.

[289] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set
recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 36, no. 11, pp. 2317–2324, 2014.

[290] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” International
journal of computer vision, vol. 1, no. 4, pp. 333–356, 1988.

[291] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8, pp. 966–
1005, 1988.

[292] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Au-
tonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[293] D. H. Ballard, “Reference frames for animate vision.” in IJCAI, vol. 89, 1989, pp.
1635–1641.

[294] S. Chen, Y. Li, and N. M. Kwok, “Active vision in robotic systems: A survey of
recent developments,” International Journal of Robotics Research, vol. 30, no. 11,
pp. 1343–1377, 2011.

[295] X. Li and Y. Guo, “Multi-level adaptive active learning for scene classification,”
in European Conference on Computer Vision. Springer, 2014, pp. 234–249.

[296] X. Yu, C. Fermüller, C. L. Teo, Y. Yang, and Y. Aloimonos, “Active scene recog-
nition with vision and language,” in 2011 International Conference on Computer
Vision. IEEE, 2011, pp. 810–817.

207

[297] J. H. Bappy, S. Paul, and A. K. Roy-Chowdhury, “Online adaptation for joint
scene and object classification,” in European Conference on Computer Vision.
Springer, 2016, pp. 227–243.

[298] X. Li, R. Guo, and J. Cheng, “Incorporating incremental and active learning for
scene classification,” in 2012 11th International Conference on Machine Learning
and Applications, vol. 1. IEEE, 2012, pp. 256–261.

[299] X. Li and Y. Guo, “Adaptive active learning for image classification,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 859–866.

[300] S. Paul, J. H. Bappy, and A. K. Roy-Chowdhury, “Efficient selection of infor-
mative and diverse training samples with applications in scene classification,” in
2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016,
pp. 494–498.

[301] C. Zheng, Y. Yi, M. Qi, F. Liu, C. Bi, J. Wang, and J. Kong, “Multicriteria-based
active discriminative dictionary learning for scene recognition,” IEEE Access,
vol. 6, pp. 4416–4426, 2017.

[302] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently exploring
unseen environments for unknown tasks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1238–1247.

[303] E. Sommerlade and I. Reid, “Information-theoretic active scene exploration,” in
2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2008, pp. 1–7.

[304] C. Brown, “Prediction and cooperation in gaze control,” Biological cybernetics,
vol. 63, no. 1, pp. 61–70, 1990.

[305] D. J. Coombs and C. M. Brown, “Intelligent gaze control in binocular vision,”
in Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.
IEEE, 1990, pp. 239–245.

[306] D. Wilkes and J. K. Tsotsos, “Active object recognition,” in Proceedings 1992
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 1992, pp. 136–141.

[307] L. Wixson, “Viewpoint selection for visual search,” in CVPR, vol. 94, 1994, pp.
800–805.

[308] J. C. Caicedo and S. Lazebnik, “Active object localization with deep reinforce-
ment learning,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 2488–2496.

[309] X. S. Chen, H. He, and L. S. Davis, “Object detection in 20 questions,” in 2016
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
2016, pp. 1–9.

208

[310] A. Garcia, A. Vezhnevets, and V. Ferrari, “An active search strategy for efficient
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp.
3022–3031.

[311] E. Johns, S. Leutenegger, and A. J. Davison, “Pairwise decomposition of image
sequences for active multi-view recognition,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 3813–3822.

[312] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual
object detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2894–2902.

[313] F. Darema, “Dynamic data driven applications systems: A new paradigm for ap-
plication simulations and measurements,” in International Conference on Com-
putational Science. Springer, 2004, pp. 662–669.

[314] E. Blasch and D. A. Lambert, High-level information fusion management and
systems design. Artech House, 2012.

[315] E. P. Blasch, D. A. Lambert, P. Valin, M. M. Kokar, J. Llinas, S. Das, C. Chong,
and E. Shahbazian, “High level information fusion (hlif): Survey of models, issues,
and grand challenges,” IEEE Aerospace and Electronic Systems Magazine, vol. 27,
no. 9, pp. 4–20, 2012.

[316] P. H. Foo and G. W. Ng, “High-level information fusion: An overview.” J. Adv.
Inf. Fusion, vol. 8, no. 1, pp. 33–72, 2013.

[317] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp.
1563–1572.

[318] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition using
probability of inclusion,” in European Conference on Computer Vision. Springer,
2014, pp. 393–409.

[319] F. Li and H. Wechsler, “Open set face recognition using transduction,” IEEE
transactions on pattern analysis and machine intelligence, vol. 27, no. 11, pp.
1686–1697, 2005.

[320] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme value ma-
chine,” IEEE transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 762–768, 2017.

[321] R. Zhang and D. N. Metaxas, “Ro-svm: Support vector machine with reject
option for image categorization.” in BMVC. Citeseer, 2006, pp. 1209–1218.

[322] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online
passive-aggressive algorithms,” Journal of Machine Learning Research, vol. 7, no.
Mar, pp. 551–585, 2006.

[323] R. De Rosa, T. Mensink, and B. Caputo, “Online open world recognition,” arXiv
preprint arXiv:1604.02275, 2016.

209

[324] A. Kapoor, S. Baker, S. Basu, and E. Horvitz, “Memory constrained face recog-
nition,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2012, pp. 2539–2546.

[325] P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller, “Incremental support vector
learning: Analysis, implementation and applications,” Journal of machine learn-
ing research, vol. 7, no. Sep, pp. 1909–1936, 2006.

[326] L.-J. Li and L. Fei-Fei, “Optimol: automatic online picture collection via incre-
mental model learning,” International journal of computer vision, vol. 88, no. 2,
pp. 147–168, 2010.

[327] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Metric learning for large
scale image classification: Generalizing to new classes at near-zero cost,” in Eu-
ropean Conference on Computer Vision. Springer, 2012, pp. 488–501.

[328] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool, “Incremental learning of ncm
forests for large-scale image classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2014, pp. 3654–3661.

[329] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, “Recognizing scene viewpoint
using panoramic place representation,” in CVPR, 2012.

[330] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[331] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[332] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural computation,
vol. 13, no. 7, pp. 1443–1471, 2001.

[333] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist net-
works: The sequential learning problem,” in Psychology of learning and motiva-
tion. Elsevier, 1989, vol. 24, pp. 109–165.

[334] R. Ratcliff, “Connectionist models of recognition memory: constraints imposed
by learning and forgetting functions.” Psychological review, vol. 97, no. 2, p. 285,
1990.

[335] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National Academy
of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017. [Online]. Available:
http://www.pnas.org/content/114/13/3521.abstract

[336] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo, “Deep neural de-
cision forests,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1467–1475.

http://www.pnas.org/content/114/13/3521.abstract

210

[337] Y. Yang, I. G. Morillo, and T. M. Hospedales, “Deep neural decision trees,” arXiv
preprint arXiv:1806.06988, 2018.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Motivation
	A Brief Overview of Existing Interpretation Methods for Convolutional Neural Networks
	Issues with Post-Hoc Explanations
	Towards Grounded Explanation-Driven Models for Visual Recognition Tasks
	A Simplified Example Application: Scene Classification Using Object-Based Representations

	Contributions of the Dissertation
	Augmenting Visual Concepts: Incorporating Knowledge into Deep Neural Networks Using External Knowledge Graphs
	Deriving New Visual Concepts: Discovering a Novel Representation for Explanation-Driven Visual Recognition
	Deriving New Visual Concepts from Auxiliary Data Sources: Jointly Learning Topic Models and Visual Classifiers
	Adapting Visual Concepts: Utilizing Scenario-Based Models in Dynamic Settings

	Outline of the Dissertation

	Background: Interpretable Models in Machine Learning and Computer Vision
	Why is Model Important?
	Defining Model Interpretability
	Lipton's Definition: Transparency and Post-Hoc Interpretability
	Murdoch et al.'s Definition: The Predictive, Descriptive, Relevant Framework for Model Interpretability
	Doran et al.'s Definition: Opaque, Interpretable, and Comprehensible Systems
	Doshi-Velez and Kim's Definition: Data-Driven Operational Definitions of Interpretability
	Ras et al.'s Definition: Users, Laws, Explanations, and Algorithms as Considerations of Interpretable Models
	Other Discussions on Interpretable Machine Learning and Explainable Artificial Intelligence

	Existing Approaches for Interpreting Deep Neural Networks for Computer Vision-Related Tasks
	Understanding the Internal Components and Mechanisms of the Model
	Visualizing Learned Filters
	Understanding the Feature Space via Clustering, Nearest Neighbors, and Dimensionality Reduction
	Visualizing Activation Maps
	Discovering Maximally-Activating Image Patches
	Relating Pixels and Neurons
	Activation Maximization and Extensions for Visualizing the Preferred Input of a Neuron
	Perturbation-Based Approaches
	Inverting Learned Representations
	Ascribing Human-Understandable Concepts to Specific Neurons
	Other Approaches for Understanding the Behavior of Neurons in Deep Neural Networks
	Improving Transparency via Model/Knowledge Distillation

	Understanding the Decisions/Predictions Output by the Model
	Methods Related to Work Discussed in Section 2.3.1
	Sliding Window- and Sliding Occlusion-Based Approaches
	Other Methods Based on Perturbing the Input Image and/or Intermediate Representations
	Class Activation Mapping and Extensions
	Other Attention-Based Approaches
	Other Approaches Capable of Generating Visual Explanations
	Combining Deep Learning with Prototype Learning
	Counterfactual and Contrastive Explanations
	Grounding Learning-Based Models to Visual Concepts and Visual Attributes
	Other Models that Learn to Explain Decisions Beyond Pixels

	Acknowledgment of Additional Resources

	Augmenting Visual Concepts: Incorporating Knowledge into Deep Neural Networks Using External Knowledge Graphs
	Introduction
	Related Work
	Combining Knowledge Graphs and Deep Neural Networks for Computer Vision Tasks
	Exploiting Object Information for Visual Recognition Tasks

	Problem
	Data
	ADE20K
	WordNet

	Methodology
	Summary of our Approach
	Classifying Scene Images Using an Object-Based Model
	Aligning ADE20K to WordNet
	Calibrating Object Recognition Scores
	Exploiting the Hierarchical Structure of the Knowledge Graph to Refine Object Predictions
	Training the Scene Classification Model

	Experimental Results and Analysis
	The Importance of Utilizing Grounded, Semantic Information
	Understanding the Limitations and Impact of Noisy Object Recognition
	Improving Performance by Utilizing Knowledge Graphs
	Understanding the Effects of Object Prediction Score Calibration
	Refining Object Predictions by Exploiting the Known Structure of the Knowledge Graph
	Qualitative Results

	Deriving New Visual Concepts: Discovering a Novel Representation for Explanation-Driven Visual Recognition
	Introduction
	Related Work
	Learning Meaningful Groups of Objects

	Problem
	Data
	Methodology
	Identifying Scenarios from Data: Pseudo-Boolean Matrix Factorization
	Formulation of Pseudo-Boolean Matrix Factorization
	Selecting the Number of Scenarios
	Initializing the Dictionary and Encoding Matrices
	Solving the Pseudo-Boolean Matrix Factorization Optimization Problem (without Visual Feedback)

	ScenarioNet: Identifying and Recognizing Scenarios from Visual Data
	Training ScenarioNet
	Generating Explanations: Interpreting the Output of ScenarioNet

	Experimental Results and Analysis
	Examples of Learned Scenarios
	Content-Based Comparison
	Identifying Some Failure Cases of ScenarioNet
	Reconstruction Error of Pseudo-Boolean Matrix Factorization
	Comparison to a Model that Bottlenecks Through Object Predictions
	Comparisons to Other Methods for Scene Classification
	Comparison to Baseline CNNs
	Comparison to Other Object-Based Representations
	Comparison to Visual Attribute-Based Representations

	Evaluating ScenarioNet's Explanations via Human Subject Experiments

	Deriving New Visual Concepts from Auxiliary Data Sources: Jointly Learning Topic Models and Visual Classifiers
	Introduction
	Related Work
	Problem
	Data
	Methodology
	Pre-Training the Feature Extraction Neural Network
	Extracting Key Terms from Natural Language Text
	Learning Topic Models using Matrix Factorization
	Incorporating Topic Modeling into Convolutional Neural Networks

	Experimental Results and Analysis
	Evaluation Metrics
	Text-Based Experiments
	Imaging-Based Experiments
	Analysis of Quantitative Results
	Qualitative Results

	Adapting Visual Concepts: Utilizing Scenario-Based Models in Dynamic Settings
	Introduction
	Related Work
	Active Vision and Dynamic Data-Driven Applications Systems
	High-Level Information Fusion
	Open Set Recognition

	Problem
	Data
	Methodology
	Neural Network Training Procedure
	Sensing: Understanding the Input Data
	Processing: From Pixels to Human-Understandable Representations
	Scenarios as Grounded and Interpretable Representations
	Mapping from Scene Views to Scenarios
	Fusing View-Level Scenarios into Scene-Level Scenarios

	Decision Making/Predicting: Classifying Scenes
	The Weibull-Calibrated Support Vector Machine for Open Set Classification

	Updating: Adapting the Models and Adjusting the Sensors
	Updating the Scenario Representation
	Updating ScenarioNet
	Updating the Scene Classification Model
	Formulating a Policy for Exploring the Scene

	Experimental Results and Analysis
	Understanding the Importance of Object-Based Representations
	Understanding the Limitations of Using Object Presence as Features
	Justifying Scenarios as Discriminative, Human-Understandable Features
	Evaluating the W-SVM for Identifying Unknown Scene Categories
	Evaluating the Dynamic-Variant of Pseudo-Boolean Matrix Factorization and the Branching Scenario-Recognition Neural Network
	Understanding the Necessity of Exploration
	Evaluating the Exploration Component of our Proposed Framework
	Qualitative Results

	Conclusion and Future Work
	Conclusion
	Future Work
	Expanding Scenarios Beyond Co-Occurrence Relations
	Outputting Richer, Easier-to-Interpret Explanations
	Exploring Prototype-Based Approaches
	Utilizing Interpretable Non-Linear Classifiers

	References

