
c� 2020

Hua Deng

ALL RIGHTS RESERVED



ANALYSIS OF USER EXPERIENCE AND BEHAVIOR IN WIRELESS

STREAMING VIDEO VIEWING

By

HUA DENG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Janne Lindqvist

And approved by

New Brunswick, New Jersey

October 2020



ABSTRACT OF THE DISSERTATION

Analysis of User Experience and Behavior in Wireless Streaming Video Viewing

By HUA DENG

Dissertation Director:

Janne Lindqvist

Online streaming is one of the most popular services available over the Internet.

Today video is increasingly consumed over wireless networks with their far higher

packet loss rate compared with wired networks. It generates video impairments that

degrade user experience.

We studied video impairments caused by packet losses with a realistic setting. We

found that viewers prefer high-resolution videos with some impairments to smooth

low-resolution videos. It disagrees with the HTTP adaptive streaming protocol, which

sacrifices resolution for smoothness. Additionally, viewers ignore some short impair-

ments and feel that block-artifacts impairment occurring after a freeze is acceptable.

We are the first to reveal that impairment occurrence order and inter-impairment in-

terval length influence user experience di↵erently. These findings show the feasibility

of improving user experience by reordering and balancing impairment occurrences.

In addition, we conducted experiments on observing users streaming video view-

ing behaviors under packet loss wireless networks. We have observed nine types of

behaviors including system level behaviors and video player level behaviors. We no-

ticed that low video quality and perceivable video impairments are key factors to
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motivate users take actions and users usually choose behaviors they believe can im-

prove viewing experience. Also, the sequence of behaviors user has taken follows

some particular orders. According to these observations, we propose a novel user

video watching behavior prediction model that achieves 94.7% accuracy. Moreover,

we created cognitive models that explain how video quality variations and human

memories play roles in users’ behavior decision making. Findings show the feasibility

of improving user experience by reordering and balancing impairment occurrences.

Our study results and the user behavior prediction model provide promising ideas

and tools for enhancing user experience under crowded networks where video impair-

ments are unavoidable and optimizing network resource and user management via

human engineering.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Online streaming media service delivers videos and audio to end-users over computer

networks and is one of the most popular network services. Nowadays, people are

more likely to stream media on mobile devices through wireless networks, and, as

a result, mobile video tra�c accounted for 59% of total mobile data tra�c in 2017

and it will reach to 79% by 2022 (Index, 2019). Meanwhile, packet loss is a major

issue in wireless networks. About 20% to 25% wireless connections su↵er from 5% to

10% packet loss rates (Falaki, Lymberopoulos, Mahajan, Kandula, & Estrin, 2010;

Baltrunas, Elmokashfi, & Kvalbein, 2014). Specifically, large packet loss is usually

observed in crowded situations including conferences and sports events (Chen, Jin,

Suh, Wang, & Wei, 2012; Shafiq et al., 2013). The lost packets in data transmission

generate video impairments and degrade video quality as well as the quality of viewing

experience (Boyce & Gaglianello, 1998; Rui, Li, & Qiu, 2006; Reibman & Poole, 2007;

Boulos, Parrein, Le Callet, & Hands, 2009).

Many works have studied the quality of experience of watching streaming videos

and only considered video clips shorter than 15 seconds with single impairment

(Venkataraman, Chatterjee, & Chattopadhyay, 2009; Moorthy, Choi, Bovik, & de
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Veciana, 2012; Moorthy, Seshadrinathan, Soundararajan, & Bovik, 2010; Paudyal,

Battisti, & Carli, 2016; Duanmu, Ma, & Wang, 2017). In contrast, people usually

watch videos with the length of several minutes (Che, Ip, & Lin, 2015; Ooyala, 2018).

Human short-term memory determines that impairments occurring before could have

e↵ect on people’s evaluation on current video viewing experience (Atkinson & Shi↵rin,

1968; Pinson & Wolf, 2003). We studied videos that people watch during their daily

lives and streamed them under networks with packet losses that generated realis-

tic video impairments. We observed the existence of series of impairments in these

streaming videos and quantify the e↵ect of sequential, as opposed to individual, im-

pairments on the video watching experience and the experience changes during dif-

ferent impairments. We discussed that reordering the occurrences of di↵erent impair-

ments and balancing the existence of long and short impairments can improve the

subjective experience without increasing bandwidth use and demonstrated feasible

approaches to enhance video viewing experience for users under resource-constrained

networks in which completely removing video impairments for every individual user

is impractical.

In real world streaming video viewing, distorted videos bring annoyance to video

viewing and induce viewers take actions as responses and viewer behaviors are showing

their attitudes towards video qualities. Previous works focused on user engagements

and studied how engagement parameters, including video abandonment rate, video

playing time, relate to di↵erent backbone network conditions, for instance, video

bu↵ering time and network flows (Dobrian et al., 2013; Shafiq et al., 2014; Krishnan

& Sitaraman, 2013). These works were motivated from online video providers and
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gave suggestions on improving their content delivery. These user engagement related

metrics are unable to capture the explicit factors that trigger users’ behaviors while

watching videos. Meanwhile, local network issues can also introduce video impair-

ments and a↵ect viewing experience. In wireless local area networks (WLAN), the

access point is a networking device allowing end users to connect to a wired network.

If the number of connecting requests from users is beyond the access point’s handling

ability, packet losses exist during data transmission and users are unable to receive

stable network connections. Users are able to take actions under these conditions

to improve the video viewing experience, for instance, switching to another available

wireless network, changing video resolutions and refreshing the video player. In this

project, we also studied user behaviors from viewers’ perspectives and specify the

direct influence to case di↵erent behaviors when they are watching streaming videos

under packet loss wireless networks. We analyzed the relations between video im-

pairment occurrences and people’s video viewing behaviors and discussed the roles

of human cognition and memory behind viewers’ decision and behaviors. Addition-

ally, we novelly proposed high accurate user behavior prediction models that provide

clues of users’ feelings about perceived service experiences and potential influences

on the entire network resource consumption. Our study provides encouraging ideas

to improve user video watching experience on mobile devices with limited network

resources and opens the door to design and practice human engineering based man-

agement protocols to optimize wireless network management in bandwidth resource-

constrained environments.
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1.2 ORGANIZATION

Chapter 2 will describe research backgrounds and related work on video delivery over

packet loss networks, video quality assessment, behavior incentives and wireless net-

work usage patterns. Chapter 3 will introduce the study on the influence of sequences

of di↵erent video impairments on people’s video viewing experience. Chapter 4 will

present the study on people’s video viewing behaviors under packet loss networks.

Chapter 5 are discussions of the presented two studies. Chapter 6 will explain the

limitations of these two studies. Chapter 7 is the conclusion of the two studies.

1.3 CONTRIBUTIONS

Our current work presents the following contributions

1. We create a machine-learning based model to classify types of user behaviors

and apply our model to conduct behavior prediction which achieves 94.7% accu-

racy. In addition, we analyze the importance of features to categorize behavior

types and establish a hierarchical model that describes how human cognition

works behind users’ decision making and behaviors. Users behaviors not only

indicate their video watching experience, but also make potential impacts on

entire network resource consumption and allocation. Good user behavior pre-

diction provides network controllers support and tools to compose, and employ

network resource management protocols via human engineering.

2. We show that people prefer watching videos with block-artifacts over videos

that are completely stalled by freezes. Freezes and block-artifacts are two main
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types of video impairments existing in real world video streaming services un-

der packet loss wireless networks. Block-artifacts that occur after video freezes

show a strong increase in the watching experience rating. Participants felt that

the video watching experience has improved during these block-artifacts impair-

ments. Additionally, we also found that participants believed short impairments

a↵ected their watching experience di↵erently and short impairments that oc-

curred after a long (9.5 seconds) or a very short (0.2 seconds) impairment-free

period did not have much influence on watching experience. This observation

demonstrates that changing impairment occurring time can improve watching

experience even if the total impairment number remains unchanged.

3. We discover that people choose high-resolution videos with occasional impair-

ments over smooth low-resolution videos without any impairments. Some high-

resolution videos streamed under higher packet loss networks could provide the

same or even better watching experience compared with low resolution videos

streamed under lower packet loss networks. In contrast to the current HTTP

adaptive streaming protocols, choosing video smoothness over resolution un-

der limited bandwidth conditions is not always an ideal decision from viewers’

perspectives. Providing videos with good trade-o↵ between resolution and im-

pairment occurrence can maximize watching experience under networks with

predetermined resources.

4. We notice that impairment type, length and occurring order influence people’s

video watching experience di↵erently and show evidence that enhancing video
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watching experience without additional network resource usage is practical.

People’s di↵ering evaluations of freezes, block-artifacts and short impairments

show that properly managing the bandwidth and controlling the impairment

occurrences can improve video watching experience as well as the e�ciency of

bandwidth utility. This idea is promising in heavily utilized wireless networks

where bandwidth is scarce and video impairments are unavoidable.

5. We demonstrate that people take actions because they fell video quality is low

and choose types of behaviors they believe can improve the video quality. Low

video quality hurts video watching experience and users usually take actions

to change the current conditions. Behaviors users frequently perform include

changing wireless networks, changing video resolutions, and refreshing the video

player and these behaviors produce direct e↵ect on altering video quality and

watching experience. Moreover, video quality improvement can change people’s

decisions on performing some behaviors. Changing networks involves two con-

secutive actions which are showing the list of available networks and followed by

connecting to a new network. We observed that users may give up connecting

to another network after displaying the network list when the video recovers

from an impairment. This finding tells us that video quality is the key fac-

tor a↵ecting user behaviors and human’s decision making is a dynamic process

along with video quality variations.

6. We exhibit that the time users spent on deciding to take actions is depending on

their previous video watching experience. More impairments users saw recently,
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more quickly they took actions during the current impairment. The decision

time decreases exponentially with the number of previous video impairment

increment. Furthermore, we derive a mathematical expression based on ACT-R

model to demonstrate how human memory plays an role in evaluating video

watching experience and performing behaviors.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Overview of Chapter

In this chapter, we will discuss the relevant background of gesture-based authentica-

tion methods, password guessability and attacks against gesture authentications in

previous work.

2.1.1 Video Streaming over Packet Loss Networks

Video streaming is sensitive to network packet losses. The packet loss causes de-

coding failure at the receiver end and video impairments occur when the video is

playing. These impairments influence the people’s video viewing experience. Ko-

rhonen (Korhonen, 2018) studied the visibility of packet loss artifacts appearing

in video sequences and proposed models for combining objective features to assess

the noticeability of the artifacts. Meanwhile, Frnda et al. (Frnda, Voznak, & Sev-

cik, 2016) used video objective methods to evaluate the quality of video delivery in

many di↵erent packet loss scenarios. Liang et al. (Liang, Apostolopoulos, & Girod,

2008) studied whether the packet loss pattern is important for precisely evaluating

the expected mean-squared error distortion for compressed videos and concluded that

burst loss produces a larger video distortion. Also, Joskowicz and Sotelo (Joskowicz &

Sotelo, 2014) created a model to predict perceived video quality for the broadcast dig-
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ital television viewers under individual transport stream packet losses circumstances.

Several other studies focused on wireless video transmission. Nasralla et al. (Nasralla,

Hewage, & Martini, 2014) performed quality evaluation of the received 3D video se-

quences over di↵erent packet loss LTE networks. Chen and Wu (Chen & Wu, 2012)

derived formulas for predicting transmission distortion and provided suggestions on

video encoding and transmission scheme designing and He et al. (He & Xiong, 2006)

proposed a control system approach to transmission distortion modeling for wireless

networks. Di↵erent from these works, we generated the distorted videos by streaming

under real packet loss networks and provide cognitive approaches to assess the influ-

ences of both individual and sequences of impairments on video viewing experience.

2.1.2 User Subjective Assessment on Video Quality

Mean opinion score (MOS) is a subjective quality rating approach recommended

by International Telecommunication Union (ITU) which provides 5-grade or 7-grade

absolute category rating method to evaluate audio or video qualities (P.910, 2008).

Paudyal et al. (Paudyal et al., 2016) used MOS method to study the impact of video

content and network delay, jitter, packet loss rate and bandwidth on video viewing

experience. Staelens et al. (Staelens et al., 2014) used continued quality evaluation

methods to study the influence of video stalls on the video subjective quality. Liu

et al. (Liu, Dey, Ulupinar, Luby, & Mao, 2015) studied the e↵ects of initial delay,

stall and bit rate on user perceived video quality. De Simone et al. (De Simone et

al., 2009) conducted subjective assessment and created a database for H.264/AVC

videos delivered over noisy channels and Trestian et al. (Trestian, Vien, Nguyen, &
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Gemikonakli, 2015) found that users’ video perception quality varies for di↵erent

video contents and large amount of energy can be saved on wireless devices without

sacrificing users’ quality of experience. However, these subjective evaluation based

studies used short videos less than 15 seconds long or clips with single impairment.

The videos people usually watch have length of at least several minutes (Che et

al., 2015; Ooyala, 2018) and the occurrences of multiple di↵erent impairments are

possible when the video is streaming under packet loss networks. Moreover, Garcia

et al. (Garcia et al., 2014) did a review on subjective study on HTTP adaptive

streaming quality of experience and they pointed out that we still do not know the

influences of combined degradation and how people deal with varying quality and

long sequences. Our work addresses on these issues and studied how di↵erent video

impairments a↵ect people’s video viewing experience.

2.2 Frustration Motivates Behaviors

Users’ feeling towards network quality is important to understand incentives for them

to make decision when accessing networks. Chen et al.(Chen, Huang, & Lei, 2006)

studied the e↵ect of network quality on real-time, interactive, online game play. They

built a regression model based on the three network QoS factors to predict player

risks which estimated the level of player intolerance to poor network conditions and

finally compared the observed data with their model predictions. Also, Joumblatt et

al. (Joumblatt, Teixeira, Chandrashekar, & Taft, 2011) introduced an end-user data

collection tool, named HostView, which collects network, application and machine

level data as well as gathers feedback directly from users on network performance.
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They provided a feasible two-way user feedback mechanism and suggestions on end-

host tracing tool design.

Impairments hurts people’s video viewing experience and brings viewers dissat-

isfaction. Stauss et al. (Stauss, Schmidt, & Schoeler, 2005-07) pointed out that

frustration is a form of strong dissatisfaction and it occurs individuals do not obtain

expected goals. Similarly, Feild et al. (Feild, Allan, & Jones, 2010) shown that users

may become frustrated when they have trouble finding information using web search

engine. Moreover, frustration can be a behavior motivator and change subsequent

behaviors. Amsel et al. (Amsel & Roussel, 1952) described frustration as a mo-

tivator for behavior and a causal factor influencing future behavior and Aula et al.

(Aula, Khan, & Guan, 2010) found that people use more advanced queries when they

have di�culty in finding information in a online search task. In addition, Campion

et al. (Campion & Lord, 1982) mentioned that any discrepancy between goals and

performance creates a corrective motivation. These works provide evidence that bad

video viewing experience gives people motivations to behave and try to improve the

current experience.

User engagement shows people’s viewing behaviors for online video services. Do-

brian et al.(Dobrian et al., 2013) studied the impact of video bu↵ering time on viewer’s

length of viewing time for long and short videos and Shafiq et al. (Shafiq et al., 2014)

focused on the video abandonment rate caused by network flows and transport level

factors. Chen et al. (Chen, Zhou, & Chiu, 2013) found the relation between video

seeking and video freezes and Krishnan(Krishnan & Sitaraman, 2013) infered causal

relation between viewers’ video playing time and rebu↵ering ratio. The works above
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are based on dataset of commercial online video providers and give advice to providers

on content delivery. In addition, Mok et al.(Mok, Chan, Luo, & Chang, 2011) shown

that pausing and reducing the screen size are two types of user-viewing activities

triggered by video impairments caused by network packet losses. In our study, we

consider all types of behaviors viewers can perform at client side in real-world scenar-

ios that include video player level and system level activities. We analyze how video

impairments trigger viewer behaviors as well as how viewer behaviors a↵ect network

management.

2.3 Wireless Network Usage Patterns

The wireless network usage patterns show people’s habit of utilizing wireless net-

work resources in their daily lives. Balachandran et al. (Balachandran, Voelker,

Bahl, & Rangan, 2002) analyzed user behavior and network performance in pub-

lic WLAN using data collected from four wireless access points (APs) at an ACM

conference. They found that short-time sessions including web browsing and SSH

connections were dominant and user movements were observed at the beginning and

end of conference sessions. Authors also pointed out that network load and perfor-

mance was directly correlated with conference schedules. Meanwhile, Afanasyev et

al.(Afanasyev, Chen, Voelker, & Snoeren, 2008) studied the usage of the Google WiFi

network deployed in Mountain View, CA. They observed that the aggregate usage of

the Google WiFi network is composed of three distinct user populations, characterized

by distinct tra�c, mobility, and usage patterns. Modem users were static and always

connected, and placed the highest demand on the network while hotspot users were
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concentrated in commercial and public areas, and had moderate mobility. Smart-

phone users were numerous and place very low demand on the network. Similarly,

Fukuda et al.(Fukuda, Asai, & Nagami, 2015) studied the evolution of smartphone

usage in the Greater Tokyo area from 2013 to 2015. They noticed that smartphone

users selected appropriate network interfaces taking into account the deployment of

emerging technologies, their bandwidth demand, and their economic constraints. In

details, more users connected to WiFi networks and use bandwith-consuming services

such as video streaming. Moreover, Wei et al.(Wei, Valler, Madhyastha, Neamtiu, &

Faloutsos, 2015) presented Brofile, a device-centric approach for grouping devices

and used it to study handheld device user’s individual behavior. Their results shown

that small fraction of users consumed most of the network bandwidth and tra�cs

varied across devices significantly and were very bursty in time. Additionally, users

patterns of appearance followed weekly and daily patterns. Our work is focusing on

users’ streaming video viewing behaviors in indoor WiFi settings and studying their

influences on network performances.
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CHAPTER 3

USER SUBJECTIVE RATING ON STREAMING VIDEOS UNDER PACKET

LOSS WIRELESS NETWORKS

3.1 Overview of Chapter

We studied how people’s viewing experience was influenced when they watch stream-

ing videos under packet loss wireless networks. Additionally, we provided evidence

to support the feasibility and proposed suggestions of improving the quality of video

viewing experience under resource-constraint networks.

First, we design a system to emulate real-world wireless network communication

and stream videos over the system with controlled packet loss configurations. Then,

we conducted a user study with 96 participants to view and evaluate these impaired

videos. Finally, we analyzed and compared the subjective evaluations provided by

participants with video impairments occurrences and summarized conclusions on how

wireless packet loss networks a↵ect people’s streaming video viewing experience.

3.2 Method

In this section, we first introduce the source videos we choose and the approaches to

generate impaired processed videos for our study. Next, we describe the design of

user experiments and procedures we take to conduct the experiments.
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3.2.1 Source Videos

The source videos were chosen from four of the top eight popular non-music content

categories on YouTube (Cheng, Dale, & Liu, 2008; Che et al., 2015). These categories

include education, movie, news and sports. We selected one video from each category

and downloaded it from YouTube. Copyright law in the United States regards the

use of videos for research purposes as fair use (Copyright Law of the United States

and Related Laws Contained in Title 17 of the United States Code, 2016). Each video

clip has 3 di↵erent resolutions at 720p (1280 ⇥ 720), 480p (854 ⇥ 480) and 360p

(640 ⇥ 360) with a frame-rate of 24 fps and a codec of H264-MPEG-4 AVC (ITU-

T RECOMMENDATION, 2017). We cut the videos into 120-second segments, which

are close to the length of average non-music videos on YouTube (Che et al., 2015).

The news video was an interview about introducing a drawing game using machine

learning techniques, the education video was a doodle cartoon describing the energy

consumption required for walking and running in cold weathers, the movie was a

trailer from Guardians for the Galaxy Vol.2, and the sports video was a top ten

highlights clip of NBA games. The average bitrates for videos with di↵erent categories

and resolutions are listed in Table 3.1. These videos are from well-known YouTube

channels that have at least two million subscribers and they are representative of

video contents that users might experience. In total, we gathered 12 source videos

with di↵erent video specifications. Meanwhile, a 30-second long Netflix series video

clip at a resolution of 720p was chosen as the training video for the experiment.
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News Education Movie Sports

360p 225kbps 320kbps 406kbps 912kbps
480p 306kbps 485kbps 608kbps 1496kbps
720p 522kbps 902kbps 1068kbps 2869kbps

Table 3.1. The Average Bitrates for Videos with Di↵erent Categories and Resolutions

3.2.2 Processed Videos

We built a simple server-client network architecture with one server and one client.

The source videos were stored in the server, and the client streamed the videos from

the server through a configured network connection. We connected the server and

client with an Ethernet cable and emulated the wireless data transmission in order to

avoid the possible interference from other wireless signals. All settings were identical

for di↵erent networks, including initial delays and protocols, except network packet

loss rates. We used HTTP streaming over TCP and set four di↵erent levels of packet

loss rates at 0%, 2.5%, 5% and 10%. These values properly cover the wireless network

packet loss rates that appear in real-world scenarios (Chen et al., 2012; Shafiq et al.,

2013; Falaki et al., 2010; Baltrunas et al., 2014). The data transfer delay was 30

milliseconds for each packet loss rate configuration (Venkataraman & Chatterjee,

2012). We controlled the server’s egress tra�c and dropped packets randomly at the

network adapter using the tra�c control (tc) command in the Linux OS to simulate

the packet loss during data transmission. The client used VLC, an open-source media

player, to stream the videos from the server and recorded the streaming video at the

same time (VideoLAN media player , 2018). We disabled the video bu↵er at the client

to avoid any possible video impairments caused by bu↵ering schemes under packet



- 17 -

loss networks. Meanwhile, WireShark (WireShark network protocol analyzer , 2018)

was running on the client to monitor the real-time packet loss rate during the video

streaming and verify the network configurations. Each of the 12 source videos was

streamed through the four di↵erent networks separately and 48 processed videos were

recorded and prepared for the experiment.

3.2.3 Experimental Design

We conducted a single-stimulus continuous quality evaluation (SSCQE) study with

hidden references (BT.500, 2012; Pinson & Wolf, 2003) over a period of five months.

We prepared 48 video clips for the experiment in total and put them into 3 groups

based on video resolutions. In each group, we used the Latin-square method to

arrange the clips to eliminate the possible order e↵ects and formed 96 test sessions.

For test sessions with 360p and 480p videos, we placed the corresponding 720p source

videos in the sequence at random positions to act as the hidden references and the

participant was unaware of the existence and position of reference videos in the test

session. Each test session included 8 clips for the 720p group and 10 or 11 clips for

the 360p and 480p groups. In addition, a 5-second long countdown clip was shown

between consecutive test video clips in every test session and the entire test session

length was less than 30 minutes to satisfy ITU requirements (BT.500, 2012).

We chose single stimulus (SS) method over double stimulus (DS) (BT.500, 2012)

since SS only requires participants to watch video once and the shorter test sessions

are less likely to fatigue the participants. More importantly, a SS design is closer to

the real video viewing experience in people’s daily activities (BT.500, 2012; P.910,
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2008). The continuous scale helped us capture subjective rating changes during video

impairments and was more useful for real-time quality evaluation (Pinson & Wolf,

2003).

3.2.4 Apparatus

The experiment interface was a customized HTML5 video player interface using the

video.js framework (Video.js: The Player Framework , 2018). The interface, shown

in Figure 4.1, contained a display screen at the center and a slider bar ranging from

0 to 100 on the bottom. The slider bar was divided into five equally sized regions

labeled “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. Participants were able to use

keyboard arrows to move the cursor continuously to rate the video while watching it,

and the interface sampled this rating every 0.1 seconds at the background and saved

the ratings and the corresponding time-stamps as a .csv file.

The experimental device was a common o↵-the-shelf PC desktop computer. The

interface was running on the Google Chrome v61 web browser and the experimental

environments, including viewing distances and luminosity levels were set following

the ITU standard requirements (P.910, 2008).

3.2.5 Procedure

We recruited participants through flyers, email lists and online advertisements. We

required them to be at least 18 years old and not have color vision deficiency. We also

asked them to wear glasses or contact lenses if needed. We recruited 96 participants

with ages ranging from 18 to 56 (M = 22.37 , SD= 4.53 ). 53 were men and 43

were women. 73 of them were pursuing an undergraduate degree, 14 of them were
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Figure 3.1. The video quality assessment experiment interface. A display screen is
at the center and a slider bar ranging from 0 to 100 with the minimum step size as
1 is on the bottom. The slider bar is divided into five equally sized regions labeled
“Bad”, “Poor”, “Fair”, “Good” and “Excellent”.

pursuing graduate degrees, and the remaining 9 had a graduate degree. The study

was approved by the Institutional Review Board (IRB) of our institution.

Each participant was assigned to one test group with a unique test session. Before

the experiment, we introduced the participant to the study’s purpose, the interface

functionality and the types of video impairments likely to occur in the experiment.

The participant also read and signed a consent form and was encouraged to ask any

clarifying questions before consenting to participate in the study. Next, the partic-

ipant underwent a training session that included three training clips with di↵erent

levels of video impairments to become accustomed the interface and experimental

settings.

All the test videos in the session were playing sequentially and there was a 5-
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second countdown video between each two consecutive clips to let the participant

get prepared for the next clip. The rating cursor was set to 50 automatically at the

beginning of every video clip to avoid any bias caused by the starting rating. After

the experiment, participants completed an exit survey with questions to self-evaluate

their performance and we used it to check the data validity before analysis. The exit

survey is listed in Appendix A

The experiment workflow is illustrated in figure 3.2. The interface consists of two

main parts. The video player acts as the output to play video clips. The rating slider

bar is an input and participants move the slider while viewing the processed videos to

provide their real-time evaluations to the video quality. When the experiment starts,

the video player loads corresponding processed videos from local storage and displays

them to views according to a predetermined video sequences. The size of video player

maintains unchanged and video clips keep playing throughout the entire experiment.

Participants were asked to finish two tasks in parallel. One task is viewing the video

clip from the player and another one is moving the rating slider bar to assess their

instantaneous video viewing experience. They can press the keyboard arrows to move

cursor by one at a time or hold the arrows to shift to the rating position reflecting their

viewing experience level immediately. The experiment interface collects subjective

ratings, video type, elapsed time information every 0.1 seconds and save it in local

storage for data analysis.
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Figure 3.2. Video subjective quality evaluation experiment workflow.
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3.3 Video Impairments and Ratings

In this section, we describe and analyze the types of video impairments observed in

the processed videos and how video viewing experience rating changed during these

impairments.

3.3.1 Video Freezes and Block-artifacts

A video impairment is a period of time during which a video is partially or completely

impaired. Viewers are unable to receive the full and clear video content information

when the impairment occurs. Video compression and data transmission loss are the

two main factors that generate video impairments. In our study, we focused on video

impairments caused by network packet losses.

There are two main types of impairments that we observed: freeze and block-

artifacts. Video freezes occur when the decoder does not receive the data for the

subsequent frames due to packet loss and the video stops playing, stalling at a frame

for a period of time such that video playback is no longer smooth. Another impairment

is called block-artifacts. During this impairment, the video keeps playing with some

block-artifacts on the frames. This occurs because of the partial frame information

losses in the data transmission. Both of these two types of impairments prevent

viewers from receiving complete and clear video content and degrade viewers’ video

viewing experience.

We have 48 videos in total and 12 of them were streaming under the 0% packet loss

network. The rest 36 videos were streaming under real networks with di↵erent levels of

packet loss rates and we were unable to control the lengths and types of impairments
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in advance, so we collected the impairments’ counts and types manually and evaluated

their lengths in seconds. In summary, 19 videos have at least one video impairment

and 312 video impairments were observed in total. These 312 impairments include 202

video freezes and 110 block-artifacts. Almost half of the impairments have length less

or equal to 2 seconds and the impairment count decreases rapidly with the increase of

impairment length and 93% (291 out of 312) of the observed impairments are shorter

than 7 seconds. The impairment average length is 3.4 seconds with standard deviation

of 2.8 seconds. Meanwhile, freezes have longer average length (M = 3.9 seconds) and

larger standard deviation (SD = 3.2 seconds) than those of block-artifacts (M= 2.4

seconds, SD = 1.3 seconds).

3.3.2 Subsequent and Isolated Impairments

Video impairments can occur di↵erently over time. Some impairments occurred one

after another without pause. For instance, the video froze for several seconds and then

continued playing with block-artifacts or the video first played with block-artifacts

and then froze for a period of time. We call such impairments as subsequent impair-

ments. Figure 3.3a demonstrates the two types of subsequent impairments. One is a

block-artifacts impairment occurring right after a freeze and another is a freeze after

a block-artifacts impairment. In addition, we also observed isolated impairments and

these impairments occurred after an impairment-free period. Figure 3.3b shows two

cases of isolated impairments.

Among the total 312 impairments, 183 are isolated impairments and the other

129 are subsequent impairments. Isolated impairments have larger average length
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(a) Demonstration of subsequent block-artifacts and subsequent freeze

(b) Demonstration of two cases of isolated impairments

Figure 3.3. Di↵erent impairments categorized by occurring times. If an impairment
occurs after another impairment with di↵erent type immediately, we call it subsequent
impairment. On the other hand, if an impairment occurs after an impairment-free
period, we name it isolated impairment.

and standard deviation (M = 4.3 seconds, Mdn = 4 seconds, SD = 3.3 seconds )

compared with those of subsequent impairments (M = 2.2 seconds, Mdn = 2 seconds,

SD = 1.2 seconds). The following sections will discuss how do these impairments

a↵ect people’s video viewing experience di↵erently.

3.3.3 Video Quality Rating Process

A total of 96 volunteers participated in the experiment and each video was rated by

16 participants. We found that ratings with one sample per second still capture all

rating changes during the video. Therefore, we averaged the samples within every

one-second period and got a new value to represent the rating for this second and

reduce the sample size (Smith et al., 1997). Then, we calculated the rating trace

for each video by finding sample-wise averages over the ratings provided by di↵erent

participants. In continuous quality assessment, participants moved the rating slider
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while watching the video. The immediate assessment can be a little bit delayed due

to the participants reaction and response times (BT.500, 2012). Specifically, when

the video quality changed, participants needed some time to react to those changes

and alter the quality rating. Therefore, SSCQE scores were usually time-shifted

to compensate for this delay in participant response, and we shifted all rating traces

backwards for 1 second in our study (Winkler & Campos, 2003). The system collected

rating ranges from 0 to 100, and we divided the original rating by 20 and converted it

to scales ranging from 0 to 5 that mapped to the video quality regions “Bad”, “Poor”,

“Fair”, “Good” and “Excellent”.

3.3.4 Network Packet Loss Rate, Bandwidth and Video Bitrate

We introduce network bandwidth and use it to evaluate available network resources in

packet loss networks and simplify the following analysis and discussion. The network

bandwidth shows the maximum amount of data the network connection can transfer

from one point to another in a given amount of time. The bandwidth of a lossy TCP

connection in networks with packet loss rate less than 30% can be approximated by

Mathis equation (Mathis, Semke, Mahdavi, & Ott, 1997):

Bandwidth =
MSS

RTT

C
p
p

(3.1)

where MSS is the maximum segment size of a TCP packet, RTT is the round trip

time, C =
p

3/2 and p is the probability of packet loss. In our experiment, the

TCP packet maximum segment size was 1460 bytes and the round trip time was 60
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milliseconds. Therefore, the bandwidth of the three packet loss networks were 1473

kbps (2.5% packet loss rate), 1041 kbps (5% packet loss rate) and 736 kbps (10%

packet loss rate). For fixed MSS and RTT values, network bandwidth is negatively

correlated with the network packet loss rate. In the following analysis and discussion,

we use network bandwidth to describe network conditions and available resources.

The video bitrate is the number of bits that are processed in a unit of time and also

approximates the amount of data needed to be transferred over the network for the

streaming video service. If the video is streaming under a network with a bandwidth

lower than its bitrate, it is possible that some data will be lost during the transmission,

resulting in video impairments. The total bandwidth is fixed for a specific network,

and the video real-time bitrate varies throughout the video. Grouping videos and

networks with shared properties can help us find similarities in impairment type and

length and get more general conclusions. Therefore, we placed the 48 processed

videos into three groups according to their bitrates and network bandwidths. Table

3.2 shows the criteria we followed in grouping the videos. Bmax and Bmin represent the

video’s maximum and minimum bitrates respectively and BW shows the bandwidth

of the network through which the video was streaming. The bitrates of videos in the

first group are always less than the corresponding network bandwidth, and we can

therefore call them “Low-Bitrate, High-Bandwidth”. The videos in the third group

always have higher bitrates than the network bandwidth and can be described as

“High-Bitrate, Low-Bandwidth”. The rest of the videos have their real-time bitrates

that intersect with the network bandwidth, and we called them “Medium-Bitrate,

Medium-Bandwidth”.
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Table 3.2. The Video Grouping Criteria for Video Bitrate and Network Bandwidth.
Bmax and Bmin represent the video’s maximum and minimum bitrates respectively
and BW shows the network bandwidth.

Group Criteria

Low-Bitrate, High-Bandwidth Bmax < BW
Medium-Bitrate, Medium-Bandwidth Bmin < BW < Bmax

High-Bitrate, Low-Bandwidth Bmin > BW

3.4 Results

In this section, we discuss how do our participants change the video quality ratings

when they see di↵erent video impairments as well as the relations between network

packet loss rates and video impairments.

3.4.1 Video Impairments Assessment

Block-Artifacts Impairment After a Freeze is Acceptable

We found that our participants believed videos playing with block-artifacts were much

more acceptable than videos that stalled completely due to freezes, and they felt the

video viewing experience improved when they saw the video resumes playing with

some block-artifacts after a complete video freeze since the ratings increased in a

majority of subsequent block-artifacts. Figure 3.4 shows the cumulative distribution

functions (CDF) for both subsequent block-artifacts and freezes against the amount

of rating change. More than 80% of the block-artifacts that occur after a major

freeze show improved experience quality ratings. On the other hand, more than

90% of the freezes that follow a block-artifacts impairment show reduced experience

quality ratings and it demonstrates that participants thought that viewing experience
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kept decreasing in freezes after block-artifacts impairments. The rating increase in

subsequent freeze (M = -0.24, SD = 0.28) is smaller than that of subsequent block-

artifact (M = 0.25, SD = 0.43) and the di↵erence is statistically significant, U = 354,

p < .001 (Mann-Whitney U test). It shows that users felt block-artifacts impairments

after a freeze is acceptable.

Figure 3.4. The cumulative distribution function (CDF) of subsequent block-artifacts
and freezes with di↵erent rating change amounts. The positive rating change value
shows that users feel video viewing experience improved during the impairment while
the negative rating change value means that users’ video viewing experience decreases
during the impairment. The rating increases in most of the subsequent block-artifacts
(> 80%) and drops in most of the subsequent freezes (> 90%). The two-sided
Kolmogorov-Smirnov test result, D(34, 95) = 0.77, p < .001, shows the di↵erence
between two distributions is statistically significant.

Short Impairments Do not Always Degrade Viewing Experience

For impairments that led to decreased ratings , the impairment length is a key factor

in determining the decreasing trend. Absolute rating drop amount is not a good
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metric to evaluate the video viewing experience degradation since a rating change

from “Fair” to “Poor” is not equivalent to a drop from “Poor” to “Bad” (Streijl,

Winkler, & Hands, 2016). We introduced a new metric called rating drop fraction,

which is defined as the ratio between absolute rating drop and the maximum rating

of the impairment. We picked all impairments with rating drops and compared the

fraction of rating drops against the impairment lengths.

Figure 3.5 shows that impairment rating drop fraction increases when impairment

has longer length and it means that participants felt that longer impairments have

greater influence on video viewing experience. Meanwhile, short impairments (i.e.,

length < 3 seconds) have wider range of rating drop fraction values and participants

thought these short impairments have di↵erent e↵ect on viewing experience. We

found that rating drop fractions (M = 0.37, SD = 0.22) of short impairments (i.e.,

length < 3s) have larger variance than that of long impairments (M = 0.71, SD =

0.15), W(1, 229) = 25.33, p <.001 (Levene’s test).

We got the similar observation when comparing the minimum ratings within each

impairment against its length. Figure 3.6 shows that the minimum rating values drop

when impairment length increases and short impairment have a wider range of mini-

mum ratings. Short impairments’ (length < 3s) minimum ratings (M = 1.01, SD =

0.62) have larger variance that that of long impairments (M = 0.52, SD = 0.24), W(1,

229) = 31.14, p <.001 (Levene’s test). These observations tell us that participants

have di↵erent evaluations on viewing experience during these short impairments.

We took a further look to find out why participants reported di↵erent evaluations

of short impairments, especially the short impairments with small rating drop frac-
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Figure 3.5. The rating drop fraction for impairments with di↵erent lengths. Rating
drop fraction means the ratio between the absolute rating drop and the maximum
rating for the impairment, and it measures the level of video viewing experience
degradation caused by the impairment. Each point implies the rating drop fraction
of one impairment. The rating drop fraction follows an climbing trend along with
the increase of impairment length. However, the impairments shorter than 3 seconds
have larger range of rating drop fraction values and it shows that users felt some short
impairments a↵ected their video viewing experience while some did not.

tions. We categorized these short impairments into two groups according to their

minimum ratings. For impairments with a high minimum rating and a small rating

drop fraction, video viewing experience was at a high level when the impairment

started, and participants did not think the impairment a↵ected their experience. On

the other hand, the impairments with a low minimum rating and a small rating drop

fraction told us that the viewing experience was already at a low level, and the im-

pairment did not worsen it further. In both of these two cases, the impairments did

not have much influence on participants’ evaluation on the real-time video viewing
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Figure 3.6. The minimum rating for impairments with di↵erent lengths. Minimum
rating means the lowest rating value that is observed within every impairment. Each
point implies the minimum rating of one impairment. The value gradually decreases
as impairment length increases. However, impairments shorter than 3 seconds have
wider range of minimum rating values and it tells us that users feel some short im-
pairments do not influence the video viewing experience.

experience. We noticed that the average length of impairment-free period before these

two groups of impairments are 9.5 seconds and 0.2 seconds, respectively. The rest of

the short impairments, in which participants changed the ratings, have an average

5.8-second long prior impairment-free period. Therefore, short impairments occurring

after a relatively long or a very short prior impairment-free period do not have much

influence on the video viewing experience.
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Participants Preferred High Resolution Videos with Occasional Impair-

ments over Low-Resolution Videos without Any Impairments

We analyzed the relation between each video’s average rating and its impairment

ratio. Impairment ratio is defined as the proportion of total impairment length to

the video length. Higher impairment ratio means more impairments were observed

in the video. Figure 3.7 demonstrates 720p and 480p videos with a few impairments

have higher ratings (M = 3.23, SD = 0.34) than that of 360p impairment-free videos

(M = 2.35, SD = 0.30), U = 6, p <.001 (Mann-Whitney U test). We conclude

that participants were more likely to watch high-resolution videos with occasional

impairments than smooth low-resolution videos without any impairments.

For videos with the same resolution, the average rating decreased with an increas-

ing impairment ratio, and the video viewing experience dropped if more or longer

impairments were observed. Also, higher resolution videos provided better viewing

experience if the videos had no impairment or similar impairment ratios.

3.4.2 Bandwidths and Video Impairments

High-Bitrate Videos Streamed under Low Bandwidth Networks Have More

and Longer Impairments

We compared the number and length of impairments in videos of di↵erent groups.

Figure 3.8 shows that the numbers of both freeze and block-artifacts impairments rise

rapidly when the video bitrate increases and network bandwidth decreases. Specifi-

cally, the average number of impairments has a large jump from the “medium-bitrate

and medium-bandwidth” group to “high-bitrate and low-bandwidth” group. Mean-
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Figure 3.7. The average rating of videos with di↵erent video impairment ratios. Video
average rating is calculated by averaging all sampled ratings throughout the video, and
it measures the video’s viewing experience on average. Impairment ratio is the ratio
between total impairment length and the video length. The higher the impairment
ratio is, the more impairments are observed in the video. Each data point refers to
one specific video. 720p and 480p videos with a few impairments (i.e., impairment
ratio < 0.2) gave users higher viewing experience than 360p impairment-free videos.

while, Figure 3.9 shows that the lengths of freeze and block-artifacts impairments

also rise when high-bitrate videos are streaming under low-bandwidth networks. Nu-

merically, high bitrate videos streamed under low bandwidth networks have larger

number (M = 46, SD = 9.83) and longer length (M = 3.7, SD = 3.07) impairments

and the di↵erences from impairment number and length other videos are statistically

significant (U = 0, p <.001 and U = 9972, p < .01).
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Figure 3.8. The number of impairment in videos of di↵erent groups. Violin plots
show that no impairment exists in low bitrate videos streamed under high bandwidth
networks and the number of impairments increase as video bitrate increases and
network bandwidth decreases. Two bars in the violin plots represent the maximum
and minimum values. The upper edge of the black box represents the third quartile
and the lower edge represents the first quartile. The circle in the box depicts the
median.

Most Subsequent Freeze Impairments Occur in High Bitrate Videos Streamed

under Low Bandwidth Networks

Figure 3.10 shows that the numbers of subsequent freeze and subsequent block-

artifacts impairments per video jump as the video bitrate increases and the network

bandwidth decreases. The occurrences of subsequent freeze (M = 8.0, SD = 8.45)

high bitrate videos streamed under low bandwidth networks are much higher than

that of other videos, U = 12, p <.001. In particular, only one subsequent freeze was in

videos of the “medium-bitrate and medium-bandwidth” group and subsequent freeze
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Figure 3.9. The length of impairment in videos of di↵erent groups. Violin plots show
that no impairment exists in low bitrate videos streamed under high bandwidth net-
works and the length of impairments increase as video bitrate increases and network
bandwidth decreases. Two bars in the violin plots represent the maximum and min-
imum values. The upper edge of the black box represents the third quartile and the
lower edge represents the first quartile. The circle in the box depicts the median.

occurrence upsurges dramatically for videos in the “high-bitrate and low-bandwidth”

group.

According to our observations, it is practicable for network controllers to manage

the resource allocation based on video bitrates and manipulate the occurrence of

di↵erent types of impairments to improve people’s video viewing experience when the

impairments are unavoidable.
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Figure 3.10. The number of subsequent block-artifacts and freeze impairments per
video in videos of di↵erent groups. The violin plot shows that numbers of both
subsequent block-artifacts and freezes increase rapidly from the second to the third
group. Particularly, almost all of the subsequent freezes are observed in high-bitrate
videos streamed under low-bandwidth networks, indicating that managing network
bandwidth according to video bitrates can prevent the occurrence of subsequent freeze
and enhancing video viewing experience.

3.5 Summary

We conducted a user experiment to evaluate the influence of video impairments caused

by network packet losses on video viewing experience. We discovered that the block-

artifacts impairments happening right after freezes are acceptable to viewers and

high-resolution videos with occasional impairments are much more preferred than

smooth low-resolution videos. Additionally, we found that short impairments with a

relatively long or very short prior impairment-free period do not have much influence

on decreasing the viewing experience. Our work is the first to study the e↵ect of
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impairment occurring orders on viewers video viewing experience and demonstrate

that it is feasible to improve viewing experience without additional resource usage by

changing video impairments types and occurrence orders. In busy networks, the num-

ber of users exceeds the network handling capacity and it is impossible for every user

to receive service with perfect quality or experience. Our study provides encouraging

ideas to improve user video viewing experience with limited network resource and

opens the door to looking for solutions to optimize network management in network

resource-constrained environments based on user experience.
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CHAPTER 4

USER VIEWING BEHAVIORS ON VIDEOS STREAMING UNDER PACKET

LOSS NETWORKS

4.1 Overview of Chapter

This study follows the previous project on user subjective rating on streaming videos

and analyzes how users behave when they are watching videos impaired by network

packet losses. In details, the behaviors include pause video, seeking, change video

resolutions, refresh video player, change video volume, make video player fullscreen,

make video player normalscreen, click wireless network button to show the list of

available networks and change wireless networks. These behaviors are the ones users

can do and interact with video players and systems when they are watching streaming

videos in daily lives. First, we introduce experimental design and the customized

video player we created for the experiment. Next, we demonstrate the results of the

experiment and discuss how users behaviors relate to video ratings, video impairments

as well as their previous behaviors. Finally, we applied di↵erent models to predict

users’ video viewing behaviors and evaluated their performance.
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4.2 Method

4.2.1 Experimental Design

We use the same processed videos from the user subjective rating on streaming video

study. Four types of videos which are education, movies, news and sports with three

di↵erent resolutions at 720p (1280 ⇥ 720), 480p (854 ⇥ 480) and 360p (640 ⇥ 360)

were downloaded from YouTube. We streamed these videos under networks with

three di↵erent packet loss rates at 2.5%, 5% and 10% to generate impaired videos for

the experiment.

We conducted an experiment in the well-controlled laboratory environment and we

deceived participants by informing them that we are doing an experiment to study

how people observe and memorize video contents and details and they needed to

answer ten questions related to video contents afterward. Studies show that partic-

ipants unintentionally change their behaviors if they have formed an intepretation

of the experiment’s purpose and it introduces experimental artifacts (Rosenthal &

Rosnow, 2009). We used deception and conceal the experiment objective to minimize

the probability that participants perform di↵erently from their daily lives. In addi-

tion, the informed experiment purpose makes participants get involved in the video

contents and be attentive to the quality changes. Moreover, we placed a wireless

network testbed in the room and kept it running through the entire experiment. We

told participants that all videos were streaming from this local server and the server

provided three di↵erent wireless networks. Videos streaming under these networks

have di↵erent qualities and participants are able to connect to any of these three
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networks and switch between di↵erent networks during the experiment. However, the

real story is that we streamed all videos under di↵erent wireless networks in advance

and stored them locally. When participants select di↵erent networks, the player is

picking and playing the corresponding video. This setup keeps video qualities under

the same network settings consistent over di↵erent participants and using the local

server as a part of deception increases the credibility of our story. In addition, partic-

ipants can also interact with the video player in the experiment that help them have

a better video viewing experience. The allowable behaviors are normal actions people

can take with the player in their daily streaming video viewing. We will elaborate

the types of behaviors later.

4.2.2 Apparatus

We created a customized HTML-5 video player interface using the video.js frame-

work (Video.js: The Player Framework , 2018). The interface, shown in Figure 4.1,

has a display screen at the center and two buttons at the top corners. Clicking the

button on top-left corner refreshes the player. Top-right corner button shows a list of

available wireless networks and participants are able to choose a network they want

to connect during the experiment. Additionally, the display screen has integrated

functions including pause videos, move video time cursor, change video resolution,

fullscreen the player and adjust video volume. The experiment workflow is shown

in figure 4.2. At the start of experiment, the embedded video player load the corre-

sponding videos from local storage according to initial network condition and video

setting information. During the video playing, the experiment interface is monitoring
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the existence of any of the nine target viewing behaviors by nine di↵erent event han-

dlers. Once participants take a specific action, the matching event handler is triggered

and the action type, execution time, video setting and network condition information

before and after the action is collected by the interface and save to the local storage.

At the same time, video and network configurations are updated accordingly and the

video player continue playing the video with the updated settings.

The experimental device was a common o↵-the-shelf PC desktop computer and

the interface was running on the Google Chrome v61 web browser. The experimental

environments, including viewing distances and luminosity levels was set following the

ITU standard requirements (P.910, 2008).

Figure 4.1. User video viewing behavior experiment interface. A display screen is at
the center and two buttons are at the top corners. Player refresh button is on the
top-left corner and wireless network button is on the top-right. Once the wireless
network button is clicked, a list of available networks is shown.
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Figure 4.2. User video viewing behavior experiment workflow.
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4.2.3 Procedure

Every participant watched all four categories of videos and the video order was shu✏ed

using Latin Square design. Before the experiment, participants read and signed the

informed consent form. Next, participants went through a training session with a 30-

second long video and adapted the interface functionality and experimental settings.

The experiment videos were playing sequentially and there was a 5-second countdown

video between each two consecutive clips to let the participant get prepared for the

next one. The default starting resolution for every video is 720p and the initial

connected network has 10% packet loss rate. After the experiment, participants

completed an exist survey with questions to self-evaluate their performance and we

used it to check the data validity before analysis. The exit survey is listed in Appendix

B

4.2.4 User Video Viewing Behaviors

We collected nine types of user video viewing behaviors in the experiment and we

defined these behaviors as:

• Click Wireless Network Button (Wireless button clicked): This button is

on the top-right corner of the experiment interface. It emulates the icon and

functionality of real wireless network sign in operation systems. After clicking

this button, a list of three available wireless networks is shown with names

’Network1’, ’Network2’ and ’Network3’. Additionally, the current connected

network will have a label ’connected’ after its’ name. Users need to click this

button first before switching to another wireless network.
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• Choose a Wireless Network from the List (Change network): Users choose

one wireless network from the list and click its name. If the user clicked the

current connected network, the system will reconnect it. If the user clicked

another network, the system will switch to it and continue streaming the video

over this newly connected network.

• Move Video Time Cursor (Seeking): Users can move the time cursor forward

or backward while watching the videos or click the position they want to move

to directly on the video progress bar. The video will continue playing after the

cursor move. The video progress bar is on the bottom of the video player.

• Pause Video (Pause): While the video is playing, users can click the button

on the bottom-left corner of the video player to pause the video.

• Refresh Video Player (Refresh player): This button is on the top-left corner

of the experiment interface and it emulates the webpage refresh when people

are viewing online streaming videos. After clicking this button, the system will

refresh the video player, reconnect the current connected network and continue

playing the video.

• Change Video Resolution (Change resolution): This button is on the bottom-

right corner of the video player. After clicking this button, a list of three avail-

able video resolutions is shown with names ’720p’, ’480p’ and ’360p’. Users can

pick the video resolution by clicking the corresponding label and the player will

continue playing the video with the chosen resolution.
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• Make Video Player Full Screen (Fullscreen): This button is on the bottom-

right corner of the video player. When the player is in normal screen mode,

users can click this button to enlarge the player to full screen.

• Make Video Player Normal Screen (Normalscreen): This is the same but-

ton as making the player fullscreen. When the player is in full screen mode,

users can click the button to make it back to normal screen.

• Change Video Volume (Volumechange): This button is on the bottom-corner

of the video player. Users can move the volume bar left or right to decrease or

increase video volume.

When participants perform any of these behaviors during the experiment, our system

will collect the following information data and save it as a .csv file:

• System Time: Unix epoch time in seconds. It shows the system time when

the behavior is performed.

• Video Time: The video elapsed time in seconds. It shows how many seconds

the video has played when the behavior is performed.

• Action: The behavior type name.

• Previous Resolution: The video resolution before the behavior.

• Current Resolution: The video resolution after the behavior.

• Previous Network: The connected network before the behavior.
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• Current Network: The connected network after the behavior.

• Content: Video Content Type (i.e., Movie, Education, News or Sports).

• Volume Percent: Volume Percent (of the maximum volume) after the behav-

ior (from 0 to 100).

• Participant ID: Unique ID for the participant.

The system also collects mouse positions along with system time every second.

4.3 Results

4.3.1 General Behavior Information

We have observed 1496 behaviors in total with 44 experiment participants. Figure

4.8 shows the number of behaviors each participant has performed during the ex-

periment and it ranges from 87 to 10 (M = 34, SD = 18.3). Additionally, figure

4.4 shows the number of observed behaviors for each type. Switching connected

networks (i.e., Wireless button clicked and Changing network) is the action most fre-

quently chosen by participants in the experiment and other actions which participants

believe can change their video viewing experience (i.e., Pause, Change resolution and

Refresh player) are also performed by participant with moderate frequencies. This

information tells us that participants decided to take actions when they had opinions

on the video viewing experience and tried to change the current condition.

When we look at the number of behaviors in each video content category, more

than half of the behaviors are in sports videos (shown in figure 4.5). Sports videos have
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Figure 4.3. Total number of behavior observed for each participant.

higher video bitrate variations and are more sensitive to network packet losses. We

notice that sports videos have more video impairments and lower ratio quality ratings.

Statistically, the number of behaviors with each video category is positively correlated

with the number of impairments (r(2) = 0.99, p = .003) and negatively correlated with

the average video quality ratings (r(2) = �0.97, p = .03). Interestingly, the behavior

numbers in di↵erent video categories do not show much correlation with the average

impairment lengths (r(2) = �0.13, p = 0.87). We will have further discussion on this

in the following sections.
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Figure 4.4. Total number of behavior observed for each type.

4.3.2 Video Quality and Impairments in Pre-Behavior Windows

Studies show that human short-term memory shows that what people saw before also

have non-trivial influence on their current behaviors (Atkinson & Shi↵rin, 1968).

Furthermore, Pinson et al. (Pinson & Wolf, 2003) found that the memory length

is about nine seconds when people are watching videos. Therefore, we define a pre-

behavior window and set the window length as nine seconds. We include all video
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Figure 4.5. Total number of behavior observed for each video content category.

quality rating information and impairment occurrences in the pre-behavior window

of each user behavior in the following analysis and discussion.

4.3.3 User Behaviors and Video Subjective Quality Ratings

We use the video subjective quality rating data we collected in the first project as

the quality of video viewing experience metric and study how di↵erent video viewing

behaviors relate to the quality ratings.

Participants Take Actions Because Video Quality is Low and Choose Ac-

tions They Believe Can Improve the Video Quality.

We compared the video quality ratings in all pre-behavior windows with the ratings

in the rest of videos. Figure 4.6 shows the rating distributions. We notice that the
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ratings in pre-behaviors windows are much lower (M = 1.7, SD = 1.1) than the

ratings in the rest of videos (M = 2.7, SD = 0.9) and the rating di↵erence is statisti-

cally significant, U = 6.8e6, p < .001 (Mann–Whitney U test). This observation tells

us that people took action during the video because they felt the quality is bad and

influence their viewing experience.

Figure 4.6. Video quality ratings in pre-behavior windows and in the rest of videos.
The violin plot shows that video quality ratings within pre-behavior windows are
much lower. Two bars in the violin plots represent the maximum and minimum
values. The upper edge of the black box represents the third quartile and the lower
edge represents the first quartile. The circle in the box depicts the median.

Meanwhile, we recognize that behaviors can be clustered into two groups accord-

ing to their pre-behavior video quality ratings. Figure 4.7 depicts that pre-behavior

video quality ratings lie around low values (M = 1.6, SD = 1.0) for behaviors in-

cluding clicking wireless network button, changing network, changing video resolu-
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tion, refreshing video player and pausing videos and the behaviors including seek-

ing, changing volume, making video player full screen or normal screen have relative

high pre-behavior video quality ratings (M = 2.2, SD = 1.1). The rating di↵er-

ence between two groups of behaviors is statistically significant, U = 1.1e7, p < .001

(Mann–Whitney U test). It is interesting that the behaviors with high pre-behavior

ratings do not have much help on altering video quality and, on the other hand, be-

haviors with low pre-behavior ratings are able to adjust video qualities and improve

video viewing experience e↵ectively.

4.3.4 User Network Switching Behaviors

Di↵erent networks have di↵erent packet loss rates. Switching networks is an e↵ective

way to change the current network condition and improve video viewing experience.

Users have to take two consecutive actions to switch to another network. In detail,

users need to click wireless network button first to show a list of available networks

and then choose a network from the list to complete the network switching. It means

that changing network behavior is always after a wireless network button click.

Users Usually Choose to Change Networks First When They Have Bad

Video Viewing Experience.

We investigated the first behavior participants performed in each video clip. Figure

4.8 shows that participants usually chose to click wireless button first when they

decided to take actions and its occurrences overwhelm other types of behaviors. Since

wireless button click is the first step to change networks, we can see that changing

wireless networks are participants’ first choice when they are not satisfied with the
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Figure 4.7. Video quality ratings within the pre-behavior window of each behavior
type. The violin plot shows that video quality ratings before wireless button click,
changing network, changing resolution, refreshing player and pausing video are much
lower compared to other types of behaviors. Two bars in the violin plots represent
the maximum and minimum values. The upper edge of the black box represents the
third quartile and the lower edge represents the first quartile. The circle in the box
depicts the median.

viewing experience and they believe that changing wireless networks is able to improve

the video quality e↵ectively.
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Figure 4.8. The counts of users’ first behavior choice in each video clip. The bar plot
shows that users were likely to choose to change network first when the video viewing
experience was not acceptable.

Video Quality Improvement Can Change Users’ Decision on Switching

Networks.

We notice that not every wireless button click is followed by the network change. It

means that sometimes participants initiated the network changing process by clicking

the wireless button, but decided to stop it without choosing another network. Partici-

pants changed their mind and did not want to change the network during the process.
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We discover that impairment length after wireless button click is much shorter when it

is not followed by network change (shown in Table 4.1). Meanwhile, the average time

participants spent between wireless button click and network change is 2.0 seconds

and this time di↵erence lies between the average impairment length after wireless

button click with and without network change. In other words,participants gave up

changing networks because the impairment ended and video quality has improved.

Table 4.1. The Relation between Video Impairment Length and Network Change
Behavior Sequences

Impairment Length after
Wireless Button Click

with Network Change without Network Change

Mean 2.9 s 1.4 s
Standard 3.8 s 1.3 s

4.3.5 User Video Resolution Changing Behaviors

High video resolutions include more video details and bring people better viewing

experiences. However, videos with higher resolutions need more network bandwidth

resources in streaming and are more sensitive to network quality variations. Lower-

ing video resolutions sacrifices video details and definitions, but it also reduces the

existence of video freezes and block-artifacts and provides smoother video to users.

The Disturbance of Impairments on Video Viewing Experience is More

Serious Than That of Low Resolutions.

We have observed 89 video resolution change behaviors. Figure 4.9 shows that 78

of them are lowering current video resolutions while only 11 are switching from a

low resolution to a higher one. Meanwhile, 54 lowering video resolution behaviors
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were occurring within a video impairment and 3 increasing video resolution behaviors

were observed in an impairment. In addition, video subjective ratings, shown in

figure 4.10, are lower (M = 1.7, SD = 1.0) before reducing resolution actions than

the ratings (M = 2.3, SD = 0.6) before increasing resolution behaviors and the

di↵erence is statistically significant, U = 1.9e4, p < .001 (Mann–Whitney U test).

Lowering resolution within impairments can prevent the continuity of impairments

and improve the viewing experience. At the same time, increasing resolution is also

an e↵ective method to improve the viewing experience when the network condition is

capable to deliver higher resolution videos. Only a few number of increasing resolution

behaviors were observed in the experiment depicts that the video impairments bring

more dissatisfaction than low resolutions on viewing experience.

4.3.6 User Behaviors and Video Impairments

Impairments caused by network packet losses in streaming videos are explicit factors

that motivate users to take actions. We evaluated the video impairment occurrences

in pre-behavior windows and discussed their relations with video viewing behaviors.

More Impairments Participants Saw in Pre-behavior Windows, More Quickly

They Took Actions during the Current Impairment.

We picked all behaviors that occurred within video impairments and calculated the

time di↵erence between behavior occurrence time and impairment’s start time. Shorter

the time di↵erence is, participants spent less time on making the decision to take

actions. Figure 4.11 demonstrates the number of impairments users saw in the

pre-behavior window against the time di↵erence between behavior occurrence and
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Figure 4.9. The number of raising and lowering video resolution behaviors and the
number of these behaviors occurring within an impairment. ’Res Down Total’ and
’Res Up Total’ mean the total number of moving video resolution down and up
behaviors respectively. ’Res Down Imp’ and ’Res Up Imp’ mean the number of
resolution down and up behaviors in an impairment.

impairment start. The time di↵erence decreases when participants have seen more

impairments before the current one. It means that previous video qualities and view-

ing experience e↵ect users’ current decision and behaviors.

Modeling User Behavior Decision Time

To derive quantitative evaluation on user behavior decision time, we applied an estab-

lished cognitive model named ACT-R (Adaptive Control of Thought-Rational (Anderson,

Bothell, Lebiere, & Matessa, 1998)). The ACT-R model describes how human mem-

ory activation a↵ects human’s information retrieval and decision making.
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Figure 4.10. Video quality ratings before raising and lowering video resolution behav-
iors. The violin plot shows that video quality ratings before resolution down behaviors
are lower than the ratings before resolution up behaviors. Two bars in the violin plots
represent the maximum and minimum values. The upper edge of the black box rep-
resents the third quartile and the lower edge represents the first quartile. The circle
in the box depicts the median.

In the ACT-R model, stronger activation leads to more quick decision making

process. Activation is related to the historical use of this memory chunk and other

contextual memory associations (Anderson, 2014; Anderson & Lebiere, 2014). There-

fore, the user behavior activation A is

A = B +
nX

i

WiSi (4.1)

where A is the activation level for a user behavior, B is the base-level activation, and

Si is the strength of associated activation from element i to the user behavior and Wi
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Figure 4.11. The length of time participants spend on taking actions after the start
of impairment. The figure shows the time di↵erence between behavior occurrence
and the start of impairments when the behavior is within an impairment. More
impairments participants saw in the pre-behavior window, shorter the time they spent
on deciding to take actions after the current impairment starts. The dot represents
average time di↵erence and the stick shows the standard deviation.

is the weight for association Si. The second term withWi and Si is the activation from

contextual associations and we interpret it as the video impairments users have seen

in the pre-behavior window. The base-level activation B is related to the previous

behavior users have performed. B can be calculated throught equation (Anderson &

Schooler, 1991)

B = ln(
mX

j

t�d
j ) (4.2)

where tj is the time elapsed since the ith occurrence of the user behavior, m is the

total number of previous user behaviors, and d is the memory decay rate. If we
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assume the occurrences of previous behaviors are evenly distributed, equation (4.2)

is approximated to a simpler form:

B ⇡ ln
mL�d

1� d
(4.3)

where L is the time since the first user behavior.

The memory retrieval time (i.e., user behavior decision making time) is exponen-

tially related to the user behavior activation (Anderson et al., 1998; Anderson, Reder,

& Lebiere, 1996)

T ime = Fe�M (4.4)

where F is a scale constant, and M = A�P . A is the activation level and P denotes

the mismatch penalty referring to the similarity of user behaviors to conditions.

To model user behavior occurrence time, we assume that the variability of time

users spent to decide taking actions comes from the associated memories of previous

behaviors and video impairments. We apply equation (4.4) to compute the behavior

occurrence time and we can calculate the expected value of the time by:

E[T ime] = E[Fe�M ] = Fe�E[A�P ] (4.5)

where the mismatch penalty P can be considered as a random variable with zero

mean. After substituting (Equation (4.1), (4.2), and (4.3) to Equation (4.5)), we

obtain

E[T ime] ⇡ F
1� d

E[mL�d]
e�E[

Pn
i WiSi] (4.6)
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We consider the number of behaviors the user took before, m, and the time since the

first user behavior, L, as two independent random variables with di↵erent constant

expected values. We apply Taylor expansion (Benaroya, Han, & Nagurka, 2005)

to approximate the function of random variable, E[L�d] ⇡ (E[L])�d.
Pn

i WiSi is

the sum of activation from each video impairment the user have seen in the pre-

behavior window and we treat its expected value be proportional to the number of

video impairments, n. Therefore, we acquire an equation for the average time users

spent on deciding to take actions:

E[T ime] ⇡ c0
1� d

c�d
1

e�c2n (4.7)

where d is the decaying rate, n is the number of video impairments in the pre-behavior

window, and c0, c1, c2 are three scale parameters. Figure 4.12 shows the fitting curve

of our experiment data to the derived equation (4.7) and the fitted parameters are

c0 = 2.67, c1 = 4.94, and c2 = 0.24. The memory decaying rate d is 0.29 and we

obtained the root mean square error (RMSE) of 0.53 with the user behavior decision

time model.

4.4 User Video Watching Behavior Prediction Models

Users’ streaming video watching behavior is an important indicator to show their

feelings and altitudes towards their watching experience. Meanwhile, some types

of behaviors including changing networks, pausing videos and changing video res-

olutions modify the network bandwidth consumption and could a↵ect the quality
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Figure 4.12. Average user behavior decision time per behavior type against number
of video impairments in the pre-behavior window. The fitting curve based on the
derived equation is shown as the dashed line in the figure.

of experience for other users under the same network. Therefore, users’ streaming

video watching behavior prediction is valuable for local wireless network bandwidth

management. Network controllers can manipulate network bandwidth allocation to

prevent or motivate user behaviors for particular purposes. In this section, we com-

pare the performances between di↵erent behavior prediction models and discuss the

importance for di↵erent user behavior features on achieving high model performance.

4.4.1 Multiclass User Behavior Classification

We observed multiple types of user video watching behaviors in our experiments and

interpret the behavior prediction as a multiclass classification problem. We chose

three classic machine learning algorithms, multinomial logistic regression, random
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forests and gradient boosted decision trees (GBDT) for our model frameworks.

Multinomial Logistic Regression

Multinomial logistical regression is a classification algorithm that applies logistic re-

gression to predict the probabilities of the di↵erent outcomes of a categorical variable

based on a set of feature variables (William, 2012). The multinomial logistic regres-

sion can be expressed analytically by

⇥ = ↵ +X · � (4.8)

P (Y = yi|X) =
e✓i

PK
j=1 e

✓j
(4.9)

where X is the feature vector and P (Y = yi|X) shows the probability that the

behavior belongs to type i given the feature X. ↵ and � are normal distributed

random matrix and random vector respectively. We define probability P as P =

Softmax(↵ + X · �) and represent observation Y using a categorical distribution,

Y ⇠ Categorical(P ).

Random Forests

Random forests classifier is an ensemble learning method that constructs a number of

decision trees at training process and labels the mode of classes of the individual trees

(Tin Kam Ho, 1995). Specifically, we created a forest with separate trees and trained

the forest with our training dataset. The number of trees in the forest and maximum

tree depth parameters are determined according to the model performance in the
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training and validation. We then input unlabeled behavior sample to the trained

forest and set its type by the majority of each individual tree of the forest.

Gradient Boosted Decision Trees (GBDT)

Gradient boosted is also an ensemble learning method that improves the accuracy of

a predictive function by minimizing the error term using a serial of weak prediction

models (Friedman, 2001). We applied decision trees as the weak prediction models.

Each tree in the series is created and fitted the ”pseudo residuals” generated by the

prediction from previous trees to reduce the error. This leads to the following model

F (X) = �0 +
nX

i=1

�iTi(X) (4.10)

where �0 is the constant term of the model, T1, . . . , Tn are the trees fitted to the

pseudo-residuals and, �i are corresponding coe�cients to the trees computed by gra-

dient optimization methods.

4.4.2 User Behavior Feature Extraction

We extracted 23 features for each user behavior sample and categorized them into

four groups based on feature properties and relations to other video information.

These features capture user behavior characteristics from di↵erent aspects and have

comprehensive description of each individual user behavior sample.

Video impairment related features

• Time di↵erence from the impairment starts (impLenBeforeAction): The

time di↵erence between the start of video impairment and the occurrence of this
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user behavior. It is a numerical variable. If the user behavior occurs outside

any video impairment, the value is -1.

• Time di↵erence from the last impairment ends (timeDi↵PrevImp): The

time di↵erence between the end of last video impairment and the occurrence of

this user behavior. It is a numerical variable. If the user behavior occurs inside

an video impairment, the value is -1.

• Number of previous impairments (trueNumPrevImp): The number of

video impairments observed in the pre-behavior window of the target behav-

ior. It is a numerical variable.

• Average length of previous impairments (meanLenPrevImp): The average

length of video impairments observed in the pre-behavior window of the target

behavior. It is a numerical variable.

• Standard deviation length of previous impairments (stdLenPrevImp):

The standard deviation of length of video impairments observed in the pre-

behavior window of the target behavior. It is a numerical variable.

• Type of video impairment when the behavior occurs (actionImp): The

video impairment is labeled 0 for freeze and 1 for block-artifacts. If the behavior

occurs outside any video impairment, the label is 2.

• Is the behavior occurring in an impairment (isInImp): The behavior is

labeled 1 if it occurs inside a video impairment, otherwise 0.
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• Number of previous freeze impairments (trueNumPrevFreezeImp): The

number of freeze impairments observed in the pre-behavior window of the target

behavior. It is a numerical variable.

• Average length of previous freeze impairments (meanLenPrevFreezeImp):

The average length of freeze impairments observed in the pre-behavior window

of the target behavior. It is a numerical variable.

• Standard deviation length of previous freeze impairments (stdLenPre-

vFreezeImp): The standard deviation of length of freeze impairments observed

in the pre-behavior window of the target behavior. It is a numerical variable.

• Number of previous block-artifacts impairments (trueNumPrevBlockImp):

The number of block-artifacts impairments observed in the pre-behavior window

of the target behavior. It is a numerical variable.

• Average length of previous block-artifacts impairments (meanLenPre-

vBlockImp): The average length of block-artifacts impairments observed in the

pre-behavior window of the target behavior. It is a numerical variable.

• Standard deviation length of previous block-artifacts impairments

(stdLenPrevBlockImp): The standard deviation of length of block-artifacts im-

pairments observed in the pre-behavior window of the target behavior. It is a

numerical variable.
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User behavior related features

• Order of behavior occurring in the impairment (action order inImp):

The order of the target behavior in all behaviors observed within the same video

impairment. It is an ordinal variable. If the target behavior occurs outside any

video impairment, the order value is -1.

• Order of behavior occurring in the video clip (action order inVideo): The

order of the target behavior in all behaviors observed in the same video clip. It

is an ordinal variable.

• Number of previous behaviors (numPrevBehaviors): The number of behav-

iors observed in the pre-behavior window of the target behavior for the same

user. It is a numerical variable.

• Type of the previous behavior (lastPrevBehavior): The type of behavior

before this targeted behavior for the same user. The behavior type is a cat-

egorical variable and labeled with di↵erent positive integers. If the targeted

behavior is the first one, its previous behavior is labeled as -1.

• Time di↵erence from the previous behavior (timeDi↵ToPrevBehavior):

The time di↵erence between the previous behavior and the target behavior. It

is a numerical variable.

Video subjective quality related features

• Average of video subjective ratings: The average of video ratings in the

pre-behavior window of the target behavior. It is a numerical variable.
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• Standard deviation of video subjective ratings: The standard deviation

of video ratings in the pre-behavior window of the target behavior. It is a

numerical variable.

Other features

• Type of video content (content): The type of video content. The label is 0,

1, 2, and 3 for news, education, movie and sports videos respectively.

• Video resolution level (action res): The level of video resolution when the

target behavior occurs. It has three values which are 360, 480 and 720.

• Network packet loss rate (action net): The network packet loss rate when

the target behavior occurs. It has three values which are 2.5, 5 and 10.

4.4.3 Balancing User Behavior Samples

Our observation shows that the number of switching connected networks related be-

haviors (i.e., Wireless button clicked and Changing network) surpasses the half of

total user behaviors in the experiment. The imbalanced dataset across di↵erent label

classes results in serious degradation of model performance and misleads model eval-

uation metric interpretations (Japkowicz & Stephen, 2002; Batista, Prati, & Monard,

2004). In order to handle the imbalanced dataset issue, we simply applied random

oversampling approach on behavior types with small amount of samples. In this

method, we chose the behavior type class with the largest sample size and picked

its total sample number as the target amount. For each of the rest behavior type

class, we randomly selected and replicated the samples and added them to the orig-
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inal dataset until the total sample size of this type class reaches the target amount.

The total number of samples in every behavior type class was equal after the dataset

balancing.

4.4.4 ”No Action” Behaviors During Video Watching

Users behaviors during video watching show their reactions towards video impair-

ments and quality changes. Users were not satisfied with the video quality and

wanted to improve the watching experience through di↵erent actions. Meanwhile,

if users did not take any actions, it means they felt that the video watching experi-

ence is acceptable and there is no need to take any movement to change the current

status. Therefore, we can categorize ”No action” as a new type of behavior reflecting

users’ attitude to the current video quality and watching experience.

We created ”No action” behavior samples and added them to the user behavior

dataset as one additional behavior type. We made the number of ”No action” behavior

samples the same as the number of other behaviors in order to keep the balance

of dataset. We selected the same features as other user behaviors and formed the

corresponding feature vector for every ”No action” behavior sample.

4.4.5 User Behavior Feature Selection and Model Performance

We applied five-fold cross validation method and compared averaged accuracy, preci-

sion and recall values of di↵erent behavior prediction models. K-fold cross validation

is widely used to evaluate machine learning models with limited data samples. It

splits data into k groups/folds approximately with equal size. One fold is used as

validation set and the model is trained on the rest k-1 folds. We chose five-fold cross
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validation and got the average performance of the five runs for each model.

Precision and recall are key metrics to evaluate the performance of binary classifi-

cation models. In our multiclass behavior classification, we used averaging approach

to get the model’s precision and recall. In detail, we first got the precision and recall

for each class label as a binary classification, and calculated the average value across

all classes to acquire the final precision and recall values for the model.

We ran recursive feature elimination to rank features and applied the cross valida-

tion to select the best number of features according to average classification accuracy

for every model. Recursive feature elimination (RFE) is a feature selection algo-

rithm (Kuhn, Johnson, et al., 2013) and it first includes entire set of features and

selects features by recursively considering smaller subset of features and eliminates

the features with lower important ranks. At each step, the model is trained using

dataset with selected features and the average classification accuracy of cross valida-

tion is recorded. We chose the highest average accuracy to present the performance

for each model. Table 4.2 shows the accuracy, precision, recall, and the corresponding

number of selected features for every model.

Table 4.2. The Accuracy, Precision, Recall and Number of Selected Features for
Di↵erent User Video Behavior Prediction Models

Model # of Features Accuracy (%) Precision (%) Recall (%)

Baseline - 10 - -
MLR 21 44.1 42.9 44.1
RF 16 93.1 92.7 92.7

GBDT 21 94.7 92.8 94.7

The baseline model does not use any behavior feature information and simply as-
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sign the behavior type to each unlabeled sample randomly with equal probability. We

have ten candidate behavior types and the baseline model accuracy is 10%. Multino-

mial logistic regression (MLR) has the lowest performance among all chosen models

except the baseline model. It has less than 45% prediction accuracy. Two tree based

approaches, random forests (RF) and gradient boosted decision trees (GBDT), gain

similar prediction accuracy and have a huge jump from MLR to go over 93%. GBDT

model achieves the best accuracy of 94.7%.

4.4.6 User Behavior Feature Importance

Gradient boosted decision trees (GBDT) model reaches the highest prediction accu-

racy with 21 features. We analyzed the importance of features in this model and

discussed the subset of features that are crucial to identify di↵erent behavior types.

Impurity-based feature importance and permutation importance are two applied met-

rics to rank the feature importance for tree-based models (Breiman, 2001). The two

importance metrics are computed on training and test set statistics respectively and

provide comprehensive evaluations on the model and dataset. Figure 4.13 shows the

impurity-based feature importance (MDI) and feature permutation importance rank-

ing of our GBDT based user behavior classification model and figure 4.14 illustrates

the user behavior prediction accuracy against the number of selected features. We

can see that the cross validation score increases quickly and goes above 0.9 when the

first five most important features are included and scores stay with small increment

if more features are added. It tells us that the first five features on the importance

ranking list are decisive for the GBDT model to give highly accurate user behavior
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prediction.

Figure 4.13. Impurity-based feature importance (MDI) (Left) and feature permuta-
tion importance (Right) of the gradient boosted decision trees (GBDT) model for user
video watching behavior prediction. Features above the red dashed line are decisive
for good behavior prediction.

Figure 4.13 depicts that the two feature importance metrics recommend the same

set of features with top-five importance. These features include

• Order of behavior occurring in the video clip (action order inVideo): The

order of the target behavior in all behaviors observed in the same video clip. We

collected the behaviors each participant performed in every video clip separately

and labeled them according to their chronological orders. This feature indicates

the participants’ preferences in di↵erent types of behaviors.

• Type of last behavior (lastPrevBehavior): The type of behavior before this

targeted behavior. This feature captures correlations between consecutive be-

haviors.
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Figure 4.14. The cross validation scores of GBDT model with di↵erent number of
feature selected.

• Standard deviation of video subjective ratings: The standard deviation

of video ratings in the pre-behavior window of the target behavior. This feature

tells us the level of video quality variations before participants’ behaviors.

• Average of video subjective ratings: The average of video ratings in the

pre-behavior window of the target behavior. This feature shows the general

video quality levels before participants taking actions.

• Time di↵erence from the impairment starts (impLenBeforeAction): The

time di↵erence between the start of video impairment and the occurrence of

the target behavior. This feature demonstrates how long participants waited to

take actions after they saw a video impairments.



- 73 -

4.4.7 Human Cognition behind Users’ Choice of Behaviors

The five most important features characterize how users make decisions to take di↵er-

ent actions during streaming video watching. In this section, we analyze the human

cognition behind the process of user decision and behavior.

Soar is a widely used cognitive architecture to approximate human cognitive pro-

cesses and explain human behaviors (Rosenbloom, Laird, Newell, & McCarl, 1991;

Laird, 2012). Figure 4.15 illustrates the Soar-based user video watching behavior

model. The model is hierarchical and built by levels. The first level is the environ-

ment and external incentives. In our model, it includes, for instance, video impair-

ment occurrences, di↵erent video resolutions and smooth playback. The environment

information is received by users’ visual and auditory perceptions and influences their

short-term working memory. Short-term working memory is the core level and have

decisive influence on human decision and behavior. Our feature importance analysis

shows that users pay more attention on previous video quality and its variations, what

type of behaviors they have performed and what feedback they have received after

that. Three parts of long-term memory are lying above the short-term memory. The

semantic memory stores general facts. For instance, the available functions of the

interface (i.e., video player), the concepts of network packet loss and video resolution

are all belongs to semantic memory. The second part is the episodic memory and it

relates to the former personal experience to the specific incident. In streaming video

watching, it includes users previous experience on their behaviors when they were

watching online video at home or in other occasions. The procedural memory forms
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a person’s character and includes knowledge about what to do and when to do it. In

our experiment, taking some actions or doing nothing and just watching the video

are parts of procedural memory.

The short-term working memory and long-term memories are associated. Users’

previous video watching experience in other occasions, understandings of some net-

work and video related facts, and personal characteristics can a↵ect and modify the

short-term working memory. Meanwhile, the short-term memory can form and up-

date their long-term memories. Along with the goals of having better video watching

experience, users make decisions and take actions based on a mixture of external

environment incentives, contents in working memory and three parts of long-term

memory.

Figure 4.15. Human cognition behind users’ choices of video watching behavior.
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4.5 Summary

We first organized a user experiment to observe participants’ video viewing behaviors

under di↵erent packet loss wireless networks. We analyzed the video quality ratings

before user behaviors and compared their relations with di↵erent types of behaviors

and found that low video qualities caused user behaviors and users were trying to

take action, including change networks, change video resolutions, refresh the player

and pause the video, to change the current video qualities. Additionally, users had

preferences on choosing particular types of actions. Our observation shows that they

usually choose to change networks first when they have bad video viewing experience

and video quality improvement can also change users’ decisions on changing networks.

Moreover, we noticed that more impairments users have seen before, more quickly they

took actions during the current one. In other words, the bad video viewing experience

memories make users spend less time to take actions if the bad experience continu-

ous. We established an ACT-R based mathematical model to quantify how human

memories a↵ect viewers’ decisions on taking actions. Our findings provide evidence

on predict users viewing behaviors according to video qualities and ideas to opti-

mize network management and deliver acceptable video viewing experiences to users

under resource-constrained network environments. Based on the experiment data,

we created di↵erent users’ video viewing behavior prediction models and compared

their performances. Our model achieves 94.7% prediction accuracy. Furthermore,

we analyzed the importance of di↵erent features for precise behavior prediction and

built a human cognition model to explain the process of human decision making and
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behaviors. User behaviors indicate their opinions towards video watching experience

and their decisions to change the current condition. In the same time, behaviors can

change the network resource demand for single users and a↵ect the quality of services

for other users in the network. User behavior prediction provides clues of users’ feel-

ings about perceived service qualities and experiences as well as potential influences

on the entire network resource consumption. Our models bring network controllers

tools to design, analyze and practice network resource management protocols via

human engineering.
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CHAPTER 5

DISCUSSIONS

5.1 User Subjective Rating on Streaming Videos under Packet Loss

Wireless Networks

People are increasingly preferable to view streaming videos with their mobile devices

on wireless networks. High packet losses in wireless networks are major issues to

introduce video impairments. In this study, we analyzed the influences of di↵erent

individual and sequences of impairments on subjective video viewing experience over

networks with controlled packet loss rates that emulate streaming video viewing on

mobile devices over heavily utilized wireless networks. Next, we will highlight our

most important results.

Participants preferred high-resolution videos with occasional impairments over

smooth low-resolution videos. The average ratings for 720p videos with impairment

ratio less than 0.2 were higher than all 360p videos without any impairments, and

introducing some video impairments does not always lower video viewing experi-

ence. This observation disagrees with the current HTTP adaptive streaming protocol

that prioritizes video smoothness over resolution. It shows that using this method

for online streaming under networks with limited bandwidth is not always the best

choice for better subjective viewing experience. Under networks with known available
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bandwidth, choosing videos with good trade-o↵ between resolution and impairment

occurrence can maximize network resource utilization and provide users with better

viewing experience. This idea is beneficial when users are streaming videos with their

mobile devices under wireless networks where bandwidth is precious.

Meanwhile, participants felt block-artifacts impairment after a video freeze is ac-

ceptable and video freezes happening after block-artifacts impairments keep worsen-

ing the viewing experience. Most of subsequent freezes were observed in high-bitrate

videos on low-bandwidth networks, and high-bitrate videos on low-bandwidth net-

works had more and longer freeze and block-artifacts impairments. Also, partici-

pants agreed that longer video impairments have larger influences on video viewing

experience. These findings indicate that providing network bandwidth larger than

streaming video’s bitrate is an e↵ective approach to reduce video impairments and

improve video viewing experience.

However, giving adequate network bandwidth to every individual mobile device

user is impractical in heavily utilized wireless networks. We notice that participants

had di↵erent evaluations on short impairments. Some short impairments have a very

small amount of rating drops, which shows that participants ignored these impair-

ments or believed that they did not worsen the video viewing experience. These

impairments either have a relatively long or a very short impairment-free period in

front of themselves. Specifically, the impairments with high minimum ratings and

small rating drops have an average 9.5-second long impairment-free period, and par-

ticipants did not drop the rating too much and it remained at a high value at the end

of impairments. Meanwhile, the impairments with low minimum rating and small rat-
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ing drops have an average 0.2-second long impairment-free period, and participants

felt that these short impairments did not worsen the viewing experience even further.

In addition, participants felt that video viewing experience improves during 81% of

block-artifacts impairments which are occurring after a freeze and it tells us that

block-artifacts after a freeze is acceptable. These observations provide evidence that

changing impairment’s occurring order and time can improve viewing experience even

the total impairment number is unchanged. It is encouraging and brings alternatives

to optimize network management in resource-constrained situations.

5.2 User Viewing Behaviors on Videos Streaming under Packet Loss

Networks

We studied how users behave when they are watching streaming videos under con-

trolled packet loss networks that emulate conditions of extensively utilized wireless

networks. We have several significant findings and results.

Most importantly, our study reveals how users’ video viewing behaviors are re-

lated to video quality and impairment occurrences. Based on our findings, we novelly

proposed several user video viewing behavior prediction models and the gradient

boosted decision trees (GBDT) model reaches 94.7% prediction accuracy. Addition-

ally, we found that the GBDT model achieves more than 90% accuracy with the five

most important features and we discussed the how human cognition works behind

users’ choices of di↵erent types of behaviors.

Also, participants take actions because video quality is low and choose actions

they believe can improve video quality and viewing experience. Video packet losses
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during data transmission results in impairments and degrades video quality. Low

video qualities destroy the smoothness and clearness of video delivery to viewers and

hurts their viewing experience. Our study proves that low video quality is responsible

for the occurrences of user behaviors. The video quality ratings before user behaviors

(M = 1.7, SD = 1.1) are much lower than the ratings during the rest of videos

(M = 2.7, SD = 0.9). When viewers received video contents with bad qualities,

they expressed more willingness to change the current condition and chose behaviors

including switching to another network, changing video resolution, refreshing video

player and pausing the video which can provide direct influence on network condition

and video quality. Therefore, bad video qualities motivate participants to take actions

and the types of behavior they chose are the ones can change the video quality and

improve viewing experience.

In addition, participants’ decisions on whether or when to take an action is mainly

based on what they have seen recently. We found that more impairments participants

saw during the pre-behavior window, more quickly they took actions during the cur-

rent impairment. Human’s short-term memory plays an important role in the decision

making process. Bad experience in the past stays in participants’ memories and cause

them to make quick decision to change the current conditions when the video quality

and viewing experience becomes unacceptable again. We also built ACT-R based

cognitive model to quantify the relations between users’ decision time and the num-

ber of video impairments within the pre-behavior window. In addition, our study also

shows that the time participants spent on making the decision was not a↵ected by

the length and types of video impairment in pre-behavior window. This observation



- 81 -

tells us that participants paid less attention on impairments details and more focused

on the influences on video viewing experience due to their occurrences.

Furthermore, participants have preferences on particular types of behaviors. We

found that switching to another available network was frequently chosen as the first

option when participants felt that the video quality is bad. At the same time, video

quality improvement can change their decisions on switching networks. Our obser-

vation proves that participants evaluated the video viewing experience and made

decision to take actions in a dynamic manner. The video quality changes during

this process are able to alter participants’ following decision and behaviors. We also

noticed that most changing video resolution behaviors were decreasing the resolu-

tion and about 70% (54 out of 78) of them were happening within an impairment.

Lowering video resolution reduces the consumption of network bandwidth and can

prevent video impairments from occurring and improve video viewing experiences

under resource-constraint networks. Meanwhile, participants rarely increased video

resolution to have much clearer video contents. We draw conclusion that video im-

pairments bring more and severe disturbance than low resolution does to viewers’

video viewing experiences.
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CHAPTER 6

LIMITATIONS

We conducted both of the two experiments in a well controlled laboratory. Partici-

pants were invited to an o�ce room and asked to use a computer for the experiment.

This may impact their assessment on the video viewing experience and viewing be-

haviors compared to their daily lives. We took several steps towards achieving validity

for both studies. In the video rating experiment, we provided three video clips as the

training session at the beginning of the experiment and let participants get familiar

with the interface and the types of video impairments you will meet in formal ex-

periment video clips. In addition, we examined and conducted sanity checks on the

rating data provided by every participant. In the video viewing behavior experiment,

we applied deception in the experiment to conceal the real experiment purpose. This

method prevented participants from behaving intentionally during experiment and

introduced potential bias into the dataset. Furthermore, each participant was asked

to complete an exist survey that included evaluation of their own performance and

results shown that all participants believed they did well in the experiment.
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CHAPTER 7

CONCLUSIONS

We have shown that low video quality drives people to take actions to change current

conditions and try to improve the watching experience and users’ previous watch-

ing experience plays a key role in their decisions to perform di↵erent behaviors. We

proposed high accurate user behavior prediction models that provide clues of users’

feelings about perceived service experiences and potential influences on the entire

network resource consumption. We are the first to study the e↵ect of impairment

occurring orders on users’ video watching experience and demonstrate that it is fea-

sible to improve the experience without additional resource usage by changing video

impairments types and occurrence orders. Our study provides encouraging ideas

to improve user video watching experience on mobile devices with limited network

resources and opens the door to design and practice human engineering based pro-

tocols to optimize wireless network management in bandwidth resource constrained

environments.
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APPENDIX A

VIDEO QUALITY ASSESSMENT STUDY EXIT SURVEY

1. Please provide your full name

2. Please provide your email address

3. I have paid attention to the videos and tried my best throughout the experiment.

• Completely Disagree

• Somewhat Disagree

• Neither Agree or Disagree

• Somewhat Agree

• Completely Agree

4. I am confident with my rating performance in the experiment.

• Completely Disagree

• Somewhat Disagree

• Neither Agree or Disagree

• Somewhat Agree

• Completely Agree

5. How many hours do you spend on watching online videos per week?
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6. How many hours have you slept the night before?

7. Do you need to wear glasses or contact when watching videos? If yes, did you

wear them in the experiment?

8. Have you seen any of the videos used in the experiment before? If so, please

identify which ones.

• No

• Movie Trailer

• Basketball Highlights

• News Interview

• Doodle Cartoon

9. How often do you make careless mistakes when you have to work on boring or

di�cult projects?

• Never

• Rarely

• Sometimes

• Often

• Very Often

10. How often do you have di�culty keeping your attention when you are doing

boring or repetitive work?
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• Never

• Rarely

• Sometimes

• Often

• Very Often
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APPENDIX B

USER VIDEO VIEWING BEHAVIOR STUDY EXIT SURVEY

1. Please provide your full name

2. Please provide your email address

3. I have paid attention to the videos and tried my best throughout the experiment.

• Completely Disagree

• Somewhat Disagree

• Neither Agree or Disagree

• Somewhat Agree

• Completely Agree

4. What is your entire watching experience during the experiment?

• Bad

• Poor

• Fair

• Good

• Excellent
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5. The video quality and my watching experience get improved when I have inter-

acted with the experiment interface.

• Completely Disagree

• Somewhat Disagree

• Neither Agree or Disagree

• Somewhat Agree

• Completely Agree

6. How many hours do you spend on watching online videos per week?

7. How many hours have you slept the night before?

8. Do you need to wear glasses or contact when watching videos? If yes, did you

wear them in the experiment?

9. Have you seen any of the videos used in the experiment before? If so, please

identify which ones.

• No

• Movie Trailer

• Basketball Highlights

• News Interview

• Doodle Cartoon

10. Have you realized the real purpose of this experiment before debriefing? If yes,

please describe.
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• No

• Yes


