
© 2021

Wuyang Zhang

ALL RIGHTS RESERVED.



DISTRIBUTED PLACEMENT AND RESOURCE ORCHESTRATION OF
REAL-TIME EDGE COMPUTING APPLICATIONS

By

WUYANG ZHANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dipankar Raychaudhuri

And approved by

New Brunswick, New Jersey

January 2021



ABSTRACT OF THE DISSERTATION

Distributed Placement and Resource Orchestration of Real-time Edge Computing

Applications

by Wuyang Zhang

dissertation Director: Prof. Dipankar Raychaudhuri

The recent emergence of a broad class of deep learning based augmented and virtual

reality applications motivates the need for real-time mobile cloud services. These real-time,

mobile applications involve intensive computation over large data sets, and are generally

required to provide low end-to-end latency for acceptable quality-of-experience at the end-

user. Limited battery life, computation and storage capacity constraints inherent to mobile

devices mean that application execution must be offloaded to cloud servers, which then

return processed results to the mobile devices through the Internet. When cloud servers

reside in remote data centers, end-to-end communication may translate into long delays

characteristic of multi-hops transmissions over the Internet. Moving cloud computing to

the edge of a network has helped to lessen these otherwise unacceptable delays while

leveraging the benefits of a high-performance cloud. While this improvement is significant,

there are several technical challenges that need to be addressed in order to achieve low

end-to-end latency.

In the thesis, we aim to address the following problems. First, how to efficiently distribute

the real-time application between the mobile device, edge servers and data center to meet

the latency constraints? Second, as the edge cloud architecture is inherently distributed

and heterogeneous, how to perform resource allocation and task orchestration in a latency-
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constrained design? Finally, existing cloud computing solutions often assume there exists

a dedicated and powerful server, to which an entire job can be offloaded. In reality, we may

not be able to find such a server, which motivates an investigation of techniques for use of

multiple less powerful edge servers to achieve a parallel job offloading.

In the first part of the thesis, we take virtual reality massively multiplayer online games

(VRMMOGs) as a driving example and design a hybrid service architecture that achieves a

good distribution of workload between the mobile devices, edge clouds, core cloud for low

latency and global user scalability, We also propose an efficient service placement algorithm

based on a Markov decision process to dynamically place a user’s gaming service on edge

clouds. This dynamic service placement can help to further reduce the latency under user

mobility.

In the second part of this thesis, we present the design and implementation of a latency-

aware edge computing platform, aiming to minimize the end-to-end latency for edge ap-

plications. The proposed platform is built on Apache Storm, an open source distributed

computing framework, and consists of multiple edge servers with heterogeneous computa-

tion (including both GPUs and CPUs) and networking resources. Central to our platform

is an orchestration framework that breaks down an edge application into Storm tasks as

defined by a directed acyclic graph (DAG) and then maps these tasks onto heterogeneous

edge servers for efficient execution.

In the last part of this thesis, we take a closer look at these computing intensive deep

learning-based computer vision jobs. We propose to partition the video frame and offload

the partial inference tasks to multiple servers for parallel processing. This work presents

the design and implementation of Elf, a framework to accelerate the mobile deep vision ap-

plications with any server provisioning through parallel offloading. Elf employs a recurrent

region proposal prediction algorithm, a region proposal centric frame partitioning, and a

multi-offloading scheme.
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CHAPTER 1

INTRODUCTION

1.1 Background

The recent emergence of a broad class of deep learning based augmented and virtual reality

applications motivates the need for real-time mobile cloud services. These real-time,

mobile applications involve intensive computation over large data sets, and are generally

required to provide low end-to-end latency for acceptable quality-of-experience at the end-

user. Limited battery life, computation and storage capacity constraints inherent to mobile

devices mean that application executions must be offloaded to cloud servers, which then

return processed results to the mobile devices through the Internet. When cloud servers

reside in remote data centers, end-to-end communication may translate into long delays

characteristic of multi-hops transmissions over the Internet. For a client instance in New

Jersey which connects to Amazon EC2 cloud servers located in West Virginia, Oregon and

California, the round-trip latency alone is 17, 104 and 112ms, with achievable bandwidths

of 50, 18 and 16Mbps, respectively. In order to support these emerging edge applications,

edge cloud computing has been proposed as a viable solution [1, 2, 3], which moves the

computing towards the network edge to reduce the response latency while also avoiding

edge-to-core network bandwidth constraints.

1.2 Challenges of Deploying and Orchestrating Real-time Edge Applications

Despite the earlier and ongoing work on various aspects of edge computing, we intend to

consider this problem in a fully latency-constrained design. Such a perspective introduces

the following challenges.

First, how to efficiently distribute the function of real-time applications into mobile

1
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2

devices, edge servers and central clouds in order to fully utilize the computing resources

while to provide a global user scalability.

We take virtual reality massively multiplayer online games (VR-MMOGs) as a repre-

sentative example and it has been widely adopted as a killer application in the era of edge

computing. VR-MMOGs can leverage edge cloud computing to meet their QoS require-

ments [4], but simply moving all the gaming tasks to the edge makes it harder for players to

share games across the network since it is difficult to synchronize users’ profiles and game

worlds among widely distributed edge clouds.

Second, the problem of how to efficiently deploy these new edge applications within an

edge cloud has not been systematically studied. Duplicating the successful cloud computing

design will not work for the edge applications. This is mainly due to the highly hetero-

geneous nature of edge clouds. Unlike central clouds, edge clouds are often comprised of

heterogeneous computation nodes with widely diverse network bandwidths. For example,

the studies in [5, 6], assume the computation nodes and their interconnects are relatively

homogeneous in central clouds, while the edge servers considered in [7, 8] exhibit widely

varying capabilities. Thus, an important new challenge associated with edge clouds is

that of efficiently orchestrating these heterogeneous resources in order to meet application

latency constraints.

Finally, existing methods only consider offloading tasks to a single server, assuming

that the server has sufficient resources to finish the tasks in time. Nevertheless, in practice,

a single edge server is equipped with costly hardware, for example, Intel Xeon Scalable

Processors with Intel Deep Learning Boost or NVIDIA EGX A100, which are typically

shared by multiple clients (i.e., multi-tenant environment). Moreover, the heterogeneous

resource demands of applications running on edge servers and highly dynamic workloads

by mobile users lead to resource fragmentation. If the fragmentation cannot be efficiently

utilized, it may produce significant resource waste across edge servers. To this point, in

order tomeet the requirements of real-time applications, especially those deepmobile vision
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applications with heterogeneous edge computing resources, it is advantageous to offload

smaller inference tasks in parallel to multiple edge servers. This mechanism can benefit

many real-world deep vision tasks, including multi-people key point detection for AR

applications and multi-object mask detection for autonomous driving tasks, where objects

can be distributed to different servers for parallel task processing.

1.3 Proposed Solutions

First, we take a closer look at the game flows in VR-MMOGs in this study. We discover that

the events initiated by the players can generally be classified into two categories based on

the tolerance levels of response latency. The response to the user’s local view change events

(which has effect only on his/her screen, e.g., mouse movements, map scrolls, selection

of a game object without changing it) has much more stringent timeliness requirements

compared to the response to the game events (which involves global game state updates,

e.g., updated scores, bleeding on shot targets). In VR-MMOGs, view change events are

a lot more frequent compared to non-VR-MMOGs since the orientation of the VR device

is changing all the time, and it requires immediate (∼20ms) feedback on the screen. In

comparison, players can tolerate more than 100ms latency towards game events, and in

some games this value can be as large as 1 second [9].

Based on the fundamental differences between view change and game events, we be-

lieve that they should be treated differently in order to provide the best VR-MMOG user

experience. In this paper, we propose EC+, an architecture for Edge Cloud augmented VR-

MMOGs. EC+ exploits edge clouds for view change events rendering to satisfy the ultra

low delay requirement. The rendering on edge clouds can also provide higher resolution

and refresh rate compared to the rendering on the mobile devices since edge clouds have

more computation power and they are close to the players. As for the game events, EC+ still

uses a central cloud to manage global game and game logic to provide a wide coverage with

minimal overhead in maintaining the consistency of game states. In addition to proposing
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the EC+ architecture, we also devise an efficient algorithm that selects an edge cloud for

each player to handle player mobility and dynamic edge cloud workload. Modeled upon

a Markov decision process (MDP), the proposed algorithm periodically makes edge cloud

placement decisions, taking into consideration the overall QoS (the latency and the band-

width between client and edge, and between edge and game server), mutual impact among

players (e.g., edge load, game world sharing), and player mobility patterns. To ensure the

feasibility, we come up with the approaches that can reduce the algorithm complexity in

both storage and execution time. We also design a mechanism to ensure seamless handoff

when a gaming service is migrated from one edge cloud to another.

To address the second challenge, we set out to build and test such an edge computing or-

chestration platform. Our design is driven by the requirement of deploying and accelerating

this new class of edge applications – e.g., processing large volumes of data such as video

data generated by mobile/IoT sensors (including 3D cameras) in real time. We first build an

edge cloud testbed that consists of four different CPU settings, four different GPU settings

and five different link bandwidth settings. On these nodes, we run Apache Storm [10] as the

baseline distributed edge computing framework. Apache Storm provides real-time support,

but has an implicit assumption that the underlying computing/networking resources are

homogeneous. Also, it does not provide proactive support for GPUs. In this work, we

address these shortcomings. Note that our platform design is not specific to Apache Storm.

In fact, it can easily interface with other distributed computing frameworks such as Apache

Flink.

The design of Hetero-Edgemainly focuses on distributed resource orchestration for edge

computing. Specifically, we intend to answer the following important questions. Firstly, if

an edge cloud consists of both GPUs and CPUs, when do we serve requests on GPUs and

when do we use CPUs? How do we partition our jobs so that we can most efficiently utilize

the available resources? Secondly, after partitioning the job to several pipelined and parallel

tasks, how can we map them to appropriate computing nodes (including both GPUs and
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CPUs) to minimize their overall latency? Thirdly, how can we effectively prevent a parallel

task from completing significantly slower than its peers and becoming a straggler [11]?

Since resources of edge clouds are highly diverse, the likelihood of having stragglers is

much higher than in a homogeneous setting. By carefully studying these questions, we

devise the resource orchestration schemes in Hetero-Edge, featuring: (1) matching a task’s

resource demand with the underlying node’s resource availability, (2) matching a task’s

workload level with the underlying node’s resource availability, and (3) suitably splitting

work on processors with vastly different processing power (GPUs vs CPU).

To address the aforementioned challenges, we propose and design Elf1, a framework to

accelerate high-resolution mobile deep vision offloading in heterogeneous client and edge

server environment, by distributing the computation to available edge servers adaptively.

Elf adopts three novel techniques to enable both low latency and high quality of service.

To eliminate the accuracy degradation caused by the frame partitioning, we first propose

a content-aware frame partitioning method. It is promoted by a fast recurrent region

proposal prediction algorithm with an attention-based LSTM network that predicts the

content distribution of a video frame. Additionally, we design a region proposal indexing

algorithm to keep track of the motion across frames and a low resolution compensation

solution to handle new objects when first appear. Both work jointly to help understand

frame contents more accurately. Finally, Elf adopts lightweight approaches to estimate

the resource capacity of each server and dynamically creates frame partitions based on the

resource demands to achieve load balance. Overall, Elf is designed as a plug-and-play

extension to the existing deep vision networks and requires minimal modifications at the

application level.

1Elf is a small creature in stories usually described as smart, agile, and has magic power
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CHAPTER 2

DISTRIBUTED PLACEMENT OF EDGE COMPUTING APPLICATIONS

2.1 Introduction

The rapid rise ofMassivelyMultiplayerOnlineGames (MMOGs) calls for gaming platforms

that support ultra low latency and intensive 3D world rendering [12]. With emerging

Virtual Reality (VR) technologies (e.g., HTC Vive, Oculus, Google Cardboard), VR based

MMOGs, i.e., VR-MMOGs, are quickly looming on the surface, demanding even faster

gaming interaction and image rendering. In addition, VR-MMOGs place a new set of

requirements on the underlying system design due to a union of VR and MMOGs: 1) the

need of simultaneously rendering two images with different perspectives for both eyes,

2) the need of supporting wider angles of visual field (120 degree compared to 60 degree in

normal games), 3) the need of providing ultra-low latency that prevents people from having

motion sickness (<30ms compared to 100–1000ms in normal games), and 4) the need of

rendering with a higher refresh rate (60–120 frames per second (fps), compared to 24–60fps

in normal games).

Meanwhile, to enable players with “thin” mobile devices (e.g., smartphones, pads,

TVs) to enjoy high-quality gaming, the paradigm of cloud gaming (also known as gaming

on-demand [12]) that delivers games from the cloud to players has been proposed and

developed. GeForce NOW (for Nvidia Shield clients [13]), PlayStation NOW [14], Gaming-

Anywhere [15], as the industrial pioneers of cloud gaming, are drawing substantial players

to move from traditional gaming to this cloud-based paradigm [16]. These cloud gaming

services perform game logic computation on cloud servers and stream encoded views, over

the Internet, to apps on heterogeneous mobile devices. Cloud gaming allows users to

access games anywhere via mobile devices, without periodically upgrading their hardware

6

Wuyang Zhang
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to satisfy the ever increasing hardware demands. Also, cloud gaming significantly reduces

the energy consumption incurred by the heavyweight rendering tasks on mobile devices.

Finally, high resolution frames that are cumbersome, if not impossible, to be generated

locally can be streamed from the cloud.

While cloud gaming can provide a multitude of benefits to players, the service providers

face a set of serious challenges to ensure the demanded quality of service (QoS). The first and

foremost challenge stems from the latency between cloud servers and players. Responses

that are not fast enough in VR gaming can result in dissatisfying game experiences and

may further contribute to player motion sickness. According to [9], ∼20ms is an acceptable

end-to-end latency for such applications. A latency of 50ms can still support responsive

services, but with noticeable lagging. Nevertheless, the average network latency in today’s

Internet between the Amazon EC2 cloud and mobile devices is more than 80ms [12], which

already exceeds the tolerable latency level even without performing any computation.

The second challenge is the high bandwidth demand ofMMOGs – they generally require

a bandwidth of 100Mbps to stream VR games with 1080p resolution at 60 fps [17], while

the wireless Internet bandwidth available to a mobile device is 2Mbps [18]. Network

jitters cause decreased refreshing rates and increased packet delays, both worsening the

user experiences. Moreover, users with mobile devices are more inclined to move around

compared to those connected to fixed hosts, and some may even play while sitting in

cars or trains. The disconnections caused by changing network access points also lead to

deteriorated gaming performance.

Edge cloud computing [19, 18, 20] moves cloud services closer to the users. Naturally, it

has the potential to bring down otherwise unacceptable network delays and to provide high

downlink bandwidth while taking advantage of high performance computing resources.

VR-MMOGs can leverage edge cloud computing to meet their QoS requirements [4], but

simply moving all the gaming tasks to the edge makes it harder for players to share games

across the network since it is difficult to synchronize users’ profiles and game worlds among
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widely distributed edge clouds.

To address the challenges, we take a closer look at the game flows in VR-MMOGs in this

study. We discover that the events initiated by the players can generally be classified into two

categories based on the tolerance levels of response latency. The response to the user’s local

view change events (which has effect only on his/her screen, e.g., mouse movements, map

scrolls, selection of a game object without changing it) has much more stringent timeliness

requirements compared to the response to the game events (which involves global game

state updates, e.g., updated scores, bleeding on shot targets). In VR-MMOGs, view change

events are a lot more frequent compared to non-VR-MMOGs since the orientation of the

VR device is changing all the time, and it requires immediate (∼20ms) feedback on the

screen. In comparison, players can tolerate more than 100ms latency towards game events,

and in some games this value can be as large as 1 second [9].

Based on the fundamental differences between view change and game events, we be-

lieve that they should be treated differently in order to provide the best VR-MMOG user

experience. In this paper, we propose EC+ an architecture for Edge Cloud augmented

VR-MMOGs.

EC+ exploits edge clouds for view change events rendering to satisfy the ultra low

delay requirement. The rendering on edge clouds can also provide higher resolution and

refresh rate compared to the rendering on the mobile devices since edge clouds have more

computation power and they are close to the players. As for the game events, EC+ still uses

a central cloud to manage global game and game logic to provide a wide coverage with

minimal overhead in maintaining the consistency of game states.

In addition to proposing the EC+ architecture, we also devise an efficient algorithm

that selects an edge cloud for each player to handle player mobility and dynamic edge

cloud workload. Modeled upon a Markov decision process (MDP), the proposed algorithm

periodically makes edge cloud placement decisions, taking into consideration the overall

QoS (the latency and the bandwidth between client and edge, and between edge and game
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server), mutual impact among players (e.g., edge load, game world sharing), and player

mobility patterns. To ensure the feasibility, we come up with the approaches that can reduce

the algorithm complexity in both storage and execution time. We also design a mechanism

to ensure seamless handoff when a gaming service is migrated from one edge cloud to

another.

Finally, we summarize our contributions below:

• A study of the new requirements of VR-MMOGs, explaining why client-centric and

cloud gaming fall short in fulfilling these requirements (§section 2.3);

• A design of a hybrid architecture that leverages both edge and central clouds to satisfy

the latency and throughput requirements of VR-MMOGs (§section 2.4);

• A general edge cloud placement algorithm which intends to maximize the game

performance for a large number of players with different bandwidth, latencies, edge

loads, game world sharing scenarios (§section 2.5); and

• A comprehensive evaluation using both synthetic and real-world topologies to quan-

tify the benefit of the proposed architecture and algorithm (§section 2.6).

2.2 Related Work

We first present the background of (VR-)MMOGs and then review the existing solutions

that could potentially support VR-MMOGS, namely, cloud centric gaming and edge cloud

assisted gaming.

2.2.1 Massively Multiplayer Online Gaming Meets Virtual Reality

Virtual reality (VR) has been supported by multiple industrial products like PlaySta-

tion.VR [14], HTC Vive [21], Oculus [9], Google Cardboard [22]. VR devices extract

players’ sensory (e.g., eyes and ears) information and accordingly “hijack” the natural
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stimulation with the artificial stimulation from a virtual world generator [23]. VR technol-

ogy remarkably hands a highly immersive experience with substantial depth perceptions.

Playing MMOGs through VR devices is the natural next step [24]. In fact, the VR ver-

sions of several popular MMOGs have been developed, e.g. World of Warcraft, Minecraft

Multiplayer, and Grand Theft Auto V Online [25].

As much as VR-MMOGs generate excitement in the gaming community, it also poses

the unprecedented demands and the challenges, especially with respect to providing ultra

low latency and a high refresh rate, on the underlying system design.

This paper aims to design an architecture that is carefully tuned to satisfy these demands.

2.2.2 Supporting Gaming through Cloud

Many cloud gaming solutions [26, 27, 13, 14, 15] have been proposed to reduce the com-

putation and/or storage requirements on game terminals. These solutions can be broadly

classified into two categories: file-streaming games and video-streaming games. In file-

streaming gaming (i.e., progressive downloading), a small portion of the game is initially

downloaded to a user device. While this portion runs, the rest of game can be downloaded

and installed in parallel [26, 27]. While it is true that file-streaming games can reduce the

game boot time and the storage required on game devices, it still requires devices to process

game logic and perform 3D rendering. Therefore, it is difficult to support VR-MMOGs on

mobile devices like Google cardboard.

Video-streaming games, on the other hand, place all the processing in a cloud, including

user profile management, game update calculation, game frame rendering and encoding,

etc. The cloud then streams the encoded frames to players over the Internet [13, 14,

15]. This mechanism enables players to enjoy high-quality games even on the devices with

limited computing and power resources (e.g., smartphones, pads, TVs) – the game terminals

merely need to decode frames just like watching a Youtube video. With the advent of GPU

grids [28], game processing has becomemore efficient than purely using CPU-based clouds.
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Many studies have been conducted to further improve the user experience of video-

streaming games. In [29] video games are classified into CPU-consuming and memory-

consuming types to increase the resource utilization in a cloud. Lee et al. [30] use High

Efficiency Video Coding (HEVC) to reduce the bandwidth requirement by 59% without

compromising video quality. Solutions in [31, 32] reduce the response time by predicting

possible game updates and rendering speculative frames ahead of time.

The main disadvantage of cloud gaming, however, involving both file-streaming and

video-streaming gaming, is the need to transmit a large amount of data, either a game itself

or game frames, through the core network. Due to the massively multiplexing nature of

the Internet design, the available bandwidth and latency between a cloud and a player may

change dramatically over time [33]. This often leads to jitters, lags, frame drops or low-

quality frames (glitches) in the middle of a game, and resulting in a poor gaming experience,

especially for video-streaming games [34].

2.2.3 Edge Cloud Computing

Edge cloud (or fog computing [19, 18, 20]) moves computing and storage closer to clients,

promising to deliver shorter latency and higher bandwidth. It can benefit applications which

require high bandwidth, low latency but without large-scale aggregation, e.g., preprocessing

of surveillance camera data [35], image classification [36], smart traffic light control [19],

etc. Edge cloud computing also has the potential to better serve (VR-)MMOGs, if carefully

designed to solve the challenge of large-scale aggregation ( i.e., game state synchronization

among all players).

Work in [37, 38, 39] proposes peer-to-peer (P2P) MMOGs wherein the delegate of the

players (game consoles or edge cloud servers) form a P2P network to synchronize gaming

states shared among the players directly. This distributed architecture incurs a large amount

of synchronization overhead and may potentially limit the number of concurrent players in

a game. To address these challenges, the authors in [40] propose to move the rendering
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process from a cloud to idle desktops which are close to clients. Indeed, this technique

can reduce the network latency by 20% and reduce the network traffic volume by 90%.

Nevertheless, any user events, including those only need local updates, are dispatched to

the center cloud altogether. This solution performs well for non-VR games because there

aren’t many local update events in these games. However, VR-MMOGs have a significantly

larger number of such events, which makes this solution ill-suited.

2.2.4 Service Migration Among Clouds

To satisfy specific application requirements, tasks have to be initially placed on assigned

machines of a cloud [41, 42, 43]. Later, the tasks may be migrated (reassigned) to under-

utilized machines to meet particular optimization targets. Concerning where to migrate,

distinct migration strategies have been proposed on the basis of expected optimal targets.

Lim et al. [44] propose a performance aware migration schema in respond to dynamic server

workloads. Ghribi et al. [45] investigate an energy efficient scheduling to achieve significant

energy savings. With respect to how to migrate, Douglis [46] comes up with a process

migration schema that moves a process from a source machine to a destination machine,

which encounters the difficulty of separating a process from its operating system. Clark

et al. [47] design a live virtual machine (VM) migration mechanism that effectively over-

comes this barrier. Yet, a core cost of VM migration is a short downtime during which an

application is compulsively paused. The downtime changes among different applications,

ranging from several milliseconds to several seconds [48]. To reduce the downtime, Jin et

al. [49] investigate a memory compression approach and Ha et al. [50] study a pipelining

processing of VM migration .

2.3 A Closer Look at VR-MMOGs

A VR-MMOG is essentially a large-scale event driven system. Even though each VR-

MMOG may have unique and complicated game logic, they do have similar game events
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Fig. 2.1 A game view usually contains both view change updates local to a player (e.g.,
change of look direction, immediate feedback on action like firing) and game world updates
synchronized among all players (e.g., monsters’ dying, non-player characters’ actions)

and share an identical underlying game flow. In this section, we first study the new features

and challenges of VR-MMOGs and then present several existing MMOG models to help

understand why they fail to satisfy these new requirements.

2.3.1 View Change Events vs Game Events

Any game flow begins with a particular user event. When playing a game, a player can

trigger a user event through external devices including mouse, keyboard, VR headset, etc.

Clicking a mouse at a certain point in a game world, pressing a particular key, or changing

the orientation of head (while wearing a VR headset), for example, each entails a user

event. However, players have different delay expectations on different kinds of events, and

therefore a game architecture should treat these events differently.

We realize that there are two fundamental types of user events, namely, (local) view

change events and (global) game events. The first type of user events– view change events –

only causes transient changes to a user’s perspective, but leaving his/her game world intact.

For instance, a user event of clicking a mouse at the location (153, 85) might be interpreted

as selecting a troop from a player’s army. The chosen soldiers will be highlighted on the
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Table 2.1 Comparison between event types in VR-MMOGs

View change Game
Tolerable latency (ms) 20 100
Event size (bytes) 180 90

Frequency (events/sec) 95 5

player’s screen, but this event is invisible to other players.

The second type of user events– game events – not only causes changes to a player’s

perspective, but also cause permanent updates to a player’s game world, which we refer

to as game events. In (VR-)MMOGs, such updates should be synchronized among all the

players who can see this game event. For example, the same mouse click at (153, 85) might

be interpreted as “player A punches player B” or “player A collects 100 golds from the

ground”, both causing changes to a game world and deemed as a game event. Since a same

user event can be interpreted differently based on a particular game logic and a particular

game world, MMOGs usually include a module to distinguish the type of user events before

sending them all the way to a game server.

As shown in Fig. Figure 2.1, all user events, no matter which type, will eventually

be reflected on a user interface. However, players do have different expectations on the

feedback delay. According to [9], players have different tolerance levels for game events,

ranging from 100 milliseconds (e.g., first person shooting games) to 1 second (e.g., real-

time strategy games). A number of studies have been conducted to reduce the game event

response latency by optimizing server scheduling [29], improving rendering algorithm and

hardware [28] and optimizing network dissemination [51].

Compared to game events, we find it counterintuitive that players expect much shorter

feedback delays for view change events. Immediate local view updates lead to a smooth

game control and a seamless user experience. Here, the tolerable latency varies from tens

of milliseconds (e.g., orientation changes in 3D games) to a couple of hundred milliseconds

(e.g., keystrokes). This latency is much more critical to video-streaming games since a

renderer resides much farther away in a cloud rather than in a local GPU.
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Fig. 2.2 Traditional gaming Fig. 2.3 Video streaming gam-
ing

Fig. 2.4 Edge cloud aug-
mented gaming

Fig. 2.5 Comparison of Different MMOG Architectures (red line: unicast, blue line: mul-
ticast)

The high frequency of such events of VR-MMOGs makes matters even worse. We

compare the features between view change events and game events in Table Table 2.1

based on several studies on games [9, 52, 53, 54]. With constant orientation changes in a

VR-MMOG (view change events), such changes usually require the feedback delay of less

than 20ms if possible [9], to ensure a pleasant user experience. Players would experience

dizziness when the latency increases beyond 50ms. This ultra-low latency makes it almost

infeasible for a central clouds to support VR video-streaming games as the average latency

between Amazon EC2 and clients is already above 80ms. The amount of orientation change

events is another challenge as games usually try to get accelerometer and gyroscope readings

more than 50 times/second, some high-end devices like HTC VIVE can even reach 100.

This frequency is much higher compared to view change events. Game events, estimated by

game actions per minute (APM), is usually around 50 and maximized at 300 with proficient

players [54].

Therefore, we believe that view change events should be treated as “first-class citizens”

and a gaming architecture should be carefully designed to provide a better support for these

events in VR-MMOGs.
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2.3.2 Overview of Existing MMOG Architectures

We study the underlying communication and computation models of the existing MMOG

architectures to understand why these solutions fall short in supporting VR-MMOGs. We

classify them into two categories: traditional client-centric gaming and cloud-centric gam-

ing, based on where rendering happens. While file-streaming gaming also gets support

from a cloud, its game model is almost equal to client-centric games as it requires a local

powerful game consoles for rendering. The flowcharts of the two game models are shown

in Fig. Figure 2.2 and Figure 2.3.

Traditional Client-Centric Gaming

A traditional gaming architecture performs most of the tasks on the client side except

the synchronization of a shared game world. As shown in Fig. Figure 2.2, a game loop starts

with a capture of a user event (e.g., mouse click at (153, 85)). This event is firstly sent to a

local game event calculator (step (1) that detects whether it is a game event. In most games,

a game event also triggers a view change event (e.g., shooting fire in Fig. Figure 2.1), and

therefore, a view change rendering request is sent to a render (step (2′). If the event is a

game event (e.g., player A punches B), this game event will be forwarded to a game server

(step (2).

Once receiving the game event at the server, a validation module checks the validity of

the event according to a game logic (e.g., if A is allowed to punch B, if A is close enough to

reach B, etc). It will discard suspiciously cheating events (possibly generated by a game bot)

and stale events (caused by network delays). A update calculator at the server then computes

the “consequences” (game updates, e.g., A gets 3 points, B retreats by 1 step and looses 20

blood) of each valid game event and accordingly updates users’ profiles. A user profile usu-

ally consists of individual state information of a game character (e.g., the current location,

the experience point and the skill level). To avoid transmitting toomany small game updates,
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Table 2.2 Refresh rate (fps) comparison between mobile devices and desktop machines in
different games

Refresh rate (fps)
Game Resolution Desktop Mobile

StarCraft II
1024×768 380 55
1280×1024 136 13
1920×1080 119 5

GTA V
1024×768 168 10.8
1280×1024 161 <5
1920×1080 136 <5

the server usually accumulates game updates for a small period of time and sends all the

updates in the period as a batch (step (3). The length of the period is usually determined by

the smallest frame interval among all players (e.g., 33ms for 30fps clients). When all players

share a same synchronized gameworld, the same updates should reach all of them, and there-

fore they can be sent via multicast or broadcast to improve the efficiency in dissemination.

A renderer on the client side usually renders a game world periodically (30-60 frames

per second) to reflect outputs of view change events (from (2) and game updates (from

(3). In most games, a renderer may generate frames even without any updates to reflect,

for example, variations of luminous intensity, flowing of water and/or moving of non-player

characters (NPC). Rendering projects geometry, viewpoint, texture, lighting, and shading

upon 3D skeletal objects in a game world, and finally outputs a game frame in a game

interface like screens or VR devices (step (4).

This architecture usually requires a game client to have abundant CPU, GPU and RAM

resources since rendering a frame involves a large number of matrix multiplication and

floating point operations. Thus, it is not friendly for players who prefer to enjoy games with

their mobile devices. For example, an average desktop GPU like AMDRadeon HD 7970M,

can reach 380, 136 and 119 fps for StarCraft II at resolutions 1024x768, 1280x1024 and

1920x1080 respectively. However, the refresh rate on Intel HD Graphics Cherry Trail (a

GPU adopted on Microsoft Surface 3 tablets) can only deliver 55, 13 and 5 fps with the

same resolution (see Table Table 2.2). It means that, if a player tries to play this game on a
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Microsoft Surface 3 tablet, he/she can only choose the resolution of 1024x768 or below. A

same restriction can be found in most popular MMOGs like GTA V, Minecraft, etc. Yet, to

enjoy an immersive VR gaming experience, players should not be constrained by desktop

machines and cables.

Cloud-Centric Video Streaming Gaming

Cloud-centric video streaming gaming [14, 13, 15] significantly reduces the resource

requirement on user devices. All rendering tasks will be executed in a central cloud as

shown in Figure Figure 2.3. Specifically, a client device merely sends user events directly to

a cloud, and receives subsequent updated frames. This video streaming gaming architecture

promises to enable players to enjoy MMOGs on mobile devices, while several important

challenges must be addressed to support VR-MMOGs by this architecture.

Firstly, it is demanding for this architecture to satisfy the ultra low latency requirement

of VR-MMOGs. In particular, a user may desire a view change rendering to be completed

within 20ms [9]. With latency of 50ms, VR games can still respond to a user’s input, but

with noticeable lagging, which may lead to an undesirable user experience. Unfortunately,

the average network delay between Amazon EC2 and a mobile device is around 80ms [12],

which is much longer than the preferred latency of view change events.

Secondly, it is also challenging for this architecture to support a high refreshing rate.

VR-MMOGs generally require bandwidth of 50Mbps to stream a video with a 1080p

resolution at 60 fps, while the available bandwidth in the wireless Internet to a mobile

device is merely about 2Mbps [18]. In the traditional gaming architecture, a game server

only needs to send game updates to clients, which can be multicasted to minimize the

network traffic. In this architecture, however, a game server needs to send distinct rendered

frames to each individual client. As a result, unicast is required in this scenario. Everything

considered, network bandwidth needed in this architecture increases significantly compared
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to the traditional gaming architecture.

2.4 EC+: A VR-MMOG Architecture Augmented by Edge Clouds

In the previous section, we discuss that traditional client-centric gaming places heavy-

weight rendering tasks on the game client which essentially prevents users from playing

VR-MMOGs on mobile devices. Video-streaming gaming intends to facilitate mobile

devices but eventually fails to do so due to slow responses and poor video quality. It is

thus desirable to leverage a third computing platform that has sufficient resources while

incurring short network latency from and to the clients. We believe edge cloud computing

is a good candidate for the following reasons: 1) it has enough computation power as the

servers in edge clouds usually have GPUs that are desktop-level or better, and 2) it is located

in the access network that is close to the users.

Based on this understanding, we propose a new architecture, EC+, that cleverly dis-

tributes the work among the central cloud and edge clouds. It has the following salient

features: 1) engaging edge clouds in managing view change updating and rendering to

achieve low latency and high refreshing rate, 2) engaging the central cloud in managing

game state updating to support a large number of players and minimize the overhead re-

quired to maintain consistent game states, and 3) handling user mobility and edge-cloud

workload imbalance by performing dynamic gaming service migration to provide continued

performance.

2.4.1 Flow of Gaming in EC+

Below, we discuss the game flow in the EC+ architecture step by step, which is also shown

in Figure Figure 2.4:

• User event forwarding on the client ((1): VR game devices capture all user inputs and

send them to a designated edge cloud. Wewill discuss how to choose and dynamically

change the associated edge cloud for a user in § section 2.5.
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• Local view updating and rendering on the edge cloud ((2, (2′): When the edge

cloud receives a user event, it passes the event to a “game event calculator”, which

performs two tasks in parallel: (1) calculating local view updates, and (2) determining

whether a global game event is represented. After task (1) is completed, the local

view update request is passed to a “renderer and encoder” which will then perform

image rendering and encoding. After task (2) is completed and a global game event

is needed, then the game event is further passed on to a central cloud.

• Global game updating on the central cloud ((3): The game server behaves similarly

to that in traditional gaming. When the game server on the central cloud receives

the game event, it calculates the updates that are caused by this event, updates user

profiles accordingly, and then generates one or more update requests to all the players

who are involved in this game event. It then sends these requests to the edge clouds

that these players are currently connected to. Similar to traditional games, the server

here can also take advantage of multicast in game update dissemination.

• Game world change rendering on the edge cloud ((4): The edge cloud performs all

the rendering, including local view change rendering, game world change rendering,

and background view refreshing rendering. The rendering performance is critical to

the overall performance of EC+. We can leverage techniques such as the one proposed

in [55] that involves a scalable parallel rendering framework to simultaneously render

for multiple players who share a same game world, which can greatly reduce the

overall rendering latency.

In summary, the proposed game flow has the following advantages. Firstly, bypassing

the center cloud when dealing with view change events (in step (2′) can greatly shorten their

response latencies, making it possible to have immediate local view updates. Secondly, by

rendering frames on edge clouds (in step (4), we can harness their low latency and high

bandwidth. Thirdly, the core network traffic can be largely reduced due to the adoption of
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edge clouds and the possibility of multicasting game updates to users.

2.4.2 Edge Cloud Migration

When we try to place a player’s gaming service (including all the components resided in an

edge cloud) onto edge clouds, selecting a suitable edge cloud becomes an important issue.

After an initial edge cloud selection, we also need to consider the need of dynamically

migrating the services to other edge clouds as the workloads and user locations change.

Specifically, we note that service migration becomes necessary when the player moves

around while playing games and/or the workload at each edge cloud changes over time.

In our framework, we consider the migration problem by partitioning continuous time

into discrete time slots with equal length (say, 2 minutes). With the time partition, we can

simultaneously make the optimal migration decisions, upon offline snapshots of the net-

work/server states, for overall clients in the network. In respond to dynamic network/server

states, any online solution, nevertheless, introduces the significant computation overhead

in highly frequent decision making procedures. We have developed an efficient algorithm

based on Markov Decision Process (MDP) to select and migrate a player’s edge service,

which we will discuss in detail in § section 2.5. However, unlike many of the service

migration solutions which assumes an ignorable service transition time, we acknowledge

that it is impossible to migrate an edge service from one edge to another instantly given the

size of a VR game world. Therefore, we propose a mechanism to ensure a new edge cloud

is activated when a player connects to the new one.

To ensure a smooth transition between two edge clouds, the key is the ability to render

frames correctly for a player connected to the destination edge cloud. A frame rendering pro-

cess consists of a series of matrices operations on a game world matrix, a view/perspective

matrix as well as a projection matrix, where the game world matrix represents a collec-

tion of 3D game models with the particular spatial relations, the view/perspective matrix

transfers the relative positions of 3D game models to fit a particular view perspective, and
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the projection matrix converts 3D positions of game models into the homogeneous screen

space. Service migration in EC+ mainly involves migrating a player’s game world as the

other matrices are ignorable in size and reproduced easily.

Here, we discuss the migration events of interest within a time slot starting from g. We

assume that a mobile user gets the service from an edge cloud 4 at g.

• EC+ starts to make the migration decisions for all clients in the network at the time g.

• At the time g + Δ1, EC+ finishes the computations of the decision making and

determines to migrate the service of this mobile user to the edge cloud 4′. 4′ will

get a notification so that it subscribes to the multicast group of this game and start

receiving all the game updates. The edge cloud 4 starts to send a snapshot of the

game world at the time g + Δ1.

• At the time g +Δ2, 4′ successfully receives the game world snapshot (taken at g +Δ1)

and start to merge the game updates received since g + Δ1.

• At the time g + Δ3, 4′ finishes the merging, and it now has the latest game world that

is exactly same with the one kept in 4. Meanwhile, the 4′ continues to receive the

game updates and keeps the game world up-to-date.

• At the end of the time slot g, this mobile user connects to 4′ and successfully gets the

gaming service from this new edge cloud. The previous edge cloud e will release all

the gaming resources if there is no other client connects to it.

With this mechanism, we can seamlessly complete service migration in EC+ without any

service down-times as long as the time slot is larger than Δ3 for all the migrations.

2.5 Edge Cloud Selection on User Mobility

We devise an algorithm to efficiently determine where to place and migrate an edge cloud

service in the presence of dynamic network states and server workload states, and user mo-
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bility (initial edge cloud selection can also be generalized as a migration operation). In EC+,

we model our placement/migration algorithm as a Markov decision process (MDP) [56]

since a placement/migration decision is only affected by a current state and user mobility.

We realize that several MDP-based selection approaches have been studied in the litera-

ture [57, 58, 59, 60, 4], but we notice that VR-MMOGs impose new challenges, namely,

the changing network status over time, the mutual impact among players, and the existence

of an extra entity (central server) in the communication. In this section, we present our

modified edge selection algorithm.

2.5.1 Problem formulation with Markov Decision Process

In our selection algorithm, we consider a total of " edge clouds, and # access points

through which mobile users connect to the Internet. As we discussed in §section 2.4, we

partition continuous time into discrete time slots with equal length. At a time slot g, a

mobile user connects to an access point =g ∈ [1, #] and receives a gaming service from

an edge cloud <g ∈ [1, "]. We define this as a state (g=<g=g. A player may move and

connect to a new access point at the end of a time slot. Due to the user mobility and changing

workloads on the edges, we may need to migrate the gaming service to a proper edge to

satisfy the user’s QoS requirement. To achieve this, an action 0g upon the state migrates the

service from the edge cloud <g to <g+1. The action 0g is represented by the location of a

possible edge cloud <g+1, thereby 0g ∈ [1, "]. The new edge cloud at <g+1 is anticipated

to have the minimal network cost by considering the player’s any possible locations (=g+1)

in the next time slot. Note that while we are calculating MDP at the time g, we assume

that the migration happens at g + 1, as we described in the previous section. As a result, at

the time slot g + 1, the system may enter a transit state: (g+1=<g+1=g+1, with the transition

probability ?((g, 0g, (g+1). We assume that the transition probability is given as the known

parameter of our algorithm as there are many studies on mobility prediction including [61,

62, 63] and our earlier work [64] that calculates the probabilities of user movements based
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upon the aggregated network-level statistics.

To determine the destination edge cloud <g+1, a cost function � ((g, 0g, (g+1) is defined

to measure the overall network transmission cost as well as the migration cost from a state (g

to a state (g+1, when we take an action 0cg . We detail this cost function in §subsection 2.5.2.

Our objective is to find an optimal action (0cg ) for each user in each time slot that minimizes

long-term cost. The long-term cost function is given by

+ ((0) =
∞∑
g=0

Wg ·
"×#∑
(g+1=1

?((g, 0cg , (g+1) · � ((g, 0cg , (g+1), (2.1)

where W ∈ [0, 1) is a discount factor that controls the impact of future states on the long-term

cost counted from the current state. We convert the cumulative sum of the long-term cost

given by Equation Equation 2.1 into a recursive definition:

+∗((g) = min
0g
{?((g, 0g, (g+1) · [� ((g, 0g, (g+1) + W · +∗((g+1)]} , (2.2)

It is well known that the optimal action 0cg = <g+1 ∈ [1, "] for each state (g can be

obtained byBellman’s value iteration [56]which iteratively update the equation Equation 2.2

until the value of +∗((g) is converged.

2.5.2 Game-specific Cost Function

Whilemodeling the placement algorithm, we try tominimize the “cost” of actions to provide

the best game experience. We believe that the cost function should take different features

into consideration, including latency, bandwidth, etc.. Here, in order to propose a general

framework that can satisfy all kinds of VR-MMOGs, we do not mandate the application

requirements on different features. Instead, we assume the game provider can get their cost

function based on the studies in [65, 66, 67, 68] and their policies.

In this section, we list a set of features that we have in mind. They come in two

categories: transition cost and transmission cost. The transition cost is the cost incurred
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when we migrate an edge service. As we already have a mechanism to avoid application

down-times, this cost is curtailed to the bandwidth cost (i.e., the size of the game world).

The transmission cost is the cost to the communication between an edge cloud and a

player. This transmission cost can be further categorized into two sub-types: cost without

mutual impact and cost with mutual impact. The cost without mutual impact is merely

measured by network latency, bandwidth and server load, while the cost with mutual impact

is additionally measured by a count of game world sharing (since a migration decision for

one player can meanwhile affect the decision of other players who are sharing one game

world). Importantly, we highlight the cost with mutual impact which intends to co-place

multiple users in one edge cloud to facilitate game world sharing and to reduce the overall

migration overhead.

2.5.3 Optimal Joint Migration Decisions

Many earlier MDP based migration approaches calculate an individual migration decision

for each user, assuming a user’s migration decision have little impact on others. However,

when to consider the co-placement, the assumption fails to be hold. To this point, we have to

consider all possible combinations of migration decisions at each step and find the optimal

joint migration solution.

Assume the total number of the migration decisions we need to jointly consider at each

step is  , which is also the number of users in the system, and denote each decision as

3: , : ∈ [0,  ). We then redefine a state as (6;>10; (C) = {(31 (C), (32 (C), ..., (3 −1 (C)}, and

a joint action as 06;>10; (C) = {031 (C), 032 (C), ..., 03 −1 (C)}. The new reward function is the

sum of the reward function of each individual decision. Finally, we solve Eqn. Equation 2.1

to compute the optimal joint migration action 0∗
6;>10;

(C).

Though this approach provides a globally optimal migration decision, the time complex-

ity to search for the optimal joint solution is much higher than that of treating each migration

decision independently. Specifically, the time complexity of the latter is $ ("3#2), while
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the time complexity of the global solution is $ (("3#2) ). This cost is prohibitively high,

preventing us from finding the optimal joint solution in real-time.

2.5.4 Heuristic Joint Migration Decisions

When to calculate the optimal migration decision for each player, we hold an assumption

that all other players remain connecting to their current edge clouds and therefore, the

whole edge cloud serving conditions does not change. Only under this assumption, the

optimal migration decision can keep being optimal. Yet, we fail to hold this assumption

if we consider a collection of migration decisions for multiple players. To be close to the

assumption, we can order the migration probability of all players and preferentially calculate

the optimal migration decisions for the players with higher migration likelihoods. By doing

so, after making a migration decision, we argue that the latter migration decisions are

more likely to have players connected to the current edge cloud. To estimate the migration

likelihoods, we use the overall cost function value subtracting the migration cost. We argue

that this heuristic approach with the time complexity of$ (:"3#2) canminimize the global

migration cost.

2.5.5 Runtime Optimization to Reduce Decision Time

We discover a few characteristics of the MDP calculation in this edge placement problem,

which can be explored to optimize the runtime. The first characteristic we find is

∀0g, <g+1 : ?(<g=g, 0g, <g+1=g+1) = 0, Fℎ4A4 0g ≠ <g+1.

It indicates that a migration action is deterministic towards next state. Thus, we can sim-

plify the state transition probability from ?(<g=g, 0g, <g+1=g+1) to ?(<g=g, <g+1=g), also

simplify the cost function from� (<g=g, 0g, <g+1=g+1) to� (<g=g, <g+1=g+1), Accordingly,

we can reduce the space complexity of ? and � from $ ("3#2) to $ ("2#2).
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The second characteristic we discover is

∀<g, <′g, <g+1, <′g+1 : ?(<g=g, <g+1=g+1) = ?(<′g=g, <′g+1=g+1).

It demonstrates that the state transition probability merely relates to linked access points,

but not to server placements . Thus, we can simplify the transition probability from

?(<g=g, <g+1=g) to ?(=g, =g+1) and accordingly reduce the space complexity of ? from

$ ("2#2) to $ (#2).

The third characteristic we discover is

∀=g, =′g : � (<g=g, <g+1=g+1) = � (<g=′g, <g+1=g+1).

It implies that the cost function merely associates with the connected access point =g+1

at the time slot g + 1. Thus, we can simplify the cost function from � (<g=g, <g+1=g+1)

to � (<g, <g+1=g+1) and accordingly reduce the space complexity of � from $ ("2#2) to

$ ("2#).

By jointly considering the above 3 propositions, we can simplify Equation 1 to

+ (<0=0) =
∞∑
g=0

Wg ·
#∑

=g+1=1
?(=g, =g+1) · � (<g, <c

g+1=g+1), (2.3)

where <c
g+1 is our decision at the time slot g which takes effect at the time slot g + 1.

Therefore, we can reduce the total space complexity from$ ("3#2) to$ ("2# + #2), and

reduce the time complexity of each MDP iteration from $ ("3#2) to $ ("2#2). Since the

computation of Equation Equation 2.3 can be converted into the vector multiplication of

?(=g, ∗) · [� (<g, 0g∗) + W+ (0g, ∗)], we can further reduce the execution time using parallel

computing (multi-threading, and GPU). We evaluate the performance improvement of our

proposed optimizations in §section 2.6.
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Fig. 2.6 Access points with corresponding effective ranges and heat (
∫
�>==(C)3C)

2.5.6 Further optimizations

Besides the aforementioned optimizations of MDP applied in VR-MMOG migration, we

also consider the following optimizations: 1) Every player moves in a regular activity range

and may never, if not impossible, link to a portion of remote access points. Accordingly,

the probability table is sparse. We can therefore compress this table as well as the cost table

to further reduce the space and time complexity. 2) In many cases, players can only link to

several nearby edge clouds due to the stringent latency and bandwidth requirements. We

can identify and exclude remote edge clouds that fail to satisfy the requirements from the

possiblemigration destinations. We can then remove the states associatedwith themigration

destinations and eliminate the calculation of the cost and utility table with respect to the

states. Since proposed edge placement algorithm is a framework that is generally applicable

to all (VR-)MMOGs, we leave the application-specific optimizations as our future work.
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Fig. 2.7 3-layered network topology and corresponding bandwidth and latency

Fig. 2.8 Event latency (95%
CI) Fig. 2.9 Refresh rate (95% CI)

Fig. 2.10 Aggregate network
traffic

Fig. 2.11 Result of game simulation without mobility in different architectures: traditional
gaming with powerful GPU (Desktop), traditional gaming with mobile devices (Mobile),
videostream gaming (Video), and EC+

2.6 Evaluation

We conduct a detailed simulation-based evaluation of the proposed EC+ architecture as well

as the MDP based service placement/migration algorithm. We summarize the simulation

results in this section.

2.6.1 Comparison of EC+ with Other Gaming Architectures

We use detailed simulation studies to compare our EC+ architecture with the traditional

client-centric gaming architecture and the cloud-centric video streaming architecture.



30

Simulation Setup

We first present our simulation set up for the comparison study.

Network Topology: We use the San Francisco AP map developed in our earlier work [64]

as the network topology. We estimate each AP’s coverage using Voronoi cells (see Fig. Fig-

ure 2.6). We further assign the APs to different domains to represent more realistic network

topologies. Specifically, we build a 3-level hierarchical topology as shown in Fig. Figure 2.7.

In simulations, games players connect to the Internet through APs, and edge clouds

are assumed co-located with the domain routers. The central cloud is placed at � (see

Fig. Figure 2.7). We carefully choose bandwidth and latency parameters for different links

in the network. For example, we assume in the intra-domain network, nodes are connected

through gigabit switches with millisecond level latencies. The actual capacity for inter-ISP

connections is usually much higher, but since the core network is multiplexed with other

traffic, and the ISPs might not be directly linked to each other, we choose a bandwidth of

200Mbps (shared bandwidth) and a latency of 50ms (due to the number of hops between

two ISPs). As such, we summarize the chosen bandwidth and latency values for different

types of links in Fig. Figure 2.7.

Player Location Trace: To model mobile game players, we use the San Francisco cab trace

that we adopted in our earlier work [69]. The trace contains the locations of more than 500

cabs between 2008-05-17 and 2008-06-10. We observe noticeable daily mobility patterns

in the trace. In our study, we pick the data sets on May 31, 2008, Saturday, as our trace.

Since the simulated APs are mainly located in the central San Francisco area (see map in

Fig. Figure 2.6), we focus on the 66 cabs that traveled in that area. We assume these 66

players are playing a same MMOG game. Fig. Figure 2.6 shows the “heat” of each AP. The

hotness of AP 0 is calculated as � (0) = ∑
D∈* CD (0), where CD (0) is the total time a user D

is associated with 0.

Game trace: We consider a 1-hour synthetic game trace, taking the parameters from the

study in [52]. Each player’s user events arrive with Poisson distribution (_ between 9.5
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and 15), a portion of which are randomly selected as game events. Each player’s action per

minute is between 30 and 300. In total, we have 18,686,459 user events (average: 78.642

UEs per second per user), and 287,567 (1.53%) game events (average: 72.618 actions per

minute per user). Size of user events: Poisson distribution (_=40); Size of updates (in

traditional and edge): Poisson distribution (_=130) [52]; Size of frames (in video stream

and edge): (60Mbps / 60fps) = ∼1Mb/f. The games are refreshing at 60fps.

Metrics: We use metrics including event latency (time between when the event happens

and the clients see the related update) for both user and game events, core and edge network

traffic, and frame rate.

Comparison Results with Stationary Players

To study the fundamental difference among the architectures, we compare them assum-

ing the players are stationary. Specifically, we take the locations of each user at 0:30, 1:30,

. . . , and 23:30 on 5/31 and create 24 different traces. We evaluate each architecture using

these traces and report the results in Fig. Figure 2.11.

Traditional client-centric gaming fares well when users are equipped with desktops with

powerful GPUs (with an average rendering latency pf 10ms). In this case, the view change

response latency is rather low, ∼20ms. The aggregate network traffic is also low (∼400Mb)

since only small game update packets are exchanged between the server and the client,

with multicast support. Finally, it can obtain a refreshing rate of 60fps. When users with

mobile devices (GPUs can render 5 frames per second) try to adopt traditional gaming, the

rendering performance degrades significantly. The average view change rendering latency

is 300ms, and the average refreshing rate is just around 5 fps.

Client-centric video stream gaming faces performance bottleneck in the core network,

since it has to unicast frames to each client (which consumes more than 1Tb core network

traffic). The frame drop rate is quite high, and therefore the actual frame rate at the client



32

side is only around 7 fps. To alleviate the frequent frame drops, we adopt forward error

correction (FEC) so that each frame contains all the events that arrive before the frame is

rendered. However, even with this technique, the rendering latency is still high (>1s for

both view changes, and game events) since the events can only be delivered by the next

frame that is successfully delivered. We note that the performance can be even worse in the

real world due to the multiplexing on the back haul links.

EC+ can provide event update latency (< 30ms for view change events and around 100ms

for game events) and refresh rate (of 56fps) similar to traditional gaming (desktop), since

the renderers in edge clouds are powerful and are close enough to the clients. With such

a low update latency on the non-game events, our architecture can have good support on

VR applications where users need immediate feedback for the non-game events (e.g., look

into another direction). While our solution does consume more traffic (>10Tb) in the edge

network compared to the traditional gaming, we argue that it is feasible and stable since the

ISPs usually have full control of the edge network to ensure QoS.

2.6.2 Validation of Edge Placement

To validate our edge selection solution, we conduct a set of small-scale simulations with

synthetic topology and a small number of users.

Simulation Setup

We consider a 7 × 7 grid (shown in Fig. Figure 2.12), where each of the 24 outermost grid

cells represents an AP and the users that are connected to this AP. We consider all the edge

clouds are resided in the gray grid cells next to the outermost circle, and the central cloud

is resided in the central grid. We assume a link’s latency is proportional to the distance

between the two endpoints, while its bandwidth is reversely proportional to the distance.
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Fig. 2.15 With back probability

Fig. 2.16 Edge placement decision in single user case
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Validation for single player scenarios

We first validate our algorithm with a single player and varying the migration cost. We note

that the migration cost varies from game to game, dependent on the game world size.

We first consider a simple mobility pattern where the player moves around clock-wise

from one grid cell to the next (along with the outermost circle). Fig. Figure 2.12 shows

that when the migration cost is small, the placement algorithm always tries to place the

service on the nearest edge cloud whenever the play moves. In this example, the player

changes the location 24 times, and the corresponding service changes the location 16

times. When the migration cost increases, the algorithm decides to migrate less frequently

(see Fig. Figure 2.13). For example, when the migration cost is around twice the current

transmission cost – in this case the transmission latency is doubling the frame size in a time

slot – the service location changes four times when the player changes location 24 times.

When we further increase the migration cost, there are only two service locations for

a total of 24 location changes for the player (see Fig. Figure 2.14). Finally, when the

migration cost becomes too large (greater than four times of the current transmission cost),

the algorithm does not migrate at all (not shown in the figure).

We next consider a different player mobility pattern: at each time slot, the player moves

to the next grid cell in the clockwise direction with a 60% probability, moves to the next grid

cell in the counter clockwise direction with a 10% probability, and stay in his/her current

cell with 30% probability. This new mobility pattern leads to different migration decisions

(shown in Fig. Figure 2.15). Here, we use the same migration cost as in Fig. Figure 2.13.

The results show that with the probability of the player moving backward, the placement

algorithm becomes more conservative. It still has 4 different service locations, but the

location change occurs one-time slot later than that in Fig. Figure 2.13.

In the considered single player scenarios, the algorithm outcomesmatch our expectation.

We thus validate its correctness in the single player case.
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Fig. 2.18 Reuse of existing edge (red) to reduce migration cost even when the original client
(at 6) is going to move away

Fig. 2.19 Mutual impact in multiplayer scenario

Validation for Multi-Player Scenarios

Next, we validate our algorithm when we consider two players in the same 7 × 7 grid

topology.

Here we vary the distance between the two players. Fig. Figure 2.17 shows that, when

the two players are close to each other (when they are in cells 2 and 5 respectively), our

algorithm decides to place them on the same edge cloud to take advantage of shared game

world. In Fig. Figure 2.18, when considering where to migrate to, our algorithm tries to

migrate a player to an edge cloud that is hosting other players to ruse game worlds and

reduce the migration cost. In this example, even though the original player (in cell 6) is

about to leave the red edge cloud, our algorithm still migrates the player in cell 23 to the

red edge cloud.

Optimal vs Heuristic Placement with Multiple Players

Next, we compare the optimal placement solution vs the heuristic placement solution when

we have two players in the 7 × 7 grid topology. In each time slot, the player moves to the
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Fig. 2.20 Result of service migration with different strategies

next grid cell clockwise, stay in the same grid cell, and moves to the next grid cell counter

clockwise, each with 1/3 probability respectively.

Fig. Figure 2.20 reports the resulting migration cost of the following schemes: (1)MDP-

optimal, the global optimal placement, (2) MDP-MMLF, the heuristic MDP placement

scheme in which we place the user with the maximum migration likelihood first, (3) MDP-

random, the heuristic MDP placement scheme in which we randomly sort the players, (4)

Always, an always-migrate scheme, and (5) Never, a never-migrate scheme.

Among these five schemes, MDP-optimal gives the best performance. It also consumes

the most memory and CPU resources. Given the 24 × 24 client locations and 16 × 16 edge

cloud locations, it takes more than 1 minute to compute the migration decisions for two

players. When we have a large number of players, the computation cost will be prohibitively

costly. We also observe that all three MDP based solutions give much better performance

compared to naive always-migrate or never-migrate schemes. Finally, we find that our

proposed MDP-MMLF performs closer to the optimal solution than MDP-random.

Evaluating the Runtime Overhead

Finally, we measure the run-time overhead of the three versions of MDP-MMLF implemen-

tation: (1) original, (2) optimized. Our hardware platform consists of an Intel Core i7-4790

CPU with the clock rate of 3.60GHz [70], running Ubuntu 14.04.
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Fig. 2.21 Result computation time

In our experiments, we consider 1 user and vary the number of edge clouds and client

locations. Figure Figure 2.21 shows the computation times for all three implementations.

The results show that the execution time of the original implementation increases fast

with the number of edge/client locations (so does its memory consumption). The optimized

implementation has a much lower execution time with the same edge/client numbers.

We believe this version can be used for scenarios with many more users since in the real

network, there are usually ∼10 possible edge clouds that a user can use at any time.

2.7 Conclusion

In this paper, we highlight the main challenges of VR-MMOGs. In response to these

challenges, we propose the EC+ architecture that seamlessly distributes the required pro-

cessing across user devices, edge clouds, and the center cloud to achieve ultra low-latency

responses, frequent refreshing, and a large number of concurrent players. To complement

our architecture, we also investigate a game service placement algorithm which intends to

maximize the gaming performance for all the players by dynamically placing their services

on those edge clouds that can lead to the best performance. Finally, we have conducted

detailed simulation studies to evaluate our edge-cloud assisted gaming architecture and dy-
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namic service placement algorithm. Our results indicate that the proposed approach serves

as a viable solution for supporting VR-MMOGs.
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CHAPTER 3

EFFICIENT ORCHESTRATION OF EDGE RESOURCES AND JOBS

3.1 Introduction

In the last decade, hosting major computing jobs on central clouds has proven effective

since central clouds generally have abundant computing/storage resources [71]. Recently,

as mobile devices and Internet of Things (IoT) sensors keep increasing, an unprecedented

amount of data have been generated, and a new class of applications is quickly looming

on the surface. These applications involve performing intensive computations on sensor

data (typically image/video) in real time, aiming to realize much faster interactions with the

surrounding physical world and thus providing truly immersive user experiences.

With this trend, central clouds may no longer be the appropriate platform for supporting

these applications, in view of performance limitations caused by network bandwidth and

latency constraints. For example, a mobile AI assistant application needs responses within

tens of milliseconds. An autonomous driving system, as another example, may generate

gigabytes of data every second by its stereo camera or LIDAR, and needs responses within

a few milliseconds. Yet, for a client instance in New Jersey which connects to Amazon EC2

cloud servers located in West Virginia, Oregon and California, the round-trip latency alone

is 17, 104 and 112ms, with achievable bandwidths of 50, 18 and 16Mbps, respectively. In

order to support these emerging edge applications, edge cloud computing has been proposed

as a viable solution [1, 2, 3], whichmoves the computing towards the network edge to reduce

the response latency while also avoiding edge-to-core network bandwidth constraints.

Several aspects of edge computing have been studied in recent years. For example,

the study in [7] proposes systems that enable rapid virtual machine (VM) handoff or

live migration across edge clouds. Edge computing also raises many interests from the

analytic perspective as it introduces a new communication and computing paradigm [72].

39
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In order to minimize service delay in edge computing, works in [73, 74, 75, 76] introduced

optimization frameworks tominimize transmission delay and/or processing delay formobile

users. Applications proposed in [3, 77] offloaded intensive computing tasks to edge clouds

to achieve low latency image processing.

Despite the earlier and ongoing work on various aspects of edge computing, the problem

of how to efficiently deploy these new edge applications within an edge cloud has not been

systematically studied. Simply duplicating the successful cloud computing design will not

work for the edge applications. This is mainly due to the highly heterogeneous nature of

edge clouds. Unlike central clouds, edge clouds are often comprised of heterogeneous com-

putation nodes with widely diverse network bandwidths. For example, the studies in [5, 6],

assume the computation nodes and their interconnects are relatively homogeneous in central

clouds, while the edge servers considered in [7, 8] exhibit widely varying capabilities. Thus,

an important new challenge associated with edge clouds is that of efficiently orchestrating

these heterogeneous resources in order to meet application latency constraints.

To address this problem, we set out to build and test such an edge computing orchestration

platform. Our design is driven by the requirement of deploying and accelerating this new

class of edge applications – e.g., processing large volumes of data such as video data

generated by mobile/IoT sensors (including 3D cameras) in real time. We first build an edge

cloud testbed that consists of four different CPU settings, four different GPU settings and

five different link bandwidth settings. On these nodes, we run Apache Storm [10] as the

baseline distributed edge computing framework. Apache Storm provides real-time support,

but has an implicit assumption that the underlying computing/networking resources are

homogeneous. Also, it does not provide proactive support for GPUs. In this work, we

address these shortcomings. Note that our platform design is not specific to Apache Storm.

In fact, it can easily interface with other distributed computing frameworks such as Apache

Flink.

The design of Hetero-Edgemainly focuses on distributed resource orchestration for edge
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computing. Specifically, we intend to answer the following important questions. Firstly, if

an edge cloud consists of both GPUs and CPUs, when do we serve requests on GPUs and

when do we use CPUs? How do we partition our jobs so that we can most efficiently utilize

the available resources? Secondly, after partitioning the job to several pipelined and parallel

tasks, how can we map them to appropriate computing nodes (including both GPUs and

CPUs) to minimize their overall latency? Thirdly, how can we effectively prevent a parallel

task from completing significantly slower than its peers and becoming a straggler [11]?

Since resources of edge clouds are highly diverse, the likelihood of having stragglers is

much higher than in a homogeneous setting. By carefully studying these questions, we

devise the resource orchestration schemes in Hetero-Edge, featuring: (1) matching a task’s

resource demand with the underlying node’s resource availability, (2) matching a task’s

workload level with the underlying node’s resource availability, and (3) suitably splitting

work on processors with vastly different processing power (GPUs vs CPU).
We have implemented an example edge application on our Hetero-Edge testbed, i.e.,

real-time 3D scene reconstruction from two stereo video streams [78]. We use this example

application to drive our evaluation effort. We emulate a realistic setting where user streams

dynamically join and leave the system and track the detailed system performance for two

hours. We show thatwith seven edge servers, we are able to support all the streams that arrive

within the two hours with an average per-frame latency of 32 milliseconds. We also show

that our schemes can effectively prevent straggler tasks and can shorten a frame’s latency

by 40% compared to the state-of-the-art Storm schedulers when we have heterogeneous

resources. We summarize our contributions as follows:

• We have designed and implemented a distributed edge computing platform Hetero-

Edge that extends the capabilities of a stream processing framework, Apache Storm,

for use in heterogeneous distributed edge environments with a focus on latency

reduction. We make our code open source and share it through GitHub at .

• We have devised a dynamic task topology generation scheme, a latency-aware task

http://github.com/wuyangzhang/HeteroEdge.git
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scheduler and a proportional workload partitioning scheme, which, when combined,

can proactively minimize the overall latency in heterogeneous distributed edge envi-

ronments.

• We have implemented 3D scene reconstruction as a driving application example and

have shown how to optimize this category of applications on our edge platform to

achieve low latency. Note that we only use this application as an example to drive the

discussion and evaluation. Other real-time edge vision applications will be readily

supported in the same way without changing our system in any way.

• We have learned valuable lessons in deploying real-time edge applications on hetero-

geneous edge servers. Such lessons will help us realize the wide adoption of edge

computing.

3.2 System Model

In this section, we discuss the emerging real-time edge vision applications, summarize the

system assumptions for edge clouds, and present the architecture of Apache Storm.

3.2.1 Characteristics of Real-Time Edge Vision Applications

In this study, we focus on supporting a new class of applications, which we refer to as

real-time edge vision applications. These applications usually take image/video data that

are captured by mobile or IoT devices as input, perform complex processing on each frame

and have stringent latency requirements. For examples, consider real-time 3D scene re-

construction [78], virtual reality [75], augmented reality [79], vision-based autonomous

driving [80], etc. Though diverse, these applications share quite a few common char-

acteristics, such as low latency requirement and high computation/networking demand.

Importantly, they are usually parallel and pipelined by nature.

In the rest of this chapter, we will use 3D scene reconstruction [78] as the example use

case to drive the discussion and evaluation. We believe that the ability to perform low latency
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Fig. 3.1 An example 3D reconstruction application. (a) is the mini self-driving cars with the
stereo cameras, (b) is the raw input from the left stereo camera, (c) is the resultant disparity
map by which we can infer the depth of each pixel, and (d) is the reprojection result which
shows the depth of objects in the real world

3D scene reconstruction not only can help build mobile augmented reality or virtual reality

to enhance immersive user experience, but also can enable an array of applications with tight

feedback loops. For instance, 3D scene reconstruction for autonomous vehicles is used to

detect the relative positions of the obstacles and trigger collision-avoidance reactions [81].

It typically consists of the following steps: (1) offline camera calibration, (2) stereo image

rectification, (3) disparity calculation, and (4) 3D re-projection. The essence is to infer the

disparity of each pixel from multiple 2D images and then use this extra dimension data to

reconstruct the object jointly. Disparity measures the difference in retinal position between

two points that correspond to the same point on the real object. By definition, a more remote

point tends to have a smaller disparity value than a nearer one. This step mainly decides

the quality of the reconstruction effect and usually involves heavy computation overhead.

Figure Figure 3.1 illustrates a 3D reconstruction example that we have implemented in

our laboratory.
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3.2.2 System Assumptions for Edge Clouds

The definition of edge clouds varies from study to study, ranging froma smart traffic light that

has some computing capability [1] to a small-scale data center [2]. In this study, we assume

an edge cloud consists of multiple edge servers within radio access networks, e.g., eNodeBs,

that are available for hosting computing tasks [82]. Different from traditional central clouds

that are generally equipped with homogeneous and well-provisioned resources, edge clouds

are opportunistic and heterogeneous by nature. An edge cloud is usually composed of

nodes with varying computing capabilities (CPUs with different cores, GPUs, etc.), storage

capacities (hard drives, memories, etc.), and network capacities.

We further assume there is no resource contention among different application processes

on the same node. This assumption can be achieved by deploying edge applications in

light containers such as Kubernetes [83] or NVIDIA docker [84] that supports GPU-level

isolation.

In this work, we have implemented a Hetero-Edge testbed consisting of 7 edge servers.

An edge server has one of the following CPU configurations: (1)Xeon E5-2630, 2.40GHz,

32 cores, (2)Xeon E5-2698, 2.30GHz, 64 cores, (3)Xeon W5590, 3.33GHz, 16 cores and

(4)i7-3770, 3.40GHz, 64 cores. Their GPU configurations are the following: (1) no GPU,

(2) Tesla K40 GPU, (3)Tesla K80 GPU and (4)Tesla C2050 GPU. Each computation node

can have the following link bandwidth configurations: .5Gbps, 1Gbps, 2Gbps, 5Gbps, and

10Gbps.

3.2.3 Background on Apache Storm

In Hetero-Edge, we choose to adopt Apache Storm [85], a popular distributed real-time

data stream processing framework, to support the distributed processing. Apache Storm

has been deployed in various scenarios such as algorithmic trading, real-time video pro-

cessing, distributed remote procedure call, etc. We choose Apache Storm because it offers

the following advantages: (1) designed for pursuing ultra-low latency, (2) easily scale to
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Fig. 3.2 Apache Storm Architecture and Example Topology. The rightmost figure shows
an example topology that consists of a user-specified DAG. A user needs to submit this
topology to the master node in a Storm cluster. Then, the master node distributes the tasks
of the topology to the pool of its slave nodes who take the job of executing those tasks. The
detailed system design of a slave node is shown in the leftmost figure

dynamically available resources, (3) no need to store any intermediate results (the main

bottleneck of those distributed computing frameworks with the MapReduce design, e.g.,

Hadoop [86])

Here, we briefly overview its architecture and go over the core components that are

relevant to our study. Apache Storm consists of a single master node and a pool of slave

nodes. The master node is in charge of distributing tasks to the slave nodes while a slave

node manages worker processes. Each worker process further manages executor threads,

each of which executes a task in a given task graph.

In the logical layer, Apache Storm is composed of three core components: Spout, Bolt

and Topology. A spout is usually the source of a data stream, a bolt is an intermediate

processing function, and the topology (represented by a Directed Acyclic Graph (DAG))

steers the data flow according to the job logic. We present the overview of Apache Storm

in Figure Figure 3.2.

When deploying an application on edge clouds with Apache Storm, we need to consider

the following main issues:
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1. Task topology construction. In this step, we construct one or more suitable task

topologies for the application, considering both data parallelism and task parallelism.

We take into consideration the resource diversity when generating the task topology

– we choose to have different task topologies for the same application under different

resources. See Section subsection 3.3.2.

2. Task scheduling. When a topology is constructed, we assign each task bolt in the

topology to a computation node based on certain scheduling principles. The default

Storm task scheduler does not consider resource diversity and simply assigns nodes

in a round-robin fashion. Such a schedule leads to long latency in heterogeneous

edge cloud. In this study, we devise a latency-aware task scheduler that can consid-

erably outperform the Storm default scheduler and the state of the art resource-aware

scheduler [87]. See Section subsection 3.3.3.

3. Stream grouping. When a frame arrives at the system, this step considers how the

output stream of a bolt (e.g., bolt 1 in Figure Figure 3.2) is partitioned among the next

step data parallel bolts (e.g., bolts 2, 3 and 4 in Figure Figure 3.2). If the resource

variation of these bolts is not considered, one of the data parallel bolts can become

much slower than others, thus slowing down the entire processing. In this study, we

devise a proportional partitioning scheme that can alleviate this problem. See Section

subsection 3.3.4.

3.3 Detailed Hetero-Edge Design

In this section, we present the detailed design of Hetero-Edge. Hetero-Edge has many

design details, and we specifically focus on those that can shorten the end-to-end application

latency. Below, we use the 3D scene reconstruction application to drive our discussion.

However, our design is not limited to this particular use case but is applicable to all the

real-time edge vision applications that we describe in Section subsection 3.2.1.
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Fig. 3.3 (a) Latency breakdown of the 3D reconstruction application under different con-
figurations; (b) Latency of different degree of data parallelism in the para-DAG with the
resolution of 640x480. The 16-way para-DAG gives the lowest latency

3.3.1 Preparation: Bottleneck Analysis

Before presenting our design, we first break down the application into several functions

– for the 3D reconstruction application, we have rectification, disparity calculation, and

re-projection. We profile the processing latency of these functions with different image res-

olutions on Xeon E5-2360, and present the measured latency values in Figure Figure 3.3(a).

We find that the disparity calculation function is the predominant bottleneck, which becomes

even more pronounced as the image resolution goes up.

We next execute the disparity calculation function on Tesla K40GPU and find its latency

drops significantly. For example, 94% latency reduction with the resolution of 640x480

drops.

In our subsequent steps, we will use the above latency information to make scheduling

decisions. Usually, it is a good practice to perform such a bottleneck analysis before trying

to deploy an application. Fortunately, there are various tools we can use for this step. For

example, we can use NVIDIA OPENACC [88] to identify the execution bottleneck as well

as function dependency of an application.
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3.3.2 Task Topology Construction

Given the above function breakdown and the identified system bottleneck, we consider

the following two practical topologies when with different available computing/networking

resources and will evaluate these choices in Section subsection 3.4.2.

Serial Topology (serial-DAG): In a serial-DAG, we can either aggregate all functions into a

single bolt for the benefit of introducing little inter-communication overheads or assign an

individual function to different bolts for the merit of generating a pipelined flow to decrease

task queuing time for an available processor, as shown in Figure Figure 3.4(a). Importantly,

a serial-DAG is often more practical when we execute the bottleneck function on GPUs than

on CPUs. In this case, the non-bottleneck functions can be scheduled either on the hosting

CPU or even on a remote CPU.

Parallel Topology (para-DAG): Since the disparity step dominates the entire CPU pro-

cessing latency, we next consider a topology that enables data parallelism to accelerate

the computation, which we call a para-DAG (which is usually demanded when GPU is

unavailable). With an =-way para-DAG, we partition the data set into = partitions and feed

each partition into a data-parallel bolt that runs the same disparity calculation function. We

illustrate this topology in Figure Figure 3.4(b).

Different partitioning strategies, e.g., range partition, hash partition or composite par-

tition, can be adopted according to different algorithm designs of bottleneck functions. In

this specific application, considering the disparity calculation function processes each row

of the image independently, we partition the image in a row-major fashion. Say the original

image has " × # pixels, and we partition the image into = ways. Then each partition

has "×#
=

pixels. Also, in order to guarantee each partition has enough pixels to generate

the disparity map, we need to include the boundary rows in both partitions. As a result,

additional pixels need to be included in each partition. In this case, the total number of

pixels a partition thus becomes ("×#
=
+" × 3

2 ) where d is the searching block size defined

in the block matching algorithm that calculates disparity. The resulting para-DAG topology
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(a) (b)
Fig. 3.4 We consider two task topologies: (1) serial-DAG whose bottleneck bolt (i.e., the
disparity bolt) is usually scheduled on GPUs, and (2) para-DAG whose bolts are scheduled
on CPUs

is shown in Figure Figure 3.4(b). Due to data partitioning, we need to introduce two more

processing steps to the topology: partitioning and merging.

Considering each partition will combine more boundary rows that introduce additional

computation/networking overheads (which is a usual case among any image partition algo-

rithms), we further examine the topology to decide the suitable partitioning degree =. We

choose the 640x480 image resolution at 1fps, and measure the overall latency as well as

the latency for each component for different = values. The measured results are shown in

Figure Figure 3.3(b). We find that the 16-way para-DAG gives the lowest latency, 83ms in

our case.

Note we need to explore particular best value = for different applications.

In reality, if we need to support many more applications in the edge clouds, we can

use tools such as those in [88] for automatic DAG partition and parallelization. Finally, we

remark that data partitioning does not only apply to the para-DAG, but it should also be

considered in generating the GPU code for the serial-DAG.
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Fig. 3.5 (a) Estimated processing latency vs CPU utilization. Using the measured latency
values under different CPU utilization, we build a 3-order polynomial curve to estimate
the processing latency under any utilization; (b)Comparing the latency of LaTS, round-
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3.3.3 Task Scheduling

After generating the two topologies for the application, we next enter the task scheduling

phase and try to schedule both topologies on the available edge server nodes. That is, we

need to assign each bolt in a topology onto a suitable edge server.

Apache Stormprovides two task schedulers: the round-robin scheduler and the resource-

aware scheduler [87]. The round-robin scheduler is the default Storm scheduler. It allocates

bolts to computing nodes in a round-robin fashion, oblivious of the bolt resource demand

and the available node resource. It may allocate, for example, a computation intensive task

on a node that is short of CPU cycles, leading to long execution latency. To address the

problem with the round-robin scheduler, the resource-aware scheduler selects a node with

the most available CPU resources and fills it up before assigning any task to any other node.

Here, users estimate the available CPU resources on each node as well as the requested CPU

resource for each bolt at the compile time. Without a reliable estimation mechanism, it can

either lead to resource waste (by overestimating the requested CPU) or result in resource

contention (by overestimating the available CPU). Furthermore, neither round-robin nor

resource-aware scheduler considers GPU scheduling.
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Our proposed task scheduler has the following three main components: (1) a mechanism

to estimate the performance and resource requirement of a task/bolt (we use these two terms

interchangeably), (2) a tool to track the available resources within an edge cloud, and (3)

a latency-aware task scheduling algorithm. Below we describe these components one by

one.

Estimating a Bolt’s Performance and Resource Demand

Before devising our task scheduling scheme, we first need to develop a mechanism to es-

timate a bolt’s performance (i.e., processing latency) and resource demand (i.e., memory

usage, network usage, GPU/CPU usage). Among these four items, a bolt’s memory usage

and network usage remain constant no matter where the bolt is executed, which we can cap-

ture through ThreadMXBean.getThreadAllocatedBytes(), and count the byte array length

of output stream in Storm.

The other two items – a bolt’s processing latency and processor usage (we consider

both GPUs and CPUs here) – are not only determined by which server the bolt is executed

on but also the load on the server. As such, in the profiling phase, we run each bolt

on every edge server (including both CPUs and GPUs) at different processor utilization.

We increase the processor utilization level from 0% to 100% with an increased interval

of 10%. For each bolt-processor-utilization combination, we measure the latency (by

recording the elapsed time through JAVA Timer API) and processor time (which is the

amount of GPU/CPU time dedicated to this bolt process and can be captured through

ThreadMXBean.getThreadCpuTime(), while GPU utilization can be read from nvidia-smi).

We can then feed the measured values into =-th order polynomial curves (= = 3 in this

work because it provides the lowest predictive mean squared error) to derive an estimation

model for each bolt. This model takes a particular processor’s resource level and utilization

as input, and gives an estimation of the bolt’s processing latency and consumed processor

utilization. Figure Figure 3.5 (a) plots the latency estimation models for the four bolts of
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the 3D reconstruction application on the Xeon E5-2630 processor.

Finally, note that the estimationmodel inVideoStorm [5] does not consider the processor

load, but we believe processor load is an important parameter to consider when estimating

a bolt’s latency and resource demand.

Real-time Edge Resource Monitoring

We periodically collect the available resources for each edge server. For this purpose, the

following actions are performed: (1) collecting the port bandwidth of a node using the

iPerf/scp utility; (2) collecting CPU frequency and utilization of a node using the lscpu

utility; and (3) collecting the current memory usage of a JVM worker from the Storm’s

daemon. (4) collecting GPU utilization of a node using the nvidia-smi utility.

Proposed Heuristic: Latency-Aware Task Scheduling (LaTS)

As mentioned earlier, we construct two task topologies for each application: a serial-DAG

and a para-DAG. In the task scheduling phase, we need to consider both topologies.

A serial-DAG only makes sense if we schedule the bottleneck bolt on a GPU; otherwise,

the latency will be too long. The other non-bottleneck bolts will be scheduled on CPUs

because the functions associated with these bolts usually receive much lower speedup ratios

by switching to GPU.

Below, we first describe our CPU scheduling strategy – how we schedule a list of bolts

to CPUs – and we then briefly describe our GPU scheduling strategy which essentially

uses the same technique as CPU scheduling. The CPU scheduling part is needed when we

schedule non-bottleneck bolts for a serial-DAG as well as when we schedule all the bolts

for a para-DAG. Given a pool of bolts to be scheduled on the CPUs (we refer to them as

CPU bolts below), we rank them in the descending order of the required CPU time – we

estimate their required CPU time on the same processor. Then we schedule the bolt from

the bolt list one by one.
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For a given bolt and an edge node, we perform the following two types of latency

estimation. First, we measure the node’s CPU utilization and use the latency estimation

model as shown in Figure Figure 3.5 (a) to estimate the processing latency. Next, we

measure the node’s available bandwidth and use the bolt’s output streaming size to estimate

the network transmission latency. The total latency for this bolt-node combination is then

the sum of these two types of latency values. In this way, we can estimate the total latency

of this bolt on every edge node in the system.

We assign the bolt to the node that gives the minimal latency. After the assignment,

we also need to decrease the available resources on that node by removing the amount of

resources consumed by this bolt (processor utilization, memory and bandwidth).

We repeat the above process until we finish scheduling all the CPU bolts.

We next describe howwe schedule the bottleneck bolt in a serial-DAG to the appropriate

GPU. The idea is very similar to the above CPU scheduling. We choose the GPU that gives

the shortest overall latency (we estimate both processing latency and networking latency

here) to host the bottleneck bolt.

We refer to the above task scheduling algorithm as LaTS. Ideally, when a new user stream

connects to the edge cloud, we need to run the algorithm on both topologies and choose

the assignment that has the lowest latency. Note that when the edge cloud becomes larger

or when many users are connected to the edge cloud, it may be too costly to exactly follow

this procedure. In this case, we need to develop faster heuristics to perform task scheduling.

We describe and evaluate such heuristics in Sections subsection 3.4.2 and subsection 3.4.3

(check Figure Figure 3.10).

3.3.4 Stream Grouping

Apache storm provides the flexibility of specifying how to steer a bolt’s output stream

to the connecting bolt(s), i.e., streaming grouping. This decision becomes particularly

important when the connecting bolts run in the data parallel mode – they run the same task
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function but on their own partition of the data set. For example, in our para-DAG shown

in Figure Figure 3.4 (b), we can specify which disparity bolts we choose to use and how to

partition the stream among the chosen disparity bolts. This decision can vary from frame

to frame.

A good stream grouping algorithm can take into consideration the resource variation

among the bolts and then partition the data to ensure these data-parallel bolts finish at about

the same time. If one such bolt is scheduled on a node with fewer resources and incurs a

much longer latency than its peers, then it becomes a straggler [11] and slows down the

entire processing. In general, their succeeding bolt has to wait for all the data-parallel bolts

to finish before it can start processing. We note that our LaTS task scheduling algorithm is

already effective in avoiding stragglers because it tries to place each bolt on the node that

yields the shortest latency. However, when the edge servers have vastly different resource

levels, stragglers cannot be avoided by the task scheduling phase alone. Clever stream

grouping techniques thus become critically important in avoiding stragglers.

Proportional Partition Stream Grouping (Pro-Par): The default streamgrouping algorithm

in Apache Storm partitions the data set equally among the bolts and cannot avoid stragglers

if the bolts have varying computing capabilities. In Hetero-Edge, we propose to adopt a

proportional partitioning method, Pro-Par in short. In Pro-Par, we periodically estimate

the computing capacity of those nodes that host the data parallel bolts and then partition the

stream in such a fashion that a node’s partition is proportional to its computing capacity.

By default, we equally partition the stream among all the data parallel bolts and measure

their processing latency periodically. When the gap between the fastest bolt and the slowest

bolt exceeds a certain threshold, we trigger Pro-Par. Specifically, let us suppose each

disparity bolt’s latency is {C1, ..., C<} where < is the degree of data parallelism.

We adopt the min-max normalization method to remap the < different latency values

to the range (0,1). We estimate the computing capability of each node 28 as 1
<×C8 , and

the overall computing capability � provided by < nodes is
∑<
8=1 28. Then we partition the
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stream proportionally to each node’s computing capacity and transmit the resulting partition

to each bolt.

3.4 Measurements and Experiments

We have implemented the proposed techniques (described in Section section 3.3) on the

Hetero-Edge testbed. In this section, we present our evaluation effort in detail. Our

evaluation has the following three components: (1) evaluating the proposed schemes using

an edge cloud that does not have GPUs, (2) evaluating the proposed schemes using an edge

cloud with GPUs, (3) putting everything together and taking a close look at the Hetero-Edge

run-time dynamics.

3.4.1 Evaluation of Hetero-Edge with only CPU and Network Heterogeneity

LaTS Better Handling Resource Heterogeneity: We compare three task schedulers –

i.e., round-robin, resource-aware, and LaTS – in terms of the ability to handle CPU and

network diversity. The image resolution is 1440x1080. We consider a very low frame

rate, 1fps, so that we can focus on the latency alone. Here, we consider seven edge servers

(Xeon E5-2630, 2.4GHz) with different CPU and network resources. Five nodes have

10Gpbs network links and no other processes. Two nodes have 1Gbps links and their CPUs

are already partially occupied (available CPU utilization 10%-40%). We find that LaTS

performs the best: 40.0% shorter than round-robin, and 41% shorter than resource-aware

as shown in Figure Figure 3.3 (b). In addition, we use the yellow bars to show the latency

distributions of the 16 disparity bolts that are in data parallel mode. We find that LaTS leads

to lower average latency for the 16 disparity bolts and a much lower gap between the fastest

and slowest bolts, which is the key to minimizing the overall latency. Note that we have

also tried other edge cloud configurations and have observed similar trends. As a result, we

believe that LaTS can better address CPU and network diversity among edge servers and

lead to a shorter end-to-end latency. It also does a better job preventing stragglers.
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Fig. 3.6 Comparing the latency of LaTS, round-robin and resource-aware at high system
load by increasing the single stream’s frame rate

Fig. 3.7 Comparing the latency of LaTS, round-robin and resource-aware at high system
load by increasing the number of concurrent streams

LaTS Better Handling High System Load: Next, we look at how these three schemes

handle a higher load.

In the first set of experiments, we have 4 Xeon E5-2630 (2.4GHz) edge nodes, two with

10Gbps links and 100% CPU available, one with 1Gbps links and 100% CPU available,

and one with 10Gbps links and 20% CPU available. We have a single stream and increase

the stream’s frame rate, from 10 to 150fps, with an increase of 10fps. The image resolution

is 640x480. The results are shown in Figure Figure 3.6. We find that LaTS continuously

outperforms the other two schedulers by more than 25%.

In the second set of experiments, we fully load Hetero-Edge with the setting as the

resource heterogeneity experiment in Figure Figure 3.3 (b). We fix each stream’s frame rate

as 30fps and increase the number of concurrent streams, from 1 to 10, with an increase of
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Fig. 3.8 Comparing the latency distribution of data parallel bolts with Pro-Par and equal
partition stream grouping

Fig. 3.9 Comparing the latency of CPU Parallel, GPU Single and GPU Hybrid when we
have utilized both GPUs and CPUs

1 stream. The results are shown in Figure Figure 3.7. We find that LaTS can support up to

9 concurrent streams without the latency significantly going up. On average, its latency is

66% lower compared to round-robin and 61% to resource-aware.

Pro-Par Better Handling Stragglers: Next we evaluate the effectiveness of Pro-Par in

mitigating the stragglers. In this set of experiments, we target a case wherein the straggler

bolts continue to slow down because their nodes have insufficient resources (which is already

the best effort by LaTS). The equal partition stream grouping leads to two straggler bolts

(5, 9 in Figure Figure 3.8) that require 41% more time compared to other bolts. With our

proportional partition stream grouping, it balances the workload based on the computing

capability of each bolt and therefore effectively avoids stragglers. Its slowest bolt is 36%

faster than the equal partition steam grouping scheme.
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3.4.2 Evaluation of Hetero-Edge with GPU, CPU and Network Heterogeneity

In this subsection, we consider edge clouds that have heterogeneous CPUs, networks and

GPUs. Since Storm does not consider GPU by default, we only focus on our own schemes in

this subsection. We compare the latency results of the following three scheduling strategies:

(1) CPU Parallel: para-DAG bolts running on CPUs, (2) GPU Single: serial-DAG bolts

running on the same node (with the bottleneck bolt running on theGPUwhile non-bottleneck

bolts running on the host CPU) and (3) GPU Hybrid: the bottleneck bolt of a serial-DAG

running on one node’s GPU while non-bottleneck bolts run on other nodes’ CPUs. Please

note that these three schemes are special cases of our LaTS scheme. By understanding

which of these three strategies is faster and when to use which, we can greatly speed up

LaTS as we do not need to search every possible combination.

We increase the number of streams from 1 to 10, with the frame rate for each stream to

be 30fps. Figure Figure 3.9 shows the comparison results. As expected, CPU Parallel gives

much longer latency than the two GPU solutions. GPU Hybrid performs better than GPU

Single when the concurrent stream number is more than 8 due to the over-utilization of the

host CPUs. When the stream number is less than 8, two GPU schemes perform similarly as

a result of the low communication overhead.

3.4.3 Supporting real-time edge vision applications through Hetero-Edge

After evaluating each technique in different settings, we finally put together everything

and evaluate whether our Hetero-Edge platform can effectively support the intended real-

time edge vision applications (3D construction in our example). Suppose we provide 3D

reconstruction services to nearby mobile users with our edge cloud (that involves all the

nodes in our testbed, including both GPUs and CPUs). Each interested user connects to our

edge cloud and starts a stream; after a certain number of frames, the user ends the stream.

In our experiments, we use the following synthetic workload: each user stream has a frame

rate of 30fps and a video resolution of 640x480; each user initiates a session of 1 minutes
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Fig. 3.10 When a new stream arrives at the system, we follow this flow to find out which
scheme we are going to use to schedule this stream: GPU Single, GPU Hybrid or CPU
Parallel. This flow is faster than exactly going through the LaTS scheduler

and leaves the system; the user session arrival process follows a Poisson distribution with

an average arrival rate of 20.

Suggested by the results reported in Figure Figure 3.9, our edge server adopts the policy

described in Figure Figure 3.10. Following this policy, when the GPUs and their host CPUs

are rather empty, we choose GPU Single to schedule streams. Slowly, the CPUs on those

nodes that have GPUs will become busy, and we can switch to GPU Hybrid to schedule the

arriving streams. Finally, when all the GPUs get busy, we resort to CPU Parallel to serve

the subsequent streams.

We run our service for 2 hours, and report important run time parameters in Figure Fig-

ure 3.11. From top to bottom, we have (1) the number of connected streams, (2) the number

of GPU Single, GPU Hybrid, and CPU Parallel streams, (3) GPU utilization, (4) CPU

utilization of those nodes that have GPUs, (5) CPU utilization of those nodes that do not

have GPUs, and (6) the histogram of the end-to-end per frame latency.

We would like to highlight the following observations from the results. Firstly, the

average per-frame latency is 32ms, which we believe is satisfying for many real-time edge

vision applications. Secondly, our platform can effectively schedule streams across highly
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heterogeneous computation nodes – on average, we have the most GPU Single streams

and the least CPU parallel streams. Thirdly, we find that the GPUs have lower utilization

than their host CPUs because these CPUs spend more time processing the non-bottleneck

bolts than GPU processing the bottleneck bolts. As a result, when host GPUs become fully

utilized, GPU Hybrid becomes useful.

Lessons Learned: By offering the edge service for 2 hours, we have learned a few lessons

regarding application deployment on edge servers. The most valuable lesson we have

learned is that it is important to include GPUs in an edge cloud. It can help significantly

reduce the per-frame latency. However, we need to pay extra attention to GPU scheduling

as well as coordinating GPUs and CPUs to finish one job efficiently. Finally, optimizing

CPU scheduling is also very important, such as carefully matching the task demand with

resource availability and matching the workload level with resource availability.

3.5 Related Work

In this section, we briefly discuss related work in execution acceleration by edge cloud com-

puting, popular distributed and parallel computing platforms, and relevant task allocation

algorithms.

3.5.1 Execution Acceleration via Edge Cloud Computing

Many works in the rising Edge Computing field have been proposed to tackle challenges

in systems, models, and applications as it introduces a new computing and communication

paradigm. Yang et al. [89] propose to dynamically partition data stream between mo-

bile and cloud server to minimize processing latency by a centralized genetic algorithm.

Chaufournier et al. [90] use multi-path TCP to accelerate edge cloud service migration

to reduce the network latency when mobile users move away. Pang et al. [91] consider

a latency-motivated cooperative task computing framework for selection of edge clouds to

provision edge services. Bahreini et al. [92] design an online heuristic algorithm that
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Fig. 3.11 Important run time parameters for our 3D reconstruction edge cloud in a 2-hour
duration
efficiently places application tasks in edge clouds to minimize execution time. Zhang et

al. [75] propose an edge-based VR gaming architecture where edge clouds perform heavy

frame rendering tasks to reduce end-to-end latency significantly. FemtoCloud [93], %3-

Mobile [94] explore idle mobile devices to configure a compute cluster and provisions

cloud services at the edge. Liu et al. [95, 96] design and implement high quality and low

latency VR and AR system leveraging the support of edge clouds. Users can leverage this

mobile cluster to perform parallel programming to accelerate computation speed. Those

works focus on optimizing the communication pattern in the systems to achieve lower la-

tency, but they fail to provide a practical execution platform and a resource orchestration

mechanism which are aware of resource heterogeneity at the edge.
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3.5.2 Task Allocation Algorithms

Efficiently assigning tasks of an application to proper processors is critical to achieve high

performance in a heterogeneous computing environment [97]. Task allocation, as an NP-

complete problem, has been extensively studied and many heuristics solutions have been

proposed according to diverse optimization goals [98]. In terms of Storm platform specific

task allocation schemes, several major schedulers have been proposed. T-storm [99] and the

work in [100] proposed a traffic-aware task allocation that tries to minimize inter-node and

inter-process traffic. R-storm [87] introduced a resource-aware task allocation that intends

to increase overall throughput by maximizing resource utilization. Although the above

schedulers showed performance improvement over the default Round-Robin mechanism,

they failed short in achieving lower latency in the context of edge computing which required

proactive available resource estimation and task profiling. The state of art of stragglers

mitigation is to introduce speculative execution that waits to observe the progress of the

tasks of a job and launches duplicates of those tasks that are slower [11]. This approach,

however, is usually applied in cloud computing where computing resource is much more

abundant to utilize.

3.6 Concluding Remarks and Future Directions

In this paper, we develop a latency-aware edge resource orchestration platform based on

Apache Storm. The platform aims to support real-time responses to edge applications that

are computation intensive. The main contribution of our platform stems from a set of

latency-aware task scheduling schemes. By deploying the proposed platform on a group

of edge servers with heterogeneous CPU, GPU and networking resources, we show that we

are able to support real-time edge vision applications, rending the per frame latency around

32ms. Our study shows that edge cloud computing is indeed a promising platform to support

emerging edge applications. Moving forward, we will continue to investigate how to further

drive down the latency, e.g., distributing the bottleneck bolt across multiple GPUs. We
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will also investigate how to efficiently integrate our edge cloud computing platform with

traditional central clouds to support applications that need to utilize both modes. Another

future work topic is that of understanding the impact of access network bandwidth on edge

resource assignment and scheduling.



64

CHAPTER 4

PARALLEL OFFLOADING TO FURTHER ACCELERATE COMPUTER VISION

JOBS

4.1 Introduction

In the past few years, we have witnessed the rapid development of Deep Neural Networks

(DNNs), due to the fast-growing computation power and data availability [101]. Thanks

to these advancements, mobile applications, particularly mobile vision applications, enjoy

a performance boost in various vision-related tasks such as photo beautification, object

detection and recognition, and reality augmentation [102]. However, to achieve state-of-

the-art performance, DNN models (e.g., [103, 104]) usually have complicated structures

with numerous parameters, hence a high demand in computation and storage. As a result,

it is challenging to run full-size DNN models on mobile devices, even running into heat

dissipation issues. Meanwhile, mobile deep vision applications are often interactive and

require fast or even real-time 1 responses. Examples include adversarial point cloud gen-

eration [105] that reconstructs 3D scenes for intuitive surrounding interpretation and video

object semantic segmentation [106] that facilitates personal activity recognition. In these

cases, it is hard, if not impossible, to satisfy the applications’ latency requirements due to

the limited processing capacity on mobile devices.

To this end, researchers have spent a great deal of effort to improve the performance

of mobile deep vision applications. On the one hand, various techniques have been de-

veloped to make DNN models smaller to reduce the computation load, e.g., weight and

branch pruning and sharing [107, 108], tensor quantization [109, 110], knowledge distil-

lation [111], and network architecture search [112]. However, these techniques often lead

to compromised model accuracy due to the fundamental trade-off between model size and

1Frame rate required for real-time processing is application dependent.
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model accuracy [113]. On the other hand, people have proposed to increase the computing

resources by using massive accelerators, such as GPU, FPGA [114] and ASIC [115]. Nev-

ertheless, due to the fundamental limits of size and power, mobile devices still fall short to

meet the requirements of target applications.

To solve these challenges, several offloading approaches have been proposed [96, 116,

117, 118, 119, 120, 121]. By offloading the intensive model inference to a powerful edge

server, for example, AWS Wavelength [122], the inference latency can be significantly

reduced. With the high bandwidth and low latency provided by the emerging 5G net-

works [123], offloading is promising to provide a good user experience for mobile deep

vision applications. However, existing offloading methods are insufficient in two aspects.

Firstly, most existing solutions use low-resolution images through the entire pipeline,

which makes the inference task lightweight, but lose the opportunity to leverage the rich

content of high resolution (e.g., 2K or 4K) images/frames. Taking advantage of such rich in-

formation is important for applications such as video surveillance for crowded scenes [124],

real-time Autopilot system [125], and online high-resolution image segmentation [126].

Secondly, most existing methods only consider offloading tasks between a single pair of

server and client, assuming that no competing clients or extra edge resources available. In

practice, a single edge server is equipped with costly hardware, for example, Intel Xeon

Scalable Processors with Intel Deep Learning Boost [127] or NVIDIA EGX A100 [128],

which are typically shared by multiple clients (i.e., multi-tenant environment). Moreover,

the heterogeneous resource demands of applications running on edge servers [129] and

highly dynamic workloads by mobile users [130] lead to resource fragmentation. If the

fragmentation cannot be efficiently utilized, it may produce significant resource waste across

edge servers.

To this point, in order to meet the latency requirements of deep mobile vision applica-

tions with heterogeneous edge computing resources, it is advantageous to offload smaller

inference tasks in parallel to multiple edge servers. This mechanism can benefit many real-
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world deep vision tasks, including multi-people keypoint detection for AR applications and

multi-object tracking for autonomous driving tasks [131], where objects can be distributed

to different servers for parallel task processing. Meanwhile, offloading to multiple servers

imposes several challenges. Firstly, it requires the client to effectively partition the inference

job into multiple pieces while maintaining the inference accuracy. In the case of keypoint

detection or instance segmentation, simply partitioning a frame into several slices may split

a single instance into multiple slices, therefore, dramatically decreasing the model accuracy.

Secondly, the system needs to be aware of available computation resources on each server

and dynamically develops the frame partitioning solution, so that it can ensure no server in

the parallel offloading procedure to become the bottleneck. Finally, such a system should

have a general framework design that is independent of its host deep vision applications.

To address the aforementioned challenges, we propose and design Elf2, a framework to

accelerate high-resolution mobile deep vision offloading in heterogeneous client and edge

server environment, by distributing the computation to available edge servers adaptively.

Elf adopts three novel techniques to enable both low latency and high quality of service.

To eliminate the accuracy degradation caused by the frame partitioning, we first propose

a content-aware frame partitioning method. It is promoted by a fast recurrent region

proposal prediction algorithm with an attention-based LSTM network that predicts the

content distribution of a video frame. Additionally, we design a region proposal indexing

algorithm to keep track of the motion across frames and a low resolution compensation

solution to handle new objects when first appear. Both work jointly to help understand

frame contents more accurately. Finally, Elf adopts lightweight approaches to estimate

the resource capacity of each server and dynamically creates frame partitions based on the

resource demands to achieve load balance. Overall, Elf is designed as a plug-and-play

extension to the existing deep vision networks and requires minimal modifications at the

application level. We have implemented Elf on commercial off-the-shelf servers and four

2Elf is a small creature in stories usually described as smart, agile, and has magic power
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mobile platforms in Linux and Android OS, supporting Python, C++, and Java deep vision

applications. We will make our code open source and available at GitHub.

The main contributions of this paper are as follows.

• To the best of our knowledge, we are the first to propose a high-resolution mobile

deep vision task acceleration system that offloads the computation to multiple servers

to minimize the end-to-end latency.

• To perform the computation offloading from mobile to server while simultaneously

considering image content, computation cost, and server resource availability, we

propose a set of techniques including recurrent region proposal prediction, and re-

gion proposal centric video frame partitioning and offloading, and region proposal

computation cost estimation.

• We have built a prototype system with comprehensive experiments to demonstrate

that our Elf system can be integrated with 10 state-of-the-art deep vision models and

reduce the end-to-end latency by parallel offloading, up to 4.85×, with using 52.6%

less bandwidth on 4 edge servers while keeping the accuracy sacrifice within 1%.

• We have learned valuable lessons of the relations between inference latency and the

model design. Such lessons will help the vision community to better design models

to benefit more from parallel offloading.

4.2 Motivation and Challenges

Target Applications. In this paper, we target those applications that employ state-of-the-art

convolutional neural network (CNN) models to conduct a variety of challenging computer-

vision tasks from images or videos. Examples include image segmentation, multi-object

classification, multi-person pose estimation, andmany others. In general, those applications

take an input image or video frame which is often of high resolution, e.g., 1920×1080,
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containing multiple objects, and perform a two-step processing task. First, they use CNN

networks to extract feature maps from the input and generate region proposals (RPs) for

every object. Each RP is a candidate region where an object of interest – for example, a cat

or child – may appear. Second, they use a CNN network to evaluate each RP and output

the fine-grained result such as the classified object type or the key body points of a person.

These state-of-the-art CNN models are usually highly computation intensive and run at a

low frame rate, e.g., from 0.5 to 10 frames per second (fps) even on a high-end GPU (e.g.

NVIDIA TITIAN 1080Ti) [132, 103, 133].

Limitations of Existing Task-Offloading Approaches. Offloading the inference tasks of

CNNs onto an edge server is a promising approach to realizing the target applications on

mobile devices [96, 134]. However, these existing task-offloading approaches are limited

in two critical aspects. First, they only support task offloading to just one server, assuming

that the server has sufficient resources to finish the offloaded task in time. However, a costly

offloading server, for example, Intel Xeon Scalable Processors with Intel Deep Learning

Boost [127] or NVIDIA EGX A100 [128], is usually shared by multiple clients and thus

may not have sufficient resources to run a task. To demonstrate it, we profiled the computing

latency of ResNet50 [135]. Each client runs on NVIDIA Jetson Nano [136] with 802.11.ax

and the server runs the model inference on an NVIDIA TITIAN V GPU. The computing

latency goes up in a linear pattern from 25.9 ms to 162.2 ms when changing the number

of concurrent clients from 1 to 4. To handle the latency burst, Amazon SageMaker [137]

adopts Kubeflow Pipelines to orchestrate and dynamically configure the traffic running on

each server. However, this solution cannot handle resource fragmentation and may waste

the computing cycles.

Another limitation of existing solutions is that they use low-resolution (e.g., 384 ×

288 [138]) images or videos to make the inference task lightweight. However, cameras on

today’s mobile devices typically capture with a much higher resolution such as 2K and 4K.

Such a big gap causes two problems. On one hand, those existing low-resolution solutions
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(a) Equal partitioning (b) Ideal partitioning
Fig. 4.1 Examples of video frame partitioning. The simple partitioning method in (a) may
split pixels of the same object into multiple parts and yield poor inference results. We can
achieve much better partitioning using Elf, close to the ideal partitioning shown in (b)

fail to leverage the rich information of high-resolution images and videos to enable advanced

applications such as various video analytics, for example, smart intersection [139]. Existing

studies have already shown running object recognition related tasks on high-resolution

images can largely increase the detection accuracy [140] . On the other hand, supporting

high resolutions requires more computations and further undermines the assumption that

one server can provide sufficient resources for the entire application. Our measurement

results show that the inference latency of MaskRCNN [132] running on Jetson TX2 [141]

boosts by 25%, 50% and 300% with increasing the image resolution from 224×224 to 1K,

2K and 4K, respectively, making the offloading harder.

To address the limitations of the existing work and the high resource demands of the

target applications, in this paper, we design Elf, a lightweight system to accelerate high-

resolution mobile deep vision applications through parallel task offloading to multiple

servers.

Design Challenges. There are several key challenges in designing the Elf system. The

first challenge lies in how to partition the computation. Broadly speaking, there are two

approaches, model-parallel and data-parallel. Model parallelism, i.e., splitting a largemodel

into multiple subsets of layers and running them on multiple servers, generates the large

intermediate outputs from convolution layers which would lead to high communication

overhead among servers [142]. For example, cracking open the DNN black-box [117]
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demonstrates that ResNet152 [135] produces the outputs with 19-4500× larger than the

compressed input video. In this work, we explore data-parallelism by partitioning an input

frame and offloading each frame partition to a different server. However, as shown in

Figure Figure 4.1(a), the simple equal partitioning may not work because 1) offloading a

partition containing parts of an object may significantly reduce the model accuracy and 2)

offloading a partition containing no objects may lead to excessive waste. Instead, we need

to develop a smart video frame partitioning scheme to generate the ideal image partitioning

shown in Figure Figure 4.1(b). The second challenge is how to distribute the tasks to

multiple servers to minimize the total model inference latency. Ideally, all the servers

should finish their tasks at the same time. However, that is hard to achieve because multiple

dynamic factors must be considered together: the number of objects in the input images,

the resource demand of processing each object, the number of servers and their available

resources. Furthermore, another challenge in Elf is to minimize the workload of the

resource-limited mobile device. In particular, the video frame partitioning is the step before

offloading, running on the mobile device, and thus must be efficient and lightweight.

4.3 Overview and Design Guidelines

Elf intends to address the above challenges by adopting the following steps:

a) Recurrent region proposal prediction. On the mobile end, whenever a new video

frame arrives, Elf first predicts its region proposals based on the list of region proposals

in history frames. The prediction results include each region proposal’s coordinates.

Here, a region proposal (RP) refers to a group of pixels containing at least one object of

interest, e.g., a vehicle or a person.

b) Frame partitioning and offloading. Given the list of predicted RPs, Elf partitions

the frame into “RP boxes”. All the RP boxes collectively cover all the RP pixels while

trying to remove unnecessary background pixels. An RP must be entirely included

in at least one RP box. Elf then offloads these partitions to suitable edge servers for
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RP-centric frame 
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Server 1

Partial inference

Server 2

Partial inference

Mobile device

Load-aware 
parallel offloading

Partial inference
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Edge servers
Fig. 4.2 Elf system architecture. We explain the architecture using a multi-person pose
estimation example with three edge servers

processing, taking into consideration the partition’s computation cost and server resource

availability.

c) Partial inference and result integration. Taking the offloaded partition as input, the

edge servers run the application-specific CNN networks to yield partial inference results.

These partial results are finally integrated at the mobile side to form the final result.

The above workflow is illustrated in Figure Figure 4.2. While the third step is natural and

easy to do, the first two steps call for careful designs to achieve the goals of Elf. In the

rest of this section, we discuss the design guidelines of these two key components of Elf,

focusing on how they are designed to address the challenge described in Section section 4.2.

4.3.1 Recurrent Region Proposal Prediction

We adopt the following guidelines to devise the recurrent RP prediction algorithm: 1)

the algorithm is lightweight; 2) the algorithm can effectively learn the motion model of

the objects/RPs from history frames; and 3) the algorithm pays more attention to more

recent frames. Here, a well-designed algorithm can accurately predict the RP distribution

and help minimize the impact of the frame partitioning upon the deep vision applications’

model accuracy. Following the guidelines above, we devise an attention-based Long Short-
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Term Memory (LSTM) network for recurrent RP prediction. Note that the main-stream

RP prediction/tracking algorithms require large CNN models [143]. Instead, our approach

efficiently utilizes the historical RP inference results and converts the computing-intensive

image regression problem to a light-weight time series regression problem. As part of the

prediction algorithm, we also develop an RP indexing algorithm that keeps track of the

motion across frames. Finally, we also propose a Low Resolution Compensation scheme to

handle new objects when they first appear.

4.3.2 RP-Centric Video Frame Partitioning and Offloading

Partitioning a video frame allows Elf to offload each partition to a different edge server

for parallel processing. Ideally, a well-designed frame partitioning scheme should show a

negligible overhead in the operation of partitioning and merging. Keeping these goals in

mind, we design an RP-centric approach with the following guidelines.

Content awareness. The partitioning algorithm should be aware of the number of and

locations of RPs in a frame and be inclusive. As such, the algorithm is supposed to have

each RP completely included in at least one frame partition. Otherwise, the object contained

in this RP may be missed.

Computation cost awareness. Depending upon the objects contained in each partition,

partitions have different computation costs. For example, it is usually more challenging to

identify multiple overlapping vehicles with similar colors than identifying a single vehicle.

The algorithm should thus take into consideration this cost heterogeneity to achieve load

balancing among the servers.

Resource awareness. After partitioning, the algorithm next matches these partitions to a set

of edge servers. Unlike central clouds, edge cloud servers exhibit heterogeneous comput-

ing/storage/networking resources due to the distributed nature and high user mobility [116].

This makes the matching problem even more challenging. A poor match may result in job

stragglers that complete much slower than their peers and thus significantly increases the
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overall latency.

4.4 Fast Recurrent Region Proposal Prediction

When a new frame arrives, Elf predicts the coordinates of all the RPs in the frame, based

on the RPs in the previous frames. In this section, we present three components that are key

to achieve fast and effective RP prediction: an attention-based Long Short-Term Memory

(LSTM) prediction network, a region proposal indexing algorithm and a low-resolution

frame compensation scheme. We choose to use attention-based LSTM for its powerful

capabilities of learning rich spatial and temporal features from a series of frames.

4.4.1 Problem Definition and Objective

As the objective of training the LSTM network is to acquire accurate RP predictions, the

objective of the network (i.e., the loss function in our prediction network) can be expressed

as:
min
θ
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(4.1)

where the vector RC
8
denotes the 8-th RP at frame C, and θ is the model parameters. Here,

R̂C
8
is a vector of 4 attributes: [Gtl, Htl, Gbr, Hbr], which are the G, H coordinates of its top-left

and bottom-right corners, respectively. Further, # is the number of previous frames used

in the prediction network 5 (·). In the rest of this section, we explain our algorithmic effort

in minimizing the prediction error as calculated in Equation (4.1).

4.4.2 Attention-Based LSTM Network

Below we present the details of our attention-based LSTM RP prediction network.
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Fig. 4.3 Our attention-based LSTM network

Network structure

Recently, attention-based RNN models [144, 145] have shown their effectiveness on pre-

dicting time series data. In this work, we adapt a dual-stage attention-based RNN model

(DA-RNN [146]), and develop a compact attention-based LSTM network for RP predic-

tions. Our model consists of three modules – an encoder module, an attention module and

a decoder module, as shown in Figure Figure 4.3.

Encoder: To predict the 8-th RP in the current frame, the encoder takes the spatial and

temporal information (i.e., the RP’s locations in history frames) of the 8-th RP from # past

framesRC
8
∈ R5×1 as input, and encodes them into the feature map {Y C

en}, C ∈ {0, ..., # −1}.

This encoding is conducted by a two-layer LSTM [147], which can be modeled as:

Y C
en = 5en(Y C−1

en ,RC), (4.2)

where 5en(·, ·) denotes the LSTM computation.

Attention: Subsequently, we adopt an attention module which is a fully-connected layer to

select the most relevant encoded feature. The first step is to generate the attention weight
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Algorithm 1 Region Proposal Indexing
Input: RPRC−1

8
= [GC−1

tl,8 , H
C−1
tl,8 , G

C−1
br,8 , H

C−1
br,8 ] for object 8 in frame C−1, where 8 ∈ [0, 1, ..., <C−1]

and <C−1 is number of objects in frame C − 1. Label set is L.
Output: For frame at C, assign an index to each region proposalRC .

{Step-1. Initialization:}
1: if C < # then ⊲ label with a consistent index
2: RC

8
[5] ← ;C

8
, ;C
8
∈ L; ∀8 ∈ [0, 1, ..., <C−1]

3: end if
{Step-2. Measure distance and area:}

4: for 8 := 1 to <C−1 do
5: for : := 1 to <C do
6: �x

8,:
← |(GC−1

tl,8 + G
C−1
br,8 ) − (G

C
tl,: + G

C
br,: ) |/2 ⊲ x-axis.

7: �
y
8,:
← |(HC−1

tl,8 + H
C−1
br,8 ) − (H

C
tl,: + H

C
br,: ) |/2 ⊲ y-axis.

8: �8,: ← |1 −
(GC−1

br,8 − G
C−1
tl,8 ) (H

C−1
br,8 − H

C−1
tl,8 )

(GCbr,: − G
C
tl,: ) (H

C
br,: − H

C
tl,: )
| ⊲ Area

9: end for
10: end for

{Step-3. Match and label:}
11: for : := 1 to <C do
12: 8̂ ← arg min8 {�8,: }<

C−1

8=0 ; s.t. �x
8,:
< 0.02, �y

8,:
< 0.02, �8,: < 0.2

13: if 8̂ is not #>=4 then
14: RC

:
[5] = RC−1

8̂
[5] ⊲ label with matched RP

15: else
16: RC

:
[5] = ;C

:
, ;C

:
∈ L ⊲ new label for unmatched

17: end if
18: end for

β:

;C =W2tanh(W1 [Yen; 2#−1
de ; ℎ#−1

de ]) (4.3)

VC =
exp(;C

8
)∑)

9=)−#−1 exp(;C9 )
(4.4)

where [Yen; 2#−1
de ; ℎ#−1

de ] is a concatenation of the encoder output Yen, decoder cell state

vector 2#−1
de and decoder hidden state vector ℎ#−1

de . W1 and W2 are the weights to be

optimized. Thereafter, the context vector can be computed as:

cC =
#−1∑
9=0

VC9Yen (4.5)
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which captures the contributions of different encoder outputs.

Decoder: The decoder module processes the context vector through a fully connected layer,

an LSTM model and a fully-connected regressor.

4.4.3 RP Indexing

To precisely predict a region proposal, we need to collect historical data, which provides

necessary information such as motion model and trajectories. However, many vision

applications, such as those discussed in Section section 4.2, commonly output object labels

in random order. Thus it is hard to match and track region proposals across frames. For

example, let us look at the example illustrated in Figure Figure 4.4, where the same objects

(and RPs) in consecutive frames have different labels. We use such an indexing algorithm

instead of a vision-based matching algorithm because the latter could introduce significant

overhead [148].

To address this issue, we devise a light consistent RP indexing algorithm. From the very

first video frame, Elf assigns a unique index to each region proposal. In each upcoming

frame, Elf matches each RP with the corresponding index that was assigned earlier. Note

that, if an RP includes a brand-new object that was not seen before, a new index will be

automatically assigned. Here, we match the RPs across frames based on a combination of

RP position shift and RP area shift. The RP position shiftmeasures the change of the center

point along the x-/y-axis between the current frame and the previous frame, as specified by

Lines 6 and 7 in Algorithm Algorithm 1. A larger value indicates a bigger spatial shift and

thus a lower matching probability. The RP area shift measures the amount of area change

between the RPs in two adjacent frames, as specified by Line 8 in AlgorithmAlgorithm 1. A

lower value indicates a higher matching probability. In our work, when the x/y RP position

shift are both under 0.02 and the area shift ratio is under 0.2, we declare a match. We select

the thresholds because they help to generate the lowest prediction loss in the evaluation.

The sum of RP position shift and RP area shift will be taken as an additional metric when



77

there exist multiple RPs simultaneously satisfying the above threshold requirement.

RP Expansion. Another challenge in RP prediction lies in the possibility that the predicted

RP bounding box may not cover all the pixels of an object due to motion. For example, as

shown in Figure Figure 4.5, the predicted bounding box excludes the person’s hands, which

will affect the object detection performed on the edge server. To address this challenge, we

carefully expand the bounding box by ?%. The downside of this scheme is the increased data

transmission and computation. We conduct a trade-off study in Section subsection 4.7.3.

Here, we can adopt different strategies to determine how much we would like to expand.

First, we could vary the value of ? based upon the corresponding RP position shift amount.

The more the shift, the more we can expand. Second, we can use the prediction confidence

level. If the model shows higher confidence upon the current RP prediction, we assign a

lower expansion ratio.

4.4.4 Handling New Objects When First Appear

The above attention LSTM-based prediction can deal with only the objects that already

occurred in the previous frame, but not new ones never seen before. In this subsection, we

discuss how to handle the new objects when they appear for the first time in a frame.

To handle new objects, we propose a low resolution compensation (LRC) scheme with

a balanced trade-off between computation overhead and new-object detection accuracy.

Importantly, while inference with the down-sampled frame cannot produce fine-grained

outputs that are required by the applications, such as object masks or key body points, we

find that inference with down-sampled frames can still detect the presence of objects. Fig-

ure Figure 4.15 and Figure Figure 4.14 validate this observation. To reduce the computation

overhead, LRC down-samples a high-resolution video frame by a max-pooling operation.

Then Elf offloads the resized video frame, along with the partitions from regular sized

partitions, to edge servers to run application-specific models, which usually consist of an

object detection component. Based on the inference results, Elf can roughly locate the new
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Fig. 4.4 An example result for RP indexing

objects in the frame.

Please note that here we use the same application-specified deep learning neural net-

works in the LRC module even though it may lead to a higher computation overhead than

some lightweight networks. In this way, we do not compromise the new object detection

accuracy. Meanwhile, Elf runs LRC once per = frames to reduce such an overhead. = is

a hyperparameter, indicating the trade-off between computation cost and at most =-frame

delay to realize new objects.

4.5 RP-Centric Video Frame Partitioning and Offloading

Based on the RP predictions, Elf partitions a frame intomultiple pieces, focusing on regions

of interest while removing unnecessary dummy background pixels. Video frame partition-

ing plays a dominant role in minimizing the offloading traffic and balancing workloads

across edge servers.
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Fig. 4.5 An example prediction error. Part of the objects are outside of the predicted RP
bounding box

4.5.1 Problem Statement

Elf takes the following items as input: (i) video frame �C at time C, (ii) the list of RP

predictions in which RC
8
denotes the 8-th RP in frame �C , with 8 ∈ [1, ..., "] and " as the

total number of RPs, and (iii) the available resource capacity, with ?C
9
denoting the available

resource capacity of the 9-th server ( 9 ∈ [1, ..., #]) at time C. Based on the input, Elf packs

the " RP processing tasks and one LRC task into #′ offloading tasks (#′ ≤ #), and offload

each task onto an edge server.

The overall objective of the partitioning and the offloading process is to minimize the

completion time of the offloading tasks that are distributed across #′ edge servers. In

other words, minimizing the completion time of the task which has the longest execution

time among all the tasks. Please note that we assume that the mobile only has access to a

limited number of servers and that we try to make full use of these servers to minimize the

application’s completion time.
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Fig. 4.6 RP-centric frame partitioning pipeline with an example frame

The optimization objective can be written as:

min max({) C: }) : ∈ [1, ..., #′],

B.C. ) C: = )
C
rps,: + )

C
lrc,: · 1(C mod ==0) · 1(arg max{?C }=:) ,

) Crps,: ≈
�Crps,:

?C
:

, ) Clrc,: ≈
�Clrc,:

?C
:

(4.6)

where ) C
:
denotes the completion time on the :-th server3 at time-C. ) C

:
consists of two

completion-time terms, ) Crps,: and ) Crps,: , for RPs and LRC respectively. 1condition returns

1 if and only if the condition meets, otherwise returns 0. Further, �Crps,: and �Clrc,: are

the computing cost of RP box and LRC offloading to server : , which will be described in

Equation (4.8).

Below we will describe our scheduling algorithm that tries to satisfy this objective.

3We re-index the server with : ∈ [1, ..., # ′] instead of 9 ∈ [1, ..., #], owing to the aforementioned task
packing.
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4.5.2 Why Not Directly Schedule Each Individual RP Task?

After predicting the list of RPs, a straightforward scheduling approach is to cut out all the

RPs and individually schedule each RP processing task onto edge servers. In this case, if

the number of RPs is larger than the number of available servers, we may need to schedule

multiple small RP tasks onto one server. While this sounds intuitive in many domains, it

may not work the best for vision tasks due to the potential fragmentation problem. First,

the execution time of A (A is a small number such as 2 and 3) small RP (e.g., < 5% size of

the original image) tasks is not much less than A times of the execution time of running a

single A-fold RP task. For example, Figure Figure 4.20 shows that a frame with a size of

1%, 4%, 9% takes 35.19ms, 37.9ms, and 44.24ms, respectively, for instance segmentation

inference. This is because in a CNN model, except for the part extracting feature maps and

converting anchors to RPs, the rest of the network is usually the same regardless of the size

of the input. Second, it is hard to determine a good cropping strategy. On one hand, the

precise cut-out individual RPs will lead to poor detection inference accuracy due to the lack

of necessary background pixels; on the other hand, if we leave large padding around the

RPs, then the total offloaded data will be too large to be efficient. Third, too many cropping

operations generate high memory copy overheads which may likely become problematic on

mobile devices.

4.5.3 RP Box Based Partitioning and Offloading

RP Box Initialization. Given the above observations, Elf proposes an RP scheduling

method that is more content- and resource-aware than the above naive counterpart. The

key data structure here is what we call RP boxes. Compared to a single RP, an RP-box is

larger and consists of one or more nearby RPs, as illustrated in Figure Figure 4.6 (f) with

4 RPs and 3 RP boxes. The number of offloading tasks is determined by the number of

available edge servers. Each offloading task consists of either an LRC task, or an RP-box

processing task, or both. Scheduling an RP box instead of individual RPs, we can avoid the



82

fragmentation problems mentioned above.

Before partitioning a frame, Elf first crops the area with all the RPs and horizontally

partitions it into # segments (# is #available servers), where each segment corresponds to

an initial RP box. The 8-th RP box will be offloaded to the 8-th server and we adjust the size

of the RP box to control the load on each server. Here, we first need to explain how the

LRC task scheduling interferes with the RP box scheduling. Note that, the LRC task is only

available every = frames (1(C mod ==0) in Equation (4.6)). At the LRC round, we partition the

cropped image into (#−1) segments and have (#−1) RP boxes accordingly. We reserve one

server for the LRC task4. Regardless of the number of RP boxes, the scheduling algorithm

works the same – during the LRC round, we treat the LRC task the same as another RP box

processing task. Below, without the loss of generality, we assume there are # RP boxes.

The size of each RP box is initialized to be proportional to the available resource of

the corresponding server, as depicted in Figure Figure 4.6(b). This initialization can help

achieve load balancing.

RP Association. Thereafter, we associate each RP with an RP box as follows. For each

RP, Elf evaluates its spatial relationship with all the RP boxes. For a pair of RP A and box

1, their spatial relationship falls into one of the three cases:

• Inclusion. In this case, A is completely included in 1 and we conveniently associate

them.

• Partial-overlap. In this case, A intersects with 1. At the same time, it has a partial-

overlap relationship with at least one other box as well. Here, we choose to associate

with the RP box that has the most overlap with the RP. If there is a tie, we choose the

RP box with a larger gap between the server resource capacity and the computation

costs of the RPs that are already associated.

• No-overlap. In this case, A is not associated with 1.

4Special care needs to be taken with the configuration of a total of 1 or 2 edge servers, and we discuss how
we handle these two special cases in Section subsection 4.7.4
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Elf applies the association steps to all the RPs.

RP Box Adjustment. After all the RPs have got associated with a box, Elf resizes

each RP box such that it can fully cover all the RPs that are associated with it. Please

see Figures Figure 4.6 (e) and (f). After this adjustment, the computation cost of some

RP boxes may drastically increase compared to the initialization stage and thus break the

intended load balancing. To avoid this, we examine those RP boxes whose cost increase

exceeds a pre-defined threshold (we discuss how to estimate an RP box’s computation cost

in Section subsection 4.5.4). For these boxes, the associated RPs are sorted ascendingly w.r.t

the computation cost. We try to re-associate the first RP on the list (the one with the lowest

cost) to the neighboring box who has enough computation capacity to hold this RP. After

each re-association, the two boxes need to adjust their sizes accordingly and estimate the

new computation cost. we repeat this re-association process as far as the load distribution

is becoming more even. We stop this process if the re-association results in even higher

load imbalance.

Here, we formally evaluate the load-balanced situation by:

Θ = Var({) C: }) (4.7)

where Θ denotes the variance of the estimated execution time of all the tasks. A smaller Θ

denotes a more balanced partitioning and offloading. We can calculate ) C
:
by the following

Equation (4.6) where �Crps,: and �
C
lrc can be found as:

�Crps,: =
∑
E

{�Crp,E}, �Clrc = U · (
"∑
:=1

�Crps,: ) (4.8)

where U is the LRC down-sample ratio.

Offloading. Finally, Elf offloads each RP box and the LRC task (if available in that

round) to the corresponding edge server and executes the application-specific models in a
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data-parallelism fashion.

4.5.4 Estimating Server Capacity and RP Computation Cost

In this subsection, we describe how Elf estimates the server resource capacity and each

RP’s computation cost.

Elf considers two ways of estimating a server’s resource capacity. The first approach is

through passive profiling. It calculates server <’s current end-to-end latency as the average

latency over the last = (default value of 7) offloading requests that are served by<. Then the

resource capacity is defined as 1/)<. The second approach is through proactive profiling.

Elf periodically queries the server for its GPU utilization.

Elf also considers two ways of estimating an RP’s computation cost. The first approach

is based on the RP’s area, assuming the cost is linearly proportional to the RP area. The

second approach is through Spatially Adaptive Computation Time (SACT) [149]. Here, we

briefly explain how to borrow the concept of SACT to estimate computing cost ofRPs. SACT

is a model optimization that early stops partial convolutional operations by evaluating the

confidence upon the outputs from intermediate layers. Overall, SACT indicates how much

computation has been applied with each pixel of a raw frame input. Elf can accordingly

estimate the cost of an RP at the pixel level. To adopt this approach, we need to slightly

modify the backbone network as instructed in [149].

We adopt the passive resource profiling and RP area-based estimation in the implemen-

tation as they are more friendly to Elf’s users and require less system maintenance efforts.

We will deliver other options in the future work.

4.6 System Implementation

We implement a prototype system of Elf in Pytorch1.4 and Python3.6 for easy integra-

tion with most Python-based deep learning networks. We wrote the performance-critical

functions in C++ to achieve low latency execution. In total, our implementation consists
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of about 3,710 lines of codes. Our implementation is developed on Ubuntu16.04. We

integrate ZeroMQ4.3.2 [152], an asynchronous messaging library that is widely adopted in

distributed and concurrent systems, for high-performance multi-server offloading. We use

NVIDIA docker [153] to run offloading tasks on edge servers. We also wrap nvJPEG [154]

with Pybind11 for efficient hardware-based image/video encoding on mobile devices.

Elf is designed and implemented as a general acceleration framework for diverse mobile

deep vision jobs. We aim to support existing applications with minimal modifications of

applications. The required modifications only focus on the data-processing part where a

DNN is executed over an input frame and returns a prediction result. Here, we assume that

an application can split the data-processing part from the rest of it. Thus, the other parts

and the internal logic of applications remain the same. Specifically, in our implementation,

Elf interacts with its host deep learning model, given most are written in Python, through

the following two APIs:

1. def cat(instance_lists: List["Instances"]) -> "Instances",

2. def extract(instance : Instances) -> "List["RP"]".

Elf employs the first API to aggregate the partial inference results, and the second API to

extract RPs from the data structure of partial inference results to be used as the prediction

for the next frame. With these two APIs, Elf can hide its internal details and provides a

high-level API for applications:

Table 4.1 Comparisons of end-to-end latency (ms) and inference accuracy (AP) in three deep
vision applications: instance segmentation [132], object classification [150], and key-point
detection [151]. For SO and Elf, the end-to-end latency is further decomposed into {Frame
en/de-code, Elf functions, average server processing, network transmission, parallel task
synchronization}

Deep Vision
Applications

Latency (ms) Accuracy (AP)

TX2 Nano SO Elf TX2 Nano SO Elf

Instance Segmentation 1,070 2,107 226×{13.4, 0, 78.9, 7.5, 0}% 104×{6.4, 7.9, 67.2, 4.1, 14.2}% 0.803 0.803 0.803 0.799

Object Classification 1,141 2,160 87.3×{8.7, 0, 89.7, 1.4, 0}% 66.8×{2.4, 8.7, 79.7, 1.3, 7.7}% 0.672 0.672 0.672 0.671

Key-point Detection 2,452 4,705 252×{8.9, 0, 90.4, 0.6, 0}% 137×{5.2, 7.1, 75.7, 2.8, 9.0}% 0.661 0.661 0.661 0.654
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3. def run(img: numpy.array) -> "Instances",

This API can make the inference function as same as the one running locally, while Elf

can run multi-way offloading and feed the merged results to applications. Moreover, if an

application is written in Java or C++ and calls a Python inference model inside, we can

further wrap Elfwith Java Native Interface (JNI) or Pybind. Elfwill support this extension

in future work. We believe that Elf requires a reasonably small effort from developers for

the benefit of significantly reduced latency.

Furthermore, we discuss the placement of Elf functions. We argue that Elf’s function

should run on mobile devices but not edge servers for two reasons: 1) finishing both

functions locally enables to offload less than 50% data as redundant background pixels will

be removed; 2) all the Elf functions only take 5-7ms on mobile, and thus the offloading

benefit will be trivial considering much fewer data to ship.

Finally, we point out that Elf does require its applications to be able to process frames

with different resolutions which is the fundamental condition underlying the frame par-

titioning in Elf. However, deep learning networks can easily meet this requirement by

adopting either an ROI-pooling layer [155], or a spatial pyramid pooling layer [156] to crop

and pool feature maps into a fixed size. Adding these two layers can render a network to

be able to handle varied frame resolution, and has been widely adopted in many existing

studies [151, 157, 158, 159].

4.7 Performance Evaluation

We successfully integrate Elf with ten state-of-the-art deep learning networks and thor-

oughly evaluate Elf in the following three typical applications: instance segmentation,

multi-object classification and multi-person pose estimation. Our results show that Elf can

accelerate the inference up to 4.85× and 3.80× on average with using 52.6% less bandwidth

on 4 edge servers while keeping the inference accuracy sacrifice within 1%.
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Fig. 4.7 The hardware platform
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4.7.1 Experiment Setup

Mobile Platforms: We use four mobile platforms: Google Pixel4 (Qualcomm Snapdragon

855 chip consisting of eight Kryo 485 cores, an Adreno 640 GPU and a Hexagon 690

DSP), (2) Nexus 6P (Snapdragon 810 chip with four ARM Cortex-A57 cores and four

ARM Cortex-A53 cores, an Adreno 430 GPU), (3) Jetson Nano [136] (Quad-core ARM

Cortex-A57 MPCore CPU, NVIDIA Maxwell GPU with 128 CUDA cores), and (4) Jetson

TX2 [141] (Dual-Core NVIDIA Denver 2 64-Bit + Quad-Core ARM Cortex-A57 MPCore

CPU, NVIDIA Pascal GPU with 256 CUDA cores). The evaluation results with Jetson

TX2 have been reported if not explicitly stated otherwise study the performance difference

of mobile devices.

Edge Servers: We use up to 4 edge servers. Each server runs Ubuntu 16.04 and has one
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NVIDIA Tesla P100 GPU (3,584 CUDA Cores), Intel Xeon CPU (E5-2640 v4, 2.40GHz).

Networks: We use WiFi6 (802.11.ax, ASUS-AX3000, 690Mbps) to connect the mobile

platforms and edge servers. Based on the WiFi network, we also use the Linux traffic

shaping to emulate a Verizon LTE (120Mbps) link using the parameters given by a recent

Verizon network study [160]. Moreover, we randomly set the available bandwidth of each

server in 70% to 100% to introduce the network heterogeneity. The emulated LTE network

has been used if not explicitly stated otherwise study the network impacts. Figure Figure 4.7

shows our experimental platform.

CNNModels andDatasets : We consider ten state-of-the-artmodels: CascadeRCNN[161],

DynamicRCNN[162], FasterRCNN[103], FCOS [163], FoveaBox [164], FreeAnchor [165],

FSAF [166], MaskRCNN [132], NasFPN [167], and RetinaNet [150]. Also, we use MOTS

dataset [168] for instance segmentation, KITTI dataset [169] for multi-object classification,

PoseTrack [170] dataset for pose estimation. MaskRCNN has been adopted if not explicitly

stated otherwise study the model difference.

Comparison with Existing Offloading Work: Please note that the existing offloading

algorithms are either model parallelism [117, 171] or to filter offloading data [118, 119,

120, 121]. They focus on offloading work to a single server and are complementary to our

work.

CNN Networks and Benchmarks: We use MaskRCNN [132] and MOTS dataset [168]

for instance segmentation, RetinaNet [150] and KITTI dataset [169] for multi-object clas-

sification, DensePose [151] and PoseTrack [170] dataset for multi-person pose estimation.

4.7.2 Evaluation of Elf System

We conduct a set of experiments to show the overall performance of the whole Elf system.

We evaluate and report the inference accuracy and end-to-end latency in the following 4

settings: (1) TX2, a baseline running the application on Jetson TX2, (2) Nano, a baseline

running the application on Jetson Nano, (3) SO, a baseline of existing offloading strategy
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that offloads the CNN inference to a single edge server, and (4) Elf-3, our approach of

partitioning the frame and offloading the partial inferences to three edge servers (one running

an LRC task and the other two running an RP box each). We conduct the experiments using

all three applications with the emulated Verizon LTE network.

First, let us look at the performance with the instance segmentation application. Ta-

ble Table 4.1 reports the overall execution latency and accuracy in all the settings. The

results show that running such a demanding application on the mobile platforms yields

unbearably long delays of 1,070ms and 2,107ms on TX2 and Nano, respectively. Offloading

the inference task can greatly shorten the latency. While SO reduces the latency to 226ms,

Elf-3 can further bring down the latency from to only 104ms, i.e., a 53.98% latency re-

duction compared to SO. Compared to using the entire frame for inference as in SO, Elf-3

achieves almost the same accuracy – 0.799 vs 0.803 – a very small drop of less than 0.5%.

Such an accuracy drop is because 1) performing LRC once every 3 frames may sometimes

miss new objects and tiny objects, although it rarely happens, and 2) Elf removes the

background pixels not covered by the RP boxes. However, we believe this small accuracy

drop is acceptable, especially considering the significant latency reduction of 53.98%.

We observe a similar trend with the other two applications. The results of multi-object

detection show that while keeping the accuracy almost the same – 0.672 for SO and 0.671

for Elf-3 — we can enjoy a 23.48% latency reduction, from 87.3ms to 66.8ms. The results

of the key point detection show thatElf-3 can achieve a 45.44% latency reduction compared

to SO with a small accuracy drop, from 0.661 to 0.654.

All applications and both metrics considered, we believe Elf provides a very viable

approach to support mobile deep vision by parallel offloading. In the following evalua-

tion, we use instance segmentation as our driving example to evaluate the effectiveness of

the key components of Elf.
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4.7.3 Evaluation of RP Prediction

Next, we evaluate the Elf RP prediction module. In our evaluation, we trained the attention

LSTM network as follows. Two readily available video datasets, CityScapes [172] and

KITTI [173] that contain object labels for each frame, were used in the training. Using

60% of the dataset as training data, we applied the RP indexing algorithm to maintain a

consistent order of the region proposals. Finally, we train the network using the Adam

optimizer [174] with an initial learning rate of 1e-3 to minimize the loss function L(·, ·)

defined in Equation (4.1).

The Effectiveness of Attention LSTM:We show the training loss curve (defined in Equa-

tion (4.1)) in the first 60 epochs in Figure Figure 4.8 and the loss on the test dataset in

Figure Figure 4.9. The trend shows that our attention LSTM outperforms vanilla LSTM, by

reducing the test loss from 0.51 to 0.25. Further, we report the impact of different prediction

algorithms on the inference accuracy while keeping other modules the same. Here, we also

consider Fast tracker [175], which predicts the current RPs as the RPs in the previous video
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frame, but with a scale up of 200%, as the baseline. Figure Figure 4.10 and Figure Fig-

ure 4.11 show the inference accuracy and the offload ratio (defined as the ratio of the total

offloading traffic, with respect to the offloading traffic in SO). The vanilla LSTM predictor

has the lowest offloading traffic, with an 11% offload ratio, but at a considerable inference

accuracy downgrade compared to our attention LSTM, 0.748 vs. 0.799. Meanwhile, fast

tracker shows a slightly higher inference accuracy compared to us, 0.802 vs 0.799, but the

offloading traffic almost doubles. All things considered, our attention LSTM could achieve

a good inference accuracy with a reasonably low offloading traffic.

The Impact of RP Indexing: As part of our RP prediction, we also report the impact of

RP indexing. Figure Figure 4.9 shows the test loss of two prediction algorithms with and

without RP indexing. With RP indexing, vanilla LSTM reduces the loss from 0.71 to 0.51

and attention LSTM reduces the loss from 0.7 to 0.25, demonstrating the effectiveness of

RP indexing.

The Impact of RP Expansion Ratio: Moreover, the RP expansion ratio trades off the

application accuracy with the average offloading traffic volume, i.e., a larger ratio leads

to a higher application accuracy at the cost of more offloading data. Figures Figure 4.12

and Figure 4.13 show the inference accuracy and offload ratio with different expansion

ratios. After increasing the RP expansion ratio to 4% or higher, the accuracy stays at 0.799,

the highest Elf can achieve. However, when Elf has the ratio under 4%, we observe an

accuracy downgrade. For example, the accuracy is 0.70 and 0.75 when the expansion ratio

is 1% and 2%, respectively. Also, we identify the same pattern with Elf-3 and Elf-4. On

the other hand, with an RP extension ratio of 4%, the offload ratio is 7% for Elf-3 and 13%

for Elf-4. Overall, 4% is a good RP extension ratio for Elf.

The Impact of LRC Parameters: We then show LRC can efficiently detect new objects

when first appear. Figure Figure 4.15 presents the accuracy using the down-sampled frames

for inference with a down-sampling scale G increasing from 1 to 10, with the resulting frame

size from 0.01 × G2. At the scale of 8, the accuracy degrades to 0.75, and at the scale of 4,
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the accuracy goes down to 0.62. The result indicates that using low-resolution frames alone

hurts application accuracy. Figure Figure 4.14 reports the inference accuracy by offloading

frame partitions and LRC with different down-sample ratios. When the LRC ratio has been

increased to 16%, the accuracy keeps at 0.799 (the SO solution achieves 0.803). When the

LRC ratio has been increased to 16%, the accuracy keeps at 0.799 (the SO solution achieves

0.803).

4.7.4 Evaluation of RP-Centric Partitioning and Offloading

Next, we evaluate the frame partitioning and offloading module. We first describe the

end-to-end latency when different numbers of servers are available for Elf with ten state-

of-the-art deep learning networks. Here, we assume each server has only a single GPU

available for the mobile application. A special case to consider, if there is only a GPU, Elf

will adopt a single RP box that covers all the RPs but removes the surrounding background

pixels and stack with the LRC task. KITTI dataset has been resized to the resolution

2560×1980 to study the high-resolution scenario in the section.

When there are two servers available, Elf offloads the LRC task and one of the RP boxes

to one server and the other RP box to the second server. Compared to SO, Elf-2 reduces

the latency by 2.80× on average, up to 3.63× . When Elf has three or more servers, it

uses one server for LRC, and one RP box each on the other servers. We measure a latency

reduction of 2.94× on average, up to 3.71× with Elf-3 , 3.80× on average, up to 4.85× with

Elf-4, and 4.18× on average, up to 5.43× with Elf-5 respectively. The results demonstrate

that Elf work with the arbitrary number of available edge servers and it outperforms the

SO even with a single server.

Key Observations: We observe that the latency with different server numbers highly

depends on the size of the RP boxes shipped to each edge server. With the frame partitioning

algorithm, themaximal size of RP box compared to the raw frame as 51.7%, 23.7%, 23.7%,

15.7%, and 11.6%, the computing bottleneck in that offloading round, with the server
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number from 1 to 5, respectively. Please note that Elf-2 and Elf-3 have the same RP

box size because both adopt 2 RP boxes but the later assigns the LRC task on the third

server. Accordingly, Elf reduces bandwidth usage by 48.3%, 52.6%, 52.6%, 52.9%, and

53.6%. Importantly, another observation is that the model inference time strongly relates

to the input size. Figure Figure 4.20 shows the inference latency at the server running ten

state-of-the-art models with down-sample ratio 0.01 · G2 where G is from 1 to 10. Here, the

down-sample ratios of 49%, 25%, 16%, and 9% share a rough correspondence to the RP

box size with the server numbers of 1, 2 (3), 4, 5. This observation is the underlying reason

why Elf can significantly reduce the inference latency by having each server inferring part

of the frame.

Lessons Learned: Moreover, we identify the inference time shows distinct sensitivity

among different deep visionmodels. First, themodels, for example, FCOS [163], withmore,

even fully, convolutional operations present a stronger correlation between frame resolution

and inference latency. Second, two-stage models, for example, RCNN series [103, 132,

161, 162], usually generate the same number of Regions of Interest (ROI) independent of

the input resolution and then ship each of them down the pipeline. The second stage thus

costs the same time. Overall, the lessons we have learned regarding how to design models

to benefit more from parallel offloading are: 1) one-stage models with more convolutional

operations are preferred, 2) two-stage models can dynamically adjust the number of ROI

based on the frame resolution as a higher resolution input potentially involves more objects.
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Finally, we show the average GPU utilization under different configurations in Fig-

ure Figure 4.18. In the case of SO, the average GPU utilization is 37% and the 95th

percentile is 82%. In the case of Elf-3, the average GPU utilization is 21% and the 95th

percentile is 31%. We note that using 3 GPUs in the case of Elf-3 shows lower per GPU

utilization than SO. In average, Elf-3 only consumes 1.7× GPU utilization in total running

with 3 GPUs, than SO to finish a single request. Moreover, a lower per GPU utilization

allows Elf to have more chance to efficiently utilize those resource fragmentation and thus

improve the total GPU utilization of edge servers.

4.7.5 Dealing with Dynamic Network Condition and GPU Utilization

We investigate how well Elf deals with dynamic network conditions and available GPU

utilization. First, we compare Elf-3 and SO with Verizon LTE (120Mbps) and WiFi6

(690Mbps) networks. Figure Figure 4.21 shows that when switching from WiFi6 to LTE,

the network latency of Elf increases from 1.4ms to 6.5ms and that of SO increases from

10.1ms to 17.1ms. Elf is less sensitive to the network bandwidth because it offloads much

less data than SO as shown in Figure Figure 4.13. Next, we increase the GPU utilization

of one server to 70% and compare our resource-aware RP box allocation method with

a resource-agnostic equal RP box allocation method. Figure Figure 4.22 shows that our

method results in a latency of 119ms while the other method has a latency of 149ms.
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4.7.6 Elf System Overhead on Mobile Side

Elf incurs a small amount of overhead on the mobile side. Figure Figure 4.23 shows

the latency of five Elf functions. Jetson TX2 and Nano are evaluated with the Python

implementation and take 7ms, and 13.6ms in total. Nexus 6P and Pixel 4 are evaluated

with C++ by Java native interface and cost 7.8ms and 4.8ms in total. The incurred system

overhead is sufficiently low to deliver its parallel offloading functions for the significant

latency reduction. Moreover, RP prediction costs 70%+ of the total time as the attention

LSTM model is implemented in Python and exported to C++ with TorchScript. We will

rewrite the prediction model with TensorRT [176], a C++ library that facilitates high-

performance inference, in the future work to minimize the RP prediction latency.

4.8 Related Work

Video Analytics Optimizations. AWS Wavelength [122] moves Amazon Web Services

to Verizon’s 5G edge computing platforms to deliver low latency video services. Intel and

NVIDIA contribute Intel Xeon Scalable Processors with Intel Deep Learning Boost [127]

and NVIDIA EGX A100 [128] to enable real-time AI processing at the edge. Pano [177]

proposes a quality-adaptation scheme that balances user-perceived video quality and video

encoding efficiency. Chameleon [178] dynamically selects the best configurations for exist-

ing NN-based video analytics to save computing resources by up to 10×. VideoStorm [5]

and AWStream [179] adapt the configuration to balance accuracy and processing delay.

Offloading Deep Neural Networks. Cracking open the DNN [117], Neurosurgeon [171],

DeepThings [180] partition then distribute the layers of deep learning networks over edge

servers and mobile/IoT devices (model parallelism) to reduce the inference latency. Fil-

terForward [118], Reducto [119], Glimpse [120] and Vigil [121] perform selective data

offloading based on the feature type, filtering threshold, query accuracy, and video content

to minimize the running latency. EdgeAssisted [96] uses a motion vector based object track-

ing to adaptively offload those regions of interests. Frugal Following [181] dynamically
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tracks objects and only runs a DNN with significantly changes. DDS [182] continuously

sends a low-quality video stream to the server that runs the DNN to determine where to

re-send with higher quality to increase the inference accuracy. These works only support

single-server offloading. Instead, Elf is designed to accelerate high-resolution vision tasks

through distributed offloading of multiple servers.

Accelerating Model Inferences. Branch pruning and sharing [107, 183, 184, 185] remove

redundant or less critical parameters [108] to trade-off the model complexity with infer-

ence latency. Tensor quantization [109] uses fewer bits to represent parameters for model

compression. DeepCache [186] caches and reuses the result of convolutional operations to

reduce the repeated computation. Simultaneously handle tasks with a single model through

multi-task learning [187] for less computation. Furthermore, massive accelerators, e.g.,

GPU [141, 136], FPGA [114], and ASIC [115, 188], are designed to perform model infer-

ence in a high-throughput and low-latency fashion. All these works are complementary to

ours.

4.9 Conclusion and Future Work

We designed and implemented Elf, an acceleration framework for mobile deep learning

networks. Elf can partition a video frame into multiple pieces and offload them simultane-

ously to edge servers for parallel computing. The main contribution of the framework stems

from its recurrent region proposal prediction and content-aware video frame partitioning

algorithms. Our study shows that Elf is promising to minimize the end-to-end latency of

emerging mobile deep vision applications. Moving forward, we will continue to investigate

how to further drive down the latency, e.g., integrating the data-parallelism approach of

Elf with those model-parallelism solutions. We will also investigate the impact of access

network bandwidth on Elf task assignment and mapping. Another future work topic is the

efficient model design for deep vision applications to better benefit from parallel offload-

ing. Finally, we will study how to efficiently orchestrate heterogeneous edge resources to
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minimize the AI processing latency.
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CHAPTER 5

CONCLUSION

In conclusion, this dissertation investigates deployment of real-time edge applications in a

distributed fashion, and the associated orchestration of networking and computing resources

necessary to achieve low latency.

We first propose the EC+ architecture that seamlessly distributes the required process-

ing across user devices, edge clouds, and the central cloud to achieve ultra low-latency

responses, frequent refreshing, and a large number of concurrent players. To complement

this architecture, we also investigated a game service placement algorithm which aims to

maximize the gaming performance for all the players by dynamically placing their services

on those edge clouds that can lead to the best performance.

Second, we develop a latency-aware edge resource orchestration platform based on

Apache Storm. The platform aims to support real-time responses to edge cloud assisted

applications that are computation intensive. The main contribution of our platform stems

from a set of latency-aware task scheduling schemesbased on DAGs (directed acyclic

graphs). By deploying the proposed platform on a group of edge servers with heterogeneous

CPU, GPU and networking resources, we show that we can support real-time edge vision

applications, achieving the per frame latency around 32ms for an example AR application.

Finally, we designed and implemented Elf, an acceleration framework for mobile

deep learning networks. Elf can partition a video frame into multiple pieces and offload

them simultaneously to edge servers for parallel computing. The main contribution of

the designed framework stems from its accurate region proposal prediction and resource-

aware video frame partitioning algorithms. Our study shows that Elf is a promising

framework for reducing the end-to-end latency of emergingmobile deep vision applications.

Moving forward, we will continue to investigate how to further drive down the latency, e.g.,
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developing a CPU/GPU hybrid pipeline to schedule Elf functions. We will also investigate

the impact of access network bandwidth on Elf task assignment and mapping.
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