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ABSTRACT OF THE DISSERTATION

Two Problems in Mathematical Physics

By ÉRIK FERNANDO DE AMORIM

Dissertation Directors: Michael Kiessling and A. Shadi Tahvildar-Zadeh

In chapter 1, a rigorous proof is presented of the existence of the static, spherically symmetric

spacetime that is the solution of the Einstein field equations coupled with an electric field obeying

the equations of electromagnetism of Bopp-Landé-Thomas-Podolsky for a static point charge. It is

shown that the electric field energy is finite, just as the case is for this theory on a background flat

spacetime. The argument proves the existence of a 2-parameter family of solutions in the regime

of large radial variable and of a 1-parameter family when this variable is small, by means of a new

technique for estimating the radius of convergence of a power series whose coefficients are defined

by a polynomial recursion. The existence of the intersection of the families of solutions from these

two regimes is established through carefully restricting the allowable ranges of their parameters so

that the Poincaré-Miranda theorem can be applied.

In chapter 2, a generalization of the system of so-called Jacobi coordinate transformations for

classical and quantum many-body problems is developed, suitable for the study of questions in-

volving the center-of-mass of the system when the interaction between the bodies enjoys symmetry

properties. It is applied to the study of asymptotic ground-state properties of a quantum Hamilto-

nian that models an atom with N bosonic electrons without the Born-Oppenheimer approximation.

The conjectured Hartree limit N → ∞ is shown to supply a rigorous upper bound to the ground

state energy.
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Chapter 1

Maxwell-Bopp-Landé-Thomas-Podolsky-Einstein system with static
point source

(Supervised by Michael Kiessling and Shadi Tahvildar-Zadeh)

1.1 Overview

This work fits in the much wider scope of investigating the claim, originally made by Einstein,

Infeld and Hoffmann [EIH38], that the equations of General Relativity alone imply the equations of

motion of the point sources of gravity (viewed as singularities in spacetime) - see [KT19] for details.

The problem of the self-force in electrodynamics consists of finding an expression for the force

that the electromagnetic field generated by a charged point particle exerts on the particle itself.

The possibility to write well-posed classical systems of equations for the joint evolution of electro-

magnetic (EM) fields and their sources, without resorting to ad hoc field averaging or bare mass

renormalization at point charges, requires working with laws of electromagnetism such that the

energy-momentum density of the electromagnetic field generated by charged particles is locally in-

tegrable, which is not the case for the usual Maxwell equations. There are generalized EM theories

that were proposed specifically to address this problem, one of them being the so-called Bopp-

Podolsky theory (which we will call Bopp-Landé-Thomas-Podolsky, or BLTP, theory).

Using this theory, Kiessling [Kie19] has recently shown how to formulate a well-posed system

for the joint evolution of point particles and their EM fields in flat-space (that is, the Minkowski

spacetime of Special Relativity). Local integrability of the field energy-momentum at the location

of the particles is essential in his work, hence why it is important to work with generalizations of

the usual Maxwell equations. But the nonlinearities in the Einstein field equations pose serious

obstacles to generalizing this study to the theory of General Relativity.
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The present work is a small first step towards extending Kiessling’s framework to General Rela-

tivity: we rigorously show the existence of a finite-energy solution to the Einstein equations for the

spacetime of a single, static point charge whose electric field obeys the equations in Bopp-Podolsky

theory. The natural next step going forward, after completing the proof, will be to study our space-

time in the framework of [BKT19], which defines a weak second Bianchi identity for spacetimes

with point singularities and studies its implications for physical conservation laws, and then to start

investigating the case of two particles.

1.1.1 Problem description

The usual Maxwell equations for the EM fields E,B,D,H of a point particle in flat-space, which we

call the Maxwell-Maxwell system, consists of the pre-metric Maxwell equations (see [HO03]) ∇ ·B = 0 , ∇ ·D = 4πQδq(t)

∇×E + c−1∂tB = 0 , ∇×H − c−1∂tD = 4πc−1Qq̇(t)δq(t)

(1.1.1)

together with the Maxwell vacuum law D = E

H = B
. (1.1.2)

Here, q(t) is the position of the point particle at time t, considered to be given a priori, with q̇ being

its velocity and Q its charge (we work in Gaussian units). Upon solving this system, one finds that

the field energy density εMM := (8π)−1(|E|2+|B|2) is not integrable in space over any neighborhood

of the particle. In the 1940’s, a modification of the above system was proposed. It is often called the

system of Bopp-Podolsky field equations, but we are going to call it the Maxwell-BLTP system, in

honor of its original proponents Bopp [Bop40], Landé and Thomas [LT41], and Podolsky [Pod42].

The pre-metric equations (1.1.1) remain the same (hence the name “Maxwell”), but the vacuum law

that relates D and H to E and B becomes the BLTP vacuum law D = E − κ−2�E

H = B − κ−2�B
(1.1.3)

where � = −c−2∂t + ∆ is the wave operator and κ > 0 is a parameter with dimension of inverse

length. Note that κ = ∞ recovers the Maxwell-Maxwell system. The solution, assuming that the
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particle is static and located at q(t) ≡ 0 for all t, has zero magnetic fields B,H and

D(r) =
Q

4πr2
er , E(r) = ϕ′(r)er where ϕ(r) =

Q(1− e−κr)
r

, (1.1.4)

for r = ‖(x, y, z)‖ = ‖r‖ and er = r−1r. We remark that the electric potential ϕ is continuous at r =

0 and everywhere bounded. The exponential term in it is a small correction to the Coulomb potential

Q/r for large values of r, while also ensuring that ϕ(r) be bounded for small r. The field energy

density, which in this static case works out to be εBLTP = (8π)−1(E ·D − 1
2(|E|2 − κ−2(∇ ·E)2)),

gives a finite value for the total field energy E :

E :=

∫
R3

εBLTP dV =
ϕ(0)

2
=
Qκ2

2
. (1.1.5)

Now suppose we “switch on gravity,” that is, we consider the Einstein field equations of General

Relativity for a static, spherically symmetric spacetime with a naked timelike singularity represent-

ing a single point charge at rest. This universe is devoid of matter away from this particle, but the

latter generates electromagnetic fields that can be calculated at any point of spacetime (they depend

on the EM theory assumed) and contribute to Tµν (the source term in the Einstein equations). The

underlying manifold is R4 minus a line, with a spherical coordinate system (ct, r, θ, φ) and a metric

ds2 = −c2e2λ(r)dt2 + e2ν(r)dr2 + r2(dθ2 + sin2 θdφ2) (1.1.6)

where r is the area-radius coordinate and λ(r), ν(r) are unknown. A globally defined electric

potential ϕ(r) is the third unknown of the problem. For Tµν obtained from the Maxwell-Maxwell

system, one obtains the Reissner-Weyl-Nordström (RWN) solution:

e2λ(r) = 1− 2GM

c2r
+
GQ2

c4r2
, ν(r) = −λ(r) , ϕ(r) =

Q

r
, (1.1.7)

with G being the gravitational constant and M a free parameter that can be identified as the total

mass content of the spacetime (the ADM mass). However, it can be calculated that the electric field

energy density on any constant-time hypersurface is not integrable around the singularity, meaning

that the electric field energy of the particle is infinite. To understand how the ADM mass could

be finite while the field energy is infinite, one has to assume that the RWN singularity carries a

negative infinite bare mass.

Our goal will be to couple the Maxwell-BLTP system to the Einstein field equations. We call the

system obtained the Maxwell-BLTP-Einstein equations, and the goal is to prove the existence

of a solution (λ(r), ν(r), ϕ(r)) that
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1. has a finite value for E ;

2. has a finite value for limr→0 ϕ(r);

3. is defined for all r > 0;

4. far away from the singularity, is asymptotic to the RWN solution;

5. pointwise in r, converges to the flat-space space solution of the Maxwell-BLTP equations when

the gravitational constant G converges to 0.

The justification for items 1 and 2 was described in the context paragraph above. Item 3 says that

there are no horizons, that is, the particle is modelled as a naked singularity of spacetime. Item

4 is desirable from a physical point of view, because it implies that the laws of electromagnetism

that would be observed far away from the particle if BLTP theory were to be true would not differ

from what we actually observe in nature far away from a charged spacetime singularity. Item 5

is to be expected given that gravitational effects in nature tend to be much weaker compared to

electromagnetic effects, so the coupling of gravity to the flat-space equations should not perturb the

solutions by too much.

Remark 1.1.1. There is another well-known formulation of the vacuum law which also deals with

the problem of infinite field energy-momentum of a point particle in flat-space. Originally proposed

by Born [Bor33], it is part of what nowadays is commonly called Born-Infeld electrodynamics. It

was then first observed by Hoffmann [Hof35] that, under this formulation of EM, the singularity of

the static, spherically symmetric spacetime of a resting point charge is milder than that of the RWN

spacetime, in the sense that the blowup of certain curvature scalars is less severe. In [Tah11], a class

of electrostatic, spherically symmetric spacetimes that generalize that of Hoffmann is studied with

regard to the presence of horizons, the blowup of curvature scalars at the singularity, and finiteness

of the electric field energy and its relation to the ADM mass. But the properties that define this

class quickly allow for their metric coefficients to be explicitly solved by quadrature, partly due

to the helpful fact that their metric coefficients satisfy gttgrr = −1. This is however not the case

for our metric in this thesis, a fact that will become evident once we write down the equations of

the Maxwell-BLTP-Einstein system. This turns even the question of existence of a solution into a

completely different and more challenging task for us than for the systems considered in that paper.
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Remark 1.1.2. Regarding the Maxwell-BLTP-Einstein system, Cuzinatto et al. [Cuz+18] have

proved that, if it is assumed that an event horizon exists at some r = r∗ > 0, then finiteness of the

field energy outside of this horizon implies a no-hair theorem - the solution outside of the horizon

coincides with the RWN solution. But in our framework we would like to assume that there are no

horizons: the particle is modelled as a naked singularity and the coordinate chart is assumed global.

This situation happens also in the RWN spacetime when the parameters are such that GM2 < Q2,

which is the case for example for the mass and charge of a proton or electron (Q2 is more than 36

orders of magnitude larger than GM2).

Remark 1.1.3. It is known that, for any solution of the Maxwell-BLTP-Einstein equations, ϕ will

be the difference between usual Coulomb potential and a Proca potential (arising in the solution

to the Einstein-Proca equations, with κ thought of as its mass parameter). There are numerical

investigations of some properties of static, spherically symmetric spacetimes satisfying the Einstein-

Proca or the Einstein-BLTP system ([VIG02], [OV99]), but a rigorous proof of existence of the

solution cannot be found in the literature.

1.1.2 Summary of results

The value of the constant 1/κ is unknown, but there are reasons to believe that it would be small

if Maxwell-BLTP theory were the “true” classical theory of electromagnetism in nature. We will

mostly work with units in which Q = κ = c = 1, which then turns G into an exceptionally small

dimensionless constant that we call ε. The Maxwell-BLTP-Einstein system can then be considered

an ε-perturbation (or G-perturbation) of the flat-space Maxwell-BLTP equations. After obtaining

the Einstein Field Equations from a Lagrangian for BLTP theory, we will recast everything in terms

of the variables

ψ(r) = eλ(r)+ν(r) , ζ(r) = e2ν(r) , w(r) = r2e−(λ(r)+ν(r))ϕ′(r) + 1 , (1.1.8)

with the corresponding flat-space variables (solution of the system with ε = 0) being

ψ0 ≡ ζ0 ≡ 1 , w0(r) = (1 + r)e−r . (1.1.9)

We will show that the equations reduce to a second-order ODE system for ψ, ζ, w (see (1.1.13)

ahead). The asymptotic conditions far away from the singularity that we want to be satisfied can
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be written as

lim
r→∞

ψ(r) = lim
r→∞

ζ(r) = 1 , lim
r→∞

w(r) = 0 . (1.1.10)

Another one that will come for free in the solution is

lim
r→∞

w′(r) = 0 . (1.1.11)

We will also identify sufficient conditions for the electromagnetic energy to be finite and for limr→0 ϕ(r)

to exist and be finite. They are∣∣∣∣∫ ∞
0

ψ(r)(w(r)− 1)

r2
dr

∣∣∣∣ <∞ ,

∣∣∣∣∫ ∞
0

ψ(r)(w(r)′)2

ζ(r)r2
dr

∣∣∣∣ <∞ . (1.1.12)

Once (1.1.10) and (1.1.11) are established, we see that finiteness of these integrals is not a problem

around the r =∞ endpoint, so we think of (1.1.12) as a condition for small r.

The main result to be proved is:

Theorem 1.1.4. There exists ε∗ > 0 such that, for all ε ∈ [0, ε∗], the Maxwell-BLTP-Einstein

system 

ψ′ = −εψ
r3

(w′)2

ζ ′ =
(1− ζ)ζ

r
+

ε

r3
((1− w2)ζ2 − (w′)2ζ)

w′′ =

(
3− ζ
r

+
εζ

r3
(1− w2)

)
w′ + ζw

(1.1.13)

of a static point charge admits a solution (ψε, ζε, wε) in (0,∞) satisfying the asymptotic properties

described in (1.1.10) and (1.1.12), and such that, pointwise at any r > 0,

lim
ε→0

(ψε(r), ζε(r), wε(r)) = (ψ0(r), ζ0(r), w0(r)) . (1.1.14)

The argument is as follows:

• We show that, for any fixed r0 > 0, a family of solutions exists on [r0,∞) satisfying (1.1.10)

and (1.1.11), as long as ε > 0 is small enough (the lower bound on ε gets worse the smaller we

make r0). This family is parametrized by two arbitrary real parameters µ and α, the first one

having physical significance (it is related to the ADM mass). Our method consists of writing

the solution as a power series in the small parameter ε, with the ε = 0 solution corresponding
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to the flat-space solution of the Maxwell-BLTP system, and then employing a novel technique

for estimating the growth of the coefficients in order to get a lower bound for the radius of

convergence.

• We find a suitable rewriting of the system that permits us to study it, for small r, as a first-

order, 4D autonomous dynamical system around a hyperbolic equilibrium point. The new

unknowns will be called (x, y, z, s). The 2-dimensional unstable manifold of this equilibrium

point is analytic and consists of a 1-parameter family (we call σ the parameter) of solutions to

the system satisfying (1.1.12), and we can use the same estimation techniques as above (this

time for power series in two real variables) to find points on this manifold to arbitrarily small

error.

• With the above work, we will have constructed (in 4-dimensional (x, y, z, s)-space):

– a 3-dimensional hypersurface Z (comprising values of the coordinate s away from 0)

which corresponds to solutions satisfying the good asymptotic conditions for large r; and

– a 2-dimensional surface W (comprising only small values of the coordinate s) which

corresponds to solutions satisfying the good asymptotic conditions for small r.

To complete the proof, one needs to show that W and Z intersect. To this end we consider

the 3D hypersurface of (x, y, z, s)-space that corresponds to r = r0. Intersected with it, W

becomes a curve C and Z becomes a surface S. By looking at the x, y, z coordinates of

points on C and S as continuous functions of numbers σ, ν, β that parametrize them, and by

considering that an intersection exists when ε = 0, the Poincaré-Miranda theorem can be

applied to ensure an intersection for small ε > 0, provided that suitable estimates are in place

for how a change in ε perturbs the manifolds Z and W.

The novel summation technique developed for the study of convergence of the ε- and σ-power

series that appear as solutions to the Maxwell-BLTP-Einstein system is explained in remark 1.4.10.

In the case of a power series in one variable, as in section 1.4, lemma 1.4.11 contains the main

ingredient necessary for this technique, while theorem 1.4.13 is where it can be seen applied. In the

case of power series in two variables, as in section 1.5, lemma 1.5.10 explains the generalization to

multi-variable series and theorem 1.5.11 contains its application to our series.
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1.2 Obtaining the differential system

In this section we show how to obtain the stress-energy tensor Tµν and a tensorial form dM = 0 for

the vacuum law. Then we write out the system of Einstein equations

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.2.1)

and show that, under the assumption of staticity and spherical symmetry, it reduces to a second-

order system of 3 ordinary differential equations. In (1.2.1), (Rµν) is the Ricci curvature tensor

of g, containing first- and second-order derivatives of the metric components, and (Tµν) is the

stress-(energy density)-(momentum density) tensor, or simply stress tensor, which is a symmetric

2-covariant tensor that models how the electromagnetic effects act as a source for gravity.

1.2.1 Set-up

We consider a Lorentzian manifold homeomorphic to R4 minus a line that is supposed to model

the spacetime of a universe containing a single, static point charge. It is foliated by spacelike slices,

each one homeomorphic to R3 minus a point, with this removed point (a spacetime singularity)

representing the position of the particle. Therefore the spacetime itself is devoid of matter, like the

Schwarzschild spacetime, but we assume that a smooth 2-form F , called the Faraday tensor of the

electromagnetic field of the particle, is defined globally - hence this is an electrovacuum spacetime.

The constants and parameters that we need, together with their physical dimension measured in

Gaussian units of mass, length, time, are:

• c: the speed of light in vacuum ((length)(time)−1),

• G: Newton’s gravitational constant ((mass)−1(length)3(time)−2),

• Q: the charge of the particle ((mass)1/2(length)3/2(time)−1),

• κ: the parameter postulated in the Maxwell-BLTP equations (1.1.3) of electromagnetism

((length)−1).

A global coordinate system (ct, r, θ, φ), with t ∈ R, r > 0, θ ∈ [0, π], φ ∈ [0, 2π), is assumed

to exist, with (r, θ, φ) representing polar coordinates in any spacelike slice. The metric takes the
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general static and spherically symmetric form

g = −e2λ(r)c2dt2 + e2ν(r)dr2 + r2dθ2 + r2 sin2 θdφ2 , (1.2.2)

assumed to hold everywhere in spacetime. We also use g to denote the determinant

g(r, θ) = −e2(λ(r)+ν(r))r4 sin2 θ . (1.2.3)

A sign choice for the metric volume form must be made, since we will be working soon with the

Hodge star ? operation; we fix it as

volg = eλ+νr2 sin θ d(ct) ∧ dr ∧ dθ ∧ dφ . (1.2.4)

By definition, ? takes p-forms into (4− p)-forms according to

(?ω)µp+1···µ4 =
1

p!

√
−gων1···νpεν1···νpµp+1···µ4 , (1.2.5)

where ε represents the Levi-Civita symbol

εI =


1 , if I is an even permutation of {1, . . . , p},

−1 , if I is an odd permutation of {1, . . . , p},

0 otherwise.

. (1.2.6)

The main property of the ? map is that, for any two p-forms α, β,

α ∧ ?β = β ∧ ?α =
1

p!
αµ1...µpβ

µ1...µpvolg . (1.2.7)

Also recall that, for each fixed index µ, the interior product operation iµ, taking p-forms into (p−1)-

forms, is defined by the following property (where α is a p form):

iµ(α ∧ β) = iµα ∧ β + (−1)pα ∧ iµβ . (1.2.8)

Since our spacetime is static, there are no magnetic effects. The only other unknown of the

problem is the electric potential ϕ(r), from which the Faraday tensor F = dA can be constructed,

with the potential 1-form A being given in coordinates as

Act = ϕ(r) , Ar = Aθ = Aφ = 0 . (1.2.9)
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We immediately get

F = dA = d(ϕ(r)d(ct)) = ϕ′(r)dr ∧ d(ct) = −ϕ′(r)d(ct) ∧ dr . (1.2.10)

We shall see in this section that the Maxwell (1.1.2) and BLTP (1.1.3) vacuum laws can be written

in tensor form as

dM = 0 , (1.2.11)

where the 2-form M is defined, respectively in each case, by

M = ?F or M = ?F +
1

κ2
? d ? d ? F . (1.2.12)

The first choice yields the Maxwell-Maxwell-Einstein system, and the second choice, Maxwell-BLTP-

Einstein system.

The Einstein tensor Gµν for our metric is diagonal (adapted from [Str04], whose author utilizes

the (+−−−) signature convention):

G(ct)(ct) =
e2λ

r2
− e2(λ−ν)

(
1

r2
− 2ν ′

r

)
Grr = −e

2ν

r2
+

1

r2
+

2λ′

r

Gθθ = r2e−2ν
(

(λ′)2 + λ′′ − λ′ν ′ + λ′ − ν ′

r

)
Gφφ = r2 sin θe−2ν

(
(λ′)2 + λ′′ − λ′ν ′ + λ′ − ν ′

r

)
(1.2.13)

We shall also need to know the Christoffel symbols, which can be found in the same reference:

Γct(ct)r = λ′

Γrrr = ν ′ , Γr(ct)(ct) = λ′e2(λ−ν) , Γrθθ = −re−2ν , Γrφφ = −re−2ν sin2 θ

Γθφφ = − sin θ cos θ , Γθθr =
1

r

Γφφθ = cot θ , Γφφr =
1

r

(1.2.14)

All other Γλµν (not obtained from these by swapping the two lower indices) are zero.

1.2.2 Stress-energy tensor and vacuum law

The computations here follow what is done in [GPT15] and [DGT07] and are included for complete-

ness.
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Using F , the BLTP Lagrangian 4-form can be defined on the manifold by

Λ = Λ(r) =
1

8π

(
F ∧ ?F − 1

κ2
H ∧ ?H

)
, (1.2.15)

where we abbreviated

H = H(r) = d ? F . (1.2.16)

We remark that this Lagrangian consists of a perturbation of the usual Schwarzschild Lagrangian for

the Maxwell-Maxwell system (the first term), to which a term containing higher-order derivatives

of ϕ was added, with the small κ−2 appearing as the coupling constant.

To compute Tµν and the vacuum law from the Lagrangian Λ, we need to compute the variation

of Λ with respect to compactly supported variations of the metric (which yields Tµν) and the 1-form

A (which yields the vacuum law).

We start by considering the following orthonormal coframe (a basis for the cotangent space of

the manifold):

e(0) = eλdt , e(1) = eνdr , e(2) = rdθ , e(3) = r sin θdφ . (1.2.17)

Note that

g = ηµνe
(µ) ⊗ e(ν) (1.2.18)

where

η = diag(−1, 1, 1, 1) (1.2.19)

is the Minkowski metric. When we write numerical indices on tensors, it will mean their coordinates

with respect to this coframe and its dual frame. Note for example G00 = e−2λG(ct)(ct) etc. In this

new coframe, we have

G00 =
1

r2
− e−2ν

(
1

r2
− 2ν ′

r

)
G11 = − 1

r2
+ e−2ν

(
1

r2
+

2λ′

r

)
G22 = G33 = e−2ν

(
(λ′)2 + λ′′ − λ′ν ′ + λ′ − ν ′

r

) (1.2.20)

Let U be an arbitrary open set of spacetime. Suppose that a one-parameter family of coframes

is given, {e(µ)s }µ=0,1,2,3, s ∈ (−a, a) for some small a > 0, with e(µ)0 = e(µ), as in [DGT07] (formulas

56 and 57). This family defines a family of metrics by

gs = ηµνe
(µ)
s ⊗ e(ν)s where (ηµν) = diag(−1, 1, 1, 1) . (1.2.21)
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We define the variation ė(µ) as the derivative of e(µ)s with respect to s evaluate at s = 0:

e(µ)s = e(µ) + sė(µ) +O(s2) . (1.2.22)

Suppose also that each ė(µ) is compactly supported on U .

We also consider an independent variation of the potential 1-form A: suppose that a one-

parameter family of 1-forms As is given, like above, and define the variation Ȧ (assumed compactly

supported on U) by

As = A+ sȦ+O(s2) . (1.2.23)

Tensors such as Λ that depend on the metric and on A also inherit their own one-parameter

families, whose elements can be denoted by a subscript s, and variations, denoted with a dot on

top, defined similarly:

Λs = Λ + sΛ̇ +O(s2) . (1.2.24)

The variation Λ̇ is a tensor of the same rank as Λ (a 4-form). The Einstein Field Equations (1.2.1)

are obtained by imposing zero variation of the Einstein-Hilbert action on U with respect to arbitrary

ė(µ) and Ȧ. This action is defined by

S(g,A) =

∫
U

(
R

2
+

8πG

c4
? Λ

)√
−g d(ct)drdθdφ (1.2.25)

where R is the Ricci scalar of g. The computation of Λ̇ included here will reveal that its expression

is formed by the sum of three parts:

• an exact differential, which has no effect in the action due to Stokes’ theorem;

• a term of the form Ȧ ∧ dX, where X is a 2-form;

• a term of the form ė(µ) ∧ τ(µ), where τ(µ) are 3-forms.

The second term can only yield a zero contribution to the action, for a general Ȧ, when dX = 0

on U , which we shall see that will produce the BLTP vacuum law as given by (1.2.11) and (1.2.12),

upon defining M = X:

dM = 0 , M = ?F +
1

κ2
? d ? d ? F . (1.2.26)

Finally, setting to zero the contribution of the third term to the action, for general ė(µ), amounts

to defining the stress-energy tensor (in the coframe (1.2.17)) by

Tµν = ηνλ ? (τ(µ) ∧ e(λ)) (1.2.27)
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(See [GPT15] formulas 106 and 107 for a derivation of this).

Lemma 1.2.1. Given a p-form Ψ, the variation of its Hodge dual is computed as

(?Ψ)· = ė(µ) ∧ iµ(?Ψ) − ?(ė(µ) ∧ iµΨ) + ?Ψ̇ . (1.2.28)

Proof. This proof is adapted from the appendix of [DGT07]. It is for this to work that we need the

chosen coframe {e(µ)} to be orthonormal. Using this coframe we can construct a basis for the space

of p-forms, containing elements of the form e(µ1) ∧ · · · ∧ e(µp), µ1 < . . . , µp, which we can abbreviate

as e(I), for I being the multiindex (µ1, . . . , µp). Note that the Leibniz rule implies that

ė(I) = ė(µ) ∧ iµe(I) (1.2.29)

because, when computing the right side, the possible minus sign introduced by the wedge is canceled

by the possible minus sign introduced by iµ. By the same reasoning,

(?e(I))· = ė(µ) ∧ iµ(?e(I)) (1.2.30)

this time also because the basis is orthonormal - that is, the computation of ?e(I) yields an element

of the form e(J) without a scalar factor in front. Therefore, writing Ψ = ΨIe
(I), we have

Ψ̇ = Ψ̇Ie
(I) + ΨI ė

(I)

= Ψ̇Ie
(I) + ΨI ė

(µ) ∧ iµe(I)

= Ψ̇Ie
(I) + ė(µ) ∧ iµΨ ,

(1.2.31)

and thus

? Ψ̇ = Ψ̇I ? e
(I) + ?(ė(µ) ∧ iµΨ) . (1.2.32)

Now we can calculate

(?Ψ)· = (ΨI ? e
(I))·

= Ψ̇I ? e
(I) + ΨI(ė

(µ) ∧ iµ ? e(I))

= Ψ̇I ? e
(I) + ė(µ) ∧ iµ ?Ψ .

(1.2.33)

Using (1.2.32) yields (1.2.28).

Now we explain how to use this lemma to find Λ̇, following [GPT15] (equation 114). For this we

will use the graded-commutativity property of the wedge product ∧, the graded derivative property
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of the exterior derivative d, the property (1.2.7) of the Hodge dual map, and commutativity of d

with variations (they are derivations with respect to distinct variables). First we have:

(F ∧ ?F )· = Ḟ ∧ ?F + F ∧ (?F )·

= Ḟ ∧ ?F + F ∧ (ė(µ) ∧ iµ ? F − ?(ė(µ) ∧ iµF ) + ?Ḟ )

= Ḟ ∧ ?F + ė(µ) ∧ F ∧ iµ ? F − ė(µ) ∧ iµF ∧ ?F + Ḟ ∧ ?F

= 2Ḟ ∧ ?F + ė(µ) ∧ (F ∧ iµ ? F − iµF ∧ ?F )

= 2dȦ ∧ ?F + ė(µ) ∧ (F ∧ iµ ? F − iµF ∧ ?F )

= 2d(Ȧ ∧ ?F ) + 2Ȧ ∧ d ? F + ė(µ) ∧ (F ∧ iµ ? F − iµF ∧ ?F ) .

(1.2.34)

and

(H ∧ ?H)· = Ḣ ∧ ?H +H ∧ (?H)·

= Ḣ ∧ ?H +H ∧ (ė(µ) ∧ iµ ? H − ?(ė(µ) ∧ iµH) + ?Ḣ)

= Ḣ ∧ ?H − ė(µ) ∧H ∧ iµ ? H − ė(µ) ∧ iµH ∧ ?H + Ḣ ∧ ?H

= 2Ḣ ∧ ?H − ė(µ) ∧ (H ∧ iµ ? H + iµH ∧ ?H) .

(1.2.35)

Expanding the first summand in (1.2.35) above (without its factor 2) according to the definition

(1.2.16) of H:

Ḣ ∧ ?H = d(?F )· ∧ ?H

= d((?F )· ∧ ?H)− (?F )· ∧ d ? H

= d((?F )· ∧ ?H)− (ė(µ) ∧ iµ ? F − ?(ė(µ) ∧ iµF ) + ?Ḟ ) ∧ d ? H

= d((?F )· ∧ ?H)− ė(µ) ∧ iµ ? F ∧ d ? H + d ? H ∧ ?(ė(µ) ∧ iµF )− d ? H ∧ ?Ḟ

= d((?F )· ∧ ?H)− ė(µ) ∧ iµ ? F ∧ d ? H + ė(µ) ∧ iµF ∧ ?d ? H − Ḟ ∧ ?d ? H

= d((?F )· ∧ ?H) + ė(µ) ∧ (−iµ ? F ∧ d ? H + iµF ∧ ?d ? H)− dȦ ∧ ?d ? H

= d((?F )· ∧ ?H) + ė(µ) ∧ (−iµ ? F ∧ d ? H + iµF ∧ ?d ? H)− d(Ȧ ∧ ?d ? H)− Ȧ ∧ d ? d ? H

= d((?F )· ∧ ?H − Ȧ ∧ ?d ? H)− Ȧ ∧ d ? d ? H + ė(µ) ∧ (−iµ ? F ∧ d ? H + iµF ∧ ?d ? H) .

(1.2.36)

Plug this back into (1.2.35):

(H ∧ ?H)· = 2d((?F )· ∧ ?H − Ȧ ∧ ?d ? H)− 2Ȧ ∧ d ? d ? H

− ė(µ) ∧ (H ∧ iµ ? H + iµH ∧ ?H + 2iµ ? F ∧ d ? H − 2iµF ∧ ?d ? H) . (1.2.37)
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This together with (1.2.34) gives the final expression for Λ̇:

8πΛ̇ = 2d

[
Ȧ ∧ ?F − 1

κ2

(
(?F )· ∧ ?H − Ȧ ∧ ?d ? H

) ]
+

+ 2Ȧ ∧
[

d ? F +
1

κ2
d ? d ? H

]
+

+ ė(µ) ∧
[
F ∧ iµ ? F − iµF ∧ ?F +

+
1

κ2

(
H ∧ iµ ? H + iµH ∧ ?H + 2iµ ? F ∧ d ? H − 2iµF ∧ ?d ? H

)]
.

(1.2.38)

Write this compactly in the form

Λ̇ = 2d

[
Ȧ ∧ ?F − 1

κ2

(
(?F )· ∧ ?H − Ȧ ∧ ?d ? H

) ]
+ 2Ȧ ∧ dM + ė(µ) ∧ τ(µ) (1.2.39)

where M and τ(µ) are defined as

M = ?F +
1

κ2
? d ? H (1.2.40)

and

τ(µ) = F ∧ iµ ? F − iµF ∧ ?F

+
1

κ2

(
H ∧ iµ ? H + iµH ∧ ?H − 2iµF ∧ ?d ? H + 2iµ ? F ∧ d ? H

)
(1.2.41)

These formulas and the definition (1.2.27) of Tµν from τ(µ) conclude the computation of the Maxwell

and stress-energy tensors.

1.2.3 In coordinates

To expand out the coordinates of T and the equation dM = 0, we will need to compute all ex-

pressions involving d and ? of F and H in them. As we compute each one, we keep track of their

coordinates in both the original coordinate coframe (d(ct), dr, dθ,dφ) (in order to compute exterior

derivatives) as well as in the orthonormal coframe (e(0), e(1), e(2), e(3)) (in which the Hodge dual is

most easily computed).

F = −ϕ′d(ct) ∧ dr = −e−λ−νϕ′e(0) ∧ e(1) (1.2.42)

(?F )23 =
1

2
(F 01ε0123 + F 10ε1023) = F 01 = −F01

=⇒ ?F = e−λ−νϕ′e(2) ∧ e(3) = r2 sin θe−λ−νϕ′dθ ∧ dφ

(1.2.43)
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H = d ? F = sin θ
d

dr
(r2e−λ−νϕ′)dr ∧ dθ ∧ dφ =

e−ν

r2
d

dr
(r2e−λ−νϕ′)e(1) ∧ e(2) ∧ e(3) (1.2.44)

(?H)0 = H123ε1230 = −H123 = −H123

=⇒ ?H = −e
−ν

r2
d

dr
(r2e−λ−νϕ′)e(0) = −e

λ−ν

r2
d

dr
(r2e−λ−νϕ′)d(ct)

(1.2.45)

d?H =
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)
d(ct)∧dr = e−λ−ν

d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)
e(0)∧e(1) (1.2.46)

(?d ? H)23 =
1

2
((d ? H)01ε0123 + (d ? H)10ε1023) = (d ? H)01 = −(d ? H)01

=⇒ ?d ? H = −e−λ−ν d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)
e(2) ∧ e(3)

= −r2 sin θe−λ−ν
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)
dθ ∧ dφ

(1.2.47)

d ? d ? H = − sin θ
d

dr

(
r2e−λ−ν

d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

))
dr ∧ dθ ∧ dφ

= −e
−ν

r2
d

dr

(
r2e−λ−ν

d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

))
e(1) ∧ e(2) ∧ e(3)

(1.2.48)

Having all these at hand, we expand the vacuum law dM = 0:

0 = dM = H +
1

κ2
d ? d ? H

=

[
e−ν

r2
d

dr
(r2e−λ−νϕ′)− 1

κ2

e−ν

r2
d

dr

(
r2e−λ−ν

d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

))]
e(1) ∧ e(2) ∧ e(3) ,

(1.2.49)

implying that, for some constant q,

− q = r2e−λ−νϕ′ − 1

κ2
r2e−λ−ν

d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)
. (1.2.50)

By defining the following function:

w(r) = r2e−(λ(r)+ν(r))ϕ′(r) + q , (1.2.51)
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this becomes a homogeneous equation:

0 = w − 1

κ2
r2e−(λ+ν)

d

dr

(
eλ−ν

r2
w′
)
, (1.2.52)

which we rewrite as
weλ+ν

r2
=

1

κ2

d

dr

(
eλ−ν

r2
w′
)
. (1.2.53)

We shall see in subsection 1.3.3 that q can be identified with the charge content Q in the spacetime

(but we keep writing q until we’ve proven this).

Next we find Tµν using (1.2.27) and the τ(µ) just defined. This requires expanding each of the 6

summands in the formula for τ(µ):

F ∧ iµ ? F =


−(e−λ−νϕ′)2e(0) ∧ e(1) ∧ e(3) if µ = 2

(eλ−νϕ′)2e(0) ∧ e(1) ∧ e(2) if µ = 3

(1.2.54)

− iµF ∧ ?F =


(e−λ−νϕ′)2e(1) ∧ e(2) ∧ e(3) if µ = 0

−(e−λ−νϕ′)2e(0) ∧ e(2) ∧ e(3) if µ = 1

(1.2.55)

H ∧ iµ ? H =

{
−
(
e−ν

r2
d
dr (r2e−λ−νϕ′)

)2
e(1) ∧ e(2) ∧ e(3) if µ = 0 (1.2.56)

iµH ∧ ?H =


−
(
e−ν

r2
d
dr (r2e−λ−νϕ′)

)2
e(0) ∧ e(2) ∧ e(3) if µ = 1(

e−ν

r2
d
dr (r2e−λ−νϕ′)

)2
if µ = 2

−
(
e−ν

r2
d
dr (r2e−λ−νϕ′)

)2
if µ = 3

(1.2.57)

− 2iµF ∧ ?d ?H =


−2ϕ′(e−λ−ν)2 d

dr

(
eλ−ν

r2
d
dr (r2e−λ−νϕ′)

)
e(1) ∧ e(2) ∧ e(3) if µ = 0

2ϕ′(e−λ−ν)2 d
dr

(
eλ−ν

r2
d
dr (r2e−λ−νϕ′)

)
e(0) ∧ e(2) ∧ e(3) if µ = 1

(1.2.58)

2iµ ? F ∧ d ? H =


2ϕ′(e−λ−ν)2 d

dr

(
eλ−ν

r2
d
dr (r2e−λ−νϕ′)

)
e(0) ∧ e(1) ∧ e(3) if µ = 2

−2ϕ′(e−λ−ν)2 d
dr

(
eλ−ν

r2
d
dr (r2e−λ−νϕ′)

)
e(0) ∧ e(1) ∧ e(2) if µ = 3

(1.2.59)

Then we conclude:
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8πτ(0) =

{
(e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]}
e(1) ∧ e(2) ∧ e(3) (1.2.60)

8πτ(1) =

{
− (e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

+ 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]}
e(1) ∧ e(2) ∧ e(3) (1.2.61)

8πτ(2) =

{
− (e−λ−νϕ′)2 +

1

κ2

[(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

+ 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]}
e(1) ∧ e(2) ∧ e(3) (1.2.62)

8πτ(3) =

{
(e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]}
e(1) ∧ e(2) ∧ e(3) (1.2.63)

Now we see from (1.2.27) that (Tµν) is diagonal with

8πT00 = +(e−λ−νϕ′)2 +
1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]
8πT11 = −(e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

+ 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]
8πT22 = +(e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]
8πT33 = +(e−λ−νϕ′)2 +

1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]
(1.2.64)

We can simplify these four equations considerably using w instead of ϕ′ and using the vacuum law
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(1.2.53). For example, let us work with the first one:

8πT00 = +(e−λ−νϕ′)2 +
1

κ2

[
−
(
e−ν

r2
d

dr
(r2e−λ−νϕ′)

)2

− 2ϕ′(e−λ−ν)2
d

dr

(
eλ−ν

r2
d

dr
(r2e−λ−νϕ′)

)]
=

(
w − q
r2

)2

+
1

κ2

[
−
(
e−ν

r2
w′
)2

− 2ϕ′(e−(λ+ν))2
d

dr

(
eλ−ν

r2
w′
)]

=
1

r4
(w − q)2 +− 1

κ2

e−2ν

r4
(w′)2 − 2

κ2
ϕ′(e−(λ+ν))2

κ2weλ+ν

r2

=
1

r4
(w − q)2 +− 1

κ2

e−2ν

r4
(w′)2 − 2ϕ′e−(λ+ν)

w

r2

=
1

r4
(w − q)2 +− 1

κ2

e−2ν

r4
(w′)2 − 2

r4
w(w − q)

=
1

r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
.

(1.2.65)

Note that, in all equations in (1.2.64), the signs of the first and third terms are flipped (so that the

same simplification that happened between them in the above calculation will take place), while the

sign of the second term remains the same (so that all will yield the same multiple of κ−2 as in the

above calculation). Hence we have:

8πT00 =
1

r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
8πT11 =

1

r4

(
+w2 − q2 − 1

κ2
e−2ν(w′)2

)
8πT22 =

1

r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
8πT33 =

1

r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
(1.2.66)

1.2.4 Einstein Field Equations

We have concluded that both sides of the Einstein system (1.2.1) are diagonal. Also comparing the

equations for G22 and G33 reveals that their left sides are one and the same, and the same is true

for their right sides. Hence the system reduces to 3 independent equations:

1

r2
− e−2ν

(
1

r2
− 2ν ′

r

)
=

G

c4r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
,

− 1

r2
+ e−2ν

(
1

r2
+

2λ′

r

)
=

G

c4r4

(
w2 − q2 − 1

κ2
e−2ν(w′)2

)
,

e−2ν
(

(λ′)2 − λ′ν ′ + λ′′ +
λ′ − ν ′

r

)
=

G

c4r4

(
−w2 + q2 − 1

κ2
e−2ν(w′)2

)
.

(1.2.67)
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Proposition 1.2.2. The third equation above is a consequence of the first two and the vacuum law

(1.2.53).

Proof. Consider the Bianchi identity :

Gµν;µ = 0 , ν = 0, 1, 2, 3 , (1.2.68)

where semicolon denotes covariant derivative in the Levi-Civita connection of g. Using the expression

Gαβ;γ = Gαβ,γ + ΓαµγG
µβ + ΓβµγG

αµ (1.2.69)

and the Christoffel symbols as given in (1.2.14), we can work out that the ν = 1 equation in (1.2.68)

is the only nontrivial one, equivalent to

2

r
G22 =

2

r
G33 = G′11 +G11

(
λ′ +

2

r

)
+ λ′G00 . (1.2.70)

Use the first two equations from (1.2.67) to rewrite the left-hand side in terms of (Tµν):

2

r
G22 =

2

r
G33 = 8πG

(
T ′11 + T11

(
λ′ +

2

r

)
+ λ′T00

)
. (1.2.71)

Therefore, we will be able to deduce the equations G22 = 8πGT22 and G33 = 8πGT33 if we can

check that (Tµν) satisfies

T ′11 + T11

(
λ′ +

2

r

)
+ λ′T00 =

2

r
T22 =

2

r
T33 . (1.2.72)

Adding and subtracting the first two equations in (1.2.67) yields

(λ+ ν)′ = − G

c4κ2

(w′)2

r3

(λ− ν)′ =
e2ν − 1

r
+
G

c4
e2ν

r3
(w2 − q2)

(1.2.73)

which are equivalent to

λ′ = +
e2ν − 1

2r
+

G

2c4r3

(
+e2ν(w2 − q2)− 1

κ2
(w′)2

)
ν ′ = −e

2ν − 1

2r
+

G

2c4r3

(
−e2ν(w2 − q2)− 1

κ2
(w′)2

) (1.2.74)

In particular note that λ′ does not depend on λ. This means that, when expanding out the second-

order w equation (1.2.53) (which contains eλ on the left and its derivative on the right) by using

(1.2.74), there will also be no λ terms present. One can check that it becomes

w′′ =

(
3− e2ν

r
+
Ge2ν

c4r3
(q2 − w2)

)
w′ + κ2e2νw . (1.2.75)
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Upon expanding both sides of (1.2.72) by using the definition of Tµν and the equations (1.2.74) and

(1.2.75), one can verify that (1.2.72) is indeed an identity, as needed.

Hence we can continue working only with the first two equations in (1.2.67) (or their equivalent

(1.2.73)) as well as the w equation (1.2.53) (or its equivalent (1.2.75)). The most convenient form

for the first two equations can be obtained by introducing new functions ψ, ζ:

ψ(r) = eλ(r)+ν(r) , ζ(r) = e2ν(r) . (1.2.76)

Given this definition, it will also be necessary to verify that the solutions we obtain for them satisfy

ψ(r) > 0 , ζ(r) > 0 (1.2.77)

for all r > 0.

Then we see from (1.2.73) that they satisfy a system of decoupled equations. With this we have

found the Maxwell-BLTP-Einstein system for the functions ψ, ζ, w defined by (1.2.51) and (1.2.76):

ψ′ = − G

c4κ2

ψ

r3
(w′)2

ζ ′ =
ζ(1− ζ)

r
+

G

c4r3

(
q2ζ2 − ζ2w2 − 1

κ2
(w′)2ζ

)

w′′ =

(
3− ζ
r

+
Gζ

c4r3
(q2 − w2)

)
w′ + κ2ζw

. (1.2.78)

Note that ψ does not show up in the ζ and w equations. Therefore we can study those two equations

separately, and only then draw conclusions about ψ using the first equation.

Remark 1.2.3. We will see in subsection 1.3.4 that the ψ and ζ corresponding to the RWN

spacetime together with the w corresponding to the Coulomb potential ϕ(r) = q/r are a solution

to this system satisfying these asymptotic conditions, but we will quickly rule it out as a desirable

solution due to the fact that its EM field energy density is not integrable in 3D space around the

singularity.
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1.3 A priori study of the differential system

1.3.1 Perturbation of the flat-space solution

We single out a special solution of the system (1.2.78) above in the case G = 0, called the flat-space

solution, as defined in (1.1.4):

ϕ0(r) =
q − qe−κr

r
, λ0(r) ≡ ν0(r) ≡ 0 . (1.3.1)

The corresponding w as defined in (1.2.51) and ψ, ζ as defined in (1.2.76) are

w0(r) = q(1 + κr)e−κr , ψ0(r) ≡ ζ0(r) ≡ 1 . (1.3.2)

Considering that, in most physically interesting contexts, gravitational effects are several orders

of magnitude less significant than electric ones, we would like to impose that the solution we seek

for G 6= 0 be a perturbation of this flat-space solution. More precisely, if we indicate the dependence

of the solution on the value of G with a subscript, then we seek solutions satisfying

lim
G→0

(ψG(r), ζG(r), wG(r)) = (ψ0(r), ζ0(r), w0(r)) for all r > 0 . (1.3.3)

(For the derivation of the flat-space solution, see subsection 1.3.4 ahead).

We can use the parameters q,κ, c to re-scale the potential ϕ and the coordinates r, t into dimen-

sionless quantities:

λ̃(r̃) = λ(r̃/κ) , ν̃(r̃) = ν(r̃/κ) , r̃ = κr , t̃ = cκt , ϕ̃(r̃) =
ϕ(r̃/κ)

q
. (1.3.4)

The effect produced by this change is to replace q,κ, c by 1 in all formulas, while G gets replaced

by the dimensionless constant

ε =
Gq2κ2

c4
. (1.3.5)

We will implement this change in most formulas going forward, except when we want to carefully

keep track of where each constant ends up. But we continue to use the notation without tildes even

when the change has been implemented, to unburden the notation.

Remark 1.3.1. The flat-space potential (1.3.1) should be viewed as a small perturbation of the

Coulomb potential q/r given by a Yukawa potential −e−κr/r. The magnitude of κ controls the

range of this deviation, which quickly becomes negligible after r = 1/κ due to its exponential
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decay. If our spacetime is supposed to model a charged particle, it is to be expected that 1/κ

should be a sub-atomic length.

Using the cgs values of the constants G, q, c (take q to be the elementary charge):

G = 6.67× 10−8cm3g−1s−2 , q = 1.60× 10−10cm3/2g1/2s−1 , c = 3.00× 1010cm s−1 ,

we obtain
Gq2

c4
= 1.90× 10−86cm2

This means that, even if 1/κ is exceptionally small (say, the Planck length 1.62 × 10−33cm), the

resulting dimensionless constant ε still comes out small (7.24× 10−21).

1.3.2 Asymptotic conditions for large r

We do not wish to look for just any solution of (1.2.78), but rather only those that behave like

what we observe in the physical world in the appropriate scales. Namely, we impose conditions of

an asymptotically Minkowski metric

lim
r→∞

λ(r) = lim
r→∞

ν(r) = 0 , (1.3.6)

which ensure that the spacetime gets closer and closer to being flat away from the singularity, as

well as conditions of an asymptotically Coulomb potential:

lim
r→∞

ϕ(r) = 0 , lim
r→∞

r2ϕ′(r) = −Q . (1.3.7)

The first of these limits simply fixes a value at ∞ for the potential, as is usually done. The second

one says that the radial derivative ϕ′ looks more and more like the one obtained from the Coulomb

potential in flat-space, equal to Q/r. The significance of this will be clear in subsection 1.3.3, where

we calculate that the electric field is a multiple of ϕ′, just like in the case of Maxwell-Maxwell

electromagnetism, and hence, under (1.3.7), the expression for the Coulomb field from a distance

in the Maxwell-BLTP case will look like that of Maxwell-Maxwell.

Note that, in terms of the functions ψ, ζ defined in (1.2.76) and w defined in (1.2.51), the

asymptotic conditions (1.3.6) and (1.3.7) at r =∞ are written as

lim
r→∞

ψ(r) = lim
r→∞

ζ(r) = 1 , lim
r→∞

w(r) = −Q+ q . (1.3.8)
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Remark 1.3.2. For a metric like ours and under the conditions (1.3.6), the notion of the ADM

mass M of the spacetime can be defined by

e−2ν(r) = 1 +
2GM

c2r
+O

(
1

r2

)
as r →∞ . (1.3.9)

It has the physical interpretation of the total mass content of the spacetime. For example, it is the

M appearing in the RWN solution (1.1.7). When working with dimensionless units as explained in

subsection 1.3.1, the dimensionless ADM mass can be defined as

µ =
c2M

q2κ
, (1.3.10)

and (1.3.9) now looks like

e−2ν(r) = 1 +
2εµ

r
+O

(
1

r2

)
as r →∞ . (1.3.11)

The first two coefficients in the RWN metric (1.1.7) corresponding to charge q and ADM mass M

are written in dimensionless variables as

e2λ(r) = 1− 2µε

r
+

ε

r2
, e2ν(r) =

(
1− 2µε

r
+

ε

r2

)−1
. (1.3.12)

When εµ2 < 1, these expressions are positive for all r > 0, that is, the spacetime is free of horizons

and the coordinate system is global. Using the electron mass M = 9.11 × 10−28 g and charge as

above, we can calculate that this is the case, and by several orders of magnitude:

εµ2 =

(
Gq2κ2

c4

)(
c4M2

q4κ2

)
=
GM2

q2
= 2.40× 10−43 . (1.3.13)

1.3.3 Charge and electric fields

Next we show that the integration constant q can be identified with the charge Q. This will have

the consequence that the asymptotic condition for w as r →∞ becomes simpler:

lim
r→∞

w(r) = 0 . (1.3.14)

In the tensorial formulation of electromagnetism, the electric fields E,D are 4-vectors obtained

by raising indices from 1-forms E[, D[, which in turn are obtained from the tensors F and M by

taking an interior product with the Killing vector field corresponding to time (see [Tah11]):

E[ = i∂ctF , D[ = −i∂ct(?M) . (1.3.15)
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We can find F, ?F,M, ?M written in coordinates, as well as the H tensor that appears in the defi-

nition of M , in equations (1.2.42), (1.2.43), (1.2.40), (1.2.16) and (1.2.47). The ϕ equation (1.2.50)

simplifies M and ?M considerably and brings in the constant q into them:

F = −ϕ′ d(ct) ∧ dr , ?F = r2e−(λ+ν) sin θϕ′ dθ ∧ dφ , (1.3.16)

M = −q sin θ dθ ∧ dφ , ?M = −qe
λ+ν

r2
d(ct) ∧ dr . (1.3.17)

In particular

E[ = −ϕ′ dr , D[ =
qeλ+ν

r2
dr , (1.3.18)

and raising indices:

E = −ϕ′e−2ν ∂
∂r

, D =
qeλ−ν

r2
∂

∂r
. (1.3.19)

Rewriting these using the unit vector êr = e−ν∂r, we have

E = −ϕ′e−ν êr , D =
qeλ

r2
êr . (1.3.20)

We see that, as we claimed in subsection 1.3.2, ϕ′ enters in the calculation of the electric field E,

while the electric displacement field D looks similar to its κ = ∞ counterpart, with the difference

being the presence of eλ.

To understand the role of the constant q, assume that our spacetime can be extended to include

the worldline r = 0 of the point charge. The equation dM = 0 is true only on open sets away

from this line; but, in general, the covariant formulation of electromagnetism imposes the following

equation:

dM =
4π

c
? J [ , (1.3.21)

where J [ is the 1-form obtained by lowering indices of the four-current vector

J = cρ
∂

∂(ct)
+ j . (1.3.22)

In the above, ρ is a scalar field representing charge density, while the spatial part j represents

current density. In a static spacetime like ours, ρ is a function of only r, and j = 0. Furthermore,

our spacetime consists only of a point-like charge at r = 0, which is modeled by a delta measure:

ρ(r) = Qδ0. To avoid working with distributional fields like this, we will make use of an integral of

ρ performed on a sphere centered at r = 0 to represent the charge Q, and then the expression for
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M above will relate it to q. Namely, for any fixed time instant t0 and radius R > 0, the charge Q

should be the total amount of charge inside the sphere

Br = {(t0, r, θ, φ) | r ≤ R, θ ∈ [0, π], φ ∈ [0, 2π]} , (1.3.23)

which is written as

Q =

∫∫∫
BR

ρ dV . (1.3.24)

In the above,

dV = eλ+νr2 sin θ dr ∧ dθ ∧ dφ (1.3.25)

is the volume element induced by the metric on the slice of constant t = t0. Now compute J [ from

the definition (1.3.22) of J , and then

? J [ = −cρeλ+νr2 sin θ dr ∧ dθ ∧ dφ . (1.3.26)

In particular

dM = −4πρeλ+νr2 sin θ dr ∧ dθ ∧ dφ = −4πρ dV , (1.3.27)

and the integral (1.3.24) for Q becomes

Q = − 1

4π

∫∫∫
BR

dM = − 1

4π

∫∫
∂BR

M = − 1

4π

∫ 2π

0

∫ π

0
(−q sin θ)dθdφ = q , (1.3.28)

in which the Stokes theorem and the expression (1.3.17) for M were used. Henceforth, we will write

Q in place of q.

1.3.4 Particular solutions

When G = 0, we can check that the flat-space solution of the Maxwell-BLTP equations is a solution

to our system, as expected. Indeed, in that case the system becomes

ψ′ = 0

ζ ′ =
ζ(1− ζ)

r

w′′ − 3− ζ
r

w′ − κ2ζw = 0

(1.3.29)
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The general solution for the metric variables e2λ = ψ2/ζ, e2ν = ζ is the Schwarzschild spacetime

e2λ(r) = 1− M

c2r
, e2ν(r) =

(
1− M

c2r

)−1
(1.3.30)

where M ∈ R is a parameter. If we set M = 0 to force the manifold to be flat-space, we obtain the

following general solution for w:

w(r) = C1(1 + κr)e−κr + C2(1− κr)eκr (1.3.31)

Imposing w → 0 as r →∞ reduces it to just

w(r) = C1(1 + κr)e−κr , (1.3.32)

which implies, for the electric potential ϕ(r),

ϕ′(r) =
w(r)−Q

r2
= −Q

r2
+ C1

(
κ
r

+
1

r2

)
e−κr . (1.3.33)

By also imposing ϕ→ 0 as r →∞, we can unambiguously integrate:

ϕ(r) =
Q

r
− C1

e−κr

r
. (1.3.34)

Now the choice C1 = Q is the only one that makes ϕ(0) finite. Thus ϕ is as stated in (1.1.4). In

dimensionless units, this case corresponds to ε = 0, with the solution taking the form

ψ ≡ ζ ≡ 1 , w(r) = (1 + r)e−r . (1.3.35)

If instead G 6= 0, we should be able to check that RWN is the solution of our equations in the

Maxwell-Maxwell case, that is, when κ = ∞. We cannot use the form of the w equation given in

the main system (1.2.78), since there is a κ2 = ∞ present in there. Instead we use the equivalent

equation (1.2.53) which uses 1/κ2 = 0; it reads

ψw

r2
=

1

κ2

(
ψw′

ζr2

)′
. (1.3.36)

The system is then 

ψ′ = 0

ζ ′ =
ζ(1− ζ)

r
+
GQ2ζ2

c4r3
(1− w2)

ψw

r2
= 0

(1.3.37)
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Immediately we get ψ ≡ 1 (if we impose that ψ → 1 as r →∞) and w ≡ 0 (which then gives ϕ the

expression of the Coulomb potential). The general solution for ζ can be written

e−2ν(r) =
1

ζ(r)
= 1− 2GM

c2r
+
GQ2

c4r2
, (1.3.38)

where M is an integration constant. Together with the fact that eλ+ν = ψ ≡ 1, this gives the RWN

metric, as claimed.

Remark 1.3.3. The RWN metric with the Coulomb potential above (that is, w ≡ 0) also solves our

main system (1.2.78) in the case 0 < κ <∞. Indeed, in that system, all terms involving κ2 or 1/κ2

are accompanied by w or w′ and will still vanish if we plug in w = 0. What is more, RWN is the

only solution of (1.2.78) satisfying ψ ≡ 1 (that is, gttgrr = −1), because in this case the ψ equation

in (1.2.78) implies that w is constant, hence zero under the assumption w → 0 as r →∞. But this

solution is not acceptable as a candidate for the solution we seek for the Maxwell-BLTP-Einstein

system, since, as we shall see now, its corresponding total EM field energy is infinite.

1.3.5 Energy and asymptotic conditions at r = 0

We will now find the expression that defines the electromagnetic energy contained in a constant

time slice of the spacetime. As in [Tah11], we can find it as the conserved quantity associated with

the Killing field ∂t (it is true that any quantity defined on a spacelike slice is conserved in time in

our case, since we have a static spacetime, but the procedure outlined here is valid in more general

settings to identify the specific quantity that should be called energy).

We work under the simplification Q = κ = c = 1, G = ε as explained in subsection 1.3.1.

Consider the 1-form

P (Y ) = T (∂t, Y ) , (1.3.39)

defined on vector fields Y , where T is the stress-energy tensor that appears as right-hand side of

the Einstein equations (1.2.1) (which is necessarily divergence-free). Calculate the divergence of P :

? d ? P = divP = ∇µPµ = Tµν∇µ(∂t)ν =
1

2
(∇µ(∂t)ν +∇ν(∂t)µ) = 0 . (1.3.40)

In this we used ∇µTµν = 0 and, in the last step, the fact that ∂t is Killing. This implies d ? P = 0,

and then Stokes’ Theorem implies that the quantity

E(t0) =

∫
{t=t0}

?P (1.3.41)
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is constant as t0 varies:

E(t1)− E(t0) =

∫
{t0≤t≤t1}

d ? P = 0 . (1.3.42)

It is this constant that is called the energy contained in any hypersurface of constant time in our

spacetime. We shall omit the (t) dependence from it. (Note that we could have defined it also with

a minus sign in front; we will soon see that the definition we chose leads to a positive value for the

energy).

We can explicitly compute the 3-form ?P : by the definition of P and the fact that T is diagonal,

P = Tttdt , (1.3.43)

and the Hodge dual works out to be

? P = −eλ+νr2 sin θe−2λTtt drdθdφ . (1.3.44)

Therefore, after performing the θ, φ integrals, we find

E =
1

2

∫ ∞
0

eλ(r)+ν(r)

r2

(
1− w(r)2 − e−2ν(r)(w′(r))2

)
dr

=
1

2

∫ ∞
0

ψ

r2

(
1− w2 − 1

ζ
(w′)2

)
dr .

(1.3.45)

Remark 1.3.4. Plugging in (ψ, ζ, w) as in the RWN solution (in particular ψ ≡ 1 and w ≡ 0), this

expression becomes

E =
1

2

∫ ∞
0

dr

r2
=∞ (1.3.46)

(it is not integrable around the singularity). This is what deems the RWN solution inadequate for

our purposes.

Now let us rewrite the energy integral by using

1− w2 = −(w − 1)2 − 2(w − 1) . (1.3.47)

We see that we can split it into a negative integral plus another one that we are able to simplify,

given the definition (1.2.51) of w in terms of ϕ′:

E =
1

2

∫ ∞
0

ψ

r2
(−(w − 1)2 − ζ−1(w′)2)dr − 1

2

∫ ∞
0

ψ

r2
2(w − 1)dr

= −1

2

∫ ∞
0

ψ

r2
((w − 1)2 + ζ−1(w′)2)dr −

∫ ∞
0

ϕ′dr .

(1.3.48)
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Using the boundary conditions that we will prove are true for ϕ when we solve the system, that is,

ϕ(∞) = 0 and limr→0 ϕ(r) ∈ R, we have

E = −1

2

∫ ∞
0

ψ

r2
((w − 1)2 + ζ−1(w′)2)dr + ϕ(0) . (1.3.49)

Then the energy will be finite if and only if each of the two negative integrals in this expression is

finite: ∣∣∣∣∫ ∞
0

ψ(w − 1)2

r2
dr

∣∣∣∣ <∞ ,

∣∣∣∣∫ ∞
0

ψζ−1(w′)2

r2
dr

∣∣∣∣ <∞ . (1.3.50)

Note that we can also write the condition |ϕ(0)| <∞ in terms of finiteness of an integral, again by

rewriting ϕ′ in terms of w: ∣∣∣∣∫ ∞
0

ψ(w − 1)

r2
dr

∣∣∣∣ <∞ . (1.3.51)

Given the asymptotic conditions at r =∞ for ψ, ζ, w,w′, there are no divergence problems in these

integrals for large r. It is at the point r = 0 where there is a possibility of divergence, as in the case

of the RWN solution.

Now go back to the equation satisfied by ψ in the main system (1.2.78). We see that it is a

decreasing function:

ψ′ = −εψ
r3

(w′)2 < 0 .

Since we also require limr→∞ ψ(r) = 1, we must have

ψ(r) ≥ 1 for all r ≥ 0 .

Therefore the presence of ψ in (1.3.50) and (1.3.51) is not helping with finiteness of the integrals.

To obtain finite integrals, it will be necessary (but possibly not sufficient, depending on whether ψ

diverges and how fast) to have the following conditions:∣∣∣∣∫ ∞
0

w − 1

r2
dr

∣∣∣∣ <∞ ,

∣∣∣∣∫ ∞
0

(w − 1)2

r2
dr

∣∣∣∣ <∞ ,

∣∣∣∣∫ ∞
0

ζ−1(w′)2

r2
dr

∣∣∣∣ <∞ . (1.3.52)

Remark 1.3.5. The first of the 3 inequalities above tells us that w(0) must be defined and equal

to 1; in fact, since 1/r is not integrable near 0, it must be true that (w − 1)/r → 0 as r → 0, that

is, w′(0) = 0. Also note that the second one follows from the first. In section 1.5, we will let these

necessary values of w(0), w′(0) guide our choice of new variables to study the system for small r. We

will be able to prove that, for any small ε, there is a 1-parameter family of solutions which satisfy

0 < |X| <∞ , 0 < |Y | <∞ , 0 < |Z| <∞ , (1.3.53)



31

where

X = lim
r→0

ζ(r) , Y = lim
r→0

w′(r)

r
, Z = lim

r→0

w(r)− 1

r2
. (1.3.54)

These imply that the integrals (1.3.52) (performed only on a neighborhood of 0) are indeed finite.

Then we will be able to study the behavior of ψ along these solutions and conclude that also (1.3.50)

and (1.3.51) are finite (around 0). Once we manage to connect the solutions coming from r = 0 to

those coming from r =∞ to obtain a solution on (0,∞), these statements prove that |E| <∞ and

|ϕ(0)| <∞.

Remark 1.3.6. Once the statements made in the above remark are proved, there’s a further

simplification to be made in the energy integral. First note that

lim
r→0

ψ(w − 1)w′

ζr2
= lim

r→0

w − 1

r2
· 1

ζ
· r
w′
· (w′)2ψ

r
=

Z

XY
lim
r→0

(w′)2ψ

r
= 0 (1.3.55)

(the last limit is zero since the second integral in (1.3.50) converges). Now consider again the w

equation (1.2.53)
ψw

r2
−
(
ψw′

ζr2

)′
= 0 . (1.3.56)

Add ψ/r2 on both sides and multiply by w − 1:

ψ(w2 − 1)

r2
− (w − 1)

(
ψw′

ζr2

)′
=

(w − 1)ψ

r2
= ϕ′ . (1.3.57)

Integrating (by parts in the second term):∫ ∞
0

ψ(w2 − 1)

r2
dr − ψ(w − 1)w′

ζr2

∣∣∣∣∞
0

+

∫ ∞
0

ψ(w′)2

ζr2
dr =

∫ ∞
0

ϕ′dr = −ϕ(0) . (1.3.58)

The two integrals on the left-hand side combine to make a multiple of the energy, as per formula

(1.3.45):

− 2E − ψ(w − 1)w′

ζr2

∣∣∣∣∞
0

= −ϕ(0) , (1.3.59)

while the boundary term vanishes at both ends (at r = 0 this is due to (1.3.55), while at r =∞ it

is due to the fact that limr→∞w
′(r) = 0, to be proven in section 1.4). Therefore we obtain

E =
ϕ(0)

2
. (1.3.60)

This proves that the flat-space formula (1.1.5) still holds true. We can also plug this back into

(1.3.49) and solve for ϕ(0):

ϕ(0) =

∫ ∞
0

eλ+ν

r2
((w − 1)2 + e−2ν(w′)2)dr ≥ 0 , (1.3.61)

showing that the sign we chose for the energy in (1.3.41) was correct (yielded a positive energy).
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1.4 Radial variable away from 0

In this section we focus on solving the Maxwell-BLTP-Einstein system (1.1.13) for values of r

satisfying r ≥ r0 > 0, where r0 is fixed (later we will impose also r0 < 1 for convenience). The

system is recalled here: 

ψ′ = −εψ
r3

(w′)2

ζ ′ =
(1− ζ)ζ

r
+

ε

r3
((1− w2)ζ2 − (w′)2ζ)

w′′ =

(
3− ζ
r

+
εζ

r3
(1− w2)

)
w′ + ζw

(1.4.1)

We focus almost all of the attention on the ζ and w equations, which are independent of ψ, and

only study the solution for ψ in the very end of this section.

The number ε ≥ 0 is considered a parameter. We will find solutions that are power series in ε,

convergent at any large enough r with a uniform lower bound on the radius of convergence. The

solutions will be written as ψε(r), ζε(r), wε(r) when we need to consider what happens to them as

ε changes, but we will mostly write just ψ(r), ζ(r), w(r) when that is not needed. The main result

to be proven in this section is:

Theorem 1.4.1. Let µ∗, α∗ > 0. For every 0 < r0 < 1, there exists

ε∗ =
r70

240(15 + 4r0µ∗ + r40α∗)
(1.4.2)

such that, for any choice of the parameter ε ∈ [0, ε∗) satisfying

εµ2∗ < 1 , (1.4.3)

the Maxwell-BLTP-Einstein system (1.1.13) admits a 2-parameter family of solutions ψε, ζε, wε in

[r0,∞), parametrized by µ, α ∈ R, with |µ| ≤ µ∗ and |α| ≤ α∗, which are continuous on (µ, α) at

any r ∈ [r0,∞) and satisfy the following asymptotic conditions at r =∞:

lim
r→∞

ζε(r) = lim
r→∞

ψε(r) = 1 , (1.4.4)

lim
r→∞

wε(r) = lim
r→∞

w′ε(r) = 0 , (1.4.5)
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and the following perturbation conditions at any fixed r ∈ (r0,∞):

lim
ε→0+

ζε(r) = lim
ε→0+

ψε(r) = 1 , (1.4.6)

lim
ε→0+

wε(r) = (1 + r)e−r . (1.4.7)

Furthermore, we have, for all r ≥ r0,

ψε(r) > 0 , ζε(r) > 0 , (1.4.8)

and, for a given choice of the parameter µ (and an arbitrary one for α),

ζε(r) = 1 +
2µε

r
+O

(
1

r2

)
as r →∞ , (1.4.9)

so that µ can be identified with the dimensionless ADM mass of the spacetime represented by the

system.

The big O notation above is, as usual, employed to indicate that a function asymptotically

dominates another as r increases; that is, a statement of the form x(r) = y(r)+O(z(r)) means that

there exists C such that |x(r)− y(r)| ≤ C|z(r)| for r ≥ r0.

The steps in the proof, each one contained in one subsection, can be described as follows:

• (Subsection 1.4.1) We fix r0 > 0 and assume that, at each r > r0, we can write ζ, w as

convergent power series ζ(r, ε) =
∑

j ζj(r)ε
j and w(r, ε) =

∑
j wj(r)ε

j . We find recursion

formulas for the coefficients. They will involve two free parameters µ, α ∈ R whose values will

be considered fixed for the rest of the argument. The main task that is left is proving the

convergence of the series.

• (Subsection 1.4.2) We introduce new functions η, u, v of (r, ε), which are also given as ε-power

series with coefficients denoted by ηj , uj , vj , and read off the recursion formulas for them using

the ones found for ζj , wj . Proving the convergence of these new series is readily seen to be

equivalent to proving that of the original ones. The reason for considering the η variable in

place of ζ will only become apparent in subsection 1.4.4 (it is better suited for our technique

because it decays exponentially with r, while ζ doesn’t), while the reason for considering the

u, v variables in place of w,w′ is for convenience only (the formulas become shorter).
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• (Subsection 1.4.3) We put absolute values on those recursion formulas and find good ways to

estimate away the r dependence. It is proven that there exist numerical sequences (Aj), (Bj),

defined via a polynomial recursion, such that

|ηj(r)| ≤ Aje−r/2 , |uj(r)|, |vj(r)| ≤ Bje−r/2 . (1.4.10)

Another numerical sequence (Cj) is used in order to define Aj , Bj and will also figure in the

sequel.

• (Subsection 1.4.4) A summation technique is developed in order to prove by induction that

Aj , Bj , Cj ≤
SRj

(j + δ)2
(1.4.11)

for some R,S, δ > 0, establishing the convergence of the power series for any ε < 1/R.

• (Subsection 1.4.5) The estimates (1.4.10) can be used to obtain bounds which are uniform

in r ≥ r0. This is used to finish proving some of the leftover details, such as the desired

asymptotics of the series as r → ∞ and the fact that r-derivatives can be taken term by

term. We also quickly check the desired behavior of the ψ function from the original system

(positivity, asymptotic behavior) and continuity of the solutions with respect to the parameters

µ and α.

1.4.1 ε power series

In this subsection, we assume that

ζε(r) =
∞∑
j=0

ζj(r)ε
j , wε(r) =

∞∑
j=0

wj(r)ε
j (1.4.12)

with convergence for any large enough r and small enough ε, and with the possibility to take

r-derivatives term by term. Our goal is to find recursive formulas for the series coefficients.

The desired perturbation conditions (1.4.6) and (1.4.7) immediately imply that the zeroth terms

are determined:

ζ0 ≡ 1 , w0(r) = (1 + r)e−r , w′0(r) = −re−r . (1.4.13)
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Furthermore, the desired asymptotic conditions (1.4.4) and (1.4.5) suggest (although they don’t

necessarily imply) that it should be true that

lim
r→∞

ζj(r) = 0 for all j ≥ 1 ,

lim
r→∞

wj(r) = lim
r→∞

w′j(r) = 0 for all j ≥ 0 .

(1.4.14)

We will look for solutions satisfying these limits, and later prove (subsection 1.4.5) that they imply

(1.4.4) and (1.4.5).

Every polynomial expression P (ζ, w,w′) involving ζ, w,w′ is also given as a power series in ε,

converging wherever ζ, w,w′ converge. We will use the notation [P (ζ, w,w′)]j to denote the j-th

coefficient in the series for any such polynomial expression (j ≥ 0), which depends on the coefficients

ζk, wk, w
′
k for all k = 0, . . . , j and is given as a sum over indices adding up to j. So for example

[ζ2]j =

j∑
k=0

ζkζj−k , [ζ2w2]j =

j∑
k=0

[ζ2]k[w
2]j−k =

j∑
k=0

(
k∑
l=0

ζlζk−l

)(
j−k∑
m=0

wmwj−k−m

)
.

(1.4.15)

Proposition 1.4.2. Let ε ≥ 0. Fix r0 > 0 and two parameters µ, α ∈ R. Define sequences of

functions ζj , fj , wj of r ∈ [r0,∞) by:

ζ0(r) = 1 , f0(r) = 0 , w0(r) = (1 + r)e−r ; (1.4.16)

ζ1(r) =

(
2µ

r
− 1

r2

)
+

(
1

r
+

1

r2

)
e−2r

f1(r) =

(
2µ+

4µ− 1

r
− 2

r2

)
e−r +

(
2 +

5

r
+

3

r2

)
e−3r ,

w1(r) =
1

2

(
α(1 + r)e−r + (1 + r)e−r

∫ r

r0

(1− s)es

s2
f1(s) ds+ (1− r)er

∫ ∞
r

(1 + s)e−s

s2
f1(s) ds

)
;

(1.4.17)

and, for all j > 0,

ζj+1(r) =
1

r

∫ ∞
r

(
j∑

k=1

ζk(s)ζj+1−k(s) +
[−ζ(s)2 + ζ(s)2w(s)2 + ζ(s)(w′(s))2]j

s2

)
ds , (1.4.18)

fj+1(r) =

j∑
k=0

ζj+1−k

[
w − w′

r

]
k

+
[ζw′ − ζw2w′]j

r3
, (1.4.19)

wj+1(r) =
1

2

(
(1 + r)e−r

∫ r

r0

(1− s)es

s2
fj+1(s) ds+ (1− r)er

∫ ∞
r

(1 + s)e−s

s2
fj+1(s) ds

)
. (1.4.20)
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Then these sequences are well-defined, in the sense that the recursive definition is non-circular and

the improper integrals converge, and they satisfy

ζj(r) = O

(
1

rj

)
, wj(r) = O(e−r/2) , w′j(r) = O(e−r/2) as r →∞ . (1.4.21)

Furthermore, the analytic functions of ε defined by

ζ(r, ε) =
∞∑
j=0

ζj(r)ε
j , w(r, ε) =

∞∑
j=0

wj(r)ε
j (1.4.22)

are solutions of (1.1.13) for r ≥ r0 (provided that they converge and can be differentiated in the r

variable term-by-term).

Proof. System (1.1.13) determines differential equations satisfied by each ζj+1 and wj+1 which

we can solve in order to recursively define them in terms of all previous coefficients ζk, wk, w′k,

k = 0, . . . , j. First look at the (j + 1)st coefficient of the ζ equation:

ζ ′j+1 =
ζj+1 − [ζ2]j+1

r
+

[ζ2 − ζ2w2 − ζ(w′)2]j
r3

. (1.4.23)

In the expansion for [ζ2]j+1, there are two terms equal to ζ0ζj+1 = ζj+1. Other than these and the

very first ζj+1 above, nothing else involves any coefficient of degree j + 1. So we collect these ζj+1

terms on the left side and obtain:

ζ ′j+1 +
ζj+1

r
= −1

r

j∑
k=1

ζkζj+1−k +
[ζ2 − ζ2w2 − ζ(w′)2]j

r3
. (1.4.24)

One possible way to write the general solution to this equation is by fixing a number a ≥ r0 as an

integration starting point (to be used for all j) and including an integration constant Cj :

ζj+1(r) =
Cj
r

+
1

r

∫ r

a

(
−

j∑
k=1

ζk(s)ζj+1−k(s) +
[ζ(s)2 − ζ(s)2w(s)2 − ζ(s)(w′(s))2]j

s2

)
ds . (1.4.25)

But it turns out that choosing a =∞, C1 ∈ R and Cj+1 = 0 for all j > 0 will yield the asymptotic

condition (1.4.21) (this will be proven soon). In fact, choosing C1 = 2µ gives the stronger form

(1.4.9) of the asymptotic condition for ζ. This gives the recursion for the ζ coefficients as stated in

this proposition:

ζj+1(r) =
1

r

∫ ∞
r

(
j∑

k=1

ζkζj+1−k +
[−ζ2 + ζ2w2 + ζ(w′)2]j

s2

)
ds for all j > 0 ,

ζ1(r) =
2µ

r
+

1

r

∫ ∞
r

[−ζ2 + ζ2w2 + ζ(w′)2]0
s2

ds .

(1.4.26)
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Using the zeroth coefficients we can calculate

ζ1(r) =

(
2µ

r
− 1

r2

)
+

(
1

r
+

1

r2

)
e−2r . (1.4.27)

Next we analyze the w equation. First rewrite it as

w′′ − 2

r
w′ − w = (ζ − 1)

(
w − w′

r

)
+

ε

r3
ζ(1− w2)w′ , (1.4.28)

so that, when computing the (j + 1)st coefficient on both sides, the right side will not involve any

wj+1 or w′j+1. Indeed, these terms can only possibly show up in the term not including ε, and only

in the first term of the expansion[
(ζ − 1)

(
w − w′

r

)]
j+1

= [ζ − 1]0

[
w − w′

r

]
j+1

+ · · · , (1.4.29)

but this first term is zero, since [ζ − 1]0 = 1− 1 = 0. This means that, after having computed ζj+1,

we can proceed with computing wj+1 by

w′′j+1 −
2

r
w′j+1 − wj+1 =

j∑
k=0

[ζ − 1]j+1−k

[
w − w′

r

]
k

+
[ζw′ − ζw2w′]j

r3

=

j∑
k=0

ζj+1−k

[
w − w′

r

]
k

+
[ζw′ − ζw2w′]j

r3

= fj+1 .

(1.4.30)

We can calculate f1 defined by this formula and it will be precisely as stated in the proposition:

f1(r) =

(
2µ+

4µ− 1

r
− 2

r2

)
e−r +

(
2 +

5

r
+

3

r2

)
e−3r . (1.4.31)

The general solution of (1.4.30) can be found by the method of variation of parameters. It

involves a linear combination of the two solutions (1 + r)e−r and (1 − r)er of the homogeneous

equation, each multiplied by a particular integral involving the non-homogeneity fj+1 as part of the

integrand. In writing the most general solution, we can let the lower integration endpoint be a free

parameter bj+1 in the second of these integrals, and leave it fixed as r0 in the first, as long as we

also include a general multiple αj+1(1 + r)e−r of the corresponding homogeneous solution together

with this integral. This form will prove the most convenient later. The result of this procedure can

be calculated to be:

wj+1(r) =
1

2

(
αj+1(1 + r)e−r + (1 + r)e−r

∫ r

r0

(1− s)es

s2
fj+1(s) ds

− (1− r)er
∫ r

bj+1

(1 + s)e−s

s2
fj+1(s) ds

)
. (1.4.32)
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Note that the 1/s2 terms in the integrals come from the Wronskian determinant of the two funda-

mental solution.

The asymptotic condition of wj and w′j (1.4.21) can only be satisfied by choosing bj+1 =∞ for

all j ≥ 0. It will also be enough for our purposes to let only α1 be nonzero among all of the αj+1

(we call α1 just α). Hence, we have the recursion as given in the proposition statement:

wj+1(r) =
1

2

(
(1 + r)e−r

∫ r

r0

(1− s)es

s2
fj+1(s) ds+ (1− r)er

∫ ∞
r

(1 + s)e−s

s2
fj+1(s) ds

)
, j > 0

(1.4.33)

and

w1(r) =
1

2

(
α(1 + r)e−r + (1 + r)e−r

∫ r

r0

(1− s)es

s2
f1(s) ds

+ (1− r)er
∫ ∞
r

(1 + s)e−s

s2
f1(s) ds

)
. (1.4.34)

Next let us compute w′j+1 by differentiating the expressions above. Nothing comes from when the

derivative hits the integrals (a cancellation between the two terms takes place); the only surviving

expression is obtained from when the derivative hits the functions (1±r)e∓r outside of the integrals:

w′j+1(r) = −r
2

(
e−r

∫ r

r0

(1− s)es

s2
fj+1(s) ds+ er

∫ ∞
r

(1 + s)e−s

s2
fj+1(s) ds

)
, j > 0 (1.4.35)

and

w′1(r) = −r
2

(
αe−r + e−r

∫ r

r0

(1− s)es

s2
f1(s) ds+ er

∫ ∞
r

(1 + s)e−s

s2
f1(s) ds

)
. (1.4.36)

We now have a non-circular recursion for all ζj , fj , wj , w′j . What is left is the proof that the

improper integrals in the formulas converge and that the asymptotics (1.4.21) hold; we will prove

both at the same time by induction. To start, note that (1.4.21) is immediately true for j = 0.

(1.4.21) is also true for ζ1 (the dominant term in ζ1 is 2µ/r when r is made large). For w1, we

will use its defining formula (1.4.34) to prove that |w1(r)e
r/2| is bounded. First estimate the f1 term

inside the integrals in the w1 formula by some multiple C of e−r/2 (which can be done considering

the expression for f1), so that we can write:

2|w1(r)|er/2 ≤ |α|(1+r)e−r/2+C(1+r)e−r/2
∫ r

r0

(1 + s)es/2

s2
ds+C(1+r)e3r/2

∫ ∞
r

(1 + s)e−3s/2

s2
ds .

(1.4.37)
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The first of these three terms is clearly bounded. To see that the second one is also bounded, since

we are only concerned with the region [r0,∞), away from 0, all we have to do is prove that it has

a finite limit as r → ∞, which can be done by the L’Hôpital Rule (observe that the integral itself

diverges, so L’Hôpital is justified):

lim
r→∞

(1 + r)e−r/2
∫ r

r0

(1 + s)es/2

s2
ds = lim

r→∞

∫ r
r0

(1+s)es/2

s2
ds

er/2

1+r

= lim
r→∞

(1+r)er/2

r2(
1

2(1+r) −
1

(1+r)2

)
er/2

= 2 .

(1.4.38)

As for the third term, we estimate the decreasing function (1 + s)/s by (1 + r)/r2 and integrate:

(1 + r)e3r/2
∫ ∞
r

(1 + s)e−3s/2

s2
≤ 2

3

(1 + r)2

r2
e3r/2e−3r/2 ≤ 2

3

(
1 +

2

r0
+

1

r20

)
. (1.4.39)

An entirely analogous argument proves (1.4.21) for w′1.

So we have (1.4.21) for j = 0, 1. Now fix j > 0 and assume by induction that, for all k = 0, . . . , j,

the coefficients ζk, wk are well-defined and there exist constants Dk > 0 such that

|ζk(r)| ≤
Dk

rk
, |wk(r)|, |w′k(r)| ≤ Dke

−r/2 , r ≥ r0 . (1.4.40)

Then we have:

|ζj+1(r)| ≤
1

r

∫ ∞
r

( j∑
k=1

DkDj+1−k
sj+1

+

j∑
k=0

DkDj−k
sj+2

+

j∑
k=0

k∑
l=0

j−k∑
m=0

DlDk−lDmDj−k−m
sk+2

e−s

+

j∑
k=0

j−k∑
m=0

DkDmDj−k−m
sk+2

e−s
)

ds

≤ 1

r

(
1

jrj

j∑
k=1

DkDj+1−k +
1

(j + 1)rj+1

j∑
k=0

DkDj−k + e−r
j∑

k=0

k∑
l=0

j−k∑
m=0

DlDk−lDmDj−k−m
(k + 1)rk+1

+ e−r
j∑

k=0

j−k∑
m=0

DkDmDj−k−m
(k + 1)rk+1

)
,

(1.4.41)

where we have estimated the decreasing factor of e−s by its maximum e−r in the integration domain.

It is clear that the end result is dominated, for r ≥ r0, by a multiple of 1/rj+1, since the exponential
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e−r is dominated by a multiple of any function of the form 1/rj−k. Similarly, we have

|fj+1(r)| ≤
j∑

k=0

|ζj+1−k||wk|+
1

r

j∑
k=0

|ζj+1−k||w′k|+
1

r3

j∑
k=0

|ζj−k||w′k|

+
1

r3

j∑
k=0

k∑
l=0

l∑
m=0

|ζj−k||wm||wl−m||w′k−l|

≤
j∑

k=0

Dj+1−kDk

rj+1−k e−r/2 +
Dj+1−kDk

rj+2−k e−r/2 +

j∑
k=0

Dj−kDk

rj+3−k e
−r/2

+

j∑
k=0

k∑
l=0

l∑
m=0

Dj−kDmDl−mDk−l
rj+3−k e−3r/2 ,

(1.4.42)

which we can write as

|fj+1(r)| ≤ Ej+1e
−r/2 (1.4.43)

for some constant Ej+1. Now the exact same argument that led to the bound on |w1e
r/2| will work

also for wj+1, w
′
j+1. Then the induction hypothesis (1.4.40) is proven for k = j + 1.

Remark 1.4.3. The proof above does not attempt to keep track of the growth in j of the constants

Cj , Dj , Ej , which is necessary before we can prove convergence. The rest of this section will deal

with this.

Remark 1.4.4. In section 1.6, we will actually need to know the exact expressions for w1, w
′
1, and

not just estimates for their absolute values. So we provide them here. They are written in terms of

the following non-elementary function, called the exponential integral :

Ei(−r) :=

∫ ∞
r

e−s

s
ds , r > 0 (1.4.44)

(the minus sign in the argument is the most common convention for this function). Note its expo-

nential decay as r →∞:

Ei(−r) < 1

r

∫ ∞
r

e−sds =
e−r

r
. (1.4.45)

Computing w1, w
′
1 using the f1 formula gives:

w1(r) = −5

6
e−r + 2e−3r +

1

3

(
2Ei(−2r)− 9Ei(−4r)

)
(r − 1)er − 2Ei(−2r)(r + 1)e−r

+

[
1

12

(
1

r0
+

3

r20
− 4

r30

)
+

1

2

(
− 3

r0
+

1

r30

)
e−2r0 + 2Ei(−2r0)

]
(r − 1)e−r

+ µ

[
Ei(−2r)(r − 1)er +

(
− 1

r0
+

1

r20
− log

(
r

r0

))
(r + 1)e−r

]
+
α

2
(r + 1)e−r (1.4.46)
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w′1(r) =
1

6

(
1 +

4

r

)
e−r −

(
1 +

1

r

)
e−3r + 2Ei(−2r)re−r +

1

3

(
2Ei(−2r)− 9Ei(−4r)

)
rer

+

[
1

12

(
− 1

r0
− 3

r20
+

4

r30

)
− 2Ei(−2r0) +

1

2

(
3

r0
− 1

r20

)
e−2r0

]
re−r

+ µ

[
−2e−r +

(
1

r0
− 1

r20

)
re−r + Ei(−2r)rer + re−r log

(
r

r0

)]
− α

2
re−r (1.4.47)

In particular, when evaluated at r = r0, we have:

w1(r0) =
1

12

(
−9 +

4

r0
− 1

r20
− 4

r30

)
e−r0 +

1

2

(
1− 3

r0
+

1

r20
+

1

r30

)
e−3r0

+
1

3

(
2Ei(−2r0)−9Ei(−4r0)

)
(r0−1)er0+µ

[(
−1 +

1

r20

)
e−r0 + Ei(−2r0)(r0 − 1)er0

]
+
α

2
(1+r0)e

−r0

(1.4.48)

w′1(r0) =
1

12

(
1 +

5

r0
+

4

r20

)
e−r0 +

1

2

(
1− 2

r0
− 1

r20

)
e−3r0

+
1

3

(
2Ei(−2r0)− 9Ei(−4r0)

)
r0e

r0 + µ

[
−
(

1 +
1

r0

)
e−r0 + Ei(−2r0)r0e

r0

]
− α

2
r0e
−r0 (1.4.49)

1.4.2 New variables

It will turn out to be the case that, for large r, the metric can be realized as an exponentially small

correction to the RWN metric. More precisely:

ζε(r) = ζRWN(ε, r) +O(e−r/2) as r →∞ (1.4.50)

where ζRWN is the second metric coefficient in the RWN metric (using the same parameter µ), which

in our dimensionless variables reads

ζRWN(ε, r) =

(
1− 2µε

r
+

ε

r2

)−1
. (1.4.51)

We remark that, at any fixed r > 0, the latter can be written as a power series in ε:

ζRWN(ε, r) =
∞∑
j=0

ρ(r)jεj , ρ(r) :=
2µ

r
− 1

r2
. (1.4.52)

with radius of convergence at a fixed r equal to 1/|ρ(r)| (which decreases to 0 as r → 0+, and grows

unboundedly with r when r ≥ 1/µ, in case µ > 0, or for all r > 0, when µ ≤ 0). Also note that

ζRWN is well-defined for any r > 0 because we are under the assumption that εµ2 ≤ εµ2∗ < 1, which

is the necessary and sufficient condition for 1/ζRWN(r) > 0 for all r > 0.
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So we consider a new function that measures the deviation from the RWN metric:

η(r) = ζ(r)− ζRWN(r) . (1.4.53)

Define also

ηj(r) = ζj(r)− [ζRWN(r)]j = ζj(r)− ρ(r)j . (1.4.54)

Remark 1.4.5. Our technique for proving convergence of the power series would not have worked

if we attempted to apply it for ζ, and the reason is that |ζ(r)| becomes much larger than |w(r)| as r

increases (the first approaches 1, the second decays exponentially), whereas the technique requires

working with functions comparable in size as r increases. The first two coefficients in the η series

are found from ζ0 and ζ1 given in (1.4.16), (1.4.17):

η0(r) ≡ 0 , η1(r) =

(
1

r
+

1

r2

)
e−2r . (1.4.55)

Note their exponential decay as r → ∞. When we compute the recursion satisfied by ηj+1 for

j ≥ 1, we will see that all terms in it involve the coefficients wk and/or w′k, as well as ηk, hence all

ηj coefficients will decay exponentially with r, just like those of w and w′.

On the other hand, because we explicitly separate out the RWN term from the metric (which

does not have a uniform radius of convergence on (0,∞)), our work in this section cannot be

extended all the way to r = 0. This is why we can only apply it to an interval of the form [r0,∞),

and later we have to study the system at small r and ensure that the two regimes connect.

We also introduce new functions u(r), v(r) to consider in place of w(r) and w′(r). They are of

comparable magnitude to them. The reason for introducing them is simply to make the formulas

more compact; there will only be one integral instead of two in their recursion. Define:

u(r) =
w(r)

r
+

(
1

r
+

1

r2

)
w′(r) ,

v(r) = −w(r)

r
+

(
1

r
− 1

r2

)
w′(r) ,

(1.4.56)

with inverse transformation (u, v) 7→ (w,w′) given by

w(r) =
1

2

(
(r − 1)u(r)− (r + 1)v(r)

)
,

w′(r) =
r

2
(u(r) + v(r)) .

(1.4.57)

Define also the coefficients uj(r) and vj(r) by taking the j-th coefficients of w(r) and w′(r) in

(1.4.56) just above.
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Remark 1.4.6. We now have 3 power series to consider in place of the original ones:

η(ε, r) =

∞∑
j=0

ηj(r)ε
j , u(ε, r) =

∞∑
j=0

uj(r)ε
j , v(ε, r) =

∞∑
j=0

vj(r)ε
j . (1.4.58)

Proving the convergence of u, v also proves that of w,w′ for the same radius at each r, due to

(1.4.57). Proving the convergence of η also proves that of ζ, albeit possibly for a smaller radius,

since ζ − η = ζRWN has a radius given by 1/|ρ(r)| at each r > 0. It will turn out that the radius

that we will end up obtaining for η, u, v will be much smaller than 1/|ρ(r)| when r0 is small, hence

it will also be the one that works for ζ, w.

Before writing the recursion for ηj , uj , vj , we state:

Lemma 1.4.7. Let ρ(r) be defined as in (1.4.52). Then, for all r > 0 and j ≥ 0,

1

r

∫ ∞
r

(
jρ(s)j+1 − (j + 1)ρ(s)j

s2

)
ds = ρ(r)j+1 . (1.4.59)

Proof. Consider the expressions

G1(r) =

∫ ∞
r

(
jρ(s)j+1 − (j + 1)ρ(s)j

s2

)
ds , G2(r) = rρ(r)j+1 . (1.4.60)

Both have a limit of 0 as r →∞; hence, if we show that G′1 ≡ G′2, we will have proven that G1 ≡ G2,

as the lemma states. Simply compute:

G′1(r) = −jρ(r)j+1 +
(j + 1)ρ(r)j

r2
= ρ(r)j

(
−j
(

2µ

r
− 1

r2

)
+
j + 1

r2

)
= ρ(r)j

(
−2jµ

r
+

2j + 1

r2

)
(1.4.61)

and

G′2(r) = ρ(r)j+1 + (j + 1)rρ(r)j
(
−2µ

r2
+

2

r3

)
= ρ(r)j

(
2µ

r
− 1

r2
− 2(j + 1)µ

r
+

2(j + 1)

r2

)
= ρ(r)j

(
−2jµ

r
+

2j + 1

r2

)
. (1.4.62)
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Now we’re ready to find the formula for ηj+1, j ≥ 1, using the one for ζj+1 (1.4.18), which reads:

ρ(r)j+1 + ηj+1 =
1

r

∫ ∞
r

(
j∑

k=1

ζkζj+1−k +
[−ζ2 + ζ2w2 + ζ(w′)2]j

s2

)
ds

=
1

r

∫ ∞
r

( j∑
k=1

ζkζj+1−k −
1

s2

j∑
k=0

ζkζj−k +
1

s2

j∑
k=0

k∑
l=0

j−k∑
m=0

ζlζk−lwmwj−k−m

+
1

s2

j∑
k=0

j−k∑
m=0

ζkw
′
mw
′
j−k−m

)
ds .

(1.4.63)

Look at the ζ∗ factors appearing in each of the 4 sums in this integral: the first 3 involve two of

them, the 4th only one of them. Replace each ζ∗ with ρ∗ + η∗ and multiply out: each of the first 3

sums will become a sum of 3 terms (the first containing ρ∗ρ∗, the second 2ρ∗η∗, and the third η∗η∗),

while the last sum will become a sum of 2 terms (one containing ρk, the other ηk), for a total of 11

terms. Now look specifically at the 2 that contain only powers of ρ, and no η∗, w∗, w′∗ terms:

1

r

∫ ∞
r

(
j∑

k=1

ρkρj+1−k − 1

s2

j∑
k=0

ρkρj−k + · · ·

)
ds =

1

r

∫ ∞
r

(
jρj+1 − (j + 1)ρj

s2
+ · · ·

)
ds . (1.4.64)

Due to lemma 1.4.7, this produces precisely ρ(r)j+1, a term already present on the left side of

(1.4.63). We subtract this term from both sides to get the recursion for ηj+1. It contains a total

of 9 sums inside the integral on the right side. Finally, rewrite all w∗, w′∗ in these sums in terms of

u∗, v∗ by using (1.4.57). We obtain:

ηj+1(r) =
1

r

∫ ∞
r

9∑
i=1

Hi(s)ds , j ≥ 0 , (1.4.65)

where

H1 = 2

j∑
k=1

ρj+1−kηk , H2 =

j∑
k=1

ηkηj+1−k , H3 = − 2

r2

j∑
k=0

ρj−kηk , H4 = − 1

r2

j∑
k=0

ηkηj−k ,

(1.4.66)

H5 =
1

r2

j∑
k=0

k∑
l=0

j−k∑
m=0

ρk−lρl
(r − 1)um − (r + 1)vm

2

(r − 1)uj−k−m − (r + 1)vj−k−m
2

, (1.4.67)

H6 =
2

r2

j∑
k=0

k∑
l=0

j−k∑
m=0

ρk−lηl
(r − 1)um − (r + 1)vm

2

(r − 1)uj−k−m − (r + 1)vj−k−m
2

, (1.4.68)

H7 =
1

r2

j∑
k=0

k∑
l=0

j−k∑
m=0

ηlηk−l
(r − 1)um − (r + 1)vm

2

(r − 1)uj−k−m − (r + 1)vj−k−m
2

, (1.4.69)
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H8 =
1

r2

j∑
k=0

j−k∑
m=0

ρk
rum + rvm

2

ruj−k−m + rvj−k−m
2

=

j∑
k=0

j−k∑
m=0

ρk
um + vm

2

uj−k−m + vj−k−m
2

,

(1.4.70)

H9 =
1

r2

j∑
k=0

j−k∑
m=0

ηk
rum + rvm

2

ruj−k−m + rvj−k−m
2

=

j∑
k=0

j−k∑
m=0

ηk
um + vm

2

uj−k−m + vj−k−m
2

.

(1.4.71)

(all Hi, ρ
k, ηk, uk, vk applied to r).

Next we turn to the recursion for u and v. Simply apply the map (1.4.57) to the formulas for

all terms wj , w′j :

u0(r) ≡ 0 , v0(r) = −2e−r ; (1.4.72)

u1(r) = −er
∫ ∞
r

(
1

s
+

1

s2

)
e−sf1(s)ds ,

v1(r) = −αe−r + e−r
∫ r

r0

(
1

s
− 1

s2

)
esf1(s)ds ;

(1.4.73)

and, for j > 0,

uj+1(r) = −er
∫ ∞
r

(
1

s
+

1

s2

)
e−sfj+1(s)ds ,

vj+1(r) = e−r
∫ r

r0

(
1

s
− 1

s2

)
esfj+1(s)ds .

(1.4.74)

But here the recursion for the fj terms should be rewritten using the ηk, uk, vk variables. We expand

the fj+1 formula (1.4.19) by writing all ζ∗ as ρ∗+ η∗ and all w∗, w′∗ in terms of u∗, v∗. There are no

simplifications like the one above which used lemma 1.4.7. The result is

fj+1(r) =
6∑
i=1

Fi(r) , j ≥ 0 , (1.4.75)

with

F1 =

j+1∑
k=1

ρk
(r − 2)uj+1−k − (r + 2)vj+1−k

2
, F2 =

j+1∑
k=1

ηk
(r − 2)uj+1−k − (r + 2)vj+1−k

2
,

(1.4.76)

F3 =
1

r2

j∑
k=0

ρj−k
uk + vk

2
, F4 =

1

r2

j∑
k=0

ηj−k
uk + vk

2
, (1.4.77)

F5 = − 1

r2

j∑
k=0

k∑
l=0

k−l∑
m=0

ρj−k
ul + vl

2

(r − 1)um − (r + 1)vm
2

(r − 1)uk−l−m − (r + 1)vk−l−m
2

,

(1.4.78)

F6 = − 1

r2

j∑
k=0

k∑
l=0

k−l∑
m=0

ηj−k
ul + vl

2

(r − 1)um − (r + 1)vm
2

(r − 1)uk−l−m − (r + 1)vk−l−m
2

.

(1.4.79)
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This concludes the definition of the new power series to be considered in what follows in this

section.

1.4.3 Estimates and separation of r and j

Here we will find useful estimates for |ηj |, |uj |, |vj |, working the cases j = 0, 1 separately and the

rest by induction. We assume that r0 > 0, µ, α ∈ R have been fixed, as in proposition 1.4.2, and

that we are restricted to r ≥ r0.

For our purposes in this subsection, it will be necessary to bound the 1st-degree coefficients

|η1(r)|, |u1(r)|, |v1(r)| by multiples of e−r/2. Let’s compute these multiples now. First,

|η1(r)| =
(

1

r
+

1

r2

)
e−2r <

(
1

r0
+

1

r20

)
e−r/2 =

1 + r0
r20

e−r/2 , (1.4.80)

Next, from the expression (1.4.17) for f1, we have:

|f1(r)| ≤
∣∣∣∣2µ+

4µ− 1

r
− 2

r2

∣∣∣∣ e−r +

(
2 +

5

r
+

3

r2

)
e−3r

≤
((

2 +
4

r0

)
|µ|+ 1

r0
+

2

r20
+

(
2 +

5

r0
+

3

r20

)
e−2r0

)
e−r

<

((
2 +

4

r0

)
|µ|+ 2 +

6

r0
+

5

r20

)
e−r

=
5 + 6r0 + 2r20 + (4r0 + 2r20)|µ|

r20
e−r ,

(1.4.81)

and therefore

|u1(r)| ≤ er
∫ ∞
r

e−s
(

1

s
+

1

s2

)
|f1(s)|ds

<

(
1

r0
+

1

r20

)
5 + 6r0 + 2r20 + (4r0 + 2r20)|µ|

r20
er
∫ ∞
r

e−2sds

=
1

2

(
1

r0
+

1

r20

)
5 + 6r0 + 2r20 + (4r0 + 2r20)|µ|

r20
e−r

<

(
2 + 3r0 + r20

r30
|µ|+

5
2 + 11

2 r0 + 4r20 + r30
r40

)
e−r/2 ,

(1.4.82)
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and

|v1(r)| ≤ e−r
(
|α|+

∫ r

r0

es
∣∣∣∣1s − 1

s2

∣∣∣∣ |f1(s)|ds)
< e−r

(
|α|+

(
1

r0
+

1

r20

)
5 + 6r0 + 2r20 + (4r0 + 2r20)|µ|

r20
(r − r0)

)
< |α|e−r/2 +

5 + 11r0 + 8r20 + 2r30 + (4r0 + 6r20 + 2r30)|µ|
r40

re−r

<

(
|α|+ 4 + 6r0 + 2r20

r30
|µ|+ 5 + 11r0 + 8r20 + 2r30

r40

)
e−r/2 ,

(1.4.83)

where we bounded r − r0 by just r and then used the fact that the maximum of the expression

re−r/2 over the domain r > 0 is 2e−1 < 1.

Having found estimates for the 1st-degree coefficients, we turn to estimating the recursive for-

mulas for the coefficients j + 1, j ≥ 1.

Estimate each sum Hi in formula (1.4.65) for ηj+1 by taking absolute values everywhere. We

bound the factors 1/r2 in front of H3, H4 by 1/r20, the ensuing expression (r + 1)2/r2 in front of

H5, H6, H7 by (r0 + 1)2/r20, and the overall factor of 1/r outside the integral by 1/r0. Hence:

|ηj+1(r)| ≤
1

r0

∫ ∞
r

9∑
i=1

H̃i(s)ds , j ≥ 1 , (1.4.84)

where

|H1(r)| ≤ 2

j∑
k=1

|ρ(r)|j+1−k|ηk(r)| =: H̃1(r) , |H2(r)| ≤
j∑

k=1

|ηk(r)||ηj+1−k(r)| =: H̃2(r) ,

(1.4.85)

|H3(r)| ≤
2

r20

j∑
k=0

|ρ(r)|j−k|ηk(r)| =: H̃3(r) , |H4(r)| ≤
1

r20

j∑
k=0

|ηk(r)||ηj−k(r)| =: H̃4(r) ,

(1.4.86)

|H5(r)| ≤
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

|ρ(r)|k−m|ρ(r)|m |ul(r)|+ |vl(r)|
2

|uj−k−l(r)|+ |vj−k−l(r)|
2

=: H̃5(r) ,

(1.4.87)

|H6(r)| ≤
2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

|ρ(r)|k−m|ηm(r)| |ul(r)|+ |vl(r)|
2

|uj−k−l(r)|+ |vj−k−l(r)|
2

=: H̃6(r) ,

(1.4.88)

|H7(r)| ≤
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

|ηm(r)||ηk−m(r)| |ul(r)|+ |vl(r)|
2

|uj−k−l(r)|+ |vj−k−l(r)|
2

=: H̃7(r) ,

(1.4.89)
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|H8(r)| ≤
j∑

k=0

j−k∑
m=0

|ρ(r)|k |um(r)|+ |vm(r)|
2

|uj−k−m(r)|+ |vj−k−m(r)|
2

=: H̃8(r) , (1.4.90)

|H9(r)| ≤
j∑

k=0

j−k∑
m=0

|ηk(r)|
|um(r)|+ |vm(r)|

2

|uj−k−m(r)|+ |vj−k−m(r)|
2

=: H̃9(r) . (1.4.91)

Do the same for the Fi’s in formula (1.4.75):

|fj+1(r)| ≤
6∑
i=1

F̃i(r) , (1.4.92)

where

|F1(r)| ≤ (r0 + 2)

j+1∑
k=1

|ρ(r)|k
|uj+1−k(r)|+ |vj+1−k(r)|

2
=: F̃1(r) , (1.4.93)

|F2(r)| ≤ (r0 + 2)

j+1∑
k=1

|ηk(r)|
|uj+1−k(r)|+ |vj+1−k(r)|

2
=: F̃2(r) , (1.4.94)

|F3(r)| ≤
1

r20

j∑
k=0

|ρ(r)|j−k |uk(r)|+ |vk(r)|
2

=: F̃3(r) , (1.4.95)

|F4(r)| ≤
1

r20

j∑
k=0

|ηj−k(r)|
|uk(r)|+ |vk(r)|

2
=: F̃4(r) , (1.4.96)

|F5(r)| ≤
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

|ρ(r)|j−k |ul(r)|+ |vl(r)|
2

|um(r)|+ |vm(r)|
2

|uk−l−m(r)|+ |vk−l−m(r)|
2

=: F̃5(r) ,

(1.4.97)

|F6(r)| ≤
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

|ηj−k(r)|
|ul(r)|+ |vl(r)|

2

|um(r)|+ |vm(r)|
2

|uk−l−m(r)|+ |vk−l−m(r)|
2

=: F̃6(r) .

(1.4.98)

Plug this inside the integrals for uj+1, vj+1, j ≥ 1:

|uj+1(r)| ≤ er
∫ ∞
r

(
1

s
+

1

s2

)
e−s|fj+1(s)|ds ≤

(
1

r0
+

1

r20

)
er
∫ ∞
r

e−s
6∑
i=1

F̃i(s)ds , (1.4.99)

and similarly

|vj+1(r)| ≤
(

1

r0
+

1

r20

)
e−r

∫ r

r0

es
6∑
i=1

F̃i(s)ds . (1.4.100)

Our next step is to define scalar sequences (Aj), (Bj) quantifying how |ηj(r)|, |uj(r)|, |vj(r)|

compare to e−r/2 (see inequalities (1.4.101) below, which we like to think of as a form of separation
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of variables r and j). Then it will be the rate of growth of these coefficients that will determine the

radius of convergence for the series for η, u, v, while the fact that e−r/2 is uniformly bounded over

[r0,∞) will permit us to estimate the radius uniformly over this interval.

Proposition 1.4.8. There exist sequences (Aj), (Bj) of nonnegative numbers such that, for all

j ≥ 0 and r ≥ r0,

|ηj(r)| ≤ Aje−r/2 , |uj(r)|, |vj(r)| ≤ Bje−r/2 , (1.4.101)

and they can be defined recursively, together with an auxiliary sequence (Cj), as follows:


A0 = 0

B0 = 2

C0 = 1

,



A1 =
1 + r0
r20

B1 = |α|+ 4 + 6r0 + 2r20
r30

|µ|+ 5 + 11r0 + 8r20 + 2r30
r40

C1 =
2|µ|
r0

+
1

r20

(1.4.102)

and, for j ≥ 1,

Aj+1 =
1

r0

(
4

j∑
k=1

AkCj+1−k +

j∑
k=1

AkAj+1−k

+
4

r20

j∑
k=0

AkCj−k +
1

r20

j∑
k=0

AkAj−k

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

CmCk−mBlBj−k−l +
4(r0 + 1)2

3r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmCk−mBlBj−k−l

+
(r0 + 1)2

2r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmAk−mBlBj−k−l

+

j∑
k=0

j−k∑
m=0

CkBmBj−k−m +
2

3

j∑
k=0

j−k∑
m=0

AkBmBj−k−m

)
, (1.4.103)
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Bj+1 =
1 + r0
r20

(
2(r0 + 2)

j+1∑
k=1

CkBj+1−k + (r0 + 2)

j+1∑
k=1

AkBj+1−k

+
2

r20

j∑
k=0

Cj−kBk +
1

r20

j∑
k=0

Aj−kBk

+
2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−m +
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−m

)
,

(1.4.104)

Cj+1 =

(
2|µ|
r0

+
1

r20

)
Cj . (1.4.105)

Proof. The recursion is well-posed since, by inspection, Aj+1 and Cj+1 only depend on terms of

index at most j, while Bj+1 depends only on Aj+1 and Cj+1 in addition to those. Also note that

the recursion for (Cj) is easily solved:

Cj =

(
2|µ|
r0

+
1

r20

)j
, (1.4.106)

and in particular, for any k ≥ 0 and r ≥ r0,

|ρ(r)|k =

∣∣∣∣2µr − 1

r2

∣∣∣∣k ≤ (2|µ|
r0

+
1

r20

)k
= Ck . (1.4.107)

But we choose to keep writing Ck in all formulas, instead of its known value (1.4.106), so that later

we can apply the same technique to all sums appearing in the recursive formulas for (Aj), (Bj).

The claim (1.4.101) is true for j = 0, given that

η0 ≡ u0 ≡ 0 , |v0(r)| = 2e−r < 2e−r/2 . (1.4.108)

It is also true for j = 1, due to the 1st-degree coefficients estimates (1.4.80), (1.4.82), (1.4.83).

Now assume for induction that (1.4.101) are valid for all indices up to some j ≥ 1. We will esti-

mate the sums H̃i, F̃i appearing in the formulas (1.4.84), (1.4.99) and (1.4.100) for ηj+1, uj+1, vj+1

by using the induction hypothesis on all factors |ηk|, |uk|, |vk| in them, and bounding all |ρ(r)|k by

Ck. Note that |uk| and |vk| always appear in the form (|uk| + |vk|)/2, which can be bounded by

Bke
−r/2. Since each sum involves at least one factor ηk or (|uk| + |vk|)/2, they will all yield some

power of e−s/2, to be integrated in s.



51

For ηj+1, we get

|ηj+1(r)| ≤
1

r0

∫ ∞
r

(
2

j∑
k=1

AkCj+1−ke
−s/2 +

j∑
k=1

AkAj+1−ke
−s

+
2

r20

j∑
k=0

AkCj−ke
−s/2 +

1

r20

j∑
k=0

AkAj−ke
−s

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

CmCk−mBlBj−k−le
−s +

2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmCk−mBlBj−k−le
−3s/2

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmAk−mBlBj−k−le
−2s

+

j∑
k=0

j−k∑
m=0

CkBmBj−k−me
−s +

j∑
k=0

j−k∑
m=0

AkBmBj−k−me
−3s/2

)
ds . (1.4.109)

Integrating the exponentials e−as (where a = 1/2, 1, 3/2 or 2) yields e−ar/a, which does not exceed

e−r/2/a. Therefore,

|ηj+1(r)| ≤
e−r/2

r0

(
4

j∑
k=1

AkCj+1−k +

j∑
k=1

AkAj+1−k

+
4

r20

j∑
k=0

AkCj−k +
1

r20

j∑
k=0

AkAj−k

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

j−k∑
m=0

CmCk−mBlBj−k−l +
4(r0 + 1)2

3r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmCk−mBlBj−k−l

+
(r0 + 1)2

2r20

j∑
k=0

k∑
l=0

j−k∑
m=0

AmAk−mBlBj−k−l

+

j∑
k=0

j−k∑
m=0

CkBmBj−k−m +
2

3

j∑
k=0

j−k∑
m=0

AkBmBj−k−m

)
. (1.4.110)

The ηj+1 bound in (1.4.101) is verified. Proceed similarly with the uj+1 formula (1.4.99):

|uj+1(r)| ≤
(

1

r0
+

1

r20

)
er
∫ ∞
r

e−s
(

(r0 + 2)

j+1∑
k=1

CkBj+1−ke
−s/2 + (r0 + 2)

j+1∑
k=1

AkBj+1−ke
−s

+
1

r20

j∑
k=0

Cj−kBke
−s/2 +

1

r20

j∑
k=0

Aj−kBke
−s

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−me
−3s/2+

(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−me
−2s
)

ds .

(1.4.111)
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Each factor contains an exponential e−as where a = 3/2, 2, 5/2 or 3 (observe that there is an overall

e−s factor inside the integral). Integrate and then bound the resulting e−ar by e−3r/2 in each term,

which together with the er outside makes e−r/2. We have then

|uj+1(r)| ≤
1 + r0
r20

e−r/2
(

2(r0 + 2)

3

j+1∑
k=1

CkBj+1−k +
r0 + 2

2

j+1∑
k=1

AkBj+1−k

+
2

3r20

j∑
k=0

Cj−kBk +
1

2r20

j∑
k=0

Aj−kBk

+
2(r0 + 1)2

5r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−m +
(r0 + 1)2

3r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−m

)
.

(1.4.112)

Each r0-dependent coefficient in front of the sums in this formula is smaller or equal to the cor-

responding one in the definition of Bj+1 given in the proposition statement, so the uj+1 bound is

proven. Do the same for vj+1 from (1.4.100):

|vj+1(r)| ≤
(

1

r0
+

1

r20

)
e−r

∫ r

r0

es
(

(r0 + 2)

j+1∑
k=1

CkBj+1−ke
−s/2 + (r0 + 2)

j+1∑
k=1

AkBj+1−ke
−s

+
1

r20

j∑
k=0

Cj−kBke
−s/2 +

1

r20

j∑
k=0

Aj−kBke
−s

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−me
−3s/2+

(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−me
−2s
)

ds .

(1.4.113)

Upon integrating:

|vj+1(r)| ≤
(

1

r0
+

1

r20

)
e−r
(

2(r0 + 2)

j+1∑
k=1

CkBj+1−k(e
r/2 − er0/2) + (r0 + 2)

j+1∑
k=1

AkBj+1−k(r− r0)

+
2

r20

j∑
k=0

Cj−kBk(e
r/2 − er0/2) +

1

r20

j∑
k=0

Aj−kBk(r − r0)

+
2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−m(e−r0/2 − e−r/2)

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−m(e−r0 − e−r)
)
. (1.4.114)

Keep only the positive term from each of the expressions (er/2 − er0/2), (r − r0), (e−r0/2 − e−r/2)
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and (e−r0 − e−r), then bound the last two by 1 and distribute the overall factor e−r:

|vj+1(r)| ≤
(

1

r0
+

1

r20

)(
2(r0 + 2)

j+1∑
k=1

CkBj+1−ke
−r/2 + (r0 + 2)

j+1∑
k=1

AkBj+1−kre
−r

+
2

r20

j∑
k=0

Cj−kBke
−r/2 +

1

r20

j∑
k=0

Aj−kBkre
−r

+
2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−me
−r

+
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−me
−r
)
. (1.4.115)

Now keep only a factor of e−r/2 from the last two terms, and (just like when we estimated |v1|) use

re−r ≤ e−r/2 where re−r appears:

|vj+1(r)| ≤
1 + r0
r20

e−r/2
(

2(r0 + 2)

j+1∑
k=1

CkBj+1−k + (r0 + 2)

j+1∑
k=1

AkBj+1−k

+
2

r20

j∑
k=0

Cj−kBk +
1

r20

j∑
k=0

Aj−kBk

+
2(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Cj−kBlBmBk−l−m +
(r0 + 1)2

r20

j∑
k=0

k∑
l=0

k−l∑
m=0

Aj−kBlBmBk−l−m

)
.

(1.4.116)

This proves the vj+1 bound.

Remark 1.4.9. As we noted, the formula for Bj+1 includes the terms Aj+1 and Cj+1. If we plug

the recursive formulas for these two terms into the places where they appear in the Bj+1 formula

(the first two sums), we obtain an expression for Bj+1 involving only indices at most equal to j:

Bj+1 =
1 + r0
r20

[
2(r0 + 2)B0Cj+1 + (r0 + 2)B0Aj+1

+ 2(r0 + 2)

j∑
k=1

CkBj+1−k + (r0 + 2)

j∑
k=1

AkBj+1−k + · · ·
]

(1.4.117)

We don’t attempt to fully write it down. It is just a polynomial recursion involving A,B,C coef-

ficients, but soon we will bound all A,C coefficients using B coefficients and the formula will get

shortened.
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1.4.4 Sub-exponential growth of the coefficients

Having separated r and j in our estimates for the series coefficients, our next step (the most technical,

and the one where a novel technique appears) will be to prove that

lim sup
j→∞

A
1/j
j <∞ , lim sup

j→∞
B

1/j
j <∞ , (1.4.118)

which we refer to as (Aj), (Bj) having sub-exponential growth. Once this is established, the

bounds (1.4.101) proven in proposition 1.4.8 yield a positive lower bound for the radius of con-

vergence of the η, u, v series. For example, for any given r ≥ r0, the radius of convergence of∑∞
j=0 ηj(r)ε

j will be the inverse of

lim sup
j→∞

|ηj(r)|1/j ≤ lim
j→∞

(Aje
−r/2)1/j = lim

j→∞
A

1/j
j <∞ , (1.4.119)

that is, it will be at least some positive number, independent of r ∈ [r0,∞).

Remark 1.4.10. Some words about our technique are in order now. The recursion formulas

(1.4.103) and (1.4.104) make it clear that Aj , Bj are polynomial expressions, with coefficients de-

pending on r0, of the initial terms A0, A1, B0, B1, and it is not difficult to prove that the degree of

these polynomials is at most 4j. But knowing this is still far from being able to establish some-

thing like (1.4.118), which would require us to also control the growth of the coefficients of the

polynomials. Our technique will pursue a different path, which we now briefly explain.

If (1.4.118) is to be true, there must exist positive numbers R,S such that, for all j ≥ 0,

Aj , Bj ≤ SRj . (1.4.120)

But trying to establish an inequality like this by induction proves to be a problem: when using the

induction hypothesis on each term in the sums appearing in the recursive definition of Aj+1 and

Bj+1, the several resulting powers of Rk combine to produce Rj or Rj+1, as needed, but they leave

behind sums that make quadratic, cubic or quartic expressions of j. For example:

j∑
k=0

j−k∑
m=0

AkBmBj−k−m ≤
j∑

k=0

j−k∑
m=0

SRkSRmSRj−k−m = S3Rj
j∑

k=0

j−k∑
m=0

1 ≈ SRj+1S
2

R
j3 . (1.4.121)

It becomes impossible to bound this by a uniform constant times SRj+1 as j increases.

Our technique deals with this issue by instead trying to establish an inequality of the form

Aj , Bj ≤
SRj

(j + δ)2
(1.4.122)
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for some R,S, δ > 0. Such an inequality is also equivalent to (1.4.118), since the quadratic expression

in j in the denominator can always be absorbed into the exponential Rj when j grows. However,

this form is better suited for an induction proof because, as it turns out, the convolutional sums

analogous to (1.4.121) that are produced by the induction hypothesis can be bounded by something

which also includes a similar quadratic term in j in the denominator, as is needed to complete the

induction. This is due to the next lemma.

Lemma 1.4.11. For all δ1, δ2 > 0, we have

j∑
k=0

1

(k + δ1)2(j − k + δ2)2
≤

8 + 2

(
1

δ1
+

1

δ2

)2

(j + δ1 + δ2)2
, j ≥ 0 (1.4.123)

and
j−1∑
k=1

1

(k + δ1)2(j − k + δ2)2
≤ 8

(j + δ1 + δ2)2
, j ≥ 2 . (1.4.124)

Proof. By partial fractions in the variable k:

1

(k + δ1)2(j − k + δ2)2
=

1

(j + δ1 + δ2)2

(
2/(j + δ1 + δ2)

k + δ1
+

1

(k + δ1)2

+
2/(j + δ1 + δ2)

j − k + δ2
+

1

(j − k + δ2)2

)
. (1.4.125)

First we will establish (1.4.124). When summing (1.4.125) over k = 1, . . . , j−1, the terms including

j − k in the denominator can be rewritten with k, since j − k and k both sweep the same range in

the sum:

j−1∑
k=1

1

(k + δ1)2(j − k + δ2)2
=

1

(j + δ1 + δ2)2

j−1∑
k=1

(
2/(j + δ1 + δ2)

k + δ1
+

1

(k + δ1)2

+
2/(j + δ1 + δ2)

k + δ2
+

1

(k + δ2)2

)
. (1.4.126)

Now distribute the sum and get rid of any δ’s in the denominators inside parenthesis:
j−1∑
k=1

1

(k + δ1)2(j − k + δ2)2
<

1

(j + δ1 + δ2)2

(
4

j

j−1∑
k=1

1

k
+ 2

j−1∑
k=1

1

k2

)
. (1.4.127)

The second sum is bounded above by the value π2/6 of the infinite p-series (p = 2). The first sum

can be estimated using an integral:

1

j

j−1∑
k=1

1

k
=

1

j

(
1 +

j−1∑
k=2

)
<

1

j

(
1 +

∫ j−1

1

dx

x

)
=

1

j
(1 + log(j − 1)) <

1

j
(1 + j − 1) = 1 , (1.4.128)
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where we used the fact that log(x) < x for all x > 0. Hence

j−1∑
k=1

1

(k + δ1)2(j − k + δ2)2
<

1

(j + δ1 + δ2)2

(
4 +

π2

3

)
<

8

(j + δ1 + δ2)2
. (1.4.129)

To prove (1.4.123), we use the bound just proved for
∑j−1

k=1, and add to it the terms given by

(1.4.125) with k = 0 and k = j, which are:

1

(j + δ1 + δ2)2

(
2

j + δ1 + δ2

(
1

δ1
+

1

δ2
+

1

j + δ1
+

1

j + δ2

)
+

1

δ21
+

1

δ22
+

1

(j + δ1)2
+

1

(j + δ2)2

)
.

Bound the expression in parenthesis above by replacing j with 0 to obtain

4

δ1 + δ2

(
1

δ1
+

1

δ2

)
+

2

δ21
+

2

δ22
=

4δ1δ2 + 2δ22 + 2δ21
δ21δ

2
2

= 2

(
δ1 + δ2
δ1δ2

)2

= 2

(
1

δ1
+

1

δ2

)2

.

This proves the claim.

Remark 1.4.12. There is nothing special about the power 2 in the denominator in this lemma; a

similar result would hold with any power greater than 1, but we chose to work with 2 because the

simple proof by partial fractions is available for it.

Now, a tricky aspect of our technique is the fact that the bounds (1.4.122) need to be satisfied

for all j, not just j large enough. For proving the sub-exponential growth property (1.4.118), it

would of course be enough to have them be satisfied only for large enough j, but the point is that, in

order to prove the bounds for some j, we will need to use the bounds themselves inductively — and

since the recursion for the (j+ 1)st coefficients includes all coefficients Ak, Bk, Ck with k = 0, . . . , j,

the inequality is needed for all these indices. One could also decide to treat the first few indices in

the formulas by a different means, but that would require opening up the sums to separate them

out and would be impractical.

This need for the inequality to be satisfied for all indices suggests how to obtain the constants

R,S, δ: the value of the zeroth coefficients will dictate the relationship between S and δ, then the

value of the first coefficients will impose a δ-dependent lower bound for R, and finally the recursion

for j + 1 ≥ 2 will impose a small value for δ to close the induction and in turn determine R.

Theorem 1.4.13. There exist numbers R,S, δ > 0 such that the sequences (Aj), (Bj), (Cj) of

proposition 1.4.2 satisfy

Aj , Bj , Cj ≤
SRj

(j + δ)2
, j ≥ 0 . (1.4.130)
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Furthermore, R, δ, S can be selected as such:

R =
240(15 + 4r0|µ|+ r40|α|)

r70
, δ <

1√
48

, S = 2δ2 . (1.4.131)

Proof. Let δ > 0 (we will specify a value later, in order to also demonstrate how a suitable δ can

be found). Define

S = B0δ
2 = 2δ2 , R =

B1

B0

(
1 +

1

δ

)2

= (1 + δ)2
|α|+ 4+6r0+2r20

r30
|µ|+ 5+11r0+8r20+2r30

r40

2δ3
. (1.4.132)

Observe, for later use, that
1

R
=
B0

B1

δ2

(1 + δ)2
<
B0

B1
δ2 . (1.4.133)

Then (1.4.130) are true for j = 0, 1. Indeed, it is enough to verify these only for the (Bj)

sequence, since one can see that max{Aj , Bj , Cj} = Bj for j = 0, 1; and in this case we actually

have equality:

SR0

(0 + δ)2
=
B0δ

2

δ2
= B0 ,

SR1

(1 + δ)2
=

B0δ
2

(1 + δ)2
B1

B0

(
1 +

1

δ

)2

= B1 . (1.4.134)

Now fix j ≥ 1 and assume for induction that (1.4.130) is true for all indices up to j. We will use

the recursive definition of Aj+1, Bj+1, Cj+1 to prove it for j+ 1 as well. The giant formula (1.4.117)

for Bj+1 makes it clear that Bj+1 ≥ Aj+1, Cj+1 for all j ≥ 1, hence we only need to prove the

induction hypothesis for Bj+1. Since also Bj ≥ Aj , Cj for j = 0, 1, we can bound every A∗ and C∗

term in this formula by the corresponding B∗ term and group together similar sums:

Bj+1 ≤
20 + 36r0 + 19r20 + 3r30

r30

j∑
k=1

BkBj+1−k +

(
16 + 24r0 + 8r20

r30
|µ|8 + 12r0 + 4r20

r40

)
Bj

+
20 + 33r0 + 13r20

r50

j∑
k=0

BkBj−k +
20 + 30r0 + 10r20

3r30

j∑
k=0

j−k∑
m=0

BkBmBj−k−m

+
34 + 128r0 + 180r20 + 112r30 + 26r40

3r50

j∑
k=0

k∑
l=0

j−k∑
m=0

BmBk−mBlBj−k−l . (1.4.135)

We will now estimate each sum in this expression by first using the induction hypothesis in each B∗

and then lemma 1.4.11 in the ensuing sums. Each time we will look for the particular expression

SRj+1/(j + 1 + δ)2 that is needed to complete the induction.
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• In the first sum (
∑j

k=1), since the index k is never 0 or j + 1, we can use (1.4.123) with j + 1

in place of j:

j∑
k=1

BkBj+1−k ≤
j∑

k=1

SRkSRj+1−k

(k + δ)2(j + 1− k + δ)2
≤ 8S2Rj+1

(j + 1 + 2δ)2
<

SRj+1

(j + 1 + δ)2
16δ2 ,

(1.4.136)

where we used S = 2δ2 and bounded 2δ in the denominator by just δ. It was important here

to be able to use the part of lemma 1.4.11 that guarantees a δ-uniform constant, 8, instead of

one that diverges when δ is small, 8 + 2(2/δ)2. Because of this, we were able to get a bound

proportional to δ2, which, we shall see, will be important.

• In the second term (the one without a summation sign), simply do

Bj ≤
SRj

(j + δ)2
=

SRj+1

(j + 1 + δ)2
1

R

(
j + 1 + δ

j + δ

)2

<
SRj+1

(j + 1 + δ)2
4

R
, (1.4.137)

where we used the fact that

j + 1 + δ

j + δ
= 1 +

1

j + δ
< 1 +

1

1 + 0
= 2 . (1.4.138)

Note how it is important that j ≥ 1 for this calculation; if we were to attempt it for j = 0 too,

there would not be a δ-independent bound when δ is made small. This is part of the reason

why we have to consider the j = 0, 1 terms separately in this proof and only let the recursion

kick off at j + 1 ≥ 2.

• In the third sum (
∑j

k=0), proceed similarly to the first, but applying (1.4.124) this time since

the summation index k spans the whole {0, . . . , j}. Note that the indices of the B terms in

this sum add up to only j, meaning they will produce an Rj after the induction hypothesis is

applied; so we include an extra 1/R and substitute Rj with Rj+1:

j∑
k=0

BkBj−k ≤
j∑

k=0

SRkSRj−k

(k + δ)2(j − k + δ)2
≤ S2Rj

(j + 2δ)2

(
8 + 2

(
1

δ
+

1

δ

)2
)

=
S2Rj

(j + 2δ)2

(
8 +

8

δ2

)
=

SRj+1

(j + 1 + δ)2
2

R

(
8δ2 + 8

)(j + 1 + δ

j + 2δ

)2

<
SRj+1

(j + 1 + δ)2
8

R

(
8δ2 + 8

)
,

(1.4.139)

where we used S = 2δ2 and also bounded (j + 1 + δ)/(j + 2δ) by 2, similarly to what we did

for (j + 1 + δ)/(j + δ) above.
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• In the double sum term (
∑j

k=0

∑j−k
m=0), after applying the induction hypothesis, we can use

the lemma once just in the part whose indices add to j− k, then once more together with the

other k index:

j∑
k=0

j−k∑
m=0

BkBmBj−k−m ≤
j∑

k=0

SRk

(k + δ)2

j−k∑
m=0

SRmSRj−k−m

(m+ δ)2(j − k −m+ δ)2

≤ S3Rj
j∑

k=0

1

(k + δ)2
1

(j − k + 2δ)2

(
8 +

8

δ2

)
≤ S3Rj

(
8 +

8

δ2

)
8 + 2

(
1
δ + 1

2δ

)2
(j + 3δ)2

=
S3Rj+1

(j + 3δ)2
1

R

(
8 +

8

δ2

)(
8 +

9

2δ2

)
=

SRj+1

(j + 1 + δ)2
4

R
(8δ2 + 1)

(
8δ2 +

9

2

)(
j + 1 + δ

j + 3δ

)2

<
SRj+1

(j + 1 + δ)2
16

R
(8δ2 + 1)

(
8δ2 +

9

2

)
. (1.4.140)

• In the triple sum term (
∑j

k=0

∑k
l=0

∑j−k
m=0), we need three applications of the lemma:

j∑
k=0

k∑
l=0

j−k∑
m=0

BmBk−mBlBj−k−l < S4Rj
j∑

k=0

8 + 8/δ2

(k + 2δ)2
8 + 8/δ2

(j − k + 2δ)2

≤ S4Rj

(j + 4δ)2

(
8 +

8

δ2

)2
(

8 + 2

(
1

2δ
+

1

2δ

)2
)

=
SRj+1

(j + 1 + δ2)2
8

R
(8δ2 + 8)2(8δ2 + 2)

(
j + 1 + δ

j + 4δ

)2

<
SRj+1

(j + 1 + δ2)2
32

R
(8δ2 + 8)2(8δ2 + 2) .

(1.4.141)

Putting all of this together, we conclude

Bj+1 ≤
SRj+1

(j + 1 + δ)2
bR,δ , (1.4.142)

where bR,δ is given by

bR,δ =
20 + 36r0 + 19r20 + 3r30

r30
16δ2 +

1

R

[(
16 + 24r0 + 8r20

r30
|µ|+ 8 + 12r0 + 4r20

r40

)
4

+
20 + 33r0 + 13r20

r50
8(8δ2 + 8) +

20 + 30r0 + 10r20
3r30

16(8δ2 + 1)

(
8δ2 +

9

2

)
+

34 + 128r0 + 180r20 + 112r30 + 26r40
3r50

32(8δ2 + 8)2(8δ2 + 2)

]
. (1.4.143)

To complete the induction, we must be able to select δ > 0 making bR,δ < 1. First note that, for

any δ, we can use (1.4.133) to bound 1/R in terms of δ2. Then all terms in the above definition of

bR,δ will include a δ2, which is what we will take advantage of to make it less than 1. Also bringing



60

out a factor B0/B1, present in all but the first term, we have:

bR,δ <
B0

B1
δ2
[

20 + 36r0 + 19r20 + 3r30
r30

16B1

B0
+

(
16 + 24r0 + 8r20

r30
|µ|+ 8 + 12r0 + 4r20

r40

)
4

+
20 + 33r0 + 13r20

r50
8(8δ2 + 8) +

20 + 30r0 + 10r20
3r30

16(8δ2 + 1)

(
8δ2 +

9

2

)
+

34 + 128r0 + 180r20 + 112r30 + 26r40
3r50

32(8δ2 + 8)2(8δ2 + 2)

]
. (1.4.144)

In particular, looking only at the first term, if we want to make bR,δ < 1, then it will be necessary

that
B0

B1
δ2 <

r30
20 + 36r0 + 19r20 + 3r30

B0

16B1
<

r30
320

B0

B1
=⇒ δ2 <

r30
320

. (1.4.145)

So assume this a priori and plug it into all instances of δ2 inside parenthesis in (1.4.144) to obtain

an upper bound for bR,δ. It becomes bR,δ < (B0/B1)δ
2b, where

b :=

2400000 + 9600000r0 + 158728000r20 + 543968000r30 + 747528000r40 + 465071200r50

+117210200r60 + 13875800r70 + 8679840r80 + 2064880r90 + 65000r100

+40637r110 + 9524r120 + 90r130 + 56r140 + 13r150

3000r70

+
640 + 2112r0 + 2656r20 + 1648r30 + 544r40 + 80r50

r60
|µ|+ 160 + 288r0 + 152r20 + 24r30

r30
|α|

>
160

r70

(
15 + 4r0|µ|+ r40|α|

)
(1.4.146)

(the occurrence of |µ| and |α| here comes from the fraction B1/B0 in the first term of (1.4.144), as

well as the presence of |µ| in the second term). Hence, by imposing

δ2 :=
B1

B0

r70
160(15 + 4r0|µ|+ r40|α|)

, (1.4.147)

the a priori bound (1.4.145) holds and bR,δ < 1, closing the induction.

Now plug this into the definition of R:

R =
B1

B0

(
1 + δ

δ

)2

=
160(15 + 4r0|µ|+ r40|α|)(1 + δ)2

r70
. (1.4.148)

Finally, to get rid of δ in the above, note that the first inequality in (1.4.145) implies

δ2 <
r30

(20 + 36r0 + 19r20 + 3r30)16
<

1

48
. (1.4.149)
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Then the chosen R satisfies

R <
160(15 + 4r0|µ|+ r40|α|)

r70

(
1 +

1√
48

)2

<
240(15 + 4r0|µ|+ r40|α|)

r70
. (1.4.150)

It is clear that increasing the value of R does not invalidate the theorem, so we might as well replace

the chosen R with this exact upper bound, just as the theorem states.

Corollary 1.4.14. The radius of convergence of the η, u and v power series, at any r ∈ [r0,∞), is

at least
1

R
=

r70
240(15 + 4r0|µ|+ r40|α|)

. (1.4.151)

Proof. This was explained in equation (1.4.119). But now, with the inequalities (1.4.130) proven in

the above theorem, we can find an upper bound for the inverse of the radius of convergence at any

point, as in (1.4.119), given by

lim sup
j→∞

A
1/j
j ≤ lim

j→∞

S1/jR

(j + δ)2/j
= R . (1.4.152)

Corollary 1.4.15. For r0 < 1, the radius of convergence of the ζ and w power series, at any

r ∈ [r0,∞), is at least
1

R
=

r70
240(15 + 4r0|µ|+ r40|α|)

. (1.4.153)

Proof. As noted in remark 1.4.6, the radii for w and w′ at any r ≥ r0 are the same as for u and v,

while the one for ζ(r) will be min{1/R, 1/|ρ(r)|}, where

1

|ρ(r)|
=

r2

|1− 2µr|
≥ r2

1 + 2r|µ|
≥ r20

1 + 2r0|µ|
. (1.4.154)

We see that, when r0 < 1, this minimum also yields 1/R.

1.4.5 Remaining details

Assume 0 < r0 < 1 and µ∗, α∗ ∈ R are fixed. We’ll also need to assume that ε > 0 has been chosen

such that

ε <
1

4R
=

r70
960(15 + 4r0µ∗ + r40α∗)

. (1.4.155)
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With this ε (actually also with ε < 1/R, however the reason for the 1/4 factor will become clear

soon), the power series for η, u, v, ζ, w are well-defined on [r0,∞) for any choice of the parameters

µ ∈ [−µ∗, µ∗] and α ∈ [−α∗, α∗]. In this subsection, when we write η, u, v, ζ, w, we assume that

a choice of µ ∈ [−µ∗, µ∗] and α ∈ [−α∗, α∗] has been made, and, when we want to study the

dependence on the parameters, we will use superscripts like ζ(µ,α) etc.

The purpose of this subsection is to verify the following:

1. that the asymptotic conditions (1.4.4), (1.4.5), (1.4.9) for ζ and w are true;

2. that differentiation of the ε-power series for ζ and w term-by-term in the r variable is justified;

3. that ζ(µ,α), w(µ,α) are continuous with respect to µ ∈ [−µ∗, µ∗] and α ∈ [−α∗, α∗];

4. that ζ(r) > 0 on [r0,∞);

5. that ψ = ψε = ψ(µ,α) can be solved for in the original system (1.1.13) satisfying the conditions

ψ(r) ≥ 0 for r ∈ [r0,∞), limr→∞ ψ(r) = 1, limε→0+ ψε(r) = 1 for all r ≥ r0, and that ψ(µ,α)

is continuous in the parameters µ and α.

We tackle them one by one in the order presented above:

1. From the inequalities

|uj(r)| ≤
SRj

(j + δ)2
e−r/2 , |vj(r)| ≤

SRj

(j + δ)2
e−r/2 (1.4.156)

(consequence of (1.4.101) and (1.4.130)), we conclude:

|u(r)| =

∣∣∣∣∣∣
∞∑
j=0

uj(r)ε
j

∣∣∣∣∣∣ ≤ Se−r/2
∞∑
j=0

(Rε)j

(j + δ)2
< Se−r/2

∞∑
j=0

(Rε)j (1.4.157)

and similarly for v(r). The geometric series above is summable because ε < ε∗ = 1/R. So this

proves that u and v decay exponentially to 0 as r →∞. Given the relation (1.4.57) between

(w,w′) and (u, v), the same is true for w and w′, proving (1.4.5).

The same argument can be made for η(r). Now, since

ζ(r) = ζRWN (r) + η(r) =

(
1− 2µε

r
+

ε

r2

)−1
+ η(r) , (1.4.158)

we conclude (1.4.4) and (1.4.9) too.
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2. Term-by-term differentiation (in the r variable) of our ε-power series for ζ, w and w′ is justified

once we can prove that their corresponding series of r-derivatives
∑

j ζ
′
j(r)ε

j etc. converge

uniformly with respect to r ∈ [r0,∞). Uniformity is not an issue, given how each derivative

ζ ′j(r), w
′
j(r) and w′′j (r) can be seen (from their definitions in proposition 1.4.2) to depend on

r through functions of the form r−k1e−k2r (where k1, k2 ≥ 0), which are uniformly bounded

on [r0,∞). But pointwise convergence of the r-derivative ε-series must be proved first.

So fix an r ∈ [r0,∞). We illustrate the idea for the ζ series. Call

gn(ε) =

n∑
j=0

ζj(r)ε
j , g(ε) = lim

n→∞
gn(ε) . (1.4.159)

We already know that g(ε) is well-defined when ε < ε∗, and now we’d like to prove that

h(ε) = lim
n→∞

g′n(ε) (1.4.160)

is too. It’s clear that the same technique presented in this section can prove that h(ε) is

well-defined when ε < ε∗∗, for some ε∗∗ > 0 that is potentially smaller than ε∗ (after all, the

polynomial recursion obtained for the derivative series will not be the exact same). Take ε∗∗

as large as it can be, and assume for a contradiction that ε∗∗ < ε∗. Standard theorems on

systems of ODE’s imply that the main differential system (1.1.13) can be solved around our

fixed value of r with a solution that is analytic in ε, defined for parameters ε in a small open

interval around ε∗∗. We already know how to write the solution as an ε power series for any

ε < ε∗∗ (because differentiation term-by-term is justified for this range); the corresponding ζ

is such that ζ ′(r) = h(ε). But, since this same ζ, as an ε-series, is necessarily still well-defined

when ε is a bit past ε∗∗, the uniqueness of power series representations proves that also h is

well-defined there, contradicting the maximality of ε∗∗. This proves our claim.

3. Observe that the coefficients ζ(µ,α)1 and w
(µ,α)
1 introduced in subsection 1.4.1 are linear ex-

pressions of µ and α, while every subsequent ζj+1 and wj+1 is defined recursively in terms of

integrals of polynomial expressions of previous coefficients ζk and wk. This implies that, for

each fixed r ≥ r0, there exist polynomial expressions

Pj(µ, α) =
∑

k+l≤dj

pjklµ
kαl , Qj(µ, α) =

∑
k+l≤dj

qjklµ
kαl , (1.4.161)
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of some finite degree dj , such that, for each j ≥ 0 and each (µ, α) ∈ [−µ∗, µ∗]× [−α∗, α∗] ,

ζ
(µ,α)
j (r) = Pj(µ, α) , w

(µ,α)
j (r) = Qj(µ, α) . (1.4.162)

This implies, for the ζ power series and for this fixed r,

ζ(µ,α)(r) =

∞∑
j=0

∑
k+l≤dj

pjklµ
kαlεj =

∑
k+l≤dj

 ∞∑
j=0

pjklε
j

µkαl . (1.4.163)

This power series of (µ, α) is absolutely convergent, as we proved, for any values of the param-

eters µ, α in the allowed range, and in particular is a continuous function of them. Proceed

similarly for w.

4. Given the expression (1.4.155) for ε, let γ ∈ (0, 1/4) be such that

ε =
γ

R
=

γr70
240(15 + 4r0µ∗ + r40α∗)

<
γr70
3600

. (1.4.164)

The same power series estimate as in (1.4.157), but this time for η (which starts at index

j = 1), implies

|η(r)| =

∣∣∣∣∣∣
∞∑
j=1

ηj(r)ε
j

∣∣∣∣∣∣ ≤ Se−r/2
∞∑
j=1

Rε

(j + δ)2
<
S

δ2

∞∑
j=1

γj =
2γ

1− γ
. (1.4.165)

Given that

ζ(r) = ζRWN(r) + η(r) =

(
1− 2µε

r
+

ε

r2

)−1
+ η(r) , (1.4.166)

we have

ζ(r) >
(

1 +
ε

r2

)−1
− 2γ

1− γ
>

(
1 +

γr70
3600r20

)−1
− 2γ

1− γ
=

(
1 +

γr50
3600

)−1
− 2γ

1− γ
. (1.4.167)

The condition for this expression to be positive is

γ2r50
3600

+ 3γ − 1 < 0 . (1.4.168)

The left side increases with r0 and γ, and is negative with r0 = 1 and γ = 1/4, so we have

ζ(r) > 0 on r ∈ [r0,∞) for any 0 < r0 < 1 and 0 < γ < 1/4.
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5. Recall the ψ equation in (1.1.13):

ψ′ = −εψ
r3

(w′)2 . (1.4.169)

Plug in for w the solution to (1.1.13) that we just proved exists, which is continuous as a

function of µ and α and analytic in ε. The following expression solves this equation (and is

itself also continuous as a function of µ and α and analytic in ε):

ψ(r) = exp

(
ε

∫ ∞
r

w′(s)2

s3
ds

)
. (1.4.170)

Observe that, given the exponential decay of w′(r) as r →∞, the integral is well-defined and

we will have ψ(r) → 1 as r → ∞, as required. Also note that ψ is decreasing in r, so this

asymptotic condition also proves that ψ(r) > 0 on [r0,∞). Finally, expanding the argument

of exp in this formula as a power series in ε will yield an expression whose degree-0 term is 1,

and this justifies the claim that limε→0 ψε(r) = ψ0(r) := 1 for all r ≥ r0.

With this we conclude the study of the main system (1.1.13) in the regime of r away from 0.

1.5 Radial variable close to 0

In this section we prove that solutions to the Maxwell-BLTP-Einstein system (1.1.13) exist over

a domain r ∈ (0, r0], for small enough r0, in such a way that finiteness of the integrals (1.3.50)

and (1.3.51) (performed over (0, r0) instead of (0,∞)) is granted. We recall the system here for

convenience: 

ψ′ = −εψ
r3

(w′)2

ζ ′ =
(1− ζ)ζ

r
+

ε

r3
((1− w2)ζ2 − (w′)2ζ)

w′′ =

(
3− ζ
r

+
εζ

r3
(1− w2)

)
w′ + ζw

(1.5.1)

Again the focus will be for the most part only on the system without the ψ equation. The main

results to be proved in this section are:

• the existence of a 1-parameter family (call the parameter σ) of solutions with finite energy

close to r = 0; and
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• a uniform-in-σ quantitative estimate for the pointwise difference between the solution families

corresponding to ε = 0 and to ε > 0.

They are described in the next two theorems:

Theorem 1.5.1. For every 0 ≤ ε < 1/60 and 0 < r0 < 1/360, the Maxwell-BLTP-Einstein system

(1.1.13) admits a 1-parameter family of solutions ψ, ζ, w in (0, r0), parametrized by a real number

σ such that |σ| < 1/360, which are continuous in σ at any r ∈ (0, r0] and satisfy the following

asymptotic conditions at r = 0:

0 < lim
r→0+

ζ(r) <∞ , 0 < lim
r→0+

∣∣∣∣w(r)− 1

r2

∣∣∣∣ <∞ ,

0 < lim
r→0+

∣∣∣∣w′(r)r

∣∣∣∣ <∞ , 0 < lim
r→0+

rεY
2
ψ(r) <∞ (1.5.2)

where the constant Y in the last condition is such that |Y | ≤ 1. In particular this implies that the

integrals ∫ r0

0

ψ(w − 1)2

r2
dr ,

∫ r0

0

ψζ−1(w′)2

r2
dr ,

∫ r0

0

ψ(w − 1)

r2
dr

are all finite.

Theorem 1.5.2. For ε ∈ [0, 1/60), consider

x(ε)(r, σ) = ζ(ε)(r, σ) , y(ε)(r, σ) =
(w′)(ε)(r, σ)

r
, z(ε)(r, σ) =

w(ε)(r, σ)− 1

r2
(1.5.3)

where ζ(ε)(r, σ), w(ε)(r, σ) are the 1-parameter family of solutions described in the theorem above.

Then, for all r ∈ (0, 1/360) and σ ∈ (−1/360, 1/360), the perturbation terms x̃(ε), ỹ(ε), z̃(ε) defined

by

x(ε)(r, σ) = x(0)(r, σ) + εx̃(ε)(r, σ) , etc. (1.5.4)

satisfy the bound

|x̃(ε)(r, σ)| , |ỹ(ε)(r, σ)| , |z̃(ε)(r, σ)| ≤ 60ε

(1− γ)2
(1.5.5)

where

γ = max{360r, 360σ} ∈ [0, 1) . (1.5.6)
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1.5.1 Desingularization

We will apply a standard technique from the theory of Dynamical Systems to transform the ζ and w

equations in system (1.1.13) into an autonomous system with an equilibrium point whose unstable

manifold consists of orbits corresponding to solutions that satisfy the desired asymptotic conditions

at r = 0.

First transform it into a 4D first-order, autonomous system by thinking of both r and h = w′

as variables: 

ζ ′ =
ζ(1− ζ)

r
+

ε

r3
(
ζ2 − ζ2w2 − ζh2

)

h′ =

(
3− ζ
r

+ ε
ζ

r3
(1− w2)

)
h+ ζw

w′ = h

r′ = 1

(1.5.7)

Denote the independent variable of this system by t1. In order to obtain a system with an equilibrium

point at r = 0, it is enough to introduce a new variable t2 such that r d
dt1

= d
dt2

; that is, for any

function g, if we define ĝ(t2) = g(t1(t2)), then

dĝ

dt2
(t2) = g′(t1(t2))r(t1(t2)) . (1.5.8)

We will choose

t2 = log(t1) . (1.5.9)

Letting x̂, ŷ, ẑ, ŝ be functions of t2 related respectively to ζ, h, w, r by x̂(t2) = ζ(t1(t2)) = ζ(et2) etc.,

we obtain the dynamical system that they satisfy by multiplying the right-hand side of (1.5.7) by r
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and replacing the variable names:

x̂′ = x̂(1− x̂) +
ε

ŝ2
(
x̂2 − x̂2ẑ2 − x̂ŷ2

)

ŷ′ =

(
3− x̂+ ε

x̂

ŝ2
(1− ẑ2)

)
ŷ + ŝx̂ẑ

ẑ′ = ŝŷ

ŝ′ = ŝ

(1.5.10)

Finally, we modify the dependent variables ŷ, ẑ into new ones y, z whose finiteness at r = 0 will

imply finiteness of the integrals (1.3.52) from section 1.1, according to (1.3.53) and (1.3.54). For

the sake of notational consistency, we also rename x̂, ŝ as x, s. So let

x = x̂ , y =
ŷ

ŝ
, z =

ẑ − 1

ŝ2
, s = ŝ . (1.5.11)

Then we compute the derivatives:

x′ = x̂′ = x(1− x) +
ε

s2
(x2 − x2(s2z + 1)2 − x(sy)2)

= x− x2 − ε(xy2 + 2x2z + s2x2z2)

y′ =
ŷ′ŝ− ŷŝ′

ŝ2
=
ŷ′ − ŷ
ŝ

=
1

s

[(
3− x+ ε

x

s2
(1− (s2z + 1)2)

)
sy + sx(s2z + 1)− sy

]
= x+ 2y − xy + s2xz − ε(2xyz + s2xyz2)

z′ =
ẑ′ŝ2 − 2ŝŝ′(ẑ − 1))

ŝ4
=
ẑ′ − 2ẑ + 2

ŝ2
=
ŷ

ŝ
− 2

ẑ − 1

ŝ2
= y − 2z

s′ = ŝ′ = s

We thus have a non-singular, 4D, first-order, autonomous dynamical system in (x, y, z, s) with a

parameter ε: 

x′ = x− x2 − ε(xy2 + 2x2z + s2x2z2)

y′ = x+ 2y − xy + s2xz − ε(2xyz + s2xyz2)

z′ = y − 2z

s′ = s

(1.5.12)

Given that r(t1) = t1, we have s(t2) = r(et2) = et2 , and in particular

lim
t2→−∞

s(t2) = 0 . (1.5.13)
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Therefore, evolving an orbit backwards in “time” t2 corresponds to letting its s coordinate decrease

to 0, and, in order to obtain orbits corresponding to finite energy solutions to the original system,

it will be enough to find orbits whose coordinates converge to finite values at s = 0. This can only

happen if this orbit belongs to the unstable manifold of an equilibrium point at s = 0. So our next

task is to find a suitable critical point and study the linearized system around it.

Remark 1.5.3. The solution to the Maxwell-BLTP flat-space equations

ζ ≡ 1 , w(r) = (1 + r)e−r , w′(r) = −re−r (1.5.14)

is written in the new variables as

x(t2) ≡ 1 , y(t2) = −e−et2 , z(t2) =
(1 + et2)e−e

t2 − 1

e2t2
, s(t2) = et2 . (1.5.15)

The corresponding orbit, obtained by letting the independent parameter t2 vary in R, “comes from”

the point

(X,Y, Z, S) =

(
1,−1,−1

2
, 0

)
, (1.5.16)

that is, this point is its limit as t2 → −∞. On the other hand, the RWN solution

ζ(r) =

(
1− 2µε

r
+

ε

r2

)−1
, w ≡ w′ ≡ 0 (1.5.17)

becomes

x(t2) =

(
1− 2µε

et2
+

ε

e2t2

)−1
, y ≡ 0 , z(t2) = −e−2t2 , s(t2) = et2 , (1.5.18)

with the orbit diverging as t2 approaches −∞ (for ε > 0). Therefore we see that restricting our

attention only to solutions of our desingularized system (1.5.12) that come from an equilibrium

point at s = 0 precludes the scenario that we end up finding the one that corresponds to the RWN

solution to the original system.

1.5.2 Critical point analysis

Let (X(ε), Y (ε), Z(ε), S(ε)) denote a critical point of system (1.5.12). When there is no need to specify

the ε-dependence, we will omit the superscript (ε).

Due to the 3rd and 4th equations, it is clear that

Y = 2Z , S = 0 . (1.5.19)
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Plug this into the right-hand side of the 1st and 2nd equations and set them equal to zero:

0 = X −X2 − ε(4XZ2 + 2X2Z) = X(1− 4εZ2)−X2(1 + 2εZ)

0 = X + 4Z − 2XZ − 4εXZ2
(1.5.20)

First of all, when X = 0, the second equation gives Z = 0 and we obtain the critical point (0, 0, 0, 0),

which is always a critical point for any ε ≥ 0. So assume X 6= 0 in what follows, and divide the

first equation by X.

If ε = 1, the first equation can be factored as (1 + 2Z)(1− 2Z −X) = 0. In case the first factor

is zero, we obtain the solution
(

2,−1,−1

2
, 0

)
. In case it’s the second factor that is zero, we solve

it for X and plug it into the second equation to find Z = −1/2, which then yields the same point.

Now assume ε 6= 1. We claim that 1 + 2εZ 6= 0. Indeed, assuming 1 + 2εZ = 0 and looking at

the first equation in (1.5.20): since ε 6= 1, we can’t have 1− 4εZ2 = 0 also; hence X = 0, but this

plugged into the second equation implies Z = 0, which is not the case. Now, given this claim, we

can solve for X in the first equation and plug it into the second, obtaining

X =
1− 4εZ2

1 + 2εZ
, 16ε2Z4 + 8εZ3 + 2Z + 1 = 0 . (1.5.21)

It will be most convenient to work in terms of Y . We have then

X =
1− εY 2

1 + εY
, Z =

Y

2
, ε2Y 4 + εY 3 + Y + 1 = 0 . (1.5.22)

Lemma 1.5.4. For all ε ≥ 0, consider the polynomial

p(t) = ε2t4 + εt3 + t+ 1 . (1.5.23)

Then it only has real roots when ε ∈ [0, 1], and in that case:

• there are at most two roots t(ε)1 ≤ −1 ≤ t(ε)2 < 0;

• these roots are equal to each other (and equal to −1) if and only if ε = 0, 1.

Proof. When ε = 0 the only root is −1. When ε = 1, the polynomial factors as p(t) = (t3 +1)(t+1)

and again only has the real root −1. Now assume ε 6= 1, ε > 0. Compute the derivatives:

p′(t) = 4ε2t3 + 3εt2 + 1 , p′′(t) = 12ε2t2 + 6εt . (1.5.24)
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The two critical points of p′ are therefore u = −1/(2ε) and v = 0, and since

p′(u) = −4ε2

8ε3
+

3ε

4ε2
+ 1 = 1 +

1

4ε
> 0 , p′(v) = 1 > 0 , (1.5.25)

there is only one z ∈ R such that p′(z) = 0, and it is negative (given that u < 0 and lim
t→−∞

p′(t) =

−∞). Hence z is a global minimum point of p, and p can have either 0, 1 or 2 real roots, depending

on whether p(z) > 0, p(z) = 0, p(z) < 0 respectively.

Carrying out polynomial long division, we have

p(t) =

(
t

4
+

1

16ε

)
p′(t) +

1

16

(
−3t2 + 12t+ 16− 1

ε

)
; (1.5.26)

in particular the sign of p(z) is the same as that of q(z), where q is the polynomial defined by

q(t) = −3t2 + 12t+ 16− 1

ε
. (1.5.27)

The discriminant of q is

∆ = 122 + 12

(
16− 1

ε

)
= 12

(
28− 1

ε

)
. (1.5.28)

If ε < 1/28, this is negative, ensuring q(t) < 0 for all t ∈ R, which means p(z) < 0, and so p has 2

real roots. Otherwise, q has at most two real roots given by

x± = 2± 1

3

√
84− 3

ε
, (1.5.29)

and the condition for, say, q(z) < 0 is that z < x− or z > x+. But since z < 0 and x+ > 0,

this condition can be written as just z < x−. And since z was defined as the only real root of the

polynomial p′ (which is positive to the right of z and negative to the left), this is the case if and

only if p′(x−) > 0. Computing p′(x−) and simplifying, we get

p′(x−) = 32ε(1 + 8ε)

(
1− 1

9

√
84− 3

ε

)
. (1.5.30)

This is positive if and only if √
84− 3

ε
< 9 ⇐⇒ ε < 1 . (1.5.31)

With this we have finished finding the critical points (X,Y, Z, S) of (1.5.12). There are at most

3 of them:
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• For ε ∈ [0, 1], two critical points P (ε)
1 , P

(ε)
2 are given by

P
(ε)
j =

1− 4εt
(ε)
j

2

1 + 2εt
(ε)
j

,
t
(ε)
j

2
, t

(ε)
j , 0

 , j = 1, 2 , (1.5.32)

and they coincide when ε = 0, 1.

• For any ε ≥ 0, the point P (ε)
3 = (0, 0, 0, 0) is also a critical point.

Given that the solution of the original system for large r was obtained as a perturbation of the

flat-space solution, we shall focus our analysis on the point among these three that converges to the

one described in (1.5.16) as ε→ 0, which is P (ε)
2 . We will drop the 2 and denote it by just

P (ε) = (X(ε), Y (ε), Z(ε), 0) . (1.5.33)

We will also omit the (ε) superscript whenever the value of ε is clear. We are interested in its

unstable manifold, which we call W(ε), defined as the collection of orbits of (1.5.12) whose limit as

t2 → −∞ is P (ε).

In all that follows, we will use the notations [∗, · · · , ∗]t and (∗, · · · , ∗) interchangeably to denote

points (or vectors) in R3 and R4, depending on which is more convenient in each case.

The linearization matrix of (1.5.12) at P (ε), containing the partial derivatives of the right-hand

side with respect to x, y, z, s evaluated at P , can be calculated to be

M (ε) =



1− 2X − ε(4Z2 + 4XZ) −4εXZ −2εX2 0

1− 2Z − 4εZ2 2−X − 2εXZ −4εXZ 0

0 1 −2 0

0 0 0 1


. (1.5.34)

We see that, for any ε, there is an eigenvalue, which we call λ(ε)1 , equal to 1, with a corresponding

eigenvector [0, 0, 0, 1]t. We will call N (ε) the upper-left 3 × 3 block of M (ε). Given the relations

(1.5.22), it is written in terms of Y as:

N (ε) =



−1 + εY 2 −2εY
1− εY 2

1 + εY
−2ε

(
1− εY 2

1 + εY

)2

2− εY 2 + εY 3 + ε2Y 4 1 + εY 2 −2εY
1− εY 2

1 + εY

0 1 −2


. (1.5.35)
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Let λ(ε)2 , λ
(ε)
3 , λ

(ε)
4 denote its (potentially complex) eigenvalues. When ε = 0, we have Y = −1 and

it can be calculated that

λ
(0)
2 = 1 , λ

(0)
3 = −1 , λ

(0)
4 = −2 . (1.5.36)

Hence, when ε > 0 is small, M (ε) will still have two eigenvalues λ(ε)1 = 1 and λ
(ε)
2 with positive

real part and two others with negative real part (in fact they must remain all real, since there is

no multiplicity among λ(0)2 , λ
(0)
3 , λ

(0)
4 ). The Hartman-Grobman Theorem states that the unstable

manifold W(ε) of the equilibrium point P (ε) is 2-dimensional and tangent at P (ε) to the plane

spanned by eigenvectors corresponding to the positive λ(ε)j ’s. Our goal in this section is to find an

analytic parametrization for it and prove its convergence in a small enough neighborhood of P (ε).

But before we do that, we will need to find bounds on the eigenvalues λ(ε)1 , λ
(ε)
2 and on certain

expressions involving X(ε), Y (ε), Z(ε). Due to the proof method used, we will have to stay restricted

to small values of ε away from 1 (at first ε < 1/2, then ε < 1/60), but these restrictions are more

than enough for our purposes.

Lemma 1.5.5. For all ε ∈ [0, 1/2), there exist δ(ε)X , δ
(ε)
Y , δ

(ε)
Z ∈ [0, 1] such that

X(ε) = 1 + 4δ
(ε)
X ε2

Y (ε) = −1 + 2δ
(ε)
Y ε

Z(ε) = −1

2
+ δ

(ε)
Z ε

(1.5.37)

Proof. It is enough to prove (considering that Y (ε) = 2Z(ε))

− 1 ≤ Y (ε) ≤ −1 + 2ε , 1 ≤ X(ε) ≤ 1 + 4ε2 . (1.5.38)

Let us drop the (ε) superscript. From the proof of lemma 1.5.4 we know p(Y ) = 0 where

p(t) = ε2t4 + εt3 + t+ 1 (1.5.39)

and furthermore −1 ≤ Y < 0. In particular, due to Y ≥ −1 > −1/(2ε),

0 < 1 + 2εY ≤ 1 (1.5.40)

and

1− εY 2 > 1− ε > 1

2
. (1.5.41)
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From implicitly differentiating p(Y ) = 0 we obtain

dY

dε
= −Y 3 1 + 2εY

1 + 3Y 2 + 4ε2Y 3
. (1.5.42)

The denominator can be simplified using p(Y ) = 0:

1 + 3Y 2 + 4ε2Y 3 = 1− εY 2 + 4(ε2Y 4 + εY 3) = 1− εY 2 − 4

Y
(Y + 1) = −3− εY 2 − 4

Y
, (1.5.43)

which is bounded below by −3− εY 2 + 4 > 1/2 (using (1.5.41)). In particular dY
dε > 0. But using

(1.5.40) to bound (1.5.42) above, we have

dY

dε
≤ −(−1)3

1

1/2
= 2 . (1.5.44)

Now the inequality stated in this lemma is a consequence of the Mean Value Theorem and the fact

that Y (0) = −1.

To obtain the X bounds, rewrite its formula given in (1.5.22) as

X − 1 = −εY 1 + Y

1 + εY
. (1.5.45)

The three positive numbers −εY, 1 +Y, 1 + εY can be bounded with the Y bounds just proved, and

this yields

0 ≤ X − 1 ≤ 2ε2

1− ε+ 2ε2
< 4ε2 . (1.5.46)

Proposition 1.5.6. For all ε ∈ (0, 1/60), the linearization matrix M (ε) has 2 positive eigenvalues

λ
(ε)
1 , λ

(ε)
2 satisfying

λ
(ε)
1 = 1 , 1 < λ

(ε)
2 < 1 + 60ε . (1.5.47)

Proof. We’ve seen that λ(ε)1 = 1 is an eigenvalue. We must show that the eigenvalues λ(ε)2 , λ
(ε)
3 , λ

(ε)
4

of N (ε) are 1 positive and 2 negative, with λ(ε)2 > 0 satisfying the bounds given.

Let the characteristic polynomial of N (ε) be denoted

χ(ε)(t) = det
(
N (ε) − tI

)
= −t3 + a

(ε)
2 t2 + a

(ε)
1 t+ a

(ε)
0 . (1.5.48)
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We have χ(0)(t) = −t3 − 2t2 + t + 2. Write each coefficient of χ(ε) as a perturbation of the ε = 0

coefficients:

a
(ε)
2 = −2 + εδ

(ε)
2 , a

(ε)
1 = 1 + εδ

(ε)
1 , a

(ε)
0 = 2 + εδ

(ε)
0 , (1.5.49)

and use formula (1.5.35) for N (ε) to compute:

δ
(ε)
2 = 2Y 2

δ
(ε)
1 = (−3ε3Y 6 − 6ε2Y 5 + (10ε2 − 3ε)Y 4 + 16εY 3 − (4ε− 6)Y 2 − 4Y )/(1 + εY )2

δ
(ε)
0 = (−6ε3Y 6 − 12ε2Y 5 + 6ε(ε− 1)Y 4 + 12εY 3 + 4Y 2 − 4Y − 2)/(1 + εY )2

(1.5.50)

Using ε2Y 4 + εY 3 + Y + 1 = 0, the polynomials of Y that appear in these formulas can be made

simpler. One of the factors 1 + εY in the denominator of δ(ε)1 can also be cancelled. The end result

is

δ
(ε)
2 = 2Y 2

δ
(ε)
1 = Y (10εY 2 + 9Y − 1)/(1 + εY )

δ
(ε)
0 = 2(6εY 3 + (3ε+ 5)Y 2 − 2Y − 4)/(1 + εY )2

(1.5.51)

Using the Y bounds (1.5.38) (and remembering that those bounds are negative), we can see

1− ε ≤ 1 + εY ≤ 1 + ε(−1 + 2ε) = 1− ε+ 2ε2 (1.5.52)

40ε3−40ε2 + 10ε−10 = 10ε(−1 + 2ε)2−9−1 ≤ 10εY 2 + 9Y −1 ≤ 10ε+ 9(−1 + 2ε)−1 = 28ε−10

(1.5.53)

12ε3 + 8ε2 − 27ε+ 3 = −6ε+ (3ε+ 5)(−1 + 2ε)2 − 2(−1 + 2ε)− 4 ≤ 6εY 3 + (3ε+ 5)Y 2 − 2Y − 4

≤ 6ε(−1 + 2ε)3 + (3ε+ 5) + 2− 4 = 48ε4 − 72ε3 + 36ε2 − 3ε+ 3 (1.5.54)

In order to correctly multiply these expressions to get bounds on δ
(ε)
1 and δ

(ε)
0 , we need to know

their sign. For ε small enough (ε < 1/60 works) we can see that the left- and right-side bounds in

(1.5.52), (1.5.53) and (1.5.54) are > 0, < 0 and > 0 respectively. Hence we can say

1.28 ≤ 2(−1 + 2ε)2 ≤ δ(ε)2 ≤ 2 (1.5.55)

6.26 ≤ (−1 + 2ε)
28ε− 10

1− ε+ 2ε2
≤ δ(ε)1 ≤ (−1)

40ε3 − 40ε2 + 10ε− 10

1− ε
≤ 10.4 (1.5.56)

0.92 ≤ 2
12ε3 + 8ε2 − 27ε+ 3

(1− ε+ 2ε2)2
≤ δ(ε)0 ≤ 2

48ε4 − 72ε3 + 36ε2 − 3ε+ 3

(1− ε)2
≤ 7.39 (1.5.57)
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(the numeric bounds are true for the range considered for ε). This implies

sup
−3<t<2

|δ(ε)2 t2 + δ
(ε)
1 t+ δ

(ε)
0 | ≤ 18 + 33 + 8 = 59 . (1.5.58)

Hence, for any t ∈ (−3, 2), if |χ(0)(t)| ≥ 120ε, then χ(0)(t) and χ(ε)(t) have the same sign, because,

by the definition of δ(ε)j ,

|χ(ε)(t)− χ(0)(t)| = ε|δ(ε)2 t2 + δ
(ε)
1 t+ δ

(ε)
0 | ≤ 59ε <

120ε

2
≤ |χ

(0)(t)|
2

. (1.5.59)

Now let x stand for any of the 3 roots −2,−1, 1 of χ(0)(t) = −t3 − 2t2 + t + 2. The derivative at

these values can be calculated to be

dχ(0)

dt
(−2) = 21 ,

dχ(0)

dt
(−1) = 2 ,

dχ(0)

dt
(1) = −6 . (1.5.60)

Note that 60ε < 1 is smaller than the minimum distance between any of the 3 roots of χ(0), hence

the two points x ± 60ε ∈ (−3, 2) have precisely one root (x) between them, and in particular the

two values χ(0)(x± 60ε) have opposite signs. These two values can be computed as:

χ(0)(x± 60ε) = −(x± 60ε)3 − 2(x± 60ε)2 + (x± 60ε) + 2

= χ(0)(x)± 60ε
dχ(0)

dt
(x) + (60ε)2(−3x− 2)∓ (60ε)3

= 60ε

(
± dχ(0)

dt
(x)− 60ε(3x+ 2± 60ε)

)
.

(1.5.61)

Direct verification of every possibility for x and the ± sign, using (1.5.60), gives

|χ(0)(x± 60ε)| ≥ 60ε · 2 = 120ε , (1.5.62)

and, due to what we observed above, this implies that χ(0)(x+60ε) and χ(ε)(x+60ε) have the same

sign, and that also χ(0)(x− 60ε) and χ(ε)(x− 60ε) have the same sign. But we also noted that the

later sign is opposite to the former; in particular, there exists a root of χ(ε) between x − 60ε and

x + 60ε. Since x = −2,−1, 1, this is enough to prove that 2 of the roots of χ(ε) are still negative

and 1 is positive (call the positive root λ(ε)2 ), while also proving the bound

1− 60ε ≤ λ(ε)2 ≤ 1 + 60ε . (1.5.63)

In order to improve the lower bound on λ(ε)2 as stated in the proposition statement, it suffices to

show that χ(ε)(1) > 0 (indeed, χ(ε)(t) is a cubic polynomial with leading coefficient −t3, and so the
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fact that it is positive at 1 will mean that there must be a root to the right of 1; this root can only

be the only positive root λ(ε)2 that we proved exists). Just compute:

χ(ε)(1) =
−2− 8Y + (12− 4ε)Y 2 + 32εY 3 + 9ε(2ε− 1)Y 4 − 18ε2Y 5 − 9ε3Y 6

(1 + εY )2
. (1.5.64)

Using (1.5.38), the numerator can be seen to be positive too, just like what we did when bounding

δ
(ε)
j .

Proposition 1.5.7. For all ε ∈ [0, 1/60), the eigenvalue λ(ε)2 of M (ε) has a corresponding eigenvec-

tor that can be written in the form

v(ε) =



p(ε)ε

3 + q(ε)ε

1

0


for

 0 < p(ε) < 4

0 < q(ε) < 60
. (1.5.65)

Proof. λ(ε)2 is the only positive eigenvalue of the matrix N (ε) defined in (1.5.35). If we find a

corresponding eigenvector for this matrix, then we get one for M (ε) by adjoining a 0 in the fourth

coordinate.

Let the matrix ∆
(ε)
N be defined by

N (ε) = N (0) + ε∆
(ε)
N , (1.5.66)

which means

∆
(ε)
N =



Y 2 −2XY −2X2

−Y 2 + Y 3 + εY 4 Y 2 −2XY

0 0 0


=:


a b −c

−d a b

0 0 0

 . (1.5.67)

The positive numbers a, b, c, d defined by this equation also depend on ε, but we omit the superscript

(ε) to unclutter the notation. Using the bounds we found onX,Y in lemma 1.5.5, we can find bounds

for a, b, c (we will not need to know bounds for d):

1− 4ε+ 4ε2 ≤ a ≤ 1 ,

2− 4ε ≤ b ≤ 2 + 8ε2 ,

2 ≤ c ≤ 2 + 16ε2 + 32ε4 .

(1.5.68)
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Let λ(ε) be written in the form

λ(ε) = 1 + εδ
(ε)
λ , δ

(ε)
λ ∈ [0, 60) (1.5.69)

(as per proposition 1.5.6). We know that the corresponding eigenspace is 1-dimensional. First

we claim that it is spanned by a vector whose 3rd coordinate is nonzero. Indeed, assume for a

contradiction that there exists a nonzero eigenvector of the form [vx, vy, 0]t. Then
0

0

0

 = (N (ε) − λ(ε)I)


vx

vy

0

 =


−1 + εa− λ(ε) εb −εc

2− εd 1 + εa− λ(ε) εb

0 1 −2− λ(ε)



vx

vy

0

 .

(1.5.70)

The third row implies vy = 0, and then the first row gives (−1 + εa− λ(ε))vx = 0. But note that

− 1 + εa− λ(ε) = −1 + εa− 1− εδ(ε)λ < −2 +
1

60
< 0 , (1.5.71)

(using a ≤ 1), giving vx = 0, a contradiction.

Hence, by rescaling, we can find an eigenvector v(ε) for λ(ε) with the third coordinate equal to

1. Write it in the form

v(ε) = v(0) + εδ(ε)v =


εp(ε)

3 + εq(ε)

1

 , δ(ε)v =


p(ε)

q(ε)

0

 , (1.5.72)

where v(0) = [0, 3, 1]t is a corresponding eigenvector when ε = 0. Expanding out the equation

(N (0) + ε∆
(ε)
N )(v(0) + εδ(ε)v ) = (1 + εδ

(ε)
λ )(v(0) + εδ(ε)v ) , (1.5.73)

subtracting N (0)v(0) = v(0), and dividing by ε, we get
−2 + ε(a− δ(ε)λ ) εb −εc

2− εd ε(a− δ(ε)λ ) εb

0 1 −3− εδ(ε)λ



p(ε)

q(ε)

0

 = (N (ε) − λ(ε)I)δ(ε)v

= (−∆
(ε)
N + δ

(ε)
λ I)v(0) =


−3b+ c

−3a− b+ 3δ
(ε)
λ

δ
(ε)
λ

 . (1.5.74)



79

This is a linear system for p(ε), q(ε) consisting of 3 equations. Since λ(ε) is an eigenvalue of N (ε)

(whose 3 eigenvalues are all distinct), the matrix on the left has rank 2, but we also know that

the system must be consistent, given that it came from the equation that establishes v(ε) as a

corresponding eigenvector. Hence, if we manage to solve 2 independent equations out of these 3,

the remaining one is automatically true.

The p(ε) coefficient in the first equation is nonzero:

− 2 + ε(a− δ(ε)λ ) = −2 + εa− ε− δ(ε)λ ε2 < −2 + ε(1− 0) < −2 +
1

60
= −119

60
. (1.5.75)

Therefore the 1st and 3rd equations are independent. The 3rd one is immediately solved: q(ε) = δ
(ε)
λ

(in particular we have 0 < q(ε) < 60 as claimed). Plugging that into the 1st gives

p(ε) =
3b− c+ εbδ

(ε)
λ

2− ε(a− δ(ε)λ )
. (1.5.76)

Using the bounds on b, c that we deduced, we conclude that 3b− c+ εbδ
(ε)
λ is positive and

3b− c+ εbδ
(ε)
λ < 6 + 24ε2 − 2 +

(2 + 8ε2)60

60
= 6 + 32ε2 < 7 . (1.5.77)

This and (1.5.75) then imply that p(ε) is positive and

p(ε) <
7 · 60

119
< 4 (1.5.78)

as claimed.

1.5.3 Analytic parametrization of the unstable manifold

Suppose ε ∈ [0, 1/60) is fixed. We will omit the ε dependence from the notation of most symbols

from now on.

Denote an arbitrary orbit of system (1.5.12) by x = x(t) = (x(t), y(t), z(t), s(t)), and let F

denote its right-hand side, viewed as a multinomial in the variables x, y, z, s:

F (x, y, z, s) =



x− x2 − ε(xy2 + 2x2z + s2x2z2)

x+ 2y − xy + s2xz − ε(2xyz + s2xyz2)

y − 2z

s


. (1.5.79)
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Let v1 = [0, 0, 0, 1]t and v2 as in (1.5.65) be eigenvectors of the linearization matrix DF (P ) at

P = (X,Y, Z, 0) with corresponding eigenvalues λ1 = 1 and λ2 ≥ 1. By the Hartman-Grobman

Theorem, there exist open sets U 3 P and V 3 0 of R4 and a diffeomorphism G : U → V

taking orbits of (1.5.12) to orbits of the linearized system x′ = DF (P )x, and this implies that the

unstable manifold W associated to the equilibrium point P is a 2D manifold. We are going to find

a parametrization for it. Let a differentiable map

W : U0 → R4 , W (τ, σ) = (x(τ, σ), y(τ, σ), z(τ, σ), s(τ, σ)) , (τ, σ) ∈ U0 (1.5.80)

(where 0 ∈ U0 ⊆ R2) be given, and assume that it satisfies

W (0) = P ,
∂W

∂τ
(0) = ξ1v1 ,

∂W

∂σ
(0) = ξ2v2 (1.5.81)

where ξ1, ξ2 ∈ R are arbitrary (we define ξ1 = 1 and ξ2 = 1/4). It can be proved (see [BM16]) that

W is a parametrization of W if and only if it satisfies the invariance equation

DW (τ, σ)

 λ1τ

λ2σ

 = F (W (τ, σ)) . (1.5.82)

Furthermore, the fact that F is analytic in its variables means that we will be able to obtain an

analytic W :

W (τ, σ) =
∞∑

i,j=0

wijτ
iσj , (1.5.83)

for coefficients wij = (xij , yij , zij , sij) ∈ R4. The conditions (1.5.81) then imply that:

• The zeroth coefficient w00 = W (0, 0) must be the equilibrium point:

w00 = (x00, y00, z00, s00) = (X,Y, Z, 0) . (1.5.84)

In particular note for future use

|x00|, |y00|, |z00| ≤ 2 . (1.5.85)

• The first-degree coefficients w10,w01 must be the chosen multiples v1 and v2/4 of the eigen-

vectors. We’ve seen in proposition 1.5.7 that

v2 =


εp

3 + εq

1

 , where

 0 < p < 4

0 < q < 60
. (1.5.86)
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Note that the components of this vector are bounded by 4 in absolute value, given that

ε < 1/60. Hence

w10 = (x10, y10, z10, s10) = (0, 0, 0, 1) , w01 = (x01, y01, z01, s01) =
v2
4

(1.5.87)

and in particular

|xα|, |yα|, |zα| ≤ 1 for |α| = 1 . (1.5.88)

It’s worth mentioning that choosing different values for the scaling parameters ξ1, ξ2 in front

of the eigenvectors v1, v2 doesn’t aid in obtaining a larger radius of convergence, because both

the series coefficients and the independent variables τ, σ get scaled in an inversely proportional

manner. But it can be useful to choose appropriate ξ1, ξ2 if we want to perform numerical

calculations, where they help deal with precision errors.

Higher-degree coefficients can be found recursively. Let (i, j) ∈ N2 with i + j ≥ 2. Computing

the coefficient of τ iσj on both sides of the invariance equation (1.5.82) gives

(iλ
(ε)
1 + jλ

(ε)
2 )w

(ε)
ij = F (W (ε)(τ, σ))ij (1.5.89)

The right-hand side of this equation represents the coefficient of τ iσj after we expand out the

polynomial F applied to the parametrization of xij , yij , zij , sij as functions of τ, σ. Let us now see

how this gives a recursion relation that permits us to uniquely find all wij = (xij , yij , zij , sij).

We employ multi-index notation, using Greek letters to represent 2-dimensional indices (k, l) ∈

N2. The parametrization is written in this notation as

W (τ, σ) =
∑
α∈N2

wατ
α1σα2 =

∑
α

wατ
α1σα2 . (1.5.90)

Multi-indices are summed componentwise, and, by definition, two arbitrary multi-indices β =

(β1, β2), γ = (γ1, γ2) satisfy β ≤ γ when β1 ≤ γ1 and β2 ≤ γ2. This notion of a partial order

is necessary when writing down the coefficients of a polynomial expression involving the unknowns

xα, yα, zα, sα; for example

xy =
∑
α

[xy]ατ
α1σα2 where [xy]α =

∑
β≤α

xβyα−β . (1.5.91)

The notation |β| will be used to mean the degree β1 + β2. Note that |β + γ| = |β| + |γ| for any

β, γ ∈ N2.
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So let α ∈ N2 with |α| ≥ 2 be fixed, and assume for recursion that we already uniquely determined

all coefficients wβ for |β| < |α|. We will denote by α′ the specific multi-index

α′ = (α1 − 2, α2) , (1.5.92)

which will appear shortly in some formulas. For convenience, we stipulate that the coefficient of a

variable corresponding to a multi-index with a negative entry is defined as 0; so for example, when

α1 < 2, we have ∑
β≤α′

xβyα′−β = 0 . (1.5.93)

Start by looking at the 4th coefficient of (1.5.89). The equation reads

(λ1α1 + λ2α2)sα = sα . (1.5.94)

Since λ1 = 1 and λ2 ≥ 1, the left-hand side is different from sα, so the solution can only be sα = 0.

With this and the value of the initial coefficients s00, s01, s10, we have determined all s coefficients:

s10 = 1 , skl = 0 for all other k, l , (1.5.95)

implying that the τ parameter is the same as the variable s:

s =
∑
α

sατ
α1σα2 = τ . (1.5.96)

The 3rd equation of (1.5.89) reads

(λ1α1 + λ2α2)zα = [y − 2z]α = yα − 2zα (1.5.97)

and, once we find yα, it can be solved as

zα =
yα

2 + λ1α1 + λ2α2
(1.5.98)

since the denominator in this expression is not zero.

Now consider the 1st equation in (1.5.89). When expanding out the right-hand side, we use

the fact that the α = (α1, α2) coefficient of the term containing s2 (= τ2) is the same as the

α′ = (α1− 2, α2) coefficient of the remaining parts of that term. Other than this, everything else is
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straightforward:

(λ1α1 + λ2α2)xα = xα − [x2]α − ε([xy2]α + 2[x2z]α + [s2x2z2]α)

= xα − [x2]α − ε([xy2]α + 2[x2z]α + [x2z2]α′)

= xα −
∑
β≤α

xβxα−β − ε
(∑
β≤α

∑
γ≤β

(xα−βyγyβ−γ + 2zα−βxγxβ−γ)

+
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xγxβ−γzδzα′−β−δ

)
.

(1.5.99)

The sums on the right-hand side involve coefficients with degree at most |α|, but those with this

maximal degree must be of index precisely α, since they are also constrained to be ≤ α. Hence,

maximal-degree coefficients can only appear as factors in a product all of whose other coefficients

are of index 0 = (0, 0). Note that the triple sum, where all indices are restricted to be ≤ α′, will

not contribute any terms like this. So we see that the terms on the right-hand side involving any α

indices are only the following ones:

xα , −2Xxα , −ε(Y 2xα + 2XY yα + 4XZxα + 2X2zα) .

Moving them to the left, we have

(λ1α1 + λ2α2 − 1 + 2X + εY 2 + 4εXZ)xα + 2εXY yα + 2εX2zα = −
∑
β≤α
β 6=0,α

xβxα−β

− ε
( ∑

β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

(xα−βyγyβ−γ + 2zα−βxγxβ−γ) +
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xγxβ−γzδzα′−β−δ

)
(1.5.100)

Finally, use (1.5.98) on the left to write zα in terms of yα. We obtain thus a linear equation for xα

and yα:

aαxα + bαyα = eα , (1.5.101)

where

aα = λ1α1 + λ2α2 − 1 + 2X + εY 2 + 4εXZ = λ1α1 + λ2α2 + 1− εY 2

bα = 2εX

(
Y +

X

2 + λ1α1 + λ2α2

)
eα = −

∑
β≤α
β 6=0,α

xβxα−β − ε
( ∑

β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

(xα−βyγyβ−γ + 2zα−βxγxβ−γ) +
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xγxβ−γzδzα′−β−δ

)

(1.5.102)
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(we used equations (1.5.22), which give X,Z in terms of Y , to rewrite aα in terms of just Y ).

Next we do the same for the 2nd equation in (1.5.89). Initially it reads

(λ1α1 + λ2α2)yα = xα + 2yα − [xy]α − 2ε[xyz]α + [xz]α′ − ε[xyz2]α′

= xα + 2yα −
∑
β≤α

xβyα−β − 2ε
∑
β≤α

∑
γ≤β

xα−βyγzβ−γ +
∑
β≤α′

xβzα′−β

− ε
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xδyα′−β−δzγzβ−γ

(1.5.103)

Move to the left the terms on the right that involve α indices:

xα , 2yα , −Xyα − Y xα , −2ε(XY zα +XZyα + Y Zxα) .

The equation becomes

(−1 + Y + 2εY Z)xα + (λ1α1 + λ2α2 − 2 +X + 2εXZ)yα + 2εXY zα

= −
∑
β≤α
β 6=0,α

xβyα−β − 2ε
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

xα−βyγzβ−γ +
∑
β≤α′

xβzα′−β − ε
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xδyα′−β−δzγzβ−γ

(1.5.104)

and, after replacing zα according to (1.5.98), it turns into

cαxα + dαyα = fα , (1.5.105)

where

cα = −1 + Y + 2εY Z = εY 2 + Y − 1

dα = −2 + λ1α1 + λ2α2 +X + 2εXZ +
2εXY

2 + λ1α1 + λ2α2
= λ1α1 + λ2α2 − 1− εY 2 +

2εY (1− εY )

2 + λ1α1 + λ2α2

fα = −
∑
β≤α
β 6=0,α

xβyα−β − 2ε
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

xα−βyγzβ−γ +
∑
β≤α′

xβzα′−β − ε
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

xδyα′−β−δzγzβ−γ

(1.5.106)

We can uniquely solve the system comprised of (1.5.101) and (1.5.105) as long as the determinant

Dα := aαdα − bαcα (1.5.107)

is nonzero. Then the solution is

xα =
dαeα − bαfα

Dα
, yα =

−cαeα + aαfα
Dα

. (1.5.108)
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The following proposition deals with this and shows a uniform-in-α bound involving the coefficients

of the linear system above:

Proposition 1.5.8. For all α ∈ N2 with |α| ≥ 2, we have Dα 6= 0 and

|aα|
Dα

,
|bα|
Dα

,
|cα|
Dα

,
|dα|
Dα
≤ 2 . (1.5.109)

In particular formulas (1.5.108) are well-posed and

|xα|, |yα|, |zα| ≤ 2(|eα|+ |fα|) . (1.5.110)

Proof. Let the symbol λ · α be used to abbreviate the number λ1α1 + λ2α2 (which is at least

α1 + α2 ≥ 2). We use (1.5.38) to say

|X| ≤ 1 + 4

(
1

2

)2

= 2 , |Y | ≤ 1 . (1.5.111)

Now use these to bound the first-order perturbation terms of aα, . . . , dα, denoted as δa . . . , δd:

aα = λ ·α+ 1− εY 2 =: λ ·α+ 1 + δaε

bα = ε

(
2XY +

2X2

2 + λ ·α

)
=: δbε

cα = −1 + Y + εY 2 = −2 + ε(Y 2 − Y 3 − Y 4) =: −2 + δcε

dα = λ ·α− 1 + ε

(
−Y 2 +

2Y (1− εY )

2 + λ ·α

)
=: λ ·α− 1 + δdε

(1.5.112)

where

|δa| = |Y 2| ≤ 1

|δb| =
∣∣∣∣2XY +

2X2

2 + λ ·α

∣∣∣∣ ≤ 4 +
8

4
= 6

|δc| = |Y 2 − Y 3 − Y 4| ≤ 3

|δd| =
∣∣∣∣−Y 2 +

2Y (1− εY )

2 + λ ·α

∣∣∣∣ ≤ 1 +
2

4
=

3

2

(1.5.113)

In particular

|aα| ≤ λ ·α+ 1 + ε < λ ·α+
3

2

|bα| ≤ 6ε < 3

|cα| ≤ 2 + 3ε <
7

2

|dα| ≤ λ ·α− 1 +
3

2
ε < λ ·α− 1

4

(1.5.114)
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and the determinant Dα is

Dα = (λ ·α+ 1 + δaε)(λ ·α− 1 + δdε)− (δbε)(−2 + δcε)

= (λ ·α)2 − 1 +
(
(λ ·α)(δa + δd) + δd − δa + 2δb

)
ε− δbδcε2

=: (λ ·α)2 − 1 + δDε

(1.5.115)

for δD satisfying

|δD| ≤ (λ ·α)|δa + δd|+ |δa|+ 2|δb|+ |δd|+ |δbδc|ε ≤
5

2
(λ ·α) +

47

2
. (1.5.116)

Therefore, the fractions |aα|/Dα, . . . , |dα|/Dα decay with 1/λ · α, but we shall only need to find a

constant upper bound for them: we have

Dα ≥ (λ ·α)2−1− ε
2

(5(λ ·α)+47) ≥ 2(λ ·α)−1− 5(λ ·α) + 47

4
=

3(λ ·α) + 43

4
>

3(λ ·α)

4
> 0 ,

(1.5.117)

and therefore

|aα|
Dα
≤ 2(λ ·α) + 3

2

4

3(λ ·α)
=

8 + 12
λ·α

6
≤ 8 + 6

6
=

7

3

|bα|
Dα
≤ 3

4

3(λ ·α)
≤ 4

2
= 2

|cα|
Dα
≤ 7

2

4

3(λ ·α)
≤ 28

12
=

7

3

|dα|
Dα
≤ 4(λ ·α)− 1

4

4

3(λ ·α)
=

16− 4
(λ·α)

12
<

16

12
=

4

3

(1.5.118)

proving the bound claimed.

Finally, inequality (1.5.110) is a consequence of formulas (1.5.108) for xα, yα and (1.5.98) for

zα.

Remark 1.5.9. We shall also need bounds for |xα|, |yα|, |zα| when |α| = 2, for future use during

the proof of convergence of the power series W . Expanding the formulas for eα, fα when |α| = 2
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(recall (1.5.86) for the definition of p, q) gives:

e20 = εX2Z2

e11 = 0

e02 = − 1

16

(
(εp)2 − ε

(
X(3 + εq)2 + 2Y εp(3 + εq) + 2Z(εp)2 + 4Xεp

))
f20 = XZ − εXY Z2

f11 = 0

f02 = − 1

16

(
εp(3 + εq) + 2ε

(
X(3 + εq) + Y εp+ Zεp(3 + εq)

))
(1.5.119)

Using

ε ≤ 1

60
, |X| ≤ 2 , |Y | ≤ 1 , |Z| ≤ 1

2
, 0 < p < 4 , 0 < q < 60 , (1.5.120)

we get:

|e20| ≤ ε <
1

60
, |f20| ≤ 1 +

1/2

60
=

121

120
, (1.5.121)

|e02| ≤
1

16

((
4

60

)2

+
1

60

(
2(3 + 1)2 + 2

4

60
(3 + 1) +

(
4

60

)2

+ 8
4

60

))
=

7501

216000
, (1.5.122)

|f02| ≤
1

16

(
4

60
(3 + 1) +

2

60

(
2(3 + 1) +

4

60
+

1

2

4

60
(3 + 1)

))
=

27

800
, (1.5.123)

implying

|x20|, |y20|, |z20| ≤ 2(|e20|+ |f20|) ≤
41

20
(1.5.124)

and

|x02|, |y02|, |z02| ≤ 2(|e02|+ |f02|) ≤
14791

108000
<

41

20
. (1.5.125)

This number 41/20 is the one that we will use in the next subsection, when proving thatW converges.

Also note that the eα and fα coefficients above are null when ε = 0, except for f20 which contains

a factor XZ that yields −1/2 when ε = 0. By keeping track of ε factors in the calculations above

and using

1 ≤ X < 1 +
ε

15
, −1

2
≤ Z < −1

2
+ ε (1.5.126)

to deal with the XZ term in f20, we find bounds for the ε-perturbations of these coefficients, by

which we mean the following:

|e20| < ε , e11 = 0 , |e02| <
7501ε

3600
,∣∣∣∣f20 +

1

2

∣∣∣∣ < 1831ε

900
, f11 = 0 , |f02| <

81ε

40
.

(1.5.127)
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These inequalities will only be needed in subsection 1.5.6, when studying how far from W(0) the

manifold W(ε) is.

1.5.4 Series convergence

Here we employ a technique similar to what we did in lemma 1.4.11 and theorem 1.4.13 in section

1.4, this time in order to estimate the various sums in eα, fα recursively. As it turns out, we need a

new lemma suitable for multi-index sums of dimension 2, and a power 2 in the denominator is not

enough — we will need a power 3.

Lemma 1.5.10. For every δ1, δ2 > 0,

∑
β≤α

1

(|β|+ δ1)3(|α− β|+ δ2)3
≤

35 + 2

(
1

δ1
+

1

δ2

)3

(|α|+ δ1 + δ2)3
, |α| ≥ 0 (1.5.128)

and ∑
β≤α
β 6=0,α

1

(|β|+ δ1)3(|α− β|+ δ2)3
≤ 35

(|α|+ δ1 + δ2)3
, |α| ≥ 2 . (1.5.129)

Proof. Denote |α| by j. Note that |α− β| = |α| − |β| = j − |β| for all β ∈ N2, β ≤ α. We begin by

proving (1.5.129), so let j ≥ 2. By partial fractions in |β|:

1

(|β|+ δ1)3(|α− β|+ δ2)3
=

1

(j + δ1 + δ2)3

(
6/(j + δ1 + δ2)

2

|β|+ δ1
+

3/(j + δ1 + δ2)

(|β|+ δ1)2
+

1

(|β|+ δ1)3

+
6/(j + δ1 + δ2)

2

|α− β|+ δ2
+

3/(j + δ1 + δ2)

(|α− β|+ δ2)2
+

1

(|α− β|+ δ2)3

)
. (1.5.130)

As β sweeps the range between (0, 0) and α, the expression α− β also does. Hence

∑
β≤α

1

(|β|+ δ1)3(|α− β|+ δ2)3
=

1

(j + δ1 + δ2)3

∑
β≤α

(
6/(j + δ1 + δ2)

2

|β|+ δ1
+

3/(j + δ1 + δ2)

(|β|+ δ1)2

+
1

(|β|+ δ1)3
+

6/(j + δ1 + δ2)
2

|β|+ δ2
+

3/(j + δ1 + δ2)

(|β|+ δ2)2
+

1

(|β|+ δ2)3

)
<

1

(j + δ1 + δ2)3

∑
β≤α

(
12/j2

|β|
+

6/j

|β|2
+

2

|β|3

)
. (1.5.131)

We perform this sum by grouping together all β of an equal degree. For each k = 1, . . . , j, there are

k + 1 multi-indices β with degree k: (0, k), (1, k − 1), . . . , (k, 0) (there may be fewer also satisfying
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β ≤ α, but we won’t need to consider this). Hence we can estimate

∑
β≤α

1

(|β|+ δ1)3(|α− β|+ δ2)3
<

1

(j + δ1 + δ2)3

j∑
k=1

(k + 1)

(
12/j2

k
+

6/j

k2
+

2

k3

)

=
1

(j + δ1 + δ2)3

j∑
k=1

[
12

j2
+

(
12

j2
+

6

j

)
1

k
+

(
6

j
+ 2

)
1

k2
+

2

k3

]
(1.5.132)

Now just bound each separate sum above uniformly over j ≥ 2:

j∑
k=1

12

j2
=

12

j
< 6 , (1.5.133)

(
12

j2
+

6

j

) j∑
k=1

1

k
<

(
12

j2
+

6

j

)
(1 + log j) <

(
12

j2
+

6

j

)
(1 + j) =

12

j2
+

18

j
+ 6 < 18 , (1.5.134)

(
6

j
+ 2

) j∑
k=1

1

k2
<

(
6

2
+ 2

) ∞∑
k=1

1

k2
=

5π2

6
, (1.5.135)

j∑
k=1

2

k3
<
∞∑
k=1

2

k3
= 2ζ(3) where ζ(p) gives the sum of a p-series , (1.5.136)

(we bounded the Harmonic Series in (1.5.134) using an integral, similarly to (1.4.128)), yielding

∑
β≤α

1

(|β|+ δ1)3(|α− β|+ δ2)3
<

6 + 18 + 5π2

6 + 2ζ(3)

(j + δ1 + δ2)3
<

35

(j + δ1 + δ2)3
. (1.5.137)

As a side remark, note how, had we tried to prove a similar lemma with a power 2 instead of 3

in the denominator, the second-to-last sum would have looked similar except that it would include

1/k instead of 1/k2, and would not have a uniform-in-j upper bound.

To prove (1.5.128), we must add to this bound the 2 terms obtained from (1.5.130) by plugging

in β = 0 and β = α (even though |α| is now not restricted to be ≥ 2, the bound above remains

valid for the sum over all β 6= 0, α because these terms are only present if |α| ≥ 2). By substituting

0 for |α| in the denominators, the sum of these 2 terms can be bounded above by

2

(|β|+ δ1)3(|α− β|+ δ2)3

[
1

δ31
+

1

δ32
+

3

δ1 + δ2

(
1

δ21
+

1

δ22

)
+

6

(δ1 + δ2)2

(
1

δ1
+

1

δ2

)]
, (1.5.138)

and the expression between brackets simplifies to
(

1

δ1
+

1

δ2

)3

.
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Theorem 1.5.11. Let ε ∈ [0, 1/60) and consider the sequences (xα), (yα), (zα) defined as above.

Then there exist R,S, δ > 0 such that, for all α ∈ N2,

|xα|, |yα|, |zα| ≤
SR|α|

(|α|+ δ)3
. (1.5.139)

Furthermore, it is possible to have

R = 360 , δ <
1

7
, S = 2δ3 . (1.5.140)

Proof. Fix a small δ > 0 (to be specified later). Define

Xα = max{|xα|, |yα|, |zα|} ≥ 0 . (1.5.141)

We have bounds for Xα when |α| ≤ 2, given by (1.5.85), (1.5.88), (1.5.124) and (1.5.125):

X00 ≤ 2 , X01, X10 ≤ 1 , X02, X11, X20 ≤
41

20
, (1.5.142)

To make the claimed inequality work when |α| ≤ 2, we take

S = 2δ3 , R ≥ (1 + δ)3

2δ3
, R2 ≥ 41(2 + δ)3

20δ3
. (1.5.143)

One can check that, for δ < 0.4, the first of these two inequalities for R implies the second. So

impose δ < 0.4 a priori and define

R =
(1 + δ)3

2δ3
. (1.5.144)

In particular, note the following inequality (to be used later in this proof):

1

R2
=

4δ6

(1 + δ)6
< 4δ6 . (1.5.145)

Now let j ≥ 2 and suppose for induction that the claimed inequality (1.5.139) is true for multi-

indices of degree j or smaller. Let α ∈ N2 with |α| = j + 1. We will prove that it is true for Xα,

noting that

|xα|, |yα|, |zα| ≤ 2(|eα|+ |fα|) =⇒ Xα ≤ 2(|eα|+ |fα|) . (1.5.146)
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We estimate 2(|eα|+|fα|) by taking the absolute value of all terms in the formulas (1.5.102), (1.5.106)

for eα, fα and substituting all x, y, z terms with X:

2(|eα|+ |fα|) ≤ 2

[
2
∑
β<α

β 6=0,α

XβXα−β + 5ε
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

Xα−βXγXβ−γ

+
∑
β≤α′

XβXα′−β + 2ε
∑
β≤α′

∑
γ≤β

∑
θ≤α′−β

XθXα′−β−θXγXβ−γ

]
. (1.5.147)

First let us rewrite the second of these sums, separating out the terms from it that include an X00

factor (this is just so that lemma 1.5.10 can be applied to what will be left). Note that the sum of

the indices in this term is α, while the conditions in the summation are the same as saying that the

term Xα does not occur. Hence only one of the three Xα−β, Xγ , Xβ−γ can be equal to X00, and we

have (changing β to α− β)∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

Xα−βXγXβ−γ = 3X00

∑
β≤α
β 6=0,α

XβXα−β +
∑
β≤α
β 6=0,α

Xβ

∑
γ≤α−β
γ 6=0,α−β

XγXα−β−γ . (1.5.148)

By then bounding X00 with 2 and combining the first term in (1.5.148) above with that in (1.5.147),

we have

2(|eα|+ |fα|) ≤ 2

[
(2 + 30ε)

∑
β<α

β 6=0,α

XβXα−β + 5ε
∑
β≤α
β 6=0,α

Xβ

∑
γ≤α−β
γ 6=0,α−β

XγXα−β−γ

+
∑
β≤α′

XβXα′−β + 2ε
∑
β≤α′

∑
γ≤β

∑
θ≤α′−β

XθXα′−β−θXγXβ−γ

]
. (1.5.149)

This recursive inequality, once the induction hypothesis is applied to its right side, is in a form

amenable to application of lemma 1.5.10. In the first two of its terms, we will use inequality (1.5.129)

with its δ-independent numerator, 35, because the sums in these terms exclude the smallest and

largest indices. We also remark that |α − β| = |α| − |β| = j + 1 − |β| and that, to complete the

induction, we want to make the term SRj+1/(j + 1 + δ)3 appear.

• For the first term,

∑
β≤α
β 6=0,α

XβXα−β ≤ S2
∑
β≤α
β 6=0,α

R|β|Rj+1−|β|

(|β|+ δ)3(j + 1− |β|+ δ)3

≤ S2Rj+1 35

(j + 1 + 2δ)3
<

SRj+1

(j + 1 + δ)3
70δ3 . (1.5.150)
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• The inequality above applies to half of the second term, and the rest is similar:

∑
β≤α
β 6=0,α

Xβ

∑
γ≤α−β
γ 6=0,α−β

XγXα−β−γ ≤ S3
∑
β≤α
β 6=0,α

R|β|

(|β|+ δ)3
35Rj+1−|β|

(j + 1− |β|+ 2δ)3

< S3Rj+1 352

(j + 1 + 3δ)3
<

SRj+1

(j + 1 + δ)3
4900δ6 . (1.5.151)

• In the third term we need inequality (1.5.128). Also note that the indices add up to α′, whose

degree is j − 1.

∑
β≤α′

XβXα′−β ≤ S2Rj−1
35 + 16/δ3

(j − 1 + 2δ)3
<

SRj+1

(j + 1 + δ)3
27

R2
(70δ3 + 32) , (1.5.152)

where we used

1

(j − 1 + 2δ)3
=

1

(j + 1 + δ)3

(
j + 1 + δ

j − 1 + 2δ

)3

=
1

(j + 1 + δ)3

(
1 +

2− δ
j − 1 + 2δ

)3

<
1

(j + 1 + δ)3

(
1 +

2− δ
1 + 2δ

)3

=
1

(j + 1 + δ)3

(
3− 5δ

1 + 2δ

)3

<
27

(j + 1 + δ)3
, (1.5.153)

which is similar to (1.4.138) and requires j ≥ 2, as we assumed before starting the inductive

step.

• In the last term, lemma 1.5.10 is needed three times:

∑
β≤α′

∑
γ≤β

∑
θ≤α′−β

XθXα′−β−θXγXβ−γ ≤ S4Rj−1
∑
β≤α′

35 + 16/δ3

(j − 1− |β|+ 2δ)3
35 + 16/δ3

(|β|+ 2δ)3

≤ S4Rj−1

(j − 1 + 4δ)3

(
35 +

16

δ3

)2(
35 +

2

δ3

)
<

SRj+1

(j + 1 + δ)3
27

R2
(70δ3 + 32)2(70δ3 + 4) .

(1.5.154)

All together, we have proved that

Xα ≤
SRj+1

(j + 1 + δ)3
bR,δ , (1.5.155)

with the expression bR,δ (which we must prove is less than 1) equal to

bR,δ = 2

[
(2 + 30ε)70δ3 + 5ε · 4900δ6 +

27

R2

(
(70δ3 + 32) + 2ε(70δ3 + 32)2(70δ3 + 4)

)]
. (1.5.156)

Using (1.5.145) to bound 1/R2:

bR,δ ≤ 4δ3
[
70 + 1050ε+ 12250εδ3 + 54δ3

(
(70δ3 + 32) + 2ε(70δ3 + 32)2(70δ3 + 4)

)]
. (1.5.157)
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Using ε < 1/60:

bR,δ < δ3
[
350 + δ3

(
45828 + 3780δ3 +

9

5
(70δ3 + 32)2(70δ3 + 4)

)]
. (1.5.158)

In particular, it will be necessary to choose δ such that

δ3 <
1

350
. (1.5.159)

So we can assume this a priori to bound all occurrences of δ3 inside the square brackets and conclude

bR,δ < δ3

[
350 +

1

350

(
45828 +

3780

350
+

9

5

(
70

350
+ 32

)2( 70

350
+ 4

))]
=

15730117

31250
δ3 < 504δ3 .

(1.5.160)

Therefore, if

δ = (504)−1/3 ≈ 0.126 <
1

7
, (1.5.161)

the induction is complete. Plugging this into the definition of R, we get

R =
(1 + δ)3

2δ3
≈ 359.43 < 360 , (1.5.162)

and again, just like in the proof of theorem 1.4.13, we are allowed to redefine R to be exactly

360.

Corollary 1.5.12. For ε ∈ [0, 1/60), the radius of convergence of

W (τ, σ) =
∑
α

(xα, yα, zα, sα)τα1σα2 (1.5.163)

is at least 1/360.

Proof. Let R = 360. For any σ, τ ∈ R with |σ|, |τ | < 1/R, we have∣∣∣∣∣∑
α

xατ
α1σα2

∣∣∣∣∣ ≤∑
α

SR|α|

(|α|+ δ)3
τα1σα2 <

S

δ3

∞∑
α1=0

∞∑
α2=0

(Rτ)α1 (Rσ)α2 , (1.5.164)

and the 2 geometric series are convergent. The same is valid for y, z, while we already remarked

that the series for s = τ is a finite sum, hence of infinite radius.
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1.5.5 The ψ equation and finiteness of the energy

In the introductory section 1.1 we’ve seen how finiteness of the integrals (1.3.50) and (1.3.51), that

is, ∫ ∞
0

ψζ−1(w′)2

r2
dr ,

∫ ∞
0

ψ(w − 1)

r2
dr ,

implies a finite electric field energy as well as a finite value for the electric potential at r = 0. We

also mentioned that, after we prove that one of the solutions we found in section 1.4 for large r

intersects one of the ones we found here for small r, the only problematic endpoint in these integrals

is r = 0, given the asymptotics of the solutions for large r. We will now verify the finiteness of these

integrals along any solutions (ψ, ζ, w) that correspond to orbits of the unstable manifoldW that we

just proved exists.

The equilibrium point P = (X,Y, Z, 0) that we found in the above work satisfies

0 < |X| <∞ , 0 < |Y | <∞ , 0 < |Z| <∞ . (1.5.165)

Going back through the desingularization steps in (1.5.1), we realize that these inequalities can be

written in the form

0 < lim
r→0

ζ(r) <∞ , 0 < lim
r→0

∣∣∣∣w(r)− 1

r2

∣∣∣∣ <∞ , 0 < lim
r→0

∣∣∣∣w′(r)r

∣∣∣∣ <∞ . (1.5.166)

We now study the behavior of ψ along solutions on the unstable manifold W. The relevant

equation is that in (1.1.13):
dψ

dr
= −εψ(r)

r3

(
dw

dr

)2

. (1.5.167)

To solve it, we apply to ψ the same steps performed in subsection 1.5.1, with the first one being the

only nontrivial step: consider

χ̂(r) = rεY
2
ψ(r) . (1.5.168)

Then, for prime denoting d/dr,

χ̂′(r) = εY 2rεY
2−1ψ(r)− εrεY 2 ψ(r)w′(r)2

r3
= εχ̂(r)

(
Y 2 − h(r)2

r3

)
. (1.5.169)

Now let χ(t2) = χ̂(t1(t2)) and evaluate the above at t1(t2):

dχ

dt2
= εχ(t2)

(
Y 2 − ŷ2

ŝ2

)
= εχ(Y 2 − y2) . (1.5.170)
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This is solved by

χ(t2) = χ0 exp

(
ε

∫ t2

t0

(Y 2 − y(t)2)dt

)
. (1.5.171)

where t0, χ0 are arbitrary with χ0 = χ(t0). We claim that it is possible to choose t0 = −∞; that is,

we claim that, along any orbit x(t) in the unstable manifold W, the function Y 2 − y2 is integrable

around t = −∞. Granted this claim, we will then have

lim
r→0

rεY
2
ψ(r) = lim

t2→−∞
χ(t2) = χ = lim

t2→−∞
χ(t2) <∞ , (1.5.172)

which, together with (1.5.166), implies that the integrands in (1.5.5) blow up like r−εY 2 near 0, still

within the integrable range when ε < 1 (recall that |Y | ≤ 1). This implies, as we had claimed, that

ψ does not grow fast enough around r = 0 to render the energy infinite.

To justify the claim above, first estimate∣∣∣∣∫ t2

−∞
(Y 2 − y(t)2)dt

∣∣∣∣ ≤ (Y + sup
t≤t2
|y(t)|

)∫ t2

−∞
|y(t)− Y |dt . (1.5.173)

Since limt→−∞ y(t) = Y exists, the constant outside the integral is finite, and we just need to prove

that the integral is too.

Since x(t) is an orbit on W, for every t < t2 there exist parameters τ(t), σ(t) such that

x(t) = W (τ(t), σ(t)) , t < t2 , (1.5.174)

and in particular

x(t)− P =
∑
|α|≥1

wατ(t)α1σ(t)α2 . (1.5.175)

Differentiating (1.5.174) with respect to t gives

F (W (τ(t), σ(t))) = F (x(t)) = x′(t) = DW (τ(t), σ(t))

 τ ′(t)

σ′(t)

 , (1.5.176)

which, given the invariance equation (1.5.82), becomes

DW (τ(t), σ(t))

 λ1τ(t)

λ2σ(t)

 = DW (τ(t), σ(t))

 τ ′(t)

σ′(t)

 . (1.5.177)

We can assume DW (τ(t), σ(t)) is invertible by bringing t2 closer to −∞ if necessary, and this

becomes a simple ODE system for τ, σ with solution

τ(t) = C1e
λ1t , σ(t) = C2e

λ2t (1.5.178)
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for some C1, C2 which depend on the orbit chosen. Now plug this into (1.5.175) and use the bound

(1.5.139) on |yα|:

|y(t)− Y | ≤ S
∑
|α|≥1

|C1|α1 |C2|α2R|α|

(|α|+ δ)3
e(λ1α1+λ2α2)t ≤ 2δ3

δ3

∑
|α|≥1

(CR)|α|e(λ1α1+λ2α2)t , (1.5.179)

where C = max{|C1|, |C2|}. Using the fact that λ1 = 1, λ2 < 1 + 60ε < 2,

|y(t)− Y | ≤ 2
∑
|α|≥1

(CRe2t)|α| . (1.5.180)

Decreasing t2 once again if necessary, we may assume CRe2t ≤ γ < 1 for some constant γ. Then

this is summable:

|y(t)− Y | ≤ 2

∑
α∈N2

(CRe2t)|α| − 1

 =
2

(1− CRe2t)2
− 2

=
2CRe2t(2− CRe2t)

(1− CRe2t)2
<

2CRe2t(2− γ)

(1− γ)2
. (1.5.181)

This is enough to guarantee that y(t)− Y is integrable from −∞, as claimed.

1.5.6 ε-perturbation of the unstable manifold W

Now that we have a good estimate for the radius of convergence of the power series for the unstable

manifold W(ε), we want to understand how far from W(0) it is - that is, we want to find bounds for

the ε-perturbation of the coordinates of this manifold in (x, y, z, s)-space, as described by theorem

1.5.2.

We need to start using (ε) superscripts again. For each ε ∈ [0, 1/60), denote by

w(ε)
α (τ, σ) = (x(ε)α (τ, σ), y(ε)α (τ, σ), z(ε)α (τ, σ), s(ε)α (τ, σ)) (1.5.182)

the coefficients of the power series

W (ε)(τ, σ) =
∑
α∈N2

w(ε)
α τα1σα2 , (1.5.183)

which we just proved converges with a uniform-in-ε radius of 1/360. Define perturbation coeffi-

cients, denoted with a tilde:

w̃α
(ε)(τ, σ) = (x̃α

(ε)(τ, σ), ỹα
(ε)(τ, σ), z̃α

(ε)(τ, σ), s̃α
(ε)(τ, σ)) , (1.5.184)
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according to

w(ε)
α = w(0)

α + εw̃α
(ε) . (1.5.185)

Each w̃(ε)
α term itself depends on ε in an analytic way that we shall not need to consider. We are

interested in obtaining bounds for them which are ε-independent over the domain ε ∈ [0, 1/60), so

we are going to omit the (ε) superscript from them to clean up the notation.

We repeat here the relevant information about thewα coefficients to see how w̃α can be obtained.

First of all, the s coefficients contain no perturbation terms: given that s(ε)α is 1 if α = (1, 0) and 0

otherwise, we have

s̃α = 0 , α ∈ N2 . (1.5.186)

Next, the initial values of the x, y, z coefficients for |α| ≤ 1 are given in equations (1.5.84), (1.5.86),

(1.5.87) as


x
(ε)
00 = X(ε)

y
(ε)
00 = Y (ε)

z
(ε)
00 = Z(ε)

,


x
(ε)
10 = 0

y
(ε)
10 = 0

z
(ε)
10 = 0

,



x
(ε)
01 =

εp(ε)

4

y
(ε)
01 =

3 + εq(ε)

4

z
(ε)
01 =

1

4

, (1.5.187)

and we have proven in lemmas 1.5.5 and 1.5.7 that
X(ε) = 1 + 4δ

(ε)
X ε2 with 0 ≤ δ(ε)X ≤ 1

Y (ε) = −1 + 2δ
(ε)
Y ε with 0 ≤ δ(ε)Y ≤ 1

Z(ε) = −1/2 + δ
(ε)
Z ε with 0 ≤ δ(ε)Z ≤ 1

,

 0 ≤ p(ε) ≤ 4

0 ≤ q(ε) ≤ 60
. (1.5.188)

This implies that
|x̃00| ≤ 4ε < 1/15

|ỹ00| ≤ 2

|z̃00| ≤ 1

,


|x̃01| ≤ 1

|ỹ01| ≤ 15

z̃01 = 0

,


x̃10 = 0

ỹ10 = 0

z̃10 = 0

(1.5.189)

Finally the recursion for x, y, z coefficients when |α| ≥ 2 is given in (1.5.101), (1.5.105) and (1.5.98)

as  a
(ε)
α x

(ε)
α + b

(ε)
α y

(ε)
α = e

(ε)
α

c
(ε)
α x

(ε)
α + d

(ε)
α y

(ε)
α = f

(ε)
α

, z(ε)α =
y
(ε)
α

2 + λ
(ε)
1 α1 + λ

(ε)
2 α2

, (1.5.190)
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where

e(ε)α = −
∑
β≤α
β 6=0,α

x
(ε)
β x

(ε)
α−β

− ε
( ∑

β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

(x
(ε)
α−βy

(ε)
γ y

(ε)
β−γ + 2z

(ε)
α−βx

(ε)
γ x

(ε)
β−γ) +

∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

x(ε)γ x
(ε)
β−γz

(ε)
δ z

(ε)
α′−β−δ

)

(1.5.191)

f (ε)α = −
∑
β≤α
β 6=0,α

x
(ε)
β y

(ε)
α−β − 2ε

∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

x
(ε)
α−βy

(ε)
γ z

(ε)
β−γ

+
∑
β≤α′

x
(ε)
β z

(ε)
α′−β − ε

∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

x
(ε)
δ y

(ε)
α′−β−δz

(ε)
γ z

(ε)
β−γ (1.5.192)

We must use these equations to write a recursion for w̃α, |α| ≥ 2. For any such α, define perturba-

tions coefficients corresponding to aα through fα above:

a(ε)α = a(0)α + εãα , etc. (1.5.193)

Also here the terms with a tilde depend on ε, but we don’t write (ε) over them. In the linear

system found in (1.5.190) for x(ε)α and y
(ε)
α , write each coefficient as a (0) term plus ε times the

perturbation term, distribute out and cancel those terms containing only (0) superscripts (this can

be done because, by definition of the (0) superscript, the equations a
(0)
α x

(0)
α + b

(0)
α y

(0)
α = e

(0)
α

c
(0)
α x

(0)
α + d

(0)
α y

(0)
α = f

(0)
α

(1.5.194)

are true). Finally, divide by a common factor of ε. What is obtained can then be put in the form a
(ε)
α x̃α + b

(ε)
α ỹα = −ãαx(0)α − b̃αy(0)α + ẽα =: Ẽα

c
(ε)
α x̃α + d

(ε)
α ỹα = −c̃αx(0)α − d̃αy(0)α + f̃α =: F̃α

. (1.5.195)

We’ve already proved in proposition 1.5.8 that the solution to this system is unique and satisfies

|x̃α|, |ỹα| ≤ 2(|Ẽα|+ |F̃α|) . (1.5.196)
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Having obtained these solutions, we get z̃α using the equation for z(ε)α shown above in (1.5.190), and

it satisfies

|z̃α| ≤
|ỹα|
2

(1.5.197)

because z(0)α = y
(0)
α /2. This and equation (1.5.196) together imply

|x̃α|, |ỹα|, |z̃α| ≤ 2(|Ẽα|+ |F̃α|) =⇒ X̃α ≤ 2(|Ẽα|+ |F̃α|) . (1.5.198)

where

X̃α = max{|x̃α|, |ỹα|, |z̃α|} ≥ 0 , α ∈ N2 . (1.5.199)

Hence we need to estimate |Ẽα| and |F̃α| by a workable expression involving sums of the coeffi-

cients X̃β for β < α. It will also involve coefficients Xβ for β ≤ α, where

Xα = max{|x(0)α |, |y(0)α |, |z(0)α |} ≥ 0 , α ∈ N2 . (1.5.200)

The two initial terms in the system (1.5.195) defining both Ẽα and F̃α are easily bounded: | − ãαx
(0)
α − b̃αy(0)α | ≤ Xα + 6Xα = 7Xα

| − c̃αx(0)α − d̃αy(0)α | ≤ 3Xα + (3/2)Xα = (9/2)Xα

. (1.5.201)

For this, we’ve used equations (1.5.112) and (1.5.113), which contain bounds for the perturbations

of the aα through dα coefficients that can be paraphrased as:

|ãα| ≤ 1 , |b̃α| ≤ 6 , |c̃α| ≤ 3 , |d̃α| ≤
3

2
. (1.5.202)

Remark 1.5.13. As was the case in subsection 1.5.4, we need to obtain the bound for X̃α for |α| = 2

directly, before letting the recursion kick in at |α| ≥ 3. So let |α| = 2. The inequalities (1.5.127) in

remark 1.5.9 already provide bounds for ẽα, f̃α. It will be enough to write all of them as

|ẽα|, |f̃α| <
21

10
, |α| = 2 . (1.5.203)

Plugging these and (1.5.201) into (1.5.195) gives bounds for Ẽα, F̃α when |α| = 2:

|Ẽα| < 7Xα +
21

10
, |F̃α| <

9Xα

2
+

21

10
, |α| = 2 . (1.5.204)

Considering also the bound 41/20 given in (1.5.124) and (1.5.125) for Xα, and inequality (1.5.198)

for X̃α, we obtain

X̃α ≤ 2

((
7 +

9

2

)
41

20
+

21

10

)
=

1027

20
, |α| = 2 . (1.5.205)
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Now consider |α| ≥ 3. Bounding the ẽα and f̃α terms inside Ẽα and F̃α by induction requires first

writing them out by expanding the (1.5.191) and (1.5.192) expressions for e(ε)α and f (ε)α , replacing

every term ∗(ε) with ∗(0)+ε∗̃, distributing out, disregarding the expressions that contain no ε factor,

and dividing through by ε. After this, we bound them by using absolute values on each separate sum

and replacing every | ∗(0) | by X and every |∗̃| by X̃. To display this process, it’s better if we show

it separately for each sum, double sum etc. appearing in the expressions (1.5.191) and (1.5.192)

for e(ε)α and f (ε)α :

• Both e(ε)α and f (ε)α contain a sum of the form

∑
β≤α
β 6=0,α

∗(ε)β ∗
(ε)
α−β

Under the process described above, the term ∗(0)β ∗
(0)
α−β goes away and the remaining terms lose

one factor of ε, producing:

∑
β≤α
β 6=0,α

(
XβX̃α−β + X̃βXα−β + εX̃βX̃α−β

)
=
∑
β≤α
β 6=0,α

(
2XβX̃α−β + εX̃βX̃α−β

)
(1.5.206)

• The f (ε)α term also contains the sum

∑
β≤α′

x
(ε)
β z

(ε)
α′−β

The process works similarly to the previous item, giving:

∑
β≤α′

(
XβX̃α′−β + X̃βXα′−β + εX̃βX̃α′−β

)
=
∑
β≤α′

(
2XβX̃α′−β + εX̃βX̃α′−β

)
(1.5.207)

• Both e(ε)α and f (ε)α also contain sums of the form

∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

∗(ε)α−β ∗
(ε)
γ ∗

(ε)
β−γ

This time, these sums already appear multiplied by ε in both of the e(ε)α and f (ε)α expressions,

so the process described above amounts to simply canceling this overall ε factor from the final



101

result, while the terms inside these sums themselves don’t lose an ε:

∑
β+γ+θ=α

β,γ,θ 6=α

(
XβXγXδ + 3εXβXγX̃θ + 3ε2XβX̃γX̃θ + ε3X̃βX̃γX̃θ

)

=
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

(
Xα−βXγXβ−γ + 3εXα−βXγX̃β−γ + 3ε2Xα−βX̃γX̃β−γ + ε3X̃α−βX̃γX̃β−γ

)

(1.5.208)

• Finally, both e(ε)α and f (ε)α contain a sum of the form

∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

∗(ε)δ ∗
(ε)
α′−β−δ ∗

(ε)
γ ∗

(ε)
β−γ

which also appears multiplied by ε. Similarly to the item above, the process makes:

∑
β+γ+θ+ι=α′

(
XβXγXθXι+4εXβXγXθX̃ι+6ε2XβXγX̃θX̃ι+4ε3XβX̃γX̃θX̃ι+ε

4X̃βX̃γX̃θX̃ι

)

=
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

(
XδXα′−β−δXγXβ−γ + 4εXδXα′−β−δXγX̃β−γ + 6ε2XδXα′−β−δX̃γX̃β−γ

+ 4ε3XδX̃α′−β−δX̃γX̃β−γ + ε4X̃δX̃α′−β−δX̃γX̃β−γ

)
(1.5.209)

To bound Ẽα and F̃α, add all the sums obtained in the items above multiplied by their corre-

sponding coefficients in the equations (1.5.191) and (1.5.192) for e(ε)α and f
(ε)
α . Also include the

initial terms (1.5.201). Then plug all this into (1.5.198), where |Ẽα| and |F̃α| appear summed

together. The conclusion is that

X̃α ≤ 23Xα + 4
∑
β≤α
β 6=0,α

(
2XβX̃α−β + εX̃βX̃α−β

)
+ 2

∑
β≤α′

(
2XβX̃α′−β + εX̃βX̃α′−β

)

+ 10
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

(
Xα−βXγXβ−γ + 3εXα−βXγX̃β−γ + 3ε2Xα−βX̃γX̃β−γ + ε3X̃α−βX̃γX̃β−γ

)

+ 4
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

(
XδXα′−β−δXγXβ−γ + 4εXδXα′−β−δXγX̃β−γ + 6ε2XδXα′−β−δX̃γX̃β−γ

+ 4ε3XδX̃α′−β−δX̃γX̃β−γ + ε4X̃δX̃α′−β−δX̃γX̃β−γ

)
(1.5.210)
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Our summation technique can now be applied to prove a bound for X̃α by recursion. It utilizes

the same values of R,S, δ as in theorem 1.5.1 (it has to, otherwise the technique is not helpful), but

with an extra constant K = 30:

Theorem 1.5.14. For R,S, δ being the same constants as in theorem 1.5.1, we have

X̃α ≤
30SR|α|

(|α|+ δ)3
, α ∈ N2 . (1.5.211)

Proof. The numbers

R = 360 , δ <
1

7
, S = 2δ3 (1.5.212)

in theorem 1.5.1 are such that such that

Xα ≤
SR|α|

(|α|+ δ)3
, α ∈ N2 . (1.5.213)

Suppose that we seek K > 0 such that the inequality

X̃α ≤
KSR|α|

(|α|+ δ)3
, α ∈ N2 (1.5.214)

is true. We want to prove that K = 30 is enough.

First note that the desired inequality is true for |α| ≤ 2. Indeed, we’ve seen in equations (1.5.189)

and (1.5.205) that

X̃00 ≤ 2 , X̃01, X̃10 ≤ 15 , X̃02, X̃11, X̃20 ≤
1027

20
. (1.5.215)

Compare to the bounds (1.5.142) for the Xα coefficients when |α| ≤ 2:

X00 ≤ 2 , X01, X10 ≤ 1 , X02, X11, X20 ≤
41

20
. (1.5.216)

The difference between each is by a factor not larger than 30, so, because R,S, δ were enough to

ensure (1.5.213) when |α| ≤ 2, they are also enough to ensure (1.5.214) when |α| ≤ 2 if K = 30.

Now let j ≥ 2 and assume that (1.5.214) has been proven when |α| ≤ j. Let α ∈ N2 be such

that |α| = j + 1. We will use equation (1.5.210) to establish (1.5.214) also for α. In what follows,

let’s abbreviate

Rβ :=
SR|β|

(|β|+ δ)3
(1.5.217)
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Bound each Xβ with Rβ and each X̃β with KRβ . Then the distinction between terms inside each

sum containing a different number of factors with a tilde becomes just the number of factors of K

that appear, and note how terms inside the last two sums become perfect powers of 1 + εK:

X̃α ≤ 23Rα + 4(2K + εK2)
∑
β≤α
β 6=0,α

RβRα−β + 2(2K + εK2)
∑
β≤α′

RβRα′−β

+ 10(1 + εK)3
∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

Rα−βRγRβ−γ + 4(1 + εK)4
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

RδRα′−β−δRγRβ−γ (1.5.218)

Just like in the proof of theorem 1.5.1, we need to separate out from the second-to-last sum those

terms containing a factor R00:∑
β≤α

∑
γ≤β

β 6=0 , γ 6=α
β−γ 6=α

Rα−βRγRβ−γ = 3R00

∑
β≤α
β 6=0,α

RβRα−β +
∑
β≤α
β 6=0,α

Rβ
∑
γ≤α

γ 6=0,α−β

RγRα−β−γ

Then bound R00 by 2 and combine its term into the other sum of the form
∑
β≤α
β 6=0,α

RβRα−β in the

main estimate (also rearrange its order to become similar to the proof of 1.5.1):

X̃α ≤ 23Rα + (6 + 4K(2 + εK))
∑
β≤α
β 6=0,α

RβRα−β + 10(1 + εK)3
∑
β≤α
β 6=0,α

Rβ
∑

γ≤α−β
γ 6=0,α−β

RγRα−β−γ

+ 2K(2 + εK)
∑
β≤α′

RβRα′−β + 4(1 + εK)4
∑
β≤α′

∑
γ≤β

∑
δ≤α′−β

RδRα′−β−δRγRβ−γ (1.5.219)

The estimate of each sum now proceeds exactly as in that proof, yielding

X̃α ≤ Rα+1bR,δ (1.5.220)

for

bR,δ = 23 + (6 + 4K(2 + εK))70δ3 + 10(1 + εK)24900δ6

+
27

R2

(
2K(2 + εK)(32 + 70δ3) + 4(1 + εK)4(32 + 70δ3)2(4 + 70δ3)

)
(1.5.221)

To close the induction, we need to show that bR,δ ≤ 30. One can see that this is the case by using

ε < 1/60 and the values of K = 30 and R, δ as in theorem 1.5.1.
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The next corollary is a rewriting of the second of the main theorems in this section, theorem 1.5.2:

Corollary 1.5.15. For any fixed 0 ≤ γ < 1 and parameters τ, σ such that

|τ |, |σ| ≤ γ

360
, (1.5.222)

the components x(ε), y(ε), z(ε) of the parametrization w(ε) of W(ε) satisfy

|x(ε)(τ, σ)− x(0)(τ, σ)| ≤ 60ε

(1− γ)2
, similarly for y, z . (1.5.223)

Proof. Given that x(ε)(τ, σ) = x(0)(τ, σ) + εx̃(τ, σ), we have

|x(ε)(τ, σ)− x(0)(τ, σ)| ≤ ε
∑
α

|x̃α||τ |α1 |σ|α2

≤ 30Sε

δ3

∑
α

R|α|
( γ
R

)α1
( γ
R

)α2

=
30(2δ3)ε

δ3

∑
α1

γα1
∑
α2

γα2

=
60ε

(1− γ)2

(1.5.224)

We end this section with an explicit description of the unstable manifold W(0):

Proposition 1.5.16. For τ > 0, the parametrization W (0)(τ, σ) = (x(τ, σ), y(τ, σ), z(τ, σ), s(τ, σ))

of the unstable manifold W(0) corresponding to ε = 0 is given by

x(τ, σ) = 1

y(τ, σ) = −e−τ + V (τ, σ)(e−τ − eτ )

z(τ, σ) =
(1 + τ)e−τ − 1 + V (τ, σ)((1− τ)eτ − (1 + τ)e−τ )

τ2

s(τ, σ) = τ

(1.5.225)

where

V (τ, σ) =
1

2
− 3σ

8τ
. (1.5.226)

Proof. Considering the general ζ solution of the original system (1.1.13) when ε = 0, which is

ζ(r) =

(
1 +

M

r

)−1
, (1.5.227)
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where M is an integration constant. When M 6= 0, the limit limt2→−∞ x(t2) = limr→0 ζ(r) = 0 is

not the value that it needs to be in order for the corresponding orbit (x, y, z, s) of the desingularized

system (1.5.12) to converge to the equilibrium point P (0) = (1,−1,−1/2, 0) as “time” t2 goes to

−∞. Therefore, for any orbits on W(0), the corresponding ζ necessarily has M = 0 (that is, ζ ≡ 1

and x ≡ 1). This renders the w equation in (1.1.13) easily solvable:

w(r) = C1(1 + r)e−r + C2(1− r)er , (1.5.228)

where C1, C2 are integration constants. The expansion of this solution around r = 0 is

w(r) = (C1 + C2)−
C1 + C2

2
r2 +O(r3) . (1.5.229)

The corresponding orbits (x, y, z, s) to such w solutions will only converge to P (0) when the expres-

sions that yield the y and z coordinates of their limit behave correctly:

lim
r→0

w′(r)

r
= −1 , lim

r→0

w(r)− 1

r2
= −1

2
, (1.5.230)

and these conditions are true if and only if C1 + C2 = 1, restricting the freedom in w to just one

parameter C = C2 = 1− C1:

w(r) = (1 + r)e−r + C
(
(1− r)er − (1 + r)e−r

)
. (1.5.231)

The value C = 0 corresponds to the solution that we have been calling the “flat-space solution” (all

of the solutions described above give the Minkowsky spacetime, since they all have ζ ≡ 1, but only

the one with C = 0 produces a w(r) that goes to 0 at r = ∞). Now write the x, y, z, s functions

corresponding to the ζ, w just described as functions of “time” t2 (that is, replace r by et2):

x ≡ 1 , y = −e−et2 + C
(
e−e

t2 − eet2
)

,

z =
(1 + et2)e−e

t2 − 1 + C
(
(1− et2)ee

t2 − (1 + et2)e−e
t2
)

e2t2
, s = et2 . (1.5.232)

They span a 2-dimensional manifold as C and t2 vary, hence we have found W =W(0).

To see how the parameter C is related to the parameters (τ, σ), fix τ, σ, with τ 6= 0, small enough

that the series W converges. The point

W (τ, σ) = (x(τ, σ), y(τ, σ), z(τ, σ), τ) (1.5.233)
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belongs to the manifold W and thus must be of the form (1.5.232) above (with every et2 replaced

by τ). Hence there must exist C = C(τ, σ) such that

x(τ, σ) = 1

y(τ, σ) = −e−τ + C(τ, σ)(e−τ − eτ )

z(τ, σ) =
(1 + τ)e−τ − 1 + C(τ, σ)((1− τ)eτ − (1 + τ)e−τ )

τ2

(1.5.234)

The second component in the invariance equation (1.5.82) reads

τ
∂y

∂τ
+ σ

∂y

∂σ
= 1 + 2y − xy + s2xz = 1 + y + τ2z . (1.5.235)

Using y and z as in (1.5.234), we check that this becomes

τ
∂C

∂τ
+ σ

∂C

∂σ
= 0 =⇒ C(τ, σ) = U

(σ
τ

)
(1.5.236)

for some real-valued function U . But the invariance equation alone does not carry all the information

needed to relate U to the parametrization W , because it doesn’t know of the choices made for

W (0, 0) (the equilibrium point) and the first derivatives Wτ (0, 0),Wσ(0, 0) (the eigenvectors of the

linearization). We will bring them in by considering small τ and σ and connecting them to the

values w00,w01,w10.

Let u ∈ R be given; we want to compute U(u). Choose τ small enough that both τ and σ = uτ

are within the radius of convergence of W , and solve for C(τ, uτ) = U(uτ/τ) = U(u) in the y

equation in (1.5.234):

U(u) =
y(τ, uτ) + e−τ

e−τ − eτ
=

∑
α yαu

α2τ |α| + e−τ

e−τ − eτ
. (1.5.237)

This is true for all small τ > 0, so we can take a limit as τ → 0. We note that the limit is of the

indeterminate form 0/0, due to

lim
τ→0

∑
α

yαu
α2τ |α| + e−τ = y00 + 1 = −1 + 1 = 0 . (1.5.238)

By L’Hôpital’s Rule,

U(u) = lim
τ→0

∑
α yαu

α2 |α|τ |α|−1 − e−τ

−e−τ − eτ
=
y10 + y01u− 1

−1− 1
=

1

2
− 3u

8
. (1.5.239)

Plugging this back into (1.5.234) proves the proposition.
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1.6 Connecting the two radial regimes

In section 1.5 we proved that, for any

0 ≤ ε < 1

60
, (1.6.1)

there exists a family of solutions to the desingularized Maxwell-BLTP-Einstein system (1.5.12)

tracing out a 2D surface W(ε) in 4D space (x, y, z, s), which corresponds to a family of solutions to

the original system (1.1.13) satisfying the good asymptotic conditions as r → 0 for a finite EM field

energy, as described in subsection 1.3.5. We showed that W(ε) is parametrized by 2 real numbers

τ, σ in the region

|τ |, |σ| ≤ 1

360
, (1.6.2)

with τ being equal to the s coordinate on W(ε). We also obtained an estimate, of degree 1 in ε, for

the difference between the coordinates of W(ε) and W(0).

In section 1.4 we proved that, for any fixed 0 < r0 < 1 and parameters µ∗, α∗ > 0 and µ, α, ε ∈ R

under the restrictions

|µ| < µ∗ , |α| ≤ α∗ , 0 ≤ ε < r70
240(15 + 4r0µ∗ + r40α∗)

, εµ2∗ < 1 , (1.6.3)

there exists a solution, continuous on its parameters µ, α, to the Maxwell-BLTP-Einstein system

(1.2.78) on [r0,∞) satisfying the good asymptotic conditions as r → ∞ for an asymptotically

Minkowsky spacetime and asymptotically Coulomb electric field, as described in subsection 1.3.5.

We also proved that, when ε is less than 1/4 of the bound given above, the ζ function is positive,

as is desired.

In the present section, we prove that the two families meet at some 0 < r0 < 1. We will

keep working in (x, y, z, s) variables, since it is more convenient to work in these variables when

r is small. We know that the intersection exists when ε = 0, yielding the flat-space solution. To

prove that this intersection remains when ε is small, a system of coordinates c1, c2, c3 in the 3-

dimensional space {(x, y, z, r) ; r = r0} will be defined based on the linear-in-ε approximation to

the 2-parameter family of good solutions on [r0,∞). We will show how certain inequalities, involving

these coordinates at general points on each of the two families above, ensure that they intersect as

a consequence of the Poincaré-Miranda theorem.
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Once the intersection is proved, the existence and uniqueness theorem for ODE systems applied

to the original system in the variables ζ, w at this point (where there are no singularities) implies

that the two orbits from each of the families meeting at this point must join smoothly and constitute

a solution for r ∈ (0,∞), satisfying all the required asymptotics.

1.6.1 Set-up

Let µ∗, α∗ > 0 be fixed. Also fix 2 scalars γ0, γ∞ ∈ (0, 1) to be specified later, and let r0, ε∗ be

defined by

r0 =
3

4
· γ0

360
, ε∗ =

γ∞r
7
0

240(15 + 4r0µ∗ + r40α∗)
. (1.6.4)

The indices 0,∞ in the gamma parameters are intended to remind the reader that they are associated

with the family of solutions coming from r = 0 and r = ∞, respectively. They are going to be

needed to ensure convergence of the respective power series, and the reason for the factor 3/4 in the

definition of r0 will become clear in equation (1.6.13) below. We anticipate that γ∞ will need to be

made small so that ε is small (in particular gamma∞ < 1/4 will hold, a condition that is needed

to guarantee ζ > 0).

First let’s describe the family of solutions coming from r = 0. It is clear that ε < 1/60, so

that all results from section 1.5 are valid. Also note that the unstable manifold W =W(ε) extends

past the hyperplane s = r0 in the s direction, since the τ = s parameter can be taken as large as

1/360 > γ0/360 > r0. So consider the curve traced out by W in 3D space {(x, y, z, r0)}:

C(ε) = C =W ∩ {(x, y, z, s) ∈ R4 , s = r0} . (1.6.5)

It is parametrized by σ. We only know its existence for σ values small enough that the W series

converges; so we only consider the piece of this curve corresponding to σ ∈ [γ0/360, γ0/360]. Let its

general point be denoted

C(σ) := (xC(σ), yC(σ), zC(σ), r0) , |σ| ≤ γ0
360

. (1.6.6)

Also let xN , yN , zN (“N” for “null”) denote the coordinates of the curve CN described above for the

value ε = 0. Theorem 1.5.2 gives uniform-in-σ estimates for the perturbation coefficients x̃, ỹ, z̃

defined by

xC(σ) = xN (σ) + x̃C(σ) , etc. (1.6.7)
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Namely, we proved that

|x̃(σ)|, |ỹ(σ)|, |z̃(σ)| ≤ 60ε

(1−max{3γ04 , γ0})2
=

60ε

(1− γ0)2
. (1.6.8)

Meanwhile, the components xN , yN , zN of the W(0) manifold split as a sum of a term accompanied

by the function V (τ, σ) = V (r0, σ) and another independent of it, given in formulas (1.5.225). We

give names for these pieces:

xN (σ) = x
(I)
N + V (σ)x

(II)
N , etc. , (1.6.9)

where

x
(I)
N = 1 , y

(I)
N = −e−r0 , z

(I)
N =

(1 + r0)e
−r0 − 1

r20
, (1.6.10)

x
(II)
N = 0 , y

(II)
N = e−r0 − er0 , z

(II)
N =

(1− r0)er0 − (1 + r0)e
−r0

r20
, (1.6.11)

and where we denoted V (r0, σ) from (1.5.226) by simply V (σ):

V (σ) =
1

2
− 3σ

8r0
. (1.6.12)

We remarked in the proof of proposition 1.5.16 that the flat-space solution corresponds to the value

V (σ) = 0 ⇐⇒ σ =
4r0
3

. (1.6.13)

Considering the factor 3/4 in the definition (1.6.4) of r0, we see that this value of σ is within the

radius of convergence for the curve C.

Now let’s describe the family of solutions coming from r =∞. For any choice of µ, α satisfying

|µ| ≤ µ∗ , |α| ≤ α∗ , (1.6.14)

consider the functions η(µ,α), u(µ,α), v(µ,α) of r ∈ [r0,∞) as obtained in section 1.4:

η(µ,α)(r) =

∞∑
j=0

η
(µ,α)
j (r)εj , u(µ,α)(r) =

∞∑
j=0

u
(µ,α)
j (r)εj , v(µ,α)(r) =

∞∑
j=0

v
(µ,α)
j (r)εj . (1.6.15)

The original functions ζ, w,w′ are written in terms of η, u, v as (formulas (1.4.53) and (1.4.57)):

ζ(µ,α)(r) = ζ
(µ)
RWN(r) + η(µ,α)(r) =

∞∑
j=0

((
2µ

r
− 1

r2

)j
+ η

(µ,α)
j

)
εj

w(α,µ)(r) =
1

2
((r − 1)u(µ,α)(r)− (r + 1)v(µ,α)(r)) =

1

2

∞∑
j=0

(
(r − 1)u

(µ,α)
j (r)− (r + 1)v

(µ,α)
j (r)

)
εj

w′
(α,µ)

(r) =
r

2
(u(µ,α)(r) + v(µ,α)(r)) =

r

2

∞∑
j=0

(
u
(µ,α)
j (r) + v

(µ,α)
j (r)

)
εj

(1.6.16)
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The presence of the parameters µ and α is the reason why we call this a 2-parameter family of

solutions. But it is only for ε > 0 that a change in either µ or α yields a change in ζ(µ,α) and

w(µ,α), because, when ε = 0, these functions reduce to simply ζ0(r) = 1, w0(r) = (1 − r)e−r,

w′0 = −re−r, which are independent of µ and α. For our strategy in what follows, we will need

parameters that also effect a change in these functions when ε = 0, and this is achieved by rescaling

µ and α using a factor of ε. Indeed, we have already remarked in (1.4.161) that each coefficient

ζ
(µ,α)
j (r), w

(µ,α)
j (r), (w′)

(µ,α)
j (r) is a polynomial in µ and α of degree no more than j in each. Since

each of these coefficients appears multiplied by εj in the formulas for ζ(µ,α) etc., we are allowed to

write ζ and w as functions of the new parameters

ν = εµ , β = εα . (1.6.17)

That is, the formulas (note the square brackets instead of parentheses to differentiate them from

the ones above)

ζ [ν,β](r) := ζ(ν/ε , β/ε)(r) , similarly for w and w′ (1.6.18)

are well-defined even when ε = 0. The range of allowed parameters ν, β is

|ν| ≤ ν∗ := ε∗µ∗ , |β| ≤ β∗ := ε∗α∗ . (1.6.19)

There will be no possibility of confusion between summation multi-indices α, β ∈ N2 and the

parameters α, β ∈ R, or between the new parameter ν ∈ R and the original metric function ν :

(0,∞)→ R.

Remark 1.6.1. Contrary to µ∗, α∗, the numbers ν∗, β∗ are not free to be chosen as large as desired.

Given ν∗, β∗, the original parameters µ∗, α∗ are obtained according to

µ∗ =
ν∗
ε

=
240(15 + 4r0µ∗ + r40α∗)ν∗

γ∞r70

α∗ =
β∗
ε

=
240(15 + 4r0µ∗ + r40α∗)β∗

γ∞r70

(1.6.20)

This gives a linear system for µ∗, α∗:

 (A− Cν∗)µ∗ −(Dν∗)α∗ = Bν∗

−(Cβ∗)µ∗ + (A−Dβ∗)α∗ = Bβ∗

where



A = γ∞r
7
0

B = 3600

C = 960r0

D = 240r40

(1.6.21)
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The solutions  µ∗

α∗

 =
1

A− Cν∗ −Dβ∗

 Bν∗

Bβ∗

 (1.6.22)

are only positive when Cν∗ +Dβ∗ < A. Therefore, a restriction on the parameters ν∗, β∗ is that

960ν∗ + 240r30β∗ < γ∞r
6
0 . (1.6.23)

The other restriction comes from the required εµ2∗ < 1, but one can check, after finding µ∗

from (1.6.22) and using the relation (1.6.4) between ε and r0, that it is a weaker condition than (1.6.23).

Now compute the values of x, y, z corresponding to ζ(r), w(r), w′(r) at s = r0 (formulas (1.5.11)),

thus obtaining a surface S inside 3D space {(x, y, z, r0)} parametrized by ν, β. We call

xS(ν, β), yS(ν, β), zS(ν, β)

the first 3 coordinates of this surface, and S(ν, β) its general point:

S = {S(ν, β) = (xS(ν, β), yS(ν, β), zS(ν, β), r0) , |ν| ≤ ν∗, |β| ≤ β∗} . (1.6.24)

That is,

xS(ν, β) = ζ [ν,β](r0) , yS(ν, β) =
w′[ν,β](r0)

r0
, zS(ν, β) =

w[ν,β](r0)− 1

r20
. (1.6.25)

Now let xP , yP , zP (“P” for plane) denote these functions calculated with the corresponding series

for ζ, w,w′ truncated at first degree in ε:

xP (ν, β) = ζ
[ν,β]
0 (r0) + ζ

[ν,β]
1 (r0)ε

yP (ν, β) =
w′0

[ν,β](r0) + w′1
[ν,β](r0)ε

r0

zP (ν, β) =
w0

[ν,β](r0) + w1
[ν,β](r0)ε− 1

r20
,

(1.6.26)

and call P the general point

P (ν, β) = (xP (ν, β), yP (ν, β), zP (ν, β), r0) . (1.6.27)

These are affine-linear in the original parameters µ, α (which appear multiplied by ε), hence also in

the new ones ν, β (which won’t have an ε in front of them), and therefore the collection of values
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of xP , yP , zP as the parameters ν, β vary trace out the interior and boundary of a parallelepiped

P(ε) = P (even when ε = 0) contained in a plane P?:

P = {P (ν, β) , |ν| ≤ ν∗, |β| ≤ β∗} ,

P? = {P (ν, β) , ν, β ∈ R} .
(1.6.28)

Remark 1.6.2. The flat-space solution to our differential system with ε = 0 is given by the

zeroth-order terms of the ε-power series defining the surface S, which are the only ones that are not

multiples of powers of ν, β. Hence, the parallelepiped P is the same as the surface S(0) corresponding

to ε = 0, and the values of the parameters at the intersection point between C(0) and S(0) for ε = 0

are ν = 0, β = 0, σ = 4r0/3 (the last one was found in equation (1.6.13)). It is to be expected that

the intersection when ε > 0 will happen at parameter values close to these. The numbers ν∗, β∗

control how large |ν|, |β| can be; we will also seek a number σ∗ dictating the maximum size for

|4r0/3− σ|.

Proposition 1.6.3. The equation of the plane P? in 3D {(x, y, z, r0)} space can be written

aPx+ bP y + cP z = dP + εeP (1.6.29)

with the coefficients given by

aP =

(
1

r0
+

1

r20

)
e−r0 + Ei(−2r0)e

r0

bP =
1

r0
+

1

r20

cP = 1

dP = − 1

r20
+

(
1

r0
+

1

r20

)
e−r0 + Ei(−2r0)e

r0

eP = −1

6

(
1

r30
+

2

r40

)
e−r0 +

2e−3r0

r20
+

1

3

(
4

r0
+

3

r20

)
Ei(−2r0)e

r0

−
(

1

r0
+

1

r20

)
Ei(−2r0)e

−r0 − 6

r0
Ei(−4r0)e

r0

(1.6.30)

Note that ε does not appear in the 5 formulas above, but does appear multiplying eP in the plane

equation; that is, the effect of a change in ε is a small translation of P?.

Proof. Recall the expressions for the zeroth and first order coefficients calculated at r0, which can

be read off of formulas (1.4.48), (1.4.49), (1.4.17)). Writing in the x, y, z coordinates, we get

xP (ν, β) = 1 + ε

[
− 1

r20
+

(
1

r0
+

1

r20

)
e−2r0 +

2µ

r0

]
, (1.6.31)
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yP (ν, β) = −e−r0 + ε

[
1

12

(
1

r0
+

5

r20
+

4

r30

)
e−r0 +

1

2

(
1

r0
− 2

r20
− 1

r30

)
e−3r0

+
1

3

(
2Ei(−2r0)− 9Ei(−4r0)

)
er0 + µ

(
−
(

1

r0
+

1

r20

)
e−r0 + Ei(−2r0)e

r0

)
− α

2
e−r0

]
, (1.6.32)

zP (ν, β) =
(1 + r0)e

−r0 − 1

r20
+ ε

[
1

12

(
− 9

r20
+

4

r30
− 1

r40
− 4

r50

)
e−r0

+
1

2

(
1

r20
− 3

r30
+

1

r40
+

1

r50

)
e−3r0 +

1

3

(
2Ei(−2r0)− 9Ei(−4r0)

)(
1

r0
− 1

r20

)
er0

+ µ

((
− 1

r20
+

1

r40

)
e−r0 + Ei(−2r0)

(
1

r0
− 1

r20

)
er0
)

+
α

2

(
1

r0
+

1

r20

)
e−r0

]
. (1.6.33)

Consider the following 3 points on P? (they may fall outside of the domain corresponding to the

bounds on µ, α, but that is irrelevant for finding the equation of the plane):

Q1 = P (0, 0) , Q2 = P

(
1

ε
, 0

)
, Q3 = P

(
0,

1

ε

)
. (1.6.34)

Then P? is the translation by Q1 of the plane spanned by the two vectors

Q2 −Q1 =
1

ε

[
∂µxP (0, 0) , ∂µyP (0, 0) , ∂µzP (0, 0) , r0

]t
,

Q3 −Q1 =
1

ε

[
∂αxP (0, 0) , ∂αyP (0, 0) , ∂αzP (0, 0) , r0

]t
.

(1.6.35)

Note that, since µ and α always appear multiplied by ε in the coordinates of P , and since there is

a 1/ε in front of Q2 −Q1 and Q3 −Q1, these vectors end up being independent of ε. Compute the

vector product (Q3 −Q1)× (Q2 −Q1) to find a vector n normal to P; then a possible form of the

equation of P is

nxx+ nyy + nzz = n ·Q1 , s = r0 , (1.6.36)

where we find that

nx =

(
1

r20
+

1

r30

)
e−2r0 +

Ei(−2r0)

r0
, ny =

(
1

r20
+

1

r30

)
e−r0 , nz =

e−r0

r0
, (1.6.37)

n ·Q1 =
1

6

[
− 6e−r0

r30
+

(
6

r20
+

6

r30
− ε

r40
− 2ε

r50

)
e−2r0 +

12εe−4r0

r30

+

(
+

6

r0
+

8ε

r20
+

6ε

r30
−
(

6ε

r20
+

6ε

r30

)
e−2r0

)
Ei(−2r0)−

36ε

r20
Ei(−4r0)

]
(1.6.38)

Rescaling these coefficients to make the simple z coefficient equal to 1 and separating out the terms

depending on ε from n ·Q1 gives the formulas as stated.
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Remark 1.6.4. An upper bound for |aP + bP + cP + eP | will be needed in subsection 1.6.4, so we

quickly figure it out here. The fact mentioned in (1.4.45) is needed:

Ei(−r) < e−r

r
. (1.6.39)

We have:

|aP | = aP <

(
1

r0
+

1

r20

)
e−r0 +

e−2r0

2r0
er0 =

(
3

2r0
+

1

r20

)
e−r0 <

2 + 3r0
2r20

, (1.6.40)

and

|eP | ≤
1

6

(
1

r30
+

2

r40

)
e−r0 +

2e−r0

r20
+

1

3

(
4

r0
+

3

r20

)
e−2r0

2r0
er0

+

(
1

r0
+

1

r20

)
e−2r0

2r0
e−r0 +

6

r0

e−4r0

4r0
er0

<
1

6

(
1

r30
+

2

r40

)
+

2

r20
+

1

3

(
4

r0
+

3

r20

)
1

2r0
+

(
1

r0
+

1

r20

)
1

2r0
+

6

r0

1

4r0

=
2 + 4/6 + 1/2 + 6/4

r20
+

1/6 + 1/2 + 1/2

r30
+

2/6

r40

=
2 + 7r0 + 28r20

6r40
.

(1.6.41)

Note that r40 is the highest power of r0 appearing in the denominator for the bounds for aP and

|eP | as well as in the definitions of bP and cP . Using these bounds and definitions and also the fact

that r0 < 1/360, we can calculate that

|aP + bP + cP + eP | ≤
2

5r40
. (1.6.42)

Let us use the plane P? to define a global coordinate system in 3D space {(x, y, z, r0)}:

Definition 1.6.5. Given x = (x, y, z, r0) ∈ R3 × {r0}, the P? coordinates c1(x), c2(x), c3(x) are

defined as follows:

• c1(x) and c2(x) are the ν and β values, respectively, corresponding to the orthogonal projection

ΠP?(x) of x onto P?:

ΠP?(x) = P (c1(x), c2(x)) . (1.6.43)

• c3(x) is a certain signed multiple of the distance of x from P?, defined by using the equation

of P?:

c3(x) = aPx+ bP y + cP z − (dP + εeP ) (1.6.44)
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Note that the correspondence x ∈ R3×{r0} ←→ (c1(x), c2(x), c3(x)) ∈ R3 is bijective, with P?

corresponding to c3 = 0.

The bulk of the work in this section is going to be proving a set of inequalities involving the

c1, c2, c3 coordinates of general points on C and S. Namely, we seek constants C1, C2, C3 > 0 and

values of parameters γ0, γ∞, σ∗, ν∗, β∗ such that, for any ε ∈ [0, ε∗), the following inequalities hold:

|c3(S(ν, β))| ≤ C3 for all |ν| ≤ ν∗ , |β| ≤ β∗ (1.6.45)

c1(S(−ν∗, β)) ≤ −C1 , c1(S(ν∗, β)) ≥ C1 for all |β| ≤ β∗ (1.6.46)

c2(S(ν,−β∗)) ≤ −C2 , c2(S(ν, β∗)) ≥ C2 for all |ν| ≤ ν∗ (1.6.47)

|c1(C(σ))| ≤ C1 , |c2(C(σ))| ≤ C2 for all σ ∈
[

4r0
3
− σ∗,

4r0
3

+ σ∗

]
(1.6.48)

c3

(
C

(
4r0
3
− σ∗

))
≤ −C3 , c3

(
C

(
4r0
3

+ σ∗

))
≥ C3 (1.6.49)

Thinking of the normal direction to P? as vertical and of the directions on P? as horizontal, these

inequalities can be interpreted in the following manner:

• (1.6.45): the surface S does not have too much vertical extent;

• (1.6.46), (1.6.47): the surface S has enough horizontal extent;

• (1.6.48): the relevant piece of the curve C does not have too much horizontal extent;

• (1.6.49): the relevant piece of the curve C has enough vertical extent;

These informal interpretations make it reasonable that S and C should intersect. To formally

prove that this is the case, assuming that (1.6.45) — (1.6.49) are established, consider 3 continuous

functions

F1, F2, F3 : [−ν∗, ν∗]× [−β∗, β∗]× [−σ∗, σ∗]→ R ,

Fj(ν, β, σ) = cj(S(ν, β))− cj
(
C

(
4r0
3

+ σ

))
.

(1.6.50)

An intersection between C and S, that is, the equality S(ν, β) = C(σ) for some parameters ν, β, σ,

is equivalent to Fj(ν, β, σ) = 0 for j = 1, 2, 3. Given that the 5 inequalities (1.6.45) — (1.6.49)

imply

F1(−ν∗, β, σ) ≤ 0 , F1(ν∗, β, σ) ≥ 0 for all β, σ , (1.6.51)
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F2(ν,−β∗, σ) ≤ 0 , F2(ν, β∗, σ) ≥ 0 for all ν, σ , (1.6.52)

F3(ν, β,−σ∗) ≤ 0 , F3(ν, β, σ∗) ≥ 0 for all ν, β , (1.6.53)

the existence of a common zero of F1, F2, F3 will follow from the following theorem, paraphrased

from [GD03]:

Theorem 1.6.6. (Poincaré-Miranda) Let Fi : [ai, bi] → R, i = 1, . . . , N , be continuous functions.

Suppose that, for each i = 1, . . . , N and all xj ∈ [aj , bj ] (j 6= i),

Fi(x1, . . . , xi−1, ai, xi+1, . . . , xN ) ≤ 0 , Fi(x1, . . . , xi−1, bi, xi+1, . . . , xN ) ≥ 0 . (1.6.54)

Then there exists x ∈ [a1, b1]× · · · × [aN , bN ] such that Fi(x) = 0 for all i = 1, . . . , N .

Therefore, all that is left is to prove each one of the 5 sets of inequalities listed above for

appropriate parameter values γ0, γ∞, σ∗, ν∗, β∗ and constants C1, C2, C3. We also remind the reader

that these parameters are not free to be chosen as arbitrary positive numbers: the gammas are

constrained by γ0, γ∞ ∈ (0, 1), while β∗, ν∗ are constrained by (1.6.23) and σ∗ by the fact that the

point 4r0/3 + σ∗ needs to remain within the radius of convergence of C:

4r0
3

+ σ∗ <
1

360
. (1.6.55)

Given the definition (1.6.4) of r0, this is equivalent to

σ∗ <
1− γ0

360
. (1.6.56)

1.6.2 Proof of (1.6.45)

Inequality (1.6.45) concerns the “vertical” separation between the surface S of the 2-parameter

family from r =∞ (given by an ε-power series) and the plane P (its first degree truncation). Thus

it is simply a truncation error estimate of the ε-series. The fact that the coefficients aP , . . . , eP in

the equation of P? are ε-independent is helpful in the calculation.

Define x̃S , ỹS , z̃S as the error in approximating S by P:

x̃S(ν, β) = xS(ν, β)− xP (ν, β) , similarly for y, z . (1.6.57)
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Given any point (xP + x̃S , yP + ỹS , zP + z̃S , r0) ∈ S, since (xP , yP , zP , r0) ∈ P? has a null c3

coordinate, we have

c3(S(ν, β)) = aP (xP + x̃S) + bP (yP + ỹS) + cP (zP + z̃S)− (dP + εeP )

= aP x̃S + bP ỹS + cP z̃S .

(1.6.58)

To write an estimate for this, we begin by writing one for x̃S , ỹS , z̃S . We must start from the power

series for η, u, v. We proved in theorem 1.4.13 that there exist

R ≤ 240(15 + 4r0µ∗ + r40α∗)

r70
, δ <

1√
48

, S = 2δ2 (1.6.59)

such that, for all r ∈ [r0,∞),

|η(ν,β)j (r)|, |u(ν,β)j (r)|, |v(ν,β)j (r)| ≤ SRj

(j + δ)2
e−r/2 <

SRj

(j + δ)2
. (1.6.60)

Note that our choice of ε in (1.6.4) can be written

ε =
γ∞
R

. (1.6.61)

Therefore (and similarly for u, v):∣∣∣∣∣∣
∞∑
j=2

η
(ν,β)
j (r0)ε

j

∣∣∣∣∣∣ ≤ S
∞∑
j=2

(Rε)j

(j + δ)2
<
S

22

∞∑
j=2

γj∞ =
δ2

2

γ2∞
1− γ∞

<
γ2∞

96(1− γ∞)
. (1.6.62)

We also need a bound for the tail of the ζRWN series
∞∑
j=2

(
2M

r0
+

1

r20

)j
εj , (1.6.63)

which is part of the ζ series (and will turn out almost irrelevant compared to the above). Since(
2µ∗
r0

+
1

r20

)
ε ≤ γ∞r

5
0

240
· 2r0µ∗ + 1

15 + 4r0µ∗ + r40α∗
<
γ∞r

5
0

240
·
15
2 + 2r0µ∗ + 1

2r
4
0α∗

15 + 4r0µ∗ + r40α∗
=
γ∞r

5
0

480
, (1.6.64)

we have∣∣∣∣∣∣
∞∑
j=2

(
2µ

r0
− 1

r20

)j
εj

∣∣∣∣∣∣ ≤
∞∑
j=2

(
2M

r0
+

1

r20

)j
εj ≤

γ2∞r
10
0

4802

1− γ∞r
5
0

480

=
(1− γ∞)r100

480(480− γ∞r50)
· γ2∞
1− γ∞

<
1

480

γ2∞
1− γ∞

(1.6.65)

(the value of r0 chosen in (1.6.4) is more than enough to guarantee 480− γ∞r50 > 1). Now let’s see

what this implies for ζ, w,w′. Start with

|ζ| ≤ |ζRWN|+ |η| , |w(r0)| ≤ (r0 + 1)
|u(r0)|+ |v(r0)|

2
, |w′(r0)| ≤ r0

|u(r0)|+ |v(r0)|
2

,

(1.6.66)
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which come from formulas (1.4.53) and (1.4.57)). Hence∣∣∣∣∣∣
∞∑
j=2

ζ
(ν,β)
j (r0)ε

j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑
j≥2

(
2µ

r
− 1

r2

)j
εj

∣∣∣∣∣∣+

∣∣∣∣∣∣
∞∑
j=2

η
(ν,β)
j (r)εj

∣∣∣∣∣∣ ≤ γ2∞
80(1− γ∞)

,

∣∣∣∣∣∣
∞∑
j=2

w
(ν,β)
j (r0)ε

j

∣∣∣∣∣∣ ≤ γ2∞(r0 + 1)

96(1− γ∞)
,

∣∣∣∣∣∣
∞∑
j=2

w′j
(ν,β)

(r0)ε
j

∣∣∣∣∣∣ ≤ γ2∞r0
96(1− γ∞)

.

(1.6.67)

Finally, due to formulas (1.5.11) defining the variables x, y, z:

|x̃S(ν, β)| ≤ γ2∞
80(1− γ∞)

, |ỹS(ν, β)| ≤ γ2∞
96(1− γ∞)

, |z̃S(ν, β)| ≤ 1 + r0
r20

γ2∞
96(1− γ∞)

.

(1.6.68)

Notice how the −1 in the formula z = (w−1)/r2 should not be taken into account when computing

these tails, since it does not affect the ε expansion at any degree other than 0. Using these, the

values of bP , cP given in (1.6.30) and the bound (1.6.40) for aP , we have

|aP x̃S(ν, β) + bP ỹS(ν, β) + cP z̃S(ν, β)| ≤ γ2∞
1− γ∞

(
2 + 3r0
160r20

+
1 + r0
96r20

+
1 + r0
96r20

)
=
γ2∞(16 + 19r0)

480(1− γ∞)r20

<
γ2∞

25(1− γ∞)r20
=: C3 .

‘ (1.6.69)

The last inequality uses the fact that r0 < 1/360. This establishes a value for C3 such that (1.6.45)

holds for any choice of parameters γ0, γ∞, σ∗, ν∗, β∗.

1.6.3 Proof of (1.6.48)

Inequalities (1.6.48) concern the “horizontal” extent of the curve C around the parameter value

σ = 4r0/3. Values of C1 and C2 quantifying this extent can easily be found when ε = 0 by using the

explicit description of the manifold W(0), while values that still work when ε > 0 will be possible

to obtain because of the estimate (1.6.8) that furnishes a small bound for the ε-perturbation of C.

The definition of the c1, c2 coordinates involves an orthogonal projection onto the plane P?,

whose coordinates are the affine-linear functions xP , yP , zP of (ν, β) given in formulas (1.6.31),

(1.6.32), (1.6.33). We begin by calculating this orthogonal projection. Let’s use superscripts (1),



119

(ε), (ν), (β) to denote the coefficients appearing in them (which depend on r0):

xP (ν, β) =: x
(1)
P + εx

(ε)
P + νx

(ν)
P + βx

(β)
P , similarly for yP , zP . (1.6.70)

Now define

A :=



x
(ν)
P x

(β)
P

y
(ν)
P y

(β)
P

z
(ν)
P z

(β)
P


, x(1,ε) :=



x
(1)
P + εx

(ε)
P

y
(1)
P + εy

(ε)
P

z
(1)
P + εz

(ε)
P


. (1.6.71)

The parametrization of P? in terms of ν, β is written in matrix form as

A

 ν

β

 = P (ν, β)− x(1,ε) . (1.6.72)

We remark that A has maximal rank, for example because x(β)P = 0, x(ν)P 6= 0, y(β)P 6= 0. Given any

x = (x, y, z, r0) ∈ R3×{r0}, we can find the coordinates c1(x) and c2(x), that is, the values of ν, β

at the projection ΠP?(x) ∈ P?, by finding the least-squares “solution” to the (possibly inconsistent)

linear system

A

 ν

β

 =


x

y

z

−



x
(1)
P + εx

(ε)
P

y
(1)
P + εy

(ε)
P

z
(1)
P + εz

(ε)
P


. (1.6.73)

In fact, we can rewrite this equation by erasing from it the ε-dependent terms εx(ε)P etc. — since

the effect of ε in only a translation of P?, the parameter values ν, β corresponding to planes of

different ε values are the same. Since A has maximal rank, the least-squares “solution” is given by

the well-known formula

 ν

β

 = B


x− x(1)P
y − y(1)P

z − z(1)P

 , B := (A∗A)−1A∗ . (1.6.74)
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We are now ready to project points of C onto P?. Consider an arbitrary point C(4r0/3 +σ) ∈ C.

The first 3 components xC , yC , zC of this point split as

xC

(
4r0
3

+ σ

)
= x

(I)
N + V

(
4r0
3

+ σ

)
x
(II)
N + x̃C

(
4r0
3

+ σ

)
, etc. , (1.6.75)

where we remark that

V

(
4r0
3

+ σ

)
=

1

2
− 3

8r0

(
4r0
3

+ σ

)
= − 3σ

8r0
. (1.6.76)

Note that x(I)N , y
(I)
N , z

(I)
N found in (1.6.10) are exactly the same as x(1)P , y

(1)
P , z

(1)
P defined just above, so

that, when plugging the point (x, y, z) given in (1.6.75) into equation (1.6.74) for the ν, β coefficients,

they get canceled and we end up with only

 c1(C(4r0/3 + σ))

c2(C(4r0/3 + σ))

 = B


x̃C(4r0/3 + σ)

− 3σ
8r0

(e−r0 − er0) + ỹC(4r0/3 + σ)

− 3σ
8r0

(1−r0)er0−(1+r0)e−r0
r20

+ z̃C(4r0/3 + σ)

 . (1.6.77)

Due to r0 < 1/360, the factors multiplying 3σ/8r0 in the vector above are bounded as such:

|e−r0 − er0 | < 1

100
,

∣∣∣∣(1− r0)er0 − (1 + r0)e
−r0

r20

∣∣∣∣ < 1

500
(1.6.78)

(the second one may look like it diverges when r0 is small, due to the r20 denominator, but actually

the zeroth and first derivatives of the numerator at r = 0 also vanish). Meanwhile, the terms

x̃C , ỹC , z̃C in (1.6.8). Then we conclude∣∣∣∣cj (C (4r0
3

+ σ

))∣∣∣∣ ≤ |Bj1| 60ε

(1− γ0)2
+ |Bj2|

(
3|σ|

800r0
+

60ε

(1− γ0)2

)
+ |Bj3|

(
3|σ|

4000r0
+

60ε

(1− γ0)2

)
, j = 1, 2 . (1.6.79)

Bounds for |Bij | are needed now. After computing the matrix product defining B in (1.6.74), we

see that its first row as well as B23 all end up being multiple of r0, which makes them small, while

B21 and B22 have an r0 in the denominator making them large:

B11 =
r0e

2r0(1 + 2r0 + r20 + r40)

2[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]
(1.6.80)

B12 =
r0(r0 + 1)er0(Ei(−2r0)e

2r0r20 − 1− r0)
2[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]

(1.6.81)

B13 =
r30e

r0(Ei(−2r0)e
2r0r20 − 1− r0)

2[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]
(1.6.82)
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B21 =
(1− r20 + r40)e2r0(Ei(−2r0)e

2r0r20 − 1− r0)
r0[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]

(1.6.83)

B22 =
er0(1 + r0 − r20 − r30 + r20e

2r0(−2r30 + Ei(−2r0)[−2 + 2r20 + Ei(−2r0)e
2r0r20(1− r0)]))

r0[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]

(1.6.84)

B23 =
r0e

r0((1 + r0)
2 + r0e

2r0(2 + 2r0 + Ei(−2r0)r0[−2− 2r0 + Ei(−2r0)e
2r0r20]))

[(r0 + 1)2 + e2r0(1 + 2r0 + r20 + r40 + Ei(−2r0)r20(−2− 2r0 + Ei(−2r0)e2r0r20))]
(1.6.85)

Bound (away from 0) the common expression that appears in all the denominators. To do this, use

(1.6.39) to conclude that the negative term in this expression is small

|Ei(−2r0)r
2
0(−2− 2r0 + Ei(−2r0)e

2r0r20)| < e−2r0

2r0
r20(2 + 2r0 +

e−2r0

2r0
e2r0r20) <

r0
2

(2 +
5r0
2

) (1.6.86)

and in fact is dominated by the positive terms 2r0 + r20 + r40; then throw these away and just leave

(r0+1)2+e2r0(1+2r0+r20 +r40 +Ei(−2r0)r
2
0(−2−2r0+Ei(−2r0)e

2r0r20)) > (0+1)2+e0(1+0) = 2 .

(1.6.87)

As for the numerators, we keep the most significant terms in r0 and use r0 < 1/360 for all others.

We obtain:

r0e
2r0(1 + 2r0 + r20 + r40) < r0e

2/360

(
1 +

2

360
+

1

3602
+

1

3604

)
<

11r0
10

, (1.6.88)

|r0(r0 + 1)er0(Ei(−2r0)e
2r0r20 − 1− r0)| < r0(r0 + 1)er0

(r0
2

+ 1 + r0

)
< r0

(
1

360
+ 1

)
e1/360

(
1

720
+ 1 +

1

360

)
<

101r0
100

,

(1.6.89)

|r30er0(Ei(−2r0)e
2r0r20 − 1− r0)| < r30e

1/360

(
1

720
+ 1 +

1

360

)
<

101r30
100

, (1.6.90)

|(1− r20 + r40)e2r0(Ei(−2r0)e
2r0r20 − 1− r0)| <

(
1 +

1

3602
+

1

3604

)
e2/360

(
1

720
+ 1 +

1

360

)
<

101

100

(1.6.91)

|er0(1 + r0 − r20 − r30 + r20e
2r0(−2r30 + Ei(−2r0)[−2 + 2r20 + Ei(−2r0)e

2r0r20(1− r0)]))|

< er0
(

1 + r0 + r20 + r30 + r20e
2r0

(
2r30 +

1

2r0

[
2 + 2r20 +

r0
2

(1 + r0)
]))

< e3r0
(

1 + r0 + r20 + r30 + 2r50 + r0 + r30 +
1

4
(r20 + r30)

)
= e3r0

(
1 + 2r0 +

5r20
4

+
9r30
4

+ 2r50

)
< e3/360

(
1 +

2

360
+

5

4 · 3602
+

9

4 · 3603
+

2

3605

)
<

51

50
,

(1.6.92)
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|r0er0((1 + r0)
2 + r0e

2r0(2 + 2r0 + Ei(−2r0)r0[−2− 2r0 + Ei(−2r0)e
2r0r20]))|

< r0e
r0

(
1 + 2r0 + r20 + r0e

2r0

(
2 + 2r0 +

1

2

[
2 + 2r0 +

r0
2

]))
< r0e

3r0

(
1 + 2r0 + r20 + 2r0 + 2r20 + r0 + r20 +

r20
4

)
= r0e

3r0

(
1 + 5r0 +

17r20
4

)
< r0e

3/360

(
1 +

5

360
+

17

4 · 3602

)
<

41r0
40

.

(1.6.93)

Therefore,

|B11| ≤
11r0
40

|B12| ≤
101r0
400

|B13| ≤
101r30
400

|B21| ≤
101

200r0
|B22| ≤

51

100r0
|B23| ≤

41r0
80

(1.6.94)

Plug back into the estimate (1.6.79) for the c1, c2 coordinates of C(4r0/3 + σ), cancel powers of r0

and use r0 < 1/360 on remaining expressions like 1 + r0 in the numerators. Finally, bound |σ| by

the parameter σ∗ that we wish to find by the end:∣∣∣∣c1(C (4r0
3

+ σ

))∣∣∣∣ ≤ σ∗
1000

+
60εr0

(1− γ0)2∣∣∣∣c2(C (4r0
3

+ σ

))∣∣∣∣ ≤ σ∗
500r20

+
120ε

r0(1− γ0)2

(1.6.95)

We let these expressions define the constants C1 and C2, and thus the inequalities (1.6.48) become

automatically true for any choice of parameters γ0, γ∞, σ∗, ν∗, β∗:

C1 :=
σ∗

1000
+

60εr0
(1− γ0)2

C2 :=
σ∗

500r20
+

120ε

r0(1− γ0)2
=

2C1

r20

(1.6.96)

1.6.4 Proof of (1.6.49)

Inequalities (1.6.49) concern the “vertical” separation between the plane P and the endpoints of the

segment of the curve C between 4r0/3 − σ∗ and 4r0/3 + σ∗. They stipulate that this separation

should be large enough, quantified by the constant C3 that we already defined in (1.6.69). This will

be achieved by allowing σ∗ to be large enough.

Let C(4r0/3 + σ) ∈ C be a general point on C. According to the definition of the c3 coordinate

of a point and the way in which the coordinates of C split, found in (1.6.75) above, we have (after
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some rearranging):

c3

(
C

(
4r0
3

+ σ

))
=

3σ

8r0

(
x
(II)
N + z

(II)
N + y

(II)
N

)
+

(
aPx

(I)
N + bP y

(I)
N + cP z

(I)
N − dP

)
+

(
aP x̃C(σ) + bP ỹC(σ) + cP z̃C(σ)− eP

)
. (1.6.97)

Direct computation reveals

x
(II)
N + z

(II)
N + y

(II)
N = −2er0

r0

aPx
(I)
N + bP y

(I)
N + cP z

(I)
N − dP = 0

|aP x̃C(σ) + bP ỹC(σ) + cP z̃C(σ)− eP | ≤
2

60r40

5ε

(1− γ20)
=

24ε

r40(1− γ20)

(1.6.98)

For the inequality above, we used the bound (1.6.8) for the tilde terms and the bound (1.6.42) for

the sum |aP + bP + cP − eP |. Thus, the maximum and minimum size of (1.6.97) for |σ| ≤ σ∗,

obtained by plugging in σ = σ∗ and σ = −σ∗ respectively into it, have a lower and upper bound

respectively:

c3

(
C

(
4r0
3

+ σ∗

))
>

3σ∗e
r0

4r20
− 24ε

r40(1− γ20)
, c3

(
C

(
4r0
3

+ σ∗

))
< −3σ∗e

r0

4r20
+

24ε

r40(1− γ20)
.

(1.6.99)

We want to ensure the first bound is larger than −C3 and the second one smaller than C3; hence

we want to ensure that
3σ∗e

2r0

4r20
>

24ε

r40(1− γ20)
+

γ2∞
25(1− γ∞)r20

, (1.6.100)

where we have replaced C3 by its value given in (1.6.69)). Now multiply through by r20, forget about

e2r0 because it is at least 1, and use

ε =
γ∞r

7
0

240(15 + 4r0µ∗ + r40α∗)
<
γ∞r

7
0

3600
, r0 =

3

4
· γ0

360
(1.6.101)

to conclude that the above inequality is weaker than (that is, it follows from) this next one:

2γ∞γ
5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

< σ∗ . (1.6.102)

We must also remember the other restriction on σ, given in (1.6.56):

σ∗ <
1− γ0

360
. (1.6.103)

It’s clear that these two inequalities are compatible when γ∞ is small enough. Now let’s keep these

on hold until we’ve also analyzed the last set of inequalities to be proven.
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1.6.5 Proof of (1.6.46) and (1.6.47)

Inequalities (1.6.46) and (1.6.47) concern the “horizontal” extent of the surface S. They stipulate

that this extent should be large, quantified by the constants C1 and C2 that we already defined

in (1.6.96). By definition, the first-degree truncation of S, which we called P, has horizontal extent

described by the maximum magnitudes ν∗ and β∗ of ν and β. We shall see that the truncation error

between P and S is small enough to not change this extent by much.

Consider a fixed point S(ν, β) ∈ S, where |ν| ≤ ν∗ and |β| ≤ β∗. Its first 3 coordinates are

written as perturbations of points on P?:

xS(ν, β) = xP (ν, β) + x̃S(ν, β) , similarly for y, z , (1.6.104)

and the inequalities (1.6.68) provide bounds for the perturbations. Meanwhile, the c1, c2 coordinates

of a general point x = (x, y, z, r0) are defined in equation (1.6.74):

 c1(x)

c2(x)

 = B


x− (x

(1)
P + εx

(ε)
P )

y − (y
(1)
P + εy

(ε)
P )

z − (z
(1)
P + εz

(ε)
P )

 . (1.6.105)

Applying this to x = (xP (ν, β), yP (ν, β), zP (ν, β), r0) just yields (ν, β), since in that case x ∈ P?

already. Therefore, applying it to x = (xS(ν, β), yS(ν, β), zS(ν, β), r0) will return

 c1

c2

 = B


xN (ν, β)− (x

(1)
P + εx

(ε)
P )

yN (ν, β)− (y
(1)
P + εy

(ε)
P )

zN (ν, β)− (z
(1)
P + εz

(ε)
P )

+B


x̃N (ν, β)

ỹN (ν, β)

z̃N (ν, β)

 =

 ν

β

+B


x̃S(ν, β)

ỹS(ν, β)

z̃S(ν, β)

 ,

(1.6.106)

and we conclude

|c1 − ν| ≤
γ2∞

1− γ∞

(
|B11|

80
+
|B12|

96
+

(1 + r0)|B13|
96r20

)
|c2 − β| ≤

γ2∞
1− γ∞

(
|B21|

80
+
|B22|

96
+

(1 + r0)|B23|
96r20

) (1.6.107)

Use the estimates found in (1.6.94) for the coefficients of the B matrix, and bound the 1 + r0 term

appearing in the bound for z̃S(ν, β). We conclude:

|c1 − ν| <
γ2∞r0

100(1− γ∞)
, |c2 − β| <

γ2∞
50r0(1− γ∞)

. (1.6.108)
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In particular,

c1(S(−ν∗, β)) < −ν∗ +
γ2∞r0

100(1− γ∞)
, c1(S(ν∗, β)) > ν∗ −

γ2∞r0
100(1− γ∞)

, for all |β| ≤ β∗ ,

(1.6.109)

c2(S(ν,−β∗)) < −β∗ +
γ2∞

50r0(1− γ∞)
, c2(S(ν, β∗)) > β∗ −

γ2∞
50r0(1− γ∞)

, for all |ν| ≤ ν∗ .

(1.6.110)

Now compare to the definitions (1.6.96) of C1 and C2. We will be done if we can ensure

σ∗
1000

+
60εr0

(1− γ0)2
< ν∗ −

γ2∞r0
100(1− γ∞)

(1.6.111)

σ∗
500r20

+
120ε

r0(1− γ0)2
< β∗ −

γ2∞
50r0(1− γ∞)

(1.6.112)

Let’s rearrange these inequalities by replacing/bounding ε and r0 as in (1.6.101), simplifying some

numbers, and multiplying the second one through by r20/2. Then we need

σ∗
1000

+
γ∞γ

8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

< ν∗ (1.6.113)

σ∗
1000

+
γ∞γ

8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

<
r20β∗

2
(1.6.114)

At the same time, condition (1.6.23) cannot be violated: the parameters ν∗, β∗ must be such that

960ν∗ + 240r30β∗ = 480

(
2ν∗ + r0

(
r20β∗

2

))
< γ∞r

6
0 =

γ∞γ
6
0

4806
. (1.6.115)

We have now found all inequalities that need to be valid for some choice of parameters γ0, γ∞,

σ∗, ν∗, β∗. They are the three inequalities (1.6.113), (1.6.114) and (1.6.115) just above, and the

two (1.6.102), (1.6.103) repeated here together:

2γ∞γ
5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

< σ∗ <
1− γ0

360
. (1.6.116)

1.6.6 Choosing the parameters

Instead of showing here the parameter values that will work, we describe the process used to prove

that they exist. At this stage, suppose that γ0, γ∞ can be found satisfying the following two main

inequalities:
2γ∞γ

5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

<
1− γ0

360
(1.6.117)
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and

2γ∞γ
5
0

25000 · 4805(1− γ0)2
+

4γ2∞
75000(1− γ∞)

+
γ∞γ

8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

<
γ∞γ

6
0

4807(2 + r0)
. (1.6.118)

Then we can choose some small λ > 0 such that

2γ∞γ
5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

+ λ <
1− γ0

360
(1.6.119)

and

2γ∞γ
5
0

25000 · 4805(1− γ0)2
+

4γ2∞
75000(1− γ∞)

+
γ∞γ

8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

+
λ

1000
<

γ∞γ
6
0

4807(2 + r0)
. (1.6.120)

Granted this, define

σ∗ =
2γ∞γ

5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

+ λ (1.6.121)

and both ν∗, β∗ according to

ν∗ =
r20β∗

2
=

σ∗ + λ

1000
+

γ∞γ
8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

. (1.6.122)

It’s clear that inequalities (1.6.116), (1.6.113) and (1.6.114) are true, while (1.6.115) goes as follows:

480

(
2ν∗ + r0

(
r20β∗

2

))
= 480(2 + r0)

[
1

1000

(
2γ∞γ

5
0

25 · 4805(1− γ0)2
+

4γ2∞
75(1− γ∞)

+ λ

)
+

γ∞γ
8
0

60 · 4808(1− γ0)2
+

γ2∞γ0
48000(1− γ∞)

]
< 480(2 + r0)

γ∞γ
6
0

4807(2 + r0)

=
γ∞γ

6
0

4806
.

(1.6.123)

Hence, all that is left is prove that γ0, γ∞ can be chosen making (1.6.117) and (1.6.118) true.

Let us now clean up these inequalities to see where the important parts are. An a priori upper

bound for 1/(1 − γ∞) is 4/3, from the necessary condition γ∞ < 1/4. We can also find one for

1/(1− γ0)2 coming from the fact that γ0 < 1; for example let’s impose

γ0 <
9

10
⇐⇒ 1

(1− γ0)2
< 100 . (1.6.124)
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Replacing these terms by their upper bounds in (1.6.117) and (1.6.118) (as well as 2 + r0 by 3 and

1 − γ0 by 1/10 on the right sides) produces stronger inequalities to be proven. We also cancel a

factor γ∞ from (1.6.118):

4γ∞γ
5
0

4805
+

16γ2∞
225

<
1

3600
4γ∞γ

5
0

1000 · 4805
+

16γ∞
225000

+
5γ80

3 · 4808
+
γ∞γ0
36000

<
γ60

3 · 4807

(1.6.125)

The first of these can be obtained, once γ0 is chosen, by making γ∞ small. Also, noticing that γ∞

appears in all but one term on the left of the second inequality, we see that making it small enough

will also prove that inequality, as long as γ0 can be chosen such that

5γ80
3 · 4808

<
γ60

3 · 4807
. (1.6.126)

This is equivalent to γ0 <
√

96. Hence we find that the choice of parameters can be made regardless

of the value of γ0 ∈ (0, 9/10).
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Chapter 2

Hartree limit of bosonic atom without Born-Oppenheimer
approximation

(Supervised by Michael Kiessling)

2.1 Overview

In the context of the stability of quantum matter (see [LS09]), there have been several studies of

asymptotic properties of the ground state energy and wavefunction of a quantum-mechanical model

of a bosonic atom: a system comprised of one positively charged nucleus pinned at 0 ∈ R3 and N

negatively charged identical bosons.

More specifically, consider a Hamiltonian defined on wavefunctions of N variables qk ∈ R3 by

H(N)(ψ) = −1

2

N∑
j=1

∆jψ −Nλ
N∑
j=1

ψ

|qj |
+

N∑
i=1

N∑
j=1

i<j

ψ

|qi − qj |
(2.1.1)

(some physical parameters omitted for clarity), where ∆j is the Laplacian with respect only to the

3-vector qj , and λ > 0 is the absolute value of the ratio of the charge of the nucleus to that of the

bosons. The associated energy functional, with domain D(Q(N)) = H1(R3), is

Q(N)(ψ) =
1

2

∫
R3N

|∇ψ(q)|2dq −Nλ
N∑
j=1

∫
R3N

|ψ(q)|2

|qj |
dq +

N∑
i=1

N∑
j=1

i<j

∫
R3N

|ψ(q)|2

|qi − qj |
dq (2.1.2)

(where q = (q1, . . . , qN )), and the ground-state energy of the system is

E(N) = inf
{
Q(N)(ψ) ; ψ ∈ D(Q(N)) , ‖ψ‖L2 = 1

}
. (2.1.3)

There are conditions on λ, assumed throughout this work, that guarantee the existence of a unique

minimizer modulo a phase, called the ground-state and denoted ψ
(N)
GS ; see [BL83]. It is also

known that the minimization can be taken without loss of generality only over those wavefunctions
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symmetric with respect to permutations of its N variables (which are the only physical ones, due

to the fact that the N particles are identical bosons).

One can prove in various ways that the following 1-body functional (Hartree functional)

H∞(φ) =
1

2

∫
R3

|∇φ(x)|2dx− λ
∫
R3

|φ(x)|2

|x|
dx+

1

2

∫∫
R6

|φ(x)φ(y)|2

|x− y|
dxdy , φ ∈ H1(R3) (2.1.4)

provides a good approximation, when N is large, for the ground state energy of H(N) ([BL83],

[Bau84], [Sol90], [BGM00]), and the minimizer of H∞ provides a good approximation for marginal

probability distributions constructed from the ground state of H(N) ([Kie10]). In particular, we

here are picking up on (the proof of) theorem 1 in [Kie10], which states:

• E(N)/N3 grows monotonically as N →∞, converging to

e∞ := inf{H∞(φ) ; φ ∈ H1(R3) , ‖φ‖L2 = 1} ;

• for N,n given, n ≤ N , and considering the re-scaled ground-state

ψ̃
(N)
GS (q) = N−3N/2ψ

(N)
GS (N−1q) , (2.1.5)

we have

lim
N→∞

∫
R3(N−n)

|ψ̃(N)
GS |

2(q1, . . . , qn, un+1, . . . uN )dun+1 · · · duN = |φmin(q1)|2 · · · |φmin(qn)|2

(2.1.6)

weakly in L1(R3n) ∩ L
3n

3n−2 (R3n), where φmin is the unique positive minimizer of H∞ with

‖φmin‖L2 = 1.

A crucial part of Kiessling’s proof of this result uses the symmetry of ψ and of Q(N) to rewrite

Q(N)(ψ) in terms of the 1- and 2-body marginal probability densities associated to the N -body

density |ψ|2. Then the Hewitt-Savage theorem on symmetric measures on the space of infinitely

many bodies relates those marginals, for largeN , to convex combinations of product states ψ = φ⊗N ,

which is how the Hartree functional enters the picture.

The significance of the Hartree functional for understanding the asymptotic behavior of many-

body boson systems has been well understood for a few decades already, and the proof strategy

described above has also been employed to many different problems, both in the classical and the

quantum context - see [Rou15] for a good overview on this topic. The main novel contribution by



130

Kiessling was in being able to recast the statements about the asymptotic behavior of the quantum

model (2.1.1) into the language of classical Statistical Mechanics, so that this strategy could be

employed. (We also remark that a previous work by Kiessling had established the monotonic

increase of E(N)/(N2(N − 1)), a slightly weaker result; a simpler strategy was found by Hogreve

in [Hog11], and his argument is what is adapted to work in [Kie10]).

2.1.1 Problem description

Problems involving atomic models, like the one described above, will typically assume the so-called

Born-Oppenheimer approximation. This amounts to setting the mass M of the nucleus equal to ∞,

meaning that it is considered to be fixed at the origin and does not have a corresponding position

variable in the wavefunction. The present chapter of this thesis is concerned with a first step towards

proving a similar result to Kiessling’s in [Kie10] without this approximation. Section 2.2 contains

the description and proof of the essential uniqueness of a system of coordinates satisfying symmetry

properties that are suitable in this study, as well as in any other classical and quantum many-

body problems involving identical bodies or groups thereof. Section 2.4 describes what is involved

in the study of the many-body problem obtained from the one in [Kie10] after our coordinate

transformation is applied.

2.1.2 Summary of results

It is expected (see conjecture 2.4.2 ahead) that a similar result should hold for the more general

case of allowing the nucleus to move and to have a corresponding variable q0 in the wavefunction,

a kinetic energy term − 1
2M∆0 in H(N), and an effect on the potential term (|qj | is replaced by

|qj − q0|). But this can only be expected to be true after one finds a way to subtract from Q(N) the

energy associated to the center-of-mass motion of the system. This can be done by:

1. finding a coordinate change T : (q0, q1, . . . , qN ) 7→ (ξ0, ξ1, . . . , ξN ) where

ξ0 =
1

M +N
(Mq0 + q1 + · · ·+ qN ) (2.1.7)

is the center-of-mass,
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2. defining the transformed Hamiltonian by H̃(N)(χ) = H(N)(ψ) where

χ(ξ) = (detT )−3N/2ψ(T−1(ξ)) (2.1.8)

is the transformed wavefunction,

3. subtracting from H̃(N) the term − 1
2(M+N)∆0 that corresponds to the kinetic energy of the

system, and

4. conditioning the wavefunction on the position ξ0 of the center-of-mass, in order to be able to

consider the problem as an N -body problem for virtual bodies at positions ξ1, . . . , ξN .

The system of coordinates that is by far the most commonly employed for this purpose goes by

the name of Jacobi coordinates. It consists of recursively defining new coordinates as the separation

between one of the bodies’ position from the center of mass of a subgroup of the other bodies,

which is an inherently asymmetrical procedure. If one is careful about preserving certain orthogo-

nality properties when carrying out this coordinate change, it is possible to obtain a transformed

Hamiltonian H̃(N), as in item 3 above, having a similar structure to H(N) itself; however, the trans-

formed wavefunction χ in (2.1.8) will in general not obey the same symmetry properties that the

original ψ did, which renders the techniques that work in the BO approximation case useless in the

transformed problem.

Our main contribution in this context is in finding a novel generalization of the system of

Jacobi coordinates transformations, suitable for use in problems where permutation symmetry of

the bodies’ positions plays an important role. We will prove in theorem 2.2.3 that there exists an

essentially unique linear coordinate change T as above having the additional properties that

• the transformed Hamiltonian does not include Hughes-Eckart terms, that is, terms of the form

∇j · (∇kχ) for j 6= k;

• the transformed wavefunction χ in (2.1.8) has permutation symmetry in variables 1 through

N whenever ψ also does.

These properties imply that the transformed Hamiltonian has a similar structure as the original

and can then be studied by similar techniques and yield similar results. We will also be able to

generalize this coordinate change to be applicable to both classical (theorem 2.2.7) and quantum
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many-body problems involving more than one group of identical particles (theorem 2.2.8), in which

case the symmetry of the allowed states only has to be present with respect to permutations of

variables within each group. This part of the work has already been published in [Amo19].

Applying this coordinate change to our problem, the transformed Hamiltonian (after some sim-

plification) comes down to

H̃(N)(χ) = −1

2

N∑
j=1

∆jχ−Nλ
N∑
j=1

χ

|ξj − Cξ|
+

N∑
i=1

N∑
j=1

i<j

χ

|ξi − ξj |
, (2.1.9)

where we abbreviated the empirical average

ξ =
1

N
(ξ1 + · · ·+ ξN ) (2.1.10)

of the positions of the virtual bodies, and where C 6= 1 is a constant. This can be thought of as the

Hamiltonian for an N -body problem where the bodies repel each other by the usual Coulomb force

and are attracted by this force towards a comoving center Cξ (we remark that the problem is not

translation-invariant since C 6= 1). We will prove that it admits a ground-state energy.

The fact that the potential term in the middle involves all ξj variables means that the energy

functional cannot be written in terms of n-body marginals anymore (for any n < N). So a more

careful study of it is needed. We will find in theorem 2.4.6 that, for an absolutely continuous product

state with corresponding probability density given in the product form

|χ(ξ)|2dξ = u⊗N (ξ)dξ = u(ξ1) · · ·u(ξN )dξ (2.1.11)

(under some natural assumptions on u), the asymptotic behavior of the potential energy is

lim
N→∞

∫
R3N

|χ(ξ)|2

|ξj − Cξ|
dξ =

∫
R3

u(x)

|x|
dx for all j = 1, . . . , N . (2.1.12)

This result suggests that the problem now at hand should be treatable by employing the same

techniques that were successful in the original problem. Namely, on the one hand it immediately

implies that e∞ is an upper bound for limN→∞ Ẽ(N)/N (where Ẽ(N) is the ground-state energy of

the transformed system), because a trial state of the product form plugged into the energy functional

recovers the Hartree functional H∞. But on the other hand, in order to understand the limit of the

ground-state densities and energy as N →∞, it also suggests that it suffices to study the behavior
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of the energy functional only on densities arising from product states. The Hewitt-Savage theorem,

which relates symmetric probability densities for large N to convex combinations of product states

χ = χ⊗N , is the tool that realizes this idea.

2.1.3 Future work

The correct adaptation of the strategy employing the Hewitt-Savage theorem to solve the problem

described in the above paragraph remains to be found. For completeness, we include the details of

this strategy in the last section of the present chapter, pointing out where the difficulty arises.

It would be interesting to extend the study to more general potentials for the interaction between

the bodies. As long as they only involve pairwise interactions depending only on the distance

between the bodies, the same coordinate change is applicable and yields a Hamiltonian similar to

(2.1.9), with the interaction between bosons remaining the same, and that between the bosons and

the nucleus involving again the empirical average ξ. A wider generalization would be to consider

Hamiltonians where the kinetic energy terms belong to a wider class - for example the kind of

expressions (−i∇+A)2 or
√
−∆ +mc2 that come up, respectively, with an external magnetic field

and under special relativity. These would require a new formulation of the coordinate system.

All of this can be applied to improve the scope of theorems in many-body classical and quantum

problems involving symmetry and that originally assume the center-of-mass of the system to be

fixed at the origin.

2.2 Symmetric center-of-mass coordinate systems

In this section, we describe the useful coordinate transformation that arose from the efforts to solve

the problem outlined in the overview above. The contents of this section have been published in

Journal of Mathematical Physics [Amo19].

2.2.1 Introduction

In non-relativistic classical and quantum N -body problems with a translation-invariant Hamiltonian

H =
∑

1≤j≤N

p2j
2mj

+
∑∑
1≤j<k≤N

Vjk(|qj − qk|) , (2.2.1)
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where qj ∈ R3 denotes the position vector of particle j in some arbitrary Galilei frame, pj its

momentum, andmj its mass, the motion of the center-of-mass has no objective physical significance.

Objectively significant are only the intrinsic properties of the N -body system. If Q ∈ R3 denotes

the position vector of the center-of-mass in the same Galilei frame, and P its momentum:

Q =
∑

1≤j≤N
mjqj , P =

∑
1≤j≤N

pj , (2.2.2)

then the Galilei transformation qj 7→ rj := qj − Q and pj 7→ πj := pj − mj
MTot

P (where MTot is

the total mass in the system) separates off the kinetic energy assigned to the center-of-mass, i.e. it

accomplishes

H =
P 2

2MTot
+ H̃ , (2.2.3)

where

H̃ =
∑

1≤j≤N

π2j
2mj

+
∑∑
1≤j<k≤N

Vjk(|rj − rk|) (2.2.4)

is the “intrinsic Hamiltonian" of the N -body system, encoding all the physically objective features

of the N -body system. The N position variables rj and the N momentum variables πj are not

independent but satisfy the center-of-mass frame constraints∑
1≤j≤N

mjrj = 0 ,
∑

1≤j≤N
πj = 0 . (2.2.5)

Thus, in terms of the available degrees of freedom, the intrinsic N -body Hamiltonian is actually

equivalent to a non-translation-invariant (N − 1)-body problem. Therefore it is desirable to find a

transformation to new coordinates which expresses H̃ as a function of N − 1 independent positions

and momenta, which can be thought of as pertaining to “virtual bodies”. The so-called Jacobi

coordinates accomplish this feat (see section 2).

Now, systems whose bodies are identical (or systems involving different groups of identical bod-

ies) enjoy valuable permutation symmetry or anti-symmetry properties in both their Hamiltonian

and admissible states, which can play a determining role in their study. But it turns out that, after

reducing such systems to (N − 1)-body systems by employing Jacobi coordinates, one finds that

they lose their symmetry properties and can no longer be studied by means of the same techniques.

The goal of this paper is to build a center-of-mass coordinate change that preserves symmetry in

whatever sense is meaningful for the problem at hand. We will prove that there is an essentially

unique coordinate change with this property.
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In the next subsection we show how carrying out the Jacobi coordinates change in our bosonic

atom system destroys its symmetry. In the one following it we show the construction of our symmet-

ric center-of-mass system of coordinates applied to that same problem, proving its uniqueness

in the process. Next we show that the same system of coordinates is suitable also for symmetric

classical problems, even though they involve fundamentally different notions of configuration space,

admissible states and Hamiltonian. The main result is summarized in theorems (2.2.3) and (2.2.7),

and the coordinate system in its most compact form in equations (2.2.54) and (2.2.60). Finally

in the last subsection we indicate how to generalize the construction to problems involving more

than one group of objects of the same type (uniqueness does not hold anymore), culminating in the

change of coordinates described in theorem (2.2.8).

2.2.2 Jacobi coordinates: a quantum example

To illustrate the need for a symmetric center-of-mass coordinate system, we start by discussing the

model that inspired us to create it, which can be found in [Hog11],[Kie10],[Kie12]. It is a study of

the asymptotic properties of the equilibrium configuration energy and ground state of a “bosonic

atom” consisting of one positively charged nucleus and N negatively-charged bosons as N goes

to infinity, assuming the so-called Born-Oppenheimer (BO) approximation, that is, the nucleus is

considered to sit immovable at the origin. Our motivation for introducing our system of coordinates

was the desire to study the same system, by adapting the same techniques, but without the BO

approximation.

But we emphasize that neither the particular type of interaction between the bodies in this

model (Coulomb attraction/repulsion) nor the fact that they are bosons instead of fermions is what

justifies the need for such a system; the important feature is the symmetry that comes from the

fact that all (or all but one) of the bodies are identical.

Consider a quantum-mechanical system consisting of one distinguished particle of mass m0 and

charge Z > 0, and N identical particles of mass m and charge z < 0, all of which attract or repel

each other via the Coulomb potential. The state of the system is given by a C-valued (we ignore

spin) wavefunction

L2(R3(1+N)) 3 ψ = ψ(q0, q1, . . . , qN ) , qj ∈ R3, j = 0, 1, . . . , N (2.2.6)
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where q0 is the position of the zeroth particle and each qj , j ≥ 1, is the position of one of the

other particles. Born’s Rule says that |ψ(q0, q1, . . . , qN )|2 is the probability density for the zeroth

particle to be at q0 and for there to exist one of the other particles at each q1, . . . , qN . Because of

indistinguishability, the only admissible wavefunctions are those that satisfy the symmetry condition

ψ(q0, q1, . . . , qN ) = ψ(q0, qσ(1), . . . , qσ(N)) for all permutations σ ∈ SN (2.2.7)

if particles 1 through N are bosons, or the anti-symmetry condition (Pauli exclusion principle)

ψ(q0, q1, . . . , qN ) = sgn(σ)ψ(q0, qσ(1), . . . , qσ(N)) for all permutations σ ∈ SN (2.2.8)

if they are fermions (SN denotes the symmetric group in N objects). The reason why these condi-

tions must be stated as such, and not in the weaker form |ψ(q0, q1, . . . , qN )|2 = |ψ(q0, qσ(1), . . . , qσ(N))|2

that one might expect from the Born rule, is that it should be true that the expected value of any

observable (self-adjoint operator) A, that is, the inner product 〈ψ,Aψ〉L2 , should be independent

of permutations of any but the zeroth variable. Since quantum-mechanical observables are not re-

stricted to simple multiplication operators, but rather can take the form of differential operators as

well, it turns out that the condition needed is as given. See [Gir69] for details about this and the

Pauli exclusion principle for the case of fermions.

The Hamiltonian operator, defined only for twice-differentiable wavefunctions (but it does admit

a self-adjoint extension to a larger domain - see [Lie90], [LS09], [RS75]), is given by summing the

kinetic energy differential operators of each particle and the potential energy multiplication operators

of each pair of particles:

H = − ~2

2m0
∆0 −

~2

2m

N∑
j=1

∆j − Zz
N∑
j=1

1

|qj − q0|
+ z2

N∑
i=1

N∑
j=1

i<j

1

|qi − qj |
. (2.2.9)

Here the notation ∆j indicates the Laplacian operator acting only with respect to qj ∈ R3, that is,

∆j =
∂2

∂x2j
+

∂2

∂y2j
+

∂2

∂z2j
, where qj = (xj , yj , zj). (2.2.10)

Associated to the operator H is the quadratic functional that yields the expected value of the energy

in the state ψ, obtained by formally computing the L2(R3(1+N)) inner product 〈ψ,Hψ〉 with the

help of an integration by parts in the kinetic terms:

Q(ψ) =
~2

2m0

∫
|∇0ψ|2 +

~2

2m

N∑
j=1

∫
|∇jψ|2−Zz

N∑
j=1

∫
|ψ|2

|qj − q0|
+ z2

N∑
i=1

N∑
j=1

i<j

∫
|ψ|2

|qi − qj |
(2.2.11)
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with the analogous remark about the notation ∇j as for the Laplacian above. It turns out that

this functional is bounded below when computed on H1 functions of L2 norm 1 (for details see

[Lie90],[RS75]), and the infimum is interpreted as the equilibrium energy of the system.

Remark 2.2.1. The (anti-)symmetry of ψ permits us to make statements such as∫
|∇jψ|2 =

∫
|∇1ψ|2 ,

∫
|ψ|2

|qj − q0|
=

∫
|ψ|2

|q1 − q0|
,

∫
|ψ|2

|qi − qj |
=

∫
|ψ|2

|q1 − q2|
(2.2.12)

for all i 6= j, which combined with the symmetry of H are useful in Hartree and Hartree-Fock theory

for studying asymptotic properties of the equilibrium energy, because they allow the replacement

of all indices i and j in Q by 1 and 2, thus re-expressing Q in terms of a conditional two-body

functional (depending only on variables q1, q2 and conditioned on q0). For details see [Kie12] or

[Rou15].

However, it is easy to argue that there will not exist a ground-state having q0 separated from

the other variables; that is, the infimum can never be attained by functions of the form ψ =

ψ0(q0)φ(q1, . . . , qN ). Indeed, ψ0 will only contribute to the first term of the energy Q(ψ) (the

variable q0 in the first potential term disappears after a translation change of variables in the

integral), which can be made arbitrarily small by reducing
∫
|∇ψ0|2, but never zero because ψ0

must have positive L2 norm. And if this were a classical problem instead, where it is possible to

reduce the contribution of the zeroth kinetic energy to zero, then it is also easy to see that there

would not exist a unique minimizer, because the problem is translation-invariant.

On the other hand, the functional Q contains more than the portion of the energy that we are

interested in, because contained in the kinetic energy part is the energy of motion of the system as

a whole (the kinetic energy of the center-of-mass). But there doesn’t exist an operator associated

to the kinetic energy of the system that can be subtracted from H in order to isolate the interesting

part; the way to achieve this separation is to first change coordinates into a system which includes

the center-of-mass as a coordinate:

T : (q0, q1, . . . , qN ) 7→ (ξ0, ξ1, . . . , ξN ) , ξ0 =
1

MTot
(m0q0 +mq1 + . . .+mqN ) (2.2.13)

(we abbreviated the total mass m0 +Nm with MTot) and write ψ as an L2-normalized function of

the new ξ coordinates:

χ(ξ0, ξ1, . . . , ξN ) = | detT |−1/2ψ(T−1(ξ0, ξ1, . . . , ξN )) , (2.2.14)
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then finally express all terms in (2.2.9) using χ instead of ψ, obtaining a new Hamiltonian H̃ such

that

Hψ = H̃χ (2.2.15)

whenever ψ and χ are related by (2.2.14). If the coordinate change T is linear, one of the terms in H̃

will involve the Laplacian with respect to ξ0 (as will become clear in (2.2.25) below), and throwing

out this term will leave us with an operator associated to the desired energy of the system.

This process might end up introducing unhelpful cross-terms: the Chain Rule applied to (2.2.14)

gives (with ∆ψ = ∇ · ∇ψ)

∆jψ(q) = |detT |1/2
N∑

k,l=0

∂ξk
∂qj

∂ξl
∂qj
∇k · ∇lχ(Tq) . (2.2.16)

We call cross-term an expression of the form k-divergence of l-gradient for k 6= l, of which there are

none in the original Hamiltonian H. These expressions are known in the literature as Hughes-Eckart

terms - see [HE30] and [Thi02] for more details.

A commonly employed family of coordinate changes that prevent the appearance of such cross-

terms can be found for example in [FO17], [IGM06] and [Pos56], usually referred to by the name

Jacobi coordinates. It is well-known that the crucial property needed to preclude cross-terms is

orthogonality of the matrix
∂q

∂ξ
(after suitable rescalings to make all masses equal to 1 - see the

next section). It is also well-known that one can construct such matrices even when the objects

in the system have different masses - see remark (2.2.2) below. One possible instance of a Jacobi

coordinate change consists in starting with the separation between two of the bodies as a new

coordinate, then iteratively constructing the others as the separation between the next body and

the center-of-mass of the previously used bodies (different normalizing scale factors can be included

too). For our problem, then, a Jacobi system of coordinates could look like

ξ0 = (m0q0 +mq1 + . . .+mqN )/MTot

ξ1 = q1 − q2

ξ2 = (q1 + q2)/2− q3
...

...

ξN−1 = (q1 + q2 + · · ·+ qN−1)/(N − 1)− qN

ξN = (q1 + q2 + · · ·+ qN )/N − q0

(2.2.17)
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Employing this system for N = 1 (a two-body problem), what is obtained after (2.2.15) is

H̃ = − ~2

2(m0 +m)
∆0 −

~2

2µ
∆1 +

Zz

|ξ1|
(2.2.18)

where

µ =
MTotm

MTot +m
(2.2.19)

is called the reduced mass. Throwing away the first term of H̃ gives us the Hamiltonian for a

one-body problem with mass µ in a central potential, known as the Kepler problem. It admits a

ground state energy and a unique ground state configuration conditioned on the position ξ0 of the

center-of-mass.

But for N > 1 the symmetry of the potential part of the Hamiltonian is hopelessly lost under the

change (2.2.17), because one can compute and check that |ξi−ξj | 6= |ξk−ξl| if {i, j} 6= {k, l}. Further,

the symmetry or anti-symmetry condition on the wavefunction ψ does not translate to anything

practical about permutation of the variables ξ1, . . . , ξN of χ. If we want to study the properties of H̃

using the same techniques as one would for the symmetricH and its (anti-)symmetric wavefunctions,

a better change of coordinates is clearly needed.

2.2.3 Symmetric center-of-mass coordinates (quantum case)

Here we describe our coordinate system, illustrated with the same system as in the previous section,

and explain in which sense and under which conditions it is unique.

The coordinate change should be an invertible map T : R3(1+N) → R3(1+N) for which we require

the following conditions:

1. linearity and independence from Cartesian coordinates;

2. one of the new coordinates is the center-of-mass;

3. the structure of Hamiltonian is preserved and includes −(~2/2MTot)∆0, the kinetic energy

operator of the system in the new coordinates;

4. symmetry of wavefunctions is preserved.

Let us elaborate on each and see how they restrict the possible transformations T further and

further.
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Condition 1. We demand linearity for simplicity of computation and to avoid singularities. But in

order to avoid bringing to the fore such physically meaningless quantities as the scalar coordinates

of each particle position, we look for a linear transformation that operates only on the level of

the positions of each particle, that is, only on the vectors q0, q1, . . . , qN as opposed to explicitly

referencing the x, y, z coordinates of the particles. So we think of R3(1+N) in both its domain and

range as (R3)1+N , and we write T (q0, q1, . . . , qN ) = (ξ0, ξ1, . . . , ξN ), each qj and ξj in R3. This can

be made more formal by saying that T is a tensor product of a (1 + N) × (1 + N) matrix T̃ with

the 3 × 3 identity matrix. But to avoid cluttered notation, we denote the elements of T̃ by Tij

(0 ≤ i, j ≤ N), without tildes and hopefully without confusion.

Condition 2. We impose that ξ0 be the center-of-mass of the system:

ξ0 =
1

MTot
(m0q0 +mq1 + · · ·+mqN ) . (2.2.20)

With this the first row of the matrix of T̃ is already determined.

Condition 3. We want T to transform the structure of the Hamiltonian into a form similar to

H: kinetic plus potential terms, with the kinetic terms of identical particles appearing with equal

weights, the same being true of the potential terms of interaction between similar pairs. Additionally,

what should sit in front of the ∆0 term is the fraction −~2/2MTot, so that this term becomes the

kinetic energy operator of the whole system. Let us only worry about the kinetic term in (2.2.9)

and later study what happens to the potential terms. We stipulate that there should exist some

constant µ > 0 (which we call the reduced mass) such that

− ~2

2m0
∆0ψ(q)− ~2

2m

N∑
j=1

∆jψ(q) = − ~2

2MTot
∆0χ(ξ)− ~2

2µ

N∑
j=1

∆jχ(ξ) , (2.2.21)

where ξ = Tq and χ is defined by

χ(ξ) = |detT |−1/2ψ(T−1ξ) , ξ ∈ R3(1+N) . (2.2.22)

By the Chain Rule,

∇jψ(q) = |detT |1/2
N∑
k=0

Tkj∇kχ(Tq) (2.2.23)

and

∆jψ(q) = (detT )1/2
N∑

k,l=0

TkjTlj∇k · ∇lχ(Tq) . (2.2.24)
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Omitting the q argument of ψ and the Tq argument of χ, we then have

− ~2

2m0
∆0ψ −

~2

2m

N∑
j=1

∆jψ

= −| detT |1/2
 ~2

2m0

N∑
k,l=0

Tk0Tl0∇k · ∇lχ+
~2

2m

N∑
j=1

N∑
k,l=0

TkjTlj∇k · ∇lχ


= −| detT |1/2~

2

2

N∑
k,l=0

 1

m0
Tk0Tl0 +

1

m

N∑
j=1

TkjTlj

∇k · ∇lχ ,
(2.2.25)

so that we can achieve (2.2.21) by imposing

|detT |1/2
 1

m0
Tk0Tl0 +

1

m

N∑
j=1

TkjTlj

 =


1/MTot , k = l = 0 ,

1/µ , k = l > 0 ,

0 , k 6= l .

(2.2.26)

Given our choice of ξ0, the condition for k = l = 0 holds if and only if

detT = ±1 . (2.2.27)

Now rewrite property (2.2.26) as

T̃R−1T̃ t = S−1 (2.2.28)

where the (1 +N)× (1 +N) matrices R and S are given by

R = diag(m0,m, . . . ,m) , S = diag(MTot, µ, . . . , µ) . (2.2.29)

Then

(detT )2 =
det(R)

det(S)
=⇒ detT = ±

√
m0mN

MTotµN
(2.2.30)

and since we need |detT | = 1, we can find µ:

µ = m

(
m0

MTot

)1/N

. (2.2.31)

Remark 2.2.2. If particles 1, . . . , N in the system were not identical and had potentially different

masses m1, . . . ,mN , as is the case in various examples of many-body problems, then condition 4 (as

elaborated below) and the preservation of the symmetry of the potential energy would be mean-

ingless; however it could still be desirable to find a center-of-mass system of coordinates satisfying
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conditions 1 and 2 that also prevents the appearance of unwieldy cross-terms in the transformed

Hamiltonian. In this case one would stipulate the condition

− ~2

2m0
∆0ψ(q)− ~2

2

N∑
j=1

1

mj
∆jψ(q) = − ~2

2MTot
∆0χ(ξ)− ~2

2

N∑
j=1

1

µj
∆jχ(ξ) , (2.2.32)

for some numbers µ1, . . . , µN > 0. Proceeding as in the computations above, one would find

T̃ · diag(m0,m1, . . . ,mN )−1 · T̃ t = diag(MTot, µ1, . . . , µN )−1 . (2.2.33)

This is easily achieved: choose an orthogonal matrix O whose zeroth row is given by

(O0j)j=0,1,...,N =

(√
m0

MTot
,

√
m1

MTot
, . . . ,

√
mN

MTot

)
(2.2.34)

so that condition 2 is met, and let

T̃ = diag

(
1√
MTot

,
1
√
µ1
, . . . ,

1
√
µN

)
· O · diag(

√
m0,
√
m1, . . . ,

√
mN ) . (2.2.35)

The only additional constraint comes from | det T̃ | = 1, which, when implemented in (2.2.35) above,

produces a restriction on the possible choices of µj ’s:

m0m1 · · ·mN = MTotµ1 · · ·µN . (2.2.36)

Condition 4. T must have the property that, if ψ is (anti-)symmetric in the variables q1, . . . , qN ,

then χ defined as in (2.2.22) is (anti-)symmetric in ξ1, . . . , ξN as well. Let us work out what this

implies.

For a given permutation σ ∈ SN let σ also denote the isomorphism

σ : R3(1+N) → R3(1+N) , σ(x0, x1, . . . , xN ) = (x0, xσ(1), . . . , xσ(N)) (2.2.37)

(each xj ∈ R3). The required equality χ = χ ◦ σ (symmetric case), which translates to

|detT |−1/2ψ(T−1ξ) = χ(ξ) = χ(σξ) = |detT |−1/2ψ(T−1σξ) , (2.2.38)

holds for any wavefunction ψ symmetric in all but the zeroth variables, for all σ ∈ SN and all

ξ ∈ R3(1+N), if and only if to every σ ∈ SN corresponds π ∈ SN such that

πT−1 = T−1σ (2.2.39)
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(simply compare the arguments of ψ on both ends of (2.2.38) and use symmetry of ψ). In the case

of anti-symmetry, for fermionic particles, π must also have the same sign as σ. We remind the

reader that T = T̃ ⊗ I3×3 for some T̃ : R1+N → R1+N , and of course any σ ∈ SN acts on R1+N by

permuting coordinates 1 through N with respect to the canonical basis {e0, e1, . . . , eN} ⊆ R1+N .

So let

T̃ e1 =
N∑
j=0

ajej , aj ∈ R . (2.2.40)

Then condition (2.2.39), after multiplying on left and right by T , means, for any σ, that σ · T̃ e1

must be equal to one of the vectors

T̃ e1, . . . , T̃ eN . (2.2.41)

But acting with σ on T̃ e1 has the effect of permuting the coefficients aj for j > 0, and the total

number of different permutations that can be formed is

N !

n1! · · ·nm!
(2.2.42)

where n1, . . . , nm are the cardinalities of each set of repeated coefficients among the aj ’s, j =

1, . . . , N , with n1 + · · ·+ nm = N . Since the number in (2.2.42) must be equal to the number N of

different vectors in the list (2.2.41), we need

(N − 1)! = n1! · · ·nm! (2.2.43)

which can only happen for all N if m = 2 and one of the nj ’s is N − 1 and the other 1 (to see this,

consider what happens when N − 1 is prime). Therefore T̃ e1 written in the basis {ej} must have

N − 1 repeated coefficients among the ones from 1 to N . Analogously the same is true of each T̃ ej

for j = 2, . . . , N , and moreover they all share the same zeroth coefficient. Also note that (2.2.39)

implies that performing any permutation on the rows of T (except the zeroth) should yield the same

as performing it on the columns instead; hence the coefficients on the zeroth column of T̃ are also

all equal, except the zeroth. Finally, by relabeling the nonzero indices (that is, by replacing T with
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T ◦ σ for an appropriate σ), and also remembering (2.2.20), we arrive at a matrix of the form

T =



m0

MTot

m

MTot

m

MTot

m

MTot
. . .

m

MTot

C A B B . . . B

C B A B . . . B

C B B A . . . B

...
...

...
...

. . .
...

C B B B . . . A


(1+N)×(1+N)

⊗ I3×3 (2.2.44)

for some constants A,B,C to be determined.

We refer back to (2.2.26). The cases k = l > 0, 0 6= k 6= l 6= 0 and 0 = k 6= l, in that order, give

equations for the entries A,B,C in (2.2.44):

C2

m0
+
A2

m
+

(N − 1)B2

m
=

1

µ
=⇒ A2 + (N − 1)B2 =

m

µ
− mC2

m0
, (2.2.45)

C2

m0
+

2AB

m
+

(N − 2)B2

m
= 0 =⇒ 2AB + (N − 2)B2 = −mC

2

m0
, (2.2.46)

C +A+ (N − 1)B = 0 =⇒ A+ (N − 1)B = −C . (2.2.47)

Subtract (2.2.46) from (2.2.45) and write A2− 2AB+B2 as (A−B)2 to get an expression for A in

terms of B. Plug that into (2.2.47) to find B in terms of C:

A = B
(1)
±
√
m

µ
, B = − 1

N

(
C

(1)
±
√
m

µ

)
. (2.2.48)

The choice of the ± sign has to be the same in these two expressions, and that’s what the (1) above

them signifies. With these, (2.2.45) becomes

C2

N
− m

Nµ
= −mC

2

m0
, (2.2.49)

which can be solved to yield

C =
(2)
±
√

m0m

MTotµ
. (2.2.50)

This ± sign has nothing to do with the choice of ± in (2.2.48), and we keep track of that with

the (2) above it. Now it becomes convenient to rewrite A,B,C in terms of only the constant

r = m0/MTot = (µ/m)N :

A = B
(1)
± r−

1
2N , B = − 1

N
(
(2)
± r

1
2
− 1

2N

(1)
± r−

1
2N ) , C =

(2)
± r

1
2
− 1

2N . (2.2.51)
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We can also write the new coordinates compactly by using the empirical average

q = (q1 + · · ·+ qN )/N . (2.2.52)

Computing ξ1 (a similar computation gives ξj), we see how q shows up due to the relationship

between A and B:

ξ1 = Cq0 +Aq1 +B(q2 + · · ·+ qN )

= Cq0 +B(q1 + · · ·+ qN )
(1)
± r−

1
2N q1

= Cq0 + (NB)q
(1)
± r−

1
2N q1 .

(2.2.53)

Substituting the values of A,B,C, we obtain the final expression of our coordinate change:
ξ0 = (m0q0 +mq1 + . . .+mqN )/MTot ,

ξj = r−
1

2N

(
(1)
± (qj − q)

(2)
±
√
r(q0 − q)

)
, j = 1, . . . , N .

(2.2.54)

We have thus proved the following:

Theorem 2.2.3. For given m0,m > 0 and up to two independent choices of ± signs and relabeling

of nonzero indices, the only family of transformations T : R3(1+N) → R3(1+N) (indexed by N)

satisfying the following:

1. T = T̃ ⊗ I3×3 for some linear isomorphism T̃ : R1+N → R1+N ;

2. the zeroth component of T (q0, q1, . . . , qN ) in R3 is given by

1

m0 +Nm
(m0q0 +mq1 + · · ·+mqN ) (2.2.55)

for all q0, q1, . . . , qN ∈ R3;

3. there exists µ > 0 such that, for any ψ : R3(1+N) → C,

− ~2

2m0
∆0ψ −

~2

2m

N∑
j=1

∆jψ = − ~2

2(m0 +Nm)
∆0(ψ ◦ T )− ~2

2µ

N∑
j=1

∆j(ψ ◦ T ) ; (2.2.56)

4. if ψ : R3(1+N) → C is (anti-)symmetric with respect to exchange of any of its R3 variables 1

through N , then so is ψ ◦ T−1;
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is the one given by (2.2.54) with the dimensionless constant r ∈ (0, 1) and the reduced mass µ given

by

r =
m0

m0 +Nm
, µ = mr1/N . (2.2.57)

Remark 2.2.4. When N = 1, our T recovers the well-known 2-body system of Jacobi coordinates

if we choose
(2)
±= −. Indeed, in this case we have q = q1, and equation (2.2.54) shows

ξ1 = r−1/2(0
(2)
± r1/2(q0 − q1)) =

(2)
± (q0 − q1) . (2.2.58)

Also (2.2.57) implies that µ is the usual reduced mass (2.2.19) for two bodies.

Remark 2.2.5. It is common in statistical problems to consider a more general space of admissible

states, called density matrices. This is the set S = S(L2(R3(1+N))) of self-adjoint, positive, trace-

class, unit-trace operators acting on L2. In this context, a pure state ψ as considered above is

represented by the projection operator |ψ〉〈ψ|, while a mixture of pure states ψj with weights

0 < λj < 1 (such that
∑

j λj = 1) gets associated to the operator
∑

j λj |ψj〉〈ψj |. The expected

energy in state ρ ∈ S is then given by Q(ρ) = Tr[Hρ], and the state is called symmetric with

respect to the nonzero variables when Uσρ = ρ for all σ ∈ SN , where Uσ is the unitary operator

L2 3 ψ 7→ ψ ◦ σ (analogously the concept of anti-symmetry involves an additional sgn(σ)).

We can see that the same conditions as in Theorem (2.2.3) will lead to preservation of symmetry

in the energy functional as well as space of states in this context. Indeed, when a change of coordi-

nates T is performed on R3(1+N), the unitary operator UT : L2 → L2, UT (ψ)(q) = |detT |1/2ψ(Tq)

represents the transformation of wavefunctions ψ into the new coordinates. Then a state |ψ〉〈ψ|

must become |UT−1ψ〉〈UT−1ψ|, and a change of variable in the integral defining the L2 inner prod-

uct reveals that this is the same as |detT |UT−1 |ψ〉〈ψ|UT . So we have found the expression of a

general state ρ ∈ S in the new coordinates Tq: it is |detT |UT−1ρUT . This immediately implies

that preservation of (anti-)symmetry of states is satisfied precisely by the same condition (2.2.39)

as before. Similarly one can consider pure states |ψ〉〈ψ| in order to understand the transformation

of the energy functional and find out that (2.2.26) is the condition that preserves its symmetry.
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To finish writing the transformed Hamiltonian, we need to figure out what the potential part

becomes, which requires expressing the qj ’s in terms of the ξk’s. The inverse transformation can be

computed from (2.2.28): T−1 = R−1T tS, yielding

T−1 =



1
mr

1
N

m0
C

mr
1
N

m0
C

mr
1
N

m0
C . . .

mr
1
N

m0
C

1 r1/NA r1/NB r1/NB . . . r1/NB

1 r1/NB r1/NA r1/NB . . . r1/NB

1 r1/NB r1/NB r1/NA . . . r1/NB

...
...

...
...

. . .
...

1 r1/NB r1/NB r1/NB . . . r1/NA


(1+N)×(1+N)

⊗ I3×3 . (2.2.59)

Now plug-in the values of A,B,C given in (2.2.51) to get:
q0 = ξ0

(2)
± r

1
2
+ 1

2N (r−1 − 1)ξ ,

qj = ξ0
(1)
± r

1
2N ξj −

(
(2)
± r

1
2
+ 1

2N

(1)
± r

1
2N

)
ξ , j = 1, . . . , N ,

(2.2.60)

where ξ is defined analogously to how q was defined in (2.2.52). In particular, the relevant pairwise

distances for our Hamiltonian and for most physically meaningful others become:
|qj − q0| = r

1
2N

∣∣∣∣(1)± ξj − (
(1)
± 1

(2)
± r−

1
2 )ξ

∣∣∣∣ , j = 1, . . . , N ,

|qi − qj | = r
1

2N |ξi − ξj | , i, j = 1, . . . , N .

(2.2.61)

With this, we finally conclude that the potential energy part will transform just like we wished,

remaining symmetric with respect to exchanges in the variables other than the zeroth. We conclude

that the Hamiltonian that represents the energy intrinsic to the system is given by

H̃ = − ~2

2mr
1
N

N∑
j=1

∆j −
zZ

r
1

2N

N∑
j=1

1∣∣∣∣(1)± ξj − (
(1)
± 1

(2)
± r−

1
2 )ξ

∣∣∣∣ +
z2

r
1

2N

N∑
i=1

N∑
j=1

i<j

1

|ξi − ξj |
. (2.2.62)

Remark 2.2.6. Thinking ahead about what this Hamiltonian has to say, first note that the factors

of r1/N and r1/2N in front of each term disappear after a suitable rescaling of the argument of the
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wavefunction, which aids in understanding how the size of the system in its ground-state scales with

N . It is also interesting to note that, even after this rescaling, there remains still a dependence on N

in the term ξ, which includes a factor 1/N . Since the arguments used in Hartree and Hartree-Fock

theory to study asymptotic properties of the ground-state and equilibrium energy rely heavily on

the fact that the Hamiltonian can be written as a sum of individual terms featuring only 1 or 2

variables ξj in them (see [Rou15]), our new transformed problem is not trivial to study. But this is

material for future work.

2.2.4 Symmetric center-of-mass coordinates (classical case)

Now we explore a different model given by a classical Hamiltonian to see that the same conditions

as in theorem (2.2.3) are still the natural ones to require and the conclusions are still mostly the

same, in spite of the different nature of the set of states and the form of the kinetic energy part.

This time, in order to even be able to talk about symmetry on the set of admissible states, it

is necessary to consider them to be statistical distributions of possible phase space configurations

(as opposed to the quantum case, where just a single state ψ already comes with a probabilistic

interpretation via the Born rule). The proof follows the same ideas as in the quantum case, but

applied to different objects that satisfy different properties, and it turns out that the restrictions

imposed by this classical context are not enough to warrant uniqueness. Lest the reader be misled

into thinking that the Coulomb potential is necessary in the reasoning, we will give the bodies

the possibility to interact pairwise through general potential functions - and everything readily

generalizes to threefold, fourfold etc. interactions.

Consider a classical-mechanical system evolving in space R3 consisting of a distinguished body

of mass m0 and N identical bodies of mass m such that the potential energy of interaction between

the first and any of the others is given by a function V , and the one between the identical bodies

by a function W , both depending symmetrically on the two interacting bodies. The phase space is

D = R3(1+N) × R3(1+N) = {(x;p) = (x0, x1, . . . , xN ; p0, p1, . . . , pN ) ; xj , pj ∈ R3} (2.2.63)

where each xj and pj are the position and momentum of particle j (particle 0 being the distinguished
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one). The Hamiltonian is the function defined on D given by

H(x;p) =
1

2m0
|p0|2 +

1

2m

N∑
j=1

|pj |2 +

N∑
j=1

V (xj , x0) +

N∑
i=1

N∑
j=1

i<j

W (ξi, ξj) . (2.2.64)

The set of states of the system is defined as

S = Set of {1, . . . , N}-permutation-symmetric Borelian probability measures on D (2.2.65)

where the qualification about permutation symmetry means, as one expects for identical bodies,

that any ν ∈ S must satisfy

ν(E) = ν(Uσ(E)) , σ ∈ SN , E ⊆ D Borel-measurable, (2.2.66)

where the isomorphism Uσ : D → D, for σ ∈ SN , is given by

Uσ(x0, x1, . . . , xN ; p0, p1, . . . , pN ) = (x0, xσ(1), . . . , xσ(N); p0, pσ(1), . . . , pσ(N)) . (2.2.67)

(More commonly, H is only defined on the subset of D of the points (x;p) for which no xi is equal

to an xj , i 6= j, and the admissible states are measures supported away from such points.)

If T : R3(1+N) → R3(1+N) is a bijection onto its image (a coordinate change of the position

variables), the question arises of how to extend it to the whole D, that is, how to define the physically

meaningful transformation T ′ : R3(1+N) → R3(1+N) of the momentum coordinates. Note how

this consideration only arises in the present context of classical mechanics, because a fundamental

difference between it and quantum theory is that in the latter the stipulation of the space of states

does not involve momentum variables.

Assuming for a moment that we have found the correct expression for T ′, we can identify the

transformed phase space D̃, set of admissible states S̃ and Hamiltonian H̃:

D̃ = (T ⊕ T ′)(D) = {(Tx;T ′p) ; (x;p) ∈ D} , (2.2.68)

S̃ = {(T ⊕ T ′)∗ν ; ν ∈ S} , (2.2.69)

H̃(ξ;π) = H(T−1ξ;T ′−1π) , (2.2.70)

where the push-forward probability measure (T ⊕ T ′)∗ν defined by

(
(T ⊕ T ′)∗ν

)
(F ) = ν

(
(T ⊕ T ′)−1(F )

)
, F ⊆ D̃ Borelian (2.2.71)
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is the state in S̃ corresponding to a state ν ∈ S (no normalization constant is required). The

expression for the Hamiltonian must be given as in (2.2.70) due to the property of push-forward

measures that says ∫
D
Hdν =

∫
D̃

(H ◦ (T ⊕ T ′)−1)d(T ⊕ T ′)∗ν , (2.2.72)

that is, the expected value of the energy of the system at the transformed state computed with the

transformed Hamiltonian is the same as what it was before the transformation, which is a natural

property to desire.

Let us see what kind of conditions are needed for this T to be a symmetric center-of-mass

coordinate change for the classical many-body problem at hand. What we called conditions 1 and 2

in theorem (2.2.3) can be stated verbatim here, and in particular they imply that our sought-after

T ′ also satisfies

T ′ = T̃ ′ ⊗ I3×3 (2.2.73)

for some isomorphism T̃ ′ : R3(1+N) → R3(1+N). Condition 4 now asks that, for all ν ∈ S, the

transformed state (2.2.71) satisfy {1, . . . , N}-symmetry, and there are enough Borelian subsets in

Euclidean space to guarantee that this is only possible if the same condition (2.2.39) as before is

valid. Hence our T is of the form (2.2.44) (but a similar remark to (2.2.2) applies in case the bodies

are not identical and we just wish to avoid cross-terms in the Hamiltonian). Finally condition 3

stipulates that there must exist µ > 0 such that

1

2m0
|p0|2 +

1

2m

N∑
j=1

|pj |2 =
1

2MTot
|π0|2 +

1

2µ

N∑
j=1

|πj |2 (2.2.74)

whenever π = T ′p. By computing |p0|2, |pj |2 in terms of πi ·πj , we see that the components T ′−1ij of

T̃ ′
−1

, rather than the ones of T ′ or T̃ ′ like before, are the ones coming into the computation. The

required condition will then be

1

m0
T ′−10k T ′−10l +

1

m

N∑
j=1

T ′−1jk T ′−1jl =


1/MTot , k = l = 0 ,

1/µ , k = l > 0 ,

0 , k 6= l .

(2.2.75)

Compare this to (2.2.26). The clear difference is that there is no | detT ′|1/2 this time, and the

subtle difference is the order of the indices 0k, 0l, jk, jl. Using the matrices R and S from (2.2.29),
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equation (2.2.75) is written as (
T̃ ′
−1)t

R−1T̃ ′
−1

= S−1 . (2.2.76)

Now we can find T ′ using the expression (2.2.70) of the transformation of H and the desired new

form (2.2.74). The Hamilton equations dictate the law of motion of the system in (x;p) coordinates

and should still hold for the transformed Hamiltonian in (ξ = Tx;π = T ′p) coordinates, the possible

curves (x(t);p(t)) that describe the evolution of a point in phase space satisfy

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, (2.2.77)

and we would like to also have

ξ̇ =
∂H̃

∂π
, π̇ = −∂H̃

∂ξ
. (2.2.78)

The zeroth of each of these two systems of equations give

p0 = m0ẋ0 , pj = mẋj , π0 = MTotξ̇0 , πj = µξ̇j , j = 1, . . . , N . (2.2.79)

Given ξ̇ = T ẋ, we conclude

π0 = MTot

(
1

m0
T00p0 +

1

m

N∑
k=1

T0kpk

)
,

πj = µ

(
1

m0
Tj0p0 +

1

m

N∑
k=1

Tjkpk

)
, j = 1, . . . , N ,

(2.2.80)

or

T̃ ′ = ST̃R−1 . (2.2.81)

Together with (2.2.76), this implies

T̃ ′
−1

= R(ST̃R−1)tS−1 = T̃ t . (2.2.82)

Plug this into (2.2.75) to finally see that it actually says precisely the same as (2.2.26), except

for the (detT )1/2 factor. Hence we may now conclude through the same computations that the

transformation (2.2.54) satisfies all constraints. However there is nothing that imposes a value for

µ this time. We summarize:

Theorem 2.2.7. For given m0,m, µ > 0 and up to two independent choices of ± signs and relabeling

of nonzero indices, the only family of transformations T : R3(1+N) → R3(1+N) (indexed by N)

satisfying the following:
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1. T = T̃ ⊗ I3×3 for some linear isomorphism T̃ : R1+N → R1+N ;

2. the zeroth component of T (q0, q1, . . . , qN ) in R3 is given by

1

m0 +Nm
(m0q0 +mq1 + · · ·+mqN ) (2.2.83)

for all q0, q1, . . . , qN ∈ R3;

3. if π = T ′(p), then (2.2.74) is true;

4. if a probability measure ν on R3(1+N) ×R3(1+N) is symmetric with respect to exchange of any

of its R3 variables 1 through N in both the first half of its argument (position variables) and the

second (momentum variables), then so is the push-forward (T ⊕ T ′)∗ν, where T ′ = T̃ ′ ⊗ I3×3

is defined by (2.2.81);

is the one given by (2.2.44) with A,B,C given as in equations (2.2.48) and (2.2.50).

2.2.5 Many-species problems

Conditions 1 through 4 have analogues that are applicable to problems involving many different

groups of identical bodies, which we call many-species problems. Here we show that, despite losing

uniqueness to the many degrees of freedom afforded by such problems, we can still produce a

natural system of center-of-mass coordinates that preserves the symmetries of the Hamiltonian and

the permutation symmetry of admissible states with respect to exchange of any two identical bodies.

We choose to use quantum-mechanical language again, but it should be clear that the applicability

of the result extends to classical physics just like in the above section.

Since the change of coordinates and subsequent dismissal of the center-of-mass coordinate ef-

fectively reduce the number of bodies by one, there should be a body that in a sense gets thrown

out of consideration. This doesn’t mean that it needs to be the most massive one, the “nucleus” or

even a different body from all the others, but we will give it a special notation with the index 0. So

consider a system containing a distinguished particle of mass m0 at position q0 ∈ R3, and n groups

of identical particles containing N1, . . . , Nn particles. We must assume that each Ni is at least 2.

Denote by 1 +N the total number of particles:

1 +N = 1 +N1 + · · ·+Nn . (2.2.84)
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Suppose that the particles belonging to group i all have mass mi and are located at q(i)1 , . . . , q
(i)
Ni
.

Let the energy of interaction between the zeroth particle and a particle of group i be given by

a function Vi depending symmetrically on their positions; let the energy of interaction between a

particle of group i and another of group j (possibly i = j) be given by a function Wi,j depending

symmetrically on their positions. The Hamiltonian

H = − ~2

2m0
∆q0 −

~2

2

n∑
i=1

1

mi

Ni∑
k=1

∆
q
(i)
k

+
n∑
i=1

Ni∑
k=1

Vi(q0, q
(i)
k )+

+

n∑
i=1

n∑
j=1

i≤j

Ni∑
k=1

Nj∑
l=1

k<l

Wi,j(q
(i)
k , q

(j)
l ) (2.2.85)

(in self-explanatory notation for the Laplacians) is defined on a suitable subset of the space of

admissible wavefunctions, which are those twice-differentiable L2 functions of R3(1+N) that are

(anti-)symmetric with respect to exchange of any two variables q(i)k and q(i)l of the same group.

The change-of-coordinates maps that we seek are in the form T = T̃⊗I3×3, for T̃ : R1+N → R1+N

a linear map whose matrix has zeroth row given by

(T0j) =

(
m0

MTot
,

[
m1

MTot

]
N1

, . . . ,

[
mn

MTot

]
Nn

)
(2.2.86)

where MTot = m0 +
∑

iNimi. Here the notation [x]k represents a vector (x, . . . , x) with k compo-

nents. But it’s best to label the rows and columns of T̃ with the symbols

0, 1(1), . . . , N
(1)
1 , 1(2), . . . , N

(2)
2 , . . . , 1(n), . . . , N (n)

n (2.2.87)

in this order. For example, the entry in the row corresponding to the third particle of group 5 and

the column corresponding to the second-to-last particle of group 1 would then be T3(5),(N1−1)(1) .

Due to permutation symmetry of states, a property analogous to (2.2.39) must hold, which

can be stated as follows: for fixed i = 1, . . . , n, to each permutation σ of {1, . . . , Ni} there must

correspond a permutation π comprised of permutations within each group 1, . . . , N (not necessarily

only group i), such that T̃ remains unchanged under swapping of its rows according to σ followed

by swapping of its columns according to π. We shall not attempt to classify all possible ways to

construct a π for each σ if π is allowed to permute variables of many groups; instead let us consider

that π must only act on group i. In the same way, to each permutation π of columns within a
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group corresponds a permutation σ of rows of that group such that performing π followed by σ on

T̃ leaves it unchanged. Then this implies:

• that the zeroth column must be of the form

(Tk0)k =

(
m0

MTot
, [C1]N1

, . . . , [Cn]Nn

)t
(2.2.88)

for some numbers C1, . . . , Cn (consider what happens when swapping any two rows of group

i);

• that each of the n square blocks on the main diagonal must be of the form

(Tkl)k,l=1(i),...,N
(i)
i

=



Ai Bi Bi · · · Bi

Bi Ai Bi · · · Bi

Bi Bi Ai · · · Bi
...

...
...

. . .
...

Bi Bi Bi · · · Ai


(2.2.89)

for some numbers Ai, Bi (that is, after a permutation of indices 1(i), . . . , N
(i)
i ; this is just like

the proof in Section 3);

• that, given any i 6= j, the rectangular off-diagonal block whose rows are in group i and

columns are in group j must have all elements equal to the same number Xij (consider first

what happens when swapping rows of group i, then also what happens when swapping columns

of group j).

Finally, to prevent cross-terms in the kinetic energy and preserve its symmetries, we require the

same condition as in (2.2.28):

T̃R−1T̃ t = S−1 (2.2.90)

where now

R = diag (m0, [m1]N1 , . . . , [mn]Nm) , S = diag (MTot, [µ1]N1 , . . . , [µn]Nm) (2.2.91)

for some reduced masses µ1, . . . , µn > 0. The condition |det T̃ | = 1, present in the quantum context

but not the classical one, implies that we must impose

m0m1 · · ·mn = MTotµ1 · · ·µn . (2.2.92)
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Now it becomes more convenient to normalize the elements of T̃ by considering the matrix

U = S1/2T̃R−1/2 , (2.2.93)

which, according to (2.2.90), must be orthogonal. It is obtained from T̃ by multiplying row 0 by
√
MTot and rows k(i) by √µi and dividing column 0 by

√
m0 and columns k(i) by

√
mi. Its zeroth

row is then determined:

(U0j) =

(√
m0

MTot
,

[√
m1

MTot

]
N1

, . . . ,

[√
mn

MTot

]
Nn

)
, (2.2.94)

and is already normalized to 1 in Euclidean norm. Let us abbreviate it by using the symbols

(U0j) = (ν0, [ν1]N1 , . . . , [νn]Nn) , (2.2.95)

(all of them are determined by the data of the problem) and denote the other elements of U with

lowercase letters ai, bi, ci, xij in the locations corresponding to Ai, Bi, Ci, Xij in T̃ . We have thus

reduced the question to the following: given real constants ν0, ν1, . . . , νn satisfying

ν20 +N1ν
2
1 + · · ·+Nnν

2
n = 1 , (2.2.96)

can one find an orthogonal matrix U in the following format?

U =



ν0 ν1 ν1 · · · ν1 ν2 ν2 · · · ν2 ν3 ν3 · · · ν3 · · · νn νn · · · νn

c1
...

c1

U11 U12 U13 · · · U1n

c2
...

c2

U21 U22 U23 · · · U2n

...
...

...
...

. . .
...

cn
...

cn

Un1 Un2 Un3 · · · Unn



, (2.2.97)
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where the blocks (Uij)Ni×Nj are of the following form:

Uii =



ai bi bi · · · bi

bi ai bi · · · bi

bi bi ai · · · bi
...

...
...

. . .
...

bi bi bi · · · ai


, Uij =



xij xij xij · · · xij

xij xij xij · · · xij

xij xij xij · · · xij
...

...
...

. . .
...

xij xij xij · · · xij


(i 6= j) . (2.2.98)

Now there are n equations imposing norm 1 for each row and n equations imposing orthogonality

of each row with the zeroth (within each group these are all the same), plus n equations impos-

ing orthogonality of different rows within the same group, plus n(n − 1)/2 equations imposing

orthogonality of rows in different groups, for a total of n(n + 5)/2 equations. Meanwhile, there

are n variables in the zeroth column of U , 2 in each of its n diagonal blocks, 1 for each one of

the n(n − 1)/2 rectangular blocks above the diagonal, and the same for the blocks below, for a

total of n2 + 2n variables. The number of degrees of freedom is then computed to be n(n − 1)/2,

exactly the same as the number of blocks above or below the diagonal. Hence there won’t be a

unique solution, but the numbers suggest we might still be able to solve all these equations by also

imposing n(n− 1)/2 conditions; let us impose xij = xji for all i 6= j. Then the big square block of

U consisting of all rows and columns except the zeroth is symmetric. Now consider the equations

that impose norm one for the nonzeroth rows and columns:

c2i + a2i + (Ni − 1)b2i +
∑
j 6=i

x2ij = 1 , i = 1, . . . , n ,

ν2i + a2i + (Ni − 1)b2i +
∑
j 6=i

x2ji = 1 , i = 1, . . . , n .

(2.2.99)

With our choice xij = xji, we see that ci = ±νi. We choose

ci = νi , i = 1, . . . , n (2.2.100)

to make U a symmetric matrix. Then it is diagonalizable and admits a basis of orthogonal eigen-

vectors: there exists an orthogonal matrix O and a diagonal matrix D such that

U = ODOt . (2.2.101)

Therefore U is going to be orthogonal if and only if

I = UU t = U2 = OD2Ot ⇐⇒ D2 = I , (2.2.102)
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if and only if its eigenvalues are all ±1. Of course at least one eigenvalue 1 and one −1 need to be

present, otherwise U would be diagonal according to (2.2.101).

Just like what happened in the one-species problem, each ai depends in a simple way on bi:

subtracting from the first equation in (2.2.99) the equation that says that any two different rows in

group i are orthogonal, we have

c2i + 2aibi + (Ni − 2)b2i +
∑
j 6=i

x2ji = 0 , (2.2.103)

so that

a2i − 2aibi + b2i = 1 ⇐⇒ ai = bi ± 1 . (2.2.104)

We will choose

ai = bj − 1 for all i . (2.2.105)

With this, it is possible to choose values for each bi and xij that force U to have eigenvalue −1 with

very high multiplicity: choose

bi = ρν2i , xij = ρνiνj (2.2.106)

for some ρ > 0 to be determined shortly. Then U + I has column k(i) equal to

(Ul(j),k(i))l(j)=0,...,N = (νi, [ρν1νi]N1 , . . . , [ρνnνi]Nn)t . (2.2.107)

This is a multiple of the vector (1, [ρν1]N1 , . . . , [ρνn]Nn)t, which is independent of i or k. So all

nonzeroth columns of U + I are multiples of each other, giving this matrix a rank of at most 2, and

giving −1 a multiplicity of at most N − 1. With the further choice

ρ =
1

1 + ν0
, (2.2.108)

the zeroth column is also a multiple of that same vector, and −1 will have multiplicity N (we remark

that algebraic and geometric multiplicity are the same in this case since U is diagonalizable).

Hence U has just one other eigenvalue, λ, which we must check is equal to 1. For that purpose,

note that a basis for the −1 eigenspace is given by vectors {w(i)
k ; i = 1, . . . , n , k = 1, . . . , Ni},

each having only two nonzero components: the zeroth entry equal to 1 and the k(i)th entry equal to

−1/ρνi. Indeed, these are clearly N independent vectors and

(U + I)w
(i)
k =

(
(1 + ν0)−

νi
ρνi

,

[
ν1 −

ρν1νi
ρνi

]
N1

, . . . ,

[
νn −

ρνnνi
ρνi

]
Nn

)t
= 0 . (2.2.109)
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A vector orthogonal to all the w(i)
k is easily constructed:

w0 = (1, [ρν1]N1 , . . . , [ρνn]Nn)t . (2.2.110)

Because U is symmetric, eigenvectors corresponding to different eigenvalues are orthogonal, so the

eigenspace corresponding to λ must be spanned by w0. Now simply note that the zeroth coordinate

of Uw0 is

ν0 +
n∑
i=1

Ni∑
k=1

νiρνi = ν0 + ρ
n∑
i=1

Niν
2
i , (2.2.111)

which due to (2.2.96) becomes just

ν0 + ρ(1− ν20) = ν0 +
1− ν20
1 + ν0

= ν0 + (1− ν0) = 1 , (2.2.112)

the same as the zeroth coordinate of w0 itself. Hence λ = 1, and U is orthogonal as needed.

Going back through (2.2.108), (2.2.106), (2.2.105), (2.2.100), (2.2.98), (2.2.97), (2.2.95), (2.2.94)

and (2.2.93), we can finally write our change of coordinates. Letting ξ = Tq, we already know that

ξ0 is the center-of-mass of the system, and for the rest we can compute:

ξ
(i)
k =

√
m0

µi
νiq0 −

√
mi

µi
q
(i)
k +

1

1 + ν0

n∑
j=1

νiνj

Nj∑
l=1

√
mj

µi
q
(j)
l

=
1
√
µi

√m0mi

MTot
q0 −

√
miq

(i)
k +

1

1 +
√

m0
MTot

n∑
j=1

mj
√
mi

MTot

Nj∑
l=1

q
(j)
l


=

√
mi

µi

√ m0

MTot
q0 − q(i)k +

1

MTot +
√
MTotm0

n∑
j=1

mj

Nj∑
l=1

q
(j)
l


=

√
mi

µi

√ m0

MTot
q0 − q(i)k +

(
1−

√
m0

MTot

)
1

MTot −m0

n∑
j=1

mj

Nj∑
l=1

q
(j)
l



(2.2.113)

where we deliberately arranged for the center-of-mass of all but the zeroth particle to appear.

Wrapping it all up in a theorem:

Theorem 2.2.8. Given positive integers n ≥ 1, N1, . . . , Nn ≥ 2 and positive real numbersm0, . . . ,mn,

µ1, . . . , µn, let MTot = m0 +N1m1 + . . .+Nnmm. Then a possible linear transformation

T = T̃ ⊗ I3×3 : R3(1+N1+...+Nn) → R3(1+N1+...+Nn)

(q0, (q
(1)
k )k=1,...,N1 , . . . , (q

(n)
k )k=1,...,Nn)t 7→ (ξ0, (ξ

(1)
k )k=1,...,N1 , . . . , (ξ

(n)
k )k=1,...,Nn)t

(2.2.114)
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that preserves the permutation symmetries and structure of the many-species Hamiltonian (2.2.85),

as well as the symmetry of the admissible states of the (1 +N1 + · · ·+Nn)-body problem associated

with it, is the following: 
ξ0 =

1

MTot

(
m0q0 +

n∑
i=1

mi

Ni∑
k=1

q
(i)
k

)
ξ
(i)
k =

√
mi
µi

(√
m0
MTot

(q0 − q) + q − q(i)k
) (2.2.115)

where we used this abbreviation:

q =
1

MTot −m0

n∑
j=1

mj

Nj∑
l=1

q
(j)
l . (2.2.116)

The inverse transformation is obtained from (2.2.93):

T̃−1 = (S−1/2UR1/2)−1 = R−1/2US1/2 . (2.2.117)

We compute:

q0 =

√
MTot

m0
ν0ξ0 +

n∑
j=1

Nj∑
l=1

√
µj
m0

νjξ
(j)
l = ξ0 +

n∑
j=1

√
µjmj

MTotm0

Nj∑
l=1

ξ
(j)
l (2.2.118)

and

q
(i)
k =

√
MTot

mi
νiξ0 −

√
µi
mi
ξ
(i)
k +

1

1 + ν0

n∑
j=1

νiνj

Nj∑
l=1

√
µj
mi
ξ
(j)
l

=
1
√
mi

√miξ0 −
√
µiξ

(i)
k +

1

1 +
√

m0
MTot

n∑
j=1

√
mimjµj

MTot

Nj∑
k=1

ξ
(j)
l


= ξ0 −

√
µi
mi
ξ
(i)
k +

1

MTot +
√
MTotm0

n∑
j=1

√
mjµj

Nj∑
k=1

ξ
(j)
l .

(2.2.119)

Interestingly, unlike what happened in the one-species problem, the analogous quantity to q, which

would be

ξ =
1

N1µ1 + · · ·+Nnµn

n∑
j=1

µj

Nj∑
l=1

ξ
(j)
l , (2.2.120)

does not appear in these formulas, unless we specifically choose µi = mi for all i.



160

2.3 Bosonic atom under Born-Oppenheimer approximation

Let us now describe in detail the main theorem that Kiessling obtains in [Kie10] related to the

study of ground-state properties of a bosonic atom under the BO approximation, which we wish to

generalize.

2.3.1 Set-up

The work [Kie10] is the study of a quantum-mechanical model of an atom comprised of one nucleus

pinned at the origin of space and N electrons assumed to be bosons. To describe it, we adapt the

notation from that paper, but we keep the same symbols for the basic constructs:

• e > 0 is the elementary charge;

• the charge of each electron is ze, where z < 0 is a constant;

• the mass of each electron is m;

• the charge of the nucleus is Z|z|e, where Z > 0 is a constant (allowing for the possibility that

this atom is an ion);

• the ratio λ = Z/N is defined.

The goal is to study asymptotic properties of the ground-state configuration as N →∞, while λ is

kept constant.

We denote by ψ : R3N → C a generic wave-function of the system (so ‖ψ‖L2 = 1). Its argument,

written as (q1, . . . , qN ) with each qj ∈ R3, is an enumeration of possible positions of each electron

in space. Since the nucleus is assumed fixed at the origin, it does not contribute to ψ. And since

the electrons are assumed to be bosons, ψ must be symmetric with respect to permutations of the

qj ’s.

The particles are assumed to interact only through the Coulomb force, so that the Hamiltonian

of the system is the operator

H(N) = − ~2

2m

N∑
j=1

∆j − λN(ze)2
N∑
j=1

1

|qj |
+ (ze)2

N∑
i=1

N∑
j=1

i<j

1

|qi − qj |
, (2.3.1)
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where ∆j is the Laplacian with respect only to the 3-vector qj . The domain

D0(H
(N)) = C∞0 (R3N \ {(qj) ; qj = qk for some j 6= k}) (2.3.2)

is considered as a core, and the fully extended self-adjoint H(N) is taken to be the associated

Friedrichs extension, defined via the quadratic form

Q(N)(ψ) =
~2

2m

N∑
j=1

∫
|∇jψ|2d3Nq − λN(ze)2

N∑
j=1

∫
|ψ|2

|qj |
d3Nq + (ze)2

N∑
i=1

N∑
j=1

i<j

∫
|ψ|2

|qi − qj |
d3Nq.

(2.3.3)

Here the integrals are over R3N , and ∇jψ is the gradient 3-vector of ψ with respect to qj . The

domain of Q(N) can be taken to be D(Q(N)) = H1(R3) ⊗ · · · ⊗H1(R3), which is an N -fold tensor

product of Sobolev spaces.

The ground-state energy of the system is

E(N) = inf
{
Q(N)(ψ) ; ψ ∈ D(Q(N)) , ‖ψ‖L2 = 1

}
. (2.3.4)

If a minimizing wave-function exists, we call it the ground-state and denote it by ψ
(N)
GS . We

say that this ground-state is proper when the ground-state energy E(N) belongs to the discrete

spectrum of H(N). Due to theorems by Zhislin, Benguria and Lieb (see [BL83] and [LS09]), it is

known that:

• there exists N∗ such that if λ ≥ .826 then a proper ground-state exists for N ≥ N∗;

• there exists .826 ≤ λ∗ < 1 such that if λ ≥ λ∗ then a proper ground state exists for all N .

Because of this, all theorems that can be proved by assuming a proper ground state exists must be

stated under the assumption that

(λ ≥ λ∗) or (λ ≥ .826 and N ≥ N∗). (2.3.5)

Define the asymptotic Hartree functional H∞ on H1(R3) by

H∞(φ) =
~2

2m

∫
|∇φ|2d3x− λ(ze)2

∫
|φ|2

|x|
d3x+

1

2
(ze)2

∫∫
|φ(x)φ(y)|2

|x− y|
d3xd3y. (2.3.6)

It arises naturally when plugging-in a trial ψ of the form Φ(q1) · · ·Φ(qN ) into Q(N), rescaling the

arguments with N and taking N →∞.
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The strategy found in [Kie10] is adapted from previous works, especially [Hog11], with the goal

of describing the asymptotic behavior of the ground-state energy and wavefunction by methods from

classical Statistical Mechanics. The main idea is that the measure

ρ(x) = |ψ(x)|2d3Nx (2.3.7)

can be considered an absolutely continuous probability density, and the main theorem can be quoted

as follows:

Theorem 2.3.1. (Kiessling) The following hold.

i) The ratio E(N)/N3 grows monotonically as N →∞, converging to

inf{H∞(φ) ; φ ∈ H1(R3) , ‖φ‖L2 = 1}. (2.3.8)

ii) H∞ has a unique positive minimizer φmin with ‖φmin‖L2 = 1.

iii) Let N be given and assume condition (2.3.5). Let

ψ̃
(N)
GS (q1, . . . , qN ) = N−3N/2ψ

(N)
GS (N−1q1, . . . , N

−1qN ) (2.3.9)

be a rescaled version of the ground-state. Then, for any n ∈ N, n ≤ N , we have∫
|ψ̃(N)

GS |
2(q1, . . . , qn, un+1, . . . uN )d3un+1 · · · d3uN −→

N→∞
|φmin(q1)|2 · · · |φmin(qn)|2 (2.3.10)

weakly in L1 ∩ L
3n

3n−2 .

2.4 Bosonic atom without Born-Oppenheimer approximation

2.4.1 Set-up

In order to formulate the same model described by the Hamiltonian (2.3.1) without the Born-

Oppenheimer approximation, we need to rewrite it by using the general procedure described in

section 2.2 (see remark 2.2.6). It gives rise to the following energy functional (unimportant constants

have been set equal to 1, and C is the factor 1± r−1/2 arising from the coordinate change):

Q(N)(ρ(N)) =

N∑
j=1

∫
|∇j
√
ρ(N)|2 −

N∑
j=1

∫
ρ(N)

|ξj − Cξ|
+

1

N

∑∑
i<j

∫
ρ(N)

|ξi − ξj |
. (2.4.1)
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Proposition 2.4.1. Q(N) is bounded below in the space of absolutely continuous, compactly sup-

ported, permutation-symmetric probability measures ρ(N) in R3N such that ∇
√
ρ(N) ∈ L1.

Proof. It is enough to get rid of the third (positive) term and consider only

Q̃(N)(ρ(N)) =
N∑
j=1

∫
|∇j
√
ρ(N)|2 −

N∑
j=1

∫
ρ(N)

|ξj − Cξ|

= N

(∫
|∇1

√
ρ(N)|2 −

∫
ρ(N)

|ξ1 − Cξ|

)

= N

(∫
|∇1

√
ρ(N)|2 −

∫
ρ(N)

|(1− C
N )ξ1 − C(1− 1

N )ξ|

) (2.4.2)

where

ξ :=
ξ2 + · · ·+ ξN

N − 1
. (2.4.3)

Let ρ(N) as in the theorem statement. For every fixed ξ(N−1) = (ξ2, . . . , ξN ) ∈ R3(N−1), consider

the function

ρξ(N−1)(ξ) = ρ(N)(ξ, ξ(N−1)) , ξ ∈ R3 (2.4.4)

(defined for almost every ξ(N−1)). We remark that √ρξ(N−1) ∈ Ḣ1(R3) for almost every ξ(N−1).

Indeed, since ∫
R3(N−1)

∫
ρξ(N−1)(ξ)d3ξd3(N−1)ξ(N−1) = ‖ρ(N)‖1 <∞ , (2.4.5)

we have ∫
ρξ(N−1)(ξ)d3ξ <∞ for almost all ξ(N−1) ; (2.4.6)

similarly, since∫
R3(N−1)

∫
∇
√
ρξ(N−1)(ξ)d3ξd3(N−1)ξ(N−1) =

∫
R3N

∇1

√
ρ(N) =

1

N
‖∇
√
ρ(N)‖22 <∞ , (2.4.7)

we have ∫
∇
√
ρξ(N−1)(ξ)d3ξ <∞ for almost all ξ(N−1) . (2.4.8)

Now let u = ρξ(N−1) for some fixed ξ(N−1) for which
√
u ∈ Ḣ1(R3), and define

v(ξ) =
1(

1− C
N

)3u
(

ξ

1− C
N

)
, (2.4.9)

which also satisfies
√
v ∈ Ḣ1(R3). By the Sobolev embedding,

√
v ∈ L3(R3) and there is K > 0

such that

‖
√
v‖6 ≤ K‖∇

√
v‖2 . (2.4.10)
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We have ∫
u(ξ)∣∣∣(1− C

N

)
ξ − C

(
1− 1

N

)
ξ
∣∣∣dξ =

∫
v(ξ)∣∣∣ξ − C (1− 1

N

)
ξ
∣∣∣dξ . (2.4.11)

For given R > 0, let

A(R) = {ξ ∈ R3 ;

∣∣∣∣ξ − C (1− 1

N

)
ξ

∣∣∣∣ < R} . (2.4.12)

By the Hölder inequality,∫
A(R)

v(ξ)∣∣∣ξ − C (1− 1
N

)
ξ
∣∣∣dξ < ‖v‖3

∥∥∥∥∥ χA(R)(·)

| · −C(1− 1/N)ξ|

∥∥∥∥∥
3/2

= ‖v‖3
(

8π

3

)2/3

R , (2.4.13)

implying∫
|∇
√
u|2 −

∫
u(ξ)

|(1− C
N )ξ − C(1− 1

N )ξ|
d3ξ

=

(
1− C

N

)6

‖∇
√
v‖22 −

∫
A(R)

v

|ξ − C(1− 1
N )ξ|

d3ξ −
∫
R3\A(R)

v

|ξ − C(1− 1
N )ξ|

d3ξ

>

(
1− C

N

)6

‖∇
√
v‖22 −

(
8π

3

)2/3

R‖
√
v‖26 −

1

R
‖v‖1

>

((
1− C

N

)6

−
(

8π

3

)2/3

K2R

)
‖
√
v‖22 −

1

R
‖v‖1 .

(2.4.14)

If we choose R such that the scalar in parenthesis above vanishes, we conclude that∫
|∇
√
u|2 −

∫
u(ξ)

|(1− C
N )ξ − C(1− 1

N )ξ|
d3ξ ≥ −C2‖v‖1 = −C2‖

√
v‖22 (2.4.15)

for some C2 > 0 independent of N . Going back to (2.4.2), we see then that

Q̃(N)(ρ(N)) ≥ −NC2

∫
R3(N−1)

‖
√
ρ(N)(ξ1, ξ

(N−1))‖2L2(R3(ξ1))
d3(N−1)ξ = −NC2‖

√
ρ(N)‖22 , (2.4.16)

which then shows that Q̃(N), and also Q(N), are bounded below. Note that this proof also shows

that Q(N)/N is bounded below uniformly in N .

In all that follows, we must assume the existence of a minimizer µ(N) for (2.4.1). We don’t

have a proof that it exists; but, in case it doesn’t, the argument outlined from here onwards can be

applied instead to a minimizing sequence. We don’t write it in that context to keep the notation

readable.
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Call EN the corresponding minimum energy:

Q(N)(µ(N)) = EN = inf
ρ(N)∈PSym(R3N )

Q(N)(ρ(N)) . (2.4.17)

The Hartree functional at level N is defined by

hN (u) =
1

N
Q(N)(u⊗N )

=

∫
|∇
√
u|2 − 1

N

N∑
j=1

∫
u(ξ1) · · ·u(ξN )

|ξj − Cξ|
dξ +

1

2

(
1− 1

N

)∫∫
u(x)u(y)

|x− y|
dxdy

=

∫
|∇
√
u|2 −

∫
u(ξ1) · · ·u(ξN )

|ξ1 − Cξ|
dξ +

1

2

(
1− 1

N

)∫∫
u(x)u(y)

|x− y|
dxdy , u ∈ P(R3) .

(2.4.18)

Define also the asymptotic Hartree functional by the exact same expression as in (2.3.6):

h∞(u) =

∫
|∇
√
u|2 −

∫
u(x)

|x|
dx+

1

2

∫∫
u(x)u(y)

|x− y|
dxdy , u ∈ P(R3) . (2.4.19)

This definition is based on hN above and justified by the fact (to be proved soon) that∫
u(ξ1) · · ·u(ξN )

|ξ1 − Cξ|
dξ −→

N→∞

∫
u(x)

|x|
dx (2.4.20)

for all reasonable measures u.

We are now ready to state the main conjecture about our functional (2.4.1), analogous to theo-

rem 2.3.1:

Conjecture 2.4.2. The following hold.

i) The ratio E(N)/N3 converges to

inf{h∞(φ) ; φ ∈ H1(R3) , ‖φ‖L2 = 1}. (2.4.21)

ii) Let N be given. Then, for any n ∈ N, n ≤ N , we have∫
µ(N)(q1, . . . , qn, un+1, . . . uN )d3un+1 · · · d3uN −→

N→∞
|φmin(q1)|2 · · · |φmin(qn)|2 (2.4.22)

weakly in L1 ∩ L
3n

3n−2 , where φmin is as in theorem 2.3.1.
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2.4.2 Limit behavior of the new potential

A proof of the fact (2.4.20) mentioned above will require the Central Limit Theorem, so let’s first

recall how it goes:

Theorem 2.4.3. (Trivariate Central Limit Theorem) Suppose u ∈ P(R3) is such that∫
R3

xu(x)d3x = 0 , Σ = (σij)3×3 :=

(∫
R3

xixju(x)d3x

)
3×3

is invertible . (2.4.23)

If X(i) = (X(i), Y (i), Z(i)) is a sequence of independent random variables whose probability density

function is u, then the random variable

√
NX :=

√
N
X(1) + · · ·+X(N)

N
(2.4.24)

converges in distribution to a normal of mean 0 and covariance matrix Σ. What this means is that

lim
N→∞

∫
BN (S)

u(x(1)) . . . u(x(N))d3Nx =
1√

(2π)3 det Σ

∫
S

exp

(
−1

2
xTΣ−1x

)
d3x (2.4.25)

uniformly over all S ⊆ R3 with µ(∂S) = 0 (where µ is Lebesgue measure), where

BN (S) =

{
(x(1), . . . ,x(N)) ∈ R3N ,

x(1) + · · ·+ x(N)

√
N

∈ S

}
. (2.4.26)

Equivalently, for every bounded and continuous f : R3 → R,

lim
N→∞

∫
R3N

f

(
x(1) + · · ·+ x(N)

√
N

)
u(x(1)) . . . u(x(N))d3Nx

=
1√

(2π)3 det Σ

∫
R3

f(x) exp

(
−1

2
xTΣ−1x

)
d3x . (2.4.27)

Remark 2.4.4. Note that, if u ∈ P(R3) is rotationally symmetric (as we expect to be able to

assume of the minimizers µ(N) or of a minimizing sequence), the covariance matrix Σ will be a

multiple of the identity. Indeed, let

u(x) = v(|x|) (2.4.28)

with

1 =

∫
u = 4π

∫ ∞
−∞

r2v(r)dr . (2.4.29)

The off-diagonal elements in Σ are all zero; for example∫∫∫
xyu(x, y, z)dxdydz =

∫∫∫
(−x)yu(−x, y, z)dxdydz =

∫∫∫
(−x)yu(x, y, z)dxdydz .

(2.4.30)
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The diagonal elements are all equal to each other; for example∫∫∫
x2u(x, y, z)dxdydz =

∫∫∫
y2u(y, x, z)dxdydz =

∫∫∫
y2u(x, y, z)dxdydz . (2.4.31)

And the sum of the three diagonal elements is∫∫∫
(x2 + y2 + z2)u(x, y, z)dxdydz = 4π

∫
r4v(r)dr . (2.4.32)

Therefore

Σ = (σij)3×3 , σij =
δij
12π

∫ ∞
−∞

r4v(r)dr . (2.4.33)

Lemma 2.4.5. Let u ∈ L2(R3). Also suppose that

I :=

∫
R3

u(y)

|y|
d3y <∞ . (2.4.34)

Then there exists K ≥ 0 such that, for every a ∈ R3 \ {0},∫
R3

u(y)

|y||y − a|
d3y ≤ K(|a|−

1
2 + |a|−1) . (2.4.35)

Proof. For fixed a ∈ R3 consider the two complementary regions

R1 =

{
y ∈ R3 , |y − a| ≤ |a|

2

}
, R2 =

{
y ∈ R3 , |y − a| ≥ |a|

2

}
. (2.4.36)

For R2 we immediately have∫
R2

u(y)

|y||y − a|
d3y ≤ 2

|a|

∫
R2

u(y)

|y|
d3y ≤ 2I

|a|
. (2.4.37)

In R1, we start by noting that

|y| = |a+ y − a| ≥ ||a| − |y − a|| ≥ |a| − |y − a| ≥ |a| − |a|
2

=
|a|
2
, (2.4.38)

so that ∫
R1

u(y)

|y||y − a|
d3y ≤ 2

|a|

∫
R1

u(y)

|y − a|
d3y . (2.4.39)

Note ∥∥∥∥ 1

|y − a|

∥∥∥∥2
L2(R1)

=

∫
R1

1

|y − a|2
dy = 4π

∫ |a|/2
0

dy = 2π|a| , (2.4.40)

and hence, using the Hölder inequality for p = q = 2 and the functions 1/|y − a| and u:∫
R1

u(y)

|y||y − a|
≤ 2

|a|
‖u‖2

√
2π|a| =

√
8π|a|−

1
2 ‖u‖2 . (2.4.41)
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Putting the R1 and R2 estimates together,∫
u(y)

|y||y − a|
dy ≤ K(|a|−1 + |a|−

1
2 ) , (2.4.42)

where K = max
(
2I,
√

8π‖u‖2
)
.

The next theorem is the rigorous way to state the fact that our new potential energy term

behaves like the one from section 2.3 for reasonable probability measures u (that is, satisfying the

conditions (2.4.43) just ahead):

Theorem 2.4.6. Let C ∈ R. Let u ∈ P(R3) be absolutely continuous with respect to Lebesgue

measure. Suppose that u ∈ L1(R3) ∩ L3(R3) and that∫
R3

xu(x) d3x = 0 , Σ = (σij)3×3 :=

(∫
R3

xixju(x)d3x

)
3×3

is defined and invertible.

(2.4.43)

Then

lim
N→∞

∫
u(ξ1) · · ·u(ξN )

(
1

|ξ1|
− 1

|ξ1 − Cξ|

)
d3Nξ = 0 . (2.4.44)

Proof. Assume N > C in the argument. We stop using boldface x in favor of just x. We remark

that ∫
R3

u(x)

|x|
d3x <∞ , (2.4.45)

as a consequence of the Hölder inequality and the fact that u ∈ L1(R3) ∩ L3(R3).

First there are some simple steps that clean up the expression above via rescalings in the integral.

For each N , consider the following rescaled version of u:

uN (x) =

(
N

N − C

)3

u

(
Nx

N − C

)
. (2.4.46)

As N →∞, the fraction N/(N−C) tends to 1, making uN converge pointwise a.e. to u (it converges

at every point where u is continuous). Also observe that boundedness of the integral
∫

(u/|x|)d3x

implies that there is a uniform-in-N bound on the integrals
∫

(uN/|x|)d3x. Indeed, by using the

fraction N/(N−C) to rescale the integration variable of the latter, the integral reverts to the former

with a constant (N − C)/N in front of it, but this constant can be uniformly bounded in N since

it converges to 1.
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Let’s estimate the limit (2.4.44) by taking the absolute value of the integrand. First we separate

out the ξ1 from the empirical average term and perform a change of variables in the ξ1 variable:∫
u(ξ1) · · ·u(ξN )

∣∣∣∣ 1

|ξ1|
− 1

|ξ1 − Cξ|

∣∣∣∣d3Nξ

=

∫
R3

∫
R3(N−1)

u(ξ1) · · ·u(ξN )

∣∣∣∣∣ 1

|ξ1|
− 1

|(1− C
N )ξ1 − C

N (ξ2 + · · ·+ ξN )|

∣∣∣∣∣ d3(N−1)ξd3ξ1

=

∫
R3

∫
R3(N−1)

uN (ξ1)u(ξ2) · · ·u(ξN )

∣∣∣∣∣ N−CN|ξ1| − 1

|ξ1 − C(N−1)
N

ξ2+···+ξN
N−1 |

∣∣∣∣∣ d3(N−1)ξd3ξ1 .

(2.4.47)

We will abbreviate again

ξ =
ξ2 + . . .+ ξN

N − 1
. (2.4.48)

Now split the absolute value above as follows:∣∣∣∣∣ N−CN|ξ1| − 1

|ξ1 − C(N−1)
N ξ|

∣∣∣∣∣ ≤ C

N

1

|ξ1|
+

∣∣∣∣∣ 1

|ξ1|
− 1

|ξ1 − C(N−1)
N ξ|

∣∣∣∣∣ . (2.4.49)

The integral of the first of these two terms against the u functions is∫
R3

∫
R3(N−1)

uN (ξ1)u(ξ2) · · ·u(ξN )
C

N

1

|ξ1|
d3(N−1)ξd3ξ1 =

C

N

∫
R3

uN (ξ1)

|ξ1|
d3ξ1 , (2.4.50)

which converges to zero due to the fact that the integrals
∫

(uN/|x|)d3x are uniformly bounded.

Then we need to concentrate our efforts on the integral of the second term in (2.4.49) against

the u functions:∫
R3

∫
R3(N−1)

uN (ξ1)u(ξ2) · · ·u(ξN )

∣∣∣∣∣ 1

|ξ1|
− 1

|ξ1 − C(N−1)
N ξ|

∣∣∣∣∣d3(N−1)ξd3ξ1 . (2.4.51)

It’s possible to get rid of the term C(N − 1)/N by using a change of variables (a rescaling by this

exact term). The resulting factor that multiplies the entire integral after this change is bounded

away from both 0 and∞ because the fraction (N −1)/N converges to 1, so it doesn’t interfere with

the desired convergence to 0. Therefore, what is left is to show that

lim
N→∞

∫
R3

∫
R3(N−1)

u(ξ1)u(ξ2) · · ·u(ξN )

∣∣∣∣∣ 1

|ξ1|
− 1

|ξ1 − ξ|

∣∣∣∣∣d3(N−1)ξd3ξ1 = 0 . (2.4.52)

We bound the absolute value as∣∣∣∣∣ 1

|ξ1|
− 1

|ξ1 − ξ|

∣∣∣∣∣ ≤
∣∣|ξ1 − ξ| − |ξ1|∣∣
|ξ1||ξ1 − ξ|

≤ |ξ|
|ξ1||ξ1 − ξ|

. (2.4.53)
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For cleaner writing, we also rename ξ1 as y, ξi+1 as ξi, N as N + 1 and ξ as ξ. That is,

ξ =
ξ1 + · · ·+ ξN

N
(2.4.54)

and we must prove

lim
N→∞

∫
R3N

∫
R3

u(y)

|y||y − ξ|
d3y |ξ|u(ξ1) · · ·u(ξN )d3Nξ = 0 . (2.4.55)

This is where the crux of this proof is. Fix ε > 0. Let

K = max

(
2

∫
u(y)

|y|
d3y,
√

8π‖u‖2
)

(2.4.56)

(note that u ∈ L2 because u ∈ L1 ∩ L3). Lemma (2.4.5) says that∫
u(y)

|y||y − ξ|
d3y ≤ K(|ξ|−1 + |ξ|−1/2) (2.4.57)

for all |ξ| 6= 0. Also let

f(x) =
1√

(2π)3 det Σ
exp

(
−1

2
xTΣ−1x

)
(2.4.58)

be the probability density of the trivariate normal with correlation matrix defined by u (assumed

to be well-defined in the hypotheses of the theorem). There is a small δ > 0 such that

K(1 +
√
δ)

∫
|x|<δ

f(x)dx <
ε

4
. (2.4.59)

Denote

J :=

∫
R3

|x|1/2f(x) d3x , (2.4.60)

which is finite since the density of the normal distribution has exponential decay at infinity.

For each natural N , consider the regions

R1(N) =
{
ξ ∈ R3N ; |

√
Nξ| < δ

}
, R2(N) =

{
ξ ∈ R3N ; |

√
Nξ| > δ

}
. (2.4.61)

Pick N0 large enough that the following three conditions are satisfied:

• we have

N
−1/4
0 JK(1 + 1/

√
δ) <

ε

4
; (2.4.62)
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• for N ≥ N0, we have∫
R1(N)

u(ξ1) · · ·u(ξN )d3Nξ =

∫
R3N

χBδ(
√
Nξ)u(ξ1) · · ·u(ξN )d3Nξ

<

∫
|x|<δ

f(x)dx+
ε/4

K(1 +
√
δ)

,

(2.4.63)

which can be done due to the Central Limit Theorem, considering that χBδ is a bounded

function; and

• for N ≥ N0, we have∫
R2(N)

|
√
Nξ|1/2u(ξ1) · · ·u(ξN )d3Nξ <

∫
R3\Bδ

|x|1/2f(x)dx+
ε/4

K(1 + 1/
√
δ)

< J +
ε/4

K(1 + 1/
√
δ)

.

(2.4.64)

Now fix any N ≥ N0 and any ξ ∈ R3N . If ξ ∈ R1(N) we have |ξ| < δ, implying∫
R3

u(y)

|y||y − ξ|
d3y ≤ K(|ξ|−1 + |ξ|−1/2|) ≤ K(|ξ|−1 + |ξ|1/2|ξ|−1) < K(1 +

√
δ)|ξ|−1 , (2.4.65)

so that∫
R1(N)

∫
R3

u(y)

|y||y − ξ|
d3y |ξ|u(ξ1) · · ·u(ξN )d3Nξ < K(1 +

√
δ)

∫
R1(N)

u(ξ1) · · ·u(ξN )dξ

< K(1 +
√
δ)

∫
|x|<δ

f(x)dx+ (1 +
√
δ)

ε/4

K(1 +
√
δ)

<
ε

2
.

(2.4.66)

Otherwise, if ξ ∈ R2(N), we have∫
R3

u(y)

|y||y − ξ|
d3y ≤ K(|ξ|−1+|ξ|−1/2|) ≤ K(|ξ|−1/2|ξ|−1/2+|ξ|−1/2) < K(1+

1√
δ

)|ξ|−1/2 , (2.4.67)

so that∫
R2(N)

∫
R3

u(y)

|y||y − ξ|
d3y |ξ|u(ξ1) · · ·u(ξN )d3Nξ = K(1 +

1√
δ

)

∫
R2(N)

|ξ|1/2u(ξ1) · · ·u(ξN )dξ

= N−1/4K(1 +
1√
δ

)

∫
R2(N)

|
√
Nξ|1/2u(ξ1) · · ·u(ξN )dξ

< N−1/4K(1 +
1√
δ

)

(
J +

ε/4

K(1 + 1/
√
δ)

)
< N−1/4KJ(1 + 1/

√
δ) +

ε/4

4

<
ε

2
.

(2.4.68)
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Altogether, ∫
R3N

∫
R3

u

|y||y − ξ|
d3yu(ξ1) · · ·u(ξN )d3Nξ < ε (2.4.69)

as we wanted.

In the remainder of this section, we pave some of the ground for establishing the Hartree limit of

a bosonic atom without BO approximation by proving that the minimum of the Hartree functional

of a bosonic atom with BO approx also supplies a rigorous upper bound to the lim supN→∞ of the

rescaled N -body energy per particle of the bosonic atom without BO approximation. This goes half

the way towards proving conjecture 2.4.2. We also outline what is needed to complete the proof of

that conjecture, but this requires new ideas that have to be supplied in future work.

2.4.3 Proof sketch for theorem 2.3.1

After the appropriate mean-field rescaling, we can reduce the problem to studying the following

functional of permutation-symmetric absolutely continuous measures ρ(N) ∈ PSym(R3N ):

Q(N)(ρ(N)) =
N∑
j=1

∫
|∇j
√
ρ(N)|2 −

N∑
j=1

∫
ρ(N)

|qj |
+

1

N

∑∑
i<j

∫
ρ(N)

|qi − qj |
. (2.4.70)

Let µ(N) denote the minimizer, with corresponding energy EN :

Q(N)(µ(N)) = EN = inf
ρ(N)∈PSym(R3N )

Q(N)(ρ(N)) . (2.4.71)

Given ρ(N), we use the symbol ρ(N)
n to denote its n-th marginal (n ≤ N):

ρ(N)
n (q1, . . . , qn) =

∫
ρ(N)(q1, . . . , qN )dqn+1 · · · dqN (2.4.72)

(it doesn’t matter which variables are integrated out because of the permutation symmetry in ρ).

The Hartree functional at level N is defined as

hN (u) =
1

N
Q(N)(u⊗N )

=

∫
|∇
√
u|2 −

∫
u(x)

|x|
dx+

1

2

(
1− 1

N

)∫∫
u(x)u(y)

|x− y|
dxdy , u ∈ P(R3) .

(2.4.73)

Let eN denote its infimum:

eN = inf
u∈P(R3)

hN (u) . (2.4.74)
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The asymptotic Hartree functional is defined a form of limit of hN — that is, the 1/N term

goes away:

h∞(u) =

∫
|∇
√
u|2 −

∫
u(x)

|x|
dx+

1

2

∫∫
u(x)u(y)

|x− y|
dxdy , u ∈ P(R3) . (2.4.75)

Let u∞ denote its unique minimizer, and e∞ the corresponding value:

h∞(u∞) = e∞ = inf
u∈P(R3)

h∞(u) . (2.4.76)

What the theorem claims is that:

• lim
N→∞

EN
N

= e∞;

• for any given n, lim
N→∞

µ(N)
n = u⊗n∞ weakly in L1(R3n) ∩ L

3n
3n−2 (R3n).

First, it’s clear by the definitions that
EN
N
≤ eN . (2.4.77)

Also, the only way in which hN depends on N is through the increasing term 1 − 1/N , so that

eN < e∞ for all N , and hence

lim sup
N→∞

EN
N
≤ e∞ . (2.4.78)

The following Lemma will be needed shortly:

Lemma 2.4.7. (Kiessling) For a fixed n, suppose that a sequence ρ(Nk) ∈ PSym(R3Nk) is such that

lim
k→∞

√
ρ
(Nk)
n =

√
ν(n) weakly in H1(R3n) . (2.4.79)

Then

lim sup
k→∞

1

Nk
Q(Nk)(ρ(Nk)) ≥ 1

n
Q(n)(ν(n)) . (2.4.80)

Proof. We show it is true for each of the three parts in the energy functional. We will actually

prove (2.4.80) for lim inf instead of just lim sup, but we will only need to use this inequality later

with lim sup in it, and the point is that, in our context of no BO approximation, it may be the case

that only an inequality with lim sup can be proven.
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For the kinetic energy part, lower semicontinuity of the Fisher functional gives
n∑
j=1

∫
|∇j
√
ν(n)|2 =

∫
|∇
√
ν(n)|2

≤ lim inf
k→∞

∫
|∇
√
ρ
(Nk)
n |2

= lim inf
k→∞

n∑
j=1

∫
|∇j
√
ρ
(Nk)
n |2 .

(2.4.81)

Given k and n, let Nk = a(k, n)n+ r(k, n) with a(k, n), r(k, n) ∈ N, 0 ≤ r(k, n) < n (Euclidean

division). Note that

lim
k→∞

a(k, n)

Nk
=

1

n
. (2.4.82)

Because of subadditivity of the Fisher functional,

a(k, n)

Nk

n∑
j=1

∫
|∇j
√
ρ
(Nk)
n |2 ≤ 1

Nk

Nk∑
j=1

∫
|∇j
√
ρ(Nk)|2 . (2.4.83)

Taking a limit in k,

1

n

n∑
j=1

∫
|∇j
√
ν(n)|2 ≤ lim inf

k→∞

1

Nk

Nk∑
j=1

∫
|∇j
√
ρ(Nk)|2 . (2.4.84)

For the Coulomb repulsion between electrons, symmetry and the definition of the marginal give

1

Nk − 1

1

Nk

∑∑
1≤i<j≤Nk

∫
ρ(Nk)

|qi − qj |
=

1

n− 1

1

n

∑∑
1≤i<j≤n

∫
ρ
(Nk)
n

|qi − qj |
. (2.4.85)

Rearranging slightly and bounding n− 1 by n:

1

N2
k

∑∑
1≤i<j≤Nk

∫
ρ(Nk)

|qi − qj |
≥
(

1− 1

Nk

)
1

n2

∑∑
1≤i<j≤n

∫
ρ
(Nk)
n

|qi − qj |
. (2.4.86)

Then

lim inf
k→∞

1

N2
k

∑∑
1≤i<j≤Nk

∫
ρ(Nk)

|qi − qj |
≥ lim inf

k→∞

1

n2

∑∑
1≤i<j≤n

∫
ρ
(Nk)
n

|qi − qj |

≥ 1

n2

∑∑
1≤i<j≤n

∫
ν(n)

|qi − qj |

(2.4.87)

with the last step being justified by weak-lower semicontinuity of the Coulomb potential.

For the Coulomb attraction to the nucleus, we can actually get equality in (2.4.80). Symmetry

and the definition of the marginal give

− 1

Nk

Nk∑
j=1

∫
ρ(Nk)

|qj |
= − 1

n

n∑
j=1

∫
ρ
(Nk)
n

|qj |
. (2.4.88)
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So we can take the k limit:

− lim
k→∞

1

Nk

Nk∑
j=1

∫
ρ(Nk)

|qj |
= − 1

n

n∑
j=1

∫
ν(n)

|qj |
. (2.4.89)

This concludes the proof of the Lemma.

Now fix an arbitrary subsequence µ(Nk) of the minimizers of (2.4.70). For any n, due to weak

compactness granted by the Sobolev embedding, there exists a sub-subsequence Nkl such that the

marginals µ
(Nkl )
n converge weakly to some ν(n) ∈ PSym(R3n) as l→∞. (To be precise, all that can

be initially justified is that ν(n)(R3n) ≤ 1, that is, it may not be a probability measure, but this is

a technical point that is dealt with appropriately in [Kie10]).

By a diagonal extraction argument, we may assume that the same Nkl works for any n:

lim
l→∞

µ
(Nkl )
n = ν(n) for all n . (2.4.90)

Lemma (2.4.7) then says

lim sup
l→∞

1

Nkl

Q(Nkl )(µ(Nkl )) ≥ 1

n
Q(n)(ν(n)) . (2.4.91)

Due to weak convergence and the Kolmogorov extension theorem, we can find ν ∈ PSym((R3)∞)

whose marginals are the ν(n). And, according to the de Finetti theorem, these marginals are a

convex combination of product measures using a measure m on the space P(R3) that only depends

on ν:

ν(n) =

∫
P(R3)

u⊗ndm(u) . (2.4.92)

In particular
1

n
Q(n)(ν(n)) =

∫
P(R3)

1

n
Q(n)(u⊗n)dm(u) =

∫
P(R3)

hn(u)dm(u) . (2.4.93)

Note that moving the functional Q(n) inside the integral is not a trivial step because it’s not obvious

that the kinetic energy part is affine linear, but it is true. (This part too is a technical point that

can be found in [Kie10]. Then

e∞ ≥ lim sup
N→∞

EN
N

= lim sup
l→∞

1

Nkl

Q(Nkl )(µ(Nkl )) ≥ 1

n
Q(n)(ν(n)) =

∫
P(R3)

hn(u)dm(u) . (2.4.94)

Taking an n limit:

e∞ ≥
∫
P(R3)

h∞(u)dm(u) ≥ e∞ . (2.4.95)
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This shows that the inequalities in the chain above must all be equalities and in particular

lim
N→∞

EN
N

= e∞ . (2.4.96)

Furthermore, the integral
∫
P(R3) h∞(u)dm(u) can only ever be equal to e∞ if m is supported on

minimizers of h∞ (and there’s only one, which we called u∞ above). Hence

m = δu∞ (2.4.97)

and the de Finetti statement about the weak limits ν(n) becomes

lim
l→∞

µ
(Nkl )
n (q) = u∞(q1) · · ·u∞(qn) for all n . (2.4.98)

Looking back carefully, what we have proved is that every subsequence Nk admits a further

subsubsequence Nkl such that the limit above is true for all n. Since the limit object, u⊗n∞ , is

independent of (Nk), this is enough to prove that

lim
N→∞

µ(N)
n = u⊗n∞ for all n . (2.4.99)

2.4.4 Adaptation to conjecture 2.4.2

Let us see what happens if the proof strategy outlined above is attempted for our conjecture.

Proposition 2.4.8. We have

lim sup
N→∞

EN
N
≤ e∞ . (2.4.100)

Proof. Let ε > 0. Find a u ∈ P(R3) for which the Theorem (2.4.6) applies and such that

h∞(u) < e∞ +
ε

2
. (2.4.101)

The theorem implies that there is N such that∫
u(ξ1) · · ·u(ξN )

|ξ1 − Cξ|
>

∫
u(x)

|x|
− ε

2
. (2.4.102)
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Plug in the trial function ρ(N) = u⊗N into Q(N):

1

N
Q(N)(u⊗N ) =

∫
|∇
√
u|2 −

(
1

N

N∑
j=1

∫
u(ξ1) · · ·u(ξN )

|ξj − Cξ|
dξ

)
+

1

2

(
1− 1

N

)∫∫
u(x)u(y)

|x− y|
dxdy

≤
∫
|∇
√
u|2 −

(
1

N

N∑
j=1

∫
u(ξ1)

|ξ1|
dξ1 − ε/2

)
+

1

2

∫∫
u(x)u(y)

|x− y|
dxdy

= h∞(u) +
ε

2

≤ e∞ + ε

(2.4.103)

Since ε is arbitrary, the infimum E(N)/N of the expression (1/N)Q(N)(ρ(N)) can be at most ≤ e∞.

A similar lemma to 2.4.7 now needs to be proved. The rest of the argument shown in section 2.3

after it is transferable word-by-word. Hence the sticking point is the statement analogous to that

lemma, which is the following:

Conjecture 2.4.9. For a fixed n, suppose that a sequence ρ(Nk) ∈ PSym(R3Nk) is such that

lim
k→∞

√
ρ
(Nk)
n =

√
ν(n) weakly in H1(R3n) . (2.4.104)

Then, for the functional Q(N) given in (2.4.1),

lim sup
k→∞

1

Nk
Q(Nk)(ρ(Nk)) ≥ 1

n
Q(n)(ν(n)) . (2.4.105)

A proof of this conjecture would imply that conjecture 2.4.2 is true. To try to prove it, fix an n.

The kinetic energy and Coulomb repulsion parts of our energy functional are the same as for the

one in section 2.3. But, when dealing with the Coulomb attraction part (after replacing the sum
1

Nk

∑Nk
j=1

∫ · · ·
|ξj − · · · |

with
∫ · · ·
|ξ1 − · · · |

, which is granted by symmetry), we need to prove that

lim sup
k

(
−
∫
R3N

ρ(Nk)

|ξ1 − CξNk |

)
≥ −

∫
R3n

ν(n)

|ξ1 − Cξn|
, (2.4.106)

or, what is the same,

lim inf
k

∫
R3N

ρ(Nk)

|ξ1 − CξNk |
≤
∫
R3n

ν(n)

|ξ1 − Cξn|
. (2.4.107)
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Here the notation of empirical average with a subindex indicates the number of variables involved:

ξm =
ξ1 + · · ·+ ξm

m
. (2.4.108)

By assumption, we have

lim
k→∞

∫
R3N

ρ(Nk)

|ξ1 − Cξn|
= lim

k→∞

∫
R3n

ρ
(Nk)
n

|ξ1 − Cξn|
=

∫
R3n

ν(n)

|ξ1 − Cξn|
. (2.4.109)

Hence (2.4.107) is equivalent to

lim inf
k

∫
R3N

ρ(Nk)

|ξ1 − CξNk |
≤ lim

k

∫
R3N

µ(Nk)

|ξ1 − Cξn|
, (2.4.110)

which is now a statement about a general sequence of measures (but not any sequence; we know

their n marginals converge, and we may even assume this is true for all n). This is now a problem

about understanding what happens with the integral∫
R3N

ρ(Nk)

|ξ1 − Cξm|
(2.4.111)

when we let m grow together with Nk versus when we hold m fixed.
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