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ABSTRACT OF THE DISSERTATION

AUTOMATED MACHINE LEARNING FOR SUPERVISED AND
UNSUPERVISED MODELS WITH ARTIFICIAL NEURAL

NETWORKS

by Alireza Naghizadeh

Dissertation Director: Dimitris N. Metaxas

Artificial Neural Networks (ANNs) are powerful machine learning tools to find and apply pat-

terns for intelligent decision making. These tools can be combined with automation to select

few results among many trials. Since ANNs are used for both supervised and unsupervised

learning, automation can lead to more trusted learning methods across many fields and lead to

exploring possibilities that are considered impossible with current technology. In this thesis, at

first, I introduce a new form of ANN architecture which is used exclusively for automated robot

navigation. By doing so, I provide a high-level overview of both computational neuroscience

and the potential of automation. Next, I introduce Greedy AutoAugment to automate the learn-

ing of state-of-the-art neural networks for both big and small datasets. I also create an efficient

model to evaluate clustering in unsupervised learning. The model is further expanded to intro-

duce unsupervised learning for deep subspace clustering. In the end, I provide discussion and

the future research plan for automating ANNs in machine learning applications.
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Chapter 1

Introduction

1.1 Motivation

The purpose of machine learning is to find and use the patterns in data for making rational

and grounded decisions. There are two major paradigms for pattern discovery in data, which are

called supervised and unsupervised learning. In supervised learning, a training set is present,

so patterns of the data can be found from the train set and then be generalized for the test

set. In unsupervised learning, a train set is not present. Therefore, it is more challenging

to discover patterns on data. In machine learning, there are several types of learning forms,

such as finding the distribution of training data points and generating similar data, finding

objects, and performing semantic segmentation. The most basic form of machine learning,

which will be used in this thesis, is to categorize multivariate points into different groups. In

supervised learning, this process is called classification, and in unsupervised learning, it is

called clustering.

Artificial Neural Networks (ANNs) are computation models of neural activities in the brain

of animals and human beings. In general, the study of finding a relationship between the

activities of the outside world and their corresponding neural activities (macro to the micro)

is a difficult task, which usually does not lead to reproducible results. Therefore ANNs are

mostly inspirational and do not necessarily follow the real process of biological evidence. The

architectures of the neural networks usually consist of two main elements. The first element

is the computational neural cells, which take numerical values that have major effects on the

decision making process. The second element is the connections between computational neural

cells. These connections can also take numerical values, which lead to the final calculations

of computational neural cells. These two basic components can be structured into complex

models where different forms of learning can take place.
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In recent years, the success of ANNs for breaking different types of benchmark challenges,

convenient access to application programming interfaces on GPUs, and computer vision li-

braries led to the exponential growth of these types of learning methods. The ability to solve

complex problems with neural networks helped to create smarter applications for many fields

such as virtual assistants, search engines, medical applications, media, and image editing. In

recent years, there has been a trend to combine automation with ANNs. The automation, in

this case, is a general term that includes any technology that reduces human interventions in

complex learning systems. If automation is combined with ANNs, it can provide numerous

advantages. Some of these advantages are 1- it can prevent common human errors. 2- In some

cases, the requirement for experts in the field can be reduced hugely. 3- It saves time, and 4- it

saves resources. Another important result for such a combination, which is the main focus of

this thesis, is to use automation to help the learning itself. Machines can explore many possi-

bilities compared to humans. If we define a criterion for identifying the best trials, we will see

that they can be used to improve the learning ability of the networks.

1.2 Contributions of the Dissertation

The contributions of the thesis are in three major chapters. In the first chapter, we design

a simple automated neural network architecture by using patterns of the brain. By doing so,

we provide a high-level overview of both computational neuroscience and the potential of au-

tomation. In the second chapter, we automate the learning process in state-of-the-art supervised

networks for both small and big datasets. In the third chapter, we explore important aspects of

unsupervised learning, which are related to automation. We propose solutions to automate both

high-level and low-level clustering algorithms.

1.2.1 Automated Artificial Neural Networks: An Example

In the first stage of the thesis, we show how to design a new form of ANN architecture by

getting inspiration from neural activities in the brain. There are also elements of automation in

the method that can help readers to get familiar with both concepts. For the neural activities, we

use grid cell firing patterns in the medial entorhinal cortex, which is shown that it can be used as
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a mapping reference for spatial navigation in mice and other mammalian species. We use this

pattern to propose a novel computational model for patterns of grid cells and combine it with

a mechanism to tune the weights of cells, which we use to create a decision-making process

for robot navigation [10]. The method is automated to be used as an unsupervised method for

uninformed online search with unknown goal positions and unknown environments, such as

finding the exit out of a maze or help a robot to find its way in a jungle where there is no clue

about the exit.

The results of this approach in simulated and real environments show superior algorithmic

steps over current search methods. In addition, the typical size of the memory can be reduced

without compromising the completeness of the method. Our results show that the number of

steps is stable in terms of variations in memory allocations. While this method is effective for

the specific task that it is designed for, it cannot be generalized easily to other forms of learning.

For general learning models, we use more advanced ANN architectures. These networks are

designed to work on multivariate data points, and instead of focusing on a specific task, they

provide a more general form of the learning model that can be used in a variety of tasks.

1.2.2 Automated Supervised Learning

In pattern recognition, we want the perception of an object to be invariant to the properties

that can vary in different environments such as scale, brightness, rotation, and viewing angle.

For instance, it is desirable that a network, after learning an object from its original form,

recognizes the same object with a change of location or added rotation. Currently, there are

two ways to deal with this problem. First, by designing network architectures that inherently

can be invariant to important image transformations. Second, with data augmentations. The

most basic network which considers the transformations of the input data is the Convolutional

Neural Network (CNN). The CNN architecture, with the concept of convolutional layers, tries

to be translation invariant. This network was very successful in its approach and has been used

as a base for the development of more advanced architectures.

The second method for considering different transformations of the input data is to use data

augmentation. In this method, we want to achieve invariance by applying various transforma-

tions on training data. For instance, both the original data and a rotated transformation of the
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data are used to train the network. The main advantage of this method is simplicity and sup-

porting all forms of deep network architectures. Because of the importance of this problem

and the impact that this approach can have on ANNs, for the rest of the thesis, we focus on

automating this form of learning.

A major problem in automating data augmentation is to ensure that the generated new

samples cover the search space. This is a challenging problem and requires exploration for

data augmentation policies to ensure their effectiveness in covering the search space. To solve

this problem, we propose Greedy AutoAugment [11] as a highly efficient search algorithm

to find the best augmentation policies. We use a greedy approach to reduce the exponential

growth of the number of possible trials to linear growth. The Greedy Search also helps us to

lead the search towards the sub-policies with better results, which eventually helps to increase

the accuracy. Our experiments on four datasets (Tiny ImageNet, CIFAR-10, CIFAR-100, and

SVHN) show that Greedy AutoAugment provides better accuracy, while using 360 times fewer

computational resources.

Next to providing automation for augmenting normal datasets, we also provide augmenta-

tion for n-shot learning [12]. The goal of n-shot learning is the classification of input data from

small datasets. This type of learning is challenging in neural networks, which typically need a

high number of data during the training process. Greedy Autoaugment can produce an infinite

number of target conditions from the primary condition. This process includes two main steps

for finding the best augmentations and training the data with the new augmentation techniques.

In Chapter 3.2, we optimize these two steps for n-shot learning. The proposed method can

potentially extract many possible types of information from a small number of available data

points in n-shot learning. The results of our experiments on five prominent n-shot learning

datasets show the effectiveness of the proposed method.

1.2.3 Automated Unsupervised Learning

To automate unsupervised learning for clustering, it is important to know about the presup-

position of patterns in the clustering. To better underestand this idea, in Chapter 4.1 a new form

of pattern for clustering is introduced. For the pattern, we assume the decomposition of points

with the mixture of Gaussian distributions in each dimension as an underlying assumption for
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feature formation of input data. The new guideline presents a unified approach to current basic

assumptions and also provides us with an opportunity to solve an essential problem of low-level

clustering algorithms. The issue is in the form of the curse of dimensionality, which claims that

multivariate clustering is meaningless for high dimensional data. To solve this problem, we

propose a new type of vector norm (‖.‖c) and subsequently, Clustering Distance (CD), which

is a distance metric system that guarantees meaningfulness even in high dimensional data [13].

The experiments on synthetic and non-synthetic datasets show the effectiveness of the proposed

method to solve curse of dimensionality.

While the new pattern has nice features and can solve some problems in clustering, it is still

easier and better to work with current presupposed patterns. To automate the learning process

for clustering, the next step is to understand the evaluation metrics. For clustering methods,

K-Means is an important algorithm that is used as a helper function for many other algorithms.

Therefore, to properly automate the unsupervised learning, it is important to have an evaluation

metric for K-Means. In K-Means based clustering algorithms, different initial seeds can lead

to different clustering results. Selecting the best result from different initial seeds is called the

filtering process and will be used for automation.

The filtering process follows three steps, 1- performing several clustering trials, 2- scoring

each trial, and 3- choosing the trial with the best score. A typical method to score the clustering

results of K-Means is the within-cluster sum of squares (WCSS). There are more advanced

methods that can be used to score the clustering trials. These methods usually provide a better

score with the cost of being more computationally demanding. Before automating the cluster-

ing process with Greedy Autoaugment, we fix this problem by proposing Condensed Silhouette

[14], which is a very efficient version of the Silhouette algorithm. For this purpose, we replace

the elements of Silhouette algorithm with similar elements of the K-Means algorithm. This

helps us to maintain the accuracy of the Silhouette and, at the same time, significantly reduce

the computational requirements of the method. Our experiments on 14 real datasets show the

effectiveness of the proposed method.

The above process automates clustering for low-level clustering algorithms. To cluster

complex data such as images, we use high-level clustering algorithms such as deep subspace

clustering (DSC). As we mentioned, the idea behind data augmentation techniques is based on
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the fact that slight changes in the percept do not change the brain cognition. In classification,

neural networks use this fact by applying transformations to the inputs to learn to predict the

same label. However, in DSC, the ground-truth labels are not available, and as a result, one

cannot easily use data augmentation techniques. We propose a technique to exploit the benefits

of data augmentation in DSC algorithms [15, 16]. We learn representations that have consistent

subspaces for slightly transformed inputs.

In particular, we introduce a temporal ensembling component to the objective function

of DSC algorithms to enable the DSC networks to maintain consistent subspaces for random

transformations in the input data. In addition, we provide a simple yet effective unsupervised

procedure to find efficient data augmentation policies. We search through the policies in a

search space of the most common augmentation policies to find the best policy such that the

DSC network yields the highest mean Silhouette coefficient in its clustering results on a target

dataset. Our method achieves state-of-the-art performance on four standard subspace clustering

datasets.

1.3 Outline of the Dissertation

The remainder of this thesis follows this outline:

• In Chapter 2, we create a new form of ANN by observing the patterns of Grid Cells.

This chapter shows to the readers that how learning can take place with neural nets and

how the computational field can connect to the field of Neuroscience. The design also

demonstrates the strength of automation in learning.

• In Chapter 3, we present the Greedy AutoAuggment to automate and improve the learn-

ing process of ANNs by using different representations of images.

• Chapter 3.1 is for normal datasets and Chapter 3.2 is for n-shot learning (small datasets).

• In Chapter 4, we present automation for unsupervised learning.

• Chapter 4.1, is to show the importance of pre-defined patterns in clustering and their

effects on final results.
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• Chapter 4.2, uses the pre-defined pattern of K-Means and makes Silhouette feasible for

this algorithm even for high number of points.

• Chapter 4.3, uses the knowledge of Chapter 4.1 and 4.2 to define Greedy AutoAugmen-

tation for unsupervised learning.
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Chapter 2

Automated Artificial Neural Networks: An Example

2.1 Introduction

Grid cells, which are located in the medial entorhinal cortex (MEC), are sets of neurons that

illustrate periodic patterns when an animal traverses a region [17, 18, 19] and have been found

in bats, mice and human beings [17, 20, 21, 22]. The cells represent a unique firing pattern

which led to a hypothesis that they make a cognitive structure of Euclidean Space [17, 23] and

exhibit a hexagonal lattice that covers the region. The discovery and characterization of grid

cells and place cells of the hippocampus led to the 2014 Nobel prize in Physiology or Medicine

[24].

Grid cells have modular organization [25, 26] consisting of groups of interconnected neu-

rons. One of the outstanding features of grid cells is their firing fields are mostly related to

distance from the origin rather than the inputs of visual cues [27, 28, 29]. These features, along

with the triangular pattern of grid cells, make them a suitable metric of the brain’s spatial rep-

resentation system [30, 31]. Also, the firing patterns represent codes of the location, which

are similar to a mathematical residue system that can be used as a utility for metric navigation

[32, 33]. Since the discovery of grid cells, several studies have provided computational models

that satisfy the lattice layout of grid cells [34, 35, 36]. A search model based on grid cells 1 can

contribute to the robotic navigational algorithms. In these algorithms, we are mostly concerned

about finding the shortest paths, reducing the computational complexity and using the lowest

possible memory usage.

In robot navigation, an underlying infrastructure such as Simultaneous Localization and

Mapping (SLAM) [37] is usually used to provide 1) topological mapping of the environment, 2)

1Throughout this section, the keyword ”grid cell” is used for its biological definition. This definition is different
from some engineering literature which may use this keyword for other porpuses.
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self-awareness of the current positions for robots, 3) decision-making structure for exploration.

The focus of this section is the third part which is path-planning for robotic exploration. More

specifically, we are concerned with exploring unknown environments to decide how to get from

a start location to an end location without knowing the position of the end location. It is desired

to reach the end location with a small number of steps 2 and memory usage. In this case, in

every turn a robot can select between a limited number of options, (up, down, left, right, up-

right, up-left, down-right, down-left) which is usually up to eight moves in a grid topological

map. Therefore, the computational complexity for all of the algorithms in each turn is O(1) and

is not important.

There is already an enormous body of literature on robotic navigation, including navigation

in unknown environments. There are even some early attempts such as ALVINN [38] to use

neural networks in autonomous vehicles. A large number of path-planning algorithms can be

used in combination with SLAM. Some of these algorithms restrict the environment or require

some assumptions to simplify the problem. For instance, the heuristic based algorithms such as

A*, D* and their siblings [39, 40, 41, 42, 43] require some forms of information about the exit

which is also true for bugs family algorithms [44, 45]. In this regard, while unknown environ-

ments are presumed, the position of the goal should be known a priori. Also, the Wall-follower

and Pledge algorithms [46, 47] need specific conditions for the environments to preserve the

completeness. Some methods such as sampling-based planners (e.g., RRT) [46, 47] also solve

the problems but typically need full disclosure of the environment or at least the position of

the goal [48]. Current efforts which use grid-cells or other forms of neural networks for path-

planning [49, 50, 51] also need the position of the goal or follow a supervised scheme where

training is required before exploration [52].

The breadth-first search (BFS) [53, 54] and depth-first search (DFS) with backtracking

feature [55, 56, 57] seem to be the first reasonable answers for path-planning exploration, to

find the exit in unknown places where a physical agent does not have any information about

the environment or the position of the goal. The BFS in this regard is similar to Iterative

Deepening Depth-First Search (IDDFS) algorithm [58]. The DFS with backtracking feature is

2Throughout the section, we use ”algorithmic steps” and ”speed” interchangeably to indicate a number of the
steps from start location to the end location.
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usually called Backtrack algorithm. A better approach is to use LRTA* [59] with a constant

heuristic value such as zero. While not very informed, this satisfies the constraint of admissible

heuristic and therefore provides us with a suitable uninformed algorithm for comparisons [60].

It should be mentioned that current improvements of LRTA*[61, 62, 63], to the best of our

knowledge rely on the heuristic aspects of the algorithm (e.g., goal’s position) and make the

comparisons impossible.

The last possibility is to use Markov Decision Processes (MDPs) which directs navigation

by setting policies for all possible actions of all possible states. The generic MDP process needs

full disclosure of the environment to set best policies which are not applicable in unknown

environments. That is why we have to use reinforcement learning in the context of MDP to

learn policies with explorations [64]. Among several options, we use Q-Learning which is still

used for robot exploration [65, 66] next to other areas such as deep reinforcement learning for

solving games [67]. However, as we see in the results, since finding the best policies is a slow

process, these algorithms are not the best options where the purpose is to find a specific location

which limits the exploration aspect of finding policies. As a final note, ant colony optimization

(ACO) [68] is capable of solving the problem. However, since ACO techniques are intrinsically

multi-agent, they are not compatible with the proposed method.

In this section, we propose the Gridcell Navigational Model (GNM) to automate a general

robotic search solution in entirely unknown environments and unknown goal positions. The

search algorithm can be interpreted as a task-specific form of Artificial Neural Network (ANN)

which basically amounts to the random walk with a reduced probability to visit previously vis-

ited states. For doing this, first, we propose a grid cell computational model which is suitable

for a robotic agent. This model provides us with an effective mapping representation of the 2D

map that we receive from the SLAM infrastructure. Second, we jointly use the computational

model and a weight tuning mechanism to create an unsupervised learning assistant. If we con-

sider the working environment as a Graph, the learning of the proposed method is focused on

the nodes of the graph. This design is in contrast to the methods such as Q-Learning which fo-

cus on learning the links of the graphs. Since the number of the nodes in complex environments

is usually significantly smaller than the number of the links, the payoff is also great where we

can learn and avoid unwanted regions quickly.
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With the new neural representation, there is also a motivation to encode the environment

in fewer states. Consequently, the memory of GNM has a dynamic nature where we can use

smaller than ideal memory space which is a trade-off with algorithmic steps of the agent. This

attempt to create an effective search model with a grid representation of the topological map

is different from map refinement methods such as [69, 70, 71] where their main objective is to

create more accurate maps. Moreover, unlike frontier-based algorithms[72], we do not assume

the detection of the end goal from far away. In this regard, we address the problem in the most

general way without assumptions about the type/range of the sensors. The same assumption is

taken from other navigational algorithms mentioned previously. If such sensors were avaliable,

it would be possible to incorporate recognition of the target first or in the middle of the way and

then finding the solution would be much easier. Without such assumption, the frontier-based

algorithms are either incomplete or, with some modifications reduce to the more general cases

such as Backtrack.

While biological evidence inspires this process, our purpose is to provide a reliable path-

finding algorithm which may not necessarily reflect the real process of biological navigation.

Our experiments show superior results on algorithmic steps. In the cases where we do not limit

the memory, the memory usage is still competitive. We show that when memory is limited,

the method provides better algorithmic steps than IDDFS which has the best memory usage.

We demonstrate that even with smallest memory, the method converges to the solution. The

GNM can be used as an effective method for robot navigation. In the future, the method can be

combined with other path-planning solutions such as map refinement methods or frontier-based

algorithms. Similar to other path-planing algorithms, the GNM can potentially be introduced

as a practical solution for solving problems in other fields that have compatible search settings

such as routing in computer networks [73, 74, 75, 76].

2.2 GridCell Computational Model

The computational model of grid cells is the corresponding interactions of neurons in the

grid cell module, given the movements of an agent in an environment. In this regard, we present

the computational model of grid cells by defining three main components, 1) environment 2)
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Rule.No Actions b.status
1 Start search Start
2 Can dispatch Open
3 Can dispatch Visited
4 Cannot dispatch Close
5 End search End

Table 2.1: List of possible actions.

grid cell module 3) the interaction between environment and the grid cell module.

Environment - The SLAM infrastructures can provide an abstract and isolated representa-

tion of the real world. For this purpose, robots consider the smoothness of the path with the

constraints of speed, acceleration, the radius of turning circle and other criteria. The acquired

topological map can be transformed into a grid representation (for more information see Sec-

tion 5.1). Let’s define each grid as a two-dimensional lattice, E which provides a transformed

environment for a mobile agent, A. In this regard, the transformed environment has a higher

abstraction of the real world and is enough to help for the movements of A without worrying

about details of SLAM protocols.

Each transformed environment E, consists of several blocks bij , i = 0, . . . x − 1, j =

0, . . . , y − 1 in which the agent can roam freely. We consider block b as a square shape with

sides that are at least long enough to contain the A inside its borders. The blocks hold impor-

tant information about their status which is required to provide a searching environment for the

agent. In summary, these environments are standard lattices where all transitions from one state

into another state have the same value. The status of b, (b.status) provides a precondition for

the executability of an action and can take one of the forms as open, close, visited, start and

end. Accordingly, the acceptable actions of A are based on Table2.1.

Grid cell module - According to the biological evidence, grid cells are packed into modules

which are distributed into entorhinal cortex of medial temporal lobe [25, 26]. In this design, we

also use a similar paradigm, but in practice, only one module is allocated. Let us define a two-

dimensional lattice, M which represents a module that contains all of the required grid cells.

This module can be considered as an abstract and isolated representation of brain for A to help

it for navigation in E. The M consists of several cells cij , i = 0, . . .m − 1, j = 0, . . . , n − 1

which represent the same behavior of grid cells in brain. From here, the maximum number of
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cells in M is equal to m×n. The size of the M is based on a parameter h, which also indicates

the firing locations for each cell. This process is defined in the computational model.

Computational model - In our navigational system, for each block b of the E, there is a cell

c in M that fires. At this point, based on the movements of A, different forms of patterns can

be created in E. However, to follow the biological representation of grid cells in 2D space,

the computational model requires the creation of triangular firing patterns [77]. Therefore, our

goal is to fire c when agent resides in the edges of triangles (in E) which are responsible for

firing c. We denote Mdr as the horizontal distance from the beginning of the row and Mdc as

the vertical distance from the beginning of the column of the module M.

As mentioned, for each cell c (in M), it fires if A is in either one of three edges of the

triangle that are responsible for triggering that particular cell. To determine triangular edges in

E, we use dimensions of M and denote the maximum size ofMdr asm = 2h and the maximum

size of Mdc as n = 2h − 1 where h is any positive integer number. To create the triangular

pattern, we set the size of the first side of the triangle in E for each c to be 2h + 1. In this

way, the first two edges can easily be created from the horizontal perspective. The third edge is

created with a vertical distance of 2h− 1 and horizontal distance of h. All of the distances are

relative to the position of the agent in the E at the beginning of the search. This helps us to set

the agent in any block of the E for starting a search.

As an example, consider Figure 4.1. The mouse (agent), starts its search from s with

position (0,0) and wants to reach e in environment E. To this end, it uses module M which is

constructed based on h = 2. The value of h = 2 gives m = 2h = 4 and n = 2h − 1 = 3.

All of the blocks of E have to be covered by cells of M. We have marked two cells in M with

pink and red colors and represented exactly where in E they would fire. We also connected the

blocks with pink colors of E to show the triangular pattern of the cell with the pink mark. Each

cell in M creates a similar triangular pattern in the environment.

Based on the process as mentioned above, we present the firing pattern of each cell. The

purpose is to determine that when A takes horizontal and vertical distances from the position

s, which cells in M should fire. We denote Edr as the horizontal distance of A from position

of the s and Edc as the vertical distance from the position of the s. Accordingly, we present
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Figure 2.1: Each cell of M is responsible for firing in specific triangular edges of E. The change
of location in E makes cells in M to fire. In this example, two cells in M are highlighted and
it is shown where in E they would fire.

two equations. If the lower bound of Edc
n is an even number (e.g.,

⌊
Edc
n

⌋
= 2k). We have,


Mdr = Edr mod m

Mdc = Edc mod n

fire(c,Mdr ,Mdc)

(2.1)

in which, mod is the modulo operation and m,n indicate maximum lengths of row and column

of M. Subsequently, if the lower bound of Edc
n is an odd number (e.g.,

⌊
Edc
n

⌋
= 2k + 1), we

have,


Mdr = (Edr + h)mod m

Mdc = Edc mod n

fire(c,Mdr ,Mdc)

(2.2)

In the above equations, the function fire(c,Mdr ,Mdc) fires the cell c in M with locations

of Mdr and Mdc distances.

To clarify this process, observe examples of blocks b23 and b27 in Figure 4.1. Let’s deter-

mine the cell that is responsible for firing, when A visits b23. Considering (2.1),(2.2), we have,⌊
Edc
n

⌋
=
⌊

3
3

⌋
= 1 which is an odd number so we use (2.2). We have,
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
Mdr = (2 + 2) mod 4 = 0

Mdc = 3 mod 3 = 0

fire(c, 0, 0)

Accordingly, the cell c00 fires. By following the same trend, for b27, we have
⌊

7
3

⌋
= 2 and

use (2.1), therefore, the cell c21 fires.


Mdr = 2 mod 4 = 2

Mdc = 7 mod 3 = 1

fire(c, 2, 1)

This example shows how the computational model works. As we can see, in every block

of the environment, it is specified which cell in the module fires. However, this information

alone is not going to help the agent to find its way to the end block. For this purpose, we need

a decision-making structure over the firing patterns of the neurons.

2.3 Decision-Making Structure for Movements

To create our search model, the computational model is combined with a decision-making

structure in two different ways. 1) the ”GNM Basic,” which is a preliminary version that is used

for navigation and finding the exit. 2) the complete GNM algorithm which also can discover

closed paths and improves the decision-making of the agent. We use the term ”closed path” to

describe a scenario with no possibility of reaching the goal state.

2.3.1 GNM Basic

Based on the Hebbian learning rule [78], if the firing pattern of one neuron leads to the

firing of another neuron, synaptic contacts are strengthened between these neurons. We can use

this biological premise to guide the search forward. In this regard, we follow a modified version

of the Hebbian rule where instead of strengthening the connections between two fired neurons,

the weights of the fired neurons are increased. The Hebbian rule, next to having plausibility in

computational neuroscience, helps us to use Oja’s rule, which leads to the boundary of (0,1).

Modifying the Hebbian rule to change the weights of cells instead of the connections, helps us
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to learn from the nodes instead of connections. The number of nodes in complex environments

is usually significantly smaller than the number of links. This rule also applies to the defined

environment in the previous section. Therefore, by focusing on the nodes instead of the links,

we can learn and avoid unwanted regions quickly.

The goal is for agent A to go from start block to the end block. To reach the destination, A

should prevent those blocks that it has visited before unless that block is required to discover

unvisited blocks. We denote c.w as the corresponding weight for cell c. Let’s consider the

movement of A from b(1) as the first block to b(2) as the second block. If b(1) is responsible

for firing c(1) and if b(2) is responsible for firing c(2), the cells c(1) and c(2) fire together. Con-

sequently, both c(1).w and c(2).w are increased when A goes from b(1) to b(2). Based on the

above description, we present the weight tuning rule as follows,

c(1).w(t+ 1) = c(1).w(t) + ηc(1).w(t)c(2).w(t)

c(2).w(t+ 1) = c(2).w(t) + ηc(1).w(t)c(2).w(t)

(2.3)

in which η is the learning rate. Considering c(1), c(2) are two grid cells that fire for b(1), b(2)

when agent moves between two blocks, the (t+ 1) represents the next state of the variables.

For choosing between the next destination among its neighbors, A simply selects nodes

with lowest c.w, and in case of the equal weights, the equal probability of selection is given

to nominees (random tie-breaking). In this regard, A prevents being trapped into the loops. It

also avoids directions that previously did not give the satisfactory results but remains open to

choosing them in the future if the current direction gains more weights than its counterparts.

An illustration of this process is represented in Figure 4.4.

The search starts with b00, in which we have c00.w = 0. In step 1, A dispatches to b10, we

have c00.w = 1, c10.w = 1. In step 2, A dispatches to b20, we have c00.w = 1, c10.w =

2, c20.w = 1. In step 3, A dispatches to b21, we have c00.w = 1, c10.w = 2, c20.w =

2, c21.w = 1.In this step, let’s analyze the choices of A among blocks, b11, b22, b31, b20.

Since c20.w > c11.w, c22.w, c31.w, the b20 has the least priority and is not considered. Since

c11.w = c22.w = c31.w, then b11, b22, b31 have the same priority and one of them is chosen

randomly. Similarly, the search continues until agent reaches the end block. It should be noted
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Figure 2.2: Example of a navigational process using Hebbian learning rule. Moving between
two blocks strengthens their corresponding neurons.

that here we began the search with c00.w = 0, but it is recommended to initialize the beginning

node with η (here the value of 1) to count the starting node as once visited before the search

starts.

2.3.2 GNM

In an environment, all of the paths to the destination may be closed. In this case, A increases

the weights of the cells infinitely. Intuitively, an intelligent agent should finish the search when

there is no possibility of finding new ways. Accordingly, to solve this problem for A, the agent

should remember all the blocks of b.status = open. In the next, we extend the GNM Basic

to address this issue and further improve the search mechanism. To use the memory space

more efficiently, we only use one variable for both marking the viewed states and storing their

weights.

We expand the current weights of the cells as real numbers (R) with two parts as c.w.(p1|p2).

In c.w.(p1|p2), the p1 stands for the left side and p2 stands for the right side of the decimal.

Each cell c.w, can have either p1 or p2 or both of them. Considering this fact, (2.3) is exclu-

sively used to increase c.w.p1. As a result, η is only defined as a natural number (N).

We also define A.v as the viewing distance for agent A. It determines that in what distance,

A can view deeper into its neighbors. For instance, if A is in the block bij , with A.v = 1, A

can see b(i+1)(j), b(i−1)(j),b(i)(j+1) and b(i)(j−1). Similar to the search mechanism, we use
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Figure 2.3: The closed blocks are represented by cross-hatch patterns. Agent adds all of the
open blocks and in each visit of an open block reduces the value by 1.

weight tuning for viewing neighbors as well. In this case, because we are only allowed to

work with the right side of the decimal number, we determine a boundary for c.w.p2 which is

p2 ∈
(

0, 1

)
. To remain in this boundary, we use Oja’s rule [79] as a simple normalization

factor for weight tuning,

c(1).w.p2(t+ 1) = c(1).w.p2(t)+

η2 c
(2).w.p2(t)(c(1).w.p2(t)− c(1).w.p2(t)× c(2).w.p2(t))

c(2).w.p2(t+ 1) = c(2).w.p2(t)+

η2 c
(1).w.p2(t)(c(2).w.p2(t)− c(2).w.p2(t)× c(1).w.p2(t))

(2.4)

Similar to (2.3), η2 is the learning rate for c.w.p2 and is a decimal number (η is used for

c.w.p1). The (t + 1) represents the next state of the variables and c(1), c(2) are two grid cells

that fire for viewing from b(1) to b(2). Considering (2.4), the more views of c results to smaller

values for c.w.p2. The important factor in this equation is the initialization of c.w.p2 which

should follow the boundary of p2 ∈
(

0 1

)
.

To solve the problem of the closed path, we define A.counter which keeps track of the

possibility of blocks as b.status = open. When c.w.p2 is equal to the initialized value and

b.status = open, the agent A, by considering distance view A.v, increases A.counter by one

unit. When the agent moves to a block of b.status = open, it decreases A.counter by one
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Figure 2.4: A complete navigational example of GNM in the presence of closed blocks for
seeing the effects of smaller modules.

unit. When A.counter = 0, the agent should finish the search since there is no possibility of

finding new blocks. Therefore, as long as there is a viewed but un-visited block, the search

continues.

Figure 4.2 continues the previous example where the agent wants to go from s to e. How-

ever, this time there is no way to find an open path from s to e. The first block is the starting

block, so it is marked as the viewed, but it does not increase A.counter. In the next step,

b10, b01 are marked as viewed and A.counter increases by 2. The agent goes to b10, decreases

the counter and sees that the only unvisited block is b11. It marks the block as viewed, increases

A.counter and goes to the b11 and decreases A.counter. The only remaining place is b01, but

it is already marked as viewed so A.counter is not increased. A goes to the b01 and decreases

A.counter. At this stage, since A.counter = 0 the search is stopped.

In conclusion, note that in case of multiple environments, since the proposed method is

intrinsically unsupervised, we expect that different modules to be used for different environ-

ments. We can also reset the values of the module which we are not going to use immediately.

Therefore, while using the same values in similar environments probably leads to better results,

such improvements are not guaranteed especially in our search setting where environments are

completely unknown. Even though the basic design of the search mechanism is complete, we

can still further improve the search without overhead on the current infrastructure. In each step,
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the agent should decide between its neighbors. We define S, as the set of all the neighbors that

A can choose for its next move in each block b. In the first step, we give priorities to c.w.p1 in

which we only preserve those blocks with smallest p1. If S has only one member, the choice

is finished. Otherwise, we use c.w.p2 and only preserve those blocks with highest p2. Conse-

quently, the agent is pushed into the un-visited territory and increases the chance of finding the

exit.

2.4 Exploring with Small Modules

The proposed method works best when we have n ≥ x and m ≥ y which means M is at

least as big as E in both dimensions. When these conditions do not hold, we have to deal with

the problem of small modules which is akin to have limited recollection of the past locations.

To demonstrate this, Figure 3.5 provides a complete routing example with smaller modules in

the presence of closed blocks. Tracking the conditions of M when A goes from b00 to b30 is

similar to previous examples. In this state, A can go from b30 to either b40 or b20. The b40 has

not been visited before but cell c00 which is responsible for firing b40 has value 1 which means

it has been visited. Therefore, A instead of giving the priority to b40, gives the same priority to

b20, b40 and randomly chooses b20 instead.

As we can see, the increase of weights for c00 in b00 affected the weight of this cell for

b40 which are two different places with different conditions. This problem may affect the

completeness of the method. It also potentially compromises the second proposed method for

dealing with closed paths. To solve the first problem, we bring a degree of uncertainty into

the weights we have discussed so far. In this way, we make sure that when each place is not

represented by a particular cell, we do not over-rely on the results of the weights.

Suppose A wants to move from b(1) and it has to choose b(2) between its neighbors. To

choose the next destination, first we put the candidate neighbors in a set S. The order of the

elements in S have an important role in this process. We define function S.sort(c.w.{p1|p2})

which sorts the elements of S based on the parameter c.{p1|p2}. In the first step, with S.sort(c.w.p1),

the elements are sorted in an ascending order based on p1. In this way, we put the elements

with lowest p1 first which should have the highest chance to be selected as the next candidate.
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In the next step, we use S.sort(c.w.p2) to sort S again. This time, the cells which have similar

p1 values are sorted based on p2 values in a descending order.

In this regard, the first element of S is the one that should have the highest priority, and the

last element should have the lowest probability. If S has k elements, we define the probability

vector S.Pi = [S.P1, . . .S.Pk] which represents the probability of choosing each element.

Consequently, for the probability vector S.P , we devote the probabilities by Pareto Distribution

[80] which assigns the highest probability to P1 and lowest probability to Pk, as follows,

→ S.Pi =

 (1
i )
α i > 1

1 i ≤ 1
(2.5)

in which α is a positive parameter. When i = 1 the probability is one, and for i > 1 the

probability is less than one but not zero.

To choose the b(2), we start from the last element of S and go to the first element of S.

Each of these elements has a chance to be selected based on their S.Pi. In this way, based on

parameter α, the last element have lowest chance to be taken, and the first element is selected

with the probability of 1. It should be noted that because the S.Pis do not necessarily add up

to 1, S.P is not a probability distribution. However, this does not affect the method, because

all we need is a proper degree of uncertainty which is achieved with this method. Algorithm 2

provides an overall process for the navigation. As we can see, the initialization and usage of

the S.Pi is necessary only for small modules.

Proposition 1 The proposed method in Algorithm 1 is complete.

Proof: In a two-dimensional region, suppose that we have the agent A at a particular location

(x, y). We know that A moves randomly through the integer lattice E to any of the adjacent

vertices which is specified by probability set S.Pi = [S.P1, . . .S.Pk] at each time step τ . In the

proposed method, we choose next block based on the set S in which the blocks with smallest

c.w are more likely to be chosen. Another possibility is when size of the M is very small (for

instance it has only one neuron) or for other reasons like beginning of the search, c.ws have

equal values in which we have random tie-breaking.

Considering this fact, we do not include some of the directions at any particular point (x, y)
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Algorithm 1 Pseudocode for overall process of the navigational model.
// initialize module and get current state of the agent.
initialize(M)
current-state = get-state(A)
// (small modules only) provides randomness for selection.
S.Pi = [S.P1, . . .S.Pk]
// while current state is not equal to the goal, continue.
while (current-state != end-state)

// get neighbors of the current-state.
neighbors = select-neighbors(current-state)
// update c.w.p2 for affected cells in module.
update-views(M)
// prioritize neighbors based on c.w.p1.
neighbors = prioritize 1(neighbors)
// prioritize neighbors based on c.w.p2.
neighbors = prioritize 2(neighbors)
// choose the neighbor with highest priority.
current-state = choose-next-state(neighbors, S.Pi)
// update c.w.p1 for affected cells in module.
update-weights(M)

at time τ . However, in the worst case, in which A chooses a wrong path, the destination e is not

reached, and other directions also did not give proper results, A meets point (x, y) again at time

τ + ∆. In this step, the other directions which were not considered before, have a higher or

equal probability of being chosen. The iteration of this process, selects all possible directions

of (x, y), in different time intervals. Since the number of the blocks is limited and in the worst

case, all of the adjacent vertices of each block are selected, the method eventually selects all of

the possible open blocks which proves completeness of the method. �

The last problem that remains is the ability to recognize the closed paths which is not solved

by the above methods. To this end, we initialize A.counter with a ”time to live” (ttl) value.

The initialization of A.counter increases the longevity of search time based on requirements

of different scenarios. Note that limiting the search to ttl endangers the completeness of the

method. As a result, the ttl value should be set cautiously. If the value is unnecessarily big, it

may waste the agent’s time when there is no possibility of reaching the destination. If the value

is small, the agent may stop the search before trying all of the possible open blocks.
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D(x× y)a Pθ
b Size c h Memory d ttl P.v α

Scenario 1
DFS (10x10) 0 100 N/A ∞ N/A N/A N/A
BFS (10x10) 0 100 N/A ∞ N/A N/A N/A
LRTA* (10x10) 0 100 N/A ∞ N/A N/A N/A
Q-Learning (10x10) 0 100 N/A ∞ N/A N/A N/A
GNM (10x10) 0 100 6 100 ∞ 1 0

Scenario 2
DFS (10x10) 20 100 N/A ∞ N/A N/A N/A
BFS (10x10) 20 100 N/A ∞ N/A N/A N/A
LRTA* (10x10) 20 100 N/A ∞ N/A N/A N/A
Q-Learning (10x10) 20 100 N/A ∞ N/A N/A N/A
GNM (10x10) 20 100 6 100 ∞ 1 0

Scenario 3
DFS (50x50) 15 2500 N/A ∞ N/A N/A N/A
BFS (50x50) 15 2500 N/A ∞ N/A N/A N/A
LRTA* (50x50) 15 2500 N/A ∞ N/A N/A N/A
Q-Learning (50x50) 15 2500 N/A ∞ N/A N/A N/A
GNM (50x50) 15 2500 26 2500 ∞ 1 0

Scenario 4
DFS (100x100) 15 10000 N/A ∞ N/A N/A N/A
BFS (100x100) 15 10000 N/A ∞ N/A N/A N/A
LRTA* (100x100) 15 10000 N/A ∞ N/A N/A N/A
Q-Learning (100x100) 15 10000 N/A ∞ N/A N/A N/A
GNM (100x100) 15 10000 52 10000 ∞ 1 0

a- Maximum Dimensions of x and y. c- Maximum number of blocks
b- Probability of closed blocks). d- Maximum allowed memory

Table 2.2: Four different scenarios for the experiments.
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2.5 Results

In the simulations, we analyze the expeditions of A from block b(1).status = start to

block b(2).status = end. The result section is designed to compare the memory usage and

algorithmic steps of agents with comparable methods. These methods should assume unknown

environments, unknown goal positions and physicality of agents. The ruling out of the incom-

patible methods (see Introduction), puts GNM next to four other algorithms. Two of these

algorithms are prominent blind search methods from graph theory, DFS, and BFS with back-

tracking feature. We use the recursive feature of these algorithms to enable A to find its way to

the open blocks through the blocks that it already has visited.

The BFS in this regard is similar to Iterative Deepening Depth-First Search (IDDFS) al-

gorithm [58]. The DFS with backtracking feature is usually called Backtrack algorithm. We

also compare the method with Uninformed LRTA* and Q-Learning which are suitable for our

experiments. In LRTA*, we use 0 as a constant heuristic value. For Q-Learning, an efficient

implementation is used where there are no R matrices (rewards are presented on-sight). The

memory allocation of Q matrices also are not predetermined, and blocks take space when it is

required (on-sight).

The main comparisons are based on the results of 1000 experiments with the same environ-

ments for all algorithms. We choose a high number of experiments (1000) to divulge the pros

and cons of each method. In these experiments, we use the scenarios of Table 2.2 to analyze

the algorithms. Each feature represents various states including different locations of start and

end points. Unlike GNM where the maximum size of memory can be determined, IDDFS, Q-

Learning, Backtrack and LRTA* algorithms should have uncapped memories. These scenarios

are used for comparisons between these four algorithms with GNM. We will also use Table 2.2

to compare the results where the maximum memory is capped. More explanations about these

scenarios with capped memories are given in Section 2.5.4.

The features of each scenario are selected for different objectives. The scenario 1 has the

smallest environment without any closed blocks. The purpose of scenario 2 is to keep the

scales of scenario 1 but to add closed blocks randomly to the environments. In scenario 3, we

use larger environments which also have some probability of closed blocks. In the transition
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from scenario 1 to scenario 2, the probability of closed blocks have changed, but scales of the

environments are equal. In the transition from scenario 3 to scenario 4, the probability of closed

blocks remained intact, but the scales are changed. In scenario 4, we have environments with

scales of 100 × 100 which are the biggest environments we use in these experiments. The

probability of closed blocks is 15%, which is similar to scenario 3. Other parameters are the

same. It should be noted that the different scales (D(x × y)) of these environments is also of

interest.

Next to the main experiments which have general settings, we also provide four more sce-

narios to represent specific environments. For the proof of concept, we have two scenarios

which perform the real transformation between 3D environments into 2D topological maps

with SLAM methods. The first scenario is a combination of the Gazebo SLAM simulator

[81, 82], using Turtlebot 2.0 with the proposed method (SLAM-Sim). The second scenario is

a combination of the real world Turtlebot 2.0, with the proposed method in our office room,

where we provided enough roaming space (SLAM-Real). The main results for these scenarios

are for five experiments.

The other two scenarios are for environments that have specific shapes. The shapes that

we use are circular and logarithmic spiral. These two environments can provide an overall

representation for other shapes (e.g., Triangular, Oval, Hexagonal) as well. The circular mazes

feature the shapes that have narrower roaming areas compared to the logarithmic spiral, which

has wider roaming areas. The main results for these scenarios are for 1000 experiments. In the

following, for all of the experiments, there is at least one path from start to the end blocks. As

for the α value, it only needs to be set when the memory is capped. Another note is for the

value of P.v which as we mentioned can take any integer value starting with 1. However, for a

fair comparison with other methods, only the value 1 is used throughout the experiments. For

the SLAM scenarios, the viewing distance of the SLAM determines the value of A.v.

2.5.1 Environmental Setup

To implement the experimental environment for navigational algorithms (navigational soft-

ware), we use Java. The infrastructure of the program consists of five main components, the

main (Main.java) and commands (SimCommands
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.java) classes which control the overall flow of the program. The maze class (Maze.java) cre-

ates the maze rooms. The Block class (Block.java) which creates blocks used by the maze and

the GridCell class (GridCell.java) which creates blocks for the grid cells. The Maze class is

created with flexibility in mind. The constructor of the class takes four arguments. The first

two arguments for determining dimensions of the maze, the third to determine the probability

of each block to be closed (for constructing the walls) and the fourth to set a seed value for

random numbers (required for our simulations). As a result, in the main class, we can specify

the dimensions of the maze, the probability of closed blocks and provide exact environments

for all algorithms. For the navigation itself, we have created multiple classes which are in direct

connection to the infrastructure classes. These classes implement the navigational algorithms

to lead the agent from a start position to an end position.

The Block class has important information for each block. These values include dimensions

of each block, required values for information about the agent in each block, and the status of

the block. The status value is useful to standardize the input of the program. In our program,

we demonstrate each block as:

• Status 0: which corresponds with character ’#’ and means those blocks which are open.

• Status 1: which corresponds with character ’*’ and means those blocks which are closed.

• Status 2: which corresponds with character ’s’ and means those blocks which are starting

points.

• Status 3: which corresponds with character ’e’ and means those blocks which are ending

points.

• Status 4: which corresponds with character ’.’ and means those blocks which have been

visited in the search.

• Status 5: which corresponds with character ’-’ and means those blocks which have been

viewed before.

We can use this infrastructure to create the experiments for defined scenarios in Table 2. For

other scenarios, the ability to read from the text files is added to the program. In this regard,
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(a) Circular Lines (b) Circular Maze

(c) Log-Spiral Line (d) Log-Spiral Maze

Figure 2.5: A transformation of images, created with Turtle package in python (a,c) into our
input text file for navigational software (b,d). The image shows that the blocks of the input text
file are randomly opened (change ’*’ chars to ’#’ chars) to connect all of the open blocks to
each other.

the environments from images can be converted and imported into the program. We use this

mechanism to create and import mazes with specific shapes. For this purpose, the output of the

maze generators is converted to the standard assumptions of the block status explained above.

For instance, a closed block in the maze should be presented by ’*’ char and the open blocks

should be presented by ’#’ char.

In Figure 2.5, we see the process of creating input data for our program. In this process,

first, we created Circular and Log-Spiral lines using Turtle package in python [83]. In the next

step, we converted the images to text formats with an image to text art converter script. In our

script, a list of chars represent greyscale values from darkest to brightest. For conversion, the

image will be divided into rectangles. In the end, by setting the right colors of the rectangles

to the correct text values (for instance, setting black rectangles to ’*’ and white rectangles to

’#’) we can create an input data which is readable by our program. In the Circular maze, we

randomly changed some ’*’ blocks to ’#’ blocks. In this way, we could connect all of the open

blocks to each other. Also, for Log-Spiral, by manually changing some ’#’ blocks to ’*’, we

made the lines thicker towards the tail of the Log-Spiral line.

For the proof of concept, we also combine SLAM with the proposed method. In this regard,
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(a) (b)

(c) (d)

Figure 2.6: As the robot moves between two locations, with SLAM, it can update its view of the
Real-World (a,c). Both views can be converted into our input text file for navigational software
(b,d). The image shows the update of the map from moving the SLAM robot.

we use a very basic approach which is compatible with our navigational software. In practice,

more advanced methods such as [84, 85, 86] should be used to provide a mapping (lattice)

representation of the real environment. The scenarios 5 and 6 are done with the help of Turtle-

Bot 2.0 toolsets3. The same tools are used for connecting the simulation environments and the

real world TurtleBot 2.0. This is done by ROS toolkit for Ubuntu operating system. With this

setup, we can get the SLAM map from the TurtleBot and also guide the robot into our desired

directions with ’u’, ’i’, ’o’, ’j’, ’k’, ’l’, ’m’, ’,’, ’.’, keyboard maps. The process is the same for

both 3D simulator and the real world TurtleBot.

For navigation, we use four steps, 1- we receive the information of the environment from

TurtleBot in the form of an image. 2- we use the image-to-text art converter script, to feed the

image as an input to our navigational software. 3- we take several steps with the navigational

software. 4 - we move the robot remotely with keyboard maps to the current destination that

navigational software is pointing. To perform the experiments, we continuously update the

map of navigational software from TurtleBot and receive the next step from the navigational

software to move the TurtleBot until we find the destination. A sample of this conversion is

shown in Figure 2.6. As we can see, SLAM updates its view of the environment when the

robot moves through a certain path. It also shows the respective conversions of the SLAM

environment to the input file of the navigational software. The same process is performed for

3TurtleBot and Turtle package in python are two different toolsets and are not related to each otehr.
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the Gazebo SLAM simulator. All of these conversions and respective movements are done with

the supervision of a person and are compatible with the design of our navigational software.

As long as the environments are kept simple, such conversions are feasible. In more complex

environments, better solutions should be used.

2.5.2 Test of Speed

For analyzing test of speed, each step allocates one time unit. The number of steps that the

agent has to take from start state to the end state determines the speed of the agent. Table 3.1

provides the actual speed performance of our method and the other algorithms considering sce-

narios 1-4. In the first scenario, for mean values, GNM is at least 2.67 times better than LRTA*.

This is followed by 5.89, 7.78 and 44.67 times better speed than Backtrack, Q-Learning, and

IDDFS. The same pattern continues for standard deviation where GNM is at least 3.16 times

less than LRTA* and at most 44.67 times less than IDDFS. For the maximum value, the LRTA*

provided a higher number than Backtrack. The GNM is at least 3.07 better than Backtrack and

at most 58.43 times better than IDDFS.

In the second scenario, for mean values, GNM is at least 3.05 times better than LRTA*.

This is followed by 4.74, 8.45, and 30.57 folds better speed than Backtrack, Q-Learning, and

IDDFS. For the standard deviation, GNM is at least 3.79 times less than Backtrack, and at most,

40.08 times less than IDDFS. For the maximum value, the LRTA* again has a higher value than

Backtrack. The GNM is at least 2.94 better than Backtrack and at most 74.48 times better than

IDDFS.

In scenario 3, the dimensions of the environments are much bigger than previous scenarios

from 10 × 10 up to 50 × 50. The probability of each block to be closed is 15%, which is

comparatively less than the probability of closed blocks in scenario 2. With the expansion of

the environments, the IDDFS algorithm performed worse and became much slower compared

to its results from previous scenarios. In this scenario, for mean values, GNM is in order,

3.65, 5.73, 9.00, and 139.05 times better than LRTA*, Backtrack, Q-Learning, and IDDFS. For

standard deviation, GNM has at least 4.20 times less value than Backtrack and at most, 367.54

times less value than IDDFS. Respectively, for maximum value, GNM is at least 3.11 times

better than Backtrack and most 560.21 better than IDDFS.
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Network Scenario1 Scenario2 Scenario3 Scenraio4

M
ea

n

GNM 28 35 746 4981
LRTA* 75 107 2723 19196
Backtrack 165 166 4275 18066
QLearning 218 296 6715 55416
IDDFS 1251 1070 103738 8282716

ST
D

GNM 25 34 893 3774
LRTA* 79 202 4936 25235
Backtrack 103 129 3756 12123
QLearning 257 422 11544 52781
IDDFS 1559 1363 328214 12430392

M
ax

GNM 143 174 4725 26318
LRTA* 973 3580 44995 251570
Backtrack 440 513 14699 58029
QLearning 2228 3803 129144 448082
IDDFS 8356 12960 2647013 64535862

M
od

e

GNM 2/147 2/127 2/36 1720/3
LRTA* 2/52 2/61 4/25 6112/2
Backtrack 2/26 7/40 7/32 14086/2
QLearning 2/27 2/28 2/23 16440/2
IDDFS 27/84 27/55 27/120 1126435/2

Table 2.3: Mean, standard deviation (STD), max and mode results for the test of algorithmic
steps on scenarios 1,2,3,4.

In scenario 4, the IDDFS algorithm continued the trend, and with the bigger environments

became much slower compared to other algorithms. An interesting observation is that Back-

track for the first time shows better results than LRTA*. The Q-Learning provided the worst

results which show its slow learning process in bigger environments. In scenario 4, for mean

values, GNM is in order, 9.55, 2.20, 17.02, and 2452.15 times better than Backtrack, LRTA*, Q-

Learning, and IDDFS. For standard deviation, GNM is in order 3.21, 6.68, 13.98, and 3293.69

times less than Backtrack, LRTA*, Q-Learning, and IDDFS. Respectively, for the maximum

value, GNM has in order 9.55, 2.20, 17.02, and 2452.15 times better values compared to the

Backtrack, LRTA*, Q-Learning, and IDDFS.

For the mode, each cell has two values. The left side represents the mode value, and the

right side represents the number mode repetition in 1000 trials. As we can see, with bigger

scenarios, the number of repeats for each mode value is decreased dramatically. This is more

or less accurate for all algorithms. The GNM, started, with a mode of 2 steps for scenario 1,

which is repeated 147 times. For scenario 4, the mode is 1720 with only 3 repetitions. LRTA*

started with a mode of 2 steps for scenario 1 with repeat value of 52 and ended with a mode of
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Network Circular Log-Spiral SLAM-Sim SLAM-Real

M
ea

n

GNM 5140 7801 117 25
LRTA* 69130 191613 735 45
Backtrack 14125 17982 1052 182
QLearning 159485 328399 1044 207
IDDFS 2826254 13774969 9201 874

ST
D

GNM 4870 8272 85 10
LRTA* 100981 475425 417 50
Backtrack 9497 13942 750 117
QLearning 190104 649376 425 121
IDDFS 3406973 18754080 7107 908

M
ax

GNM 27614 53517 263 40
LRTA* 1009049 4669480 1337 142
Backtrack 37928 50749 1947 299
QLearning 1464748 5033045 1624 340
IDDFS 19867679 100916108 22759 2527

M
od

e

GNM 23532/12 899/6 N/A 24/2
LRTA* 12026/12 220/6 N/A 16/2
Backtrack 1820/12 36681/7 N/A 39/2
QLearning 104830/12 2451/6 N/A 340/2
IDDFS 874786/12 183323/6 N/A 881/2

Table 2.4: Mean, standard deviation (STD), max and mode results of extra scenarios for the
test of algorithmic steps.

6112 steps for scenario 4 with a repeat value of 2. Backtrack started with a mode of 2 steps for

scenario 1 with repeat value of 26 and ended with a mode of 14086 steps for scenario 4 with

repeat value of 2. The IDDFS started with a mode value of 27 and a repeat value of 84. It ended

with a mode value of 1126435 and a repeat value of 2.

We further analyze the algorithms with other four environments in Table 2.4. For the circu-

lar environment ( Figure 2.5.b) the mean value is up to 3.65 fold better than IDDFS and down

to 2.74 fold better than Backtrack. For standard deviation, GNM is up to 699.58 times less

than IDDFS and down 1.95 times less than Backtrack. The maximum value of GNM is up to

719.47 fold better than IDDFS and down to 1.37 fold better than Backtrack. For the Log-Spiral

environment ( Figure 2.5.d), the mean value is up to 1765.79 fold better than IDDFS and down

to 2.30 fold better than Backtrack. For standard deviation, GNM is up to 2267.17 times less

than IDDFS and down 1.68 times less than Backtrack. Respectively, for the maximum value,

GNM is up to 1885.68 times better than IDDFS and down 0.94 times better than Backtrack.

For the test of speed in SLAM environments, we use the number of steps in navigational

software. In this way, we provide an accurate number for the algorithmic steps and also prevent

human intervention for the calculations. For the SLAM-Sim, for the mean values, the GNM
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is in order, 6.28, 8.99, 8.92, and 78.64 folds better than LRTA*, Backtrack, Q-Learning, and

IDDFS. For the standard deviation, the GNM is at least 4.90 times less than LRTA* and at

most 83.61 times less than IDDFS. For the maximum values, the GNM is in order, 5.08, 7.40,

6.17, and 86.53 folds better than LRTA*, Backtrack, Q-Learning, and IDDFS. There was no

mode for the SLAM-Sim, which is normal because we only had 5 number of experiments. For

SLAM-Real, the mean value is at least 1.8 fold better than LRTA* and at most 34.96 fold better

than IDDFS. For the standard deviation, GNM is at least 5 fold smaller than LRTA* and at

most 90.8 fold smaller than IDDFS. For the maximum values, GNM is at least 3.55 fold better

than LRTA* and at most 63.17 fold better than IDDFS. Here the algorithms have mode values

which is expected because the environment was relatively smaller than the SLAM-Sim.

Overall the results here more or less confirm our previous results. Similar to Table 3.1,

IDDFS is markedly slower than other algorithms. In the bigger environments, the difference

from our algorithm with others become more apparent. As we have seen, with the less roam-

ing environment, the results of the Backtrack algorithm improves considerably and lessens its

distance to the GNM. The reason is that Backtrack is biased toward narrower environments but

does not perform as well in more general settings.

2.5.3 Memory Usage

For the memory comparisons, the first step is fair assumptions of memory allocations for

all algorithms. To this end, efficient implementations of the algorithms are required. In GNM,

we consider that whenever a cell has been fired, one memory unit should be dedicated to that

cell. As described before, the firing occurs for two purposes, 1) dispatch to another place 2)

viewing another place. To simplify the process, we consider the memory that is used for either

or both of the two options to have the same cost. This premise is an acceptable assumption

because we need only one variable for implementing them. Comparatively, all of the variables

of LRTA*, Backtrack, Q-Learning and IDDFS algorithms for marking and storing the places or

policies are on-sight, which helped us to preserve compatibility and fairness between different

algorithms.

In this regard, the memory usage of GNM is counted for the expansion of M. However,

the memory usage of LRTA*, Backtrack, and IDDFS algorithms are for the expansion of E.
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Network Scenario1 Scenario2 Scenario3 Scenraio4

M
ea

n

GNM 45 37 754 4610
LRTA* 48 37 749 4593
Backtrack 103 68 1673 7942
QLearning 73 61 1297 10144
IDDFS 37 30 250 4182

ST
D

GNM 30 24 712 2211
LRTA* 30 24 693 2306
Backtrack 57 42 1254 4342
QLearning 49 42 1429 4479
IDDFS 31 24 516 2582

M
ax

GNM 100 81 2129 8505
LRTA* 99 79 2123 8512
Backtrack 198 145 3749 15139
QLearning 163 147 4404 17954
IDDFS 117 123 2358 10525

M
od

e

GNM 6/124 6/64 15/25 2126/3
LRTA* 2/52 2/61 4/25 6769/3
Backtrack 120/33 8/42 8/34 13014/3
QLearning 2/28 2/29 2/23 11852/2
IDDFS 9/147 8/91 9/109 2136/3

Table 2.5: Mean, standard deviation (STD), max and mode results for for the test of memory
on scenarios 1,2,3,4.

Backtrack and IDDFS also need the memory required to preserve the longest path for the recur-

siveness. For Q-Learning, the unit cost is for blocks of Q matrix, which as mentioned, reserves

memory when required. For analysis of the allocated memory, observe Table 2.5. The struc-

ture is similar to speed analysis. For scenarios 1-4, in each 1000 experiments, a snapshot is

presented which provides the overall results to that point. As it is exhibited, in scenario 1, the

Backtrack algorithm always consumed the highest memory for mean, standard deviation, and

maximum values, which is followed by Q-Learning. Among other algorithms, IDDFS has the

smallest footage of using memory. This outcome is followed by GNM, which takes the second

place and closely followed by LRTA*.

In scenario 2, the memory usage of IDDFS is similar to scenario 1 and less than other

algorithms. The GNM and LRTA* in this scenario have close results. The Backtrack is in the

last place. However, it could slightly compensate and reduce its distance from other algorithms,

while Q-Learning became worse. For the maximum value, Backtrack is slightly better than

Q-Learning. In scenario 3, with the increase of scales of the environments, it should not be

surprising that memory is also increased for all algorithms. However, the increase of memory
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Network Circular Log-Spiral SLAM-Sim SLAM-Real

M
ea

n

GNM 2893 3936 151 36
LRTA* 2965 3931 241 29
Backtrack 5246 6630 374 74
QLearning 8732 12072 368 71
IDDFS 1854 2885 140 26

ST
D

GNM 1625 2283 84 17
LRTA* 1571 2277 53 22
Backtrack 2852 3874 194 46
QLearning 4910 7352 124 25
IDDFS 1258 2186 113 15

M
ax

GNM 5741 7835 277 66
LRTA* 5737 7835 308 69
Backtrack 10457 13334 561 133
QLearning 17257 25275 520 87
IDDFS 5214 9229 359 49

M
od

e

GNM 5649/12 2535/7 N/A 30/2
LRTA* 1429/12 2090/8 N/A 16/2
Backtrack 1153/12 5944/6 N/A 20/2
QLearning 11972/12 1267/6 N/A 84/2
IDDFS 347/13 763/7 N/A 30/2

Table 2.6: Mean, standard deviation (STD), max and mode results of extra scenarios for the
test of memory.

for IDDFS is less than others. Similar to scenario 2, the results between LRTA* and GNM is

close where LRTA* slightly edges GNM. The distance between Backtrack, Q-Learning, and

other algorithms is increased while Q-Learning performed better than scenario 2. In scenario

4, IDDFS unsurprisingly is more efficient. For the LRTA* and GNM, this scenario is similar

to scenario 3. The surprising element is Q-Learning performing worse than Backtrack, which

supports the results of speed analysis for scenario 4. This outcome is due to the severity of the

slow learning process of Q-Learning in bigger environments.

The results of the other four scenarios is presented in Table 2.6. As it is shown, for the Cir-

cular and Log-Spiral scenarios, the Q-Learning algorithm almost always consumed the highest

memory, which is followed by Backtrack. For GNM and LRTA*, in Circular environment,

GNM performed slightly better, and for Log-Spiral, LRTA* showed slightly better results. In

the SLAM-Sim and SLAM-Real environments, Q-Learning and Backtrack performed almost

similarly. Respectively, GNM and LRTA* also provided close results. Overall, by considering

all of the scenarios, IDDFS has the smallest footage of using memory. This outcome is fol-

lowed by GNM and LRTA* which are almost similar and take the second place. Q-Learning

and Backtrack also show similarities, but in general, Backtrack consumed less memory. Note
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Figure 2.7: Scenarios 5,6,7,8 - dynamic memory of GNM.

that in these experiments, SLAM-Sim had no mode values. This is expected because we only

performed five experiments. For SLAM-Real, because the size of the environments was rela-

tively smaller, even with five number of experiments we had mode values.

2.5.4 Scenarios 5,6,7,8 - Dynamic Memory

We know that the dynamic nature of GNM, allows us to cap the maximum number of avail-

able memory for the search. Previously, we compared GNM with available search algorithms

where each place had a specific cell which would fire only for that place. In this section, we

compared GNM for scenarios where the maximum size of the modules is limited to an upper

bound. These results are noteworthy because while LRTA* and GNM, were competitive on

memory usage, the IDDFS took the lead. The IDDFS however, is impractically slow. In these

experiments, we focus on the dynamic nature of the memory in GNM and show that even on

memory usage, GNM can provide a better solution.

For these experiments, we use the same scenarios which are defined in Table 2.2. The focus

of these experiments is the value of h, which is used to cap the maximum available memory.

The method described in Section 4.2.3 is also added to provide a degree of uncertainty for
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decisions. Figure 2.7 illustrates the effects of memory caps for different environments based

on different h values. As we can see, the value of h, which determines the maximum available

memory is increased exponentially. The GNM, consumes the available memory until there is

no need for more memory space.

In our experiments, even with the lowest memory cap, the speed is 12.38 fold (scenario 1) to

more than 175.80 fold (scenario 2) better than IDDFS in mean values. This apparent gap shows

that even with extreme cases of lack of the memory, GNM beats its closest rival. To analyze the

persistence of the proposed method, we compare the increase of the speed to the increase of the

memory. In scenario 1, with h = 8, the algorithm converges to its highest required memory. In

this case, the memory usage is an increase from 12 (h = 2) to 240 (h = 8). The memory has

increased 20 times, however, the maximum speed which could be gained was only 1.62 times

better. For the second scenario, the increase of the memory is the same, and the maximum

speed which could be gained was only 1.63 times better.

The similar pattern is repeated more or less for other scenarios as well. For the third sce-

nario, the memory is increased from 12 (h = 2) to 2256 (h = 24) which is an increase of

188 times more memory space. Respectively, the increase of the space is only 1.85 times. For

the fourth scenario, the memory is increased from 12 (h = 2) to 4032 (h = 32) which is an

increase of 336 times more memory space. Respectively, the increase of the space is only 1.72

times. These outcomes show the persistence of the GNM, which provides a reasonable speed

despite the lack of memory. While these results are encouraging, to achieve the highest speed,

the availability of the memory is still necessary.
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Chapter 3

Automated Supervised Learning

3.1 Greedy AutoAugment

Data augmentation is an important technique that can help to improve the performance of

various data analysis algorithms in the presence of insufficient data. For instance, a common

practice in medical applications is class-specific data augmentation. In this case, gathering

sufficient labeled data to train a deep neural network model is impractical [87, 88]. This is a

classic type of long-tail distribution data, which is also prevalent in natural images [89, 90] and

can be addressed by data augmentation methods [91]. Other important usages of data augmen-

tation methods include unsupervised learning [92, 93, 94, 95] and in the improved training of

generative adversarial networks [96, 97, 98, 99]. In this section, we focus on the problem of

data augmentation for image classification . The main goal is to increase the accuracy of image

classification by applying the right augmentation techniques on training data.

Data augmentation in image classification is directly related to image-based object trans-

formations. In the classification process, it is desirable to take into account a variety of such

transformations to improve image classification. In other words, we want the perception of an

object to be invariant to the properties such as scale, brightness, rotation, and viewing angle.

Estimating important object transformations and applying them in the learning process is a crit-

ical problem in Artificial Neural Networks (ANNs). For instance, it is desirable that a network,

after learning an object from its original form, recognizes the same object in a modified loca-

tion where its scale, rotation, and other properties have been changed. Currently, there are two

ways to deal with this problem. First, by designing network architectures that can inherently

be invariant to important image-based object transformations. Second, with the use of data

augmentation methods.
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The most basic network which considers the transformations of the input data is the Con-

volutional Neural Network (CNN). The CNN architecture, with the concept of convolutional

layers, tries to be translation invariant [100, 101]. This network was very successful in its

approach and has been used as a basis for the development of more advanced architectures

[102, 103, 104]. Another example of this approach is CapsuleNet, which tries to find the rele-

vant pose information automatically [105, 106, 107]. While the design of CapsuleNet improved

the results of basic datasets [108], unfortunately, it could not improve the accuracy for more

complicated datasets such as ImageNet [109].

The second method for considering different transformations of the input data is to use data

augmentation. In this method, the objective is to achieve invariance by applying different image

transformations such as geometry transformation, kernel filtering, color transformation, image

mixing, random erasing [110], etc. The main advantage of this method is simplicity and sup-

porting all forms of ANN architectures. Additionally, there is a possibility to use transformation

techniques in which current ANN architectures do not support.

One of the most important factors for data augmentation techniques is the constraint on the

number of possibilities for applying augmentation techniques. In this regard, only a subset of

the possible techniques can be used for data augmentation. Therefore, a search mechanism is

needed to find the best possible techniques. The most common method to find the best data

augmentation techniques is to find them manually [101, 111, 112] which needs prior knowl-

edge and expertise. Recently, the AutoAugment [113] is proposed to automate the process of

finding the best augmentations. In this method, finding the augmentation policy is reduced

to a discrete search problem over various augmentation techniques, each having hyperparam-

eters of the probability of applying the operation and the magnitude to which the operation

is applied. Because of the computational requirements for searching with AutoAugment, this

method relies on transferability of the augmentation techniques. This means that the policies

that are found with one dataset and architecture can be used for similar datasets with different

architectures [113].

Using the same policies which are found for a specific scenario and trying to use them for

others is risky and may lead to worse results (see the Results). To solve this problem, it is

desired to perform the search more effectively, so that searching can be performed for each
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dataset separately. In this section, we address the problem of how to effectively search for

the most appropriate data augmentation techniques and apply them to training data. For this

purpose, we propose Greedy AutoAugment. In this method, we develop a greedy-based search

algorithm, which reduces the searching space from the exponential growth of possible trials

to linear growth. With the proposed method, instead of searching for all possible outcomes,

the search expands dynamically, and for each sub-policy, it is pushed towards trials with the

best outcomes. To achieve this goal, we search among sub-policies with only two elements,

the techniques of operations and the magnitudes for those techniques. The probability is ap-

plied after the search is finished with a methodology that gives weights to better policies. Our

experimental results show that this approach is effective in providing higher accuracies. The

Greedy AutoAugment, on four datasets, Tiny ImageNet, CIFAR-10, CIFAR-100, and SVHN,

could reliably provide higher accuracies while using 360 times fewer computational resources.

3.1.1 Data Augmentation

Data augmentation refers to the practice of applying a series of standard transformations

[114, 110, 115] to the given image data. In order to use these transformations, for each epoch

in the training phase, a percentage of the data receives one or a combination of these techniques.

(a) ImageNet (b) CIFAR-100

Figure 3.1: Random data augmentation techniques applied to samples from two real datasets.
Each row receives the same augmentation technique with different magnitudes.

The effect of applying data augmentations to the images from ImageNet and CIFAR-100

datasets are shown in Figure 3.1. In each row, one specific combination of augmentation tech-

niques with different magnitudes is chosen randomly and is applied to the columns of images.

As we can see, in some instances, the change is not noticeable, and in others, the change could
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completely change the original data. The goal is to discard combinations that would decrease

the generalization ability of the network and select the best combinations that would increase

it.

The augmentation techniques in their simplest form have been used in prominent artificial

neural networks [101, 111, 112]. These networks mostly used a trial and error approach to

manually find the best combinations. A more advanced approach is proposed in [113], which

automates the searching process for finding the best augmentation techniques. There are also

methods that do not perform a real search to find the best augmentations. Instead, these methods

are created to be resilient against randomly selected augmentations [116, 117].

Sample a strategy S 
(Operation type, probability 

and magnitude

Train a child network with 
strategy S to get validation 

accuracy R

Use R to update the 
controller

The controller (RNN) Train

Figure 3.2: The general scheme of AutoAugment algorithm.

Table 3.1: Augmentation techniques with their descriptions which are used in GAutoAugment.

Technique Description Technique Description

1. FlipLR Filliping the image along the vertical axis. 11. Contrast Changing the contrast of the image.

2. FlipUD Filliping the image along the horizontal axis. 12. Brightness Adjusting the brightness of the image.

3. AutoContrast Increasing the contrast of the image. 13. Sharpness Adjusting the sharpness of the image.

4. Equalize Equalizing the histogram of the image. 14. ShearX Sheering the image in horizontal axis.

5. Invert Inverting the color of the pixels in the image. 15. ShearY Sheering the image in vertical axis.

6. Rotate Rotating the image by certain degrees. 16. TranslateX Translating the image in horizontal axis.

7. Posterize Redicing the number of Bits for each pixel. 17. TranslateY Translating the image in vertical axis.

8. CropBilinear Croping with bilinear interpolation strategy. 18. Cutout Changing a random square patch of the image to gray pixels.

9. Solarize Inverting the color of all the pixels above a certain threshold. 19. Blur Blurring the image.

10. Color Changing the color balance of the image. 20. Smooth Smoothing the image(Low-pass filtering).

The searching process of the AutoAugment method heavily relies on NasNet [118] as a

controller to direct the search. The controller predicts a decision by using a one-layer LSTM,

which contains 100 hidden units and 30 units softmax predictions. The prediction is then fed

into the next step as an embedding. In the end, the controller uses 30 softmax predictions in or-

der to select the best policies. The LSTM should be in direct contact with some child networks
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to train its own network. The child networks are usually a subset of the training networks. The

accuracy updates from child networks are used to update the main LSTM network. To use the

accuracies, a policy gradient method called Proximal Policy Optimization algorithm (PPO) is

employed. The whole process is shown in Figure 3.2. The strategies (policies) have three el-

ements 1- data augmentation techniques, 2- the probability of applying each operation, and 3-

the magnitude of the operation. The policy gradient receives the values of reward R to update

the controller. The LSTM uses the softmax predictions of its trained networks to select the best

polices. In the end, the best policies are used to train the actual network.

3.1.2 Searching Environment

To perform data augmentation on image data, we use policies. Let us define policy function

f̂i that may include one or more sub-policy functions. The sub-policy is used as the function-

ality of applying augmentation techniques on image data. Each sub-policy has three essential

elements, 1- the augmentation technique, 2- the magnitude of the operation, and 3- the proba-

bility of applying the operation. For a complete list of augmentation techniques that we use in

this section, see Table 3.1. The magnitude is the degree in which an operation is applied. For

instance, in the rotate augmentation, the magnitude specifies how much we should rotate an

image. The third element specifies the probability of applying the augmentation on the image.

We define each image as a multivariate data point x. For augmentation on image data we

use f̂(x) → x′ which transforms the original image x into the augmented image x′. The f̂i is

separated into one or a multiple number of sub-policies. The sub-policy function is denoted

by f . Each sub-policy receives three input values, f(t, p,m), where the t, p, and m variables

represent the augmentation technique, probability, and magnitude. The search space is defined

as all of the possible combinations of concatenated sub-policies. The search space for a single

f , includes all of the possible combinations of discrete values of t, p and m. Accordingly, the

search space for any f is (tn × pn ×mn) where tn, pn, and mn are the maximum values for

t, p, and m.

To represent the search space, we can divide it into different layers. A search space that

has only one layer includes an augmentation function f̂i that has only one f as its sub-policy.

We know that the search space for sub-policy f has a maximum number of possible elements
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of (tn × pn ×mn) . The search space with two layers is defined for f̂is that can concatenate

two fs as their sub-policies. Respectively, the maximum number of possible elements for the

search space expands to (tn × pn ×mn)2. We generalize the number of layers for any search

space with the variable `. The ` is a discreet integer value such that ` ≥ 1. The search space

is defined as concatenated layers, with a maximum size of (tn × pn ×mn)`, where ` indicates

the number of allowed sub-policies for f̂i.

The important point in the defined searching environment is that the search space expands

exponentially. Particularly, given base (tn × pn ×mn) the possible number of trials increases

exponentially with the increase of `. To solve this problem, we transform the base of the search

space into a two-variable setup. Among the three variables, t, p, and m in the sub-policies, we

do not search for the variable p and fixate its value to one. Instead of searching for the best

probability values among sub-policies, we apply the probability with a methodology that gives

more weights to the policies with better accuracy results. This simple design decision helps us

to reduce the computational requirements of the searching algorithm considerably.

Even with reducing the number of variables for the base, the growth of the number of

possible trials is still exponential. To tackle this problem, when going from one layer to the

other (concatenating two sub-policies), we use a greedy search. To use the greedy search, we

replace the reinforcement learning in AutoAugment with Breadth-First Search, which is an

explorer for tree-based data structures. Accordingly, the Greedy Breadth-First Search is used

to explore the defined layered environment. The new number of the possibilities is defined as

follows,

k∑
1

(tn ×mn) (3.1)

In this notation, k is an arbitrary integer number, which indicates the number of iterations

the algorithm is allowed to perform in the search. The higher values of the k, allow algorithm

to perform more trials, which may lead to higher accuracy. Therefore, the value of k should be

set based on the available computational resources. The greedy approach helps us to convert

the exponential growth of base (tn× pn×mn) with ` to linear growth of base (tn×mn) times

the value of k which allows f̂i to potentially encompass many layers. For numerical values, we
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follow the discretization setup, which is introduced in AutoAugment. The number of augmen-

tation techniques that we use in this section is tn = 20. The discretization of probabilities is

with pn = 11 values with uniform space, and the discretization of magnitudes is with mn = 10

values with uniform space.

3.1.3 Greedy AutoAugment

Training with the Greedy AutoAugment algorithm includes two main steps. The first step

is to search and find the best f̂is. The second step is to apply the f̂is to X and increase the

generalization ability of the network. To perform the greedy search, we use Algorithm 2.

The input of the searching process is X, and the output is (f̂1, . . . , f̂d), which are the best

augmentation policies found in the search. The number of iterations of the algorithm needs to

be at least equal to one (k ≥ 1).

The lines 1-10 are for k = 1. The Breadth-First Search takes place in lines 1,2, where we go

through all of the augmentation techniques and their respective magnitudes. In line 3, we use

fixed value of 1 for the probability. In line 4, X is divided into two parts Xtr,Xte for training

and testing. In line 5, the sub-policy is considered as a complete policy. In line 6, sub-policy

f(t,p,m) are applied on Xtr. The classification of Xte is determined in line 7 and the score of

the sub-policy and its respective score is stored. Line 9 is for the greedy part of the algorithm,

where the policy with the highest score is stored to act as a base sub-policy for more iterations.

For the next step (lines 11-23) the algorithm is for iterations with k > 1. As it is shown

in line 11, the algorithm repeats its steps until the counter is equal to k. In line 12, the f̂ is

equal to the best policy with the highest score, which is not selected before. In this way, the

next iteration starts from a base that has the best score. As we can see in line 17, the f(t,p,m)

is added on top of the best policy. The other parts of the algorithm are the same as the first

part. In the end, we select the d best f̂is, which shows the highest accuracy results among all

policies. In Algorithm 2, the probabilities for all policies were always set to the value of one.

To determine the p values for f̂is we propose the following process.

The goal is that the policy which has a higher score to receive a higher probability. For

this purpose, let us define S1, . . . , Sd/λ, where Si, is a set with λ number of probabilities, S1 =

{p1, . . . , pλ}, . . . , Sd/λ = {pd−λ, . . . , pd}. In this regard, we define vector ~v = [v1, . . . , vd/λ, v(d/λ)+1]
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Algorithm 2 The proposed Greedy AutoAugment algorithm.
Input: Dataset X.
Output: Best augmentation policy functions f̂1, . . . , f̂d.

1: for all augmentation techniques t = 1,. . . , tn do
2: for all magnitudes m = 1, . . . , mn do
3: set probability to 1;
4: X→ Xtr,Xte;
5: f̂ = f(t, p,m);
6: apply f̂ on Xtr;
7: store policy with its score on Xte.
8: end for
9: store best policy

10: end for
11: for counter = 2,. . . , k do
12: f̂ = best policy;
13: for all augmentation techniques t = 1,. . . , tn do
14: for all magnitudes m = 1, . . . , mn do
15: set probability to 1;
16: X→ Xtr,Xte;
17: f̂ = f̂ + f(t, p,m);
18: apply f̂ on Xtr;
19: store policy with its score on Xte.
20: end for
21: end for
22: store best policy
23: end for
24: select f̂1, . . . , f̂d from all policies which have highest scores;
25: return f̂1, . . . , f̂d

which represents the probability of choosing a set Si or the original data. The v1 corre-

sponds to selecting the original data and v2, . . . , vd/λ, v(d/λ)+1 correspond to the selection of

S1, . . . , Sd/λ. To fill the values of ~v, we use the Pareto Distribution [80], as follows,

→ vi =

 (1
i )
α i > 1

1 i ≤ 1
(3.2)

In this equation, a positive parameter (α) is used to assign the highest probability to v1

and lowest probability to v(d/λ)+1. When i = 1 the probability is one, and for i > 1 the

probability is less than one but not zero. To choose the best set Si or original data, we start

from the rightmost element of ~v and go to the leftmost element of ~v. Each of these elements

has a chance to be selected based on their respective vi values. After choosing the Si, a policy
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(a) (b) (c) (d)

Figure 3.3: Samples from real datasets used in our experiments: (a) Tiny ImageNet (b) CIFAR-
10 (c) CIFAR-100 (d) SVHN.

is chosen randomly from the members of the set, with uniform distribution.

3.1.4 Results

In this section, we compare our method with current solutions. For this purpose, first, we

show the accuracy results of our method compared to the other methods. Next, we provide a

computational analysis of the overall augmentation process. The AutoAugment section uses

state-of-the-art record-breaking networks also to test their method. This encompasses several

architectural advancements, which increases RAM requirements in GPUs and require at least

1800 epochs for each test-case. Using such a vast requirement to test augmentation policies

is actually not necessary and would limit us to analyze the methods thoroughly. Therefore, in

order for the experiments to be in our available resources, we have used a smaller and reason-

able infrastructure to test both our methods and the AutoAugment results in a uniform setting.

According to the AutoAugment section, their method is transferable. Therefore, this change is

fair and should not affect their method.

In these experiments, we use eleven different prominent ANN architectures. The DenseNet121

[104], GoogLeNet [102], MobileNet [119], MobileNetV2 [120], PreActResNet18 [121], ResNet18

[103], ResNeXt29 [122], ShuffleNetG2 [123], ShuffleNetV2 [124], and VGG [125] are used

as prominent networks which contain both normal and lightweight networks. To implement

these networks, we forked the implementations from [126]. The default settings of the network

implementations are not changed. The networks accept 32× 32 images and provide an output

based on the number of classes.

In the experiments, we also use four real datasets, 1- Tiny ImageNet [127] includes 120000
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Table 3.2: The result table for accuracy analysis. Abbreviations include: Manual = Manual
Augmentation, GAutoAugment = Greedy AutoAugment.

Network
Manual AutoAugment GAutoAugment

Tiny Cifar10 Cifar100 SVHN Tiny Cifar10 Cifar100 SVHN Tiny Cifar10 Cifar10 SVHN
DenseNet121 34.65 80.67 53.91 91.69 29.15 80.20 54.80 91.47 37.75 83.36 59.32 93.26
GoogLeNet 33.78 79.85 38.96 89.63 27.81 79.92 53.28 90.79 28.70 79.25 50.51 91.44
MobileNet 14.58 68.50 40.75 81.43 10.50 63.95 37.28 79.53 17.38 64.90 43.09 88.55
MobileNetV2 21.66 70.81 39.92 84.33 15.00 67.95 39.14 83.42 21.07 73.67 44.92 88.17
PreActResNet18 29.45 77.16 44.57 89.06 26.01 83.05 53.28 89.77 32.60 83.43 48.26 93.60
ResNet18 29.61 78.68 42.34 87.08 27.51 80.22 55.29 89.83 35.84 80.62 48.25 93.92
ResNeXt29 31.87 76.95 47.71 88.57 23.85 78.15 50.90 81.63 35.04 81.87 56.92 84.08
SENet18 29.18 78.66 42.16 90.17 25.63 80.55 54.18 91.71 31.96 79.90 51.69 93.07
ShuffleNetG2 22.01 71.67 48.93 85.54 17.27 70.58 38.40 81.05 27.72 74.56 48.85 91.14
ShuffleNetV2 24.89 72.95 49.26 87.44 20.50 71.25 46.44 86.18 27.10 75.27 53.19 91.88
VGG 21.03 76.66 43.41 90.07 16.73 77.60 42.15 88.61 23.16 80.75 43.37 93.06

natural images in 200 classes with each class having a training set of 500 images a test set of

50 images along with 50 validation images. 2,3- CIFAR-10 and CIFAR-100 datasets [128],

both containing 60000 images of size 32 × 32 in 10 and 100 classes respectively. 4- SVHN

[129] which contains over 600000 images of real-world images of digits 0− 9. These selected

datasets are used for three main reasons. First, while they are complex datasets, they have a

reasonable number of images and features, which makes working with them with our available

computational resources feasible. Second, they are well-known datasets with known and pre-

dictable results on a variety of ANN architectures. Third, they are compatible with the official

experiments of AutoAugment section [130].

The proposed method can be used with all architectures and all datasets with reasonable

training size. For training, we have two completely separate steps, 1-finding policies, 2-

applying those policies. For finding policies, we use Algorithm 1, and then we perform normal

training with the new policies. The default learning rate for networks in [126] is 0.1. We use

the same learning rate throughout the experiments for finding policies and training networks.

The number of epochs for all of the training scenarios was 200. To find the best policies, we

need to create child networks. The child networks and training networks share the same infras-

tructures. To obtain the accuracies from child networks, we divided training data into two parts.

The training part and the testing part. For Tiny Imagenet and SVHN, 5000 images are used for

testing. For CIFAR-10 and CIFAR-100, 2500 images are used for testing. The images which

are not used for testing part are used for training part. All of the images are selected randomly

with i.i.d. distribution. The α value for Pareto Distribution was always 2. We also used d = 25

and λ = 5.
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Accuracy

In this section, we test the accuracy of our proposed method using four different datasets, 1-

Tiny ImageNet, 2- CIFAR-10, 3- CIFAR-100, and 4- SVHN. The results are shown in Table 3.4.

In this table, the ”Manual” section stands for the images with common augmentation methods.

These techniques include zero padding, cropping, random-flip, and cutout. To prevent probable

errors, the same source code released in AutoAugment for augmentation techniques is also used

for manual augmentation [130]. This helps to provide a fair environment for all methods. The

only extra pre-processing step that we used is for resizing Tiny Imagenet from 64 × 64 to

32 × 32. This helped us to use the same infrastructure for all datasets without having adverse

effects on the experiments. The values in the table are the average results from five trials.

The section ”AutoAugment” stands for the AutoAugment method. For CIFAR-10, CIFAR-

100, and SVHN, we use the same policies that are found from AutoAugment method. For Tiny

ImageNet, we use the policies that are found for ImageNet dataset. Because Tiny ImageNet is

a subset of ImageNet, it can test the generalization of the AutoAugment method. The section

”GAutoAugment” stands for Greedy AutoAugment, which is the proposed method. In our

method, we suggest a specific searching process for each scenario to find the best policies. This

is possible because (as we will see in the next section), our search method is computationally

much more efficient than AutoAugment method.

For Tiny ImageNet, as we can see, the policies from AutoAugment are not effective when

they are applied to a smaller subset of the same dataset. All of the networks had worse results

compared to the Manual augmentation. Overall, the AutoAugment reduced the accuracy with

52.73% compared to Manual augmentation. Comparatively, our method increased accuracies

for nine out of eleven available networks. The highest increase of accuracy is for ResNet18,

with 6.23% higher accuracy. The least increase of accuracy is for VGG with 2.12% higher

accuracy. Overall, compared to the AutoAugment, the proposed method provided 78.34%

higher accuracy for eleven networks. Respectively, compared to the Manual augmentation, the

proposed method provided 25.60% higher accuracy for eleven networks.

For CIFAR-10, the transition is better for AutoAugment policies. From eleven networks,

six networks had better results with at most 5.89% better accuracy and at least 0.06% better
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accuracy than the manual augmentation. On the other hand, the manual augmentation showed

better results for five networks with at most 4.54% better accuracy for MobileNet and at least

0.46% better accuracy in DenseNet121. The overall increase of the accuracy was 0.86% in

favor of the AutoAugment. Comparatively, our method increased the accuracies for nine net-

works, with at most 6.27% better accuracy for PreActResNet18 and at least 1.24% better ac-

curacy for SENet18. Overall, we could increase the accuracies, 25.02% better than manual

augmentation and 24.15% better than AutoAugment.

The results for CIFAR-100 show that when policies from AutoAugment were applied to

original images, the accuracies could improve for six networks. The best increase of the ac-

curacy is for GoogLeNet with at most 7.49% better accuracy, and the least accuracy is for

DenseNet121 with at least 0.91 better accuracy. The overall increase of the accuracy was

1.04% for AutoAugment compared to the manual augmentation. When the policies from the

proposed method are applied to the original network, we could improve the results for nine

networks. The accuracy could be up to 11.54% and down to 2.34% better than the original im-

ages. The overall increase of the accuracy for the proposed method is 56.46% compared to the

manual augmentation. The overall increase of the accuracy for all of the networks is 55.422%

for the proposed method compared to the AutoAugment.

For SVHN, the AutoAugment provide higher accuracies for four networks when it is com-

pared to the manual augmentation. The highest accuracy is for ResNet18 with 2.75% better

accuracy and the least higher accuracy is 0.70% for PreActResNet18. For the six other net-

works, the manual augmentation was, on average 2.45% better than AutoAugment. It was at

least 0.21% and at most 6.93% better than AutoAugment. Overall, manual augmentation pro-

vided 11.00% better cumulative results compared to the AutoAugentation. Comparatively, the

proposed method provided better accuracies for ten networks compared to the manual augmen-

tation. The highest and lowest accuracies were 7.11%, 1.57% better than manual augmentation.

Overall, the cumulative accuracies are 37.16%, and 48.16% better than manual augmentation,

and AutoAugment. The better accuracy comes from the fact that SVHN needed policies that

are in further layers of the search space, and this could only be achieved with Greedy AutoAug-

ment.
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Computational Analysis

As described in Section 3, the search space is reduced from the exponential growth of

base (tn × pn ×mn) with the value of ` to the linear growth of (tn ×mn) with the value of

k. We already saw that this approach is effective in improving the accuracy of the networks.

The important question is now how much computational resources we needed to perform the

search. To allocate the resources, we are concerned about two aspects, 1-the search space, 2-

real resources allocated for the searching process. We separate this two processess because the

algorithms may not use all of the trials is searching spaces.

Table 3.3: The result table for comparing the search space between our method and AutoAug-
ment.

Layers AutoAugment GAutoAugment Comparison
` = 1 22001 200 11.0
` = 2 22002 4200 1152.3
` = 3 22003 8200 1298536.5
` = 4 22004 12200 1920131147.5

The comparison between the two spaces is shown in Table 3.5. This table has three columns.

The first column shows the number of the layers, which is ranged from ` = 1 to ` = 4.

The second column is for the search space for the AutoAugment algorithm. This shows the

maximum number of possible selections that AutoAugment can choose. As we can see, the

values for each row exponentially increases with the increase of the ` from a base of 2200.

The 2200 is from calculating (tn × pn ×mn). The third column represents the search space

for Greedy AutoAugment. To calculate the search space, we use the (2). In this case, if each

layer is fully explored, the number of possible trials is only 4000. The last column shows the

comparison between column two and column three. The values show that the number of times

the search space of the proposed method is smaller than the search space of AutoAugment.

For the real experiments, AutoAugment only searches for the 2-layer search space. This

means that AutoAugment can have 22002 possible trials. Because searching all of the space for

22002 trials is impractical, the AutoAugment uses a sample of 15000 child networks. Compara-

tively, our method, in each step, explores 200 trials. The number of steps is determined by k. In

these experiments, we used k = 5, which gives us 1000 trials. This number is used to limit the

search within our computational resources. Also, AutoAugment uses 120 epochs to evaluate
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the accuracies of child networks. The number of epochs used for our child networks was only 5

epochs. Since the exact infrastructure for different datasets is not known for AutoAugment, and

child networks are interchangeable, we consider the child networks to have the same efficiency.

Therefore, overall we had (15000× 120)÷ (1000× 5) = 360 less computational requirement.

Note that with CUDA parallel programming [131, 132, 133, 134], the entire sub-policy layers

can be explored in parallel at once, making the gained performance even better.

3.2 Greedy AutoAugment for Small Datasets

It has been shown that neural networks can perform extremely well in applications with

large and complex datasets such as for different types of computer vision tasks [135]. An im-

portant constraint for these networks is the required large number of labeled data for the training

process. This limitation could be problematic for many other application fields, which can only

guarantee a small number of training data points [136]. The problem is more severe with recent

deep neural network architectures that have many more hidden layers and parameters which

need more data compared to previous generations of neural networks [103, 104, 137]. This is

a few-shot learning problem where it is expected to obtain higher accuracy with small datasets.

The smallness of the training data is a relative term in which it is desired to maintain or achieve

higher accuracy with datasets that are as small as possible [138].

Few-shot learning is a methodology which deals with small datasets and takes many learn-

ing forms based on available data. If we can only rely on the available training resources, it

is supervised. If unlabeled data or some helper classes are available, it could take the form of

semi-supervised or reinforcement learning [139, 138]. In imbalanced learning, the few-shot

can be used to take one part of the data as prior knowledge [140]. In transfer learning, the

source domain contains different classes which are not available in the target domains [136]. In

this case, few-shot learning is used for the target domain. Another popular form of the few-shot

learning is meta-learning methodology, where application learners use meta-learners as prior

knowledge [141].

The few-shot learning for classification problems is usually called n-shot learning, where

n is the number of points in each class [142]. The most popular forms of n-shot learning
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are 1-shot and 5-shot learnings. These methods are divided into three categories [143]. The

metric learning methods find some form of similarity space that is effective for n-shot datasets

[1, 144, 145]. The memory learning methods train to learn how to store and retrieve memories

with experiences to generalize unseen tasks [2, 146, 147]. The gradient descent methods rely

on meta-learners that adapt to specific base-learners for n-shot datasets [148, 149, 150, 151,

152, 143]. Most of these methods can combine their infrastructures with data augmentations

to further improve their current performance. Therefore, an improvement in data augmentation

for small datasets can potentially improve current and future n-shot methods.

In this section, we show that Greedy AutoAugment, is in compliance with n-shot learn-

ing, where we need to use all available training data to see the real effects of sub-policies.

In training, with the proposed method, the number of augmentations is much more than nor-

mal training, which helps us to collect as much information from the data as possible. The

experiments show the effectiveness of the proposed method for both resource allocations and

accuracy.

3.2.1 Greedy Breadth-First Search AutoAugment

In this section, we propose Greedy Breadth-First Search AutoAugment (GBFSAug) as a

greedy algorithm to find the best augmentation techniques and apply them for training. For this

purpose, we need two separate steps, 1- the searching process, which finds the best augmenta-

tions based on the scoring criterion defined in the general model. 2- the training process, which

trains the data with the best augmentations, which are found in the first step. In the searching

and training process for finding the best augmentation techniques, and performing final classi-

fication, the infrastructure is used as a black box. In this regard, the future neural networks that

need augmentations can also be used for the proposed method. The design decisions for both

steps specifically are created to take n-shot learning into account.

Let us consider each image as a multivariate data point ~pi. We formulate the classification

problem as a collection of testing data points Xte which need to be classified into k number of

clusters c1, . . . , ck. The most effective way for such categorization is to use training data points

Xtr as a knowledge set. If Xtr is available, it is possible to use neural network architectures

to move ~pis from their original space into a new space that separates cis as much as possible.
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Obviously, if Xtr has the same distribution with Xte, the training of the Xtr leads to a better

generalization of Xte.

The training process of deep neural networks typically require a high number of ~pis, where

~pis ∈ Xtr. The problem of n-shot learning for these scenarios is that there is not enough

members of Xtr to train forXte. More specifically, n-shot learning is defined for n-shot k-class

scenarios, where n specifies the number of ~pis ∈ Xtr, for each ci. For instance, a 1-shot 5-class

scenario, indicates that each ci, ci ∈ c1, . . . , c5 has one ~pi, ~pi ∈ Xtr. In this regard, the number

of the points in Xtr is five. The problems that we are concerned in this section are for scenarios

where n ≤ 100. The most popular number for k in n-shot learning is 5 which leads to Xtr with

≤ 500 members.

In the searching process, to find the best augmentation policies, we perform many trials

and select the policies that provided us with the best trials. To select the best policies, it is

mandatory to define a scoring criterion for evaluation of the trials. A simple approach to this

problem is to divide Xtr into two parts, Xtr → X ′tr, Xval. Respectively, the X ′tr is the new

training set, which is used by a neural network to generalize for the Xval as a validation set.

While this approach would work for Xtrs with a high number of the points, it is not suitable

in n-shot learning where every data point is a valuable asset and excluding a Xval set from

training would have noticeable impacts for the final result. A better approach for scoring is

K-Fold validation [153], which uses all of the members of Xtr for getting a score.

Let us divide the members of Xtr into k number of subsets. In our design, we assume the

k, which is used in K-Fold algorithm to be equal to the number of classes. For each subset

i, i ∈ 1 . . . k, we define Xj
val, as a validation set that contains all of the members of subset j.

Similarly, X−jtr is the training set that contains all of the points that are not a part of subset j.

All of the subsets should be almost equal in size. Let us define N to indicate the functionality

of a neural network. The policy function f̂i can include several sub-policy functions (fs) and

is used as the functionality of applying an augmentation policy for trial i, we have,

vi =
1

k

k∑
i=1

N
(
f̂i(X

−j
tr )
)
→ L(yj , N(Xj

val)) (3.3)

The training of X−jtr , includes applying of the augmentation policy function f̂i with neural
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network N . The calculation of loss function (L) provides the real values for the evaluation of

each trial score, vi. To get L, we use Xi
val with N and without applying f̂i. The final value for

each trial (vi) is an average of all the loss functions.

To clarify the overall process, we present Figure 4.4. As we can see, the classification

includes three main steps. In the search step, the training set Xtr is given, which includes n

number of the points. There is x number of f̂is, which should be applied to the training set

(search space). Next, we need to score each f̂i in which the (1) is used to get the scores. As

we can see in the score section, there is d number of vi values, which are the best values from

x trials. The third step is for training, that divides the new training set into b1, . . . , by batches.

Each batch can contain either original data points or augmented datapoints.

In the searching phase, we use Greedy AutuAugment which is covered in the previous

section. In the training phase, we apply all of the d number of augmentations to increase the

size of the training data. For the n-shot learning, it is easier to apply augmentations as a pre-

processing step instead of doing them for each epoch. The goal is that the policies that have a

higher score to be selected. On the other hand, it is crucial to increase the diversity of Xtr as

much as possible. For this purpose, we use (3).

X ′tr = Xtr +
d∑
i=1

f̂i(Si) (3.4)

In this notation, the Xtr is the original training set. For all of the d augmentation policies,

we select a set Si from training setXtr (Si ∈ Xtr). The augmented training dataX ′tr is the sum

of Xtr plus the the applied augmented policies f̂is on samples Sis (f̂i(Si)s). For final training,

we repeat this process to get as much data as desired and shuffle them before training. We

suggest the d value be much higher than what we would use for normal datasets. This allows

us to extract more information from the limited number of data points.

3.2.2 Results

In this section, we provide our experimental results to analyze the effectiveness of the pro-

posed method. In the experiments, we used five prominent n-shot learning datasets. Samples

of these datasets are shown in Figure 4.2. For numerical values of the search space, we follow
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(a) (b) (c)

(d) (e)

Figure 3.4: Samples from real datasets used in our experiments, the images are randomly
selected from: (a) miniImageNet [1] (b) CUB-200-2011 [4],(c) Ominiglot [3],(d) Flower102,
and FC100 [2].

the discretization setup, which is introduced in AutoAugment. The number of values for tn, pn

and mn, are in the order 20, 11 and 10. In all of the scenarios for the proposed method, we

use k = 21, which means the proposed method performs 4200 trials. We use d = 1000 which

means that 1000 augmentation policies from 4200 trials are selected. The Si value is 5, for all

n-shot scenarios. The data augmentation is used as a preprocessing step that augments the data

to 60000 points.

The experiments are divided between five main parts. The first and second sections demon-

strate that our method extracts information properly from a few data. For experiments, we com-

pare our method with supervised solutions, which are directly related to the proposed method.

In the next two sections, we demonstrate that our method integrates properly with n-shot meth-

ods. For experiments, we integrate the proposed method with Siamese and MAML.

In the end, we compare our method with state-of-the-art n-shot methods. The purpose is to

see that with the improvements of the proposed method, when fully supervised learning starts

to become a viable solution. Our experiments show that the n-shot methods are effective in

their approach and simple classifications, even with auto augmentation require more shots to

provide better results. Therefore, for the best outcome, the integration of our proposed method
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with n-shot methods is recommended.

3.2.3 Analysis for number of shots

In this section, we perform a comparison between our method and the current solutions

which provide augmentation for neural networks. The goal is to analyze the method for dif-

ferent number of shots. For a comprehensive analysis, we use 1-shot to 100-shot settings,

with the three commonly used datasets in n-shot learning. The first dataset is miniImageNet

[1] that is proposed for n-shot learning. This dataset is a subset of ImageNet [154] that con-

tains 84 × 84 colored images with samples of 600 in 100 classes. As it has been suggested in

[149, 148, 152, 155, 156], the samples are divided into 64, 16, and 20 classes respectively for

meta-training, meta-validation, and meta-test. The second dataset is FC100 [128] which is a

subset of CIFAR-100 [128]. This dataset includes 32 × 32 images with 600 samples and 100

classes. As suggested in [143], meta-training data are from 60 classes that belong to 12 super-

classes. Respectively, the meta-validation and meta-test, contain 20 classes which belong to 4

super-classes. The third dataset is Ominiglot [3], in which we used each language as a separate

class and not the characters. In this dataset, characters are very similar, and having multiple

shots for each character would lead to complete accuracy in most cases. Separating the dataset

with languages instead of characters helped us to alleviate this problem. More importantly,

we needed up to 100 samples from each class, which was not available in the original form of

Omniglot.

We compare our method with three other approaches. 1- Networks without using aug-

mentations (NoAugment). 2- networks with the most common augmentations (CommonAug).

These techniques are zero padding, cropping, random-flip, and cutout [113]. 3- The AutoAug-

ment method, as described in [113]. All of the four methods use ResNet-18 for training and

testing. To perform the experiments, we use PyTorch 1.0.1. The standard implementation of

ResNet [103] from TorchVision 0.2.2 repository is used [157]. For the basic setup, we use the

exact parameters as described in the default values of [158]. Some of these parameters are:

learning-rate = 0.1, start-epoch = 0, end-epoch = 90, momentum = 0.9 and weight-decay =le-4.

All of the images are resized from their original input size to 224. This allowed us to make the

network compatible with all scenarios similarly. The result is an average of 3 repeated random
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Table 3.4: The result table for accuracy analysis of our method compared to supervised methods
on miniImageNet [1], FC100 [2], and Ominiglot [3]. Numbers are the percentages of obtained
accuracies. The goal is to analyse the method for different shots.

miniImageNet 1-shot 5-shot 10-shot 25-shot 50-shot 75-shot 100-shot
NoAugment 23.00 30.33 28.00 32.66 36.33 51.00 38.00
CommonAug 22.66 29.33 35.66 34.66 39.33 35.66 49.66
AutoAugment 19.66 38.00 31.33 25.66 29.33 25.00 24.00
GBFSAug 34.66 43.66 44.00 64.00 59.33 58.66 74.00
FC100 1-shot 5-shot 10-shot 25-shot 50-shot 75-shot 100-shot
NoAugment 19.66 57.33 44.00 34.66 40.00 31.33 46.33
CommonAug 15.33 46.33 41.33 35.66 32.33 52.00 41.66
AutoAugment 15.33 62.66 34.00 41.00 37.33 31.33 36.66
GBFSAug 21.66 71.33 52.66 56.00 65.66 62.33 62.66
Ominiglot 1-shot 5-shot 10-shot 25-shot 50-shot 75-shot 100-shot
NoAugment 25.00 49.00 52.66 60.33 67.00 75.33 74.66
CommonAug 26.33 39.00 40.66 48.66 47.66 60.66 62.33
AutoAugment 26.33 36.66 41.00 42.66 47.66 58.00 62.66
GBFSAug 29.00 59.00 64.33 85.66 87.66 81.00 90.33

trials without using seeds.

All of the experiments are done with a 5-class n-shot setting. All three datasets are designed

specifically for transfer learning in mind. In our method, we are concerned about the supervised

setting where Xtr has the same distribution with Xte. For this reason, we do not use the train

and validation classes from the datasets. In the experiments, at most, we use 100 samples for

training. With this assumption, we use the testing classes to create bothXtr andXte sets. More

specifically, 5 classes are chosen randomly from available options in the testing classes. For

training, based on the value of n in n-shot, we select training sets randomly. For instance, in

10-shot testing, we select 10 samples from each class. To calculate the scoring criterion (see

Section ??), the X−itr and Xi
val are created from Xtr. To create Xte, 300 samples that are not

selected for Xtr are randomly selected for final testing.

The results are shown in Table 3.4. As we can see, the table is divided into three sections

for miniImageNet, FC100, and Omniglot datasets. The range of the shots in n-shot scenarios

is from 1 to 100. The highest accuracies for each shot are shown with bold numbers. For

miniImageNet the proposed method is better than the other methods in all of the 7 scenarios.

The highest increase of the accuracy is for 100-shot scenario compared to the AutoAugment
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with 50% more accuracy. The lowest increase of the accuracy is for 25-shot scenario compared

to the no augmentations (NoAugment) with 7.66% more accuracy. The proposed method, on

average, has 19.85%, 18.76%, and 26.47% higher accuracies than NoAugment, AutoAugment,

and CommonAug.

The maximum increase of the accuracy for FC100 is 33.33% for the 50-shot scenario

compared to the CommonAug. The least increase in accuracy is 2.0%. On average, the in-

crease of the accuracies compared to AutoAugment, NoAugment, and CommonAug are in

order 16.99%, 18.23%, and 19.14% better. Respectively, the maximum increase of the accu-

racy for Ominiglot is 43.00% for the 25-shot scenario compared to the AutoAugment. The

least increase in accuracy is 2.67%. On average, the increase of the accuracies compared to

AutoAugment, NoAugment, and CommonAug are in order 13.28%, 24.52%, and 26.00% bet-

ter.

For the other three algorithms, the AutoAugment had the worst results. The NoAugment

was usually better than CommonAug. This is specifically true for FC100 and Ominiglot. The

CommonAug had the best results for miniImageNet. In the table, a noticeable pattern is the

apparent fluctuations among specific shots. This means that, in some cases, lower shots could

provide higher accuracies compared to the higher shots. Such patterns should be expected for n-

shot settings where, in rare cases, the generalization of some small batches could be very high.

However, in general, such patterns are not reliable, and higher shots provide better accuracies.

3.2.4 Analysis for number of classifications

To analyze the proposed method for different number of classifications (e.g., n-way), we

apply our method on two additional datasets, CUB-200-2011 [4] and Flower102 [5]. These

datasets are also mainly used in few-shot learning and have more than 100 classes, which

makes them useful for our experiments. The results are for n-class 5-shot settings. For these

experiments, we follow the common practices for n-shot classification. For each dataset, we

take five samples out of the testing class, search for augmentations for those five samples, train

the network, and then test the dataset. These results are an average of 3 trials. All of the images

have been converted to an ’RGB’ image with the rescaling to 254× 254 resolution.

The results are shown in Table 3.5. As should be expected, since n-shot is fixated to 5,
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Table 3.5: The result table for accuracy analysis of our method compared to supervised methods
on CUB-200-2011 [4] and Flower102 [5]. Numbers are the percentages of obtained accuracies.
The goal is to analyse the method for different classifications.

CUB-200-2011 2-way 5-way 10-way 25-way 50-way 75-way 100-way
NoAugment 56.66 38.66 24.00 11.66 4.00 8.00 5.00
CommonAug 83.33 41.33 16.00 7.33 7.00 6.66 4.00
AutoAugment 60.00 34.66 17.33 6.66 4.33 2.66 2.33
GBFSAug 83.33 49.33 36.00 17.66 13.33 13.33 9.00
Flower102 2-way 5-way 10-way 25-way 50-way 75-way 100-way
NoAugment 76.66 62.66 41.33 43.00 28.00 32.66 30.00
CommonAug 76.66 78.66 44.66 41.66 30.00 30.33 31.00
AutoAugment 76.66 60.00 33.66 34.33 24.66 18.33 22.33
GBFSAug 80.00 86.66 75.33 56.66 45.66 49.33 47.66

as we increase the n-way setting, classification becomes less accurate. The outcomes in the

table show that the proposed method can reliably improve the accuracy of both datasets for

different classification numbers. More specifically, for the CUB-200-2011, the highest increase

of the accuracy for GBFSAug is for 2-way setting with 26.67% better accuracy compared to the

AutoAugment. The averages of higher accuracies are 10.57%, 8.04%, and 13.43% compared

to NoAugment, CommonAug, and AutoAugment. For the Flower102, the highest increase

of the accuracy is 41.67% in 10-way compared to the AutoAugment. The lowest increase of

the accuracy is 3.34% in 2-way. The averages of higher accuracies are 18.14%, 15.47%, and

24.47% compared to NoAugment, CommonAug, and AutoAugment.

3.2.5 Case study on Siamese

The proposed method is similar to plain augmentation techniques. This means that the

underlying network is considered as a black box that allows other methods to use it on different

architectures and for different goals. An important argument immediately arises that how much

augmentation can help current n-shot learning methods. The main obstacle for answering this

question is that the methods that use augmentation may use it for many applications, which

cannot be covered in the experiments. One methodology that works for one application may

not work for others. For instance, depending on the application: Should we use augmentation

for the training set or the test set? Should we increase the size of the data, or let them be

integrated with the training sets? One part of the algorithm should be augmented or all of it?
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(b) CUB-200-2011
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(c) Flower102
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(d) miniImageNet

Figure 3.5: Augmentation policies found from the proposed method are applied to the training
set for Siamese neural networks for one-shot image recognition. The augmentation can in-
crease the accuracy of the algorithm for data sets Ominiglot, CUB-200-2011, Flower102, and
miniImageNet.
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And many other questions that may arise with each method. That is why we do not want to

impose the idea that this method needs to use a specific architecture to work. However, to

show the effectiveness of the proposed method, it is still useful to integrate the method with

n-shot learning methods. These methodologies are only for case-study and not a blueprint for

all methods.

For the first integration, we use the Siamese network for 1-shot image recognition [159] as

a prominent and influential method, which is easy to integrate and simple to understand. This

network belongs to the metric learning family where it can recognize whether two points are in

the same class or not. In the design description of [159], the available 1-shot data is not used for

training. With the proposed method, it is easy to multiplicate the augmentations of the available

1-shot data to create new classes in training. This can boost the learning ability of the network,

which can eventually lead to better distinguish the test cases. For the implementation, we use

[160]. The default values from the experiments are not changed. For the experiments, we use

two datasets from Section 3.2.3 and two datasets from Section 3.2.4. The only modification on

datasets is a conversion from their original resolution to 105 × 105, and also converting the 3

channel RGB images to the single channel. These preprocessing steps allowed us to use the

same architecture form [160] for all datasets.

For each class in the test, we used the one available data and created a separate class with an

equal number of images that are presented in other classes. To create the new classes, the first

100 augmentations were selected and used randomly. The newly created augmented classes

were treated equally to the original training data. For testing, the same available data which

were used to create new classes for training, were used for distinguishing between pairs of

points. The pairs could be between the same class or other classes that are in the testing sets.

In each 100 steps of the training, 2000 testing pairs were selected to test the algorithms.

The results for Omniglot is shown in Figure 3.5a. As we can see, the specific structure

that is used in Section 3.2.3 boosted the results for Siamese network on Ominiglot from their

original reported accuracy. The results, started from 90.35% in step 100 to 99.60% in step

600. The results of the proposed method, when combined with the original network, could help

the network to increase the accuracy for upto 8.25%. For the results of CUB-200-2011 (Fig-

ure 3.5b), the Siamese network started from 59.99% in step 100, and reached to the accuracy
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of 94.95% in step 600. A big fluctuation occurred in step 400. When it was combined with the

proposed method, the network started from 75.65% in step 100, and reached to the accuracy of

97.2% in step 600. The results for Flower102 (Figure 3.5c), started from 74.7% in step 100 and

reached to 90.85% in step 600. When it was combined with the proposed method, the accuracy

was 84.95% and reached to 96.5% accuracy in step 600. For miniImageNet (Figure 3.5d), the

accuracy for the proposed method was at most 95.15, which is 4.85% higher than what could

be achieved with the original Siamese network. These results show the effectiveness of the

proposed method for the type of problem that Siamese networks try to solve. Similarly, other

n-shot learning methods can also find the aspects of their algorithm, which can be improved

from using the proposed method and combine them to boost their outcomes.

3.2.6 Case study on MAML

To further examine the effectiveness of the proposed method, we integrate the greedy aug-

mentation with MAML. Similar to the Siame, MAML is a well-known algorithm with a simple

structure. For MAML, there are several approaches that can take advantage of augmentation.

The approach that we take is to apply augmentation to both query set and support set. In this

way, the meta-learner can more conveniently learn the training data and use augmentations to

better generalize its network. In the experiments, we used the implementation in [161]. The

configuration was a standard 5-class 5-shot training dataset with miniImagenet. The exact poli-

cies that we have found in the main experiments are used for data augmentation.

The results are shown in Figure 3.6. As we can see, without overhead and with simple

modifications, we could constantly increase the accuracy of the MAML network. In step 1,

both methods have almost the same accuracy. The MAML has an accuracy of 27.69%, and

augmented MAML has an accuracy of 27.83%. In step 2500, the MAML has an accuracy

of 45.58%, and augmentation MAML increased its accuracy to 50.73%. The difference of

accuracies in steps, 5000, 7500, 10000, 12500, and 15000, are in order 7.52%, 5.95%, 6.2%,

6.47%, and 4.15%. The highest increase of accuracy is for step 5000, with 7.52% higher

accuracy. If we exclude the first step, on average, the increase in accuracy is 5.9%.



62

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0
2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

Ac
cu

rac
y o

f th
e M

AM
L

s t e p s

 M A M L
 M A M L + A u g

Figure 3.6: Augmentation policies found from the proposed method are applied to both support
set and query set in the training phase for MAML algorithm. The augmentation increases the
accuracy of the algorithm.

3.2.7 Comparison with n-Shot Methods

As mentioned, the proposed method is not designed to replace current solutions of n-shot

learning. Instead, it has to be used as a complementary option to these networks. However, it

is still useful to see that with the improvement in accuracy, how much training data is needed

to reasonably generalize Xtr for Xte. For this purpose, we compare our method with state-of-

the-art, n-shot solutions. These benchmark methods are useful because they are reaching this

level of accuracy without a large number of training data points. In the following, we increase

the number of the shots until classifiers are at least as good as these methods.

The n-shot learning methods are optimized to be very efficient for 1-shot and 5-shot scenar-

ios. Among several options, we present five best methods which provide the highest accuracies

[143]. The best methods in this category are TADAM [2], MAML , MAML-HT, MAML-DHT

[149], and MTL [143]. For our method, we use the same training setup from Section 3.2.3. For

the five n-shot methods, the exact unified infrastructure from [143] which itself extends from

[162, 148, 2, 149, 1, 156, 146, 155] is used. Accordingly, the exact environmental setup from

[143, 163] should be used. We did not change any settings and only replicated the results to

reconfirm the reported accuracies. For the datasets we used, miniImagenet and FC100, which

are also used in the original [143, 163] section. For the results of GBFSAug, we performed
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Figure 3.7: The result of our method applied on a supervised network compared to 5 benchmark
n-shot algorithms on miniImageNet [1].
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Figure 3.8: The result of our method applied on a supervised network compared to 5 benchmark
n-shot algorithms on FC100 [2].

new experiments and did not use the values of Table 3.4. However, they approximately confirm

the results of the table.

First, we present the results for miniImageNet. In Figure 3.7a, the proposed method is

compared with the 5-shot scenario. As we can see, compared to the TADAM, which is state-

of-the-art in this scenario (≈ 77%), we could reach the same level of accuracy with 100-shot

training data. The other methods are in order MTL, MAML-DHT, MAML-HT, and MAML

with accuracies of 75.5%, 73.1%, 64.1%, and 63.11%. In Figure 3.7b, the proposed method is

compared with 1-shot scenario. In this case, the 50-shot training data could surpass the 1-shot

methods with an accuracy of 67.33%. The closest method is MTL, with an accuracy of 61.2%.

The other methods are MAML-DHT, TADAM, MAML-HT, and MAML with accuracies of

59.1%, 58.5%, 49.1%, 48.7%, respectively.

In Figure 3.8, the plots represent the comparisons on FC100. This time, the proposed

method could outperform the 5-shot scenario with 75-shot training datasets. The best method
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for 5-shot learning is MTL with 57.6%, which is closely followed by TADAM and MAML-

DHT with 56.1%, 55.1% accuracies. Accordingly, the accuracy for 25-shot datasets was 54%,

which is followed by MTL with 45.1% accuracy. This result is followed by MAML-DHT,

TADAM, and MAML-HT with accuracies of 41.8%, 40.1%, and 39.9%. The worst result is

for MAML, with an accuracy of 38.1%.

The overall observation is that for 1-shot learning, 50-shot and upward training sets provide

better results. Comparatively, for 5-shot learning, 100-shot and upward training sets provide

better results. These results show minimal acceptable dataset size for supervised learning,

which is approximately 50− 100-shot upward.
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Chapter 4

Automated Unsupervised Learning

4.1 Meaningful Distance for Multivariate Clustering

4.1.1 Introduction

We can divide the clustering methods into two different groups, high-level clustering al-

gorithms, and low-level clustering algorithms. The high-level clustering algorithms do not

assume any specific type of input and can deal with a variety of difficult problems such as

dealing with non-linearity in data points or finding new features from relationships among cur-

rent features. These methods are helpful for clustering more complex data such as images. In

this regard, dimensionality reduction techniques (feature selection/extraction) such as subspace

clustering [164, 165, 166, 167] and, autoencoders [168] combined with deep networks [169],

can be considered as high-level clustering algorithms. On the other hand, the low-level clus-

tering algorithms only accept a specific type of input data which is known a priori [170]. This

basic assumption is the most important part of low-level clustering algorithms which changes

the fate of the clustering results dramatically [171].

While the low-level clustering algorithms are restrictive on their basic assumptions for in-

put data, they are still useful for many applications such diffrent parts of network managements

and medical data [172, 173, 174]. These algorithms usually have more tractable complexity and

are often included to provide a complete clustering package for more complex methods. For

instance, state-of-the-art high-level algorithms for clustering image data such as [175] incor-

porate spectral clustering [176] in their designs which needs K-Means [177] as a helper func-

tion. Low-level clustering algorithms are also useful when input data have a specific structure

which led to their popularity for certain use-cases. However, there are still some fundamental

problems related to low-level clustering algorithms which are underdeveloped in the current
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literature. An essential problem is that almost all of the current basic assumptions of input

data assume prespecified patterns in multivariate space. In these specific input types, we may

experience synchronization inconsistencies between univariate and multivariate spaces which

can result in irregular scenarios.

To make the problem clear let’s consider K-Means algorithm. The basic assumption of K-

Means is the separation of points based on Multivariate Gaussian (MVG) distributions. To this

end, a multivariate distance metric such as Euclidean distance is used to measure differences

of points in high dimensional data. A simple strategy to generate features for K-Means can

be the decomposition of points based on Univariate Gaussian (UVG) distributions in each fea-

ture. Intuitively, with this guideline, points support their groups in all of their features without

considering relationships among features. Even in this case which is probably the most basic

guideline for data generation, clustering may not work properly. For K-Means to work on this

guideline, points in the same group which are in the same UVG distributions for all or most of

their features should also create a separated MVG distribution. However, even small irregular-

ities in the features can potentially lead to unwanted clusters. As a simple example consider

Figure4.1a.

p1 v1

c1 v2

c2 v3

c3 v4

p2 v5
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(a)
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v1 = 0 v2 = 10 v3 = 12 v4 = 14 v5 = 24

(b)

Figure 4.1: Separation of points for each feature may not lead to separation of points in mul-
tivariate space. Closeness of points in most features may not result to closeness of points in
multivariate space.

In this example, we have two points p1, p2 that for each of their features (fi), each point

holds a completely separated value from the other point which is either v1 = 0 or v5 = 24.

Let’s consider three centers c1, c2, c3 that take values v2 = 10, v3 = 12, v3 = 14 for all

their features. From these values, points p1, p2 are separated and belong to different clusters
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in all features. However, their Euclidean distances are equally close to the same cluster in

multivariate space. Similarly, there are examples where the similarity in features may not result

in the similarity of multivariate space. Figure4.1b shows an example where p1, p2 have nine

similar features in c2. However, because in one features they are dissimilar, they get separated

in multivariate space (p1 ∈ c1, p2 ∈ c2). These two examples show that distances in individual

features and distances in multivariate spaces are not necessarily synchronized. The situation

can become worse as the number of points or clusters increase. The result is that based on the

basic guidelines of low-level algorithms if points follow the guideline in multivariate space it

does not mean they necessarily hold proper features. Likewise, if points follow the guideline

in univariate space, they may not follow the guideline in multivariate space. The potential

inaccuracies of data generation lead to inconsistencies and confusion for data analysis.

In this section, we propose a new clustering process that can replace current low-level

clustering algorithms. In this regard, the first step is to streamline the underlying assumption

of low-level clustering algorithms. Consequently, instead of expecting separation of points

in multivariate space, we presume separation, for each feature individually. Based on this

assumption, each point by default is responsible for defining its related cluster uniquely in each

dimension. If there is a hidden relationship among features, we expect that such connection

to be expressed as a new feature for the input data. We can interpret this primary assumption

in two ways. First, it is yet another underlying guideline for input data that provides a more

intuitive way for feature generation that can mitigate some synchronization problems between

univariate and multivariate spaces. Second, as a new approach which potentially can help us to

solve some problems connected with current low-level clustering algorithms.

A complete clustering process requires a methodology for separation of points based on

the basic assumption of input data. This process is the second step of the proposed method

which is also flexible, and separation is possible with different clustering algorithms. This

includes clustering methods such as EM [178], variants of K-Means [179] or even Hierarchical

Clustering [180]. However, to simplify the problem, throughout the section we focus on K-

Means algorithm. As a result, the clustering in each dimension is similar to K-Means, and the

assumption of input data is the separation in each dimension based on UVG distributions. Using

this infrastructure, the ultimate goal of this section is to provide a comprehensive solution that
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addresses the following fundamental problem in low-level clustering algorithms.

The main problem is a claim that says clustering in multivariate space may become mean-

ingless as the number of features grows. This problem is one of the most critical issues

associated with the curse of dimensionality [181]. As described in Beyer’s influential sec-

tion [182, 183], considering that relative distance of farthest and nearest points converges to

zero, distance, neighborhood, and proximity become less meaningful as dimensionality grows.

This problem is called concentration effect with a significant consequence that even with cor-

rectly generated features, the clustering of the points can be meaningless. From other reports

[184, 185, 186, 187] it is recorded that this is not a general rule and correlation of points play

an important role in mitigating this effect. However, the problem is still not adequately ad-

dressed and can become quite problematic for clustering in high dimensions. We show that this

problem can be solved based on our underlying assumption. In this regard, we define a new

norm ‖.‖c (read norm clustering) and subsequently Clustering Distance (CD) as a new distance

metric which does not lose its meaning when dimensionality grows based on our underlying

assumption.

4.1.2 System Model

Let us first define the necessary notations and overall representation of the clustering pro-

cess. To represent multivariate data, we define samples as vector points P = {~p1, . . . , ~pn}

where n is the number of points. The vector values are the features of each ~pi and defined

as F = {f1, . . . , fd} where d is the maximum number of features. In this regard, each ~pi is

defined in Rd dimensional space and fj is the value in a particular dimension Dj
1. Let’s sup-

pose agent A is responsible to put members of the P into a specific number of clusters, e.g., k

clusters. A can take the form of an end user of clustering software. It also can take the form of

an upper-level algorithm which needs the clustering of its output data.

To make k clusters out of members of P, A needs a clustering algorithm. In clustering

algorithms, based on different initialization settings, the membership of points to clusters can

change dramatically. The most important initialization setting which is common in K-Means

1Throughout the section, indices i, j, e, h are indications of random members in sets unless told otherwise.
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based algorithms is associative points (also called initial seeds)2. Let’s take the results of any

clustering algorithm with different associative points as G = {g1, . . . , gq}. In this regard, each

gi is a group that contains associative points P(k) = {~ρ1, . . . , ~ρk} which are the main elements

for creation of clusters C = {c1, . . . , ck}. In this notation, ~ρi is an associative point and P(k) is

the set of all associative points for any group gi. Accordingly, ρi is the initial seed that creates

cluster ci and C is the set of all clusters for any group G. We also denote O = {~o1, . . . , ~ok} in

which ~oi is the center of cluster ci and O is the set of all centers.

4.1.3 Meaningful Clustering

In this section, we address a critical problem related to the curse of dimensionality which

claims that distance metrics lose their meanings as the number of dimensions increases. First,

we explain why this outcome exists. Next, we propose CD as a new distance metric which

employs our basic assumption and does not fall prey to this effect. More specifically, we are

concerned about the main result of the Bayers section [182] which is given in (4.1). Intuitively,

let’s take any vector point such as ~oq (usually called query point) and consider ~pi, ~pj as two

points which have farthest distance (Dmax) and nearest distance (Dmin) to ~oq. With a higher

number of dimensions, the relative distance ofDmax−Dmin compared to the distance ofDmin

becomes very small.

limd→∞ var
(
‖X d‖

E[‖X d‖]

)
= 0 =⇒ Dmax−Dmin

Dmin
→ 0 (4.1)

This phenomenon is called concentration effect which is presumed to be the primary source

of the problem that makes clustering and classification in high dimensional data meaningless.

This issue affects Minkowski distance form which is a generalization of three conventional

distance metrics, Manhattan Distance, Chebyshev Distance and Euclidean Distance [188]. We

can write the Minkowski distance as follows,

d(~pi, ~pj) =
(∑d

e=1 (~pi.fe − ~pi.fe)p
) 1
p (4.2)

2In other algorithms such as EM, we can use another form of initialization settings. These settings can replace
our definition of initial seeds if another separation algorithm is employed.
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for p=1, the equation corresponds to the Manhattan Distance, for p=2 the equation corresponds

to the Euclidean Distance and for p =∞ it resembles the Chebyshev Distance.

The problem of the Minkowski distance is utilizing a stationary coordinate system which is

not suitable for calculation of differences for clustering in high dimensions. The main obstacle

is how origin which is a vector with values of zero (e.g., [0, . . . , 0]) is used as a reference to

provide a sense of similarity/dissimilarity with metric systems. While this stationary root is

suitable for univariate space, it has detrimental effects when dimensionality grows. Since this

point has 0 values (does not affect the calculations), it is omitted from (4.2). In this regard, if

we define ~o0 as origin we can rewrite (4.2) in the following form,

d(~pi, ~pj) =
(∑d

e=1 ((~pi.fe − ~o0.fe)− (~pi.fe − ~o0.fe))
p
) 1
p (4.3)

We use the notation ”.” to show the relationship between features and vectors. In this

regard, ~pi.fe indicates the value of dimension e in vector point ~pi and ~o0.fe indicates the value

of dimension e in center ~o0. To mitigate the concentration effect, we want to replace the role

of ~o0 with ~oi which is the center of ci. Unlike the origin, since ~oi is the center of the ci, it is

not a stationary point and can take different values based on the members of the clusters. In

this regard, the new reference traces center of the ci and does not push all points unanimously

apart. Instead, points that are a part of ci are differentiated better compared to the points that

are not a part of ci. However, the feature values of ~oi are not given a priori which creates a

contradictory situation for calculation of (4.3). To clarify the problem, consider the underlying

assumption of K-Means which requires points with the mixture of MVG distributions. To get

~oi using K-Means, we need to cluster data in their multivariate forms and use distances with

(4.2). This process requires the use of meaningless measures to provide meaningfulness for

distance metrics which is contradictory.

To circumvent this limitation, we change the underlying assumption of the clustering data

from MVG distributions to UVG distributions. In this way, we can enforce the separation of

points in each R1 instead of Rd. This approach results in the calculation of ~oi in a meaningful

way. Subsequently, we can define a new metric system and clustering process which guarantees

meaningfulness of distance values and clustering results.
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D1D2

Dd

Figure 4.2: An example of the distribution of data points in each feature space given the pro-
posed basic assumption.

More formally, we consider a UVG distribution as follows in which µ is the mean or center

and σ is the standard deviation of the distribution,

N(fe, µ, σ) = 1
σ
√

2π
e−

(fe−µ)2

σ2 (4.4)

In each dimension, we have several UVG distributions with different µs and σs to create

features in dimension e (e.g., fe in De). We can summarize this representation with mixture of

UVG distributions as follows,

p(fe|~µ, ~σ) =
∑

i∈[1,k] πiN(fe, µi, σi) (4.5)

in which ~µ = [µ1, . . . , µk], ~σ = [σ1, . . . , σk] and πi is the weighting factor. It is expected that a

good clustering data to have points with features that are selected from p(fe|~µ, ~σ) with respec-

tive N(fe, µ, σ)s which are separated from each other. To see how this assumption affects the

data we provide Figure4.2. The example shows a scenario where we have three different clus-

ters and each N(fe, µ, σ) has a different color. As we can see, in each feature space, we have

a mixture of three UVG distributions with different µs,σs. There is also no synchronization

between placements of µs across dimensions. In this case, the following proof is applicable

that guarantees the meaningfulness of the distances in high dimensions.
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Theorem 1 Given the separation of points in each dimension, if coordinate system of Eu-

clidean space is transformed from ~o0 to ~oi where ~oi ∈ ci and points do not transform, it is

possible to have meaningful distance values even for high dimensional data.

Proof: ∀~pj ∈ ci, ~pk /∈ ci different N(fe, µ, σ)s are dedicated from p(fe, x|~µ, ~σ) to create

~pjs,~pks. Let’s define a new norm ‖.‖c which returns the distance of any point such as ~pj based

on the new coordinate system ~oi. We have,

‖~pj‖c =
∑d

e=1 (~pj .fe − ~oi.fe)2 (4.6)

Accordingly, ‖.‖ec returns the value of ‖.‖c in dimension e. We know that when points are

distributed with mixture of Gaussian distributions it means that µs and σs are in a way that

N(fe, µ, σ)s are separated. For this reason, in each fe, given ~oi ∈ ci, we have, ‖~pj‖ec < ‖~pk‖
e
c.

We have,

‖~pj‖ec − ‖~pk‖
e
c = εe (4.7)

in which εe is the difference of the distance between ~pj , ~pk given center point ~oi in dimension

e. This result is the required effect that we want to make comparisons of any two points based

on a center point ~oi instead of ~o0. For all of the dimensions, we simply have the following

outcome in which Dist(~pj , ~pk) is a new distance metric and equals to the sum of all εes.

Dist(~pj , ~pk) =
∣∣‖~pj‖c − ‖~pk‖c∣∣ =

∣∣∣∑d
e=1 εe

∣∣∣ (4.8)

As the number of dimensions increases the value ofDist(~pj , ~pk) also increases. The accre-

tion is only true when ~pj , ~pk are not in the same cluster. Otherwise, since they have the same

UVG distribution, their overall distance is negligible.

Let’s consider three points ~pq, ~pj ∈ ci, ~pe /∈ ci, where ~pq takes the role of query point, ~pj

has the nearest (Dmin) and ~pe has the farthest distance Dmax to the ~pq. Since ~pq, ~pj are in the

same cluster, in each dimension they take values from the same UVG, therefore Dist(~pj , ~pq)

is negligible. On the contrary, ~pq, ~pe are not in the same cluster, so in each dimension they

take values from different UVG distributions. This leads to the bigger values for Dist(~pj , ~pq)
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with more dimensions. Therefore, in (4.1), for the new distance metric, we have the following

conclusion,

Dmax−Dmin
Dmin

→ Dmax (4.9)

In this result, when entropy is smaller for UVG distributions, the convergence gets closer

to the Dmax value. Regardless, the relative distance between any two points which are not in

the same cluster converges to a non-zero value which guarantees the meaningfulness. �

In Theorem 1, we proposed clustering norm (‖.‖c) which guarantees meaningfulness of

clustering. In ‖.‖c, the center of the clusters replace the origin vector in the coordinate system.

Note that the square of the roots is not applied to (4.6). Consequently, the new formulation

of the distance metric system further differentiates between points that are in the same cluster

compared to the points that are not. For clustering of the points, first, we select k points

randomly from set P. In each dimension, the K-Means algorithm is used separately to create

clusters and their centers. In the end, we can simply classify those points that are closer to

the ~oi with the new distance metric. In this process, while it is possible to calculate distances

between any two points with (4.8), the calculation of the ‖.‖c is enough to make clusters. In

this context, ‖~pj‖c corresponds to the ‖~pj − ~oi‖2 the properties of the ‖.‖2 is inherited with the

‖.‖c.

4.1.4 Results
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Figure 4.3: Detailed analysis of meaningfulness in multivariate space in synthetic datasets.

In this section, we provide the results of our experiments for the proposed clustering dis-

tance. In this process, we use synthetic and non-synthetic datasets. The Table4.3 includes
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thirteen different datasets and provides associated features for them with, 1) number of the

samples, 2) real number of the k, based on ground truth, 3) number of dimensions. The selec-

tions are popular datasets that can be retrieved from [189, 190] and cover a variety of properties.

An important argument for clustering is whether the clustering results are reliable. The

reliability is a direct consequence of distance metrics for accurately differentiating between

different points. A suitable measurement for calculating such reliability is (4.9) which measures

the concentration effect. Let’s first see how this phenomenon appears in multivariate data using

Euclidean distances. To this end, we need data points which have consistent features from

low dimensions to higher dimensions. Therefore, we use synthetic datasets in which members

receive values similarly from small to a high number of features. An easy way to see the

concentration effect is to generate points that obtain values in each dimension from an IID

distribution within a specific scale (between 0 and 10000).

Table 4.1: The result table of distance analysis for non-synthetic datasets.

Chiaretti Chin Christensen Golub Khan Shipp Su Titanic Wine Iris Colon Diabetes Mammographic

Properties of Datasets

Samples 128 118 217 72 63 77 102 1473 2201 105 60 752 830
Real K 6 2 3 2 4 2 4 3 3 3 2 2 2
Dimensions 10000 10000 1413 7129 2308 7129 5565 9 13 4 2000 8 5

Results for Euclidean

Mean .000015 .0002 .0014 .0019 .0191 .0058 .0055 .353532491 .177041 .03486 .1425 .137712 4.140476
Min -.025106 -0.08 -0.232 -0.17 -0.49 -.348 -0.32 -0.8891698 -0.8266 -0.529 -0.85 -0.9292 -0.80546
Max .025753 .0906 .3032 .2134 .9980 .5352 0.478 8.02281545 4.76736 1.1258 5.666 13.1434 4.140477

Results for Clustering Distance

Mean .119635 .0666 .1985 .1710 .1954 .3692 .0896 276593.731 110.520 7.5688 1.192 4.59559 41.24887
Min -0.93509 -0.79 -0.64 -0.92 -0.89 -0.96 -0.96 -0.9999999 -0.9999 -0.998 -0.97 -0.9997 -0.99997
Max 14.39843 3.729 7.045 12.10 8.945 26.68 10.96 12183956.7 31221.7 591.84 31.75 3517.08 39929.28

In this way, we end up with a dataset which is generated randomly including data points

that do not belong to any clusters. The feature spaces of the produced data points are from R21

to R220 . This pattern provides a proper setting where we can track the convergence of relative

distances. We directly use origin as a query point and calculate the corresponding distances with

the Euclidean distance between any two pairs for 100 points. In this regard, the combination

with Max value corresponds to (4.9) and Mean value corresponds to the overall differentiation

between points. The Figure4.3a represents the results. As we can see, with an increase of the

number of dimensions, Mean, Max and Min values in the graph quickly converge to 0 which is

the expected result in concentration effect.

The underlying assumption of CD is the separation of points into k clusters in each dimen-

sion. Therefore, we should not use CD for calculation of distances in the previous dataset which
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generates points randomly without considering the separation of points. Instead, for the next

experiment, we use a new dataset that produces data points based on a specific pattern. Accord-

ingly, in each dimension, members are separated into four different clusters. The central aspect

of this dataset is that points do not change their cluster memberships across dimensions. Based

on this premise, members that form an assemblage in one dimension stay with the same crowds

in all of the other dimensions. Also, the range of the values between clusters does not change.

For instance, if ci receives values between 10 and 20 in one dimension it receives contents from

the same range in all of the dimensions. Based on this pattern, we consider the center of each

cluster (~oi ∈ ci) to help us for calculation of the relative distances based on the proposed metric

system.

The Figure4.3b represents the results. As we can see, this time, Euclidean distance does

not converge to 0 even for dimensions of up to 220. This outcome shows the importance of

correlations between points which can determine the meaningfulness of distance metrics. In

this case, the features of each point are in a way that they retain almost the same distances to the

query point for all of the features. The reason is that each point uses the same µ, σ for choosing

its features. This design provides a clustering setting for Euclidean distance metric similar to

what we accomplish with CD metric system. Therefore, the distances remain meaningful. To

measure the CD, among four clusters we randomly select center of a cluster as query point.

The selection helps us to see that changing the coordinate system from origin to ~oi ∈ ci would

mitigate the concentration effect in practice. As we can see in this illustration, CD also does not

converge to the value of 0. However, note that for both Mean and Max results, CD converges to

a higher value compared to the Euclidean distance. The reason is that unlike the ~o0 which had

the role of a query point for Euclidean metric system, the center of the cluster for CD traces the

changes of the clustering points much better.

In the previous dataset, the pattern that we have designed for the creation of points is restric-

tive on the range of values across dimensions. Consequently, points of the same cluster would

receive contents based on the same µs, σs for all of their features. In this way, we helped Eu-

clidean distance for not falling into the trap of concentration effect. In the next dataset, we use

the same design of the previous dataset but remove the restriction of having the same µs across

dimensions. Subsequently, points of the same cluster still receive their contents from the same
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µ, σ. However, the values of µs may be different in each dimension. The Figure4.3c shows

the results. This time, the outcomes for Euclidean distance is similar to the effects of randomly

generated data and quickly converges to 0. On the other hand, CD, same as the previous sce-

nario does not converge to the value of 0. These results indicate that even in simple situations

where points are decomposable in each dimension, the Euclidean distance can quickly fall for

the concentration effect. This outcome is valid unless we use the query points that can trace the

change of clusters in each dimension. In the proposed distance metric careful attention is given

to calculate the distances based on these tracings which prevent the concentration effect.

In addition to the synthetic datasets, in Table4.3 we have non-synthetic datasets which re-

spectively produce less meaningful distance values compared to the proposed metric system.

Similar to the Figure4.3c the results are for maximum, minimum and mean values. The results

confirm the experiments on synthetic datasets. More specifically, for the Max values, we had a

minimum of 5.6 times higher differentiation for Colon dataset and a maximum of 1518663.46

times higher differentiation for Titanic dataset. Respectively, for the mean values, we had a

minimum of 9.96 times higher differentiation for the Mammographic dataset and a maximum

of 782371.46 times higher differentiation for Titanic dataset. According to our observations,

in general, the results depend on the selection of the query point, whether points can differen-

tiate themselves based on the reference and if points follow the underlying assumptions of the

proposed methods.

4.2 Condensed Silhouette

4.2.1 Introduction

A fundamental requirement for the K-Means based clustering algorithms is to select initial

seeds from clustering points. Current methods of seed initialization [191, 192] either rely on

random selections or prespecified patterns such as K-Means++ [193]. Both of these strategies

do not use any information from existing data, which can lead to inaccuracies in the clustering

results. To solve this problem, we can use a filtering process that chooses the clustering result

with the best score among several trials. For this purpose, we need clustering scores, which can

be achieved with clustering evaluation metrics.
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It has been shown that different evaluation methods can be more effective on certain prob-

lems [194, 195]. In general, one of the most effective evaluation metrics is the Silhouette

algorithm [196, 197, 198]. An extensive study in [199] shows that the Silhouette index obtains

the best results in many cases. Another study found out that Silhouette has the most correlation

with human evaluations [200]. Other studies [201, 202] further confirm the effectiveness of this

method. However, one drawback of using this method is the resources required to calculate Sil-

houette score. In contrast, the within-cluster sum of squares (WCSS) integrates with K-Means

clustering perfectly and does not need extra resources. This is probably an important factor that

led to the popularity of this method and its usage as the default method for current clustering

libraries such as sickit-learn [203].

In this section, we propose Condensed Silhouette as an optimized clustering evaluation

method for K-Means. The goal is to replace essential elements of Silhouette algorithm with

relevant elements of the K-Mean algorithm to reduce the required resources for calculation

of the Silhouette value. For clustering, we filter out the results which do not preserve com-

pactness based on Multivariate Gaussian Distribution for its clusters. We also consider the

distances of the clusters from each-other. In this way, next to compactness, we also encourage

the results where clusters have higher minimum distances. The results show the effectiveness

of our method. For accuracies, we could provide close results compared to the original Silhou-

ette. In the 14 datasets, the average of the accuracy differences between Condensed Silhouette

and Silhouette is only 0.0042. For computational resources, our benchmark is WCSS, which

does not need additional computations for calculating its evaluation score. In the 14 datasets,

Condensed Silhouette needed 5.4s, and Silhouette needed 272.73s more time compared to the

WCSS. This means that Condensed Silhouette is 50.5 folds closer to the benchmark compared

to the Silhouette.

4.2.2 General Model

To make k clusters out of members of P, agents need a clustering algorithm. In clustering

algorithms, based on different initialization settings, the membership of points to clusters can

change dramatically. The most important initialization setting, which is common in K-Means
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based algorithms, is choosing initial seeds. We take the results of K-Means based cluster-

ing algorithms with different initial seeds as C1, . . . ,Ct where t is the maximum number of

trials. In this regard, each Ci represents an instance of a final clustering result. We have

Ci = {c1, . . . , ck} which are created from initial seeds ~p1, . . . , ~pk. In this notation, each ~pj is

an initial seed that is taken from set P. Respectively, the centers of the clusters are denoted by

~o1, . . . , ~ok. In this notation, each vector ~oi is the center of cluster ci. If there is a score for each

Ci, the agent can choose the best Ci.
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Figure 4.4: The overall representation of the filtering process in clustering.

For clarification of the notifications and the filtering process, see Figure 4.4. In this exam-

ple, we have {C1, . . . , Ct} trials. Note that each Ci contains three clusters, Ci = {c1, c2, c3})

which means k = 3. The filtering process starts with an agent, which triggers the clustering

algorithm t times. The clustering algorithm provides the agent with different results by con-

ducting a clustering process using t different sets of initial seeds. The agent uses an evaluation

algorithm such as Silhouette and chooses the result with the best evaluation outcome (in this

example, C1). In this model, our goal is to propose an evaluation metric that is similar to the

Silhouette algorithm and also integrates with the K-Means algorithm to reduce the required

resources.

4.2.3 The Proposed Method

K-Means is an iterative clustering algorithm that refines the assigned clusters through many

iterations. Initially, the desired number of clusters is selected, which is equal to the number of
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centroids. Every data point is allocated to a cluster based on its distances to the centroids of

all the clusters. More specifically, for the task of clustering, the K-Means algorithm follows

two steps until convergence. First, for each ~oi ∈ ci, members of P which are closer to the ~oi

become the new members of ci. Second, for each ci the position of its corresponding ~oi changes

as follows,

~oi = 1
|ci|
∑

~pj∈ci ~pj
(4.10)

in which |ci| is the number of points in ci. The ’means’ in the K-Means is averaging of the

points (
∑

~pj∈ci ~pj), to the number of the points in the cluster (|ci|). After convergence, we

satisfy the following objective function, which means distances of points to their cluster center

are less than or equal to centers of other clusters.

∀~pj , ~oi ∈ ci, ~oh /∈ ci, ‖~pj − ~oi‖2 ≤ ‖~pj − ~oh‖2 (4.11)

This outcome is related to the main result of the iterative process in K-Means which makes

sure that data points (~pjs) are closer to the centroids of their respective clusters (~ois ∈ ci)

compared to the centroids of the clusters that they do not belong (~ois /∈ ci). The objective

function (2) is the most important quality consideration of clustering in K-Means [204]. For

the filtering, we repeat this algorithm t times with different sets of initial seeds. The main

concern in the filtering process is to help agents for choosing the best Ci, which requires an

overall score for each Ci.

4.2.4 Silhouette Evaluation

To determine the quality of each Ci, an evaluation degree has to evaluate the elements of

Ci. For this purpose, the Silhouette algorithm focuses on two aspects of the elements of Ci.

The first criterion is the compactness of cis. For clustering, it is desired to have clusters with

smaller entropies. To measure the compactness in Silhouette algorithm, we have,

a(i) = 1
|ch|−1

∑
~pi,~pj∈ch,i 6=j ‖~pi − ~pj‖2 (4.12)
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As we can see, a(i) is the mean distance between point ~pi and all of the points in the same

cluster. Therefore, in this method, the distances between every two points that are in the same

cluster are measured.

For second criterion, next to the compactness, an important observation for measurement

of the clusters is the relationship of each cluster member of Ci with other members of Ci. This

means that it is desired to have clusters that are as far from each other as possible. To calculate

this criterion, we have,

b(i) = min 1
|ch|
∑

~pi∈ch,~pj 6=ch ‖~pi − ~pj‖2 (4.13)

In this regard, the b(i) is the minimum value of the mean results of ~pi compared to all of the

points that are not in the same cluster as ~pi. Therefore, for each point ~pi, we have to calculate

the mean of distances of ~pi with all of the members of other clusters. The cluster that has the

minimum value is chosen for b(i). For each point ~pi we have to get its respective a(i), b(i) and

combine them as follows,

s(i) =


b(i)−a(i)

max{a(i),b(i)} Ci > 1

0 Ci = 1
(4.14)

We can rewrite this result as follows, which clearly shows that s(i) can take a value between

-1 and 1 (−1 ≤ s(i) ≤ 1). For clustering score, it is desired that s(i) gets closer to 1.

s(i) =


1− a(i)

b(i) a(i) < b(i)

0 a(i) = b(i)

b(i)
a(i) − 1 a(i) > b(i)

(4.15)

For the final value of Silhouette, the mean of all of the values of s(i)s is used. In the next

section, we provide an alternative approach for calculating a(i), b(i), which can significantly

reduce the computation of the Silhouette algorithm.

4.2.5 Condensed Silhouette

In the Condensed Silhouette we want to stay true to the methodologies of Silhouette. The

main difference is to replace the evaluation of a(i) and b(i) with alternatives that require less
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computational resources. To evaluate a(i)′ which is the alternative approach for compactness

of clusters, instead of the current methodology in Silhouette, we use the minimization of the

within-cluster sum of squares (WCSS). This is a simple and yet effective method that can be

written as follows,

a(i)′ = WCSS =
∑

ci∈C
∑

~pj∈ci ‖~pj − ~oi‖2, ~oi ∈ ci (4.16)

As we can see, in this method, stationary points (centers) and the distances with their mem-

bers are used as a reference to measure the compactness of clusters. This is in contrast to the

Silhouette method, where the distances of all pairs have to be measured. If shapes of the clus-

ters are assumed to be Multivariate Gaussian -otherwise K-Means should not have been used-

then WCSS is a good measurement which makes the current methodology of measuring a(i) in

Silhouette redundant.

To calculate the number of required distances for a(i) in Silhouette, we can use the combi-

nations formula, as follows,

n
j

 = n!
j!(n−j)! (4.17)

which provides the number of possible combinations of j objects from a set of n objects. In this

case, we want, number of the unique pairs. Therefore, j is 2 which gives us following equation,

dists = n!
2!(n−2)! = n(n−1)

2
(4.18)

For instance, with a result of 3 clusters, and 100 points, in each cluster, we have 4950×3 =

14850 distance calculations between pairs of point. Comparatively, the only overhead of a(i)′,

is
∑

~oi∈C part from (7) which in this case is adding three numbers. Note that the calculations of∑
~pj∈ci ‖~pj − ~oi‖2 is already included in the convergence of the K-Means algorithm and does

not have any overhead for calculating a(i)′. Therefore, measuring the compactness of clusters

for a(i)′ is basically free when it is used in combination with K-Means algorithm.

The evaluation of b(i) in Silhouette which measures the quality of distances between clus-

ters, needs distances between every two nodes which are not in the same clusters. If we combine
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this requirement with evaluation of a(i), the (8) has to be used for all points in all of the clusters.

In this regard, with 3 clusters and 100 points in each cluster, we have 400×(400−1)
2 = 79, 800

number of measurements of the distances.

Let us define b(i)′ as an alternative for b(i). For the evaluation of b(i)′, we only compare the

centers with each other. This is a reasonable choice because the center of a cluster is created

from features of all of the points that are in the same cluster. Therefore, centers are good

representations of overall points in the same clusters.

b(i)′ = mini 6=j ‖~oi − ~oj‖2 , ~oi ∈ ci, ~oj ∈ cj (4.19)

In this way, we make separate calculations for every pair of points redundant. Instead, we

only calculate distances between every pair of centers. As a result, the number of distances for

the proposed method is reduced to,

dists = k(k−1)
2

(4.20)

Following the previous example, with a result of 3 clusters, and 100 points in each cluster,

we have 3×(3−1)
2 = 3 number of distances. To calculate the final score (s(i)′), we use (5),(6)

from Silhouette algorithm, as follows,

s(i)′ =


1− a(i)′

b(i)′ a(i)′ < b(i)′

0 a(i)′ = b(i)′

b(i)′

a(i)′ − 1 a(i)′ > b(i)′

(4.21)

For the final value of Silhouette, the mean of all of the values of s(i)′s is used. Similarly,

s(i)′ can take a value between -1 and 1 (−1 ≤ s(i)′ ≤ −1). For clustering, higher value of

s(i)′ is desired.

4.2.6 Results

In this section, we provide the analysis for computation and accuracy results. For accu-

racy, we expect Condensed Silhouette to have similar outcomes compared to the Silhouette. In

the computational analysis, we expect resource consumption to be closer to the WCSS. We are



83

specifically interested in mitigating the growth for resource consumption of the Silhouette when

the number of the points increases. For all the experiments, we use the standard implementa-

tions in sickit-learn library. Accordingly, for implementing Condensed Silhouette we forked

the related Silhouette codes from sickit-learn, and changed the codes where it was needed.

4.2.7 Accuracy Analysis

The results of the experiments in this section are mean percentages of the correct labeling

for clustering compared to the ground truth over 100 trials. Such comparison is an assignment

problem where we use the algorithm introduced in [205]. In each trial, we take ten samples

using K-Means algorithm. Next, an evaluation metric is applied to all ten samples. In the end,

the sample which provides the best value based on the evaluation metric is chosen for that trial.

For a given dataset, for each trial, the number k of clusters was set to the number of ”classes”

known to exist in the dataset. The numbers in the tables are the mean values for over 100

trials. For the clustering result, we compare our method with several other approaches. The

first approach is WCSS, which is the default method that is used in sickit-learn library. Next to

the WCSS, we also compare our method with Silhouette value and Davies Bouldin score. Both

of them are prominent evaluation methods that have proper implementations in sickit-learn.

Table 4.2: The result table for accuracy analysis of seven real datasets, using gene expression
microarrays.

alon chiaretti golub gravier singh tian christensen

Samples 62 128 72 168 102 173 217
Real K 2 6 2 2 2 2 3
Features 2000 10000 7129 2905 10000 10000 1413

Accuracy

WCSS 53.22 36.40 57.73 52.17 57.86 56.86 99.53
DaviesBouldin 53.19 41.4 64.5 65.87 57.49 57.8 93.35
Silhouette 50.37 39.66 66.13 66.54 57.75 57.79 99.53
CondSilhouette 50.40 40.14 64.79 66.34 57.77 57.80 99.53

For the experiments, at first, we use gene expression microarray datasets, which have a

high number of features [189, 190]. In these datasets, number of the samples are relatively

small. For the accuracy results, see Table 4.2. The upper part of the table provides associ-

ated features for datasets with, 1) number of the samples, 2) real number of the k, based on
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ground truth, 3) number of the features. Respectively, the lower part of the table provides the

mean values for 100 iterations of clustering results on each dataset. Comparing WCSS with

Condensed Silhouette, on four datasets, Condensed Silhouette is better with at most 14.17%

higher accuracy for Gravier and at least 0.94% higher accuracy for Tian. For datasets Alon and

Singh, the WCSS provides 2.82% and 0.09% better accuracies compared to the Silhouette. In

Christensen, both methods had the same results. Overall, Condensed Silhouette was a better

method with a cumulative higher accuracy of 23.0% in all seven datasets.

If we compare Davies Bouldin score with Condensed Silhouette, on four datasets, the ac-

curacy of Condensed Silhouette is higher. The most increase of the accuracy is for Christensen

with 6.15%, and the least increase of the accuracy is for Singh with 0.28% higher accuracy.

On the other hand, Davies Bouldin score could provide higher accuracy on two datasets with

at most 2.79% higher accuracy on Alon and at least 1.26% higher accuracy on Chiaretti. Over-

all, Condensed Silhouette was a better method with a cumulative higher accuracy of 3.17% in

all seven datasets. For the Silhouette, the results are very close. On four datasets, Condensed

Silhouette was better than Silhouette with at most, 0.48% better accuracy for Chiaretti and at

least 0.01% better accuracy for Tian. For the Golub and Gravier dataset, Silhouette had bet-

ter accuracy with 1.34% and 0.2% compared to the Condensed Silhouette. For Christensen

both methods had the same accuracy. On the cumulative results, Silhouette could slightly edge

Condensed Silhouette by one percent.

Table 4.3: The result table for accuracy analysis of seven real datasets

cmc IRIS unbalanced wdbc bupa contraceptive mammographic

Samples 1473 150 856 569 345 1473 830
Real K 3 3 2 2 2 3 2
Features 9 4 32 30 6 9 5

Accuracy

WCSS 40.01 89.32 56.30 85.41 55.35 39.95 68.55
DaviesBouldin 40.06 89.33 56.30 85.41 55.25 40.05 67.88
Silhouette 40.11 89.32 56.30 85.41 55.23 40.11 67.53
CondSilhouette 40.11 89.33 56.30 85.41 55.26 40.11 68.55

In Table 4.3, we use seven more real datasets. Unlike the gene expression microarray

datasets, in these datasets, the number of the features compared to number of the points is

relatively small. For WCSS and Condensed Silhouette, on three datasets Condensed Silhouette

had better results, with at most 0.1 better accuracy for cmc. Respectively, on one dataset,
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WCSS was better than Condensed Silhouette, with 0.09% better accuracy for Bupa. On the

cumulative results, the Condensed Silhouette could slightly outperform WCSS, with 0.18%

better accuracy.

Between Davies Bouldin and Condensed Silhouette, the Condensed Silhouette had better

results in four datasets with at most 0.67% higher accuracy in Mammographic. In three other

datasets, the outcomes for both methods are the same. For the cumulative results, the Silhouette

is better with 0.79% higher accuracy. When comparing Condensed Silhouette to Silhouette, the

accuracy of Condensed Silhouette was better on three datasets with up to 1.02 higher accuracy

and down to 0.01 higher accuracy. On four datasets, two methods had the same accuracy. On

the cumulative results, the Silhouette could slightly outperform Condensed Silhouette, with

1.06 better accuracy.

4.2.8 Computational Analysis

To analyze the computational requirements of the methods we use time.process time() in

Python, which is specifically designed to calculate the time it takes to execute a process without

considering time elapsed during sleep. To run the experiments, we used AMD 2700x CPUs on

idle Windows 10 machines with single cores. Similar to previous experiments, the results are

attained over 100 trials. Respectively, the numbers in the tables are the times to do 100 trials in

seconds (s). As mentioned before, the best process time is for the WCSS method, and the goal

is to get as close to this method as possible. Table 4.4, provides the computational time for four

methods over seven gene expression microarray datasets. The computational time for Davies

Bouldin score is, on average, 9.57s higher than WCSS. The maximum computational differ-

ence is for Tian, with 21.53s higher computation than WCSS. The minimum computational

difference is for Alon with 1.92s higher computation than WCSS.

The average computational time for Silhouette is 10.06s higher than WCSS. The highest

and lowest computational times are for Tian and Alon with 25.7s and 1.71s higher bench-

mark times than WCSS. Comparatively, the Condensed Silhouette, on average, has only 0.37s

higher benchmark times than WCSS. An important note here is that the computational time

for Chiaretti is lower for the Condensed Silhouette. This result is possible because the conver-

gence time on K-Means for trials of Condensed Silhouette is lower than the convergence time
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Table 4.4: The result table for computational analysis of seven real datasets, using gene expres-
sion microarrays.

alon chiaretti golub gravier singh tian christensen

Samples 62 128 72 168 102 173 217
Real K 2 6 2 2 2 2 3
Features 2000 10000 7129 2905 10000 10000 1413

Computation

WCSS 5.18 100.78 24.50 23.07 44.92 97.78 12.43
DaviesBouldin 7.10 106.62 31.95 31.78 62.34 119.31 16.60
Silhouette 6.89 109.15 29.82 30.01 60.28 123.48 19.45
CondSilhouette 5.56 94.64 24.79 23.68 49.64 98.84 14.12

on K-Means for trials of WCSS. However, this is a rare instance, and in general, WCSS should

provide better performance. Overall, relative to the base benchmark of the WCSS, our method

provides 26.98 folds closer benchmark time than Silhouette.

Table 4.5: The result table for computational analysis of seven real datasets

cmc IRIS unbalanced wdbc bupa contraceptive mammographic

Samples 1473 150 856 569 345 1473 830
Real K 3 3 2 2 2 3 2
Features 9 4 32 30 6 9 5

Computation

WCSS 3.73 1.76 3.14 2.21 1.73 3.70 1.81
DaviesBouldin 5.42 2.82 4.78 3.37 3.17 5.51 3.14
Silhouette 75.29 3.00 26.18 11.92 5.79 75.39 22.82
CondSilhouette 4.29 1.92 3.40 2.29 2.46 4.25 2.26

In table Table 4.5, we provide the computational analysis for seven additional datasets. The

DaviesBouldin score, on average, needed 1.44s more time than WCSS to complete its tasks.

The lowest time difference is for IRIS with 1.06s more computational time. The highest time

difference is for Contraceptive with 1.81s more than computational time. For the Silhouette,

on average, the time increase compared to the WCSS is 28.90s. The time increase could go

up to 75.39s for Contraceptive, which has the highest number of the points. Comparatively,

on average, the increase of the time for the Condensed Silhouette is only 0.39s. Overall, for

the average values, relative to the base benchmark of the WCSS, our method was 74.10 times

closer to the benchmark than Silhouette.
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4.3 Subspace Clustering with Data Augmentation

4.3.1 Introduction

Recent advances in technology have provided massive amounts of complex high dimen-

sional data for computer vision and machine learning applications [206, 207, 208]. High dimen-

sionality has adverse effects, including confusion of algorithms with irrelevant dimensions and

curse of dimensionality as well as increased computation time and memory. This motives us to

explore techniques for representing high-dimensional data in lower dimensions. In many prac-

tical applications such as face images under various illumination conditions [209] and hand-

written digits [210], high-dimensional data can be represented by union of low-dimensional

subspaces. The subspace clustering problem aims at finding these subspaces [211, 212, 167].

In particular, the objective of subspace clustering is to find the number of subspaces, their basis

and dimensions, and assign data to these subspaces [213].

Conventional subspace clustering algorithms assume that data lie in linear subspaces [214,

215, 216, 217]. In practice, however, many datasets are better modeled by non-linear manifolds.

To deal with this issue, deep subspace clustering (DSC) methods [218, 219, 220, 221, 222, 223]

have been proposed which essentially which learn the unsupervised nonlinear mappings by

projecting data into a latent space. Deep subspace clustering networks have shown promising

performances on various datasets.

Deep learning techniques are prone to overfitting. Data augmentation is often presented as

a type of regularization to mitigate this issue [224, 225]. While data augmentation for deep

learning-based methods have proven to be beneficial, the current framework of DSC networks

is unable to take the full advantage of data augmentation. In this work, we modify the DSC

framework and propose a model that can incorporate data augmentation into DSC.

An important difference between data augmentation in subspace clustering and data aug-

mentation in supervised tasks is the fact that as apposed to supervised tasks, we do not have

ground-truth labels for the existing samples in the subspace clustering algorithms. Correspond-

ing to the fact that objects remain the same even if we slightly transform them, in supervised

deep learning models, transformations of an existing sample are trained to be predicted with a

consistent label similar to the ground-truth label of the original sample. How can one convey
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such property in an unsupervised subspace clustering task, where the data does not have the

ground-truth labels?

A DSC model should favor functions that give consistent outputs for similar data points

with a slight difference in their percept. To achieve this, we optimize a consistency loss that

is based on temporal ensembling. We input plausible transformations of existing samples into

the model and require the autoencoders of the model to map the transformations to consistent

subspaces similar to the subspace of the original data.

Efficient augmentation policies improve the performance of the deep networks. However,

not all the image transformations construct efficient augmentation policies. Efficient augmen-

tation policies can be different from a dataset to another [113]. In supervised applications, the

validation set is often used to manually search among transformations such as rotation, hori-

zontal flip, or translation by a few pixels to find efficient augmentations. Manual augmentation

needs prior knowledge and expertise, and it can only search among a handful of pre-defined

trials. Some methods automate this search for classification networks [113]. However, these

methods are only designed for the classification task and cannot be applied to the task of sub-

space clustering. This is because we do not have a validation or training set in subspace clus-

tering. We overcome this issue by providing a simple yet effective method for finding efficient

augmentation policies using a greedy search and use mean Silhouette scores to evaluate the

effect of different augmentation policies on the performance of our proposed model.

4.3.2 Related Work

Clustering Methods With Augmentation. A recent method proposes a technique for deep

embedded clustering algorithms with augmentations [226, 227]. In the pre-training stage they

use augmentations in training autoencoders, and in the fine-tuning stage they encourage the

augmented data to have the same centroid as their corresponding data. To the best of our

knowledge, we are the first to propose an augmentation framework for deep subspace cluster-

ing algorithms.

Self-expressiveness Models in Subspace Clustering. Let X = [x1, · · · ,xN ] ∈ RD×N be a

collection of N signals {xi ∈ RD}Ni=1 drawn from a union of n linear subspaces S1 ∪ S2 ∪
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· · · ∪ Sn. Given X, the task of subspace clustering is to find sub-matrices X` ∈ RD×N` that lie

in S` with N1 +N2 + · · ·+Nn = N.

Due to their simplicity, theoretical correctness, and empirical success, subspace clustering

methods that are based on self-expressiveness property are very popular [228]. Self-expressiveness

property can be stated as

X = XC s.t diag(C) = 0, (4.22)

where C ∈ RN×N is the coefficient matrix. There may exist many coefficient matrices that

satisfy the condition in (4.22). Among those, subspace preserving solutions are especially of

interest to self-expressiveness based subspace clustering methods. Subspace preserving prop-

erty states that if an element in C is non-zero, the two data points in X that correspond to this

coefficient are in the same subspace.

Self-expressiveness based methods combine these two properties and solve a problem of

the form:

min
C
LS.E.(C,X) + λ1LS.P.(C), (4.23)

where λ1 is a regularization constant,LS.E. andLS.P. impose the self-expressiveness and subspace-

preserving properties, respectively. Most of the linear methods use LS.E.(C,X) = ‖X −

XC‖2F . However, for LS.P.(C), different methods use various regularizations, including `1-

norm, `2-norm and nuclear norm [214, 228, 229].

In recent years, deep neural network-based extensions were introduced to self-expressiveness

based models [218, 219, 220, 221]. For these methods, xis do not need to be drawn from a union

of linear subspaces. Instead, they use autoencoder networks to map the data points to a latent

space where data points lie into a union of linear subspaces and exploit the self-expressiveness

and subspace-preserving properties in the latent space. Let Z ∈ Rd×N be the latent space fea-

tures developed by the encoder in the autoencoders. Deep subspace clustering networks solve

a problem of the form:

min
Θ
LS.E.(C,Z) + λ1LS.P.(C) + λ2LRec.(X, X̂), (4.24)

where λ1 and λ2 are regularization constants, Θ is the union of trainable parameters, X̂ is

the reconstruction of X and the output of the decoder, and LRec.(X, X̂) = ‖X − X̂‖2F is the

reconstruction loss in training the autoencoder. Once a proper C is found from (4.23) or (4.24),



90

Encoder 

x1
i x2

i

x3
i

x4
i

x1
j x2

j

x3
j

x4
j

Decoder 

̂x1
j ̂x2

j

̂x3
j ̂x4

j

̂x1
i

̂x2
i

̂x3
i

̂x4
i

z1
j

z2
j

z3
j

z5
j z4

j

z4
i

z1
i

z2
iz3

i
z5

i

Figure 4.5: An overview of the proposed deep subspace clustering networks with data augmen-
tation. The existing data points xi and xj are transformed into xti and xtj in each iteration by an
augmentation policy. However, the autoencoder learns to keep their latent space features within
consistent subspaces.

spectral clustering methods [230] are applied to the affinity matrix W = |C|+ |C|T to obtain

the segmentation of the data X.

4.3.3 Deep Subspace Clustering Networks with Data Augmentation

The human brain considers an object to remain the same, even if the percept changes

slightly. Correspondingly, when data augmentation is used in supervised deep learning mod-

els, transformations of existing samples are trained to predict consistent labels similar to the

ground-truth label of original samples. Conveying the same insight, we argue that a DSC

model should favor functions that give consistent outputs for similar data points. We approach

this property by keeping the estimated subspace membership of data points consistent when

an augmentation policy is applied to them. During the training process, we smooth the pre-

dictions for the subspace memberships via temporal ensembling of estimated affinity matrices

from previous iterations.

Let Xt = [xt1, · · · ,xtN ] ∈ RD×N be the transformed version ofN existing data points X =

[x1, · · · ,xN ] ∈ RD×N at the iteration t. Xt is the observation at time t when an augmentation

policy is applied to the existing data points X.

Our model can be applied to a variety of DSC networks. In this section, we consider a gen-

eral form that consists of an encoder that takes Xt as an input and generates latent space features

Zt. The latent space features are reconstructed by a self-expressive layer with parameters Ct.

That is, ZtCt is fed to the decoder to develop X̂t, which is a reconstruction of Xt. Figure 4.5

shows an overview of this model. Note that such a model includes a fully-connected layer that

connects all the samples in the mini-batch (the self-expressive layer). Thus, the number of data

points and their orders cannot be changed during the training. We keep a placeholder with N
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fields that correspond to the existing samples and feed Xt to this placeholder at every training

step t. The permutation of samples in Xt remains the same.

As mentioned, we aim for an autoencoder that preserves the subspace membership of

slightly transformed inputs. Let Ct be the coefficient matrix that is constructed at the t-th

iteration of a subspace clustering algorithm. In addition, let Q̂ be an existing estimation of sub-

space membership matrix, whose rows are one-hot vectors denoting the subspace memberships

assigned to different samples. The multiplication of Q̂T and |Ct| gives a matrix whose (i, j)th

element shows the contribution of the samples assigned to the i-th subspace in reconstructing

the j-th sample. For a perfect subspace-preserving coefficient matrix, Q̂T |Ct| has only one

non-zero element in each row.

For each sample j, the maximum value in the j-th row of Q̂T |Ct| can point to a new

estimate for its subspace membership. Therefore, a prediction of subspace membership matrix

at the iteration t can be calculated as follows

Qt = Softmax(Q̂T |Ct|), (4.25)

where Softmax(·) corresponds to the softmax function on the rows of its input. We refer to Qt

as temporal subspace membership matrix.

The temporal subspace membership matrix Qt estimates the subspace memberships for

the current observation Xt. Note that because of the randomly augmented inputs, the coeffi-

cient matrix Ct can undergo sudden changes in different time frames. While it is fine to have

different coefficient matrices for slight transformations of data, we are interested in maintain-

ing persistent subspace membership matrices Qt. Thus, we propose a subspace membership

consistency loss.

We keep an exponential moving average (EMA) of Cts, the coefficient matrices, to pro-

vide a smooth temporal ensemble for the coefficient matrix. Thus, in addition to the temporal

subspace membership matrix in (4.25), in each training iteration, we can calculate another

membership matrix corresponding to the temporal ensemble of coefficient matrices in prior

iterations. We refer to this membership matrix as Qt
Ens..

Let Ct−1
EMA be the EMA of coefficient matrices until the iteration t − 1, and Ct be the

calculated update for the coefficient matrix at the iteration t. The EMA of the coefficient matrix
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at the iteration t can be updated as follows

Ct
EMA = αCt−1

EMA + (1− α)Ct, (4.26)

where 0 < α < 1 is the smoothing factor. Using Ct
EMA we can calculate Qt

Ens. as

Qt
Ens. = Softmax(Q̂T |Ct

EMA|), (4.27)

where Q̂ is the same prior membership matrix as in (4.25).

Note that Qt
Ens. provides more consistent subspace membership predictions as compared

to Qt. To encourage the autoencoders to favor functions that preserve the subspace member-

ships even for differently transformed observations Xt, we propose the subspace membership

consistency loss as follows:

LCons.(Q
t
Ens.,Q

t) = CE(Qt
Ens.,Q

t), (4.28)

where CE(·) denotes the cross-entropy function. LCons. penalizes the temporal changes to the

subspace memberships if they are inconsistent with the temporal ensemble of subspace mem-

berships Qt
Ens..

Full Objective. We train the networks iteratively with two steps of subspace clustering and

subspace membership consistency in each iteration. In the subspace clustering step, the loss

function of the subspace clustering algorithm of choice (4.24) is optimized, and in the subspace

membership consistency step, (4.28) is optimized. That is at each iteration t, we train the

netwrok with the following algorithm. Step 1: minΘ(LS.E.(C
t,Zt) + λ1LS.P.(C

t) + λ2LRec.(X
t, X̂t)),

Step 2: minΘ(LCons.(Q
t
Ens.,Q

t)),
(4.29)

where Θ is the union of trainable parameters in the networks.

4.3.4 Finding Efficient Augmentations

In the previous section, we denoted Xt as a stochastic transition of X which is the result of

applying an augmentation policy. The choice of augmentation policy plays an important role

in the performance of the network. We formulate the problem of finding the best augmentation

policy as a discrete search problem.
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Our method consists of three components: A score, a search algorithm and a search space

with ns possible configurations. The search algorithm samples a data augmentation policy Si,

which has information about what image processing operation to use, the probability of using

the operation in each iteration, and the magnitude of the operation. The policy Si will be used

to train a child deep subspace clustering network with a fixed architecture. The trained child

network will return a score that specifies the effect of applying the policy Si to the input data

on the performance of deep subspace clustering task. Finally, all the tested policies {Si}ns1 will

be sorted based on the returned scores.

In the following, we describe the score , the search algorithm and the search space in detail.

Score. In our framework, the score is a metric that evaluates the performance of the DSC on

a certain given input. Note that the ground-truth labels are unknown at this stage. Therefore,

we need to use a validation technique that does not use the ground-truth labels. Any internal

validation of clustering methods, including mean Silhouette coefficient [196] or the Davies-

Bouldin index (DBI) [231] can serve as the score metric in our search. We use mean Silhouette

coefficient in this section.

Search Space. In our search space, a sample policy Si consists of ` sequential sub-policies

with each sub-policy using an image operation. Additionally, each operation is also associated

with two hyper-parameters: 1) the probability of applying the operation, and 2) the magnitude

of the operation. We discretize the range of probability and magnitude values into np and nm

discrete values, respectively (with uniform spacing). This way, we can use a discrete search

algorithm to find them. For no operations, this constructs a search space with the size of

ns = (no × np × nm)`.

Search Algorithm. The size of search space ns, can grow exponentially. A brute-force search

might be impractical. To make the searching process feasible, we use a greedy search. First, we

begin searching in the reduced search space where each sample policy has only one sub-policy

(` = 1). In the reduced search space, we find the best probability and magnitude for each image

operation. Note that np and nm can also be decreased as much as necessary to keep the search

tractable.

Once we find the best augmentation operations for the first sub-policy, we search for the

second sub-policy (` = 2). For each found sub-policy in the first stage, we search for the best
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(a) (b) (c)

Figure 4.6: Sample images from different used datasets. (a) Extended Yale-B dataset [6]. (b)
COIL dataset [7, 8] . (c) ORL dataset [9].

combination of image operations and their probabilities and magnitudes.

This process continues until we reach ` = `max, the maximum number of sub-policies. At

this point, we sort all the potentially good policies that are found until this point, and select the

best b augmentation policies among them.

4.3.5 Experimental Results

We evaluate our method against state-of-the-art subspace clustering algorithms on three

standard datasets. We first use the algorithm described in section 4.3.4 to find the best augmen-

tation policies for each dataset. Then, we use the found augmentation policies in the ablation

study as well as in comparisons with state-of-the-art subspace clustering algorithms.

We use the following datasets in our experiments:

Extended Yale-B dataset [6] contains 2432 facial images of 38 individuals from 9 poses and

under 64 illuminations settings.

ORL dataset [9] includes 400 facial images from 40 individuals. This corresponds to only 10

samples per subject.

COIL-100 [7] and COIL-20 [8] datasets are respectively consisted from images of 100 and 20

objects placed on a motorized turnable. Per each object, 72 images are taken at pose intervals

of 5 degrees that covers a 360 degrees range. Following most of the prior studies, in our

experiments, we use grayscale images of these datasets.

Figure 4.6 (a), (b), and (c) show sample images from the Extended Yale-B, ORL and COIL

datasets, respectively. Note that in the subspace clustering tasks, the datasets are not split into

training and testing sets. Instead, all the existing samples are used in both the learning stage

and the performance evaluation stage.
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Experimental Setups. While our method can be applied to many DSC algorithms, unless

otherwise stated, due to its promising performance, we adopt the MLRDSC networks [221]

and apply our method to its networks. We call the result MLRDSC with Data Augmenta-

tion (MLRDSC-DA). The objective function of MLRDSC can be also written in the format

of (4.24). The self-expressiveness and subspace-preserving loss terms in MLRDSC are

LS.E.(C,Z) =
L∑
l=1

‖Zl − Zl(G + Dl)‖2F and LS.P.(C) = ‖QT |G|‖1 + λ3

L∑
l=1

‖Dl‖2F ,

(4.30)

where L is the number of layers in the autoencoder, Zl is the features at the l-th layer, and C =

G+ 1
L

∑L
l=1 Dl. The coefficient matrix in this model is calculated by the consistency matrix G

and distinctive matrices {Dl}Ll=1. The distinctive matrices enforce subspace-preserving across

different layers, and G captures the shared information between the layers.

In the training of MLRDSC-DA, we first pre-train the networks by performing the ML-

RDSC algorithm. Then, we continue training MLRDSC-DA for a few additional iterations

until convergence with (4.29) as
Step 1: minΘ

∑L
l=1 ‖Ztl − Ztl(G

t + Dt
l)‖2F + λ1‖QtT |Gt|‖1

+λ3
∑L

l=1 ‖Dt
l‖2F + λ2‖Xt − X̂t‖2F ,

Step 2: minΘ CE(Qt
Ens.,Q

t),

(4.31)

where we shape the temporal coefficient matrix as Ct = Gt + 1
L

∑L
l=1 D

t
l , and Qt

Ens. and Qt

are calculated from (4.27) and (4.25), respectively.

We use the same training settings as described in [221]. This includes the same architecture

for networks and values for the hyper-parameters λ1, λ2, λ3 in different experiments as well

as the initial values of a zero matrix for the membership matrix Q̂, and matrices with all the

elements equal to 0.0001 for the coefficient matrices G0 and D0
l s at the iteration t = 0. We

update Q̂ every 50 iterations by substituting the subspace membership estimations with the

result of subspace clustering performed on the current Ct. We set the EMA decay to α =

0.999 in all the experiments (selected by cross-validation). We implemented our method with

PyTorch. We use the adaptive momentum-based gradient descent method (ADAM) [232] with

a learning rate of 10−3 to minimize the loss functions.
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Figure 4.7: Different image transformations on a sample from the Extended Yale B dataset.

4.3.6 Best Augmentation Policies Found on the Datasets

We perform the search algorithm in Section 4.3.4 on different datasets to find the best

augmentation policies for each dataset. To reduce the computations, we search in the search

space of augmentation policies with the maximum number of sub-policies `max = 2 (i.e. up

to two sub-policies can be combined to construct a policy), and set the probability to p = 0.1

and the magnitude to m = 0.3 × r where r = (max−min) is the magnitude range that image

operations accept. The image operation search space is the following set: {FlipLR, ShearX,

FlipUD, SearY, Posterize, Rotate, Invert, Brightness, Equalize, Solarize, Contrast, TranslateY,

TranslateX, AutoContrust, Sharpness, Cutout} that is also used in [113]. This results in a search

space of ns = 162. We selected the values for magnitude and probability of augmentation

polices by searching in the full search space of augmentation policies for the first two subjects

in the Extended Yale B dataset.

Figure 4.7 shows the different augmentation policies applied to a sample drawn from the

Extended Yale B dataset. The details of these image operations are described in Table 1 in the

supplementary materials.

For each candidate augmentation policy, we train our MLRDSC-DA model, perform sub-

space clustering, and return the mean Silhouette coefficient [196] as the clustering performance.

We use the mean Silhouette coefficients to sort the augmentation policies and select the top two

performing augmentation policies in each dataset. That is b = 2.

Table 4.6 shows the found augmentation policies that yield to the highest Silhouette coef-

ficients in the subspace clustering results on different datasets. In our experiments, COIL-20

and COIL-100 resulted in similar policies. Unless otherwise stated, in all the experiments, we

apply these augmentation policies to the inputs of our MLRDSC-DA algorithm.
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Table 4.6: Augmentation policies that yield the highest mean Silhouette coefficient in the sub-
space clustering results on different datasets.

Dataset Augmentation Policy 1 Augmentation Policy 2

Extended Yale B (Op =‘ShearY’, m=0.3r, p=0.1)
(Op =‘TranslateY’, m=0.3r, p=0.1)
+ (Op =‘Contrast’, m=0.3r, p=0.1)

COIL-20 & COIL-100
(Op =‘Posterize’, m=0.3r, p=0.1) (Op =‘FlipLR’, p=0.1)

+ (Op =‘Sharpness’, m=0.3r, p=0.1) + (Op =‘Contrast’, m=0.3r, p=0.1)

ORL
(Op =‘ShearX’, m=0.3r, p=0.1) (Op =‘FlipLR’, p=0.1)

+ (Op =‘Sharpness’, m=0.3r, p=0.1) + (Op =‘ShearX’, m=0.3r, p=0.1)

Table 4.7: Ablation study of our method in terms of clustering error (%) on Extended Yale B.
Top performers are bolded.

Backbone
Augmentations × AugmentationsX Augmentations × AugmentationsX

Consistency Loss × Consistency Loss × Consistency LossX Consistency LossX
DSC 2.67 3.10 2.56 1.92
MLRDSC 1.36 2.84 0.95 0.82

4.3.7 Ablation Study and Analysis of The Model

To understand the effects of some of our model choices, we explore some ablations of our

model on the Extended Yale B dataset. In particular, we test our model on two different deep

subspace clustering methods, DSC [219] and MLRDSC [221], and in four settings where 1)

the consistency loss exists or 2) is ablated; 3) the optimal augmentations policies are applied to

the inputs or 4) the data is fed without any augmentations.

If we remove both augmentations and the consistency loss, our networks, based on their

backbones, turn to either DSC or MLRDSC networks. In the versions that data augmentation

is applicable, the augmentations in Table 4.6 are used. Further analysis on the evaluation of the

found augmentation policies is provided in section 4.3.9.

We report the performances in Table 4.7. As can be seen, the top performer is our full model

with augmentations and the consistency loss applied to the MLRDSC method. MLRDSC-based

methods, in general, outperform DSC-based methods. Consistency loss slightly improves the

performance even without data augmentation. This is the result of temporal ensembling.

As can be seen in the second column of this table, applying the found augmentations to

the input of DSC and MLRDSC networks without further modification (i.e., not adding the

consistency loss) not only does not improve the results, but it slightly degrades the performance.

These results clearly show both the importance of the consistency loss and the benefit of using

data augmentations when it is combined with the consistency loss.
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Table 4.8: Clustering error (%) of different methods on Extended Yale B, ORL, COIL20, and
COIL100 datasets. Top performers are bolded.

dataset LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSC DASC S2ConvSCN MLRDSC MLRDSC-DA

[215] [233] [234] [219] [235] [236] [237] [237] [219] [220] [218] [221] Ours

E.Yale B 34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 1.44 1.52 1.36 0.82

ORL 33.50 32.50 29.50 26.75 34.25 37.05 27.25 26.25 14.00 11.75 10.50 11.25 10.25

COIL20 30.21 31.25 14.83 22.08 24.65 29.86 14.86 14.79 5.42 3.61 2.14 2.08 1.79

COIL100 53.18 50.67 44.90 43.93 47.18 67.29 38.13 38.88 30.96 − 26.67 23.28 20.67

4.3.8 Comparison with State-of-The-Art Subspace Clustering Methods

In this section, we evaluate our method against the state of the art subspace clustering

methods. We apply the found augmentation policies in Table 4.6 to the data on Extended Yale

B, ORL, COIL-20 and COIL-100 datasets and feed them to our MLRDSC-DA method.

The rows in Table 4.9 report the clustering error rates of different subspace clustering al-

gorithms. As the table reveals, deep subspace clustering methods, including DSC, ADSC,

S2ConvSCN, and ML-RDSC, in general, outperform the conventional subspace clustering ap-

proaches. This observation suggests that deep networks can better model the non-linear rela-

tionships between the samples. However, among them, our model outperforms all the bench-

marks. Note that our model and MLRDSC share similar architectures and have the same num-

ber of parameters. The only difference is that our method takes advantage of training on the

augmented set of data. This observation clearly shows the benefits of incorporating data aug-

mentation in the task of deep subspace clustering.

4.3.9 Comparison with Common Augmentation Policies and Transferred Aug-

mentation Policies

Existing automated learning algorithms for finding proper augmentations or even manual

searches do not apply to the subspace clustering task. The current algorithms are mostly de-

signed for supervised tasks and require the ground-truth targets to compare the performances,

whereas, in the subspace clustering task, the ground-truth labels are not available. However,

one may apply the supervised augmentation searches to a source dataset with available labels

and use the found augmentation policies on a target dataset for the task of subspace clustering.

To compare such an approach with the described method in Section 4.3.4, we adopt the

augmentation policies that AutoAug [113] finds on the classification task for SVHN [129] and
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Table 4.9: Clustering error (%) on Extended Yale B with different augmentation policies ap-
plied to the inputs of MLRDSC-DA.

Augmentation
Policies:

Random
LR Flips Cut-out

Common
aug. policies

AutoAug
for ImageNet

AutoAug
for SVHN

Policies found
from Algorithm 1 (ours)

Extended YaleB 1.32 2.88 2.96 5.96 11.31 0.82

ImageNet [127] datasets, and directly apply the found policies to the input of our MLRDSC-

DA.

We furthermore compare the performances to the results of applying the following augmen-

tation policies to the input: random left-right flips (Flip-LR), Cut-out [110, 238] and common

augmentations picked by practitioners (Common aug. policies). For “Common aug. policies”,

we use the combination of most common augmentations, including zero paddings, cropping,

random-flips, and cutout.

Note that all the experiments in this section share the same architecture and training proce-

dure as MLRDSC-DA. They are only different in the augmentation policies that are applied to

their input.

As can be seen in Table 4.9, the augmentation policies that are found with [113] on SVHN

and ImageNet, perform poorly. This is because they are deemed good policies for the classifi-

cation task on those datasets and may not work as efficiently on the subspace clustering task.

The reason that Random Flips provides a relatively good performance is that the objects in the

dataset are symmetric. The augmentations that are found with our suggested approach provide

the best results.
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Chapter 5

Conclusion and Future Work

In this thesis we focused on both automation and neural networks. As first, we created a new

form of ANN by observing the patterns of Grid Cells. In summary, we proposed a navigational

model based on biological grid cell firing patterns. The method provides a fast and memory

efficient mechanism for uninformed search settings. The proposed method is useful for path-

finding in unknown environments with unknown goal positions. After exploring the current

methods for robot navigation, four algorithms are selected for comparisons. In the experiments,

efficient implementations of comparable methods are considered. The results show higher

speed (up to six times better) for GNM compared to the closest rivals among current methods.

For the memory, the method usually took the second place while IDDFS used less memory

than others. However, using the dynamic nature of the GNM on memory, we showed that it

is possible to achieve comparatively more efficient memory usage while providing reasonable

speed.

With the above method, we did show that how learning can take place with neural nets and

how the computational field can connect to the field of Neuroscience. The design demonstrated

the strength of automation in learning. Next we used automation to fix a major problem in data

augmentation to ensure that the generated new samples cover the search space. We proposed

Greedy AutoAugment as a highly efficient method to find the best augmentation policies. We

combined the searching process with a simple procedure to add augmentation policies to the

training data. For the experiments on the classification accuracy, we used four real datasets

and eleven networks. Our results show that the proposed method could reliably improve the

accuracy of classification results. The higher accuracy could be achieved while using 360 times

less computational resources.

We also suggested Greedy AutoAugment for applying process that is specifically optimized
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for n-shot learning to extract the information from small datasets as much as possible. In the

experiments, we used five prominent n-shot learning datasets. The results show the effective-

ness of the proposed method, which resulted in considerable increase of accuracies for different

n-shot and n-way settings. Due to its effectiveness, we expect the future integration of our pro-

posed method with n-shot learning methods. Our experiments on Siamese and MAML neural

networks represent the potential of such integrations.

In the next chapter, the goal was to ultimately present Greedy AutoAugment for unsuper-

vised learning. Before doing that, first we showed the importance of pre-defined patterns in

clustering and their effects on final results. For this purpose, we proposed a clustering process

that for its underlying assumption expects separation of points in each feature instead of sepa-

ration of points in multivariate space. With the new guideline, we addressed a critical problem

in low-level clustering algorithms. In this regard, we used the properties of the new guideline

to propose CD as a new distance metric that preserves the meaningfulness of distance values in

high dimensional data. Current clustering algorithms which use Minkowski distance metrics do

not provide a similar guarantee. The experiments on synthetic and non-synthetic datasets show

that the proposed solution is capable of preserving meaningfulness for multivariate clustering.

In the next step, we made Silhouette a practical solution even with high number of points.

Accordingly, we proposed Condensed Silhouette as an efficient version of the Silhouette score.

In our design, we replaced the elements of Silhouette algorithm with equivalent inner elements

of the K-Means algorithm. This helped us to maintain the accuracy of the Silhouette and

at the same time, significantly reduce the computational requirements of the method. In our

experiments, we used 14 real datasets that showed the effectiveness of the proposed method.

In the 14 datasets, the average of the accuracy differences between Condensed Silhouette and

Silhouette was only 0.0042%. For computational resources, our benchmark is WCSS, which

does not need additional computations for calculating its evaluation score. In the 14 datasets,

overall, Condensed Silhouette needed 5.4s, and Silhouette needed 272.73s, more time than

WCSS. This result shows that Condensed Silhouette is 50.5 times closer to the benchmark than

Silhouette.

At last, we used the knowledge of Chapter 4.1 and 4.2 to define Greedy AutoAugmenta-

tion for unsupervised learning. We introduced a framework to incorporate data augmentation
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techniques in Deep Subspace Clustering algorithms. The underlying assumption in subspace

clustering tasks is that data points with the same label lie into the same subspace. Based on this

assumption, we argued that slight transformations of a data point should not alter the subspace

into which the data point lies. To address this property, we proposed the subspace consistency

loss to keep the data points within consistent subspaces when slight random transformations are

applied to the input data. Employing the mean Silhouette coefficient metric, we furthermore,

provided a simple yet effective unsupervised algorithm to find the best augmentation policies

for each target dataset. Our experiments showed that applying good data augmentations im-

proves the performance oft subspace clustering algorithms.

We already demonstrated that Greedy AutoAugmentation can be used in supervised and

unsupervised learning to improve the results. Specifically this method can be used to push the

boundaries for normal datasets and n-shot setting. We expect that in the neat future the pro-

posed method to improve other forms of deep neural networks such as auto-encoders, GANs,

semantic segmentation and object detection. Such improvements can have positive effects in

other fields such as quantifying the immunological synapse in medicine. By taking notes from

these positive results, we may be able to create other forms of automation which can lead to

better learning method and smarter applications. We also demonstrated that by studying im-

provements in neuroscience it is still possible to come by innovative ANN architectures, and

improve solutions for unprecedented problems.
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bile robot navigation, Turkish Journal of Electrical Engineering & Computer Sciences
24 (3) (2016) 1747–1767.

[66] M. P. Deisenroth, G. Neumann, J. Peters, et al., A survey on policy search for robotics,
Foundations and Trends in Robotics 2 (1–2) (2013) 1–142.

[67] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., Human-level control through deep
reinforcement learning, Nature 518 (7540) (2015) 529–533.
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tive study of cluster validity indices, Pattern Recognition 46 (1) (2013) 243–256.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


116

[200] J. Lewis, M. Ackerman, V. de Sa, Human cluster evaluation and formal quality measures:
A comparative study, in: Proceedings of the Annual Meeting of the Cognitive Science
Society, Vol. 34, 2012.

[201] E. Rendón, I. M. Abundez, C. Gutierrez, S. D. Zagal, A. Arizmendi, E. M. Quiroz, H. E.
Arzate, A comparison of internal and external cluster validation indexes, in: Proceedings
of the 5th WSEAS International Conference on Computer Engineering and Applications,
2011, pp. 158–163.

[202] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, S. Wu, Understanding and enhancement of
internal clustering validation measures, IEEE transactions on cybernetics 43 (3) (2013)
982–994.

[203] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal
of Machine Learning Research 12 (2011) 2825–2830.

[204] S. Ahmadian, A. Norouzi-Fard, O. Svensson, J. Ward, Better guarantees for k-means and
euclidean k-median by primal-dual algorithms, SIAM Journal on Computing (0) (2019)
FOCS17–97.

[205] G. Carpaneto, P. Toth, Algorithm 548: Solution of the assignment problem [h], ACM
Transactions on Mathematical Software (TOMS) 6 (1) (1980) 104–111.

[206] H. V. JOZE, M. Abavisani, Video recognition using multiple modalities, uS Patent App.
16/287,113 (May 7 2020).

[207] M. Abavisani, L. Wu, C. Davis, S. Hu, J. Tetreault, A. Jaimes, Supplementary materi-
als: Multimodal categorization of crisis events in social media, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[208] M. Abavisani, L. Wu, S. Hu, J. Tetreault, A. Jaimes, Multimodal categorization of cri-
sis events in social media, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14679–14689.

[209] R. Basri, D. W. Jacobs, Lambertian reflectance and linear subspaces, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 25 (2) (2003) 218–233.

[210] T. Hastie, P. Y. Simard, Metrics and models for handwritten character recognition, Sta-
tistical Science 13 (1) (1998) 54–65.

[211] M. Abavisani, V. M. Patel, Multimodal sparse and low-rank subspace clustering, Infor-
mation Fusion 39 (2018) 168–177.

[212] M. Abavisani, V. M. Patel, Domain adaptive subspace clustering, in: Proceedings of the
British Machine Vision Conference (BMVC), British Machine Vision Association Press,
2016, pp. 126–1.

[213] R. Vidal, Subspace clustering, IEEE Signal Processing Magazine 28 (2) (2011) 52–68.
doi:10.1109/MSP.2010.939739.

https://doi.org/10.1109/MSP.2010.939739


117

[214] E. Elhamifar, R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications,
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35 (11) (2013)
2765–2781.

[215] G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in:
International Conference on Machine Learning, 2010.

[216] P. Favaro, R. Vidal, A. Ravichandran, A closed form solution to robust subspace estima-
tion and clustering, in: IEEE Conference on Computer Vision and Pattern Recognition,
2011.

[217] V. M. Patel, H. V. Nguyen, R. Vidal, Latent space sparse and low-rank subspace cluster-
ing, IEEE Journal of Selected Topics in Signal Processing 9 (4) (2015) 691–701.

[218] J. Zhang, C.-G. Li, C. You, X. Qi, H. Zhang, J. Guo, Z. Lin, Self-supervised convolu-
tional subspace clustering network, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 5473–5482.

[219] P. Ji, T. Zhang, H. Lia, M. Salzmann, I. Reid, Deep subspace clustering networks, in:
Advances in Neural Information Processing Systems, 2017.

[220] P. Zhou, Y. Hou, J. Feng, Deep adversarial subspace clustering, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1596–1604.

[221] M. Kheirandishfard, F. Zohrizadeh, F. Kamangar, Multi-level representation learning for
deep subspace clustering, arXiv preprint arXiv:2001.08533 (2020).

[222] M. Abavisani, H. R. V. Joze, V. M. Patel, Improving the performance of unimodal
dynamic hand-gesture recognition with multimodal training, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1165–
1174.

[223] M. Abavisani, V. M. Patel, Deep sparse representation-based classification, IEEE Signal
Processing Letters 26 (6) (2019) 948–952.

[224] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., Best practices for convolutional neural
networks applied to visual document analysis., in: Icdar, Vol. 3, 2003.
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