Staff View
Automated machine learning for supervised and unsupervised models with artificial neural networks

Descriptive

TitleInfo
Title
Automated machine learning for supervised and unsupervised models with artificial neural networks
Name (type = personal)
NamePart (type = family)
Naghizadeh Nohadani
NamePart (type = given)
Alireza
DisplayForm
Alireza Naghizadeh Nohadani
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Metaxas
NamePart (type = given)
Dimitris N
DisplayForm
Dimitris N Metaxas
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Boularias
NamePart (type = given)
Abdeslam
DisplayForm
Abdeslam Boularias
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Elgammal
NamePart (type = given)
Ahmed
DisplayForm
Ahmed Elgammal
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Vivian Li
NamePart (type = given)
Wei
DisplayForm
Wei Vivian Li
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Artificial Neural Networks (ANNs) are powerful machine learning tools to find and apply patterns for intelligent decision making. These tools can be combined with automation to select few results among many trials. Since ANNs are used for both supervised and unsupervised learning, automation can lead to more trusted learning methods across many fields and lead to exploring possibilities that are considered impossible with current technology. In this thesis, at first, I introduce a new form of ANN architecture which is used exclusively for automated robot navigation. By doing so, I provide a high-level overview of both computational neuroscience and the potential of automation. Next, I introduce Greedy AutoAugment to automate the learning of state-of-the-art neural networks for both big and small datasets. I also create an efficient model to evaluate clustering in unsupervised learning. The model is further expanded to introduce unsupervised learning for deep subspace clustering. In the end, I provide discussion and the future research plan for automating ANNs in machine learning applications.
Subject (authority = local)
Topic
ANN
Subject (authority = LCSH)
Topic
Neural networks (Computer science)
Subject (authority = RUETD)
Topic
Computer Science
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11444
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xi, 118 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-8k6c-b717
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Naghizadeh Nohadani
GivenName
Alireza
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-05 22:18:45
AssociatedEntity
Name
Alireza Naghizadeh Nohadani
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
ApplicationName
MiKTeX pdfTeX-1.40.21
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-06T23:13:52
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-06T23:13:52
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024