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Dissertation Directors: Dr. Shantenu Jha and Dr. Matteo Turilli

Executing multiple workflows to achieve scientific insight is needed in computational

sciences such as biomolecular sciences [1, 2], ecological sciences [3, 4] and particle

physics [5]. The aggregated set of workflows that must be executed to achieve a

computational objective is defined as a computational campaign.

This dissertation addresses the problem of effectively and efficiently executing a

computational campaign on High Performance Computing (HPC) resources. Specifically,

the dissertation focuses on computational campaigns with data- and compute-intensive

workflows that utilize HPC resources at scale. Data-intensive workflows processes large

amounts of data and their execution time heavily depends on I/O and data management.

Compute-intensive workflows perform large amounts of computations with minimal I/O

and therefore require little data management.

Currently, the execution of data-intensive workflows is not well supported on HPC

resources. MapReduce is one of the most successfully abstraction used to execute data-

intensive workflows at scale on cloud resources. However, implementing MapReduce

on HPC resources is non-trivial and requires the use of additional abstractions. We

utilize the Pilot abstraction as an integrating concept between HPC and MapReduce.

We extend RADICAL-Pilot – a framework implementing the Pilot abstraction – to
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support Hadoop – a framework implementing the MapReduce abstraction – on HPC

resources. We experimentally characterize the execution time of data-intensive workflows

and extension’s overheads and show that Hadoop indeed reduces the execution time of

such workflows on HPC resources.

MapReduce rests on task-parallelism to effectively and efficiently execute data-

intensive workflows and several frameworks have emerged to support general-purpose

task-parallelism. We experimentally investigate the suitability of three task-parallel

frameworks for the execution of data-intensive workflows on HPC resources. Based on

our experimental analysis, we provide a conceptual model to determine which framework

is more suitable based on the characteristics of the selected data-intensive workflow.

That conceptual model and the Pilot abstraction provide a methodology that application

developers can use to maximize resource utilization while reducing the engineering effort

needed to develop and execute data-intensive workflows on HPC resources.

In addition to data-intensive, workflows can also be compute-intensive, requir-

ing different capabilities to effectively and efficiently utilize heterogeneous resources.

Such capabilities can be implemented by multiple designs with different architectural

and performance characteristics. Selecting a suitable design can significantly increase

concurrency, resource utilization and reduce the overhead imposed by each design im-

plementation. Nonetheless, choosing the right design can be challenging, especially in

absence of an established methodology for characterizing and comparing alternative but

functionally equivalent designs. We implement and experimentally characterize three

functionally equivalent designs, showing which design approach is best suited for data-

and compute-intensive workflows when executed on HPC resources at scale.

After establishing the methodology to effectively and efficiently execute data- and

compute-intensive workflows on HPC, we investigate the support of computational

campaigns. We elicit the requirements for a campaign manager from three scientific

computational campaigns. Based on those requirements, we design and prototype a

campaign manager. Our prototype is domain-agnostic and adheres to the building

blocks design approach. The campaign manager prototype creates an execution plan

and simulates the execution of a campaign on HPC resources.
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As computational campaigns can utilize multiple HPC resources, they require an

execution plan that efficiently and effectively map workflows on resources. In addition,

computational campaigns may utilize HPC resources that may offer different computa-

tional capabilities, e.g., number of operations per second, and thus are heterogeneous.

Further, HPC resources are dynamic as their performance changes over time for several

reasons, and users offer a workflow runtime estimation which is uncertain at best.

Selecting a planning algorithm to derive an effective execution plan for a campaign

on dynamic and heterogeneous HPC resources, while workflow runtime is uncertain,

can be challenging. We investigate three algorithms to derive an execution plan for

campaigns, characterizing their performance in terms of campaign makespan, and plan

sensitivity to resource dynamism and workflow runtime estimation uncertainty. Based on

our analysis, we provide a conceptual model for selecting a suitable planning algorithm

based on characteristics of a computational campaign and HPC resources.

Our dissertation makes the following contributions: 1) Integrate MapReduce frame-

works and HPC platforms to offer an unified environment for the effective and efficient

execution of data-intensive workflows at scale. 2) Provide a conceptual model for se-

lecting a task-parallel framework based on the workflow requirements, HPC resource

capabilities and framework abstractions and performance. 3) Provide design guidelines

to support the execution of data- and compute-intensive workflows on HPC resources at

scale, alongside an experimental methodology to compare functionally equivalent designs.

4) Design and implementation of a campaign manager prototype to plan and simulate

the execution of computational campaigns on multiple, heterogeneous and dynamic

HPC resources. 5) Provide a conceptual model for selecting a planning algorithm to

derive an execution plan based on campaign, resource heterogeneity and dynamism,

workflow runtime uncertainty, and algorithm characteristics.
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Chapter 1

Introduction

Executing multiple workflows to achieve scientific insight is needed in computational

sciences such as biomolecular sciences [1, 2], ecological sciences [3, 4] and particle

physics [5]. The aggregated set of workflows that must be executed to achieve a

computational objective is defined as a computational campaign.

For example, quantum chemistry campaigns [6] execute hundreds of workflows for

months and on different platforms, such as workstations, campus and high performance

computing (HPC) resources [6]. Ecological sciences analyze terabytes of very high

resolution satellite imagery [3] to derive time series of ecological changes [4]. High

Energy Physics experiments, such as the Large Hadron Collider ATLAS experiment [5],

analyze petabytes of detector or simulation data [7] by executing campaigns with

hundreds to thousands workflows, at different timescales and frequencies [7].

These use cases define and execute a computational campaign to achieve scientific

insight. Although they serve different scientific purposes, computational campaigns

share a number of characteristics and requirements: (1) they are comprised of O(100)

workflows; (2) workflow requirements are heterogeneous across a campaign; (3) use

multiple HPC platforms with heterogeneous and dynamic resources; (4) have finite

allocations on said resources; and (5) have well defined computational objectives.

Based on the above discussion, it becomes important to effectively and efficiently

support the execution of computational campaigns on HPC resources. This has the

potential to increase overall resource utilization across all the resources that are available

to a campaign. Further, increased resource utilization can allow computational scientists

to execute computational campaigns to a larger scale, leading to new scientific discoveries

and innovations. Thus, we focus our research on supporting the effective and efficient
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execution of computational campaigns used to analyze data on HPC resources. It is

important to note that our solutions and results are agnostic towards the scientific

domain and size of the computational campaigns.

Computational campaigns can execute compute- and data-intensive workflows. While

compute-intensive workflows are at the epicenter of high performance scientific computing,

data-intensive workflows are not well supported on HPC resources. Compute-intensive

workflows execute either a single, very large and long-running executable or an ensemble

of smaller compute-intensive tasks [8]. Data-intensive workflows execute a large number

of short-running and I/O, memory and compute bound tasks in multiple stages. As a

result, a diverse set of abstractions (e.g., MapReduce and Resilient Distributed Datasets)

and frameworks (e.g., Hadoop [9] and Spark [10]) have emerged to support the scalable

execution of data-intensive workflows.

The MapReduce [11] abstraction has been successfully used to execute workflows

to analyze data in different domains [12]. Utilizing the MapReduce abstraction on

HPC platforms has the potential to increase resource utilization and reduce the time

to completion of data analysis. However, data analysis frameworks that implement

the MapReduce abstraction (e.g., Hadoop and Spark) mainly support data-intensive

workflows on cloud platforms. At best, current solutions allow the use of such frameworks

on HPC resources in isolation from the HPC environment and only for workflows with

data-intensive requirements. There is therefore a need for abstractions that support

frameworks like Hadoop and Spark on HPC resources as well as compute-intensive

workflows. The goal is to provide a solution for executing computational campaigns,

independent of the compute- or data-intensive workflows. To the best of our knowledge,

there is no solution that provides the integrated capabilities of data analysis frameworks

while preserving the ability to execute compute-intensive workflows.

Data analysis frameworks exploit task-parallelism to analyze data in a scalable

and efficient manner. However, task-parallel frameworks offer different abstractions

and capabilities. As workflows that analyze data can have different characteristics,

alternative abstractions and capabilities may offer better performance and efficiency. In

addition to performance gains, the implementation of abstractions and capabilities by a
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framework has the potential to increase the development efforts of a workflow. As a

result, there is a need to understand which framework is more suitable for performing a

specific type of analysis while reducing the time developers invest to define the analysis

workflow.

Some workflows, developed to analyze data, are both data- and compute-intensive and

do not necessarily conform to data-parallel abstractions. The tasks of such workflows can

be heterogeneous, implementing a diverse set of functionalities and compute-intensive.

As such, frameworks (e.g., Spark) specifically designed for data parallelism may not

support them well. Utilizing a task-parallel framework, though, may still be beneficial

in terms of scalability, workflow execution time and resource utilization. However, the

design of the framework can significantly affect performance and resource utilization.

As a consequence, a specific design may not be well suited to execute workflows that

are both data- and compute-intensive. In addition, the space of equivalent architectural

designs to support such workflows is large and identifying the design that can efficiently

execute data- and compute-intensive workflows becomes important. As a result, there

is a need to understand which design is best suited to execute such workflows. Such

an understanding will allow application developers to develop their workflows with a

framework whose design is more suited for their application.

After establishing our understanding on how to effectively and efficiently support

the execution of data- and compute-intensive workflows on HPC resources, we focus on

supporting the execution of computational campaigns. Currently, the software systems

that execute computational campaigns, called “campaign managers”, make assumptions

about resources and the middleware they are utilizing, have a monolithic design, and

tend to be domain specific. As a consequence, these campaign managers cannot support

computational campaigns from different scientific domains without significant changes in

their implementation. In addition, due to the assumptions their designs make about the

middleware, they cannot support workflows that do not have similar characteristics and

are developed using different workflow execution frameworks. As a result, a campaign

manager that supports the scalable execution of computational campaigns on HPC

resources and is agnostic of the middleware used and scientific domain becomes necessary.
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Finally, achieving a computational objective during the execution of a computational

campaign requires an execution plan to map workflows on multiple HPC resources.

However, actual HPC resources performance is affected by several factors and can

change significantly during the execution of a campaign. In addition, users offer an

estimation of each workflow runtime in the form of a range of possible values. As a

result, the effectiveness of a plan is not guaranteed. It is therefore important for an

execution plan to efficiently map the workflows of the campaign to resources, so as to

increase resource utilization and achieve the objective of the campaign, despite any

effect from HPC resource performance changes and runtime estimations. There is, thus,

a need to understand how to derive such an execution plan and utilize a well suited

planning algorithm. As there is a plethora of algorithms to derive an execution plan for

a campaign [13]. To the best of our knowledge, there is no methodology to decide which

algorithm is best suited given the characteristics of the campaign and resources.

In response to these challenges, we make contributions providing the necessary

abstractions and software systems to efficiently execute data-driven workflows on HPC

resources. Further, we design a campaign manager prototype which plans and executes

computational campaigns with heterogeneous workflows on heterogeneous and dynamic

HPC resources. Our work is designed and engineered to be domain and resource agnostic.

The next section discusses in more detail the contributions of this dissertation.

1.1 Contributions and Organization of the Dissertation

The goal of this research is to advance the state of the art of the execution of data-

intensive scientific computational campaigns on HPC platforms. To that extent, this

dissertation makes the following contributions.

In chapter 2, we explore the integration between Hadoop, Spark and HPC resources,

utilizing the Pilot abstraction [14, 15] to execute compute- and data-intensive workflows

at scale. We evaluate that integration by measuring and characterizing the startup

times of the Pilot and tasks. In addition, we measure the performance of a well-known

algorithm to investigate the runtime trade-offs of a typical data-intensive workflow.
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In chapter 3, we characterize and compare three task-parallel frameworks: Spark [10],

Dask [16] and RADICAL-Pilot [17]. We asses their suitability for implementing molecular

dynamics (MD) trajectory data analysis algorithms. MD trajectories are time series of

atoms/particles positions and velocities, which are analyzed using different statistical

methods to infer certain properties, e.g., the relationship among distinct trajectories,

snapshots of a trajectory, etc. We characterize and explain the behavior of alternative

MD analysis algorithms on the three frameworks and we provide a methodology to

compare the abstractions, capabilities and performance of these frameworks.

In chapter 4, we focus on the design of computing frameworks that support the

execution of data-driven, compute-intensive workflows on HPC resources. We provide

specific design guidelines for supporting data- and compute-intense workflows on HPC

resources with a task-based computing framework. We develop an experiment-based

methodology to compare design performance of alternative designs that does not depend

on the considered use case and computing framework.

In chapter 5, we design and implement a campaign manager prototype to plan and

execute computational campaigns. We elicit three data analysis use cases to derive the

functional requirements of the campaign manager. We provide a design and architecture,

based on the buildings blocks [18] so that the manager is agnostic to the scientific

domain of the workflows and the underlying middleware.

In chapter 6, we investigate three planning algorithms: HEFT [19], a genetic

algorithm [20], and simple heuristic algorithm. Those algorithms enable planning the

execution of a computational campaign on HPC resources. We develop an experiment-

based methodology to compare the performance of planning algorithms, a methodology

that does not depend on the considered use case, computing framework and resources

used. In addition, we provide a conceptual framework for selecting planning algorithms

based on the algorithm, campaign and resources characteristics.

Chapter 7.2 concludes the dissertation with a summary of our contributions and

results. In addition, it identifies topics for further research and development.
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Chapter 2

Data Analytics and High Performance Computing

Computational campaigns on High Performance Computing (HPC) resources can execute

compute- or data- intensive workflows and applications. On one hand, compute-intensive

applications and workflows are associated with either a single long running executable

or an ensemble of compute-intensive tasks [8]. On the other hand, data-intensive

applications are associated with multiple stages of execution which can be I/O, memory

and compute bound. While MPI is the most common programming model for compute-

intensive applications, the MapReduce [11] abstraction is commonly used for data-

intensive applications [12].

Hadoop [9] popularized the use of MapReduce [11] for data-intensive applications.

Hadoop’s distributed filesystem (HDFS) automatically partitions data and distributes

them to different nodes of a cluster machine. In addition, Hadoop’s engine takes ad-

vantage of data-locality and transfers computations to nodes, allowing to process data

in parallel while reducing data transfers. While Hadoop simplified the processing of

vast volumes of data, it has limitations in its expressiveness [21, 22]. The complexity of

creating sophisticated applications such as, for example, iterative machine learning algo-

rithms [23], required multiple MapReduce jobs and persistence to Hadoop’s Filesystem

(HDFS) after each iteration. This led to devise several higher-level abstractions and the

development of processing frameworks to implement sophisticated data pipelines.

Spark [10] is the most well-known processing framework in the Hadoop ecosystem.

In contrast to MapReduce, Spark provides a richer API, more language bindings and

a memory-centric processing engine that can utilize distributed memory and retain

resources across multiple task generations. Spark’s Reliable Distributed Dataset (RDD)

[24] abstraction provides a powerful way to manipulate distributed collections stored in
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cluster nodes’ memory. Spark is used to build complex data workflows and advanced

analytic tools, such as MLLib [25]. Although the addition/development of new and

higher-level execution frameworks addressed some of the problems of data processing, it

introduced the problem of heterogeneity of access and resource management.

Some computational campaigns cannot be easily classified as only compute- or data-

intensive. For example, the simulations of contemporary bio-molecular dynamics [26]

campaigns require increasing time scales and problem sizes, generating amounts of data

several order of magnitude larger than those so far generated. Further, data generated

by those simulations often need to be analyzed so as to determine the next set of

simulation configurations. Several tools evolved to meet the demand for molecular

dynamics data analysis, such as MDAnalysis [27, 28], CPPTraj [29] and HiMach [30].

Although these tools offer domain-specific analytics, scaling them to high data volumes

remains a challenge, especially when the scale of the computation requires the use of high

performance computing (HPC) infrastructures. There is therefore a need for computing

environments that support scalable data processing while preserving the ability to run

simulations at large scale. Utilizing existing frameworks that support the MapReduce

abstraction on HPC resources has the potential to provide scalable data processing.

In addition, it will significantly reduce engineering time as there will not be a need to

implement these capabilities from scratch. To the best of our knowledge, there does not

exist a solution that provides the integrated capabilities of Hadoop and HPC.

In this chapter, we explore the integration between Hadoop [9], Spark [10] and

HPC resources. We utilize the Pilot-Abstraction [14], allowing to manage HPC and

data-intensive applications in a uniform way. We explore two extensions to RADICAL-

Pilot [31], a Pilot-Job [14] runtime system designed for implementing task-parallel

applications on HPC: 1) the ability to spawn and manage Hadoop/Spark clusters on

HPC infrastructures on demand (Mode I); and 2) to connect and utilize Hadoop and

Spark clusters for HPC applications (Mode II) . Both extensions facilitate the application

and resource management requirements of data-intensive applications. By supporting

these two usage modes, RADICAL-Pilot simplifies the barrier of deploying and executing

HPC and Hadoop/Spark workflows side-by-side.
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The chapter is organized as follows: In section §2.1 we discuss the current solutions

and challenges of integrating data analytics and HPC. We continue with discussing the

modes of integration and interoperability between data analytics and HPC in §2.2 and

the experimental validations of the integration in §2.3. The chapter closes with our

conclusions in section §2.4.

2.1 Related Work and Challenges

There are several frameworks which explored the usage of Hadoop on HPC resources, e.g.,

Hadoop on Demand [32], JUMMP [33], MagPie [34], MyHadoop [35] and MyCray [36].

These frameworks provide users with a set of scripts that can spawn and manage a

Hadoop cluster on HPC resources. As soon as Hadoop is started, users can either submit

their MapReduce jobs interactively or via a script.

Although these frameworks can spawn and manage Hadoop clusters, they isolate

the Hadoop cluster from the HPC environment. The scripts and capabilities they offer

interact directly with the HPC’s submission system. As a result, users cannot execute on

the same set of nodes HPC and Hadoop applications. Further, they do not necessarily

optimize configurations and resource usage, including the use of available SSDs, parallel

filesystems and high-end network features, e.g., RDMA [37].

Hadoop originally provided a rudimentary resource management system called the

YARN scheduler. The YARN scheduler [38] provides an application-level scheduling

framework, addressing the increased requirements with respect to applications and

infrastructure, such as data localities (memory, disk, datacenter), long-lived services,

periodic jobs, and interactive and batch jobs. In contrast to batch schedulers of HPC

resources, YARN is optimized for supporting data-intensive environments and managing

a large number of fine-grained tasks.

While YARN manages system-level resources, applications need to implement

application-level scheduling that optimizes their specific requirements. This is im-

plemented by an application-level scheduler, the Application Master, responsible for

allocating resources—called containers—and executing tasks on these resources. In
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addition, Application Master manages data locality, for example between HDFS blocks

and container locations, by allocating containers on specific nodes.

Managing resources on top of YARN poses several challenges. While applications with

fine-grained, short-running tasks are well supported, applications with coarse-grained,

long-running task, such as MPI applications, are not. To achieve interoperability and

integration between Hadoop and HPC, it is essential to consider a more diverse set of

applications on top of YARN.

A particular challenge for Hadoop on HPC deployment is the choice of storage

and filesystem backend. Typically, when using Hadoop local storage is preferred.

Nevertheless, in some cases, like when processing many small files or when the number

of parallel tasks is low to medium, random data access is required. In those cases, using

a parallel filesystem can yield a better performance. For this purpose, many parallel

filesystems provide a special client library which improves the interoperability with

Hadoop, but limits data locality and any data placement optimization.

Another challenge is the the integration between HPC and Hadoop environments.

Rather than preserving HPC and Hadoop “environments” as software silos, there is

the need for an approach that integrates them. We utilize the Pilot-Abstraction as a

unifying concept to efficiently support that integration, and not just the interoperability

between HPC and Hadoop. By utilizing the multi-level scheduling capabilities of YARN,

the Pilot-Abstraction can efficiently manage Hadoop resources, providing an application

with the means to reason about data, compute resources and allocation. In addition, we

show how the Pilot-Abstraction can be used to manage Hadoop applications on HPC

environments.

The Pilot-Abstraction [14] is successfully used on HPC resources supporting a

diverse set of task-based workflows. A Pilot-job is a placeholder job which is submitted

to the resource management system and represents a container for a dynamic set of

tasks. Pilot-jobs are, also, a well-known example of multi-level scheduling, which is

often used to separate system-level resource and user-level workload management. The

Pilot-Abstraction defines the following entities: 1) a Pilot which allocates a set of

computational resources (e.g., cores); and 2) a Compute-Unit (CU) as a self-contained
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Figure 2.1: Hadoop and HPC Interoperability modes

piece of work represented as an executable. The Pilot-Abstraction has been implemented

within RADICAL-Pilot [31].

2.2 Data analytics and HPC integration: RADICAL-Pilot and YARN/S-

park

Having established the potential of the Pilot abstraction for a range of high-performance

applications [39, 40, 41], we use that abstraction as the starting point for integrating

HPC and data-intensive analytics. As depicted in Figure 2.1, there are at least two

different usage modes to consider: 1) Mode I: Running Hadoop/Spark applications on

HPC environments (Hadoop on HPC), 2) Mode II: Running HPC applications on YARN

clusters (HPC on Hadoop).

Mode I is critical to support traditional HPC environments so as to execute ap-

plications with both compute and data requirements. Mode II is important for cloud

environments (e.g., Amazon’s Elastic MapReduce) and an emerging class of HPC ma-

chines with new architectures and usage modes, such as Wrangler [42], that support

Hadoop natively. For example, Wrangler supports dedicated Hadoop environments

(based on Cloudera Hadoop 5.3) via a reservation mechanism. Using these new capa-

bilities, applications can seamlessly connect HPC stages (e.g., simulation stages) with

analysis stages, using the Pilot-Abstraction to provide unified resource management.

With the introduction of YARN, Hadoop can execute a broader set of applications
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than before. However, developing and deploying YARN applications, potentially side-by-

side with HPC applications, remains a difficult task. Established abstractions which are

easy to use and that enable users to reason about compute and data resources across

infrastructure types (i.e., Hadoop, HPC and clouds) are missing.

Schedulers such as YARN facilitate application-level scheduling but the develop-

ment effort required by YARN applications is still high. YARN provides a low-level

abstraction for resource management, e.g., a Java API and protocol buffer specification.

Typically, interactions between YARN and applications are much more complex than the

interactions between an application and an HPC scheduler. Further, applications must

be able to run on a dynamic set of resources, e.g., YARN may have to preempt containers

in high-load situations. Data/compute locality requires to be manually managed by the

application scheduler by requesting resources at the location of a file chunk.

To address these shortcomings, various frameworks that aid the development of YARN

applications have been proposed. Llama [43] offers a long-running application master for

YARN designed for the Impala SQL engine. Apache Slider [44] supports long-running

distributed application on YARN with dynamic resource needs allowing applications to

scale to additional containers on demand. While these frameworks simplify development,

they do not address concerns such as interoperability and integration of HPC/Hadoop.

Integrating YARN and RADICAL-Pilot (RP) allows applications to run HPC and

YARN applications on HPC resources concurrently.

RADICAL-Pilot and YARN Overview

Figure 2.2 illustrates the architecture of RP and the components that were extended

to integrate YARN. The figure on the left shows the macro architecture of RP, while

the figure on the right shows the architecture of the RP-Agent component. RP consists

of a client module with the Pilot-Manager and Unit-Manager components and a set of

RP-Agent components running on one or more resources. Pilot-Manager is responsible

for managing a set of pilots. Pilots are described via pilot descriptions, which contain the

pilot’s resource requirements. Pilot-Manager submits a placeholder job which will run

the RP-Agent via the Resource Management System using the SAGA-API [45] (steps



12

Resource

Resource A
Resource Management 
System A

 RADICAL-Pilot Client

Unit 
Descriptions

Pilot 
Descriptions

Pilot Manager

Pilot Launcher

Unit Manager

Unit Scheduler

RADICAL-Pilot Agent

Unit Execution

MongoDB

Resource B
Resource Management 
System B
RADICAL-Pilot Agent

Unit Execution

RADICAL-Pilot Agent

Heartbeat 
Monitor

Pilot-API Agent Update 
Monitor

Agent Execution Component 

Local Resource 
ManagerScheduler

Stage-In
Worker

Stage-Out
Worker

YARN Resource Manager

YARN
Node 

Manager

YARN
Node 

Manager

YARN
Node 

Manager

YARN
Node 

Manager

U.1 

U.2 

U.7 

U.5 

U.3 

MongoDB

SAGA

U.3 

U.4 

Task Spawner YARN Client

U.6 

Launch Methods

P.1 

P.2 

Figure 2.2: RADICAL-Pilot and YARN Integration: There are two main interac-
tions between the application and RADICAL-Pilot: the management of Pilots (P.1–P.2)
and the management of Compute Units (U.1–U.7). All YARN specifics are encapsulated
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P.1–P.2). Subsequently, the Unit-Manager and the RP-Agent manage the execution of

the application workload (the Compute-Units, steps U.1–U.7) [17].

RP-Agent has a modular and extensible architecture, and consists of the following

components: Agent Execution Component, Heartbeat Monitor, Agent Update Monitor,

and Stage In and Stage Out Workers. The main integration of YARN and RP is

done in Agent Execution Component. The Agent Execution component consist of four

sub-components: a) the scheduler is responsible for monitoring the resource usage and

assigning CPUs/GPUs to CUs; b) the Local Resource Manager (LRM) interacts with

the batch system and communicates to the pilot the available number of computing

resources and how they are distributed; c) the Task Spawner/ Executor configures the

execution environment, executes and monitors each unit; and d) the Launch Method

encapsulates the environment specifics for executing an application, e.g., the usage of

mpiexec for MPI applications, machine-specific launch methods (e.g. aprun on Cray

machines) or the usage of YARN. After a unit completes its execution, the Task Spawner

collects the exit code, standard output, and informs the scheduler about the freed cores.

RADICAL-Pilot and YARN Integration

There are two main approaches to the integration of RP and YARN: (i) Integration

at the Pilot-Manager level via a SAGA adaptor; and (ii) integration at the RP-Agent
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level. The first approach poses several challenges, among which the most difficult to

address is that, typically, firewalls prevent the communication between external machines

and a YARN cluster. A YARN application is not only required to communicate with

the resource manager, but also with the node managers and containers. Further, this

approach would require significant extension of Pilot-Manager, which currently relies on

the SAGA Job API for launching and managing pilots. Capabilities required by YARN,

like on-demand provisioning of a YARN cluster and application resource management,

are very difficult to implement via the SAGA API.

The second approach encapsulates YARN specifics at resource-level, enabling the

decentralized provision of a YARN cluster. Units are scheduled and submitted to the

YARN cluster via the Unit-Manager and RP-Agent scheduler. By integrating RP and

YARN at the RP-Agent level, RP can support both Mode I and II, as outlined in

Figure 2.1.

As illustrated in Figure 2.2, RP (steps P.1–P.2) starts on the remote resource using

SAGA. In Mode I, during the launch of RP-Agent a YARN cluster is spawned on the

allocated resources (Hadoop on HPC), while in Mode II, RP-Agent connects to a YARN

cluster that runs on the resources managed by RP-Agent. Once started, RP-Agent

accepts CUs submitted via Unit-Manager (step U.1). Unit-Manager queues new CUs

using a shared MongoDB (step U.2) database. RP-Agent periodically checks for new

CUs (step U.3) and queues them in the scheduler (step U.4). Finally, the Executor

manages the execution of the CUs (step U.6 and U.7).

The Local Resource Manager (LRM) provides an abstraction to local resource details

for other components of the RP-Agent. The LRM evaluates the environment variables

provided by the resource management systems to obtain information, such as the

number of cores per node, memory and the assigned nodes. This information can be

accessed through the Resource Manager’s API. In Mode I (Hadoop on HPC), during

the initialization of the RP-Agent, the LRM setups the HDFS and YARN daemons.

First, the LRM downloads Hadoop and creates the necessary configuration files, i.e.,

the mapred-site.xml, core-site.xml, hdfs-site.xml, yarn-site.xml and the slaves

and master file containing the allocated nodes. The node that is running the Agent,
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runs the master daemons of Hadoop: the HDFS Namenode and the YARN Resource

Manager. As soon as HDFS and YARN area active, the scheduler receives meta-data

about the cluster, i.e., the number of cores and memory. HDFS and YARN remain

active until all tasks are executed. Before termination of the agent, the LRM stops the

Hadoop and YARN daemons and removes the associated data files. In Mode II (Hadoop

on HPC), the LRM solely collects the Hadoop cluster resource information.

The scheduler is another extensible component of the RP-Agent responsible for

queuing CUs and assigning them to resources. To support YARN, we created a special

scheduler that utilizes the cluster state information (e.g., the amount of available

cores, memory, queue information, application quotas etc.) obtained via the Resource

Manager’s REST API of YARN. In contrast to other RP schedulers, our scheduler

specifically utilizes memory in addition to cores for assigning resources to CUs.

The Task Spawner is responsible for managing and monitoring the execution of

a CU. The Launch Method component encapsulates resource/launch-method specific

operations, e.g., the usage of the yarn command line tool for submitting and monitoring

applications. After the launch of a CU, Task Spawner periodically monitors its execution

and updates its state in a shared MongoDB instance by utilizing the application log file.

RADICAL-Pilot Application Master: YARN’s multi-step resource allocation process

depicted in Figure 2.3 differs significantly from HPC schedulers and, as such, poses an
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integration challenge. The central component of a YARN application is the Application

Master, which negotiates resources assignment with the YARN Resource Manager and

manages the execution of an application in the assigned resources. The unit of allocation

in YARN is a container [46] (not to be confused with a Docker container). The YARN

client is part of the YARN Launch Method and implements a YARN Application Master,

which is the central instance for managing the resource requirements of an application.

RP utilizes a managed application master that runs inside a YARN container. Once

the Application Master container is started, the managed application master requests

a YARN container that meets the resource requirements of the CU from the YARN’s

Resource Manager. Once YARN allocates a container, the CU starts inside that container.

A wrapper script sets up a RP environment, staging the specified files and running the

executable defined in the CU Description. Every Compute Unit is mapped to a YARN

application consisting of an Application Master and a container of the size specified in

the CU Description.

RADICAL-Pilot and Spark Integration

Spark offers multiple deployment modes: standalone, YARN and Mesos. While it is

possible to support Spark on top of YARN, the YARN and Mesos approaches incur

into significant complexities and overheads as they require for two frameworks to be

configured and bootstrapped. Since RP operates in user-space and single-user mode, no

advantages with respect to using a multi-tenant YARN cluster environment exist. Thus,

we support Spark via the standalone deployment mode.

Similar to the YARN integration, the necessary changes for Spark are confined to

the RP-Agent. Local Resource Manager (LRM) initializes and deploys the Apache

Spark environment. In the first step, LRM detects the number of cores, memory and

nodes provided by Resource Management System, and verifies and downloads necessary

dependencies (e.g., Java, Scala, and Spark binaries). In the second step, LRM creates

the necessary configuration files to run a multi-node, standalone Spark cluster (e.g.,

spark-env.sh, slaves and master files). Finally, LRM starts a Spark cluster, using

the previously generated configuration.
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Figure 2.4: RADICAL-Pilot and RADICAL-Pilot-YARN startup overheads.

Similar to YARN, a Spark RP-Agent scheduler is used for managing Spark resource

slots and assigning CUs. During the termination of the RP-Agent, LRM shuts down

the Spark cluster using Spark’s termination script, which stops both the master and the

slave nodes. Similarly, the Spark specific methods for launching and managing CUs on

Spark are encapsulated in a Task Spawner and Launch Method component.

2.3 Experiments and Evaluation

To evaluate the RADICAL-Pilot-YARN (RP-YARN) and Spark extension, we conduct

two experiments. In §2.3.1, we analyze and compare RP and RP-YARN with respect

to startup times of both the Pilot and the CUs. In §2.3.2, we use the well-known

K-Means algorithm to investigate the performance and runtime trade-offs of a typical

data-intensive application. We performed our experiments on two XSEDE machines:

Wrangler [42] and Stampede [47]. On Stampede, every node has 16 cores and 32 GB of

memory; on Wrangler 48 cores and 128 GB of memory. For our experiments, we used

RP v0.45, Hadoop v2.6 and Spark v2.0.2.
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2.3.1 Pilot Startup and Compute Unit Submission Characterization

In Figure 2.4 we analyze the measured overheads when starting RP and RP-YARN,

and when submitting CUs. The agent startup time for RP-YARN is defined as the time

between when RP-Agent starts and when the first CU starts executing. On Wrangler,

we compare both Mode I (Hadoop on HPC) and Mode II (HPC on Hadoop). For Mode

I, the startup time is higher compared to the startup time of RP and of Mode II. This

can be explained by the necessary steps required to download, configure and start the

YARN cluster. For a single node YARN environment, the overhead for Mode I (Hadoop

on HPC) is between 50-85 sec, depending on the selected resource. The startup times

for Mode II on Wrangler—using the dedicated Hadoop environment provided via the

data portal—are comparable to the normal RP startup times as RP does not spawn a

Hadoop cluster.

The inset of Figure 2.4 shows the time taken to start Compute Units via RP to a

YARN cluster. For each CU, resources have to be requested in two stages: first the

application master container is allocated and, second, the containers for the actual

compute tasks becomes available. For short-running jobs, that represents a bottleneck.

In summary, while there are overheads associated with executing CUs inside of YARN,

we believe these are acceptable, in particular for long-running CUs.

2.3.2 K-Means Performance Characterization

We compare the time to completion of the K-Means algorithm using two configurations:

RP on HPC and RP in HPC/YARN mode. We use three different scenarios: 10,000

points and 5,000 clusters, 100,000 points and 500 clusters, and 1,000,000 points and 50

clusters. Each point belongs to a three dimensional space. The compute requirements

depend on the product of the number of points and clusters, thus the requirements

are constant for all three scenarios. We use an optimized version of K-Means in which

the sum and number of points are precomputed in the map phase, thus only these two

attributes per cluster need to be shuffled. The shuffle traffic depends on the number of

clusters and decreases with the number of clusters. For the purpose of this benchmark,
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we run two iterations of K-Means.

We utilize up to 3 nodes on Stampede and Wrangler. We use the following con-

figurations for our experiments: 8 tasks on 1 node, 16 tasks on 2 nodes and 32 tasks

on 3 nodes. For RP-YARN, we use Mode II (Hadoop on HPC): the YARN Resource

Manager is deployed on the node running the RP-Agent.

Figure 2.5 shows the results of executing K-Means over different scenarios and

configurations. For RP-YARN, runtimes include the time required to download and

start the YARN cluster on the allocated resources.

Independent of the scenario, runtimes decrease with the number of tasks. In

particular, for the 8 task scenarios the overhead of YARN on Wrangler is enough

to produce higher runtimes for RP-YARN than RP. For larger number of tasks, we

observed on average 13 % shorter runtimes for RP-YARN. Also, RP-YARN achieves

better speedups, e.g., 3.2 for 32 tasks for the 1 million points scenario, which is

significantly higher than the RP speedup of 2.4 (both on Wrangler and compared to base

case of 8 tasks). One of the reasons of that performance difference, is that RP-YARN

uses the local file system, while RP uses the Lustre filesystem.
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For similar scenarios and task/resource configuration, the runtimes show a significant

performance improvement on Wrangler over Stampede. This is attributed to the better

hardware (CPUs, memory) of Wrangler than Stampede. In particular, for RP-YARN

we observed on average higher speedups on Wrangler, indicating that we saturated the

32 GB of memory available on each Stampede node.

In summary, despite the overheads of RP-YARN with respect to Pilot and CU

startup time, we were able to observe performance improvements (on average 13 %

better time to completion than RP) mainly due to the better performance of the local

disks.

2.4 Conclusions

An increasing number of scientific applications use Hadoop and Spark mainly due to the

accessible abstractions they provide. HPC and Hadoop environments are converging:

For example, MLLib/Spark utilize BLAS, and Hadoop frameworks adopt parallel and

in-memory computing concepts that originated in HPC. Currently, traditional HPC

applications lack the ability to use Hadoop and other Hadoop tools, without sacrificing

the advantages of HPC environments. One prominent reason for the limited uptake of

Hadoop-based technologies on HPC infrastructures is the lack of effective, scalable and

usable resource management techniques.

This chapter shows how the Pilot abstraction can be used as an integrating concept,

discussing the design and implementation of RP extensions for Hadoop and Spark, and

validating those extensions with scalability analysis on two HPC infrastructures. The

Pilot abstraction enables users to combine the capabilities of best-of-breed tools which

run on heterogeneous HPC infrastructures. Using these capabilities, data-intensive

computational campaigns can utilize diverse Hadoop and HPC frameworks, enabling

scalable data workflows and analytics pipelines.

In this chapter we demonstrated the importance of integrated capabilities for sup-

porting data-intensive workflows on HPC infrastructures. In the next chapter, we

move forward by characterizing the performance of those capabilities for paradigmatic
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molecular dynamics workflows. When executing computational campaigns on HPC

resources is paramount to understand the performance tradeoffs among application,

middleware, executable and system capabilities.
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Chapter 3

Task-Parallel Data Analytics on HPC Platforms

Molecular Dynamics campaigns are significant consumer of computing cycles and produce

immense amounts of data, especially during simulation stages. Simulation workflows

execute up to 105 µsec MD simulations of a O(100k) atoms physical system, producing

from O(10) to O(1000) GBs of data [1]. Increasingly, there is a need for analyses to

be integrated with simulations to drive the next stages of the workflow execution at

runtime [48]. Analyses can benefit from task-level parallelism as they can be partitioned

into independent units of work.

Task-parallel applications involve partitioning a workflow into a set of self-contained

units of work. Based on the application, these tasks can be independent, have no

inter-task communication, or coupled with varying degrees of data dependencies. Data-

intensive applications exploit task parallelism for data-parallel operations (e.g., map), but

also require coupling, for computing aggregates (reduce). Typically, a reduce operation

includes shuffling intermediate data from a set of nodes to node(s) where the reduce

executes.

Data analytics workflow engines exploit task-parallelism by partitioning the data

and generating stages of independent tasks. These stages then implement data depen-

dencies by shuffling, aggregating or coupling intermediate results. The MapReduce [11]

abstraction, along with its implementations, popularized this method of processing.

Spark [10] and Dask [16] are two MapReduce frameworks. Both provide abstractions

which reason about data and are optimized for parallel processing of large data volumes,

interactive analytics and machine learning. Their runtime engines can automatically

partition data, generate parallel tasks, and execute them on a cluster. In addition,

Spark offers in-memory capabilities allowing data caching data, making it suited for
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interactive analytics and iterative machine learning algorithms. Dask also provides a

MapReduce API (Dask Bags). Furthermore, Dask’s API is more versatile, allowing

custom workflows and parallel vector/matrix computations.

As task-parallel frameworks offer different abstractions and capabilities, executing

data analysis workflows in an efficient and scalable manner remains a challenge. As data

analysis applications can have different characteristics (e.g., embarrassingly parallel or

MapReduce), alternative abstractions and capabilities may offer varying performance

and efficiency. As a result, there is a need to understand which framework is more

suitable for performing a specific type of analysis.

In this chapter, we investigate three task-parallel frameworks and their suitability

for implementing MD trajectory analysis algorithms. In addition to Spark and Dask, we

investigate RADICAL-Pilot (RP) [17]. We utilize MPI4py [49] to provide MPI equivalent

implementations of the algorithms. The task-parallel implementations performance and

scalability compared to MPI is the basis of our analysis. MD trajectories are time series

of atoms/particles positions and velocities, which are analyzed using different statistical

methods to infer certain properties, e.g., the relationship between distinct trajectories,

snapshots of a trajectory etc.

The chapter is organized as follows: §3.1 discusses several approaches to support

scalable MD trajectory data analytics. §3.2 describes the MD analysis algorithms

investigated and reviews different MD analysis frameworks with respect to their ability to

support scalable analytics of large volumes of MD trajectories. §3.3 describes RP, Spark

and Dask, the three frameworks used for our performance comparison and evaluation.

§3.4 provides a description of the implementation of the MD algorithms on top of those

three frameworks, as well as a performance evaluation and a discussion of our findings.

In §3.5, we provide a conceptual analysis that allows application developers to select a

framework according to their requirements. Finally, §3.6 closes this chapter with our

conclusions.
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3.1 Related Work

Until recently, MD analysis algorithms were executed serially and parallelization was not

straightforward. During the last years, several frameworks emerged providing parallel

algorithms for analyzing MD trajectories. Some of those frameworks are CPPTraj [29, 50],

HiMach [30], PMDA [51], Pteros 2.0 [52] and nMoldyn-3 [53].

Several techniques are used for parallelizing MD analysis algorithms. CPPTraj [50]

utilizes MPI and OpenMP to execute large-scale analysis on HPC. OpenMP is also uti-

lized by Pteros [52] to parallelize the compute intensive parts of the analysis. HiMach [30]

extends Google’s MapReduce and defines Map and Reduce methods. nMoldyn-3 [53]

parallelizes the execution through a Master/Worker architecture. The master defines

analysis tasks which are then executed by a set of worker processes.

A common denominator of most approaches is that they do not use general purpose

frameworks for parallelizing the execution. Although they are optimized to get as much

performance as possible from the environments they are developed for, their portability

is limited. For example, CPPTraj [50] and Pteros [52] are highly dependent on the low

level libraries of the resource they use, while HiMach [30] is build specifically for the

Antons Supercomputer.

In contrast, our analysis focuses on frameworks that offer more general purpose

approaches to the parallelizing MD analysis algorithms. These frameworks provide

higher-level abstractions that facilitate the integration with other data analysis methods.

In addition, resource acquisition and management is done transparently.

3.2 Molecular Dynamics (MD) Data Analysis

Root Mean Square Deviation (RMSD), Pairwise Distances (PD), and Sub-setting [54]

are algorithms commonly used to analyze MD trajectories. Path Similarity Analysis

(PSA) [55] and Leaflet Identification [27] are two more advanced algorithms. All these

methods read and process a physical system generated via multiple simulations, reducing

data to either a single number or a matrix. RMSD identifies the deviation of atom

positions among frames, while PD and PSA calculate distances between atoms or
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trajectories based on different metrics. Sub-setting methods are used instead to isolate

parts of interest of a MD simulation, and Leaflet Identification provides information

about groups of lipids by identifying the lipid leaflets in a lipid bilayer.

We discuss two of those methods—a PSA algorithm that uses the Hausdorff dis-

tance and a Leaflet identification algorithm—implementated in MDAnalysis [27, 28].

MDAnalysis is a Python library [27, 28] that provides a comprehensive environment for

filtering, transforming and analyzing MD trajectories. MDAnalysis provides a common

object-oriented API to trajectory data and leverages existing libraries of the scientific

Python software stack, such as NumPy [56] and Scipy [57].

Path Similarity Analysis (PSA): Hausdorff Distance

Path Similarity Analysis (PSA) [55] quantifies the similarity between trajectories,

considering their full atomic detail. The basic idea is to compute pair-wise distances (e.g.,

using the Hausdorff metric [58]) between members of an ensemble of trajectories, and

cluster the trajectories based on their distance matrix. Each trajectory is represented as a

two dimensional array: The first dimension corresponds to time frames of the trajectory;

the second to the N atom positions in a 3-dimensional space. Algorithm 1 describes

PSA with the Hausdorff metric over multiple trajectories. We apply a 2-dimensional

data partitioning over the output matrix to parallelize, shown in algorithm 2.

The algorithm is embarrassingly parallel, has complexity O(n2) and its input data

volume is medium to large while the output is small. Embarrassingly parallel algorithms

are good candidates for task parallelization. Each task analyzes a partition of the

dataset. Given enough resources, tasks can execute concurrently as a bag of tasks, using

a task management API or a map-only application in a MapReduce-style API. Spark,

Dask and RP support the execution of bag of tasks, with RP and Dask offering specific

abstractions (as discussed in §3.3).

Leaflet Finder

Algorithm 3 describes the Leaflet Finder (LF) algorithm as presented in Ref. [27].

LF assigns particles to one of two curved but locally approximately parallel sheets,
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Algorithm 1 Path Similarity Algorithm: Hausdorff Distance

1: procedure HausdorffDistance(T1,T2) . T1 and T2 are a set of 3D points
2: List D1,D2

3: for ∀frame1 in T1 do
4: for ∀frame2 in T2 do
5: Append in D1 dRMS(frame1, frame2)
6: end for
7: Dt1 append min(D1)
8: end for
9: for ∀frame2 in T2 do
10: for ∀frame1 in T1 do
11: Append in D2 dRMS(frame2, frame1)
12: end for
13: Dt2 append min(D2)
14: end for
15: return max

(
max(Dt1 ),max(Dt2 )

)
16: end procedure
17:
18: procedure PSA(Traj) . Traj is a set of trajectories
19: for ∀T1 in Traj do
20: for ∀T2 in Traj do

21: D(T1,T2)=HausdorffDistance
(
T1, T2

)
22: end for
23: end for
24: return D
25: end procedure

Algorithm 2 Two Dimensional Partitioning

1: Initially, there are N2 distances, where N is the number of trajectories. Each distance defines a computation
task.

2: Map the initial set to a smaller set with k = N/n1 elements, where n1 is a divisor of N , by grouping n1 by
n1 elements together.

3: Execute over the new set with k2 tasks. Each task is the comparisons between n1 and n1 elements of the
initial set. They are executed serially.

provided that the inter-particle distance is smaller than the distance between sheets.

In biomolecular simulation data analysis of lipid membranes, consisting of a double

layer of lipid molecules, LF identifies the lipids of the outer and inner leaflets (sheets).

The algorithm consists of two stages: a) construction of a graph connecting particles

based on threshold distance (cutoff); and b) computing the connected components of

the graph, determining the lipids located on the outer and inner leaflets.

The application stages have different complexities. The first stage identifies neigh-

boring atoms. There are two alternative implementations: i) computing the distance

between all atoms (O(n2)); ii) utilizing a tree-based nearest neighbor (Construction:

O(n log n), Query: O(log n)). In both alternatives, the input data volume is medium

size and the output is smaller than the input. The complexity of connected components

is: O(|V |+ |E|) (V : Vertices, E: Edges), i.e., it greatly depends on the characteristics

of the graph.
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Algorithm 3 Leaflet Finder Algorithm

1: procedure LeafletFinder(Atoms,Cutoff) . Atoms is a set of 3D points that represent the position of
atoms in space. Cutoff is an Integer Number

2: Graph G =(V = Atoms,E = ∅)
3: for ∀atom in Atoms do
4: N = [a ∈ V : d(a, atom) ≤ Cutoff ]
5: Add edges [(atoms, a) : a ∈ N ] in G

6: end for
7: C = ConnectedComponents(G)

8: return C
9: end procedure

LF is more complex than PSA as it requires two stages. It is possible to implement

LF with a simple task-management API, although the MapReduce programming model

allows for a more efficient implementation with a map for computing and filtering distances

and a reduce for finding the components. The shuffling required between map and

reduce is medium as the number of edges is a fraction of the input data. Spark and Dask

natively support MapReduce and implementing LF is relatively straightforward. RP,

on the other hand, does not natively support MapReduce. As a result, the application

developer has to define the data shuffling between the map and the reduce phases of the

algorithm.

3.3 Task-Parallel Frameworks: Spark, Dask and RADICAL-Pilot

The landscape of frameworks for data-intensive applications is manifold [59, 60] and has

been extensively studied in the context of scientific [61] applications. In this section,

we discuss the suitability of task-parallel frameworks such as Spark [10], Dask [16] and

RP [17] for MD data analytics.

3.3.1 Background

Spark and Dask provide APIs, caching and other capabilities that are critical to de-

velop analytics applications. Spark is considered the standard solution for iterative

data-parallel applications. Dask is quickly gaining support by the scientific community,

since it offers a sought-after Python environment. RP also offers a Python-only pro-

gramming API, supporting task-level parallelism on HPC resources. In this way, RP

adds parallelization capabilities to MPI-based applications, enabling the concurrent and
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HPC/Big Data Scheduler

Pilot-Job

Cluster Scheduler
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*Prototype (Not part of RADICAL-Pilot Distribution)

Figure 3.1: Architecture of RADICAL-Pilot, Spark and Dask.

sequential execution of bag of MPI tasks on HPC resources.

As described in [59], these frameworks typically comprise of distinct layers, e.g., clus-

ter scheduler access, framework-level scheduling, and higher-level abstractions. Various

higher-level abstractions can be provided on top of low-level resource management capa-

bilities, e.g., MapReduce-inspired APIs. These capabilities provide the foundation for

analytics abstractions, such as Dataframes, Datasets and Arrays. Figure 3.1 visualizes

the components of RP, Spark and Dask.

RADICAL-Pilot

As discussed in §2, RP allows concurrent task execution on HPC resources. The user

defines a set of Compute-Units (CU) which are submitted to RP. RP schedules these CUs

for execution on the acquired resources and uses the existing environment of the resource

to execute tasks. Any data communication between tasks is done via an underlying

shared filesystem, e.g., Lustre. Task execution coordination and communication is done

through a database (MongoDB).

Spark

Spark [10] extends MapReduce [11], providing a rich set of operations on top of the

Resilient Distributed Dataset (RDD) abstraction [24]. RDDs are cached in-memory,

making Spark well suited for iterative applications that need to cache a set of data
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across multiple stages. PySpark provides a Python API to Spark.

A Spark workflow consists of multiple stages. Each stage is a set of independent

parallel tasks (e.g., map) and an action (e.g., reduce). Spark’s Scheduler translates

the workflow specified via RDD transformations and actions to an execution plan. Its

distributed execution engine handles the low-level details of task execution, which is

triggered by actions. Spark can read data from different sources, such as HDFS, blob

storage, parallel and local filesystems. Spark offloads data to disk when there is not

enough free memory on a node. Persisted RDDs remain in memory, unless specified to

use the disk either complementary or as a single target. In addition, Spark writes data

that are used in a shuffle to disk. As a result, Spark allows quick access to those data

when transmitted to an executor.

Dask

Dask [16] provides a Python-based parallel computing library, which is designed to

parallelize native Python code written for NumPy and Pandas. In contrast to Spark,

Dask also provides a lower-level task API (delayed API) that allows users to construct

arbitrary workflow graphs. Being written in Python, it does not require to translate data

types from one language to another like PySpark, which moves data between Python’s

interpreter and Java/Scala.

In addition to the low-level task API, Dask offers three higher-level abstractions:

Bags, Arrays and Dataframes. Dask Arrays are a collection of NumPy arrays organized

as a grid. Dask Bags are similar to Spark RDDs and are used to analyze semi-structured

data, like JSON files. Dask Dataframes are distributed collections of Pandas dataframes

that can be analyzed in parallel.

Dask also offers three schedulers: multithreading, multiprocessing and distributed.

The multithreaded and multiprocessing schedulers support only single node execution

and the parallel execution is done via threads and processes respectively. The distributed

scheduler creates a cluster with a scheduling process and multiple worker processes. A

client process creates and communicates a workflow as a direct acyclic graph to the

scheduler. Finally, the scheduler assigns tasks to workers.
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RADICAL-Pilot Spark Dask

Languages Python Java, Scala, Python, R Python
Task Task Map-Task Delayed
Abstraction
Functional Abstrac-
tion

- RDD API Bag

Higher-Level Ab-
stractions

Pipelines [8], Replicas [2] Dataframe, ML Pipeline,
MLlib [62]

Dataframe, Arrays for
block computations

Resource Manage-
ment

Pilot-Job Spark Execution Engines Dask Distributed Sched-
uler

Scheduler Individual Tasks Stage-oriented DAG DAG
Shuffle - hash/sort-based shuffle hash/sort-based shuffle
Limitations no shuffle, filesystem-

based communication
high overheads for
Python tasks (serializa-
tion)

Dask Array can not deal
with dynamic output
shapes

Table 3.1: Task-parallel Frameworks Comparison.

3.3.2 Comparison

Table 3.1 summarizes the properties of Spark, Dask and RP with respect to the abstrac-

tions and runtime systems provided to create and execute parallel data applications.

API and Abstractions

RP provides a low-level API for executing tasks onto resources. While this API can be

used to implement high-level capabilities, e.g., MapReduce [63], they are not provided

out-of-the box. Both Spark and Dask provide such capabilities. Dask’s API is generally

lower level than Spark’s, i.e., it allows specifying arbitrary task graphs. Although Spark

decides the partition size automatically, in many cases it is necessary to tune parallelism

by specifying the number of partitions.

Another important aspect is the availability of high-level abstractions. High-level

abstractions for RP, such as Pipelines [8] and Replicas [2], support compute-oriented tasks

and workflows. Contrary, Spark and Dask already offer a set of high-level data-oriented

abstractions, such as Dataframes.

Scheduling

Both Spark and Dask create a Direct Acyclic Graph (DAG) based on operations over

data, which their respective execution engine executes. Spark jobs are separated into

stages. When a stage finishes, the scheduler executes the next stage.
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Dask’s DAGs have a tree representation where each node is a task. Leaf tasks do not

depend on other task for execution. Dask tasks execute when their dependencies are

satisfied, starting from leaf tasks. When the scheduler reaches a task with unsatisfied

dependencies, the scheduler executes the dependent task first. Dask’s scheduler does

not rely on synchronization points that Spark’s stage-oriented scheduler introduces. RP

does not provide a DAG-based API and requires the user to manage the execution order

and synchronization among tasks at application level instead of runtime level (i.e., RP).

3.3.3 Frameworks Evaluation

As data-parallelism often involves a large number of short-running tasks, task throughput

is a critical metric to assess the three frameworks we consider. To evaluate the throughput

of those frameworks, we use zero workload tasks (/bin/hostname). We submit an

increasing number of such tasks to RP, Spark and Dask and measure the execution time

on a single node.

For RP, all tasks were submitted simultaneously. RP’s backend database was running

on the same node to avoid communication latencies. For Spark, we created an RDD

with as many partitions as the number of tasks, as each task maps to a partition by

Spark. For Dask, we created tasks using delayed functions that were executed by the

Distributed scheduler. We used TACC Wrangler and SDSC Comet for this experiment.

SDSC Comet is a 2.7 petaFLOSP cluster with 24 Haswell cores/node and 128 GB

memory/node (6,400 nodes). TACC Wrangler has 24 Haswell hyper-threading enabled

cores/node and 128 GB memory/node (120 nodes).

Figure 3.2 shows the total time to completion and task throughput. Dask needed

the least time to schedule and execute the assigned tasks, followed by Spark and RP.

Dask and Spark quickly reach their maximum throughput, which is sustained as the

number of tasks increased. RP showed the worst throughput and scalability, mainly

due to some architectural limitations. Specifically, RP relies on a MongoDB database to

communicate between Client and Agent, as well as several components that allow RP

to move data and introduce delays in the execution of the tasks. As a result, we were

not able to scale RP to 32k or more tasks.
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Figure 3.2: Total time to completion and task throughput by framework on a single
node for an increasing number of tasks on Wrangler.

10

100

1000

10000

Th
ro

ug
hp

ut
(T

as
ks

 p
er

 se
c) Com

et

Dask Spark RADICAL-Pilot

1 2 3 4
Nodes

10

100

1000

10000

Th
ro

ug
hp

ut
(T

as
ks

 p
er

 se
c) W

rangler

Figure 3.3: Task throughput by framewrork for 100k tasks on different number of nodes.

Figure 3.3 illustrates task throughput when scaling to multiple nodes, measured by

submitting 100k tasks. Dask’s throughput on both resources increases almost linearly

to the number of nodes. Spark’s throughput is an order of magnitude lower than Dask’s.

RP’s throughput plateaus below 100task/sec. Wrangler and Comet show a comparable

performance, with Comet slightly outperforming Wrangler.

3.4 Task-Parallel MD Trajectory Data Analysis: Implementation &

Characterization

In this section, we characterize and evaluate the performance of two algorithms from

MDAnalysis—PSA and LF—using different real-world datasets, when implemented

with RP, Spark and Dask. We compare the performance of these three task-parallel
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frameworks with an equivalent implementations of the algorithms using MPI4py. We

investigate: 1) which capabilities and abstractions of the frameworks are needed to

efficiently express these algorithms; 2) what architectural approaches can be used to

implement these algorithms with these frameworks; and 3) the performance trade-offs

of these frameworks.

The experiments were executed on SDSC Comet and TACC Wrangler. Experiments

were carried using RP and Pilot-Spark (as discussed on §2). We utilize a set of custom

scripts to start the Dask cluster. We used RP 0.46.3, Spark 2.2.0, Dask 0.14.1 and

Distributed 1.16.3. We employed up to 10 nodes on Comet and Wrangler.

3.4.1 Path Similarity Analysis (PSA): Hausdorff Distance

The PSA algorithm is embarrassingly parallel and can be implemented using simple

task-level parallelism or a map-only MapReduce application. We equally distribute the

input data, i.e., a set of trajectory files, over the cores, generating one task per core.

Each task reads its respective input files in parallel, executes and writes the result to a

file.

For RP, we define a CU for each task and execute them using a Pilot-Job. For

Spark, we create an RDD with one data partition per task which is a map function.

In Dask, tasks are defined as delayed functions and in MPI, each task is executed by

an MPI process. The dataset used for the experiments consists of three atom count

trajectories: 1) small (3341 atoms/frame); 2) medium (6682 atoms/frame); and 3) large

(13364 atoms/frame). We used 102 frames, and 128 and 256 trajectories of each size.

Figure 3.4 shows the runtime for 128 and 256 trajectories on Wrangler, while

Figure 3.5 compares the execution times on Comet and Wrangler for 128 large trajectories.

The three frameworks show similar performance in terms of runtime on both systems,

as well as with MPI4py. Wrangler gives smaller speedup than Comet despite using the

same number of cores. Wrangler uses hyperthreading and, as a result, multiple tasks

share the same CPU, resulting in lower speedup than Comet.

MPI4py, RP, Spark and Dask have similar performance when used to execute

embarrassingly parallel algorithms. All frameworks achieved similar speedups as the
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number of cores increased, scaling by a factor of 6 from 16 to 256 cores, which are lower

than MPI4py. Although the frameworks’ overheads are comparably low in relation to

the overall runtime, the overheads were significant enough to impact the frameworks’

speedup. Note that RP’s large deviation is due to sensitivity to communication delays

with the database.

In summary, for embarrassingly parallel algorithms all three frameworks provide

appropriate abstractions and runtime performance compared to MPI. Beyond perfor-

mance considerations, aspects such as programmability and integrate-ability are more

important considerations when comparing the three frameworks. Both RP and Dask

are native Python frameworks, making the integration with other Python tools easier

and more efficient than with frameworks which are based on other languages like Spark.
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Broadcast and 1-D
(Approach 1)

Task API and 2-D
(Approach 2)

Parallel Con-
nected Compo-
nents (Approach
3)

Tree-Search (Ap-
proach 4)

Data Partition-
ing

1D 2D 2D 2D

Map Edge Discovery via
Pairwise Distance

Edge Discovery via
Pairwise Distance

Edge Discovery via
Pairwise Distance
and Partial Con-
nected Components

Edge Discovery via
Tree-based Algo-
rithm and Partial
Connected Compo-
nents

Shuffle Edge List (O(E)) Edge List (O(E)) Partial Connected
components (O(n))

Partial Connected
components (O(n))

Reduce Connect Components Connected Compo-
nents

Joined Connected
Components

Joined Connected
Components

Table 3.2: MapReduce Operations used by Leaflet Finder

Approach 1: Broadcast and 1-D Partitioning

2-D 
Partitioning

Edge Discovery:
Approach 2 & 3: Pairwise Distance
Approach 4: Tree-based Neighbor Search

Shuffle:
Approach 2: Edge List
Approach 3 & 4: Partial Connected Components

1-D 
Partitioning

Broadcast

Edge Discovery:
Pairwise Distance

Shuffle:
Edge List

Reduce: Connected 
Components

Approach 2: Task-API and 2-D Partitioning
Approach 3: Parallel Connected Components
Approach 4: Tree-Search

Data (Partition, Intermediate, Output)  Map Tasks Data MovementInput Data (3D Atoms positions)

Reduce: 
Approach 2: Connected Components
Approach 3, 4: Join Connected Components

Reduce Tasks Broadcast

Result:
Edge List

Result:
Edge List

Figure 3.6: Architectural approaches for implementing the Leaflet finder algorithm

3.4.2 Leaflet Finder (LF)

We developed five approaches to implement the LF algorithm using RP, Spark, Dask,

and MPI4py (see Fig 3.6 and Table 3.2):

1) Broadcast and 1-D Partitioning: Broadcast and partition through a data ab-

straction the physical system. Use of RDD API (broadcast), Dask Bag API (scatter),

and MPI Bcast to distribute data to all nodes. A map function calculates the edge

list using cdist from SciPy [57], realized as a loop for MPI. The master process

(rank 0) collects (gathers) the list and calculates the connected components.

2) Task API and 2-D Partitioning: Data management is done without using the

data-parallel API. The framework is used for task scheduling. Data are pre-partitioned

in 2-D partitions and passed to a map function that calculates the edge list using

cdist, realized as a loop for MPI. The master process (rank 0) collects (gathers) the

list and calculates the connected components.
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3) Parallel Connected Components: Data are managed as in approach 2. Each

map task performs edge list and connected components computations. The reduce

phase joins the calculated components into one, when there is at least one common

node.

4) Tree-based Nearest Neighbor and Parallel-Connected Components (Tree-

Search): This approach is different to approach 3 only for the way in which edge

discovery is implemented in the map phase. A tree containing all atoms is created

which is then used to query for adjacent atoms.

We use four physical systems with 131k, 262k, 524k, and 4M atoms with 896k, 1.75M,

3.52M, and 44.6M edges in their graphs. We utilized up to 256 cores on Wrangler for

our experiments. Data partitioning results into 1024 partitions for each approach, thus

1024 map tasks. Due to memory limitations from using cdist – uses double precision

floating point – Approach 3 data partitioning of the 4M atom dataset resulted to 42k

tasks for both Spark and MPI4py.

Figure 3.7 shows the runtimes for all datasets for Spark, Dask and MPI4py. Figure 3.9

shows RP’s performance. We continue by analyzing the performance of each architectural

approach and used framework in detail.

Broadcast and 1-D Partitioning

Approach 1 broadcasts data to nodes via the capabilities supported by Spark, Dask and

MPI. All nodes maintain a complete copy of the dataset and each map task computes

the pairwise distance on a partition of the dataset. Figure 3.8 shows the detailed results.

The usage of broadcast capabilities has severe limitations for Spark and Dask. MPI

broadcast is a fraction of the overall execution time and significantly smaller than

Spark and Dask. MPI’s broadcast times increase linearly as the number of processes

increases, while Spark’s and Dask’s remain relatively constant for each dataset, due to

more elaborate broadcast algorithms compared to MPI. Broadcast times are between

3% and 15% of the edge discovery time for Spark, from 40% to 65% for Dask, and from

¡ 1% to 10% for MPI4py. Thus, Spark offers a more efficient communication subsystem
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Figure 3.7: Leaflet Finder Performance of Different Architectural Approaches for Spark
& Dask. Runtimes and Speedups for different system sizes over different number of
cores for all approaches and frameworks.

compared to Dask. In addition, Dask broadcast partitions the dataset to a list where

each element represents a value from the initial dataset. This did not allow broadcasting

the 524k atom dataset. Nevertheless, the limited scalability of this approach due to

transmitting the entire dataset makes it usable only for small datasets.

Using broadcast shows the worst performance and scaling of all approaches for Spark,

Dask and MPI4py. This approach scales only up to 262k atoms for Dask, and 524k atoms

for Spark and MPI4py on Wrangler. Spark’s performance is comparable to MPI4py for

the 262k, and 524k datasets. Spark also shows better performance for the smallest core

count in the 524k case. Dask is at least two times slower than our MPI implementation.
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Task-API and 2-D Partitioning

Approach 2 tries to overcome the limitations of approach 1, especially broadcasting

and 1-D partitioning. A 2-D block partitioning evenly distributes the compute and

utilizes more efficiently the available memory. Spark and Dask do not support well

2-D partitioning. Spark’s RDDs are optimized for data-parallel applications with 1-D

partitioning. While Dask’s array supports 2-D block partitioning, it was not used for this

implementation. We return the adjacency list of the graph instead of an array to fully

use the capabilities of the abstraction. Thus, each task works on a 2-D pre-partitioned

part of the input data.

Figure 3.7 shows the runtimes of approach 2 for Spark, Dask, and MPI4py, and

Figure 3.9 shows the runtime of approach 2 for RP. As expected, this approach overcomes

the limitations of approach 1 and can easily scale to larger datasets (e.g., 524k atoms)

while improving the overall runtime. Dask’s execution time was smaller by at least

a factor of two compared to approach 1. However, we were not able to scale this

implementation to the 4M dataset due to the memory requirements of cdist. For RP,

we observed significant task management overheads (see also section 3.3.3). This is a

limitation of RP with respect to managing large numbers of tasks, particularly visible

when running on a single node with 32 cores. As more than 64 cores become available,

RP’s performance improves dramatically.

Spark and Dask did not scale as well as MPI, which achieved linear speedups of ∼ 8

when using 256 cores. Spark and Dask achieved maximum speedups of 4.5 and ∼ 5

respectively. Despite this fact, both frameworks had similar performance on 32 cores for
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the 262k and 524k datasets.

Parallel Connected Components

Communication between the edge discovery and connected components phases is another

important aspect. For the 524k atoms dataset, the output of the edge discovery phase

is ≈ 100 MB. To reduce the amount of data that need to be shuffled, we refined the

algorithm to compute the graph components on the partial dataset in the map phase.

The reduce phase then merges the components. This reduces the amount of shuffle

data by more than 50% (e.g., to 12MB for Spark and 48MB for Dask). Figure 3.7

shows the improvements in runtime, by ∼ 20% for Spark and Dask, but not MPI4py.

Further, we were able to run very large datasets, such as the 4M dataset, using this

architectural approach only with Spark and MPI4py. Dask was restarting its worker

processes because their memory utilization was reaching 95%.

Spark and Dask have comparable performance with MPI on 32 cores, which utilizes

a single node on Wrangler. However, while the MPI4py implementation scales almost

linearly for all datasets, Spark and Dask cannot, reaching a maximum of ∼ 5 speedup

for the three smaller datasets. In addition, Spark is able to scale almost linearly for the

4M atoms dataset, providing comparable performance to MPI4py.
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Tree-Search

A bottleneck of approaches 1, 2 and 3 is the edge discovery via the naive calculation

of the distances between all pairs of atoms. In approach 4, we replace the pairwise

distance function with a tree-based, nearest neighbor search algorithm, in particular

BallTree [64]. The algorithm: 1. constructs of a tree; and 2. queries for neighboring

atoms. Using tree-search, the computational complexity can be reduced from n2 to log.

We use a BallTree as offered by Scikit-Learn [65] for our implementation.

Figure 3.7 illustrates the performance of the implementation. For small datasets,

i.e., 131k and 262k atoms, approach 3 is faster than the tree-based approach, since the

number of points is too small. For the large datasets, the tree approach is faster. In

addition, the tree has a smaller memory footprint than cdist. As a result, the tree

approach scaled to larger problems, e.g., a 4M atoms and 44.6M edges dataset, without

changing the total number of tasks.

Dask shows better scaling performance than Spark for 131k, 262k and 524k atoms.

This is not true for 4M atoms, indicating that Dask’s communication layer is not able to

scale as well as Spark’s one. Spark shows similar performance to MPI4py for the largest

dataset due to minimal shuffle traffic. Thus, MPI’s efficient communication does not

become relevant.

3.5 Conceptual Framework for Selecting Task-Parallel Frameworks

In this section, we provide a conceptual framework that allows application developers to

select a framework according to their compute and I/O requirements. It is important to

understand the properties of both the application and task-parallel frameworks. Table 3.3

illustrates the criteria of this conceptual model and ranks the three frameworks.

Application Perspective

We showed that we can implement applications for MD trajectory data analysis using

Spark, Dask and RP, as well as MPI4py. Implementation aspects, such as computational

complexity, and shuffled data size greatly influence performance. For embarrassingly
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RADICAL-Pilot Spark Dask
Task Management

Low Latency - o +
Throughput - + ++

MPI/HPC Tasks + o o
Task API + o ++

Large Number of Tasks – ++ ++
Application Characteristics

Python/native Code ++ o +
Java o ++ o

Higher-Level Abstraction - ++ +
Shuffle - ++ +

Broadcast - ++ +
Caching - ++ o

Table 3.3: Task-parallel framework selection decision methodology: Criteria and Ranking
for Framework Selection. - : Unsupported or low performance + : Supported, ++ :
Major Support, and o :Minor support.

parallel applications with coarse grained tasks, such as PSA, the choice of the framework

does not significantly influence performance. In addition, the performance difference

against MPI4py was not significant (Figures 3.4, 3.5). Thus, aspects such as programma-

bility and integrate-ability, become more important than performance alone.

For fine-grained data parallelism, a data-parallel framework, such as Spark and Dask,

clearly outperforms RP (Figures 3.7, 3.9). If there is coupling between tasks, i.e., task

communication is required, using Spark becomes advantageous (Approaches 3 & 4).

MPI4py outperformed Dask and Spark, despite both frameworks scaling for the larger

datasets. Especially Spark was able to provide linear speedup for approach 3 of Leaflet

Finder (Figure 3.7).

Integrating with frameworks that provide higher level abstractions provides scalable

solutions for more complex algorithms. However, integrating Spark with other tools

needs to be carefully considered. The integration of Python tools, e.g., MDAnalysis,

often causes overheads due to the frequent need for serialization and copying data

between the Python and Java space.

Dask has the smallest learning curve of all three frameworks. As a result, it allows

for faster prototyping compared to RP and Spark. RP’s learning curve is more steep,

but is more versatile than Dask and Spark, by offering the lowest level abstraction.

Spark had the slowest learning curve but it required tuning to get the number of tasks

correctly, as well as argument passing to map and reduce functions.
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Framework Perspective

RP is well suited for HPC applications, e.g., ensembles (up to 50k tasks) of parallel MPI

applications, as shown in Ref. [31, 17]. It has limited scalability when supporting large

numbers of short-running tasks, as often found in data-intensive workloads. The file

staging implementation of RP is not suitable for supporting the data exchange patterns,

i.e., shuffling, required for these applications. However, concurrently executing MPI and

Spark applications on the same resource makes RP particularly suitable when different

programming models need to be combined.

Dask provides a highly flexible, low-latency task management and excellent support

for parallelizing Python libraries. We established that Dask has higher throughput than

the other frameworks (Figures 3.2, 3.3). However, Spark provides better speedups for

the largest datasets compared to Dask (Figure 3.7). Dask’s broadcast (Leaflet Finder

with Approach 1) and shuffle (Leaflet Finder with Approaches 2- 4) performance is

worse for larger problems compared to Spark. Thus, Dask’s communication layer shows

some weaknesses that are particularly visible during broadcast and shuffle. Spark needs

to be taken into consideration for shuffle-intensive applications. Its in-memory caching

mechanism is particularly suited for iterative algorithms that maintain a static set of

data in-memory and conduct multiple passes on that set.

3.6 Conclusions

In this chapter, we investigated the use of different programming abstractions and frame-

works for implementing a range of algorithms for MD trajectory analysis. We conducted

an in-depth analysis of applications’ characteristics and assessed the architectures of

RP, Spark and Dask. We provided a conceptual framework that enables application

developers to qualitatively evaluate task parallel frameworks with respect to application

requirements. Our benchmarks enable developers to quantitatively assess framework

performance as well as the performance of different implementations. Our method can

be used for any application in which data are represented as time series of simulated

systems, e.g., weather forecast and earthquake simulation.
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While the task abstractions provided by all frameworks are well-suited for implement-

ing the considered use cases, the high-level MapReduce programming model provided

by Spark and Dask has several advantages. It is easier to use and efficiently supports

common data exchange patterns, e.g., shuffling between map and reduce stages. In our

benchmarks, Spark outperforms Dask in communication-intensive tasks, such as broad-

casts and shuffles. Dask provides more versatile low and high level APIs and integrates

better with python frameworks. RP does not provide a MapReduce API, but is well

suited for coarse-grained task-level parallelism [31, 17], and when HPC and analytics

frameworks need to be integrated. We also identified a limitation in Dask and Spark:

while both frameworks provide some support for linear algebra through a distributed

array abstraction, it proved inflexible for an efficient all-pairs pattern implementation.

Dask and Spark required workarounds and utilization of out-of-framework functions to

read and partition data (Table 3.2). Although none of these frameworks outperformed

MPI, their scaling capabilities along with their high-level APIs create a strong case on

utilizing them for data analytics with HPC applications.

Our results allow users to utilize a well-suited task-parallel framework based on the

characteristics of the data-intensive workflows of a computational campaign. This in turn

reduces the time to define the data-intensive workflows of a computational campaign.

Further, it allows the scalable execution of such workflows without significant, if any,

effort from users, reducing the time to optimize a workflow. However, there is a set of

data analysis workflows that do not necessarily conform with the MapReduce abstraction,

such as the PSA analysis or earth science workflows that analyze imagery, as they have

both data and compute intensive characteristics. As a result, the selected framework

should efficiently and effectively perform data transfers and execution while offering the

necessary abstractions. In the next chapter we discuss architectural equivalent designs

of task-parallel frameworks to execute such data- and compute-intensive workflows.
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Chapter 4

Evaluating Middleware for Task-Parallel Data Analytics

on HPC Platforms

This far, we have discussed how to efficiently and scalably support the execution of

MapReduce workflows, as part of a computational campaign, on High Performance

Computing (HPC) resources. There are, though, computational campaigns whose

workflows do not necessarily conform to the MapReduce abstraction. The tasks of such

workflows can be heterogeneous, implementing a diverse set of functionalities that are

compute-intensive. As a consequence, data-parallel frameworks, like Spark and Dask

may not be the most suitable choice for their execution. From a middleware perspective,

the design and architectural space is large and the lack of performance analysis makes it

difficult to select among equivalent implementations.

From a design perspective, a promising approach is isolating tasks from execution

management. Tasks are assumed to be self-contained programs which are executed in the

operating system (OS) environment of HPC compute nodes. Compared to approaches

in which tasks are functions or methods, a program-based approach offers several

benefits as, for example, simplified implementation of execution management, support

of general purpose programming models, and separate programming of management

and domain-specific functionalities. Nonetheless, program-based designs also impose

performance limitations, including OS-mediated intertask communication and task

spawning overheads, as programs execute as OS processes and do not share a memory

space.

Due to their performance limitations, program-based designs of computing frame-

works are best suited to execute compute-intense workflows in which each task requires
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a certain amount of parallelism and runs from several minutes to hours. The emer-

gence of workflows that require heterogeneous, compute-intense tasks to process large

amount of data is pushing the boundaries of program-based designs, especially when

scale requirements suggest the use of modern HPC infrastructures with large number of

CPUs/GPUs and dedicated data facilities.

We use a paradigmatic use case workflow from the polar science domain to evaluate

three alternative task-based designs, and experimentally characterize and compare their

performance. Our use case requires us to analyze satellite images of Antarctica to detect

pack-ice seals taken across a whole calendar year. The resulting dataset consists of

3, 097 images for a total of ≈ 4 TB. The use case requires us to repeatedly process these

images, running both CPUs and GPUs code that exchange several GB of data. The

first design uses a pipeline to independently process each image, while the second and

third designs use the same pipeline to process a series of images with differences in how

images are bound to available compute nodes.

The chapter is organized as follows. § 4.1 discusses the current state-of-the-art in

parallel image analysis. § 4.2 presents the use case and discusses its computational

requirements as well as its task-based workflow. In §4.3, we discuss the three architec-

turally equivalent design to support task-based workflows. §4.4 presents a performance

evaluation of the designs and discusses the lessons learned.

4.1 Related Work

Several tools and frameworks are available for image analysis based on diverse designs

and programming paradigms, and implemented for specific resources. Numerous image

analytics frameworks for medical, astronomical, and other domain specific imagery

provide MapReduce implementations. MaReIA [66], built for medical image analysis,

is based on Hadoop and Spark [10]. Kira [67], built for astronomical image analysis,

is also built on top of Spark and pySpark, allowing users to define custom analysis

applications. Further, Ref. [68] proposes a Hadoop-based cloud Platform as a Service,

utilizing Hadoop’s streaming capabilities to reduce filesystem reads and writes. These
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frameworks support clouds and/or commodity clusters for execution.

BIGS [69] is a framework for image processing and analysis. BIGS is based on the

master-worker model and supports heterogeneous resources, such as clouds, grids and

clusters. The user is responsible to define the input, processing pipeline, and launch

BIGS workers. BIGS utilizes a database to perform data transfers between workers. In

addition, BIGS offers a diverse set of APIs for developers. BIGS approach is very close

to Design 1 we described in §4.3.1.

Image analysis libraries, frameworks and applications have been proposed for HPC

resources. PIMA(GE)2 Library [70] provides a low-level API for parallel image processing

using MPI and CUDA. SIBIA [71] is a framework for coupling biophysical models with

medical image analysis, and provides parallel computational kernels through MPI and

vectorization. Tomosaic [72] is a Python framework, used for medical imaging, employing

MPI4py to parallelize different parts of the workflow.

Petruzza et al. [73] describe a scalable image analysis library. Their approach defines

pipelines as data-flow graphs, with user defined functions as tasks. Charm++ is used

as the workflow management layer, by abstracting the execution level details, allowing

execution on local workstations and HPC resources. Teodoro et al. [74] define a master-

worker framework supporting image analysis pipelines on heterogeneous resources. The

user defines an abstract dataflow and the framework is responsible to schedule tasks on

CPU or GPUs.Data communication and coordination is done via MPI.

Our approach proposes designs for image analysis pipelines that are domain indepen-

dent. In addition, the workflow and runtime systems we use allow execution on multiple

HPC resources with no change in our approach. Furthermore, parallelization is inferred

in one of the proposed designs, allowing correct execution regardless of the multi-core or

multi-GPU capabilities of the used resource.

All the above, except Ref. [67], focus on characterizing the performance of the

proposed solution. Ref. [67] compares different implementations, one with Spark, one

with pySpark, and an MPI C-based implementation. This comparison is based on the

weak and strong scaling properties of the approaches. Our approach offers a well-defined

methodology to compare different designs for task-based and data-driven pipelines with
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heterogeneous tasks.

4.2 Satellite Imagery Analysis Application

Imagery employed by ecologists as a tool to survey populations and ecosystems come from

a wide range of sensors, e.g., camera-trap surveys [75] and aerial imagery transects [76].

Very High Resolution (VHR) satellite imagery provides an effective alternative to perform

large scale surveys at locations with poor accessibility such as surveying Antarctic

fauna [77]. To take full advantage from increasingly large VHR imagery, and reach the

spatial and temporal breadths required to answer ecological questions, it is paramount

to automate image processing and labeling.

Convolutional Neural Networks (CNN) represent the state-of-the-art for nearly every

computer vision routine. For instance, ecologists have successfully employed CNNs to

detect large mammals in airborne imagery [78, 79], and camera-trap survey imagery [80].

We use a Convolutional Neural Network (CNN) to survey Antarctic pack-ice seals in

VHR imagery. Pack-ice seals are a main component of the Antarctic food web [81]:

estimating the size and trends of their populations is key to understanding how the

Southern Ocean ecosystem copes with climate change [82] and fisheries [83].

This use case workflow processes WorldView 3 (WV03) panchromatic imagery, which

has the highest available resolution for commercial satellite imagery. Due to limitations

on GPU memory, it is necessary to tile WV03 images into smaller patches before sending

input imagery through the seal detection CNN. Taking tiled imagery as input, the CNN

outputs the latitude and longitude of each detected seal. We order the tiling and seal

detection stages into a pipeline that can be run with different imagery datasets. This

allows domain scientists to create seal abundance time series that can aid in Southern

Ocean monitoring. To create this time series, domain scientists define a computational

campaign where each workflow analyzes imagery from different calendar years or seasons.
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4.3 Workflow Design and Implementation

Computationally, the use case described in §4.2 presents three main challenges: het-

erogeneity, scale and repeatability. The images of the use case dataset vary in size

with a wide distribution. Each image requires tiling, per tile counting of seal popula-

tions and result aggregation across tiles.Tiling is memory intensive while counting is

computationally intensive, requiring CPU and GPU implementations, respectively.

We address these challenges by codifying image analysis into a workflow. We then

execute this workflow on HPC resources, leveraging the concurrency, storage systems and

compute speed they offer to reduce time to completion. Typically, this type of workflow

consists of a sequence (i.e., pipeline) of tasks, each performing part of the end-to-end

analysis on one or more images. The implementation of this workflow varies, depending

on the API of the chosen workflow system and its supported runtime system. Here, we

compare two common designs: one in which each image is processed independently by a

dedicated pipeline; the other in which a pipeline processes multiple images.

Note that both designs separate the functionalities required to process each image

from the functionalities used to coordinate the processing of multiple images. This is

consistent with moving away from vertical, end-to-end single-point solutions, favoring

designs and implementations that satisfy multiple use cases, possibly across diverse

domains. Accordingly, the two designs we consider, implement, and characterize use

two tasks (i.e., programs) to implement the tiling and counting functionalities required

by the use case.

Both designs are functionally equivalent, in that they both enable the analysis of

the given dataset. Nonetheless, each design leads to different amounts of concurrency,

resource utilization and overheads, depending on data/ compute affinity, scheduling

algorithm, and coordination between CPU and GPU computations. Based on a perfor-

mance analysis, it will be possible to know which design entails the best tradeoffs for

common metrics as total execution time or resource utilization.

Consistent with HPC resources currently available for research and our use case, we

make three architectural assumptions: (1) each compute node has c CPUs; (2) each
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compute node has g GPUs where g ≤ c; and (3) each compute node has enough memory

to enable concurrent execute of a certain number of tasks. As a result, at any given

point in time there are C = n× c CPUs and G = n× g GPUs available, where n is the

number of compute nodes.
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Figure 4.1: Design approaches to implement the workflow required for the Seals use
case. 4.1a –Design 1: Pipeline, stage and task based design. 4.1b –Design 2: Queue
based design with a single queue for all the tiling tasks. 4.1c –Design 2.A: Queue based
design with multiple queues for the tiling tasks.
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4.3.1 Design 1: One Image per Pipeline

We specify the workflow for counting the number of seals in a set of images as a set of

pipelines. Each pipeline is composed of two stages, each with one type of task. The

task of the first stage gets an image as input and generates tiles of that image as output.

The task of the second stage gets the generated tiles as input, counts the number of

seals found in each tile and outputs the aggregated result for the whole image.

Formally, we define two types of tasks:

• T1 =< I, fI , t >, where I is an image, fI is a tiling function and t is a set of tiles

that correspond to I.

• T2 =< t, fA, S >, where fA is a function that counts seals from a set of tiles and

S is the number of seals.

Tiling in T1 is implemented with OpenCV [84] and Rasterio [85] in Python. Rasterio

allows us to open and convert a GeoTIFF WV3 image to an array. The array is then

partitioned to subarrays based on a user-specified scaling factor. Each subarray is

converted to an compressed image via OpenCV routines and saved to the filesystem.

Seal counting in T2 is performed via a Convolutional Neural Network (CNN) im-

plemented with PyTorch [86]. The CNN counts the number of seals for each tile of an

input image. When all tiles are processed, the coordinates of the tiles are converted to

the geographical coordinates of the image and saved in a file, along with the number of

counted seals. Note that the number of seals in an tile does not affect the execution of

the network, i.e., the same number of operations will be executed.

Both tiling and seal counting implementations are invariant between the designs we

consider. This is consistent with the designs being task-based, i.e., each task exclusively

encapsulates the capabilities required to perform a specific operation over an image

or tile. Thus, tasks are independent from the capabilities required to coordinate their

execution, whether each task processes a single image or sequence of images.

We implemented Design 1 via EnTK, a workflow engine which exposes an API

based on pipelines, stages, and tasks [8]. The user can define a set of pipelines, where
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each pipeline has a sequence of stages, and each stage has a set of tasks. Stages are

executed respecting their order in the pipeline while the tasks in each stage can execute

concurrently, depending on resource availability.

For our use case, EnTK has three main advantages compared to other workflow

engines: (1) it exposes pipelines and tasks as first-order abstractions implemented in

Python; (2) it is specifically designed for concurrent management of up to 105 pipelines;

and (3) it supports RADICAL-Pilot. Together, these features address the challenges of

heterogeneity, scale and repeatability: users can encode multiple pipelines, each with

different types of tasks, executing them at scale on HPC machines without explicitly

coding parallelism and resource management.

When implemented in EnTK, the use case workflow maps to a set of pipelines, each

with two stages St1, St2. Each stage has one task T1 and T2 respectively. The pipeline

is defined as P = (St1, St2). For our use case the workflow consists of N pipelines,

where N is the number of images.

Figure 4.1a shows the workflow. For each pipeline, EnTK submits the task of stage

St1 to the runtime system (RTS). As soon as the task finishes, the task of stage St2 is

submitted for execution. This design allows concurrent execution of pipelines and, as

a result, concurrent analysis of images, one by each pipeline. Since pipelines execute

independently and concurrently, there are instances where St1 of a pipeline executes at

the same time as St2 of another pipeline.

Design 1 has the potential to increase utilization of available resources as each

compute node of the target HPC machine has multiple CPUs and GPUs. Importantly,

computing concurrency comes with the price of multiple reading and writing to the

filesystem on which the dataset is stored. This can cause I/O bottlenecks, especially if

each task of each pipeline reads from and writes to the same filesystem, possibly over a

network connection.

We used a tagged scheduler for EnTK’s RTS to avoid I /O bottlenecks. This scheduler

schedules T1 of each pipeline on the first available compute node, and guarantees that the

respective T2 is scheduled on the same compute node. As a result, compute/data affinity

is guaranteed among co-located T1 and T2. While this design avoids I /O bottlenecks, it
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may reduce concurrency when the performance of the compute nodes and/or the tasks

is heterogeneous: T2 may have to wait to execute on a specific compute node while

another node is free.

4.3.2 Design 2: Multiple images per pipeline

Design 2 implements a queue-based design. We introduce two tasks T1 and T2 as

defined in §4.3.1. Contrary to Design 1, these tasks are started and then executed for as

long as data and resources are available, processing input images at the rate taken to

process each image. The number of concurrent T1 and T2 depends on available resources,

including CPUs, GPUs, and RAM.

For implementing Design 2, we do not need EnTK, as we submit a bag of T1 and T2

tasks via the RADICAL -Pilot RTS, and manage the data movement between tasks via

queues. As shown in Fig. 4.1b, Design 2 uses one queue (Queue 1) for the dataset, and

another queue (Queue 2) for each compute node. For each compute node, each T1 pulls

an image from Queue 1, tiles that image and then queues the resulting tiles to Queue 2.

The first available T2 on that compute node, pulls those tiles from Queue 2, and counts

the seals.

Note that Design 2 load balances T1 tasks across compute nodes but balances T2

tasks only within each node. For example, suppose that T1 on compute node A runs two

times faster than T1 on compute node B. Since both tasks are pulling images from the

same queue, T1 of A will process twice as many images as T1 of B. Both T1 of A and B

will execute for around the same amount of time until Queue 1 is empty, but Queue 2 of

A will be twice as large as Queue 2 of B. T2 tasks executing on B will process half as

many images as T2 tasks on A, possibly running for a shorter period of time, depending

on the time taken to process each image.

In principle, Design 2 can be modified to load balance also across Queue 2 but in

practice, as discussed in §4.3.1, this would produce I/O bottlenecks. Load balancing

across T2 tasks would require for all tiles produced by T1 tasks to be written to and

read from a shared filesystem. Keeping Queue 2 local to each compute node enables

using the filesystem local to each compute node.
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4.3.2.1 Design 2.A: Uniform image dataset per pipeline

The lack of load balancing of T2 tasks in Design 2 can be mitigated by introducing a

queue in each node from where T1 tasks pull images. This allows early binding of images

to compute nodes, i.e., deciding the distribution of images per node before executing

T1 and T2. As a result, the execution can be load balanced among all available nodes,

depending on the correlation between image properties and image execution time.

Figure 4.1c shows variation 2.A of Design 2. The early binding of images to compute

nodes introduces an overhead compared to using late binding via a single queue as in

Design 2. Nonetheless, depending on the strength of the correlation between image

properties and execution time, design 2.A offers the opportunity to improve resource

utilization. While in Design 2 some node may end up waiting for another node to

process a much larger Queue 2, in design 2.A this is avoided by guaranteeing that each

compute node has an analogous payload to process.

4.4 Experiments: Task Execution Time, Resource Utilization and

Overheads

We executed three experiments using GPU compute nodes of the XSEDE Bridges

supercomputer. These nodes offer 32 cores, 128 GB of RAM and two P100 Tesla GPUs.

We stored the dataset of the experiments and the output files on XSEDE Pylon5 Lustre

filesystem. We stored the tiles produced by the tiling tasks on the local filesystem of the

compute nodes. This way, we avoided creating a performance bottleneck by performing

millions of reads and writes of ≈ 700 KB on Pylon5. We submitted jobs requesting 4

compute nodes to keep the average queue time within a couple of days. Requesting

more nodes produced queue times in excess of a week. In addition, we had full control

over the nodes during execution and were not shared with other users.

The experiments dataset consists of 3, 097 images, ranging from 50 to 2, 770 MB for

a total of ≈ 4 TB of data. The images size follows a normal distribution with a mean

value of 1, 304.85 MB and standard deviation of 512.68 MB.

For Design 1, 2 and 2.A described in §4.3, Experiment 1 models the execution time
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Figure 4.2: Experiment 1, Design 1: Box-plots of T1 execution time, mean and STD for
125 MB image size bins. Red line shows fitted linear function.

of the two tasks of our use case as a function of the image size (the only property

of the images for which we found a correlation with execution time); Experiment 2

measures the total resource utilization of each design; and Experiment 3 characterizes

the overheads of the middleware implementing each design. Together, these experiments

enable performance comparison across designs, allowing us to draw conclusions about

the performance of heterogeneous task-based execution of data-driven workflows on

HPC resources.

4.4.1 Experiment 1: Design 1 Tasks Execution Time

Fig. 4.2 shows the execution time of the tiling task—defined as T1 in §4.3.1—as a

function of the image size. We partition the set of images based on image size, obtaining

22 bins with a range of 125 MB each starting from 50 MB up to 2, 800 MB. The average

time taken to tile an image in each bin tends to increase with the size of the image.

The box-plots show some positive skew of the data with a number of data points falling

outside the assumed normal distribution. There are also large standard deviations

(STD, blue line) in most of the bins. Thus, there is a weak correlation between task

execution time and image size with a large spread across all the image sizes.

We explored the causes of the observed STD by measuring how it varies in relation to

the number of tiling tasks concurrently executing on the same node. Fig. 4.3 shows the

standard deviation of each bin of Fig. 4.2, based on the amount of used task concurrency.
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Figure 4.3: STD of T1 execution time based on image size bin and number of concurrent
tasks. Mostly dependent on compute node’s performance and invariant across values of
task concurrency.

Design Fitted Data α value β value R2 value Figure

1 T1 1.92× 10−2 60.49 0.97 Fig. 4.2, red line
1 T2 5.21× 10−2 128.53 0.96 Fig. 4.4, green line
2 T1 3.17× 10−2 64.81 0.92 Fig. 4.5, red line
2 T2 4.71× 10−2 95.83 0.95 Fig. 4.6, green line

2.A T1 2.74× 10−2 49.03 0.94 N/A
2.A T2. 4.80× 10−2 87.60 0.95 N/A

Table 4.1: Fitted parameter values of Eq. 4.1 using a non-linear least squares algorithm
to fit our experimental data.

We observe that STD drops with increased concurrency but remains relatively stable

between bins #6 and #20. We attribute the initial dropping to how Lustre’s caching

improves the performance of an increasing number of concurrent requests. Further,

we observe that as the type of task and the compute node are the same across all our

measures, the relatively stable and consistent STD observed across degrees of task

concurrency depends on fluctuations in the node performance.

Fig. 4.2 indicates that the execution time is a linear function of the image size

between bin #4 and bin #18. Bins 1− 3 and 19− 23 are not representative as the head

and tail of the image sizes distribution contain less than 5% of the image dataset. We

model the execution time as:

T (x) = α× x+ β (4.1)

where x is the image size.

We found the parameter values of Eq. 4.1 by using a non-linear least squares algorithm

to fit our experimental data, which are α = 1.92× 10−2, and β = 60.49 (see red line in
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Figure 4.4: Experiment 1, Design 1: Box-plots of T2 execution time, mean and STD for
125 MB image size bins. Green line shows fitted linear function.

Fig. 4.2). R2 of our fitting is 0.97, showing a very good fit of the curve to the actual

data.

The Standard Error of the estimation, Serror, reflects the precision of our regression.

The Serror is equal to 1.93, shown as the red shadow in Fig. 4.2. From R2 and Serror

we conclude that our estimated function is validated and is a good fit for the execution

time of T1 for Design 1.

Fig. 4.4 shows the execution time of the seals counting task as a function of the

image size. Defined as T2 in §4.3.1, this task presents a different behavior than T1,

as the code executed is different. Note the slightly stronger positive skew of the data

compared to that of Fig. 4.2 but still consistent with our conclusion that deviations are

mostly due to fluctuations in the compute node performance (i.e., different code but

similar fluctuations).

Similar to T1, Fig. 4.4 shows a weak correlation between the execution time of T2 and

image size. In addition, the variance per bin is relatively similar across bins, as expected

based on the analysis of T1. The box-plot and the mean execution time indicate that a

linear function is a good candidate for a model of T2. As in Eq. 4.1, we fitted a linear

function to the execution time as a function of the image size for the same bins as T1.

Using the same method we used with T1, we produced the green line in Fig. 4.4 with

parameter values α = 5.21× 10−2 and β = 128.53. R2 is 0.96, showing a good fit of the

line to the actual data, while Serror is 5.73, slightly higher than for T1. As a result, we
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Figure 4.5: Experiment 1, Design 2: Box-plots of T1 execution time, mean and STD for
125 MB image size bins. Red line shows fitted linear function.

conclude that our estimated function is validated and is a good fit for the execution

time of T2 for Design 1.

4.4.2 Experiment 1: Design 2 Tasks Execution Time

Fig. 4.5 shows the execution time of T1 as a function of the image size for Design 2. In

principle, design differences in middleware that execute tasks as independent programs

should not directly affect task execution time. In this type of middleware, task code is

independent from that of the middleware: once tasks execute, the middleware waits for

each task to return. Nonetheless, in real scenarios with concurrency and heterogeneous

tasks, the middleware may perform operations on multiple tasks while waiting for others

to return. Accordingly, in Design 2 we observe an execution time variation comparable

to that observed with Design 1 but Fig. 4.5 shows a stronger positive skew of the data

in Design 2 than Fig. 4.2 in Design 1.

We investigated the positive skew of the data observed in Fig. 4.5 by comparing

the system load of a compute node when executing the same number of tiling tasks in

Design 1 and 2. The system load of Design 2 was higher than that of Design 1. Compute

nodes have the same hardware and operating system, and run the same type and number

of system programs. As we used the same type of task, image and task concurrency, we

conclude that the middleware implementing Design 2 uses more compute resources than

that used for Design 1. Due to concurrency, the middleware of Design 2 competes for
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Figure 4.6: Experiment 1, Design 2: Box-plots of T2 execution time, mean and STD for
125 MB image size bins. Green line shows fitted linear function.

resources with the tasks, momentarily slowing down their execution. This is consistent

with the architectural differences across the two designs: Design 2 requires resources

to manage queues and data movement while Design 1 has only to schedule and launch

tasks on each node.

We fitted Eq. 4.1 to the execution time of T1 for Design 2, obtaining α = 3.174×10−2

and β = 64.81. The fitting produced the red line in Fig. 4.5. R2 is 0.92, showing a good

fit of the curve to the data and Serror is 5.50, validating our estimated function. R2 and

especially Serror are worse compared to Design 1, an expected difference based on the

positive skew of the data observed in Design 2.

Fig. 4.6 shows that Design 2 also produces a much stronger positive skew of T2

execution time compared to executing T2 with Design 1. T2 executes on GPU and T1

on CPU but their execution times produce comparable skew in Design 2. This further

supports our hypothesis that the long tail of the distribution of T1 and especially T2

execution times depends on the competition for main memory and I/O between the

middleware implementing Design 2 and the executing tasks.

Fitting the model gives α = 4.71× 10−2 and β = 95.83.R2 is 0.95 and Serror of 5.96.

As a result, the model is validated and a good candidate for the experimental data. We

attribute the difference between these values and those of the model of T2 for Design 1

to the already described positive skew of execution times in Design 2.
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4.4.2.1 Design 2.A

Similarly to the analysis in Design 1 and 2 we fitted data from Design 2.A to Eq. 4.1.

For T1 the fit gives α = 2.74× 10−2 and β = 49.03, with R2 and Serror of 0.94 and 3.89

respectively. For T2 the fit gives α = 4.8 × 10−2 and β = 87.36, with R2 = 0.95 and

Serror = 6.19. Both models are therefore a good fit for the data and are validated.

The results of our experiments indicate that, on average and across multiple runs,

there is a decrease in the execution time of T1 and an increase in that of T2 compared to

Design 2. Design 2.A requires one queue more than Design 2 for T1 and therefore more

resources for Design 2.A implementation. This can explain the slowing of T2 but not the

speedup of T1. This requires further investigation, measuring whether the performance

fluctuations of compute nodes are larger than measured so far.

As discussed in §4.3.2, balancing of workflow execution differs between Design 2 and

Design 2.A. Fig. 4.7a shows that each T1 task can work on a different number of images

but all T1 tasks concurrently execute for a similar duration. The four distributions in

Fig. 4.7a also show that this balancing can result in different input distributions for

each compute node, affecting the total execution time of T2 tasks on each node. Thus,

Design 2 can create imbalances in the time to completion of T2, as shown by the red

bars in Fig. 4.7a.

Design 2.A addresses these imbalances by early binding images to compute nodes.

Comparing the lower part of Fig. 4.7a and Fig. 4.7b shows the difference between the

distributions of image size for each node between Design 2 and 2.A. In Design 2.A, due

to the modeled correlation between time to completion and the size of the processed

image, the similar distribution of the size of the images bound to each compute node

balances the total processing time of the workflow across multiple nodes.

Note that Fig. 4.7 shows just one of the runs we perform for this experiment. Due to

the random pulling of images from a global queue performed by Design 2, each run shows

different distributions of image sizes across nodes, leading to large variations in the

total execution time of the workflow. Fig. 4.7b shows also an abnormal behavior of one

compute node: For images larger than 1.5GBs, Node 3 CPU performance is markedly
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Figure 4.7: Execution time of T1 (blue) and T2 (red), and distributions of image size
per node for (a) Design 2 and (b) Design 2.A.

slower than other nodes when executing T1. Different from Design 2, Design 2.A can

balance these fluctuations in T1 as far as they don’t starve T2 tasks.

4.4.3 Experiment 2: Resource Utilization Across Designs

Resource utilization varies across Design 1, 2 and 2.A. In Design 1, the RTS (RADICAL-

Pilot) is responsible for scheduling and executing tasks. T1 is memory intensive and,

as a consequence, we were able to concurrently execute 3 T1 on each compute node,

using only 3 of the 32 available cores. We were instead able to execute 2 T2 concurrently

on each node, using all the available GPUs. Assuming ideal concurrency among the 4

compute nodes we utilized in our experiments, the theoretical maximum utilization per
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node would be 10.6% for CPUs and 100% for GPUs.

Fig. 4.8 shows the actual resource utilization, in percent of resource type for each

design. The actual CPU utilization of Design 1 (Fig. 4.8a) closely approximates

theoretical maximum utilization but GPU utilization is well below the theoretical 100%.

GPUs are not utilized for almost an hour at the beginning of the execution and utilization

decreases to 80% some time after half of the total execution was completed.

Analysis shows that RADICAL-Pilot’s scheduler did not schedule GPU tasks at

the start of the execution even if GPU resources were available. This points to an

implementation issue and not to an inherent property of Design 1. The drop in GPU

utilization is instead explained by noticing that, as explained in §4.3, GPU tasks were

pinned to specific compute nodes to avoid I/O bottlenecks. Our experiments confirm

that this indeed reduces utilization as some of the GPU tasks on some nodes take longer

time to process than those on other nodes.
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Figure 4.8: Percentage of CPU and GPU utilization for: (a) Design 1; (b) Design 2, and
(3) Design 2.A.

Fig. 4.8b shows resource utilization for a specific run of Design 2. GPUs are utilized

almost immediately as images are becoming available in the queues between T1 and
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T2, and this quickly leads to fully utilized resources. CPUs are utilized for more time

compared to Design 1, which is expected due to the longer execution times measured

and explained in Experiment 1. In addition, two GPUs (25% GPU utilization) are used

for more than 20k seconds compared to other GPUs. This shows that the additional

execution time of that node was only due to the data size and not due to idle resource

time.

Fig. 4.8c shows the resource utilization for a specific run of Design 2.A. For 3 compute

nodes out of 4, CPU utilization is shorter than for Design 1 and 2. For the 4th compute

node, CPU utilization is much longer as already explained when discussing T1 execution

time for Node 3 in Fig. 4.7, Experiment 1. As already mentioned, the anomalous

behavior of Node 3 supports our hypothesis that compute node performance fluctuations

can be much wider than expected.

Fig. 4.8c shows that in Design 2.A GPUs are released faster compared to Design 1

and Design 2, leading to a GPU utilization above 90%. As explained in Experiment 1,

this is due to differences in data balancing among designs. This shows the efficacy of

two design choices for the concurrent execution of data-driven, compute-intense and

heterogeneous workflows: early binding of data to node with balanced distribution of

image size alongside the use of local filesystems for data sharing among tasks.

Note that drops in resource utilization are observed in all three designs.In Design 1,

although both CPUs and GPUs were used, in some cases CPU utilization dropped

to 6 cores. Our analysis showed that this happened when RADICAL-Pilot scheduled

both CPU and GPU tasks, pointing to an inefficiency in the scheduler implementation.

Design 2 and 2.A CPU utilization drops mostly by one CPU where multiple tiling

tasks try to pull from the queue at the same time. This confirms our conclusions in

Experiment 1 about resource competition between middleware and executing tasks. In

all designs, there is no significant fluctuations in GPU utilization, although there are

more often in Design 1 when CPU and GPUs are used concurrently.

4.4.4 Experiment 3: Designs Implementation Overheads

.
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This experiment studies how the total execution time of our use case workflow varies

across Design 1, 2 and 2.A. Fig. 4.9a shows that Design 1 and 2 have similar total

time to execution within error bars, while Design 2. A improves on Design 2 and both

are substantially faster than Design 1. The discussion of Experiment 1 and 2 results

explains how these differences relate to the differences in the execution time of T1 and

T2 tasks, and execution concurrency respectively.
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Figure 4.9: (a) Total execution time of Design 1, 2 and 2.A. Design 1 and 2 have similar
performance, Design 2.A is the fastest. (b) Overheads of Design 1, 2 and 2.A are at
least two orders of magnitude less than the total execution time.

Fig. 4.9b shows the overheads of each design implementation. All three designs
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overheads are at least two orders of magnitude smaller than the total time to execution.

A common overhead between all designs is the “Dataset Discovery Overhead”. This

overhead is the time needed to list the dataset and it is proportional to the size of the

dataset. RADICAL-Pilot has two main components: Agent and Client. RADICAL-

Pilot Agent’s overhead is less than a second in all designs while RADICAL-Pilot

Client’s overhead is in the order of seconds for all three designs. The latter overhead

is proportional to the number of tasks submitted simultaneously to RADICAL-Pilot

Agent.

EnTK’s overhead in Design 1 includes the time to: (1) create the workflow consisting

of 3.1k independent pipelines; (2) start EnTK’s components; and (3) submit the tasks

that are ready to be executed to RADICAL-Pilot. This overhead is proportional to

the number of tasks in the first stage of a pipeline, and the number of pipelines in the

workflow. EnTK does not currently support partial workflow submission, which would

allow us to submit the minimum number of tasks to fully utilize the resources before

submitting the rest. Experiments should be performed to measure the offset between

resource utilization optimization and increased time spent in communicating between

EnTK and RADICAL-Pilot.

Fig. 4.9b shows that the dominant overheads of Design 2 is “Design 2 Setup Overhead”.

This overhead includes setting up and starting queues in each compute node, and starting

and shutting down both T1 and T2 tasks on each node. Setting up and starting the

queues accounts for most of the overhead as we use a conservative waiting time to assure

that all the queues are up and ready.

Alongside the overheads already discussed, Design 2.A also introduces an overhead

called “Design 2.A Distributing Overhead” when partitioning and distributing the

dataset over separate nodes. The average time of this overhead is 7.5 seconds, with a

standard deviation of 3.71 and is proportional to the dataset and the number of available

compute nodes.

In general, Design 2.A shows the best and more stable performance, in terms of

overheads, resource utilization, load balancing and total time to execution. Although

Design 2 has similar overheads, even assuming minimization of Setup Overhead, it does
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not guarantee load balancing as done instead by 2.A.Design 1 separates the execution

in independent pipelines that are independently executed by the runtime system on any

available resource. Based on the results of our analysis, both EnTK and RADICAL-Pilot

can be configured to implement early binding of images to each compute node as done

in Design 2.A. Nonetheless, Design 1 would still require executing a task for each image,

imposing bootstrap and tear down overheads for each task.

4.5 Discussion and Conclusions

While designs 1, 2 and 2.A successfully support the execution of the workflow described

in §4.2, our experiments show that for the metrics considered, Design 2.A is the one

offering the better overall performance. Generalizing this result, use cases that are

both data- and compute-intense benefit from early binding of data to compute node so

to maximize data and compute affinity and equally balance input across nodes. This

approach minimizes the overall time to completion of this type of workflows while

maximizing resource utilization.

Our analysis also shows the limits of an approach where compute tasks are late bound

to compute nodes. In program-based designs, the overhead of bootstrapping programs

needs to be minimized, insuring that each task processes as much input as possible (e.g.,

images). In presence of large amount of data, late binding implies copying, replicating

or accessing data over network and at runtime. We showed that, in contemporary

HPC infrastructures, this is too costly both for resource utilization and total time to

completion.

When executing workflows as part of a computational campaign, it is important to

efficiently utilize available resources. Our design evaluation provides us with information

on how to implement the workflows of a campaign effectively. In addition, our overheads

characterization provides us with a baseline to evaluate production grade workflow

implementations.
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Chapter 5

Scientific Computational Campaigns on HPC Platforms

In the previous chapters, we discussed the requirements and support of data- and

compute-intensive workflows on high performance computing (HPC) resources. When

considering actual research, scientific projects require to execute multiple workflows at

scale and potentially for long period of time. Usually, workflows are first developed,

tested and executed for small scale problems which can be verified theoretically. When

ready, tens to thousands workflows are executed, potentially concurrently, at production

scale for long periods of time—up to several months—on the target HPC machine(s)

while trying to achieve an objective. This poses unprecedented computing challenges,

shifting the problem from enabling the effective and efficient execution of a single

workflow at scale, to managing the execution of a computational campaign.

The challenges users face when executing a computational campaign include, but

are not limited to, deciding an execution plan, submitting, executing and monitoring

workflows, and transferring data among resources. Workflow submission requires users

to have knowledge of submission systems, which generally differ among HPC resources.

Furthermore, users have to connect to those resources to get information about the

execution of workflows. Lastly, users have to establish an execution plan which defines

when each workflow will be executed and on which HPC resource, with workflows

potentially executing concurrently. A campaign manager which, given a computational

campaign and a set of resources, creates an execution plan, submits, executes and

monitors workflows on HPC resources can address those challenges.

Existing campaign managers make assumptions about the resources and middleware

they are utilizing. In addition, they are monolithic software systems, despite their

modular design, and tend to be domain specific. For example, PanDA [87], Pegasus [88],
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and glideinWMS [89] are not easily extensible to use other capabilities or runtime

systems. QCFractal [90] is built to be extensible and be able to interface with different

workflow and workload management systems, but remains domain specific.

In response to the limitations of existing campaign managers—monolithic design,

domain specific support, and dependence on specific resource and middleware—we

design and prototype a new campaign manager (CM). As our CM has to support use

cases from different scientific domains, such as molecular dynamics, earth sciences and

high energy physics on potentially heterogeneous and diverse resources, the design and

functionality space grow exponentially. A prototype allows us to identify the most

important components and functionalities to support our use cases. Further, we can

quickly implement and test the CM without necessarily considering any performance

and data management requirements that may arise when executing an actual campaign

on actual production infrastructures. Finally, a prototype allows us to tune parts of the

CM with minimal engineering cost.

The CM prototype is domain agnostic as its design does not depend on requirements

from any specific scientific domain. In addition, our prototype is designed by following

the building blocks approach [18]. In this way, the prototype is agnostic and makes no

assumptions about the workflow management framework used to manage the execution

of individual workflows, as well as the type of resources used.

The chapter is organized as follows: § ?? discusses the current solutions in executing

computational campaigns. In § 5.2, we discuss the supported use cases and the CM

requirements. § 5.3 describes the building blocks approach and the design of the CM.

In § 5.4 we describe the implementation of the CM prototype and we characterize its

baseline performance. We close the chapter with our conclusions in Section 5.5.

5.1 Related Work

Currently, many software systems support computational campaigns. Among those,

PanDA [87], DIRAC [91], QCFractal [90], and glideinWMS [89] are the ones with the

widest adoption. These campaign managers, apart from GlideInWMS [89], are domain
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specific and make assumptions about the underlying software stack and type of workflows

to be executed. PanDA WMS [87] mainly supports the distributed data analysis of data

produced by the ATLAS experiment [5] at the large hadron collider (LHC). PanDA

has been adapted to other use cases and projects, but it requires major tailoring and

dedicated support. This is also true for DIRAC [92], which mainly supports the LHCb

Monte Carlo simulation production system at CERN. QCFractal [90] is a campaign

manager developed to execute large-scale quantum chemistry campaigns. It allows users

to define workflows based on the geometry of physical systems and execute calculations,

hiding the specifics of the software used. GlideInWMS [89] is a more general purpose

campaign manager as it was specifically designed to support different use cases.

Existing campaign managers also support a plethora of computing resources, including

Grid resources, HPCs and Cloud. PanDA [87], glideinWMS [89] and DIRAC [91] mainly

support grid resources. PanDA has been extended to support HPC [93, 94] and cloud

resources [94], while glideinWMS [89] supports only cloud resources. QCFractal [90]

supports a set of heterogeneous resources, including local campus clusters, and HPC

and cloud resources.

Workflow management frameworks such as Pegasus [88] and Balsam [95] support

the concurrent execution of multiple workflows on HPC resources. Both frameworks

allow users to submit multiple workflows concurrently for execution but Balsam also

provide multitenancy capabilities, where multiple users can submit jobs for execution

under the same workflow. Despite this capabilities, both frameworks execute workflows

as independent entities but not as part of a computational campaign with a well defined

objective.

5.2 Campaign Manager Requirements

The space of data analysis of computational campaigns can be vast with different

scientific objectives, types and number of workflows and resources. We use three real

exemplar use cases with data analysis workflows to derive the requirements of the CM

prototype. The first use case supports quantum chemistry campaigns (UC1), the second
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earth science (UC2) and the third data analysis +++campaigns which analyze the data

produced for the ATLAS experiment (UC3).

Quantum chemistry defines campaigns which execute workflows that perform chemical

computations on molecules to calculate their properties, e.g., energy. These campaigns

execute thousands of workflows, with up to 1000 executing at any given point in time,

on a number of resources [6]. Workflows execution time varies between half-core hours

up to 100-core hours, with different levels of concurrency. In addition, users have access

to resources with several capabilities and not every workflow can be executed on every

resource. During the campaign definition, users may provide an initial workflow priority

and have to be sure that the campaign will finish within the given resource allocation.

Earth science campaigns analyze imagery acquired via sensors from different calendar

years [4] to create time series of ecological events, executing one workflow per imagery

from a calendar year. Their execution time varies from hours to a couple of days. Due to

the volume of the data, users have access to a small number of resources where imagery

is stored. While workflows analyze datasets based on the year they represent, a specific

execution order is not necessary as long as all datasets are analyzed. The objective of

this campaign is to analyze as many years of imagery as possible, thus they target high

throughput imagery per unit of time.

The third use case supports the execution of data analysis workflows from the

ATLAS experiment [5]. LHC produces data as particles collide inside its detectors.

These data are then analyzed by executing hundreds to thousands workflows with

different timescales and frequencies [7]. In addition, the analysis needs to happen within

specific time boundaries, while the detector is not operational. For example, one of the

use cases described in Ref. [7] analyzes thousands of different datasets with workflows

running for months every yearly quarter. As a result, the objective of this use case

campaign is to finish all of its workflows within a specific amount of time.

Based on these use cases, we derive a set of functional requirements for the CM

prototype. Table 5.1 shows a summary of the functional requirements. The table defines

a requirement identification number, states the requirement and provides a description

of each requirement. In addition to this information, the table shows from which use
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REQ ID Requirement Algo-
rithm

Use Case Description

1 Support campaign
with O(1k) workflows

UC1 The CM should be able to support campaigns
with order of thousand workflows. Planning,
execution and adaptation should be able to ex-
ecute with such a campaign.

2 The CM should sup-
port at least two dif-
ferent planning algo-
rithms.

G Users/developers should be able to easily ex-
tend the planning capabilities with algorithms.

3 Support from 1 up to
100 resources

UC1-UC2 The CM should be able to execute workflows
on multiple resources concurrently. These re-
sources can either be actual or emulated re-
sources.

4 Plan should be
derived for heteroge-
neous and homoge-
neous static resources
in 5 minutes

G The plan should be derived as soon as the user
provides a campaign description. Plan should
be derived in less than 5 minutes.

5 Plan should be de-
rived and adapted
for heterogeneous/ho-
mogeneous dynamic
resources in 5 min-
utes

UC1 The plan should be derived as soon as the user
provides a campaign description. Plan should
be derived in less than 5 minutes. In case the
plan needs to be adapted, it should be adapted
in less than 5 minutes.

6 Interface with differ-
ent WMFs

G The CM should be able to interface with differ-
ent WMFs based on the specifics of the cam-
paign.

7 Early bind workflows
to resources

UC1 The user may need to bind workflows to spe-
cific resources before executing the campaign.

8 Campaign objective
is configurable

UC1 While the campaign is executing, the objective
may be adjusted based on user preferences.

9 Update the campaign
during runtime

UC1-UC2 The user may want to update the campaign
while it is executing to add/remove workflows.

10 Resources may be
added or removed
during runtime

UC1 The user may want to add/remove resources,
she has gained/lost access to.

Table 5.1: Campaign manager functional requirements.

case the requirement is derived with “G” being a requirement that supports all three

use cases.

5.3 Campaign Manager Design

This section discusses the design principles (§5.3.1) and the architecture (§5.3.2) of the

campaign manager prototype.

5.3.1 Building Blocks Design Approach

The building blocks approach, as described in Ref. [18], defines four design principles

for software systems. Those are self-sufficiency, interoperability, composability, and

extensibility. Adhering to those principles during the design and implementation phase
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of a software system allows for greater software sustainability. In addition, it allows

users not to tailor their solutions to a specific software ecosystem and take full advantage

of the plethora of software that supports scientific computing.

Self-sufficiency and interoperability describe the characteristics of software entities

and functionalities. The entities are enough to stand alone and can be reduced to a

specific abstraction. The functionalities of each building block are specific to the block

and do not overlap with other blocks. As a result, the CM design defines a set of

components and that allow it to execute a campaign to HPC resources without providing

capabilities to execute the individual workflows of the campaign or acquire the necessary

resources.

Composability and extensibility describe the communication and coordination be-

tween building blocks and the generality of the generality of the blocks components

respectively. Blocks communicate information about their state, events and errors.

Based on this information alone building blocks are coordinating with each other. As a

result, the CM uses only the state of the workflow execution to create the campaign

state. Furthermore, its components are designed to be general enough so that they can

extended and interface with different workflow execution engines as well as software

systems that execute computational campaigns.

5.3.2 Campaign Manager Components

We define three components as part of the CM prototype (see Figure 5.1): (1) a Planner;

(2) an Enactor; and (3) a Bookkeeper. Each of these components supports a basic

functionality of the CM, such as executing individual workflows and monitoring the

campaign. In accordance to the building blocks approach, the CM functionality is

limited in executing computational campaigns. As such, the CM does not provide any

functionality to execute individual workflows or acquire resources. Workflow execution

is managed by an existing workflow management framework (WMF) on HPC resources.

In addition, resource acquisition and management is done by the WMF runtime system.

The Planner component derives an execution plan based on a planning algorithm

and calculates the makespan for a campaign on a specific set of resources. The Planner
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Figure 5.1: Reference Architecture of a Campaign Manager. Basic components of Cam-
paign Manager (CM): (a) Planner, (b) Enactor and (c) Bookkeeper. CM communicates
decisions to Workflows Management Framework. CM communicates with HPCs to
execute parts of the campaign.

receives information about available resources and the workflows of the campaign from the

Bookkeeper component. The Planner does not adhere to a specific planning algorithm,

allowing different algorithms to be used, based on the campaign’s requirements and

objective.

The Bookkeeper component is responsible for monitoring the execution of the

campaign. This component holds information about the state of the campaign, the

execution plan, the availability of resources, and the campaign’s objective. The state of

the campaign is based on information about workflow execution provided by the Enactor

component. In addition, the Bookkeeper knows the state of the resources utilized by

the campaign at runtime and the state of the resources that are planned to be used.

Based on this information, the Bookkeeper checks whether the campaign’s objective can

be achieved. Bookkeeper requests the Planner to update the plan when changes in the

campaign happen that affect the effectiveness of a current plan or make the objective

not achievable. For example, the availability of one or more resources can change during

runtime, requiring a revision of the execution plan.
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The Enactor component executes the campaign’s workflows by interfacing with a

workflow management system (WMF). The Enactor receives a set of workflows from the

Bookkeeper, along with the resources on which the workflows will execute at a given

point in time. Based on this information, the Enactor submits the workflows to the

WMF for execution. The WMF, then acquires resources and executes the workflows.

Initially, the Bookkeeper receives the description of a campaign (Figure 5.1 step 1)

and passes information about resources and workflows to the Planner (Figure 5.1 step

2). As soon as a plan is calculated, it is passed to the Bookkeeper (Figure 5.1 step 3).

Then, the Bookkeeper passes the workflows and resources descriptions to the Enactor

(Figure 5.1 step 4) and the Enactor passes that information to the selected WMF for

execution (Figure 5.1 step 5). When a workflow finishes to execute, the Enactor gets

notified (Figure 5.1 step 6) and informs the Bookkeeper (Figure 5.1 step 7). Steps 4, 5,

6 and 7 repeat until all the workflows have finished executing.

5.4 Prototype Implementation and Performance Evaluation

Consistent with the design presented in §5.3, we define three main classes to implement

the CM prototype. The Bookkeeper class implements the capabilities of the Bookkeeper

component, the Enactor class interacts with a selected workflow engine to execute

workflows on resources, and the Planner class implements planning algorithms. In

addition, the prototype defines a state model for the campaign and the workflows.

Figure 5.2 shows the class diagram of the prototype. Each class also defines a set of

data structures to support the execution of campaigns.

The states models provide information about the state of the execution. The

campaign state model (Figure 5.3a) has six states: (1) new, (2) planning, (3) executing,

and (4) done or (5) canceled or (6) failed. A campaign is considered new when it is

defined and no further action is taken. The campaign transitions to the planning state

when a plan for its execution is derived. As soon as the execution of the campaign

starts, the state of the campaign transitions to executing. The final states are possible

termination states. When the campaign execution ends and the campaign objective is
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Figure 5.2: Class diagram of campaign manager prototype
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Figure 5.3: State diagrams for : 5.3a) a campaign; 5.3b) each workflow of a campaign.

achieved, the campaign transitions to the done state. If the objective cannot be achieved

or there is a failure during the execution, the state of the campaign changes to failed.

Lastly, the campaign state goes to canceled when the user cancels the execution of the

campaign.

Similar to the campaign state model, the workflows state model (Figure 5.3b) defines

five states: (1) new, (2) executing, and (3) done or (4) canceled or (5) failed. A workflow

is in the new state when it is received by the Bookkeeper and transitions to the executing

state when the Enactor submits the workflow for execution to the selected WMF. The

workflow transitions to one of the final states—done, canceled or failed—based on the

final state the workflow management system reports.
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Figure 5.4: Sequence diagram for executing a computational campaign through the
campaign manager prototype

The Bookkeeper class defines several methods to execute a campaign. The most

important ones are: run, work and monitor. The run method initializes the campaign

state to new and sets up the environment for executing the campaign. Work calls the

Planner to produce a plan transitioning the state of the campaign to planning. After a

plan is produced, work calls verify objective to verify if the objective of the campaign

can be achieved, and either starts submitting workflows to the Enactor or transitions

the campaign to the failed state. In addition, work pushes the submitted workflows

to a data structure that the monitor method reads. The monitor method checks the

state of the workflow which are executing and receives information from the Enactor

via callbacks.

The Planner and Enactor classes define the methods for planning the execution of a

campaign, executing workflows on resource and monitoring their execution. The Planner

defines a plan method which implements a planning algorithm and returns a plan. The

Enactor’s enact method submits a workflow to the selected WMF. The monitor method

of the Enactor checks periodically the state of the workflows that are executing and

pushes state updates to the Bookkeeper via a callback.

Figure 5.4 shows the sequence diagram of the execution. Before the execution of

a campaign, the Bookkeeper gets as input a campaign (a set of workflows) and a set

of resources. As the user requests to execute the campaign, the Bookkeeper passes to

the Planner the information it needs. When the plan is ready, the execution of the
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Figure 5.5: Execution time of simulating the execution of computational campaign with
different number of workflows on different number of resources, NR.

campaign begins with the Bookkeeper passing a workflow to the Enactor, along with

a list of resources to use for the execution. As the Enactor executes the workflow, it

pushes state updates to the Bookkeeper via callbacks. The Bookkeeper continues to

pass workflows to the Enactor as resources become available, until there are no more

workflows to execute.

Instead of an actual workflow management framework (WMF), the Enactor utilizes

a modified version of the workload emulator proposed in Ref. [96]. The emulator allows

us to define heterogeneous resources and emulate the execution of workloads on those

resources. A workload is a set of independent tasks that can be executed concurrently.

We modified the emulator to emulate the execution of a campaign which is a set of

independent workflows. In addition, we extended the emulator execution capabilities

with SimPy [97], a discrete time simulator. SimPy executes discrete simulations by

producing events as time progresses. These events provide information about which

workflows are executing or have finished to execute. The Enactor polls these events

and pushes to the Bookkeeper the state of each workflow. As a result, we are able to

simulate the execution of a campaign and validate the correctness of our design and its

implementation.

We validated the correctness of our design by executing: 1) a campaign with an
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achievable objective and 2) a campaign which objective cannot be achieved. In both

cases, we provided the prototype with a campaign, a set of resources, an execution plan

and an objective. The campaign manager executes the campaign and we validate that the

campaign and workflows have reached the expected state. We created a validation suite

which executes a set of tests and verifies the final state of the campaign and workflows.

When the execution of the campaign can achieve the computational objective, the

campaign and workflows transitioned to the done state as expected. Similarly when the

execution of the campaign cannot achieve the computational objective, the campaign

and workflows transitioned to the failed state.

We executed campaigns of different sizes on different number of resources where the

objective of the campaign could be achieved and measured the execution time of the

simulation. We verified that the simulation executed in a viable amount of time, as

shown in Figure 5.5. We observed that the execution time of the simulation increases

when more than 64 resources are utilized concurrently. Both the Enactor and the

Bookkeeper have monitoring methods that traverse the list of executing workflows. In

addition, the Enactor uses callbacks to inform the Bookkeeper about the state of the

workflows. Above 64 resources, these operations start to dominate the execution time of

the simulation. The prototype executed 128 workflows on 128 resources in ≈7 minutes,

an amount of time we considered acceptable for experimental purposes.

Currently, the CM prototype is implemented in Python as an installable module.

The source code is open and available on Github [98]. The CM currently offers a simple

API for users who want to simulate the execution of a campaign. The Bookkeeper and

Resources modules can be imported (seen under the example in [98]). The campaign

currently is represented as a list of workflows where each workflow is a dictionary with the

workflow description, a unique identifier per workflow and the runtime of the workflow

on an 1 PetaFLOP resource. Resources are a list of dictionaries with a unique identifier,

the performance and a label for each resource. In order to simulate the execution of the

campaign, users pass the campaign and resources to the Bookkeeper and call the run

method.
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5.5 Conclusions

In this chapter, we motivated, discussed and validated a prototype for a software system

that supports the execution of computational campaigns on HPC resources based on

a set of use cases. We described the design and the basic components of the CM, a

Bookkeeper, a Planner and an Enactor. Based on the selected design, we implemented

a software prototype that simulates the execution of a campaign on resources. The

prototype allows us to understand and correctly implement the necessary functionality

of the CM.

The CM produces an execution plan for a computational via the Planner class. The

Planner is able to support several planning algorithms. Although using any planning

algorithm would satisfy the requirement of creating an execution plan, it is necessary to

utilize an algorithm that is able to achieve the campaigns objective. In the next chapter,

we investigate planning algorithms and evaluate the plans they produce for executing

computational campaigns.
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Chapter 6

Evaluating Computational Campaigns Planning

Algorithms on HPC Platforms

Computational campaigns enact an execution plan to achieve a computational objective

for given requirements and constraints. A computational objective is a set of values for

a set of metrics that must be satisfied. Some of these metrics are time to completion or

throughput defined as number of workflows executed per unit of time. Requirements,

generally, describe the minimum amount and type of resources needed to execute each

workflow of the campaign, while constraints are the conditions that bound the execution,

such as resource availability, resource capacity or costs.

The objective of a campaign can be translated to a computational objective function

that satisfies a lower or upper bound of a metric. Among the many metrics that can be

considered, the most common one is the total time taken to execute all workflows of

a campaign, also known as makespan. An execution plan of a campaign is a mapping

between workflows and resources on which to execute those workflows. Calculating the

makespan of a campaign for a given plan means verifying if said execution plan satisfies

the computational objective function, within the given constraints.

We focus on computational campaigns that can concurrently utilize several high per-

formance computing (HPC) infrastructures, i.e., supercomputers. Further, we consider

infrastructures with homogeneous and heterogeneous resources, depending on the type

of computational capabilities they offer, e.g., number of operations per second. Each

HPC infrastructure can offer a set of homogeneous or heterogeneous resources and a set

of HPC infrastructures can also be homogeneous or heterogeneous.

Uncertainty about the makespan of a campaign arises from two main reasons: resource

dynamism and workflow runtime estimation. HPC resources are governed by policies
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that affect their performance, such as power regulating policies [99] and filesystem and

network multitenancy [100]. As a consequence, resource performance changes over time

(i.e, is dynamic) which, in turn, creates uncertainty about the makespan of a campaign.

Further, accurately estimating the runtime of each workflow of a campaign is challenging

at best, impossible at worse. Users offer an estimation of each workflow runtime in the

form of a range of possible values which, in turn, also creates uncertainty about the

makespan of a campaign.

There is a plethora of algorithms which derive an execution plan by calculating

the makespan of a workflow offline [13], i.e., before the workflow’s execution. Planning

for a campaign with NW workflows is equivalent to planning for a workflow with Nt

tasks. Offline algorithms usually take information about resource performance and

task/workflow runtime as input, and use that information to produce a plan. As a result,

the plan produced can be significantly affected by the uncertainty described above.

To the best of our knowledge, there is not a methodology that allows to compare

planning algorithms on dynamic heterogeneous resources and in presence of workflows

runtime estimation uncertainty. We select three algorithms, each representing a family

of algorithms, and compare their performance in respect to the makespan of the plans

they produce as well as how sensitive they are on resource dynamism and workflows

runtime uncertainty. Based on the comparison, we make a case about which algorithm

to select given a computational campaign, the execution environment, constraints and

objective.

The chapter is organized as follows: §6.1 discusses related work. §6.2 discusses the

calculation of the makespan of a campaign given the set of assumptions of this work.

Section §6.3 discusses three makespan calculation algorithms and §6.4 compares their

performance. Finally, section §6.5 presents our conclusions and a conceptual framework

that will allow users to best select a planning algorithm. The chapter offers the two main

contributions: (i) an experimental methodology to compare the performance of planning

algorithms that is independent of the considered use case and computing framework; and

(ii) a conceptual framework for selecting planning algorithms based on the algorithmic,

campaign and resources characteristics.
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6.1 Related Work

Several methods compare and evaluate algorithms that calculate and optimize the

makespan of a workflow [13], including queuing networks [101, 102], domain specific

languages [103, 104], and machine learning [105, 106]. Queuing networks are of limited

use because they require from the user to provide a queuing network equivalent to the

campaign. In the case the campaign contains only independent workflows, a single

queuing system with multiple servers would be sufficient, but a campaign with complex

dependencies among workflows may require expertise outside the user’s domain to define

the equivalent queuing network. Furthermore, using queuing methods to derive the

makespan of a campaign requires to search for possible mappings and keep the one

that optimizes the makespan. Domain specific languages approaches either require

description of the resource usage of workflows [103], or to execute part of the campaign

to obtain an execution “skeleton” [104]. When executing a campaign, workflows may

require days to execute to obtain execution time information, and users rarely know the

resource usage of their workflows to provide accurate enough information.

Some work has been done to evaluate different planning algorithms. Ref. [107] offers

a survey of different algorithms for planning the execution of workflows on Grid resources.

Ref. [108] experimentally compares a set of makespan-centric, heuristic-based planning

algorithms. Algorithms are ranked based on how robust they are when task runtimes

are uncertain. This approach is very close to our approach but we do not limit our

evaluation to a specific type of algorithm and we also measure how planning algorithms

perform in presence of resource dynamism and workflow runtime estimation uncertainty.

6.2 Calculating the Makespan of a Campaign

The way workflows of a given campaign are mapped to resources can affect the makespan

calculation. Figure 6.1 shows an example of a campaign with workflows of different size

and execution times, and the makespans that two different mappings produce. The

makespan of the campaign on the left sub -figure is 20, while that on the right it is 16.

In addition, Figure 6.1 also shows the relevance of the size of the workflows, i.e., the
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number of resources they require, and that resources may be underutilized.
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Figure 6.1: Comparison of different campaign execution plans. Makespan and resource
utilization is different, based on workflow mapping on resources.

We make a set of assumptions when defining a model for the calculation of a

campaign makespan: (1) a workflow is an atomic unit; (2) a workflow resource request

is always sufficient to execute the workflow; (3) a resource is an aggregate of computing

capabilities; (4) every workflow of a given campaign can be executed on the given

resources; (5) random resource selection is based on a uniform distribution; (6) only one

workflow can be executed on a resource at any point in time; and (7) workflows can be

homogeneous or heterogeneous in time—the amount of time they are executing—and

space—the amount of resources they require.

We denote a computational campaign as C = [wi : 1 ≤ i ≤ NC ], where wi is a

workflow and NC is the total number of workflows, R = [rj : 1 ≤ j ≤ NR] is a set

of available resources, where rj is a resource and NR is the total number of available

resources before the execution of the campaign. M(C,R) is a mapping function which

produces a map [(wi, rj) : 1 ≤ i ≤ NC , rj ∈ R] of workflows onto resources. In addition,

we denote the execution time of a workflow as Txwi , the makespan of campaign C as

TTXC , and the makespan of campaign C for a given mapping function M as TTXC(M).

With a single resource, i.e., NR = 1, the workflows of a campaign are executed

sequentially, regardless of the execution order or whether the workflows are homogeneous

or heterogeneous. As a result the makespan of the campaign is:

TTXC =

NC∑
i=1

Txwi (6.1)
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With multiple resources, i.e., 1 < NR < NC , the workflows of a campaign can be

executed concurrently. With homogeneous resources, this is semantically equivalent

to executing the campaign on a single resource large enough to allow concurrent

workflow execution, where each workflow executes on a resource partition. Because

of assumptions #4 and #7, the execution of spatially homogeneous or heterogeneous

workflows has the same makespan. A random mapping of workflows onto resource has a

makespan:

TTXC(Random) ≥ 1

NR

NC∑
i=1

Txwi (6.2)

Given multiple homogeneous resources, when executing workflows that are heteroge-

neous in time and that can be spatially homogeneous or heterogeneous, the makespan

of the campaign for a given mapping function M is:

TTXC(M) = max
rj∈R

{ ∑
wi∈M(C,rj)

Txwi

}
(6.3)

Relaxing the assumption that resources are heterogeneous, in the performance they offer,

affects the result of the mapping function M . As a result, Eq. 6.3 holds in calculating

the makespan of the campaign.

6.3 Planning Algorithms

We investigate three algorithms: (i) the Heterogeneous Earlier Finish Time algorithm

(HEFT) [19]; (ii) a genetic algorithm [20]; and (iii) a simple heuristic algorithm. These

algorithms produce an execution plan before the actual execution of the campaign,

and require workflow runtime and resource performance as input. Table 6.1 shows a

summary of the algorithms characteristics.

6.3.1 Heterogeneous Earlier Finish Time (HEFT) algorithm

List scheduling algorithms represent a family of heuristic-based algorithms to schedule

workflows [109, 110]. These algorithms assign priorities to tasks based on a heuristic and

then order tasks based on their priority. To place tasks on resources, they traverse the
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HEFT Genetic Algorithm L2FF Random

Decision Policy Deterministic Convergence Criteria Deterministic Deterministic
Initial State Blank Semi-random Blank Blank

Initial Information

Workflow Operations Yes Yes Yes No
Resource Performance Yes Yes Yes No

Produced Knowledge Resource availability Resource availability None None

Table 6.1: Basic characteristics of selected planning algorithms.

Algorithm 4 Heterogeneous Earliest Finish Time (HEFT) algorithm

1: procedure HEFT(W ,R) . W and R are a set of workflows and resources respectively

2: Calculate the computation cost wij
tx of each workflow for all resources

3: Assign ranki = wi =
∑|R|

j=1 w
ij
tx/|R|

4: Sort workflows in decreasing order of ranki
5: while unscheduled workflows do
6: Select the first workflow w̃ from the sorted list

7: for ∀rj in R do
8: Compute earliest finish time for w̃ on rj, eftw̃,rj
9: end for
10: Assign w̃ on rk with min (eftw̃,rj )
11: end while
12: end procedure

ordered list of tasks and assign a task to a resource that can execute it. HEFT is a list

scheduling algorithm [109] and calculates the makespan of a workflow on heterogeneous

resources to produce its plan.

Pegasus [88] and ASKALON [111] utilize HEFT to derive workflow execution plans

amongst other algoirthms, such as Round Robin, a genetic algorithm and a myopic algo-

rithm. HEFT has been shown to provide better performance in terms of makespan mini-

mization compared to other mapping algorithms [19, 108], e.g., genetic algorithms [111].

Furthermore, there is initial research to extend HEFT to dynamic resources [112], and

to resources that provide CPU and GPUs [113].

HEFT makes two assumptions when used on workflows: (1) any task in a workflow

can be executed on all available resources; and (2) all resources are initially available.

HEFT’s complexity is proportional to the number of dependencies among tasks and the

number of resources offered. As we are interested in executing computational campaigns,

our HEFT extension provides an execution plan based on workflows as atomic units

instead of tasks. Algorithm 4 shows HEFT for placing independent workflows on

resources.



85

HEFT has three main algorithmic characteristics: (1) creates a priority list of

workflows; (2) produces an expectation of when resources are available; and (3) uses

a deterministic heuristic. Initially, HEFT calculates the average execution time of a

workflow on all resources and creates a priority list with the longest workflow first. In

addition, HEFT initializes a vector with information about where each workflow is when

a resource is available. Then, HEFT calculates when a workflow will finish at each

resource and places that workflow on the resource that will finish it earlier. HEFT ends

when all workflows are placed on a resource.

6.3.2 Genetic Algorithm

Genetic algorithms are another family of algorithms that can be used to calculate the

makespan of workflows [109]. Genetic algorithms start from an initial set of possible

solutions, and iterate and improve them across multiple iteration. In our case, genetic

algorithms follow the following procedure: (i) create an initial population, where the

population is a set of possible plans; (ii) evaluate the population members based on

a fitness function, which calculates the makespan of the workflow; (iii) reproduce by

selecting population members, either randomly or based on their fitness value, and

generate a new set of possible plans; and (iv) mutate, where randomly selected tasks

from a random population member are reassigned to resources.

The selected genetic algorithm [20] was developed to support the placement of

independent tasks on heterogeneous resources. It assumes that all tasks that can be

executed on all available resources, are independent and indivisible. These assumptions

are consistent with the assumptions we made for the workflows in a campaign and we

therefore extend this algorithm to support scientific campaigns. The pseudocode of the

selected genetic algorithm is shown in Algorithm 5.

The members of the initial population are constructed either randomly or semi-

randomly. Specifically for each individual member of the population, a percentage of

the workflows are randomly assigned to resources, where the assignment is drawn from a

uniform distribution and the rest of the workflows are assigned based on an earlier finish

time (EFT) heuristic, similar to the one used by HEFT. The size of the population,
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Algorithm 5 Genetic Algorithm

1: procedure GA(W , R) . W and R are a set of workflows and resources respectively
2: Initialize population

3: while Conergence Criteria not met and #Gen < Total Generations do
4: Selection
5: Reproduce
6: Randomly mutate
7: end while
8: end procedure

i.e., potential plans, is set to 20 members. Ref. [114] shown that a population size of 20

members reduces the computational load of the genetic algorithm without significantly

impacting the final result.

Genetic algorithms use a fitness function to calculate the fitness of a population

member to its environment, returning a value between 0 and 1. In our case, the fitness

function calculates the distance of the makespan of a plan from the ideal makespan.

This distance is defined as:

E =

√√√√(

NC∑
j=1

Txwj ,rj − IM)2 (6.4)

where NC is the number of workflows and IM is the ideal makespan. The ideal makespan

is equal to:

IM =

∑NC
i=1 Txwi∑NR
j=1 rj

(6.5)

The fitness of a plan is the equal to F = 1/E when E > 0, otherwise to F = 1.

The algorithm selects members to reproduce based on their fitness values. The fitness

value of each member defines the probability of that member to be selected. When the

selection is complete, the algorithm uses cyclic rotation [115] to generate new population

members and replaces those with the lowest fitness. The algorithm stops evolving either

when a member has fitness equal to 1 or after a specified number of iterations.

Our genetic algorithm has the following characteristics: (1) creates partial plans

randomly; (2) produces an expectation of when resources are available; (3) evolves plans

randomly; and (4) terminates based on a convergence criteria
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Genetic Algorithm Convergence Rate for Different Configurations

During the initialization phase of the genetic algorithm, we can select the percentage

of workflows that will be assigned through the EFT heuristic. This is true for every

member, i.e., plan, of the genetic algorithm population. We expect that the percentage

of non-random placement affects the final plan selected by the genetic algorithm. We

executed an experiment to measure the convergence rate of the genetic algorithm when

planning a campaign with homogeneous workflows on homogeneous resources. In this

case, distributing equally the workflows on resources produces a plan with the ideal

makespan as defined in Eq. 6.5.

We use three configurations of our genetic algorithm: GA, GA-25 and GA-50. These

configurations differ by the percentage of workflows non-randomly assigned to resources

during the initialization of the population. GA makes no random workflow assignment

to resources while GA-25 assigns 25% of the workflows non-randomly and 75% randomly,

and GA-50 assigns 50% of the workflows non-randomly and 50% randomly.

Figure 6.2a shows the convergence rate of the genetic algorithm as the number of

workflows changes while the number of resources is constant. When the population is

initialized randomly, GA does not always equally distribute workflows to resources, as

the convergence rate is always less than 1. As a result, GA does not always produce a

plan with the ideal makespan. On the contrary, GA-25 and GA-50 have a convergence

rate of 1. The convergence rate of GA-25 shows a drop for 8 and 16 workflows, but

remains above 0.97 which allows us to conclude that GA-25 does produce plans with

the ideal makespan.

Figure 6.2b shows the convergence rate of the genetic algorithm as the number of

resources changes while the number of workflows is constant. When the population is

randomly initialized, the genetic algorithm does not produce a plan that has the ideal

makespan. The convergence rate of GA-25 is 1 up to 16 resources and drops to 0 for

more than 32 resources. GA-50 convergence rate is 1 up to 64 resources and drops to

less than 0.2 for 128 resources and equal to 0 for 256 resources. The drop is due to the

random initial placement of workflows on resources. As the number of resources increase,
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Figure 6.2: Convergence rate of Genetic algorithm for homogeneous campaigns on
static homogeneous resources based on random initialization percentage. 6.2a) Different
campaign sizes on 4 resources; 6.2b) Campaign with 1024 workflows and different number
of resources.

the probability for GA to place less than NC NR workflows on a resource decreases.

Based the convergence rate, we expect that GA will not provide on average a plan

with the ideal makespan whether the campaign size or the number of resources changes.

GA-25 will provide plans with the ideal makespan when the number of resources is less

than 16, regardless the number of workflows. Finally, GA-50 will provide plans with

ideal makespan up to 64 resources. Note that less than ideal plans may still be desirable

compared to those produced by other algorithms.
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6.3.3 Longest to Fastest First Available Resource Algorithm

The last algorithm we considered is an heuristics algorithm that places the longest

workflow on the fastest first available resource (L2FF) [96]. This algorithm sorts the

workflows based on the number of operations or workflow runtime estimation, and sorts

resources based on their performance. Then it places each workflow on the first fastest

available resource, starting from the longest workflow. A resource is considered available

when it has less or equal number of workflows than any other resource. When workflows

and resources are sorted, the placement is equivalent to a modulo operation between

the position of the workflow in the sorted list and the number of resources. Algorithm 6

show the pseudocode for this algorithm.

Algorithm 6 Longest to Fastest First (L2FF)

1: procedure l2ff(W , R) . W and R are a set of workflows and resources
respectively.

2: Wsorted = sort(W )
3: Rsorted = sort(R)
4: for w in Wsorted do
5: Assign w to rk where k = widx mod NR

6: end for
7: end procedure

L2FF has the following algorithmic characteristics: (1) creates a priority list of

workflows; and (2) uses a deterministic heuristic. Contrary to HEFT and GA, L2FF

does not produce an expectation of when a resource is available because it does not

calculate when each resource will be available based on the duration on the workflow

that is executed on that resource. This reduces considerably the burden on the user and

has the potential to simplify the design and implementation of the campaign manager.

Depending on its performance, it may therefore be the preferable option to adopt.

6.4 Performance Evaluation of Planning Algorithms

We execute three experiments to evaluate and analyze the performance of the selected

algorithms. We use random plans as the baseline of our experiments. The Random

planner randomly selects a resource and places a workflow to that resource. In addition,
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it requires no information about workflow runtime and resource performance.

The first experiment measures the makespan of a plan that uses HEFT, GA, L2FF

and Random for different campaign and resource sizes. The second experiment measures

the sensitivity of the makespan to resource dynamism, i.e., resource performance changes

over time. We define sensitivity as the difference between the makespan measured via

executing a campaign and the expected makespan given by the execution plan. Last, we

measure the sensitivity of the makespan to workflow runtime uncertainty. This set of

experiments provides a methodology to compare planning algorithms and decide which

algorithm is more suitable, based on the computational requirements of a campaign,

e.g., workflow size, resource performance and workflow runtime estimate.

We make a set of assumptions about resource performance and workflow runtime.

These assumption are based on the use cases we support and the capabilities of the high

performance computing resources we have access to. Resources can be homogeneous or

heterogeneous and static or dynamic. Resources are homogeneous when they have the

same performance in terms of operations per second, heterogeneous otherwise. Resources

are static when their performance does not change over runtime and dynamic when it

does. When resources are homogeneous, we assume that their performance is equal to 1

petaFLOP. We use four existing HPC resources as the basis for generating heterogeneous

resources. These resources are PSC Bridges, SDSC Comet, TACC Stampede2 and TACC

Frontera with performance of 1.3 [116], 2.7 [117], 10.6 [118] and 23.5 [118] petaFLOPS

respectively.

Workflow execution runtime is based on the use case described in §4. We measured

the runtime of the use case by executing the actual workflows on PSC Bridges. We

adjusted the mean execution time and its variance to an resource with performance of

1 petaFLOP and obtained a mean runtime of 75000 seconds and a variance of 6000

seconds. For the purpose of our experiments, we assume that workflow runtimes of a

campaign are drawn by a normal distribution with a mean and variance based on this

use case.
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6.4.1 Experiment 1: Measuring Makespan on Static Resources

In our first experiment, we assume static resources and we use HEFT, GA, L2FF and

Random to measure the makespan for different campaign and resource sizes. We use

two configurations: in the first, we increase the size of the campaign from 4 to 2048

workflows, keeping the number of resources constant to 4; in the second configuration,

we increase the number of resources from 4 to 256 resources and we fix the campaign

size to 1024 workflows.

We measure the makespan of executing a homogeneous campaign with workflows

that all have a runtime of 75000 seconds, on homogeneous resources with performance

of 1 petaFLOP. In this case, an algorithm produces the minimum makespan when it

equally distributes workflows to resources. Figure 6.3 shows the makespan for plans

which use HEFT, GA (50% of the workflows are placed randomly), L2FF and Random

(RA). Figure 6.3a varies the campaign size from 4 to 2048 workflows with 4 resources,

and figure 6.3b varies the number of resources from 4 to 256 resources with a campaign

size equals to 1024 workflows.

HEFT and L2FF provide better makespan than Random and GA. HEFT places

a workflow to the resource that will finish it earlier. L2FF places equal number of

workflows per resource for all available resources. As a result, both algorithms are able

to equally distribute the workflows to the resources. The genetic algorithm shows worse

makespan than HEFT and L2FF for more than 64 resources (Fig. 6.3b), verifying our

expectation based on its convergence rate.

Figure 6.4 shows the makespan of the three algorithms for a campaign with hetero-

geneous workflows on heterogeneous resources. Workflows are heterogeneous when they

have different runtime and resources are heterogeneous when they have different perfor-

mance. Specifically, workflow runtimes are drawn randomly from a normal distribution

with mean of 75000 seconds and variance of 6000 seconds. Heterogeneous resources are

drawn randomly from the four resources described before.

HEFT provides up to an order of magnitude better makespan than L2FF and GA

whether the campaign size (Fig. 6.4a) or the number of resources (Fig. 6.4b) changes.
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Figure 6.3: 6.3a Makespan of increasing number of homogeneous workflows on homo-
geneous resources. 6.3b Makespan of homogeneous campaign on different number of
homogeneous resources.

In addition, GA produces plans with at least two times better makespan that L2FF

when resources are constant and the number of workflows changes. As the number of

resources increase, the difference between the plans that GA and L2FF produce reduces

with L2FF providing a plan with better makespan than GA for 256 resources. For up

to 64 resources, the heuristic of GA based on earlier finish time, reduces the effect of

random initialization. This is not the case for 128 and 256 resources though, as the

random part of the initialization may place very few or no workflows on some resources.

L2FF places the same number of workflows per resource and, as a result, overutilizes less

performant resources. HEFT instead ranks the workflows and places each workflow on

the resource that will finish it earlier. As a result, HEFT tries to place each workflow on

the resource that causes the minimum makespan increase for the given set of resources.
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Figure 6.4: 6.4a) Makespan of 4 up to 2048 heterogeneous workflows on 4 heterogeneous
resources; 6.4b) Makespan of a heterogeneous campaign with 1024 workflows on different
4 up to 256 heterogeneous resources.

In summary, we conclude that resource heterogeneity dominates the makespan

performance among the considered algorithms. On homogeneous resources, HEFT, GA

and L2FF plans produce plans with similar makespan to each other. On heterogeneous

resources, HEFT makespan is at least an order of magnitude smaller than L2FF

makespan and is more than two times smaller than GA makespan independent of

workflow homogeneity or heterogeneity.

A common characteristic between HEFT and GA is that they create an expectation

of when resources will be available, in contrast to L2FF which considers a resource

available based on the number of workflows. Further, HEFT is deterministic, while

GA is not, and HEFT always performed better than GA. Thus, the characteristics of

the selected algorithms that affect the makespan performance, in order of importance,
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Figure 6.5: Resource performance distribution of a dynamic resource with 1 petaFLOP
average performance.

are: (1) estimating when a resource will be available; (2) deterministic or randomized

heuristics; and (3) creating a workflow priority list based on workflow runtime

6.4.2 Experiment 2: Sensitivity of Makespan to Resource Dynamism

High performance computing (HPC) resources show performance variations for multiple

reasons, including power constrained operations [99], network and shared filesystem

congestion [100] and performance degradation [119]. Following established literature,

the rate at which the performance of a resource changes is days to years [120]. Thus,

we model resource dynamism as the daily change in the performance of a resource. We

draw the performance values from a normal distribution, with a mean value equal to

the performance of that resource and sigma to 6 % of the mean. Figure 6.5 shows the

histogram of a dynamic resource performance with a mean value of 1 petaFLOP.

In experiment 2, we measure the sensitivity of the makespan using HEFT, L2FF, GA

and Random to resource dynamism on homogeneous and heterogeneous resources. We

define makespan sensitivity Sens as the difference between the makespan measured via

executing a campaign, TTXC,Exec, and the expected makespan given by the execution

plan, TTXC(M), thus Sens = TTXC,Exec − TTXC(M). Based on the results of

experiment 1, we expect Sens to be similar between algorithms on homogeneous

resources, as the three algorithms produce similar plans. On heterogeneous resources,

we expect HEFT and L2FF to show higher sensitivity than GA and Random, as GA
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and Random may produce a plan that does not utilize a resource which performance

results to be significantly slower than expected at runtime. Figures 6.6 and 6.7 show the

results for homogeneous workflows and homogeneous resources, and for heterogeneous

workflows and heterogeneous resources respectively.
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Figure 6.6: Sensitivity of makespan in percentage of homogeneous workflows on ho-
mogeneous resources. 6.6a increasing number of workflows and 4 resources; 6.6b 1024
workflows and increasing number of resources.

As per our expectation, the sensitivity of makespan among the three algorithms

is similar and it is between 1 % and 10 % (see Fig. 6.6a and 6.6b). In addition, we

observe a drop in GA sensitivity at 128 resources. GA produces different plans at

every realization of the experiment, since it places a number of workflows to resources

randomly and, as a result, some plans are affected less from resource dynamism. In

addition, sensitivity drops as the number of workflows increases and the number of

resources is constant (Fig. 6.6a). Sensitivity increases when the number of resources
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increases and the number of workflows is constant (Fig. 6.6b). Thus, the sensitivity

decreases when the average number of workflows per resource increases, regardless for

how workflows are placed onto resource by a plan.

Figure 6.7 shows the makespan sensitivity as a percentage for a campaign of het-

erogeneous workflows and heterogeneous resources. Makespan sensitivity shows similar

values—from 3% to < 1%—for all three algorithms in figure 6.7a, except for HEFT

with more than 512 workflows contrary to our expectation. We explain this behavior by

noticing that, as more workflows are placed on each resource, it becomes more probable

that the effect of a potential slowdown of a workflow is reduced. This is because some

workflows will finish faster and therefore reduce the sensitivity of the plan.

Figure 6.7b shows different sensitivity values for each algorithm. HEFT is at least

two times more sensitive than GA and L2FF. HEFT places workflows on resources so

that all resources are used for the least possible amount of time. As a result, a slow down

on a resource will affect the makespan with HEFT more than that with GA and L2FF,

which produce plans that overutilize some resources. Further, the sensitivity values for

all algorithms are significantly lower than those observed when homogeneous resources

were used, as a potential slowdown on a performant resource will not significantly

affect the makespan of the campaign. In addition, we see that: (1) makespan sensitivity

decreases as the number of workflows increases; and (2) makespan sensitivity increases as

the number of resources increases. This further supports our conclusion that makespan

sensitivity decreases as the average number of workflows per resource increases.

Based on the results in figure 6.7b, we see that the number of resources is a more

dominant factor than resource heterogeneity for makespan sensitivity. HEFT-based

plans are more sensitive that GA, L2FF and Random up to 64 resources. L2FF becomes

more sensitive for more than 128 resources and is more sensitive to changes on less

performant resources.

Experiment 2 measured how sensitive plans are when using HEFT, GA, L2FF and

Random in presence of resource dynamism. On homogeneous resources, all algorithms

show similar levels of sensitivity. GA sensitivity drops from more than 64 resources

as some resources are overutilized. On heterogeneous resources, HEFT is generally
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Figure 6.7: Sensitivity of makespan in percentage of heterogeneous workflows on het-
erogeneous resources. 6.7a increasing number of workflows and 4 resources; 6.7b 1024
workflows and increasing number of resources.

more sensitive as it tries to place a workflow to a resource with the least impact on

the campaign makespan. L2FF becomes more sensitive than HEFT after 128 resources

as it places equal number of workflows to resources, progressively overutilizing less

performant resources. In addition, sensitivity is proportional to the number of resources

and inverse proportional to the number of workflows, since it decreases as the number

of workflows increases when using constant number of resources and increases when

number of resources increases and campaign size is constant. Finally, we observed that a

6 % performance variation in the resources causes less than 10 % variation in makespan,

regardless if resources are homogeneous or heterogeneous.
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6.4.3 Experiment 3: Sensitivity of Makespan to Workflow Runtime

Estimation Uncertainty

All selected algorithms, HEFT, GA and L2FF, require an estimation about the runtime

of each workflow of the campaign. Users usually derive this information from empirical

data, creating uncertainty in the workflow runtime estimation. This uncertainty has

the potential to affect the makespan of the campaign, as the runtime estimation is used

to either derive information about workflows runtime on resources (HEFT and GA) or

rank workflows (L2FF). Similarly to experiment 2, we want to understand how different

levels of uncertainty affect the makespan of the plans produced by HEFT, GA and L2FF

We introduce workflow runtime estimation uncertainty as the difference between the

estimated and actual runtime of a workflow on a 1 petaFLOP resource. Specifically, we

denote as u the level of uncertainty between [0, 1], u′ the uncertainty for a workflow

drawn randomly from the range [−u, u], and Txw the mean estimated runtime of a

workflow. Thus, the actual runtime of a workflow is Txw′ = Txw × (1− u′).

In experiment 3, we measure the sensitivity of makespan, as defined in experiment 2,

to workflow runtime estimation uncertainty for level of uncertainty from 10 % to 50 %.

As all algorithms produce similar plans on homogeneous resources, exposing the plans to

the same variation should show the same effect, regardless of the used algorithm. This is

supported by the fact that we measure the sensitivity after the execution of a campaign,

and compare it to the expected makespan produced by the plan. Accordingly, we limit

experiment 3 onlt to heterogeneous workflows executing on heterogeneous resources.

We expect sensitivity to workflow runtime estimation uncertainty to decrease as the

number of workflows increases, and to increase as the number of resources decreases.

As the number of workflows increases, more workflows are placed on a resource. As a

result, on one hand it is more probable that a potential increase of the makespan due to

a longer than expected workflow is hidden by other workflows than are shorter than

expected. On the other hand, as the number of resources increases, fewer workflows are

placed on each resource and a potentially larger workflow will have significant impact on

the overall makespan. This is especially true when heterogeneous resources are used and
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a long workflow is placed on a less performant resource. Figure 6.8 shows the results of

experiment 3 with varying number of workflows (figure 6.8a) and varying number of

resources (6.8b).
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As per our expectation, sensitivity to workflow uncertainty decreases when the

number of workflows increase (Fig. 6.8a) and increases as the number of resources

increase (Fig. 6.8b). This result, along with experiment 2, let us to conclude that as the

average number of workflows per resource increases, the sensitivity value will decrease.

Sensitivity to makespan runtime uncertainty shows a wide range of values for HEFT

and L2FF, but a significantly smaller range for GA and Random. Specifically, the

sensitivity of plans using HEFT is between almost 0 % for 2048 workflows on 4 resource

and 25 % for 1024 workflows on 256 resources. The sensitivity of plans using L2FF show

a similar range to the one seen when using HEFT, with L2FF reaching 35 % for 1024

workflows on 256 resources. GA plans show increased sensitivity for a small number of

workflows when the number of resources is constant (≈13 %), and quickly drop close to

0 %.

HEFT ranks and L2FF sorts all the workflows based on runtime information, while

GA uses that information only to map 50% of the workflows of each plan to resources,

for each generation. When the runtime information is uncertain, any type of ordering

will not necessarily be correct as the runtime estimation is not the same as the actual

runtime. Since GA utilizes such information for half of the workflows at every generation,

while the other half is placed on resources randomly, GA is less sensitive to workflow

runtime uncertainty than HEFT and L2FF.

HEFT shows higher sensitivity than GA and L2FF above 128 workflows and 4

resources, and when the number of resources changes with 1024 workflows. In addition,

we see higher sensitivity for plans that use HEFT and L2FF than plans that use GA

when the number of resources increases. Both HEFT and L2FF create priority lists for

the workflows and GA does not. As a result, HEFT and L2FF place large workflows

on less performant resources. GA does not prioritize workflows and places a subset of

workflows to resources randomly. As a consequence, the random order of the workflows

with the random placement reduces the effect of the workflow runtime uncertainty.

We conclude that algorithms like HEFT and L2FF that prioritize workflows tend

to be more sensitive to workflow runtime estimation uncertainty than algorithms that

do not create a priority list, such as GA and Random. Workflow runtime uncertainty
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can make the order decided by HEFT and L2FF invalid and, as a result, long workflow

may be placed on less performant resource, increasing makespan. HEFT and L2FF are

more sensitive than GA and random when the number of resources increases: 25 % and

35 % compared to less than 10 % for 1024 workflows and 256 resources. Further, all

algorithms show similar sensitivity when the number of workflows increases. Sensitivity

remains proportional to the number of resources and inverse proportional to the number

of workflows. This, in conjunction to the results of experiment 2, allows us to conclude

that the sensitivity slope is independent of the type of uncertainty.

6.5 Conclusions

In this chapter, we discuss and compare algorithms to plan the execution of a computa-

tional campaign on HPC resources. Specifically, we discuss the characteristics of three

planning algorithms: HEFT, GA and L2FF. Our experimental methodology allows us

to compare plans in terms of makespan performance, and their sensitivity to resource

dynamism and workflow runtime uncertainty.

Our analysis shows that there are three algorithmic properties which affect the

performance and sensitivity of planning algorithms. The first property is whether the

algorithm estimates resource availability. HEFT and GA estimate when resources are

available and show better makespan performance on homogeneous and heterogeneous

resources than L2FF and random. The second property is whether the algorithm uses

a deterministic or randomized heuristic to place workflows on resources. GA does not

produce a plan that equally distributes workflows on resources when all workflows were

initially placed randomly to resources. In addition, when using more than 128 resources,

GA shows worse performance than L2Ff as it underutilized some of the resources. The

third property is whether the algorithm creates a workflow priority list based on workflow

runtime. HEFT and L2FF sort workflows based on their runtime, placing first the

longer workflows on their lists. This priority list allows L2FF to place longer workflows

to more performant resources and, as a result, L2Ff outperforms GA with more than

128 resources.
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Our analysis of the makespan sensitivity shows that deterministic algorithms are more

sensitive to resource dynamism or workflow runtime uncertainty than non-deterministic

algorithms. HEFT and L2FF provide more sensitive plans than GA and Random.

Further, sensitivity is proportional to the number of resources and inverse proportional

to the number of workflows. Sensitivity to resource dynamism or workflow runtime

uncertainty: (1) decreases as the number of workflows increases and the number of

resources is constant ; and (2) increases when number of resources increases and the

number of workflows is constant. Both HEFT and L2FF are more sensitive to workflow

runtime uncertainty than GA since they prioritize workflows based on their runtime

estimation.

We conclude that users should select different planning algorithms to derive an

execution plan, depending on the properties of the campaign and resources. When

resources are homogeneous, a planner like L2FF provides a plan with good makespan,

is very simple to engineer and is not significantly more sensitive than algorithms like

HEFT or GA. When resources are heterogeneous and the computational objective is to

produce the best possible makespan, an deterministic algorithm like HEFT that derive

information about resource availability and creates a priority list is a better candidate.

If the objective of a campaign is to use a plan that is not very sensitive to resource

dynamism or workflow runtime uncertainty, a non-deterministic algorithm like GA is a

better candidate than the other two types of algorithms. Although GA may provide

plans with worse makespan than an algorithm like HEFT, its plans are less sensitive to

workflow runtime uncertainty.
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Chapter 7

Conclusions

This dissertation investigated the execution of computational campaigns with data- and

compute-intensive workflows on HPC resources. Our contributions to the field offer to

domain scientists a better understanding of the capabilities needed to efficiently and

effectively execute computational campaigns on HPC resources. Further, we provide the

computational tools, methodologies and experimental understanding needed to design a

software manager to plan and execute computational campaigns on high performance

computing (HPC) platforms.

This dissertation was motivated by three exemplar use cases. These use cases have

similar characteristics in terms of campaign size and resources they utilize. However,

our results and solutions are independent of the scientific domain, size of the campaign,

resources and computational objective of the campaign. We believe that using our

campaign manager along with its planning capabilities is beneficial for any campaign

that has a finite allocation on the resources it utilizes to achieve its computational

objective.

7.1 Contributions

Computational campaigns on HPC resources can execute compute- or data- intensive

workflows. Compute-intensive workflows are at the epicenter of high-performance

scientific computing and account for the production of an immense amount of data.

Compute intensive workflows execute either a single, very large and long-running

executable or an ensemble of smaller compute-intensive tasks [8]. As the need for

analyzing data on HPC resources increases, the efficient and effective execution of

data-intensive workflows on HPC becomes important. Contrary to compute-intensive
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workflows, data-intensive workflows execute a large number of short-running tasks in

multiple stages which can be I/O, memory and compute bound.

As data-intensive workflows and applications are not well supported on HPC infras-

tructures, we showed how the Pilot-Abstraction can be used as an integrating concept

between HPC resources and existing data analytics workflows management frameworks

in chapter 2. We developed RP-YARN, extending RADICAL-Pilot, an implementa-

tion of the Pilot-Abstraction, to support Hadoop and Spark on HPC resources (see

§ 2.2). Our analysis in § 2.3.2 showed that RP-YARN reduces the time to completion

of a data-intensive workflow. We concluded that the Pilot-Abstraction can increase

HPC resources utilization when executing data analytics workflows with data analytics

frameworks.

Existing Data analytics frameworks provide different programming abstractions and

resource capabilities. Selecting a suitable framework becomes crucial to increase resource

utilization and reduce development effort. In chapter 3, we investigated the use of three

task-parallel frameworks—Spark, Dask and RADICAL-Pilot—to implement a range

of algorithms for MD trajectory analysis, typically used in data analysis workflows.

We found that, for embarrassingly parallel applications with coarse grained-tasks, the

framework selection does not affect the performance. As shown in § 3.4.1, all three

frameworks showed similar performance and speedups. For fine-grained data-parallel

applications, a data-parallel framework is more suitable. § 3.4.2 shows our investigation

of a MapReduce style algorithm and how Spark and Dask showed better performance

than RADICAL-Pilot, with Spark offering linear speedups.

In addition to performance gains, developers should take into account usability and

programmability aspects when selecting a task parallel framework. Spark and Dask, as

shown in § 3.4, required to tune the number of tasks to achieve the desired performance

(programmability aspect). The programming language of the selected framework affects

its usability as it may introduce overheads due to transferring data between different

languages space, e.g., between Python and Java as required by PySpark. In § 3.5, we

provide a conceptual framework that enables application developers to evaluate and

select task parallel frameworks with respect to application requirements. The conceptual
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model, in conjunction with the Pilot-Abstraction, provide a methodology for application

developers to maximize resource utilization while reducing the engineering effort needed

to develop and execute data analysis workflows on HPC resources.

Some data-analysis workflows and applications are both data- and compute-intensive

and, as such, are not well supported by frameworks specifically designed for data

parallelism. In Chapter 4, we investigated three functionally equivalent designs to

execute a data- and compute-intensive workflow. We characterized the designs by

measuring task execution time (§4.4.1 and §4.4.2), resource utilization (§4.4.3), workflow

time to completion and design overheads (§ 4.4.4). Based on our analysis, we found

that late binding data to compute nodes, especially in the presence of large amount of

data, implies copying, replicating or accessing data over network and at runtime. We

showed that, in HPC infrastructures, this is too costly both for resource utilization and

total time to completion. Further, we found that early binding of data to compute and

equally balancing input across nodes reduced time to completion and increased resource

utilization. This result provides information on the design properties that workflow

management frameworks should have to efficiently and effectively execute data-driven

and compute-intensive workflows. As a consequence, application developers should

develop their workflows with a framework that allows to early bind and balance data to

compute nodes.

Having established our understanding on how to effectively and efficiently support the

execution of data- and compute-intensive workflows on HPC, we discussed the design of

a campaign manager in Chapter 5. We discussed three actual computational campaigns,

eliciting the requirements for a campaign manager. Based on those requirements, we

designed and implemented a campaign manager prototype which is domain-agnostic and

adheres to the building blocks design approach. We utilized a discrete event simulator

(§5.4) to simulate the execution of a computational campaign on HPC resources. We

validated the correctness of our design by executing campaigns of different sizes on

different number of resources (§5.4).

As the campaign manager derives an execution plan for a computational campaign and

given resources, in Chapter 6 we investigated three planning algorithms—HEFT, a genetic
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algorithm (GA) and L2FF—to plan the execution of a campaign. We experimentally

compared their plan performance in terms of makespan and how sensitive the plans

are to resource dynamism and workflow runtime uncertainty (§6.4). As computational

campaigns utilize heterogeneous resources, in §6.4.1 we showed that HEFT provides at

least two times, and up to an order of magnitude better makespan than GA and L2FF.

Further, we found that plans using HEFT are on average more sensitive to resource

dynamism than plans using GA and L2FF (§6.4.2) and workflow runtime uncertainty

(§6.4.3). Based on our experimental analysis, we discussed the algorithmic characteristics

that affect the plan performance and sensitivity to resource dynamism and workflow

runtime estimation uncertainty. Finally, we provided a conceptual model that users can

use to select a planning algorithm based on their campaign characteristics, the resources

they target and their computational objective.

This work has immediate impact on use cases from earth science domains that

analyze very high resolution satellite imagery. Scientists from those domains want to

execute computational campaigns with multiple workflows that analyze imagery from

different calendar years and multiple satellite and terrestrial sources. New imagery

becomes available at a constant low rate stream that, in turn, require constant analysis.

Utilizing the work done to develop a campaign manager, scientists will be able to

continuously and effectively executing workflows that analyze imagery as it becomes

available.

7.2 Future Work

The work of this dissertation is invariant of the scientific domain and HPC resources

that a campaign can utilize. As we move forward to support actual computational

campaigns on HPC resources, we plan to pursue several lines of research and software

development.

First, our campaign manager prototype and specifically its planner, assumes that all

workflows are able to execute on all available resources. In reality, workflows may have

different resource requirements, number and type of resources, and cannot execute on all
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resources. We plan to extend the set of algorithms of the planner with algorithms that

define resource requirements for workflows, and evaluate their makespan performance

and sensitivity to resource dynamism.

Second, the planning algorithms we considered are early binding, i.e., they early

bind workflows to resources. Late binding algorithms respond to events during runtime

and their execution plan evolves as the campaign executes. Late binding algorithms can

offer the same performance as early binding algorithms on homogeneous resources and

we believe that they can offer similar performance to HEFT on heterogeneous resources.

As a result, we plan to characterize the performance of diverse late binding algorithms

and compare them to HEFT’s performance.

Third, the amount of resources a workflow utilizes to minimize time to completion

may not necessarily be known before runtime. In addition, there is initial research that

utilizes machine learning (ML) algorithms and workflow time to completion historic data

for workflow performance predictions [121]. We plan to investigate such ML approaches

to provide the resource requirements of each workflow in a computational campaign

which will then be used to plan the execution of a campaign. This approach has the

potential to reduce the individual workflow time to completion and as a consequence

increase the overall resource utilization across all the resources a campaign utilizes.

Fourth, our campaign manager prototype does not support the actual execution of

campaigns but only their simulation. As we have an understanding of the requirements

to support the execution of a campaign, we want to investigate the requirements to utilize

an actual workflow management framework. RADICAL-EnTK will be our first choice, as

it fits the requirements of the target use cases, and utilizes a pilot framework as runtime

system. Further, we want to investigate the API or user interface requirements so at

the definition of a computational campaign is independent of the workflow management

framework used.

Finally, our campaign manager prototype supports the execution of a single campaign

per user. As we move forward supporting actual computational campaigns, the campaign

manager may be used in an multi-tenant environment. Currently, the campaign manager

prototype can support multiple users where its user execute their campaign from their
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user space. It does not support, though, the case where multiple users have access to

the same campaign. As a result, we want to investigate the requirements of supporting

multiple users through a single campaign manager executable independent of the number

of campaigns executing at any given point in time.
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[49] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of
Parallel and Distributed Computing, 65(9):1108 – 1115, 2005.



114

[50] Daniel R. Roe and Thomas E. Cheatham III. Parallelization of cpptraj enables
large scale analysis of molecular dynamics trajectory data. Journal of Computa-
tional Chemistry, 39(25):2110–2117, 2018.

[51] Shujie Fan, Max Linke, Ioannis Paraskevakos, Richard J. Gowers, Michael Gecht,
and Oliver Beckstein. PMDA - Parallel Molecular Dynamics Analysis. In Chris
Calloway, David Lippa, Dillon Niederhut, and David Shupe, editors, Proceedings
of the 18th Python in Science Conference, pages 134 – 142, 2019.

[52] Semen O. Yesylevskyy. Pteros 2.0: Evolution of the fast parallel molecular analysis
library for c++ and python. Journal of Computational Chemistry, 36(19):1480–
1488, 2015.

[53] Konrad Hinsen, Eric Pellegrini, S lawomir Stachura, and Gerald R. Kneller. nmol-
dyn 3: Using task farming for a parallel spectroscopy-oriented analysis of molecular
dynamics simulations. Journal of Computational Chemistry, 33(25):2043–2048,
2012.

[54] Cameron Mura and Charles E. McAnany. An introduction to biomolecular
simulations and docking. Molecular Simulation, 40(10-11):732–764, 2014.

[55] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. Path
similarity analysis: A method for quantifying macromolecular pathways. PLoS
Comput Biol, 11(10):1–37, 10 2015.

[56] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30, 2011.

[57] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. "http://www.scipy.org/", 2001–.

[58] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Com-
paring images using the hausdorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(9):850–863, 1993.
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