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ABSTRACT OF THE THESIS 

Insects as Sources of Protein and Long-Chain Fatty Acids for Entomophagy 

by Alexander N. Rudin 

 

Thesis Director:  

Dr. Lena B. Brattsten 

 

Current sources of protein and omega-3 fatty acids have become unsustainable. 

Livestock and farmed fish are fed unnatural diets in order to increase productivity and cut 

costs. This causes health problems for the animals and decreases the nutritional value of 

their meat. Meat from factory farms contains high concentrations of the omega-6, linoleic 

acid (LA) while lacking the omega-3, α-linolenic (ALA) acid. Aquaculture fish have less 

protein than wild-caught fish. Eating a diet with a high ratio of LA to ALA contributes to 

obesity and cardiovascular disease. Farming insects for entomophagy can be more cost 

effective than farming livestock or fish because insects require less water, feed, and 

space, have a much smaller carbon footprint and produce far less waste. 

The objective of this study is to determine which local insect species have the 

highest concentrations of protein and beneficial long-chain fatty acids (LCFAs) along 

with the most balanced ratios of LCFAs. I compared the protein and long-chain fatty acid 

concentrations of six terrestrial insect species; Acheta domesticus (L.), Tenebrio mollitor 

(L.), Hermetia illucens (L.)., Reticulitermes flavipes (L.), Dissosteira carolina (L.), and 

Diestrammena japanica (Blatchley), and 4 aquatic insect species; Acroneuria abnormis 

(Newman), Rhyacophila carolina (Banks), Hydropsyche betteni (Ross), Brachycentrus 
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numerous (Say) Say, to those of three ground beef samples; grain-fed, grass-fed, and 

grass-finished beef and four commercial fish samples; farm-raised and wild-caught 

Atlantic salmon, Salmo salar (L.) and wild-caught European anchovy, Engraulis 

encrasicolus (L.), and Pacific sardine, Sardinops sagax (Jenyns). The 10 insect species 

evaluated represented insects of different natural diet, habitat, and insect phylogenetic 

positions. 

While this research is exploratory in nature, working hypotheses based on existing 

research are as follows: First; Termites eaten in Africa have very high protein 

concentrations; therefore the local species of termites, Reticulitermes flavipes is likely to 

also be high in protein. Second, Camel crickets can jump much higher than A. 

domesticus; therefore, the Japanese camel cricket, D. japanica is likely to have a higher 

protein concentration than A. domesticus due to larger and stronger muscles. Third; 

Graminivore insects such as the Carolina grasshopper, D. carolina are likely to have high 

concentrations of alpha-linolenic acid and a balanced ratio of omega 6 to omega 3 fatty 

acids based on the comparison of beef raised on grass-only diets compared to beef rose 

on grain and soy diets. Fourth; Grasshoppers consume far more relative to their total 

body mass compared to cows; therefore D. carolina will likely have a similar ratio of LA 

to ALA to grass-finished beef, but with significantly higher concentrations of both fatty 

acids Fifth; Aquatic insects frequently consumed by oily fish are likely to have high 

concentrations of beneficial long-chain fatty acids. Sixth; Insects frequently consumed by 

fish are likely to have higher concentrations of protein than consumers. Seventh; Aquatic 

insects are likely to have balanced ratios of omega-6 and omega-3 fatty acids compared 

to non-graminivore terrestrial insects. The results of this study have supportive of all 
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seven working hypotheses. This study has shown that insects have the potential to be 

major sources of protein and beneficial LCFAs. 

 Keywords: animal farming issues; aquatic insects; entomophagy; long-chain fatty 

acids; protein; terrestrial insects  
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Section One: General Introduction 

Global meat production has quadrupled in the last 50 years as the human 

population reached 7.6 billion people (Ritchie, 2017). However, despite this meat 

production increase, approximately one billion people worldwide are unable to meet the 

minimum daily requirements for protein intake. Protein is a vital component of every cell 

in the body. The minimum daily recommended intake of protein in the human diet is 0.8 

grams per kilogram of body weight.  This number can double if intense physical activity 

is performed regularly. A lack of dietary protein can lead to health issues including: 

stunted growth, anemia, edema, and vascular dysfunction.  Dietary protein is required for 

skeletal muscle growth and proper blood clotting. Children are more vulnerable to 

malnutrition than adults and protein deficiency has stunted the growth of millions of 

children worldwide due to lowered skeletal muscle growth (Wu ,2016). Protein 

deficiency can also lead to Kwashiorkor, a serious condition in children with 

incapacitating symptoms and protein deficiency can also lead to weakened immune 

systems as antibodies are proteins (Khan et al., 2017).  Proteins in saliva act as buffers to 

maintain a neutral pH balance of 6.8-7.8 during acidosis, when blood pH drops below 

7.35 (Lamanda et al., 2007; Cheaib et al., 2013). A blood pH below 6.8 can be fatal for 

mammals (Bird et al., 1981).    

The omega-6, linoleic acid (LA) and the omega-3, α-linolenic acid (ALA) are 

both considered essential fatty acids for humans as human/mammal bodies cannot 

synthesize them and they must be ingested from outside sources (Simopolous., 2016). LA 

is required for growth and development and has important functions such as reducing 

blood LDL-cholesterol levels, accelerating wound healing in diabetics, and is important 
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for neurodevelopment (Jandacek., 2017; Yeung et al., 2017; Taha., 2020). However, 

anything above a 4:1 ratio of omega-6 to omega-3 is considered excessive and can 

increase the risk of obesity, cardiovascular disease, and insulin resistance (Simopolous., 

2016; Taha., 2020). ALA has neuroprotective and homeostatic properties and can reduce 

the risk of cardiovascular disease (Taha., 2020). The average ratio of omega-6 to omega-

3 used to be approximately 1:1 since the Paleolithic period and began to increase to 20:1 

and possibly higher during the 20
th

 century (Blasbalg et al., 2011; Simopoulos., 2016).  

Soybean oil is currently one of the biggest sources of LA in the US and soy consumption 

increased by one thousand times from 1909-1999 (Blasbalg et al., 2011).  Factory farm 

beef contains high concentrations of LA and low concentrations of ALA due to the lack 

of grass in the cows‟ unnatural grain-and-soy-based diet (Elswyck et al., 2014).  

Two other important omega-3 fatty acids in the human diet are eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA). These two fatty acids are important for 

proper fetal development, healthy ageing, and anti-inflammatory processes. Low 

concentrations of EPA and DHA in the diet are risk factors for cardiovascular and 

Alzheimer‟s disease. The current American diet has an excess of saturated fats and a 

shortage of omega-3 fatty acids due to fast foods. The main sources of these fatty acids in 

the human diet are oily fish and fish oil supplements (Swanson et al., 2012). The high 

demand for fish oil supplements leads to overfishing and once EPA and DHA are 

extracted, the rest of the fish is generally discarded (Nges et al., 2011).   

The discarding of the rest of the fish during omega-3 extraction causes consumers 

to miss out on the omega-7, palmitoleic acid (PAL) (Makoure et al., 2019). This fatty 

acid is generally used in biodiesel synthesis, but it does have important health benefits 
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(Cunningham, 2015; Makoure et al., 2019). Palmitoleic acid is not a major contributor to 

the total fatty acid intake of the human diet and is mainly found in blue-green algae, 

macadamia nuts, and sea buckthorn (Yang et al., 2001; Cunningham, 2015).  PAL is 

associated with decreased insulin resistance which reduces hyperglycemia and 

hypertriglyceridemia, which are both risk factors in type-2 diabetes (Yang et al., 2011). It 

has also been reported to help regulate cholesterol metabolism and hemostasis (Shramko, 

2020).  

The omega-9, oleic acid is another beneficial fatty acid found in fish which is 

discarded as waste for biodiesel (Makoure et al., 2019). Maintaining a high ratio of the 

omega-9, oleic acid to the saturated fat, palmitic acid ratio is also important for human 

health. Replacing palmitic acid with oleic acid in the diet can also help reduce obesity 

and insulin resistance. The obesity and type-2 diabetes-reducing Mediterranean diet 

requires the intake monounsaturated fatty acids to be over 20% of total energy with a low 

saturated fatty acid intake of 7-8% (Palomer et al., 2017). A high oleic to palmitic ratio is 

also important in regulating thrombogenesis and fibrinolysis. A low oleic to palmitic ratio 

increases the risk of atherosclerosis, the buildup of LDL-cholesterol in artery walls. This 

buildup of cholesterol can rupture the arteries and expose the fibrin in the plaque to 

blood, leading to thrombosis when the resulting blood clots block the artery (Pacheco et 

al., 2006).  

The unnatural diets from livestock and fish farms along with the crowded 

conditions cause health problems for the animals, leading the farms to overuse antibiotics 

(Nges et al., 2012; Abdela, 2016). Antibiotics from manure or uneaten feed leeches into 

the environment, which leads to an abundance of antibiotics-resistant strains of human 
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pathogens (Steinfeld et al., 2006; Nges et al., 2012). The manure, along with 

deforestation for grazing lands and feed crops, releases large amounts of greenhouse 

gasses to the point that livestock have a larger carbon footprint than every type of 

gasoline-fueled vehicle combined (Steinfeld et al., 2006).  Meanwhile aquaculture 

ironically contributes to overfishing because a major component of fish feed on these 

farms is in fact, other fish (Yvonne et al., 2017). 

Entomophagy can potentially mitigate these problems. Insects have higher feed 

conversion rates than cows. Producing 1kg of beef requires 10 kg of feed, while 

producing 1 kg insect protein would require 1.7 kg of feed. This is likely because insects 

are cold-blooded and do not require feed to maintain body temperature. In the case of A. 

domesticus, an estimated 80% of the insect is edible, while only around 40% of a cow is 

edible. Detritivore insects such as T. molitor and H. illucens could potentially convert 

billions of tons of bio-waste from factory farms and other sources of human-generated 

waste into edible protein. The bio-waste would then become nitrogen-rich frass which 

could be used as fertilizer. Mealworms, crickets, and locusts are estimated to produce 100 

times less greenhouse gases than comparable masses of cows and pigs (Huis et al., 2013). 

Around 70% of global freshwater is used in agriculture and one gram of insect protein 

uses about 20% of the water required for 1g of beef protein and takes up 8-14 times less 

space than cattle (Huis et al., 2013; Huis et al., 2017).  Acheta domesticus, T. molitor, and 

H. illucens have received the most international attention from organizations such as the 

Food and Agriculture Organization (FAO) and the USDA as potential alternative food 

source (Huis et al., 2013). 
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There is comparatively less research into the potential nutritional value of aquatic 

insects in the human diet compared to terrestrial insects. Despite the ubiquity of 

entomophagy in Africa, Columbia, Mexico, China, Thailand, Indonesia, Japan, and 

Australia, any consumption of aquatic insect species in these countries remains niche at 

best and has not advanced past the hunter-gather stage (Williams et al., 2017). In 2017, 

the European Commission enacted act 893 which allowed the use of seven insect species 

as components of fish feed. These seven species were: black soldier fly, common 

housefly, yellow mealworm, lesser mealworm, house cricket, banded cricket, and field 

cricket, all of which are terrestrial species (Council directive 2017/EC). Several studies 

discussing the potential of insects as feed to aquaculture fish species such as Atlantic 

salmon and rainbow trout only discuss terrestrial species (Arru et al., 2019; Biancarosa et 

al., 2019; Józefiak et al., 2019). The irony here is that juvenile Atlantic salmon and 

rainbow trout already eat a variety of aquatic insects including Ephemeroptera, 

Plecoptera, and Trichoptera. These aquatic insects are important for the growth and 

development of salmonids and a lack of aquatic insects can lead to increased mortality 

rates in juvenile salmonids (Dedual et al., 1995; Feltmate et al., 1989; Johansen et al., 

2010; Shustov et al., 2012). The presence of salmonid carcasses is associated with 

increased biomass of Trichoptera (Minakawa et al., 2002). Which are, in turn, eaten by 

other salmonids, thereby facilitating the transfer of nutrients between generations of 

salmonids (Minakawa et al., 2002).  

In this study, I compared the overall protein concentrations and long-chain fatty 

acid concentrations and ratios of selected aquatic and terrestrial insect species and 

compared them to each other and to commercial beef and fish samples.   
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Materials and Methods 

Vertebrate Groups  

Grain/soy-fed, grass-fed, and grass-finished ground beef were selected for testing 

as representing terrestrial meat sources. The grain/soy-fed beef was purchased from 

Mccaffrey's Food Market, 301 N Harrison St, Princeton, NJ 08540. The grass-fed beef 

was purchased from the Farm Store at Dairy Barn at Rutgers University, College Farm 

Rd, New Brunswick, NJ08901. The grass-finished beef was purchased from Beachtree 

Farms, 105 Crusher Rd, Hopewell, NJ 08525. Pacific sardines, European anchovies, and 

separate samples of wild-caught and farm-raised Atlantic salmon meat were purchased 

from Mccaffrey's Food Market 301 N Harrison St, Princeton, NJ 08540. 

Insects Used 

House crickets (Acheta domesticus) were purchased from PetSmart, 111 Nassau 

Park Blvd, Princeton, NJ in July, 2019. Mealworms (Tenebrio molitor) were purchased 

online from Kaytee, 521, Clay Street, Chilton, WI and black soldier fly larvae (Hermetia 

illucens) were purchased online from TradeKing, 2020 6th Street, Bay City, TX in June, 

2019. Reticulitermes flavipes and D. japanica were collected from rotting logs at the 

Cook Campus Center, 59 Biel Rd, New Brunswick NJ in September, 2019. D. carolina 

were collected from the field around Passion Puddle, by Lipman Drive on Cook Campus, 

New Brunswick, NJ in September 2019. 

Preparing Specimens 

 All specimens were stored and frozen at -75
o
C. All specimens were completely 

dehydrated at 60
o
C for nineteen and a half hours. Dehydrated insects were then ground 
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into powders using a porcelain mortar and pestle. Dehydrated beef or fish meat were 

ground into powder using a coffee grinder. 

BCA Protein Assay 

Eight milligrams of powder were weighed out and lysed with a 5% SDS detergent 

solution in order to release the nutrients from the cells. The resulting slurry was 

centrifuged for 30 min at 13,450 rpm with a BC-16 Centrifuge. Protein was estimated 

with the Pierce method according to the manufacturer‟s instructions. Absorbance was 

measured using a Persee T6U uv/vis spectrometer set at 562nm. Protein concentration 

was estimated using a standard curve constructed with bovine serum albumin from the 

Pierce assay kit. 

Lipid Extraction 

Lipids were prepared for analysis by the method of Bligh and Dyer (Bligh et al., 

1959). A sample of 30 mg of powder was weighed out and mixed with 2ml of 2:1 

chloroform: methanol solution and 1ml of acidified saline solution (0.9% NaCl in 0.1M 

HCL). The mixture was centrifuged at 295xg for ten minutes, after which, the top 

methanol layer containing salts and carbohydrates and the middle layer containing 

cellular debris were discarded. The bottom chloroform layer containing the lipids was 

extracted using a Pasteur pipette and dehydrated with nitrogen gas. The concentrations of 

long-chain fatty acids were measured using GC-MS analysis.  

GC-MS Analysis 

The lipid fraction was dried with the addition of pentadecanoic acid as a relative 

reference standard. Fatty acids were then trans-methylated in the presence of 14% boron 

trifluoride in methanol. The resulting methyl esters were extracted with hexane and 
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analyzed by gas-liquid chromatography. The analyses were performed in triplicates in an 

Agilent 7870A gas chromatograph coupled with an Agilent 5977 mass spectrometer 

(Agilent Technologies Santa Clara, CA) equipped with a DB-WAX capillary column 

(30m, 0.250mm diameter, 0.25uM film, J&W scientific, Folsom, CA, USA). GC-MS 

analyses were performed in triplicate on each sample. The samples were introduced via 

split injection with the port heated to 250ºC. Helium was used as the carrier gas with 

1ml/min constant flow. Oven temperature was initially held at 50ºC for 1min, increased 

to 200ºC at a 25ºC/min rate, and then raised to 230ºC at 3ºC/min, where it was held for 

35min. The mass spectrometer interface temperature was set to 230ºC and the mass 

spectral data were collected in full scan mode with a mass range of 50-500 m/z.27. 

 

Statistical Analysis  

The statistical significance of the mean protein and long-chain fatty acid 

concentration differences between species was calculated in SAS with analysis of 

variance (ANOVA). The statistical significance of protein and long-chain fatty acid 

concentration differences along with omega-6 to omega-3 fatty acid ratios and oleic acid 

to palmitic acid ratios of terrestrial and aquatic species were also measured with 

ANOVA. 
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Section 2: Terrestrial Insects and Factory Farming 

Objective: To determine which species of terrestrial insects have high concentrations of 

protein and beneficial long-chain fatty acids.  

Working Hypotheses: 

 Termites eaten in Africa have very high protein concentrations, therefore the 

local species of termites,  Reticulitermes flavipes, is likely to also be high in 

protein 

 Camel crickets can jump much higher than the house cricket, Acheta 

domesticus, therefore, the Japanese camel cricket, Diestrammena japanica is 

likely to have a higher protein concentration than A. domesticus due to larger 

and stronger muscles 

 Graminivore insects such as the Carolina grasshopper, Dissosteira carolina 

are likely to have high concentrations of alpha-linolenic acid and a balanced 

ratio of omega 6 to omega 3 fatty acids based on the comparison of beef 

raised on grass-only diets with beef raised on grain and soy diets 

 The food intake of Grasshoppers is far higher relative to their total body mass 

compared to that of cows; therefore D. carolina will likely have a similar ratio 

of LA to ALA as grass-finished beef, but with significantly higher 

concentrations for both fatty acids 
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Abstract 

Current sources of protein have become unsustainable economically, 

environmentally, and nutritionally. The factory farming practices employed for livestock 

and poultry in order to meet increasing demands for meat negatively impact the 

environment, contributing to global climate change, acid rain, and runoff among other 

issues. The factory farming paradigm also negatively affects the quality of the meat itself. 

The artificial and unnatural grain and soy livestock diets used to streamline the process 

results in omega-6 to omega-3 ratios higher than the maximum nutritionally safe ratio, 

4:1. This contributes to obesity and other health issues. The large amounts of corn 

required for these diets means rising gasoline prices which leads to higher beef prices. 

Here, I compared the overall protein concentrations and long-chain fatty acid contents of 

six local, terrestrial insect species; Acheta domesticus, Tenebrio molitor, Hermetia 

illucens, Reticulitermes flavipes, Dissosteira carolina and Diestrammena japanica, and 

three ground beef samples; grain-fed, grass-fed, and grass-finished beef. Diestrammena 

japanica had twice the protein concentration of A. domesticus while R. flavipes had about 

three times more protein. The graminivorous D. carolina, was the only insect out of the 

seven species to have a significant concentration of the omega-3 fatty acid, alpha-

linolenate (ALA), an essential fatty acid found in higher concentrations in grass than in 

flaxseed oil. Dissosteira carolina had the same near 1:1 O6-O3 ratio as grass-finished 

ground beef, but the two polyunsaturated fatty acids were present in far higher 

concentrations. The other six insect species all had O6-O3 ratios above 4:1. D. carolina 

was the only graminivore of the seven. Reticulitermes flavipes had the highest ratio of 
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O6-O3, but also a 3:1 ratio of oleic acid to palmitic acid. The data obtained support the 

working hypotheses. 

 

Introduction 

Rapidly rising beef prices illustrate the urgent need to find more cost-effective 

protein sources. According to the USDA, beef prices have climbed 53% from 2006 to 

2016 (Barret, 2015; Westcott et al., 2016). One of the factors contributing to the increase 

in feed costs is the overreliance on “cheap” ingredients such as corn, wheat, and soybeans 

to increase productivity without having to spend large amounts of money on grazing 

lands. However, the expansion of the fuel industry has also increased demand for corn, 

wheat, and soybeans, among other plants with significant concentrations of precursors for 

ethanol and also used in livestock feeds, thereby increasing the prices of these plants and 

therefore defeating the main purpose of using them for feed instead of grasses to save 

money (Hofstrand, 2009). The rising feed costs have made consumption of livestock 

products increasingly expensive to those with limited financial resources to consistently 

consume these products. Grass-fed livestock products are even more prohibitive and are 

relegated to a smaller consumer population as switching from conventional beef to 

organic grass-fed beef, can almost double the price (Consumer Report, 2015).  

There is no significant difference in protein quality or concentration between 

livestock reared on grass-based or grain-based diets (Elswyck et al., 2014).  However, the 

two different diets do alter the fatty acid content in livestock (Elswyck et al., 2014). Some 

factory farms add extenders and fillers to meat products, which can include flour, starch 
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and soy (Pearson, 1976). Soybean oil is currently one of the biggest sources of the 

omega-6, linoleic acid (LA) in the US and soybeans have a higher concentration of 

protein than beef (Blasbalg et al., 2011). 

The lack of grass in the grain and soy diet of cows leads to higher omega-6 to 

omega-3 ratios, as the cows are not receiving the high concentrations of the omega-3, α-

linolenic acid (ALA) found in grasses (Elswyck et al., 2014). The grain and soy based 

diet also causes sub-acute acidosis, a potentially fatal condition for cattle that results from 

them being fed starchy grains and soy instead of properly grazing on fibrous grasses 

(Abdela, 2016). The term “grass-fed beef” means that grass is only part of the cow‟s diet 

or the animal was started on grass before switching to an all grain diet (Elswyck et al., 

2014). ALA makes up approximately 55% of the total fatty acid content of flaxseed, 

which is considered one of the richest sources of ALA in the human diet, (Rodriguez et 

al., 2010; McCullough et al., 2011). In comparison, ALA accounts for approximately 

62% of the total fatty acid content of grass on average (Clapham et al., 2005). 

The biggest source of water pollution in the US is nitrogen and phosphorous 

runoff from fertilizer and animal waste from factory farms. Factory farm runoff creates 

algal blooms which deplete the water of dissolved oxygen, creating dead zones in which 

all but the most tolerant aquatic organisms (such as leeches and mosquito larvae) die. 

Excrement from livestock that seeps into groundwater through wet soil during storms 

contains nitrates and antibiotic-resistant pathogens which may contaminate drinking 

water. Ingesting nitrate-contaminated drinking water can lead to blue baby syndrome 

which causes infant deaths and abortions (Steinfeld et al., 2006). Throughout the U.S., 

livestock excrement from factory farms has contaminated groundwater in 17 states and 
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polluted 35,000 miles of rivers in 22 states. According to the EPA, a single cow can 

produce 120 pounds of wet manure per day, which is equal to the average waste produced 

by 20-40 people. In total, this is approximately 130 times the amount of human 

excrement produced annually by the entire human population (Adkins et al., 2019).   

Livestock excrement from factory farms is not processed the same way as human 

waste (Steinfeld et al., 2006).Therefore, it ends up being 500 times more concentrated 

and contains antibiotic resistant strains of pathogens such as the gram-negative bacteria, 

Salmonella (Lignières), Escherichia coli (Migula) and Campylobacter (Sebald & Véron) 

(Steinfeld et al., 2006). The overuse of antibiotics in cattle threatens public health by 

facilitating the emergence of hyper antibiotic-resistant strains of bacteria such as 

Salmonella and Campylobacter, one of the major causes of foodborne bacterial illness in 

the United States (Acar et al., 2003). Outbreaks of super-resistant strains of pathogens 

have been severe enough in the past to warrant the attention of the Centers for Disease 

Control (CDC, 2011). One such outbreak in 2011 of a strain of Salmonella Lignières 

resistant to four different antibiotics used in animal farming was linked to 136 cases of 

illness and one death (CDC, 2011). There is evidence that employees of these farms are 

32 times more likely to carry hyper-resistant strains of E. coli (Price et al., 2007). These 

resistant bacteria can easily be spread through a variety of routes including airborne, 

delivery vehicles, and, especially, runoff (Chee-Sanford et al., 2003; Chapin et al., 2005; 

Neyra et al., 2014). Bacteria possessing antibiotic-resistant genes are 10,000 times more 

common downriver from feedlots than upstream from these same feedlots (Pruden et al., 

2012).  



14 
 

xiv 

This hyper-resistance spreads rapidly throughout populations of bacteria because 

of their ability to exchange DNA in the process of conjugation. The conjugative transfer 

of bacterial pathogens is one of the main factors in the increasing numbers of bacteria 

demonstrating resistance to multiple antibiotics. Bacterial conjugation involves the 

transfer of DNA between a donor and recipient bacterium by way of fusing their 

membranes and multi-protein complexes with components from both bacteria (Grohmann 

et al., 2003). 

Factory farms also cause severe air pollution due to the various gases released by 

livestock excrement. The particulate matter and bacterial toxins released by livestock 

waste can cause respiratory and cardiac disorders (Brigham and Meyrick., 1986). The 

factory farms all have anaerobic lagoons, also known as waste slurry lagoons, where the 

animal excrement is dumped. The toxic ammonia fumes released by the excrement 

combine with nitrous oxide from fertilizers to form nitric acid. The resulting acid rain 

leeches nutrients from the soil, despoils forest habitats, and releases toxic waste minerals 

into aquatic ecosystems (Steinfeld et al., 2006). Nitrous oxide is also 300 times more 

effective at trapping heat in the atmosphere than carbon dioxide (Pachauri et al., 2007). 

According to the Food and Agriculture Organization of the United Nations 

(FAO), livestock is responsible for 9% of human-induced emissions of carbon dioxide, 

37% of emissions of methane, which has more than 20 times the global warming 

potential (GWP) of CO2 and 65% of emissions of nitrous oxide (N2O), which has nearly 

300 times the GWP of CO2.  The corn and other high-energy feeds utilized by factory 

farms rely on large amounts of chemical fertilizer. The production of these fertilizers 

releases 41 million tons of CO2 annually.  Factory farms require large amounts of 
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heating, cooling and ventilation, which rely heavily on fossil fuels. The amounts required 

release over 90 million tons of CO2 annually.  Livestock slaughter, meat packaging, and 

transport release several million tons of CO2 annually.  The clearing of forests for the 

growth of feed crops and for grazing releases 2.4 billion tons of CO2 annually.  

Cultivating land for feed crops releases 28 million tons of CO2 globally.  The overgrazing 

of pastures can induce desertification, causing the release of 100 million tons of CO2 

annually (Steinfeld et al., 2006). Even more disturbing, emissions of methane, a gas 

twenty times more potent than CO2, from livestock manure have increased by 58.7 

percent from 1990 to 2018 (Bailey et al., 2014). 

 In this study, I compared the overall protein concentration and long-chain fatty 

acid content of the three ground beef samples; grain-fed, grass-fed, and grass-finished, 

with A. domesticus, T. mollitor, and H. illucens and with three other local species: D. 

carolina, R. flavipes, and D. japanica
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Results 

 

Protein Concentrations in Terrestrial Specimens Estimated by the Pierce’s BCA Assay with Bovine Serum Albumin as 

Reference Standard 

 

The grain-fed ground beef had the highest protein concentration of the ground beef samples (F = 259.9; df = 2; P < 0.0001) 

(Table 1). Acheta domesticus had a higher protein concentration than grain/soy-fed ground beef (F = 32.67; df = 1; P < 0.01) 

(Table 1). Diestrammena japanica had more than twice the protein concentration as A. domesticus (F = 1812.44; df = 1; P < 

0.0001) (Table 1). Reticulitermes flavipes had the highest protein concentration of all the terrestrial specimens (F = 424.11; df 

= 1; P < 0.0001) (Table 1). Tenebrio molitor and H. illucens had lower protein concentrations than the beef samples 

(F=229.14; df = 2; P < 0.0001) (Table 1). Dissosteira carolina had a higher protein concentration than grass-fed and grass-

finished ground beef (F = 276.62; df = 2; P < 0.0001), but lower than grain-fed ground beef (F = 7.94; df = 1; P < 0.01) 

(Table1).    

Table 1. Protein Concentrations of Terrestrial Species, Dry Weight, N=3. 

 

 

 

 

 

 

 

 

 

                                            

Protein concentrations were measured as described with dehydrated tissue samples against bovine serum albumin standards. All beef samples were ground 

beef.  Means with the same letters are not statistically significant (P > 0.05). Means with different letters are statistically significant (P < 0.05). 

 

 

Figure 1. Protein Concentrations of Terrestrial Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means with 

different letters are statistically significant (P < 0.05).
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Specimen Life 

Stage/Caste 

Mean 

Concentration 

(μg/mg)  ±  SD 

 

Grain/Soy-Fed Beef N/A 1.06 ± 0.02d 

Grass-Fed Beef N/A 0.60 ± 0.01e  

Grass-Finished Beef N/A 0.60 ± 0.01e 

Acheta domesticus Adults 1.2 ± 0.014c 

Diestrammena japanica Adults 2.70 ± 0.05b 

Dissosteira carolina Adults 1.00 ± 0.05d 

Reticulitermes flavipes Workers 3.33 ± 0.01a 

Tenebrio molitor Larvae 0.36 ± 0.01f 

Hermetia illucens Larvae 0.22 ± 0.05g 
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Long-Chain Fatty Acid Analysis in Terrestrial Specimens  

 

Grain-fed ground beef had a 49:1 ratio of linoleic acid (LA), and α -linolenic acid (ALA) 

(F = 318.62; df = 1; P < 0.0001) (Table 2). Grass-fed ground beef had an 8:1 LA/ALA 

ratio (F = 238.72; df = 1; P < 0.0001) while grass-finished ground beef had a 1:1.4 

LA/ALA ratio (F = 17.76; df = 1; P < 0.05) (Table 2). Dissosteira carolina had the same 

omega-6 to omega-3, LA/ALA ratio as grass-finished ground beef (F = 16.92; df=1; P < 

0.05), but with concentrations almost forty times higher for both linoleic acid (F = 

292.08; df = 1; P < 0.0001) and α-linolenic acid (F = 310.55; df = 1; P < 0.0001) (Table 

2). Dissosteira carolina had a 2:1 ratio of oleic to palmitic acid (F = 54.41; df = 1; P < 

0.01). Reticulitermes flavipes had the highest ratio of omega-6 to omega-3 at 144:1 (F = 

300.01; df = 1; P < 0.0001), but also the highest ratio of oleic acid to palmitic acid at 

3.4:1 (F = 141.65; df = 1; P < 0.001) (Table 2). All of the terrestrial insect species tested 

except D. carolina had omega-6 to omega-3 ratios higher than 4:1 (Table 2). Hermetia 

illucens had the highest concentrations of palmitoleic acid (F = 10.28; df = 1; P < 0.05) 

and lauric acid (F = 229.28; df = 1; P < 0.0001).
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Table 2. Long-Chain Fatty Acid Concentrations of Terrestrial Species, Dry Weight, N=3 

Long-Chain Fatty 

Acid Mean 

Concentrations (μg/g) ±  SD 
 

Linoleate α -Linolenate 

Omega-6 to 

Omega-3 

Ratio 

Oleate Palmitate 

Oleate to 

Palmitate  

Ratio 

Palmitoleate Dodecanoate 
Total  Long-Chain Fatty 

Acids 

Specimen 

Grain/Soy-fed Beef 1,473 ± 114f 29.9 ± 2.4g 49:1**** 15,706 ± 1,224c 11,517 ± 898c 1.36:1* 2,011 ± 40.8 1,572 ± 123h 52, 262 ± 4,082c 

Grass-Fed Beef 3,483 ± 278e 427 ± 34.3d 8:1**** 37,710 ± 2,449a 27,126 ± 2,205a 1.4:1* 4,524 ± 367b 4,447 ± 327e 113,666 ± 8,165b 

Grass-Finished Beef 189 ± 15.4g 269 ± 21.9e 1.4:1* 15,879 ± 1,225c 9,684 ± 784d 1.6:1** 2,592 ± 204c 10,777 ± 817c 40,730 ± 3,450e 

Acheta domesticus 29,236 ± 1,632b 991 ± 73.5c 30:1**** 17,465 ± 1,388c 19,463 ± 1,551b 1:1.1
N.S.

 1,547 ± 123d 1,319 ± 106i 82,020 ± 6,532d 

Diestrammena japanica 1,294 ± 93.9f 62.4 ± 4.9f 21:1**** 1,283 ± 98e 1,372 ± 106g 1:1.1
N.S.

 137 ± 24.5f 1,816 ± 147g 7,901 ± 645f 

Dissosteira carolina 7,493 ± 604d 10,447 ± 984a 1.4:1* 11,150 ± 910d 5,946 ± 408f 2:1** 1,133 ± 90e 2,802 ± 229f 43,391 ± 3,266e 

Reticulitermes flavipes 8,459 ± 686d 58.7 ± 4.1f 144:1**** 26,591 ± 2,123b 7,796 ± 572e 3.4:1*** 1,785 ± 139d 9,708 ± 480d 63,294 ± 4,903c 

Tenebrio mollitor 35,754 ± 2,858a 1,427 ± 114b 25:1**** 26,798 ± 2,122b 17,623 ± 1,388b 1.5:1** 2,413 ± 196c 15,842 ± 1,224b 108,610 ± 8,165b 

Hermetia illucens 16,207 ± 1,306c 1,248 ± 98b 13:1**** 28,027 ± 2,287b 18,868 ± 1,470b 1.5:1** 5,267 ± 408a 615,310 ± 49,808a 706,684 ± 30,243a 

Mean fatty acid concentrations in the same column with the same letters are not statistically significant (P > 0.05). Means in the same column with different letters are statistically significant (P < 0.05).  For fatty acid ratios in the same column; N.S. = P > 0.05 (*) = 

P < 0.05, (**) = P < 0.01, (***) = P < 0.001. (****) = P < 0.0001.  
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Figure 2. Linoleic Acid Concentrations of Terrestrial Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05). 

 

 
Figure 3. α-Linolenic Acid Concentrations of Terrestrial Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). 

Means with different letters are statistically significant (P < 0.05). 

 

 
Figure 4. Omega-6 to Omega-3 Ratios in Terrestrial Species, Dry Weight, N=3. (*) = P < 0.05, (****) = P < 0.0001. 
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Figure 5. Oleic Acid Concentrations of Terrestrial Species, Dry Weight, N=3. N.S. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05). 

 

 

 
Figure 6. Palmitic Acid Concentrations of Terrestrial Species, Dry Weight, N=3. N.S. Means with the same letters are not statistically significant (P > 0.05). 

Means with different letters are statistically significant (P < 0.05).   

 

 

 

 
Figure 7. Oleic Acid to Palmitic Acid Ratios of Terrestrial Species, Dry Weight, N=3. N.S. = P > 0.05, (*) = P < 0.05, (**) = P < 0.01, (***) = P < 0.001.  
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Figure 8. Palmitoleic Acid Concentrations of Terrestrial Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). 

Means with different letters are statistically significant (P < 0.05).  

 

 

 
 

Figure 9. Lauric Acid Concentrations of Terrestrial Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05). 
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Discussion 

The protein and LCFA data from the three beef samples in Tables 1 and 2 and 

Figures 1 and 2 is consistent with existing research. The grass-fed and grass-finished beef 

samples both had around the same concentrations of protein despite the differences in 

LCFA content. This is consistent with existing research that demonstrates that livestock 

diets do not significantly impact the protein concentration of the meat (Elswyck et al., 

2013). However, the grain-fed beef did have a higher concentration of protein than the 

other two beef samples and was comparable to that of A. domesticus (Table 1). 

Unfortunately, the grain-fed beef also had a 49:1 omega-6 to omega-3 ratio (Table 2). To 

reiterate, any omega-6 to omega-3 ratio over 4:1 is a risk factor for obesity and 

cardiovascular disease (Simopolous., 2016; Taha., 2020). According to the USDA, 

soybeans have a higher concentration of protein than beef and as stated above, soy is also 

one of the richest sources of LA in the US and factory farms tend to add processed 

soybeans to ground beef as filler (Heinz et al., 2007; Blasbalg et al., 2011). This could 

explain both the higher concentration of protein and the 49:1 omega-6 to omega-3 ratio of 

the grain-fed beef compared to the grass-fed and grass-finished beef. Other studies have 

also observed that processed meat has comparable total concentrations of protein to A. 

domesticus (Payne et al., 2016). As mentioned, the term, “grass-fed beef” either indicates 

that grass is only part of the cow‟s diet or that the animal was started on grass before 

being switched to an all grain diet (Elswyck et al., 2013). This is consistent with the 

“grass-fed” ground beef sample having an 8:1 ratio of omega-6 to omega-3, which is in 

between the omega-6 to omega-3 ratios of grain-fed and grass-finished beef (Table 2). 

Acheta domesticus had over3 times more protein than T. mollitor and H. illucens (Table 

1). In other studies the protein concentrations of the three species have been closer 

together (Finke., 2002; Finke., 2012). However, T. mollitor and H. illucens are both 

scavengers which colonize a variety or organic materials so there nutrient content will 

likely vary with different diets (Zheng et al., 2013). Diestrammena japanica had more 

than twice the protein concentration of A. domesticus (Table 1). This could be attributed 

to their powerful muscles which allow them to jump over 60 times their body length 

(Palmer et al., 2017). 
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All of the tested terrestrial insects had omega-6 to omega-3 ratios above 4:1 with 

the exception of D. carolina (Table 2). Other studies have also found terrestrial insects 

including A. domesticus, T. mollitor, and H. illucens all had O6-O3 ratios above 4:1 

(Finke., 2002; Finke., 2012) The Carolina grasshopper had the same nearly 1:1 ratio of 

linoleic acid to ALA acid as the grass-finished beef did, but the concentrations of the two 

fatty acids were approximately forty times higher in the grasshopper (Table 2). This is 

consistent with other studies which have observed ratios of O6-O3 in other species of 

grasshopper less than 4:1 (Womeni et al., 2009; Torruco-Uco et al., 2018). While 

grasshoppers and cows are both graminivores, cows eat approximately 1.5-2% of their 

total body mass per day, while grasshoppers eat approximately 25-50% of their total body 

mass per day, and thus have far higher concentrations of the nutrients from grass relative 

to their body mass than cows (Royer., 2018). 

Hermetia illucens larvae had the highest concentration of lauric acid, (DA) by far 

(Table 2), which is consistent with other research (Finke., 2012; Gasco et al., 2018; 

Ewald., 2020). Lauric acid has anti-bacterial and anti-viral properties, and is particularly 

effective against gram-positive bacterial pathogens, such as Streptococcus, which causes 

strep throat and Clostridium perfringens, one of the leading causes of food poisoning in 

the USA (Spranghers et al., 2017; Gasco et al., 2018). 

Despite a very poor 143:1 LA to ALA ratio (Figure 3), R. flavipes had the highest 

concentration of protein of all insects tested by a wide margin (Table 1), and has the 

highest ratio of oleic acid to palmitic acid at over 3:1 (Table 2). Oleic acid serves as 

important chemical signal which triggers undertaking behavior in eusocial insects such as 

ants, bees, wasps and termites (Sun et al., 2013). Other studies analyzing African species 

of termites have demonstrated that these species of termites have the same or higher 

concentrations of protein than A. domesticus (Finke., 2012; Kinyuru et al., 2013). OA 

builds up in termite corpses during the first 48 hours after death which signals the 

termites to cannibalize the corpses for the purpose of nutrient recycling (Sun et al., 2013). 

African termite species also have high concentrations of OA (Kinyuru et al., 2013). This 

could possibly explain why R. flavipes has such a high OA/PA ratio compared to the 

other insects. 
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Section 3: Aquatic Insects vs. Aquaculture and the Reduction 

Industry 
 

Objective: To determine which species of aquatic insects have the highest concentrations 

of protein and beneficial long-chain fatty acids.   

Working Hypotheses:  

 Aquatic Insects frequently consumed by fish are likely to have higher 

concentrations of protein than the fish consuming them. 

 Aquatic Insects frequently consumed by oily fish are likely to have high 

concentrations of beneficial long-chain fatty acids. 

 Aquatic insects are likely to have balanced ratios of omega-6 and omega-3 fatty 

acids compared to non-graminivorous terrestrial insects.  

 

Abstract 

Current fish-based sources of protein and omega-3 fatty acids for human 

consumption are becoming unsustainable. The fish farming methods used to meet the 

increasing demand for fish protein have led to severe environmental issues as well as 

reductions in the nutritional value of the fish meat. The demand for omega-3 fatty acid 

supplements, a billion dollar industry, has led to over-fishing of populations of oily fish 

for the purpose of extracting the omega-3 fatty acids, eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), while discarding the rest of the body, including other 

beneficial fatty acids.  Here I compared the concentrations of protein and long-chain fatty 

acids of the following aquatic insect species; the common stonefly, Acroneuria abnormis 

(Newman,), Rhyacophila carolina (Banks), a free-living caddisfly, Hydropsyche betteni 

(Ross), a net-spinning caddisfly, and Brachycentrus numerous (Say), a case-maker 

caddisfly, to four commercial fish groups; farm-raised and wild-caught Atlantic salmon, 

Salmo salar and wild-caught European anchovy, Engraulis encrasicolus (L.) and Pacific 

sardine, Sardinops sagax (Jenyns), as sources of beneficial LCFAs. All four aquatic 

insect species also had higher concentrations of protein than all of the commercial fish 
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control groups and are all frequent prey of trout, an oily fish, which, so far, supports the 

first working hypothesis. The farm-raised S. salar had a 3:1 O6-O3 ratio and higher 

concentrations of LA and ALA compared to the 1:10 O6-O3 ratio of wild-caught S. salar. 

However, the farm-raised S. salar also had 1,000 times less EPA and around a twenty-

three percent less protein compared to the wild-caught S. salar. This is likely the result of 

the aquaculture diet and crowded rearing conditions in small enclosures. Rhyacophila 

carolina and A. abnormis demonstrated higher concentrations of EPA than those of all 

four of the fish groups. Hydropsyche betteni and B. numerous demonstrated lower 

concentrations of EPA than that of S. sagax, but demonstrated comparable concentrations 

to the wild-caught S. salar and E. encrasicolus. However, H. betteni and B. numerous 

also had high concentrations of LA and ALA without sacrificing EPA, unlike the farm-

raised S. salar. Therefore, the results support the second working hypothesis, so far. All 

four aquatic insects also had balanced ratios of omega-6 to omega-3 fatty acids while 

only D. carolina had a balanced O6-O3 ratio thus supporting the third working 

hypothesis, thus far.  

Introduction 

The environmental issues caused by fish farming practices are nearly identical to 

those caused by factory farms as discussed in section one, especially in cases where fish 

farms use livestock factory farm waste as fertilizer in fish culture ponds (Okocha et al., 

2018). These issues include fish parasites, hyper-antibiotic resistant strains of pathogenic 

bacteria, and heavy metals (Aly, 2014; Okocha et al., 2018). High concentrations of zinc 

and copper have been detected in the waste produced by salmon farms (Yeats et al., 

2005). The eggs and immature stages of salmonid fish such as Salmo salar are vulnerable 

to harmful pathogens due to their immature immune systems and therefore, are constantly 

treated with antibiotics (Nges et al., 2012). Antibiotics are usually administered through 

the feed, resulting in large amounts of antibiotics leaching into the environment through 

feces and uneaten feed (Nges et al., 2012; Okocha et al., 2018). Increased numbers of 

hyper-resistant pathogenic bacteria have been found in bodies of water near fish farms 

(Nges et al., 2012). These pathogens include the human pathogens; Vibrio cholera 

(Pacini & Koch), Vibrio parahaemolyticusi (Sakazaki et al), Vibrio vulnificus (Farmer), 
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Shigella spp (Castellani & Chalmers), Salmonella spp (Lignières), and the opportunistic 

pathogens; Aeromonas hydrophila (Stanier),  Plesiomonas shigelloides (Habs and 

Schubert), Edwardsiella tarda (Ewing et al), Streptococcus iniae (Pier), Piscirickettsia 

salmonis (Fryer et al), Escherichia coli (Migula) and Tetracapsuloides bryosalmonae 

(Canning et al) (Fryer & Hedrick, 2003; Aly et al., 2014; Mo et al., 2017; Miranda et al., 

2018). Antimicrobial resistance genes have been detected in sediment bacteria world-

wide (Han et al., 2017). Vibrio (Pacini) is a genus of gram-negative anaerobic, bacteria, 

which can cause gastroenteritis, cholera, and septicemia in humans (Logue et al., 2017). 

Foodborne Vibrio bacteria are responsible for over 50,000 deaths annually in the US with 

V. parahaemolyticus in particular responsible for approximately 65% of those deaths 

(Logue et al., 2017). V. vulnificus is the leading cause of seafood-related deaths in the 

US, causing over 95% of them (Elmahdi et al., 2017; Heng et al., 2017). Streptococcus 

iniae, is a gram-positive anaerobic bacterium which can cause kidney inflammation in 

immunocompromised individuals. Plesiomonas shigelloides and Aeromonas hydrophila 

are gram-negative anaerobic bacteria which can cause gastroenteritis and, in rare cases, 

necrosis in humans with weakened immune systems.  Aeromonas hydrophila strains 

detected in meat products often demonstrate antibiotic resistance (Logue et al., 2017).  

Edwardsiella tarda is a gram-negative intracellular bacterium that has been recognized as 

one of the most dangerous pathogens of aquaculture, with outbreaks causing severe 

economic damage since 1962. Edwardsiella tarda causes hernia, lesions of internal 

organs, and abnormal buildup of fluid in the abdomens of many species of fish and can 

cause diarrhea in humans (Xu et al., 2017). Tetracapsuloides bryosalmonae is a 

malacosporean parasite which causes swelling of the kidneys and spleen along with 

anemia in salmonid fish including S. salar (Skovgaard et al., 2012; Mo et al., 2017). 

Tetracapsuloides bryosalmonae is detected more often in farmed S. salar than in wild-

caught S. salar (Mo et al., 2017). Shigella is a genus of gram-negative, anaerobic bacteria 

that cause abdominal pain, fever, and bloody diarrhea. Shigella is responsible for 

approximately 130,000 deaths annually in the US and 1.1 million deaths globally. 

Shigella is also found in beef and chicken products and the mode of transmission is fecal 

to oral from water sources (Logue et al., 2017). Chile produces one third of total global 

farmed salmon which have one of the highest antibiotics to mass concentrations (Miranda 



27 
 

xxvii 

et al., 2018). This has been attributed to the high mortality rates in the marine phase 

caused by the aerobic, gram-negative intracellular pathogen, P. salmonis (Miranda et al., 

2018). Piscirickettsia salmonis causes anemia, lesions, ulcers, and swollen kidneys and 

spleen in salmonid fish and mortality rates can range from 20-90% (Fryer et al., 2003). 

There is evidence that the Chilean salmon farms had been falsely reporting the amounts 

of antibiotics used to combat P. salmonis until 2016 and illegally using quinolones, a 

class of antibiotics only approved for human medical use. Resistance genes for 

quinolones have been detected in urinary E. coli from people living in close proximity to 

Chilean aquaculture sites (Miranda et al., 2018). 

Aquaculture actually contributes to overfishing as 49% of all trawler catches 

consist of so-called trash fish used to make fishmeal to feed the fish-eating farmed fish. 

Trash fish are defined as fish not fit for human consumption because they are completely 

inedible, not fully grown, or not economically viable for mass marketing (Yvonne et al., 

2017). In fact, a significant percentage of the fish species used to make fishmeal are food-

grade for humans and approximately three fourths of those fish are juveniles (Cashion et 

al., 2017; Yvonne et al., 2017). China accounts for 16% of global fish production volume 

and 76% of the species of fish they farm rely on fishmeal for feed, which translates to 

7.17 million tons of trash fish, a figure which exceeds the entire annual catch of 

Indonesia (Yvonne et al., 2017). In fact, most fisheries also target fish for use in fishmeal 

as well as fatty acid extraction (Cashion et al., 2016). The overfishing of low-trophic-

level fish such as anchovies and sardines has disrupted the transfer of energy through the 

food web from phytoplankton to zooplankton to higher trophic level predators (Essington 

et al., 2015; Yvonne et al., 2017). This leads to scenarios such as large numbers of sea 

lion pups starving to death on southern California beaches due to declining anchovy and 

sardine populations (McClatchie et al., 2016). 

Another factor contributing to overfishing is the demand for omega-3 fatty acid 

supplements made from extracting EPA and DHA from oily fish. The market value of 

omega-3 supplements was US$ 33.04 billion USD in 2016 and the demand is predicted to 

more than double by 2025 (Grand View Research., 2017). Approximately 64 million tons 

of fish waste is generated from omega-3 extraction annually (Nges et al., 2011).  It is 

estimated that if the minimum daily intakes of EPA and DHA recommended by various 



28 
 

xxviii 

governments were followed worldwide, the global fish population would collapse by the 

2050s (Greene et al., 2013). This situation is likely even more precarious than this figure 

implies, because the process of extraction and reduction into supplements actually 

reduces the bioavailability EPA and DHA compared to consuming the entire fish (Visioli 

et al., 2003). On average, only 38% of the unsaturated fats in salmon are polyunsaturated 

while the other 62% is monounsaturated. In sardines, on average it is 35% 

polyunsaturated and 65% monounsaturated fatty acids. The discarded monounsaturated 

fatty acids include the beneficial omega-7, palmitoleic acid and the omega-9, oleic acid 

(Makoure et al., 2019). Several brands of omega-3 supplements were observed by the 

USDA to have lower concentrations of EPA and DHA than their labels reported (Mason 

et al., 2016). Many of these brands contain equal concentrations of saturated fats, such as 

palmitic and myristic acid, as they did omega-3 (Mason et al., 2016).  Even more 

concerning, many of these supplements also contained concentrations of oxidized lipids 

at levels higher than recommended by international industry standards (Cameron-Smith 

et al., 2015; Mason et al., 2016).  The products of lipid oxidation such as, peroxides and 

aldehydes can cause a wide variety of health problems, including, but not limited to, 

inflammation, endothelial dysfunction, insulin resistance, increase in low-density 

lipoprotein levels, and increased cardiovascular risk, all issues for which people are 

taking omega-3 supplements to mitigate in the first place (Mason et al., 2016).   

In this study, I tested four aquatic insect species for overall protein concentration 

and long-chain fatty acid content. All four of these species are frequent trout prey and 

each has its own nickname and unique imitation lure used by fly fishermen; A.  abnormis, 

a species of stonefly in the Perlidae family known as the “common stone,” R. carolina, a 

Rhyacophilid caddisfly is known as the “green sedge,” H. betteni, a species of net-

spinning caddisfly is known as the “spotted sedge,” B. numerous, a species of tube-

making caddisfly in the Brachycentridae family known as the “American grannom 
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Results 

 

Protein Concentrations in Aquatic Specimens Estimated by the Pierce’s BCA Assay 

with Bovine Serum Albumin as Reference Standard 

 

Farm-Raised Salmo salar had a lower protein concentration than wild-caught S. salar (F= 

29.10; df = 1; P < 0.0001) (Table 3). Salmo salar had a higher protein concentration than 

S. sagax and E. encrasicolus (F= 71.16; df = 2; P < 0.0001) (Table 3). All four aquatic 

insect specimens had more protein than the commercial fish specimens (F = 769.72; df = 

7; P < 0.0001) (Table 3). The detrivorous filter feeders, H. betteni and B. numerous had 

more protein than the carnivorous R. carolina and A. abnormis (F = 393.94; df = 3; P < 

0.0001) (Table 3).    

 

Table 3. Protein Concentrations of Aquatic Species, Dry Weight, N=3. 

Protein concentrations were obtained from pulverized, dehydrated tissue samples using methods described 

above. All beef samples were ground beef.  Means with the same letters are not statistically significant (P > 0.05). 

Means with different letters are statistically significant (P < 0.05). 

 

 
 

Figure 10. Protein Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not 

statistically significant (P > 0.05). Means with different letters are statistically significant (P < 0.05) 
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Specimen Life Stage/Caste Mean Concentration 

(μg/mg) ± SD    

Salmo salar (Farm-Raised) N/A 0.49 ± 0.02f 

Salmo salar (Wild-Caught) N/A 0.63 ± 0.01e 

Sardinops sagax N/A 0.42 ± 0.03g 

Engraulis encrasicolus N/A 0.39 ± 0.03g 

Acroneuria abnormis Nymphs 1.10 ± 0.009c 

Rhyacophila carolina Larvae 0.90 ± 0.03d 

Hydropsyche betteni Larvae 1.40 ± 0.06b 

Brachycentrus numerous Larvae 1.70 ± 0.01a 
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Long-Chain Fatty Acid Analysis of Aquatic Specimens 

Farm-raised Salmo salar has approximately ten times higher concentrations of linoleic 

acid (F = 245.00; df =1; P < 0.0001) and α–linolenic acid (F = 249.2; df = 1; P < 0.0001), 

than wild-caught S. salar (Table 4). Farm-raised S. salar had a 3:1 omega-6 to omega-3 

ratio (F = 119.24; df = 1; P < 0.001) while wild-caught S. salar had a 1:6 omega-6 to 

omega-3 ratio (F = 208.42; df = 1; P < 0.0001) (Table 4). Farm-raised S. salar had a 1.5:1 

ratio of oleic acid to palmitic acid (F = 38.13; df = 1; P < 0.01) while wild-caught S. salar 

had a 1:1 ratio of oleic acid to palmitic acid (F = 0.02; df = 1; P > 0.05) (Table 4). Wild-

caught S. salar had approximately forty-thousand times more EPA than farm-raised S. 

salar (F = 307.99; df = 1; P < 0.0001) (Table 4). Despite this, farm-raised S. salar had a 

slightly higher DHA concentration than wild-caught S. salar (F = 8.11; df = 1; P = 

0.0465) (Table 4). Sardinops sagax had the highest concentration of EPA out of the 

commercial fish samples, (F = 44.13; df = 1; P < 0.01) (Table 4). Acroneuria abnormis 

had a higher concentration of EPA than S. sagax (F = 24.81; df = 1; p < 0.01) and R. 

carolina had an even higher EPA concentration, nearly twice that of S. sagax (F = 54.11; 

df = 1; P < 0.01).  Acroneuria abnormis (F = 107.97; df = 1; P < 0.001), R. carolina (F = 

141.40; df = 1; P < 0.001), and B. numerous (F = 47.45; df = 1 P < 0.01) had higher 

concentrations of palmitoleic acid than farm-raised S. salar (Table 4). Brachycentrus 

numerous had the highest concentration of α–linolenic acid of the aquatic specimens, 

more than twice that of the next highest, A. abnormis (F = 65.86; df = 1; P < 0.001) 

(Table 4). Brachycentrus numerous also had, by far, the highest concentration of DA of 

the aquatic specimens by far (F = 170.56; df = 1; P < 0.001).   
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Table 4. Long-Chain Fatty Acid Concentrations and Ratios of Aquatic Species, Dry Weight, N=3 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean fatty acid concentrations in the same column with the same letters are not statistically significant (P > 0.05). Means in the same column with different letters are statistically significant (P < 0.05).  For fatty acid ratios in the same column; N.S. = P > 0.05 (*) = P < 0.05, 

(**) = P < 0.01, (***) = P < 0.001. (****) = P < 0.0001.  

                                    

Long-Chain Fatty 

Acid Mean 

Concentrations 

(μg/g) ± SD Linoleate α -Linolenate EPA DHA 

Omega-6 to 

Omega-3 

Ratio 

Oleate Palmitate 

Oleate to 

Palmitate 

Ratio 

Palmitoleate 

 

Dodecanoate 

 

 

Total Long-

Chain Fatty 

Acids 
Species 

Salmo salar farm-

raised 
7,123 ± 572a 1,690 ± 149d 0.404 ± 0.03g 595 ± 48b 3:1*** 16,523 ± 1,306a 9,978 ± 735b 1.7:1** 3,056 ± 245d 15,283 ± 1225e 69,051 ± 5,634e 

Salmo salar wild-

caught 
760 ± 62.1f 182 ± 14.7f 3,952 ± 318d 471 ± 38c 1:6**** 8,575 ± 694c 8,670 ± 653c 1:1

N.S.
 2,333 ± 188e 48,062 ± 3,919c 87,394 ± 7,103cd 

Engraulis 

encrasicolus 
363 ± 29.4g 135 ± 10.6g 3,240 ± 261e 558 ± 45b 1:11**** 1,006 ± 86f 5,624 ± 408d 1:5.5**** 1,174 ± 90f 1,056 ± 82g 18,638 ± 1,470g 

Sardinops sagax 819 ± 66.1f 429 ± 34.3e 6,992 ± 563c 702 ± 57a 1:10**** 2,804 ± 229e 7,983 ± 645c 1:3*** 2,252 ± 180e 1,606 ± 131f 31,766 ± 2,449f 

Acroneuria 

abnormis 
4,462 ± 359c 3,633 ± 294b 10,486 ± 816b 14.15 ± 1.1e 1:3*** 15,526 ± 1,225a 11,125 ± 898b 1.4:1* 8,407 ± 686b 63,877 ± 4,899b 131,148 ± 10,614b 

Rhyacophila 

carolina 
3,537 ± 286d 3,209 ± 261b 12,871 ± 980a 16.67 ± 1.3d 1:4.5*** 8,140 ± 653c 11,520 ± 898b 1:1.4* 10,487 ± 849a 19,261 ± 1,551d 81,634 ± 6,532d 

Hydropsyche 

bettini 
2,340 ± 188e 2,149 ± 171c 3,828 ± 245d 5.62 ± 0.4f 1:2.5*** 5,746 ± 465d 6,191 ± 489d 1:1.1

N.S.
 2,584 ± 204e 61,838 ± 4,900b 90,234 ± 7,348c 

Brachycentrus 

numerous 
5,347 ± 433b 7,531 ± 612a 2,415 ± 196f 0.147 ± 0.01g 1:2** 12,859 ± 980b 19,397 ± 1,306a 1:1.5** 5,375 ± 408c 221,319 ± 16,330a 284,349 ± 12,097a 
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Figure 11. Linoleic Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05).  

 
 
Figure 12. α–Linolenic Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05). 

 
Figure 13. Eicosapentaenoic Acid (EPA) Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 

0.05). Means with different letters are statistically significant (P < 0.05). 
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Figure 14. Docosahexaenoic Acid (DHA) Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 

0.05). Means with different letters are statistically significant (P < 0.05). 

 

 
Figure 15. Omega-6 to Omega-3 Fatty Acid Ratios of Aquatic Species, Dry Weight, N=3. N.S. = (**) = P < 0.01, (***) = P < 0.001, (****) = P < 0.0001.  

 

  
Figure 16. Oleic Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means with 

different letters are statistically significant (P < 0.05). 
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Figure 17. Palmitic Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05). 

 

 
Figure 18. Oleic Acid to Palmitic Acid Ratios of Aquatic Species, Dry Weight, N=3. N.S. = P > 0.05, (*) = P < 0.05, (**) = P < 0.01, (***) = P < 0.001, (****) = P 

< 0.0001.   

 
Figure 19. Palmitoleic Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means 

with different letters are statistically significant (P < 0.05) 
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Figure 20. Lauric Acid Concentrations of Aquatic Species, Dry Weight, N=3. Means with the same letters are not statistically significant (P > 0.05). Means with 

different letters are statistically significant (P < 0.05). 
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Discussion  

This research substantially expands our knowledge, as information about aquatic 

insects and their potential to contribute to the human diet, has so far been afforded 

minimal scientific attention (Williams et al., 2017). Low trophic level fish in saltwater 

ecosystems, such as sardines and anchovies, play in an important role in the transfer of 

energy and nutrients to higher trophic levels on the food web. The basis of my three 

working hypotheses for this portion of my research was; aquatic insects play similar roles 

in the food webs of freshwater ecosystems as anchovies and sardines do in saltwater 

ecosystems; they should have at least comparable nutrient content relations to their own 

predators. 

The results from the commercial fish samples show clearly, the consequences of 

the unnatural diets of farmed fish, especially when comparing the long-chain fatty acid 

content of farm-raised and wild-caught S. salar. Ironically, the farm-raised salmon does 

have higher concentrations and a more balanced ratio of LA and ALA and also a slightly 

better OA to PA ratio (Table 4). However, this comes at the cost of having less protein 

than wild-caught salmon (Table 3) and having an EPA concentration thousands of times 

lower than the wild-caught S. salar (Table 4). Studies have shown that farmed fish only 

have high concentrations of omega-3 fatty acids if they are actually fed fish oil (Bibus., 

2015). Since the farm-raised S. salar had almost no EPA they were likely not fed any fish 

oil. The fact that the farm-raised salmon had 10 times the LA concentration compared to 

the wild-caught salmon may be due to the soy in the aquaculture diet. Salmon are 

carnivores, so feeding them plants such as maize and soy can cause intestinal 

inflammation in the salmon and even have carcinogenic effects (Dale et al., 2009). When 
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comparing E. encrasicolus and S. sagax, S. sagax had over twice as much EPA and 

slightly more DHA compared to E. encrasicolus (Table 4). This difference can be 

explained by E. encrasicolus mainly feeding on carnivorous zooplankton and decapod 

larvae while S. sagax favors a primary producer, phytoplankton (van der Lingen., 1994; 

Plounevez et al., 2000). 

All four aquatic insects also have higher concentrations of protein than the 

commercial fish samples; therefore, the first working hypothesis has been supported so 

far (Table 3). In contrast to the carnivorous S. salar, H. betteni and B. numerous, are 

omnivorous, detritivore filter feeders which inhabit flowing, freshwater habitats 

(McCafferty, 1981). Since ALA is primarily derived from consuming terrestrial plants 

(Brenna, 2002), these caddisfly larvae are likely consuming a mixture of aquatic and 

terrestrial detritus. The terrestrial detritus would be derived from any organic matter that 

falls into the stream such as grass, leaves, twigs, dead insects, etc. As a result, these 

insects can naturally have significant concentrations of LA and ALA without sacrificing 

EPA, while maintaining balanced O6-O3 ratios. Out of all of the terrestrial insect species 

only the graminivore, D. carolina, had less than a 4:1 omega-6 to omega 3 ratios (Table 

2). In contrast all four aquatic insect species had less than a 4:1 omega-6 to omega 3 

ratios. This is consistent with existing research that reports aquatic insect generally have 

lower omega-6 to omega 3 ratios than terrestrial insects (Twining et al., 2018). It should 

be pointed out that none of the fish samples had any significant concentrations of ALA 

and none of the beef samples or terrestrial insects had any significant concentration of 

EPA and DHA.  All four aquatic insect species had relatively high concentrations of both 

ALA and EPA (Table 4). 
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A. abnormis and R. carolina had the highest concentrations of EPA out of all of 

the aquatic specimens which also supports the second and third working hypothesis 

(Table 4). A. abnormis and R. carolina are both carnivorous species, so they have likely 

been consuming other insects which have fed on a mixture of terrestrial and aquatic 

detritus, since they also both had higher concentrations of LA and ALA than the fish 

samples (Table 4) (McCafferty, 1981). It is unlikely they were exclusively preying on H. 

betteni and B. numerous, since they have four to five times the concentrations of EPA 

compared to the two filter-feeding trichoptera, despite their higher trophic levels (Table 

4). At least one of the prey species of A. abnormis and R. carolina could potentially have 

even higher concentrations of EPA (Table 4).  

Despite surpassing the fish specimens in ALA and EPA concentrations, the 

aquatic insect specimens were lacking in DHA compared to the commercial fish 

specimens (Table 4). Even the farm-raised S. salar had over ten times the concentration 

of DHA compared to the aquatic insects despite its nearly nonexistent EPA 

concentration. S. salar are able to maintain high concentrations of DHA in their muscle 

tissues and blood regardless of their diet. In contrast, the concentration of EPA in S. salar 

muscle tissues and blood is dependent on their diet (Seternes et al., 2020). This would 

explain why there was no significant difference in the DHA concentrations of farm-raised 

and wild-caught S. salar despite the massive difference in EPA concentrations (Table 4). 

B. numerous had the highest concentration of DA out of the aquatic specimens 

and the second highest concentration overall only behind T. mollitor (Table 4). Despite 

this, B. numerous could arguably be considered a better source of DA than H. illucens 

because H. betteni also has a more balanced O6-O3 ratio and approximately seven times 
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the protein concentration compared to H. illucens, which had the lowest protein 

concentration out of all the specimens (Table 1). Although H. betteni had a lower DA 

concentration, it is still in the hundreds of thousands, far more than any other specimen 

(Table 4).  
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Section 4: Conclusions 

The current methods of meeting increasing demands for protein and long-chain 

fatty acids are not environmentally, economically, and nutritionally viable. Insects have 

potential as sources of protein and long-chain fatty acids; however it is important to be 

mindful of fatty acid ratios. The nutritional value of insects varies more depending on 

their diets compared to other animals because they consume larger amounts relative to 

their overall body mass. A. domesticus, and T. molitor, are the only insect species 

generally accepted in the US for entomophagy; however, my results reveal they all have 

omega-6 to omega-3 ratios above the maximum 4:1 ratio, increasing the risk of obesity. 

So far, the graminivore and aquatic insects I tested have shown balanced omega-6 to 

omega-3 ratios lower than 4:1. Further testing of more graminivore and aquatic insect 

species for long-chain fatty acids is a priority. Identifying and assaying all of the prey 

species of the carnivorous A. abnormis and R. carolina could lead to detecting aquatic 

insect species with even higher concentrations of EPA. 

 A majority of the insect species I tested have higher concentrations of protein 

than the commercial beef and fish samples. Further studies are needed to determine 

protein quality of insects compared to commercial beef and fish. Protein quality is 

important because foods with higher protein quality provide more essential amino acids. 

This study is the first step in finding more viable insect species for entomophagy and will 

help introduce higher quality and more sustainable sources of proteins and fatty acids into 

mainstream human diets.  
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