Staff View
The effect of non-framework cation mixing on spinel crystallization in iron-rich high-level nuclear waste glasses

Descriptive

TitleInfo
Title
The effect of non-framework cation mixing on spinel crystallization in iron-rich high-level nuclear waste glasses
Name (type = personal)
NamePart (type = family)
Sun
NamePart (type = given)
Zhenxuan
DisplayForm
Zhenxuan Sun
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Goel
NamePart (type = given)
Ashutosh
DisplayForm
Ashutosh Goel
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Akdoğan
NamePart (type = given)
Koray
DisplayForm
Koray Akdoğan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Birnie
NamePart (type = given)
Dunbar
DisplayForm
Dunbar Birnie
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD graduate
OriginInfo
DateCreated (encoding = w3cdtf); (keyDate = yes); (qualifier = exact)
2021
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2021-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2021
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The vitrification of high Fe, Ni, Mn, and Cr containing nuclear waste faces the problem of the crystallization of spinel in the melter cold cap that poses a threat to the melter's efficiency and brings down the volumetric efficiency of the vitrified waste. Understanding the mechanisms driving the nucleation and crystal growth of spinels in HLW glasses is a vital subject in the vitrification of nuclear waste that is fostered by several environmental and economic reasons. The research focuses on understanding the relationship between alkali/alkaline-earth cations with iron redox, glass structure, and spinel crystallization tendency in the glass compositions of the xLi2O(or CaO)-(25-x)Na2O-9.12B2O3-6.4Al2O3-51.25SiO2-7.22Fe2O3-0.38MnO-0.08Cr2O3-0.55NiO system. Glass compositions of the system mentioned above with varying Li2O/Na2O and CaO/Na2O ratios were synthesized using two different approaches - (1) quenching the melt from 1450 °C between two copper plates in order to understand the structure and crystallization behavior of melts in the HLW melter during operation at 1150 °C, (2) allowing the melt at 1450 °C to cool down to 950 °C followed by isothermal heating at 950 °C for 48 h in order to emulate melter idling. While the modifier cation field strength is reported to affect the NBO distribution substantially, the cation charge and size are also found to affect the Al and B differently. X-ray diffraction, infrared spectroscopy, density measurement, differential scanning calorimetry, and vibration sample magnetometry were used along with optical basicity and Mössbauer spectroscopy to explore the effects of the cation with higher-field strength on the possible evolution of NBOs in the structure, the tendency of iron to enter the crystallization field, the phases formed, etc., Differential scanning calorimetry along with Rietveld analysis was used to understand the crystalline phases. Spinel crystallization is found to decrease with higher basicity and higher Fe3+ concentration of the system. With the introduction of cations with higher field strength, the optical basicity reduces Fe2+ increases, and the tendency to crystallize spinel increases. Vibration sample magnetometry, scanning electron microscopy, and elemental dispersive spectroscopy have been used to understand the size, shape, nature, and distribution of the crystallized phases.
Subject (authority = local)
Topic
Spinel crystallization
Subject (authority = RUETD)
Topic
Materials Science and Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Identifier
ETD_11307
Identifier (type = doi)
doi:10.7282/t3-k9p5-yx80
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (x, 47 pages) : illustrations
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Sun
GivenName
Zhenxuan
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-11-17 12:29:33
AssociatedEntity
Name
Zhenxuan Sun
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2023-01-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 31st, 2023.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Microsoft 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-11-16T00:38:22
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-11-16T00:38:22
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024