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This work studies programmability enhancing abstractions in the context of accelerators

and heterogeneous systems. Specifically, the focus is on adapting abstractions that have

been successfully established to improve the programmability of CPUs.

Specialized accelerators including GPUs, TPUs, and FPGAs promise to deliver or-

ders of magnitude improvements in performance and energy efficiency. However, to

exploit these benefits programmers must port existing applications, or develop new

ones, that target accelerator-specific programming environments. The availability of es-

tablished programmability abstractions aids this process and extends the performance

benefits to a wider range of applications.

This work presents three cases of known CPU abstractions and studies their suit-

ability for accelerator programming; virtual memory, operating system services, and

mapping of high-level languages. I study both suitability in terms of existing opera-

tional semantics, as well as design considerations necessary for efficient implementation.

First, I study the mapping of high-level dynamic languages to accelerators. High-

level languages, like Python, are increasingly popular with designers of scientific appli-

cations with a large selection of support libraries. High-level languages are often used

to bind together otherwise highly optimized components to form a complete program.
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I use this observation to examine a specific case of cognitive modeling workloads writ-

ten in Python and propose a path to efficient execution on accelerators. I demonstrate

that it is often possible to extract and optimize core computational kernels using stan-

dard compiler techniques. Extracting such kernels offers multiple benefits; it improves

performance, it eliminates dynamic language features for more efficient mapping to ac-

celerators, and it offers opportunities for exploiting compiler-based analyses to provide

direct user feedback.

The second major area of study is the access to system services from accelerator

programs. While accelerators often work as memory-to-memory devices, there is an

increasing amount of evidence in favour of providing them with direct access to network

or permanent storage. This work discusses the suitability of existing operating system

interfaces (POSIX) and their semantics for inclusion in GPU programs. This work

considers the differences between CPU and GPU execution model and the suitability of

CPU system calls from both semantics and performance point of view.

Finally, I examine challenges in implementing virtual memory for accelerators. To

avoid expensive data marshalling overhead, accelerators often support unified virtual

address space (also called unified virtual memory). This feature allows the operating

system to synchronize CPU and accelerator address spaces. However, designing such a

system needs to make several trade-offs to accommodate the complexities of maintain-

ing the mirror layout and at the same time matching accelerator specific data access

patterns. This work investigates integrated GPUs as a case study of accelerators and

identifies several opportunities for improvement in designing device-side address trans-

lation hardware to provide unified virtual address space.

Overall, this thesis studies programmability enhancements known from the CPU

world and their applications to accelerators. It demonstrates that these techniques

adapt well and provide programmability and familiarity to application programmers.

Such combination not only opens door to new applications but allows for straightforward

acceleration of existing ones, delivering performance benefits of accelerators to a wide

range of applications. Proposed extensions to accelerators were implemented and data

collected on real systems without any use of system simulators or hardware emulation.
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Chapter 1

Introduction

Accelerators have become an increasingly popular solution to improve the performance

and power efficiency of computer systems. With the slowdown of Dennard’s scaling and

diminishing benefits from Moore’s Law [1], hardware specialization has emerged as a

common way to satisfy the ever-growing need for more performance. Modern systems

include many accelerators such as GPUs [2–5], TPUs [6–8], FPGAs [9–11], or even

connection to quantum computers [12, 13] in order to accelerate computation.

To benefit from improved performance and efficiency of accelerators, applications

need to be written to explicitly offload portions of their algorithms [14]. Moreover, op-

erating systems often need to include a specialized device driver to expose accelerator

hardware to these applications. Unfortunately, programmers thus face multiple chal-

lenges when accelerating their programs. A primary problem is that they often need to

map their algorithms to a compute paradigm radically different from sequential CPU

execution. Such mapping needs to consider not only algorithm suitability, but also the

cost of data movement. For example, a parallel computation can be offloaded to a GPU

or a tightly integrated vector unit depending on the vector width and the ratio between

compute and data movement. The performance benefit of accelerated code is heavily

dependent on the specific hardware configuration and the relative performance between

the CPU and the accelerator. These and other software design decisions need to be

considered even before any accelerated code is written.

Moreover, programmers need to learn new languages and adapt to a new set of

constraints depending on the features of accelerator programming environments [15, 16].

For example, a parallel workload is more difficult to map to a GPU or FPGA if it needs

frequent access to IO services. Following decades of programmability improvements of
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CPUs (e.g. virtual memory, OS services, etc), programmers have become familiar with

these abstractions. Abstractions allow software engineers to develop more generic and

portable applications. An application can use the same file system services whether

the data is located on an HDD, SSD, or a network-attached device. This generality of

programming is in stark contrast to hardware-specific programming used by accelerators

today.

As a consequence, research has begun exploring the future of OS and compiler driven

abstractions to enhance accelerator programmability [17–23]. While they present a com-

pelling start, these efforts are limited in one of two ways; either they provide a restricted

set of accelerator extensions [20, 21], or they extend the accelerator programming envi-

ronment with a specialized version of otherwise more generic abstraction [17, 18]. Both

of these approaches still require programmers to understand new sets of semantics and

restrictions before they can accelerate their programs. As such, they reinforce the view

that the only way to encourage performance efficiency on accelerator code is via special-

ized and often constrained abstractions. In contrast, this thesis presents an alternative

approach and vision:

Adapting existing abstractions from CPUs to accelerators is a good way to extend

the performance benefits of accelerators to both new and legacy applications.

The main focus of this work is thus on integrating accelerators by adapting known

CPU abstractions to improve programmability without compromising performance.

This work includes a compiler study that exploits domain-specific information to achieve

compatibility of high-level programming language with accelerators, and studies on vir-

tual memory and operating system abstractions to offer programmers the ability to map

new applications onto accelerators like GPUs, and profiling of hardware for these ab-

stractions. The included studies also propose enhancements to these abstractions when

necessary to enable accelerator programmability, and evaluate the impact on application

performance. I study programmability enhancing mechanisms in applications, operating
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systems, and hardware. Specifically, I study abstractions and programmability enhance-

ments that proved successful on CPUs, such as virtual memory and operating system

services, and consider their adaptation to accelerators. Existing interfaces have the

benefit of familiarity, which not only makes writing new applications easier, but it also

reduces the programming effort needed to port existing applications to new accelera-

tor platforms. The challenge is not only in making sure the existing semantics do not

conflict with the accelerator compute environment, but also that an efficient implemen-

tation is possible that wouldn’t constrain the performance benefits of using accelerators

in the first place.

1.1 Overview of Integration Challenges

An ideal accelerator delivers performance and efficiency benefits with only minimal

or no effort on the application side. This effort manifested in the current generation of

"single-source" programming languages (e.g. C++AMP [20], SYCL [24], OpenMP [21]),

that combine both CPU and accelerator code paths. However, these solutions work by

extending the base host language with accelerator compatible constructs.

This thesis goes further and in Chapter 2 it presents a mapping of a high-level

language to GPU. Python has become a popular language of choice for scientific appli-

cations, boasting a wide selection of highly optimized scientific libraries [25–28], many

of which can be accelerated [28, 29]. This combination of convenience and programma-

bility allows for rapid development and deployment of scientific applications. I observe

that although Python is a highly dynamic language, applications in the scientific do-

main often only use its dynamism to assemble programs from a collection of optimized

libraries.

A traditional approach would be to design a domain-specific language (DSL) that

includes all the capabilities of required libraries, as well as enough features to construct

final programs. However, developing DSLs is a long and demanding process, generic

languages offer quick turn-around time and a faster pace of development, especially

if there is a rich selection of specialized libraries available. A specialized library with
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ample development resources might include a domain-specific language (e.g TorchScript

in pytorch [28]), but such effort is out of reach for smaller teams and evolving workloads.

Chapter 2 studies an alternative approach of extracting computational kernels from

high-level languages. In particular, I use the domain of cognitive neuroscientific model-

ing to show that most of Python’s dynamism is unnecessary and can be removed using

standard compiler techniques. Cognitive neuroscience relies on modeling to study the

connection between biological processes in the brain to psychological processes in the

human mind. Although the models use floating-point computation at their core, their

construction can use multiple specialized libraries, such as numpy [25], scipy [26], and

PyTorch [28]. This presents a highly heterogeneous environment that combines tra-

ditional high-precision floating-point computation with neural networks and stochastic

sampling. The combination of heterogeneous compute elements connected via high-level

language and the need for high-throughput computation to build the final distribution

is an appealing target for accelerators and a challenge for the software stack. I show

that expensive concepts like dynamic typing system and dynamic data structures can

be replaced by their static counterparts if the compiler knows the data structures won’t

change during execution, lowering the demands for memory management operations.

The resulting compiled code is not only amenable to hardware acceleration on GPUs,

but offers orders of magnitude performance improvement on CPUs.

Python’s growing popularity [30] is a testament to its power and ease of use. With a

rich selection of libraries to support numerical computation the barrier to writing pro-

grams to support scientific effort across domains is getting lower. This work presents a

guide on how domain-specific information about the nature of computation can be ex-

ploited to achieve both compatibility with current accelerators and a good performance

on CPUs.

However, not all programs can be transformed into accelerator-amenable form by the

compiler. Many programs require communication with the outside world, whether it is

network, permanent storage, or communication with other processes via inter-process

communication. As these interfaces continue to develop to include new high-throughput

storage and network devices, the advances on the CPU side would transfer to accelerator
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environments. This is especially important as high-throughput accelerators like GPUs,

and TPUs are well-positioned to take advantage of high-throughput IO. An example

in Chapter 3 shows how GPUs can already take advantage of high-throughput SSD

devices.

Chapter 3 studies system services in Linux and their suitability for GPU execution

environment. This work is not the first to notice potential benefits of enabling GPU

access to system IO [17–19, 31]. However, it demonstrates that systems services beyond

IO can be useful for GPU workloads. I find that almost 80% of the system services

available in Linux map well to GPU execution environment. I propose and implement

a highly efficient system call invocation mechanism that allows GPU kernels to directly

invoke system services. Availability of system services allows not only a more straightfor-

ward path towards accelerating existing applications, but it also facilitates development

of system call heavy applications that previously wouldn’t be considered suitable for

acceleration.

Chapter 2 and 3 aim to bridge the gap between programs in need of acceleration

and capabilities available to them. The former removes unnecessary constructs that

would be difficult to map and allows the extracted kernels to use accelerators that do

not provide memory management capabilities. On the other hand, interactions with

the outside world through operating system services cannot be removed without mod-

ifying program semantics. The latter thus focuses on providing accelerators with the

necessary abstractions that expose operating system services. A combination of these

two approaches opens opportunities to accelerate programs that would otherwise be

restricted to running on CPUs. Expanding the amount of code that can be accelerated

exacerbates the issue of data sharing. Not just between CPU and one accelerator, but

also between multiple different accelerators.

Chapter 4 studies virtual memory abstraction for accelerators in heterogeneous sys-

tems. Virtual memory is a powerful abstraction that presents a consistent view of system

memory to applications, irrespective of specific machine parameters. It is crucial for effi-

cient and safe multiprogramming and data sharing between applications. As large parts

of applications move to accelerators, preserving efficient virtual memory abstraction will
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be crucial to maintaining the programmability benefits while enjoying the performance

benefits of accelerators.

More specifically, Chapter 4 studies an existing implementation of unified virtual

address space (UVA) in CPU-GPU heterogeneous systems. A unified virtual address

space provides an accelerator with the same view of application memory as the CPU.

Presenting the same memory layout as the CPU enables easier sharing of data and al-

lows accelerators to directly operate on pointer-based data structures like lists and trees.

Without UVA, programmers have to rely on expensive data marshaling and demarshal-

ing, or cumbersome workarounds that replace pointers with array indices. Accelerators

can also benefit from other features provided by virtual memory, such as demand paging

to improve memory utilization and improve support for multi-programmed workloads.

This work shows that designing an efficient address translation mechanism still remains

a challenge, exacerbated by the throughput oriented nature of GPU computation. The

evaluation shows that mismatch between expected data access patterns and those ob-

served in real workloads can lead to severe overheads, and a robust accelerator specific

address translation mechanism is necessary to deliver the benefits of shared virtual

address spaces.

Overall, the studies presented in this thesis cover every level of system design relevant

to accelerator integration. Specifically, Chapter 3 and Chapter 2 propose software-only

solutions that improve both programmability and performance of accelerated applica-

tions, highlighting significant opportunities that exist in the software stack.

1.2 Thesis Organization

The overall structure of this thesis is presented in Table 1.1. A study on accelerating

Python-based models in cognitive neuroscience, under submission to a computer archi-

tecture conference, is presented in Chapter 2. A novel implementation of generic system

calls for GPUs, presented at ISCA’18, is included in Chapter 3. Finally, a study on the

performance and overall system impacts of unified virtual addressing for GPUs, that

was presented at ISPASS’16 is included in Chapter 4. A more detailed description of
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the contributions follows.

Integration level Mechanism Proposal Chapter
Application Kernel Extraction and Compilation PsyLang 2

OS System Calls GENESYS 3
HW Unified Virtual Addressing N/A 4

Table 1.1: Overview of thesis organization

1.2.1 Accelerating and Analysing Cognitive Models Using Compiler

Techniques

The first study in this thesis presents a case study in accelerating applications written in

a high-level language. It shows that a combination of domain-specific information and

standard compiler techniques can be used to bridge this gap. I observe that in the field

of cognitive modeling, the models are often composed of individual components with

a high-level scripting language, like Python, directing the data-flow and control-flow

decision. Python owes much of its popularity [30] to ease of use and programmabil-

ity, however, it is also known for relatively low performance and multiple projects use

compiler techniques to improve performance [32–36]. I further observe that cognitive

models do not need all dynamic features of the Python language and efficient applica-

tion of domain-specific knowledge can achieve both significantly higher performance on

CPUs, as well as target accelerators such as GPUs.

I propose and implement PsyLang, a compiler frontend translating cognitive models

to LLVM IR. PsyLang extracts computational kernels from Python constructed models

and eliminates costly dynamic features. In doing so, it achieves up to four orders

better performance on CPUs, and allows acceleration of cognitive models on GPUs.

This effort presents an alternative to domain-specific languages. Unlike designing a

DSL, PsyLang relies on programmers’ tendency to prefer certain structures in their

programs, rather than restricting the programming environment to said structures by

design. A compiler optimization effort can be easily extended to support new constructs

if needed. At the extreme end, this would lead to a complete compiler for Python.

However, PsyLang demonstrates the significant performance opportunities in exploiting



8

restrictions naturally present in programs of a specific domain.

Beyond improved performance, I discuss language features that cannot be eliminated

by compiler optimizations. Choices such as numeric precision, and algorithms used for

random number generation cannot be changed without affecting program semantics,

yet they have a significant impact on accelerator performance. These optimizations can

still be exploited to achieve better performance, but they might require re-validation of

model results and parameters, and thus need human intervention.

Transparent integration of accelerators in high-level languages extends the perfor-

mance and efficiency benefits of accelerators to applications that would otherwise have

to invest significant resources to achieve comparable performance improvements. At the

same time, it extends programmability benefits of high-level languages to accelerators

opening paths to higher performance to even more applications.

1.2.2 System Services for GPUs

The second study presents GENESYS – an efficient system call invocation framework

for GPUs. GENESYS enables efficient communication between a GPU kernel requesting

system services and the privileged OS code running on the CPU that handles these re-

quests. It goes beyond previous work that focused on network and storage IO [17–19, 37],

and enables the implementation of system calls in areas such as memory management

and inter-process communication.

Acknowledging the parallel nature of GPU execution I study the impact of invocation

granularity. When invoked on a GPU, a system call can represent service requested by

a single GPU thread, a group of threads, or an entire GPU kernel. Smaller granularity

preserves the independence of execution in individual GPU threads, however, it also

suffers higher communication overhead. Overall, group-level invocation proves to be

the most flexible but some situations benefit from either thread-level or kernel-level

system calls.

To evaluate GENESYS I implement a suite of micro-benchmarks, and characterize

the performance aspects of system call invocation and processing. Further, GENESYS

demonstrates the benefits of improved GPU programmability by designing a set of novel
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heterogeneous applications. The targeted workloads include well-known applications like

memcached, grep. The former can benefit from the parallel nature of GPUs, but the

acceleration efforts were constrained by its high network communication requirements.

GENSYS allows integration of network communication as well as parallel lookup on a

GPU, achieving 30 − 40% improvements in both latency and throughput. The latter

application, grep, has been considered IO-bound and not suitable for GPU acceleration.

I demonstrate that not only is the acceleration of grep low effort, but the parallel nature

of GPUs helps extract better throughput from modern SSD storage devices than even

multicore CPUs can.

I complement the performance and programmability study by analyzing nearly 300

Linux system calls in their POSIX-like semantics, and assess their suitability for the

GPU programming environment.

1.2.3 Challenges and Opportunities in Designing Virtual Memory for

Accelerators

The final study evaluates a commercial heterogeneous CPU-GPU system, analyzing

the impact of address translation on GPU performance. A combination of micro-

benchmarks and real-world applications characterizes the address translation subsystem

of GPUs. This characterization reveals significantly higher address translation latency

compared to both CPU address translation and GPU data accesses and the throughput

oriented design of the translation hardware. A set of GPU applications is classified based

on the overheads of address translation and the impact of different page sizes on address

translation efficiency. This classification highlights the role of GPU local memories in

determining the applications’ memory access patterns. Studying these applications fur-

ther reveals that existing address translation optimizations target streaming and linear

access patterns which exacerbates address translation overheads for applications with

irregular memory access patterns. Moreover, profiling divergent workloads shows that

data divergence has a significantly larger impact on the address translation performance

than the rest of the memory hierarchy. Beyond address translation, this work charac-

terizes the costs of TLB invalidation routines and inspect the added benefit of demand
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paging. The study further evaluates the impact of GPU demand paging on CPU and

the rest of the system, noticing its potential to reduce memory usage, but also increased

costs caused by additional CPU-GPU communication overhead. Based on these obser-

vations this work proposes a set of recommendations to guide future research on address

translation for GPUs and accelerators.

1.3 Published Work

Studies presented in this thesis focus on the integration of programmability enhanc-

ing techniques and accelerators. Observation and opportunities in architecting virtual

memory and unified virtual address spaces to GPUs were presented at ISPASS’16. The

work on providing GPU programming environment with access to generic system calls

was presented at ISCA’18 and the study on accelerating models in high-level languages

is under submission to an architecture conference.

Moreover, research on virtual memory abstractions contributed to other programma-

bility studies. Large pages and lightweight memory management in virtualized environ-

ments: can you have it both ways?, presented at MICRO’15, proposed a mechanism

to address the growing overhead of virtual memory abstractions in virtualized environ-

ments. Similarly, Hardware translation coherence for virtualized systems, presented at

ISCA’17, studied the overheads of maintaining coherent address translation mappings in

virtualized environments. Similarly, research on accelerators and benefits of specializa-

tion contributed to accelerator-centric design proposed in Hardware-Software Co-Design

for Brain-Computer Interfaces, presented at ISCA’20.
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Chapter 2

Accelerating and Analysing Cognitive Models Using
Compiler Techniques

2.1 Introduction

Cognitive neuroscientific models seek to explain the neural mechanisms underlying the

psychological processes responsible for human cognitive function, including the dynamics

of perception, attention allocation, decision making, cognitive control, and learning [38–

42]. In addition to gaining deeper insights into how the brain gives rise to the mind,

a long-term goal of such modeling is to provide a better scientific grounding for the

diagnosis and treatment of psychological disorders and trauma [43–45].

Models from cognitive neuroscience, and neuroscience more broadly, can also help

design human-like artificial intelligence. Consider artificial neurons [46] and their learn-

ing algorithms (e.g., Hebbian learning [47] and back propagation [48, 49]), and concepts

like lateral inhibition [50, 51] that have made their way from neuroscience to artificial

intelligence. More recently, Google’s DeepMind has incorporated knowledge of comple-

mentary learning systems in the hippocampus and neocortex (reflecting the cognitive

functions of episodic and semantic memory, respectively) in its design of AI for game-

play [52]. Looking ahead, cognitive models are expected to assist the development

of meta-learning by offering guidance on learning algorithms that can induce learning

algorithms themselves (i.e., learning to learn) [53–57].

However, efficient execution of congitive models faces several key challenges – they

can be computationally intensive, heavily composited, and highly heterogeneous in their

computational requirements. We show how compilation techniques can be used to ac-

celerate and analyze cognitive neuroscience models. In so doing, we address these key
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challenges. Figure 2.1 shows an example cognitive neuroscience model1, the "predator-

prey" game, a virtual pursuit avoidance task that provides a simplified version of models

that address the role of cognitive control in the deeply evolved skill of chase and escape

behavior. This game is used to measure perception, attention allocation, and action se-

lection, and has been used previously to compare intelligent agents against non-human

primates [58]. A neural network processes visual data to extract the position of the

player, predator, and prey avatars on a computer screen. These positions are perturbed

with random number generators that are mitigated by the allocation of attention to an

avatar; allocation of attention carries a cost that constraints the total amount of atten-

tion that can be paid to all avatars, requiring a control decision about how much allo-

cation should be paid to each. A control mechanism implements optimization strategies

for determining how much allocation to attend to each avatar to maximize the likelihood

of success while minimizing attentional costs. Cognitive models like the predator-prey

task face performance and analysis challenges.

Figure 2.1: An example cognitive model for the predator-prey task, a virtual avoidance
game for chase and escape behavior.

Performance: The greater the biological sophistication of cognitive models, the longer

their execution time; e.g., we have found variants of the predator-prey model to take

one week of runtime. The problem is their reliance on high-level languages like Python.

Python’s flexibility makes it well-suited for modeling environments that need composited

1A demonstrator that combines several features based on real model presented later in this work
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assembly of plug-and-play components, and it offers a rich library of highly optimized

modules for scientific computation [25–28]. However, its interpreted nature and dy-

namic typing system incur high performance overhead, while its global interpreter lock

precludes easy multi-threading. In §2.5, we show that existing JIT-based approaches

to accelerate state of the art Python-based cognitive models [34, 35] achieve only 15%

speedup in the best cases, and usually far less.

One might also consider using hardware accelerators to exploit the inherent het-

erogeneity of cognitive models, but again practical considerations stand in the way.

Ideally, the neural network in Figure 2.1 would run on a GPU or neural network accelera-

tor [6, 59], perturbation steps would use stochastic accelerators [60], attention allocation

would run on a GPU or optimization accelerator (e.g., a quantum annealer [61]), etc.

In our work, we show that accelerating individual components in isolation with transi-

tions from/to Python is insufficient, and we need holistic accelerator-level parallelism

instead [62]. The challenge is that different accelerators generally use distinct specialized

runtimes and suffer high overheads when passing data amongst one another [63].

Another impediment to accelerator-level parallelism is that neuroscientists are inter-

ested in questions like – How long did an agent take to make a correct versus incorrect

decision? When was a particular component in the brain activated? These model dy-

namics result in the generalized execution algorithm in Listing 2.1, where control-flow

is a fundamental part of the model, with control-flow decisions often reported as model

outcomes. This makes it difficult to design straightforward data-flow acceleration so-

lutions as the model’s control and dataflow graph (CDFG) is similar to Figure 2.2.

Execution of each model component updates global state and control always returns to

the central scheduler, obfuscating opportunities for offloading and accelerating compo-

nent sequences.
def wrap_exec (model , inputs , params , s t a t e ) :

while not model . i s_ f i n i s h ed ( s tate , params ) :
for n in model . nodes :

i f n . can_execute ( params , s t a t e ) :
n . wrap_exec ( inputs , params , s t a t e )

Listing 2.1: Simplified model execution algorithm that shows the impact of a centralized
scheduler managing control flow.

Analysis: In addition to performance, the composited nature of cognitive models leads
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Figure 2.2: A CDFG of the model code that captures the impact of the centralized
scheduler shown in Listing 2.1.

to ever-increasing growth in model complexity as well as parameter types and counts.

This rapid scaling makes it difficult to reason about and build larger models even when

performance may allow it. For example, when constructing the predator-prey task in

Figure 2.1, modelers would benefit from knowing information like value ranges passed

along edges or calculated between nodes. They would also benefit from automated

approaches that highlight similarities between newly developed models and libraries of

existing models. One might expect such relationships to be obvious to modelers on a

small scale, but providing automated analyses of model structures can lead to better

model development, more frequent model reuse and ultimately, a better understanding

of the underlying mechanisms and their interactions, especially as models become more

complex. Model analysis will become vital with the development of common model

exchange formats that are enabling scientists to fuse models designed by distinct third-

party researchers for their research [64].2

Research contributions. We realize Psylang, a compiler frontend to LLVM [66] that

uses domain-specific information about cognitive models to extract and generate efficient

portable code and enable automated analysis of brain models. Our key insight is that

this is possible by reconciling the CDFG generated by the compiler front-end with

2This is akin to the use of common exchange formats in machine learning and deep learning, like
ONNX [65].
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the original model graph. Psylang encodes domain-specific information about cognitive

modeling so that the model’s scheduling rules can be inferred statically, thereby allowing

conversion of the CDFG from Figure 2.2 into a graph that more closely resembles the

model in Figure 2.1. While Psylang may not completely elide translations to/from the

central model scheduler and reconstruct the model graph, particularly when aspects of

the model control flow cannot be determined statically, it often comes close. This has

several benefits, which we evaluate by integrating Psylang into PsyNeuLink, a state of

art open-source cognitive modeling environment [67]:

• Generation of highly efficient CPU code. We achieve up to 20K× speedup versus

Python baselines of cognitive models as well as JIT-enabled Python implementations

(PyPy [34] and Pyston [35]) on an Intel i7-8700 CPU core.

• Accelerator offload. We achieve another 3.3× speedup over our CPU-optimized code

using LLVM’s code generation backend for GPUs. Such accelerator-level parallelism

was previously not exploitable in environments like PsyNeuLink.

• Repurposing LLVM passes for model analysis. We use a combination of automated

code translation and manual implementation to efficiently represent the original cog-

nitive model in a standard compiler IR. We then repurpose standard compiler analyses

like value range propagation [68], scalar value evolution [69], and dead code elimina-

tion to generate useful user-oriented feedback to the modeler. We use monomorphic

code generation and line debugging information to link generated code back to the

original brain model to offer information on values that propagate along model edges

or nodes or identify parts of models that are not executed under certain parameter

ranges, and more.

• Repurposing software engineering tools for model analysis. Via efficient representation

in compiler IR, we also reuse software engineering techniques like clone detection [70]

to detect similarities between models. Detected similarities between generated func-

tions can be presented in terms of model components or collections of components.

Central to Psylang’s design is the fact that cognitive models do not need Python’s
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dynamic typing system, that hot functions can be inferred before runtime, and that the

compiler can leverage domain-specific information to determine scheduling rules that

reconstruct the original data-flow of the cognitive model. These observations mean

that the compiler can be freed of slow runtime features of Python and the presence of

modeling necessities like the centralized scheduler, and can determine the original model

structure at compile time. By leveraging these insights, we have integrated Psylang

within PsyNeuLink. Psylang is implemented in Python and generates LLVM IR which

is then passed to LLVM for compilation and execution. The same IR is also analyzed

using combination of existing, extended, and completely new tools.

Broad research lessons: Psylang presents a case study of acceleration and analysis

of domain specific workloads using generic software engineering tools. As systems em-

brace extreme heterogeneity, the development of languages and systems software that

can productively use hardware enhancements becomes vital. Questions on whether to

create new or change and reuse existing software abstractions are first-class research en-

deavors. We believe that the answer is a delicate balance to deliver on performance and

productivity. While the specific decisions we made and detail in this work are tied to

the nature of cognitive modeling, we believe that the lessons presented offer a template

applicable to other domains. This includes, for example, the lesson that interpreted

execution and highly dynamic nature of high-level languages can be barriers to good

performance, but that domain-specific information can circumvent these problems. We

also show the need for efficient integration of accelerator runtimes, an observation that

is likely to be vital for future accelerator-rich systems [62]. Finally, we also show that

compiler augmentations likely to be broadly beneficial for accelerator-centric tasks; e.g.,

for model analysis, we had to extend passes to support floating point computation in a

manner likely useful for emerging GPU compute tasks that often require special floating

point handling.
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2.2 Background

Cognitive neuroscience relies on a wide selection of high-level models that explain the

psychological processes behind brain function. These models can include mathematical

expressions that describe biologically-accurate modeling of groups of neurons [71, 72],

higher-level behavioral models of brain activity [73].Notably, cognitive models differ

from neural networks – even though they may include some nodes that implement neural

networks – in that they describe our understanding of the human mind rather than an

opaque solution to a specific problem. This "explainability" is of interest to not just

understand brain function, but to also help build transparent AI decision-making based

on an understanding of the human brain rather than a black-box trained on correlations

hidden in neural network training data.

High-level languages in cognitive modeling: Cognitive modeling environments

have evolved over time in their ability to support large-scale composited models with

flexibility. Table 2.1 shows that while some early tools like NEURON, GENESIS, and

ACT-R relied on C, C++, or even Lisp, increasingly higher-level language features

have become non-negotiable. This is best understood by considering the flexibility and

plug-and-play functionality desired by cognitive neuroscientists today. As an example,

consider the addition of a memory component to the model in Figure 2.1. This com-

ponent may be represented as either a biologically accurate model of the hippocampus,

a Hopfield network, or a simple key-value store, depending on the desired level of fi-

delity. This is akin to architecture simulators, where a microarchitectural component

can be represented with either a high-level functional simulation or detailed cycle ac-

curate modeling. High-level languages are able to accommodate this level of flexibility

naturally.

Consequently, modern cognitive modeling tools include support for scripting by ex-

porting an interface to higher-level languages like Python or providing custom scripting

solutions. We focus on PsyNeuLink as it is representative of sophisticated modeling

environments, and it is the state of the art in single modeling environments that can

scale to arbitrary levels of detail based on the modeler’s needs. Moreover, PsyNeuLink
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also supports compositions of sub-models built in some of the other environments; e.g.,

portions of the models can consist of neural networks built in frameworks like Pytorch.

Tool Language Description
PsyNeuLink [67]
Focus of our work

Python High-level block modeling with support for
sub-models built using frameworks like Py-
Torch.

ACT-R [73] Lisp High-level behavioural modeling that uses
symbolic computation.

TensorFlow [74] C++
Python bindings

Widely used highly optimized neural net-
work framework.

PyTorch [28] C++, CUDA,
Python bindings

Widely used highly optimized neural net-
work framework.

EMERGENT [75] C++,
C-Super Script

Biologically accurate and artificial neural
networks.

Human
Neurocortical
Neurosolver [72]

Python Neuronal circuit simulation to match EEG
and MEG recordings.

NEURON [71] C,
Python bindings

Biologically accurate modeling of neurons,
parts of neurons and neuronal circuits.

GENESIS [76] C,
Custom script

Sub-cellular components and biochemical re-
actions to complex models of single neurons,
simulations of large networks, and system-
level models.

Table 2.1: Modeling tools used in computational neuroscience.

Cognitive model structure: Each brain center or psychological process in PsyNeuLink

is represented by a node or component in a graph. For example, in Figure 2.1, the visual

processing, attention allocation, position, perturbation, and movement decision nodes

are components. Components can be either high-level functions, like logistic functions,

or entire nested models. Each component also includes input pre-processing, parame-

ter processing, and output post-processing. These assemblies are dubbed mechanisms.

Each node in Figure 2.1 other than ’Visual Processing’, which is a neural network com-

position, is a mechanism. Edges between nodes are projections and reflect not only I/O

relationships, but can also perform arbitrary transformations of the data along the way.

For example, Figure 2.1 presents the ’Extraction’ nodes for structural clarity, but the

same computation and reduction in data dimension can be done in projections.

A critical part of modeling environments like PsyNeuLink – and the biggest challenge
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in enabling model acceleration and automated analysis – is its scheduler. The scheduler

allows modelers to specify when each component should run via a collection of scheduling

rules. The rules can be as simple as "run component X once after component Y has run"

to more complex ones like "run component X once after component Y has settled and

component Z has run at least N times". Table 2.2 presents examples of scheduler rules

in PsyNeuLink. The nature of scheduling rules and whether they depend on processed

data, determine whether a static schedule exists. Static schedules are useful because

they enable analyzing computational sequences rather than each component in isolation.

They are also the targets that Psylang aims to eliminate in order to bring the compiled

CDFG as close as possible to the model graph to facilitate performance and analysis.

Rule Semantics
afterNRuns(other_node, n) A node can execute in every iteration after

other_node executed at least n times
everyNRuns(other_node, n) A node can execute in this iteration if number of

other_node executions is divisible by n
isF inished(other_node) A node can execute in this iteration if other_node’s

finished flag is set.
and(r1, r2) A node can execute in this iteration if both r1 and

r2 are satisfied.
or(r1, r2) A node can execute in this iteration if either r1 or

r2 is satisfied.
not(r1) A node can execute in this iteration if r1 is not sat-

isfied.

Table 2.2: The first two scheduling rules are static (i.e., independent of processed data),
the third is dynamic (i.e., data-dependent). The last three are either static or dynamic,
depending on the combined rules.

Evaluated models: Table 2.3 summarizes the set of cognitive models that we use to

drive Psylang’s design and evaluation. The experiments used to construct these models

are shown in Figure 2.3. Our choice of models captures several key characteristics of

cognitive modeling tools. First, all of these models are composited and heterogeneous.

There is therefore no single constituent kernel that can be accelerated to achieve good

performance; instead, the entire model is the kernel. Second, these models include

stochastic elements and need to be run thousands or millions of times to build sufficiently

detailed distributions of results. This means that it is desirable that any single run
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Model Name Section Modelled effect Computation
Stroop model 2.2 Conflict in shared

representation of
colour

Time progression of accumulated
stimuli (and thus time to make a deci-
sion) for aligned and conflicting con-
flicting inputs. The baseline model
used in our work is configured to run
1500 time steps.

Necker cube 2.2 Conflict in
perceived ori-
entation of a
geometric object

Repeated adjustment of perception
stimuli strength in favour of one ori-
entation or the other. For our stud-
ies, we use a full model with all eight
vertices, a hand-optimized/vectorized
version of the same model, and a sim-
plified version of it that uses only three
vertices.

Predator-Prey 2.2 Attention alloca-
tion and decision
making in a sim-
ple game

Search for optimal parameters to al-
locate attention between three game
avatars. In our work we consider vari-
ants with 2, 4, 6 and 100 levels of at-
tention.

Multitasking 2.2 Conflict monitor-
ing in task deci-
sions

Input processing using neural network
feeding into LCA

Table 2.3: Cognitive models used to drive Psylang’s design and evaluation.

completes in fractions of a second of wall clock time. Third, these models benefit from

acceleration not only in reducing wall clock time but by being amenable to improvements

in biological plausibility and sophistication in model. Fourth, these models are highly

composited and interact with other frameworks like Pytorch. And finally, partly due

to this composition, they are sufficiently complex that they are useful demonstrators of

the types of automated analysis that would be essential on models of even large scale.

Botvinick Stroop test

Figure 2.3a shows an example of the Stroop effect test, which demonstrates conflict in

the brain’s representation of color emanating from visual and language stimuli [77]. We

run a PsyNeuLink implementation of the Botvinick version of the Stroop test [78]. The

model graph, shown in Figure 2.4a, uses the strength of font color and word meaning as

inputs, and the underlying conflict in representation of color in human mind. The model

output is ’decision energy’ and the response time needed for the energy level to cross a



21

Red

Green

Blue
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Figure 2.3: Experiments used to construct the cognitive models used for evaluations in
this work.

threshold and for subjects to perform the assigned task. The purpose of this model is

to predict response/reaction times which can then be compared to experimental results.

Because each time step of this model updates decision energy, improved performance

permits simulation with smaller time-steps for higher fidelity results.

Necker cube

Figure 2.3b shows an optical illusion first described by L. Necker [79] and an example of

the notion of bi-stable perception, where the observer experiences changes in perception

of the cube’s orientation. The model graph, shown in Figure 2.4b, represents each

cube vertex and tracks its association with one of the two possible orientations. The

model predicts the time taken for perception to switch from one orientation to another.

Improved performance allows scientists to reduce the size of time step, and run models

with higher fidelity, or consider objects with more vertices.

Predator-prey game

Figure 2.1 presented a sophisticated version of a predator-prey task, shown in Fig-

ure 2.3c, that we consider in our evaluation. A blank canvas includes avatars for the

player, a predator, and a prey, with the goal of the game being to catch the prey

while avoiding the predator. However, the input locations are perturbed before being

processed and the amount of perturbation is inverse to the amount of attention paid
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to each avatar. At each time step the model searches for the best attention alloca-

tion considering the location of next move, and the costs associated with maintaining

or changing attention levels. The optimization step considers attention allocation and

runs the rest of the model to evaluate fitness, as well as the cost functions. Accelerat-

ing this model permits scientists to significantly increase model sophistication by either

considering more levels of attention, decreasing the time step size, or both.

Multi-tasking model

Like the Stroop model, the multi-tasking model represents conflict in representation.

The model graph in Figure 2.4d shows that the inputs are colours and shapes associ-

ated with a specific task. A neural network is used as an input to identify color and

shape, with this information passed to a Leaky Competing Accumulator (LCA) com-

ponent [80]. The LCA returns the time taken to reach a decision, and the decision

outcome. Repeated runs provide a distribution of times and correct versus incorrect de-

cisions. This model differs from the other examined models by using a neural network

implemented in PyTorch to process input colours and shapes. It thus represents a class

of heterogeneous models that span multiple execution environments (PyTorch and LCA

in this case). Morover, accelerating this model enables use of smaller time steps, more

inputs, and the interference of earlier results on later decisions. It also allows designing

models that more realistically represent human behavior, with more than two conflicting

inputs and tasks.

2.3 Design & Integration with LLVM

Psylang exploits several observations in order to generate efficient code. The first obser-

vation is that the models don’t need dynamic type system that Python offers. Thus the

first step in compiling cognitive models is type inference to deduce static types used in

computation. The second observation is that the ’hot’ functions are known in advance

and don’t have to be determined at runtime. The third observation is that the compiler

is able understand static scheduling rules and reconstruct the original data-flow. This
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Figure 2.4: Example models, as visualized by PsyNeuLink (annotations are in blue).
Green nodes denote input, red nodes denote outputs, and brown nodes are both input
and output. Purple nodes determine control over other nodes.
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Figure 2.5: PsyNeuLink model (Stroop test model) visualization processed through
Psylang pipeline. Green nodes denote data input, red nodes denote outputs, and purple
nodes correspond to projections (edges) in the original graph. Because the Stroop test
model uses only static scheduling rules, the original model can be recovered in the form
of data-flow graph.

has advantages for analysis that can consider chains of executed components, as well as

potential performance benefits.

We choose LLVM as our compiler backend, but GCC offers similar capabilities and

would work with only minor modifications to Psylang. There are multiple benefits for

targeting state-of-the-art production compiler. Beyond the obvious benefits in targeting

multiple architectures (Psylang can run on x86,arm64,armv7,power, and even s390x),

as well as GPUs (Psylang targets NVPTX to run on CUDA capable GPUs), we also

exploit serialized for of the IR to pass generated programs and external analysis tools.

It also enables us to use existing compiler APIs to process and analyze generated code.

The compiler pipeline is built around the above observations and it’s outlined in

figure 2.5. The compilation process takes few steps; 1○ data structures are analyzed

and converted to static representation. Lists, sets, and other dynamic data types are
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converted to structs and arrays. This conversion also determines data layout to be

used by the compiled functions. Some model parameters are considered structural (e.g.

’metric’ parameter of distance function) and integrated directly in step 2○ rather than

converted to static representation. This allows Psylang to choose and decide which

parameters are exposed to the compiler and which are not. 2○ LLVM IR is generated to

match computational semantics, this is done via combination of automated translation

and hand-written IR code. This step uses thin LLVM abstraction provided by the

llvmlite [81] module. Because the data structures were determined in step 1○, Python’s

polymorphic semantics are specialized as necessary. For example where Python uses

simple addition, this step generates either vector addition, scalar to vector addition, or

scalar addition based on the inferred types of operands. IR generation tries to match the

original Python model semantics as closely as possible to avoid the need to re-validate

compiled variants of the models. This often leads to code that is more demanding (e.g.

uses higher precision data types) or less suitable for acceleration (e.g. using specific

PRNG). These issues are discussed in more depth in § 2.6. 3○ the generated IR can be

passed through LLVM’s builtin optimization and code generation passes. 4○ the final

results is exported as a Python ctype function that is invoked from Python and uses

ctype structures generated in 1○ as arguments.

For analysis purposes we extract the LLVM IR generated in step 2○ and pass it to

a collection of analysis tools. The analysis tools target generic IR form, and are not

affected by domain specialization that was exploited to generate it.

There are several key differences between Psylang and traditional JIT compilation,

based on the observations discussed earlier. Psylang avoids runtime analysis of hot

paths because it can exploit domain specific knowledge of model semantics, i.e. Psylang

knows which code to compile and which can be left in Python. Psylang doesn’t need

to support full semantics of Python language and dynamic data types. Psylang also

uses monomoprhic code generation. Even if a Python function is reused by multiple

components, Psylang generates separate implementation for each component. This is

partly required by the polymorhic nature of Python’s operations (e.g. vector addition

and scalar addition can use the same Python function). It also enables us to track
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generated code to each model component rather than shared source code function, and

this can be exploited for more accurate analysis. The combination of the above allows

us to not only generate much more efficient code than traditional JIT compilers, but it

also significantly simplifies the design.

2.4 Model Analysis

Beyond achieving high-performance, Psylang provides modelers with insights gleaned

from compiler analysis passes. Inspecting the LLVM pass library we found several passes

that can provide beneficial information to the modeler. This is similar to providing

compiler feedback to application programmers. In order to extract useful information

we construct a separate ’analysis’ pipeline. This pipeline extends passes beyond what

is currently done for efficient code generation. An overview of these passes and our

extensions is presented in table 2.4.

In addition to standard compiler passes, we use IR representation of cognitive mod-

els to apply clone detection techniques. This demonstrates the usefulness of common

IR representation of models, and wider applicability of software engineering tools in

cognitive modeling.

Both of these approaches aim to improve the modeling environment by providing

modelers with rich information about models they are building. While a significant

part of model analysis is domain specific and needs to be done on a higher level, we

demonstrate several analyses that are currently used across programming languages and

extend them to the domain of cognitive modeling.

Function Inlining and Loop Unrolling

Increasing the aggressiveness of function inlining and loop unrolling beyond their thresh-

olds for efficient code generation benefits our analysis pipeline in several ways. First,

it allows the compiler to analyze and potentially eliminate static scheduler rules. This

in turn allows analyzing sequences instead of individual components. Second, it allows

us to use existing intra-procedural passes for an entire model instead of extending the
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Pass Name Application Modification
Function inlining Enables application of other intra-procedural

optimizations and analyses on the entire
model.

Increase con-
straints.

Loop unrolling Enables composition of static scheduling
rules to reconstruct node execution order in
the original model.

Increase con-
straints.

Dead Code Elimi-
nation (DCE)

Highlights redundant parts of the model,
pointing to design inefficiencies or parame-
ter special cases. Works in combination with
constant propagation and value range prop-
agation.

None. Bene-
fits from exten-
sions to VRP
and SCEV.

Value Range
Propagation
(VRP)

Calculates result ranges when provided with
parameter and input constraints. Ranges can
be reported back to the modeler, or used in
DCE.

Extended to
support floating
point types.

Scalar Evolution
(SCEV)

Calculates variable ranges in relation to loop
iterations, extends V RP to loops. Similarly
to V RP the calculated values can be re-
ported directly to the modeler, or used in
DCE.

Extended to
support floating
point types.

Global Value
Numbering
(GVN)

Detects identical computation, variant of
common subexpression elimination (CSE)

Analysis uses
more robust
clone detection
instead (2.4)

Scalarization and
Reassociation

Scalar operations are used for canonical rep-
resentation of computation.

None

Table 2.4: Example of compiler passes used by Psylang for model analysis

amount of information passed between procedures.

Dead code elimination (DCE)

DCE is a rather straightforward optimization included in the LLVM suite that can be

used to provide compiler feedback to the modeler. Code that can be safely eliminated

does not impact the result or preserved state. This redundancy can be a consequence

of specific selection of parameters, or a bug in the model design. Dead code can be also

introduced intentionally to achieve a more readable model structure.

To demonstrate usefulness of this transformation, we looked at the Stroop model

from [78], and discussed in section 2.2. The visualization of PsyNeuLink representa-

tion of the model is presented in figure 2.6a. After fixating the selected parameters,
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Figure 2.6: Impact of DCE on Stroop test model after exposing configuration parameters
to the compiler

DCE reveals that the operations in the input nodes can be safely eliminated without

changing the result. For the Stroop test model this is expected, and the behaviour was

implemented intentionally for better structural clarity. For larger composited models

this analysis should uncover redundancies that do not manifest in individual submod-

els. However, such models are only currently being developed utilizing the performance

benefits provided by Psylang.

Pinpointing unused parts of the model will become more important with future mod-

els composed of separately developed submodels. For example a situation in figure 2.6b

shows how a nested submodel can modulate a parameter in parent model. It also enables

modelers to use a library of generic modeling approaches and pinpoint redundancies that

emerge from specializing generic models to specific use cases.

Value Range Propagation (VRP)

Next we investigate Value Range Propagation, a dataflow analysis that determines ranges

of variables based on control flow, type restrictions, and used operations. For example

exp(x) can only ever by a positive number or NaN , and a commonly used Logistic

function can be shown to always output values in range (0,1>. We have extended

LLVM’s implementation of this pass to include support for floating point types and

common floating point operations.

We checked the impact of varying values of the back edge in the task selection node
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of the Stroop model. The results are reported in table 2.5. The ability to examine pa-

rameter ranges allows modelers to reason about model sensitivity to specific parameters.

Back-edge matrix Results (decision)[
0 < −2,−1)

< −2,−1) 0

]
< 0.990, 0.995 >[

0 < −5,−2)
< −5,−2) 0

]
< 0.976, 0.990 >

Table 2.5: Impact of back edge matrix values on results after 2 iterations of the Stroop
test model.

Extending value range propagation to support floating point ranges is useful beyond

analyzing cognitive models. Many floating point operations need special handling in

the presence of special values like negative zero, not-a-number, or infinities. While the

compiler can be instructed to optimize these using special fast-math optimization flags,

these are currently set globally per compilation unit or per function, or tracked in a

limited way. Floating point ranges can be used to determine the absence of special

values for each operation and fast-math optimizations can be applied without breaking

strict semantics. This is especially useful for GPU targets which often have specialized

fast instructions that do not fully adhere to IEEE floating point semantics.

Scalar Evolution (SCEV)

extends variable value tracking to loops and tracks value ranges across loop iterations

as well as calculating number of loop iterations if it can be inferred from the available

information. Similarly to Value Range Propagation we extend LLVM’s SCEV pass to

support floating point type. We also extend the pass to calculate minimum number of

loop iterations iterations. This allows us to provide modeler feedback even on models

that predict response times based on accumulation of evidence, such as race models.

For example a simple linear ballistic accumulator (LBA) [82] race, presented in

Listing 2.2, would need between 17 and 481 iterations to complete. Variable ranges at

loop exit can then be used to continue range analysis beyond loops. Although these

techniques can only use previously discovered analytical forms of recurrent expressions,

exposing the information to the modeler can provide immediate feedback that could
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indicate reduction of model strength based on used parameters.

#define assume (x , l , h ) \
i f ( ! ( x<=h && x>=l ) ) return ; \
else (void )0

void race_model ( f loat s tar t ing_point ,
f loat thresho ld ,
f loat rate ,
f loat st imulus ,
f loat noise ,
f loat time_step ,
f loat ∗out )

{
assume ( star t ing_point , 0 . 1 f , 0 . 1 f ) ;
assume ( thresho ld , 2 . 0 f , 2 . 5 f ) ;
assume ( no i se , 0 . 5 f , 1 . 5 f ) ;
assume ( rate , 0 . 5 f , 0 . 5 f ) ;
assume ( time_step , 0 . 1 f , 0 . 1 f ) ;
assume ( st imulus , 0 . 2 f , 1 . 5 f ) ;

f loat acc = star t ing_po int ;
f loat count = 0 ;
while ( acc < thre sho ld ) {

count += 1 ;
acc += (1 . 0 f − ra t e ) ∗ s t imulus

∗ no i s e ∗ time_step ;
}
∗out = count ;

}

Listing 2.2: Race model example in C. Scalar evolution can calculate the expected
number of iterations to be between 17 and 481

Adaptive Mesh Refining (AMR)

While value ranges can be reported directly to the modeler, range computation can be

also exploited to improve performance of another critical task; parameter search. In

this task the model is run repeatedly with associated cost function in order to find the

best cost-benefit trade-off. With the ability to do ranged computation we can examine

subspaces of global parameter space, replacing traditional optimization techniques with

adaptive mesh refining approach.

AMR is a known technique used to dynamically increase or reduce resolution (and

resource usage), based on how "interesting" a given region is. This can be co-opted

to improve optimization functions in cognitive models. Utilizing compiler value range
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Figure 2.7: Search for minimum using mesh refining in the Predator-Prey model super-
imposed over sampled grid

propagation can quickly provide information about large sections of the parameter space.

An example is shown in figure 2.7. There are multiple techniques that can be used to

solve this optimization problems. However, gradient based techniques require analyzing

the computational model and constructing a gradient function. We observe that the

compiler already has similar information available in the form of value ranges. Although

using compiler value ranges is not a complete substitute for gradient based techniques,

the information is already generated during the compilation process and can be easily

reused for optimization purpose.

Clone detection

detects computation clones between two models. Detecting clones or similarities in

CDFG is an instance of subgraph isomorphism problem, which is known to be NP-

complete [83]. Our tool leverages the limited size of analyzed models and uses straight-

forward brute-force approach to demonstrate the feasibility of clone detection in models

at IR level. It demonstrates that given the IR for two models it is possible to find shared

computations between them. To achieve this, we leverage LLVM’s existing Function-

Comparator framework to detect exactly equivalent functions. Typically this has been

used to detect similar functions within the same module to merge them. We use this to

detect similar functions across modules. The tool then traverses each function in CFG-

order. Its output includes the binary information if two functions are exactly identical

or one of them is subset of the other. We extend this approach to output the parts

of code which were identified as different. The differences can be traced (using line
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debugging information) back to the corresponding model element.

(a) Leaky Competing Integrator (LCI) (b) Drift Diffusion Integrator (DDI)

Figure 2.8: Identical computation highlighted in red. Setting rateLCI = 0, offsetLCI =
0, noiseLCI = N(0, 1), rateDDI = 1, and noiseDDI = 1, configures both functions to
perform identical computation.

To demonstrate usefulness of clone detection we first consider two similar functions;

DriftDiffusionIntegrator and LeakyCompetingIntegrator. These functions underpin two

most commonly used decision making models; Drift Diffusion Model (DDM) for two

alternative force choice decision making, and Leaky Competing Integrator (LCA) multi-

choice model. Both of them work in a similar fashion, they accumulate ’decision energy’

until a threshold for decision is crossed, the results are not just the decision taken, but

also the number of iterations (time-steps) it took to reach that decision. The models

are run thousands of time to build histogram of response times. Parameters include

strength of stimuli, noise, and any inhibitory influence between different competing

decision. It’s easy to see that a multi-choice model can be used in place of a two-choice

model. Figure 2.8 shows that the underlying accumulation is very similar with identical

sequence at the core of the computation.

The important difference is that there’s a known analytical equivalent of DDI. The

analytical function calculates the first three statistical moments (mean, variance, skew)

of times to take both correct and incorrect decisions. Notifying the modeler that a
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decision making iterator can be replaced with an analytical solution can save thousands

of model executions and thus significantly improve performance.

Our first example found identical computation on the level of functions. However,

aggressive inlineing allows our methodology to work across components. To demon-

strate cross-component clone detection we selected two models of Necker cube, shown

in figure 2.9. The first model is simplified to only three vertices per geometric shape

(originally eight – cube). It uses two nodes per shape vertex, one for each way the

orientation can be perceived, for six nodes total. The other model, is hand-tuned to

operate on 16 element vectors and uses only two nodes total. One vector lane represents

signal strength of particular combination of vertex and orientation.

a-1

a-0

a-2 b-1

b-0

b-2

(a) 3-vertex Necker cube model

node B

node A

(b) Vectorized
Necker cube
model

Figure 2.9: Comparison of PsyNeuLink Necker cube models. a) is a simplified version
with only three vertices, using percepts per vertex (6 nodes) b) is a vectorized version,
each vertex × percept is represented as lane in a vector rather than an individual model
node

The models have completely different structure, and each node performs different

amount of computation. Our tool correctly recognizes that the simplified Necker cube

model is completely included in the full vectorized version. The only identified difference

is in two IR instructions (out of 3000) corresponding to input handling.

Because our clone detection tool works on the IR level, it is independent of the

original model structure. This allows us to analyze core computational differences of

the models. We can check if two models or parts of the same model are similar, whether

this is expected to confirm our understanding, or unexpected result of a bug, or a

completely new insight into relationship between two cognitive models.
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Figure 2.10: Running time comparison of models. Large models (botvinick and predator-
prey-large) did not complete when run using PyPy3. multitasking uses pytorch which is
not compatible with PyPy3.
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Figure 2.11: GPU running time using different restrictions on available register space.
Total size of private (per-thread) data is 18.5kB for double precision variant, and 15.5kB
for single precision.

Although our demonstrator uses straightforward brute-force comparison method,

operating on standard IR makes approaches developed for detecting clones in application

software [84, 85] directly applicable.

2.5 Performance Evaluation

We compare Psylang with the baseline PsyNeuLink implementation executed using

Python-3.6.9 as well as pypy3-7.3.2 and pyston-2.0.0. All test were run on an off-

the-shelf workstation using Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz and 16GB

of DDR4@2666Mhz RAM. The execution times were collected using pytest-benchmark

package and we report average running time and standard deviation error bars. pytest-

benchmark was configured to include two warmup runs before collecting the runtime

data.

We run a selection of models described in section 2.2 in different configurations.
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Figure 2.12: GPU IPC and instruction count using different restrictions on available
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"Botvinick" refers to the Stroop model described in section 2.2. The Necker cube

model was run in three different configurations; manually vectorized version, simpli-

fied variant using three vertices (S), and a full eight vertex version (M). Predator-prey

model was configured to use two, four, and six levels of attention per game avatar for

Small, Medium, and Large configuration, respectively. We also ran an eXtra Large

configuration with 100 levels of attention. Multitasking model was run without special

configuration.

We were surprised by PyPy3’s performance. Despite its stated goals of increased

performance and lower memory usage. It performed ∼ 30% slower than vanilla Python

on average, and the two largest instances failed to complete after exhausting all 16GB

of memory available on our test system.

While further development will undoubtedly solve some of these issues, it illustrates

the complexity of designing a generic JIT compiler for Python. PyPy3 needs to spend

resources to gain information about the workload that is already known by its domain

specific nature. Indeed we have observed that PyPy3 in some models achieves better

performance with its JIT engine turned off.

Moreover, PyPy3 and Pyston do not deliver the expected benefits of scaling. Scaling

the models is important, as it allows neuroscientists to collect high fidelity data. While

compilation cannot change the properties of the implemented algorithms, Psylang lowers

the base running time enough for large scale models to execute on standard machines.
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We also evaluated the option of using CUDA GPUs for Predator-Prey’s parallel

search. To push scaling to its limits, we increased the number of attention levels to 100

(or 1M model evaluations). Using a GPU provided further 3.3× performance improve-

ment over compiled CPU execution, completing the task in 1.25 and 4.18 seconds for

GPU and CPU respectively. Both CPU and GPU significantly outperformed Python

execution which was stopped after 24 hours, at which point the Python run was termi-

nated, giving a speed up of more than 20000× for CPU and almost 70000× for GPU.

More fundamental challenges in mapping cognitive models to GPUs and accelerators in

general are discussed in § 2.6.

TheMultitaskingmodel demonstrates the need to accelerate models as a whole rather

than focusing on individual parts. The baseline model invokes PyTorch for the neural net

part of the model. However, repeated switches between Python and PyTorch execution

slow down the performance. Even though Psylang only generates naive, straightforward,

implementation of neural network inference, tighter integration with the rest of the

model allows it to outperform the baseline more than three orders of magnitude.

In general our experiments show that available solutions are either too generic and

miss available optimization opportunities (PyPy3, Pyston), or too specialized on a nar-

row subtask (PyTorch). Psylang strikes a balance between exploiting enough domain

specific knowledge to achieve good performance while maintaining its generality to sup-

port wide range of modeling workloads expressed in PsyNeuLink. This allows Psylang

to achieve between 10× and 70000× better performance than the Python baseline.

2.6 Discussion and Future Work

Psylang is the first step in bringing the benefits of compilers to the world of cognitive

modeling. We have discussed both performance implications and how compiler analyses

can be used to provide useful feedback to the modeler.
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Heterogeneity

The biggest challenge is to provide provide high performance for model partitions that

might have significantly different characteristics. Different parts can map to different

accelerators, GPUs, TPUs [6], and number of other HW accelerators [86–88] have been

proposed to speed up both learning and inference in ML workloads. Efficient use of these

resources will be crucial to provide high performance to cognitive models as well. At

the same time this presents an opportunity to leverage the existing work on accelerator

integration done in systems community [63, 89, 90].

Compiler optimizations

Another challenge is to generate efficient code, and perform useful analysis across het-

erogeneous compute environments. Optimizations of neural networks have developed

their own set of techniques (like quantization and synaptic pruning) that are different

from traditional compiler optimizations. Some of them (like quantization) might be

necessary to make efficient use of specialized HW. For example GPUs, and TPUs offer

the highest throughput for low bit data types like 16-bit floating point or 8-bit integers.

Psylang sidesteps both of these issues by providing numerical equivalence between

the original Python model and the compiled version. However, this is achieved by only

using 64-bit floating point to match Python semantics.

Randomness

Many of cognitive models are stochastic or rely on stochastic processes. For example, in-

put perturbation in the Predator-Prey model relies on Gaussian noise applied to accurate

inputs. This stochasticity is modelled using software implementations of pseudo-random

number generators (PRNGs). Previous work showed that using different PRNGs can

lead to up to 30% difference in results of Monte-Carlo simulations [91]. We are not aware

of any similar work in the field of cognitive modeling. Once more, Psylang sidesteps this

problem by strictly following Python semantics and using Mersenne Twister PRNG,

the same PRNG used by Python and numpy. However, this PRNG requires ∼ 2KB
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of state and therefore maps poorly to accelerators such as GPUs. Alternative, GPU

friendly, PRNGs exist but the choice of PRNG will need to be closely coordinated with

the cognitive modeling community to make sure the models are numerically validated

with different PRNGs.

2.7 Related Work

2.7.1 Accelerating Python

Given Python’s increasing popularity [30] there have been several attempts to increase

it’s performance and interoperability with other environments.

PyPy [34] is a reimplementation of the Python language using RPython translation

framework with built-in JIT compiler. It’s state goals are speed and compatibility.

PyPy successfully runs most of the models and was included in our evaluation.

Pyston [35] is the latest addition to JIT enabled Python implementations. It’s

capable of running all models without modifications and it delivers on the advertised

∼ 15% performance improvement.

Jython [32] is a community maintained Python implementation that aims to im-

prove interoperability between Python and Java™. Any improved performance comes as

a side effect of utilizing JVM environment to run merged code. Unfortunately, Jython

only supports Python 2 language.

IronPython [33] is similar in its goal to improve interoperability between Python

and .NET programs. Potential for improved performance comes from using .NET

common language runtime (CLR). Similarly to Jython above, IronPython support for

Python3 is not ready yet.

Numba [36] is a JIT compilation framework that uses function decorators to trans-

parently compile python code and execute functions natively. However, its limited sup-

port for some of Python’s features [92] would require significant refactoring of PsyNeuLink

codebase.
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2.7.2 Workload integration

We are not the first to notice that a good performance often depends on effectively

integrating different parts rather than focusing on a single dominant kernel. CUDA

Graphs [93] exposes an interface that coalesces multiple successive kernel invocation

into a single combined invocation to amortize invocation overhead.

Similarly, Ravishankar and Grover [29] propose lazy evaluation of Numpy expressions

until multiple operations can be combined. Psylang has the advantage of knowing

the hot path ahead of time so it can optimize the calls, rather than tracking invoked

operations for lazy acceleration.

2.7.3 Model Analysis

To the best of our knowledge, there has not been much work on analyzing compiled

models. However, Alafi et al. [94] notice similarity between block level modeling and

standard programming to deploy similarity detection techniques. Unlike Alafi et al.,

Psylang considers model execution in compiler IR form rather source code.

2.7.4 Clone detection

Previous work has proposed a variety of clone detection techniques targeting different

languages. These techniques differ in both the way they search the code base and

algorithms they use to select and compare code segments.

Some work, like NICAD [85] and previously mentioned SIMONE [94] focus on ana-

lyzing source code text. This has the advantage of applying the comparison techniques

early and avoiding potentially costly source parsing. However, PsyNeuLink models are

constructed dynamically at runtime so a source code representing the entire model is

not available. Applying the techniques to serialized dump of the model is possible, but

unlikely to match our results given the high level nature of functions in cognitive models.

Works targeting semantic clones on IR level are more directly applicable. Gabel et

al. [84] uses program dependence graph (another name for CDFG). To avoid scalability

problems of detecting sub-graph isomorphism Gabel first reconstructs normalized forms
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of abstract syntax trees (ASTs). Similarly, [95, 96], and [97] detect similarities in Java

bytecode. We believe these approaches to be applicable to cognitive models.

2.8 Conclusion

Psylang examines the role of compilers to support robust and high performance modeling

environment for cognitive neuroscience. Beyond the critical performance improvements,

necessary to support large, high fidelity models, we examine suitability of compiler

analyses to cognitive modeling. We propose and implement modifications to production

compiler suite to provide rich feedback to the modelers. Further we notice the hetero-

geneous nature of cognitive models, and discuss the role of compiler to bridge the gap

between the expressed computation and different hardware execution platforms. All our

contributions are part of open-sources projects and will be released for public use.
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Chapter 3

Generic System Services for GPUs

3.1 Introduction

GPUs have evolved from fixed function 3D accelerators to fully programmable units [98–

100] and are now widely used for high-performance computing (HPC), machine learning,

and data-analytics. Increasing deployments of general-purpose GPUs (GPGPUs) have

been partly enabled by programmability enhancing features like virtual memory [101–

106] and cache coherence [107–111].

GPU programming models have evolved with these hardware changes. Early GPGPU

programmers [112–116] adapted graphics-oriented programming models such as OpenGL [117]

and DirectX [118] for general-purpose usage. Since then, GPGPU programming has

become increasingly accessible to traditional CPU programmers, with graphics APIs

giving way to computation-oriented languages with a familiar C/C++ heritage such

as OpenCL [16], C++AMP [20], and CUDA [15]. However, access to privileged OS

services via system calls is an important aspect of CPU programming that remains out

of reach for GPU programs.

Designers have begun exploring ways to fill this research void. Studies on filesystem

I/O (GPUfs [17]), networking I/O (GPUnet [18]), and GPU-to-CPU callbacks [31] es-

tablished that direct GPU invocation of some specific system calls can improve GPU

performance and programmability. These studies have two themes. First, they focus

on specific system calls (i.e., for filesytems and networking). Second, they replace the

traditional POSIX-based APIs of these system calls with custom APIs to drive perfor-

mance. In this study, we ask – can we design an interface for invoking any system call

from GPUs, and can we do so with standard POSIX semantics to enable seamless and

wider adoption? To answer these questions, we design the first framework for generic
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system call invocation on GPUs, or Genesys. Genesys offers several concrete

benefits.

First, Genesys can support implementation of most of Linux’s 300+ system calls.

As a proof of concept, we go beyond the specific set of system calls from prior work

[17, 18, 31] and implement not only filesystem and networking system calls, but also

those for asynchronous signals, memory management, resource querying, and device

control.

Second, Genesys’s use of POSIX allows programmers to reap the benefits of stan-

dard APIs developed over decades of real-world usage. Recent work on SPIN [19] takes

a step in this direction by considering how to modify the specific system calls in GPUfs

to match traditional POSIX semantics. But Genesys’s generality in supporting all

system calls means that it goes further, enabling, among other things, backwards com-

patibility – Genesys makes it possible to deploy on GPUs the vast body of legacy

software written to invoke OS-managed services.

Third, Genesys’s generality enables GPU acceleration of programs that were previ-

ously considered a poor match for GPUs. For example, it allows applications to directly

manage their memory, query the system for resource information, employ signals, in-

terface with the terminal, etc., in a manner that lowers programming effort for GPU

deployment. These examples underscore Genesys’s ability to support new program-

ming strategies and even legacy applications (e.g., using terminal/signals).

Finally, Genesys can leverage the benefits of support for important OS features

that prior work cannot. For example, GPUnet’s use of custom APIs precludes the use

traffic shaping and firewalls that are already built into the OS.

When designing Genesys, we ran into several design questions. For example, what

system calls make sense for GPUs? System calls such as pread/pwrite to file(s) or

send/recv to and from the network stack are useful because they underpin many I/O

activities required to complete a task. But system calls such as fork and execv do not,

for now, seem necessary for GPU threads. In the middle are many system calls that

need adaptation for GPU execution and are heavily dependent on architectural features

that could be supported by future GPUs. For example, getrusage can be adapted to
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return information about GPU resource usage. We summarize the conclusions from this

qualitative study.

We then perform a detailed design space study on the performance benefits of

Genesys. Key questions are:

How does the GPU’s hardware execution model impact system call invoca-

tion strategies? To manage parallelism, the GPU’s underlying hardware architecture

decomposes work into a hierarchy of execution groups. The granularity of these groups

ranges from work-items (or GPU threads) to work-groups (composed of hundreds of

work-items) to kernels (composed of hundreds of work-groups)1. This naturally presents

the following research question – at which of these granularities should GPU system calls

be invoked?

How should GPU system calls be ordered? CPU system calls are implemented

such that instructions prior to the system call have completed execution, while code

following the system call remains unexecuted. This model is a good fit for CPUs, which

generally target single-threaded execution. But such “strong ordering” semantics may be

overly conservative for GPUs. It acts as implicit synchronization barriers across thou-

sands of work-items, compromising performance. Similar questions arise as to whether

GPU system calls should be “blocking” or “non-blocking.”

Where and how should GPU system calls be processed? Like all prior work,

we assume that system calls invoked by GPU programs need to ultimately be serviced

by the CPU. This makes efficient GPU-CPU communication and CPU-side processing

fundamental to GPU system calls. We find that careful use of modern GPU features

like shared virtual addressing [101] and page fault support [105, 106], coupled with tra-

ditional interrupt mechanisms, can enable efficient CPU-GPU communication of system

call requests and responses.

1Without loss of generality, we use AMD’s terminology of work-items, work-groups, kernels, and
compute unit (CU), although our work applies equally to the NVIDIA threads, thread-blocks, kernels,
and streaming multiprocessors (SMs), respectively.
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To explore these questions, we study Genesys with microbenchmarks and end-to-

end applications. Overall, our contributions are:

1○: We take a step toward realizing truly heterogeneous programming by enabling GPUs

to directly invoke OS-managed services, just like CPUs. This builds on the promise of

recent work [17–19, 31] but goes further by enabling direct invocation of any system

call through standard POSIX APIs. This permits GPUs to use the entire ecosystem of

OS-managed system services developed over decades of research.

2○ As a proof-of-concept, we use Genesys to realize system calls previously unavailable

on GPUs to directly invoke OS services for memory management, signals, and special-

ized file-system use. Additionally, we continue supporting all the system services made

available by prior work (i.e., GPUs, GPUnet, SPIN), but do so with standard POSIX

APIs.

3○ We shed light on several novel OS and architectural design issues in supporting GPU

system calls. We also offer the first set of design guidelines for practitioners on how

to directly invoke system calls in a manner that meshes with the execution hierarchy

of GPUs to maximize performance. While we use Linux as a testbed to evaluate our

concepts, our design choices are applicable more generally across OSes.

4○ We publicly release Genesys hosted under the Radeon Open Compute stack [119–

123], offering its benefits broadly.

3.2 Motivation

A reasonable question to ponder is, why equip GPUs with system call invocation capa-

bilities at all? Conceptually, OSes have traditionally provided a standardized abstract

machine in the form of a process to user programs executing on the CPU. Parts of this

process abstraction, such as memory layout, the location of program arguments, and

ISA, have benefited GPU programs. Other aspects, however, such as standardized and

direct protected access to the filesystem, network, and memory allocation, are extremely

important for processes but are yet lacking for GPU code. Allowing GPU code to invoke
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Table 3.1: Genesys enables new classes of applications and supports all prior work.

Type Application Syscalls Description

Previously
Unrealizable

Memory
Management

miniAMR madvise,
getrusage

Uses madvise to return
unused memory to the
OS (Sec 3.8.1).

Signals signal-search rt_sigqueueinfo Uses signals to notify
the host about par-
tial work completion
(Sec 3.8.2).

Filesystem grep read, open, close Work-item invocations
not supported by prior
work, prints to terminal
(Sec 3.8.3).

Device Control
(ioctl)

bmp-display ioctl, mmap Kernel granularity in-
vocation to query and
setup framebuffer prop-
erties (Sec 3.8.5)

Previously
Realizable

Filesystem wordsearch pread, read Supports the same
workloads as prior work
(GPUfs) (Sec 3.8.3).

Network memcached sendto, recfrom Possible with GPUnet
but we do not need
RDMA for performance
(Sec 3.8.4).

system calls is a further step to providing a more complete process abstraction to GPU

code.

Unfortunately, GPU programs can currently only invoke system calls indirectly, and

thereby suffer from performance challenges. Consider the diagram on the left in Fig-

ure 3.1. Programmers are currently forced to delay system call requests until the end

of the GPU kernel invocation. This is not ideal because developers have to take what

was a single conceptual GPU kernel and partition it into two – one before the system

call and one after it. This model, which is akin to continuations, is notoriously difficult

to program [124]. Compiler technologies can assist the process [125], but the effect of

ending the GPU kernel, and restarting another is the same as a barrier synchronization

across all GPU threads and adds unnecessary round-trips between the CPU and the

GPU, both of which incur significant overhead.

In response, recent studies invoke OS services from GPUs [17–19, 31], as shown on

the right in Figure 3.1. This approach eliminates the need for repeated kernel launches,

enabling better GPU efficiency. System calls (e.g., request_data) still require CPU pro-

cessing, as they often require access to hardware resources that only the CPU interacts
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process_data(buf)

load_data(buf)

request data

load_data(buf)

request data

CPU GPU

process_data(buf)

process_data(buf)

process_data(buf)

load_data(buf)

load_data(buf)

kernel finish

kernel finish

kernel start

kernel start

CPU GPU

GENESYSConventional

Figure 3.1: (Left) Timeline of events when the GPU has to rely on a CPU to handle
system services; and (right) when the GPU has system call invocation capabilities.

with. However, CPUs only need to schedule tasks in response to GPU system calls

as and when needed. CPU system call processing also overlaps with the execution of

other GPU threads. Studies on GPUfs, GPUnet, GPU-to-CPU callbacks, and SPIN are

seminal in demonstrating such direct invocation of OS-managed services but suffer from

key drawbacks:

Lack of generality: They target specific OS-managed services, and therefore, realize

only specific APIs for filesystem or networking services. These interfaces are not readily

extensible to other system calls/OS services.
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Lack of flexibility: They focus on specific system call invocation strategies. Conse-

quently, there has been no design space exploration on the general GPU system call

interface. Questions such as the best invocation granularity (i.e., whether system calls

should be invoked per work-item, work-group, or kernel) or ordering remain unexplored,

and as we show, can affect performance in subtle and important ways.

Reliance on non-standard APIs: Their use of custom APIs precludes the use of

many OS-managed services (e.g., memory management, signals, process/thread man-

agement, scheduler). Further, custom APIs do not readily take advantage of existing OS

code-paths that enable a richer set of system features. Recent work on SPIN points this

out for filesystems, where using custom APIs causes issues with page caches, filesystem

consistency, and incompatibility with virtual block devices such as software RAID.

While these past efforts broke new ground and demonstrated the value of OS services

for GPU programs, they did not explore the question we pose – why not simply provide

generic access from the GPU to all POSIX system calls?

3.3 High-Level Design

Figure 3.2: High-level overview of how GPU system calls are invoked and processed on
CPUs.

Figure 3.2 outlines the steps used by Genesys. When the GPU invokes a system

call, it has to rely on the CPU to process system calls on its behalf. Therefore, in

step 1○, the GPU places system call arguments and information in a portion of system

memory also visible to the CPU. We designate a portion of memory as the syscall area

to store this information. In step 2○, the GPU interrupts the CPU, conveying the

need for system call processing. Within the interrupt message, the GPU also sends the

ID number of the wavefront issuing the system call. This triggers the execution of an
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Table 3.2: Examples of system calls that require hardware changes to be implementable
on GPUs. In total, this group consists of 13% of all Linux system calls. In contrast, we
believe that 79% of Linux system calls are readily-implementable.

Type Examples Reason that it is not currently imple-
mentable

capabilities capget, capset Needs GPU thread representation in the kernel
namespace setns Needs GPU thread representation in the kernel
policies set_mempolicy Needs GPU thread representation in the kernel
thread scheduling sched_yield

set_cpu_affinity
Needs better control over GPU scheduler

signals sigaction
suspend
sigreturn
sigprocmask

Signals require the target thread to be paused
and then resumed after signal action is completed.
GPU threads cannot be targeted. It is currently
not possible to independently set program coun-
ters of individual threads. Executing signal ac-
tions in newly spawned threads might require free-
ing of GPU resources.

architecture specific ioperm Not accessible from GPU

interrupt handler on the CPU. The CPU uses the wavefront ID to read the system call

arguments from the syscall area in step 3○. Subsequently, in step 4○, the CPU processes

the interrupt and writes the results back into the syscall area. Finally, in step 5○, the

CPU notifies the GPU wavefront that its system call has been processed.

We rely on the ability of the GPU to interrupt the CPU and use readily-available

hardware [126–128] for this. However, this is not a fundamental design requirement;

in fact, prior work [17, 31] uses a CPU polling thread to service a limited set of GPU

system service requests instead. Further, while increasingly widespread features such as

shared virtual memory and CPU-GPU cache coherence [101, 105, 106, 110] are beneficial

to our design, they are not necessary. CPU-GPU communication can also be achieved

via atomic reads/writes in system memory or GPU device memory [129].

3.4 Analyzing System Calls

While designing Genesys, we classified all of Linux’s over 300 system calls and assessed

which ones to support. Some of the classifications were subjective and were debated

even among ourselves. Many of the classification issues relate to the unique nature of

the GPU’s execution model.

Recall that GPUs use SIMD execution on thousands of concurrent threads. To
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keep such massive parallelism tractable, GPGPU programming languages like OpenCL

[16] and CUDA [15] expose hierarchical groups of concurrently executing threads to

programmers. The smallest granularity of execution is the GPU work-item (akin to

a CPU thread). Several work-items (e.g., 32-64) operate in lockstep in the unit of

wavefronts, the smallest hardware-scheduled unit of execution. Many wavefronts (e.g.,

16) constitute programmer visible work-groups and execute on a single GPU compute

unit (CU). Work-items in a work-group can communicate among themselves using local

CU caches and/or scratchpads. Hundreds of work-groups comprise a GPU kernel. The

CPU dispatches work to a GPU at the granularity of a kernel. Each work-group in a

kernel can execute independently. Further, it is possible to synchronize just the work-

items within a single work-group [16, 109]. This avoids the cost of globally synchronizing

across thousands of work-items in a kernel, which is often unnecessary in a GPU program

and might not be possible under all circumstances2.

The bottom-line is that GPUs rely on far greater forms of parallelism than CPUs.

This implies the following OS/architectural considerations in designing system calls:

Level of OS visibility into the GPU: When a CPU thread invokes the OS, that

thread has a representation within the kernel. The vast majority of modern OS kernels

maintain a data-structure for each thread for several common tasks (e.g., kernel resource

use, permission checks, auditing). GPU tasks, however, have traditionally not been

represented in the OS kernel. We believe this should not change. As discussed above,

GPU threads are numerous and short lived. Creating and managing a kernel structure

for thousands of individual GPU threads would vastly slow down the system. These

structures are also only useful for GPU threads that invoke the OS and represent wasted

overhead for the rest. Hence, we process system calls in OS worker threads and switch

CPU contexts if necessary (see Section 3.6). As more GPUs support system calls, this

is an area that will require careful consideration by kernel developers.

2Although there is no single formally-specified barrier to synchronize across work-groups today,
recent work shows how to achieve the same effect by extending existing non-portable GPU inter-work-
group barriers to use OpenCL 2.0 atomic operations [130].
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Evolution of GPU hardware: Many system calls are heavily dependent on archi-

tectural features that could be supported by future GPUs. For example, consider that

modern GPUs do not expose their thread scheduler to software. This means that system

calls to manage thread affinity (e.g., sched_setaffinity) are not implementable on GPUs

today. However, a wealth of research has shown the benefits of GPU warp schedul-

ing [131–135], so should GPUs require more sophisticated thread scheduling support

appropriate for implementation in software, such system calls may ultimately become

valuable.

With these design themes in mind, we discuss our classification of Linux’s system

calls.

1○ Readily-implementable: Examples include pread, pwrite, mmap, munmap, etc.

This group is also the largest subset, comprising nearly 79% of Linux’s system calls.

In Genesys, we implemented 14 such system calls for filesystems (read, write, pread,

pwrite, open, close, lseek), networking (sendto, recvfrom), memory management (mmap,

munmap, madvise), system calls to query resource usage (getrusage), and signal invoca-

tion (rt_sigqueueinfo). Furthermore, we also implement device control ioctls. Some of

these system calls, like read, write, lseek, are stateful. Thus, GPU programmers must

use them carefully; the current value of the file pointer determines what value is read or

written by the read or write system call. This can be arbitrary if invoked at work-item

or work-group granularity for the same file descriptor because many work-items/work-

groups can execute concurrently.

An important design issue is that Genesys’s support for standard POSIX APIs

allows GPUs to read, write, and mmap any file descriptor Linux provides. This is

particularly beneficial because of Linux’s “everything is a file” philosophy – Genesys

readily supports features like terminal for user I/O, pipes (including redirection of stdin,

stdout, and stderr), files in /proc to query process environments, files in /sys to query and

manipulate kernel parameters, etc. Although our studies focus on Linux, the broader

domains of OS-services represented by the specific system calls generalize to other OSes

like FreeBSD and Solaris.
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At the application level, implementing this array of system calls opens new domains

of OS managed services for GPUs. In Table 3.1, we summarize previously unimple-

mentable system calls realized and studied in this work. These include applications

that use madvise for memory management and rt_sigqueueinfo for signals. We also go

beyond prior work on GPUfs by supporting filesystem services that require more flexible

APIs with work-item invocation capabilities for good performance. Finally, we continue

to support previously implementable system calls.

2○ Useful but implementable only with changes to GPU hardware: Several

system calls (13% of the total) seem useful for GPU code, but are not easily imple-

mentable because of Linux’s existing design. Consider sigsuspend/sigaction – there is

no kernel representation of a GPU work-item to manage and dispatch a signal to. Addi-

tionally, there is no lightweight method to alter the GPU program counter of a work-item

from the CPU kernel. One approach is for signal masks to be associated with the GPU

context and for signals to be delivered as additional work-items. This works around

the absence of GPU work-item representation in the kernel. However, POSIX requires

threads that process signals to pause execution and resume only after the signal has

been processed. Targeting the entire GPU context would mean that all GPU execution

needs to halt while the work-item processing the signal executes, which goes against

the parallel nature of GPU execution. Recent work has, however, shown the benefits

of hardware support for dynamic kernel launch that allows on-demand spawning of

kernels on the GPU without any CPU intervention [136]. Should such approaches be

extended to support thread recombination assembling multiple signal handlers into a

single warp (akin to prior approaches on control flow divergence [132]), sigsuspend or

sigaction may become implementable. Table 3.2 presents more examples of currently

not implementable system calls (in their original semantics).

3○ Requires extensive modification to be supported: This group (8% of the to-

tal) contains perhaps the most controversial set of system calls. At this time, we do not

believe that it is worth the implementation effort to support these system calls. For ex-

ample, fork necessitates cloning a copy of the executing caller’s GPU state. Technically,
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this can be done (e.g., it is how GPGPU code is context switched with the graphics

shaders) but it seems unnecessary at this time.

3.5 Design Space Exploration

3.5.1 GPU-Side Design Considerations

Invocation granularity: In assessing how best to use GPU system calls, several ques-

tions arise. The first and most important question is – how should system calls be

aligned with the hierarchy of GPU execution groups? Should a GPU system call be

invoked separately for each work-item, once for every work-group, or once for the entire

GPU kernel?

Consider a GPU program that writes sorted integers to a single output file. One

might, at first blush, invoke the write system call at each work-item. This can present

correctness issues, however, because write is position-relative and requires access to a

global file pointer. Without synchronizing the execution of write across work-items, the

output file will be written in a non-deterministic unsorted order.

Using different system call invocation granularities can fix this issue. One could,

for example, use a memory location to temporarily buffer the sorted output. Once all

work-items have updated this buffer, a single write system call at the end of the kernel

can be used to write the contents of the buffer to the output file. This approach loses

some benefits of the GPU’s parallel resources, because the entire system call latency is

exposed on the program’s critical path and might not be overlapped with the execution

of other work-items. Alternatively, one could use pwrite system calls instead of write

system calls. Because pwrite allows programmers to specify the absolute file position

where the output is to be written, per-work-item invocations present no correctness

issue. However, per-work-item pwrites result in a flood of system calls, potentially

harming performance.

Overly coarse kernel-grained invocations also restrict performance by reducing the

possibility of overlapping system call processing with GPU execution. A compromise

may be to invoke a pwrite system call per work-group, buffering the sorted output
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Figure 3.3: Work-items in a work-group (shown as a blue box) execute strongly ordered
system calls.

Figure 3.4: Work-group invocations can be relax-ordered by removing one of the two
barriers.
of the work-items until the per-work-group buffers are fully populated. Section 3.7

demonstrates that these decisions can lead to a 1.75× performance difference.

System call ordering semantics: When programmers invoke system calls on CPUs,

they expect that all program instructions before the system call will complete execution

before the system call executes. They also expect that instructions after the system

call will only commence once the system call returns. We call this “strong ordering.”

For GPUs however, we introduce “relaxed ordering” semantics. The notion of relaxed

ordering is tied to the hierarchical execution scopes of the GPU and is needed for both

correctness and performance.

Figure 3.3 shows a programmer-visible work-group (in blue), consisting of four wave-

fronts A, B, C and D. Each wavefront has two work-items (e.g., A0 and A1). If system

calls (SysCs) are invoked per work-item, they are strongly ordered. Another approach is

depicted in Figure 3.4, where one work-item, A0, invokes a system call, on behalf of the

entire work-group. Strong ordering is achieved by placing work-group barriers (Bar1,
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Bar2) before and after system call execution. One can remove these barriers with re-

laxed ordering, allowing threads in wavefronts B, C, and D to execute overlapping with

the CPU’s processing of A’s system call.

For correctness, we need to allow programmers to use relaxed ordering when system

calls are invoked at kernel granularity (across work-groups). This is because kernels can

consist of more work-items than can concurrently execute on the GPU. For strongly

ordered system calls at the kernel-level, all kernel work-items must finish executing

pre-invocation instructions prior to invoking the system call. But all work-items can-

not execute concurrently because GPU runtimes do not preemptively context switch

work-items of the same kernel. It is not always possible for all work-items to execute

all instructions prior to the system call. Strong ordering at kernel granularity risks

deadlocking the GPU.

At the work-group invocation granularity, relaxed ordering can improve performance

by avoiding synchronization overheads and overlapping CPU-side system call processing

with the execution of other work-items. The key is to remove the barriers Bar1/Bar2

in Figure 3.4. To do this, consider that from the application point of view, system calls

are usually producers or consumers of data. Take a consumer call like write, invoked

at the work-group level. Real-world GPU programs may use multiple work-items to

generate the data for the write, but instructions after the write call typically do not

depend on the write outcome. Therefore, other work-items in the group need not wait

for the completion of the system call, meaning that we can remove Bar2, improving

performance. Similarly, producer system calls like read typically require system calls

to return before other work-items can start executing program instructions post-read,

but do not necessarily require other work-items in the work-group to finish executing

all instructions before the read invocation. Bar1 in Figure 3.4 becomes unnecessary in

these cases. The same observations apply to per-kernel system call invocations that

need relaxed ordering for correctness anyway.

In summary, work-item invocations imply strong ordering. Programmers balance

performance/programmability for work-group invocations by choosing strong or relaxed

ordering. Finally, programmers must use relaxed ordering for kernel invocations so that
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the GPU does not deadlock.

Blocking versus non-blocking approaches: Most traditional CPU system calls –

barring those for asynchronous I/O (e.g., aio_read, aio_write) – return only after the

system call completes execution. Blocking system calls have a disproportionate impact

on performance because GPUs use SIMD execution. In particular, if even a single

work-item is blocked on a system call, no other work-item in the wavefront can make

progress either. We find that GPUs can often benefit from non-blocking system calls that

can immediately return before system call processing completes. Non-blocking system

calls can therefore overlap system call processing on the CPU with useful GPU work,

improving performance by as much as 30% in some of our studies (see Section 3.7).

The concepts of blocking/non-blocking and strong/relaxed ordering are related but

orthogonal. The strictness of ordering refers to the question of when a system call can be

invoked with respect to the progress of work-items within its granularity of invocation.

System call blocking refers to how the return from a system call relates to the completion

of its processing. Relaxed ordering and non-blocking can be combined in several useful

ways. For example, consider a case where a GPU program writes to a file at work-

group granularity. The execution may not depend upon the output of the write, but

the programmer may want to ensure that the write successfully completes. In such a

scenario, blocking writes may be invoked with weak ordering. Weak ordering permits all

but one wavefront in the work-group to proceed without waiting for completion of the

write (see Section 3.6). Blocking invocation, however, ensures that one wavefront waits

for the write to complete and can raise an alarm if the write fails. Consider another

scenario, where a programmer wishes to prefetch data using read system calls but may

not use the results immediately. Here, weak ordering with non-blocking invocation is

likely to provide the best performance without breaking the program’s semantics. In

short, different combinations of blocking and ordering enable programmers to fine-tune

performance and programmability tradeoffs.
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3.5.2 CPU Hardware

GPUs rely on extreme parallelism for performance. This means there may be bursts of

system calls that CPUs need to process. System call coalescing is one way to increase

the throughput of system call processing. The idea is to collect several GPU system call

requests and batch their processing on the CPU. The benefit is that CPUs can manage

multiple system calls as a single unit, scheduling a single software task to process them.

This reduction in task management, scheduling, and processing overheads can often

boost performance (see Section 3.7). Coalescing must be performed judiciously as it

improves system call processing throughput at the expense of latency. It also implicitly

serializes the processing of system calls within a coalesced bundle.

To allow the GPGPU programmer to balance the benefits of coalescing with its

potential challenges, Genesys accepts two parameters – a time window length within

which the CPU coalesces system calls, and the maximum number of system call invo-

cations that can be coalesced within the time window. Section 3.7 shows that system

call coalescing can improve performance by as much as 10-15%.

3.5.3 CPU-GPU Communication Hardware

Prior work implemented system calls using polling, where GPU wavefronts monitored

predesignated memory locations populated by CPUs upon system call completion. But

recent advances in GPU hardware enable alternate modes of CPU-GPU communication.

For example, AMD GPUs now allow wavefronts to relay interrupts to CPUs and then

halt execution, relinquishing SIMD hardware resources [126]. CPUs can in turn message

the GPU to wake up halted wavefronts.

We have implemented polling and halt-resume approaches in Genesys. With polling,

if the number of memory locations that needs to be polled by the GPU exceeds its cache

size, frequent cache misses lower performance. On the other hand, halt-resume has its

own overheads, namely the latency to resume a halted wavefront.

We have found that polling yields better performance when system calls are invoked
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Table 3.3: System configuration used for our studies.

SoC Mobile AMD FX-9800PTM

CPU 4× 2.7GHz
AMD Family 21h Model 101h

Integrated-GPU 758 MHz AMD GCN 3 GPU
Memory 16 GB Dual-Channel DDR4-1066MHz

Operating system Fedora 26 using
ROCm stack 1.6

(based on Linux 4.11)
Compiler HCC-0.10.17166 + LLVM 5.0

C++AMP with HC extensions

at coarser work-group granularities since fewer memory locations are needed to con-

vey information at the work-group versus work-item level. Consequently, the memory

locations easily fit in the GPU’s L2 data cache. When system calls are invoked per work-

item however, the sheer number of such memory locations becomes so high that cache

thrashing becomes an issue. In these situations, halt-resume approaches outperform

polling. We quantify the impact of this in the following sections.

3.6 Implementing GENESYS

We implemented Genesys on the system in Table 3.3. We used an AMD FX-9800P

processor with an integrated GPU and ran the open-source Radeon Open Compute

(ROCm) software stack [137]. Although we use a system with integrated GPU, Genesys

is not specific to integrated GPUs, and generalizes to discrete GPUs. We modified the

GPU driver and Linux kernel to enable GPU system calls. We also modified the HCC

compiler to permit GPU system call invocations in C++AMP.

Invoking GPU system calls: Genesys permits work-item, work-group, and kernel-

level invocation. At work-group or kernel-level invocations, a single work-item is des-

ignated as the caller. For strongly ordered work-group invocations, we use work-group

scope barriers before and after system call invocations. For relaxed ordering, a barrier

is placed either before (for consumer system calls) or after (for producer calls) system

call invocation.
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Figure 3.5: Content of each slot in syscall area.

Figure 3.6: State transition diagram for a slot in syscall area. Green shows GPU
state/actions, blue shows that of the CPU.

GPU to CPU communication: Genesys facilitates efficient GPU to CPU commu-

nication of system call requests. Genesys uses a preallocated shared memory syscall

area to allow the GPU to convey parameters to the CPU (see Section 3.3). The syscall

area maintains one slot for each active GPU work-item. The OS and driver code can

identify the desired slot by using the hardware ID of the active work-item, which is

available to GPU runtimes. This hardware ID is distinct from the programmer-visible

work-item ID. Each of the work-items has a unique work-item ID visible to the applica-

tion programmer. At any one point in time, however, only a subset of these work-items

executes (as permitted by the GPU’s CU count, supported work-groups per CU, and

SIMD width). The hardware ID distinguishes among these active work-items. Overall,

our system uses 64 bytes per slot, totaling 1.25 MBs of syscall area.

Figure 3.5 shows the contents in a slot – the requested system call number, the

request state, system call arguments (as many as 6, in Linux), and padding to avoid

false sharing. The field for arguments is also re-purposed for the return value of the

system call. When a GPU program’s work-item invokes a system call, it atomically

updates the state of the corresponding slot from free to populating (Figure 3.6). If



58

the slot is not free, system call invocation is delayed. Once the state is populating,

the invoking work-item populates the slot with system call information and changes

the state to ready. The work-item also adds one bit of information about whether

the invocation is blocking or non-blocking. The work-item then interrupts the CPU

using a scalar wavefront GPU instruction 3 (s_sendmsg on AMD GPUs). For blocking

invocation, the work-item either waits and polls the state of the slot or suspends itself

using halt-resume.

CPU-side system call processing: Once the GPU interrupts the CPU, system call

processing commences. The interrupt handler creates a new kernel task and adds it

to Linux’s work-queue. This task is also passed the hardware ID of the requesting

wavefront. At an expedient future point in time an OS worker thread executes this

task. The task scans the 64 syscall slots of the given hardware ID and atomically

switches any ready system call requests to the processing state. The task then carries

out the system call work.

A challenge is that Linux’s traditional system call routines implicitly assume that

they are to be executed within the context of the original process invoking the system

call. Consequently, they use context specific variables (e.g., the current variable used to

identify the process context). This presents a challenge for GPU system calls, which are

instead serviced purely in the context of the OS’ worker thread. Genesys overcomes

this challenge in two ways – it either switches to the context of the original CPU program

that invoked the GPU kernel, or it provides additional context information in the code

performing system call processing. The exact strategy is determined on a case-by-case

basis.

Genesys implements coalescing by waiting for a predetermined amount of time in

the interrupt handler before enqueueing a task to process a system call. If multiple

requests are made to the CPU during this time window, they are coalesced with such

that they can be handled as a single unit of work by the OS worker-thread. Genesys

uses Linux’s sysfs interface to communicate coalescing parameters.

3Scalar wavefront instructions are part of the Graphics Core Next ISA and are executed once for
the entire wavefront, rather than for each active work-item. See Chapter 4.1 in the manual [126].
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Communicating results from the CPU to the GPU: Once the CPU worker-thread

finishes processing the system call, the results are put in the field for arguments in the

slot for blocking requests. Further, the thread also changes the state of the slot to

finished for blocking system calls. For non-blocking invocations, the state is changed

to free. The invoking GPU work-item is then re-scheduled (on hardware that supports

wavefront suspension) or automatically restarted because it was polling on this state.

The work-item can consume the result and continue execution.

Other architectural design considerations: Genesys requires two key data struc-

tures to be exchanged between GPUs and CPUs – the syscall area and for some system

calls, syscall buffers that maintain data required for system call processing. We discov-

ered that carefully leveraging architectural support for CPU-GPU cache coherence in

the context of these data structures was vital to overall performance.

Consider, for example, the syscall area. As described in Section 3.3, every GPU

work-item invoking a system call is allocated space in the syscall area. Like many GPUs,

the one used as our experimental platform supports L2 data caches that are coherent

with CPU caches/memory but integrates non-coherent L1 data caches. At first blush,

one may decide to manually invalidate L1 data cache lines. However, we sidestepped

this issue by restricting per-work-item slots in the syscall area to individual cache lines.

This design permits us to use atomic instructions to access memory – these atomic

instructions, by design, force lookups of the L2 data cache and guarantee visibility

of the entire cacheline, sidestepping the coherence challenges of L1 GPU data caches.

We quantify the measured overheads of the atomic operations we use for Genesys

in Table 3.4, comparing them to the latency of a standard load operation. Through

experimentation, we achieved good performance using cmp-swap atomics to claim a slot

in the syscall area when GPU work-items invoked system calls, atomic-swaps to change

state, and atomic-loads to poll for completion.

Unfortunately, the same approach of using atomics does not yield good performance

for accesses to syscall buffers. The key issue is that syscall buffers can be large and

span multiple cache lines. Using atomics here meant that we suffered the latency of
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Table 3.4: Profiled performance of GPU atomic operations.

Op cmp-swap swap atomic-load load
Time(us) 1.352 0.782 0.360 0.243
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Figure 3.7: Impact of system call invocation granularity. The graphs show average and
standard deviation of 10 runs.

several L2 data cache accesses to syscall buffers. We found that a better approach was

to eschew atomics in favor of manual software L1 data cache coherence. This meant,

for example, that we preceded sys_write system calls with L1 data cache flush.

3.7 Microbenchmark Evaluations

Invocation granularity: Figure 3.7 quantifies performance for a microbenchmark that

uses pread on files in tmpfs4. The x-axis plots the file size, and y-axis shows read time,

with lower values being better. Within each cluster, we separate runtimes for different

pread invocation granularities.

Figure 3.7(left) shows that work-item invocation granularities tend to perform worst.

This is not surprising as it is the finest granularity of system call invocation and leads

4Tmpfs is a filesystem without permanent backing storage. In other words, all structures and data
are memory-resident.
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to a flood of individual system calls that overwhelm the CPU. On the other end of

the granularity spectrum, kernel-level invocation is also challenging as it generates a

single system call and fails to leverage any potential parallelism in processing of system

call requests. This is particularly pronounced at large file sizes (e.g., 2GB). A good

compromise is to use work-group invocation granularities. It does not overwhelm the

CPU with system call requests while still being able to exploit parallelism in servicing

system calls.

When using work-group invocation, an important question is how many work-items

should constitute a work-group. While Figure 3.7(left) uses 64 work-items in a work-

group, Figure 3.7(right) quantifies the performance impact of pread system calls as we

vary work-group sizes from 64 (wg64) to 1024 (wg1024) work-items. In general, larger

work-group sizes enable better performance, as there are fewer unique system calls

necessary to handle the same amount of work.

Blocking and ordering strategies: To quantify the impact of blocking/non-blocking

with strong/relaxed ordering, we designed a GPU microbenchmark that performs block

permutation on an array, similar to the permutation steps performed in DES encryption.

The input data array is preloaded with random values and divided into 8KB blocks.

Work-groups each execute 1024 work-items independently permute blocks. The results

are written to a file using pwrite at work-group granularity. The pwrite system calls for

one block of data are overlapped with permutations on other blocks of data. To vary

the amount of computation per system call, we permute multiple times before writing

the result.

Figure 3.8 quantifies the impact of using blocking versus non-blocking system calls

with strong and weak ordering. The x-axis plots the number of permutation iterations

performed on each block by each work-group before writing the results. The y-axis plots

execution time for one permutation (lower is better). Figure 3.8 shows that strongly

ordered blocking invocations (strong-block) hurt performance. This is expected as they

require work-group scoped barriers to be placed before and after pwrite invocations. The

GPU’s hardware resources for work-groups are stalled waiting for the pwrite to complete.
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Figure 3.8: Performance implications of system call blocking and ordering semantics.
The graph shows average and standard deviation of 80 runs.

Not only does the inability to overlap GPU parallelism hurt strongly ordered blocking

performance, it also means that GPU performance is heavily influenced by CPU-side

performance vagaries like synchronization overheads, servicing other processes, etc. This

is particularly true at iteration counts where system call overheads dominate GPU-side

computation – below 15 compute iterations. Even when the application becomes GPU-

compute bound, performance remains non-ideal.

Figure 3.8 shows that when pwrite is invoked in a non-blocking manner (with strong

ordering), performance improves. This is because non-blocking pwrites permit the GPU

to end the invoking work-group, freeing GPU resources it was occupying. CPU-side

pwrite processing can overlap with the execution of another work-group permuting on a

different block of data. Figure 3.8 shows that latencies generally drop by 30% compared

to blocking calls at low iteration counts. At higher iteration counts (beyond 16), these

benefits diminish because the latency to perform repeated permutations dominates any

system call processing times.
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Figure 3.9: Impact of polling on memory contention.
For relaxed ordering with blocking (weak-block), the post-system-call work-group-

scope barrier is eliminated. One out of every 16 wavefronts5 in the work-group waits

for the blocking system call, while others exit, freeing GPU resources. The GPU can

use these freed resources to run other work-items to hide CPU-side system call latency.

Consequently, the performance trends follow those of strong-non-block, with minor dif-

ferences in performance arising from differences GPU scheduling of the work-groups for

execution. Finally, Figure 3.8 shows system call latency is best hidden using relaxed

and non-blocking approaches (weak-non-block).

Polling/halt-resume and memory contention: As previously discussed, polling

at the work-item invocation granularity leads to memory reads of several thousands of

per-work-item memory locations. We quantify the resulting memory contention in Fig-

ure 3.9, which showcases how the throughput of CPU accesses decreases as the number

of polled GPU cache lines increases. Once the number of polled memory locations out-

strips the GPU’s L2 cache capacity (roughly 4096 cache lines in our platform), the GPU

polls locations spilled to the DRAM. This contention on the memory controllers shared

between GPUs and CPUs. We advocate using Genesys with halt-resume approaches

at such granularities of system call invocation.

Interrupt coalescing: Figure 3.10 shows the performance impact of coalescing system

calls. We use a microbenchmark that invokes pread. We read data from files of different

5Each wavefront has 64 work-items. Thus, a 1024 work-item work-group has 16 wavefronts.
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Figure 3.10: Implications of system call coalescing. The graph shows average and
standard deviation of 20 runs.

sizes using a constant number of work-items. More data is read per pread system

call from the larger files. The x-axis shows the amounts of data read and quantifies the

latency per requested byte. We present two bars for each point on the x-axis, illustrating

the average time needed to read one byte with the system call in the absence of coalescing

and when up to eight system calls are coalesced. Coalescing is most beneficial when

small amounts of data are read. Reading more data takes longer; the overhead reduction

is negligible compared to the significantly longer time to process the system call.

3.8 Case Studies

3.8.1 Memory Workload

We now assess the end-to-end performance of workloads that use Genesys. Our first

application requires memory management system calls. We studied miniAMR [138]

and used the madvise system call directly from the GPU to better manage memory.

MiniAMR performs 3D stencil calculations using adaptive mesh refinement and is a

candidate for memory management because it varies its memory needs in a data-model-

dependent manner. For example, when simulating regions experiencing turbulence,
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miniAMR needs to model with higher resolution. However, if lower resolution is pos-

sible without compromising simulation accuracy, miniAMR reduces memory and com-

putation usage, making it possible to free memory. While relinquishing excess memory

in this way is not possible in traditional GPU programs without explicitly dividing the

offload into multiple kernels interspersed with CPU code (see Figure 3.1), Genesys per-

mits this with direct GPU madvise invocations. We invoke madvise using work-group

granularities with non-blocking and weak ordering. We leverage Genesys’ generality

by also using getrusage to read the application resident set size (RSS). When the RSS

exceeds a watermark, madvise relinquishes memory.
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Figure 3.11: Memory footprint of miniAMR using getrusage and madvise to hint at
unused memory.

We execute miniAMR with a dataset of 4.1GB – just beyond the hard limit we put on

physical memory available to GPU. Without using madvise, memory swapping increases

so dramatically that it triggers GPU timeouts, causing the existing GPU device driver

to terminate the application. Because of this, there is no baseline to compare to as the

baseline simply does not complete.

Figure 3.11 shows two results: one for a 3GB RSS watermark, and one for 4GB.

Not only does Genesys enable miniAMR to complete, it also permits the programmer

to balance memory usage and performance. While rss-3GB lowers memory utilization,

it also worsens runtime compared to rss-4GB. This performance gap is expected; the

more memory is released, the greater the likelihood that the GPU program suffers from

page faults when the memory is touched again in the future, and the more frequent the
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madvise system call is invoked. Overall, Figure 3.11 illustrates that Genesys allows

programmers to perform memory allocation to trade memory usage and performance

on GPUs analogous to CPUs.

3.8.2 Workload Using Signals
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Figure 3.12: Runtime of CPU- GPU map reduce workload.

Genesys also enables system calls that permit the GPU to send asynchronous noti-

fications to the CPU. This is useful in many scenarios. We study one such scenario

and implement a map-reduce application called signal-search. The application runs in

two phases. The first phase performs parallel lookup in a data array, while the second

phase processes blocks of retrieved data and computes sha512 checksums on them. The

first phase is a good fit for GPUs since the highly parallel lookup fits its execution

model, while the second phase is more appropriate for CPUs, many of which support

performance acceleration of sha checksums via dedicated instructions.
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Without support for signal invocation on GPUs, programmers would launch a kernel

with the entire parallel lookup on the GPU and wait for it to conclude before proceed-

ing with the sha512 checksums. Genesys overcomes this restriction and permits a

heterogeneous version of this code, where GPU work-groups can emit signals using

rt_sigqueueinfo to the CPU, indicating per-block completions of the parallel search. As

a result, the CPU can begin processing these blocks immediately, permitting overlap

with GPU execution.

Operationally, rt_sigqueueinfo is a generic signal system call that allows the caller

to fill a siginfo structure that is passed along with the signal. In our workload, we

find that work-group level invocations perform best, so the GPU passes the identifier of

this work-group through the siginfo structure. Figure 3.12 shows that using work-group

invocation granularity and non-blocking invocation results in roughly 14% performance

speedup over the baseline.

3.8.3 Storage Workloads

We have also studied how to use Genesys to support storage workloads. In some cases,

Genesys permits the implementation of workloads supported by GPUfs, but in more

efficient ways.

Supporting storage workloads more efficiently than GPUfs: We implement a

workload that takes as input a list of words and a list of files. It then performs grep -F -l

on the GPU, identifying which files contain any of the words on the list. As soon as these

files are found, they are printed to the console. This workload cannot be supported by

GPUfs without significant code refactoring because of its use of custom APIs. Instead,

since Genesys naturally adheres to the UNIX “everything is a file” philosophy, porting

grep to GPUs requires only a few hours of programming.

Figure 3.13 shows the results of our GPU grep experiments. We compare a stan-

dard CPU implementation, a parallelized OpenMP CPU implementation, and two GPU

implementations with Genesys, with non-blocking system calls invoked at work-item

(WI) and work-group (WG) granularities. Furthermore, since work-item invocations can
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sometimes achieve better performance using halt-resume (versus work-group and kernel

invocations, which always achieve better performance with polling), we separate results

for WI-polling and WI-halt-resume. Genesys enables our GPU grep implementation

to print output lines to console or files using standard OS output. Genesys achieves

2.0-2.3× speedups over an OpenMP version of grep.

Figure 3.13 also shows that Genesys’ flexibility with invocation granularity, blocking/non-

blocking, and strong/relaxed ordering can boost performance (see Section 3.5). For our

grep example, because a file only needs to be searched until the first instance of a

matching word, a work-item can immediately invoke a write of the filename, rather

than waiting for all matching files. We find that WI-halt-resume outperforms both WG

and WI-polling by roughly 3-4%.

Workload from prior work: Genesys also supports a version of the same workload

that is evaluated in the original GPUfs work; traditional word count where using open,

read, and close system calls. Figure 3.13 shows our results. We compare the performance

of a parallelized CPU version of the workload with OpenMP, a GPU version of the
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Figure 3.14: Wordcount I/O and CPU utilization reading from SSD. Graphs show
average and standard deviation of 10 runs.

workload with no system calls, and a GPU version with Genesys. Both CPU and

GPU workloads are configured to search for occurrences of 64 strings. We found that

with Genesys, these system calls were best invoked at work-group granularity with

blocking and weak-ordering semantics. All results are collected on a system with an

SSD.

We found that Genesys achieves nearly 6× performance improvement over the

CPU version. Without system call support, the GPU version is far worse than the

CPU version. Figure 3.14 sheds light on these benefits. We plot traces for CPU and

GPU utilization and disk I/O throughput. Genesys extracts much higher throughput

from the underlying storage device (up to 170MB/s compared to the CPU’s 30MB/s).

Offloading search string processing to the GPU frees up the CPU to process system

calls effectively. The change in CPU utilization between the GPU workload and CPU

workload reveals this trend. In addition, we found that the GPU’s ability to launch more

concurrent I/O requests enabled the I/O scheduler to make better scheduling decisions.
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3.8.4 Network Workloads

We have studied the benefits of Genesys for network I/O in the context of memcached.

While this can technically be implemented using GPUnet, the performance implications

are unclear because the original GPUnet paper used APIs that extracted performance

using dedicated RDMA hardware. We make no such assumptions and focus on the two

core commands – SET and GET. SET stores a key-value pair, and GET retrieves a

value associated with a key if it is present. Our implementation supports a binary UDP

memcached version with a fixed-size hash table as a back-end storage. The hash table is

shared between CPU and GPU, and its bucket size and count are configurable. Further,

this memcached implementation enables concurrent operations. CPUs can handle SETs

and GETs, while the GPU supports only GETs. Our GPU implementation parallelizes

the hash computation, bucket lookup, and data copy. We use sendto and recvfrom

system calls for UDP network access. These system calls are invoked at work-group

granularity with blocking and weak ordering as this performs best.

Figure 3.15 compares the performance of a CPU version of this workload with GPU

versions using Genesys. GPUs accelerate memcached by parallelizing lookups on buck-

ets with more elements. For example, Figure 3.15 shows speedups when there are 1024



71

Figure 3.16: Raster image copied to the framebuffer by the GPU.
elements per bucket (with 1KB data size). Without system calls, GPU performance lags

behind CPU performance. However, Genesys achieves 30-40% latency and throughput

benefits over not just CPU versions, but also GPU versions without direct system calls.

3.8.5 Device Control

Finally, we also used Genesys to implement ioctl system calls. As an example, we used

ioctl to query and control framebuffer settings. The implementation is straightforward;

the GPU opens /dev/fb0, and issues a series of ioctl commands to query and set settings

of the active frame buffer. It then proceeds to mmap the framebuffer memory and fill

it with data from a previously mmaped raster image. This results in the image dis-

played on computer screen. While not a critical GPGPU application, this ioctl example

demonstrates the generality and flexibility of OS interfaces implemented by Genesys.

3.9 Discussion

Asynchronous system call handling: Genesys enqueues the GPU system call’s

kernel task and processes it outside of the interrupt context. We do this because Linux is

designed such that few operations can be processed in an interrupt handler. A potential

concern with this design, however, is it defers the system call processing to potentially
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past the end of the life-time of the GPU thread and potentially the process that created

the GPU thread itself! It is an example of a more general problem with asynchronous

system calls [139]. Our solution is to provide a new function call, invoked by the CPU,

that ensures all GPU system calls have completed before the termination of the process.

Related work: Beyond work already discussed [17–19], the latest generation of C++AMP [20]

and CUDA [15] provide access to the memory allocator. These efforts use a user-mode

service thread on the CPU to proxy requests from the GPU [31]. Like Genesys, system

call requests are placed in a shared queue by the GPU. From there, however, the designs

are different. Their user-mode thread polls this shared queue and “thunks” the request

to the libc runtime or OS. This incurs added overhead for entering and leaving the OS

kernel.

Some studies provide network access to GPU code [18, 37, 140, 141]. NVidia provides

GPUDirect [37], used by several MPI libraries [142–144], that allows the NIC to bypass

main memory and communicate directly to memory on the GPU itself. GPUDirect

does not provide a programming interface for GPU-side code. The CPU must initiate

communication with the NIC. Oden exposed the memory-mapped control interface of

the NIC to the GPU and thereby allowed the GPU to directly communicate with the

NIC [141]. This low-level interface, however, lacks the benefits of a traditional OS

interface (e.g., protection, sockets, TCP).

3.10 Conclusions

We shed light on research questions fundamental to the idea of accessing OS services

from accelerators by realizing an interface for generic POSIX system call support on

GPUs. Enabling such support requires subtle changes of existing kernels. In particular,

traditional OSes assume that system call processing occurs in the same context as the

invoking thread, and this needs to change for accelerators. We have released Genesys

to make these benefits accessible for broader research on GPUs.
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Chapter 4

Observations and Opportunities in Architecting Shared
Virtual Memory for Heterogeneous Systems

4.1 Introduction

Computing has witnessed a proliferation of accelerators serving a diverse set of needs

like cryptography, graphics, databases, regular expressions [145–147]. Accelerators of-

ten enable significantly superior performance and power efficiency for specific tasks,

compared to general-purpose CPUs. Consequently, accelerators are increasingly being

integrated with the CPU on the same die. Such tight integration allows efficient of-

floading of computation to accelerators. Commercial manufacturers like AMD, Apple,

Intel, and Qualcomm, today ship millions of processors with CPUs and GPUs tightly

coupled together on a single die. IBM’s CAPI [148] and ARM®’s ACP [149] extend

this concept to a plethora of third-party accelerators.

A key challenge in harnessing the full potential of accelerators in these heterogeneous

processors is to make them easily programmable. A crucial first step in addressing this

challenge is to enable shared (unified) coherent virtual memory across CPUs and accel-

erators. Indeed, industry-promoted models such as the Heterogeneous System Archi-

tecture (HSA) [150] mandate shared virtual memory in an effort to make accelerators

a first-class computing element. This allows a pointer on the CPU to be equally valid

on an accelerator; thus avoiding manual data copies. Importantly, it helps provide a

programming environment familiar to common programmers.

In this work, we present a detailed characterization and analysis of a shared virtual

memory system across the CPU and the integrated GPU in a commercially available

heterogeneous processor. To the best of our knowledge, this is the first such study on

a commercial platform. We study how the CPU’s virtual memory is extended to the
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integrated-GPU in three key aspects: (1) virtual-to-physical address translation; (2)

creation of new virtual-to-physical address mappings through page faults; and (3) inval-

idation of stale address mappings through TLB (Translation Lookaside Buffer) shoot-

downs. We use six applications that use the integrated GPU to perform computation.

Although we focus on the GPU, our key results are applicable to other throughput-

orientated accelerators.

Our measurements highlight several new research opportunities in this space. (1) A

TLB miss on the GPU can be 25× slower than that on the CPU. Research into enabling

greater concurrency in servicing TLB misses from throughput-oriented accelerators is

critical to hide this latency; (2) Poor locality in memory accesses, particularly from di-

vergent accesses within the same wavefront or warp, impacts the GPU’s address trans-

lation hardware more than the rest of the memory hierarchy. Research into divergence

tolerant address translation mechanisms is important; (3) The prefetching of address

translations built into the industry standard PCIe® specification may hurt performance

under certain circumstances. More research into effective translation prefetching for ac-

celerators is necessary; (4) Servicing GPU page faults can be significantly slower than

that for CPU page faults. Most of this added time is spent in the operating system (OS)

kernel, and likely can be designed out; (5) The latency of a TLB shootdown on the GPU

is comparable to that in the CPU. Research into reducing TLB shootdown latency in

heterogeneous systems needs to optimize both the CPU and GPU shootdown. Several

other such observations and research opportunities are detailed throughout this work.

Section 4.2 provides background on how integrated-GPUs perform basic virtual-memory

operations. Section 4.3 describes our methodology and applications used. Section 4.4

describes our analysis of address translation while Section 4.5 and Section 4.6 explore

page fault and shootdown costs.

4.2 Background: Shared Virtual Memory

Figure 4.1 depicts the system that we analyze in this work. A hardware block called

the IO Memory Management Unit (IOMMU) services the address translation requests
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Figure 4.1: Heterogeneous system enabling shared virtual memory

of the GPU and other accelerators. The IOMMU resides in the processor’s north-

bridge complex. The IOMMU can access the same x86-64 page table structures used

by processes running on the CPU. This enables the accelerator to share the same set

of page tables (and thus the same virtual address space) as the processes running on

the CPU via the IOMMU. A software driver in the OS executing on the CPU manages

the IOMMU. The runtime software, in coordination with the OS driver, sets up the

IOMMU to enable accelerators access to the same virtual address spaces of the CPU.

In the following subsections we describe how basic virtual-memory operations are per-

formed by the integrated-GPU in this environment. Although the following operations

are explained for the GPU, similar mechanisms are applicable to other accelerators and

IO devices.

4.2.1 GPU address translation

The GPU has its own TLB hierarchy that caches recently used address translations.

On a GPU TLB miss, a translation request is sent as an ATS (Address Translation

Service [22]) request packet over the PCIe®-based [27] internal interconnect to the

IOMMU. This interconnect carries PCIe® packets but latency and bandwidth are not

necessarily constrained by PCIe®’s electrical specifications. The IOMMU has its own

TLB hierarchy which is checked first; on a miss there, a hardware page table walker
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in the IOMMU checks the page table. ATS requests are tagged with a process address

space identifier (PASID) and the IOMMU maintains a table that matches PASIDs to

page table base physical addresses. Once the address is successfully translated, the

IOMMU sends an ATS response to the GPU. The protocol and packet formats for ATS

requests and responses are part of the PCIe® standard specification and are the same

across all accelerators.

The PCIe®’s ATS protocol enables devices (and accelerators) to prefetch translation

requests for up to eight contiguous virtual address pages in a single ATS response

from the IOMMU. By default, the GPU in our system allows the prefetch value to the

maximum setting of eight.

Comparison with CPUs: In the CPU, per-core Memory management Units (MMUs)

are responsible for address translations. In contrast, the IOMMU services requests

from all accelerators. Unlike the CPU’s MMU, the IOMMU is not tightly integrated

with CPU’s data cache hierarchy. The data caches may contain the most up-to-date

translations but the cached copies cannot be directly accessed by accelerators.

4.2.2 GPU page faults

If the IOMMU’s page table walker fails to find the desired translation in the page table,

it sends an ATS response to the GPU notifying it of this failure. This in turn corresponds

to a page fault. In response, the GPU sends another request to the IOMMU called a

Peripheral Page Request (PPR). The IOMMU places this request in a memory-mapped

queue and raises an interrupt on the CPU. Multiple PPR requests can be queued before

the CPU is interrupted. The OS must have a suitable IOMMU driver to process this

interrupt and the queued PPR requests. In Linux, while in an interrupt context, the

driver pulls PPR requests from the queue and places them in a work-queue for later

processing. Presumably this design decision was made to minimize the time spent

executing in an interrupt context, where lower priority interrupts would be disabled. At

a later time, an OS worker-thread calls back into the driver to process page fault requests

in the work-queue. Once the requests are serviced, the driver notifies the IOMMU. In

turn, the IOMMU notifies the GPU. The GPU then sends another ATS request to retry
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the translation for the original faulting address.

Comparison with CPU: On the CPU, a hardware exception is raised on a page fault,

which immediately switches to the OS. In most cases in Linux, this routine services the

page fault directly, instead of queuing it for later processing. Contrast this with a page

fault from an accelerator, where the IOMMU has to interrupt the CPU to request service

on its behalf, and also note the several back-and-forth messages between the accelerator,

the IOMMU, and the CPU. Furthermore, page faults on the CPU are generally handled

one at a time on the CPU, while for the GPU they are batched by the IOMMU and OS

work-queue mechanism

4.2.3 GPU TLB shootdowns

The IOMMU plays a pivotal role in extending the TLB shootdown process to GPUs. An

OS driver monitors any changes to virtual address mappings for address spaces shared

with the GPU and triggers a TLB shootdown when necessary. The driver first sends a

command to the IOMMU via a memory-resident command queue to invalidate the stale

mapping in the IOMMU’s TLB hierarchy. The driver then waits for the IOMMU to

confirm successful invalidation from the IOMMU. Next, the driver commands the GPU

(via the IOMMU) to invalidate the stale mapping from its TLB. The IOMMU hardware

collects the completion notification of the invalidation in the GPU’s TLB and forwards

this information to the OS. Note there can be two types of invalidation requests: (1)

requests to invalidate a given address mapping in the TLBs, and (2) requests to flush

all entries for a given address space.

Comparison with CPU: Historically, CPUs have used a variety of mechanisms to

perform remote TLB shootdowns. For example, x86 processors use inter-processor in-

terrupts (IPIs) to keep per-core TLBs coherent. CPUs initiating TLB shootdowns send

IPIs to other CPUs in the system that may have a stale entry. The IPI invokes the oper-

ating system on those CPUs, which executes a handler to invalidate the local per-CPU

TLB. Just as the operating system can choose not to send IPIs to processors that prov-

ably cannot have a stale mapping (e.g., they never executed the process), an efficiently

constructed driver will selectively send shootdowns to the IOMMU and the accelerators
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only if the address space was shared.

In contrast, processors like ARM® and PowerPC® have also employed dedicated

TLB shootdown instructions in their ISAs. In these cases, software on the shootdown

initiator core executes a TLB invalidation instruction, which is then broadcast to the

other cores. Although the OS is typically not invoked in this approach, the downside is

that broadcast signals are often conservatively relayed to all system cores, constraining

the scalability of this approach

4.3 Methodology and Workloads

We run our experiments on a system with an AMD A10-7850K APU (previously code-

named “Kaveri”) as described in Table 4.1. AMD A10-7850K APU is one of the first

heterogeneous processor to support shared virtual memory across the CPU and GPU.

We measured TLB events and page table walks using hardware performance counters.

We designed a software profiler to access these counters. We also instrumented the

Linux IOMMU driver to measure the latency for software events like page faults and

TLB shootdowns.

CPU AMD A10-7850K APU, maximum core frequency 3.7GHz.

GPU 8 compute units (CUs), maximum core frequency 720 MHz.

Memory DDR-3, 32GB (4×8GB), 1600 MHz.

Software Linux 4.0 with Kernel Fusion Driver (KFD).

Heterogeneous System Architecture (HSA) [151]

runtime, C++AMP compiler and OpenCL stack on HSA

Table 4.1: Description of experimental system

We use six applications (described in Table 4.2) and two targeted micro-benchmarks

for this study. All the applications and micro-benchmarks use the on-die integrated-

GPU to perform their primary compute. All the data for the applications reside in the

system memory (DRAM) and uses shared virtual addressing between the CPU and the

GPU.
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B+Tree Search(BPT) Searches 15M keys in a B+tree concurrently
[152] on the GPU. The B+tree is pre-generated.
CoMD [153] Molecular dynamics simulation that

evaluates the force acting on an atom due to
other atoms in the system. Force potential
computation is evaluated on the GPU.

miniAMR [138] Applies a stencil calculation on the GPU to
a dense 3D array.

miniFE [154] Assembles and solves a sparse linear-system
from the steady-state conduction equation[155].

graph500 [156] BFS traversal on a Kronecker generated
graph. Bottom-up traversal uses the GPU.

XSBench [157] Monte Carlo neutron transport across
macroscopic neutron cross sections.

Table 4.2: Description of applications used

4.4 Address Translation in Shared Virtual Memory

We first analyze intricacies of the GPU address translation under a controlled execution

environment with custom microbenchmarks and then present performance measure-

ments of the applications.

4.4.1 Analyzing GPU’s address translation using microbenchmarks

We sought to answer two questions in the analysis using a carefully designed micro-

benchmark: (1) what is a typical GPU TLB miss latency, and (2) how much concurrency

is supported by the hardware in servicing GPU TLB misses? Answers to these questions

reveal potential performance bottlenecks, particularly as shared virtual memory is scaled

in future heterogeneous systems.

Our micro-benchmark runs a kernel (GPU program) on the integrated-GPU with

a varying number of workitems. Each workitem accesses 10,000 different memory lo-

cations in a loop and performs a simple computation (XOR) on the data. A stride

(parameter) determines the distance (in bytes) between memory locations accessed by

two consecutive accesses in each workitem. We execute the micro-benchmark with one

workitem with a stride of 64 bytes (cache line size) and again with a stride of 4KB

(page size). We use the hardware performance counters to count the number of TLB
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Stride (in Bytes) GPU CPU
Number Running Number Running
of TLB time of TLB time
misses (in µsecs) misses (in µsecs)

64 (cache line size) 166 12,707 1,412 134
4096 (page size) 10,010 18,444 15,938 477
TLB miss latency (18,444 - 12,707) / (477 - 134) /
(calculated) (10,010 - 166) (15,938 - 1,412)

0.58µs 0.023µs

Table 4.3: Measurements of TLB miss latencies

and cache misses. Table 4.3 lists the measurements. When executed with a stride of

64 bytes (second row) each memory access incurs a cache miss while every 64th access

(4096/64) incurs a TLB miss. With a stride of 4KB, every access incurs a cache miss

and a TLB miss (third row). Thus the difference between these two executions is the

number of TLB misses. Therefore, we attribute the difference in the runtime between

the two runs to the additional TLB misses. We calculate that the latency of servicing

a GPU TLB miss that incurs a page walk by the IOMMU to be 582 nanoseconds (last

row). We further ran the same micro-benchmark on the CPU with a single thread for

comparative analysis. Measurement on the CPU is presented in the last column and we

similarly calculate that latency of the CPU’s TLB miss to be 23 nanoseconds. Thus, a

TLB miss from the GPU is about 25% slower than on a CPU. Several reasons contribute

to the longer latency of GPU TLB misses: (1) TLB miss request and responses travel

as PCIe® packets to the IOMMU; (2) more levels (up to four here) of TLBs to check;

(3) the IOMMU’s page table walker does not have fast access to CPU caches that might

have the latest page table entries; and (4) the resulting wavefront must be rescheduled

for execution on the GPU.

We then executed the micro-benchmark on the GPU with an increasing number of

workitems from 1 to 64 to estimate the concurrency available in servicing TLB misses.

Each workitem accesses a distinct set of memory locations and thus offers no opportunity

to coalesce the accesses. The maximum number of outstanding TLB misses (and the

corresponding page walk requests) at any given time is thus bounded by the number

of workitems. Figure 4.2 shows how the latency experienced by a wavefront on a GPU
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Figure 4.2: Scaling of GPU TLB miss latency

TLB miss scales with an increasing number of workitems. Note that there is a significant

jump in the page walk latency beyond 16 workitems (and thus, 16 outstanding page

table walks). This suggests that in our test hardware, the IOMMU allows up to 16

concurrent page table walks, beyond which the latency of page walks increases sharply

due to queuing.

4.4.2 Measuring GPU’s address translation overhead

Next, we run six applications (Table 4.2) to measure and analyze the overheads of the

GPU’s address translation on real workloads. We run each application with increasing

memory footprints to understand the scalability of the GPU’s address translation over-

heads. We use hardware performance counters to measure the number of GPU TLB

misses and the number of accesses to the page table by the IOMMU. We perform the

measurements of each application using 4KB (default) and 2MB pages. Larger pages

reduce the number of TLB misses and enable us to better understand the performance

benefits of reducing TLB misses.

Figure 4.3 depicts a summary of our measurements for each application. The x-axis is

the approximate memory footprint. The plot’s right y-axis represents the GPU runtime,

and the left y-axis is the number of GPU TLB misses and the number of accesses to
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Figure 4.3: GPU TLB miss rates and impact of larger page size

the page table by the IOMMU per kilo wavefront instructions (PKWI) executed on the

GPU. A wavefront instruction is a single-instruction-multiple-data (SIMD) instruction

executed by workitems (a.k.a GPU threads) in a given wavefront (warp) in a lock-step

fashion. In one set of runs, the applications make use of 4KB pages (4k), and in another

set of runs the applications make use of larger 2MB pages (2m).

For example, we scale the memory footprint of the workload BPT using different

input sets, from 2 to 21 GB. Observe that with 4KB pages, the GPU TLB miss rate

goes up from 0.5 to 4.4 misses per KWI [gTLB_MPKWI (4k)]. The number of accesses

to the page table goes up from 0.4 to 2 accesses per KWI [PTa_PKWI(4k)]. The GPU

TLB misses and the number of accesses to the IOMMU becomes negligible if larger 2MB

pages are used. Correspondingly, there is up to an 11% reduction in execution time.

We note that PTa_PKWI counts the number of accesses to the in-memory page table

and not the number of page table walks. In x86-64, a page table walk can incur up to
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four accesses to the page table.

On the opposite end of the spectrum is graph500 (Figure 4.3(e)). There are at most

2.5 GPU TLB misses per KWI. A larger page size (2MB) eliminates almost all TLB

misses for graph500, but there is no observable change in execution time. This suggests

that the GPU’s address translation overhead is not a factor in graph500’s performance.

We find that graph500 loads data from the memory to the GPU’s scratchpad or local

data store (LDS) in contiguous chunks, and thus amortizes TLB misses well. Similar

behavior is observed for miniFE which also makes use of LDS. In contrast, BPT accesses

data more randomly and has less opportunity to amortize this cost. Other applications

(Figure 4.3(b)–(e)) show varying degrees of sensitivity to the GPU’s address translation

overheads.

In summary, BPT, CoMD, and miniAMR are sensitive to TLB miss rates. BPT,

CoMD, and miniAMR, respectively, achieve up to 11.9%, 9.7% to 4.6% improvement

in runtimes when TLB misses are significantly reduced. On the other hand, graph500,

miniFE, and XSBench are insensitive to translation overheads.

Furthermore, preliminary experiments with a recently released second generation

APU suggests that while the overall runtimes of applications have significantly improved,

the contribution of overheads due to address translation has doubled. This suggests

that with future improvement in the rest of the coherent memory hierarchy the address

translation is likely to become the bottleneck, unless paid attention to.

4.4.3 Effect of locality on GPU’s address translation

The effect of memory-access locality on shared-memory heterogeneous applications is

subtle. With sufficient application concurrency and locality, a small number of TLB

misses do not affect performance. On a TLB miss, the GPU can switch to another

wavefront (warp) to hide the latency of the resulting page walk. On the other hand,

if every wavefront incurs a TLB miss (poor locality), or worse, if many workitems

(GPU thread) within a wavefront incur a TLB miss (called “data divergence” in GPU

terminology), then programs can be highly sensitive to address-translation overhead.

To analyze how poor locality in memory accesses may affect the GPU’s address
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translation, we used alternative versions of XSBench and BPT. Both XSBench and BPT

perform concurrent searches on the GPU over a large data structure (e.g., nuclear energy

grid and B+ tree, respectively). In the original versions, the search keys are sorted (on

the CPU) before performing the searches on the GPU. This significantly increases the

locality in the resulting execution because adjacent workitems (GPU threads) in the

same wavefront, and wavefronts scheduled nearby in time access the same memory pages.

The alternative versions used in this experiment (called XSBench-unsorted and BPT-

unsorted) perform the same work but without the pre-sorting step. Thus, XSBench-

unsorted and BPT-unsorted demonstrate considerably less locality in their memory

accesses.

Figure 4.4: GPU TLB miss rates and running time of unsorted version of BPT and
XSBench

Figure 4.4 shows the runtime and the TLB miss rates of XSBench-unsorted and

BPT-unsorted normalized to their corresponding original (sorted) versions. In Fig-

ure 4.4(a), the right cluster of bars (using the right y-axis) shows the GPU running

time of XSBench-unsorted using different page sizes (4KB, 2MB, 1GB) normalized to

the runtime of the original XSBench (sorted) version using only 4KB pages. The left

cluster of bars (using the left y-axis) shows the corresponding number for the GPU TLB

misses per KWI. Figure 4.4(b) shows the same data for BPT. Both workloads use the

largest dataset for this experiment.

We observe that there is a significant slowdown (6 − 25%) due to poor locality.

This slowdown is due to poor locality in address translation, caching, and DRAM. To

isolate the impact on the address translation we use large and huge pages to alleviate
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TLB misses. For example, observe that with 1GB pages, TLB misses are nearly non-

existent (invisible in the graphs) even for the unsorted versions, and correspondingly

the slowdown reduces from 6% to 1.5%, and from 26% to 7% for XSBench-unsorted and

BPT-unsorted, respectively. This suggests the residual slowdowns (1.5% and 7%) are

due to the effect of poor locality in the rest of the memory hierarchy (e.g., caches, mem-

ory bandwidth). This strongly indicates that poor locality affects the GPU’s address

translation far more than the rest of the memory hierarchy. Research into divergence

tolerant address translation mechanisms for throughput-oriented accelerators is impor-

tant.

4.4.4 Effect of address translation prefetching
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Figure 4.5: Effect of address translation prefetching on GPU’s address translation mech-
anism

As described in Section 4.2.1, the GPU by default prefetches translations for up

to eight contiguous (4KB) pages in each ATS request sent to the IOMMU. Figure 4.5

depicts the runtime and the number of GPU TLB misses per KWI with and without

translation prefetching for two of the workloads: XSBench-unsorted and miniAMR. In

Figure 4.5(a), we find that XSBench-unsorted incurs up to 24% more GPU TLB misses,

and consequently, nearly 3% performance degradation due to translation prefetching.

The contiguous prefetches are useless for XSBench-unsorted’s nearly random accesses

to large amounts of data. Furthermore, the useless prefetches evict useful translations

from the GPU TLB and ultimately hurt performance by increasing the number of page

table walks. Conversely, we find that translation prefetching reduces the number of
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TLB misses for the majority of workloads studied. For example, Figure 4.5(b), presents

measurements for miniAMR. We observe that prefetching translations aids miniAMR

by reducing the number of TLB misses by half. These measurements suggest that the

effectiveness of translation prefetching is highly application-dependent and providing

application-aware or programmable prefetching would be prudent.

Observations and opportunities:

1. Latency of servicing a TLB miss is significantly higher on a GPU than on a

CPU ( 25×).

2. Increasing the number of concurrent page table walks supported by the hard-

ware is key to supporting diverse heterogeneous applications.

3. Half of the programs we studied suffer performance degradation from GPU

address translation overheads.

4. Larger pages are effective in reducing TLB misses. Heterogeneous software

and hardware should enhance support for larger page sizes.

5. Divergence in memory accesses impacts address translation overhead more

than cache and DRAM latency. Research into divergence-tolerant address

translation mechanisms for throughput-oriented accelerators is important.

6. Prefetching address translations can degrade performance for programs with

poor locality. Application dependent translation prefetching is desirable.

4.5 Extending page faults to GPUs

A key feature of virtual memory is the ability to establish mappings between virtual and

physical addresses on demand. This defers committing physical memory until (and if)

needed. Page faults allow the operating system to consolidate physical memory across

multiple concurrently running processes and enable memory over-commitment. This
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is particularly useful, for example, when an application maps a large input dataset to

memory, but only ends up using a small portion of it. Further, page faulting is key in

enforcing page permission changes and many advanced memory management techniques

like garbage collection and page frame reclamation.

While the ability to perform page faults has been an integral part of a CPU’s virtual

memory for decades, accelerators like GPUs traditionally lacked such capability. AMD’s

A10 APUs released in 2014 are one of the first commercial heterogeneous processors

to support page faulting on the shared memory from accelerators. However, today’s

heterogeneous applications are not written to utilize this new capability and instead

follow an OpenCL-like programming model. In time this will change, but for now, we

modified applications to utilize this functionality to study its impact. We focus on

softpage faults, which do not incur accesses to secondary storage.

4.5.1 Analyzing GPU page fault latency and throughput

We analyze the latency and throughput of GPU page faults using a micro-benchmark.

We instrumented the IOMMU driver to perform the measurements. The micro-benchmark

generates a constant number (512,000) of soft-page faults from the GPU. The soft page

faults do not access storage and are generated by the first access to a page in memory.

The micro-benchmark is designed to generate faults in controlled bursts by varying the

number of workitems. When the microbenchmark is executed with ‘n’ workitems, it

generates ‘n’ concurrent page fault requests from the GPU. Thus increasing the value

of ‘n’ generates larger bursts of concurrent page faults. Figure 4.6 shows the measured

latency and throughput of servicing these GPU page faults. The total height of each

bar represents the average latency to service a page fault. The left y-axis represents the

page fault latency in microseconds. The right y-axis represents throughput of servicing

GPU page faults. For example, with 64 workitems, the average latency to service a

page fault is around 100 microseconds and 260 page faults are serviced per millisecond

(throughput).

We make two key observations: (1) the average latency to service a page fault

increases from 5 microseconds to 140 microseconds with increasing number of concurrent
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Figure 4.6: Scaling of GPU page faults.

page faults from the GPU; and (2) the throughput of servicing GPU page faults does

not scale beyond 32 concurrent page faults. To put these numbers in perspective, we

executed the experiment on the CPU (single-threaded) and found the typical page fault

latency on the CPU is around 1.7 microseconds. GPU pagefaults are 3 − 80× slower.

Larger concurrency in servicing page faults from the GPU can help amortize this high

latency.

We breakdown the (software) latency to service a GPU page fault in Figure 4.6. We

divide the time to handle a GPU page fault into three major parts: (1) “initialization”,

the latency for the OS driver to read the fault requests from the PPR queue and pre-

process it; (2) “processing”, the latency to find a physical page and update the page table;

(3) “schedule”, the time between initialization and processing of a page fault request.

We observe that only a small fraction of the time is spent in actually processing the

work to service a page fault. The OS’s scheduling delay introduced by the asynchronous

handling of GPU page faults is the primary contributor to the latency. This suggests
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that page faults from the GPU can be handled more efficiently by modifying the OS

driver to handle the faults synchronously whenever possible.
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Figure 4.7 shows the relationship between the CPU’s core frequency and the latency

to service a GPU page fault. The height of each bar in the clusters represents average

GPU-page fault latency with the CPU running at the given frequency. We observe that

the latency to service a GPU page fault nearly doubles when the CPU core frequency is

reduced from 3.7GHz to 1.7GHz. In general, the graph shows that the GPU page fault

latency inversely scales linearly with the CPU’s core frequency. This suggests that the

CPU’s core frequency needs to scale up for faster servicing of GPU page faults and the

CPU power setting may affect GPU page fault behavior.
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4.5.2 Physical memory consolidation through GPU page faults

We measured the reduction in the physical memory footprint through the use of on-

demand page faults from the GPU and measure its performance overhead.

We modified four applications (BPT, XSBench, CoMD and Graph500) to utilize

demand faulting of memory from the GPU. These modifications include using memory-

mapped files, changes to the data structures, and memory allocation. We did not modify

miniFE and miniAMR as it was not practical to dynamically fault in data from the GPU

to achieve memory consolidation without major alterations to their code bases.

Figure 4.8: Physical memory usage with and without page faults from GPU.

Figure 4.8 depicts the reduction in physical memory footprint through the use of

page faults from the GPU. The x-axis of each graph represents a given workload’s

running time on the GPU while the y-axis represents the physical memory allocated

to the workload at a given time. Each graph has two lines representing two versions

of each workload. “GPU_PAGEFAULT”, is the modified version of a workload that

dynamically faults memory from the GPU. “NO_GPU_PAGEFAULT”, represents the

original version. The difference between these two lines signifies opportunity to save
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physical memory. In Figure 4.8(a), we observe that the physical memory footprint of

BPT reduces significantly with GPU page faults. BPT performs concurrent searches

on the GPU over a pre-generated B+tree (size 20GB). It is not necessary to access

the entire tree for finding the keys. Thus the use of page faults from the GPU avoids

unnecessarily allocating physical memory for the entire tree. In Figure 4.8(b),we observe

that XSBench allows savings in physical memory footprint during initialization, but

memory footprint grows quickly as the entire allocated memory is gradually accessed

over time. Deeper inspection into XSBench reveals that the biggest contributor to its

memory footprint is the data structure for the nuclear energy grid. This energy grid

is accessed to perform concurrent cross-sectional lookups on the GPU. We find that if

a large number of lookups are performed (a parameter, default 15M) at random cross-

sections, then eventually the entire energy grid is accessed. Thus the physical memory

usage with and without GPU page faults converges. However, XSBench’s physical

memory footprint reduces substantially when a smaller number of lookups (e.g., 500K)

are performed. We find that there is very little scope for consolidating physical memory

for workloads like graph500 and CoMD. In graph500, the entire graph data structure is

traversed and thus all of allocated memory is accessed. Similarly, for CoMD the entire

allocated memory is needed by the GPU. Hence, the potential for reducing memory

footprint varies across workloads and can be dependent upon the input.

Figure 4.9 shows the runtimes normalized to the runtimes with no page faults from

the GPU. Each bar also shows a breakdown of runtime spent on the CPU and GPU.

We observe that XSBench and BPT can incur significant performance degradations due

to page faults from the GPU. We note that a larger fraction of the time is spent on the

GPU if page faulting is used. This is expected as GPU page faults hinder concurrency

in the GPU. Other workloads show little or no performance impact. In summary, we

find significant scope for research into heterogeneous software and hardware to reduce

the page fault latency and enabling more concurrency in servicing them. These research

efforts, however, should focus on enabling new capabilities in the runtime rather than

improving the performance of legacy applications.
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Figure 4.9: Performance overhead of GPU page faults.

Observations and opportunities:

1. The latency to service a page fault from the GPU can be significantly higher

than from the CPU.

2. Enhancements into system software to handle page faults synchronously can

reduce this latency.

3. Software-hardware co-design is needed service a large number of concurrent

faults from the GPU/accelerators.

4. It is imperative to scale CPU performance and resources to scale the GPU

page fault servicing.

5. Future heterogeneous applications can reduce their physical memory footprints

through the use of on-demand page faults from the GPU, although current

applications may need to be re-written.



94

4.6 Extending TLB shootdowns to GPUs

Avg. GPU TLB Breakdown of GPU TLB
shootdown latency shootdown latency
(in nanoseconds) (in nanoseconds)

Initi- IOMMU GPU Fina-
liza- TLB TLB liza-
tion inval inval tion

Single-entry 4234 79 1970 2021 162
shootdown
All-entry 4409 122 2052 2035 299
shootdown

Table 4.4: GPU TLB shootdown analysis

We wrote a simple micro-benchmark that generates a large number of GPU TLB

shootdowns. It generates both single-entry TLB invalidations and entire TLB flushes.

Table 4.4 presents measurements and the breakdown of latency of a GPU TLB shoot-

down. The first column depicts the average latency of a GPU TLB shootdown. The

first row shows the latency of invalidating a single entry, and the second row shows the

latency of flushing the entire TLB. The average latency of a TLB shootdown is around

4.2-4.4 microseconds. This latency is comparable to typical times required to perform a

TLB shootdown across 4 to 8 CPU cores [158]. We note that nearly an equal amount of

time is spent in invalidating the IOMMU’s and the GPU’s TLB entries. We also note

that there is no significant difference between the latency to invalidate a single entry

or flushing the entire TLB. In the Linux operating system, TLB shootdowns often take

long time to complete for large systems with many nodes. This may potentially be a

scaling bottleneck in the future. For example, future systems with multi-level mem-

ory [159] that migrate pages between different levels of memory will critically depend

on TLB shootdown performance.

4.7 Related Work

The advent of big-data workloads, often with poor access locality (e.g., graph processing

algorithms, massive key value stores), have recently led to a surge of research on virtual
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memory for big-memory servers [160–169]. A number of research proposals have consid-

ered hardware and software mechanisms to improve the effective capacity of TLBs with-

out additional area costs [161, 162, 165, 167–169] with speculation [160, 170], and with

approaches that better managed large pages [170–172]. In parallel, the emergence of the

unified address space paradigm for APUs (and more broadly, heterogeneous systems) has

prompted the first set of studies on GPU address translation and memory management

units [23, 173]. For example Pichai, Hsu, and Bhattacharjee show that intelligent hard-

ware page table walkers are crucial to the performance of throughput-oriented accelera-

tors and are deeply tied to the operation of the wavefront scheduler for both round-robin

(the default) and advanced dynamic wavefront formation strategies designed to improve

cache locality and mitigate control-flow divergence overheads [23]. Similarly, Power, Hill,

and Wood show that throughput-oriented, multi-threaded page table walkers are critical

for GPU performance, especially in conjunction with intelligently-designed translation

caches [173]. Beyond these works on GPUs, researchers have begun considering address

translation for fixed-function and programmable accelerators [174]. Unlike past works

on GPU address translation, we are the first to characterize shared virtual memory

behavior on a real heterogeneous system with realistic workloads. Our work shows the

benefits, challenges, and potentially interesting research avenues in this space by collect-

ing results on the first generations of hardware and software that actually implement

CPU-GPU shared address spaces. Our work sheds light on the detailed interactions in

the address translation microarchitecture beyond the scope of prior works. As such,

we believe that our study provides a foundation for guiding the research community on

some of the most-pressing problems in the shared virtual memory paradigm.

4.8 Summary: Observations and Opportunities

We summarize the lessons learned analyzing shared virtual memory in one of the first

commercially available heterogenous processors. We discuss possible research opportu-

nities in the space for future-generation heterogeneous processors.

Address translation: TLB misses in GPUs are currently an order of magnitude

slower than that in CPUs. A GPU program’s large memory-level parallelism, along
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with concurrent servicing of GPU TLB misses can potentially help to hide this latency.

Research on techniques that increases TLB miss handling concurrency are crucial, par-

ticularly for throughput-oriented accelerators like GPUs. We observe that divergence

in memory accesses impacts address translation more than the rest of the memory hier-

archy. Although there has been a significant body of research in managing divergence

in the cache hierarchy, there is a dearth of work that studies its impact on address

translation. We find that prefetching translations usually aids performance, but under

certain circumstances it can degrade performance. Research into software-hardware co-

design for application-aware prefetchers for address translation will be useful. Finally,

we find that large pages universally help in reducing address translation overheads.

Hardware designers should build enhanced support for large pages and programmers

should make use them. Furthermore, our preliminary experiments with second gener-

ation APU suggests that address translation is likely to become a bigger contributor

to the performance overhead as the rest of the memory hierarchy is improved in future

generation heterogenous processors.

Page fault: Dynamically allocating physical memory via page faults from the GPU

could potentially enable significant memory consolidation for future applications with

large footprints. However, we observed that servicing a GPU page fault on current

systems can take an order of magnitude longer (3 − 82×) than that for CPU page

faults. Addressing this challenge requires changes to both the hardware and software.

Enhancements to both the system software and hardware to service a larger number of

concurrent page faults could help mitigate the overheads in the page fault process.

TLB Shootdown: Our workloads encountered only a few instances of TLB shoot-

downs. TLB shootdown latencies for current heterogeneous systems are comparable to

those in the CPU and are hence expensive. However, because TLB shootdowns are seri-

alized, they could be a potential performance bottleneck in future systems, particularly

for heterogeneous memory systems with frequent physical page migration. This is not

an intrinsic limitation of the hardware, but architecting the OS to support concurrent

shootdowns will be required as systems scale upward.
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Chapter 5

Conclusion

5.1 Summary

For accelerators to realize their promise of increased performance and efficiency they

need to be accessible to programmers. However, their compute environment and pro-

gramming model is often wildly different from that of CPUs – a situation that restricts

the adoption of accelerators for applications that cannot invest significant developer

resources to optimize their codebase. This work studies accelerator programmability to

extend the set of applications that can benefit from improved performance and efficiency.

First, Chapter 2 studied the problem of accelerating programs written in a high-

level language. I noticed that high-level languages are often used to assemble compos-

ited programs from highly optimized components. Many of these components can take

advantage of accelerators, even if the language that ties them together can not. An

example of cognitive models written in Python demonstrated that compiler techniques

can be used to bridge this gap. The resulting code is not only amenable for acceleration,

but also provides orders of magnitude improvements when run on CPU. I discussed how

certain language features – such as the choice of algorithm for generating random num-

bers, or the choice of high-precision arithmetic – become crucial for efficient mapping

of computation to accelerators.

Although some language features can be safely eliminated during the compilation

process, outside communication in the form of system services can not. Chapter 3

examined extending GPU programming environment with the same level of access to

operating system services as is common on CPUs. I proposed and implemented an

efficient system call invocation routine for GPUs in CPU-GPU heterogeneous systems.
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I studied the semantics of POSIX interfaces and assessed their suitability for highly-

parallel GPU environment. I evaluated the performance of a selection of POSIX system

calls, and demonstrated the significant benefits of GPU system services in designing

heterogeneous applications even on scales that wouldn’t traditionally be considered for

GPU acceleration (e.g. grep).

Finally, Chapter 4 studied the impact of extending virtual memory – an important

abstraction that improves CPU programmability [175] – to GPUs. It noticed the dis-

proportionate impact of address translation on performance, compared to the rest of the

memory hierarchy. This chapter also includes a study on the impact of GPU page faults

on the operating system and heterogeneous CPU-GPU system as a whole. Designing

efficient address translation mechanisms for specialized accelerator hardware, and GPUs

in particular has now become a major area of study [176–180].

All studies in this work were done on off-the-shelf hardware and none of the pro-

posed solutions require hardware modifications. This thesis demonstrates that extending

known programmability features from CPUs to accelerators provides significant bene-

fits; It enables new applications that previously wouldn’t be considered for acceleration,

it improves the performance of existing applications by better utilization of system

resources, and it extends the benefits of accelerators to high-level languages that are

otherwise difficult to map to accelerators. This highlights significant opportunities for

improvement of both performance and programmability of accelerators that exist across

application runtimes and software stack.

5.2 Towards Ideal Heterogeneous Systems

An ideal heterogeneous system would allow programmers to express their algorithms in

any language that suits the domain, and execute each part of the code on hardware that

gives the best performance or efficiency. This work takes crucial steps towards enabling

efficient use of accelerator heterogeneity on the application level. This exposes further

opportunities in adapting operating systems and other parts of the software hierarchy

to bridge the gaps between heterogeneous software and hardware.
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Improving the performance of code generated from program sources is a never-ending

research endeavor. Chapter 2 shows that manual embedding of domain-specific infor-

mation can improve this process. Ideally, a compiler would be able to deduce most or all

of the information automatically and future research should aim to automate much of

the process. A compiler should be able to make do more radical data structure conver-

sions, and make decisions on which parts of the code are best suitable for acceleration.

Dynamic languages with interpreted or just-in-time compiled execution can make these

decisions based at execution time rather than build time, which makes them better

positioned to exploit future accelerator rich systems.

Operating systems assume that every program has at least one CPU thread, and

this work does not challenge this assumption. One can, however, imagine a system with

tasks that only execute on accelerators. Such a system will challenge the traditional

representation of tasks using process and thread abstractions. Throughput oriented

accelerators, like GPUs, use many short-lived threads. Representing all of them in the

operating system would add significant overhead, yet using coarser representation may

impact the semantics of available system services. On the other hand, systems may

include accelerators that work in event-driven fashion (e.g. machine learning inference

tasks) and don’t use any threads at all, execution on such hardware will also need to be

represented within operating systems if such accelerators should work as independent

units rather than just CPU co-processors.

Similarly, this work does not challenge the fundamental design decision that all priv-

ileged code in an operating system runs on a CPU. Reusing the same operating system

code-paths allowed the implementation in Chapter 3 to provide the same semantics for

both CPU and GPU programs. However, this centralized design will be stressed as

more accelerators in the system allow programs to request system services. A more de-

centralized, distributed approach would alleviate some of the communication overheads

and reduce the pressure on the central CPU. To achieve this vision, accelerators will

need to gain the ability to execute privileged code and efficiently share system-wide data

structures. Alternatively, systems can opt for even more specialization introducing ded-

icated, OS-only, cores to handle the increased demand for system services. Which one of
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these directions becomes prevalent depends on a lot of factors including demands of het-

erogeneous applications, and availability of fast communication hardware to implement

system interconnects and coherence protocols.

This work studies existing CPU programmability abstractions and their suitability

for accelerators. The demonstrated balance of convenience, familiarity, and performance

necessary makes accelerators accessible with little effort and enables a new class of

heterogeneous applications. It will be the demands of these new applications that will

determine how heterogeneous systems develop in the future.
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