RELIABILITY ESTIMATION AND STOCHASTIC MODELING OF
CORROSION GROWTH

by

Changxi Wang

A dissertation submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy
Graduate Program in Industrial and Systems Engineering
Written under the direction of
Elsayed A. Elsayed
And approved by

__

__

__

__

New Brunswick, New Jersey
January, 2021
ABSTRACT OF THE DISSERTATION

RELIABILITY ESTIMATION AND STOCHASTIC MODELING OF CORROSION GROWTH

By CHANGXI WANG

Dissertation Director:

Elsayed A. Elsayed

Corrosion and corrosion-related problems are the major factors leading to the age-related structural degradation of infrastructures such as pipelines and pressure vessels. Corrosion defects may result in severe damages such as thickness penetration, fatigue cracks, brittle fracture, rupture and burst. Quantifying the growth of corrosion is critically important for the risk and reliability analysis of structures, planning for corrosion mitigation, repairs and determination of time intervals for the corrosion inspections and monitoring.

Pitting corrosion growth has been a focus of research, and a depth threshold of corrosion defect has been widely used for estimating the residual life of structures being monitored. However, corrosion volume loss of materials may also lead to failures such as pipeline bursts, which is more harmful but overlooked. In this dissertation, we develop a degradation model that characterizes both corrosion maximum depth growth,
corrosion volume growth and corrosion propagation. We propose an improved inverse Gaussian (IIG) process to model the corrosion depth growth and demonstrate that it captures the dependency between the corrosion growth rate and the corrosion depth. We develop a corrosion pit volume growth model assuming that both the corrosion pit growth in the depth directions and radial directions follow IIG processes. Compared with other existing corrosion models, the proposed model captures the phenomenon where a critical amount of volume loss of materials leads to the failure of a component even though the corrosion defect’s depth has not reached its failure threshold. A physics-based model that incorporates factors including the spatial and size distributions of the material particles and the influence of corroded pits is developed to capture the corrosion propagation.

Degradation branching stochastic models are developed to describe the corrosion pit propagation. They are general models and can be applied to cracks in materials and systems that consist of multiple units where the degradation of one unit may affect adjacent units and the failure occurs when the total degradation reaches an unacceptable amount. The models capture the phenomenon that a growing degradation branch may initiate new branches when a certain criterion is met, where the criterion may be a branch’s degradation amount threshold or other physical processes. The effect of the random branching angles and the random number of branches initiated in each branching on the total degradation is investigated, where the physics-based models are
proposed to describe the relationship between the branching angles and the total degradation. The branching continues until the total degradation of all the branches reaches a threshold. Statistics of the degradation branching processes such as the mean and the variance of the total degradation, the expected number of branches initiated, the reliability and distribution of residual life are obtained.

The measurements of corrosion growth are continuously monitored and recorded. The rapid development of sensing and computing technologies has enabled the use of multiple sensors to monitor the degradation indicator (or its surrogate) of a component simultaneously. However, there are challenges in integrating the measurements from multiple sensors. First, missing data arises due to data transmission failures and manipulation errors. We propose a variety of stochastic bridges to deal with the missing data. Second, different sensors may capture different aspects of the degradation process and may be sensitive in different stages of the degradation process. We propose a non-parametric model that assigns a sensor’s weight (contribution) based on its performance in the previous time instants. It utilizes a moving time window to determine the switching of the sensors between clusters with time so that the weights are adjusted accordingly. The advantage of the proposed approach is that no specific distribution of degradation data or underlying degradation models are required.
ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my advisor Professor Elsayed A. Elsayed for his guidance, patience, inspiration, encouragement and support through my Ph.D. study over the years. His knowledge and personality have had a profound influence on my academic career and life. He has set me an example of excellence as a mentor, instructor and role model. My sincere thanks are extended to Professor Susan Albin, Professor Javier Cabrera and Professor Hoang Pham for serving on my committee and providing me with valuable suggestions that improve the quality of my dissertation.

My special thanks go to Professor Tie Gang from Harbin Institute of Technology for his insightful academic instructions and the experimental set-up of this research.

I also take this opportunity to thank my wife Ting Wang. It is her academic suggestion, mental support and love that encourage and accompany me through the challenging, interesting and unforgettable journey. I would also like to thank my parents, parents-in-law and grandparents for their understanding and selfless support on all my decisions.
LIST OF TABLES

Table 2.1 Experimentally observed branching angles in fracture mechanics specimens ... 26

Table 3.1 The time to failure prediction accuracy and sum of squared errors 66

Table 4.1 The information of numerical calculation of integrals 103

Table 5.1 The different cases of branching patterns in the case study 129

Table 5.2 The calculation steps in Case 1 ... 130

Table 5.3 The calculation steps in Case 2 ... 132

Table 5.4 The calculation steps in Case 3 ... 136

Table 6.1 Descriptions of the sensors .. 169

Table 6.2 Mean squared errors of interpolated values 173

Table 6.3 Example of sensors data observed during five-time instants 176

Table 6.4 Summary of parameters used in the case study 181

Table 6.5 MSE of individual sensors and the integrated paths 183

Table 6.6 Comparison results of absolute percentage error by using each sensor and integrated paths with different percentage of actual remaining lifetime ... 185
LIST OF FIGURES

Figure 1.1 Three-dimensional X-ray micro-tomographic image of a corrosion pit by Horner et al. (2011) (notice the morphologies of the corrosion growth) .5

Figure 2.1 Schematics of the common forms of corrosion (Davis, 2000)10

Figure 2.2 A graphical representation of definitions associated with the branching tree...24

Figure 2.3 The rotations of a crack surface..25

Figure 2.4 (a) Definitions of the angular location and direction of branching from a flaw adjacent to the primary fracture (b) The branching direction as a function of fracture velocity (Rabinovitch et al., 2011)26

Figure 2.5 (a) Infrared image of the failed membranes of Polymer Electrolyte Membrane (PEM) Fuel Cell. The bright regions represent leakage caused by cracks (b) Cross-sectional views of branched PEM cracks (Singh et al., 2017) ...29

Figure 2.6 Crack propagation and branching in a fuel cell membrane (Thompson, 2007) ...30

Figure 3.1 (a) Degradation versus time (b) degradation versus starting crack length (c) degradation increments versus time (d) degradation increments versus starting crack length...42

Figure 3.2 (a) The predicted 90% probability interval and the other nine units (b) The failure probability curves for IG and IIG..44
Figure 3.3 (a) The corrosion depth growth data (b) The expectation and 95% confidence interval with the IIG model ..45

Figure 3.4 Failure probability curve for IG and IIG ..47

Figure 3.5 Use the regular IG model to fit IIG data when (a) data are censored at
\[t = 7 \] (c) data are censored at \(t = 11 \), use the IIG model to fit IIG data when
(b) data are censored at \(t = 7 \) (d) data are censored at \(t = 11 \).49

Figure 3.6 Use the IIG model to fit IG data when (a) data are censored at \(t = 12 \)
(b) data are censored at \(t = 8 \), use the IG model to fit IG data when (c) data
are censored at \(t = 12 \) (d) data are censored at \(t = 8 \).50

Figure 3.7 Schematic diagram of the corrosion pit growth.................................51

Figure 3.8 Corrosion area growth ..53

Figure 3.9 Corrosion data and predicted mean corrosion growth path..............61

Figure 3.10 Selected simulated corrosion pit 3-D images from \(t = 3 \) to \(t = 9 \) 61

Figure 3.11 Predicted volume growth and maximum depth growth...............62

Figure 3.12 Reliability when considering different failure modes63

Figure 3.13 Corrosion loss prediction comparison using different models64

Figure 3.14 Corrosion depth and volume prediction when data are censored at
\[t = 10 \] ..65

Figure 3.15 Reliability when considering both depth growth and volume growth
..66

Figure 3.16 Particles and pits (Liao et al., 1998) ...68
Figure 3.17 Area data for particles on the LS and LT surfaces of common 7075-T6 aluminum alloy with estimated CDFs (Harlow, 2012)69

Figure 3.18 The overlap of the pits ..71

Figure 3.19 The coalescence of the two pits at t_272

Figure 3.20 The particles in a material ...79

Figure 3.21 Selected figures of the pits over time79

Figure 3.22 (a) Total volume growth of the pits (b) Reliability of the unit with multiple pits for threshold ...80

Figure 4.1 Schematic diagram of the DBP ...85

Figure 4.2 The CDFs of IG distribution and exponential distribution95

Figure 4.3 Selected figures of the contours of DGS images of crack growth and branching process in a soda-lime glass specimen (Dondeti et al., 2019)97

Figure 4.4 Selected photos of PE fringes of crack growth and branching process in a soda-lime glass specimen (Dondeti et al., 2019)97

Figure 4.5 The crack growth data of the three specimens used in the case study ..98

Figure 4.6 The apparent SIFs of cracks over time100

Figure 4.7 The estimated PDF of time to branch based on SIF growth and observed times of branching of specimens100

Figure 4.8 The actual and predicted total crack length101
Figure 4.9 The reliability of the unit/system subject to crack growth and branching..102

Figure 5.1 The branching pattern of a GDDBP that has \(n_r = 5 \) trees111

Figure 5.2 The tree grown from original branch \(k = 1 \) in Figure 5.1111

Figure 5.3 Schematic diagram of the degradation of the original branch and branches in tree \(k = 1 \) shown in Figure 5.1 ...112

Figure 5.4 (a) Definitions of the angular location and direction of branching from a flaw adjacent to the primary fracture (b) The branching direction as a function of fracture velocity (Rabinovitch et al., 2011)116

Figure 5.5 The growth of tree \(k \) after time \(t \), the bold solid lines represent branches that have not branched by \(t \) ...124

Figure 5.6 The linear fit of the crack propagation rate—branching angle data 128

Figure 5.7 The subcategories of Case 1 in Table 5.1130

Figure 5.8 The subcategories of Case 2 in Table 5.2132

Figure 5.9 The subcategories of Case 3 in Table 5.3136

Figure 5.10 The comparison of the PDF of total degradation obtained by numerical solution and histogram of the simulations at \(t = 10 \)142

Figure 5.11 A typical simulation of the branched trees142

Figure 5.12 The PDFs of the total degradation over time obtained by numerical solution...143
Figure 5.13 The means and variances obtained with simulations and numerical solutions ... 144

Figure 5.14 The reliability of the system obtained by numerical solution and simulations .. 144

Figure 6.1 Comparison of the piecewise linear mean function and linear mean function ... 149

Figure 6.2 Estimate the parameter c_1 by considering the observed data150

Figure 6.3 The plot of the variance of a nonlinear Brownian bridge 152

Figure 6.4 The schematic diagram of a Gamma Bridge 154

Figure 6.5 The variance plot of a Gamma bridge 158

Figure 6.6 The interpolated data with the nonlinear Brownian Bridge 161

Figure 6.7 The interpolated data with the nonlinear Gamma Bridge 162

Figure 6.8 Interpolated data with the inverse Gaussian Bridge 162

Figure 6.9 The corrosion growth prediction with data interpolated by the nonlinear Brownian Bridge ... 163

Figure 6.10 The corrosion growth prediction with data interpolated by the nonlinear Gamma Bridge .. 164

Figure 6.11 Corrosion growth prediction with data interpolated by the inverse Gaussian Bridge ... 164

Figure 6.12 Failure time prediction confidence intervals with 40% missing data interpolated from the bridges 166
Figure 6.13 Failure time prediction confidence intervals with 20% missing data interpolated from the bridges ... 166

Figure 6.14 Failure time prediction confidence intervals with 10% missing data interpolated from the bridges ... 167

Figure 6.15 SSPE using three bridges when different proportions of data are missing ... 168

Figure 6.16 The complete dataset ... 170

Figure 6.17 The missing data pattern ... 171

Figure 6.18 An interpolated missing dataset ... 171

Figure 6.19 The variance plot ... 172

Figure 6.20 Mean interpolated data by stochastic bridges (dashed lines denote interpolated data) ... 173

Figure 6.21 Mean interpolated data by modified bootstrap and kNNI (dashed lines denote interpolated data) ... 174

Figure 6.22 Cluster switching example (sensors 2, 3 and 6 switched clusters at time 2) ... 177

Figure 6.23 (a) Weights of the sensors by variance (b) Weights of the sensors by cluster shifting ... 181

Figure 6.24 Final normalized weights of the sensors ... 181

Figure 6.25 Integrated paths and mean of the incomplete data ... 182
TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION ... ii

ACKNOWLEDGEMENT ... v

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER 1 INTRODUCTION ... 1

1.1 The Motivations of the Research ... 1

1.2 Problem Definition ... 3

 1.2.1 Stochastic Modeling of Corrosion Growth .. 3

 1.2.2 Stochastic Modeling of Degradation Branching Processes 6

 1.2.3 Missing Data Interpolation ... 7

 1.2.4 Multiple Sensor Data Interpolation and Integration 7

1.3 Organization of the Dissertation .. 8

CHAPTER 2 LITERATURE REVIEW ... 9

2.1 Literature Review on Degradation Models .. 9

 2.1.1 General Corrosion Concepts .. 9

 2.1.2 Physics-based Corrosion Degradation Models 13

 2.1.3 Deterministic Corrosion Degradation Models 15

 2.1.4 Stochastic Corrosion Degradation Models ... 17

 2.1.5 Degradation Propagation and Stochastic Branching Processes 21

 xiii
2.2 Literature Review on Missing Degradation Data Interpolation............30
2.3 Literature Review on Data Integration ..35

CHAPTER 3 CORROSION GROWTH MODELING ..37

3.1 Introduction ...37

3.2 Corrosion Depth Growth Modeling ...37

3.2.1 Inverse Gaussian Process ...37

3.2.2 Improved Inverse Gaussian Process ..39

3.2.3 Remaining Life Prediction and Failure Probability Estimation40

3.2.4 Model Validation and Numerical Studies ..42

3.2.5 IIG Model Robustness Evaluation ...47

3.3 Corrosion Volume Growth Modeling ...51

3.3.1 Volume Growth of the Corroded Pixels ..52

3.3.2 Volume Growth of the Newly Corroded Pixels53

3.3.3 Total Incremental Volume ...55

3.3.4 Incremental Volume Under Stresses ..56

3.3.5 Reliability Estimation and Remaining Life Prediction57

3.3.6 Case Study ...59

3.4 Corrosion Propagation Modeling ...66

3.4.1 Characterization of the Particles ...67

3.4.2 Corrosion Pits Initiation ...69

3.4.3 Corrosion Growth of Multiple Pits ...71
3.4.4 Multiple Pits Initiation and Growth: Case Study 78
3.5 Summary .. 80

CHAPTER 4 DEGRADATION BRANCHING MODELING 82
4.1 Introduction .. 82
4.2 The Degradation Branching Process Model 83
 4.2.1 Properties of the DBP .. 83
 4.2.2 Special Case of the DBP: Branching Brownian Motion Process 91
 4.2.3 Case Study ... 95
4.3 Summary .. 103

CHAPTER 5 GENERAL DIRECTIONAL DEGRADATION BRANCHING
 PROCESSES ... 104
5.1 Introduction .. 104
5.2 Nomenclature ... 105
5.3 General Directional Degradation Branching Process 109
 5.3.1 Definitions and Properties of the GDDBP 109
 5.3.2 Probabilistic Properties of the GDDBP 116
5.4 Case Study ... 127
 5.4.1 Assumptions and Parameters Used in the Case Study 127
 5.4.2 Total Degradation Estimation ... 129
 5.4.3 Comparison of the Simulations and the Theoretical Results 140
5.5 Summary .. 145
C.3 The Incremental Volume with Covariates ... 203
C.4 Reliability and Remaining Life Prediction... 205
C.5 Parameters Estimation.. 208
C.6 True Area Growth and Recommendations to Select Number of Sectors.... 211
C.7 Case Study.. 214
C.8 Conclusions .. 225

APPENDIX D THE CORROSION VOLUME THRESHOLD DERIVATION 227
APPENDIX E PARAMETERS ESTIMATION IN THE CORROSION VOLUME GROWTH PROCESS BASED ON IIG PROCESS.. 229

APPENDIX F PROOFS OF THE DEGRADATION BRANCHING EQUATIONS
.. 231
 F.1 The PDF of the Total Degradation, the Reliability and the Expected Number of Branches .. 231
 F.2 The Expectation of the Total Degradation and the Mean Residual Life 235
 F.3 The Variance of the Total Degradation .. 238
 F.4 The Expectation and Variance of the Branches... 243
 F.5 The Mean and Variance of the Total Degradation where Time to Branch Follows an Exponential Distribution ... 245
 F.6 The Mean and Variance of the Branches where Time to Branch Follows an Exponential Distribution ... 251

APPENDIX G MODIFIED K NEAREST NEIGHBOUR IMPUTATION 260
APPENDIX H IMPUTATION WITH BOOTSTRAP ..262

H.1 Degradation Increments are i.i.d. ..262

H.2 Residuals are Approximately i.i.d. ...263

H.3 Residuals are Non-i.i.d. ...264

REFERENCES ..267
CHAPTER 1

INTRODUCTION

1.1 The Motivations of the Research

Infrastructures are susceptible to degradation throughout their service lives. Corrosion is one of the most common degradation forms. It is a major threat to the structural integrity and safe operation of infrastructures throughout the world. Due to the severe impact of corrosion defects, various reliability estimation models and corrosion management methods have been studied (Morcillo et al., 2013). The most popular models are the corrosion pit depth growth models. An extensive review of the literature reveals stochastic modeling of the corrosion growth is limited (Ghosh et al., 2007).

Field data (Hu et al., 2016, Valor et al., 2013) reveals that the corrosion growth rate decreases as corrosion progresses. It is generally accepted that the rust layer, which mainly consists of the produced reaction products, stops water and air from contacting new metal and decreases corrosion rate. No model captures the dependency between the corrosion growth rate and the corrosion layers, as well as the measurements’ uncertainties.

As corrosion progresses, corrosion pit grows larger both in radial and depth directions. At the same time, the corresponding corrosion pit’s volume increases, which decreases the
remaining strength of the structures. While current research mainly focuses on modeling the structural failures caused by corrosion pit depth growth, there is little work on modeling the structural failures induced by corrosion pit volume growth. There are cases where shallow pits lead to failures. Therefore, it is necessary to model the pit volume growth to accurately predict a structure’s failure time and its residual life.

The corrosion growth rate is significantly affected by the environmental stresses, which include temperature, relative humidity and the pH levels (Guedes Soares et al., 2011). As has been shown by Hughes et al. (2016), there is an inherent relationship between the underlying levels of stresses and the corrosion electric current, which can be interpreted as the corrosion rate. Therefore, the effect of environmental stresses needs to be accurately incorporated into the corrosion growth model.

The corrosion degradation measurements are susceptible to errors, missing observations, noises and biases (Huang et al., 2009, Seem, 2007). With the advancement of sensing technology, more sensors that monitor different degradation indicators are readily available. By employing multiple sensors, more accurate information can be obtained since they portray different perspectives of the underlying degradation process. Meanwhile, the joint behavior of different sensors has not been investigated. Moreover, due to sensor failures and human errors, missing data may occur in the data acquisition process. Therefore,
appropriate data imputation approaches and data integration approaches need to be investigated. These problems are the subject of investigation of this dissertation.

1.2 Problem Definition

1.2.1 Stochastic Modeling of Corrosion Growth

1.2.1.1 Stochastic Modeling of Corrosion Depth Growth

After a corrosion pit is initiated at micro-particles in the metal matrix (Trzaskoma, 1990), it begins to grow both in the radial and depth directions. The corrosion growth rates in these directions are not deterministic. This is due to the uncertainties of material microstructure, physical constitution and other environmental factors. For example, the non-uniformity of constituents that compose the steel alloy may lead to an inhomogeneous metal dissolution rate (corrosion growth rate) in different locations of the alloy. The non-homogeneous microstructure of the metal around the welds may also lead to various corrosion growth rates.

The environmental stresses, which include the relative humidity, the temperature and the pH levels significantly influence the corrosion growth rate (Soares et al., 2009). According to the corrosion kinetics, the stresses affect the corrosion growth rate by changing the corrosion chemical reaction current (Hughes et al., 2016). However, physics-
based stress incorporation models are sparse. Meanwhile, it is widely observed that as corrosion progresses, the corrosion growth rate decreases (Murer et al., 2013, Vanaei et al., 2017). This is mainly caused by the formation of corrosion rust layer, which prevents reagent such as water and air from corroding the uncorroded metal. This phenomenon may also be interpreted as that there is a relationship between the corrosion growth rate and the thickness of the corrosion layer. The literature is also sparse in addressing the phenomenon.

1.2.1.2 Stochastic Modeling of Corrosion Volume Growth

Critical corrosion pit depth has been used as a structural failure threshold for a long time (Al-Amin et al., 2016, Burstein et al., 2004). The structure fails when the maximum corrosion pit depth exceeds the threshold. However, there are cases where the corrosion pit with non-critical depth but a large volume of corrosion results in pipeline burst (Netto et al., 2005). Therefore, structure failures induced by corrosion pit volume growth should be carefully investigated as well.

Challenges arise when dealing with this problem. First, the morphologies of the corrosion pits are highly stochastic and irregular (Horner et al., 2011, Kioumarsi et al., 2016, Trzaskoma, 1990), as shown in Figure 1.1 (Horner et al., 2011). We may observe that the corrosion propagates with different rates in all directions. It is inappropriate to assume that
the shape of a pit is a perfect smooth hemisphere or half ellipsoid as presented in (Kondo, 1989, Yu et al., 2015) when estimating the pit volume growth. Second, the proposed corrosion pit volume growth model should be compatible with existing corrosion depth growth models. Third, there is a dependency between the corrosion depth growth rate of a location in the pit and its relative location to the center of the pit. The locations close to the center are likely to have large depth, while the locations close to the boundary of the pit are usually shallow. Moreover, the depth growth rates of the locations close to the center are similar to each other. Likewise, the growths in locations close to the boundary are similar.

![Figure 1.1 Three-dimensional X-ray micro-tomographic image of a corrosion pit by Horner et al. (2011) (notice the morphologies of the corrosion growth)](image-url)
Corrosion pits may propagate to other areas of the material, leading to the initiation of new pits. Existing statistical methods on quantitatively modeling the propagation and volume growth of corrosion pits are sparse. The challenge lies in the following three aspects: first, the corrosion pits are related to the particles in the material. Second, the initiation probability of a particle is related to its size and the influence of its nearby pits. Third, nearby pits may coalesce and form larger pits, which have a larger impact on the reduction of the strength of materials. A comprehensive model that deals with the challenges mentioned above needs to be developed.

1.2.2 *Stochastic Modeling of Degradation Branching Processes*

Degradation branching is a common phenomenon in many real-life applications. The degradation of a location/unit not only increases with time but also propagates to other locations/units in the same system. While the degradation of an individual location/unit has been studied extensively, the research on degradation branching is sparse. A stochastic model that considers both degradation growth and degradation propagation is proposed in this dissertation.
1.2.3 *Missing Data Interpolation*

Missing data have challenged researchers since the beginning of the field research. The challenge has been particularly acute for degradation monitoring, that is, research involving multiple time series on the same individuals. Missing data arise due to data transmission failure, human manipulation errors, etc. Data interpolation may replace the missing values with estimated values. Simple data interpolation methods include mean/mode substitution, nearest neighbor substitution (Graham, 2009) and others. However, they may lead to biased statistical estimates. Regression models are applied to interpolate missing values assuming the underlying true path is a linear function of time (Van Buuren, 2012). However, the regression models assume the residuals that represent the uncertainties follow a normal distribution, which is unrealistic. Better stochastic data interpolation models should be proposed to capture different types of missing data.

1.2.4 *Multiple Sensor Data Interpolation and Integration*

When multiple sensors are used to monitor the degradation process, we need a model to assign weights to the sensors and find the integrated measurement. However, potential challenges remain. First, due to sensor failures or human errors, observations may be missing. This may lead to inaccurate parameter estimates. Second, some of the sensors may be sensitive to different sizes or types of defects. For instance, the eddy current approach
presents more accurate measurements when defects are cracks and are located close to the surface. X-rays are sensitive to volumetric defects and ultrasound is sensitive to defects that are perpendicular to the ultrasound rays. Likewise, despite its accuracy, the metallographic microscope is only able to detect open defects. Third, as all sensors are monitoring the same defect, the measurements from different sensors are highly correlated. For example, there is a high probability that the ultrasonic signal and eddy current signal of a defect are both strong or weak.

1.3 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we present a comprehensive literature review of the corrosion models, reliability metrics, missing data imputation approaches, data integration approaches and degradation branching models. In Chapter 3, we investigate the stochastic approaches to model the corrosion volume growth, as well as the influences of covariates and the propagation of corrosion. In Chapters 4 and 5, the degradation branching models are developed. In Chapter 6, missing degradation data imputation models using stochastic bridges and data integration approaches are proposed. In Chapter 7, we give conclusions and future research directions.
CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review on Degradation Models

2.1.1 General Corrosion Concepts

Corrosion occurs in several widely differing forms. Classification is usually based on one of the three factors (Davis, 2000):

- **Nature of the Corrodent**: Corrosion can be “wet” or “dry.” The former usually requires a liquid or moisture; the latter usually involves reaction with high-temperature gases.

- **Corrosion Mechanisms**: This involves either electrochemical or direct chemical reactions.

- **Corrosion Appearance**: Corrosion is either uniform, and the metal corrodes at the same rate over the entire surface, or it is localized, in which case only small areas are affected.

Classification by appearance, which is particularly useful in the failure analysis, is based on identifying forms of corrosion by visual observation with either the naked eyes or magnification. The morphology of the defects is the basis for classification. Figure 2.1 schematically illustrates some of the most common forms of corrosion (Davis, 2000). Eight
forms of wet (aqueous) corrosion can be identified based on the appearance of the corroded metal. These are:

- Uniform corrosion (Schweitzer, 1983, Wranglén, 1985)
- Crevice corrosion (Szklarska-Smialowska et al., 2005)
- Galvanic corrosion (Oldfield, 1988)
- Erosion corrosion (Kerr et al., 1958), including fretting corrosion
- Intergranular corrosion (Lin et al., 1995) and exfoliation
- Dealloying (Vukmirovic et al., 2002)
- Environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue (Suresh et al., 1981)

![Figure 2.1 Schematics of the common forms of corrosion (Davis, 2000)](image-url)
Amongst all types of corrosion, pitting is one of the most common and damaging forms of corrosion especially in marine and offshore structures. Pitting takes the form of cavities on the surface of a metal. It starts with the local breakdown of the protective surface film. It may cause the perforation of thin sections, as well as create stress concentrations that may trigger the onset of fatigue cracking or other types of corrosion. The damage is generally assumed to nucleate on the bare surface as a pit due to localized galvanic corrosion surrounding the exposed constituent particles in the alloy (Harlow et al., 1998). As the pit continues to grow, neighboring particles are exposed, and likewise, they are corroded and contribute to further pit growth. The corrosion of metals is generally due to an irreversible oxidation-reduction (redox) reaction between the metal and an oxidizing agent present in the environment:

\[
\text{metal} + \text{oxidizing agent} \rightarrow \text{oxidized metal} + \text{reducing agent}
\] (2.1)

For example, the corrosion of iron in the presence of hydrochloric acid is

\[
Fe + 2HCl \rightarrow FeCl_{2} + H_{2}
\] (2.2)

In the aqueous phase, hydrochloric acid and ferrous chloride exist in ionic form. We can therefore also write Eq. (2.2) as:

\[
Fe + 2H^{+} + 2Cl^{-} \rightarrow Fe^{2+} + 2Cl^{-} + H_{2}
\] (2.3)
In this case, the oxidizing agent is the solvated proton H^+. The products of the reaction are the solvated ferrous ion Fe^{2+} and gaseous hydrogen H_2. Under neutral and alkaline conditions, the corrosion of metals is generally caused by a reaction of the metal with oxygen. For example, when exposed to air and humidity iron forms rust $FeOOH$ (Landolt, 2007).

$$Fe + O_2 + H_2O \rightarrow 4FeOOH$$ (2.4)

As the reaction proceeds, the produced rust accumulates and forms a layer preventing air and water vapor from contacting metal (Vanaei et al., 2017). As a result, the corrosion rate decreases as reaction proceeds and more corrosion products are produced.

Because pitting corrosion is common and basic, in this dissertation we mainly discuss this type of corrosion. Corrosion may lead to thinning of walls, crack initiation (Ebara, 2007, Hu et al., 2016, Huang et al., 2013) and ultimately cause perforation, leakage, reduced strength and even burst of components (Cheng et al., 2012, Kioumarsi et al., 2016, Nakai et al., 2004, Otieno et al., 2008).
2.1.2 *Physics-based Corrosion Degradation Models*

Following Hoeppner (1979), by assuming a hemispherical pit of radius r and a constant bulk dissolution rate B, Kondo (1989) proposes that the pit volume increases proportionally to time t:

$$\frac{2}{3} \pi r^3 = Bt$$

(2.5)

and hence

$$r \propto t^{1/3}$$

(2.6)

$$\frac{dV}{dt} = \frac{MI}{nF \rho} \exp \left[-\frac{E_a}{RT} \right]$$

(2.7)

where M is the molecular weight of the material, η is the valence; $F = 96514$C/mol is Faraday’s constant, ρ is the density, E_a is the activation energy, $R = 8.314$ J/mol-K is the universal gas constant, T is the absolute temperature, I_{p_0} is the pitting current coefficient.

Since the assumption of hemisphere shape is far too unrealistic, a reasonable approximation (Harlow *et al.*, 1995) of the shape is one half of a prolate spheroid that has volume

$$V = \frac{2}{3} \pi ab^2$$

(2.8)
where \(a \) and \(b \) are one-half the lengths of the major and minor axes. For a reaction where the activation overvoltage limits the rate, the relationship between the rate of reaction (expressed by a current density \(i \)) and the driving force for the reaction, or potential \(E \), is presented by the Butler-Volmer equation (Roberge, 2000):

\[
i = i_0 \exp \left(\frac{\alpha n F (E - E_{rev})}{RT} \right)
\]

(2.9)

where \(F \) is the Faraday constant = 96,487 C/equivalent, \(n \) is the charge on the ion in equivalents/mol, \(R \) is the gas constant = 8.314 J/mol-K, \(\alpha \) is the unitless charge transfer coefficient, \(E_{rev} \) is the reversible potential where each of the half-reactions will be in equilibrium and \(i_0 \) is the reaction current in equilibrium. We will discuss the application of Eq. (2.9) on developing the stress incorporation models in Chapter 3.

Despite the extensive study of physics-based corrosion models, their limitations are obvious. First, these models are difficult to obtain. Extensive experiments must be carried out based on strong knowledge of physics, chemistry and metallurgical properties of the components. Second, physics-based degradation models tend to result in less accurate prediction as field conditions are complicated.
2.1.3 Deterministic Corrosion Degradation Models

Deterministic corrosion growth models are most frequently discussed among all existing models, which include power functions, logarithmic functions, linear functions and power-linear functions.

It is observed that pit-growth laws are of the form of power functions (Chookah, 2009, Goldstein, 1960, Kawai et al., 1985, Noor et al., 2011, Panchenko et al., 2016, Panchenko et al., 2014, Turnbull et al., 2006a, Turnbull et al., 2006b, Turnbull et al., 2004):

\[h = bt^n \] \hspace{1cm} (2.10)

where \(h \) is the maximum depth of a pit, \(t \) is time, \(b \) and \(n \) are the parameters related to material-environment systems. The value of \(n \) is nearly constant. \(b \) changes wildly depending on the material-environmental system. Little information on \(b \) is available but would be best determined by field data.

The use of logarithmic functions to model the corrosion depth has also been investigated (de la Fuente et al., 2007, De la Fuente et al., 2011, Haynie et al., 1971, Ma et al., 2010, Morcillo et al., 1993, Syed, 2013):

\[\log D = \log A + n \log t \] \hspace{1cm} (2.11)
where D is the maximum depth, A and n are constant parameters, t is time. The variation of n indicates the degree of the corrosion process, $n > 1$ indicates the corrosion acceleration process, whereas $n < 1$ indicates the corrosion deceleration process.

Linear functions, due to its simplicity, are investigated by Achterbosch et al. (2006) and Din et al. (2009):

$$y = \hat{\alpha}^0 + \hat{\alpha}^1 t$$ \hspace{1cm} (2.12)

where y is the corrosion pit depth; $\hat{\alpha}^0$ and $\hat{\alpha}^1$ are parameters to be determined by field data.

The bi-linear model (ISO, 1992) is proposed for the estimation of possible corrosion losses in each category of atmosphere corrosivity. In this model, the parabolic variation of corrosion losses during the first years until the onset of the stationary phase (up to 10 years) is replaced, in first approximation, by a linear increase of corrosion loss D with an average rate of r_{av}. At the stationary stage after ten years, the corrosion process occurs at a constant rate r_{lin}. It should be noted that the annual gain in D amounts to r_{lin}. The total corrosion loss D is represented by the sum of corrosion losses over the first ten years and over a subsequent period when the stationary corrosion process has established:

$$D = tr_{av} + (t - 10)r_{lin}$$ \hspace{1cm} (2.13)
The metal corrosion loss under atmospheric conditions is also found to obey a power-linear function (ISO, 1992, Knotkova et al., 2010, McCuen et al., 1992, Morcillo et al., 2013, Panchenko, 2013, Panchenko et al., 2016, Panchenko et al., 2014): a power law at the initial stage assuming a parabolic increase in metal corrosion loss during the first ten years of exposure and a linear law for exposures longer than ten years.

\[D(t < 10) = r_{corr} t^b \]
(2.14)

\[D(t \geq 10) = r_{corr} \left[10^b + b (10^{b-1}) (t - 10) \right] \]
(2.15)

where \(D \) is corrosion mass loss; \(r_{corr} \) means corrosion mass losses over the first year; \(b \) is a coefficient characterizing the environment; \(t \) is time.

2.1.4 Stochastic Corrosion Degradation Models

Deterministic models have been used extensively due to its simplicity. However, the underlying corrosion growth process is inherently stochastic and includes temporal and spatial variability (Stewart et al., 2008, Stewart et al., 2007). The uncertainties (e.g., measurement error, randomness associated with the corrosion growth and the material properties) are not incorporated in the deterministic models. Meanwhile, the deterministic models only present point estimators regarding the time to failure, which is unuseful in real life. Stochastic models are better alternatives under this condition. The stochastic degradation models in the literature can be categorized as random variable-based models.

A general degradation path is proposed by Meeker and Escobar (Meeker et al., 1998). The degradation of unit i at time t_j is modeled as $y_{ij} = Y_{ij} + \varepsilon_{ij}$ where Y_{ij} is the actual path and ε_{ij} is the residual deviation that follows a normal distribution with mean zero. Velázquez et al. (2009) investigate a multivariate regression model on modeling maximum pit depth as

$$
\hat{d}_{\text{max}} = \left(k_0 + \sum_{i=1}^{n} k_i x_i \right) \left(t - t_0 \right)^{\beta_0 + \sum_{j=1}^{m} \eta_j r_j} \tag{2.16}
$$

where \hat{d}_{max} is the predictor of the maximum pit depth, x_i represents the i^{th} predictor variable, t_0 is corrosion initiation time, k_i and η_j are the regression coefficients for this predictor. Because the growth rates in the variable-based models are time-independent random variables, they do not capture the temporal variability of the corrosion growth process.
The homogeneous and non-homogenous Markov Chains are used to model the growth of pits corrosion and determine the optimal inspection intervals for the pipelines. Giorgio et al. (2011) propose that the transition probabilities between unit states depend on both the age and state of the unit. The main limitations of the MC-based models are: the accuracy of the model is sensitive to the total number of discrete damage states (Giorgio et al., 2011) and it is not straightforward to evaluate the transition probability function when inspection data are imperfect.

The use of the Gamma process to characterize the deterioration of engineering structures in the context of optimal maintenance decision or time-dependent reliability analysis has been reported extensively in the literature (Cheng et al., 2012, Kallen et al., 2005, Pandey et al., 2005, Park et al., 2005, van Noortwijk et al., 1996, Yuan et al., 2008, Yuan et al., 2009, Zhou et al., 2012). Kallen et al. (2005) model degradation of steel pressure vessels and optimal maintenance intervals with a Gamma process. van Noortwijk et al. (2007) model the crest-level decline of dikes and evaluate the time-dependent reliability of dikes subjected to sea waves. Zhou et al. (2012) use the Gamma process model to characterize the growth of defect depth for evaluating the time-dependent system reliability of pipelines containing multiple active corrosion defects. To improve the Gamma process model, Pandey et al. (2005) study the dependency between degradation and time. The dependency
of the degradation in the next moment on the current degradation state is considered by Fan et al. (2015). Zhang (2014) studies a hierarchical Bayesian-updating Gamma process model. In addition to Gamma processes, an improved Gamma process is proposed to model nonlinear degradation growth (Fan et al., 2015). Multivariate Gamma process is applied to cases where multiple degradation indicators exist (Peng et al., 2016, Zhou et al., 2010).

Two stochastic processes analogs to the Gamma processes, namely the inverse Gaussian process and the Brownian motion process have been reported to model degradation process (Wang, 2010, Wang et al., 2010). The inverse Gaussian process consists of independent increments that follow the inverse Gaussian distributions, whereas the Brownian motion process consists of independent increments that follow Gaussian distributions.

Gebraeel et al. (2005) model the degradation process of products with an exponential function where the randomness from unit to unit is described with a centered Brownian motion. The randomness from unit to unit is modeled with a standard normal distribution (Gebraeel, 2006, Gebraeel et al., 2005). Wang (2010) proposes a degradation-based remaining useful life prediction method where the degradation is modeled using a Brownian motion with drift. The drift parameter is adaptive to the history of condition monitoring information. Wu et al. (2011) propose a degradation-based reliability estimation method with a random failure threshold.
A notable drawback of using the Brownian motion process to model the corrosion growth is that it cannot rigorously characterize the monotonic nature of the corrosion growth since the Gaussian distributed increments can be either positive or negative. The inverse Gaussian process overcomes this drawback because it is positively defined (Zhang, 2014). Another process, geometric Brownian motion (Elsayed et al., 2004), differs from the Brownian motion in that the former characterizes the logarithm of the degradation as Brownian motion and is used to model corrosion growth by Zhang (2014).

However, these models are limited as they mainly characterize the corrosion depth growth and do not consider other features such as corrosion pit volume, corrosion pit morphology, depth to diameter ratio and others. There are cases where even shallow pits can lead to failures, e.g., rupture of pipelines (Ma et al., 2011, Netto et al., 2005, Stewart et al., 2008). The stochastic nature of corrosion pit volume growth is not captured either.

2.1.5 Degradation Propagation and Stochastic Branching Processes

In some cases, the degradation not only grows over time but also propagates over space. Degradation data of this kind usually exhibits complex correlation structures in space and time. The spatiotemporal models have been extensively studied to provide flexible and
effective ways to construct covariance functions (Carlin et al., 2014, Cressie et al., 1999, Fuentes et al., 2003, Gneiting, 2002, Liu et al., 2018a, Reich et al., 2011). Kernel functions are used by Liu et al. (2018b), Wikle et al. (1999), Brown et al. (2000) and Sigrist et al. (2015) to express the amount of degradation at a certain location as a weighted sum of its neighbors. Brown et al. (2000) propose the use of convolution to approximate the propagation phenomenon in space under a constant vector field. Sigrist et al. (2015) present a spatio-temporal Gaussian process directly derived from the solution of a stochastic Partial Differential Equation (PDE) describing the convection-diffusion process. Meanwhile, a Fourier spectral method has been used for efficient computation. Calder (2007) proposes a dynamic spatial-temporal model in which the quantity of interest is expressed as the convolution of a latent process. Such a model fits into the general dynamic modeling framework for spatial-temporal data introduced in (Stroud et al., 2001). Yao et al. (2014) develop a degradation behavior propagation model based on the small world clustering. An Ant Colony Optimization algorithm is adopted to obtain the degradation propagation path with a strong pervasion ability.

The branching process is defined as follows (Rahimov, 1995): at time \(t = 0 \), it is assumed that only one particle exists. After a random time \(L \), the particle splits into \(\nu \) independent particles that experience the same transformations. Other branching process models are developed by specifying different reproduction process assumptions of the
particles. In particular, when L follows an exponential distribution, the branching process is a branching Brownian Motion process (Fang et al., 2012, Harris et al., 2009). These stochastic branching processes are used in modeling the transport of contaminants in groundwater (Marseguerra et al., 1997), the spread of epidemics (Wang, 1980), population and demography (Berestycki et al., 2010, Berestycki et al., 2015, Wu, 2010), neutrons in nuclear reactions (Vatutin et al., 1985), growth of large organic molecules (Dorogov et al., 1988), and population migration (Sawyer, 1976, Zoia et al., 2014). However, their interests are obtaining the sum of the living particles (reproduction) at a certain time t or the maximum distance between the particles and the origin.

Stochastic branching processes are proposed to model the earthquake crack propagation (Kagan, 1982, Libicki et al., 2005). The basic assumption is that an earthquake process is initiated by a set of infinitesimal shear dislocations occurring according to a specific time, space and orientation distributions. The foundation of a mathematical branching model is a branching tree as shown in Figure 2.2. A tree is a set of vertices connected by edges and contains no loops (edges that form an enclosed region). The root vertex is referred to as a parent if it is adjacent to other vertices. In the applications of the model, the vertices and edges are related to actual physical quantities. There are four relevant distributions in the model: Uniform distribution, Poisson distribution, Power-law distribution and Cauchy distribution. The Uniform distribution is commonly used to deal with homogeneous spaces.
(Libicki et al., 2005), e.g., the distribution of branching locations. The Poisson distribution is used to model the distribution of the number of offsprings when branching occurs (Leon-Garcia, 1994). The Power-law distribution (Kagan, 1994, Turcotte et al., 2016) and Cauchy distribution (Rice, 2006) describe the rotations of the crack branches’ surfaces with respect to their parent crack’s surface.

![Diagram of branching tree](image)

Figure 2.2 A graphical representation of definitions associated with the branching tree

Figure 2.3 shows the rotations of a crack surface. Let \(O_1P \) denote the direction of the parent crack branch, which is perpendicular to the plane. After rotating around the \(x \) axis for an angle of \(\varphi_0 \) and the \(y \) axis for an angle of \(\varphi_1 \), which follow power-law distribution and Cauchy distribution, its offspring finally propagates along the direction of \(O_1P' \).
Rabinovitch et al. (2011) assume that the secondary fractures are initiated at distances greater than a certain minimal radius r from the primary’s vertex. As shown in Figure 2.4 (a), β is the angular location and δ is the direction of branching from a flaw adjacent to the primary fracture. Figure 2.4 (b) shows the angle β_1 where the stress at flaw tip reaches its maximum and the relationship between branching direction δ_1 and fracture velocity. Thus it is implied that β is the angle at which the flaw turns into a secondary fracture and β is the direction that crack propagates. Crack branching angles have been experimentally measured and reported for various materials by different researchers. The branching angles reported by various investigators in their dynamic crack propagation studies are shown in Table 2.1.
Figure 2.4 (a) Definitions of the angular location and direction of branching from a flaw adjacent to the primary fracture (b) The branching direction as a function of fracture velocity (Rabinovitch et al., 2011)

Table 2.1 Experimentally observed branching angles in fracture mechanics specimens

<table>
<thead>
<tr>
<th>Source</th>
<th>Branching angle, δ in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullen et al. (1970)</td>
<td>60</td>
</tr>
<tr>
<td>Freudenthal (1968)</td>
<td>22-42</td>
</tr>
<tr>
<td>Christie et al. (1952)</td>
<td>25</td>
</tr>
<tr>
<td>Clark et al. (1966)</td>
<td>34</td>
</tr>
<tr>
<td>Congleton et al. (1973)</td>
<td>30-40</td>
</tr>
</tbody>
</table>
Though there are similarities between the above branching process and the process being investigated in this dissertation, we are interested in the total degradation of the branches (the total distance of the particles from the origin). Moreover, the degradation branching process under study differs from existing ones in that a branch never terminates but continues to degrade and branches over time. We briefly describe our branching process as follows and use crack propagation as an example.

Crack branching and propagation is a common cause of failures in many materials. Failures due to crack growth and branching have been observed in alumina-silicon carbide composites loaded in fatigue (Han et al., 1989). An initial crack is shown to spawn many sub-cracks until the overall crack network induces failure. The crack branching behavior (how expansive the crack network) is observed to be dependent upon the magnitude of the applied load and the temperature. Physically, there are two proposed mechanisms for crack branching. The first is due to crack deflection, wherein a crack impinges on an interface, such as a grain boundary, and deflects into the interface causing the formation of two cracks along the interface (Ming-Yuan et al., 1989, Parmigiani et al., 2006). The second is due to
crack jumping from a primary interface onto a secondary interface, leading to the nucleation of a new crack which is separate from the initial crack (Dempsey et al., 1985, Ramulu et al., 1985, Sills et al., 2015). The propensity for each process is dictated by the strength, toughness, and elastic characteristics of the materials and interfaces comprising the solid.

In addition to the failure of materials, the crack growth and branching degradation is one of the major causes of structure failures (Guo et al., 2018) such as the failures of concretes and fuel cell membranes (Singh et al., 2017). When the crack length or number of cracks formed reach specified values, failures occur as demonstrated in the following example. Polymer electrolyte membrane (PEM) fuel cells are widely used in transport applications such as electric vehicles to supply electrical energy by converting hydrogen and oxygen (air) into water. In the PEM fuel cells, the polymeric membranes that separate the electrodes allow certain protons to pass through them. It is of vital importance for the membranes to be efficient and reliable. However, the fluctuation of operating conditions poses significant durability challenges for the PEM fuel cells. Figure 2.5 (a) shows an infrared image of the failed membranes, where the bright sections correspond to the high local temperature indicating the through-membrane leakage caused by the cracks. Figure 2.5 (b) shows the cross-sectional views of the branched membrane cracks, which cause crossover leakage. The crack is initiated on the left-hand side and branches during its
propagation to the right. The cracks grow and branch with time. The degradation of the fuel cells, which is represented by leakage amount, is related to the total length of all the crack branches.

Figure 2.5 (a) Infrared image of the failed membranes of Polymer Electrolyte Membrane (PEM) Fuel Cell. The bright regions represent leakage caused by cracks (b) Cross-sectional views of branched PEM cracks (Singh et al., 2017)

Likewise, Thompson (2007) shows that the total cracks’ degradation is the main criterion for fuel cell membranes as shown in Figure 2.6.
The branching process can also be exemplified by the case when a system is configured such that the degradation of a unit may cause the adjacent units to begin to deteriorate when the degradation level of the preceding unit reaches a threshold. In our work, we simply use the initiation of cracks in locations, rather than units.

2.2 Literature Review on Missing Degradation Data Interpolation

Degradation data are crucial to accelerated degradation testing (ADT) and prognostic health management (PHM). However, in the actual situations, missing values of degradation data are common due to the failure of data transmission or manipulation errors (Fan et al., 2014).

Sometimes a group of data with missing values is abandoned. Examples of this type of techniques include listwise deletion and pairwise deletion (Graham et al., 1993, Wothke,
The listwise deletion, which is also known as complete-case analysis or case deletion, is to discard units whose information is incomplete (Schafer et al., 2002). In contrast, pairwise deletion uses different sets of sample units for different parameters. For more discussions on the properties of case deletion and further references, see Chapter 3 of Little et al. (2014). It is a waste of data resources and reduces statistical power. The loss of valuable information may lead to inaccurate model parameters. Schafer et al. (2002) and King et al. (2001) both report that high rates of listwise deletion lead to serious parameter bias and inefficiency. Brown (1994), Graham et al. (1996) and Wothke (2000) report the shortcomings of listwise deletion by simulation. It is possible to reduce biases from case deletion by the judicious application of weights (Liang et al., 1986, Robins et al., 1995). For a review of weighting in the context of sample surveys, see Little et al. (2014).

Rather than deleting the incomplete data or ignoring the missing data, the expectation-maximization (EM) algorithm is utilized to “fill in the missing data” with the best guess at what it might be under the current estimate of the unknown parameters and re-estimate the parameters. Repeat the expectation and maximization procedures multiple times until a criterion is satisfied. Dempster et al. (1977) show that, rather than filling in the missing data values per se, we are also filling in the complete-data sufficient statistics. These statistics depend on the model specification. Overviews of the EM algorithm can be found in (Little et al., 2014, McLachlan et al., 2007, Schafer, 1997, Schneider, 2001).
It is feasible to replace the missing data with plausible values and proceed with the desired analysis. This is called imputation or interpolation. Simple data interpolation techniques include mean/mode substitution (Graham, 2009), hot deck imputation (Ernst, 1980, Marker et al., 2002), cold-deck imputation and composite methods (Schieber, 2005). Hot deck replaces each missing value by a random draw from the observed values. By contrast, cold deck selects donors from another dataset. Composite methods combine ideas from different methods above (David et al., 1986, Schieber, 2005). For example, the hot-deck and regression imputation are combined by calculating the predicted means from a regression model and a residual randomly chosen from the empirical residuals to the predicted value when forming values for imputation.

The imputation methods above are about point estimation of the missing data and model parameters. Some approaches incorporate additional uncertainties. Efron (1994) uses bootstrap to generate imputed samples and inference parameters. Regression-based models are widely used to incorporate the uncertainties in the missing data imputation (Allison, 1987, Buck, 1960, Fan et al., 2014, Van Buuren, 2012, Yates, 1933). Popular regression-based data imputation models are summarized as follows (Van Buuren, 2012)

- **Predict.** \(\hat{y} = \hat{\beta}_0 + X_{mis} \hat{\beta}_1 \), where \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) are the least-squares estimates calculated from the observed data.
• Predict + noise. $\hat{y} = \hat{\beta}_0 + X_{mis} \hat{\beta}_1 + \hat{\epsilon}$, where $\hat{\epsilon}$ is randomly drawn from the normal distribution as $\hat{\epsilon} \sim N(0, \hat{\sigma}^2)$

• Bayesian multiple imputation. $\hat{y} = \hat{\beta}_0 + X_{mis} \hat{\beta}_1 + \hat{\epsilon}$, where $\hat{\epsilon} \sim N(0, \hat{\sigma}^2)$. $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\epsilon}$ are random draws from their posterior distribution. It is also named “predict + noise + parameters’ uncertainty”.

• Bootstrap multiple imputation. $\hat{y} = \hat{\beta}_0 + X_{mis} \hat{\beta}_1 + \hat{\epsilon}$, where $\hat{\epsilon} \sim N(0, \hat{\sigma}^2)$. $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\epsilon}$ are the least-squares estimates calculated from a bootstrap sample taken from the observed data. This is an alternative way to implement “predict + noise + parameters uncertainty”.

Multiple imputation (Laird, 1988) repeats a simple univariate imputation multiple times, analyzes each imputed dataset and pools the results into one estimate.

The standard Brownian bridge is proposed to impute missing data in finance by DiCesare (2006). Brownian bridge predicts missing data between two “tie ends,” assuming the underlying process is a Brownian motion that starts and ends with a fixed value.

For data with multiple features amongst which the inputs are partially missing, approaches such as Support Vector Machine (SVM), A Framework for Imputing Missing Values Using Co-Appearance, Correlation and Similarity Analysis (FIMUS), k-Nearest Neighbors
Imputation (kNNI) have been proposed. FIMUS (Rahman et al., 2014) fills in the missing values based on the co-appearances of the values, correlations between the attributes and similarity of the values belonging to an attribute. Pelckmans et al. (2005) propose a convex optimization approach to learn a classification rule from observational data when missing data occur based on SVM. The main idea is to incorporate the uncertainty due to the missing data into an appropriate risk function. An imputing approach based on the Support Vector Regression (SVR) is proposed by Wang et al. (2006). The approach utilizes an orthogonal coding input scheme, which makes use of multi-missing values in one row of a certain gene expression profile and imputes the missing value into a much higher dimensional space to obtain better performance. kNNI finds the k-nearest neighbor records of the observation that has missing attributes and imputes the missing attributes with the average values (Batista et al., 2003). However, it has also been pointed out that choosing a suitable value for k may be a challenging task (Wu et al., 2008). Considering the local similarity of data, many methods based on clustering, for example, k-means or fuzzy c-means (FCM), have been proposed (Aydilek et al., 2013, Li et al., 2004, Li et al., 2013). The underlying principles are as follows: first random select k complete data objects as k centroids, then iteratively modify the partition to reduce the sum of distances for each object from the centroid of the cluster to which the object belongs until a user-specified threshold ε is obtained, the last process is to fill in all the missing attributes by taking the mean of some nearest objects. Decision Tree-based Missing Value Imputation
Technique (DMI) makes use of an entropy-based decision tree algorithm and expectation maximization-based imputation technique (Rahman et al., 2011).

2.3 Literature Review on Data Integration

Data integration approaches are generally classified into three categories: data-level integration, feature-level integration and decision-level integration (Klein, 1999, Steinberg et al., 1999). Data-level integration combines raw measurements of individual sensors and forms a unified indicator (Gros et al., 2000, Hua et al., 2013, Liu et al., 2015, Liu et al., 2013, Liu et al., 2016, Yan et al., 2016). Feature-level integration extracts and integrates features such as the frequency spectrum of abnormal signals (Amolins et al., 2007, Balakrishnan et al., 2012, Pajares et al., 2004). Decision-level integration integrates conclusions drawn by individual sensors to reach a comprehensive one. In the case of remaining life prediction, decision-level integration combines life prediction results obtained with different sensors and then concludes final judgment on the condition of the components (units).

Data integration can also be classified into the following categories based on the specific techniques used: Bayesian inference integration (Mitchell, 2007), evidential reasoning integration (Shafer, 1976, Zhao et al., 2014), fuzzy theory integration (Liu et al., 2008, Zadeh, 1999), Dempster-Shafer theory integration (Dempster, 1968, Murphy, 1998, Yager
et al., 2008), wavelet integration (Balakrishnan et al., 2012, Pajares et al., 2004, Qiu et al., 2005), Artificial Neural Networks integration (Ling et al., 2008, Liu et al., 2008), cluster-based data integration (Alyanezhadi et al., 2016, Shi et al., 2012) and other techniques based on possibility theory (Benferhat et al., 2006, Destercke et al., 2009).

Even though extensive research has been conducted on multi-sensor data integration for fault diagnosis and prognosis, sparse work has addressed data integration of multi-sensor degradation information or unified degradation path. Wei et al. (2011) weigh different sensor signals by minimizing the uncertainty of unified measurements, but the data from different sensors are considered as independent instead of correlated with each other. The first passage time distribution of even 2-dimensional Brownian motion with drift is quite complex (Dominé et al., 1993). It is more difficult to obtain explicit reliability functions for more dimensions of more advanced degradation processes.
3.1 Introduction

In this chapter, we propose two stochastic models to capture the corrosion depth growth and corrosion volume growth respectively. The improved inverse Gaussian (IIG) process is developed as a stochastic degradation model to describe the corrosion depth growth. The model captures dependency between corrosion increments and corrosion depth length and is more robust than the inverse Gaussian (IG) model. Assuming that the corrosion pit growth in the depth direction and radial direction both follow IIG processes, the corrosion pit volume growth model is developed. Moreover, a physics-based stochastic model is proposed to describe the propagation of corrosion pits. The influence of stresses of temperature, relative humidity and pH level are investigated based on chemical reaction mechanisms. The models are validated with actual corrosion data.

3.2 Corrosion Depth Growth Modeling

3.2.1 Inverse Gaussian Process

Suppose that a degradation process \(\{d(t), t \geq 0\} \) follows an IG process with scale parameter \(\lambda \) and shape (mean) function \(\Lambda(t) \) as described by Ye et al. (2014). Let
\(\text{Ig} (\cdot) \) denote the probability density function (PDF) of IG distribution. It has the following properties:

- \(d(t) \) has independent increments: \(d(t_4) - d(t_3) \) and \(d(t_4) - d(t_3) \) are independent of each other for \(\forall t_4 > t_3 > t_2 > t_1 \)

- The degradation increments follow IG distributions:

\[
\left(d(t_2) - d(t_1) \right) \sim \text{IG} \left(\Lambda(t_2) - \Lambda(t_1), \lambda \left(\Lambda(t_2) - \Lambda(t_1) \right)^2 \right) \text{ for } \forall t_2 > t_1
\]

Let \(d(t) \) denote the degradation state at time \(t \), where \(t \geq 0 \). \(d(0) \) is the starting degradation state. When the shape function \(\Lambda(t) = \mu t \), where \(\mu \) is a constant parameter, the IG process appropriately describes a fatigue crack growth degradation process (Peng et al., 2014). The PDF and cumulative distribution function (CDF) of \(d(t) - d(0) \) are represented as follows (Guo et al., 2018)

\[
f_{D(t)-D(0)} \left(\left(d(t) - d(0) \right) \bigg| \Lambda(t), \lambda \Lambda^2(t) \right) \\
= \frac{\lambda \Lambda^2(t)}{2 \pi (d(t) - d(0))^3} \exp \left[-\frac{\lambda \left((d(t) - d(0)) - \Lambda(t) \right)^2}{2(d(t) - d(0))} \right] \\
= \frac{\lambda \mu^2 t^2}{2 \pi (d(t) - d(0))^3} \exp \left[-\frac{\lambda \left((d(t) - d(0)) - \mu t \right)^2}{2(d(t) - d(0))} \right], (d(t) - d(0)) > 0
\]
\[F_{D(t)-D(0)}((d(t) - d(0))| \Lambda(t), \Lambda^2(t)) = \Phi \left[\sqrt{\frac{\lambda \mu^2 t^2}{(d(t) - d(0))}} \left(\frac{(d(t) - d(0))}{\mu t} - 1 \right) \right] + \exp(2\lambda \mu t) \Phi \left[-\sqrt{\frac{\lambda \mu^2 t^2}{(d(t) - d(0))}} \left(\frac{(d(t) - d(0))}{\mu t} + 1 \right) \right] \] (3.2)

The expectation and variance are given by

\[E((d(t) - d(0))) = \Lambda(t) = \mu t \quad \text{and} \quad Var((d(t) - d(0))) = \frac{\Lambda(t)}{\lambda} = \frac{\mu t}{\lambda} \]

3.2.2 Improved Inverse Gaussian Process

In this section, we develop an IIG process model based on the IG process. Suppose the degradation process \(\{d(t), \ t \geq 0\} \) is observed at every discrete unit of time. Assume that at time \(t_j \), the degradation state is \(d(t_j) \). The degradation increment \(\Delta d(t_j) = d(t_{j+1}) - d(t_j) \) denotes the degradation during \((t_j, t_{j+1}) \). Rather than modeling this degradation increment with respect to time \(t_j \), we use the starting degradation \(d(t_j) \) as the reference. In other words, the degradation in a unit time \(\Delta d(t_j) \) follows an IG distribution in accordance with the starting degradation \(d(t_j) \). Assume that the shape function takes a linear form as \(\Lambda(d(t_j)) = \mu_0 + \mu_i d(t_j) \), where \(\mu_0 \) and \(\mu_i \) are constants, the PDF of \(\Delta d(t_j) \) is
\[f_{\Delta d(t_j)}(\Delta d(t_j)|\Lambda(d(t_j)), \Lambda^2(d(t_j))) = \sqrt{\dfrac{\lambda^2(d(t_j))}{2\pi\Delta^3(t_j)}} \exp\left[-\dfrac{\lambda(\Delta d(t_j) - \Lambda(d(t_j)))^2}{2\Delta^2(t_j)}\right], \Delta d(t_j) > 0 \] (3.3)

The expectation and variance are

\[E(\Delta d(t_j)) = \Lambda(d(t_j)) = \mu_0 + \mu d(t_j) \quad \text{and} \quad \text{Var}(\Delta d(t_j)) = \dfrac{\Lambda(d(t_j))}{\lambda} = \dfrac{\mu_0 + \mu d(t_j)}{\lambda} \]

3.2.3 Remaining Life Prediction and Failure Probability Estimation

Suppose the threshold of the degradation process is \(c_d \). The distribution of remaining life for the IIG process is obtained through iterative computation. Assume we have degradation measurements until time \(t_\tau \) as \(\{d(0), \ldots, d(t_\tau)\} \), the remaining life is obtained as follows

1) Starting from \(j = 1 \).

2) Generate a random number \(\Delta d(t_{\tau+j-1})^* \) following the distribution

\[\text{Ig} \left(\Lambda(d(t_{\tau+j-1})), \lambda^2(d(t_{\tau+j-1})) \right) \]. Degradation state now becomes

\[d(t_{\tau+j}) = d(t_{\tau+j-1}) + \Delta d(t_{\tau+j-1})^* \]
3) Compare \(d(t_{r+j}) \) with the threshold \(c_d \). If \(d(t_{r+j}) < c_d \), set \(j = j + 1 \), go back to step (2). If \(d(t_{r+j}) \geq c_d \), the predicted failure time is \(t_{r+j} \) and the predicted remaining life is \(t_{r+j} - t_r \).

4) Repeat steps (1)-(3) for \(N \) times, the mean remaining life is obtained by taking the average of the \(N \) predicted remaining lives. Let \(T_k \) denote the \(k \) percentile of the predicted remaining life. The 90% confidence interval of the predicted remaining life is \((T_{0.05}, T_{0.95}) \).

The probability that the unit fails in the next time increment given that it survived at time \(t_r \) with the starting degradation state \(d(t_r) \) is as follows

\[
\begin{align*}
P(T < t_{r+1}) &= P(\Delta d(t_r) + d(t_r) > c_d) \\
&= P(\Delta d(t_r) > c_d - d(t_r)) \\
&= 1 - \Phi\left(-\sqrt{\frac{\lambda}{c_d - d(t_r)}} \left(\Lambda(d(t_r)) - c_d + d(t_r) \right) \right) \\
&\quad + \exp\left(2\lambda\Lambda(d(t_r))\right) \Phi\left(-\sqrt{\frac{\lambda}{c - d(t_r)}} \left(\Lambda(d(t_r)) + c_d - d(t_r) \right) \right)
\end{align*}
\] (3.4)
3.2.4 Model Validation and Numerical Studies

3.2.4.1 Model Validation with Crack Growth Data

In this section, we use Bogdanoff and Kozin’s data (Bogdanoff et al., 1985) to validate the proposed model. This dataset is characterized as linear degradation paths with equally spaced degradation observations. Twenty-one units are placed under testing for 0.12 million cycles. The crack length for each unit is measured every 0.01 million cycles. The

Figure 3.1 (a) Degradation versus time (b) degradation versus starting crack length (c) degradation increments versus time (d) degradation increments versus starting crack length.
starting crack length is set as 0.9 inches for all the units to shorten the testing time. The unit is considered to fail when the crack length reaches 1.6 inches. Figure 3.1 (a) is the plot of the 21 degradation paths versus time. Figure 3.1 (b) shows the degradation paths versus crack length. From these two figures, we observe that the degradation rate is linearly related to the degradation states. The variance is also smaller in Figure 3.1 (b). Figure 3.1 (c) and 3.1 (d) are the plots of crack increments for the 21 units versus time and starting crack length respectively. Again, compared with that in Figure 3.1 (c), the lines in Figure 3.1 (d) converge better. This means that starting crack length is a suitable independent variable in this example.

The parameter estimation approach is provided in Appendix A. The crack length data are provided in Appendix B. To fit the IIG model, we reorganize the original data into pairs $\left[d(t_j), \Delta d(t_j) \right]$, $t_j \geq 0$, where $d(t_j)$ is the starting crack length at time t_j and $\Delta d(t_j)$ is the degradation increment in the next 0.01 million cycles. We use the crack growth data of the first twelve units because they represent samples with similar properties. This can be inferred from the estimation results of parameters with the IIG model for the two groups of degradation paths respectively. For the first twelve units, $\{ \hat{\mu}_0, \hat{\mu}_1, \hat{\lambda} \} = \{-0.1125, 0.1585, 400.5748\}$, and the remaining nine units $\{ \hat{\mu}_0, \hat{\mu}_1, \hat{\lambda} \} = \{-0.0714, 0.1039, 404.7764\}$. From Figure 3.2 (a), the 90% probability
interval of the predicted degradation path with parameters estimated from the first twelve units deviates from the other nine units.

Figure 3.2 (a) The predicted 90% probability interval and the other nine units (b) The failure probability curves for IG and IIG

The estimation of parameters \{\mu_0, \mu_1, \lambda\} for the IIG model of the first twelve paths are

\[\hat{\mu}_0 = -0.1125, \quad \hat{\mu}_1 = 0.1585, \quad \hat{\lambda} = 400.5748 \]

Meanwhile, we use the observed data to fit the IG process. The parameters are obtained using the R codes as shown in Appendix A. The results are as follows:

\[\hat{\mu} = 0.06985, \quad \hat{\lambda} = 0.27075 \]

Then, by applying the Monte Carlo simulation, we obtain the failure probability plots for the IIG and the IG model, as shown in Figure 3.2 (b). From the figure, we observe that the IIG model fits the observed data better than the IG model. The mean squared error of the
failure probability prediction by the two methods are \(MSE_{IIG} = 0.0011 \), \(MSE_{IG} = 0.0125 \).

In this case, the IIG model has better accuracy than the IG model.

3.2.4.2 IIG Model Validation with the Corrosion Growth Data

In this section, we apply the IIG model to the corrosion growth data by Soares et al. (2009). The data sample size is increased by generating corrosion data with the deterministic model in the paper by Soares et al. (2009) and randomizing them with the Brownian motion process with drift, where the mean is the same as that of the corrosion data. The plot of the corrosion growth data is shown in Figure 3.3 (a).

![Figure 3.3](image-url)

Figure 3.3 (a) The corrosion depth growth data (b) The expectation and 95% confidence interval with the IIG model
The estimated parameters are obtained as follows

\[\hat{\mu}_0 = 0.09699, \quad \hat{\mu}_1 = -0.04769, \quad \hat{\lambda} = 209.2 \]

The expectation and the 95% confidence interval of the corrosion depth growth are shown in Figure 3.3 (b). Meanwhile, we use the observed data to fit the IG process. The estimations of the corresponding parameters are:

\[\hat{\mu} = 0.06445, \quad \hat{\lambda} = 91.54410 \]

Then, by applying the Monte Carlo simulation, we obtain the failure probability curves for the IIG and the IG model as shown in Figure 3.4. From the figure, we observe that the IIG model fits the observed data better than the IG model. The mean squared errors of the failure probability predictions obtained by the two methods are \(MSE_{IG} = 0.07982 \) and \(MSE_{IIG} = 0.01917 \). For this corrosion dataset, the IIG model has better accuracy than the IG model.
By comparing the estimated parameters obtained with the IIG model in the two cases, we find that the dependency between degradation increments and degradation states are both captured, which is reflected in the sign of $\hat{\mu}_i$. For the crack growth dataset, $\hat{\mu}_i = 0.1585$ shows that the crack increments are positively related to initial crack length, while for the corrosion growth dataset, $\hat{\mu}_i = -0.04769$ indicates that corrosion growth increments are negatively related to the initial corrosion depth.

3.2.5 IIG Model Robustness Evaluation

Model uncertainty is pervasive in reliability estimation. A key question is how robust the model is while the assumptions are not fully satisfied. In this section, a comparison between
the IG process and the IIG process is performed. The results show that the IIG process is more robust than the IG process.

3.2.5.1 IIG data

We generate 20 degradation paths based on the IIG model. Suppose that the degradation paths are censored at time $t = 7$ and time $t = 11$. In these two cases, the IG and IIG models are utilized to fit the data and obtain the estimation of the model parameters. The two models are then used to predict the failure probability of the units after the censored time. The results are shown in Figure 3.5. It is evident that the IG model does not effectively model the nonlinear growth of the degradation path generated by the IIG model.
Figure 3.5 Use the regular IG model to fit IIG data when (a) data are censored at $t = 7$
(c) data are censored at $t = 11$, use the IIG model to fit IIG data when (b) data are
censored at $t = 7$ (d) data are censored at $t = 11$.

3.2.5.2 IG data

In contrast with the scenario in section 3.2.5.1, 20 degradation paths are generated based on the IG model. Suppose the degradation paths are censored at times $t = 8$ and $t = 12$.

We fit the data with both the IG and IIG models and obtain the corresponding models’ parameters. The predicted failure times of censored units using both models are obtained and shown in Figures 3.6. It is evident that the IIG model effectively predicts the failure
time of the censored degradation path generated by the IG model. From the analysis of the two scenarios, we conclude that the IIG model is more robust than the IG model. The IIG process can be applied even when the degradation path does not have nonlinear growth. This is because the IIG process is based on the starting degradation state.

Figure 3.6 Use the IIG model to fit IG data when (a) data are censored at $t = 12$ (b) data are censored at $t = 8$, use the IG model to fit IG data when (c) data are censored at $t = 12$ (d) data are censored at $t = 8$.
3.3 **Corrosion Volume Growth Modeling**

In the corrosion reaction process, the produced corrosion layer prevents the atmosphere from contacting new metal, inhibits the transport of reactant and decreases growth rate (Ghahari *et al.*, 2011, Li *et al.*, 2009, Vanaei *et al.*, 2017). Accordingly, the corrosion growth rate decreases as corrosion proceeds. We let the corrosion growth rates in the radial and the depth directions be dependent on the accumulated corrosion states in the model. As shown in Figure 3.7 (a), the corrosion pit is assumed to be consisted of several sectors, with the growth of the radius of each sector following an IIG process. We also derived an alternative corrosion volume growth model based on improved Gamma process, interested readers may refer to Appendix C.

![Figure 3.7 Schematic diagram of the corrosion pit growth](image)

Meanwhile, as shown in the plan view of the corrosion pit in Figure 3.7 (b), we assume it is divided into many pixels (squares) and that the pixel depth varies from one to another.
The depth growth of each pixel over time follows an IIG process. The dark pixels represent corroded pixels while the gray ones represent newly corroded pixels in the next time increment. As corrosion progresses, the size of the pit grows both radially and in the depth direction. The volume growth of the corrosion pit in the next time increment consists of two parts: volume growth of the corroded pixels and volume growth of the pixels corroded in the next time increment, which are called new corroded pixels.

3.3.1 Volume Growth of the Corroded Pixels

We model the depth growth/sector radius growth with an IIG process, where the shape parameter is a function of the corrosion level (pixel depth or sector radius), such that the phenomenon that corrosion growth rate decreases as corrosion increases is characterized.

Let \(d_i(t) \) denote the corrosion depth of the corroded pixel \(i \) at time \(t \). The depth of pixel \(i \) at time \(t \) is \(d_i(t + 1) = \Delta D_i(t) + d_i(t) \), where \(\Delta D_i(t) \) is the corrosion depth growth of pixel \(i \) in the time interval \((t, t+1) \). We use \(I_g(\cdot) \) to denote the PDF of IG distribution. The PDF of \(\Delta D_i(t) \) is

\[
f_{\Delta D_i(t)}(\Delta d_i(t)) = I_g\left(\mu_0 + \mu_i d_i(t), \lambda \left(\mu_0 + \mu_i d_i(t) \right)^2 \right)
\] (3.5)

where parameters \(\mu_0 > 0, \mu_i < 0, \lambda > 0 \) and they are the same for all pixels. The area of a pixel is \(s_0 \). Suppose the area of existing corroded pixels at time \(t \) is \(s(t) \), the total
number of corroded pixels at time t is $n(t) = \frac{s(t)}{s_0}$. Let $\Delta V_i(t)$ denote the volume growth of pixel i in the time interval $(t, t+1)$. The overall volume increment of the pit in time interval $(t, t+1)$ by all the corroded pixels is

$$\sum_{i=1}^{n(t)} \Delta V_i(t) = s_0 \sum_{i=1}^{n(t)} \Delta D_i(t)$$

(3.6)

$\sum_{i=1}^{n(t)} \Delta D_i(t)$ is a new IG variable with mean $\sum_{i=1}^{n(t)} (\mu_0 + \mu_i d_i(t))$ and scale parameter $\lambda \left(\sum_{i=1}^{n(t)} (\mu_0 + \mu_i d_i(t)) \right)^2$. By properties of IG distribution, $s_0 \sum_{i=1}^{n(t)} \Delta D_i(t)$ is an IG variable with mean $\sum_{i=1}^{n(t)} (\mu_0 + \mu_i d_i(t)) = s_0 \left(n(t) \mu_0 + \mu_t \frac{v(t)}{s_0} \right)$ and scale parameter $\lambda s_0 \left(n(t) \mu_0 + \mu_t \frac{v(t)}{s_0} \right)^2$, where $v(t)$ is the volume of the pit at time t.

3.3.2 Volume Growth of the Newly Corroded Pixels

![Diagram](image)

Figure 3.8 Corrosion area growth
The corroded area becomes larger as corrosion pit grows. As shown in Figure 3.8 (a), suppose the pit’s area is divided into \(n \) sectors. The angle of each sector is \(\xi = \frac{2\pi}{n} \).

Suppose at time \(t \) the radius of the \(j \)th sector is \(r_j(t) \). Let the radius growth follow an IIG process with parameters \(\eta_0 > 0, \eta_i < 0, \omega > 0 \) as

\[
\Delta R_j(t) \sim Ig\left(\eta_0 + \eta_i r_j(t), \omega \left(\eta_0 + \eta_i r_j(t)\right)^2\right) \tag{3.7}
\]

The radii of the sectors grow independently. As shown in Figure 3.8 (b), by simple geometry, the length of the arc is \(2r_j(t)\sin \frac{\xi}{2} \). Since the sectors are in the same corrosion pit, the parameters are assumed to be the same. All the newly corroded pixels begin to grow in the depth direction by the time they are corroded. When the radius increment is small (growth time increment is small) and the angle is small, the area growth can be approximated with a rectangle as shown in Figure 3.8 (b). The area growth of sector \(j \) in \((t, t+1) \) is \(\Delta S_j(t) = 2r_j(t)\sin \frac{\xi}{2} \cdot \Delta R_j(t) \), which follows an IG distribution as shown in Eq. (3.8).

\[
\Delta S_j(t) \sim Ig\left(2r_j(t)\sin \frac{\xi}{2} \cdot \left(\eta_0 + \eta_i r_j(t)\right), 2r_j(t)\sin \frac{\xi}{2} \cdot \omega \left(\eta_0 + \eta_i r_j(t)\right)^2\right) \tag{3.8}
\]

Equivalently, the number of pixels in sector \(j \) corroded in \((t, t+1) \) is

\[
\Delta N_j(t) = \frac{\Delta S_j(t)}{s_0} \sim Ig\left(\frac{2r_j(t)}{s_0} \sin \frac{\xi}{2} \cdot \left(\eta_0 + \eta_i r_j(t)\right), \
\frac{2r_j(t)}{s_0} \sin \frac{\xi}{2} \cdot \omega \left(\eta_0 + \eta_i r_j(t)\right)^2\right) \tag{3.9}
\]
Correspondingly, the increase of the number of corroded pixels in the pit is

$$\Delta N(t) = \sum_{j=1}^{n} \Delta N_j(t).$$

These pixels grow with an initial depth of

$$\{d_i(t) = 0, \ n(t+1) \leq i \leq n(t) + \Delta n(t)\}.$$ Similar to corroded pixels, the corresponding volume growth of the sum of these pixels is an IG variable with mean

$$\sum_{i=n(t)+1}^{n(t)+\Delta n(t)} (\mu_0 + \mu_i d_i(t)) = \mu_0 \Delta n(t)$$

and scale parameter $\omega(\Delta n(t) \mu_0)^2$.

3.3.3 Total Incremental Volume

The total incremental volume in the next time increment is the sum of volume increments of corroded pixels and new corroded pixels. Let

$$\Gamma(v(t)) = (n(t) + \Delta n(t)) \mu_0 + \mu_1 \frac{v(t)}{s_0}.$$

According to the properties of IG distribution, we have

$$\Delta V(t) \sim Ig\left(s_0 \Gamma(v(t)), \lambda s_0 \Gamma^2(v(t))\right)$$ \hspace{1cm} (3.10)

we find that the overall volume growth in the next time increment follows IG distribution, where the mean and shape parameters dependent on the number of corroded pixels by time t, the number of pixels corroded in $(t, t+1)$, corrosion volume at time t and pixel area s_0.
3.3.4 Incremental Volume Under Stresses

The corrosion volume growth is significantly affected by the atmospheric conditions, which include temperature, relative humidity (Rh), pH levels and others. According to Hughes et al. (2016), the corrosion volume growth rate (metal dissolution rate) is related to corrosion current density. Because corrosion is an electrochemical process, corrosion current arises when there is charge transfer between the anode (metal) and cathode. The corrosion reaction current is approximately described as

\[i_c = i_0 \exp \left(-\frac{anF(E - E_{rev})}{RT} \right) \]

(3.11)

where \(n \) is the charge on the ion in equivalents/mol, \(F \) is Faraday constant = 96,487 C/equivalent, \(R \) is the gas constant = 8.314 J/mol-K, \(E_{rev} \) is the reversible potential, \(E \) is the applied potential, \(\alpha \) is the charge transfer coefficient, \(i_0 \) is the exchange current which is a current of a given single electrode at equilibrium when the electrode material experiences no loss or gain. It is a function of soluble species concentration. According to Eyring (1935), the rate of reaction is proportional to the concentration of reagent \(H^+ \) and water vapor in the air. Because the concentration \(c(H^+) = 10^{-pH} \), we modify Eq. (3.11) as

\[i_c = \beta_0 e^{\beta_1 Rh} e^{\beta_2 pH} \exp \left(\frac{\beta_3}{T} \right) \]

\[= \beta_0 \exp \left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T} \right) \]

(3.12)
where \(\beta_0, \beta_1, \beta_2, \beta_3 \) are constants. Eq. (3.10) describes the base corrosion (volume) rate, which corresponds to base corrosion current density (exchange current rate). We incorporate the effect of temperature, \(pH \) level, and Rh by modifying Eq. (3.10) as

\[
\Delta V(t) \sim Ig \left(s_0 \Gamma(v(t)) \exp \left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T} \right) \right) \lambda s_0 \left(\Gamma(v(t)) \exp \left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T} \right) \right)^2
\]

(3.13)

Similarly, the increase in depth under stresses is described as

\[
\Delta D(t) \sim Ig \left((\mu_0 + \mu_d(t)) \exp \left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T} \right) \right) \lambda \left((\mu_0 + \mu_d(t)) \exp \left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T} \right) \right)^2
\]

(3.14)

3.3.5 Reliability Estimation and Remaining Life Prediction

3.3.5.1 Reliability Estimation

Because failure occurs when either the depth of the corrosion pit reaches the depth threshold or the volume of the corrosion pit reaches the volume threshold, we consider it as a competing risk model. We use \(IG(\cdot) \) to denote the CDF of IG distribution. In terms of the corrosion volume failure mode, the reliability, which is the probability that the component (structure) fails in time \(t+1 \) given that it has not failed at time \(t \), is:
\[R_v(t) = P(T_f > (t+1)) = P(\Delta V(t) + v(t) < c_v) \]
\[= P(\Delta V(t) < c_v - v(t)) \]
\[= IG \left[c_v - v(t) \right] \exp \left[\beta_i Rh - \beta_2 pH - \frac{\beta_3}{T} \right] \]
\[\left(\lambda s_0 \left[\Gamma(v(t)) \exp \left[\beta_i Rh - \beta_2 pH - \frac{\beta_3}{T} \right] \right]^2 \right) \]

where \(T_f \) is the failure time, \(c_v \) is the threshold for corrosion volume growth failure mode. \(c_v \) can be obtained according to the procedures in Appendix D. Let \(d^*(t) \) represent the maximum depth of a corrosion pit. For the depth failure mode, reliability is given by:

\[R_d(t) = P_d(T_f > (t+1)) = P(\Delta D^*(t) + d^*(t) < c_d) \]
\[= P(\Delta D^*(t) < c_d - d^*(t)) \]
\[= IG \left[c_d - d^*(t) \right] \exp \left[\beta_i Rh - \beta_2 pH - \frac{\beta_3}{T} \right] \]
\[\left(\lambda \left[\mu_0 + \mu_d d^*_i(t) \right] \exp \left[\beta_i Rh - \beta_2 pH - \frac{\beta_3}{T} \right] \right)^2 \]

where \(c_d \) is the threshold for corrosion depth growth failure mode. Assuming the two failure modes are independent, the reliability at time \(t \) is

\[R(t) = R_d(t) R_v(t) \]

3.3.5.2 Remaining Life Prediction

The distribution of the remaining life is obtained by using an iterative computational method as described next. Assume we have measurements of a corrosion pit growth (3-D...
images) up to time t. The corrosion volume at that time is $v(t)$ and the number of corroded pixels is $n(t)$. The remaining life is predicted as follows:

1. Set $k = t$.

2. Generate a random number $\Delta n(k)$ using Eq. (3.9), update $\{r_j(k)\}$ with $\{r_j(k+1)\}$.

3. Generate a random number $\Delta v(k)$ using Eq. (3.10).

4. Obtain $v(k+1) = v(k) + \Delta v(k)$. If $v(k+1) < c_v$, set $k = k+1$, go to step (2).

Otherwise, the failure time is $k+1$ and the remaining life $T = k + 1 - t$.

5. Repeat steps (2) - (4) N_p times,

Let T_m denote the m percentile remaining life predicted. The obtained 90% confidence interval of predicted remaining life is $(T_{0.05}, T_{0.95})$.

3.3.6 Case Study

Because the proposed model needs datasets that contain 3-D data of corrosion pit, which can hardly be found in existing literature, we use corrosion depth growth data to demonstrate the applicability of the model. We use two datasets: corrosion depth growth data of steel by Caleyo et al. (2009) and corrosion depth growth data of ships by Soares et al. (2009). In the first dataset, the measurements are obtained under only one operating condition. In the second dataset, the corrosion data are obtained under six different
operating conditions. The parameters are estimated with MLE. The details of the procedures are provided in Appendix E.

3.3.6.1 Caleyo’s Dataset

To illustrate the use of the model, we fit the corrosion depth growth data by Caleyo et al. (2009) with the depth growth model as developed in Eq. (3.5) and estimate its parameters. The estimated parameters are \(\hat{\{\mu_0, \mu_t, \lambda\}} = \{20.78, -0.33, 0.59\} \). The actual data and predicted mean depth growth path are shown in Figure 3.9. Assuming the corrosion growth in the depth and the radial directions are controlled by the same set of parameters, i.e., \(\{\mu_0, \mu_t, \lambda\} = \{\eta_0, \eta_t, \omega\} \), we simulate the corrosion pit 3-D growth data with the estimated parameters as shown in Figure 3.10.
Figure 3.9 Corrosion data and predicted mean corrosion growth path

Figure 3.10 Selected simulated corrosion pit 3-D images from \(t = 3 \) to \(t = 9 \)

Using the simulated corrosion growth data by time 10 we obtain the volume model parameters as \(\{\hat{\eta}_0, \hat{\eta}_1, \hat{\omega}, \hat{\mu}_0, \hat{\mu}_1, \hat{\lambda}\} = \{20.86, -0.30, 0.62, 21.12, -0.31, 0.58\} \).

Suppose we are considering the metal loss of a pipe with \(\sigma_{flow} = 0.35 \text{ Mpa} \), \(t_p = 63 \mu m \),
\[D = 100 \mu m, \quad L = 100 \mu m \] and the operating pressure of the pipe is \[P_0 = 0.6 \times 0.35 = 0.21 \text{Mpa} \], \[\nu_0 = 630,000 \text{ cubic } \mu m \] and \[c_i = 504,340 \text{ cubic } \mu m \]. The critical depth threshold is \[c_d = 63 \mu m \]. With estimated parameters, the expectation and 90% probability intervals of volume growth and maximum depth growth curves are shown in Figure 3.11. We observe that the predicted failure times are significantly different, which shows the necessity of considering the volume loss failure mechanism. The reliability of the two individual failure modes and joint failure modes are plotted in Figure 3.12.

![Graphs showing predicted volume growth and maximum depth growth](image)

Figure 3.11 Predicted volume growth and maximum depth growth

We compare the proposed model with the physics-based model by Kondo *et al.* (1989) and the power-law mass loss function by Panchenko *et al.* (2016) using Caley’s dataset. As shown in Figure 3.13, the proposed model matches well with the physics-based model and the power-law empirical model. We find that in the late stage of the corrosion growth
process, the physics-based model overpredicts the volume growth compared with the proposed model, which predicts that the corrosion volume growth rate decreases. This can be explained as that the physics-based model does not consider the fact that the recently formed corrosion layers prevent new metal from contacting the external environment. However, these layers may lead to the decrease of the corrosion growth rate.

![Graph showing reliability over time for different failure modes](Image)

Figure 3.12 Reliability when considering different failure modes
3.3.6.2 Soares’s Dataset

The model is also validated with corrosion depth growth data from six ships operating on different routes on the Pacific Ocean by Soares et al. (2009). The data sample size is increased by generating corrosion data with the deterministic model by Soares et al. (2009) and randomized with the Brownian motion process with drift, where the mean of the Brownian motion process is the same as that of the corrosion data. We censor the data at time 10 and estimate the parameters of the model. The predicted corrosion depth growth after time 10 and time to failure are shown in Figure 3.14 (a). The sum of squared errors (SSE) of the predicted mean path and the percent error (PE) of failure times are calculated

Figure 3.13 Corrosion loss prediction comparison using different models
and shown in Table 3.1. Let \(t_0 \) denote the censoring time. SSE and PE are defined as follows

\[
SSE = \sum_{j=6+1}^{T_r} \left(d^\ast(j) - \hat{d}^\ast(j) \right)^2
\]

\[
PE = \frac{T_f - T_r}{T_r}
\]

where \(d^\ast(j) \) is the maximum depth of the pit at time \(j \). \(\hat{d}^\ast(j) \) is the predicted mean maximum depth of the pit at \(j \). \(T_f \) is the observed failure time and \(T_r \) is the true failure time. The predicted corrosion volume growth paths are shown in Figure 3.14 (b). The reliability function considering both the corrosion depth growth and volume growth is shown in Figure 3.15 when maximum depth is 1.2 while the volume threshold is 2.0.

![Figure 3.14](image-url)
Figure 3.14 Corrosion depth and volume prediction when data are censored at \(t = 10 \)
Table 3.1 The time to failure prediction accuracy and sum of squared errors

<table>
<thead>
<tr>
<th>Ship index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (Kelvin)</td>
<td>283.85</td>
<td>289.75</td>
<td>291.55</td>
<td>293.35</td>
<td>293.55</td>
<td>296.05</td>
</tr>
<tr>
<td>Rh(%)</td>
<td>85.5</td>
<td>82.8</td>
<td>83.3</td>
<td>79.8</td>
<td>82.3</td>
<td>81.6</td>
</tr>
<tr>
<td>Ph</td>
<td>8.16</td>
<td>8.15</td>
<td>8.15</td>
<td>8.14</td>
<td>8.18</td>
<td>8.18</td>
</tr>
<tr>
<td>PE of T</td>
<td>1.685</td>
<td>1.163</td>
<td>-1.625</td>
<td>3.870</td>
<td>-0.132</td>
<td>-1.644</td>
</tr>
<tr>
<td>SSE</td>
<td>0.00067</td>
<td>0.00130</td>
<td>0.00133</td>
<td>0.00406</td>
<td>0.00056</td>
<td>0.00063</td>
</tr>
</tbody>
</table>

Figure 3.15 Reliability when considering both depth growth and volume growth

3.4 Corrosion Propagation Modeling

In the corrosion degradation process, the corrosion pits not only grow larger but also propagate to other locations on the material over time, leading to the initiation and growth of new pits. In this section, we develop a physics-based stochastic model that describes the propagation of corrosion pits in both time and space. As the initiation of pits is related to material composition and the existing pits’ locations, we consider three aspects:
characterization of particles in a material, modeling of pits initiation and modeling of multiple pits growth, propagation and overlap/coalescence.

3.4.1 Characterization of the Particles

It is widely known that corrosion pits initiate from the particles in the alloy (Cawley et al., 1996). According to Liao (1998), Cullin et al. (2011) and Cawley et al. (1996), the particles in the alloy tend to aggregate and form clusters as shown in Figure 3.16 (a). It is observed that the pits induced from larger particle clusters are larger than those induced by smaller-size particles, as shown in Figure 3.16 (b). The area/size distribution of the particles in the LT (Rolling Transverse), LS (Rolling-Short Transverse) planes of a material can be characterized by a bi-mode Weibull distribution (Harlow, 2012) as shown in Figure 3.17, where the CDF is the product of the CDFs representing the two modes as shown in Eq. (3.18)

\[
F_x(x) = F_{1s}(x) F_{2s}(x)
\]

The indexes 1s and 2s indicate the modes associated with the lower and upper tails of the data respectively. Using a three-parameter Weibull distribution, the CDF of the particle sizes is

\[
F_s(x) = 1 - \exp \left[-\left(\frac{x}{\beta_1} \right)^{\alpha_1} \right] - \exp \left[-\left(\frac{x}{\beta_2} \right)^{\alpha_2} \right] + \exp \left[-\left(\frac{x}{\beta_1} \right)^{\alpha_1} - \left(\frac{x}{\beta_2} \right)^{\alpha_2} \right]
\]
where α_1 and β_1 are the parameters for the first Weibull distribution. α_2 and β_2 are the parameters for the second Weibull distribution.

Figure 3.16 Particles and pits (Liao et al., 1998)

Cawley et al. (1996) state that the particle centers are uniformly distributed on the surface.

We incorporate both particles’ sizes and centers in modeling the pits propagation in our model.
3.4.2 Corrosion Pits Initiation

A particle’s ability to initiate a pit depends on its size (Suter et al., 2001). Meanwhile, the particles close to the corroded pits are more susceptible to corrosion because of the chemical reaction of the pits’ corrosion. Let $PP(P_i, t)$ denote particle P_i’s pitting potential, which is its ability to initiate a new pit at time t. We obtain $PP(P_i, t)$ as follows:

$$PP(P_i, t) = \left(g_1 S(P_i) + g_2 \sum_{j=1}^{n_i(t)} L_j(P_i, t) \right)$$

(3.20)

where g_1 and g_2 are constants. P_i denotes the index of a particle, $S(P_i) = 2\pi r_i^2$ is the effective surface area of particle P_i, where r_i is the radius of particle P_i. The total number of pits at time t is denoted as $n_p(t)$. $L_j(P_i, t)$ represents the corrosion effects
of the chemical reaction produced by the j^{th} pit on particle P_i’s ability to initiate a new pit. We define $L_j(P_i, t)$ as follows

$$L_j(P_i, t) = v_j(t)\exp\left[-\frac{(x_{P_i} - x_j)^2 + (y_{P_i} - y_j)^2}{2\sigma_L^2}\right]$$

(3.21)

where $v_j(t)$ is the volume of the j^{th} pit at time t, x_j and y_j are the coordinates of the j^{th} pit’s center (which are also the coordinates of the center of the particle that has initiated the j^{th} pit), x_{P_i} and y_{P_i} are the coordinates of particle P_i and σ_L is a constant. As time t increases, whenever $PP(P_i, t)$ reaches a threshold c_{pp}, particle P_i initiates a pit. Eq. (3.20) indicates that every corrosion pit influences the pitting ability of the uncorroded particles. The amount of influence depends on the distances of the particle to the corresponding pit.

Without loss of generality, consider a specimen with a size of $a_s \times b_s$. To model the pits initiation process, we propose the following procedures:

1) Randomly generate n_{pc} pairs of coordinates for the n_{pc} particles, where the x and y coordinates follow uniform distributions $U(0, a_s)$ and $U(0, b_s)$.

2) For each of the particle, randomly generate a number z which follows the distribution with CDF $F_z(z)$ as its size. Set the starting time as $t = 0$.

3) Calculate the pitting potentials of all the particles according to Eq. (3.20). If \(\exists i \) such that \(PP(P_i, t) > c_{pp} \), particle \(P_i \) is corroded at time \(t + 1 \). Let \(t = t + 1 \), repeat step (3) until all the particles are corroded.

3.4.3 Corrosion Growth of Multiple Pits

![Diagram of pit growth and overlap](image)

Figure 3.18 The overlap of the pits

After new pits are initiated, they grow both in the depth direction and the radial directions as described in section 3.3. In the multiple-pits growth process, pits may overlap and grow jointly. Figure 3.18 shows a schematic diagram of the growth and overlap process of four pits, where their centers are \(O_1, O_2, O_3 \) and \(O_4 \). At time \(t_1 \), the pits are away from
each other. Starting from t_2, pits begin to overlap with each other until time t_4, when the four pits merge into a larger-sized pit that continues to grow until the overall volume reaches the failure threshold.

The overlap of the pits can be considered as the overlap of a series of sectors in each pit. Figure 3.19 (a) is an enlargement of the overlap section between pits 1 and 2 in Figure 3.18 (b). We define a rule to decide if the sectors in one pit overlap with their counterparts in another pit and stop growing. As shown in Figure 3.19 (a), the sectors of pit 1 on one side of the overlapped area are $S_{j_1}, S_{j_1+1}, S_{j_1+2}$, the sectors of pit 2 on the corresponding side are $S_{j_2}, S_{j_2+1}, S_{j_2+2}$. Let α_{j_1} denote the angle between O_1O_2 and the median of sector S_{j_1}. $r_j(t)$ is the radius of the j^{th} sector of pit i at time t, which follows an IIG process. Using simple geometry as shown in Figure 3.19 (b), we observe that sector S_{j_1} stops growing at time t if there is at least a sector $S_{j_2}, j_2 \leq j \leq j_2 + \frac{n_1}{4}$ such that

$$r_{j_1}(t)\cos(\alpha_{j_1}) + r_{j_2}(t)\cos(\alpha_{j_2}) > O_1O_2$$ (3.22)
We define an indicator function as shown in Eq. (3.23) to indicate whether a sector from pit 1 stops growing at time t.

$$I_{ij}(t) = \text{sgn}\left\{r_{i,j}(t)\cos(\alpha_{i,j}) + r_{j,i}(t)\cos(\alpha_{j,i}) - O_1O_2\right\} \quad (3.23)$$

where

$$\text{sgn}(x) = \begin{cases} -1 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

If $I_{ij}(t) = -1$, the corresponding sector overlaps with other sectors and stops growing. Otherwise, it continues to grow. Let t_g denote the overlap time of sector S_{ij}, we define $I_{ij}(t) = -1$ for $t \geq t_g$. The volume growth of all the pits is composed of two parts: the volume growth of corroded pixels and newly corroded pixels as discussed in the following section.

3.4.3.1 The Depth and Volume Growth of Corroded Pixels

Assume at time t there are $n_p(t)$ pits. Let $d_k(t)$ denote the corrosion depth of the corroded pixel k in the i^{th} pit at time t. The depth of pixel k in the i^{th} pit at time $t+1$ is $D_k(t+1) = \Delta D_k(t) + d_k(t)$, where $\Delta D_k(t)$ is the corrosion depth growth of pixel k in the i^{th} pit in the time interval $(t, t+1)$. The PDF of $\Delta D_k(t)$ is

$$f_{\Delta D_k(t)}(\Delta d_k(t)) = \text{lg}\left(\mu_{00}(t) + \mu_{11}(t)d_k(t), \lambda\left(\mu_{00}(t) + \mu_{11}(t)d_k(t)\right)^2\right) \quad (3.24)$$

where $\mu_{00}(t), \mu_{11}(t)$ are defined in Eqs. (3.25) and (3.26) as...
\[\mu_{i0}(t) = \mu_0 S_i(t) = \mu_0 \sum_{j=1}^{np_i(t)} 2\pi r_{ij}^2 \] (3.25)

\[\mu_i(t) = \mu_i S_i(t) = \mu_i \sum_{j=1}^{np_i(t)} 2\pi r_{ij}^2 \] (3.26)

where \(S_i(t) \) is the sum of the surface areas of the particles pit \(i \) at time \(t \), \(\mu_0 \), \(\mu_i \) and \(\lambda \) are constants and \(np_i(t) \) is the total number of pixels in pit \(i \) at time \(t \).

Suppose that the area of all the existing corroded pixels in the \(i^{th} \) pit at time \(t \) is \(s_i(t) \), the total number of corroded pixels at time \(t \) is \(n_i(t) = \frac{s_i(t)}{s_0} \), where \(s_0 \) is the area of a pixel. Let \(\Delta V_{ik}(t) \) denote the volume increase of pixel \(k \) in the \(i^{th} \) pit in the time interval \((t, t+1)\). The overall volume increment of the pit in the time interval \((t, t+1)\) by all the corroded pixels is

\[
\sum_{i=1}^{n_p(t)} \sum_{k=1}^{n_i(t)} \Delta V_{ik}(t) = s_0 \sum_{i=1}^{n_p(t)} \sum_{k=1}^{n_i(t)} \Delta D_{ik}(t) \] (3.27)

where \(n_p(t) \) is the total number of pits at time \(t \). As \(\Delta D_{ik}(t) \) is an IG variable with shape parameter \(\mu_{i0}(t) + \mu_{ii}(t) d_{ik}(t) \) and scale parameter \(\lambda \left(\mu_{i0}(t) + \mu_{ii}(t) d_{ik}(t) \right)^2 \), according to properties of IG distribution we have
\[
\sum_{i=1}^{n_p(t)} \sum_{k=1}^{n_{p_k}(t)} \Delta V_{ik}(t) - Ig \\
\begin{pmatrix}
 s_0 \sum_{i=0}^{n_p(t)} \mu_{i0}(t) n_i(t) + \sum_{j=0}^{n_p(t)} \mu_{i1}(t) v_j(t) \\
 \lambda s_0 \sum_{i=0}^{n_p(t)} \mu_{i0}(t) n_i(t) + \sum_{j=0}^{n_p(t)} \mu_{i1}(t) v_j(t)
\end{pmatrix}^2
\]

where \(v_j(t) \) is the volume of pit \(i \) at time \(t \).

3.4.3.2 Volume Growth of Newly Corroded Pixels

The radius of each sector is \(r_j(t) \), where \(1 \leq i \leq n_p(t), 1 \leq j \leq n_s \). The radial growth of the \(j^{th} \) sector in pit \(i \) is \(\Delta R_j(t) \left(\frac{I_{ij}(t) + 1}{2} \right) \), where

\[
\Delta R_j(t) \sim Ga \left(\eta_{i0}(t) + \eta_{i1}(t) r_j(t), \omega(\eta_{i0}(t) + \eta_{i1}(t) r_j(t))^2 \right)
\]

where \(\eta_{i0}(t), \eta_{i1}(t) \) are defined in Eqs. (3.30) and (3.31).

\[
\eta_{i0}(t) = \eta_{i0}S_i(t) = \eta_0 \sum_{j=1}^{n_{p_{ij}}(t)} 2\pi r_j^2
\]

\[
\eta_{i1}(t) = \eta_S S_i(t) = \eta_1 \sum_{j=1}^{n_{p_{ij}}(t)} 2\pi r_j^2
\]
where \(\eta_0, \eta_1 \) and \(\omega \) are constants, \(S_i(t) \) is the sum of the surface areas of the particles pit \(i \) at time \(t \), \(np_i(t) \) is the total number of pixels in pit \(i \) at time \(t \). The area growth of the \(j^{th} \) sector in the \(i^{th} \) pit is \(\Delta S_{ij}(t) \left(\frac{I_y(t)+1}{2} \right) \), where

\[
\Delta S_{ij}(t) \approx \left[2r_{ij}(t)\sin \frac{\xi}{2} \left(\eta_0(t) + \eta_1(t)r_{ij}(t) \right),
2r_{ij}(t)\sin \frac{\xi}{2} \cdot \omega \left(\eta_0(t) + \eta_1(t)r_{ij}(t) \right)^2 \right]
\]

(3.32)

where \(\xi \) is the contained angle of each sector and \(\Delta S_{ij}(t) \) is the area growth of sector \(j \) in pit \(i \) in \((t,t+1)\) if it continues to grow. Equivalently, the number of pixels in sector \(j \) corroded in \((t,t+1)\) is \(\Delta N_{ij}(t) \left(\frac{I_y(t)+1}{2} \right) \), where

\[
\Delta N_{ij}(t) = \frac{\Delta S_{ij}(t)}{s_0} \approx \left[\frac{2r_{ij}(t)}{s_0} \sin \frac{\xi}{2} \left(\eta_0(t) + \eta_1(t)r_{ij}(t) \right),
\frac{2r_{ij}(t)}{s_0} \sin \frac{\xi}{2} \cdot \omega \left(\eta_0(t) + \eta_1(t)r_{ij}(t) \right)^2 \right]
\]

(3.33)

The increase of the number of new corroded pixels in pit \(i \) is

\[
\Delta N_i(t) = \sum_{j=1}^{n_i} \Delta N_{ij}(t) \left(\frac{I_y(t)+1}{2} \right)
\]

(3.34)

The volume growth by all these new corroded pixels is

\[
\sum_{i=1}^{n_i(t)} \sum_{k=\Delta n_i(t)+1}^{n_i(t)} \Delta V_{ik}(t) = s_0 \sum_{i=1}^{n_i(t)} \sum_{k=\Delta n_i(t)+1}^{n_i(t)} \Delta D_{ik}(t)
\]

\[
\approx \left[s_0 \sum_{i=0}^{n_i(t)} \mu_{i0}(t) \Delta n_i(t), \lambda s_0 \left(\sum_{i=0}^{n_i(t)} \mu_{i0}(t) \Delta n_i(t) \right)^2 \right]
\]

(3.35)
3.4.3.3 Total Incremental Volume

The total incremental volume in the next time instant is the sum of the volume increments of corroded pixels and new corroded pixels. The overall volume increment of all the pits in \((t, t+1)\) is

\[
\Delta V(t) = \sum_{i=1}^{n_p(t)} \sum_{k=1}^{n_i(t)} \Delta V_{ik}(t) + \sum_{i=1}^{n_p(t)} \sum_{k=1}^{n_i(t)+n_{ik}(t)} \Delta V_{ik}(t)
\]

(3.36)

Using properties of IG distribution, we have

\[
\Delta V(t) \sim Ig \left(\sum_{i=0}^{n_p(t)} \sum_{k=0}^{n_i(t)} \mu_{i0}(t)(n_i(t) + \Delta n_i(t)) + \frac{\sum_{i=0}^{n_p(t)} \mu_{i1}(t)v_i(t)}{s_0}, \right)
\]

(3.37)

where \(n_p(t)\) is the total number of pits at time \(t\), \(n_i(t)\) is the total number of pixels in pit \(i\) at time \(t\) and \(\Delta n_i(t)\) is the number increase of pixels in pit \(i\) in \((t, t+1)\), which is predicted by Eq. (3.34). The parameters \(\mu_{i0}(t), \mu_{i1}(t)\) are obtained by Eqs. (3.25) and (3.26) and \(\lambda\) is a constant. In terms of the corrosion volume failure mode, the reliability is:
\[R_v(t) = P(T_f > (t+1)) = P(\Delta V(t) + \nu(t) < c_v) \]
\[= P(\Delta V(t) < c_v - \nu(t)) \]
\[= IG(c_v - \nu(t)) \]
\[= IG(c_v - \nu(t)) \]
\[= \left(s_0 \sum_{i=0}^{n_{v,t}} \mu_{i0}(t)(n_i(t) + \Delta n_i(t)) + \frac{s_{v,t}}{s_0} \frac{\sum_{i=0}^{n_{v,t}} \mu_{i1}(t)\nu_i(t)}{s_0} \right)^2 \]

where \(T_f \) is the failure time, \(c_v \) is the volume threshold and \(IG(\cdot) \) is the CDF of IG distribution.

3.4.4 Multiple Pits Initiation and Growth: Case Study

We use a case study to illustrate the pits’ initiation and growth process over time. The total number of particles is assumed to be 10. We follow Harlow (2012) and use the parameters of the CDF of particle sizes as \(\alpha_1 = 0.34, \beta_1 = 850, \alpha_2 = 2, \beta_2 = 2 \). The particles are generated as shown in Figure 3.20 with red circles. Figure 3.21 shows the selected figures of overlap of the pits over time, where the particles are also shown in red circles. The total volume growth of the pits is shown in Figure 3.22 (a). The reliability of the unit is shown in Figure 3.22 (b).
Figure 3.20 The particles in a material

Figure 3.21 Selected figures of the pits over time
Figure 3.22 (a) Total volume growth of the pits (b) Reliability of the unit with multiple pits for threshold

3.5 Summary

We propose an IIG process model to capture the dependency between the corrosion state and the corrosion growth rate. The corresponding failure probability and remaining life are accurately predicted based on the IIG model. The proposed models provide more accurate and robust results than the IG model. Based on the IIG process, we develop the first stochastic model that describes the corrosion pit volume growth over time. It captures the phenomenon where a critical amount of volume loss leads to the failure of a component. An iterative remaining life prediction approach is proposed. The consistency of the proposed model with the empirical mass loss model and physics-based model is verified with real data. The propagation of corrosion is studied. The physical factors, including the spatial and size distributions of the particles and the influence of the corroded pits are
incorporated into the pits’ initiation model. The pits overlap process is also studied and a simulation model is provided to validate the analytical model.
DEGRADATION BRANCHING MODELING

4.1 Introduction

Degradation branching is a common phenomenon in many real-life applications. The degradation of a location not only increases with time but also propagates to other locations in the same system. While the degradation of an individual location has been studied extensively, research on degradation branching is sparse. In this chapter, we develop a general stochastic degradation branching model that characterizes both the degradation growth and degradation propagation. The probabilistic properties of the general degradation branching processes are analyzed. Reliability metrics such as the mean time to failure, mean residual life, failure probability and others are also investigated. In particular, closed-form expressions for the expectation and variance of the degradation and selected reliability metrics are obtained when the time to branch follows an exponential distribution. The model is validated using actual crack growth data and can be applied to corrosion propagation.

The degradation branching process (DBP) is described as follows: (1) The degradation starts in one location and propagates to other locations, (2) After a random time another degradation branch is initiated, (3) The degradation of each branch follows a stochastic
process, (4) Failure occurs when the total degradation of all the branches reaches a failure threshold. Consider the crack growth as an example, the crack is initiated due to the mechanical stresses and continues to grow. After a random time, it initiates another branch (it occurs due to internal stresses or crossing of grain boundaries). Failure occurs when the total crack length of all the branches exceeds the overall “failure” threshold (Wang et al., 2020b).

4.2 The Degradation Branching Process Model

4.2.1 Properties of the DBP

First, we define the general DBP as shown in Figure 4.1. Let the stochastic process \(X_0(t) \) denote the degradation of the first location which starts to degrade at time \(t = 0 \). The branching occurs after a random time interval \(\tau_i \) and the main degradation path \(X_0(t) \) continues to grow after the new degradation branch is initiated. Note that \(\tau_i \) may have different interpretations in different DBPs depending on the properties of the real-life applications. We define two types of DBPs: Type I DBP and Type II DBP. In Type I DBP, \(\tau_i \) is a variable corresponding to the time that \(X_{i-1}(t) \) reaches its threshold \(c_i \) (the first passage time) and incurs branching while in Type II DBP \(\tau_i \) is a random variable determined by other physical processes independent of the degradation of the branches. Figure 4.1 illustrates the Type I DBP. The degradation of the first branch at time \(t \) is
denoted as \(X_1(t - \tau_1) \), where \(t - \tau_1 \) is the length of time of its degradation. Meanwhile, the first degradation branch continues to grow and initiates another branch after a random time \(\tau_2 \), where \(\tau_2 \) is a random variable corresponding to the time that \(X_1(t - \tau_1) \) reaches its threshold \(c_1 \). The degradation of the second branch at time \(t \) is \(X_2(t - \tau_1 - \tau_2) \), where \(t - \tau_1 - \tau_2 \) is the length of time of its degradation. In general, the threshold \(c_i \) for each branch to initiate a new branch may be different. The branching continues until the cumulative degradation of all the branches exceeds the overall failure threshold \(c \). In comparison, in Type II DBP the initiations of new branches are independent of the degradation of the original branches. Let \(X_0(t) \) denote the length of the initial degradation and \(X_1(t - \tau_1) \) denote the length of the first branch (say crack length as an example) at time \(t \). The notation \(\tau_1 \) denotes the time that the Stress Intensity Factor (SIF) (Sundaram et al., 2018) reaches the threshold \(s_0 \) and leads to the initiation of the first crack branch. The notation \(X_2(t - \tau_1 - \tau_2) \) denotes the crack length of the second branch at time \(t \) and \(\tau_2 \) is the time that SIF reaches the threshold \(s_1 \) and initiates the second branch. The overall threshold \(c \) corresponds to the maximum allowance of total crack length (Sundaram et al., 2018).
Suppose τ_j follows a distribution with a probability density function (PDF) $f(\tau_j)$ and a cumulative distribution function (CDF) $F(\tau_j)$. Let $X^*_i(t)$ denote the degradation of the i^{th} branch at time t and $X^*_0(t) = X^*_i(t)$. Note that $X^*_i(t)$, $i \geq 1$ are different from $X_i\left(t - \sum_{j=1}^{i} \tau_j \right)$, $i \geq 1$ in that the latter are the conditional degradation given τ_j, $1 \leq j \leq i$ are known. Let $h_i\left(x | t - \sum_{j=1}^{i} \tau_j \right)$ denote the conditional PDF of $X_i\left(t - \sum_{j=1}^{i} \tau_j \right)$, where \(\{\tau_i, 1 \leq i \leq n\} \) are the known initiation times of the first n branches. Let $h(x | t, \{\tau_i, 1 \leq i \leq n\})$ denote the conditional PDF of these branches’ total degradation including the first degraded location, which is $\sum_{i=1}^{n} X_i\left(t - \sum_{j=1}^{i} \tau_j \right) + X_0(t)$. For example, in the case of crack growth and branching where the degeneration of the branches follows Brownian Motion with a drift vector $\mu = (\mu_0, \ldots, \mu_n)^T$ and diffusion vector.
\(\sigma = (\sigma_0, \ldots, \sigma_n)' \) and \(\{\tau_i, 1 \leq i \leq n\} \) are known, the conditional total crack length is

\[
\sum_{i=1}^{n} X_i \left(t - \sum_{j=1}^{i} \tau_j \right) + X_0 (t) \sim N \left(\mu_0 t + \sum_{i=1}^{n} \left(t - \sum_{j=1}^{i} \tau_j \right) \mu_i, \sigma_0^2 t + \sum_{i=1}^{n} \left(t - \sum_{j=1}^{i} \tau_j \right) \sigma_i^2 \right).
\]

As shown in the proof in Appendix F, the PDF of the total degradation at time \(t \) is given by Eq. (4.1),

\[
h^*(x|t) = \sum_{n_b=0}^{\infty} \int_0^t \prod_{i=1}^{\sum_{i=1}^{n_b}} f (\tau_i) \left(1 - F \left(t - \sum_{i=1}^{n} \tau_i \right) \right) h(x|t, \{\tau_i, 1 \leq i \leq n\}) \prod_{i=1}^{n} d\tau_i \tag{4.1}
\]

where \(n_b \) is the limit of the number of branches, which can be either finite or infinite depending on the real-life applications. When the system consists of a finite number of units and the degradation of each unit (branch) is represented by a unique indicator, \(n_b \) is finite and equals the total number of units in the system. The degradation branches correspond to the degradation of the units. Otherwise, when there is only one unit and the degradation starts from one location of the unit and propagates and branches to other locations, then \(n_b \) is infinite (\(n_b = \infty \)) as described in the case of crack growth and branching process. Here the degradation branches correspond to the length of the crack branches.

When \(n_b = \infty \) and the distribution of time to branch \(f (\tau_i) \) is known, the expected number of branches at time \(t \) can be determined as follows. Let \(f^*(s) \) be the Laplace
transform of \(f(t)\). Let \(M(t)\) denote the expected number of branches at time \(t\). Let

\[m(t) = \frac{dM(t)}{dt}.\]

As shown in the proof in Appendix F, \(m(t)\) is obtained as

\[m(t) = \mathcal{L}^{-1}\left(\frac{f^*(s)}{1-f^*(s)}\right)\]

The expected number of branches at time \(t\) is

\[E(N|t) = M(t) = \int_0^t m(\tau)d\tau\] \hspace{1cm} (4.2)

The expectation of the total amount of degradation of all the branches including the first degraded location at time \(t\) is

\[E\left(X^*(t)\right) = \int_0^t \sum_{n=0}^m g(n|\tau)\left(\sum_{i=0}^n E\left(dX^*_i(\tau)\right)\right)\] \hspace{1cm} (4.3)

where \(E\left(dX^*_i(\tau)\right)\) is the expectation of the degradation increment of the \(i^{th}\) branch in \((\tau, \tau + d\tau)\) and \(g(n|\tau)\) is the probability that there are \(n\) branches at time \(\tau\). Note that \(dX^*_i(\tau)\) is not the differential form of \(X^*_i(\tau)\) as many stochastic processes are not differentiable, instead, it represents the amount of degradation in the small time interval of \((\tau, \tau + d\tau)\). When the expected degradation growth rates of all the branches are \(\mu\) as in the cases of Brownian Motion, Gamma processes and IG processes where the mean function is \(\mu t\), then Eq. (4.3) reduces to

\[E\left(X^*(t)\right) = \mu \int_{\tau=0}^t E(N|\tau)d\tau + t\] \hspace{1cm} (4.4)
where \(E(N|\tau) \) is the expected number of branches at time \(\tau \). Proofs of Eqs. (4.3) and (4.4) are given in Appendix F. When the failure threshold of the total degradation is \(c \), the mean time to failure (MTTF) can be obtained by solving \(E\left(X^+(t)\right) = c \). In the example of crack growth and branching, the MTTF corresponds to the expected time when the total length of all the cracks reaches the threshold and leads to failure.

Suppose at time \(t \) the total degradation is \(x(t) \), the total number of branches is \(n(t) \) and the last branch is initiated at \(t_l \). We obtain the mean residual life (MRL) using Eq. (4.5) and its proof is given in Appendix F.

\[
MRL = \inf_{t_r} \left\{ \sum_{n=1}^{n(t)} \sum_{k=1}^{t_r-t_l} \int_{t_{l-1}}^{t_{l-k}} \ldots \int_{t_{j-1}}^{t_{j-k}} \prod_{j=1}^{k} f(\tau_j) \frac{1}{g(0|t-t_l)} E\left(X_k \left| t_r-t_l-\sum_{j=1}^{k} \tau_j, n \right. \right) \prod_{j=1}^{k} d\tau_j \right\} = c - x(t)
\]

The variance of the total degradation at time \(t \) is obtained in Eq. (4.6), the proof is in Appendix F. Consider the example of crack growth and branching, Eq. (4.6) obtains the uncertainty of the total length of the crack branches at time \(t \) which originates
from the uncertainty of the total number of crack branches and the uncertainty of the length of the crack branches.

\[
\text{Var}(X^*(t)) = \sum_{n=1}^{\infty} \left(g_n \left(\sum_{i=1}^{n} \left(F_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right) \right) \right)^2 - \left(\sum_{n=1}^{\infty} \left(g_n \sum_{i=1}^{n} \left(F_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right) \right) \right)^2 + v_0 + \sum_{n=1}^{\infty} \left(g_n \sum_{i=1}^{n} \left(F_i \left(\frac{g_{n-i}}{g_n} (v_i^n + (m_i^n)^2) \right) \right) \right) \left(\sum_{i=1}^{n} \left(F_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right) \right)^2 + 2 \sum_{i=1}^{\infty} \left(F_i \left(\frac{g_{n-i}}{g_n} m_i^n m_i^n \right) \right) \right)
\]

(4.6)

where

\[
F_i(x) = \int_0^t \cdots \int_0^t \prod_{j=1}^i f(\tau_j) x \prod_{j=1}^i d\tau_j,
\]

\[
g_{n-i} = g \left(n-i \mid t - \sum_{j=1}^i \tau_j \right),\quad g_n = g(\{n\mid t\}),
\]

\[
m_0 = \text{Var}(X_0(t)),\quad m_i^n = E \left(X_i \left(t - \sum_{j=1}^i \tau_j \mid n \right) \right)\quad \text{and} \quad v_i^n = \text{Var} \left(X_i \left(t - \sum_{j=1}^i \tau_j \mid n \right) \right).
\]

The reliability and the failure time distribution of the system for a given threshold \(c \) are obtained in Eqs. (4.7) and (4.8):

\[
R(t) = \sum_{n=0}^{\infty} \int_0^t \cdots \int_0^t \prod_{i=1}^n f(\tau_i) \left(1 - F \left(t - \sum_{i=1}^n \tau_i \right) \right) H(c \mid t, \{\tau_i, 1 \leq i \leq n\}) \prod_{i=1}^n d\tau_i \quad (4.7)
\]

\[
\bar{f}(t) = \frac{\partial}{\partial t} \left(1 - \sum_{n=0}^{\infty} \int_0^t \cdots \int_0^t \prod_{i=1}^n f(\tau_i) \left(1 - F \left(t - \sum_{i=1}^n \tau_i \right) \right) H(c \mid t, \{\tau_i, 1 \leq i \leq n\}) \prod_{i=1}^n d\tau_i \right) \quad (4.8)
\]
where \(H(x|t, \{\tau_i, 1 \leq i \leq n\}) \) denotes the conditional CDF of the total degradation of all the branches (including the first degraded location) at time \(t \), given \(\{\tau_i, 1 \leq i \leq n\} \) are known. The proof of Eq. (4.7) is given in Appendix F. In the case of crack growth and branching, Eq. (4.7) obtains the probability that the total length of all the cracks is less than the failure threshold \(c \) given the parameters of \(f(\tau_i) \) and the parameters of the crack growth of the branches (such as the \(\mu \) and \(\sigma \) in the case of Brownian Motions) are known. Eq. (4.8) obtains the PDF of the failure time given the failure threshold is \(c \).

The mean and variance of the degradation of the \(i^{th} \) branch at time \(t \) are obtained in Eqs. (4.9) and (4.10) respectively. The proofs of Eqs. (4.9) and (4.10) are given in Appendix F.

\[
E(X_i^*(t)) = \int_0^{\tau_i} \cdots \int_0^{\tau_i} \prod_{j=1}^{i} f(\tau_j) \left[\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) \prod_{j=1}^{i} d\tau_j \right] \quad (4.9)
\]

\[
Var(X_i^*(t)) = \int_0^{\tau_i} \cdots \int_0^{\tau_i} \prod_{j=1}^{i} f(\tau_j) \left[\left(X_i^2 \left(t - \sum_{j=1}^{i} \tau_j \right) \right) \prod_{j=1}^{i} d\tau_j \right] - \left[\int_0^{\tau_i} \cdots \int_0^{\tau_i} \prod_{j=1}^{i} f(\tau_j) \left[\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) \prod_{j=1}^{i} d\tau_j \right] \right]^2 \quad (4.10)
\]
4.2.2 Special Case of the DBP: Branching Brownian Motion Process

We consider a special case of Type II DBP where the time to branch follows an exponential distribution. The approach can be applied to other distributions that can be approximated by the exponential distribution. Consider a general degradation process whose mean function and variance function of any branch in the time interval \((t, t + dt)\) is \(\mu dt\) and \(\sigma^2 dt\) respectively (e.g. Brownian Motion), when the time to branch follows an exponential distribution with rate \(\lambda\), the PDF, expectation and variance of the total degradation are obtained in Eqs (4.11), (4.12) and (4.13) respectively. Moreover, the PDF, the expectation and the variance of the total degradation are uniquely determined by \(\lambda\), \(\mu\) and \(\sigma\). The proofs are given in Appendix F.

\[
h^*(x|t) = e^{-dt} \sum_{n=0}^{n_b} \lambda^n \int_0^t \cdots \int_0^t h(x|t, \{\tau_i, 1 \leq i \leq n\}) d\tau_n \cdots d\tau_1 \tag{4.11}
\]

where

\[
h(x|t, \{\tau_i, 1 \leq i \leq n\}) = \left(\frac{1}{2\pi} \left((n+1)t - \sum_{i=1}^{n} (n-i+1)\tau_i \right) \sigma^2 \right)^{-1} e^{-\frac{x^2}{2\left((n+1)t - \sum_{i=1}^{n} (n-i+1)\tau_i \right)\sigma^2}}.
\]

\[
E(X^*(t)) = \mu \left(\frac{1}{2} \lambda t^2 + t \right) \tag{4.12}
\]

\[
Var(X^*(t)) = \frac{1}{3} \mu^2 \lambda t^3 + \frac{1}{2} \sigma^2 \lambda t^2 + \sigma^2 t \tag{4.13}
\]
The expected number of branches at time \(t \) is obtained by Eq. (4.14), which indicates that the expected number of branches initiated is uniquely determined by the rate of branching \(\lambda \) and time \(t \).

\[
E(N|t) = \int_0^t \lambda d\tau = \lambda t
\] \hspace{1cm} (4.14)

When the overall failure threshold is \(c \), the MTTF is

\[
MTTF = -1 + \sqrt{\frac{1 + 2\lambda c}{\mu}} \hspace{1cm} (4.15)
\]

The reliability at time \(t \) is

\[
R(t) = e^{-\lambda t} \sum_{n=0}^{m} \lambda^n \int_0^t \cdots \int_0^{\tau_1} H(c|t, \{\tau_i, 1 \leq i \leq n\}) d\tau_n \cdots d\tau_1
\] \hspace{1cm} (4.16)

where \(H(x|t, \{\tau_i, 1 \leq i \leq n\}) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x - \mu \left((n+1)t - \sum_{i=1}^{n} (n-i+1)\tau_i \right)}{\sqrt{2 \left((n+1)t - \sum_{i=1}^{n} (n-i+1)\tau_i \right)^2}} \right) \right] \) denotes the conditional CDF of the total degradation of all the branches (including the first degraded location) at time \(t \), given \(\{\tau_i, 1 \leq i \leq n\} \) are known. Note that \(\text{erf}(\cdot) \) is the error function. The PDF of time to failure is

\[
\tilde{h}(t) = \frac{\partial}{\partial t} \left(1 - e^{-\lambda t} \sum_{n=0}^{m} \lambda^n \int_0^t \cdots \int_0^{\tau_1} H(c|t, \{\tau_i, 1 \leq i \leq n\}) d\tau_n \cdots d\tau_1 \right)
\] \hspace{1cm} (4.17)
Suppose the total degradation at time t is $x(t)$, the total number of branches is $n(t)$ and the last branch is initiated at $t_l \leq t$. The MRL is given in Eq. (4.18) and its proof is shown in Appendix F.

\[
MRL = \inf \left\{ t \left| \mu (n(t)+1)(t - t_l) + \frac{\mu}{2g(t-t_l)} \sum_{n=1}^{n_c-n(t)} \left(g(n|t_l-t) \frac{(t-t_l)^{n+1}}{(t_l-t)^n} \right) = c - x(t) \right. \right\} \tag{4.18}
\]

Using Eqs. (4.9) and (4.10) we obtain the mean and variance of the degradation of branch i as given in Eqs. (4.19) and (4.20) respectively.

\[
E (X^*_i(t)) = \mu \left(t - \frac{i}{\lambda} + \sum_{j=0}^{i-1} \frac{(i-j)}{j!} t^j \lambda^{j+1} \right) e^{-\lambda t} \tag{4.19}
\]

\[
Var (X^*_i(t)) = \frac{\mu^2}{\lambda^2} \left(\lambda^2 t^2 - 2i\lambda t + (i+1)i - e^{-\lambda t} \sum_{j=0}^{i-1} \frac{(i-j+1)(i-j)}{j!} \lambda^j \right) + \sigma^2 \left(t - \frac{n}{\lambda} + \sum_{j=0}^{n-1} \frac{(n-j)}{j!} t^j \lambda^{j+1} e^{-\lambda t} \right) - \left(\mu \left(t - \frac{i}{\lambda} + \sum_{j=0}^{i-1} \frac{(i-j)}{j!} t^j \lambda^{j+1} e^{-\lambda t} \right) \right)^2 \tag{4.20}
\]

Next, we discuss the scenario where Type I DBP can be approximated by the Branching Brownian Motion processes. In Type I DBP the initiations of the new branches are triggered when the degradation levels of the branches reach their thresholds $\{c_j\}$. The parameters of the distribution of time to branch are obtained from the corresponding branches’ degradation process using the models described in section 4.2.1 and the metrics
of the Type I DBP can be obtained accordingly. For a branch in a Brownian Motion process with drift μ_i and diffusion σ_i, it is known that the time to cross the threshold c_i follows an IG distribution $\tau_i \sim IG\left(\frac{c_i}{\mu_i}, \frac{c_i^2}{\sigma_i^2}\right)$. Accordingly,

$$f(\tau_i) = \sqrt{\frac{c_i^2}{2\pi\tau_i^3\sigma_i^2}} \exp\left(-\frac{\mu_i^2}{2\sigma_i^2}\left(\frac{1}{\tau_i} - \frac{c_i}{\tau_i^2}\mu_i\right)^2\right)$$

The metrics of the threshold-triggered Branching Brownian Motion process can be obtained using Eqs. (4.1)-(4.10). However, in some cases, we may approximate these processes with a DBP that has branching times following an exponential distribution as discussed in the first part of this section, where closed-form or simplified results are obtained. To do so, the first requirement is that the expectations of the two distributions should be equal, i.e. $\frac{1}{\lambda} = \frac{c_i}{\mu_i}$. The second requirement is that the variances of the IG distribution and exponential distribution are close, i.e., the following condition should be satisfied:

$$\left(\frac{c_i}{\mu_i}\right)^3 \left(\frac{c_i^2}{\sigma_i^2}\right)^{-1} \approx \frac{1}{\lambda^2} = \frac{c_i^2}{\mu_i^2}$$

which is equivalent as

$$\sigma_i^2 \approx \mu_i c_i \quad (4.21)$$

In this case, $IG\left(\frac{c_i}{\mu_i}, \frac{c_i^2}{\sigma_i^2}\right) \approx Exp\left(\frac{\mu_i}{c_i}\right)$. When $\mu_i = \mu$ and $c_i = d$, $n_b = \infty$ Eqs. (4.12), (4.13) and (4.15) reduce to
\[E(X^*(t)) = \mu t \left(\frac{\mu}{2d} t + 1 \right) \]
(4.22)

\[\text{Var}(X^*(t)) = \frac{1}{3d} \mu^3 t^3 + \frac{1}{2d} \sigma^2 \mu^2 t + \sigma^2 t \]
(4.23)

\[\text{MTTF} = \frac{d}{\mu} \left(-1 + \sqrt{1 + \frac{2c}{d}} \right) \]
(4.24)

where \(c \) is the overall failure threshold. Figure 4.2 shows an example when \(\mu = 1, \sigma = 6 \) and \(d = 36 \), where the CDFs of the IG distribution and exponential distribution are close.

![Figure 4.2 The CDFs of IG distribution and exponential distribution](image)

4.2.3 Case Study

As crack growth leads to failures when its total length reaches the threshold as described in (Singh et al., 2017), we use actual crack growth and branching data by Dondeti et al.
(2019) to validate the proposed model. Three identical soda-lime glass specimens are subjected to impact loading in the test under the same condition and monitored with three different methods of Photoelasticity Experiment (PE), Digital Image Correlation (DIC) and Digital Gradient Sensing (DGS). To ensure that the observations obtained with different methods are consistent, calibration techniques such as nonlinear-squares regression, genetic algorithms, subset splitting and others have been used for calibration (Dondeti et al., 2019). Figures 4.3 and 4.4 show examples of the selected contours of DGS images and PE fringes photos of the crack growth and branching process of soda-lime glass specimens. In both examples the cracks are initiated on the left and continue to grow and propagate to the right. The crack in Figure 4.3 is initiated at $t = 0\mu s$ and branches at $t = 21\mu s$ while the crack in Figure 4.4 is initiated at $t = 0\mu s$ and branches at $t = 18\mu s$. Note that the ‘stitch marks’ in Figure 4.4 along the crack path are attributed to contact stresses due to the Rayleigh waves. In this case study we investigate the DBP where only one branch is initiated at every instant of branching.
Figure 4.3 Selected figures of the contours of DGS images of crack growth and branching process in a soda-lime glass specimen (Dondeti et al., 2019).

Figure 4.4 Selected photos of PE fringes of crack growth and branching process in a soda-lime glass specimen (Dondeti et al., 2019).
Figure 4.5 The crack growth data of the three specimens used in the case study

Figure 4.5 shows the crack growth data of the three specimens, where the original cracks are plotted in lines with downward-pointing triangles and the branched cracks are plotted in dashed-dot lines with squares. We observe that the crack growth rates of the original cracks and branched cracks are close, so we assume the original and branched cracks’ growth follow Brownian Motions with the same parameters. We censor the degradation data at time $t=25 \mu s$ and obtain the crack growth parameters $\{\mu = 1.602, \sigma = 0.571\}$ using Maximum Likelihood Estimation (MLE).
The distribution of time to branch $f(\tau)$ is determined by the time that the Stress Intensity Factor (SIF) reaches the branching threshold (Dondeti et al., 2019, Sundaram et al., 2018).

As shown in Figure 4.6, it is observed that the SIF starts from an initial lower state (0.8) and increases until it reaches the threshold (1.45) and triggers branching. The SIF then returns to the lower level after branching and the process is restarted. We model the SIF growth as a Brownian Motion process and the first passage time follows an IG distribution.

Using MLE, we obtain the parameters of the IG distribution as $\{\mu_{IG} = 27.778, \lambda_{IG} = 151.169\}$. The PDF of the IG distribution is shown in Figure 4.7. Besides, the branching times (16, 18, 21) of the three specimens are indicated with crosses. We find that the branching times observed from the experiments match that estimated with SIF growth. This shows that the time to branch can be accurately characterized by the time that SIF reaches its threshold. When the total number of specimens is large, the parameters can be obtained using the crack branching data instead of using SIF data, as the SIF data is more difficult and expensive to obtain.
Figure 4.6 The apparent SIFs of cracks over time

Figure 4.7 The estimated PDF of time to branch based on SIF growth and observed times of branching of specimens
The mean and 99% confidence interval of total crack length are shown in Figure 4.8. In addition, the total degradation of the cracks of the three specimens are plotted in black. We observe that the model accurately predicts the growth of the total crack length.

We estimate the reliability using Eq. (4.7) for a threshold of 60 mm as shown in Figure 4.9. In real-life applications where glass-made structures are used in manufacturing containers, the total crack length is related to the leakage amount. Failure occurs whenever leakage reaches an unacceptable threshold.

Figure 4.8 The actual and predicted total crack length
We estimate the reliability using Eq. (4.7) for a threshold of 60 mm as shown in Figure 4.9.

![Graph showing reliability over time](image)

Figure 4.9 The reliability of the unit/system subject to crack growth and branching

Note that in this study, the reliability metrics are calculated numerically based on Monte Carlo (MC) simulation. The calculation is performed on the MATLAB platform using a MacBook Pro with a 16GB 2400 MHz DDR4 and 2.2 GHz Intel Core i7 processor. The calculation results are shown in Table 4.1 in the increasing order of integral corresponds to \(n \) in Eq. (4.1). The contribution of degradation of higher-order branches (\(n \geq 4 \)) is insignificant (<1/1000), so we may stop the calculation of integrals higher than order 4 and
use the total degradation of the main degradation path and the first 3 branches to approximate the total degradation, which saves a significant amount of time.

Table 4.1 The information of numerical calculation of integrals

<table>
<thead>
<tr>
<th>Order of integral</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s)</td>
<td>0.0093</td>
<td>0.0146</td>
<td>0.0229</td>
<td>0.0825</td>
<td>0.4141</td>
<td>6.3659</td>
<td>98.5081</td>
</tr>
<tr>
<td>Contribution to the total degradation</td>
<td>0.2240</td>
<td>0.7073</td>
<td>0.0805</td>
<td>0.0002</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

4.3 Summary

We develop a general stochastic model that characterizes the DBP. The statistical properties of the process, such as the PDF, the mean and variance of the degradation and the related reliability metrics such as the failure time distribution, the reliability and the MTTF are presented. Specifically, closed-form expressions of the expectation and variance of the total degradation and MTTF are obtained when the times to branch follow an exponential distribution. The threshold triggered DBP is also investigated. The models are validated with actual crack growth and branching data. The predictions from the models match the actual data accurately.
CHAPTER 5

GENERAL DIRECTIONAL DEGRADATION BRANCHING PROCESSES

5.1 Introduction

In many degradation branching applications, the number and directions of the branches significantly affect the total degradation of the system. In Chapter 4, we investigate the degradation branching process and assume that only one branch occurs at the time of branching and in a random direction. However, relaxing this assumption results in the more general case where a random number of branches is initiated at each branching instant and their directions may be bounded. In this chapter, we investigate this general directional degradation branching process and develop a stochastic degradation model that captures both the number and directions of the branches at any branching instant. Reliability metrics such as the mean time to failure, the mean residual life, the failure probability and others are also investigated.

The general directional degradation branching process (GDDBP) is described as follows: (1) The degradation starts in one location and propagates to other locations, (2) After a random time a random number of degradation branches (offsprings) are initiated, (3) Each offspring branch grows in a random direction from its parent branch, (4) The degradation of each branch follows a stochastic process and its degradation rate is related to its
branching angle, (5) Failure occurs when the total degradation of all the branches reaches a failure threshold.

5.2 Nomenclature

- n_{tr}: The number of trees.
- k: Index of a tree.
- t: Time.
- $N_{b,k}$: The total number of branchings occur in tree k.
- $N_{g,k}$: The total number of generations of branches in tree k.
- i: The index of generations of the branches.
- i': $0 \leq i' \leq i$, the generation indexes of a branch’s ancestors.
- $n_{i,k}$: The total number of branchings where branches in generation i in tree k are initiated.
- $\bar{n}_{i,k}$: The upper bound of $n_{i,k}$.
- j_c: The index of an offspring’s i^{th}-generation ancestor’s index.
- \bar{j}_c: The upper bound of variable j_c.
- $j_i, \ldots, j_{i,k}$: The index of a branch, which consists of its tree index k, its ancestors’ indexes in the 1^{st} to the $i-1^{th}$ generations
(\(j_i\) to \(j_{i-1}\)) and its index \(j_i\) among the offsprings in this generation. Specially, when \(i = 0\), the branch index is \(k\), which indicates that this branch is an original branch.

\[B_{j_i, \ldots, j_{i-k}}\]
The branch whose index is \(B_{j_i, \ldots, j_{i-k}}\). Note that the \(\{j_{i'}, \text{ for } 0 \leq i' \leq i\}\) are constants in this expression.

\[\tau_{j_i, \ldots, j_{i-k}}\]
The time when \(B_{j_i, \ldots, j_{i-k}}\) branches.

\[X_{j_i, \ldots, j_{i-k}} \left(t = \sum_{i=1}^{i-1} \tau_{j_i, \ldots, j_{i-k}} \right)\]
The degradation of branch \(B_{j_i, \ldots, j_{i-k}}\), where \(\sum_{i=1}^{i-1} \tau_{j_i, \ldots, j_{i-k}}\) is the time it takes to initiate \(B_{j_i, \ldots, j_{i-k}}\) from \(t = 0\).

\[\alpha_{j_i, \ldots, j_{i-k}}\]
The angle between branch \(B_{j_i, \ldots, j_{i-k}}\) and its offspring \(B_{j_i, \ldots, j_{i-k}}\).

\[O_{j_i, \ldots, j_{i-k}}\]
The number of offsprings of branch \(B_{j_i, \ldots, j_{i-k}}\).

\[c_{j_i, \ldots, j_{i-k}}\]
The branching threshold of branch \(B_{j_i, \ldots, j_{i-k}}\).

\[\mu_{j_i, \ldots, j_{i-k}}, \sigma_{j_i, \ldots, j_{i-k}}\]
The drift and diffusion of Brownian motion process of \(X_{j_i, \ldots, j_{i-k}} \left(t = \sum_{i=1}^{i-1} \tau_{j_i, \ldots, j_{i-k}} \right)\).

\(c\)
The failure threshold.

\(s\left(O_{j_i, \ldots, j_{i-k}}\right)\)
The PMF of \(O_{j_i, \ldots, j_{i-k}}\).

\(f\left(\tau_{j_i, \ldots, j_{i-k}}\right)\)
The PDF of \(\tau_{j_i, \ldots, j_{i-k}}\).
The CDF of τ_{j_1,\ldots,j_k}.

The PDF of angle α_{j_1,\ldots,j_k}.

The numbers of offsprings initiated in the branchings in tree k.

The regions of integral of variable O_k.

The times when branchings occur in tree k.

The regions of integral of variable τ_k.

The angles of branches in tree k.

The regions of integral of variable α_k.

The probability that the first $N_{b,k}$ branchings occur by time t are τ_k.

The probability that no other branchings occur by time t except those occur at τ_k.

The probability that the numbers of offsprings initiated in the first $N_{b,k}$ branchings are O_k.

The probability that the angles of branches are α_k.

$f(\tau_k)$

$f'(\tau_k)$
\(h(x|t, \tau_k, Q_k, \alpha_k) \)

The PDF of the conditional total degradation of all the branches and the original branch in tree \(k \) at time \(t \), given \(Q_k, \tau_k, \alpha_k \) are known.

\(g(x, \tau_k, Q_k, \alpha_k | t) \)

The probability that degradation of tree \(k \) is \(x \), the total number of branchings occur by time \(t \) is \(N_{b,k} \) and the times that the branchings occur are \(\tau_k \), the angles of branches are \(\alpha_k \), and the numbers of offsprings initiated in the branchings are \(Q_k \).

\(\Psi_{\tau_k, \alpha_k} \left(g(x, \tau_k, Q_k, \alpha_k | t) \right) \)

The probability that the degradation of tree \(k \) is \(x \), the total number of branchings occur by time \(t \) is \(N_{b,k} \) and the numbers of offsprings initiated in the branchings are \(Q_k \).

\(\Omega_{Q_k, N_{b,k}, N_{g,k}} \left(\Psi_{\tau_k, \alpha_k} \left(g \right) \right) \)

The marginal distribution of degradation amount \(\bar{X}_k(t) \) when there are \(N_{g,k} \) generations of branches in tree \(k \) and the total number of branchings is \(N_{b,k} \), where

\(g = g(x, \tau_k, Q_k, \alpha_k | t) \)

\(L_{b,k} \)

The set of indexes of the branches that branch in tree \(k \) by time \(t \).
\(L_{n,k} \) \hspace{1cm} \text{The set of indexes of the offspring branches in tree } k \text{ by time } t

\(L_{u,k} \) \hspace{1cm} \text{The set of indexes of the branches that do not branch by time } t. \text{ Note that } L_{n,k} = L_{h,k}.

\(\tilde{X}_k(t) \) \hspace{1cm} \text{The degradation of tree } k.

\(\tilde{X}(t) = \sum_{k=1}^{n_u} \tilde{X}_k(t) \) \hspace{1cm} \text{The total degradation of all the trees.}

\(h(x|t) \) \hspace{1cm} \text{The PDF of the total degradation at time } t.

\(R(t) \) \hspace{1cm} \text{The reliability.}

\(f(t) \) \hspace{1cm} \text{The PDF of the time to failure.}

5.3 General Directional Degradation Branching Process

5.3.1 Definitions and Properties of the GDDBP

5.3.1.1 The branching times, generations and degradation of the GDDBP

First, we define the general directional degradation branching process (GDDBP). Figure 5.1 shows an example of the branching pattern of GDDBP. At time \(t = 0 \), a random number of \(n_u \) original branches are initiated and propagate in different directions, each of which grows into a branching tree as degradation proceeds. Figure 5.1 shows the case when \(n_u = 5 \). Note that only the branches initiated at \(t = 0 \) are called the original branches, those initiated at \(t > 0 \) are simply called branches. Figure 5.2 shows a schematic
diagram of the tree grown from original branch $k = 1$ shown in Figure 5.1 and Figure 5.3 shows the degradation of the original branch and its offspring branches. The offspring branches in the three generations are shown in three different colors in Figure 5.3. Let B_k denote original branch k and the stochastic process $X_k(t)$ denote its degradation. The branching of B_k occurs after a random time τ_k and initiates $O_k = 1$ new branch ($B_{1,k}$), whose degradation is $X_{1,k}(t-\tau_k)$ and $t-\tau_k$ is its actual degradation time. Note that the subscript 1 is the index of the offspring of its ancestor B_k. The new branch is in the 1st generation of branches as it is initiated from one of the original branches B_k. Meanwhile, $X_k(t)$ continues to grow after the new degradation branch(es) is(are) initiated. The offspring(s) continue(s) to grow and may continue to initiate new branches thereafter over time. For example, two ($O_{1,k} = 2$) 2nd-generation branches $B_{1,1,k}$ and $B_{2,1,k}$ are initiated from branch $B_{1,k}$ at $t = \tau_k + \tau_{1,k}$ and two ($O_{1,1,k} = 2$) 3rd-generation branches $B_{1,1,1,k}$ and $B_{2,1,1,k}$ are initiated from branch $B_{1,k}$ at $t = \tau_k + \tau_{1,k} + \tau_{1,1,k}$. The degradation amount of these four branches are $X_{1,1,k}(t-\tau_k-\tau_{1,k})$, $X_{2,1,k}(t-\tau_k-\tau_{1,k})$, $X_{1,1,1,k}(t-\tau_k-\tau_{1,k}-\tau_{1,1,k})$ and $X_{2,1,1,k}(t-\tau_k-\tau_{1,k}-\tau_{1,1,k})$ respectively.
Figure 5.1 The branching pattern of a GDDBP that has \(n_r = 5 \) trees

Figure 5.2 The tree grown from original branch \(k = 1 \) in Figure 5.1
Figure 5.3 Schematic diagram of the degradation of the original branch and branches in tree $k = 1$ shown in Figure 5.1

In general, $B_{j_1,...,j_i}^{k}$ is the j_{i}^{th} offspring in the i^{th} generation whose ancestors in generations 1 to $i-1$ are j_1, j_i, ..., j_{i-1} respectively. Note that j_i denotes the index of the branch’s ancestor in the i^{th} generation. The degradation of branch $B_{j_1,...,j_i}^{k}$ is $X_{j_1,...,j_i}(t - \sum_{\gamma=0}^{i-1} \tau_{j_{i-\gamma}} - \beta^{k})$, where $\sum_{\gamma=0}^{i-1} \tau_{j_{i-\gamma}}$ denotes the time it takes $B_{j_1,...,j_i}^{k}$ to initiate branch $B_{j_1,...,j_i}^{k}$ starting from $t = 0$. In addition, note that when arranging the subscripts the $j_1, j_2, ..., j_i$ are reversed as j_i, j_2, j_1 as the indexes of the latest generations of offsprings are always put in the first places.
5.3.1.2 The branching mechanisms of the GDDBP

Note that the branching time τ_{j_1, \ldots, j_k} may have different interpretations in different GDDBPs depending on the characteristics of the real-life applications. We define two types of GDDBPs: Type I GDDBP and Type II GDDBP. In Type I GDDBP, τ_{j_1, \ldots, j_k} is a variable corresponding to the time that $X_{j_1, \ldots, j_k}(t) \left(t - \sum_{i'=1}^{i} \tau_{j_1, \ldots, j_k} \right)$ reaches its threshold c_{j_1, \ldots, j_k} (the first passage time) and initiates branching at this time while in Type II GDDBP τ_{j_1, \ldots, j_k} is a random variable determined by other physical processes independent of the degradation of the branches. In the soda-lime glass crack branching example, τ_{j_1, \ldots, j_k} denotes the time that the Stress Intensity Factor (SIF) (Sundaram et al., 2018) reaches the threshold c_{j_1, \ldots, j_k} and leads to the initiation of the offspring crack branches. The overall threshold c corresponds to the maximum allowance of the total crack length of all the trees (Sundaram et al., 2018).

Figure 5.3 illustrates the Type I GDDBP. At time τ_k branch $B_{1,k}$ is initiated from B_k when $X_k(t)$ reaches its branching threshold c_k. Then after time $\tau_{1,k}$ other branches $\{B_{1,1,k}, B_{2,1,k}\}$ are initiated from branch $B_{1,k}$ when $X_{1,k} (t - \tau_k)$ reaches its branching threshold $c_{1,k}$. Similarly, after time $\tau_{1,1,k}$ further branches $\{B_{1,1,1,k}, B_{2,1,1,k}\}$ are initiated from branch $B_{1,1,k}$ when $X_{1,1,k} (t - \tau_k - \tau_{1,k})$ reaches its branching threshold $c_{1,1,k}$. In comparison, no branches are initiated from $B_{2,1,k}$, $B_{1,1,1,k}$ and $B_{2,1,1,k}$ since...
\[X_{2,1,k} (t-\tau_k - \tau_{1,k}) \], \[X_{1,1,1,k} (t-\tau_k - \tau_{1,k} - \tau_{1,1,k}) \] and \[X_{2,1,1,k} (t-\tau_k - \tau_{1,k} - \tau_{1,1,k}) \] never reach their branching thresholds \(c_{2,1,k} \), \(c_{1,1,1,k} \) and \(c_{2,1,1,k} \) by time \(t \). In general, the branching process continues until the cumulative degradation of all the branches reaches the overall failure threshold \(c \).

5.3.1.3 The branching angles and degradation rates of the GDDBP

Rabinovitch et al. (2011) show that the growth rates of offspring crack branches are related to their angles with respect to their parent branch. It is assumed that the secondary fractures are initiated at distances greater than a certain minimal radius \(r \) from the primary’s vertex. As shown in Figure 5.4 (a), \(\beta \) is the angular location and \(\delta \) is the direction of branching from a flaw adjacent to the primary fracture. Figure 5.4 (b) shows the angle \(\beta_1 \) where the stress at flaw tip reaches its maximum and the relationship between branching direction \(\delta_1 \) and fracture velocity \(V/C_L \), where \(V \) is the instantaneous crack propagation velocity and \(C_L \) is the longitudinal wave speed. Thus it is implied that \(\beta \) is the angle at which the flaw turns into a secondary fracture and \(\beta \) is the direction that crack propagates. It can be concluded that larger angles lead to larger crack growth rates. Let \(\alpha_{j_1, \ldots, j_{k-1}} \) denote the angle of \(B_{j_1, \ldots, j_{k-1}} \), which is the angle between offspring \(B_{j_1, \ldots, j_{k-1}} \) and its parent branch \(B_{j_{k-2}, \ldots, j_{k-1}} \), the mean crack growth rate of \(B_{j_1, \ldots, j_{k-1}} \) is obtained using Eq. (5.1) as
\[\mu_{j, \ldots, j, k} = \mu_{j, \ldots, j, k} \left(\eta_0 + \eta_1 \alpha_{j, \ldots, j, k} \right), \text{ for } i \geq 1 \]

(5.1)

where \(\eta_0 \) and \(\eta_1 \) are constants. If the degradation of branch \(B_{j, \ldots, j, k} \) is modeled with a Brownian motion process \(\mu_{j, \ldots, j, k} \) corresponds to its drift and its diffusion is obtained with Eq. (5.2):

\[\sigma_{j, \ldots, j, k} = \sigma_{j, \ldots, j, k} \left(\eta_0 + \eta_1 \alpha_{j, \ldots, j, k} \right)^{1/2}, \text{ for } i \geq 1 \]

(5.2)

Cauchy distribution is used to model crack angles in (Rice, 2006). The PDF of the branching angles modeled by Cauchy distribution is given in Eq. (5.3).

\[\phi \left(\alpha_{j, \ldots, j, k} \right) = \frac{\gamma}{\pi \left(\alpha_{j, \ldots, j, k}^2 + \gamma^2 \right)} \]

(5.3)

where \(\gamma \) is a constant.
Figure 5.4 (a) Definitions of the angular location and direction of branching from a flaw adjacent to the primary fracture (b) The branching direction as a function of fracture velocity (Rabinovitch et al., 2011)

5.3.2 Probabilistic Properties of the GDDBP

5.3.2.1 The conditional degradation of a tree

In tree k, the numbers of offsprings initiated in the branchings are denoted as vector $O_k = \left\{ O_{j_{i-1}, \ldots, j_i}^k, \text{ for } j_{i-1}, \ldots, j_i, k \in I_{b,k} \right\}$, where $I_{b,k}$ is the set of indexes of the
branches that branch in tree k by time t, the times when branchings occur are denoted as vector $\tau_k = \left\{ \tau_{j_{i_{-1}}, \ldots, j_i, k} \right\}$, where $I_{b,k}$ denotes the set of indexes of the offspring in tree k by time t. In the example of Figures 5.2 and 5.3, $I_{b,k} = \{(k), (1,k), (1,1,k)\}$, $I_{o,k} = \{(1,k), (1,1,k), (2,1,k), (1,1,1,k), (2,1,1,k)\}$, $O_k = \{(O_k = 1, O_{1,k} = 1, O_{1,1,k} = 2)\}$. The general steps to obtain $I_{b,k}$ and $I_{o,k}$ are discussed in section 5.3.2.2.

Let $f\left(\tau_{j_{i_{-1}}, \ldots, j_i, k}\right)$ and $F\left(\tau_{j_{i_{-1}}, \ldots, j_i, k}\right)$ denote respectively the probability density function (PDF) and cumulative distribution function (CDF) of $\tau_{j_{i_{-1}}, \ldots, j_i, k}$. Given τ_k, O_k, and α_k are known, the conditional total degradation of tree k at time t is

$$\sum_{j_{i_{-1}}, \ldots, j_i, k \in I_{b,k}} X_{j_{i_{-1}}, \ldots, j_i, k} \left(t - \sum_{i' = 0}^{i-1} \tau_{j_{i'_{-1}}, \ldots, j_{i'}, k} \right)$$

and its PDF is denoted by $h\left(x | t, \tau_k, O_k, \alpha_k\right)$. For example, in the crack growth and branching shown in Figure 5.3, if the degradation of the branches follow Brownian Motions with drift vector and diffusion vector
$\boldsymbol{\mu} = (\mu_k, \mu_{l,k}, \mu_{l,1,k}, \mu_{2,1,k}, \mu_{l,1,1,k}, \mu_{2,1,1,k})'$, \hspace{1em} \boldsymbol{\sigma} = (\sigma_k, \sigma_{l,k}, \sigma_{l,1,k}, \sigma_{2,1,k}, \sigma_{l,1,1,k}, \sigma_{2,1,1,k})'$

and τ_k, Q_k, α_k are known, the conditional total crack length in tree k is shown in Eq. (5.4).

$$\sum_{j_1, \ldots, j_k \in L_k} X_{j_1, \ldots, j_k} \left(t - \sum_{j' \geq 0} \tau_{j', \ldots, j_k} \right)$$

\[\sim N \left(\sum_{j_1, \ldots, j_k \in L_k} \mu_{j_1, \ldots, j_k} \left(t - \sum_{j' \geq 0} \tau_{j', \ldots, j_k} \right),
\sum_{j_1, \ldots, j_k \in L_k} \sigma_{j_1, \ldots, j_k}^2 \left(t - \sum_{j' \geq 0} \tau_{j', \ldots, j_k} \right) \right) \]

\[
\left(\mu_k t + \mu_{l,k} (t - \tau_k) + (\mu_{l,1,k} + \mu_{2,1,k})(t - \tau_k - \tau_{l,k}), \\
+ (\mu_{l,1,1,k} + \mu_{2,1,1,k})(t - \tau_k - \tau_{l,k} - \tau_{l,1,k}), \\
\sigma_k^2 t + \sigma_{l,k}^2 (t - \tau_k) + (\sigma_{l,1,k}^2 + \sigma_{2,1,k}^2)(t - \tau_k - \tau_{l,k}), \\
+ (\sigma_{l,1,1,k}^2 + \sigma_{2,1,1,k}^2)(t - \tau_k - \tau_{l,k} - \tau_{l,1,k}) \right) \quad (5.4)
\]

5.3.2.2 The PDF, mean and variance of degradation of the GDDBP

Let $\bar{X}_k (t)$ denote the degradation of tree k, The PDF of $\bar{X}_k (t)$ is given by Eq. (5.5)

$$\tilde{h}_k (x | t) = \sum_{N_{b,j} = 0}^{N_{b,j} = 0} \sum_{N_{a,b,j} = 0}^{N_{a,b,j} = 0} \Omega_{a,b,j} \left(\Psi_{a,b,j} (f (\tau_k) f' (\tau_k) s (Q_k) \phi (\alpha_k) h (x | t, \tau_k, Q_k, \alpha_k)) \right)$$

$$= \sum_{N_{b,j} = 0}^{N_{b,j} = 0} \sum_{N_{a,b,j} = 0}^{N_{a,b,j} = 0} \Omega_{a,b,j} \left(\Psi_{a,b,j} (g (x, \tau_k, Q_k, \alpha_k | t)) \right)$$

(5.5)
where \(N_{b,k} \) is the total number of branchings that occur when growing tree \(k \), \(N_{g,k} \) is the total number of generations of all the branches in tree \(k \), \(f(\tau_k) \) is the probability that the first \(N_{b,k} \) branchings occur at \(\tau_k \) as shown in Eq. (5.6), \(f'(\tau_k) \) is the probability that no other branchings occur by time \(t \) except those occur at \(\tau_k \) as shown in Eq. (5.7), \(s(O_k) \) is the probability that the numbers of offsprings initiated in the first \(N_{b,k} \) branchings are \(O_k \) as shown in Eq. (5.8), \(\phi(\alpha_k) \) is the probability that the angles of the branches are \(\alpha_k \) as shown in Eq. (5.9).

\[
f(\tau_k) = \prod_{j=1}^{N_{b,k}} f\left(\tau_{j,k}\right) \quad (5.6)
\]

\[
f'(\tau_k) = \prod_{j=1}^{N_{b,k}} \left(1 - F\left(t - \sum_{i=0}^{j-1} \tau_{i,k}\right)\right) \quad (5.7)
\]

\[
s(O_k) = \prod_{j=1}^{N_{b,k}} s\left(O_{j,k}\right) \quad (5.8)
\]

\[
\phi(\alpha_k) = \prod_{j=1}^{N_{b,k}} \phi\left(\alpha_{j,k}\right) \quad (5.9)
\]

In Eq. (5.8) \(s\left(O_{j,k}\right) \) is the Probability Mass Function (PMF) of \(O_{j,k} \),

\[
\phi\left(\alpha_{j,k}\right) \text{ is the PDF of } \alpha_{j,k} \text{, } I_{u,k} = I_{o,k} - I_{b,k}. \text{ Let}
\]

\[
g(x, t_k, O_k, \alpha_k) = f(\tau_k)f'(\tau_k)s(O_k)\phi(\alpha_k)h(x|t, t_k, O_k, \alpha_k), \text{ it is the probability that the total degradation of tree } k \text{ is } x, \text{ the total number of branchings occur by time } t \text{ is } N_{b,k} \text{ and the times that the branchings occur are } \tau_k, \text{ the directional angles of the branches are}
\]
α_k and the numbers of offsprings initiated in the branchings are O_k. $
abla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right)$ obtains the probability that the degradation of tree k is x, the total number of branchings occur by time t is $N_{b,k}$ and the numbers of offsprings initiated in the branchings are O_k as shown in Eq. (5.10). Note that $
abla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right)$ is obtained by integrating over the regions of integral as follows.

$$
\nabla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right) = \sum_{l=1}^{r_k} \sum_{j_{k1}, \ldots, j_{kn_k} \in L_{b,k}} \prod_{i=1}^{n_k} d\alpha_{j_{ki}} \prod_{i=1}^{n_k} d\tau_{l_{k1}, \ldots, l_{kn_k}}
$$

The notation $\Omega_{O_k, N_{b,k}, N_{g,k}} \left(\nabla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right) \right)$ denotes the marginal distribution of $\tilde{X}_k(t)$ when there are $N_{g,k}$ generations of branches and the total number of branchings is $N_{b,k}$ in tree k as shown in Eq. (5.11). It is obtained by summing $\nabla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right)$ when O_k takes different sets of known values in the regions of integral O_k.

$$
\Omega_{O_k, N_{b,k}, N_{g,k}} \left(\nabla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right) \right) = \sum_{n_{k1}=0}^{\infty} \sum_{n_{k2}=0}^{\infty} \ldots \sum_{n_{kn_k}=0}^{\infty} \cdots \sum_{n_{k1}=0}^{\infty} \sum_{n_{k2}=0}^{\infty} \ldots \sum_{n_{kn_k}=0}^{\infty} \cdots \sum_{n_{k1}=0}^{\infty} \sum_{n_{k2}=0}^{\infty} \ldots \sum_{n_{kn_k}=0}^{\infty} \nabla_{g_k} \left(g(x, r_k, O_k, \alpha_k | t) \right)
$$

(5.11)
where \(\sum_{j_i \ldots j_k \in I_{b,k}} O_{j_i \ldots j_k} > 0 \) for \(\forall 1 \leq i \leq N_{g,k} \), \(O_k \) is the vector of nonzero \(O_{j_i \ldots j_k} \) for \(1 \leq j_i \leq j_{r'} \), \(1 \leq i' \leq i-1 \), \(1 \leq i \leq N_{g,k} \), where \(j_{r'} \) is the upper bound of variable \(j_r \)
defined as follows:

\[
\bar{j}_{r'} = \begin{cases} O_{k,k}, & i' = 1 \\
\sum_{j_{r'}=1}^{j_{r'}} O_{j_{r'} \ldots j_{k,k}}, & 1 < i' \leq i
\end{cases}
\]

The notation \(n_{i,k} \) denotes the number of branchings that initiate branches in generation \(i \) and \(\bar{n}_{i,k} \) denotes its upper bound, which is obtained as follows:

\[
\bar{n}_{i',k} = \begin{cases} \min \{ j_{r'}, N_{b,k} \}, & i' = 1 \\
\min \{ j_{r'}, N_{b,k} - \sum_{i'=1}^{i-1} n_{i',k} \}, & i' > 1
\end{cases}
\]

where

\[
\bar{j}_{i'} = \begin{cases} 1, & i' = 1 \\
O_{1,k}, & i' = 2 \\
\sum_{j_{i'}=1}^{j_{i'}} O_{j_{i'} \ldots j_{k,k}}, & 2 < i' \leq i
\end{cases}
\]

In Eq. (5.11), all of the possible combinations of \(O_k \) are enumerated and the corresponding vectors \(\tau_k \) and \(\alpha_k \) are defined. The total degradation is

\[
\tilde{X}(t) = \sum_{k=1}^{n_r} \tilde{X}_k(t), \text{ where } n_r \text{ is a random variable with a PMF of } w(n_r) \text{. The PDF of the total degradation of all the trees is obtained as shown in Eq. (5.12).}
\]

\[
h(x|t) = \sum_{n_r=1}^{y_r} w(n_r) \prod_{k=1}^{n_r} h_k(x|t) \quad (5.12)
\]
where $h_k(x|t)$, $1 \leq k \leq n_r$, is the PDF of $\tilde{X}_k(t)$ and $\prod_{k=1}^{n_r}h_k(x|t)$ denotes the convolution of $h_k(x|t)$ for $1 \leq k \leq n_r$. The expectation of the total degradation is

$$E(\tilde{X}(t)) = \sum_{n_r=1}^{n_r} w(n_r) \sum_{k=1}^{n_r} \int \int \int \Omega_{\tau_k, N_{\kappa, k}, N_{x, k}} \left(\Psi_{\tau_x, a_k} \left(g(x, \tau_k, O_k, \alpha_k|t) \right) \right) dx$$

(5.13)

According to the law of total variance, the variance of the total degradation is

$$\text{Var}(\tilde{X}(t)) = \sum_{n_r=1}^{n_r} w(n_r) \text{var} \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right) + \sum_{n_r=1}^{n_r} w(n_r) \left(E \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right) \right)^2 - \left(\sum_{n_r=1}^{n_r} w(n_r) \left(E \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right) \right) \right)^2$$

(5.14)

where $\text{var} \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right)$ is the variance of the total degradation of the n_r trees as shown in Eq. (5.15) and $E \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right)$ is the mean of the total degradation of the n_r trees as shown in Eq. (5.16).

$$\text{var} \left(\sum_{k=1}^{n_r} \tilde{X}_k(t) \bigg| n_r \right) = \sum_{n_r=1}^{n_r} \int \int \int \Omega_{\tau_k, N_{\kappa, k}, N_{x, k}} \left(\Psi_{\tau_x, a_k} \left(g(x, \tau_k, O_k, \alpha_k|t) \right) \right) \int dx$$

(5.15)

$$- \sum_{k=1}^{n_r} \int \int \int \Omega_{\tau_k, N_{\kappa, k}, N_{x, k}} \left(\Psi_{\tau_x, a_k} \left(g(x, \tau_k, O_k, \alpha_k|t) \right) \right) dx^2$$
\[
E \left(\sum_{k=1}^{n_t} \tilde{X}_k(t) \, | \, n_r \right) = \sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{N_{t,k}} \int_{0}^{N_{t,k}} \Omega_{\theta, \alpha, \gamma} \left(\Psi_{\xi, \sigma} \left(g(x, \tau_k, O_k, \alpha_k(t)) \right) \right) dx \right) (5.16)
\]

5.3.2.3 The reliability metrics of degradation of the GDDBP

Starting from \(t = 0 \), when the failure threshold is \(c \), the reliability is

\[
R(t) = \int_{x=-\infty}^{c} h(x|t)
\]

(5.17)

The PDF of the failure time is

\[
\bar{f}(t) = \frac{\partial}{\partial t} \left(1 - \int_{x=-\infty}^{c} h(x|t) \right)
\]

(5.18)

The residual life is investigated as follows. Figure 5.2 shows tree \(k \) at time \(t \), when the total degradation of tree \(k \) is \(x_k(t) \), the branching times are \(\tau_k \), the numbers of offsprings are \(O_k \), the branching angles are \(\alpha_k \), the set of indexes of the branches that branched by time \(t \) is \(I_{b,k} \) and the set of the indexes of the branches that have not branched by time \(t \) is \(I_{n,k} \). Figure 5.5 shows tree \(k \) at time \(t > t \), where

\[
I_{b,k} = \{(k), (1, k), (1, 1, k)\}, \quad I_{n,k} = \{(2, 1, k), (1, 1, 1, k), (2, 1, 1, k)\}, \quad \tau_k = (\tau_k, \tau_{1,k}, \tau_{1,1,k})',
\]

\[
O_k = (O_k = 1, O_{1,k} = 1, O_{1,1,k} = 2)' \quad \text{and} \quad \alpha_k = (\alpha_{1,k}, \alpha_{1,1,k}, \alpha_{2,1,k}, \alpha_{1,1,1,k}, \alpha_{2,1,1,k})'.
\]

Note that the branches whose indexes are in \(I_{n,k} = \{(2, 1, k), (1, 1, 1, k), (2, 1, 1, k)\} \) have not branched by \(t \) and may grow into trees after \(t \).
Figure 5.5 The growth of tree k after time t, the bold solid lines represent branches that have not branched by t.

Eq. (5.19) shows the total degradation growth of all the n_{tr} trees in (t, t_r)

$$
\sum_{k=1}^{n_{tr}} \bar{X}_k(t_r | t, \tau_k, O_k, \alpha_k, I_{w,k}) = \\
\sum_{k=1}^{n_{tr}} \sum_{j_i, \ldots, j_h,k \in B_{i,k}} X_{j_i, \ldots, j_h,k} (t_r - t) + \sum_{k=1}^{n_{tr}} \sum_{j_i, \ldots, j_h,k \in B_{i,k}} \bar{X}_{j_i, \ldots, j_h,k} (t_r | t, \tau_k, O_k, \alpha_k)
$$ \hspace{1cm} (5.19)

where $\sum_{j_i, \ldots, j_h,k \in B_{i,k}} X_{j_i, \ldots, j_h,k} (t_r - t)$ is the sum of the degradation growth of the branches that have branched before t in (t, t_r). Let $\bar{X}_{j_i, \ldots, j_h,k} (t_r | t, \tau_k, O_k, \alpha_k)$ denote the degradation of the sub-tree grown from branch $B_{j_i, \ldots, j_h,k}$ in (t, t_r). For simplicity, let $B_{k'}$ denote $B_{j_i, \ldots, j_h,k}$, it is the “original branch” of its ancestors after t. Similarly, the offspring of $B_{k'}$ whose ancestors in generations 1 to $i-1$ after $B_{k'}$ are $j'_1, \ldots, j'_r, \ldots, j'_{i-1}$ is denoted as $B_{j'_1, \ldots, j'_i,k'}$. In Figure 5.5, $B_{2,1,1,k}$ is defined as $B_{k'}$ and its next-generation offsprings are denoted as $B_{1,k'}$ and $B_{2,k'}$. The numbers of offsprings initiated in the branchings after $B_{k'}$ are denoted as vector Q'_k, the times when branchings
occur are denoted as vector \mathbf{z}_k', the angles of the branches are denoted as vector α_k', the set of indexes of the branches that branch by time t_r is denoted by $I'_{b,k}$, the set of indexes of the offspring branches by time t_r is denoted by $I''_{b,k}$. Let $t_i = \sum_{r=0}^{i-1} r_{j_1, \ldots, j_k}$, it denotes the time that branch B_{j_1, \ldots, j_k} is initiated, where $j_1, \ldots, j_k, k \in I_{b,k}$. Let $h_{b,k}(t_r)$ denote the PDF of $\sum_{k=1}^{N_{b,k}} \sum_{i=I_{b,k}} X_{l,\ldots,j_k} (t_r-t)$. The PDF of $\tilde{X}_{l,\ldots,j_k} (t_r|t, \mathbf{z}_k', Q_k, \alpha_k')$ is obtained with Eq. (5.20).

$$h_{j_1, \ldots, j_k} (t_r|t) = \sum_{N_{b,k}=0}^{\infty} \sum_{N_{b,k}} \Omega_{z_{b,k}} \left(\Psi'_{X_{l}, \mathbf{z}_k} \left(\mathbf{g}(x, \mathbf{z}_k', Q_k, \alpha_k'|t_k) \right) \right)$$

where $j_1, \ldots, j_k, k \in I_{b,k}$ and $\Psi'_{X_{l}, \mathbf{z}_k} \left(\mathbf{g}(x, \mathbf{z}_k', Q_k, \alpha_k'|t_k) \right)$ is defined in Eq. (5.21).

$$\Psi'_{X_{l}, \mathbf{z}_k} \left(\mathbf{g}(x, \mathbf{z}_k', Q_k, \alpha_k'|t_k) \right) = \prod_{l=1}^{t_r-t_i} \prod_{i=1}^{j_k} \prod_{j=1}^{x_{l,j_k}} \prod_{k=1}^{N_{b,k}} \frac{d\alpha_{j_1, \ldots, j_k}}{d\alpha_{l,j_k}} \left(\mathbf{g}(x, \mathbf{z}_k', Q_k, \alpha_k'|t_k) \right) \left(1 - F(t-t_i) \right)$$

The PDF of the total degradation of the n_{tr} trees in (t, t_r) is obtained with Eq. (5.22)

$$h(x|t, t_r) = h_{b,k}(t_r) \prod_{k=1}^{n_{b,k}} \prod_{j_1, \ldots, j_k} h_{j_1, \ldots, j_k} (t_r|t)$$
where * is the convolution operator, \(\prod_{i,j,…,j,k=I_{a,k}} *h_{j_i,…,j,k}(t_r|t) \) denotes the convolution of

\[
h_{j_i,…,j,k}(t_r|t) \quad \text{for all } j_i,…,j_k \in I_{a,k}, \quad \prod_{k=1}^{n_r} \prod_{j_i,…,j,k=I_{a,k}} *h_{j_i,…,j,k}(t_r|t) \]

for all \(\prod_{j_i,…,j,k=I_{a,k}} *h_{j_i,…,j,k}(t_r|t) \) for \(1 \leq k \leq n_r \). When the failure threshold is \(c \), the reliability of the system at \(t_r > t \) is

\[
R(t_r) = \int_{x=-\infty}^{c} h(x|t_r, t) \quad (5.23)
\]

The mean residual life is obtained as follows. The expectation of degradation growth of tree \(k \) in \((t, t_r) \) is the sum of the expectation of the growth of the branches that have branched and those that have not branched as shown in Eq. (5.24).

\[
E\left(\bar{X}_k(t_r|t, \tau_k, O_k, \alpha_k, I_{a,k})\right) = \sum_{j_i,…,j,k=I_{a,k}} E\left(\frac{X_{j_i,…,j,k}(t_r-t)}{t_r} \right) + \sum_{j_i,…,j,k=I_{a,k}} E\left(\frac{\bar{X}_{j_i,…,j,k}(t_r|t, \tau_k, O_k, \alpha_k)}{t_r} \right) \quad (5.24)
\]

where \(E\left(\bar{X}_{j_i,…,j,k}(t_r|t, \tau_k, O_k, \alpha_k)\right) \) denotes the expectation of degradation of the sub-tree grown from branch \(B_{j_i,…,j,k} \), where \(j_i,…,j,k \in I_{a,k} \) as shown in Eq. (5.25) as follows.
\[
E \left(\tilde{X}_{j_1, \ldots, j_h, k} (t_r | t, \tau_k, O_k, \alpha_k) \right) \\
= \int_{-\infty}^{\infty} x \sum_{N_{L,j} = 0}^{N_{L,j}} \sum_{N_{R,j} = 0}^{N_{R,j}} \mathbf{O}_{N_{L,j}, N_{R,j}, j} \left(\Psi'_{\tau_k, \alpha_k} \left(g \left(x, \tau_k, O_k', \alpha_k', t_k \right) \right) \right) dx
\]

(5.25)

The MRL is

\[
MRL = \inf \left\{ t \left| E \left(\tilde{X}_k (t_r | t, \tau_k, O_k, \alpha_k, I_{o,k}) \right) = c - \sum_{k=1}^{n_k} x_k (t) \right. \right\}
\]

(5.26)

5.4 Case Study

In this section, we use a simulated dataset to show the applicability of the proposed model.

5.4.1 Assumptions and Parameters Used in the Case Study

In the case study, we let \(O_{j_1, \ldots, j_h} \) follow a Bernoulli distribution, \(\tau_{j_1, \ldots, j_h} \) follow a uniform distribution, \(\alpha_{j_1, \ldots, j_h} \) follow a uniform distribution and \(X_{j_1, \ldots, j_h, k} \left(t - \sum_{r=0}^{i-1} \tau_{j_1, \ldots, j_h, k} \right) \) follow Brownian motions. According to Figure 5.4, the relationship between crack propagation rates and branching angle \(\delta \) is modeled with a linear model as shown in Figure 5.6, where the intercept is 0.1753 and the slope is 0.0066. Therefore, the coefficients \(\eta_0 \) and \(\eta_1 \) in Eqs. (5.1) and (5.2) are 0.1753 and 0.0066 respectively.
Figure 5.6 The linear fit of the crack propagation rate—branching angle data

The parameters α_l and α_u are obtained from the paper by Kobayashi et al. (1974) as follows:

$$\phi : \frac{\alpha_j + \alpha_i}{2} \sim \text{unif}(\alpha_l = 24^\circ, \alpha_u = 34^\circ)$$

The other parameters are shown as follows:

$$t = 10$$

$$s : s\left(O_k, \ldots, h\right) = \begin{cases} 0.5, \text{ if } O_k, \ldots, h = 1 \\ 0.5, \text{ if } O_k, \ldots, h = 2 \end{cases}$$

$$f : \tau_{j, \ldots, h} \sim \text{unif}(4.5, 5.5)$$

$$w : w(n_{tr}) = \begin{cases} 0.5, \text{ if } n_{tr} = 4 \\ 0.5, \text{ if } n_{tr} = 5 \end{cases}$$
\[X_{j_1, \ldots, j_k} \left(t - \sum_{i=0}^{i-1} \tau_{j_1, \ldots, j_k} \right) \sim N \left(\mu_{j_1, \ldots, j_k} \left(t - \sum_{i=0}^{i-1} \tau_{j_1, \ldots, j_k} \right), \sigma_{j_1, \ldots, j_k}^2 \left(t - \sum_{i=0}^{i-1} \tau_{j_1, \ldots, j_k} \right) \right) \]

5.4.2 Total Degradation Estimation

First, the different branching patterns are enumerated as shown in Table 5.1.

<table>
<thead>
<tr>
<th>Case ID</th>
<th>(N_{g,k})</th>
<th>(N_{b,k})</th>
<th>(n_{1,k})</th>
<th>(n_{2,k})</th>
<th>(n_{3,k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>None</td>
</tr>
</tbody>
</table>

The PDF of is obtained by using Eq. (5.6) as follows

\[
\tilde{h}_k (x|t) = \Omega_{0_{4.1.1}} \left(\Psi_{\tau_k, q_k} \left(g(x, \xi_k, \Omega_k, \alpha_k | t) \right) \right) + \Omega_{0_{4.2.2}} \left(\Psi_{\tau_k, q_k} \left(g(x, \xi_k, \Omega_k, \alpha_k | t) \right) \right) + \Omega_{0_{4.3.2}} \left(\Psi_{\tau_k, q_k} \left(g(x, \xi_k, \Omega_k, \alpha_k | t) \right) \right)
\]

To calculate \(\Omega_{0_{4.1.1}, N_{b,k}, N_{g,k}} \left(\Psi_{\tau_k, q_k} \left(g(x, \xi_k, \Omega_k, \alpha_k | t) \right) \right) \) when \(N_{b,k} \) and \(N_{g,k} \) take different values, specific sub-categories of each case are enumerated as shown in Figures 5.7, 5.8 and 5.9 respectively. We discuss them in detail as follows:

Case 1:
There are two sub-categories when \(N_{g,k} = 1 \) and \(N_{b,k} = 1 \) as shown in Figure 5.7. The calculation of \(\Omega_{\alpha_{k,1}, k} \left(\Psi_{\alpha_{k,1}, k} \left(g(x, \xi_k, O_k, \alpha_k | t) \right) \right) \) is shown in Table 5.2.

\[
N_{g,k} = 1, \quad N_{b,k} = 1
\]

![Figure 5.7 The subcategories of Case 1 in Table 5.1](image)

<table>
<thead>
<tr>
<th>Table 5.2 The calculation steps in Case 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-category 1</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>(f(x_k))</td>
</tr>
<tr>
<td>(f'(x_k))</td>
</tr>
<tr>
<td>(s(O_k))</td>
</tr>
<tr>
<td>(\phi(\alpha_k))</td>
</tr>
<tr>
<td>(h(x</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(g(x, \xi_k, O_k, \alpha_k</td>
</tr>
<tr>
<td>(\Psi_{\alpha_{k,1}, k} \left(g(x, \xi_k, O_k, \alpha_k</td>
</tr>
</tbody>
</table>
The $g(x, x_k, \tau_k, \alpha_k | t)$ and $\Psi_{\tau_k, \alpha_k} \left(g(x, x_k, \tau_k, \alpha_k | t) \right)$ for the two sub-categories are obtained using Eqs. (5.27), (5.28) and Eqs. (5.29), (5.30)

\[
g(x, x_{k,1}, \tau_{k,1}, \alpha_{k,1} | t) = f(\tau_k) (1 - F(t - \tau_k)) s(O_k = 1) \phi(\alpha_{1,k}) N\left(x_{\mu_k t + \mu_{1,k} (t - \tau_k)}, \frac{\sigma_{1,k}^2 t + \sigma_{1,k}^2 (t - \tau_k)}{\sigma_{1,k}^2} \right) \tag{5.27}
\]

\[
g(x, x_{k,2}, \tau_{k,2}, \alpha_{k,2} | t) = f(\tau_k) (1 - F(t - \tau_k))^2 s(O_k = 2) \phi(\alpha_{1,k}) \phi(\alpha_{2,k}) N\left(\mu_{1,k} t + \mu_{1,k} (t - \tau_k), \frac{\sigma_{1,k}^2 t + \sigma_{1,k}^2 (t - \tau_k)}{\sigma_{1,k}^2} \right) \tag{5.28}
\]

\[
\Psi_{\tau_k, \alpha_k} \left(g(x, x_{k,1}, \tau_{k,1}, \alpha_{k,1} | t) \right) = \int_0^{\alpha_k} \int_0^{\alpha_k} g(x, x_{k,1}, \tau_{k,1}, \alpha_{k,1} | t) d\tau_k d\alpha_{k,1} \tag{5.29}
\]

\[
\Psi_{\tau_k, \alpha_k} \left(g(x, x_{k,2}, \tau_{k,2}, \alpha_{k,2} | t) \right) = \int_0^{\alpha_k} \int_0^{\alpha_k} g(x, x_{k,2}, \tau_{k,2}, \alpha_{k,2} | t) d\tau_k d\alpha_{k,2} \tag{5.30}
\]

\[
\Omega_{\tau_k, \alpha_k} \left(\Psi_{\tau_k, \alpha_k} \left(g(x, x_{k,1}, \tau_{k,1}, \alpha_{k,1} | t) \right) \right) = \Psi_{\tau_k, \alpha_k} \left(g(x, x_{k,1}, \tau_{k,1}, \alpha_{k,1} | t) \right) + \Psi_{\tau_k, \alpha_k} \left(g(x, x_{k,2}, \tau_{k,2}, \alpha_{k,2} | t) \right) \tag{5.31}
\]

Case 2:
There are 4 sub-categories when $N_{g,k} = 2$ and $N_{b,k} = 2$ (sub-categories 3’ and 4’ are duplicates) as shown in Figure 5.8. The calculation of $\Theta_{y_{1,2,2}} \left(e_{x_{1,2,1}} \left(g \left(x, \tau_{1,1}, O_{k}, \alpha_{1,1} \right) \right) \right)$ is shown in Table 5.3.

$$N_{g,k} = 2, N_{b,k} = 2$$

Figure 5.8 The subcategories of Case 2 in Table 5.2

Table 5.3 The calculation steps in Case 2

<table>
<thead>
<tr>
<th></th>
<th>Sub-category 1</th>
<th>Sub-category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(\tau_k)$</td>
<td>$f(\tau_k)f(\tau_{1,k})$</td>
<td>$f(\tau_k)f(\tau_{1,k})$</td>
</tr>
<tr>
<td>$f'(\tau_k)$</td>
<td>$(1-F(t-\tau_k-\tau_{1,k}))$</td>
<td>$(1-F(t-\tau_k-\tau_{1,k}))^2$</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>$s(O_k)$</td>
<td>$s(O_k=1)s(O_{1,k}=1)$</td>
<td>$s(O_k=1)s(O_{1,k}=2)$</td>
</tr>
<tr>
<td>$\phi(\alpha_k)$</td>
<td>$\phi(\alpha_{1,k})\phi(\alpha_{1,1,k})$</td>
<td>$\phi(\alpha_{1,k})\phi(\alpha_{1,1,k})\phi(\alpha_{2,1,k})$</td>
</tr>
<tr>
<td>$h(x,\tau_k, O_k, \alpha_k</td>
<td>t)$</td>
<td>$\left(\mu_k t + \mu_{1,k} (t-\tau_k) \right. $</td>
</tr>
<tr>
<td></td>
<td>$+ \mu_{1,1,k} (t-\tau_k-\tau_{1,k}), \sigma_k^2 t + \sigma_{1,k}^2 (t-\tau_k) \right.$</td>
<td>$+ \mu_{1,1,k} + \mu_{2,1,k} (t-\tau_k-\tau_{1,k}), \sigma_k^2 t + \sigma_{1,k}^2 (t-\tau_k) \right.$</td>
</tr>
<tr>
<td>$g(x,\tau_k, O_k, \alpha_k</td>
<td>t)$</td>
<td>Eq. (5.32)</td>
</tr>
<tr>
<td>$\Psi_{\tau_k} g(x,\tau_k, O_k, \alpha_k</td>
<td>t)$</td>
<td>Eq. (5.34)</td>
</tr>
<tr>
<td>$\Omega_{O_k, N_{\tau_k}=2, N_{t_k}=2} (\Psi_{\tau_k} g(x,\tau_k, O_k, \alpha_k</td>
<td>t)$</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Sub-category 3,3’</th>
<th>Sub-category 4,4’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(\tau_k)$</td>
<td>$f(\tau_k) f(\tau_{1,k})$</td>
<td>$f(\tau_k) f(\tau_{1,k})$</td>
</tr>
<tr>
<td>$f'(\tau_k)$</td>
<td>$(1-F(t-\tau_k-\tau_{1,k}))$</td>
<td>$(1-F(t-\tau_k-\tau_{1,k}))^2$</td>
</tr>
<tr>
<td>$s(O_k)$</td>
<td>$s(O_k=2)s(O_{1,k}=1)$</td>
<td>$s(O_k=2)s(O_{1,k}=2)$</td>
</tr>
<tr>
<td>$\phi(\alpha_k)$</td>
<td>$\phi(\alpha_{1,k})\phi(\alpha_{2,1,k})\phi(\alpha_{1,1,k})\phi(\alpha_{2,1,k})$</td>
<td>$\phi(\alpha_{1,k})\phi(\alpha_{2,1,k})\phi(\alpha_{1,1,k})\phi(\alpha_{2,1,k})$</td>
</tr>
<tr>
<td>$h(x,\tau_k, O_k, \alpha_k</td>
<td>t)$</td>
<td>$\left(\mu_k t + \mu_{1,k} (t-\tau_k) \right. $</td>
</tr>
<tr>
<td></td>
<td>$+ \mu_{1,1,k} (t-\tau_k-\tau_{1,k}), \sigma_k^2 t + \sigma_{1,k}^2 (t-\tau_k) \right.$</td>
<td>$+ \mu_{1,1,k} + \mu_{2,1,k} (t-\tau_k-\tau_{1,k}), \sigma_k^2 t + \sigma_{1,k}^2 (t-\tau_k) \right.$</td>
</tr>
</tbody>
</table>

| | | |
\[
\begin{align*}
\mathbf{g}(x, \tau_k, O_k, \alpha_k) & \quad \text{Eq. (5.36)} \quad \text{Eq. (5.37)} \\
\Psi_{\tau_k, q_k}(\mathbf{g}(x, \tau_k, O_k, \alpha_k | t)) & \quad \text{Eq. (5.38)} \quad \text{Eq. (5.39)} \\
\Omega_{q_k, \alpha_k=2, \tau_k=2}(\Psi_{\tau_k, q_k}(\mathbf{g})) & \quad \text{Eq. (5.40)} \\
\end{align*}
\]

\[
g(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t) \quad \begin{pmatrix}
\mu_k t + \mu_{1,k} (t - \tau_k) \\
+ \mu_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \mu_{2,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \sigma_1^2 t + \sigma_{1,k}^2 (t - \tau_k) \\
+ \sigma_{1,1,k}^2 (t - \tau_k - \tau_{1,k}) \\
+ \sigma_{2,1,k}^2 (t - \tau_k - \tau_{1,k})
\end{pmatrix}
N
\]

\[
g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t) \quad \begin{pmatrix}
\mu_k t + \mu_{1,k} (t - \tau_k) \\
+ \mu_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \mu_{2,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \sigma_1^2 t + \sigma_{1,k}^2 (t - \tau_k) \\
+ \sigma_{1,1,k}^2 (t - \tau_k - \tau_{1,k}) \\
+ \sigma_{2,1,k}^2 (t - \tau_k - \tau_{1,k})
\end{pmatrix}
N
\]

\[
\Psi_{\tau_k, q_k}(\mathbf{g}(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t)) = \int_0^t \int_0^{\tau_{k-1}} \int_{\alpha_{k-1}}^{\alpha_k} \mathbf{g}(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t) d\tau_k d\tau_{1,k} d\alpha_{1,k} d\alpha_{1,1,k}
\]

\[
\Psi_{\tau_k, q_k}(\mathbf{g}(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t)) = \int_0^t \int_0^{\tau_{k-1}} \int_{\alpha_{k-1}}^{\alpha_k} \mathbf{g}(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t) d\tau_k d\tau_{1,k} d\alpha_{1,k} d\alpha_{1,1,k} d\alpha_{2,1,k}
\]
\[g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \]

\[
= \left(f(\tau_k) f(\tau_{1,k}) \left(1 - F(t - \tau_k - \tau_{1,k})\right)\right) \left(s\left(O_k = 2\right)s\left(O_{1,k} = 1\right)\phi(\alpha_{k,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k})\right) N \left(\mu t + \left(\mu_{1,k} + \mu_{2,k}\right)(t - \tau_k) \right)
+ \mu_{1,1,k}(t - \tau_k - \tau_{1,k}),
+ \mu_{2,1,k}(t - \tau_k - \tau_{1,k}),
+ \sigma_k^2(t - \tau_k),
+ \left(\sigma_{1,k}^2 + \sigma_{2,k}^2\right)(t - \tau_k)\right)
(5.36)
\]

\[g(x, \tau_{k,4}, O_{k,4}, \alpha_{k,4} | t) \]

\[
= \left(f(\tau_k) f(\tau_{1,k}) \left(1 - F(t - \tau_k - \tau_{1,k})\right)^2\right) \left(s\left(O_k = 2\right)s\left(O_{1,k} = 2\right)\phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \phi(\alpha_{2,1,k})\right) N \left(\mu t + \left(\mu_{1,k} + \mu_{2,k}\right)(t - \tau_k) \right)
+ \mu_{1,1,k}(t - \tau_k - \tau_{1,k}),
+ \mu_{2,1,k}(t - \tau_k - \tau_{1,k}),
+ \sigma_k^2(t - \tau_k),
+ \left(\sigma_{1,k}^2 + \sigma_{2,k}^2\right)(t - \tau_k)\right)
(5.37)
\]

\[
\Psi_{\tau_{k,3}} \left(g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \right)
= \int_0^\tau \int_0^{\tau_1} \int_0^{\alpha_k} \int_0^{\alpha_{1,k}} g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t)d\tau_\alpha d\tau_{1,\alpha} d\alpha_{1,\alpha} d\alpha_{2,\alpha}
(5.38)
\]

\[
\Psi_{\tau_{k,4}} \left(g(x, \tau_{k,4}, O_{k,4}, \alpha_{k,4} | t) \right)
= \int_0^\tau \int_0^{\tau_1} \int_0^{\alpha_k} \int_0^{\alpha_{1,k}} \int_0^{\alpha_{2,\alpha}} g(x, \tau_{k,4}, O_{k,4}, \alpha_{k,4} | t)d\tau_\alpha d\tau_{1,\alpha} d\alpha_{1,\alpha} d\alpha_{2,\alpha} d\alpha_{2,1,\alpha}
(5.39)
\]

\[
\Omega_{O_{k,2,2}} \left(\Psi_{\tau_{k,3}} \left(g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \right) \right)
= \Psi_{\tau_{k,3}} \left(g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \right) + \Psi_{\tau_{k,2}} \left(g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t) \right) + 2\Psi_{\tau_{k,2}} \left(g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t) \right)
+ 2\Psi_{\tau_{k,4}} \left(g(x, \tau_{k,4}, O_{k,4}, \alpha_{k,4} | t) \right) + 2\Psi_{\tau_{k,4}} \left(g(x, \tau_{k,4}, O_{k,4}, \alpha_{k,4} | t) \right)
(5.40)
\]

Case 3:

There are 3 sub-categories when \(N_{g,k} = 2 \) and \(N_{h,k} = 3 \) (sub-categories 2' is a duplicate) as shown in Figure 5.9. The calculation of \(\Omega_{O_{k,3,2}} \left(\Psi_{\tau_{k,3}} \left(g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \right) \right) \) is shown in Table 5.4.
\[N_{g,k} = 2, N_{b,k} = 3 \]

Figure 5.9 The subcategories of Case 3 in Table 5.3

Table 5.4 The calculation steps in Case 3

<table>
<thead>
<tr>
<th></th>
<th>Sub-category 1</th>
<th>Sub-category 2,2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(\tau_k))</td>
<td>(f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}))</td>
<td>(f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}))</td>
</tr>
<tr>
<td>(f'(\tau_k))</td>
<td>(\left(1 - F(t - \tau_k - \tau_{1,k})\right) \times \left(1 - F(t - \tau_k - \tau_{2,k})\right))</td>
<td>(\left(1 - F(t - \tau_k - \tau_{1,k})\right) \times \left(1 - F(t - \tau_k - \tau_{2,k})\right)^2)</td>
</tr>
<tr>
<td>(s(O_k))</td>
<td>(s(O_k = 2) s(O_{1,k} = 1) \times s(O_{2,k} = 1))</td>
<td>(s(O_k = 2) s(O_{1,k} = 1) \times s(O_{2,k} = 2))</td>
</tr>
<tr>
<td>(\phi(\alpha_k))</td>
<td>(\phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \times \phi(\alpha_{1,1,k}) \phi(\alpha_{1,2,k}))</td>
<td>(\phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \times \phi(\alpha_{1,2,k}) \phi(\alpha_{2,2,k}))</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Equation</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| $h(x, \tau_k, O_k, \mathcal{E}_k | t)$ | $\begin{align*}
\mu_k t + \mu_{1,k} (t - \tau_k) \\
+ \mu_{2,k} (t - \tau_k) \\
+ \mu_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \mu_{1,2,k} (t - \tau_k - \tau_{2,k}), \\
\sigma^2_t + \sigma^2_{1,k} (t - \tau_k) \\
+ \sigma^2_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ \sigma^2_{1,2,k} (t - \tau_k - \tau_{2,k})
\end{align*}$ | Eq. (5.31) |
| $g(x, \tau_k, O_k, \mathcal{E}_k | t)$ | $\begin{align*}
\mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\
+ \mu_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ (\mu_{1,2,k} + \mu_{2,2,k})(t - \tau_k - \tau_{2,k}), \\
\sigma^2_t + (\sigma^2_{1,k} + \sigma^2_{2,k})(t - \tau_k) \\
+ \sigma^2_{1,1,k} (t - \tau_k - \tau_{1,k}) \\
+ (\sigma^2_{1,2,k} + \sigma^2_{2,2,k})(t - \tau_k - \tau_{2,k})
\end{align*}$ | Eq. (5.32) |
| $\Psi_{\tau_k, a_k}(g(x, \tau_k, O_k, \mathcal{E}_k | t))$ | Eq. (5.34) | Eq. (5.35) |
| $\Omega_{O_k, \mathcal{N}_k = 3, \mathcal{N}_s = 2}(\Psi_{\tau_k, a_k}(g))$ | Eq. (5.37) |

Table 5.4 (Continued)

<table>
<thead>
<tr>
<th>Sub-category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$f(\tau_k) = f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k})$</td>
</tr>
<tr>
<td>2</td>
<td>$f'(\tau_k) = \left(1 - F(t - \tau_k - \tau_{1,k})\right)^2 \times \left(1 - F(t - \tau_k - \tau_{2,k})\right)^2$</td>
</tr>
<tr>
<td>1</td>
<td>$s(O_k) = 2 \times s(O_{1,k} = 2) \times s(O_{2,k} = 2)$</td>
</tr>
<tr>
<td>0</td>
<td>$\phi(\alpha_k) = \phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \times \phi(\alpha_{2,1,k}) \phi(\alpha_{1,2,k}) \phi(\alpha_{2,2,k})$</td>
</tr>
</tbody>
</table>
\[h(x, \tau_k, O_k, \varphi_k | t) = \begin{cases} \mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{1,k}) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{2,k}), \\ \sigma_k^2 t + (2\sigma_{1,k}^2 + 2\sigma_{2,k}^2)(t - \tau_k) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{1,k}) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{2,k}) \end{cases} \]

\[g(x, \tau_k, O_k, \varphi_k | t) = \begin{cases} f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}) (1 - F(t - \tau_k - \tau_{1,k})) \\ (1 - F(t - \tau_k - \tau_{2,k})) s(O_k = 2) s(O_{1,k} = 1) \\ s(O_{2,k} = 1) \phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \phi(\alpha_{1,2,k}) \phi(\alpha_{2,1,k}) \phi(\alpha_{2,2,k}) \end{cases} \]

\[\Omega_{O, N_{\alpha,i} = 3, N_{\alpha,j} = 2} (g(x, \tau_k, O_k, \varphi_k | t)) = \begin{cases} \mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{1,k}) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{2,k}), \\ \sigma_k^2 t + (2\sigma_{1,k}^2 + 2\sigma_{2,k}^2)(t - \tau_k) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{1,k}) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{2,k}) \end{cases} \]

\[\Psi_{\tau_i, \alpha_i} (g(x, \tau_k, O_k, \varphi_k | t)) = \begin{cases} \mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{1,k}) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{2,k}), \\ \sigma_k^2 t + (2\sigma_{1,k}^2 + 2\sigma_{2,k}^2)(t - \tau_k) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{1,k}) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{2,k}) \end{cases} \]

\[\Omega_{O, N_{\alpha,i} = 3, N_{\alpha,j} = 2} (\Psi_{\tau_i, \alpha_i} (g)) \]

\[g(x, \tau_k, O_k, \varphi_k | t) = \begin{cases} f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}) (1 - F(t - \tau_k - \tau_{1,k})) \\ (1 - F(t - \tau_k - \tau_{2,k})) s(O_k = 2) s(O_{1,k} = 1) \\ s(O_{2,k} = 1) \phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \phi(\alpha_{1,2,k}) \phi(\alpha_{2,1,k}) \phi(\alpha_{2,2,k}) \end{cases} \]

\[\Omega_{O, N_{\alpha,i} = 3, N_{\alpha,j} = 2} (g(x, \tau_k, O_k, \varphi_k | t)) = \begin{cases} \mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{1,k}) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{2,k}), \\ \sigma_k^2 t + (2\sigma_{1,k}^2 + 2\sigma_{2,k}^2)(t - \tau_k) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{1,k}) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{2,k}) \end{cases} \]

\[g(x, \tau_k, O_k, \varphi_k | t) = \begin{cases} f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}) (1 - F(t - \tau_k - \tau_{1,k})) \\ (1 - F(t - \tau_k - \tau_{2,k})) s(O_k = 2) s(O_{1,k} = 1) \\ s(O_{2,k} = 1) s(O_{2,k} = 2) \phi(\alpha_{1,k}) \\ \phi(\alpha_{2,k}) \phi(\alpha_{1,1,k}) \phi(\alpha_{1,2,k}) \phi(\alpha_{2,1,k}) \phi(\alpha_{2,2,k}) \end{cases} \]

\[\Omega_{O, N_{\alpha,i} = 3, N_{\alpha,j} = 2} (g(x, \tau_k, O_k, \varphi_k | t)) = \begin{cases} \mu_k t + (\mu_{1,k} + \mu_{2,k})(t - \tau_k) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{1,k}) \\ + (\mu_{1,k} + \mu_{2,k})(t - \tau_k - \tau_{2,k}), \\ \sigma_k^2 t + (2\sigma_{1,k}^2 + 2\sigma_{2,k}^2)(t - \tau_k) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{1,k}) \\ + (\sigma_{1,k}^2 + \sigma_{2,k}^2)(t - \tau_k - \tau_{2,k}) \end{cases} \]
\[g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t) \]

\[
\left(f(\tau_k) f(\tau_{1,k}) f(\tau_{2,k}) \right)
\left(1 - F(t - \tau_k - \tau_{1,k}) \right)^2
\left(1 - F(t - \tau_k - \tau_{2,k}) \right)^2
\left(s(O_{1,k} = 2) \right)
\left(s(O_{2,k} = 2) \phi(\alpha_{1,k}) \phi(\alpha_{2,k}) \right)
\left(\phi(\alpha_{1,1,k}) \phi(\alpha_{2,1,k}) \phi(\alpha_{2,2,k}) \phi(\alpha_{2,2,k}) \right)
\left(\mu_k t + (\mu_{1,k} + \mu_{2,k}) (t - \tau_k) \right)
\left(1, 2, 1, 2, 2, 2 \right)
\left(\sigma_{1,k}^2 t + (\sigma_{1,1,k}^2 + \sigma_{2,2,k}^2) (t - \tau_k) \right)
\left(\sigma_{1,1,k}^2 t + (\sigma_{1,1,k}^2 + \sigma_{2,2,k}^2) (t - \tau_k - \tau_{1,k}) \right)
\left(\sigma_{1,2,k}^2 t + (\sigma_{1,2,k}^2 + \sigma_{2,2,k}^2) (t - \tau_k - \tau_{2,k}) \right)
\left(N \right)
\]

(5.43)

\[\Psi_{\tau_{k,1}, \alpha_{k,1}} (g(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t)) \]

\[
= \int_0^{t-r_k} \int_0^{t-r_{1,k}} \int_0^{t-r_{2,k}} \int_0^{t-r_{2,k}} \int_0^{t-r_{2,k}} \int_0^{t-r_{2,k}} \int_0^{t-r_{2,k}} \int_0^{t-r_{2,k}} g(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t) \]
\[
\times d\tau_k d\tau_{1,k} d\tau_{2,k} d\alpha_{1,k} d\alpha_{2,k} d\alpha_{1,1,k} d\alpha_{1,2,k} d\alpha_{2,2,k} \]

(5.45)

\[\Psi_{\tau_{k,2}, \alpha_{k,2}} (g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t)) \]

\[
= \int_0^{t-r_k} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} \int_0^{t-r_{1,k}} g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t) \]
\[
\times d\tau_k d\tau_{1,k} d\tau_{2,k} d\tau_{1,k} d\tau_{2,k} d\alpha_{1,k} d\alpha_{2,k} d\alpha_{1,1,k} d\alpha_{1,2,k} d\alpha_{2,2,k} d\alpha_{2,2,k} d\alpha_{2,2,k} d\alpha_{2,2,k} \]

\[\Omega_{O_{k,3}, \alpha_{k,3}} (\Psi_{\tau_{k,1}, \alpha_{k,1}} (g(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t))) \]

\[
= \Psi_{\tau_{k,1}, \alpha_{k,1}} (g(x, \tau_{k,1}, O_{k,1}, \alpha_{k,1} | t)) + 2 \Psi_{\tau_{k,1}, \alpha_{k,1}} (g(x, \tau_{k,2}, O_{k,2}, \alpha_{k,2} | t)) \]

(5.47)

\[+ \Psi_{\tau_{k,1}, \alpha_{k,1}} (g(x, \tau_{k,3}, O_{k,3}, \alpha_{k,3} | t)) \]

The PDF of the degradation of tree \(k \) is
\[\tilde{h}_k(x|t) = \Omega_{\tau_1, a_1} \left(\Psi_{\tau_1, a_1} \left(g(x, \tau_k, \theta, \alpha_k | t) \right) \right) + \Omega_{\tau_1, a_2} \left(\Psi_{\tau_1, a_2} \left(g(x, \tau_k, \theta, \alpha_k | t) \right) \right) + \Omega_{\tau_1, a_3} \left(\Psi_{\tau_1, a_3} \left(g(x, \tau_k, \theta, \alpha_k | t) \right) \right) \]

(5.48)

5.4.3 Comparison of the Simulations and the Theoretical Results

In this section, we show the comparison of the numerical solutions and the simulation results of the case study. The details of the simulation steps are shown in 5.4.3.1 and the comparison results are shown in 5.4.3.2.

5.4.3.1 The simulation steps of GDDBP

In each realization of the GDDBP, the following steps are performed:

(1) Randomly generate the total number of trees \(n_r \).

(2) Let \(k = 1 \).

(3) Grow tree \(k \). For each branch in tree \(k \) that has not branched, let \(\tau_0 \) denote the initiation time of this branch. Generate a random time \(\tau \), if \(\tau_0 + \tau < t \) a random number of \(O \) branches is initiated. Otherwise, no further branchings occur until time \(t \). For each newly initiated branch, generate an angle \(\alpha \) and the growth of this branch from time \(\tau_0 + \tau \) to time \(t \) follows a Brownian motion with drift \(\mu_0 (\eta_0 + \eta_1 \alpha) \) and diffusion \(\sigma_0 (\eta_0 + \eta_1 \alpha)^{0.5} \) where \(\mu_0 \) and \(\sigma_0 \) are its parent’s drift and diffusion respectively. Repeat these procedures for all the branches and their offsprings.
(4) Let \(k = k + 1 \), if \(k \leq n \), go to step (3). Otherwise, go to step (5).

(5) Record the sum of the degradation of all the branches.

5.4.3.2 Comparison of the numerical and the simulations results

Figure 5.10 shows the PDF of the total degradation obtained by the numerical solutions and the histogram of the simulated total degradation at \(t = 10 \). As shown in Figure 5.10, they are closely matched. Figure 5.11 shows a typical realization of the simulated branched trees. We observe that by time \(t = 10 \) different trees show different growth patterns as expected: (1) some trees branch once while others branch more than once, (2) some branchings initiate one branch while others initiate two branches.
Figure 5.10 The comparison of the PDF of total degradation obtained by numerical solution and histogram of the simulations at $t = 10$

Figure 5.11 A typical simulation of the branched trees
Figure 5.12 shows the evolution of the PDF of the total degradation of all the branches from $t = 1$ to $t = 10$. We observe that as time increases the PDFs become flat, indicating that the variance of the total degradation increases over time. This can also be concluded from Figure 5.13, which shows the means and variances of the total degradation from $t = 1$ to $t = 10$ obtained by the simulations and the numerical solutions respectively. It is observed that the numerical solutions accurately match the simulation results. As expected, the mean and variance increase over time. Compared with the growth of the mean of total degradation, the growth of variance increases more sharply due to the uncertainty of the total number of branches and the variance of degradation of the branches.

![Figure 5.12 The PDFs of the total degradation over time obtained by numerical solution](image-url)
Figure 5.13 The means and variances obtained with simulations and numerical solutions

Figure 5.14 The reliability of the system obtained by numerical solution and simulations
When the failure threshold $c = 40$, the reliability functions of the system obtained by simulations and numerical solutions are shown in Figure 5.14. The results obtained by the numerical solutions accurately match the simulation results.

5.5 Summary

We develop a stochastic model that characterizes the GDDBP. The model is general because it captures the randomness of the number of branches and their angles. The relationship between the degradation rate and the angles is also investigated. The statistical properties of the process, such as the PDF of the degradation and the related reliability metrics such as failure time distribution and reliability function are presented. The model is validated with simulations.
CHAPTER 6

CORROSION MONITORING AND PREDICTION

6.1 Introduction

In the corrosion monitoring process, under the conditions where missing data exist, missing data interpolation approaches are provided to interpolate them. We provide three approaches for data interpolation: the nonlinear Brownian bridge, the nonlinear Gamma Bridge and the inverse Gaussian Bridge when the underlying degradation paths follow Brownian motion processes, Gamma process and inverse Gaussian process respectively. The stochastic bridges capture the nonlinearity and uncertainties of the degradation processes. When multiple sensors are used, we propose a model that integrates observations from multiple sensors. The data integration approach is nonparametric and considers the dynamic clustering of sensors’ observations. Sensor weights (contribution) are determined based on its performance in the previous several time instants and the variance (if the data is interpolated with stochastic bridges and bootstrap). It utilizes a moving time window to capture the switching of the sensors between clusters with time so that the weights are adjusted accordingly. The models are validated with a real crack growth dataset.
6.1 Missing Data Interpolation Models

Three stochastic bridges are provided in this section to interpolate missing data in the degradation process. They are nonlinear Brownian Bridge, nonlinear Gamma Bridge and inverse Gaussian Bridge.

6.1.1 Nonlinear Brownian Bridge

In this section, we develop a nonlinear Brownian bridge to interpolate missing data when the underlying process is a nonlinear Brownian motion. For simplicity, we call the data that are missing in the degradation process as “missing data” and those that are observed as “observed data.”

6.1.1.1 Standard Brownian Bridge

Suppose \(a\) and \(b\) are the degradation values of sensor \(i\) at times \(t_r\) and \(t_m\) respectively, where \(t_r < t_m\). The degradation data between times \(t_r\) and \(t_m\) are missing. Let \(\{B_r\}\) be a one-dimensional Brownian motion. The process \(BB_{i}^{a\rightarrow b}(t)\) is defined as the standard Brownian bridge (BB) of sensor \(i\) from \(a\) to \(b\) between times \(t_r\) and \(t_m\) (Shreve, 2004) is expressed as

\[
BB_{i}^{a\rightarrow b}(t) = a + \frac{t-t_r}{T}(b-a) + \left(B_{t-t_r} - \frac{t-t_r}{T}B_{t_m-t_r}\right), \quad t_r \leq t \leq t_m
\] (6.1)
where \(T = t_m - t_z \). The expectation of the standard Brownian Bridge is

\[
E\left[BB_{i}^{a \rightarrow b}(t) \right] = a + \frac{t-t_z}{T}(b-a), \quad t_z \leq t \leq t_m
\]

(6.2)

Let \(t_z \leq s, t \leq t_m \), the covariance of the two missing values at times \(s \) and \(t \) within the bridge is

\[
c_{i}^{a \rightarrow b}(s, t) = E\left[\left(BB_{i}^{a \rightarrow b}(s) - m_{i}^{a \rightarrow b}(s) \right) \left(BB_{i}^{a \rightarrow b}(t) - m_{i}^{a \rightarrow b}(t) \right) \right]
\]

\[
= \min \{ s-t_z, t-t_z \} - \frac{(s-t_z)(t-t_z)}{T}, \quad t_z \leq s, t \leq t_m
\]

(6.3)

\(BB_{i}^{a \rightarrow b}(t) \) follows a normal distribution with mean \(a + \frac{t-t_z}{T}(b-a) \) and variance

\[
t-t_z - \frac{(t-t_z)^2}{T}
\]

as follows

\[
BB_{i}^{a \rightarrow b}(t) \sim N\left(a + \frac{t-t_z}{T}(b-a), t-t_z - \frac{(t-t_z)^2}{T} \right), \quad t_z \leq t \leq t_m
\]

(6.4)

where \(N(\cdot) \) denotes normal distribution. However, the volatility of the data is not captured in the standard Brownian Bridge. Moreover, according to Eq. (6.2), it is assumed that the mean degradation path is a linear function of time, which is impractical in many situations (McCuen et al., 1992, Soares et al., 2009). We modify the standard Brownian Bridge so that the mean function captures nonlinearity of the degradation processes and the variance of interpolated values is consistent with observed data.
6.1.1.2 Nonlinear Brownian Bridge

A piecewise linear function is proposed to capture the nonlinearity of degradation mean path. Let k_j denote the slope of the line segment between time t_j and t_{j+1} as shown in Figure 6.1. Because the sum of the projections of all these line segments on the vertical direction is $b - a$, we have

$$a + \sum_{j=t}^{m-1} k_j \Delta t = b \quad (6.5)$$

We assume that the degradation data are observed at discrete times with equal time interval length Δt.

![Figure 6.1 Comparison of the piecewise linear mean function and linear mean function](image)

We also assume that the slopes of the segments of the degradation path change gradually and linearly with time, as described in Eq. (6.6).

$$k_j = c_0 + c_1 t_j \quad (6.6)$$

where c_0 and c_1 are constants. Substituting Eq. (6.6) into Eq. (6.5) results in

$$a + \sum_{j=t}^{m-1} (c_0 + c_1 t_j) \Delta t = b \quad (6.7)$$
\(c_1 \) is estimated by considering the observed data. Using least squares, the estimate \(\hat{c}_1 \) is

\[
\hat{c}_1 = \frac{k_{r-1} - k_0 + k_{M-1} - k_m}{\Delta t (\tau + M - m - 2)}
\]

(6.8)

where \(M \) is time index of the last observation in the time frame being considered. \(\hat{c}_0 \) is obtained with

\[
\hat{c}_0 = \frac{b - a - \hat{c}_1 \Delta t \sum_{j=\tau}^{m-1} t_j}{(m - \tau) \Delta t}
\]

(6.9)

Figure 6.2 is a schematic diagram of the slopes and observation times, where missing data are shown with white diamonds.

Figure 6.2 Estimate the parameter \(c_1 \) by considering the observed data

The predicted slopes of the mean path segment between time \(t_j \) and \(t_{j+1} \) is
\[\hat{k}_t = (\hat{a}_t + \hat{b}_t), \quad t_j < t \leq t_{j+1} \]

(6.10)

The mean of the nonlinear Brownian bridge is

\[m^{a \rightarrow b}_t (t) = \begin{cases}
 a + (\hat{a}_0 + \hat{a}_t^2)(t-t_0), t_0 < t \leq t_{r+1} \\
 a + (\hat{a}_0 + \hat{a}_t^2 + \ldots + (\hat{a}_0 + \hat{a}_{t_{m-1}}^2)(t-t_{m-1}), t_{m-1} < t \leq t_m
\end{cases} \]

(6.11)

The proposed nonlinear Brownian bridge from \(a \) to \(b \) between time \(t_r \) and \(t_m \) is

\[BB^{a \rightarrow b}_i (t) = m^{a \rightarrow b}_i (t) + \sigma \left(B_{t-t_r} - \frac{t-t_r}{T} B_{t_m-t_r} \right), \quad t_r \leq t \leq t_m \]

(6.12)

where \(T = t_m - t_r \), \(\sigma \) is the parameter that controls the volatility, which is estimated as follows: assuming the underlying degradation process is a nonlinear Brownian motion with time-dependent drift \(\hat{k}_t \) and diffusion \(\sigma \) as shown in Eq. (6.13), the diffusion \(\sigma \) is estimated with the observed data using the Maximum Likelihood Estimation (MLE) method.

\[dD_i (t) = \hat{k}_i dt + \sigma dB_i \]

(6.13)

Note that \(m^{a \rightarrow b}_i (t_r) = a \), \(m^{a \rightarrow b}_i (t_m) = b \). The variance of the nonlinear Brownian Bridge is

\[\text{Var} \left(BB^{a \rightarrow b}_i (t) \right) = \sigma^2 \left(t - t_r - \frac{(t-t_r)^2}{T} \right), \quad t_r \leq t \leq t_m \]

(6.14)
From Eq. (6.14), we observe the variance first increases from one end of the “bridge” with a starting value zero until it reaches the peak in the middle of the bridge and then decreases until it reaches the other end of the bridge with a value zero. Figure 6.3 shows a schematic plot of the variance of a nonlinear Brownian bridge with \(\tau = 5, m = 11, t_r = 5, t_m = 11 \) and \(\sigma = 1 \). This property is consistent with the intuition that missing data close to the observed data in the time frame are easier and more accurate to predict, while those far from the observed data are less accurate and difficult to predict.

![Figure 6.3 The plot of the variance of a nonlinear Brownian bridge](image-url)
The interpolated data with a nonlinear Brownian bridge are correlated and follow a multivariate Normal distribution. The interpolated data at different times are correlated.

Let \(t_\tau \leq s, t \leq t_m \), the covariance function is expressed as

\[
\begin{align*}
\sigma_i^{a\rightarrow b}(s, t) &= E\left[(BB_i^{a\rightarrow b}(s-t_\tau)-m_i^{a\rightarrow b}(s-t_\tau))(BB_i^{a\rightarrow b}(t-t_\tau)-m_i^{a\rightarrow b}(t-t_\tau)) \right] \\
&= \sigma^2 \left(\min\{s-t_\tau, t-t_\tau\} - \frac{(s-t_\tau)(t-t_\tau)}{T} \right)
\end{align*}
\]

(6.15)

6.1.2 Nonlinear Gamma Bridge

The proposed nonlinear Brownian Bridge in section 6.1.1 is useful especially when degradation increments are Gaussian distributed. However, there are plenty of cases in real life where degradation increments are positive. Better alternatives in this situation are the nonlinear Gamma Bridge and the inverse Gaussian Bridge. We discuss the development of nonlinear Gamma Bridge in this section by reviewing the standard Gamma Bridge.

6.1.2.1 Standard Gamma Bridge

Assume the degradation process follows a Gamma process with mean \(\mu T \) and variance \(\mu T \) (scale parameter=1). The process \(GB_i^{a\rightarrow b}(t) \) is defined as the Gamma bridge of sensor \(i \) between time \(t_\tau \) and \(t_m \). The problem now turns to find the probability density function of \(\{D_i(t)\}, t_\tau \leq t \leq t_m \) under the condition that \(D_i(t_\tau) = a, D_i(t_m) = b \). Let \(X(t) \) denote the degradation increment between \(t_\tau \) and \(t \), \(Y(t) \) denote the increment between \(t \) and
\(t_m \), \(Z \) denote an increment between \(t_\tau \) and \(t_m \). Let
\[
X(t) = D_t(t) - D_t(t_\tau) \sim \text{Ga}(\mu(t-t_\tau), 1), \ t_\tau \leq t \leq t_m,
\]
\[
Y(t) = D_t(t_m) - D_t(t) \sim \text{Ga}(\mu(t_m-t), 1), \ t_\tau \leq t \leq t_m , \ Z = X(t) + Y(t) .
\]
According to Ribeiro et al. (2004), \(\frac{X(t)}{Z} \) follows a Beta distribution with
\[
\frac{X(t)}{Z} \sim B(\mu(t-t_\tau), \mu(t_m-t)), \ t_\tau \leq t \leq t_m
\] (6.16)

Figure 6.4 The schematic diagram of a Gamma Bridge

6.1.2.2 Nonlinear Gamma Bridge

However, for standard Gamma Bridge, the underlying mean function is assumed to be linear, which is not useful in missing data interpolation, especially in the nonlinear degradation process. Moreover, the scale parameter of the Gamma process is 1, which is
not general in applications. We propose a nonlinear Gamma bridge that captures nonlinearity of the missing data based on the Gamma process.

The mean function $m_{i}^{a \rightarrow b}(t)$ is the same as that in section 6.1.1. Rather than modeling the degradation as a standard Gamma process, we let

$$X(t) = D_i(t) - D_i(t_\tau) \sim Ga \left(\frac{m_{i}^{a \rightarrow b}(t) - a}{\theta}, \theta \right),$$

$$Y(t) = D_i(t_m) - D_i(t) \sim Ga \left(\frac{b - m_{i}^{a \rightarrow b}(t)}{\theta}, \theta \right),$$

where θ is a scale parameter. Given the starting time t_τ and the degradation value a, the ending time t_m and degradation value b, the conditional probability density function of $X(t) | Z$ is derived as follows
\[f_{X(t) \mid z}(x(t) \mid z) = \frac{P(D_i(t) - D_i(t_r) = x(t) \mid D_i(t_m) - D_i(t_r) = z)}{P(D_i(t_m) - D_i(t_r) = z)} \]
\[= \frac{P(D_i(t) - D_i(t_r) = x(t), D_i(t_m) - D_i(t_r) = z)}{P(D_i(t_m) - D_i(t_r) = z)} \]
\[= \frac{P(D_i(t) - D_i(t_r) = x(t)) P(D_i(t_m) - D_i(t) = z - x(t))}{P(D_i(t_m) - D_i(t_r) = z)} \]
\[= \frac{\frac{x(t) m_i^{a-b}(t-a)}{\theta} \exp \left(-\frac{x(t)}{\theta} \right) \left(z - x(t) \right)^{b-m_i^{a-b}(t)-1} \exp \left(-\frac{z - x(t)}{\theta} \right) \Gamma \left(\frac{b-a}{\theta} \right)^{b-a}}{\Gamma \left(\frac{m_i^{a-b}(t)}{\theta} \right) \Gamma \left(\frac{b-m_i^{a-b}(t)}{\theta} \right)^{b-m_i^{a-b}(t)-1} \Gamma \left(\frac{m_i^{a-b}(t)-a}{\theta} \right)^{b-m_i^{a-b}(t)-1}} \]
\[= \frac{1}{z} \left(\frac{m_i^{a-b}(t)}{\theta} \right) \left(\frac{b-m_i^{a-b}(t)}{\theta} \right)^{b-m_i^{a-b}(t)-1} \left(\frac{z}{x(t)} \right)^{m_i^{a-b}(t)-a} \left(\frac{1 - x(t)}{z} \right)^{b-m_i^{a-b}(t)-1} \]

We get

\[f_{X(t) \mid z}(x(t) \mid z) = \frac{\Gamma \left(\frac{b-a}{\theta} \right) \left(\frac{m_i^{a-b}(t)}{\theta} \right)^{m_i^{a-b}(t)-a} \left(\frac{z}{x(t)} \right)^{m_i^{a-b}(t)-a} \left(\frac{1 - x(t)}{z} \right)^{b-m_i^{a-b}(t)-1}}{\Gamma \left(\frac{m_i^{a-b}(t)-a}{\theta} \right) \Gamma \left(\frac{b-m_i^{a-b}(t)}{\theta} \right)^{b-m_i^{a-b}(t)-1}} \]

which can be proved as follows:

\[P(Y \leq y) = P(cX \leq y) \]
\[= P(X \leq \frac{y}{c}) = F_x \left(\frac{y}{c} \right) \]
\[f_Y(y) = \frac{1}{c} f_X \left(\frac{y}{c} \right) \] \hspace{1cm} (6.20)

Change the variables to \(\beta_i(t) = \left(\frac{X(t)}{Z} \right) \), then

\[
\beta_i(t) = \left(\frac{X(t)}{Z} \right) \sim B \left(\frac{m_i^{a\rightarrow b}(t) - a}{\theta}, \frac{b - m_i^{a\rightarrow b}(t)}{\theta} \right)
\]

has a beta distribution with parameters \(\frac{m_i^{a\rightarrow b}(t) - a}{\theta} \) and \(\frac{b - m_i^{a\rightarrow b}(t)}{\theta} \). Given \(D_i(t_\tau) = a, D_i(t_m) = b \), the nonlinear Gamma bridge is defined as

\[
GB_i^{a\rightarrow b}(t) = a + \beta_i(t)(b-a)
\] \hspace{1cm} (6.21)

where \(\beta_i(t) \sim B \left(\frac{m_i^{a\rightarrow b}(t) - a}{\theta}, \frac{b - m_i^{a\rightarrow b}(t)}{\theta} \right) \), \(\theta \) is estimated from observed data as follows: assuming the degradation process is a nonlinear Gamma process with time-dependent shape parameter \(\frac{m_i^{a\rightarrow b}(t) - m_i^{a\rightarrow b}(t_{j-1})}{\theta} \) and scale parameter \(\theta \), as shown in Eq. (6.23), the scale parameter \(\theta \) is estimated with observed data using MLE. Eq. (6.22) shows the mean function of the nonlinear Gamma process of the observed degradation process.

\[
m_i^{a\rightarrow b}(t) = \begin{cases}
 a + (\hat{c}_0 + \hat{c}_1 t_\tau)(t-t_\tau), & t_\tau < t \leq t_{r+1} \\
 a + (\hat{c}_0 + \hat{c}_1 t_\tau) \Delta t + (\hat{c}_0 + \hat{c}_1 t_{r+1})(t-t_{r+1}), & t_{r+1} < t \leq t_{r+2} \\
 \vdots \\
 a + (\hat{c}_0 + \hat{c}_1 t_\tau) \Delta t + \ldots + (\hat{c}_0 + \hat{c}_1 t_{m-1})(t-t_{m-1}), & t_{m-1} < t \leq t_m
\end{cases}
\] \hspace{1cm} (6.22)

The variance of the nonlinear Gamma bridge is
\[D_i(t_j) - D_i(t_{j-1}) \sim G \left(\frac{m_i^{a \rightarrow b}(t_j) - m_i^{a \rightarrow b}(t_{j-1})}{\theta}, \theta \right) \]

(6.23)

\[\text{Var}(GB_i^{a \rightarrow b}(t)) = \frac{(m_i^{a \rightarrow b}(t) - a)(b - m_i^{a \rightarrow b}(t))}{\left(\frac{b - a}{\theta} + 1 \right)} \]

(6.24)

From Eq. (6.24), we find that the variance first increases from one end of the “bridge” with value zero and then decreases until it reaches the other end with value zero. Figure 6.5 shows the variance plot of a Gamma bridge with \(\tau = 5, m = 11, t_r = 5, t_m = 11, \theta = 10, a = 1, b = 2, \) \(m_i^{a \rightarrow b}(t) = \frac{1}{6} t + \frac{1}{6} \). Like that of the nonlinear Brownian Bridge, this property is consistent with the fact that missing data far from the other observations in the time frame has higher uncertainties and is more difficult to interpolate with high accuracy.

Figure 6.5 The variance plot of a Gamma bridge
6.1.3 Inverse Gaussian Bridge

When degradation increments are observed to follow inverse Gaussian distribution, an inverse Gaussian bridge is suitable to interpolate the missing values. Therefore, the inverse Gaussian Bridge is a more suitable alternative for estimating the missing data in these situations. The mean function \(m_{i}^{a\rightarrow b}(t) \) is the same as that in section 6.1.1. We let

\[
X(t) = D_{i}(t) - D_{i}(t_{r}) \sim \ln\left(m_{i}^{a\rightarrow b}(t) - a, \lambda \left(m_{i}^{a\rightarrow b}(t) - a \right)^{2} \right), \quad t_{r} \leq t \leq t_{m},
\]

\[
Y(t) = D_{i}(t_{m}) - D_{i}(t) \sim \ln\left(b - m_{i}^{a\rightarrow b}(t), \lambda \left(b - m_{i}^{a\rightarrow b}(t) \right)^{2} \right), \quad t_{r} \leq t \leq t_{m}, \quad Z = X(t) + Y(t),
\]

where \(\lambda \) is a constant that controls the volatility. Given the starting time \(t_{r} \) and degradation data \(a \), the ending time \(t_{m} \) and ending degradation data \(b \), the conditional probability density function of \(X(t)|Z \) is

\[
f_{X(t)|Z}(x(t)|z) = \frac{P(D_{i}(t) - D_{i}(t_{r}) = x(t)|D_{i}(t_{m}) - D_{i}(t_{r}) = z)}{P(D_{i}(t_{m}) - D_{i}(t_{r}) = z)}
\]

\[
= \frac{P(D_{i}(t) - D_{i}(t_{r}) = x(t), D_{i}(t_{m}) - D_{i}(t_{r}) = z - x(t))}{P(D_{i}(t_{m}) - D_{i}(t_{r}) = z)}
\]

\[
= \frac{P(D_{i}(t) - D_{i}(t_{r}) = x(t))P(D_{i}(t_{m}) - D_{i}(t) = z - x(t))}{P(D_{i}(t_{m}) - D_{i}(t_{r}) = z)}
\]

\[
= \ln\left(\frac{z}{x(t)} \right)^{3} \left(\frac{m_{i}^{a\rightarrow b}(t) - a}{b - a} \right)^{2} \times \exp\left[-\lambda \left(\frac{(x(t) - m_{i}^{a\rightarrow b}(t) - a)^{2}}{2x(t)(m_{i}^{a\rightarrow b}(t) - a)^{2}} + \frac{(z - x(t) - (b - m_{i}^{a\rightarrow b}(t)))^{2}}{2(z - x(t))(b - m_{i}^{a\rightarrow b}(t))^{2}} - \frac{(z - b - a)^{2}}{2(z - b - a)^{2}} \right] \right] \quad (6.25)
\]
where λ is estimated from the observed data as follows: assuming the degradation process is an inverse Gaussian process with time-dependent mean $m_{i}^{a,b}(t)$ and shape parameter and the increments follow inverse Gaussian distributions as shown in Eq. (6.26), the parameter λ is estimated using MLE.

$$D_i(t_j) - D_i(t_{j-1}) \sim \text{Ig}(m_{i}^{a,b}(t_j) - m_{i}^{a,b}(t_{j-1}), \lambda(m_{i}^{a,b}(t_j) - m_{i}^{a,b}(t_{j-1}))^2 \lambda(m_{i}^{a,b}(t_j))^2$$

(6.26)

Let $x(t) | z^*$ be a random number generated from the PDF in Eq. (6.25), the inverse Gaussian Bridge is

$$\text{IGB}_i^{a,b}(t) = a + x(t) | z^*$$

(6.27)

The variance of the inverse Gaussian Bridge is

$$\text{Var}(\text{IGB}_i^{a,b}(t)) = E\left(\left(\text{IGB}_i^{a,b}(t)\right)^2\right) - \left(E(\text{IGB}_i^{a,b}(t))\right)^2$$

(6.28)

The variance plot of an inverse Gaussian bridge is similar to that of the nonlinear Brownian Bridge.

6.1.4 Models Validation

6.1.4.1 Models Validation with Corrosion Data
The three proposed bridging models are validated with corrosion data (corrosion pit depth) by (Guedes Soares et al., 2011). The corrosion data is randomized by adding Gaussian noises. Assuming a proportion of data is missing, we interpolate them with the three bridging models respectively and predict future corrosion growth. Figures 6.6-6.8 show the observed data and interpolated data using the proposed nonlinear Brownian Bridge, nonlinear Gamma Bridge, and inverse Gaussian Bridge respectively when the data are assumed to be missing from $t_r = 5$ to $t_m = 11$. The solid lines denote observed data while diamonds denote the interpolated data.

![Graph showing interpolated data with nonlinear Brownian Bridge](image)

Figure 6.6 The interpolated data with the nonlinear Brownian Bridge
Figure 6.7 The interpolated data with the nonlinear Gamma Bridge

Figure 6.8 Interpolated data with the inverse Gaussian Bridge
After data interpolation, we censor the data at time 10 and estimate the parameters of the IIG process as described in section 3.2. We predict corrosion growth after time 10. Figures 6.9-6.11 show the predicted corrosion growth with three bridges respectively. Intuitively, we see that all these bridging methods predict missing data well and the interpolated data are consistent with observed data.

Figure 6.9 The corrosion growth prediction with data interpolated by the nonlinear Brownian Bridge.
Figure 6.10 The corrosion growth prediction with data interpolated by the nonlinear Gamma Bridge

Figure 6.11 Corrosion growth prediction with data interpolated by the inverse Gaussian Bridge
To quantitatively analyze the data interpolation results, we compare two indicators: failure time prediction precision and mean corrosion growth prediction precision. First, we compare the predicted mean failure time and 98% confidence interval with the true failure time. The threshold is set as 1.0mm. Figures 6.12-6.14 show the failure time prediction results when 40%, 20% and 10% data are missing and interpolated with the three bridging approaches. In the three figures, the predicted mean values are denoted by filled dots while the 98% confidence intervals are represented by the horizontal bars. The horizontal line represents the true failure time. As expected, the confidence intervals narrow down as the missing proportion decreases. All the predicted confidence intervals cover the true failure time. In this case, where degradation monotonically increases, nonlinear Gamma bridge and inverse Gaussian bridge perform better than the nonlinear Brownian bridge regarding confidence length and overlap of confidence intervals with that of complete data.
Figure 6.12 Failure time prediction confidence intervals with 40% missing data
interpolated from the bridges

Figure 6.13 Failure time prediction confidence intervals with 20% missing data
interpolated from the bridges
Second, another indicator, the sum of squared percent errors (SSPE) are calculated and compared. SSPE is defined as follows

$$SSPE = \sum_{j=d_j+1}^{T_j} \left(\frac{d_j - \overline{d}_j}{d_j} \right)^2$$

(6.29)

where \overline{d}_j is the predicted mean value of the j^{th} observation, d_j is the true degradation value, T_j is the failure time, t_c is the censoring time. Figure 6.15 shows the SSPE using three bridging methods when 10%, 20%, 30% and 40% data are missing. We find the nonlinear Gamma bridge and inverse Gaussian bridge are better than the nonlinear
Brownian bridge regarding SSPE. The SSPE increases as missing data size increases. However, the SSPE is small for all cases.

![Graph showing SSPE using three bridges when different proportions of data are missing.](image)

Figure 6.15 SSPE using three bridges when different proportions of data are missing

6.1.4.2 Models Validation with Crack Growth Data

In this section, a fatigue-crack-growth dataset is utilized to evaluate the results of the proposed models numerically. The dataset is obtained from a fatigue testing experiment conducted by the authors in the NDT&E lab of Harbin Institute of Technology. A specimen, made of 6061 aluminum, is subject to fatigue of the 70Hz-frequency cyclic load until fracture. Meanwhile, the length of the crack on the specimen is measured regularly by nine
Non-Destructive Testing (NDT) sensors. Detailed descriptions of the sensors are summarized in Table 6.1.

Table 6.1 Descriptions of the sensors

<table>
<thead>
<tr>
<th>Sensor symbol</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Thermal camera</td>
</tr>
<tr>
<td>OC</td>
<td>Optical camera</td>
</tr>
<tr>
<td>X-ray</td>
<td>X-ray machine</td>
</tr>
<tr>
<td>TOFD-1</td>
<td>2MHz Time-of-flight diffraction probe</td>
</tr>
<tr>
<td>TOFD-2</td>
<td>5MHz Time-of-flight diffraction probe</td>
</tr>
<tr>
<td>PA-1</td>
<td>5MHz Ultrasonic phased array probe</td>
</tr>
<tr>
<td>PA-2</td>
<td>10MHz Ultrasonic phased array probe</td>
</tr>
<tr>
<td>EC-1</td>
<td>Eddy current probe 1</td>
</tr>
<tr>
<td>EC-2</td>
<td>Eddy current probe 2</td>
</tr>
</tbody>
</table>

Each sensor has a total of 21 observations. Since the metallographic microscope can observe the micro-cracks with a width of \(1\mu m\), these observations are regarded as the actual crack length. The starting crack length is 3\(mm\). The threshold is 23\(mm\). The complete dataset is plotted against time in Figure 6.16. We randomly pick some observations to be missing. The missing data pattern is shown in Figure 6.17. The shaded
color indicates that the corresponding observation is observed. The white color indicates that the corresponding observation is missing. The missing data are interpolated using the three stochastic bridges. One interpolated dataset is shown in Figure 6.18 where all the interpolated data points are represented with dashed lines, while the observed data points are plotted with solid lines. In the data interpolation process using stochastic bridges, it shows that the degradation data observed by sensor OC, X-ray and TOFD-1 follow the Brownian motion processes, those observed by sensors TOFD-2 and PA-1 follow the nonlinear Gamma bridge and those observed by sensors PA-2, EC-1 and EC-2 follow the inverse Gaussian process. The variance plot of the missing data and the observed values is shown in Figure 6.19.

![Figure 6.16 The complete dataset](image-url)
Figure 6.17 The missing data pattern

Figure 6.18 An interpolated missing dataset
To evaluate the effectiveness of the proposed data interpolation model, we use the data interpolation approaches modified from the k nearest neighbor imputation (kNNI) by Batista et al. (2003) and those obtained by the bootstrap approach by Guo et al. (2018) as a benchmark and compare the mean imputation results. The kNNI is developed to interpolate the missing attribute values in a multivariate dataset. We modify kNNI so that it can be used to interpolate the univariate missing observations within a multi-sensor time-series dataset. The bootstrap approach in (Guo et al., 2018) is used to predict degradation increments and is modified to interpolate the missing observations within the dataset. The details of the modified kNNI and bootstrap approaches are found in Appendices G and H respectively. The interpolated datasets with the two methods are shown in Figures 6.20 and 6.21. The mean squared error (MSE) of mean interpolated values (compared with the actual observations in the missing positions) for both methods are summarized in Table 6.2. It is
observed that, of all the 24 interpolated missing data, the mean of the stochastic bridges is more accurate than that of the benchmark approaches.

<table>
<thead>
<tr>
<th>Approaches</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of the Stochastic bridges</td>
<td>0.248</td>
</tr>
<tr>
<td>Bootstrap + modified kNNI</td>
<td>1.146</td>
</tr>
</tbody>
</table>

Table 6.2 Mean squared errors of interpolated values

Figure 6.20 Mean interpolated data by stochastic bridges (dashed lines denote interpolated data)
Figure 6.21 Mean interpolated data by modified bootstrap and \(k \)NNI (dashed lines denote interpolated data)

6.2 Multiple Sensors Data Integration

In this section, we introduce a non-parametric data integration methodology. As discussed earlier, the main challenge in data integration is the correlation between observations obtained by different sensors. We propose a dynamic cluster-based data integration model that integrates multiple sensor observations (including interpolated data) in consecutive times, rather than in individual time instants. At each observation time, weights of observations are calculated. The weighted sum of the observations is the integrated value of all observations at that time instant.
At each observation time, when we assign the sensors’ data to a fixed number of clusters, we may observe that some sensors switch clusters from one time instant to another while others remain in the same cluster throughout the observation times. Those sensors that switch frequently are considered as “erratic” and “unreliable” and are assigned lower weights and vice versa.

6.2.1 Clustering of the Sensors’ Observations

Let \(d_i(t) \) represent the observation of sensor \(i \) at time \(t \). At each observation time, we apply \(k \)-means clustering to assign the \(N \) (the total number of sensors) measurements into \(k \) clusters. We define the switching of sensors from one cluster to another as follows: if there are \(p \geq q \) sensors belong to the same cluster at two times \(t_1 \) and \(t_2 \), these \(p \) sensors do not switch between clusters (\(q \) is a predefined value). The relationship is represented as \(C_i(t_1) = C_i(t_2), \ i \in \{i_1, ..., i_p\} \), where \(C_i(t) \) is the cluster where sensor \(i \) belongs at time \(t \) and \(\{i_1, ..., i_p\} \) is the set of indexes of the \(p \) sensors. Suppose we are considering a time window at time \(t \) with length \(l \), where the time window is defined as the set of observations and interpolated data of all \(N \) sensors over the period \((t-l, t) \).

There are cases where \(p < q \) measurements of the same sensors belong to the same cluster over the entire time window. In other words, those sensors do not switch between clusters. We define the diameter of a cluster as the distance between the two farthest
observations in the cluster. If the distances between the centroid of this cluster and other centroids are larger than the diameter of the largest cluster, those measurements are treated as outliers and are assigned zero weights. Figure 6.22 shows an example with \(N = 8 \) sensors during a time window with length \(l = 5 \). The eight measurements are assigned to \(k = 3 \) clusters. The measurements are shown in Table 6.3. In this example, \(q = 2 \). Because there are \(p = 2 \) sensors (sensors 1 and 5) in the same cluster both at times \(t_1 \) and \(t_2 \), we have \(C_i(t_1) = C_j(t_2), \ i \in \{1,5\} \). Similarly, \(C_i(t_1) = C_j(t_2), \ i \in \{3,6\} \) and \(C_i(t_1) = C_j(t_2), \ i \in \{7,8\} \). In comparison, \(C_i(t_1) \neq C_j(t_2), \ i \in \{2\} \). This is because there are less than \(q \) sensors assigned to the same cluster that contains sensor 2 both at time \(t_1 \) and \(t_2 \). The measurements of sensor 4 in the time window are determined as outliers because only those measurements are continuously assigned to an individual cluster of the time window and the distance between the centroid of the cluster and other centroids are all larger than the diameter of the largest cluster.

<table>
<thead>
<tr>
<th>Sensors</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
<th>(t_4)</th>
<th>(t_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 1</td>
<td>1.4</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Sensor 2</td>
<td>1.4</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Sensor 3</td>
<td>1.6</td>
<td>1.9</td>
<td>2.5</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Sensor 4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Sensor 5</td>
<td>1.3</td>
<td>2.1</td>
<td>2.4</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Sensor 6</td>
<td>1.7</td>
<td>2.0</td>
<td>2.4</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Sensor 7</td>
<td>1.7</td>
<td>1.4</td>
<td>1.8</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Sensor 8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.9</td>
<td>2.6</td>
<td>3.1</td>
</tr>
</tbody>
</table>

![Diagram](image-url)

Figure 6.22 Cluster switching example (sensors 2, 3 and 6 switched clusters at time 2)

6.2.2 Sensors’ Data Integration

After data interpolation, the dataset now includes observed data and interpolated data. Since the interpolated data are not observed directly but predicted based on observations, their weights should be adjusted according to their variances. As discussed in section 6.1, the variance of interpolated data depends on the position in the stochastic bridge. Accordingly, we assign higher weights to observed data and interpolated data that are close
to the two ends of the bridge and lower weights to those in the middle of the bridge. In
other words, we assign higher weights to data with smaller variance and lower weights to
data with larger variance. The same goes for data interpolated with bootstrap. The variance
of the missing data obtained with bootstrap refers to the sample variance. Because the
observed data have no uncertainty, we treat their variances as zero. For simplicity, we use
\(\sigma^*_i(t)^2 \) to denote the variance of the missing data of sensor \(i \) at time \(t \). The dynamic
observation weight of sensor \(i \) at time \(t \) is as follows:

\[
w_i(t) = \frac{1}{\sum_{i=1}^{N} \frac{1}{\exp(\sigma^*_i(t)^2)}} \frac{g\left(dp\left(d_i(t)\right)\right) \max(R_i(t) - P_i(t), 0)}{\sum_{i=1}^{N} \left(g\left(dp\left(d_i(t)\right)\right) \max(R_i(t) - P_i(t), 0)\right)}
\]

Where

\[
R_i(t) = \sum_{C_i(t-h) = C_i(t-1), 1 \leq h \leq d} r \exp(-h\lambda)
\]

\[
P_i(t) = \sum_{C_i(t-h) \neq C_i(t-h-1), 1 \leq h \leq d} o \exp(-h\mu)
\]

\(w_i(t) \) is the weight of sensor \(i \) at time \(t \). \(r, o, \lambda \) and \(\mu \) are all positive constants.

\(r \) is the reward for each time a sensor stays in its initial cluster assigned at the first location
of the time window and \(o \) is the penalty for each time a sensor switches between clusters
in the consecutive times in the time window. The notation \(R_i(t) \) is a weighted sum of
the rewards of sensor \(i \) in the time window at time \(t \), while \(P_i(t) \) is the weighted sum
of the penalties of sensor \(i \) in the time window at time \(t \). The notation \(h \) indicates the
location of observation in the time window while \(\exp(-h\lambda) \) and \(\exp(-h\mu) \) are the corresponding weights of reward and penalty. The weights of rewards and penalties are negatively related to \(h \) so that the closer the location of the observation to the first position of the time window, the higher the weight (of the reward or penalty). The parameters \(\lambda \) and \(\mu \) are weight coefficients of the reward and penalty respectively and \(dp(d_j(t)) \) is the depth of observation \(d_j(t) \). Depth is proposed by Tukey (1975) to measure the distance of the observation from the center of the cluster. The function \(g(dp(d_j(t))) \) is a monotonically increasing function of \(dp(d_j(t)) \). It takes forms such as polynomial, exponential and others. Without loss of generality, we assume \(g(dp(d_j(t))) \) to be
\[
g(dp(d_j(t))) = c \cdot dp(d_j(t)) \tag{6.33}
\]
where \(c \) is a positive constant. Eq. (6.30) proposes that the weight of a sensor at a specific time is positively related to the weighted sum of the time it stays in the initial cluster minus the weighted sum of the times it switches between clusters in the time window. The values of \(k, l, o, q \) and \(c \) are determined empirically. Normalizing the weights, we have:
\[
W_j(t) = \frac{w_j(t)}{\sum_{i=1}^{N} w_i(t)} \tag{6.34}
\]
The integrated value of all sensor observations at time \(t \) is
\[
\bar{d}(t) = \sum_{i=1}^{N} W_j(t)d_j(t) \tag{6.35}
\]
6.2.3 Case Study

6.2.3.1 Multiple Sensors’ Data Integration

We apply the data integration model proposed to the observed and interpolated dataset in Figure 6.18. The weights obtained by considering the variance of missing values and cluster switching are provided in Figures 6.23 (a) and 6.23 (b) respectively. The final normalized weights are shown in Figure 6.24. It is observed that the integrated path lies close to the majority of the sensors’ paths. The weights of sensors change over time dynamically. Weights of TC and OC are close to zero, which corresponds to the fact that the observations of the two sensors are far from the majority of other sensors and are identified as outliers. When sensors TOFD-1 and TOFD-2 deviate from the majority of the other sensors at times \(t = 15 \) and \(t = 19, 20 \) in Figure 5.18, they are identified as “unreliable” or “erratic” sensors and their weights are reduced almost immediately as shown in Figure 6.23 (b). Meanwhile, the weights are adjusted considering whether the data is interpolated or observed. For example, as sensor EC-2 has four missing values, the variances in the middle of the bridge are higher thus their weights are lower than other sensors. The performance of sensors is evaluated dynamically, and the weights are adjusted accordingly. Consequently, consistent (sensors that switch less frequently) and reliable (sensors that have fewer missing observations) sensors are assigned higher weights. Parameters used in the case study are shown in Table 6.4.
Table 6.4 Summary of parameters used in the case study

<table>
<thead>
<tr>
<th>k</th>
<th>l</th>
<th>M</th>
<th>N</th>
<th>o</th>
<th>q</th>
<th>r</th>
<th>λ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>21</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Figure 6.23 (a) Weights of the sensors by variance (b) Weights of the sensors by cluster shifting

Figure 6.24 Final normalized weights of the sensors
To numerically evaluate the performance of the proposed models, we compare the Mean Squared Errors (MSE) of the individual sensors and the four integrated paths: the integrated path obtained with proposed data integration model of the complete dataset, the integrated path obtained with proposed data integration model of the interpolated dataset obtained with stochastic bridges, the integrated path obtained with Shi et al. (2012) of the interpolated dataset obtained with stochastic bridges and mean of the missing dataset.

Figure 6.25 shows the integrated paths of the interpolated datasets. Table 6.5 shows the MSE comparison results. Under the condition that missing data exist, the proposed approach that combines stochastic bridges and data integration method provides the most accurate results. Its MSE is smaller than that obtained with Shi’s model and is close to that
obtained with the complete dataset. All the integrated paths are better than those obtained by taking the mean of the incomplete dataset. This shows the feasibility of using the combination of stochastic bridges and the proposed data integration approach to integrating information from multiple sensors, even if there are missing data within the dataset.

Table 6.5 MSE of individual sensors and the integrated paths

<table>
<thead>
<tr>
<th>Sensor symbol</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>65.8712</td>
</tr>
<tr>
<td>OC</td>
<td>6.9456</td>
</tr>
<tr>
<td>X-ray</td>
<td>0.1245</td>
</tr>
<tr>
<td>TOFD-1</td>
<td>0.3452</td>
</tr>
<tr>
<td>TOFD-2</td>
<td>0.3896</td>
</tr>
<tr>
<td>PA-1</td>
<td>0.2641</td>
</tr>
<tr>
<td>PA-2</td>
<td>0.1659</td>
</tr>
<tr>
<td>EC-1</td>
<td>0.1312</td>
</tr>
<tr>
<td>EC-2</td>
<td>0.1732</td>
</tr>
<tr>
<td>The integrated path with the complete dataset</td>
<td>0.0809</td>
</tr>
<tr>
<td>The integrated path with the proposed model</td>
<td>0.1173</td>
</tr>
<tr>
<td>The integrated path by Shi’s model</td>
<td>0.1302</td>
</tr>
<tr>
<td>Mean of the incomplete dataset</td>
<td>0.2751</td>
</tr>
</tbody>
</table>
6.2.3.2 Remaining Life Prediction

In this section, we use the improved inverse Gaussian (IIG) process to predict the remaining life of a unit, assuming the degradation data are censored before failure. Chi-square goodness-of-fit test is performed with data from all sensors (integrated data are treated as new sensor’s data) to ensure that the degradation increments follow IIG distribution. The model parameters are estimated by MLE. We compare the expectation of the remaining life of each sensor (including integrated path) with actual remaining life. Let T_D represent the actual failure time of the specimen. The percentage error between predicted and the actual failure time is evaluated as well with Eq. (6.36), where $\tilde{T}_i(t)$ is the remaining life predicted with sensor i’s data by time t.

$$err_i(t) = \frac{(t + \tilde{T}_i(t)) - T_D}{T_D}$$ \hspace{1cm} (6.36)

To compare the situations when different percentages of actual lifetimes are remaining, we censor the data by 10 and 25 percent. Table 6.6 demonstrates the detailed comparison results. It shows that the integrated path with interpolated data outperforms all individual sensor paths and the mean of the incomplete dataset in predicting remaining life. Moreover, the prediction error is only slightly higher than that of the complete dataset.
Table 6.6 Comparison results of absolute percentage error by using each sensor and integrated paths with different percentage of actual remaining lifetime

<table>
<thead>
<tr>
<th>Sensor symbol</th>
<th>25%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OC</td>
<td>6.87</td>
<td>12.48</td>
</tr>
<tr>
<td>X-ray</td>
<td>9.07</td>
<td>3.45</td>
</tr>
<tr>
<td>TOFD-1</td>
<td>26.35</td>
<td>3.92</td>
</tr>
<tr>
<td>TOFD-2</td>
<td>16.37</td>
<td>5.45</td>
</tr>
<tr>
<td>PA-1</td>
<td>2.92</td>
<td>3.36</td>
</tr>
<tr>
<td>PA-2</td>
<td>4.32</td>
<td>3.42</td>
</tr>
<tr>
<td>EC-1</td>
<td>9.43</td>
<td>5.04</td>
</tr>
<tr>
<td>EC-2</td>
<td>3.27</td>
<td>2.91</td>
</tr>
<tr>
<td>The integrated path with the complete dataset</td>
<td>1.57</td>
<td>2.21</td>
</tr>
<tr>
<td>The integrated path with the interpolated dataset</td>
<td>1.60</td>
<td>2.24</td>
</tr>
<tr>
<td>Mean of the incomplete dataset</td>
<td>6.62</td>
<td>7.46</td>
</tr>
</tbody>
</table>

6.3 Summary

We develop three stochastic bridges to interpolate the missing data in the degradation monitoring process. The stochastic bridges are developed based on obtaining the
probability density function of the missing values conditioned on the fixed (observed) values on two bridge ends. They capture the nonlinearity of the underlying degradation process, as well as the uncertainty of the missing values. The data integration model assigns weights based on cluster switching of sensors and the influence of the variance (if the data is interpolated). The models are validated with actual fatigue crack growth data. Results show that the stochastic bridges outperform the benchmark models, which include modified kNNI and bootstrap. The proposed data integration model also outperforms the benchmark data integration model stated in this chapter. The failure times predicted with the integrated interpolated dataset obtained with the proposed models are more accurate compared with other models. The proposed models provide accurate predictions of the missing data and the true degradation path.
CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

There are several major contributions of this dissertation, they are the stochastic modeling of corrosion growth, missing data imputation and multi-sensor data integration in the corrosion monitoring process and the stochastic modeling of degradation branching processes. More specifically

1. We propose two stochastic models to capture the corrosion depth growth and corrosion volume growth respectively. The improved inverse Gaussian (IIG) process is developed as a stochastic degradation model to describe the corrosion depth growth. The model captures the dependency between the corrosion increments and corrosion depth and is more accurate and robust than the inverse Gaussian (IG) model. The corrosion pit volume growth model is developed by assuming that the corrosion pit growth in both radial and depth directions follow IIG processes. It captures the phenomenon where a critical amount of volume loss of material leads to failures of a component although the corrosion pit depth is noncritical. In addition, we develop a physics-based stochastic model to characterize the corrosion pits propagation. The physics factors include the spatial and size distributions of the particles and the
influence of corroded pits, are incorporated into the pits’ initiation model. The influence of stresses that include temperature, relative humidity and pH is investigated based on chemical reactions of the corrosion process. We develop three stochastic bridges to interpolate the missing data in the corrosion monitoring process. They are developed based on obtaining the PDF of the missing values conditioned on the fixed (observed) values on two bridge ends. They capture the nonlinearity of the underlying degradation process, as well as the uncertainty of the missing values. When multiple sensors are used to monitor the corrosion growth process, a data integration model is proposed to assign weights based on cluster switching of the sensors and the influence of the variance (if the data is interpolated). The models are validated with actual corrosion data.

2. We develop stochastic models for the corrosion propagation to other locations, which we refer to as the degradation branching processes (DBP). As the propagation of the corrosion proceeds, it branches into two branches and it is terminated upon system failure. This is a general model which is also applicable to the propagation of the cracks in materials. Besides, the degradation process of each branch can be applicable to any stochastic process. Two types of DBPs are identified based on the branching criteria: in Type I DBP a new branch is initiated when the original branch’s degradation reaches its threshold while in Type II DBP the branching time is determined by other related
physics-based processes independent of the degradation of the branches. The statistical properties of the process, such as the PDF, the mean and the variance of the total degradation, the expected number of branches, the remaining life prediction, the reliability function and the MTTF are investigated. Closed-form expressions of mean, variance and the MTTF are obtained for special cases. The model has been validated using real-life data.

3. We generalize the stochastic degradation branching models by considering the random direction of a branch from its parent branch, which is referred to as the general directional degradation branching process. The model considers two factors during the branching process from a parent branch: the first is that the number of potential new branches is a random variable and the second is that the angles of these potential branches also are expressed as a random variable. The branching angles have an influence on the total degradation by affecting the branches’ degradation growth rate. We develop efficient algorithms to estimate the total degradation of all the branches as well as the number of branches in the entire branching process. The reliability metrics such as the reliability, the PDF of residual life, the MTTF and others are obtained. The proposed model is validated with simulations.
7.2 Future Research

We have identified two areas to be investigated further, they are:

First area: In Chapters 4 and 5, the degradation branching processes and the general directional degradation branching processes under constant stress conditions are discussed. The stresses such as loading, humidity and temperature have significant influences on the degradation branching process of fuel cell membrane cracks’ growth (Singh et al., 2017). Sakai et al. (1991) also state that loading affects the degradation growth rate of the branches in the glass degradation process. In the future, we intend to develop stochastic models to incorporate such factors and design the corresponding acceleration degradation testing plans.

Second area: In Chapter 5, we investigate the influence of branching directions on the total degradation. However, as the direction of a crack surface in the 3D space is determined by two angles with respect to the two perpendicular axes in space (Kagan, 1994), the assumption made in the proposed model in Chapter 5 that the offspring branches only rotate around one axis with respect to the parent branch may result in inaccurate degradation estimation in some conditions. In the future, we intend to relax this assumption and investigate the crack propagation in three dimensions and estimate the corresponding system reliability.
APPENDIX A PARAMETERS ESTIMATION IN IIG AND IG PROCESSES

The parameters of the IIG process include \(\{ \mu_0, \mu_1, \lambda \} \). The maximum likelihood estimation method is used to estimate these parameters. Let \(D = \{ d(t_1), d(t_2), \ldots, d(t_{\tau}) \} \) be the observed degradation values. The initial degradation state is \(d(t_0) = 0 \). In this case, the degradation process has been observed \(\tau \) times. The log-likelihood function is given by

\[
\ln l(\mu_0, \mu_1, \lambda) = \sum_{j=1}^{\tau} \ln f(d(t_j) - d(t_{j-1}))
\]

\[
= \sum_{j=1}^{\tau} \ln \left(\frac{\lambda \Lambda^2 (d(t_{j-1}))}{2\pi (d(t_j) - d(t_{j-1}))^3} \exp \left[-\frac{\lambda ((d(t_j) - d(t_{j-1})) - \Lambda (d(t_{j-1}))^2)}{2(d(t_j) - d(t_{j-1}))^2} \right] \right)
\]

\[
= \sum_{j=1}^{\tau} \ln \left(\frac{\lambda (\mu_0 + \mu_1 d(t_{j-1}))^2}{2\pi (d(t_j) - d(t_{j-1}))^3} \exp \left[-\frac{\lambda ((d(t_j) - d(t_{j-1})) - (\mu_0 + \mu_1 d(t_{j-1}))^2)}{2(d(t_j) - d(t_{j-1}))^2} \right] \right)
\]

\[
= \sum_{j=1}^{\tau} \left[\frac{1}{2} \ln \left(\frac{\lambda (\mu_0 + \mu_1 d(t_{j-1}))^2}{2\pi (d(t_j) - d(t_{j-1}))^3} \right) - \frac{\lambda ((d(t_j) - d(t_{j-1})) - (\mu_0 + \mu_1 d(t_{j-1}))^2)}{2(d(t_j) - d(t_{j-1}))^2} \right]
\]

The parameters can be obtained by solving the following equation:

\[
\frac{\partial \ln l}{\partial \mu_0} = 0, \quad \frac{\partial \ln l}{\partial \mu_1} = 0, \quad \frac{\partial \ln l}{\partial \lambda} = 0
\]
The R codes are provided as follows:

Here y denotes the degradation data and dy denotes the degradation increments data.

n is the size of degradation dataset. μ_0 denotes μ_0, μ_1 denotes μ_1 and lambda denotes λ.

IGA.para=zeros(nx=3,ny=1)
vecy=as.vector(y[1:n,])
vecdy=as.vector(dy[1:n,])
y1<-data.frame(vecy)
y2<-data.frame(vecdy)

iig.lik<-function(theta,y){
 miu0=theta[1]
 miu1=theta[2]
 lambda=theta[3]
 l=0
 for(i in 1:nrow(y1)) {
 l=(miu0-y1[i,1]*miu1)*log(lambda)+(miu0-y1[i,1]*miu1-1)*log(y2[i,1])-
 lambda*y2[i,1]-log(gamma((miu0-y1[i,1]*miu1)))
 }
 logl<-l
 return(-logl)
}

IGA.para=optim(c(40,1,10), iig.lik,y=yt)$par

Parameters of IG process model can be estimated using maxLik in R. Here dy denotes the degradation increments. μ denotes and lambda denotes λ.
vecdy = as.vector(dy[1:n,])
LL <- function(param) {
 miu = param[1]
 lambda = param[2]
 R = dinvgauss(vecdy, miu, lambda * (miu)^2, log = FALSE)
 sum(log(R))
}
numericGradient(LL, c(lambda = 0.07, miu = 0.6))
estll <- maxLik(LL, start = c(lambda = 0.07, miu = 0.6))
APPENDIX B THE CRACK GROWTH DATA

Table B.1 Fatigue-crack-growth data from Bogdanoff and Kozin (1985)

<table>
<thead>
<tr>
<th>Path</th>
<th>Cycles (in million)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12</td>
</tr>
<tr>
<td>1</td>
<td>0.9 0.95 1 1.05 1.12 1.19 1.27 1.35 1.48 1.64</td>
</tr>
<tr>
<td>2</td>
<td>0.9 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.6</td>
</tr>
<tr>
<td>3</td>
<td>0.9 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77</td>
</tr>
<tr>
<td>4</td>
<td>0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73</td>
</tr>
<tr>
<td>5</td>
<td>0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71</td>
</tr>
<tr>
<td>6</td>
<td>0.9 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.51 1.68</td>
</tr>
<tr>
<td>7</td>
<td>0.9 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66</td>
</tr>
<tr>
<td>8</td>
<td>0.9 0.93 0.97 1 1.06 1.11 1.17 1.23 1.3 1.39 1.49 1.62</td>
</tr>
<tr>
<td>9</td>
<td>0.9 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72</td>
</tr>
<tr>
<td>10</td>
<td>0.9 0.92 0.96 1 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67</td>
</tr>
<tr>
<td>11</td>
<td>0.9 0.93 0.96 1 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65</td>
</tr>
<tr>
<td>12</td>
<td>0.9 0.93 0.97 1 1.03 1.07 1.1 1.16 1.22 1.29 1.37 1.48 1.64</td>
</tr>
<tr>
<td>13</td>
<td>0.9 0.92 0.97 0.99 1.03 1.06 1.1 1.14 1.2 1.26 1.31 1.4 1.52</td>
</tr>
<tr>
<td>14</td>
<td>0.9 0.93 0.96 1 1.03 1.07 1.12 1.16 1.2 1.26 1.3 1.37 1.45</td>
</tr>
<tr>
<td>15</td>
<td>0.9 0.92 0.96 0.99 1.03 1.06 1.1 1.16 1.21 1.27 1.33 1.4 1.49</td>
</tr>
<tr>
<td>16</td>
<td>0.9 0.92 0.95 0.97 1 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.4</td>
</tr>
<tr>
<td>17</td>
<td>0.9 0.93 0.96 0.97 1 1.05 1.08 1.11 1.16 1.2 1.24 1.32 1.38</td>
</tr>
<tr>
<td>18</td>
<td>0.9 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35</td>
</tr>
<tr>
<td>19</td>
<td>0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.2 1.25 1.31</td>
</tr>
<tr>
<td>20</td>
<td>0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29</td>
</tr>
<tr>
<td>21</td>
<td>0.9 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27</td>
</tr>
</tbody>
</table>
One of the challenges of modeling corrosion volume growth is that morphologies of corrosion pits are highly stochastic and irregular (Horner et al., 2011, Kioumarsi et al., 2016, Trzaskoma, 1990). We may observe that the corrosion propagates with different rates in all directions as shown in Figure C.1 (a). It is inappropriate to assume the shape of a pit is a perfect smooth hemisphere or half ellipsoid as presented in (Kondo, 1989, Yu et al., 2015) when estimating the pit volume growth. Kariyawasam et al. (2012) show in Figure C.2 that there is a dependency between the corrosion depth growth rate and the original corrosion depth. Al-Amin et al. (2016) also state that in the corrosion growth process, the corrosion growth rate decreases because of the buildup of the corrosion product, which inhibits the transport of the reactants to or from the surface. Moreover, if there is a cathodic reactant being consumed by corrosion and it is being depleted from the surrounding environment, a decline of the corrosion rate is expected. In the Gamma processes, usually time-dependent mean functions are assumed, which do not capture the physics of the corrosion reactions in the corrosion process. As the corrosion growth is a nonlinear process, we implement the state-dependent Gamma process to capture the physical dependency between the corrosion depth growth rate and original corrosion depth. Fan et al. (2015) demonstrate that the state-dependent Gamma process is superior to Gamma process.
especially in the nonlinear degradation process. Specifically, the power-law mean function, which is widely used in corrosion modeling, is used by the Gamma process in the comparison. By using the physics-based state-dependent Gamma process model, the influence of stresses can be incorporated, as demonstrated later in this appendix. In addition, as the corrosion depth growth rates in different locations of a pit are different (newly corroded areas grow faster), the state-dependent Gamma process can be efficiently applied to capture the depth growth of those locations simultaneously.

Figure C.1 (a) Three-dimensional X-ray micro-tomographic image of a corrosion pit by Horner et al. (2011) (notice the morphologies of the corrosion pit) (b) A simplified schematic diagram of the corrosion pit growth
Figure C.2 The original depth versus the depth growth rate adapted from (Kariyawasam et al., 2012) (negative rates are abandoned as we focus on the general monotonically increasing corrosion processes)

Figure C.3 Projected view of the area growth of a corrosion pit
To characterize the corrosion pit volume growth, we consider the pit growth in both radial and depth directions as independent state-dependent Gamma processes. As shown in a simplified diagram of the corrosion pit (Figure C.1(b)), the corrosion pit is divided into n_1 sectors. We assume that the pit consists of many small squares (pixels), as projected in Figure C.3. It is evident that the pixel depth varies from one place to another. The volume growth process is described in Figure C.3.

C.1 Corrosion Pit Area Growth

It is widely accepted that as corrosion progresses, the produced corrosion layer prevents the atmosphere from contacting new metal and decreases corrosion growth rate (Vanaei et al., 2017). In the proposed state-dependent Gamma process (Wang et al., 2020a), we let the shape parameter be a function of the corrosion state (pixel depth or radial length), such that corrosion growth rate decreases with time. The corroded area grows as corrosion pit grows. As shown in Figure C.4 (a), suppose a pit is divided into n_r sectors, where the center of the pit corresponds to the location of the deepest pixel in the pit (which can be obtained by slicing the image of the pit horizontally).
The angle of each sector is $\xi = \frac{2\pi}{n_s}$. Suppose that at time t the radius of the j^{th} sector is $r_j(t)$. We use $Ga(x)$ to denote the probability density function (PDF) of the Gamma distribution. The radius growth $\Delta R_j(t)$ with starting value $r_j(t)$ follows a state-dependent Gamma process with parameters $\eta_0 > 0$, $\eta_1 > 0$, $\omega > 0$ as

$$\Delta R_j(t) \sim Ga \left(\frac{1}{\eta_0 + \eta_1 r_j(t)}, \omega \right)$$

where $\frac{1}{\eta_0 + \eta_1 r_j(t)}$ captures the dependency between the corrosion growth rate and the corrosion value such that larger $r_j(t)$ leads to smaller corrosion growth rate. The radii of the sectors grow independently. As shown in Figure C.4 (b), by simple geometry, the length of the arc is $2r_j(t)\sin\frac{\xi}{2}$. Since the sectors are in the same corrosion pit, the parameters η_0, η_1, ω are assumed to be the same for all the sectors. All the newly corroded pixels
begin to grow immediately in the depth direction after they are corroded. As proved in section C.6, when the radius increment is small (growth time is small) and the angle is small, the area growth can be approximated precisely with a rectangle as shown in Figure C.4 (b). The area growth of sector \(j \) in \((t, t+1)\) is \(\Delta S_j(t) = 2r_j(t) \sin \frac{\xi}{2} \cdot \Delta R_j(t) \) and \(\Delta S_j(t) \) follows a Gamma distribution as shown in Eq. (C.2).

\[
\Delta S_j(t) \sim Ga\left(\Delta s_j(t) \left\| \frac{1}{\eta_0 + \eta_i r_j(t)}, \frac{2r_j(t) \sin \frac{\xi}{2}, \omega}{s_0}\right\|\right)
\]

(C.2)

The area of a pixel is \(s_0 \). The number of corroded pixels in sector \(j \) in \((t, t+1)\) is

\[
\Delta N_j(t) = \frac{\Delta S_j(t)}{s_0} \sim Ga\left(\Delta n_j(t) \left\| \frac{1}{\eta_0 + \eta_i r_j(t)}, \frac{2r_j(t) \sin \frac{\xi}{2}, \omega}{s_0}\right\|\right)
\]

(C.3)

Correspondingly, the increase of the number of corroded pixels in \((t, t+1)\) in the pit is

\[
\Delta N(t) = \sum_{j=1}^{n_s} \Delta N_j(t).
\]

Let \(\phi_j(t) = \frac{1}{\eta_0 + \eta_i r_j(t)} \), \(\varphi_j(t) = \frac{2r_j(t) \sin \frac{\xi}{2}, \omega}{s_0} \).

\{ \Delta N_j(t), 1 \leq j \leq n_s \} \) are Gamma random variables with shape parameters \{ \phi_j(t) \} and scale parameters \{ \varphi_j(t) \}. According to Moschopoulos (1985), the PDF of \(\Delta N(t) \) is

\[
f_{\Delta N(t)}(\Delta n(t)) = \frac{C(t) \sum_{k=0}^{\infty} \delta_k(t) \Delta n^{\rho(t)+k-1}(t) e^{-\Delta n(t)/\varphi(t)}}{\Gamma(\rho(t)+k) \varphi(t)^{\rho(t)+k}}
\]

(C.4)

where
\[C(t) = \prod_{j=1}^{n}(\phi_j(t)/\varphi_j(t))^{\delta(t)}, \quad \gamma_k(t) = \sum_{j=1}^{n} \frac{\phi_j(t)(1-\varphi_j(t)/\varphi_j(t))}{k}, \quad k = 1, 2, \ldots \]

\[\delta_{k+1}(t) = \frac{1}{k+1} \sum_{j=1}^{k+1} j\gamma_j(t)\delta_{k+1-j}(t), \quad \delta_0(t) = 1, \quad \rho(t) = \sum_{j=1}^{n} \phi_j(t). \]

Note that the pixels corroded in the next time increment grow with an initial depth of 0.

C.2 Volume Growth of the Corroded Pixels

The corrosion pit volume growth is the sum of the volume growth of all the corroded pixels. Let \(d_i(t) \) denote the corrosion depth of corroded pixel \(i \) at time \(t \). The depth of pixel \(i \) at \(t+1 \) is \(D_i(t+1) = \Delta D_i(t) + d_i(t) \), where \(\Delta D_i(t) \) is the corrosion depth increment of pixel \(i \) in \((t, t+1)\). The PDF of \(\Delta D_i(t) \) is

\[
\begin{align*}
\begin{split}
\frac{1}{\mu_0 + \mu_i d_i(t)} \left(t \right) e^{-\frac{\Delta d_i(t)}{\lambda}} I_{(0, \infty)} \left(\Delta d_i(t) \right)
\end{split}
\end{align*}
\]

where parameters \(\mu_0 > 0, \mu_i > 0, \lambda > 0 \). They are the same for all the pixels. \(I_A(x) \) is an indicator function defined as follows:

\[
I_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
\]
Note that the parameters μ_0, μ_1 and η_0, η_1 jointly determine the shape of the pit. In general, a sheer-sided pit is formed whenever $\frac{\eta_0}{\eta_1} < \frac{\mu_0}{\mu_1}$ where the pit depth growth rate decreases slowly while the radial growth rates decrease relatively rapidly over time. In this scenario, the pixels in the center have a larger depth growth rate compared with that of the radial sectors and lead to deep pits. By contrast, a shallow pit is formed whenever $\frac{\eta_0}{\eta_1} > \frac{\mu_0}{\mu_1}$ where the pit depth growth rate decreases rapidly while the radial growth rates decrease relatively slowly over time. In this scenario, the pixels in the center have a smaller depth growth rate compared with that of the radial sectors and the pit tends to be flat.

Suppose that the area of all the existing corroded pixels (plan view area) at time t is $s(t)$, the total number of corroded pixels is $n(t) = \frac{s(t)}{s_0}$. As discussed in section C.1, the increase in the number of pixels in $(t, t+1)$ is $\Delta N(t)$. Let $\Delta V_i(t)$ denote the volume growth of pixel i, the overall incremental volume of the pit in the next time increment caused by all the corroded pixels is

$$
\Delta V(t) = \sum_{i=1}^{n(t)+\Delta N(t)} \Delta V_i(t) = s_0 \sum_{i=1}^{n(t)+\Delta N(t)} \Delta D_i(t)
$$

(C.6)
where \(\Delta N(t) \) is a random variable. When \(\Delta N(t) = \Delta n(t), \sum_{i=1}^{n(t)+\Delta n(t)} \Delta D_i(t) \) is a Gamma random variable with shape parameter

\[
\sum_{i=1}^{n(t)+\Delta n(t)} \left(\frac{1}{\mu_0 + \mu_i d_i(t)} \right) \]

and scale parameter \(\lambda \).

By the properties of Gamma distribution, \(s_0 \sum_{i=1}^{n(t)+\Delta n(t)} \Delta D_i(t) \) is a Gamma random variable with shape parameter

\[
\sum_{i=1}^{n(t)+\Delta n(t)} \left(\frac{1}{\mu_0 + \mu_i d_i(t)} \right) = \frac{\Delta n(t)}{\mu_0} + \sum_{i=1}^{n(t)} \frac{1}{\mu_0 + \mu_i d_i(t)}
\]

and scale parameter \(\lambda s_0 \). As \(\Delta N(t) \) is a random variable, the PDF of \(\Delta V(t) \) is

\[
f_{\Delta V(t)}(\Delta v(t)) = \int_0^{\infty} Ga \left(\Delta v(t) \left[\Delta n(t) \left(\frac{1}{\mu_0} + \sum_{i=1}^{n(t)} \frac{1}{\mu_0 + \mu_i d_i(t)} \right) s_0 \lambda \right] f_{\Delta N(t)}(\Delta n(t)) d\Delta n(t) \quad (C.7)
\]

C.3 The Incremental Volume with Covariates

Corrosion is significantly affected by the atmospheric conditions, which include temperature, relative humidity \(Rh \), \(pH \) levels and others (Soares et al., 2009, VanOverloop, 1990, Yang et al., 2009). We incorporate the effects of these covariates on corrosion volume growth in this section. Hughes et al. (2016) state that the corrosion volume growth rate (metal dissolution rate) is related to corrosion current density. Corrosion current arises when there is charge transfer between the anode (metal) and the cathode (Hughes et al., 2016). The corrosion reaction current \(i_c \) is approximately described as
\[i_c = i_0 \exp \left[-\frac{\alpha n F (E - E_{rev})}{RT} \right] \]
(C.8)

where \(n \) is the charge on the ion in equivalents/mol. \(F \) is the Faraday constant (96,487 C/equivalent), \(R \) is the gas constant (8.314 J/mol-K), \(E_{rev} \) is the reversible potential, \(E \) is the applied potential, \(\alpha \) is the charge transfer coefficient, \(i_0 \) is the exchange current, which is the current of a single electrode at equilibrium when the electrode material experiences no loss or gain. It is a function of soluble species concentration. Eyring (1935) shows that the rate of reaction is proportional to the concentration of reagent \(H^+ \) and the water vapor in the atmosphere. Since \(c(H^+) = 10^{-pH} \), we rewrite Eq. (C.8) as

\[
\begin{aligned}
i_c &= \beta_0 e^{\beta_1 R_h} e^{\beta_2 pH} \exp \left[\frac{\beta_3}{T} \right] \\
&= \beta_0 \exp \left(\beta_1 R_h + \beta_2 pH + \frac{\beta_3}{T} \right)
\end{aligned}
\]
(C.9)

where \(\beta_0, \beta_1, \beta_2, \beta_3 \) are constants. \(\beta_0 \) reflects the corrosion rate in equilibrium, which is similar to the meaning of \(i_0 \) in Eq. (C.8). Eq. (C.8) describes the base corrosion (volume) rate, which corresponds to the base corrosion current density (exchange current rate). We incorporate the effect of temperature, \(pH \) level, and \(R_h \) by modifying Eq. (C.7) as Eq. (C.10).
Similarly, the increase in depth is described as

\[
\Delta D_i(t) \sim Ga \left(\Delta d_i(t), \frac{1}{\mu_0 + \mu_i d_i(t)}, \lambda \exp \left(\beta_i R_h + \beta_p H + \frac{\beta_3}{T} \right) \right) \tag{C.11}
\]

The parameters can be estimated by MLE, as shown in section C.5

C.4 Reliability and Remaining Life Prediction

Failure occurs when either the maximum depth of the corrosion pit reaches the depth threshold or the volume of the corrosion pit reaches the volume threshold as shown in Figure C.5, we develop the reliability models based on the two failure modes respectively.

![Figure C.5](image-url)
Figure C.5 (a) Failure caused by corrosion volume growth (b) Failure caused by corrosion depth growth
We use \(GA(\cdot) \) to denote the cumulative distribution function (CDF) of a Gamma distribution. We define the reliability in this situation as the probability that the component (structure) survives in time \(t + 1 \) given that it has not failed at time \(t \). Let \(T_f \) denote the failure time, the reliability based on corrosion volume growth is

\[
R_v(t+1) = P_v(T_f > t+1) = P(\Delta V(t) < c_v - v(t))
\]

Theoretically, the maximum depth of the pit is the depth of the deepest pixel in the pit and the reliability should be estimated accordingly. However, as the center of the pit is corroded first and has the largest corrosion time, for simplicity, we assume that the maximum depth is the depth of the central pixel. However, in the estimation of the reliability regarding both the corrosion depth growth and volume growth simultaneously as discussed later, we will consider the depth of every pixel since the volume of a pixel is the area of the pixel times its depth. Let \(d^*(t) \) represent the maximum depth of a corrosion pit. Let \(c_d \) denote the depth threshold. For the depth failure mode, the reliability is given by:

\[
R_d(t+1) = P_d(T_f > t+1) = P(\Delta D^*(t) < c_d - d^*(t)) = GA\left(c_d - d^*(t) \left| \frac{1}{\mu_0 + \mu_d d^*(t)}, \lambda \exp\left(\beta_1 Rh + \beta_2 pH + \frac{\beta_3}{T}\right) \right. \right)
\]

\[\text{(C.12)}\]

\[\text{(C.13)}\]
As the corrosion volume growth is dependent on the depth growth of all the pixels and area growth of the sectors, we propose the following model to estimate the reliability regarding the two failure modes simultaneously:

\[
R(t+1) = 1 - P\left(\exists d_i(t+1) \geq c_{d_i}, 1 \leq i \leq n(t)\right) \\
- P\left(v(t) \geq c_v, \quad \forall d_i(t+1) < c_{d_i}, 1 \leq i \leq n(t)\right) \\
= \prod_{i=1}^{n(t)} GA_i\left(c_{d_i} - d_i(t)\right) \\
- \int_{\Delta n(t)}^{\infty} \cdots \int_{0}^{\Delta n(t)} \left(1 - GA_i\left(c_v - v(t) - \sum_{i=1}^{n(t)} s_0 \Delta d_i(t)\right)\right) f_{\Delta N(t)}\left(\Delta n(t)\right) \prod_{i=1}^{n(t)} Ga_i\left(\Delta d_i(t)\right) \\
\times d\left(\Delta n(t)\right) \prod_{i=1}^{n(t)} d\left(\Delta d_i(t)\right)
\]

where

\[
GA_i\left(c_{d_i} - d_i(t)\right) = GA\left(c_{d_i} - d_i(t)\right) \left(\frac{1}{\mu_0 + \mu_i d_i(t)} \cdot \lambda \exp\left(\beta_i R_h + \beta_2 p H + \frac{\beta_3}{T}\right)\right),
\]

\[
Ga_i\left(\Delta d_i(t)\right) = GA\left(\Delta d_i(t)\right) \left(\frac{1}{\mu_0 + \mu_i d_i(t)} \cdot \lambda \exp\left(\beta_i R_h + \beta_2 p H + \frac{\beta_3}{T}\right)\right),
\]

\[
GA\left(c_v - v(t) - \sum_{i=1}^{n(t)} s_0 \Delta d_i(t)\right) = GA\left(c_v - v(t) - \sum_{i=1}^{n(t)} s_0 \Delta d_i(t)\right) \left(\frac{\Delta n(t)}{\mu_0} \cdot \lambda \exp\left(\beta_i R_h + \beta_2 p H + \frac{\beta_3}{T}\right)\right)
\]

The distribution of the remaining life is obtained using an iterative computational method as described next. Assume we have a series of corrosion pit growth measurements (3-D images) up to time \(t \). The corrosion volume at that time is \(v(t) \), the maximum depth is
$d^*(t)$ and the number of corroded pixels is $n(t)$. The remaining life is predicted as follows:

1. Set $k = t$.
2. Generate a random number $\Delta n(k)$ using Eq. (C.4), update $\{r_j(k)\}$ with $\{r_j(k+1)\}$. Generate a random number $\Delta d^*(k)$ according to Eq. (C.5).
3. Generate a random number $\Delta v(k)$ using Eq. (C.10).
4. Obtain $d^*(k+1) = d^*(k) + \Delta d^*(k)$ and $v(k+1) = v(k) + \Delta V(k)$. If $d^*(k+1) < c_d$ and $v(k+1) < c_v$, set $k = k+1$, go to step (2). Otherwise, the failure time is $k+1$ and the remaining life $T = k+1 - t$.
5. Repeat steps (2)-(4) N_p times.

Let T_m denote the m percentile remaining life predicted. The obtained 90% confidence interval of predicted remaining life is $(T_{0.05}, T_{0.95})$.

C.5 Parameters Estimation

The parameters are estimated with MLE. The parameters of the proposed model include $\{\mu_0, \mu_1, \lambda, \eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3\}$, where $\{\eta_0, \eta_1, \omega\}$ correspond to the parameters that determine the corrosion growth in the radial directions, $\{\mu_0, \mu_1, \lambda\}$ correspond to parameters that determine the corrosion growth in the depth direction, $\{\beta_1, \beta_2, \beta_3\}$ is the
vector of the covariate parameters. Since we assume that the corrosion growth in both the
radial directions and the depth direction to be independent, we obtain the likelihood
functions for \(\{ \mu_0, \mu_1, \lambda, \beta_1, \beta_2, \beta_3 \} \) and \(\{ \eta_0, \eta_1, \omega \} \) independently. The estimation of
these parameters requires the corrosion depth growth data and corrosion radius growth data
for different pits. Assume we have \(M \) pits that are observed under different covariate sets.
Let \(r_{mj}(t) \) be the radius in the \(j^{th} \) sector of the \(m^{th} \) pit at time \(t \). Let \(d_{mi}(t) \) denote
the depth of the \(i^{th} \) pixel of the \(m^{th} \) pit at time \(t \), where \(1 \leq m \leq M \) and \(1 \leq i \leq n_m(t) \),
\(n_m(t) \) is the total number of pixels of the \(m^{th} \) pit at time \(t \). Let
\(\{ x(m) = \{ x_1(m), x_2(m), x_3(m) \} \} \) be the covariate vector values for the \(m^{th} \) pit. The
variable \(x_1(m) \) is the \(Rh \) value of the \(m^{th} \) pit, \(x_2(m) \) is the \(pH \) value of the \(m^{th} \) pit
and \(x_3(m) \) is the temperature value of the \(m^{th} \) pit. For simplicity, let
\[
f(x(m)) = \exp\left(\beta_1 x_1(m) + \beta_2 x_2(m) + \frac{\beta_3}{x_2(m)} \right)
\]
(C.15)
The likelihood function of \(\{ \eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3 \} \) with corrosion increments in radial
directions is given by
\[
\begin{align*}
l_d\left(d_{11}(1), \ldots, d_{mj}(h), \ldots, d_{Mn_m(t)}(t) \right| \mu_0, \mu_1, \lambda, \beta_1, \beta_2, \beta_3)
&= \prod_{m=1}^{M} \prod_{i=1}^{n_m(t)} \left[\frac{1}{\Gamma\left(\frac{1}{\mu_0 + \mu_1 (h)} \right)} \exp\left(\frac{1}{\mu_0 + \mu_1 (h)} \left(\lambda f(x(m)) \right)^{-1} \right) \right]
\end{align*}
\]
(C.16)
Taking the natural logarithm of both sides yields

\[
\ln l_d \left(d_{t1}(1), \ldots, d_{mj}(h), \ldots, d_{Mn(t)}(t) \right| \mu_0, \mu_1, \lambda, \beta_1, \beta_2, \beta_3) =
\sum_{m=1}^{M} \sum_{h=1}^{l-1} \sum_{t=1}^{n_m(t)} \left[\frac{1}{\mu_0 + \mu_1 d_{mi}(h)} \ln \left(d_{mi}(h+1) - d_{mi}(h) \right) - \frac{1}{\mu_0 + \mu_1 d_{mi}(h)} \ln \left(\lambda f(x(m)) \right) \right]
\left[\frac{1}{\lambda f(x(m))} - \ln \left(\Gamma \left(\frac{1}{\mu_0 + \mu_1 d_{mi}(h)} \right) \right) \right]
\]

(C.17)

The MLE estimators are obtained by solving the following equations set

\[
\frac{\partial \ln l_d}{\partial \mu_0} = 0, \quad \frac{\partial \ln l_d}{\partial \mu_1} = 0, \quad \frac{\partial \ln l_d}{\partial \lambda} = 0,
\frac{\partial \ln l_d}{\partial \beta_1} = 0, \quad \frac{\partial \ln l_d}{\partial \beta_2} = 0, \quad \frac{\partial \ln l_d}{\partial \beta_3} = 0
\]

(C.18)

The likelihood function of \(\{\mu_0, \mu_1, \lambda\} \) is given by

\[
l_r \left(r_{t1}(1), \ldots, r_{mj}(h), \ldots, r_{Mn(t)} \right| \eta_0, \eta_1, \omega) =
\prod_{m=1}^{M} \prod_{h=1}^{l-1} \prod_{j=1}^{n_m} \left[\frac{1}{\eta_0 + \eta_1 r_{mj}(h)} \right]^{\frac{1}{\eta_0 + \eta_1 r_{mj}(h)}} \left(\alpha f(x(m)) \right)^{\frac{1}{\eta_0 + \eta_1 r_{mj}(h)}}
\times \left(r_{mj}(h+1) - r_{mj}(h) \right)^{\frac{1}{\eta_0 + \eta_1 r_{mj}(h)}} e^{-\frac{r_{mj}(h+1) - r_{mj}(h)}{\alpha f(x(m))}}
\]

(C.19)

Taking the natural logarithm of both sides yields
\[
\ln l_e \left(r_{11}, \ldots, r_{mj} (h), \ldots, r_{Mn_t} (t) \right| \eta_0, \eta_t, \omega)
\]

\[
= \sum_{m=1}^{M} \sum_{h=1}^{r_m} \sum_{j=1}^{n} \left\{ \frac{1}{\eta_0 + \eta_t r_{mj} (h)} - 1 \right\} \ln \left(r_{mj} (h+1) - r_{mj} (h) \right) - \frac{r_{mj} (h+1) - r_{mj} (h)}{\omega f(x(m))} \right) \right) \right) \right) \right) \right) \right) \right)
\]

(C.20)

The MLE estimators are obtained by solving the equations

\[
\frac{\partial \ln l_e}{\partial \eta_0} = 0, \quad \frac{\partial \ln l_e}{\partial \eta_t} = 0, \quad \frac{\partial \ln l_e}{\partial \omega} = 0
\]

(C.21)

C.6 True Area Growth and Recommendations to Select Number of Sectors

In this section, we prove that the area growth of a sector proposed in Eq. (C.2) is a reasonable approximation of the true area growth and provide recommendations to select the number of sectors in a pit. The actual area growth of sector \(j \) is represented by Eq. (C.22), where the superscript denotes that it is obtained by considering the area growth as part of an annulus. In comparison, the area growth of a sector obtained by considering the area growth as a rectangle is represented by Eq. (C.23)

\[
\Delta S_{j}^{\text{sec}} (t) = \frac{\pi}{n} \left(r_{j}^2 (t+1) - r_{j}^2 (t) \right)
\]

(C.22)

\[
= \frac{\varphi}{2} \left(r_{j}^2 (t+1) - r_{j}^2 (t) \right)
\]

\[
\Delta S_{j}^{\text{rec}} (t) = 2r_{j} (t) \sin \frac{\varphi}{2} \left(r_{j} (t+1) - r_{j} (t) \right)
\]

(C.23)

The ratio of the area growth obtained in Eqs. (C.22) and (C.23) is
Figure C.6 The ratio of half the angle and its sine value versus the angle of the sector

As shown in Figure C.6, the smaller the value of ξ, the closer the ratio $\frac{\xi}{2}/\sin\frac{\xi}{2}$ to 1. When $\xi \to 0$, $\frac{\xi}{2}/\sin\frac{\xi}{2} \to 1$. However, smaller ξ means higher computation cost. The choice of ξ depends on the need of precision and computation cost. As shown in section C.1, $E(\Delta r_j(t)) = \omega/\left(\eta_0 + \eta_1 r_j(t)\right)$, where $\eta_1 > 0$, $\omega > 0$. As given in Eq. (C.25),

$$\frac{E\left(\left(r_j(t+1) + r_j(t)\right)\right)}{2r_j(t)}$$ decreases as $r_j(t)$ increases. When $r_j(t) \to \infty$,

$$\frac{E\left(\left(r_j(t+1) + r_j(t)\right)\right)}{2r_j(t)} \to 1.$$

$$\frac{E\left(\left(r_j(t+1) + r_j(t)\right)\right)}{2r_j(t)} = \frac{E\left(\Delta r_j(t)\right)}{2r_j(t)} + 1$$

$$= \frac{\omega}{2\eta_1 r_j^2(t) + 2\eta_0 r_j(t)} + 1$$

(C.25)
Accordingly,

\[\frac{\Delta S^\text{sec}_j(t)}{\Delta S^\text{rec}_j(t)} \to 1 \text{ as } r_j(t) \to \infty \] \hspace{2cm} (C.26)

In this appendix, with the data by Kariyawasam et al. (2012), the parameters in the radial directions are obtained as \(\{\hat{n}_0, \hat{n}_1, \hat{n}_2\} = \{0.314, 0.127, 0.083\} \). Let \(S^\text{sec}_j(t) \) denote the cumulative area of sector \(j \) at time \(t \). \(S^\text{rec}_j(t) \) denote the approximated cumulative area of sector \(j \) at time \(t \). When \(t=150 \), the ratio \(S^\text{sec}_j(t)/S^\text{rec}_j(t) \) is plotted against the total number of sectors as shown in Figure C.7.

![Graph showing the ratio of areas under different total number of sectors](image)

Figure C.7 The ratio of areas under different total number of sectors

It is observed that \(S^\text{sec}_j(t)/S^\text{rec}_j(t) \) decreases as \(n_s \) increases. However, as larger \(n_s \) indicates higher computation costs, we choose \(n_s = 36 \), \(\xi = \frac{\pi}{18} \), such that \(\frac{\xi}{2} \left\lfloor \frac{\xi}{2} \right\rfloor = 1.005 \) and \(S^\text{sec}_j(t)/S^\text{rec}_j(t) = 1.015 \), which means the overall error is only 1.5%.

The area growth obtained with Eq. (C.22) and Eq. (C.23) respectively are shown in Figure...
C.8. In summary, the area growth of a sector approximated with Eq. (C.23) is accurate. Moreover, the growth rates over time are shown in Figure C.9.

![Figure C.8](image1.png)

Figure C.8 The comparison of the actual growth obtained with Eq. (C.22) and area growth approximated with a rectangle obtained with Eq. (C.23)

![Figure C.9](image2.png)

Figure C.9 The corrosion growth rate over time

C.7 Case Study

In general, to accurately estimate the reliability of the corroded component with the proposed model, 3D image data of corrosion pits are required as inputs. These data can be
obtained with NDT devices such as laser scanning microscope (Krawczyk et al., 2017), phased array and other 3D scanners (Turcotte et al., 2016). Figure C.10 shows the representative images of the corrosion pits obtained with a laser scanning microscope (Krawczyk et al., 2017). However, 3D images of pits are costly to obtain than longitudinal data. In the case where corrosion growth rate in both radial and depth directions are similar, depth data (longitudinal data) can be used to give an approximate estimate of the reliability metrics as an alternative.

Figure C.10 Representative images of corrosion pits obtained with the (a) laser intensity image and (b) the corresponding 3D topography image (Krawczyk et al., 2017)

In this case study, we demonstrate the performance of the model using corrosion depth growth rate data and depth growth data since the volume growth data are not readily available. The two datasets are the corrosion depth growth rates data by Kariyawasam et al. (2012) as shown in Figure C.2 and the corrosion depth growth data of ships by Soares et al. (2009). In the first dataset, the measurements are obtained under one operating
condition only. In the second dataset, the corrosion data are obtained under six different operating conditions. We describe the datasets and the corresponding results as follows.

C.7.1 Kariyawasam’s dataset

To illustrate the use of the model, we fit the corrosion depth growth rates data with the depth growth model given in Eq. (C.5) and estimate its parameters. We censor the data at depth \(d(t) = 3\text{mm} \) and estimate the parameters \(\{\hat{\mu}_0, \hat{\mu}_i, \hat{\lambda}\} = \{0.314, 0.127, 0.083\} \) using MLE as shown in section C.5. Assuming the corrosion growths in the depth and the radial directions are determined by the same set of parameters, i.e., \(\{\mu_0, \mu_i, \lambda\} = \{\eta_0, \eta_i, \omega\} \), we simulate the 3-D growth data of the corrosion pit with the estimated parameters as shown in Figure C.11. Suppose we are considering the metal loss of a pipe (Phillips & Johnston) with \(\sigma_{\beta\text{om}} = 200\text{Mpa} \), \(t_p = 4\text{mm} \), \(D = 19\text{mm} \), \(L = 10\text{mm} \), \(v_0 = 400\text{ cubic mm} \) and the operating pressure of the pipe is \(P_0 = 79.83\text{Mpa} \). The critical corrosion pit volume \(c_v = 70\text{ cubic mm} \) and the critical depth threshold is \(c_d = 4\text{mm} \).

With these estimated parameters, the expectation and the 90% confidence intervals of the maximum depth growth and volume growth are obtained as shown in Figures C.12 and C.13 respectively. We observe that the corrosion pit maximum depth and volume growth behave differently: the corrosion pit maximum depth growth rate is largest at the start of the corrosion process and decreases with time while the corrosion volume grows gradually,
and the volume growth rate increases over time. To evaluate the accuracy of the proposed model, we compare the reliability function of the pit’s maximum depth estimated with the proposed model (Eq. (C.5)) and the other four widely used models: the Gamma process (Van Noortwijk, 2009), the Brownian Motion process (Wang, 2010), the inverse Gaussian process (Ye et al., 2014) and the Markov Chains (Caley et al., 2009). Figure C.14 shows the comparison results of the five approaches and the real corrosion pits’ failure data, which are obtained by bootstrapping the corrosion growth incremental data in Figure C.2. We use the data in Figure C.2 with an original depth smaller than 5mm. The parameters of the four approaches are estimated with bootstrapped data by time \(t = 15 \).

As shown in Figure C.14, the proposed model has the most accurate reliability estimation (based on the mean squared error (MSE) as shown in Table C.1). There are a few time instants when the MC and inverse Gaussian process have better estimates. Although the proposed model can accurately estimate the time that the maximum corrosion depth reaches its threshold, the reliability estimation of the corroded unit by solely relying on considering the depth growth is insufficient and may lead to inaccurate results as shown in Figure C.15. We observe that by time \(t = 24 \) the reliability regarding depth growth is high with a value of 0.75 and the condition of the unit can be considered as relatively “safe”. However, if we consider the failure caused by the corrosion pit volume growth, we find that the reliability is significantly smaller with a value of 0.16 and the unit is considered as
“unsafe”. It is evident that the decision made solely on the depth growth is deficient and should be improved by considering the two failure modes simultaneously as shown in Figure C.15.

Table C.1 The MSEs of the reliability estimated using the five approaches

<table>
<thead>
<tr>
<th>Models</th>
<th>Gamma process</th>
<th>Brownian Motion process</th>
<th>Inverse Gaussian process</th>
<th>Markov Chain</th>
<th>The proposed model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>0.0126</td>
<td>0.0166</td>
<td>0.0094</td>
<td>0.0104</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

Figure C.11 Selected simulated corrosion pit 3-D images from \(t=15 \) to \(t=45 \)
Figure C.12 The predicted maximum depth growth

Figure C.13 The predicted volume growth
Figure C.14 The comparison of the proposed model with others when estimating the reliability regarding corrosion pit’s maximum depth

Figure C.15 Reliability when considering different failure modes
To validate the proposed corrosion volume growth model, we compare the corrosion volume growth results with the physics-based models (Harlow et al., 1998, Kondo et al., 1989). According to Kondo et al. (1989) and Harlow et al. (1998), the corrosion volume growth rate is a constant determined by physical parameters of the corrosion process. From Figure C.13, we observe that in the later stage of the corrosion volume growth process, as time increases the corrosion volume growth shows a linear relationship with time. We fit the corrosion volume growth data from $t = 25$ years to $t = 45$ years with a linear regression model as shown in Figure C.16. This shows that the results from the stochastic model match that of the physics-based model.

C.7.2 Soares’s Dataset
The model is also validated with the corrosion depth growth data obtained from deck plating above the ballast tanks of the crude oil tankers during the six ships’ service life in some particular routes through the Pacific Ocean as described by Soares et al. (2009). The operating conditions of the 6 ships are shown in Table C.2. The data sample size is increased by generating corrosion data with the deterministic model in the paper (Soares et al., 2009) and randomized with the Brownian motion process with drift, where the mean of the Brownian motion process is the same as that of the corrosion data. We censor the data at time 10 and estimate the parameters of the model as shown in section C.5. The corrosion data, the predicted expectation and 95% confidence interval of the corrosion pit depth in the 6 ships under different operating conditions are shown in Figure C.17. The means of the corrosion data are denoted in blue dash-dot lines. We observe that the model accurately predicts the expectation of the corrosion depth under different operating conditions. The MSE of the predicted mean path and the percent error (PE) of failure times are calculated and shown in Table C.2. Let \(t_0 \) denote the censoring time, the PE are defined as follows

\[PE = \frac{T_f - T_r}{T_r} \]

where \(d^*(k) \) is the maximum depth of the pit at time \(k \), \(\hat{d}^*(k) \) is the predicted mean maximum depth of the pit at time \(k \). \(T_f \) and \(T_r \) are the observed and true failure time.
Table C.2 The time to failure prediction accuracy

<table>
<thead>
<tr>
<th></th>
<th>Ship 1</th>
<th>Ship 2</th>
<th>Ship 3</th>
<th>Ship 4</th>
<th>Ship 5</th>
<th>Ship 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stresses</td>
<td>$T=283.85$</td>
<td>$T=289.75$</td>
<td>$T=291.55$</td>
<td>$T=293.35$</td>
<td>$T=293.55$</td>
<td>$T=296.05$</td>
</tr>
<tr>
<td>& $Rh=85.5%$ & $Rh=82.8%$ & $Rh=83.3%$ & $Rh=79.8%$ & $Rh=82.3%$ & $Rh=81.6%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$pH=8.16$</td>
<td>$pH=8.15$</td>
<td>$pH=8.15$</td>
<td>$pH=8.14$</td>
<td>$pH=8.18$</td>
<td>$pH=8.18$</td>
<td></td>
</tr>
<tr>
<td>PE of T</td>
<td>1.685</td>
<td>1.163</td>
<td>-1.625</td>
<td>3.870</td>
<td>-0.132</td>
<td>-1.644</td>
</tr>
<tr>
<td>MSE</td>
<td>0.000067</td>
<td>0.000130</td>
<td>0.000133</td>
<td>0.000406</td>
<td>0.000056</td>
<td>0.000063</td>
</tr>
</tbody>
</table>

Figure C.17 The corrosion depth prediction when data are censored at $t=10$
Figure C.18 The corrosion volume prediction when data are censored at $t=10$

Figure C.19 The reliability when considering both depth growth and volume growth
From Table C.2, it is shown that the proposed model accurately predicts the failure times of the corroded components subject to corrosion. The predicted corrosion volume growth paths are shown in Figure C.18. The reliability function considering both the corrosion depth growth and volume growth is shown in Figure C.19 when the maximum depth is 1.2 and the volume threshold is 2.0.

C.8 Conclusions

The existing corrosion pit growth models are limited as they only capture the depth of the pit and may result in inaccurate life predictions of the corroded units. In this appendix, we propose a general degradation model that describes the corrosion pit volume growth over time. This is the first stochastic model that captures the corrosion volume growth when a critical amount of volume loss leads to failures of a component. The corrosion growth of the pit is modeled as a state-dependent Gamma process. The reliability model considers both the corrosion volume growth and depth growth and is more accurate than existing models. The influence of environmental factors is incorporated into the model by considering the corrosion chemistry reactions. Case studies show that the proposed model predicts the remaining life and reliability of the corroded units more accurately than existing models such as Markov Chains, Gamma process, inverse Gaussian process and Brownian Motion process. The agreement of the proposed model with a physics-based
model is verified with real data. The limitation of the work is that the pits overlap and the coalescence process is not thoroughly discussed or quantitively validated. We will address these topics in future research.
APPENDIX D THE CORROSION VOLUME THRESHOLD DERIVATION

Corrosion may lead to failure in different ways, including leakage, burst or sudden rupture. For example, leakage occurs when the corrosion pit depth of a pipeline equals its wall thickness. When the remaining strength of the pipeline wall is too small to resist inner fluid or gas pressure, the burst will happen even when the corrosion pit depth is smaller than the thickness of the pipeline wall (Amirat et al., 2006, Jianan et al., 1997). Extensive research has been conducted on predicting the time for a corrosion pit to reach the wall thickness threshold. The work on predicting the failure time when the volume of the corrosion reaches a threshold is scarce. We consider two thresholds: the depth threshold \(c_d \) and the volume threshold \(c_v \). Ma et al. (2011) estimate the remaining strength of a pipeline as

\[
P = \frac{\sigma_{flow} \cdot 2 \cdot t_p}{D} \left[\frac{1 - \frac{A}{A_0}}{1 - \frac{A}{A_0} \cdot \frac{1}{M}} \right]
\]

(D.1)

where

\[
M = \sqrt{1 + 0.6275 \left(\frac{L^2}{Dt_p} \right) - 0.003375 \left(\frac{L^2}{Dt_p} \right)^2}
\]

(D.2)

where \(\sigma_{flow} \) is the yield strength of the pipe material, \(t_p \) is the wall thickness of the pipe, \(D \) is the outer diameter of the pipe, \(A \) is the local area of metal loss in the longitudinal plane, \(A_0 \) is the local original metal area, \(M \) is the bulging stress.
magnification factor (Folias factor). P_0 is the operating pressure. When $P \leq P_0$, the pipe fails. For the pipe, the failure threshold for the remaining strength is P_0. When $P=P_0$, the critical corrosion loss area is

$$c_A = \frac{A_0(\sigma_{flow} \cdot 2 \cdot t_p - PD)}{\sigma_{flow} \cdot 2 \cdot t_p - \frac{PD}{M}}$$ \hspace{1cm} (D.3)

In the proposed model, we are concerned with volume loss within a fixed local area. Using the criteria above, after modifications of Eq. (D.3), we propose the critical volume loss threshold as

$$c_v = \frac{v_0(\sigma_{flow} \cdot 2 \cdot t_p - PD)}{\sigma_{flow} \cdot 2 \cdot t_p - \frac{PD}{M}}$$ \hspace{1cm} (D.4)

where M is adjusted accordingly as

$$M = \sqrt{1 + 0.6275 \frac{L^2}{D t_p} - 0.003375 \left(\frac{L^2}{D t_p} \right)^2}$$ \hspace{1cm} (D.5)

where L is the length of the defined area. For example, if we are interested in the volume loss of a whole pipeline, L is the length of the pipeline. v_0 is the local original metal volume.
APPENDIX E PARAMETERS ESTIMATION IN THE CORROSION VOLUME GROWTH PROCESS BASED ON IIG PROCESS

The parameters are estimated with MLE. The parameters of the proposed model include \{\mu_0, \mu_1, \lambda, \eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3\}, where \{\eta_0, \eta_1, \omega\} correspond to parameters that control corrosion growth in radial directions, \{\mu_0, \mu_1, \lambda\} correspond to parameters that control corrosion growth in the depth direction. \{\beta_1, \beta_2, \beta_3\} is the vector of covariates parameters. Since we assume that the corrosion growth in both the radial directions and the depth direction to be independent, we obtain the likelihood functions for \{\eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3\} and \{\mu_0, \mu_1, \lambda\} independently. The estimation of these parameters requires the corrosion area growth data and corrosion volume growth data for different pits. Assume we have \(M\) pits which are observed under different covariate sets.

Let \(r_{m_j}(t)\) be the radius in the \(j^{th}\) sector of the \(m^{th}\) pit at time \(t\). Let \(\delta_{m_j}(t) = r_{m_j}(t+1) - r_{m_j}(t)\) be the corrosion growth increment of the \(j^{th}\) sector of the \(m^{th}\) pit in \((t, t+1)\). Let \(\{x(m) = \{x_1(m), x_2(m), x_3(m)\}'\) be the covariate set values for the \(m^{th}\) pit. The variable \(x_1(m)\) is the Rh value of the \(m^{th}\) pit, \(x_2(m)\) is the pH value of the \(m^{th}\) pit and \(x_3(m)\) is the temperature value of the \(m^{th}\) pit. For simplicity, let

\[
 f(x(m)) = \exp \left(\beta_1 x_1(m) + \beta_2 x_2(m) + \frac{\beta_3}{x_2(m)} \right)
\]
(E.1)
The likelihood function of \(\{ \eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3 \} \) with corrosion increments in radial directions is given by

\[
l_r(\delta_{1i}(1), \ldots, \delta_{mj}(h), \ldots, \delta_{Mm}(t)|\eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3) = \prod_{m=1}^{M} \prod_{r=1}^{r_m} \left[\frac{\omega^{1/2}}{2\pi} \frac{1}{\delta_{mj}(h)^{3/2}} \exp\left\{ \frac{-\omega(\delta_{mj}(h)-(\eta_0+\eta_0r_j(t))f(x(m)))^2}{2((\eta_0+\eta_0r_j(t))f(x(m)))^2 \delta_{mj}(h)} \right\} \right] \quad (E.2)
\]

Taking the natural logarithm of both sides yields:

\[
\ln l_r(\delta_{1i}(1), \ldots, \delta_{mj}(h), \ldots, \delta_{Mm}(t)|\eta_0, \eta_1, \omega, \beta_1, \beta_2, \beta_3) = \sum_{m=1}^{M} \sum_{r=1}^{r_m} \left[\frac{1}{2} \ln \omega + \ln\left((\eta_0+\eta_0r_j(t))f(x(m))\right) - \frac{1}{2} \ln 2\pi - \frac{3}{2} \ln \delta_{mj}(h) \right.
\]

\[
\left. + \frac{-\omega(\delta_{mj}(h)-(\eta_0+\eta_0r_j(t))f(x(m)))^2}{2((\eta_0+\eta_0r_j(t))f(x(m)))^2 \delta_{mj}(h)} \right] \quad (E.3)
\]

The MLE estimators are obtained by solving the following equations set

\[
\frac{\partial \ln l_r}{\partial \eta_0} = 0, \quad \frac{\partial \ln l_r}{\partial \eta_1} = 0, \quad \frac{\partial \ln l_r}{\partial \omega} = 0, \quad \frac{\partial \ln l_r}{\partial \beta_1} = 0, \quad \frac{\partial \ln l_r}{\partial \beta_2} = 0, \quad \frac{\partial \ln l_r}{\partial \beta_3} = 0 \quad (E.4)
\]
APPENDIX F PROOFS OF THE DEGRADATION BRANCHING EQUATIONS

F.1 The PDF of the Total Degradation, the Reliability and the Expected Number of Branches

In this section, the PDF of the total degradation, the expected number of branches and reliability at time t are derived.

Let $h_i \left(x \mid t - \sum_{j=1}^{i} \tau_j \right)$ denote the conditional PDF of $X_i \left(t - \sum_{j=1}^{i} \tau_j \right)$, the degradation of the i^{th} branch, given the initiation times of the first n branches are known as $\{\tau_i, 1 \leq i \leq n\}$.

Let $h \left(x \mid t, \{\tau_i, 1 \leq i \leq n\} \right)$ denote the conditional PDF of the total degradation of these branches and the first degraded unit at time t, which is $\sum_{i=1}^{n} X_i \left(t - \sum_{j=1}^{i} \tau_j \right) + X_0 (t)$.

Accordingly, given there are n branches at time t, the conditional PDF of the total degradation is

$$h^* (x \mid n, t) = \prod_{i=1}^{n} \int_{0}^{t - \sum_{j=1}^{i} \tau_j} f(\tau_i) \frac{1}{g(n \mid t)} \left(1 - F \left(t - \sum_{j=1}^{n} \tau_j \right) \right) h \left(x \mid t, \{\tau_i, 1 \leq i \leq n\} \right) \prod_{i=1}^{n} d\tau_i$$

where $\prod_{i=1}^{n} f(\tau_i)$ is the probability that the initiation times of the n branches are $\{\tau_i, 1 \leq i \leq n\}$, $\left(1 - F \left(t - \sum_{j=1}^{n} \tau_j \right) \right)$ is the probability that no branches are initiated in
\[
\left(\sum_{i=1}^{n} \tau_i, t \right), \quad g(n|t) \]

is the probability mass function (PMF) of the number of branches \(n \) at time \(t \). Let \(n_b \) denote the limit of the number of branches, the PDF of the total degradation is

\[
h^*(x|t) = \sum_{n=0}^{n_b} g(n|t) h^*(x|n, t)
\]

\[
= \sum_{n=0}^{n_b} g(n|t) \int_0^t \cdots \int_0^{t-\sum \tau_i} \prod f(\tau_i) \left[1 - F \left(t - \sum \tau_i \right) \right] h(x|t, \{\tau_i, 1 \leq i \leq n\}) \prod d\tau_i
\]

\[
= \sum_{n=0}^{n_b} \int_0^t \cdots \int_0^{t-\sum \tau_i} \prod f(\tau_i) \left[1 - F \left(t - \sum \tau_i \right) \right] h(x|t, \{\tau_i, 1 \leq i \leq n\}) \prod d\tau_i
\]

Q.E.D.

Eq. (4.7) in Chapter 4 is derived as follows. When the threshold is \(c \), the reliability is

\[
R(t) = \int_{x=-\infty}^{c} h^*(x|t)
\]

\[
= \int_{x=-\infty}^{c} \sum_{n=0}^{n_b} \int_0^t \cdots \int_0^{t-\sum \tau_i} \prod f(\tau_i) \left[1 - F \left(t - \sum \tau_i \right) \right] h(x|t, \{\tau_i, 1 \leq i \leq n\}) \prod d\tau_i dx
\]

\[
= \sum_{n=0}^{n_b} \int_0^t \cdots \int_0^{t-\sum \tau_i} \prod f(\tau_i) \left[1 - F \left(t - \sum \tau_i \right) \right] \int_{x=-\infty}^{c} h(x|t, \{\tau_i, 1 \leq i \leq n\}) dx \prod d\tau_i
\]

\[
= \sum_{n=0}^{n_b} \int_0^t \cdots \int_0^{t-\sum \tau_i} \prod f(\tau_i) \left[1 - F \left(t - \sum \tau_i \right) \right] H(c|t, \{\tau_i, 1 \leq i \leq n\}) \prod d\tau_i
\]
where \(H(x|t, \{\tau_i, 1 \leq i \leq n\}) \) denotes the conditional CDF of the total degradation given \(\{\tau_i, 1 \leq i \leq n\} \) are known.

Q.E.D.

When \(n_b = \infty \), the expected number of branches by time \(t \), which is obtained with Eq. (4.2) in Chapter 4, is proved as follows. First, let

\[N|t = \text{the number of branches initiated by time } t, \]

\[M(t) = \text{the expected number of branches at time } t = E(N|t), \]

\[S_N(t) = \text{the time by the initiation of the } N^{th} \text{ branch, } S_N(t) = \tau_1 + \ldots + \tau_N = \sum_{i=1}^{N} \tau_i \]

The probability that there are \(N \) branches by \(t \) is the same as the probability that time \(t \) lies between the initiation times of the \(N^{th} \) branch and the \(N+1^{th} \) branch. Let \(\Theta_N(t) \) denote the CDF of \(S_N(t) \), thus

\[P(N < t) = 1 - \Theta_N(t) \]

\[P(N = t) = P(N\mid T = t) \]

\[= \Theta_N(t) - \Theta_{N+1}(t) \]

The expected value of \(N|t \) is then
\[M(t) = \sum_{N=0}^{\infty} NP(N|t) \]
\[= \sum_{N=0}^{\infty} N(\Theta_N(t) - \Theta_{N+1}(t)) \]
\[= \Theta(t) + \sum_{N=1}^{\infty} \Theta_{N+1}(t) \]

As \(F(t) = \Theta_1(t) \), \(\Theta_{N+1}(t) \) can be obtained with the following equation

\[\Theta_{N+1}(t) = \int_0^t \Theta_N(t-x)f(x)dx \]

\[M(t) = \Theta(t) + \sum_{N=1}^{\infty} \int_0^t \Theta_N(t-x)f(x)dx \]
\[= \Theta(t) + \int_0^t \sum_{N=1}^{\infty} \Theta_N(t-x)f(x)dx \]
\[= \Theta(t) + \int_0^t M(t-x)f(x)dx \]

Let

\[m(t) = \frac{dM(t)}{dt} \]

Elsayed (2012) obtains \(m(t) \) as follows. First \(m^*(s) \) is obtained as

\[m^*(s) = \frac{f^*(s)}{1-f^*(s)} \] \hspace{1cm} \text{(F.3)}

Take the inverse Laplace transform, \(m(t) \) can be obtained with

\[m(t) = \mathcal{L}^{-1} \left(\frac{f^*(s)}{1-f^*(s)} \right) \] \hspace{1cm} \text{(F.4)}

Accordingly, the expected number of branches at time \(t \) is
\[M(t) = \int_0^t m(\tau) d\tau \] \hspace{1cm} (F.5)

Q.E.D.

F.2 The Expectation of the Total Degradation and the Mean Residual Life

Eqs. (4.3), (4.4) and (4.5) in Chapter 4 are proved in this Appendix. When the times to initiate new branches follow a distribution with PDF of \(f(\tau) \), we propose a model to capture the expectation of the corresponding DBP. This method can be used to estimate the expectation of any DBP if the expectation of the number of branches by time \(t \) is available.

Given there are \(n \) branches at time \(t \), the total degradation increment \(dX^*(t) \) in \((t, t + dt)\) is

\[
dX^*(t|n) = \sum_{i=0}^{n} dX^*_i(t) \]

As the degradation growth of the \(n \) branches are independent, we have

\[
E(dX^*(t|n)) = \sum_{i=0}^{n} E(dX^*_i(t))
\]

We take \(dt \) to be infinitely small such that no new branches are initiated in \((t, t + dt)\).

The expectation of the total degradation increment \(dX^*(t) \) is

\[
E(X^*(t)) = \int_{\tau=0}^t \left(\sum_{n=0}^{n_0} g(n|\tau) E(dX^*(\tau|n)) \right) d\tau
\]

\[
= \int_{\tau=0}^t \left(\sum_{n=0}^{n_0} \left(g(n|\tau) \left(\sum_{i=0}^{n} E(dX^*_i(\tau)) \right) \right) \right) d\tau
\] \hspace{1cm} (F.6)
Consider a general degradation process whose mean function and variance function of a branch in \((t, t+dt)\) is \(\mu dt\) and \(\sigma^2 dt\). The overall degradation at time \(t\) is

\[
E(X^*(t)) = \int_0^t \left[\sum_{n=0}^{n_b} \left(g(n|\tau) \left(\sum_{\tau=0}^n E(dX^*(\tau)) \right) \right) \right] d\tau \\
= \int_0^t \left[\sum_{n=0}^{n_b} \left(g(n|\tau) (n+1) \mu d\tau \right) \right] \\
= \int_0^t \left[\sum_{n=0}^{n_b} g(n|\tau) n \mu d\tau + \sum_{n=0}^{n_b} g(n|\tau) \mu d\tau \right] \\
= \mu \left(\int_0^t E(N|\tau) d\tau + t \right)
\]

Q.E.D.

The MRL is derived as follows. First, suppose by time \(t\) the total degradation is \(x(t)\), the total number of branches is \(n(t)\) and the last branch is initiated at \(t_1\). The expectation of the total degradation at time \(t_r > t\) is
\[E \left(X^*_i(t_i | t, t_i, n(t)) \right) = \sum_{i=0}^{n(t)} E \left(X^*_i(t_i | t, t_i, n(t)) \right) + E \left(X^*_{n(t)}(t_i | t, t_i, n(t)) \right) \]

\[
= \sum_{i=0}^{n(t)} E \left(X^*_i(t_i | t, t_i, n(t)) \right) + \sum_{n=1}^{n(t)} \sum_{k=1}^{n_r-n(t)} \left\{ \int_{t_{i-1}}^{t_i} \cdots \left(\int_{t_{j-1}}^{t_j} \prod_{j=1}^{k} f(\tau_j) g \left(n-k \left| t_r-t_i-\sum_{j=1}^{k} \tau_j \right. \right) \right) \right. \\
\left. \times \frac{1}{g(0|t-t_i)} E \left(X_k \left(\sum_{j=1}^{k} \tau_j \right) \right) \prod_{j=1}^{k} d\tau_j \right\} \\
= \int_{t_{i-1}}^{t_i} \sum_{i=0}^{n(t)} \sum_{n=1}^{n_r-n(t)} \left\{ \int_{t_{i-1}}^{t_i} \cdots \left(\int_{t_{j-1}}^{t_j} \prod_{j=1}^{k} f(\tau_j) g \left(n-k \left| t_r-t_i-\sum_{j=1}^{k} \tau_j \right. \right) \right) \right. \\
\left. \times \frac{1}{g(0|t-t_i)} E \left(X_k \left(\sum_{j=1}^{k} \tau_j \right) \right) \prod_{j=1}^{k} d\tau_j \right\} \\
\]

where \(E \left(X^*_i(t_i | t, t_i, n(t)) \right) \) denotes the expectation of the degradation of branch \(i \) in \((t, t_i)\) given that the total degradation is \(x(t) \) at time \(t \), the total number of branches is \(n(t) \) and the last branch is initiated at \(t_i \) and \(E \left(X^*_{n(t)}(t_i | t, t_i, n(t)) \right) \) denotes the expectation of the total degradation of the \(n(t)^{th} \) and above branches. The MRL is obtained with the following equation.
The Variance of the Total Degradation

The proof of Eq. (4.6), which is the variance of the total degradation, is provided in this Appendix. Given there are \(n \) branches at time \(t \), let \(X_i^*(t|n) = \sum_{i=1}^{n} X_i^*(t|n) \), according to the rule of squared sum, the conditional variance of the degradation of the \(n \) branches is

\[
\begin{align*}
\text{Var}(X_i^*(t|n)) &= \text{Var} \left(\sum_{i=1}^{n} X_i^*(t|n) \right) \\
&= E \left(\left(\sum_{i=1}^{n} X_i^*(t|n) \right)^2 \right) - \left(E \left(\sum_{i=1}^{n} X_i^*(t|n) \right) \right)^2 \\
&= \sum_{i=1}^{n} \left(E \left(X_i^*(t|n) \right) \right)^2 + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} E \left(X_i^*(t|n) X_j^*(t|n) \right) - \left(\sum_{i=1}^{n} E \left(X_i^*(t|n) \right) \right)^2
\end{align*}
\]

where
\[
\sum_{i=1}^{n} \left(E(X_{i}^{*}(t|n)) \right)^{2}
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} h_{i} \left(x \mid t - \sum_{j=1}^{i} \tau_{j} \right) g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right) x^{2} \prod_{j=1}^{i} d\tau_{j} \ dx
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right) E \left(X_{i}^{2} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) \prod_{j=1}^{i} d\tau_{j} \quad (F.11)
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right)
\times \left(\text{Var} \left(X_{i} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) + \left(E \left(X_{i} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) \right)^{2} \right) \prod_{j=1}^{i} d\tau_{j}
\]

\[
\sum_{i=1}^{n} \left(E(X_{i}^{*}(t|n)) \right)^{2}
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right) h_{i} \left(x \mid t - \sum_{j=1}^{i} \tau_{j} \right) x^{2} \prod_{j=1}^{i} d\tau_{j} \ dx
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right) E \left(X_{i}^{2} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) \prod_{j=1}^{i} d\tau_{j} \quad (F.12)
= \sum_{i=1}^{n} \int_{0}^{t} \prod_{j=1}^{i} f(\tau_{j}) \frac{1}{g(n|t)} g \left(n - i \mid t - \sum_{j=1}^{i} \tau_{j} \right)
\times \left(\text{Var} \left(X_{i} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) + \left(E \left(X_{i} \left(t - \sum_{j=1}^{i} \tau_{j} \mid n \right) \right) \right)^{2} \right) \prod_{j=1}^{i} d\tau_{j}
\]

For \(\exists i \leq i_{1} < i_{2} \leq i \), let \(x_{i_{1}} \) and \(x_{i_{2}} \) denote the corresponding degradation value variable,

we have
$$E(\hat{X}_n^*(t|n) \hat{X}_n^*(t|n))$$

$$= \int \int \int \cdots \int_{-\infty}^{t} \int_{-\infty}^{t} \prod_{j=1}^{i_2} f(\tau_j) \frac{1}{g(n\tau)} g(n-i_2 | t - \sum_{j=1}^{i_2} \tau_j) \times h_{x_1}(t - \sum_{j=1}^{i_2} \tau_j) h_{x_2}(t - \sum_{j=1}^{i_2} \tau_j)x_1 x_2 \prod_{j=1}^{i_2} d\tau_j dx_1 dx_2 \quad \text{(F.13)}$$

$$= \int \int \int \cdots \int_{0}^{t} \int_{0}^{t} \prod_{j=1}^{i_2} f(\tau_j) \frac{1}{g(n\tau)} g(n-i_2 | t - \sum_{j=1}^{i_2} \tau_j) \times E\left(X_{\tau_1} \left(t - \sum_{j=1}^{i_2} \tau_j \left| n \right. \right)\right) E\left(X_{\tau_2} \left(t - \sum_{j=1}^{i_2} \tau_j \left| n \right. \right)\right) \prod_{j=1}^{i_2} d\tau_j$$

The conditional variance of the degradation of the n branches given there are n branches is
\[
\text{Var} \left(X_t^* (t|n) \right) = \text{Var} \left(\sum_{i=1}^n X_i^* (t|n) \right) \\
= E \left(\left(\sum_{i=1}^n X_i^* (t|n) \right)^2 \right) - \left(E \left(\sum_{i=1}^n X_i^* (t|n) \right) \right)^2 \\
= \sum_{i=1}^n \left(E \left(X_i^* (t|n) \right) \right)^2 + 2 \sum_{i=1}^n E \left(X_i^* (t|n) X_i^* (t|n) \right) - \left(E \left(\sum_{i=1}^n X_i^* (t|n) \right) \right)^2 \\
= \sum_{i=1}^n \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \\
+ 2 \sum_{i=1}^n \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \\
- \sum_{i=1}^n \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \left[\prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right] \prod_{j=1}^{\sum \tau_j} \right)^2 \\
= \left(\sum_{i=1}^n \prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right) \prod_{j=1}^{\sum \tau_j} \left(\sum_{i=1}^n \prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right) \prod_{j=1}^{\sum \tau_j} \left(\sum_{i=1}^n \prod_{j=1}^{\sum \tau_i} \frac{1}{g(n|t)} g \left(n - i \right) \right) \prod_{j=1}^{\sum \tau_j} \right)^2 \text{ (F.14)}
\]

The variance of the degradation of all the branches including the first degraded unit at time \(t \) is
\[\text{Var}(X^*(t)) = \text{Var}(X^*_n(t)) + \text{Var}(X_0(t)) \]
\[= E\left[\text{Var}(X^*_n(t|n))\right] + \text{Var}\left[E\left(X^*_n(t|n)\right)\right] + \text{Var}(X_0(t)) \]
\[= \sum_{n=1}^N \text{Var}(X^*_n(t|n)) g(n|t) + \sum_{n=1}^N \left[E\left(X^*_n(t|n)\right)\right]^2 g(n|t) + \text{Var}(X_0(t)) \]
\[- \left(\sum_{n=1}^N E\left(X^*_n(t|n)\right) g(n|t)\right)^2 \]
\[\times \left\{ \sum_{i=1}^n \int_0^{t-\sum_{j=1}^i \tau_j} \int_0^{-\sum_{j=1}^i \tau_j} \prod_{j=1}^i f(\tau_j) \frac{1}{g(n|t)} g\left(n-i - t - \sum_{j=1}^i \tau_j\right) \right. \]
\[\times E\left(X_i\left(t-\sum_{j=1}^i \tau_j\right)\right) E\left(X_{i_2}\left(t-\sum_{j=1}^{i_2} \tau_j\right)\right) \prod_{j=1}^i d\tau_j \]
\[+ \left(\sum_{i=1}^n \int_0^{t-\sum_{j=1}^i \tau_j} \int_0^{-\sum_{j=1}^i \tau_j} \prod_{j=1}^i f(\tau_j) \frac{1}{g(n|t)} g\left(n-i - t - \sum_{j=1}^i \tau_j\right) \right) \]
\[\times E\left(X_i\left(t-\sum_{j=1}^i \tau_j\right)\right) \prod_{j=1}^i d\tau_j \]
\[\left(\sum_{n=1}^N \left[\sum_{i=1}^n \int_0^{t-\sum_{j=1}^i \tau_j} \int_0^{-\sum_{j=1}^i \tau_j} \prod_{j=1}^i f(\tau_j) \frac{1}{g(n|t)} g\left(n-i - t - \sum_{j=1}^i \tau_j\right) \right] \right)^2 - \]
\[\left(\sum_{n=1}^N \left[\sum_{i=1}^n \int_0^{t-\sum_{j=1}^i \tau_j} \int_0^{-\sum_{j=1}^i \tau_j} \prod_{j=1}^i f(\tau_j) \frac{1}{g(n|t)} g\left(n-i - t - \sum_{j=1}^i \tau_j\right) \right] \right)^2 \]
\[\times E\left(X_i\left(t-\sum_{j=1}^i \tau_j\right)\right) \prod_{j=1}^i d\tau_j \]
\[+ \text{Var}(X_0(t)) \]
When \(F_i(x) = \int_0^{t_i} \cdots \int_0^{t_{j-1}} f(t_j) x^{i} d\tau_j \), \(g_{n-i} = g\left(n-i \mid t - \sum_{j=1}^{i} \tau_j \right) \), \(g_n = g\left(n \mid t \right) \),

\[m_0 = \text{Var}(X_0(t)) \quad m_i^n = E\left(X_i(t - \sum_{j=1}^{i} \tau_j \mid n) \right) \quad \text{and} \quad v_i^n = \text{Var}\left(X_i(t - \sum_{j=1}^{i} \tau_j \mid n) \right), \quad \text{Eq. (F.15)} \]

is revised as

\[\text{Var}\left(X^*(t)\right) = \sum_{n=1}^{n_b} \left(g_n \sum_{i=1}^{n} \left(\hat{F}_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right)^2 \right) - \left(\sum_{n=1}^{n_b} g_n \sum_{i=1}^{n} \left(\hat{F}_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right) \right)^2 + \nu_0 \]

\[+ \sum_{n=1}^{n_b} \left(g_n \sum_{i=1}^{n} \left(\hat{F}_i \left(\frac{g_{n-i}}{g_n} \nu_i^n + (m_i^n)^2 \right) \right) - \left(\sum_{i=1}^{n} \left(\hat{F}_i \left(\frac{g_{n-i}}{g_n} m_i^n \right) \right) \right)^2 + 2 \sum_{i=1}^{n_b} g_n \left(\hat{F}_{i_2} \left(\frac{g_{n-i_2}}{g_n} m_i^n m_{i_2}^n \right) \right) \right) \]

(F.16)

Q.E.D.

F.4 The Expectation and Variance of the Branches

The proofs of the expectation and variance of the degradation of the \(i^{th} \) branch, which are shown in Eqs. (4.9) and (4.10) in Chapter 4, are proposed in this section. The PDF of the degradation of the \(i^{th} \) branch is

\[h_i(x\mid t) = \int_0^{t - \sum_{j=1}^{i} \tau_j} \cdots \int_0^{t_{j-1}} f(t_j) g_i \left(x \mid t - \sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j \quad \text{(F.17)} \]
The expectation of the degradation of the i^{th} branch is

$$E(X_i(t)) = \int_{-\infty}^{t} \cdots \int_{0}^{t} \prod_{j=1}^{i} f(\tau_j) g_i \left(x \mid t - \sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j dx$$

$$= \int_{0}^{t} \cdots \int_{0}^{t} \prod_{j=1}^{i} f(\tau_j) \int_{-\infty}^{\tau_j} g_i \left(x \mid t - \sum_{j=1}^{i} \tau_j \right) x dx \prod_{j=1}^{i} d\tau_j$$

(F.18)

$$= \int_{0}^{t} \cdots \int_{0}^{t} \prod_{j=1}^{i} f(\tau_j) E\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) \prod_{j=1}^{i} d\tau_j$$

The variance of the degradation of the i^{th} branch is
\[
\text{Var}(X_i^*(t)) = E\left(\left(X_i^*(t) \right)^2 \right) - \left(E\left(X_i^*(t) \right) \right)^2
\]

\[
= \int_{-\infty}^{t} \cdots \int_{-\infty}^{t-t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) g_i\left(x \mid t-\sum_{j=1}^{i} \tau_j \right) x^2 \prod_{j=1}^{i} d\tau_j dx
\]

\[
- \left(\int_{-\infty}^{t} \cdots \int_{-\infty}^{t-t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) g_i\left(x \mid t-\sum_{j=1}^{i} \tau_j \right) x \prod_{j=1}^{i} d\tau_j dx \right)^2
\]

\[
= \int_{0}^{t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) \int_{-\infty}^{\infty} g_i\left(x \mid t-\sum_{j=1}^{i} \tau_j \right) x^2 dx \prod_{j=1}^{i} d\tau_j
\]

\[
- \left(\int_{0}^{t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) \int_{-\infty}^{\infty} g_i\left(x \mid t-\sum_{j=1}^{i} \tau_j \right) x dx \prod_{j=1}^{i} d\tau_j \right)^2
\]

\[
= \int_{0}^{t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) \left(\int_{0}^{\infty} X_i^2\left(t-\sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j \right)
\]

\[
- \left(\int_{0}^{t-\sum_{j=1}^{i} \tau_j} \prod_{j=1}^{i} f(\tau_j) \left(\int_{0}^{\infty} X_i^2\left(t-\sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j \right) \right)^2
\]

Q.E.D.

F.5 The Mean and Variance of the Total Degradation where Time to Branch Follows an Exponential Distribution

The proofs of Eqs. (4.12) and (4.13) in Chapter 4, which correspond to the mean and variance of the DBP process where time to branch follow an exponential distribution, are discussed in this section. In the case where \(N \) follows a Poisson distribution with
parameter $\lambda \tau$, which corresponds to the DBP where the time to branch τ follows an exponential distribution with a parameter of λ, the expectation of the total degradation is

$$E\left(X^*(t)\right) = \mu \left(\int_{\tau=0}^{t} M(\tau) d\tau + t\right)$$

$$= \mu \left(\int_{\tau=0}^{t} \lambda \tau d\tau + t\right)$$

$$= \mu \left(\frac{t^2 \lambda}{2} + t\right)$$

(F.20)

Q.E.D.

The expectation of the degradation of the i^{th} branch given there are n branches is

$$E\left(X^*_i(t|n)\right)$$

$$= \mu \frac{n!}{t^n} \int_{0}^{t} \cdots \int_{0}^{t} \lambda e^{-\lambda \tau_1} \cdots \lambda e^{-\lambda \tau_i} \frac{\lambda \left(t - \sum_{j=1}^{i} \tau_j\right)^{n-i} e^{-\lambda \left(t - \sum_{j=1}^{i} \tau_j\right)}}{(\lambda t)^n n! (n-i)!} \mu \left(t - \sum_{j=1}^{i} \tau_j\right) \prod_{j=1}^{i} d\tau_j$$

$$= \left\{ \begin{array}{ll}
\mu \frac{n!}{t^n} \int_{0}^{t} \cdots \int_{0}^{t} \left(t - \sum_{j=1}^{i} \tau_j\right)^{n-i+1} d\tau_i \cdots d\tau_1, & i \geq 2 \\
\mu \frac{n!}{t^n} \int_{0}^{t} (t - \tau_1) d\tau_1, & i = 1
\end{array} \right. $$

(F.21)

Accordingly, the expectation of the total degradation of the n branches given there are n branches is

$$n + 1 - i$$

$$n + 1$$
\[E(X_i^*(t|n)) = \sum_{i=1}^{n} E(X_i^*(t|n)) \]
\[= \sum_{i=1}^{n} \frac{n+1-i}{n+1} \mu t \]
\[= \frac{1}{2} n \mu t \]

(F.22)

The variance of the total degradation of the \(n \) branches given there are \(n \) branches is

\[\text{Var}(X_i^*(t|n)) = E\left[\left(\sum_{i=1}^{n} X_i^*(t|n) \right)^2 \right] - E\left(\sum_{i=1}^{n} X_i^*(t|n) \right)^2 \]
\[= \sum_{i=1}^{n} \left(E(X_i^*(t|n)) \right)^2 + 2 \sum_{i \neq j} E(X_i^*(t|n)) X_j^*(t|n) - \left(E\left(\sum_{i=1}^{n} X_i^*(t|n) \right) \right)^2 \]

\[= \sum_{i=1}^{n} \int_0^{t} \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \lambda e^{-\lambda \tau_1} \ldots \lambda e^{-\lambda \tau_{n-1}} \frac{1}{(\lambda t)^n e^{-\lambda t}} \left(\lambda \left(t - \sum_{j=1}^{i} \tau_j \right) \right)^{n-i} e^{-\lambda \left(t - \sum_{j=1}^{i} \tau_j \right)}
\times \sigma^2 \left(t - \sum_{j=1}^{i} \tau_j \right) + \mu^2 \left(t - \sum_{j=1}^{i} \tau_j \right)^2 \prod_{j=1}^{i} d\tau_j
+ 2 \sum_{i \neq j} \int_0^{t} \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \lambda e^{-\lambda \tau_1} \ldots \lambda e^{-\lambda \tau_{n-2}} \ldots \lambda e^{-\lambda \tau_2} \frac{1}{(\lambda t)^n e^{-\lambda t}} \left(\lambda \left(t - \sum_{j=1}^{i} \tau_j \right) \right)^{n-2} e^{-\lambda \left(t - \sum_{j=1}^{i} \tau_j \right)}
\times \mu \left(t - \sum_{j=1}^{i} \tau_j \right) \mu \left(t - \sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j
- \sum_{i=1}^{n} \int_0^{t} \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \ldots \int_0^{t} \lambda e^{-\lambda \tau_1} \ldots \lambda e^{-\lambda \tau_{n-1}} \frac{1}{(\lambda t)^n e^{-\lambda t}} \left(\lambda \left(t - \sum_{j=1}^{i} \tau_j \right) \right)^{n-1} e^{-\lambda \left(t - \sum_{j=1}^{i} \tau_j \right)} \mu \left(t - \sum_{j=1}^{i} \tau_j \right) \prod_{j=1}^{i} d\tau_j \]
In the proof of Eq. (F.23), we use the conclusions of Eqs. (F.24) and (F.25) as follows.
\[
\sum_{i=1}^{n} \left(\frac{n+1-i}{n+1} t \sigma^2 + \frac{(n+1-i)(n+2-i)}{(n+1)(n+2)} t^2 \mu^2 \right)
\]
\[
= \frac{1}{2} \sigma^2 t n + \frac{1}{3} \mu^2 t^2 n
\]

\[
2 \sum_{i_2 \geq i_1}^{n} \mu^2 t^2 \left(\frac{i_2}{n+1} - \frac{i_1}{n+2} + \frac{i_1 i_2}{(n+1)(n+2)} \right)
\]
\[
= 2 \mu^2 t^2 \sum_{i_2 = 2}^{n} \sum_{i_1 = 1}^{i_2-1} \left(\frac{i_2}{n+1} - \frac{i_1}{n+2} + \frac{i_1 i_2}{(n+1)(n+2)} \right)
\]
\[
= 2 \mu^2 t^2 \sum_{i_2 = 2}^{n} \left(i_2 - 1 \right) \left(\frac{i_2 - 1}{n+1} \right) - \frac{(i_2 - 1) i_2}{2(n+2)} + \frac{1}{24(n+2)} (3n+2)
\]
\[
= \frac{1}{4} \mu^2 t^2 n(n-1)
\]

The variance of the total degradation of the branches at time \(t \) is
\[
\text{Var}(X^*_t(t)) = E(\text{Var}(X^*_t(t|n))) + E(\text{Var}(X^*_t(t|n))) \\
= \sum_{n=1}^{\infty} \left[\text{Var}(X^*_t(t|n)) \right] g(n|t) + \sum_{n=1}^{\infty} \left(E(\text{Var}(X^*_t(t|n))) \right)^2 g(n|t) - \left(\sum_{n=1}^{\infty} E(X^*_t(t|n)) g(n|t) \right)^2 \\
= \sum_{n=1}^{\infty} \left(\frac{1}{2} \sigma^2 t + \frac{1}{12} \mu^2 t^2 \right) ng(n|t) + \sum_{n=1}^{\infty} \left(\frac{1}{2} \mu t n \right)^2 g(n|t) - \left(\sum_{n=1}^{\infty} \frac{1}{2} \mu t n g(n|t) \right)^2 \\
= \sum_{n=0}^{\infty} \left(\frac{1}{2} \sigma^2 t + \frac{1}{12} \mu^2 t^2 \right) ng(n|t) + \sum_{n=0}^{\infty} \left(\frac{1}{2} \mu t n \right)^2 g(n|t) - \left(\sum_{n=0}^{\infty} \frac{1}{2} \mu t n g(n|t) \right)^2 \\
= \left(\frac{1}{2} \sigma^2 t + \frac{1}{12} \mu^2 t^2 \right) E(N|t) + \frac{1}{4} \mu^2 t^2 \left(\text{Var}(N|t) + E^2(N|t) \right) - \left(\frac{1}{2} \mu t E(N|t) \right)^2 \\
= \frac{1}{3} \mu^2 \lambda t^3 + \frac{1}{2} \sigma^2 \lambda t^2
\]

\[(F.26)\]

As the growth of the branches (including the first degraded unit) are independent, the variance of the total degradation is the sum of the variances of the branches \(\text{Var}(X^*_t(t))\) and the variance of the first degraded unit \(\text{Var}(X^*_0(t))\) as shown in Eq. (F.27)

\[
\text{Var}(X^*_t(t)) = \text{Var}(X^*_t(t)) + \text{Var}(X^*_0(t)) \\
= \frac{1}{3} \mu^2 \lambda t^3 + \frac{1}{2} \sigma^2 \lambda t^2 + \sigma t
\]

\[(F.27)\]

Q.E.D.
The MRL as shown in Eq. (4.18) in Chapter 4 is derived as follows. According to Eq. (F.9), for a general degradation process whose mean function and variance function of a branch in \((t, t + dt) \) is \(\mu dt \), the expectation of the total degradation increment in \((t, t_r) \) is

\[
E(X^r(t_r, t_r, n(t))) = \mu(n(t) + 1)(t_r - t) + \sum_{n=1}^{n_o-n(t)} \left(g(n|t_r - t_r) \sum_{i=1}^{n+1-i} \frac{n+1-i}{n+1} \frac{(t-t_i)^{n+1}}{(t_r-t_i)^n} \right)
\]

\[
= \mu(n(t) + 1)(t_r - t) + \frac{\mu}{2g(0|t-t_i)} \sum_{n=1}^{n_o-n(t)} \left(g(n|t_r - t_i) \frac{(t-t_i)^{n+1}}{(t_r-t_i)^n} \right)
\]

According to Eq. (F.28), the MRL is

\[
MRL = \inf \left\{ t_r : \mu(n(t) + 1)(t_r - t) + \frac{\mu}{2g(0|t-t_i)} \sum_{n=1}^{n_o-n(t)} \left(g(n|t_r - t_i) \frac{(t-t_i)^{n+1}}{(t_r-t_i)^n} \right) = c - \mu(t) \right\}
\]

Q.E.D.

F.6 The Mean and Variance of the Branches where Time to Branch Follows an Exponential Distribution

We prove Eq. (4.19) in Chapter 4 by induction. First, we prove that it holds when \(i = 1 \).

The expectation of the degradation of the first branch can be obtained according to Eq. (F.30) as follows:
\[
E(X_i(t)) = \int_0^t f(\tau_i)E(X_i(t-\tau_i))d\tau_i
\]
\[
= \mu \left(t \int_0^t e^{-\lambda \tau} d\tau_i - \lambda \int_0^t e^{-\lambda \tau_i} d\tau_i \right)
\]
\[
= \mu \left(t \left(1 - e^{-\lambda t} \right) - \frac{1 - (\lambda t + 1) e^{-\lambda t}}{\lambda} \right)
\]
\[
= \mu \left(t - \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right)
\]

The result is the same as that obtained with Eq. (4.19) as follows

\[
E(X_i^*(t)) = \mu \left(t - \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right)
\]

(F.31)

Second, assume that Eq. (4.19) holds for \(i = n\), we prove that it also holds for \(i = n+1\).

According to Eq. (4.19)

\[
E(X_n^*(t)) = \int_0^t \cdots \int_0^{\sum_{j=1}^n \tau_j} f(\tau_1) \cdots f(\tau_n) E(X_n(t - \sum_{j=1}^n \tau_j)) d\tau_n \cdots d\tau_1
\]
\[
= \mu \int_0^t \cdots \int_0^{\sum_{j=1}^n \tau_j} f(\tau_1) \cdots f(\tau_n) \left(t - \sum_{j=1}^n \tau_j \right) d\tau_n \cdots d\tau_1
\]
\[
= \mu \sum_{j=0}^{n-1} \left(\frac{n-j}{j!} t^j \lambda^{j+1} \right) e^{-\lambda t}
\]

(F.32)

According to the last two steps in Eq. (F.32), we have
\[
\int_0^{t-\sum_{j=1}^{n+1}} \cdots \int_0^{t-\sum_{j=1}^{n+1}} f(\tau_1) \cdots f(\tau_n) \left(t - \sum_{j=1}^{n+1} \tau_j \right) d\tau_n \cdots d\tau_1 \\
= \left(\left(t - \frac{n}{\lambda} \right) + \left(\sum_{j=0}^{n+1} \frac{(n-j)!}{j!} t^j \lambda^{j-1} \right) e^{-\lambda t} \right)
\]

Let \(k = j + 1 \) and \(t = t - \tau_1 \) where \(\tau_1 \) is a constant, we have

\[
\int_0^{t-\sum_{k=2}^{n+1}} \cdots \int_0^{t-\sum_{k=2}^{n+1}} f(\tau_2) \cdots f(\tau_{n+1}) \left(t - \tau_1 - \sum_{k=2}^{n+1} \tau_k \right) d\tau_{n+1} \cdots d\tau_2 \\
= \left(\left(t - \tau_1 - \frac{n}{\lambda} \right) + \left(\sum_{k=0}^{n+1} \frac{(n-k)}{k!} (t - \tau_1)^k \lambda^{k-1} \right) e^{-\lambda(t-\tau_1)} \right)
\]

According to Eqs. (4.9) and (F.34), the expectation of the \(n+1^{th} \) branch is derived as follows:
\[E(X^*_{n+1}(t)) = \int_{-\infty}^{t} \cdots \int_{0}^{t} f(\tau_1) \cdots f(\tau_{n+1}) g_{n+1}\left(x \mid t - \sum_{j=1}^{n+1} \tau_j \right) dx \, d\tau_{n+1} \cdots d\tau_1 \]

\[= \int_{0}^{t} \cdots \int_{0}^{t} f(\tau_1) \cdots f(\tau_{n+1}) \mu \left(t - \sum_{j=1}^{n+1} \tau_j \right) d\tau_{n+1} \cdots d\tau_1 \]

\[= \mu \int_{0}^{t} f(\tau_1) \int_{0}^{t} \cdots \int_{0}^{t} f(\tau_2) \cdots f(\tau_{n+1}) \left(t - \sum_{j=1}^{n+1} \tau_j \right) d\tau_{n+1} \cdots d\tau_2 d\tau_1 \]

\[= \mu \int_{0}^{t} f(\tau_1) \left(t - \tau_1 - \frac{n}{\lambda} \right) + \left(\sum_{j=0}^{n-1} \frac{(n-j)}{j!} (t - \tau_1)^j \lambda^{j-1} e^{-\lambda(t-\tau_1)} \right) d\tau_1 \]

\[= \mu \left(t e^{-\lambda t} - \frac{n+1}{\lambda} - t e^{-\lambda t} - \frac{n+1}{\lambda} e^{-\lambda t} \right) + \lambda e^{-\lambda t} \sum_{j=0}^{n-1} \frac{(n-j)}{j!} \lambda^{j-1} \frac{(t-\tau_1)^{j+1}}{j+1} \]

\[= \mu \left(t - \frac{n+1}{\lambda} \right) + \frac{n+1}{\lambda} e^{-\lambda t} + \lambda e^{-\lambda t} \sum_{j=0}^{n-1} \frac{(n-j)}{j!} \lambda^{j-1} t^{j+1} \right) \]

\[= \mu \left(t - \frac{n+1}{\lambda} \right) + \lambda e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(n-k+1)}{k!} \lambda^{k-2} t^k \]

\[= \mu \left(t - \frac{n+1}{\lambda} \right) + \lambda e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(n-k+1)}{k!} \lambda^{k-2} t^k \]

which is the same as the result obtained with Eq. (4.19) when \(i = n+1 \).
Q.E.D.

We prove Eq. (4.20) by induction. First, we show that it holds when \(i = 1 \). Given \(\{ \tau_j \} \) are known, the conditional variance of branch \(i \) is

\[
\text{Var}\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) = \sigma^2 \left(t - \sum_{j=1}^{i} \tau_j \right)
\]

Then

\[
E\left(X_i^2 \left(t - \sum_{j=1}^{i} \tau_j \right) \right) = \text{Var}\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) + \left(E\left(X_i \left(t - \sum_{j=1}^{i} \tau_j \right) \right) \right)^2
\]

\[
= \sigma^2 \left(t - \sum_{j=1}^{i} \tau_j \right) + \mu^2 \left(t - \sum_{j=1}^{i} \tau_j \right)^2 \quad (F.37)
\]

When \(i = 1 \), the variance of the degradation of the first branch can be obtained as follows:

\[
\text{Var}(X_1^*(t)) = E\left(\left(X_1^*(t) \right)^2 \right) - \left(E\left(X_1^*(t) \right) \right)^2
\]

\[
= \int_0^\infty \lambda e^{-\lambda t} \left(\sigma^2 (t - \tau_1) + \mu^2 (t - \tau_1)^2 \right) d\tau_1 - \mu^2 \left(t - \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right)^2
\]

\[
= \frac{1}{\lambda^3} \left(\lambda^2 \mu^2 t^2 + \left(\lambda^2 \sigma^2 - 2\lambda \mu^2 \right) t + (1-e^{-\lambda t}) \left(2\mu^2 - \lambda \sigma^2 \right) \right) - \mu^2 \left(t - \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right)^2 \quad (F.38)
\]

\[
= \frac{\mu^2}{\lambda^2} \left(\lambda^2 t^2 - 2\lambda t + (1+1)1-e^{-\lambda t} \frac{1-0}{0!} \lambda^0 \right) + \sigma^2 \left(t - \frac{1}{\lambda} + \frac{(1-0)1}{0!} \lambda^{-1} e^{-\lambda t} \right) - \mu^2 \left(t - \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right)^2
\]
The variance of the first branch obtained with Eq. (F.38) is the same as that obtained with Eq. (4.20). The first step of the proof is done. In the second step, we prove that if Eq. (4.20) holds for the \(n \)th branch, it also holds for the \(n+1 \)th branch. As

\[
\text{Var} \left(X_n^* (t) \right) = E \left(\left(X_n^* (t) \right)^2 \right) - \left(E \left(X_n^* (t) \right) \right)^2
\]

\[
= \int \cdots \int_{t=0}^{\tau_j} f (\tau_1) \cdots f (\tau_n) \left(\sigma^2 \left(t - \sum_{j=1}^{n} \tau_j \right) + \mu^2 \left(t - \sum_{j=1}^{n} \tau_j \right)^2 \right) d\tau_n \cdots d\tau_1
\]

\[
= \int \cdots \int_{t=0}^{\tau_j} f (\tau_1) \cdots f (\tau_n) \left(\mu^2 \left(t - \sum_{j=1}^{n} \tau_j \right)^2 \right) d\tau_n \cdots d\tau_1
\]

\[
+ \int \cdots \int_{t=0}^{\tau_j} f (\tau_1) \cdots f (\tau_n) \left(\sigma^2 \left(t - \sum_{j=1}^{n} \tau_j \right) \right) d\tau_n \cdots d\tau_1
\]

\[
= \frac{\mu^2}{\lambda^2} \left(\lambda^2 t^2 - 2i\lambda t + (i+1)i - e^{-\lambda t} \sum_{j=0}^{i-1} \frac{(i-j+1)(i-j)}{j!} \lambda^j \right) + \sigma^2 \left(\left(t - \frac{n}{\lambda} \right) + \sum_{j=0}^{i-1} \frac{(n-j)}{j!} \lambda^j e^{-\lambda t} \right) - \left(\mu \left(t - \frac{n}{\lambda} \right) + \sum_{j=0}^{i-1} \frac{(n-j)}{j!} \lambda^j e^{-\lambda t} \right)^2
\]

\[(F.39)\]

From the last two steps of Eq. (F.39), we know that

\[
\int \cdots \int_{t=0}^{\tau_j} f (\tau_1) \cdots f (\tau_n) \left(t - \sum_{j=1}^{n} \tau_j \right)^2 d\tau_n \cdots d\tau_1
\]

\[
= \frac{1}{\lambda^2} \left(\lambda^2 t^2 - 2i\lambda t + (i+1)i - e^{-\lambda t} \sum_{j=0}^{i-1} \frac{(i-j+1)(i-j)}{j!} \lambda^j \right)
\]

\[(F.40)\]
Let $k = j + 1$, $t = t - \tau_1$, where τ_1 is a constant, we have

$$\int_0^{t-\tau_1} \cdots \int_0^{t-\tau_1} f(\tau_1) \cdots f(\tau_{n+1}) \left(t - \tau_1 - \sum_{j=2}^{n+1} \tau_j \right)^2 d\tau_{n+1} \cdots d\tau_2$$

$$= \frac{1}{\lambda^2} \left(\lambda^2 (t - \tau_1)^2 - 2n\lambda (t - \tau_1) + (n+1)n \sum_{j=0}^{n-1} (t - \tau_1)^j \left(\frac{(n-j)(n-j)}{j!} \right) \right)$$

(Eq. 4.1)

Then we obtain Eq. (F.42) as follows:

$$E \left(\left(X_{n+1}^* (t) \right)^2 \right) = \int_0^{t-\tau_1} \cdots \int_0^{t-\tau_1} f(\tau_1) \cdots f(\tau_{n+1}) E \left(X_{n+1}^2 \left(t - \sum_{j=1}^{n+1} \tau_j \right) \right) d\tau_{n+1} \cdots d\tau_1$$

$$= \mu^2 \int_0^{t-\tau_1} \cdots \int_0^{t-\tau_1} f(\tau_1) \cdots f(\tau_{n+1}) \left(t - \sum_{j=1}^{n+1} \tau_j \right)^2 d\tau_{n+1} \cdots d\tau_1$$

(F.42)

where B can be decomposed into B_1 and B_2 as follows:
\[
B = \int_0^t f(\tau_i) \left[(\lambda^2 (t - \tau_i)^2 - 2n\lambda (t - \tau_i) + (n+1)n \right] d\tau_i \\
- \int_0^t f(\tau_i) \left[e^{-\lambda(t - \tau_i)} \sum_{j=0}^{n-1} (t - \tau_i)^j \left(\frac{(n-j+1)(n-j)}{j!} \lambda^j \right) \right] d\tau_i
\]

where

\[
B_1 = \int_0^t f(\tau_i) \left[(\lambda^2 (t - \tau_i)^2 - 2n\lambda (t - \tau_i) + (n+1)n \right] d\tau_i \\
= \int_0^t \lambda e^{-\lambda t} \lambda^2 (t - \tau_i)^2 d\tau_i - \int_0^t \lambda e^{-\lambda t} 2n\lambda (t - \tau_i) d\tau_i + \int_0^t \lambda e^{-\lambda t} (n+1)n d\tau_i \\
= (\lambda^2 t^2 - 2\lambda t + 2 - 2e^{-\lambda t}) - (2ne^{-\lambda t} + 2n\lambda t - 2n) + (n(n+1) - n(n+1)e^{-\lambda t}) \\
= \lambda^2 t^2 - 2(n+1)\lambda t + (n+1)(n+2) - e^{-\lambda t} (n+1)(n+2)
\]

\[
B_2 = \int_0^t f(\tau_i) \left[e^{-\lambda(t - \tau_i)} \sum_{j=0}^{n-1} (t - \tau_i)^j \left(\frac{(n-j+1)(n-j)}{j!} \lambda^j \right) \right] d\tau_i \\
= \lambda e^{-\lambda t} \int_0^t \left[\sum_{j=0}^{n-1} (t - \tau_i)^j \left(\frac{(n-j+1)(n-j)}{j!} \lambda^j \right) \right] d\tau_i \\
= e^{-\lambda t} \sum_{j=0}^{n-1} \left[\frac{-(t-\tau_i)^j}{j+1} \right]_0^t \left(\frac{(n-j+1)(n-j)}{j!} \lambda^j \right) \\
= e^{-\lambda t} \sum_{j=0}^{n-1} \frac{t^{j+1}}{j+1} \left(\frac{(n-j+1)(n-j)}{j!} \lambda^j \right) \\
= e^{-\lambda t} \sum_{j=0}^{n-1} \frac{(n-j+1)(n-j)}{(j+1)!} t^{j+1} \lambda^j
\]

Let \(k = j + 1 \), Eq. (F.45) changes to

\[
B_2 = e^{-\lambda t} \sum_{k=1}^{n} \frac{(n-k+2)(n-k+1)}{k!} t^k \lambda^k
\]

Similarly,
\[A = \int_0^t f(\tau_j)(t - \tau_j - \frac{n}{\lambda}) d\tau_j + \int_0^t f(\tau_j) \left(\sum_{j=0}^{n-1} \frac{(n-j)}{j!} (t - \tau_j)^j \lambda^{j-1} \right) e^{-\lambda(t-\tau_j)} d\tau_j \]
\[= \mu \left[\left(t - \frac{n+1}{\lambda} \right) + \frac{n+1}{\lambda} e^{-\lambda t} + \lambda e^{-\lambda t} \sum_{j=0}^{n-1} \frac{(n-j)}{(j+1)!} \lambda^{j-1} t^{j+1} \right] \]

(F.47)

Then we get

\[\text{Var}(X_{n+1}^*(t)) = E\left(\left[X_{n+1}^*(t) \right]^2 \right) - E^2 \left(X_{n+1}^*(t) \right) \]
\[= \sigma^2 \left(\left(t - \frac{n+1}{\lambda_b} \right) + \lambda e^{-\lambda t} \sum_{k=0}^{n} \frac{(n-k+1)}{k!} \lambda^{k-2} t^k \right) \]
\[+ \frac{\mu^2}{\lambda^2} \left(\lambda^2 t^2 - 2(n+1) \lambda t + (n+1)(n+2) \right) + \frac{\sigma^2}{\lambda^2} \left(\sum_{k=0}^{n} \frac{(n-k+2)(n-k+1)}{k!} t^k \lambda^k \right) \]
\[- \left(\mu \left(\left(t - \frac{n+1}{\lambda} \right) + \sum_{j=0}^{n} \frac{(n+1-j)}{j!} \lambda^{j-1} e^{-\lambda t} \right) \right)^2 \]

(F.48)

Which is the same as the result obtained with Eq. (4.20) when \(i = n+1 \).

Q.E.D.
APPENDIX G MODIFIED K NEAREST NEIGBOUR IMPUTATION

In this section, we describe a non-parametric data interpolation approach modified from the k nearest neighbor imputation (kNNI) model (Batista et al., 2003). Suppose that the degradation dataset that includes observations from all the N sensors is complete until time t_τ. The first missing data is noticed at time $t_{\tau+1}$. Suppose the first missing data among the N sensors (by sensor index) appears from sensor i. The interpolation procedures are as follows:

1) In each time instant t_κ, $1 \leq \kappa \leq \tau$, assign the N observations \(\left\{ d_u(t_\kappa) \right\}, 1 \leq u \leq N \) into k clusters using k-means clustering algorithm. At each time instant, we index the clusters by the rank of its centroid from 1 to k. For example, cluster 1 corresponds to the cluster that has the smallest centroid while cluster k corresponds to the cluster that has the largest centroid. For each sensor u, where $1 \leq u \leq N$, we have a cluster membership sequence as \(\left\{ C_u(t_k) \right\}, 1 \leq \kappa \leq \tau \). $C_u(t_k)$ takes one of the values from \(\{1, \ldots, k\} \).

2) For each $1 \leq \kappa \leq \tau$, compare \(\left\{ C_u(t_\kappa) \right\}, 1 \leq u \leq N, u \neq i \) with $C_i(t_\kappa)$, obtain the indicator matrix

\[
M_u(t_\kappa) = \begin{cases}
0 & \text{if } C_u(t_\kappa) \neq C_i(t_\kappa) \\
1 & \text{if } C_u(t_\kappa) = C_i(t_\kappa)
\end{cases}.
\]

3) Calculate the similarity score of each sensor $S_u(t_{\tau+1}), 1 \leq u \leq N$ at time $t_{\tau+1}$ with the following formula
\[S_u(t_{r+1}) = \sum_{\kappa=1}^{\tau} e(t_{\kappa})M_u(t_{\kappa}) \]

where \(\{e(t_{\kappa})\}, 1 \leq \kappa \leq \tau \) are the weights of the similarity scores that follow a geometric series as

\[e(t_{\kappa}) = e(t_1)q^{\kappa-1} \]

where \(q \) satisfies

\[e(t_1)q^{\kappa-1} - e(t_1) - q + 1 = 0 \]

The weights place higher importance on the recent cluster membership as the missing data is considered to be more closely related to recent measurements.

4) Take the mean of the similarity scores of the sensors in each of the \(k \) clusters at time \(t_{r+1} \). Take the centroid of the cluster that has the largest mean similarity score at time \(t_{r+1} \) as the interpolated data, which is denoted as \(d_i^*(t_{r+1}) \).

5) Treat the interpolated data \(d_i^*(t_{r+1}) \) as observed value. Interpolate other missing values with the same procedures until there is no more missing data.
APPENDIX H IMPUTATION WITH BOOTSTRAP

In this section, we describe a set of degradation data interpolation approaches modified from the previous work of the authors based on bootstrap (Guo et al., 2018). Bootstrap has been used primarily to obtain confidence intervals of statistical parameters. The general approach is to assume that the degradation increments are independent and identically distributed (i.i.d.), and approximate the distribution F of $\Delta d(t)$ by the empirical distribution F^* of the observed $\Delta d(t)$. If we observe a sufficiently large sample, F^* is then a reasonable approximation of F. Three scenarios are investigated and the corresponding missing degradation data interpolation models are proposed accordingly.

H.1 Degradation Increments are i.i.d.

If the degradation increments are approximately i.i.d., we propose to interpolate the missing degradation increments by bootstrapping the observed degradation increments.

Suppose sensor i has missing data. The specific interpolation procedures are as follows:

1) Suppose we have an observed degradation dataset for sensor i as $\{d_i(t_j)\}$, $t_j \in A$, where A is the set of time indexes of non-missing observations. For simplicity, we define $\{\Delta d_i(t_j) = d_i(t_{j+1}) - d_i(t_j)\}$, $t_j \in A$ as the set of the corresponding degradation increments. $\Delta d_i(t_j)$ is the increment corresponding
to the starting degradation \(d_i(t_j)\). Let \(\Delta d_i = \{\Delta d_i(t)\}, t \in A\). Because the missing data starts at time \(t_{r+1}\), set \(j = 1\).

2) Randomly draw a sample data \(\Delta d_i^* (t_{r+1+j})\) from set \(\Delta d\), the interpolated missing data at time \(t_{r+j}\) is \(d_i^*(t_{r+j}) = \Delta d_i^* (t_{r+1+j}) + d_i^*(t_{r-1+j})\).

3) Treat the interpolated data at observed data. Let \(j = j+1\), repeat (2) until all missing data have been interpolated.

4) Follow the same procedures, interpolate other missing data.

H.2 Residuals are Approximately i.i.d.

The method described in section 1 assumes that the degradation increments \(\{d_i(t_j)\}, t_j \in A\) are i.i.d. However, \(\{d_i(t_j)\}, t_j \in A\) may not always be i.i.d., because the mean or variance of \(\{d_i(t_j)\}, t_j \in A\) may change with time. In this section we are interested in the case where future degradation increments are dependent on current degradation states. The basic approach is that \(\{\Delta d_i(t_j)\}, t_j \in A\) are first transformed into an i.i.d. sequence, which can then be resampled and inversely transformed to produce the new \(\Delta d_i^*(t_j)\) sequence. More specifically, the increments are first fitted with a linear function of the degradation states. If the residuals i.i.d., they are then resampled and the interpolated increments are obtained accordingly. The procedures are as follows:
1) Suppose we have an observed degradation dataset of sensor i as
\[\{d_i(t_j)\}, \quad t_j \in A, \]
where A is the set of the time indexes of the non-missing observations. \(\{\Delta d_i(t_j) = d_i(t_{j+1}) - d_i(t_j)\}\), $t_j \in A$ is the set of the corresponding degradation increments. Use the degradation increments to fit the linear model:
\[\Delta d_i(t_j) = \beta_0 + \beta_1 d_i(t_j) + \varepsilon_i(t_j), \quad t_j \in A \]
and obtain the estimate of the parameters \(\hat{\beta} = \{\hat{\beta}_0, \hat{\beta}_1\}\). Check if the residuals \(\{\varepsilon_i(t_j)\}\), $t_j \in A$ are i.i.d. If the residuals \(\{\varepsilon_i(t_j)\}\), $t_j \in A$ are identically distributed and independent of \(\{d_i(t_j)\}\), $t_j \in A$, let \(\varepsilon_i = \{\varepsilon_i(t_j)\}, \quad t_j \in A\). Because the missing data starts at time t_{r+1}, let $j = 1$.

2) Randomly draw a sample data $\varepsilon_i^*(t_{r+1+j})$ from the set ε_i, the corresponding interpolated missing data increment in (t_{r+1+j}, t_{r+j}) is
\[\Delta d_i^*(t_{r+1+j}) = \hat{\beta}_0 + \hat{\beta}_1 d_i^*(t_{r+1+j}) + \varepsilon_i^*(t_{r+1+j}). \]

3) The interpolated missing data at time t_{r+j} is $d_i^*(t_{r+j}) = \Delta d_i^*(t_{r+1+j}) + d_i^*(t_{r+1+j})$.

4) Treat interpolated data at observed data. Let $j = j+1$, repeat (2) (3) until all the missing data have been interpolated.

H.3 Residuals are Non-i.i.d.

In many cases, the residuals are not i.i.d., e.g., they are dependent on \(\{d_i(t_j)\}\), $t_j \in A$.

Transformations of the residuals to i.i.d. values are required such that the bootstrap method can be effectively used. Common transformations include taking logarithms of the
residuals, squares of the residuals and roots of the residuals. Without loss of generality, we use square root transformation as an example to illustrate the procedures of interpolating the missing observations.

1) Suppose we have an observed degradation dataset \(\{d_i(t_j)\} \), \(t_j \in A \), where \(A \) is the set of the time indexes of non-missing observations. \(\{\Delta d(t_j) = d_i(t_{j+1}) - d_i(t_j)\} \), \(t_j \in A \) is the set of the corresponding degradation increments. Use the degradation increments to fit the linear model:

\[
\Delta d_i(t_j) = \beta_0 + \beta_1 d_i(t_j) + e_i(t_j), \quad t_j \in A
\]

and obtain the estimates of the parameters \(\hat{\beta} = \{\hat{\beta}_0, \hat{\beta}_1\} \). When the residuals \(e_i = \{e_i(t_j)\} \), \(t_j \in A \) are dependent on \(\{d_i(t_j)\}, t_j \in A \), the absolute values of the residuals as well as the preceding degradation states are transformed by taking the square roots. The transformed values are used to fit the linear model

\[
\sqrt{\text{abs}(e_i(t_j))} = c_0 + c_1 \sqrt{d_i(t_j)} + \zeta_i(t_j), \quad t_j \in A
\]

and estimate the parameters \(\hat{c} = \{\hat{c}_0, \hat{c}_1\} \), where

\[
E\left(\sqrt{\text{abs}(e_i(t_j))}\right) = c_0 + c_1 \sqrt{d_i(t_j)}, \quad t_j \in A.
\]

Let

\[
\left\{\frac{1}{E\left(\sqrt{\text{abs}(e_i(t_j))}\right)}\right\}, \quad t_j \in A
\]

be the set of weights, update \(\hat{\beta} = \{\hat{\beta}_0, \hat{\beta}_1\} \) with weighted least square model. Now

\[
\omega_i(t_j) = \frac{\sqrt{\text{abs}(e_i(t_j))}}{E\left(\sqrt{\text{abs}(e_i(t_j))}\right)} = \frac{\text{abs}(e_i(t_j))}{\hat{c}_0 + \hat{c}_1 \sqrt{d_i(t_j)}}, \quad t_j \in A
\]

are approximately i.i.d. The
normalized residuals are denoted as a dataset vector \(\omega_i = \{ \omega_j(t_j) \} \), \(t_j \in A \). The missing data starts at time \(t_{t+1} \). Set \(j = 1 \).

2) Randomly draw a sample data \(\omega_i(t_{t-1+j}) \) from set \(\omega_i \), the corresponding interpolated missing data increment in \((t_{t-1+j}, t_{t+j}) \) is

\[
\Delta d_i^*(t_{t-1+j}) = \hat{\beta}_0 + \hat{\beta}_1d_i(t_{t-1+j}) + s\left(\omega_i(t_{t-1+j}) \left\{ \hat{c}_0 + \hat{c}_1\sqrt{d_i(t_{t-1+j})} \right\}^2 \right),
\]

where \(s \) is a number randomly generated from the set \(\{-1, 1\} \).

3) The interpolated missing data at time \(t_{t+j} \) is \(d_i^*(t_{t+j}) = \Delta d_i^*(t_{t-1+j}) + d_i^*(t_{t-1+j}) \).

Treat the interpolated data as observed data. Let \(j = j + 1 \), repeat (2) (3) until all the missing data have been interpolated.
REFERENCES

SZKLARSKA-SMIALOWSKA, Z. and ZS-SMIALOWSKA 2005. Pitting and crevice corrosion, NACE International Houston, TX.

WOThKE, W. 2000. Longitudinal and multigroup modeling with missing data.

YATES, F. 1933. The analysis of replicated experiments when the field results are incomplete. Empire Journal of Experimental Agriculture, 1, 129-142.

