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1 ABSTRACT OF THE DISSERTATION 

 

RELIABILITY ESTIMATION AND STOCHASTIC MODELING OF  

CORROSION GROWTH 

By CHANGXI WANG  

Dissertation Director:  

Elsayed A. Elsayed 

 

Corrosion and corrosion-related problems are the major factors leading to the age-

related structural degradation of infrastructures such as pipelines and pressure vessels. 

Corrosion defects may result in severe damages such as thickness penetration, fatigue 

cracks, brittle fracture, rupture and burst. Quantifying the growth of corrosion is 

critically important for the risk and reliability analysis of structures, planning for 

corrosion mitigation, repairs and determination of time intervals for the corrosion 

inspections and monitoring.  

 

Pitting corrosion growth has been a focus of research, and a depth threshold of corrosion 

defect has been widely used for estimating the residual life of structures being 

monitored. However, corrosion volume loss of materials may also lead to failures such 

as pipeline bursts, which is more harmful but overlooked. In this dissertation, we 

develop a degradation model that characterizes both corrosion maximum depth growth, 
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corrosion volume growth and corrosion propagation. We propose an improved inverse 

Gaussian (IIG) process to model the corrosion depth growth and demonstrate that it 

captures the dependency between the corrosion growth rate and the corrosion depth. 

We develop a corrosion pit volume growth model assuming that both the corrosion pit 

growth in the depth directions and radial directions follow IIG processes. Compared 

with other existing corrosion models, the proposed model captures the phenomenon 

where a critical amount of volume loss of materials leads to the failure of a component 

even though the corrosion defect’s depth has not reached its failure threshold. A 

physics-based model that incorporates factors including the spatial and size 

distributions of the material particles and the influence of corroded pits is developed to 

capture the corrosion propagation. 

 

Degradation branching stochastic models are developed to describe the corrosion pit 

propagation. They are general models and can be applied to cracks in materials and 

systems that consist of multiple units where the degradation of one unit may affect 

adjacent units and the failure occurs when the total degradation reaches an unacceptable 

amount. The models capture the phenomenon that a growing degradation branch may 

initiate new branches when a certain criterion is met, where the criterion may be a 

branch’s degradation amount threshold or other physical processes. The effect of the 

random branching angles and the random number of branches initiated in each 

branching on the total degradation is investigated, where the physics-based models are 
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proposed to describe the relationship between the branching angles and the total 

degradation. The branching continues until the total degradation of all the branches 

reaches a threshold. Statistics of the degradation branching processes such as the mean 

and the variance of the total degradation, the expected number of branches initiated, the 

reliability and distribution of residual life are obtained. 

 

The measurements of corrosion growth are continuously monitored and recorded. The 

rapid development of sensing and computing technologies has enabled the use of 

multiple sensors to monitor the degradation indicator (or its surrogate) of a component 

simultaneously. However, there are challenges in integrating the measurements from 

multiple sensors. First, missing data arises due to data transmission failures and 

manipulation errors. We propose a variety of stochastic bridges to deal with the missing 

data. Second, different sensors may capture different aspects of the degradation process 

and may be sensitive in different stages of the degradation process. We propose a non-

parametric model that assigns a sensor’s weight (contribution) based on its performance 

in the previous time instants. It utilizes a moving time window to determine the 

switching of the sensors between clusters with time so that the weights are adjusted 

accordingly. The advantage of the proposed approach is that no specific distribution of 

degradation data or underlying degradation models are required.  
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1 CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 The Motivations of the Research 

Infrastructures are susceptible to degradation throughout their service lives. Corrosion is 

one of the most common degradation forms. It is a major threat to the structural integrity 

and safe operation of infrastructures throughout the world. Due to the severe impact of 

corrosion defects, various reliability estimation models and corrosion management 

methods have been studied (Morcillo et al., 2013). The most popular models are the 

corrosion pit depth growth models. An extensive review of the literature reveals stochastic 

modeling of the corrosion growth is limited (Ghosh et al., 2007). 

 

Field data (Hu et al., 2016, Valor et al., 2013) reveals that the corrosion growth rate 

decreases as corrosion progresses. It is generally accepted that the rust layer, which mainly 

consists of the produced reaction products, stops water and air from contacting new metal 

and decreases corrosion rate. No model captures the dependency between the corrosion 

growth rate and the corrosion layers, as well as the measurements’ uncertainties.  

 

As corrosion progresses, corrosion pit grows larger both in radial and depth directions. At 

the same time, the corresponding corrosion pit’s volume increases, which decreases the 
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remaining strength of the structures. While current research mainly focuses on modeling 

the structural failures caused by corrosion pit depth growth, there is little work on modeling 

the structural failures induced by corrosion pit volume growth. There are cases where 

shallow pits lead to failures. Therefore, it is necessary to model the pit volume growth to 

accurately predict a structure’s failure time and its residual life.  

 

The corrosion growth rate is significantly affected by the environmental stresses, which 

include temperature, relative humidity and the pH  levels (Guedes Soares et al., 2011). 

As has been shown by Hughes et al. (2016), there is an inherent relationship between the 

underlying levels of stresses and the corrosion electric current, which can be interpreted as 

the corrosion rate. Therefore, the effect of environmental stresses needs to be accurately 

incorporated into the corrosion growth model. 

 

The corrosion degradation measurements are susceptible to errors, missing observations, 

noises and biases (Huang et al., 2009, Seem, 2007). With the advancement of sensing 

technology, more sensors that monitor different degradation indicators are readily available. 

By employing multiple sensors, more accurate information can be obtained since they 

portray different perspectives of the underlying degradation process. Meanwhile, the joint 

behavior of different sensors has not been investigated. Moreover, due to sensor failures 

and human errors, missing data may occur in the data acquisition process. Therefore, 
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appropriate data imputation approaches and data integration approaches need to be 

investigated. These problems are the subject of investigation of this dissertation. 

 

1.2 Problem Definition 

1.2.1 Stochastic Modeling of Corrosion Growth 

1.2.1.1 Stochastic Modeling of Corrosion Depth Growth 

After a corrosion pit is initiated at micro-particles in the metal matrix (Trzaskoma, 1990), 

it begins to grow both in the radial and depth directions. The corrosion growth rates in these 

directions are not deterministic. This is due to the uncertainties of material microstructure, 

physical constitution and other environmental factors. For example, the non-uniformity of 

constituents that compose the steel alloy may lead to an inhomogeneous metal dissolution 

rate (corrosion growth rate) in different locations of the alloy. The non-homogeneous 

microstructure of the metal around the welds may also lead to various corrosion growth 

rates.  

 

The environmental stresses, which include the relative humidity, the temperature and the 

levels significantly influence the corrosion growth rate (Soares et al., 2009). 

According to the corrosion kinetics, the stresses affect the corrosion growth rate by 

changing the corrosion chemical reaction current (Hughes et al., 2016). However, physics-

pH
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based stress incorporation models are sparse. Meanwhile, it is widely observed that as 

corrosion progresses, the corrosion growth rate decreases (Murer et al., 2013, Vanaei et al., 

2017). This is mainly caused by the formation of corrosion rust layer, which prevents 

reagent such as water and air from corroding the uncorroded metal. This phenomenon may 

also be interpreted as that there is a relationship between the corrosion growth rate and the 

thickness of the corrosion layer. The literature is also sparse in addressing the phenomenon.  

 

1.2.1.2 Stochastic Modeling of Corrosion Volume Growth 

Critical corrosion pit depth has been used as a structural failure threshold for a long time 

(Al-Amin et al., 2016, Burstein et al., 2004). The structure fails when the maximum 

corrosion pit depth exceeds the threshold. However, there are cases where the corrosion pit 

with non-critical depth but a large volume of corrosion results in pipeline burst (Netto et 

al., 2005). Therefore, structure failures induced by corrosion pit volume growth should be 

carefully investigated as well.  

 

Challenges arise when dealing with this problem. First, the morphologies of the corrosion 

pits are highly stochastic and irregular (Horner et al., 2011, Kioumarsi et al., 2016, 

Trzaskoma, 1990), as shown in Figure 1.1 (Horner et al., 2011). We may observe that the 

corrosion propagates with different rates in all directions. It is inappropriate to assume that 
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the shape of a pit is a perfect smooth hemisphere or half ellipsoid as presented in (Kondo, 

1989, Yu et al., 2015) when estimating the pit volume growth. Second, the proposed 

corrosion pit volume growth model should be compatible with existing corrosion depth 

growth models. Third, there is a dependency between the corrosion depth growth rate of a 

location in the pit and its relative location to the center of the pit. The locations close to the 

center are likely to have large depth, while the locations close to the boundary of the pit 

are usually shallow. Moreover, the depth growth rates of the locations close to the center 

are similar to each other. Likewise, the growths in locations close to the boundary are 

similar.  

 

 

Figure 1.1 Three-dimensional X-ray micro-tomographic image of a corrosion pit by 

Horner et al. (2011) (notice the morphologies of the corrosion growth) 
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Corrosion pits may propagate to other areas of the material, leading to the initiation of new 

pits. Existing statistical methods on quantitatively modeling the propagation and volume 

growth of corrosion pits are sparse. The challenge lies in the following three aspects: first, 

the corrosion pits are related to the particles in the material. Second, the initiation 

probability of a particle is related to its size and the influence of its nearby pits. Third, 

nearby pits may coalesce and form larger pits, which have a larger impact on the reduction 

of the strength of materials. A comprehensive model that deals with the challenges 

mentioned above needs to be developed. 

 

1.2.2 Stochastic Modeling of Degradation Branching Processes 

Degradation branching is a common phenomenon in many real-life applications. The 

degradation of a location/unit not only increases with time but also propagates to other 

locations/units in the same system. While the degradation of an individual location/unit has 

been studied extensively, the research on degradation branching is sparse. A stochastic 

model that considers both degradation growth and degradation propagation is proposed in 

this dissertation. 

 



7 

 

 

1.2.3 Missing Data Interpolation 

Missing data have challenged researchers since the beginning of the field research. The 

challenge has been particularly acute for degradation monitoring, that is, research involving 

multiple time series on the same individuals. Missing data arise due to data transmission 

failure, human manipulation errors, etc. Data interpolation may replace the missing values 

with estimated values. Simple data interpolation methods include mean/mode substitution, 

nearest neighbor substitution (Graham, 2009) and others. However, they may lead to biased 

statistical estimates. Regression models are applied to interpolate missing values assuming 

the underlying true path is a linear function of time (Van Buuren, 2012). However, the 

regression models assume the residuals that represent the uncertainties follow a normal 

distribution, which is unrealistic. Better stochastic data interpolation models should be 

proposed to capture different types of missing data.  

 

1.2.4 Multiple Sensor Data Interpolation and Integration 

When multiple sensors are used to monitor the degradation process, we need a model to 

assign weights to the sensors and find the integrated measurement. However, potential 

challenges remain. First, due to sensor failures or human errors, observations may be 

missing. This may lead to inaccurate parameter estimates. Second, some of the sensors may 

be sensitive to different sizes or types of defects. For instance, the eddy current approach 
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presents more accurate measurements when defects are cracks and are located close to the 

surface. X-rays are sensitive to volumetric defects and ultrasound is sensitive to defects 

that are perpendicular to the ultrasound rays. Likewise, despite its accuracy, the 

metallographic microscope is only able to detect open defects. Third, as all sensors are 

monitoring the same defect, the measurements from different sensors are highly correlated. 

For example, there is a high probability that the ultrasonic signal and eddy current signal 

of a defect are both strong or weak.  

 

1.3 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter 2, we present a comprehensive 

literature review of the corrosion models, reliability metrics, missing data imputation 

approaches, data integration approaches and degradation branching models. In Chapter 3, 

we investigate the stochastic approaches to model the corrosion volume growth, as well as 

the influences of covariates and the propagation of corrosion. In Chapters 4 and 5, the 

degradation branching models are developed. In Chapter 6, missing degradation data 

imputation models using stochastic bridges and data integration approaches are proposed. 

In Chapter 7, we give conclusions and future research directions.  
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2 CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Literature Review on Degradation Models 

2.1.1 General Corrosion Concepts 

Corrosion occurs in several widely differing forms. Classification is usually based on one 

of the three factors (Davis, 2000): 

• Nature of the Corrodent: Corrosion can be “wet” or “dry.” The former usually 

requires a liquid or moisture; the latter usually involves reaction with high-temperature 

gases. 

• Corrosion Mechanisms: This involves either electrochemical or direct chemical 

reactions. 

• Corrosion Appearance: Corrosion is either uniform, and the metal corrodes at the 

same rate over the entire surface, or it is localized, in which case only small areas are 

affected. 

 

Classification by appearance, which is particularly useful in the failure analysis, is based 

on identifying forms of corrosion by visual observation with either the naked eyes or 

magnification. The morphology of the defects is the basis for classification. Figure 2.1 

schematically illustrates some of the most common forms of corrosion (Davis, 2000). Eight 
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forms of wet (aqueous) corrosion can be identified based on the appearance of the corroded 

metal. These are: 

• Pitting corrosion (Designation, 2009, Frankel, 1998, Hubbell et al., 1985) 

• Uniform corrosion (Schweitzer, 1983, Wranglén, 1985) 

• Crevice corrosion (Szklarska-Smialowska et al., 2005) 

• Galvanic corrosion (Oldfield, 1988) 

• Erosion corrosion (Kerr et al., 1958), including fretting corrosion 

• Intergranular corrosion (Lin et al., 1995) and exfoliation 

• Dealloying (Vukmirovic et al., 2002) 

• Environmentally assisted cracking, including stress-corrosion cracking, corrosion 

fatigue (Suresh et al., 1981) 

 

Figure 2.1 Schematics of the common forms of corrosion (Davis, 2000) 
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Amongst all types of corrosion, pitting is one of the most common and damaging forms of 

corrosion especially in marine and offshore structures. Pitting takes the form of cavities on 

the surface of a metal. It starts with the local breakdown of the protective surface film. It 

may cause the perforation of thin sections, as well as create stress concentrations that may 

trigger the onset of fatigue cracking or other types of corrosion. The damage is generally 

assumed to nucleate on the bare surface as a pit due to localized galvanic corrosion 

surrounding the exposed constituent particles in the alloy (Harlow et al., 1998). As the pit 

continues to grow, neighboring particles are exposed, and likewise, they are corroded and 

contribute to further pit growth. The corrosion of metals is generally due to an irreversible 

oxidation-reduction (redox) reaction between the metal and an oxidizing agent present in 

the environment: 

    metal oxidizing agent oxidized metal reducing agent+ → +   (2.1) 

For example, the corrosion of iron in the presence of hydrochloric acid is 

 2 22Fe HCl FeCl H+ → +   (2.2) 

In the aqueous phase, hydrochloric acid and ferrous chloride exist in ionic form. We can 

therefore also write Eq. (2.2) as:  

 
2

22 2 2Fe H Cl Fe Cl H+ − + −+ + → + +   (2.3) 
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In this case, the oxidizing agent is the solvated proton H +
. The products of the reaction 

are the solvated ferrous ion 
2Fe +

 and gaseous hydrogen 2H . Under neutral and alkaline 

conditions, the corrosion of metals is generally caused by a reaction of the metal with 

oxygen. For example, when exposed to air and humidity iron forms rust FeOOH  

(Landolt, 2007). 

 2 2 4Fe O H O FeOOH+ + →   (2.4) 

As the reaction proceeds, the produced rust accumulates and forms a layer preventing air 

and water vapor from contacting metal (Vanaei et al., 2017). As a result, the corrosion rate 

decreases as reaction proceeds and more corrosion products are produced.  

 

Because pitting corrosion is common and basic, in this dissertation we mainly discuss this 

type of corrosion. Corrosion may lead to thinning of walls, crack initiation (Ebara, 2007, 

Hu et al., 2016, Huang et al., 2013) and ultimately cause perforation, leakage, reduced 

strength and even burst of components (Cheng et al., 2012, Kioumarsi et al., 2016, Nakai 

et al., 2004, Otieno et al., 2008).  
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2.1.2 Physics-based Corrosion Degradation Models    

Following Hoeppner (1979), by assuming a hemispherical pit of radius r  and a constant 

bulk dissolution rate B , Kondo (1989) proposes that the pit volume increases 

proportionally to time t : 

 
32

3
r Bt =   (2.5) 

and hence  

 
1 3r t   (2.6) 

Harlow et al. (1995), Wei (2001) and Assoul et al. (2008) assume that a pit grows at a 

constant volumetric rate dV dt . In keeping with Kondo et al. (1989), they propose that 

 0 exp
p a

MI EdV

dt nF RT

 
= − 

 
  (2.7) 

where M  is the molecular weight of the material,   is the valence; F = 96514c/mol is 

Faraday’s constant,   is the density, aE
 
is the activation energy, R = 8.314 J/mol-K is 

the universal gas constant, T  is the absolute temperature, 
0pI

 
is the pitting current 

coefficient.  

 

Since the assumption of hemisphere shape is far too unrealistic, a reasonable approximation 

(Harlow et al., 1995) of the shape is one half of a prolate spheroid that has volume 

 
22

3
V ab=   (2.8) 
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where a  and b  are one-half the lengths of the major and minor axes. For a reaction 

where the activation overvoltage limits the rate, the relationship between the rate of 

reaction (expressed by a current density i ) and the driving force for the reaction, or 

potential E , is presented by the Butler-Volmer equation (Roberge, 2000):  

 
( )

0 exp
revnF E E

i i
RT

 − 
=  

 
  (2.9) 

where F  is the Faraday constant = 96,487 C/equivalent, n  is the charge on the ion in 

equivalents/mol, R  is the gas constant = 8.314 J/mol-K,   is the unitless charge 

transfer coefficient, revE
 
is the reversible potential where each of the half-reactions will 

be in equilibrium and 0i  is the reaction current in equilibrium. We will discuss the 

application of Eq. (2.9) on developing the stress incorporation models in Chapter 3. 

 

Despite the extensive study of physics-based corrosion models, their limitations are 

obvious. First, these models are difficult to obtain. Extensive experiments must be carried 

out based on strong knowledge of physics, chemistry and metallurgical properties of the 

components. Second, physics-based degradation models tend to result in less accurate 

prediction as field conditions are complicated. 
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2.1.3 Deterministic Corrosion Degradation Models    

Deterministic corrosion growth models are most frequently discussed among all existing 

models, which include power functions, logarithmic functions, linear functions and power-

linear functions.  

 

It is observed that pit-growth laws are of the form of power functions (Chookah, 2009, 

Goldstein, 1960, Kawai et al., 1985, Noor et al., 2011, Panchenko et al., 2016, Panchenko 

et al., 2014, Turnbull et al., 2006a, Turnbull et al., 2006b, Turnbull et al., 2004): 

 
nh bt=   (2.10) 

where h  is the maximum depth of a pit, t  is time, b  and n  are the parameters 

related to material-environment systems. The value of n  is nearly constant. b  changes 

wildly depending on the material-environmental system. Little information on b  is 

available but would be best determined by field data.  

 

The use of logarithmic functions to model the corrosion depth has also been investigated 

(de la Fuente et al., 2007, De la Fuente et al., 2011, Haynie et al., 1971, Ma et al., 2010, 

Morcillo et al., 1993, Syed, 2013): 

 log log logD A n t= +   (2.11) 
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where D  is the maximum depth, A  and n  are constant parameters, t  is time. The 

variation of n  indicates the degree of the corrosion process, 1n   indicates the 

corrosion acceleration process, whereas 1n   indicates the corrosion deceleration process.  

 

Linear functions, due to its simplicity, are investigated by Achterbosch et al. (2006) and 

Din et al. (2009): 

 0 1ˆ ˆy t = +   (2.12) 

where y  is the corrosion pit depth; 
0̂  and 

1̂  are parameters to be determined by 

field data.  

 

The bi-linear model (ISO, 1992) is proposed for the estimation of possible corrosion losses 

in each category of atmosphere corrosivity. In this model, the parabolic variation of 

corrosion losses during the first years until the onset of the stationary phase (up to 10 years) 

is replaced, in first approximation, by a linear increase of corrosion loss D  with an 

average rate of avr  . At the stationary stage after ten years, the corrosion process occurs at 

a constant rate linr . It should be noted that the annual gain in D  amounts to linr . The total 

corrosion loss D  is represented by the sum of corrosion losses over the first ten years and 

over a subsequent period when the stationary corrosion process has established: 

 ( )10av linD tr t r= + −   (2.13) 
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The metal corrosion loss under atmospheric conditions is also found to obey a power-linear 

function (ISO, 1992, Knotkova et al., 2010, McCuen et al., 1992, Morcillo et al., 2013, 

Panchenko, 2013, Panchenko et al., 2016, Panchenko et al., 2014): a power law at the 

initial stage assuming a parabolic increase in metal corrosion loss during the first ten years 

of exposure and a linear law for exposures longer than ten years. 

 ( )10 b

corrD t r t =   (2.14) 

 ( ) ( )( )110 10 10 10b b

corrD t r b t−  = + −
 

  (2.15) 

where D  is corrosion mass loss; corrr  means corrosion mass losses over the first year;  

b  is a coefficient characterizing the environment; t  is time. 

 

2.1.4 Stochastic Corrosion Degradation Models 

Deterministic models have been used extensively due to its simplicity. However, the 

underlying corrosion growth process is inherently stochastic and includes temporal and 

spatial variability (Stewart et al., 2008, Stewart et al., 2007). The uncertainties (e.g., 

measurement error, randomness associated with the corrosion growth and the material 

properties) are not incorporated in the deterministic models. Meanwhile, the deterministic 

models only present point estimators regarding the time to failure, which is unuseful in real 

life. Stochastic models are better alternatives under this condition. The stochastic 

degradation models in the literature can be categorized as random variable-based models 
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(Al-Amin et al., 2016, De Leon Escobedo et al., 2005, Meeker et al., 1998, Pandey et al., 

2005, Stewart et al., 2008, Velázquez et al., 2009, Zaman et al., 1994) and stochastic 

process-based models (Caleyo et al., 2009, Hong, 1999a, Hong, 1999b, Little et al., 2004, 

Maes et al., 2009, Morrison et al., 1992, Ossai et al., 2016, Provan et al., 1989, Qin et al., 

2003, Teixeira et al., 2008, Valor et al., 2007, Whiteside II, 2008, Zhou et al., 2012). The 

latter includes Markov Chains, Gamma process models, inverse Gaussian process models, 

Brownian motion models and geometrical Brownian motion models. 

 

A general degradation path is proposed by Meeker and Escobar (Meeker et al., 1998). The 

degradation of unit i  at time 
jt  is modeled as 

ij ij ijy Y = +   where 
ijY
 
 is the actual 

path and 
ij  is the residual deviation that follows a normal distribution with mean zero. 

Velázquez et al. (2009) investigate a multivariate regression model on modeling maximum 

pit depth as 

 ( ) 0

1max 0 0

1

ˆ
m

j j

j

n
n x

i i

i

d k k x t t


=

+

=

  = + − 
 

   (2.16) 

where 
maxd̂  is the predictor of the maximum pit depth, ix  represents the ith predictor 

variable, 0t  is corrosion initiation time, ik  and 
j  are the regression coefficients for 

this predictor. Because the growth rates in the variable-based models are time-independent 

random variables, they do not capture the temporal variability of the corrosion growth 

process. 
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The homogeneous and non-homogenous Markov Chains are used to model the growth of 

pitting corrosion and determine the optimal inspection intervals for the pipelines. Giorgio 

et al. (2011) propose that the transition probabilities between unit states depend on both 

the age and state of the unit. The main limitations of the MC-based models are: the accuracy 

of the model is sensitive to the total number of discrete damage states (Giorgio et al., 2011) 

and it is not straightforward to evaluate the transition probability function when inspection 

data are imperfect.  

 

The use of the Gamma process to characterize the deterioration of engineering structures 

in the context of optimal maintenance decision or time-dependent reliability analysis has 

been reported extensively in the literature (Cheng et al., 2012, Kallen et al., 2005, Pandey 

et al., 2005, Park et al., 2005, van Noortwijk et al., 1996, Yuan et al., 2008, Yuan et al., 

2009, Zhou et al., 2012). Kallen et al. (2005) model degradation of steel pressure vessels 

and optimal maintenance intervals with a Gamma process. van Noortwijk et al. (2007) 

model the crest-level decline of dikes and evaluate the time-dependent reliability of dikes 

subjected to sea waves. Zhou et al. (2012) use the Gamma process model to characterize 

the growth of defect depth for evaluating the time-dependent system reliability of pipelines 

containing multiple active corrosion defects. To improve the Gamma process model, 

Pandey et al. (2005) study the dependency between degradation and time. The dependency 
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of the degradation in the next moment on the current degradation state is considered by 

Fan et al. (2015). Zhang (2014) studies a hierarchical Bayesian-updating Gamma process 

model. In addition to Gamma processes, an improved Gamma process is proposed to model 

nonlinear degradation growth (Fan et al., 2015). Multivariate Gamma process is applied to 

cases where multiple degradation indicators exist (Peng et al., 2016, Zhou et al., 2010).  

 

Two stochastic processes analogs to the Gamma processes, namely the inverse Gaussian 

process and the Brownian motion process have been reported to model degradation process 

(Wang, 2010, Wang et al., 2010). The inverse Gaussian process consists of independent 

increments that follow the inverse Gaussian distributions, whereas the Brownian motion 

process consists of independent increments that follow Gaussian distributions.  

 

Gebraeel et al. (2005) model the degradation process of products with an exponential 

function where the randomness from unit to unit is described with a centered Brownian 

motion. The randomness from unit to unit is modeled with a standard normal distribution 

(Gebraeel, 2006, Gebraeel et al., 2005). Wang (2010) proposes a degradation-based 

remaining useful life prediction method where the degradation is modeled using a 

Brownian motion with drift. The drift parameter is adaptive to the history of condition 

monitoring information. Wu et al. (2011) propose a degradation-based reliability 

estimation method with a random failure threshold. 
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A notable drawback of using the Brownian motion process to model the corrosion growth 

is that it cannot rigorously characterize the monotonic nature of the corrosion growth since 

the Gaussian distributed increments can be either positive or negative. The inverse 

Gaussian process overcomes this drawback because it is positively defined (Zhang, 2014). 

Another process, geometric Brownian motion (Elsayed et al., 2004), differs from the 

Brownian motion in that the former characterizes the logarithm of the degradation as 

Brownian motion and is used to model corrosion growth by Zhang (2014). 

 

However, these models are limited as they mainly characterize the corrosion depth growth 

and do not consider other features such as corrosion pit volume, corrosion pit morphology, 

depth to diameter ratio and others. There are cases where even shallow pits can lead to 

failures, e.g., rupture of pipelines (Ma et al., 2011, Netto et al., 2005, Stewart et al., 2008). 

The stochastic nature of corrosion pit volume growth is not captured either. 

 

2.1.5 Degradation Propagation and Stochastic Branching Processes 

In some cases, the degradation not only grows over time but also propagates over space. 

Degradation data of this kind usually exhibits complex correlation structures in space and 

time. The spatiotemporal models have been extensively studied to provide flexible and 
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effective ways to construct covariance functions (Carlin et al., 2014, Cressie et al., 1999, 

Fuentes et al., 2003, Gneiting, 2002, Liu et al., 2018a, Reich et al., 2011). Kernel functions 

are used by Liu et al. (2018b), Wikle et al. (1999), Brown et al. (2000) and Sigrist et al. 

(2015) to express the amount of degradation at a certain location as a weighted sum of its 

neighbors. Brown et al. (2000) propose the use of convolution to approximate the 

propagation phenomenon in space under a constant vector field. Sigrist et al. (2015) present 

a spatio-temporal Gaussian process directly derived from the solution of a stochastic Partial 

Differential Equation (PDE) describing the convection-diffusion process. Meanwhile, a 

Fourier spectral method has been used for efficient computation. Calder (2007) proposes a 

dynamic spatial-temporal model in which the quantity of interest is expressed as the 

convolution of a latent process. Such a model fits into the general dynamic modeling 

framework for spatial-temporal data introduced in (Stroud et al., 2001). Yao et al. (2014) 

develop a degradation behavior propagation model based on the small world clustering. An 

Ant Colony Optimization algorithm is adopted to obtain the degradation propagation path 

with a strong pervasion ability.  

 

The branching process is defined as follows (Rahimov, 1995): at time 0t = , it is assumed 

that only one particle exists. After a random time L , the particle splits into   

independent particles that experience the same transformations. Other branching process 

models are developed by specifying different reproduction process assumptions of the 
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particles. In particular, when L  follows an exponential distribution, the branching 

process is a branching Brownian Motion process (Fang et al., 2012, Harris et al., 2009). 

These stochastic branching processes are used in modeling the transport of contaminants 

in groundwater (Marseguerra et al., 1997), the spread of epidemics (Wang, 1980), 

population and demography (Berestycki et al., 2010, Berestycki et al., 2015, Wu, 2010), 

neutrons in nuclear reactions (Vatutin et al., 1985), growth of large organic molecules 

(Dorogov et al., 1988), and population migration (Sawyer, 1976, Zoia et al., 2014). 

However, their interests are obtaining the sum of the living particles (reproduction) at a 

certain time t  or the maximum distance between the particles and the origin.  

 

Stochastic branching processes are proposed to model the earthquake crack propagation 

(Kagan, 1982, Libicki et al., 2005). The basic assumption is that an earthquake process is 

initiated by a set of infinitesimal shear dislocations occurring according to a specific time, 

space and orientation distributions. The foundation of a mathematical branching model is 

a branching tree as shown in Figure 2.2. A tree is a set of vertices connected by edges and 

contains no loops (edges that form an enclosed region). The root vertex is referred to as a 

parent if it is adjacent to other vertices. In the applications of the model, the vertices and 

edges are related to actual physical quantities. There are four relevant distributions in the 

model: Uniform distribution, Poisson distribution, Power-law distribution and Cauchy 

distribution. The Uniform distribution is commonly used to deal with homogeneous spaces 
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(Libicki et al., 2005), e.g., the distribution of branching locations. The Poisson distribution 

is used to model the distribution of the number of offsprings when branching occurs (Leon-

Garcia, 1994). The Power-law distribution (Kagan, 1994, Turcotte et al., 2016) and Cauchy 

distribution (Rice, 2006) describe the rotations of the crack branches’ surfaces with respect 

to their parent crack’s surface. 

 

Root

Edge

Vertices

Generation

Parent/Offspring

 

Figure 2.2 A graphical representation of definitions associated with the branching tree 

 

Figure 2.3 shows the rotations of a crack surface. Let 1O P  denote the direction of the 

parent crack branch, which is perpendicular to the plane. After rotating around the x  axis 

for an angle of 0  and the y  axis for an angle of 1 , which follow power-law 

distribution and Cauchy distribution, its offspring finally propagates along the direction of 

1O P .  
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Figure 2.3 The rotations of a crack surface 

 

Rabinovitch et al. (2011) assume that the secondary fractures are initiated at distances 

greater than a certain minimal radius r  from the primary’s vertex. As shown in Figure 

2.4 (a),   is the angular location and   is the direction of branching from a flaw adjacent 

to the primary fracture. Figure 2.4 (b) shows the angle 1  where the stress at flaw tip 

reaches its maximum and the relationship between branching direction 1  and fracture 

velocity. Thus it is implied that   is the angle at which the flaw turns into a secondary 

fracture and   is the direction that crack propagates. Crack branching angles have been 

experimentally measured and reported for various materials by different researchers. The 

branching angles reported by various investigators in their dynamic crack propagation 

studies are shown in Table 2.1. 
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Figure 2.4 (a) Definitions of the angular location and direction of branching from a flaw 

adjacent to the primary fracture (b) The branching direction as a function of fracture 

velocity (Rabinovitch et al., 2011) 

 

Table 2.1 Experimentally observed branching angles in fracture mechanics specimens 

Source Branching angle,   in degrees 

Bullen et al. (1970) 60 

Freudenthal (1968) 22-42 

Christie et al. (1952) 25 

Clark et al. (1966) 34 

Congleton et al. (1973) 30-40 
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Kirchner et al. (1981) 25 

Kalthoff (1971) 28 

Kobayashi et al. (1974) 24-34 

Ramulu et al. (1984) 28-34 

Ravi-Chandar et al. (1984) 20-90 

Sakai et al. (1991) 16-70 

 

Though there are similarities between the above branching process and the process being 

investigated in this dissertation, we are interested in the total degradation of the branches 

(the total distance of the particles from the origin). Moreover, the degradation branching 

process under study differs from existing ones in that a branch never terminates but 

continues to degrade and branches over time. We briefly describe our branching process as 

follows and use crack propagation as an example.  

 

Crack branching and propagation is a common cause of failures in many materials. Failures 

due to crack growth and branching have been observed in alumina-silicon carbide 

composites loaded in fatigue (Han et al., 1989). An initial crack is shown to spawn many 

sub-cracks until the overall crack network induces failure. The crack branching behavior 

(how expansive the crack network) is observed to be dependent upon the magnitude of the 

applied load and the temperature. Physically, there are two proposed mechanisms for crack 

branching. The first is due to crack deflection, wherein a crack impinges on an interface, 

such as a grain boundary, and deflects into the interface causing the formation of two cracks 

along the interface (Ming-Yuan et al., 1989, Parmigiani et al., 2006). The second is due to 
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crack jumping from a primary interface onto a secondary interface, leading to the 

nucleation of a new crack which is separate from the initial crack (Dempsey et al., 1985, 

Ramulu et al., 1985, Sills et al., 2015). The propensity for each process is dictated by the 

strength, toughness, and elastic characteristics of the materials and interfaces comprising 

the solid. 

 

In addition to the failure of materials, the crack growth and branching degradation is one 

of the major causes of structure failures (Guo et al., 2018) such as the failures of concretes 

and fuel cell membranes (Singh et al., 2017). When the crack length or number of cracks 

formed reach specified values, failures occur as demonstrated in the following example. 

Polymer electrolyte membrane (PEM) fuel cells are widely used in transport applications 

such as electric vehicles to supply electrical energy by converting hydrogen and oxygen 

(air) into water. In the PEM fuel cells, the polymeric membranes that separate the 

electrodes allow certain protons to pass through them. It is of vital importance for the 

membranes to be efficient and reliable. However, the fluctuation of operating conditions 

poses significant durability challenges for the PEM fuel cells. Figure 2.5 (a) shows an 

infrared image of the failed membranes, where the bright sections correspond to the high 

local temperature indicating the through-membrane leakage caused by the cracks. Figure 

2.5 (b) shows the cross-sectional views of the branched membrane cracks, which cause 

crossover leakage. The crack is initiated on the left-hand side and branches during its 
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propagation to the right. The cracks grow and branch with time. The degradation of the 

fuel cells, which is represented by leakage amount, is related to the total length of all the 

crack branches.  

 

gas

inlet

gas

outlet

5 cm

(a) (b)

25μm

 

Figure 2.5 (a) Infrared image of the failed membranes of Polymer Electrolyte Membrane 

(PEM) Fuel Cell. The bright regions represent leakage caused by cracks (b) Cross-sectional 

views of branched PEM cracks (Singh et al., 2017) 

 

Likewise, Thompson (2007) shows that the total cracks’ degradation is the main criterion 

for fuel cell membranes as shown in Figure 2.6. 
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Figure 2.6 Crack propagation and branching in a fuel cell membrane (Thompson, 2007) 

 

The branching process can also be exemplified by the case when a system is configured 

such that the degradation of a unit may cause the adjacent units to begin to deteriorate when 

the degradation level of the preceding unit reaches a threshold. In our work, we simply use 

the initiation of cracks in locations, rather than units. 

 

2.2 Literature Review on Missing Degradation Data Interpolation 

Degradation data are crucial to accelerated degradation testing (ADT) and prognostic 

health management (PHM). However, in the actual situations, missing values of 

degradation data are common due to the failure of data transmission or manipulation errors 

(Fan et al., 2014).  

 

Sometimes a group of data with missing values is abandoned. Examples of this type of 

techniques include listwise deletion and pairwise deletion (Graham et al., 1993, Wothke, 
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2000). The listwise deletion, which is also known as complete-case analysis or case 

deletion, is to discard units whose information is incomplete (Schafer et al., 2002).  In 

contrast, pairwise deletion uses different sets of sample units for different parameters. For 

more discussions on the properties of case deletion and further references, see Chapter 3 

of Little et al. (2014). It is a waste of data resources and reduces statistical power. The loss 

of valuable information may lead to inaccurate model parameters. Schafer et al. (2002) and 

King et al. (2001) both report that high rates of listwise deletion lead to serious parameter 

bias and inefficiency. Brown (1994), Graham et al. (1996) and Wothke (2000) report the 

shortcomings of listwise deletion by simulation. It is possible to reduce biases from case 

deletion by the judicious application of weights (Liang et al., 1986, Robins et al., 1995). 

For a review of weighting in the context of sample surveys, see Little et al. (2014). 

 

Rather than deleting the incomplete data or ignoring the missing data, the expectation-

maximization (EM) algorithm is utilized to “fill in the missing data” with the best guess at 

what it might be under the current estimate of the unknown parameters and re-estimate the 

parameters. Repeat the expectation and maximization procedures multiple times until a 

criterion is satisfied. Dempster et al. (1977) show that, rather than filling in the missing 

data values per se, we are also filling in the complete-data sufficient statistics. These 

statistics depend on the model specification. Overviews of the EM algorithm can be found 

in (Little et al., 2014, McLachlan et al., 2007, Schafer, 1997, Schneider, 2001). 
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It is feasible to replace the missing data with plausible values and proceed with the desired 

analysis. This is called imputation or interpolation. Simple data interpolation techniques 

include mean/mode substitution (Graham, 2009), hot deck imputation (Ernst, 1980, Marker 

et al., 2002), cold-deck imputation and composite methods (Schieber, 2005). Hot deck 

replaces each missing value by a random draw from the observed values. By contrast, cold 

deck selects donors from another dataset. Composite methods combine ideas from different 

methods above (David et al., 1986, Schieber, 2005). For example, the hot-deck and 

regression imputation are combined by calculating the predicted means from a regression 

model and a residual randomly chosen from the empirical residuals to the predicted value 

when forming values for imputation.  

 

The imputation methods above are about point estimation of the missing data and model 

parameters. Some approaches incorporate additional uncertainties. Efron (1994) uses 

bootstrap to generate imputed samples and inference parameters. Regression-based models 

are widely used to incorporate the uncertainties in the missing data imputation (Allison, 

1987, Buck, 1960, Fan et al., 2014, Van Buuren, 2012, Yates, 1933). Popular regression-

based data imputation models are summarized as follows (Van Buuren, 2012) 

• Predict. 
0 1

ˆ ˆ
misy X = + , where 

0̂  and 
1̂  are the least-squares estimates 

calculated from the observed data. 



33 

 

 

• Predict + noise. 
0 1

ˆ ˆ
misy X  = + + , where   is randomly drawn from the normal 

distribution as ( )2ˆ~ 0,N 
 
 

• Bayesian multiple imputation. 
0 1misy X  = + + , where ( )2ˆ~ 0,N  . 

0 , 
1  

and   are random draws from their posterior distribution. It is also named “predict 

+ noise + parameters’ uncertainty”. 

• Bootstrap multiple imputation. 
0 1

ˆ ˆ
misy X  = + + , where ( )2ˆ~ 0,N  . 

0̂ , 
1̂   

and   are the least-squares estimates calculated from a bootstrap sample taken from 

the observed data. This is an alternative way to implement “predict + noise + 

parameters uncertainty”. 

 

Multiple imputation (Laird, 1988) repeats a simple univariate imputation multiple times, 

analyzes each imputed dataset and pools the results into one estimate.  

 

The standard Brownian bridge is proposed to impute missing data in finance by DiCesare 

(2006). Brownian bridge predicts missing data between two “tie ends,” assuming the 

underlying process is a Brownian motion that starts and ends with a fixed value.  

 

For data with multiple features amongst which the inputs are partially missing, approaches 

such as Support Vector Machine (SVM), A Framework for Imputing Missing Values Using 

Co-Appearance, Correlation and Similarity Analysis (FIMUS), k-Nearest Neighbors 
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Imputation (kNNI) have been proposed. FIMUS (Rahman et al., 2014) fills in the missing 

values based on the co-appearances of the values, correlations between the attributes and 

similarity of the values belonging to an attribute. Pelckmans et al. (2005) propose a convex 

optimization approach to learn a classification rule from observational data when missing 

data occur based on SVM. The main idea is to incorporate the uncertainty due to the 

missing data into an appropriate risk function. An imputing approach based on the Support 

Vector Regression (SVR) is proposed by Wang et al. (2006). The approach utilizes an 

orthogonal coding input scheme, which makes use of multi-missing values in one row of a 

certain gene expression profile and imputes the missing value into a much higher 

dimensional space to obtain better performance. kNNI finds the k-nearest neighbor records 

of the observation that has missing attributes and imputes the missing attributes with the 

average values (Batista et al., 2003). However, it has also been pointed out that choosing a 

suitable value for k may be a challenging task (Wu et al., 2008). Considering the local 

similarity of data, many methods based on clustering, for example, k-means or fuzzy c-

means (FCM), have been proposed (Aydilek et al., 2013, Li et al., 2004, Li et al., 2013). 

The underlying principles are as follows: first random select k complete data objects as k 

centroids, then iteratively modify the partition to reduce the sum of distances for each 

object from the centroid of the cluster to which the object belongs until a user-specified 

threshold   is obtained, the last process is to fill in all the missing attributes by taking 

the mean of some nearest objects. Decision Tree-based Missing Value Imputation 
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Technique (DMI) makes use of an entropy-based decision tree algorithm and expectation 

maximization-based imputation technique (Rahman et al., 2011).  

 

2.3 Literature Review on Data Integration 

Data integration approaches are generally classified into three categories: data-level 

integration, feature-level integration and decision-level integration (Klein, 1999, Steinberg 

et al., 1999). Data-level integration combines raw measurements of individual sensors and 

forms a unified indicator (Gros et al., 2000, Hua et al., 2013, Liu et al., 2015, Liu et al., 

2013, Liu et al., 2016, Yan et al., 2016). Feature-level integration extracts and integrates 

features such as the frequency spectrum of abnormal signals (Amolins et al., 2007, 

Balakrishnan et al., 2012, Pajares et al., 2004). Decision-level integration integrates 

conclusions drawn by individual sensors to reach a comprehensive one. In the case of 

remaining life prediction, decision-level integration combines life prediction results 

obtained with different sensors and then concludes final judgment on the condition of the 

components (units). 

 

Data integration can also be classified into the following categories based on the specific 

techniques used: Bayesian inference integration (Mitchell, 2007), evidential reasoning 

integration (Shafer, 1976, Zhao et al., 2014), fuzzy theory integration (Liu et al., 2008, 

Zadeh, 1999), Dempster-Shafer theory integration (Dempster, 1968, Murphy, 1998, Yager 
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et al., 2008), wavelet integration (Balakrishnan et al., 2012, Pajares et al., 2004, Qiu et al., 

2005), Artificial Neural Networks integration (Ling et al., 2008, Liu et al., 2008), cluster-

based data integration (Alyannezhadi et al., 2016, Shi et al., 2012) and other techniques 

based on possibility theory (Benferhat et al., 2006, Destercke et al., 2009).  

 

Even though extensive research has been conducted on multi-sensor data integration for 

fault diagnosis and prognosis, sparse work has addressed data integration of multi-sensor 

degradation information or unified degradation path. Wei et al. (2011) weigh different 

sensor signals by minimizing the uncertainty of unified measurements, but the data from 

different sensors are considered as independent instead of correlated with each other. The 

first passage time distribution of even 2-dimensional Brownian motion with drift is quite 

complex (Dominé et al., 1993). It is more difficult to obtain explicit reliability functions 

for more dimensions of more advanced degradation processes.  
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3 CHAPTER 3 

 

 

CORROSION GROWTH MODELING  

 

3.1 Introduction 

In this chapter, we propose two stochastic models to capture the corrosion depth growth 

and corrosion volume growth respectively. The improved inverse Gaussian (IIG) process 

is developed as a stochastic degradation model to describe the corrosion depth growth. The 

model captures dependency between corrosion increments and corrosion depth length and 

is more robust than the inverse Gaussian (IG) model. Assuming that the corrosion pit 

growth in the depth direction and radial direction both follow IIG processes, the corrosion 

pit volume growth model is developed. Moreover, a physics-based stochastic model is 

proposed to describe the propagation of corrosion pits. The influence of stresses of 

temperature, relative humidity and pH level are investigated based on chemical reaction 

mechanisms. The models are validated with actual corrosion data.  

 

3.2 Corrosion Depth Growth Modeling 

3.2.1 Inverse Gaussian Process 

Suppose that a degradation process ( ) ,  0d t t   follows an IG process with scale 

parameter   and shape (mean) function ( )t  as described by Ye et al. (2014). Let 
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( )Ig   denote the probability density function (PDF) of IG distribution. It has the 

following properties: 

• ( )d t  has independent increments: ( ) ( )2 1d t d t−  and ( ) ( )4 3d t d t−  are 

independent of each other for 4 3 2 1t t t t      

• The degradation increments follow IG distributions: 

( ) ( )( ) ( ) ( ) ( ) ( )( )( )2

2 1 2 1 2 1~ ,  d t d t Ig t t t t−  −  −  for 2 1t t   

 

Let ( )d t  denote the degradation state at time t , where 0t  . ( )0d  is the starting 

degradation state. When the shape function ( )t t = , where   is a constant parameter, 

the IG process appropriately describes a fatigue crack growth degradation process (Peng et 

al., 2014). The PDF and cumulative distribution function (CDF) of ( ) ( )0d t d−  are 

represented as follows (Guo et al., 2018) 

 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( )

( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

2

0

2
2

3

2
2 2

3

0 ,  

0
exp

2 02 0

0
exp , 0 0

2 02 0

D t D
f d t d t t

d t d tt

d t dd t d

d t d tt
d t d

d t dd t d







 



−
−  

 − −  = −
 −−
  

 − −
 = − − 
 −−
  

  (3.1) 
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F d t d t t
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−
−  

  −
 − +  

 −   

  −
 − +  

 −   

  (3.2) 

 

The expectation and variance are given by 

( ) ( )( )( ) ( )0E d t d t t− =  =  and ( ) ( )( )( )
( )

0
t t

Var d t d


 


− = =  

 

3.2.2 Improved Inverse Gaussian Process 

In this section, we develop an IIG process model based on the IG process. Suppose the 

degradation process ( ) ,  0d t t   is observed at every discrete unit of time. Assume that 

at time 
jt , the degradation state is ( )jd t . The degradation increment 

( ) ( ) ( )1j j jd t d t d t+ = −  denotes the degradation during ( )1,  j jt t + . Rather than modeling 

this degradation increment with respect to time 
jt , we use the starting degradation ( )jd t  

as the reference. In other words, the degradation in a unit time ( )jd t  follows an IG 

distribution in accordance with the starting degradation ( )jd t . Assume that the shape 

function takes a linear form as ( )( ) ( )0 1j jd t d t  = + , where 0  and . 1 . are 

constants, the PDF of ( )jd t  is  
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3
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j j jD t

j jj

j

j j

f d t d t d t

d t d td t
d t

d t d t








  

 
 −  

= −   
 

 
 

   (3.3) 

 

The expectation and variance are  

( )( ) ( )( ) ( )0 1j j jE d t d t d t  =  = +  and ( )( )
( )( ) ( )0 1j j

j

d t d t
Var d t

 

 

 +
 = =  

 

3.2.3 Remaining Life Prediction and Failure Probability Estimation  

Suppose the threshold of the degradation process is dc . The distribution of remaining life 

for the IIG process is obtained through iterative computation. Assume we have degradation 

measurements until time t  as ( ) ( ) 0 ,  ,  d d t , the remaining life is obtained as 

follows 

1) Starting from 1j = . 

2) Generate a random number ( )
*

1jd t + −  following the distribution 

( )( ) ( )( )( )2

1 1,  j jIg d t d t + − + −  . Degradation state now becomes 

( ) ( ) ( )
*

1 1j j jd t d t d t  + + − + −= +   
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3) Compare ( )jd t +  with the threshold dc . If ( )j dd t c +  , set 1j j= + , go back to 

step (2). If ( )j dd t c +  , the predicted failure time is 
jt +  and the predicted 

remaining life is 
jt t + − . 

4) Repeat steps (1)-(3) for N  times, the mean remaining life is obtained by taking 

the average of the N  predicted remaining lives. Let 
kT  denote the k  

percentile of the predicted remaining life. The 90% confidence interval of the 

predicted remaining life is ( )0.05 0.95,  T T . 

 

The probability that the unit fails in the next time increment given that it survived at time 

t  with the starting degradation state ( )d t  is as follows 

 

( )

( )( )

( )( )

( )( )

( )( ) ( )( )

1P

P ( )

P ( )

1 ( ) ( )
( )

  exp 2 ( ) ( ) ( )
( )

d

d

d

d

d

T t

d t d t c

d t c d t

d t c d t
c d t

d t d t c d t
c d t



 

 

 



  








+

=  + 

=   −

 
= −  − +  − 

 
+   −  + −  − 
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3.2.4 Model Validation and Numerical Studies 

3.2.4.1 Model Validation with Crack Growth Data 
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Figure 3.1 (a) Degradation versus time (b) degradation versus starting crack length (c) 

degradation increments versus time (d) degradation increments versus starting crack 

length. 

 

In this section, we use Bogdanoff and Kozin’s data (Bogdanoff et al., 1985) to validate the 

proposed model. This dataset is characterized as linear degradation paths with equally 

spaced degradation observations. Twenty-one units are placed under testing for 0.12 

million cycles. The crack length for each unit is measured every 0.01 million cycles. The 
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starting crack length is set as 0.9 inches for all the units to shorten the testing time. The 

unit is considered to fail when the crack length reaches 1.6 inches. Figure 3.1 (a) is the plot 

of the 21 degradation paths versus time. Figure 3.1 (b) shows the degradation paths versus 

crack length. From these two figures, we observe that the degradation rate is linearly related 

to the degradation states. The variance is also smaller in Figure 3.1 (b). Figure 3.1 (c) and 

3.1 (d) are the plots of crack increments for the 21 units versus time and starting crack 

length respectively. Again, compared with that in Figure 3.1 (c), the lines in Figure 3.1 (d) 

converge better. This means that starting crack length is a suitable independent variable in 

this example.  

 

The parameter estimation approach is provided in Appendix A. The crack length data are 

provided in Appendix B. To fit the IIG model, we reorganize the original data into pairs 

( ) ( ),  ,  0j j jd t d t t  
 

, where ( )jd t  is the starting crack length at time 
jt  and 

( )jd t  is the degradation increment in the next 0.01 million cycles. We use the crack 

growth data of the first twelve units because they represent samples with similar properties. 

This can be inferred from the estimation results of parameters with the IIG model for the 

two groups of degradation paths respectively. For the first twelve units,

   0 1 0.1125 8ˆˆ ˆ,  ,  = ,  0.1585,  400.574   − , and the remaining nine units 

   0 1 0.0714 4ˆˆ ˆ,  ,  = ,  0.1039,  404.776   − . From Figure 3.2 (a), the 90% probability 



44 

 

 

interval of the predicted degradation path with parameters estimated from the first twelve 

units deviates from the other nine units. 
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Figure 3.2 (a) The predicted 90% probability interval and the other nine units (b) The 

failure probability curves for IG and IIG 

 

The estimation of parameters  0 1,  ,    
 
for the IIG model of the first twelve paths are  

0
ˆ 0.1125 = − , 1

ˆ 0.1585 = , ˆ 400.5748 =  

Meanwhile, we use the observed data to fit the IG process. The parameters are obtained 

using the R codes as shown in Appendix A. The results are as follows: 

ˆ 0.06985 = , ˆ 0.27075 =  

Then, by applying the Monte Carlo simulation, we obtain the failure probability plots for 

the IIG and the IG model, as shown in Figure 3.2 (b). From the figure, we observe that the 

IIG model fits the observed data better than the IG model. The mean squared error of the 
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failure probability prediction by the two methods are 0.0011IIGMSE = , 0.0125IGMSE = . 

In this case, the IIG model has better accuracy than the IG model. 

 

3.2.4.2 IIG Model Validation with the Corrosion Growth Data 

In this section, we apply the IIG model to the corrosion growth data by Soares et al. (2009). 

The data sample size is increased by generating corrosion data with the deterministic model 

in the paper by Soares et al. (2009) and randomizing them with the Brownian motion 

process with drift, where the mean is the same as that of the corrosion data. The plot of the 

corrosion growth data is shown in Figure 3.3 (a). 
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Figure 3.3 (a) The corrosion depth growth data (b) The expectation and 95% confidence 

interval with the IIG model 
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The estimated parameters are obtained as follows 

0
ˆ 0.09699 = , 1

ˆ 0.04769 = − , ˆ 209.2 =  

The expectation and the 95% confidence interval of the corrosion depth growth are shown 

in Figure 3.3 (b). Meanwhile, we use the observed data to fit the IG process. The 

estimations of the corresponding parameters are: 

0.06445̂ = , 91.54410̂ =  

Then, by applying the Monte Carlo simulation, we obtain the failure probability curves for 

the IIG and the IG model as shown in Figure 3.4. From the figure, we observe that the IIG 

model fits the observed data better than the IG model. The mean squared errors of the 

failure probability predictions obtained by the two methods are 0.07982IGMSE =  and 

0.01917IIGMSE = . For this corrosion dataset, the IIG model has better accuracy than the 

IG model. 
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Figure 3.4 Failure probability curve for IG and IIG 

 

By comparing the estimated parameters obtained with the IIG model in the two cases, we 

find that the dependency between degradation increments and degradation states are both 

captured, which is reflected in the sign of 1̂ . For the crack growth dataset, 1
ˆ 0.1585 =  

shows that the crack increments are positively related to initial crack length, while for the 

corrosion growth dataset, 1
ˆ 0.04769 = −  indicates that corrosion growth increments are 

negatively related to the initial corrosion depth. 

 

3.2.5 IIG Model Robustness Evaluation 

Model uncertainty is pervasive in reliability estimation. A key question is how robust the 

model is while the assumptions are not fully satisfied. In this section, a comparison between 
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the IG process and the IIG process is performed. The results show that the IIG process is 

more robust than the IG process. 

 

3.2.5.1 IIG data 

We generate 20 degradation paths based on the IIG model. Suppose that the degradation 

paths are censored at time 7t =  and time 11t = . In these two cases, the IG and IIG 

models are utilized to fit the data and obtain the estimation of the model parameters. The 

two models are then used to predict the failure probability of the units after the censored 

time. The results are shown in Figure 3.5. It is evident that the IG model does not effectively 

model the nonlinear growth of the degradation path generated by the IIG model.  
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Figure 3.5 Use the regular IG model to fit IIG data when (a) data are censored at 7t =  

(c) data are censored at 11t = , use the IIG model to fit IIG data when (b) data are 

censored at 7t =  (d) data are censored at 11t = .  

 

3.2.5.2 IG data 

In contrast with the scenario in section 3.2.5.1, 20 degradation paths are generated based 

on the IG model. Suppose the degradation paths are censored at times 8t =  and  12t = . 

We fit the data with both the IG and IIG models and obtain the corresponding models’ 

parameters. The predicted failure times of censored units using both models are obtained 

and shown in Figures 3.6. It is evident that the IIG model effectively predicts the failure 
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time of the censored degradation path generated by the IG model. From the analysis of the 

two scenarios, we conclude that the IIG model is more robust than the IG model. The IIG 

process can be applied even when the degradation path does not have nonlinear growth. 

This is because the IIG process is based on the starting degradation state.    

 

Figure 3.6 Use the IIG model to fit IG data when (a) data are censored at 12t =  (b) data 

are censored at 8t = , use the IG model to fit IG data when (c) data are censored at 12t =  

(d) data are censored at 8t = .  
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3.3 Corrosion Volume Growth Modeling 

In the corrosion reaction process, the produced corrosion layer prevents the atmosphere 

from contacting new metal, inhibits the transport of reactant and decreases growth rate 

(Ghahari et al., 2011, Li et al., 2009, Vanaei et al., 2017). Accordingly, the corrosion 

growth rate decreases as corrosion proceeds. We let the corrosion growth rates in the radial 

and the depth directions be dependent on the accumulated corrosion states in the model. 

As shown in Figure 3.7 (a), the corrosion pit is assumed to be consisted of several sectors, 

with the growth of the radius of each sector following an IIG process. We also derived an 

alternative corrosion volume growth model based on improved Gamma process, interested 

readers may refer to Appendix C. 
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Figure 3.7 Schematic diagram of the corrosion pit growth 

 

Meanwhile, as shown in the plan view of the corrosion pit in Figure 3.7 (b), we assume it 

is divided into many pixels (squares) and that the pixel depth varies from one to another. 
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The depth growth of each pixel over time follows an IIG process. The dark pixels represent 

corroded pixels while the gray ones represent newly corroded pixels in the next time 

increment. As corrosion progresses, the size of the pit grows both radially and in the depth 

direction. The volume growth of the corrosion pit in the next time increment consists of 

two parts: volume growth of the corroded pixels and volume growth of the pixels corroded 

in the next time increment, which are called new corroded pixels.  

 

3.3.1 Volume Growth of the Corroded Pixels 

We model the depth growth/sector radius growth with an IIG process, where the shape 

parameter is a function of the corrosion level (pixel depth or sector radius), such that the 

phenomenon that corrosion growth rate decreases as corrosion increases is characterized. 

Let ( )id t  denote the corrosion depth of the corroded pixel i  at time t . The depth of 

pixel i  at time t  is ( ) ( ) ( )1i i id t D t d t+ =  + , where ( )iD t  is the corrosion depth 

growth of pixel i  in the time interval ( ),  1t t + . We use ( )Ig   to denote the PDF of IG 

distribution. The PDF of ( )iD t  is 

 ( ) ( )( ) ( ) ( )( )( )2

0 1 0 1,
i

i i iD t
f d t Ig d t d t    


 = + +   (3.5) 

where parameters 0 0  , 1 0   , 0   and they are the same for all pixels. The area 

of a pixel is 0s . Suppose the area of existing corroded pixels at time t  is ( )s t , the total 
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number of corroded pixels at time t  is ( )
( )

0

s t
n t

s
= . Let ( )iV t  denote the volume 

growth of pixel i  in the time interval ( ),  1t t + . The overall volume increment of the pit 

in time interval ( ),  1t t +  by all the corroded pixels is 

 ( )
( )

( )
( )

0

1 1

n t n t

i i

i i

V t s D t
= =

 =     (3.6) 
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 . By properties of IG distribution, ( )
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  and scale parameter 

( )
( )

2

0 0 1

0

v t
s n t

s
  

 
+ 

 
, where ( )v t  is the volume of the pit at time t . 

 

3.3.2 Volume Growth of the Newly Corroded Pixels 
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Figure 3.8 Corrosion area growth 
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The corroded area becomes larger as corrosion pit grows. As shown in Figure 3.8 (a), 

suppose the pit’s area is divided into sn  sectors. The angle of each sector is 
2

=
sn


 . 

Suppose at time t  the radius of the thj  sector is ( )jr t . Let the radius growth follow an 

IIG process with parameters 0 10 0,  0    ,  as 

 ( )( )2

0 1 0 1( )~ ( ),  ( )j j jR t Ig r t r t     + +   (3.7) 

The radii of the sectors grow independently. As shown in Figure 3.8 (b), by simple 

geometry, the length of the arc is ( )2 sin
2

jr t


. Since the sectors are in the same corrosion 

pit, the parameters are assumed to be the same. All the newly corroded pixels begin to grow 

in the depth direction by the time they are corroded. When the radius increment is small 

(growth time increment is small) and the angle is small, the area growth can be 

approximated with a rectangle as shown in Figure 3.8 (b). The area growth of sector j  

in ( ),  1t t +  is ( ) ( ) ( )=2 sin
2

j j jS t r t R t


  , which follows an IG distribution as shown 

in Eq. (3.8).  

 ( ) ( ) ( )( ) ( ) ( )
2

0 1 0 1~ 2 sin ,  2 sin ( )
2 2

j j j j jS t Ig r t r t r t r t
 

    
 

  +  + 
 

  (3.8) 

Equivalently, the number of pixels in sector j  corroded in ( ),  1t t +  is 

( )
( )

( )
( )( )

( )
( )

0 1

0

20

0 1

0

2
sin ,

2
~

2
                                    sin ( )

2

j

j

j

j

j

j

r t
r t

S t s
N t Ig

s r t
r t

s


 


  

 
 + 

   =
 
  + 
 

  (3.9) 
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Correspondingly, the increase of the number of corroded pixels in the pit is 

( ) ( )
1

=
sn

j

j

N t N t
=

  . These pixels grow with an initial depth of 

( ) ( ) ( ) ( ) 0,  1id t n t i n t n t= +   +  . Similar to corroded pixels, the corresponding 

volume growth of the sum of these pixels is an IG variable with mean 

( )( )
( )

( ) ( )

( )0 1 0

1

n t n t

i

i n t

d t n t  
+

= +

+ =   and scale parameter ( )( )
2

0n t  . 

 

3.3.3 Total Incremental Volume 

The total incremental volume in the next time increment is the sum of volume increments 

of corroded pixels and new corroded pixels. Let ( )( ) ( ) ( )( )
( )

0 1

0

=
v t

v t n t n t
s

  + + . 

According to the properties of IG distribution, we have 

 ( ) ( )( ) ( )( )( )2

0 0~V t Ig s v t s v t  ,   (3.10) 

we find that the overall volume growth in the next time increment follows IG distribution, 

where the mean and shape parameters dependent on the number of corroded pixels by time 

t , the number of pixels corroded in ( ),  1t t + , corrosion volume at time t  and pixel area 

0s . 
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3.3.4 Incremental Volume Under Stresses 

The corrosion volume growth is significantly affected by the atmospheric conditions, 

which include temperature, relative humidity (Rh), pH levels and others. According to 

Hughes et al. (2016), the corrosion volume growth rate (metal dissolution rate) is related 

to corrosion current density. Because corrosion is an electrochemical process, corrosion 

current arises when there is charge transfer between the anode (metal) and cathode. The 

corrosion reaction current is approximately described as 

 
( )

0 exp
rev

c

nF E E
i i

RT

 − 
= − 

 

  (3.11) 

where n  is the charge on the ion in equivalents/mol, F  is Faraday constant = 

96,487C/equivalent, R  is the gas constant = 8.314 J/mol-K, revE is the reversible 

potential, E  is the applied potential,   is the charge transfer coefficient, 0i  is the 

exchange current which is a current of a given single electrode at equilibrium when the 

electrode material experiences no loss or gain. It is a function of soluble species 

concentration. According to Eyring (1935), the rate of reaction is proportional to the 

concentration of reagent H +
and water vapor in the air. Because the concentration 

( ) 10 pHc H + −= , we modify Eq. (3.11) as 

 
1 2 3

0

3
0 1 2

exp

exp

Rh pH

ci e e
T

Rh pH
T

  



  

 
=  

 

 
= + + 

 

  (3.12) 



57 

 

 

where 0 1 2 3,  ,  ,       are constants. Eq. (3.10) describes the base corrosion (volume) rate, 

which corresponds to base corrosion current density (exchange current rate). We 

incorporate the effect of temperature, pH level, and Rh by modifying Eq. (3.10) as 

( )

( )( )

( )( )

3
0 1 2

2

3
0 1 2

exp

~

                 exp

s v t Rh pH
T

V t Ig

s v t Rh pH
T


 


  

  
 + +  

  
   

 + +    
   

,

(3.13) 

 

Similarly, the increase in depth under stresses is described as 

 ( )

( )( )

( )( )

3
0 1 1 2

2

3
0 1 1 2

exp ,

~

                   exp

i

i

i

d t Rh pH
T

D t Ig

d t Rh pH
T


   


    

  
+ + +  

  
   

+ + +    
   

 (3.14) 

 

3.3.5 Reliability Estimation and Remaining Life Prediction 

3.3.5.1 Reliability Estimation 

Because failure occurs when either the depth of the corrosion pit reaches the depth 

threshold or the volume of the corrosion pit reaches the volume threshold, we consider it 

as a competing risk model. We use ( )IG   to denote the CDF of IG distribution. In terms 

of the corrosion volume failure mode, the reliability, which is the probability that the 

component (structure) fails in time 1t +  given that it has not failed at time t , is: 
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( ) ( ) ( ) ( )( )

( ) ( )( )

( )

( )( )

( )( )

3
0 1 2

2

3
0 1 2

( 1)

        

exp ,

        

                  exp
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R t P T t P V t v t c

P V t c v t

s v t Rh pH
T

IG c v t

s v t Rh pH
T


 


  

=  + =  + 

=   −

  
 − −  

  
= −

   
  − −      

 (3.15) 

where 
fT  is the failure time, vc  is the threshold for corrosion volume growth failure 

mode. vc  can be obtained according to the procedures in Appendix D. Let ( )*d t  

represent the maximum depth of a corrosion pit. For the depth failure mode, reliability is 

given by:  

 

( ) ( ) ( ) ( )( )
( ) ( )( )

( )

( )( )

( )( )

* *

* *

3
0 1 1 2

*

2

3
0 1 1 2

( 1)

        

exp ,

         =

          exp

d d f d

d

i

d

i

R t P T t P D t d t c

P D t c d t

d t Rh pH
T

IG c d t

d t Rh pH
T


   


    

=  + =  + 

=   −

  
+ − −  

  
−

   
 + − −      

 (3.16) 

where dc  is the threshold for corrosion depth growth failure mode. Assuming the two 

failure modes are independent, the reliability at time t  is 

 ( ) ( ) ( )d vR t R t R t=   (3.17) 

 

3.3.5.2 Remaining Life Prediction 

The distribution of the remaining life is obtained by using an iterative computational 

method as described next. Assume we have measurements of a corrosion pit growth (3-D 
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images) up to time t . The corrosion volume at that time is ( )v t  and the number of 

corroded pixels is ( )n t . The remaining life is predicted as follows: 

(1) Set k t=  . 

(2) Generate a random number ( )n k  using Eq. (3.9), update ( ) jr k   with

( ) 1jr k + . 

(3) Generate a random number ( )v k  using Eq. (3.10).  

(4) Obtain ( ) ( ) ( )1v k v k v k+ = +  . If ( )1 vv k c+  , set 1k k= + , go to step (2). 

Otherwise, the failure time is 1k +  and the remaining life 1T k t= + − . 

(5) Repeat steps (2) - (4) 
pN times,  

Let mT  denote the m  percentile remaining life predicted. The obtained 90% confidence 

interval of predicted remaining life is ( )0.05 0.95,  T T .  

 

3.3.6 Case Study 

Because the proposed model needs datasets that contain 3-D data of corrosion pit, which 

can hardly be found in existing literature, we use corrosion depth growth data to 

demonstrate the applicability of the model. We use two datasets: corrosion depth growth 

data of steel by Caleyo et al. (2009) and corrosion depth growth data of ships by Soares et 

al. (2009). In the first dataset, the measurements are obtained under only one operating 

condition. In the second dataset, the corrosion data are obtained under six different 
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operating conditions. The parameters are estimated with MLE. The details of the 

procedures are provided in Appendix E. 

 

3.3.6.1 Caleyo’s Dataset 

To illustrate the use of the model, we fit the corrosion depth growth data by Caleyo et al. 

(2009) with the depth growth model as developed in Eq. (3.5) and estimate its parameters. 

The estimated parameters are    0 1
ˆˆ ˆ,  ,  = 20.78,  0.33,  0.59   − . The actual data and 

predicted mean depth growth path are shown in Figure 3.9. Assuming the corrosion growth 

in the depth and the radial directions are controlled by the same set of parameters, i.e.,

   0 1 0 1,  ,  ,  ,       = , we simulate the corrosion pit 3-D growth data with the 

estimated parameters as shown in Figure 3.10.  
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Figure 3.9 Corrosion data and predicted mean corrosion growth path 
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Figure 3.10 Selected simulated corrosion pit 3-D images from 3t =  to 9t =  

 

Using the simulated corrosion growth data by time 10 we obtain the volume model 

parameters as    0 1 0 1
ˆˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  = 20.86,  0.30,  0.62,  21.12,  0.31,  0.58      − − . 

Suppose we are considering the metal loss of a pipe with =0.35flow Mpa , =63pt m , 
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100D m= , 100L m=  and the operating pressure of the pipe is 

0 0.6 0.35 0.21P Mpa=  = , 0 =630,000  v cubic m and =504,340  vc cubic m . The 

critical depth threshold is 63dc m= . With estimated parameters, the expectation and 90% 

probability intervals of volume growth and maximum depth growth curves are shown in 

Figure 3.11. We observe that the predicted failure times are significantly different, which 

shows the necessity of considering the volume loss failure mechanism. The reliability of 

the two individual failure modes and joint failure modes are plotted in Figure 3.12. 

 

0 3 6 9 12 15 18 21 24 27 30

3

4

5

0

1.2

2.4

3.6

4.8

6.0

Volume threshold

Censor time a

Depth threshold

Censor time b

 

Figure 3.11 Predicted volume growth and maximum depth growth 

 

We compare the proposed model with the physics-based model by Kondo et al. (1989) and 

the power-law mass loss function by Panchenko et al. (2016) using Caleyo’s dataset. As 

shown in Figure 3.13, the proposed model matches well with the physics-based model and 

the power-law empirical model. We find that in the late stage of the corrosion growth 
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process, the physics-based model overpredicts the volume growth compared with the 

proposed model, which predicts that the corrosion volume growth rate decreases. This can 

be explained as that the physics-based model does not consider the fact that the recently 

formed corrosion layers prevent new metal from contacting the external environment. 

However, these layers may lead to the decrease of the corrosion growth rate.  

 

 

Figure 3.12 Reliability when considering different failure modes 
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Figure 3.13 Corrosion loss prediction comparison using different models 

 

3.3.6.2 Soares’s Dataset 

The model is also validated with corrosion depth growth data from six ships operating on 

different routes on the Pacific Ocean by Soares et al. (2009). The data sample size is 

increased by generating corrosion data with the deterministic model by Soares et al. (2009) 

and randomized with the Brownian motion process with drift, where the mean of the 

Brownian motion process is the same as that of the corrosion data. We censor the data at 

time 10 and estimate the parameters of the model. The predicted corrosion depth growth 

after time 10 and time to failure are shown in Figure 3.14 (a). The sum of squared errors 

(SSE) of the predicted mean path and the percent error (PE) of failure times are calculated 
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and shown in Table 3.1. Let 0t  denote the censoring time. SSE and PE are defined as 

follows 

( ) ( )( )
0

2
* *

1

ˆ
fT

j t

SSE d j d j
= +

= −  

f r

r

T T
PE

T

−
=  

 

where ( )*d j  is the maximum depth of the pit at time j . ( )*d̂ j  is the predicted mean 

maximum depth of the pit at j . 
fT  is the observed failure time and rT  is the true failure 

time. The predicted corrosion volume growth paths are shown in Figure 3.14 (b). The 

reliability function considering both the corrosion depth growth and volume growth is 

shown in Figure 3.15 when maximum depth is 1.2 while the volume threshold is 2.0.  
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Figure 3.14 Corrosion depth and volume prediction when data are censored at 10t =  
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Table 3.1 The time to failure prediction accuracy and sum of squared errors 

Ship index 1 2 3 4 5 6 

T (Kelvin) 283.85 

85.5 

8.16 

289.75 

82.8 

8.15 

291.55 

83.3 

8.15 

293.35 

79.8 

8.14 

293.55 

82.3 

8.18 

296.05 

81.6 

8.18 

Rh(%) 

Ph 

PE of T 1.685 1.163 -1.625 3.870 -0.132 -1.644 

SSE 0.00067 0.00130 0.00133 0.00406 0.00056 0.00063 
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Figure 3.15 Reliability when considering both depth growth and volume growth 

 

3.4 Corrosion Propagation Modeling 

In the corrosion degradation process, the corrosion pits not only grow larger but also 

propagate to other locations on the material over time, leading to the initiation and growth 

of new pits. In this section, we develop a physics-based stochastic model that describes the 

propagation of corrosion pits in both time and space. As the initiation of pits is related to 

material composition and the existing pits’ locations, we consider three aspects: 
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characterization of particles in a material, modeling of pits initiation and modeling of 

multiple pits growth, propagation and overlap/coalescence. 

 

3.4.1 Characterization of the Particles 

It is widely known that corrosion pits initiate from the particles in the alloy (Cawley et al., 

1996). According to Liao (1998), Cullin et al. (2011) and Cawley et al. (1996), the particles 

in the alloy tend to aggregate and form clusters as shown in Figure 3.16 (a). It is observed 

that the pits induced from larger particle clusters are larger than those induced by smaller-

size particles, as shown in Figure 3.16 (b). The area/size distribution of the particles in the 

LT (Rolling Transverse), LS (Rolling-Short Transverse) planes of a material can be 

characterized by a bi-mode Weibull distribution (Harlow, 2012) as shown in Figure 3.17 , 

where the CDF is the product of the CDFs representing the two modes as shown in Eq. 

(3.18) 

 ( ) ( ) ( )1 2s s sF x F x F x=   (3.18) 

The indexes 1s  and 2s  indicate the modes associated with the lower and upper tails 

of the data respectively. Using a three-parameter Weibull distribution, the CDF of the 

particle sizes is 

 ( )
1 2 1 2

1 2 1 2

1 exp exp exps

x x x x
F x

   

   

            
     = − − − − + − −       
                 

 (3.19) 
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where 1  and 1  are the parameters for the first Weibull distribution. 2  and 2   

are the parameters for the second Weibull distribution.  

 

 

Figure 3.16 Particles and pits (Liao et al., 1998) 

 

Cawley et al. (1996) state that the particle centers are uniformly distributed on the surface. 

We incorporate both particles’ sizes and centers in modeling the pits propagation in our 

model. 
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Figure 3.17 Area data for particles on the LS and LT surfaces of common 7075-T6 

aluminum alloy with estimated CDFs (Harlow, 2012) 

 

3.4.2 Corrosion Pits Initiation 

A particle’s ability to initiate a pit depends on its size (Suter et al., 2001). Meanwhile, the 

particles close to the corroded pits are more susceptible to corrosion because of the 

chemical reaction of the pits’ corrosion. Let ( ),  iPP P t  denote particle iP ’s pitting 

potential, which is its ability to initiate a new pit at time t . We obtain ( ),  iPP P t  as 

follows: 

 ( ) ( ) ( )
( )

1 2

1

,  ,  
pn t

i i j i

j

PP P t g S P g L P t
=

 
= +  
 

   (3.20) 

where 1g  and 2g  are constants. iP  denotes the index of a particle, ( ) 22
ii PS P r=  is the 

effective surface area of particle iP , where 
iPr  is the radius of particle iP . The total 

number of pits at time t  is denoted as ( )pn t . ( ),  j iL P t  represents the corrosion effects 
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of the chemical reaction produced by the thj  pit on particle iP ’s ability to initiate a new 

pit. We define ( ),  j iL P t  as follows 

 ( ) ( )
( ) ( )

2 2

2
,  exp

2

i iP j P j

j i j

L

x x y y
L P t v t



 − + −
 = −
 
 

  (3.21) 

where ( )jv t  is the volume of the thj  pit at time t , 
jx  and 

jy  are the coordinates of 

the thj  pit’s center (which are also the coordinates of the center of the particle that has 

initiated the thj  pit), 
iPx  and 

iPy  are the coordinates of particle iP  and L  is a 

constant. As time t  increases, whenever ( ),  iPP P t  reaches a threshold 
ppc , particle 

iP  initiates a pit. Eq. (3.20) indicates that every corrosion pit influences the pitting ability 

of the uncorroded particles. The amount of influence depends on the distances of the 

particle to the corresponding pit.  

 

Without loss of generality, consider a specimen with a size of s sa b . To model the pits 

initiation process, we propose the following procedures: 

1) Randomly generate 
pcn  pairs of coordinates for the 

pcn  particles, where the x  and 

y  coordinates follow uniform distributions ( )0,  sU a  and ( )0,  sU b . 

2) For each of the particle, randomly generate a number z  which follows the 

distribution with CDF ( )sF z  as its size. Set the starting time as 0t = .  
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3) Calculate the pitting potentials of all the particles according to Eq. (3.20). If i  such 

that ( ),  i ppPP P t c , particle iP  is corroded at time 1t + . Let 1t t= + , repeat step 

(3) until all the particles are corroded. 

 

3.4.3 Corrosion Growth of Multiple Pits  
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Figure 3.18 The overlap of the pits 

 

After new pits are initiated, they grow both in the depth direction and the radial directions 

as described in section 3.3. In the multiple-pits growth process, pits may overlap and grow 

jointly. Figure 3.18 shows a schematic diagram of the growth and overlap process of four 

pits, where their centers are 1O , 2O , 3O  and 4O . At time 1t , the pits are away from 
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each other. Starting from 2t , pits begin to overlap with each other until time 4t , when the 

four pits merge into a larger-sized pit that continues to grow until the overall volume 

reaches the failure threshold.  
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11 2jS +

( ) ( )
1 11 1cosj jr t 

                                        

( ) ( )
2 22 2cosj jr t 

11 j
22 j

a b  

Figure 3.19 The coalescence of the two pits at 2t   

 

The overlap of the pits can be considered as the overlap of a series of sectors in each pit. 

Figure 3.19 (a) is an enlargement of the overlap section between pits 1 and 2 in Figure 3.18 

(b). We define a rule to decide if the sectors in one pit overlap with their counterparts in 

another pit and stop growing. As shown in Figure 3.19 (a), the sectors of pit 1 on one side 

of the overlapped area are 
11 jS , 

11 1jS +
, 

11 2jS +
 , the sectors of pit 2 on the corresponding 

side are 
22 jS , 

22 1jS +
, 

22 2jS +
. Let 

11 j  denote the angle between 1 2O O  and the median 

of sector 
11 jS . ( )ijr t  is the radius of the thj  sector of pit i  at time t , which follows 

an IIG process. Using simple geometry as shown in Figure 3.19 (b), we observe that sector 

11 jS  stops growing at time t  if there is at least a sector 
2 2 2,  

4

s
j

n
S j j j  +  such that   

 ( ) ( ) ( ) ( )
1 11 1 2 2 1 2cos cosj j j jr t r t O O +    (3.22) 
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We define an indicator function as shown in Eq. (3.23) to indicate whether a sector from 

pit 1 stops growing at time t . 

 ( ) ( ) ( ) ( ) ( ) 
1 1 11 1 1 2 2 1 2sgn cos cosj j j j jI t r t r t O O = + −   (3.23) 

where 

( )
1 if 0

sgn
1   if 0

x
x

x

− 
= 


 

If ( )
11 1jI t = − , the corresponding sector overlaps with other sectors and stops growing. 

Otherwise, it continues to grow. Let 
ijt  denote the overlap time of sector 

ijS , we define 

( ) 1ijI t = −  for 
ijt t . The volume growth of all the pits is composed of two parts: the 

volume growth of corroded pixels and newly corroded pixels as discussed in the following 

section. 

 

3.4.3.1 The Depth and Volume Growth of Corroded Pixels 

Assume at time t  there are ( )pn t  pits. Let ( )ikd t  denote the corrosion depth of the 

corroded pixel k  in the 
thi  pit at time t . The depth of pixel k  in the 

thi  pit at time 

1t +  is ( ) ( ) ( )1ik ik ikD t D t d t+ =  + , where ( )ikD t  is the corrosion depth growth of 

pixel k  in the 
thi  pit in the time interval ( ), 1t t + . The PDF of ( )ikD t  is 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )( )2

0 1 0 1( ),  ( )
ik

ik i i ik i i ikD t
f d t Ig t t d t t t d t    


 = + +   (3.24) 

where ( )0i t , ( )1i t  are defined in Eqs. (3.25) and (3.26) as 
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 ( ) ( )
( )

2

0 0 0

1

2
i

j

np t

i i P

j

t S t r   
=

= =    (3.25) 

 ( ) ( )
( )

2

1 1 1

1

2
i

j

np t

i i P

j

t S t r   
=

= =    (3.26) 

where ( )iS t  is the sum of the surface areas of the particles pit i  at time t , 0 , 1  

and    are constants and ( )inp t  is the total number of pixels in pit i  at time t . 

Suppose that the area of all the existing corroded pixels in the 
thi  pit at time t  is ( )is t , 

the total number of corroded pixels at time t  is ( )
( )

0

i

i

s t
n t

s
= , where 0s  is the area of a 

pixel. Let ( )ikV t  denote the volume increase of pixel k  in the 
thi  pit in the time 

interval ( ), 1t t + . The overall volume increment of the pit in the time interval ( ), 1t t +  

by all the corroded pixels is 

 ( )
( )( )

( )
( )( )

0

1 1 1 1

p pi i
n t n tn t n t

ik ik

i k i k

V t s D t
= = = =

 =     (3.27) 

where ( )pn t  is the total number of pits at time t . As ( )ikD t  is an IG variable with 

shape parameter ( ) ( )0 1 ( )i i ikt t d t +  and scale parameter ( ) ( )( )
2

0 1 ( )i i ikt t d t  + , 

according to properties of IG distribution we have 



75 

 

 

 ( )
( )( )

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )

1

0
0 0

0 0

2
1 1

1

0
0 0

0 0

,

~

                      

p

p

p i

p

p

n t

n t i i

i
i i

i

n t n t

ik
n t

i k

n t i i

i
i i

i

t v t

s t n t
s

V t Ig

t v t

s t n t
s







 

=

=

= =

=

=

  
  
  +
  
  

  
  

  
  
 + 
  
  
  









 (3.28) 

where ( )iv t  is the volume of pit i  at time t .  

 

3.4.3.2 Volume Growth of Newly Corroded Pixels 

The radius of each sector is ( )ijr t , where ( )1 ,  1p si n t j n    . The radial growth of 

the thj  sector in pit i  is 
( ) 1

( )
2

ij

ij

I t
R t

+ 
  

 
, where 

 ( ) ( ) ( ) ( ) ( ) ( )( )( )2

0 1 0 1( )~ ,  ij i i ij i i ijR t Ga t t r t t t r t     + +   (3.29) 

where ( )0i t , ( )1i t  are defined in Eqs. (3.30) and (3.31).  
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where 0 , 1  and   are constants, ( )iS t  is the sum of the surface areas of the 

particles pit i  at time t , ( )inp t  is the total number of pixels in pit i  at time t .  The 

area growth of the thj  sector in the 
thi  pit is 

( ) 1
( )

2

ij

ij

I t
S t

+ 
  

 
, where 

( )
( ) ( ) ( ) ( )( )
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  + 
 

  (3.32) 

where   is the contained angle of each sector and ( )ijS t  is the area growth of sector 

j  in pit i  in ( ), 1t t +  if it continues to grow. Equivalently, the number of pixels in 

sector j  corroded in ( ), 1t t +  is ( )
( ) 1

2

ij

ij

I t
N t

+ 
  

 
, where 
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 (3.33) 

 

The increase of the number of new corroded pixels in pit i  is 

 ( ) ( )
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1

1
=
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   (3.34) 

 

The volume growth by all these new corroded pixels is  
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3.4.3.3 Total Incremental Volume 

The total incremental volume in the next time instant is the sum of the volume increments 

of corroded pixels and new corroded pixels. The overall volume increment of all the pits 

in ( ),  1t t +  is 

 ( ) ( )
( )( )

( )
( )

( ) ( )( )

1 1 1 1

p pi i i

i

n t n tn t n t n t

ik ik
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V t V t V t
 +

= = = = +

 =  +      (3.36) 

 

Using properties of IG distribution, we have 
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  (3.37) 

where ( )pn t  is the total number of pits at time t , ( )in t  is the total number of pixels 

in pit i  at time t  and ( )in t  is the number increase of pixels in pit i  in ( ), 1t t + , 

which is predicted by Eq. (3.34). The parameters ( )0i t , ( )1i t  are obtained by Eqs. 

(3.25) and (3.26) and   is a constant. In terms of the corrosion volume failure mode, 

the reliability is: 
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  (3.38) 

where 
fT  is the failure time, vc  is the volume threshold and ( )IG   is the CDF of IG 

distribution. 

 

3.4.4 Multiple Pits Initiation and Growth: Case Study  

We use a case study to illustrate the pits’ initiation and growth process over time. The total 

number of particles is assumed to be 10. We follow Harlow (2012) and use the parameters 

of the CDF of particle sizes as 1 0.34 = , 1 850 = , 2 2 = , 2 2 = . The particles are 

generated as shown in Figure 3.20 with red circles. Figure 3.21 shows the selected figures 

of overlap of the pits over time, where the particles are also shown in red circles. The total 

volume growth of the pits is shown in Figure 3.22 (a). The reliability of the unit is shown 

in Figure 3.22 (b). 
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Figure 3.20 The particles in a material 

 

 

Figure 3.21 Selected figures of the pits over time 
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Figure 3.22 (a) Total volume growth of the pits (b) Reliability of the unit with multiple 

pits for threshold  

 

3.5 Summary 

We propose an IIG process model to capture the dependency between the corrosion state 

and the corrosion growth rate. The corresponding failure probability and remaining life are 

accurately predicted based on the IIG model. The proposed models provide more accurate 

and robust results than the IG model. Based on the IIG process, we develop the first 

stochastic model that describes the corrosion pit volume growth over time. It captures the 

phenomenon where a critical amount of volume loss leads to the failure of a component. 

An iterative remaining life prediction approach is proposed. The consistency of the 

proposed model with the empirical mass loss model and physics-based model is verified 

with real data. The propagation of corrosion is studied. The physical factors, including the 

spatial and size distributions of the particles and the influence of the corroded pits are 
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incorporated into the pits’ initiation model. The pits overlap process is also studied and a 

simulation model is provided to validate the analytical model.  
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4 CHAPTER 4 

 

 

DEGRADATION BRANCHING MODELING 

 

4.1 Introduction 

Degradation branching is a common phenomenon in many real-life applications. The 

degradation of a location not only increases with time but also propagates to other locations 

in the same system. While the degradation of an individual location has been studied 

extensively, research on degradation branching is sparse. In this chapter, we develop a 

general stochastic degradation branching model that characterizes both the degradation 

growth and degradation propagation. The probabilistic properties of the general 

degradation branching processes are analyzed. Reliability metrics such as the mean time to 

failure, mean residual life, failure probability and others are also investigated. In particular, 

closed-form expressions for the expectation and variance of the degradation and selected 

reliability metrics are obtained when the time to branch follows an exponential distribution. 

The model is validated using actual crack growth data and can be applied to corrosion 

propagation. 

 

The degradation branching process (DBP) is described as follows: (1) The degradation 

starts in one location and propagates to other locations, (2) After a random time another 

degradation branch is initiated, (3) The degradation of each branch follows a stochastic 
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process, (4) Failure occurs when the total degradation of all the branches reaches a failure 

threshold. Consider the crack growth as an example, the crack is initiated due to the 

mechanical stresses and continues to grow. After a random time, it initiates another branch 

(it occurs due to internal stresses or crossing of grain boundaries). Failure occurs when the 

total crack length of all the branches exceeds the overall “failure” threshold (Wang et al., 

2020b).  

 

4.2 The Degradation Branching Process Model 

4.2.1 Properties of the DBP 

First, we define the general DBP as shown in Figure 4.1. Let the stochastic process ( )0X t  

denote the degradation of the first location which starts to degrade at time t = 0. The 

branching occurs after a random time interval 1  and the main degradation path ( )0X t  

continues to grow after the new degradation branch is initiated. Note that i  may have 

different interpretations in different DBPs depending on the properties of the real-life 

applications. We define two types of DBPs: Type I DBP and Type II DBP. In Type I DBP, 

i  is a variable corresponding to the time that ( )1iX t−
 reaches its threshold ic  (the first 

passage time) and incurs branching while in Type II DBP i  is a random variable 

determined by other physical processes independent of the degradation of the branches. 

Figure 4.1 illustrates the Type I DBP. The degradation of the first branch at time t  is 
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denoted as ( )1 1X t − , where 1t −  is the length of time of its degradation. Meanwhile, 

the first degradation branch continues to grow and initiates another branch after a random 

time 2 , where 2  is a random variable corresponding to the time that ( )1 1X t −  

reaches its threshold 1c . The degradation of the second branch at time t  is 

( )2 1 2X t  − − , where 1 2t  − −  is the length of time of its degradation. In general, the 

threshold ic  for each branch to initiate a new branch may be different. The branching 

continues until the cumulative degradation of all the branches exceeds the overall failure 

threshold c . In comparison, in Type II DBP the initiations of new branches are 

independent of the degradation of the original branches. Let ( )0X t  denote the length of 

the initial degradation and ( )1 1X t −  denote the length of the first branch (say crack 

length as an example) at time t . The notation 1  denotes the time that the Stress Intensity 

Factor (SIF) (Sundaram et al., 2018) reaches the threshold 0s  and leads to the initiation 

of the first crack branch. The notation ( )2 1 2X t  − −  denotes the crack length of the 

second branch at time t  and 2  is the time that SIF reaches the threshold 1s  and 

initiates the second branch. The overall threshold c  corresponds to the maximum 

allowance of total crack length (Sundaram et al., 2018). 
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Figure 4.1 Schematic diagram of the DBP 

 

Suppose i  follows a distribution with a probability density function (PDF) ( )if   and 

a cumulative distribution function (CDF) ( )iF  . Let ( )*

iX t  denote the degradation of 

the 
thi  branch at time t and ( ) ( )*

0 0X t X t= . Note that ( )* ,  1iX t i   are different from 

1

,  1
i

i j

j

X t i
=

 
−  

 
  in that the latter are the conditional degradation given ,  1j j i    

are known. Let 
1

i

i j

j

h x t 
=

 
−  

 
  denote the conditional PDF of 

1

i

i j

j

X t 
=

 
− 

 
 , where 

 ,  1i i n    are the known initiation times of the first n  branches. Let 

 ( ),  ,  1ih x t i n    denote the conditional PDF of these branches’ total degradation 

including the first degraded location, which is ( )0

1 1

n i

i j

i j

X t X t
= =

 
− + 

 
  . For example, in 

the case of crack growth and branching where the degeneration of the branches follows 

Brownian Motion with a drift vector ( )0 ,  ,  n  =μ  and diffusion vector 
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( )0 ,  ,  n  =σ  and  ,  1i i n    are known, the conditional total crack length is 

( )0

1 1

~
n i

i j

i j

X t X t
= =

 
− + 

 
 

2 2

0 0

1 1 1 1

,  
n i n i

j i j i

i j i j

N t t t t     
= = = =

    
+ − + −     

    
     . As 

shown in the proof in Appendix F, the PDF of the total degradation at time t  is given by 

Eq. (4.1), 

 ( ) ( )  ( )
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0 11 10 0

1 ,  ,  1

n

i

ib
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tn n nn

i i i i

n ii i
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−
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= == =


  

= − −    
  

     (4.1) 

where bn  is the limit of the number of branches, which can be either finite or infinite 

depending on the real-life applications. When the system consists of a finite number of 

units and the degradation of each unit (branch) is represented by a unique indicator, bn  is 

finite and equals the total number of units in the system. The degradation branches 

correspond to the degradation of the units. Otherwise, when there is only one unit and the 

degradation starts from one location of the unit and propagates and branches to other 

locations, then bn  is infinite ( bn =  ) as described in the case of crack growth and 

branching process. Here the degradation branches correspond to the length of the crack 

branches. 

 

When bn =   and the distribution of time to branch ( )if   is known, the expected 

number of branches at time t  can be determined as follows. Let ( )*f s  be the Laplace 
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transform of ( )f t . Let ( )M t  denote the expected number of branches at time t . Let 

( )
( )dM t

m t
dt

= . As shown in the proof in Appendix F, ( )m t  is obtained as 

( )
( )

( )

*

1

*1

f s
m t

f s

−
 

=   − 
 

The expected number of branches at time t  is 

 

( ) ( )

( )
0

             

t

E N t M t

m d 

=

= 
  (4.2) 

The expectation of the total amount of degradation of all the branches including the first 

degraded location at time t  is 

 ( )( ) ( ) ( )( )* *

0 00

b
t n n

i

n i

E X t g n E dX


 
= ==

   
=     

   
    (4.3) 

where ( )( )*

iE dX   is the expectation of the degradation increment of the 
thi  branch in 

( ),  d  +  and ( )g n   is the probability that there are n  branches at time t . Note 

that ( )*

idX   is not the differential form of ( )*

iX   as many stochastic processes are not 

differentiable, instead, it represents the amount of degradation in the small time interval of 

( ),  d  + . When the expected degradation growth rates of all the branches are   as in 

the cases of Brownian Motion, Gamma processes and IG processes where the mean 

function is t , then Eq. (4.3) reduces to 

 ( )( ) ( )*

=0

t

E X t E N d t


  
 

= + 
 
   (4.4) 



88 

 

 

where ( )E N   is the expected number of branches at time  . Proofs of Eqs. (4.3) and 

(4.4) are given in Appendix F. When the failure threshold of the total degradation is c , 

the mean time to failure (MTTF) can be obtained by solving ( )( )*E X t c= . In the 

example of crack growth and branching, the MTTF corresponds to the expected time when 

the total length of all the cracks reaches the threshold and leads to failure. 

Suppose at time t  the total degradation is ( )x t , the total number of branches is ( )n t  

and the last branch is initiated at lt . We obtain the mean residual life (MRL) using Eq. 

(4.5) and its proof is given in Appendix F. 
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 (4.5) 

 

The variance of the total degradation at time t  is obtained in Eq. (4.6), the proof is 

in Appendix F. Consider the example of crack growth and branching, Eq. (4.6) obtains 

the uncertainty of the total length of the crack branches at time t  which originates 
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from the uncertainty of the total number of crack branches and the uncertainty of the 

length of the crack branches. 
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The reliability and the failure time distribution of the system for a given threshold c  

are obtained in Eqs. (4.7) and (4.8):  
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where  ( ),  ,  1iH x t i n    denotes the conditional CDF of the total degradation 

of all the branches (including the first degraded location) at time t  , given 

 ,  1i i n    are known. The proof of Eq. (4.7) is given in Appendix F. In the case 

of crack growth and branching, Eq. (4.7) obtains the probability that the total length 

of all the cracks is less than the failure threshold c  given the parameters of ( )if   

and the parameters of the crack growth of the branches (such as the μ  and σ  in 

the case of Brownian Motions) are known. Eq. (4.8) obtains the PDF of the failure 

time given the failure threshold is c . 

The mean and variance of the degradation of the 
thi  branch at time t  are obtained 

in Eqs. (4.9) and (4.10) respectively. The proofs of Eqs. (4.9) and (4.10) are given in 

Appendix F. 
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4.2.2 Special Case of the DBP: Branching Brownian Motion Process 

We consider a special case of Type II DBP where the time to branch follows an exponential 

distribution. The approach can be applied to other distributions that can be approximated 

by the exponential distribution. Consider a general degradation process whose mean 

function and variance function of any branch in the time interval ( ),  t t dt+  is dt  and 

2  dt  respectively (e.g. Brownian Motion), when the time to branch follows an 

exponential distribution with rate  , the PDF, expectation and variance of the total 

degradation are obtained in Eqs (4.11), (4.12) and (4.13) respectively. Moreover, the PDF, 

the expectation and the variance of the total degradation are uniquely determined by  , 

  and  . The proofs are given in Appendix F. 
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The expected number of branches at time t  is obtained by Eq. (4.14), which indicates that 

the expected number of branches initiated is uniquely determined by the rate of branching 

  and time t . 
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The reliability at time t  is 
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 denotes 

the conditional CDF of the total degradation of all the branches (including the first 

degraded location) at time t , given  ,  1i i n    are known. Note that ( )erf   is the 

error function. The PDF of time to failure is 
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Suppose the total degradation at time t  is ( )x t , the total number of branches is ( )n t  

and the last branch is initiated at lt t . The MRL is given in Eq. (4.18) and its proof is 

shown in Appendix F. 
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Using Eqs. (4.9) and (4.10) we obtain the mean and variance of the degradation of branch 

i  as given in Eqs. (4.19) and (4.20) respectively. 
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  (4.20) 

 

Next, we discuss the scenario where Type I DBP can be approximated by the Branching 

Brownian Motion processes. In Type I DBP the initiations of the new branches are 

triggered when the degradation levels of the branches reach their thresholds  ic . The 

parameters of the distribution of time to branch are obtained from the corresponding 

branches’ degradation process using the models described in section 4.2.1 and the metrics 
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of the Type I DBP can be obtained accordingly. For a branch in a Brownian Motion process 

with drift  i  and diffusion  i , it is known that the time to cross the threshold ic  

follows an IG distribution 
2

2
~ ,  i i

i

i i

c c
IG

 

 
 
 

. Accordingly, 

( )
2

2 2

3 2 2 2

1
exp

2 2

i i i
i

i i i i i i

c c
f




     

  
 = − − 
   

 

The metrics of the threshold-triggered Branching Brownian Motion process can be 

obtained using Eqs. (4.1)-(4.10). However, in some cases, we may approximate these 

processes with a DBP that has branching times following an exponential distribution as 

discussed in the first part of this section, where closed-form or simplified results are 

obtained. To do so, the first requirement is that the expectations of the two distributions 

should be equal, i.e. 
1

= i

i

c

 
. The second requirement is that the variances of the IG 

distribution and exponential distribution are close, i.e., the following condition should be 

satisfied: 

3 1
2 2

2 2 2

1
=i i i

i i i

c c c

   

−

   
   

   
 

which is equivalent as  

 2

i i ic    (4.21) 

In this case, 
2

2
,  i i i

i i i

c c
IG Exp

c



 

   
   

   
. When i =  and ic d= , bn =   Eqs. (4.12), 

(4.13) and (4.15) reduce to 
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 ( )( )* 1
2

E X t t t
d



 

= + 
 

  (4.22) 

 ( )( )* 3 3 2 2 21 1

3 2
Var X t t t t

d d
   = + +   (4.23) 

 
2

1 1
d c

MTTF
d

 
= − + +  

 
  (4.24) 

where c  is the overall failure threshold. Figure 4.2 shows an example when  = 1,  = 

6 and d = 36, where the CDFs of the IG distribution and exponential distribution are close.    

 

 

Figure 4.2 The CDFs of IG distribution and exponential distribution 

 

4.2.3 Case Study 

As crack growth leads to failures when its total length reaches the threshold as described 

in (Singh et al., 2017), we use actual crack growth and branching data by Dondeti et al. 
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(2019) to validate the proposed model. Three identical soda-lime glass specimens are 

subjected to impact loading in the test under the same condition and monitored with three 

different methods of Photoelasticity Experiment (PE), Digital Image Correlation (DIC) and 

Digital Gradient Sensing (DGS). To ensure that the observations obtained with different 

methods are consistent, calibration techniques such as nonlinear-squares regression, 

genetic algorithms, subset splitting and others have been used for calibration (Dondeti et 

al., 2019). Figures 4.3 and 4.4 show examples of the selected contours of DGS images and 

PE fringes photos of the crack growth and branching process of soda-lime glass specimens. 

In both examples the cracks are initiated on the left and continue to grow and propagate to 

the right. The crack in Figure 4.3 is initiated at 0t s=  and branches at 21t s=  while 

the crack in Figure 4.4 is initiated at 0t s=  and branches at 18t s= . Note that the 

‘stitch marks’ in Figure 4.4 along the crack path are attributed to contact stresses due to the 

Rayleigh waves. In this case study we investigate the DBP where only one branch is 

initiated at every instant of branching. 
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Figure 4.3 Selected figures of the contours of DGS images of crack growth and 

branching process in a soda-lime glass specimen (Dondeti et al., 2019) 

 

(a) (b)

(c) (d)

 

Figure 4.4 Selected photos of PE fringes of crack growth and branching process in a 

soda-lime glass specimen (Dondeti et al., 2019). 
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Figure 4.5 The crack growth data of the three specimens used in the case study 

 

Figure 4.5 shows the crack growth data of the three specimens, where the original cracks 

are plotted in lines with downward-pointing triangles and the branched cracks are plotted 

in dashed-dot lines with squares. We observe that the crack growth rates of the original 

cracks and branched cracks are close, so we assume the original and branched cracks’ 

growth follow Brownian Motions with the same parameters. We censor the degradation 

data at time t =25 s  and obtain the crack growth parameters  1.602,  0.571 = =  

using Maximum Likelihood Estimation (MLE).  
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The distribution of time to branch ( )f   is determined by the time that the Stress Intensity 

Factor (SIF) reaches the branching threshold (Dondeti et al., 2019, Sundaram et al., 2018). 

As shown in Figure 4.6, it is observed that the SIF starts from an initial lower state (0.8) 

and increases until it reaches the threshold (1.45) and triggers branching. The SIF then 

returns to the lower level after branching and the process is restarted. We model the SIF 

growth as a Brownian Motion process and the first passage time follows an IG distribution. 

Using MLE, we obtain the parameters of the IG distribution as 

 27.778,  151.169IG IG = = . The PDF of the IG distribution is shown in Figure 4.7. 

Besides, the branching times ( )16,  18,  21  of the three specimens are indicated with 

crosses. We find that the branching times observed from the experiments match that 

estimated with SIF growth. This shows that the time to branch can be accurately 

characterized by the time that SIF reaches its threshold. When the total number of 

specimens is large, the parameters can be obtained using the crack branching data instead 

of using SIF data, as the SIF data is more difficult and expensive to obtain.  
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Branching threshold

 

Figure 4.6 The apparent SIFs of cracks over time 

 

Branching 

observations

 

Figure 4.7 The estimated PDF of time to branch based on SIF growth and observed times 

of branching of specimens 
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The mean and 99% confidence interval of total crack length are shown in Figure 4.8. In 

addition, the total degradation of the cracks of the three specimens are plotted in black. We 

observe that the model accurately predicts the growth of the total crack length. 

 

We estimate the reliability using Eq. (4.7) for a threshold of 60 mm  as shown in Figure 

4.9. In real-life applications where glass-made structures are used in manufacturing 

containers, the total crack length is related to the leakage amount. Failure occurs whenever 

leakage reaches an unacceptable threshold. 

 

Censor time

 

Figure 4.8 The actual and predicted total crack length 
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We estimate the reliability using Eq. (4.7) for a threshold of 60 mm  as shown in Figure 

4.9.  

 

 

Figure 4.9 The reliability of the unit/system subject to crack growth and branching 

 

Note that in this study, the reliability metrics are calculated numerically based on Monte 

Carlo (MC) simulation. The calculation is performed on the MATLAB platform using a 

MacBook Pro with a 16GB 2400 MHz DDR4 and 2.2 GHz Intel Core i7 processor. The 

calculation results are shown in Table 4.1 in the increasing order of integral corresponds to 

n  in Eq. (4.1). The contribution of degradation of higher-order branches ( 4n  ) is 

insignificant (<1/1000), so we may stop the calculation of integrals higher than order 4 and 
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use the total degradation of the main degradation path and the first 3 branches to 

approximate the total degradation, which saves a significant amount of time. 

  

Table 4.1 The information of numerical calculation of integrals 

Order of 

integral 

0 1 2 3 4 5 6 

Time (s) 0.0093 0.0146 0.0229 0.0825 0.4141 6.3659 98.5081 

Contribution 

to the total 

degradation 

0.2240 0.7073 0.0805 0.0002 <0.0001 <0.0001 <0.0001 

 

 

4.3 Summary 

We develop a general stochastic model that characterizes the DBP. The statistical 

properties of the process, such as the PDF, the mean and variance of the degradation and 

the related reliability metrics such as the failure time distribution, the reliability and the 

MTTF are presented. Specifically, closed-form expressions of the expectation and variance 

of the total degradation and MTTF are obtained when the times to branch follow an 

exponential distribution. The threshold triggered DBP is also investigated. The models are 

validated with actual crack growth and branching data. The predictions from the models 

match the actual data accurately.  
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5 CHAPTER 5 

 

 

GENERAL DIRECTIONAL DEGRADATION BRANCHING PROCESSES 

 

5.1 Introduction 

In many degradation branching applications, the number and directions of the branches 

significantly affect the total degradation of the system. In Chapter 4, we investigate the 

degradation branching process and assume that only one branch occurs at the time of 

branching and in a random direction. However, relaxing this assumption results in the more 

general case where a random number of branches is initiated at each branching instant and 

their directions may be bounded. In this chapter, we investigate this general directional 

degradation branching process and develop a stochastic degradation model that captures 

both the number and directions of the branches at any branching instant. Reliability metrics 

such as the mean time to failure, the mean residual life, the failure probability and others 

are also investigated. 

 

The general directional degradation branching process (GDDBP) is described as follows: 

(1) The degradation starts in one location and propagates to other locations, (2) After a 

random time a random number of degradation branches (offsprings) are initiated, (3) Each 

offspring branch grows in a random direction from its parent branch, (4) The degradation 

of each branch follows a stochastic process and its degradation rate is related to its 
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branching angle, (5) Failure occurs when the total degradation of all the branches reaches 

a failure threshold.  

 

5.2 Nomenclature 

trn   The number of trees. 

k  Index of a tree. 

t   Time. 

,b kN  The total number of branchings occur in tree k . 

,g kN  The total number of generations of branches in tree k . 

i  The index of generations of the branches. 

i  0 i i  , the generation indexes of a branch’s ancestors.   

,i kn   The total number of branchings where branches in 

generation i  in tree k  are initiated. 

,i kn  The upper bound of ,i kn . 

ij    The index of an offspring’s 
thi -generation ancestor’s 

index. 

ij   The upper bound of variable ij  . 

1,   , ,i

i

j j k   
The index of a branch, which consists of its tree index k , 

its ancestors’ indexes in the 1st to the 1thi −  generations 
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( 1j  to 1ij − ) and its index ij  among the offsprings in this 

generation. Specially, when 0i = , the branch index is k , 

which indicates that this branch is an original branch. 

1,  , ,i

i

j j kB  The branch whose index is 
1,  , ,i

i

j j kB . Note that the 

 ' ,  for 0ij i i   are constants in this expression. 

1,  , ,i

i

j j k  The time when 
1,  , ,i

i

j j kB  branches. 

1 1

1

,  , , ,  , ,

1
i i

i i

i

j j k j j k

i

X t 




−

=

 
−  

 
  The degradation of branch 

1,  , ,i

i

j j kB , where 
1

1

,  , ,

1
i

i

i

j j k

i






−

=

  

is the time it takes to initiate 
1,  , ,i

i

j j kB  from 0t = . 

1,  , ,i

i

j j k  The angle between branch 
1 1

1

,  , ,i

i

j j kB
−

−

 and its offspring 

1,  , ,i

i

j j kB . 

1,  , ,i

i

j j kO  The number of offsprings of branch 
1,  , ,i

i

j j kB . 

1,  , ,i

i

j j kc  The branching threshold of branch 
1,  , ,i

i

j j kB . 

1,  , ,i

i

j j k ,
1,  , ,i

i

j j k  
The drift and diffusion of Brownian motion process of 

1 1

1

,  , , ,  , ,

1
i i

i i

i

j j k j j k

i

X t 




−

=

 
−  

 
 . 

c  The failure threshold. 

1,  , ,i

i

j j ks O
 
  
 

 
The PMF of 

1,  , ,i

i

j j kO . 

1,  , ,i

i

j j kf 
 
  
 

 
The PDF of 

1,  , ,i

i

j j k . 
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1,  , ,i

i

j j kF 
 
  
 

 
The CDF of 

1,  , ,i

i

j j k . 

1,  , ,i

i

j j k 
 
  
 

 
The PDF of angle 

1,  , ,i

i

j j k . 

kO  The numbers of offsprings initiated in the branchings in 

tree k . 

kO  The regions of integral of variable kO . 

k  The times when branchings occur in tree k . 

kτ  The regions of integral of variable k . 

k  The angles of branches in tree k . 

kα  The regions of integral of variable k . 

( )kf  The probability that the first 
,b kN  branchings occur by 

time t  are k . 

( )kf  The probability that no other branchings occur by time t  

except those occur at k . 

( )kOs  The probability that the numbers of offsprings initiated in 

the first ,b kN  branchings are kO . 

( )k  The probability that the angles of branches are k . 
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( ), , ,k k kx t O h  The PDF of the conditional total degradation of all the 

branches and the original branch in tree k  at time t , 

given kO , k , k  are known. 

( ), , ,k k kx O t g  The probability that degradation of tree k  is x , the total 

number of branchings occur by time t  is 
,b kN  and the 

times that the branchings occur are k , the angles of 

branches are k , and the numbers of offsprings initiated 

in the branchings are kO . 

( )( ), , , ,
k k k k kx O t τ αΨ g  The probability that the degradation of tree k  is x , the 

total number of branchings occur by time t  is 
,b kN  and 

the numbers of offsprings initiated in the branchings are 

kO  

( )( )
, ,, , ,k b k g k k kN NO τ αΩ Ψ g  The marginal distribution of degradation amount ( )kX t  

when there are 
,g kN  generations of branches in tree k  

and the total number of branchings is 
,b kN , where

( ), , ,k k kx O t =g g  

 

,b kI  The set of indexes of the branches that branch in tree k  

by time t  
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,o kI  The set of indexes of the offspring branches in tree k  by 

time t  

,u kI  The set of indexes of the branches that do not branch by 

t . Note that 
, ,o k b kI I= − . 

( )kX t  The degradation of tree k . 

( ) ( )
1

trn

k

k

X t X t
=

=  
The total degradation of all the trees. 

( )h x t  The PDF of the total degradation at time t .  

( )R t  The reliability. 

( )f t  The PDF of the time to failure. 

 

5.3 General Directional Degradation Branching Process 

5.3.1 Definitions and Properties of the GDDBP 

5.3.1.1 The branching times, generations and degradation of the GDDBP 

First, we define the general directional degradation branching process (GDDBP). Figure 

5.1 shows an example of the branching pattern of GDDBP. At time 0t = , a random 

number of trn  original branches are initiated and propagate in different directions, each 

of which grows into a branching tree as degradation proceeds. Figure 5.1 shows the case 

when 5trn = . Note that only the branches initiated at 0t =  are called the original 

branches, those initiated at 0t   are simply called branches. Figure 5.2 shows a schematic 
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diagram of the tree grown from original branch 1k =  shown in Figure 5.1 and Figure 5.3 

shows the degradation of the original branch and its offspring branches. The offspring 

branches in the three generations are shown in three different colors in Figure 5.3. Let kB  

denote original branch k  and the stochastic process ( )kX t  denote its degradation. The 

branching of kB  occurs after a random time k  and initiates 1kO =  new branch ( )1,kB , 

whose degradation is ( )1,k kX t −  and kt −  is its actual degradation time. Note that the 

subscript 1 is the index of the offspring of its ancestor kB . The new branch is in the 1st 

generation of branches as it is initiated from one of the original branches kB . Meanwhile, 

( )kX t  continues to grow after the new degradation branch(es) is(are) initiated. The 

offspring(s) continue(s) to grow and may continue to initiate new branches thereafter over 

time. For example, two (
1, 2kO = ) 2nd-generation branches 

1,1,kB  and 
2,1,kB  are initiated 

from branch 
1,kB  at 1,k kt  = +  and two (

1,1, 2kO = ) 3rd-generation branches 1,1,1,kB  and 

2,1,1,kB  are initiated from branch 
1,1,kB  at 

1, 1,1,k k kt   = + + . The degradation amount of 

these four branches are ( )1,1, 1,k k kX t  − − , ( )2,1, 1,k k kX t  − − , 

( )1,1,1, 1, 1,1,k k k kX t   − − −  and ( )2,1,1, 1, 1,1,k k k kX t   − − −  respectively. 
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Original 

Branch 1

Original

 Branch 2

Original 

Branch 3

Original 

Branch 4

Original 

Branch 5

Tree 1

Tree 2

Tree 3

Tree 4

Tree 5  

Figure 5.1 The branching pattern of a GDDBP that has 5trn =  trees 

 

 

kB

k

1kO =

1,k

1,1,k

1,k

1,1,k

2,1,k

1,1,1,k

2,1,1,k

1, 2kO =

1,1, 2kO =1,kB

1,1,kB

2,1,kB

1,1,1,kB

2,1,1,kB

 

Figure 5.2 The tree grown from original branch 1k =  in Figure 5.1  
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Figure 5.3 Schematic diagram of the degradation of the original branch and branches in 

tree 1k =  shown in Figure 5.1 

 

In general, 
1,  , ,i

i

j j kB  is the th

ij  offspring in the 
thi  generation whose ancestors in 

generations 1 to 1i −  are 1 1,   , ,   ,i ij j j −  respectively. Note that ij   denotes the 

index of the branch’s ancestor in the 
thi  generation. The degradation of branch 

1,  , ,i

i

j j kB  

is 
1 1

1

,  , , ,  , ,

0
i i

i i

i

j j k j j k

i

X t 




−

=

 
−  

 
 , where 

1

1

,  , ,

0
i

i

i

j j k

i






−

=

  denotes the time it takes 
1 1

1

,  , ,i

i

j j kB
−

−

 to 

initiate branch 
1,  , ,i

i

j j kB  starting from 0t = . In addition, note that when arranging the 

subscripts the 1 2, , , ij j j  are reversed as 2 1, , ,ij j j  as the indexes of the latest 

generations of offsprings are always put in the first places. 
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5.3.1.2 The branching mechanisms of the GDDBP 

Note that the branching time 
1,  , ,i

i

j j k  may have different interpretations in different 

GDDBPs depending on the characteristics of the real-life applications. We define two types 

of GDDBPs: Type I GDDBP and Type II GDDBP. In Type I GDDBP, 
1,  , ,i

i

j j k  is a 

variable corresponding to the time that 
1 1

1

,  , , ,  , ,

1
i i

i i

i

j j k j j k

i

X t 




−

=

 
−  

 
  reaches its threshold 

1,  , ,i

i

j j kc  (the first passage time) and initiates branching at this time while in Type II 

GDDBP 
1,  , ,i

i

j j k  is a random variable determined by other physical processes 

independent of the degradation of the branches. In the soda-lime glass crack branching 

example, 
1,  , ,i

i

j j k  denotes the time that the Stress Intensity Factor (SIF) (Sundaram et al., 

2018) reaches the threshold 
1,  , ,i

i

j j kc  and leads to the initiation of the offspring crack 

branches. The overall threshold c  corresponds to the maximum allowance of the total 

crack length of all the trees (Sundaram et al., 2018). 

 

Figure 5.3 illustrates the Type I GDDBP. At time k  branch 
1,kB  is initiated from kB  

when ( )kX t  reaches its branching threshold kc . Then after time 1,k  other branches 

 1,1, 2,1,,  k kB B  are initiated from branch 1,kB  when ( )1,k kX t −  reaches its branching 

threshold 1,kc . Similarly, after time 1,1,k  further branches  1,1,1, 2,1,1,,  k kB B  are initiated 

from branch 1,1,kB  when ( )1,1, 1,k k kX t  − −  reaches its branching threshold 1,1,kc . In 

comparison, no branches are initiated from 2,1,kB , 1,1,1,kB  and  2,1,1,kB  since 



114 

 

 

( )2,1, 1,k k kX t  − − , ( )1,1,1, 1, 1,1,k k k kX t   − − −  and ( )2,1,1, 1, 1,1,k k k kX t   − − −  never 

reach their branching thresholds 
2,1,kc , 

1,1,1,kc  and 
2,1,1,kc  by time t  . In general, the 

branching process continues until the cumulative degradation of all the branches reaches 

the overall failure threshold c .  

 

5.3.1.3 The branching angles and degradation rates of the GDDBP 

Rabinovitch et al. (2011) show that the growth rates of offspring crack branches are related 

to their angles with respect to their parent branch. It is assumed that the secondary fractures 

are initiated at distances greater than a certain minimal radius r  from the primary’s vertex. 

As shown in Figure 5.4 (a),   is the angular location and   is the direction of branching 

from a flaw adjacent to the primary fracture. Figure 5.4 (b) shows the angle 1  where the 

stress at flaw tip reaches its maximum and the relationship between branching direction 1  

and fracture velocity LV C , where V  is the instantaneous crack propagation velocity and 

LC  is the longitudinal wave speed. Thus it is implied that   is the angle at which the flaw 

turns into a secondary fracture and   is the direction that crack propagates. It can be 

concluded that larger angles lead to larger crack growth rates. Let 
1,  , ,i

i

j j k  denote the 

angle of 
1,  , ,i

i

j j kB , which is the angle between offspring 
1,  , ,i

i

j j kB  and its parent branch 

1 1

1

,  , ,i

i

j j kB
−

−

, the mean crack growth rate of 
1,  , ,i

i

j j kB  is obtained using Eq. (5.1) as 
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1 1 1 1

1

,  , , ,  , , 0 1 ,  , , , for 1
i i i

i i i

j j k j j k j j k i   
−

−

 
= +   

 

  (5.1) 

where 0  and 1  are constants. If the degradation of branch 
1,  , ,i

i

j j kB  is modeled with 

a Brownian motion process 
1,  , ,i

i

j j k  corresponds to its drift and its diffusion is obtained 

with Eq. (5.2): 

 
1 1 1 1

1

1/2

,  , , ,  , , 0 1 ,  , , , for 1
i i i

i i i

j j k j j k j j k i   
−

−

 
= +   

 

  (5.2) 

 

Cauchy distribution is used to model crack angles in (Rice, 2006). The PDF of the 

branching angles modeled by Cauchy distribution is given in Eq. (5.3). 

 
1

1

,  , ,

2 2

,  , ,

i

i

i

i

j j k

j j k


 

  

 
=     

+  
 

  (5.3) 

where   is a constant. 
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1

1





(a)

(b)  

Figure 5.4 (a) Definitions of the angular location and direction of branching from a flaw 

adjacent to the primary fracture (b) The branching direction as a function of fracture 

velocity (Rabinovitch et al., 2011) 

 

5.3.2 Probabilistic Properties of the GDDBP 

5.3.2.1 The conditional degradation of a tree 

In tree k  the numbers of offsprings initiated in the branchings are denoted as vector 

1 1

1

,  , , 1 1 ,

1

= ,  for ,   , ,
i

i

k j j k i b k

i

O O j j k I
−

−

−

−

  
 

  

, where ,b kI  is the set of indexes of the 
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branches that branch in tree k  by time t , the times when branchings occur are denoted 

as vector 
1 1

1

,  , , 1 1 ,

1

= ,  for ,   , ,
i

i

k j j k i b k

i

j j k I 
−

−

−

−

  
 

  

, the angles of the branches are denoted 

as vector 
1,  , , 1 ,= ,  for ,   , ,

i

i

k j j k i o k

i

j j k I 
  

 
  

, where 
,o kI  is the set of indexes of the 

offspring branches in tree k  by time t . In the example of Figures 5.2 and 5.3, 

( ) ( ) ( ) , , 1, , 1,1,b kI k k k= , ( ) ( ) ( ) ( ) ( ) , 1, , 1,1, , 2,1, ,  1,1,1, , 2,1,1,o kI k k k k k= ,  

( )1, 1,1,= 1,  1,  2k k k kO O O O = = = , ( )1, 1,1,,  ,  k k k k    =  and 

( )1, 1,1, 2,1, 1,1,1, 2,1,1,,  ,  ,  ,  k k k k k k      =  in tree k . Note that there is a relationship 

between 
,b kI  and 

,o kI : the branches whose indexes are in 
,b kI  initiate branches whose 

indexes are in 
,o kI . Note that 

, , ,u k o k b kI I I= −  denotes the set of indexes of the branches 

that have not branched by t . The general steps to obtain ,b kI  and 
,o kI  are discussed in 

section 5.3.2.2. 

 

Let 
1,  , ,i

i

j j kf 
 
  
 

 and 
1,  , ,i

i

j j kF 
 
  
 

 denote respectively the probability density function 

(PDF) and cumulative distribution function (CDF) of 
1,  , ,i

i

j j k . Given k , kO  and k  

are known, the conditional total degradation of tree k  at time t  is 

1 1

1 ,

1

,  , , ,  , ,

,  , , 0
i i

i o k i i

i

i

j j k j j k

j j k I i

X t 




−

 =

 
−  

 
   and its PDF is denoted by ( ), , ,k k kx t O h . For 

example, in the crack growth and branching shown in Figure 5.3, if the degradation of the 

branches follow Brownian Motions with drift vector and diffusion vector
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( )1, 1,1, 2,1, 1,1,1, 2,1,1,,  ,  ,  ,  ,  k k k k k k      
=μ , ( )1, 1,1, 2,1, 1,1,1, 2,1,1,,  ,  ,  ,  ,  k k k k k k      

=σ  

and ,  ,  k k kO   are known, the conditional total crack length in tree k  is shown in Eq. 

(5.4). 
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  (5.4) 

 

5.3.2.2 The PDF, mean and variance of degradation of the GDDBP 

Let ( )kX t  denote the degradation of tree k , The PDF of ( )kX t  is given by Eq. (5.5) 

( ) ( ) ( ) ( ) ( ) ( )( )( )

( )( )( )

,

, ,

, ,

,

, ,
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, , ,
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x O t

    

 



= =
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=
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O τ α

O τ α

Ω Ψ f f s h

Ω Ψ g



 

 (5.5) 
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where 
,b kN  is the total number of branchings that occur when growing tree k , 

,g kN  is 

the total number of generations of all the branches in tree k , ( )kf  is the probability that 

the first 
,b kN  branchings occur at k  as shown in Eq. (5.6), ( )kf  is the probability 

that no other branchings occur by time t  except those occur at k  as shown in Eq. (5.7), 

( )kOs  is the probability that the numbers of offsprings initiated in the first 
,b kN  

branchings are kO  as shown in Eq. (5.8), ( )k  is the probability that the angles of the 

branches are k  as shown in Eq. (5.9). 

 ( )
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1 1 , 1

1

,  , ,

,  , ,
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i
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j j k I
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s   (5.8) 

 ( )
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,  , ,
i
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   (5.9) 

In Eq. (5.8) 
1 1

1

,  , ,i

i

j j ks O
−

−

 
  
 

 is the Probability Mass Function (PMF) of 
1 1

1

,  , ,i

i

j j kO
−

−

, 

1,  , ,i

i

j j k 
 
  
 

 is the PDF of 
1,  , ,i

i

j j k , , , ,u k o k b kI I I= − . Let 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,k k k k k k k k k kx O t O x t O      =g f f s h , it is the probability that the 

total degradation of tree k  is x , the total number of branchings occur by time t  is ,b kN  

and the times that the branchings occur are k , the directional angles of the branches are 
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k  and the numbers of offsprings initiated in the branchings are kO . 

( )( ), , , ,
k k k k kx O t τ αΨ g  obtains the probability that the degradation of tree k  is x , the 

total number of branchings occur by time t  is 
,b kN  and the numbers of offsprings 

initiated in the branchings are kO  as shown in Eq. (5.10). Note that 

( )( ), , , ,
k k k k kx O t τ αΨ g  is obtained by integrating over the regions of integral as follows. 
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  (5.10) 

 

The notation ( )( )( )
, ,, , , , , ,

k b k g k k kN N k k kx O t 
O τ α

Ω Ψ g  denotes the marginal distribution of  

( )kX t  when there are 
,g kN  generations of branches and the total number of branchings 

is 
,b kN  in tree k  as shown in Eq. (5.11). It is obtained by summing  

( )( ), , , ,
k k k k kx O t τ αΨ g  when kO  takes different sets of known values in the regions of 

integral kO . 
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where 
1

1 ,

,  , ,

,  , ,

0
i

i b k i

i

j j k

j j k I

O


  for 
,1 g ki N   , kO  is the vector of nonzero 

1 1

1

,  , ,i

i

j j kO
−

−

 

for ,1 , 1 1,  1i i g kj j i i i N 
    −   , where 

ij   is the upper bound of variable ij   

defined as follows: 
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The notation 
,i kn  denotes the number of branchings that initiate branches in generation i  

and 
,i kn  denotes its upper bound, which is obtained as follows: 
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In Eq. (5.11), all of the possible combinations of kO  are enumerated and the 

corresponding vectors k  and k  are defined. The total degradation is 

( ) ( )
1

trn

k

k

X t X t
=

= , where trn  is a random variable with a PMF of ( )trw n . The PDF of the 

total degradation of all the trees is obtained as shown in Eq. (5.12). 

 ( ) ( ) ( )
1 1

*
trtr

tr

nu

tr k

n k

h x t w n h x t
= =

=    (5.12) 
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where ( ) ,  1k trh x t k n   is the PDF of ( )kX t  and ( )
1

*
trn

k

k

h x t
=

  denotes the 

convolution of ( )kh x t  for 1 trk n  . The expectation of the total degradation is  
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According to the law of total variance, the variance of the total degradation is 
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where ( )
1

var
trn

k tr

k

X t n
=

 
 
 
  is the variance of the total degradation of the trn  trees as 

shown in Eq. (5.15) and ( )
1

trn

k tr

k

E X t n
=

 
 
 
  is the mean of the total degradation of the trn  

trees as shown in Eq. (5.16) . 
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5.3.2.3 The reliability metrics of degradation of the GDDBP 

Starting from 0t = , when the failure threshold is c , the reliability is  

 ( ) ( )
c

x

R t h x t
=−

=    (5.17) 

The PDF of the failure time is 

 ( ) ( )1

c

x

f t h x t
t

=−

 
= − 
  

   (5.18) 

The residual life is investigated as follows. Figure 5.2 shows tree k  at time t , when the 

total degradation of tree k  is ( )kx t , the branching times are k , the numbers of 

offsprings are kO , the branching angles are k , the set of indexes of the branches that 

branched by time t  is 
,b kI  and the set of the indexes of the branches that have not 

branched by time t  is 
,u kI . Figure 5.5 shows tree k  at time rt t , where 

( ) ( ) ( ) , , 1, , 1,1,b kI k k k= , ( ) ( ) ( ) , 2,1, ,  1,1,1, , 2,1,1,u kI k k k= , ( )1, 1,1,,  ,  k k k k    = ,  

( )1, 1,1,= 1,  1,  2k k k kO O O O = = =  and ( )1, 1,1, 2,1, 1,1,1, 2,1,1,,  ,  ,  ,  k k k k k k      = . Note that 

the branches whose indexes are in ( ) ( ) ( ) , 2,1, ,  1,1,1, , 2,1,1,u kI k k k=  have not 

branched by t  and may grow into trees after t . 
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Figure 5.5 The growth of tree k  after time t , the bold solid lines represent branches 

that have not branched by t    

 

Eq. (5.19) shows the total degradation growth of all the trn  trees in ( ),  rt t  
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  (5.19) 

where ( )
1

1 ,

,  , ,

,  , ,
i

i b k i

i

j j k r

j j k I

X t t


−  is the sum of the degradation growth of the branches 

that have branched before t  in ( ),  rt t . Let ( )
1,  , , , , ,

i

i

j j k r k k kX t t O   denote the 

degradation of the sub-tree grown from branch 
1,  , ,i

i

j j kB  in ( ),  rt t . For simplicity, let 

kB   denote 
1,  , ,i

i

j j kB , it is the “original branch” of its ancestors after t . Similarly, the 

offspring of kB   whose ancestors in generations 1 to 1i −  after kB   are 

1 1,   , ,   ,i ij j j −
    is denoted as 

1,  , ,i

i

j j kB    . In Figure 5.5, 2,1,1,kB  is defined as kB   and 

its next-generation offsprings are denoted as 1,kB   and 2,kB  . The numbers of offsprings 

initiated in the branchings after kB   are denoted as vector kO , the times when branchings 
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occur are denoted as vector k  , the angles of the branches are denoted as vector k  , the 

set of indexes of the branches that branch by time rt  is denoted by 
,b kI  , the set of indexes 

of the offspring branches by time rt  is denoted by 
,o kI  . Let 

1

1

,  , ,

0
i

i

i

l j j k

i

t 




−

=

= , it denotes 

the time that branch 
1,  , ,i

i

j j kB  is initiated, where 
1 ,,   , ,i b k

i

j j k I . Let ( ),b t rh t  denote 

the PDF of  . The PDF of ( )
1,  , , , , ,

i

i

j j k r k k kX t t O   is 

obtained with Eq. (5.20). 
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where 1  ,,   , ,i u k

i

j j k I  and ( )( ), , , ,
k k k k kx O t  
   
τ αΨ g  is defined in Eq. (5.21).  
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  (5.21) 

 

The PDF of the total degradation of the trn  trees in ( ),  rt t  is obtained with Eq. (5.22) 
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where * is the convolution operator, ( )
1
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,  , ,

,  , ,

*
i

i u k i

i

j j k r

j j k I

h t t


  denotes the convolution of 
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   denotes the 

convolution of all ( )
1

1 ,

,  , ,

,  , ,

*
i

i u k i

i

j j k r

j j k I

h t t


  for 1 trk n  . When the failure threshold is 

c , the reliability of the system at rt t  is 
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,

ntr

k

k
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r r

x

R t h x t t
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−

=−



=    (5.23) 

The mean residual life is obtained as follows. The expectation of degradation growth of 

tree k  in ( ),  rt t  is the sum of the expectation of the growth of the branches that have 

branched and those that have not branched as shown in Eq. (5.24). 
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  (5.24) 

 

where ( )
1,  , , , , ,

i

i

j j k r k k kE X t t O 
 
  
 

 denotes the expectation of degradation of the sub-

tree grown from branch 
1,  , ,i

i

j j kB , where 1  ,,   , ,i u k

i

j j k I  as shown in Eq. (5.25) as 

follows. 
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The MRL is 

 ( )( ) ( ),

1

inf , , , ,
trn

r k r k k k u k k

k

MRL t E X t t O I c x t 
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= = − 

  
    (5.26) 

 

5.4 Case Study 

In this section, we use a simulated dataset to show the applicability of the proposed model.  

5.4.1 Assumptions and Parameters Used in the Case Study 

In the case study, we let 
1,  ,i

i

j jO  follow a Bernoulli distribution, 
1,  ,i

i

j j  follow a 

uniform distribution, 
1,  ,i

i

j j  follow a uniform distribution and 

1 1

1

,  , , ,  , ,

0
i i

i i

i

j j k j j k

i

X t 




−

=

 
−  

 
  follow Brownian motions. According to Figure 5.4, the 

relationship between crack propagation rates and branching angle   is modeled with a 

linear model as shown in Figure 5.6, where the intercept is 0.1753 and the slope is 0.0066. 

Therefore, the coefficients 0  and 1  in Eqs. (5.1) and (5.2) are 0.1753 and 0.0066 

respectively. 
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Figure 5.6 The linear fit of the crack propagation rate—branching angle data 

 

The parameters l  and u  are obtained from the paper by Kobayashi et al. (1974) as 

follows:  
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5.4.2 Total Degradation Estimation 

First, the different branching patterns are enumerated as shown in Table 5.1. 

 

Table 5.1 The different cases of branching patterns in the case study 

Case ID ,g kN   
,b kN  

1,kn  
2,kn  

3,kn  

1 1 1 1 None None 

2 2 2 1 1 None 

3 3 1 2 None 

 

The PDF of is obtained by using Eq. (5.6) as follows 
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To calculate ( )( )( )
, ,, , , , , ,

k b k g k k kN N k k kx O t 
O τ α

Ω Ψ g  when ,b kN  and ,g kN  take 

different values, specific sub-categories of each case are enumerated as shown in Figures 

5.7, 5.8 and 5.9 respectively. We discuss them in detail as follows: 

 

Case 1: 
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There are two sub-categories when 
, 1g kN =  and 

, 1b kN =  as shown in Figure 5.7. The 

calculation of ( )( )( ),1,1 , , , ,
k k k k k kx O t 

O τ α
Ω Ψ g  is shown in Table 5.2. 

 

, ,1, 1g k b kN  N= =

1kO =

k

1,k

k

2kO =
1,k

2,k

(1) (2)

 

Figure 5.7 The subcategories of Case 1 in Table 5.1  

 

Table 5.2 The calculation steps in Case 1 

 Sub-category 1 Sub-category 2 

( )kf  ( )kf    ( )kf   

( )kf  ( )( )1 kF t − −  ( )( )
2

1 kF t − −  

( )kOs  ( )1ks O =   ( )2ks O =  

( )k  ( )1,k    ( )1,k  ( )2,k   

( ), , ,k k kx t O h  ( )

( )
1,

2 2

1,

,k k k

k k k

t t
N

t t

  

  

 + − 
 
 + − 

  
( )

( )

( )

( )

1,

2,

2 2

1,

2

2,

,

    

   

k k k

k k

k k k

k k

t t

t
N

t t

t

  

 

  

 

 + − 
 
+ − 
 + −
 
 + − 

 

( ), , ,k k kx O t g  Eq. (5.27) Eq. (5.28) 

( )( ), , , ,
k k k k kx O t τ αΨ g  Eq. (5.29) Eq. (5.30) 
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( )( )
, ,, 1, 1 ,k b k g k k kN N= =O τ αΩ Ψ g  Eq. (5.31) 

 

The ( ), , ,k k kx O t g  and ( )( ), , , ,
k k k k kx O t τ αΨ g for the two sub-categories are 

obtained using Eqs. (5.27), (5.28) and Eqs. (5.29), (5.30) 

 

( )

( ) ( )( ) ( ) ( )
( )

( )

,1 ,1 ,1

1,

1, 2 2

1,

, , ,

,
1 1

k k k

k k k

k k k k

k k k

x O t

t t
f F t s O N x

t t

 

  
   

  

 + −
= − − =  

 + − 

g

  (5.27) 

( )

( ) ( )( ) ( ) ( ) ( )

( )

( )

( )

( )

,2 ,2 ,2

1,

2 2,

1, 2, 2 2

1,

2

2,

, , ,

,
1 2

    

   

k k k

k k k

k k

k k k k k

k k k

k k

x O t

t t

t
f F t s O N

t t

t

 

  

 
     

  

 

 + − 
 
+ − 

= − − =  + −
 
 + − 

g

  (5.28) 

 

 ( )( ) ( ), ,1 ,1 ,1 ,1 ,1 ,1 1,
0

, , , , , ,
u

k k
l

t

k k k k k k k kx O t x O t d d



     =  τ αΨ g g   (5.29) 

 

 ( )( ) ( ), ,2 ,2 ,2 ,2 ,2 ,2 1, 2,
0

, , , , , ,
u u

k k
l l

t

k k k k k k k k kx O t x O t d d d
 

 
      =   τ αΨ g g  (5.30) 

 

 
( )( )( )

( )( ) ( )( )

,1,1 ,

, ,1 ,1 ,1 , ,2 ,2 ,2

, , ,

, , , , , ,

k k k

k k k k

k k k

k k k k k k

x O t

x O t x O t

 

   = +

O τ α

τ α τ α

Ω Ψ g

Ψ g Ψ g
  (5.31) 

 

Case 2: 
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There are 4 sub-categories when 
, 2g kN =  and 

, 2b kN =  (sub-categories 3’ and 4’ are 

duplicates) as shown in Figure 5.8. The calculation of ( )( )( ),2,2 , , , ,
k k k k k kx O t 

O τ α
Ω Ψ g  

is shown in Table 5.3. 

 

, ,2, 2g k b kN  N= =

1kO =

1,kO

k

1,k
1,k

1,1,k

k

1kO =
1,k

1,k
1, 2kO =

1,1,k

2,1,k

2kO =

k

1, 1kO =

1,k

2,k

1,k

1,1,k

k

2kO =

1, 2kO =

1,k

2,k

1,1,k

2,1,k

1,k

Or

2kO =

k

2, 1kO =

1,k

2,k
2,k

1,2,k

k

2kO =

2, 2kO =

1,k

2,k

1,2,k

2,2,k

2,k

Or

(1) (2)

(3) (4)

(3') (4')

 

Figure 5.8 The subcategories of Case 2 in Table 5.2  

 

Table 5.3 The calculation steps in Case 2 

 Sub-category 1 Sub-category 2 

( )kf  ( ) ( )1,k kf f    ( ) ( )1,k kf f   
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( )kf  ( )( )1,1 k kF t  − − −  ( )( )
2

1,1 k kF t  − − −  

( )kOs  ( ) ( )1,1 1k ks O s O= =   ( ) ( )1,1 2k ks O s O= =  

( )k  ( ) ( )1, 1,1,k k      ( ) ( ) ( )1, 1,1, 2,1,k k k       

( ), , ,k k kx O t h  ( )

( )
( )

( )

1,

1,1, 1,

2 2

1,

2

1,1, 1,

,

k k k

k k k

k k k

k k k

t t

t
N

t t

t

  

  

  

  

 + − 
 
+ − − 
 

+ − 
 + − − 

 

( )

( )( )
( )

( )( )

1,

1,1, 2,1, 1,

2 2

1,

2 2

1,1, 2,1, 1,

,

k k k

k k k k

k k k

k k k k

t t

t
N

t t

t

  

   

  

   

 + − 
 
+ + − − 
 

+ − 
 + − −
 

 

( ), , ,k k kx O t g  Eq. (5.32) Eq. (5.33) 

( )( ), , , ,
k k k k kx O t τ αΨ g  Eq. (5.34) Eq. (5.35) 

( )( )
, ,, 2, 2 ,k b k g k k kN N= =O τ αΩ Ψ g   

 

Table 5.3 (Continued) 

 Sub-category 3,3’ Sub-category 4,4’ 

( )kf  ( ) ( )1,k kf f    ( ) ( )1,k kf f   

( )kf  ( )( )1,1 k kF t  − − −  ( )( )
2

1,1 k kF t  − − −  

( )kOs  ( ) ( )1,2 1k ks O s O= =   ( ) ( )1,2 2k ks O s O= =  

( )k  ( ) ( ) ( )1, 2, 1,1,k k k        ( ) ( ) ( ) ( )1, 2, 1,1, 2,1,k k k k         

( ), , ,k k kx O t h  

( )( )

( )
( )

( )( )

( )

1, 2,

1,1, 1,

2

2 2

1, 2,

2

1,1, 1,

,

k

k k k

k k k

k k

k k k

k k k

t

t

t
N

t t

t

t



  

  

 

  

  

 
 
+ + − 
 + − −
 
 −
 
 + + −
 
 + − − 

  

( )( )

( )( )

( )( )

( )( )

1, 2,

1,1, 2,1, 1,

2 2 2

1, 2,

2 2

1,1, 2,1, 1,

,

k k k k

k k k k

k k k k

k k k k

t t

t
N

t t

t

   

   

   

   

 + + −
 
+ + − − 
 

+ + − 
 
 + + − −
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( ), , ,k k kx t O g  Eq. (5.36) Eq. (5.37) 

( )( ), , , ,
k k k k kx O t τ αΨ g  Eq. (5.38) Eq. (5.39) 

( )( )
, ,, 2, 2 ,k b k g k k kN N= =O τ αΩ Ψ g  Eq. (5.40) 

 

( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )

( )
( )

( )

,1 ,1 ,1

1,

1,1, 1,1, 1,

2 2

1,1, 1, 1,1,

2

1,1, 1,

, , ,

,1

   1 1

  

k k k

k k k

k k kk k k k

k k kk k k k

k k k

x O t

t t

tf f F t
N

t ts O s O

t

 

  

     

     

  

 + − 
 

  + − −− − −  
 =  
  + − = =   

 + − − 

g

 (5.32) 

( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )

( )

( )
( )

( )

( )

,2 ,2 ,2

1,

1,1, 1,

2

2,1, 1,1, 1,

2 2

1,1, 1, 1,1,

2

1,1, 1,

2

2,1, 1,

, , ,

,1

     1 1

     

     

k k k

k k k

k k k

k k kk k k k

k k kk k k k

k k k

k k k

x O t

t t

t

tf f F t
N

t ts O s O

t

t

 

  

  

     

     

  

  

 + − 
 
+ − − 
  + − −− − −  =   + − = =  
 + − −

 + − − 

g









  (5.33) 

 
( )( )

( )

, ,1 ,1 ,1

,1 ,1 ,1 1, 1, 1,1,
0 0

, , ,

, , ,

k k

k u u

l l

k k k

t t

k k k k k k k

x O t

x O t d d d d
  

 

 

     
−

=    

τ αΨ g

g
  (5.34) 

 
( )( )

( )
1

, ,2 ,2 ,2

,2 ,2 ,2 1, 1, 1,1, 2,1,
0 0

, , ,

, , ,

k k

u u u

l l l

k k k

t t

k k k k k k k k

x O t

x O t d d d d d
   

  

 

      
−

=     

τ αΨ g

g
  (5.35) 
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( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )( )

( )
( )

( )( )

( )

,3 ,3 ,3

1, 2,

1,1, 1,1, 1,

2

1, 1, 2, 1,1,

2 2

1, 2,

2

1,1, 1,

, , ,

,1

2 1

k k k

k

k k k

k k kk k k k

k k
k k k k k

k k k

k k k

x O t

t

t

tf f F t
N

t ts O s O

t

t

 



  

     

      

  

  

 
 
+ + − 
   + − −− − −   =  − = =   
 + + −
 
 + − − 

g

 (5.36) 

 

( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( )( )

( )( )

( )( )

( )( )

,4 ,4 ,4

2 1, 2,

1, 1,

1,1, 2,1, 1,

1, 1, 2 2 2

1, 2,

2, 1,1, 2,1, 2 2

1,1, 2,1, 1,

, , ,

1
,

= 2 2

k k k

k k k k

k k k k

k k k k

k k k

k k k k

k k k

k k k k

x O t

t t
f f F t

t
s O s O N

t t

t

 

   
   

   
 

   
     

   

 + + −
   − − −
  + + − − 
 = =  
  + + − 
    

   + + − −
 

g

 (5.37) 

 
( )( )

( )

, ,3 ,3 ,3

,3 ,3 ,3 1, 1, 2, 1,1,
0 0

, , ,

, , ,

k k

k u u u

l l l

k k k

t t

k k k k k k k k

x O t

x O t d d d d d
   

  

 

      
−

=     

τ αΨ g

g
  (5.38) 

 
( )( )

( )

, ,4 ,4 ,4

,4 ,4 ,4 1, 1, 2, 1,1, 2,1,
0 0

, , ,

, , ,

k k

k u u u u

l l l l

k k k

t t

k k k k k k k k k

x O t

x O t d d d d d d
    

   

 

       
−

=      

τ αΨ g

g
 (5.39) 

 

( )( )( )
( )( ) ( )( )
( )( ) ( )( )

,2,2 ,

, ,1 ,1 ,1 , ,2 ,2 ,2

, ,3 ,3 ,3 , ,4 ,4 ,4

, , ,

, , , , , ,

2 , , , 2 , , ,

k k k

k k k k

k k k k

k k k

k k k k k k

k k k k k k

x O t

x O t x O t

x O t x O t

 

   

   

= +

+ +

O τ α

τ α τ α

τ α τ α

Ω Ψ g

Ψ g Ψ g

Ψ g Ψ g

  (5.40) 

 

Case 3: 

There are 3 sub-categories when , 2g kN =  and , 3b kN =  (sub-categories 2’ is a duplicate) 

as shown in Figure 5.9. The calculation of ( )( )( ),3,2 , , , ,
k k k k k kx O t 

O τ α
Ω Ψ g  is shown in 

Table 5.4. 
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, ,2, 3g k b kN  N= =

2kO =

k

1, 1kO =

2, 1kO = 2, 2kO =

1,k2kO =

k 2,k

1,1,k

1,2,k

2,2,k

2kO =

k

1,k
1, 2kO =

2, 2kO =

1,1,k

2,1,k

1,k
1,1,k

1,k

2,k

1,2,k

2,2,k

1,k

2,k
2,k

1,2,k

Or

2kO =

1, 2kO =

k

1,k

2,k
2, 1kO =

1,k

2,k

1,1,k

2,1,k

1,2,k

(1) (2)

(3) (2')

1, 1kO =

1,k

2,k

2,k

 

Figure 5.9 The subcategories of Case 3 in Table 5.3  

 

Table 5.4 The calculation steps in Case 3 

 Sub-category 1 Sub-category 2,2’ 

( )kf  ( ) ( ) ( )1, 2,k k kf f f     ( ) ( ) ( )1, 2,k k kf f f    

( )kf  ( )( )
( )( )

1,

2,

1

  1

k k

k k

F t

F t

 

 

− − −

 − − −
 

( )( )

( )( )

1,

2

2,

1

     1

k k

k k

F t

F t

 

 

− − −

 − − −
 

( )kOs  ( ) ( )

( )
1,

2,

2 1

1

k k

k

s O s O

s O

= =

 =
  

( ) ( )

( )
1,

2,

2 1

2

k k

k

s O s O

s O

= =

 =
 

( )k  ( ) ( )

( ) ( )
1, 2,

1,1, 1,2,    

k k

k k

   

   
  

( ) ( ) ( )

( ) ( )
1, 2, 1,1,

1,2, 2,2,     

k k k

k k
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( ), , ,k k kx O t h  ( )

( )

( )

( )
( )

( )

( )

( )

1,

2,

1,1, 1,

1,2, 2,

2 2

1,

2

2,

2

1,1, 1,

2

1,2, 2,

,

k k k

k k

k k k

k k k

k k k

k k

k k k

k k k

t t

t

t

t
N

t t

t

t

t

  

 

  

  

  

 

  

  

 + − 
 
+ − 
 + − −
 
 + − −
 
 + −
 
+ − 
 
+ − − 
 + − − 

  

( )( )

( )

( )( )

( )( )

( )

( )( )

1, 2,

1,1, 1,

1,2, 2,2, 2,

2 2 2

1, 2,

2

1,1, 1,

2 2

1,2, 2,2, 2,

,

k k k k

k k k

k k k k

k k k k

k k k

k k k k

t t

t

t
N

t t

t

t

   

  

   

   

  

   

 + + −
 
+ − − 
 
+ + − − 
 

+ + − 
 
+ − − 
 + + − −
 

 

( ), , ,k k kx O t g  Eq. (5.31) Eq. (5.32) 

( )( ), , , ,
k k k k kx O t τ αΨ g  Eq. (5.34) Eq. (5.35) 

( )( )
, ,, 3, 2 ,k b k g k k kN N= =O τ αΩ Ψ g  Eq. (5.37) 

 

Table 5.4 (Continued) 

 Sub-category 3 

( )kf  ( ) ( ) ( )1, 2,k k kf f f     

( )kf  ( )( )

( )( )

2

1,

2

2,

1

          1

k k

k k

F t

F t

 

 

− − −

 − − −

 

( )kOs  ( ) ( )

( )
1,

2,

2 2

2

k k

k

s O s O

s O

= =

 =
  

( )k  ( ) ( ) ( )

( ) ( ) ( )
1, 2, 1,1,

2,1, 1,2, 2,2,

k k k

k k k
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( ), , ,k k kx O t h  ( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

1, 2,

1,1, 2,1, 1,

1,2, 2,2, 2,

2 2 2

1, 2,

2 2

1,1, 2,1, 1,

2 2

1,2, 2,2, 2,

  

  ,

2 2

  

  

k k k k

k k k k

k k k k

k k k k

k k k k

k k k k

t t

t

t
N

t t

t

t

   

   

   

   

   

   

 + + −
 

+ + − − 
 

+ + − − 
 

+ + − 
 

+ + − − 
  + + − −
 

  

( ), , ,k k kx O t g  Eq. (5.33) 

( )( ), , , ,
k k k k kx O t τ αΨ g  Eq. (5.36) 

( )( )
, ,, 3, 2 ,k b k g k k kN N= =O τ αΩ Ψ g  Eq. (5.37) 

 

( )

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( )

( )

( )

( )( )

,1 ,1 ,1

1, 2,

1,1, 1,

1, 2, 1,

1,2, 2,

2, 1, 2 2 2

1, 2,

2, 1, 2, 1,1, 1,2, 2

1,1, 1

, , ,

1
,

1 2 1

1

k k k

k k k k

k k k

k k k k k

k k k

k k k k

k k k k

k k k k k

k k

x O t

t t

t
f f f F t

t
F t s O s O N

t t
s O

t

 

   

  
    

  
 

   
       

  

+ + −

+ − −
 − − −
  + − −
 = − − − = =
  + + −
 =
  + − −

g

( )

( )
,

2

1,2, 2,

k

k k kt  

 
 
 
 
 
 
 
 
 
 + − − 

  (5.41) 

 

( )

( ) ( ) ( )

( )( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

( )

( )( )

,2 ,2 ,2

1, 2,
1, 2,

1,1, 1,
1,

2 1,2, 2,2, 2,

2, 2 2

1,

1, 2, 1,

2, 1,1, 1,2, 2,2,

, , ,

1

,
1 2

1 2

k k k

k k k k
k k k

k k k
k k

k k k k

k k k

k k

k k k

k k k k

x O t

t t
f f f

t
F t

t
F t s O N

t
s O s O

 

   
  

  
 

   
 

  
 

       

+ + − 
  + − −
 − − −
  + + − −
 = − − − =
  + +
 = =
 
 
 

g

( )( )

( )

( )( )

2

2,

2

1,1, 1,

2 2

1,2, 2,2, 2,

k k

k k k

k k k k

t

t

t



  

   

 
 
 
 
 
 

− 
 
+ − − 
 + + − −
 

 (5.42) 
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( )

( ) ( ) ( )

( )( )

( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

( )( )

( )

,3 ,3 ,3

1, 2,
1, 2,

2
1,1, 2,1, 1,

1,

2 1,2, 2,2,

2,

1, 2, 1, 2,

1,1, 2,1, 1,2, 2,2,

, , ,

  
1

  
1 2

2 2

k k k

k k k k
k k k

k k k k
k k

k k

k k k

k k k k

k k k k

x O t

t tf f f

t
F t

t
F t s O N

s O s O

 

     

   
 

 
 

   

       

+ + − 
 

+ + − − − − −
  + +
 

= − − − =
 
 = =
 
 
 
 

g

( )

( )( )

( )( )

( )( )

2,

2 2 2

1, 2,

2 2

1,1, 2,1, 1,

2 2

1,2, 2,2, 2,

,

  

  

k k

k k k k

k k k k

k k k k

t t

t

t

 

   

   

   

 
 
 
 

− − 
 

+ + − 
 

+ + − − 
  + + − −
 

 

 (5.43) 

( )( )

( )

, ,1 ,1 ,1

,1 ,1 ,1 1, 2, 1, 2, 1,1, 1,2,
0 0 0

, , ,

, , ,

k k

k k u u u u

l l l l

k k k

t t t

k k k k k k k k k k

x O t

x O t d d d d d d d
     

   

 

        
− −

=       

τ αΨ g

g
 

 (5.44) 

 

( )( )

( )

, ,2 ,2 ,2

,2 ,2 ,2
0 0 0

1, 2, 1, 2, 1,1, 1,2, 2,2,

, , ,

, , ,

                                   

k k

k k u u u u u

l l l l l

k k k

t t t
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d d d d d d d d
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k k k

x O t

x O t x O t

x O t

 

   

 

= +

+

O τ α

τ α τ α

τ α

Ω Ψ g

Ψ g Ψ g

Ψ g

  (5.47) 

The PDF of the degradation of tree k  is 
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h x t x O t x O t

x O t

   

 

= +

+

O τ α O τ α

O τ α

Ω Ψ g Ω Ψ g

Ω Ψ g
 

 (5.48) 

5.4.3 Comparison of the Simulations and the Theoretical Results 

In this section, we show the comparison of the numerical solutions and the simulation 

results of the case study. The details of the simulation steps are shown in 5.4.3.1 and the 

comparison results are shown in 5.4.3.2. 

 

5.4.3.1 The simulation steps of GDDBP 

In each realization of the GDDBP, the following steps are performed: 

(1) Randomly generate the total number of trees trn   

(2) Let 1k =   

(3) Grow tree k . For each branch in tree k  that has not branched, let 0  denote the 

initiation time of this branch. Generate a random time  , if 0 t +   a random 

number of O  branches is initiated. Otherwise, no further branchings occur until time 

t . For each newly initiated branch, generate an angle   and the growth of this branch 

from time 0 +  to time t  follows a Brownian motion with drift ( )0 0 1  +  and 

diffusion ( )
0.5

0 0 1  +  where 0  and 0  are its parent’s drift and diffusion 

respectively. Repeat these procedures for all the branches and their offsprings.  
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(4) Let 1k k= + , if trk n , go to step (3). Otherwise, go to step (5). 

(5) Record the sum of the degradation of all the branches.   

 

5.4.3.2 Comparison of the numerical and the simulations results  

Figure 5.10 shows the PDF of the total degradation obtained by the numerical solutions 

and the histogram of the simulated total degradation at 10t = . As shown in Figure 5.10, 

they are closely matched. Figure 5.11 shows a typical realization of the simulated branched 

trees. We observe that by time 10t =  different trees show different growth patterns as 

expected: (1) some trees branch once while others branch more than once, (2) some 

branchings initiate one branch while others initiate two branches. 
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Figure 5.10 The comparison of the PDF of total degradation obtained by numerical 

solution and histogram of the simulations at 10t =   

 

 

Figure 5.11 A typical simulation of the branched trees 
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Figure 5.12 shows the evolution of the PDF of the total degradation of all the branches 

from 1t =  to 10t = . We observe that as time increases the PDFs become flat, indicating 

that the variance of the total degradation increases over time. This can also be concluded 

from Figure 5.13, which shows the means and variances of the total degradation from 1t =  

to 10t =  obtained by the simulations and the numerical solutions respectively. It is 

observed that the numerical solutions accurately match the simulation results. As expected, 

the mean and variance increase over time. Compared with the growth of the mean of total 

degradation, the growth of variance increases more sharply due to the uncertainty of the 

total number of branches and the variance of degradation of the branches.  

 

 

Figure 5.12 The PDFs of the total degradation over time obtained by numerical solution 
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Figure 5.13 The means and variances obtained with simulations and numerical solutions 

 

 

Figure 5.14 The reliability of the system obtained by numerical solution and simulations 
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When the failure threshold 40c = , The reliability functions of the system obtained by 

simulations and numerical solutions are shown in Figure 5.14. The results obtained by the 

numerical solutions accurately match the simulation results.  

 

5.5 Summary 

We develop a stochastic model that characterizes the GDDBP. The model is general 

because it captures the randomness of the number of branches and their angles. The 

relationship between the degradation rate and the angles is also investigated. The statistical 

properties of the process, such as the PDF of the degradation and the related reliability 

metrics such as failure time distribution and reliability function are presented. The model 

is validated with simulations.  
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6 CHAPTER 6 

 

 

CORROSION MONITORING AND PREDICTION  

6.1 Introduction 

In the corrosion monitoring process, under the conditions where missing data exist, missing 

data interpolation approaches are provided to interpolate them. We provide three 

approaches for data interpolation: the nonlinear Brownian bridge, the nonlinear Gamma 

Bridge and the inverse Gaussian Bridge when the underlying degradation paths follow 

Brownian motion processes, Gamma process and inverse Gaussian process respectively. 

The stochastic bridges capture the nonlinearity and uncertainties of the degradation 

processes. When multiple sensors are used, we propose a model that integrates 

observations from multiple sensors. The data integration approach is nonparametric and 

considers the dynamic clustering of sensors’ observations. Sensor weights (contribution) 

are determined based on its performance in the previous several time instants and the 

variance (if the data is interpolated with stochastic bridges and bootstrap). It utilizes a 

moving time window to capture the switching of the sensors between clusters with time so 

that the weights are adjusted accordingly. The models are validated with a real crack 

growth dataset. 
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6.1 Missing Data Interpolation Models 

Three stochastic bridges are provided in this section to interpolate missing data in the 

degradation process. They are nonlinear Brownian Bridge, nonlinear Gamma Bridge and 

inverse Gaussian Bridge. 

 

6.1.1 Nonlinear Brownian Bridge 

In this section, we develop a nonlinear Brownian bridge to interpolate missing data when 

the underlying process is a nonlinear Brownian motion. For simplicity, we call the data that 

are missing in the degradation process as “missing data” and those that are observed as 

“observed data.” 

 

6.1.1.1 Standard Brownian Bridge 

Suppose a  and b  are the degradation values of sensor i  at times t  and mt  

respectively, where mt t  . The degradation data between times t  and  mt  are missing. 

Let  tB  be a one-dimensional Brownian motion. The process ( )a b

iBB t→
 is defined as 

the standard Brownian bridge (BB) of sensor i  from a  to b  between times t  and 

mt  (Shreve, 2004) is expressed as 

 ( )  ( ) ,  
m

a b

i t t t t m

t t t t
BB t a b a B B t t t

T T 

 


→

− −

− − 
= + − + −   

 
  (6.1) 
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where mT t t= − . The expectation of the standard Brownian Bridge is  

 ( ) ( ),  a b

i m

t t
E BB t a b a t t t

T




→ −
  = + −      (6.2) 

 

Let ,  mt s t t   , the covariance of the two missing values at times s  and t  within the 

bridge is 

 

( ) ( ) ( )( ) ( ) ( )( )

 
( )( )

,  

              min ,  ,  ,  

a b a b a b a b a b

i i i i i

m

c s t E BB s m s BB t m t

s t t t
s t t t t s t t

T

 

  

→ → → → → = − −
 

− −
= − − −  

  (6.3) 

 

( )a b

iBB t→
 follows a normal distribution with mean ( )

t t
a b a

T

−
+ −  and variance  

( )
2

t t
t t

T





−
− −  as follows  

 ( )
( )

2

~ ( ),  ,  a b

i m

t tt t
BB t N a b a t t t t t

T T


 

→
 −−

+ − − −   
 
 

  (6.4) 

 

where ( )N   denotes normal distribution. However, the volatility of the data is not 

captured in the standard Brownian Bridge. Moreover, according to Eq. (6.2), it is assumed 

that the mean degradation path is a linear function of time, which is impractical in many 

situations (McCuen et al., 1992, Soares et al., 2009). We modify the standard Brownian 

Bridge so that the mean function captures nonlinearity of the degradation processes and the 

variance of interpolated values is consistent with observed data. 
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6.1.1.2 Nonlinear Brownian Bridge 

A piecewise linear function is proposed to capture the nonlinearity of degradation mean 

path. Let 
jk  denote the slope of the line segment between time 

jt  and 
1jt +
 as shown in 

Figure 6.1. Because the sum of the projections of all these line segments on the vertical 

direction is b a− , we have 

 
1m

j

j

a k t b


−

=

+  =   (6.5) 

We assume that the degradation data are observed at discrete times with equal time interval 

length t . 

a

b

t 1t + mt

k

1k +

Linear mean function

Piecewise linear 

mean function

 

Figure 6.1 Comparison of the piecewise linear mean function and linear mean function 

 

We also assume that the slopes of the segments of the degradation path change gradually 

and linearly with time, as described in Eq. (6.6). 

 0 1j jk c c t= +   (6.6) 

where 0c  and 1c  are constants. Substituting Eq. (6.6) into Eq. (6.5) results in 

 ( )
1

0 1

m

j

j

a c c t t b


−

=

+ +  =   (6.7) 
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1c  is estimated by considering the observed data. Using least squares, the estimate 1̂c  is 

 
( )

1 0 1
1̂

2

M mk k k k
c

t M m




− −− + −

=
 + − −

  (6.8) 

where M  is time index of the last observation in the time frame being considered. 0ĉ  is 

obtained with 

 
( )

1

1

0

ˆ

ˆ

m

j

j

b a c t t

c
m t





−

=

− − 

=
− 


  (6.9) 

 

Figure 6.2 is a schematic diagram of the slopes and observation times, where missing data 

are shown with white diamonds. 

0k

2k −

1k −

0t 1t 1t − t mtjt

time
1Mt − Mt

mk 1Mk −

a
b

( )iD t

 

Figure 6.2 Estimate the parameter 1c  by considering the observed data 

 

The predicted slopes of the mean path segment between time jt  and 1jt +  is 
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 ( )0 1 1
ˆ ˆ ˆ ,  t j jk c c t t t t += +     (6.10) 

The mean of the nonlinear Brownian bridge is 

 ( )

( )( )

( ) ( )( )

( ) ( )( )

0 1 1

0 1 0 1 1 1 1 2

0 1 0 1 1 1 1

ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

                          

ˆ ˆ ˆ ˆ ,

a b

i

m m m m

a c c t t t t t t

a c c t t c c t t t t t t
m t

a c c t t c c t t t t t t

   

    



+

→ + + + +

− − −

 + + −  


+ +  + + −  
= 

 + +  + + + −  

  (6.11) 

 

The proposed nonlinear Brownian bridge from a  to b  between time t  and mt  is 

 ( ) ( ) ,  
m

a b a b

i i t t t t m

t t
BB t m t B B t t t

T 


→ →

− −

− 
= + −   

 
   (6.12) 

where mT t t= − ,   is the parameter that controls the volatility, which is estimated as 

follows: assuming the underlying degradation process is a nonlinear Brownian motion with 

time-dependent drift ˆ
tk  and diffusion   as shown in Eq. (6.13), the diffusion   is 

estimated with the observed data using the Maximum Likelihood Estimation (MLE) 

method.  

 ( ) ˆ
i t tdD t k dt dB= +   (6.13) 

 

Note that ( )a b

im t a

→ = , ( )a b

i mm t b→ = . The variance of the nonlinear Brownian Bridge 

is 

 ( )( )
( )

2

2 ,  a b

i m

t t
Var BB t t t t t t

T



 →
 −

= − −   
 
 

   (6.14) 
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From Eq. (6.14), we observe the variance first increases from one end of the “bridge” 

with a starting value zero until it reaches the peak in the middle of the bridge and then 

decreases until it reaches the other end of the bridge with a value zero. Figure 6.3 shows 

a schematic plot of the variance of a nonlinear Brownian bridge with 

5,  11,  5,  11mm t t = = = =  and 1 = . This property is consistent with the intuition 

that missing data close to the observed data in the time frame are easier and more 

accurate to predict, while those far from the observed data are less accurate and difficult 

to predict.  

 

Time

V
ar

ia
n

ce

 

Figure 6.3 The plot of the variance of a nonlinear Brownian bridge 
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The interpolated data with a nonlinear Brownian bridge are correlated and follow a 

multivariate Normal distribution. The interpolated data at different times are correlated. 

Let ,  mt s t t   , the covariance function is expressed as 

( ) ( ) ( )( ) ( ) ( )( )

 
( )( )2

,  

              min ,  

a b a b a b a b a b

i i i i ic s t E BB s t m s t BB t t m t t

s t t t
s t t t

T

   

 

 

→ → → → → = − − − − − −
 

− − 
= − − − 

 

 (6.15) 

 

6.1.2 Nonlinear Gamma Bridge 

The proposed nonlinear Brownian Bridge in section 6.1.1 is useful especially when 

degradation increments are Gaussian distributed. However, there are plenty of cases in real 

life where degradation increments are positive. Better alternatives in this situation are the 

nonlinear Gamma Bridge and the inverse Gaussian Bridge. We discuss the development of 

nonlinear Gamma Bridge in this section by reviewing the standard Gamma Bridge. 

 

6.1.2.1 Standard Gamma Bridge 

Assume the degradation process follows a Gamma process with mean t  and variance 

t (scale parameter=1). The process ( )a b

iGB t→
 is defined as the Gamma bridge of sensor 

i  between time t  and mt . The problem now turns to find the probability density function 

of ( ) ,  i mD t t t t    under the condition that ( ) ( ),  i i mD t a D t b = = . Let ( )X t  denote 

the degradation increment between t  and t , ( )Y t  denote the increment between t  and 
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mt , Z  denote an increment between t  and mt . Let 

( ) ( ) ( ) ( )( )~ ,  1 ,  i i mX t D t D t Ga t t t t t  = − −   , 

( ) ( ) ( ) ( )( )~ ,  1 ,  i m i m mY t D t D t Ga t t t t t= − −   , ( ) ( )Z X t Y t= + . According to 

Ribeiro et al. (2004), 
( )X t

Z
 follows a Beta distribution with  

 
( )

( ) ( )( )~ ,  ,  m m

X t
B t t t t t t t

Z
  − −     (6.16) 

 

a

b

Time

tt mtt

{{

( )D t

{( )Y t

( )X t
Z

 

Figure 6.4 The schematic diagram of a Gamma Bridge 

 

6.1.2.2 Nonlinear Gamma Bridge 

However, for standard Gamma Bridge, the underlying mean function is assumed to be 

linear, which is not useful in missing data interpolation, especially in the nonlinear 

degradation process. Moreover, the scale parameter of the Gamma process is 1, which is 
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not general in applications. We propose a nonlinear Gamma bridge that captures 

nonlinearity of the missing data based on the Gamma process. 

 

The mean function ( )a b

im t→
 is the same as that in section 6.1.1. Rather than modeling the 

degradation as a standard Gamma process, we let  

( ) ( ) ( )
( )

~ ,  

a b

i

i i

m t a
X t D t D t Ga 



→ −
= −  

 
,

( ) ( ) ( )
( )

~ ,  

a b

i

i m i

b m t
Y t D t D t Ga 



→ −
= −  

 
, ( ) ( )Z X t Y t= + , where   is a scale 

parameter. Given the starting time t  and the degradation value a , the ending time mt  

and degradation value b , the conditional probability density function of ( )X t Z  is 

derived as follows 
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( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

( )
( ) ( )

( ) ( )

1

,  

,  

exp

a b
i

a b
i

X t Z

i i i m i

i i i m i

i m i

i i i m i

i m i

i i i m i

i m i

m t a

m t aa b

i

f x t z

P D t D t x t D t D t z

P D t D t x t D t D t z

P D t D t z

P D t D t x t D t D t z x t

P D t D t z

P D t D t x t P D t D t z x t

P D t D t z

x t
x t

m t a

 

 


















→

→

−
−

−→

= − = − =

− = − =
=

− =

− = − = −
=

− =

− = − = −
=

− =

 
− 
 =

 −
 
 

( )( )
( ) ( )

( ) ( )

( ) ( )

( )
( )

( )
( )

1

1

1 1

exp

exp

1
1

a b
i

a b
i

a b a b
i i

b m t b a

b ab m ta b

i

m t a b m t

a b a b

i i

z x t b az x t

zb m t
z

b a

x t x t

z z zm t a b m t

 

 

 


 






 

→

→

→ →

− −
−

−−→ −

− −
− −

→ →

−  − − −    
   

   −
−   
  

− 
      

= −   
   − −    

    
   

(6.17) 

 

We get  

 

( )

( )

( ) ( )

( )
( )

( )
( )

1 1

1

a b a b
i im t a b m t

X t a b a b
Z

i iZ

b a

x t x t x t
f z

z z zm t a b m t

 

 

→ →− −
− −

→ →

− 
       = −     

   − −     
    
   

 

 (6.18) 

which can be proved as follows:  

 

( ) ( )

               X

P Y y P cX y

y y
P X F

c c

 = 

   
=  =   

   

  (6.19) 
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 ( )
1

Y X

y
f y f

c c

 
=  

 
  (6.20) 

Change the variables to ( )
( )

i

X t
t Z

Z


 
=  
 

  , then 

( )
( ) ( ) ( )

~ ,  

a b a b

i i

i

X t m t a b m t
t Z B

Z


 

→ → − − 
=   
   

  has a beta distribution with 

parameters 
( )a b

im t a



→ −
  and 

( )a b

ib m t



→−
 . Given ( ) ( ),  i i mD t a D t b = =  , the 

nonlinear Gamma bridge is defined as 

 ( ) ( )( )a b

i iGB t a t b a→ = + −   (6.21) 

where ( )
( ) ( )

~ ,  

a b a b

i i

i

m t a b m t
t B

 

→ → − −
 
 

,   is estimated from observed data as 

follows: assuming the degradation process is a nonlinear Gamma process with time-

dependent shape parameter 
( ) ( )1

a b a b

i j i jm t m t



→ →

−−
 and scale parameter  , as shown in 

Eq. (6.23), the scale parameter   is estimated with observed data using MLE. Eq. (6.22) 

shows the mean function of the nonlinear Gamma process of the observed degradation 

process. 

 ( )

( )( )

( ) ( )( )

( ) ( )( )

0 1 1

0 1 0 1 1 1 1 2

0 1 0 1 1 1 1

ˆ ˆ ,

ˆ ˆ ˆ ˆ ,

                          

ˆ ˆ ˆ ˆ ,

a b

i

m m m m

a c c t t t t t t

a c c t t c c t t t t t t
m t

a c c t t c c t t t t t t

   

    



+

→ + + + +

− − −

 + + −  


+ +  + + −  
= 

 + +  + + + −  

  (6.22) 

 

The variance of the nonlinear Gamma bridge is  
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 ( ) ( )
( ) ( )1

1 ~ ,  

a b a b

i j i j

i j i j

m t m t
D t D t G 



→ →

−

−

 −
 −
 
 

  (6.23) 

 ( )( )
( )( ) ( )( )

1

a b a b

i ia b

i

m t a b m t
Var GB t

b a



→ →

→
− −

=
− 

+ 
 

  (6.24) 

 

From Eq. (6.24), we find that the variance first increases from one end of the “bridge” with 

value zero and then decreases until it reaches the other end with value zero. Figure 6.5 

shows the variance plot of a Gamma bridge with 

5,  11,  5,  11,  10,  1,  2mm t t a b = = = = = = = , ( )
1 1

6 6

a b

im t t→ = + . Like that of the 

nonlinear Brownian Bridge, this property is consistent with the fact that missing data far 

from the other observations in the time frame has higher uncertainties and is more difficult 

to interpolate with high accuracy. 

 

Time

V
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Figure 6.5 The variance plot of a Gamma bridge 
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6.1.3 Inverse Gaussian Bridge 

When degradation increments are observed to follow inverse Gaussian distribution, an 

inverse Gaussian bridge is suitable to interpolate the missing values. Therefore, the inverse 

Gaussian Bridge is a more suitable alternative for estimating the missing data in these 

situations. The mean function ( )a b

im t→
 is the same as that in section 6.1.1. We let 

( ) ( ) ( ) ( ) ( )( )( )2

~ ,  ,  a b a b

i i i i mX t D t D t Ig m t a m t a t t t → →= − − −   ,

( ) ( ) ( ) ( ) ( )( )( )2

~ ,  ,  a b a b

i m i i i mY t D t D t Ig b m t b m t t t t→ →= − − −   , ( ) ( )Z X t Y t= + . 

where   is a constant that controls the volatility. Given the starting time t  
and 

degradation data a , the ending time mt  
and ending degradation data b , the conditional 

probability density function of ( )X t Z  is 

( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )

( )( ) ( )( )
23

2

,  

,  

2

ex

X t Z

i i i m i

i i i m i

i m i

i i i m i

i m i

i i i m i

i m i

a b a b

i i

f x t z

P D t D t x t D t D t z

P D t D t x t D t D t z

P D t D t z

P D t D t x t D t D t z x t

P D t D t z

P D t D t x t P D t D t z x t

P D t D t z

m t a b m tz

b ax t z x t

 

 















→ →

= − = − =

− = − =
=

− =

− = − = −
=

− =

− = − = −
=

− =

   − −
 =  

   −−   

( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( )( ) ( )( )

( )( )

( )

2 2
2

2 2 2
p

22 2

a b a b

i i

a b a b

i i

x t m t a z x t b m t z b a

z b ax t m t a z x t b m t


→ →

→ →

  − − − − − − −  
− + −
  −− − −    

  (6.25) 
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where   is estimated from the observed data as follows: assuming the degradation 

process is an inverse Gaussian process with time-dependent mean ( )a b

im t→  and shape 

parameter and the increments follow inverse Gaussian distributions as shown in Eq. (6.26), 

the parameter   is estimated using MLE. 

 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( )
2 2

1 1 1~ ,  a b a b a b a b a b

i j i j i j i j i j i j iD t D t Ig m t m t m t m t m t → → → → →

− − −− − −

  (6.26) 

 

Let ( )
*

x t z be a random number generated from the PDF in Eq. (6.25), the inverse 

Gaussian Bridge is 

 ( ) ( )
*a b

iIGB t a x t z→ = +   (6.27) 

The variance of the inverse Gaussian Bridge is 

 ( )( ) ( )( )( ) ( )( )( )
22

a b a b a b

i i iVar IGB t E IGB t E IGB t→ → →= −   (6.28) 

 

The variance plot of an inverse Gaussian bridge is similar to that of the nonlinear 

Brownian Bridge. 

 

6.1.4 Models Validation 

6.1.4.1 Models Validation with Corrosion Data 
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The three proposed bridging models are validated with corrosion data (corrosion pit depth) 

by (Guedes Soares et al., 2011). The corrosion data is randomized by adding Gaussian 

noises. Assuming a proportion of data is missing, we interpolate them with the three 

bridging models respectively and predict future corrosion growth. Figures 6.6-6.8 show the 

observed data and interpolated data using the proposed nonlinear Brownian Bridge, 

nonlinear Gamma Bridge, and inverse Gaussian Bridge respectively when the data are 

assumed to be missing from 5t =  to 11mt = . The solid lines denote observed data while 

diamonds denote the interpolated data.  

 

 

Figure 6.6 The interpolated data with the nonlinear Brownian Bridge 
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Figure 6.7 The interpolated data with the nonlinear Gamma Bridge 

 

 

Figure 6.8 Interpolated data with the inverse Gaussian Bridge 
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After data interpolation, we censor the data at time 10 and estimate the parameters of the 

IIG process as described in section 3.2. We predict corrosion growth after time 10. Figures 

6.9-6.11 show the predicted corrosion growth with three bridges respectively. Intuitively, 

we see that all these bridging methods predict missing data well and the interpolated data 

are consistent with observed data. 

 

 

Figure 6.9 The corrosion growth prediction with data interpolated by the nonlinear 

Brownian Bridge 
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Figure 6.10 The corrosion growth prediction with data interpolated by the nonlinear 

Gamma Bridge 

 

Figure 6.11 Corrosion growth prediction with data interpolated by the inverse Gaussian 

Bridge 
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To quantitatively analyze the data interpolation results, we compare two indicators: failure 

time prediction precision and mean corrosion growth prediction precision. First, we 

compare the predicted mean failure time and 98% confidence interval with the true failure 

time. The threshold is set as 1.0mm. Figures 6.12-6.14 show the failure time prediction 

results when 40%, 20% and 10% data are missing and interpolated with the three bridging 

approaches. In the three figures, the predicted mean values are denoted by filled dots while 

the 98% confidence intervals are represented by the horizontal bars. The horizontal line 

represents the true failure time. As expected, the confidence intervals narrow down as the 

missing proportion decreases. All the predicted confidence intervals cover the true failure 

time. In this case, where degradation monotonically increases, nonlinear Gamma bridge 

and inverse Gaussian bridge perform better than the nonlinear Brownian bridge regarding 

confidence length and overlap of confidence intervals with that of complete data.  
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Figure 6.12 Failure time prediction confidence intervals with 40% missing data 

interpolated from the bridges 
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Figure 6.13 Failure time prediction confidence intervals with 20% missing data 

interpolated from the bridges 
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Figure 6.14 Failure time prediction confidence intervals with 10% missing data 

interpolated from the bridges 

 

Second, another indicator, the sum of squared percent errors (SSPE) are calculated and 

compared. SSPE is defined as follows 

 

2

1

j

c

T

j j

j t j

d d
SSPE

d= +

 −
=   

 
   (6.29) 

where 
jd  is the predicted mean value of the thj  observation, id  is the true degradation 

value, 
fT  is the failure time, ct  is the censoring time. Figure 6.15 shows the SSPE using 

three bridging methods when 10%, 20%, 30% and 40% data are missing. We find the 

nonlinear Gamma bridge and inverse Gaussian bridge are better than the nonlinear 
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Brownian bridge regarding SSPE. The SSPE increases as missing data size increases. 

However, the SSPE is small for all cases. 
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Figure 6.15 SSPE using three bridges when different proportions of data are missing 

 

6.1.4.2 Models Validation with Crack Growth Data 

In this section, a fatigue-crack-growth dataset is utilized to evaluate the results of the 

proposed models numerically. The dataset is obtained from a fatigue testing experiment 

conducted by the authors in the NDT&E lab of Harbin Institute of Technology. A specimen, 

made of 6061 aluminum, is subject to fatigue of the 70Hz-frequency cyclic load until 

fracture. Meanwhile, the length of the crack on the specimen is measured regularly by nine 
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Non-Destructive Testing (NDT) sensors. Detailed descriptions of the sensors are 

summarized in Table 6.1.  

Table 6.1 Descriptions of the sensors 

Sensor symbol Descriptions 

TC Thermal camera 

OC Optical camera 

X-ray X-ray machine 

TOFD-1 2MHz Time-of-flight diffraction probe 

TOFD-2 5MHz Time-of-flight diffraction probe 

PA-1 5MHz Ultrasonic phased array probe 

PA-2 10MHz Ultrasonic phased array probe 

EC-1 Eddy current probe 1 

EC-2 Eddy current probe 2 

 

Each sensor has a total of 21 observations. Since the metallographic microscope can 

observe the micro-cracks with a width of 1 m , these observations are regarded as the 

actual crack length. The starting crack length is 3mm . The threshold is 23mm . The 

complete dataset is plotted against time in Figure 6.16. We randomly pick some 

observations to be missing. The missing data pattern is shown in Figure 6.17. The shaded 
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color indicates that the corresponding observation is observed. The white color indicates 

that the corresponding observation is missing. The missing data are interpolated using the 

three stochastic bridges. One interpolated dataset is shown in Figure 6.18 where all the 

interpolated data points are represented with dashed lines, while the observed data points 

are plotted with solid lines. In the data interpolation process using stochastic bridges, it 

shows that the degradation data observed by sensor OC, X-ray and TOFD-1 follow the 

Brownian motion processes, those observed by sensors TOFD-2 and PA-1 follow the 

nonlinear Gamma bridge and those observed by sensors PA-2, EC-1 and EC-2 follow the 

inverse Gaussian process. The variance plot of the missing data and the observed values is 

shown in Figure 6.19.  

 

 

Figure 6.16 The complete dataset 
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Figure 6.17 The missing data pattern  

 

Figure 6.18 An interpolated missing dataset 
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Figure 6.19 The variance plot 

 

To evaluate the effectiveness of the proposed data interpolation model, we use the data 

interpolation approaches modified from the k nearest neighbor imputation (kNNI) by 

Batista et al. (2003) and those obtained by the bootstrap approach by Guo et al. (2018) as 

a benchmark and compare the mean imputation results. The kNNI is developed to 

interpolate the missing attribute values in a multivariate dataset. We modify kNNI so that 

it can be used to interpolate the univariate missing observations within a multi-sensor time-

series dataset. The bootstrap approach in (Guo et al., 2018) is used to predict degradation 

increments and is modified to interpolate the missing observations within the dataset. The 

details of the modified kNNI and bootstrap approaches are found in Appendices G and H 

respectively. The interpolated datasets with the two methods are shown in Figures 6.20 and 

6.21. The mean squared error (MSE) of mean interpolated values (compared with the actual 

observations in the missing positions) for both methods are summarized in Table 6.2. It is 
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observed that, of all the 24 interpolated missing data, the mean of the stochastic bridges is 

more accurate than that of the benchmark approaches. 

 

Table 6.2 Mean squared errors of interpolated values 

Approaches MSE 

Mean of the Stochastic bridges 0.248 

Bootstrap + modified kNNI 1.146 

 

 

Figure 6.20 Mean interpolated data by stochastic bridges (dashed lines denote 

interpolated data) 
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Figure 6.21 Mean interpolated data by modified bootstrap and kNNI (dashed lines denote 

interpolated data) 

 

6.2 Multiple Sensors Data Integration 

In this section, we introduce a non-parametric data integration methodology. As discussed 

earlier, the main challenge in data integration is the correlation between observations 

obtained by different sensors. We propose a dynamic cluster-based data integration model 

that integrates multiple sensor observations (including interpolated data) in consecutive 

times, rather than in individual time instants. At each observation time, weights of 

observations are calculated. The weighted sum of the observations is the integrated value 

of all observations at that time instant. 

 

2 4 6 8 10 12 14 16 18 20

Time

0

5

10

15

20

25

C
ra

ck
 l

en
g
th

(m
m

)

TC

OC

X-ray

TOFD-1

TOFD-2

PA-1

PA-2

EC-1

EC-2



175 

 

 

At each observation time, when we assign the sensors’ data to a fixed number of clusters, 

we may observe that some sensors switch clusters from one time instant to another while 

others remain in the same cluster throughout the observation times. Those sensors that 

switch frequently are considered as “erratic” and “unreliable” and are assigned lower 

weights and vice versa. 

 

6.2.1 Clustering of the Sensors’ Observations 

Let ( )id t  represent the observation of sensor i  at time t . At each observation time, we 

apply k-means clustering to assign the N  (the total number of sensors) measurements into 

k  clusters. We define the switching of sensors from one cluster to another as follows: if 

there are p q  sensors belong to the same cluster at two times 1t  and 2t , these p   

sensors do not switch between clusters ( q  is a predefined value). The relationship is 

represented as  1 2 1( ) ( ),  ,  ...,  i i pC t C t i i i=  , where ( )iC t  is the cluster where sensor i  

belongs at time t  and  1,  ...,  pi i  is the set of indexes of the p  sensors. Suppose we 

are considering a time window at time t  with length l , where the time window is defined 

as the set of observations and interpolated data of all N  sensors over the period ( ),  t l t− . 

There are cases where p q  measurements of the same sensors belong to the same 

cluster over the entire time window. In other words, those sensors do not switch between 

clusters. We define the diameter of a cluster as the distance between the two farthest 
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observations in the cluster. If the distances between the centroid of this cluster and other 

centroids are larger than the diameter of the largest cluster, those measurements are treated 

as outliers and are assigned zero weights. Figure 6.22 shows an example with 8N =  

sensors during a time window with length 5l = . The eight measurements are assigned to 

3k =  clusters. The measurements are shown in Table 6.3. In this example, 2q = . 

Because there are 2p =  sensors (sensors 1 and 5) in the same cluster both at times 1t  

and 2t , we have  1 2( ) ( ),  1,5i iC t C t i=  . Similarly,   1 2( ) ( ),  3,6i iC t C t i=  and 

 1 2( ) ( ),  7,8i iC t C t i=  . In comparison,  1 2( ) ( ),  2i iC t C t i  . This is because there are 

less than q  sensors assigned to the same cluster that contains sensor 2 both at time 1t  

and 2t . The measurements of sensor 4 in the time window are determined as outliers 

because only those measurements are continuously assigned to an individual cluster of the 

time window and the distance between the centroid of the cluster and other centroids are 

all larger than the diameter of the largest cluster.  

 

Table 6.3 Example of sensors data observed during five-time instants 

Sensors 1t   2t   3t   4t   5t   

Sensor 1 1.4 2.0 2.5 3.0 3.5 

Sensor 2 1.4 1.5 2.0 2.5 3.0 

Sensor 3 1.6 1.9 2.5 3.1 3.4 
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Sensor 4 1.0 1.0 1.0 1.0 1.0 

Sensor 5 1.3 2.1 2.4 2.9 3.6 

Sensor 6 1.7 2.0 2.4 3.1 3.4 

Sensor 7 1.7 1.4 1.8 2.5 3.1 

Sensor 8 1.6 1.6 1.9 2.6 3.1 

 

c

1t 2t 3t 4t 5t

4 3( )d t
4 2( )d t4 1( )d t 4 4( )d t 4 5( )d t

2 1( )d t
1 1( )d t

5 1( )d t

2 2( )d t

7 2( )d t 8 2( )d t
3 1( )d t 6 1( )d t

7 1( )d t 8 1( )d t

1 2( )d t 3 2( )d t

5 2( )d t 6 2( )d t

1 3( )d t 3 3( )d t

5 3( )d t 6 3( )d t
1 4( )d t 3 4( )d t

5 4( )d t 6 4( )d t

1 5( )d t 3 5( )d t

5 5( )d t 6 5( )d t

2 5( )d t

7 5( )d t 8 5( )d t

2 4( )d t

7 4( )d t 8 4( )d t
2 3( )d t

7 3( )d t 8 3( )d t

 

Figure 6.22 Cluster switching example (sensors 2, 3 and 6 switched clusters at time 2) 

 

6.2.2 Sensors’ Data Integration 

After data interpolation, the dataset now includes observed data and interpolated data. 

Since the interpolated data are not observed directly but predicted based on observations, 

their weights should be adjusted according to their variances. As discussed in section 6.1, 

the variance of interpolated data depends on the position in the stochastic bridge. 

Accordingly, we assign higher weights to observed data and interpolated data that are close 
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to the two ends of the bridge and lower weights to those in the middle of the bridge. In 

other words, we assign higher weights to data with smaller variance and lower weights to 

data with larger variance. The same goes for data interpolated with bootstrap. The variance 

of the missing data obtained with bootstrap refers to the sample variance. Because the 

observed data have no uncertainty, we treat their variances as zero. For simplicity, we use 

( )
2*

i t  to denote the variance of the missing data of sensor i  at time t . The dynamic 

observation weight of sensor i  at time t  is as follows: 

 
( )( )

( )( )

( )( ) ( )

( )( ) ( )( )

2*

12*
1

1

exp ( ) max ( ) ( ),0
( )

( ) max ( ) ( ),01

exp

i i i i

i N

N
i i i

i

i
i

t g dp d t R t P t
w t

g dp d t R t P t

t




=

=

−
=

 
− 

  
 




  (6.30) 

Where 

 
( ) ( ),1

( ) exp( )
i i

i

C t h C t l h l

R t r h
− = −  

= −   (6.31) 

 
( ) ( 1),1

( ) exp( )
i i

i

C t h C t h h l

P t o h
−  − −  

= −   (6.32) 

( )iw t  is the weight of sensor i  at time t . ,  ,  r o   and   are all positive constants. 

r is the reward for each time a sensor stays in its initial cluster assigned at the first location 

of the time window and o  is the penalty for each time a sensor switches between clusters 

in the consecutive times in the time window.  The notation ( )iR t  is a weighted sum of 

the rewards of sensor i   in the time window at time t , while ( )iP t  
is the weighted sum 

of the penalties of sensor i  in the time window at time t . The notation h  indicates the 
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location of observation in the time window while exp( )h−  and exp( )h−  are the 

corresponding weights of reward and penalty. The weights of rewards and penalties are 

negatively related to h  so that the closer the location of the observation to the first 

position of the time window, the higher the weight (of the reward or penalty). The 

parameters   and   are weight coefficients of the reward and penalty respectively and 

( )( )idp d t  is the depth of observation ( )id t . Depth is proposed by Tukey (1975) to 

measure the distance of the observation from the center of the cluster. The function 

( )( )( )ig dp d t  is a monotonically increasing function of ( )( )idp d t . It takes forms such as 

polynomial, exponential and others. Without loss of generality, we assume ( )( )( )ig dp d t  

to be 

 ( )( )( ) ( ( ))i ig dp d t c dp d t=    (6.33) 

where c  is a positive constant. Eq. (6.30) proposes that the weight of a sensor at a specific 

time is positively related to the weighted sum of the time it stays in the initial cluster minus 

the weighted sum of the times it switches between clusters in the time window. The values 

of ,  ,  ,  k l o q  and c  are determined empirically. Normalizing the weights, we have: 

 

1

( )
( )=

( )

i
i N

i

i

w t
W t

w t
=


  (6.34) 

The integrated value of all sensor observations at time t  is 

 
1

( ) ( ) ( )
N

i i

i

d t W t d t
=

=   (6.35) 
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6.2.3 Case Study 

6.2.3.1 Multiple Sensors’ Data Integration  

We apply the data integration model proposed to the observed and interpolated dataset in 

Figure 6.18. The weights obtained by considering the variance of missing values and 

cluster switching are provided in Figures 6.23 (a) and 6.23 (b) respectively. The final 

normalized weights are shown in Figure 6.24. It is observed that the integrated path lies 

close to the majority of the sensors’ paths. The weights of sensors change over time 

dynamically. Weights of TC and OC are close to zero, which corresponds to the fact that 

the observations of the two sensors are far from the majority of other sensors and are 

identified as outliers. When sensors TOFD-1 and TOFD-2 deviate from the majority of the 

other sensors at times 15t =  and t = 19, 20 in Figure 5.18, they are identified as 

“unreliable” or “erratic” sensors and their weights are reduced almost immediately as 

shown in Figure 6.23 (b). Meanwhile, the weights are adjusted considering whether the 

data is interpolated or observed. For example, as sensor EC-2 has four missing values, the 

variances in the middle of the bridge are higher thus their weights are lower than other 

sensors. The performance of sensors is evaluated dynamically, and the weights are adjusted 

accordingly. Consequently, consistent (sensors that switch less frequently) and reliable 

(sensors that have fewer missing observations) sensors are assigned higher weights. 

Parameters used in the case study are shown in Table 6.4. 
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Table 6.4 Summary of parameters used in the case study 

k  l  M  N  o  q  r      

3 5 21 9 1 2 1 0.5 0.8 

 

  

Figure 6.23 (a) Weights of the sensors by variance (b) Weights of the sensors by cluster 

shifting 

 

 

Figure 6.24 Final normalized weights of the sensors 
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Figure 6.25 Integrated paths and mean of the incomplete data 

 

To numerically evaluate the performance of the proposed models, we compare the Mean 

Squared Errors (MSE) of the individual sensors and the four integrated paths: the integrated 

path obtained with proposed data integration model of the complete dataset, the integrated 

path obtained with proposed data integration model of the interpolated dataset obtained 

with stochastic bridges, the integrated path obtained with Shi et al. (2012) of the 

interpolated dataset obtained with stochastic bridges and mean of the missing dataset. 

Figure 6.25 shows the integrated paths of the interpolated datasets. Table 6.5 shows the 

MSE comparison results. Under the condition that missing data exist, the proposed 

approach that combines stochastic bridges and data integration method provides the most 

accurate results. Its MSE is smaller than that obtained with Shi’s model and is close to that 
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obtained with the complete dataset. All the integrated paths are better than those obtained 

by taking the mean of the incomplete dataset. This shows the feasibility of using the 

combination of stochastic bridges and the proposed data integration approach to integrating 

information from multiple sensors, even if there are missing data within the dataset.  

 

Table 6.5 MSE of individual sensors and the integrated paths 

Sensor symbol MSE 

TC 65.8712 

OC 6.9456 

X-ray 0.1245 

TOFD-1 0.3452 

TOFD-2 0.3896 

PA-1 0.2641 

PA-2 0.1659 

EC-1 0.1312 

EC-2 0.1732 

The integrated path with the complete dataset 0.0809 

The integrated path with the proposed model 0.1173 

The integrated path by Shi’s model  0.1302 

Mean of the incomplete dataset 0.2751 
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6.2.3.2 Remaining Life Prediction 

In this section, we use the improved inverse Gaussian (IIG) process to predict the remaining 

life of a unit, assuming the degradation data are censored before failure. Chi-square 

goodness-of-fit test is performed with data from all sensors (integrated data are treated as 

new sensor’s data) to ensure that the degradation increments follow IIG distribution. The 

model parameters are estimated by MLE. We compare the expectation of the remaining 

life of each sensor (including integrated path) with actual remaining life. Let DT  represent 

the actual failure time of the specimen. The percentage error between predicted and the 

actual failure time is evaluated as well with Eq. (6.36), where ( )iT t  is the remaining life 

predicted with sensor i ’s data by time t . 

 
( )( )

( )
i D

i

D

t T t T
err t

T

+ −
=   (6.36) 

 

To compare the situations when different percentages of actual lifetimes are remaining, we 

censor the data by 10 and 25 percent. Table 6.6 demonstrates the detailed comparison 

results. It shows that the integrated path with interpolated data outperforms all individual 

sensor paths and the mean of the incomplete dataset in predicting remaining life. Moreover, 

the prediction error is only slightly higher than that of the complete dataset.  
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Table 6.6 Comparison results of absolute percentage error by using each sensor and 

integrated paths with different percentage of actual remaining lifetime 

Sensor symbol 25% 10% 

TC - - 

OC 6.87 12.48 

X-ray 9.07 3.45 

TOFD-1 26.35 3.92 

TOFD-2 16.37 5.45 

PA-1 2.92 3.36 

PA-2 4.32 3.42 

EC-1 9.43 5.04 

EC-2 3.27 2.91 

The integrated path with the complete dataset 1.57 2.21 

The integrated path with the interpolated dataset 1.60 2.24 

Mean of the incomplete dataset 6.62 7.46 

 

 

6.3 Summary 

We develop three stochastic bridges to interpolate the missing data in the degradation 

monitoring process. The stochastic bridges are developed based on obtaining the 
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probability density function of the missing values conditioned on the fixed (observed) 

values on two bridge ends. They capture the nonlinearity of the underlying degradation 

process, as well as the uncertainty of the missing values. The data integration model assigns 

weights based on cluster switching of sensors and the influence of the variance (if the data 

is interpolated). The models are validated with actual fatigue crack growth data. Results 

show that the stochastic bridges outperform the benchmark models, which include 

modified kNNI and bootstrap. The proposed data integration model also outperforms the 

benchmark data integration model stated in this chapter. The failure times predicted with 

the integrated interpolated dataset obtained with the proposed models are more accurate 

compared with other models. The proposed models provide accurate predictions of the 

missing data and the true degradation path.  



187 

 

 

7 CHAPTER 7 

 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Conclusions 

There are several major contributions of this dissertation, they are the stochastic modeling 

of corrosion growth, missing data imputation and multi-sensor data integration in the 

corrosion monitoring process and the stochastic modeling of degradation branching 

processes. More specifically 

 

1. We propose two stochastic models to capture the corrosion depth growth and corrosion 

volume growth respectively. The improved inverse Gaussian (IIG) process is 

developed as a stochastic degradation model to describe the corrosion depth growth. 

The model captures the dependency between the corrosion increments and corrosion 

depth and is more accurate and robust than the inverse Gaussian (IG) model. The 

corrosion pit volume growth model is developed by assuming that the corrosion pit 

growth in both radial and depth directions follow IIG processes. It captures the 

phenomenon where a critical amount of volume loss of material leads to failures of a 

component although the corrosion pit depth is noncritical. In addition, we develop a 

physics-based stochastic model to characterize the corrosion pits propagation. The 

physics factors include the spatial and size distributions of the particles and the 
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influence of corroded pits, are incorporated into the pits’ initiation model. The 

influence of stresses that include temperature, relative humidity and pH  is 

investigated based on chemical reactions of the corrosion process. We develop three 

stochastic bridges to interpolate the missing data in the corrosion monitoring process. 

They are developed based on obtaining the PDF of the missing values conditioned on 

the fixed (observed) values on two bridge ends. They capture the nonlinearity of the 

underlying degradation process, as well as the uncertainty of the missing values. When 

multiple sensors are used to monitor the corrosion growth process, a data integration 

model is proposed to assign weights based on cluster switching of the sensors and the 

influence of the variance (if the data is interpolated). The models are validated with 

actual corrosion data. 

 

2. We develop stochastic models for the corrosion propagation to other locations, which 

we refer to as the degradation branching processes (DBP). As the propagation of the 

corrosion proceeds, it branches into two branches and it is terminated upon system 

failure. This is a general model which is also applicable to the propagation of the cracks 

in materials. Besides, the degradation process of each branch can be applicable to any 

stochastic process. Two types of DBPs are identified based on the branching criteria: 

in Type I DBP a new branch is initiated when the original branch’s degradation reaches 

its threshold while in Type II DBP the branching time is determined by other related 
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physics-based processes independent of the degradation of the branches. The statistical 

properties of the process, such as the PDF, the mean and the variance of the total 

degradation, the expected number of branches, the remaining life prediction, the 

reliability function and the MTTF are investigated. Closed-form expressions of mean, 

variance and the MTTF are obtained for special cases. The model has been validated 

using real-life data.  

 

3. We generalize the stochastic degradation branching models by considering the random 

direction of a branch from its parent branch, which is referred to as the general 

directional degradation branching process. The model considers two factors during the 

branching process from a parent branch: the first is that the number of potential new 

branches is a random variable and the second is that the angles of these potential 

branches also are expressed as a random variable. The branching angles have an 

influence on the total degradation by affecting the branches’ degradation growth rate. 

We develop efficient algorithms to estimate the total degradation of all the branches as 

well as the number of branches in the entire branching process. The reliability metrics 

such as the reliability, the PDF of residual life, the MTTF and others are obtained. The 

proposed model is validated with simulations. 
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7.2 Future Research 

We have identified two areas to be investigated further, they are: 

First area: In Chapters 4 and 5, the degradation branching processes and the general 

directional degradation branching processes under constant stress conditions are discussed. 

The stresses such as loading, humidity and temperature have significant influences on the 

degradation branching process of fuel cell membrane cracks’ growth (Singh et al., 2017). 

Sakai et al. (1991) also state that loading affects the degradation growth rate of the branches 

in the glass degradation process. In the future, we intend to develop stochastic models to 

incorporate such factors and design the corresponding acceleration degradation testing 

plans. 

 

Second area: In Chapter 5, we investigate the influence of branching directions on the total 

degradation. However, as the direction of a crack surface in the 3D space is determined by 

two angles with respect to the two perpendicular axes in space (Kagan, 1994), the 

assumption made in the proposed model in Chapter 5 that the offspring branches only rotate 

around one axis with respect to the parent branch may result in inaccurate degradation 

estimation in some conditions. In the future, we intend to relax this assumption and 

investigate the crack propagation in three dimensions and estimate the corresponding 

system reliability. 
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8 APPENDIX A PARAMETERS ESTIMATION IN IIG AND IG PROCESSES 

 

The parameters of the IIG process include  0 1,  ,     . The maximum likelihood 

estimation method is used to estimate these parameters. Let  1 2( ),  ( ),  ... ( )D d t d t d t=  

be the observed degradation values. The initial degradation state is 0( ) 0d t = . In this case, 

the degradation process has been observed   times. The log-likelihood function is given 

by 
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The parameters can be obtained by solving the following equation: 
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The R codes are provided as follows: 

Here y  denotes the degradation data and dy  denotes the degradation increments data. 

n  is the size of degradation dataset. miu0 denotes 0 , miu1 denotes 1  
and lambda 

denotes  . 

 

IGA.para=zeros(nx=3,ny=1) 

vecy=as.vector(y[1:n,]) 

vecdy=as.vector(dy[1:n,]) 

   

y1<-data.frame(vecy) 

y2<-data.frame(vecdy)   

   

  iig.lik<-function(theta,y){ 

    miu0=theta[1] 

    miu1=theta[2] 

   lambda=theta[3] 

     

l=0 

for(i in 1:nrow(y1)) { 

l=(miu0-y1[i,1]*miu1)*log(lambda)+(miu0-y1[i,1]*miu1-1)*log(y2[i,1])-

lambda*y2[i,1]-log(gamma((miu0-y1[i,1]*miu1))) 

    } 

    logl<-l 

    return(-logl) 

  } 

   

IGA.para=optim(c(40,1,10), iig.lik,y=yt)$par 

 

Parameters of IG process model can be estimated using maxLik in R. Here  denotes 

the degradation increments. miu denotes  and lambda denotes  . 

dy

m l
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vecdy=as.vector(dy[1:n,]) 

LL <- function( param) { 

  miu=param[1] 

  lambda=param[2] 

  R=dinvgauss(vecdy, miu, lambda*(miu)^2, log = FALSE)   

  sum(log(R)) 

} 

numericGradient(LL,c(lambda=0.07 ,miu=0.6)) 

estll <- maxLik( LL, start = c(lambda=0.07 ,miu=0.6)) 
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9 APPENDIX B THE CRACK GROWTH DATA 

 

Table B.1 Fatigue-crack-growth data from Bogdanoff and Kozin (1985) 

Path 
Cycles (in million) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 

1 0.9 0.95 1 1.05 1.12 1.19 1.27 1.35 1.48 1.64    

2 0.9 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.6   

3 0.9 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77  

4 0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73  

5 0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71  

6 0.9 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.51 1.68  

7 0.9 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66  

8 0.9 0.93 0.97 1 1.06 1.11 1.17 1.23 1.3 1.39 1.49 1.62  

9 0.9 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72 

10 0.9 0.92 0.96 1 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67 

11 0.9 0.93 0.96 1 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65 

12 0.9 0.93 0.97 1 1.03 1.07 1.1 1.16 1.22 1.29 1.37 1.48 1.64 

13 0.9 0.92 0.97 0.99 1.03 1.06 1.1 1.14 1.2 1.26 1.31 1.4 1.52 

14 0.9 0.93 0.96 1 1.03 1.07 1.12 1.16 1.2 1.26 1.3 1.37 1.45 

15 0.9 0.92 0.96 0.99 1.03 1.06 1.1 1.16 1.21 1.27 1.33 1.4 1.49 

16 0.9 0.92 0.95 0.97 1 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.4 

17 0.9 0.93 0.96 0.97 1 1.05 1.08 1.11 1.16 1.2 1.24 1.32 1.38 

18 0.9 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35 

19 0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.2 1.25 1.31 

20 0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29 

21 0.9 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27 
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10 APPENDIX C CORROSION VOLUME GROWTH MODELING BASED ON 

IMPROVED GAMMA PROCESS 

 

One of the challenges of modeling corrosion volume growth is that morphologies of 

corrosion pits are highly stochastic and irregular (Horner et al., 2011, Kioumarsi et al., 

2016, Trzaskoma, 1990). We may observe that the corrosion propagates with different rates 

in all directions as shown in Figure C.1 (a). It is inappropriate to assume the shape of a pit 

is a perfect smooth hemisphere or half ellipsoid as presented in (Kondo, 1989, Yu et al., 

2015) when estimating the pit volume growth. Kariyawasam et al. (2012) show in Figure 

C.2 that there is a dependency between the corrosion depth growth rate and the original 

corrosion depth. Al-Amin et al. (2016) also state that in the corrosion growth process, the 

corrosion growth rate decreases because of the buildup of the corrosion product, which 

inhibits the transport of the reactants to or from the surface. Moreover, if there is a cathodic 

reactant being consumed by corrosion and it is being depleted from the surrounding 

environment, a decline of the corrosion rate is expected. In the Gamma processes, usually 

time-dependent mean functions are assumed, which do not capture the physics of the 

corrosion reactions in the corrosion process. As the corrosion growth is a nonlinear process, 

we implement the state-dependent Gamma process to capture the physical dependency 

between the corrosion depth growth rate and original corrosion depth. Fan et al. (2015) 

demonstrate that the state-dependent Gamma process is superior to Gamma process 
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especially in the nonlinear degradation process. Specifically, the power-law mean function, 

which is widely used in corrosion modeling, is used by the Gamma process in the 

comparison. By using the physics-based state-dependent Gamma process model, the 

influence of stresses can be incorporated, as demonstrated later in this appendix. In addition, 

as the corrosion depth growth rates in different locations of a pit are different (newly 

corroded areas grow faster), the state-dependent Gamma process can be efficiently applied 

to capture the depth growth of those locations simultaneously. 

 

Pit

(a) (b)

Surface

Pit

 

Figure C.1 (a) Three-dimensional X-ray micro-tomographic image of a corrosion pit by 

Horner et al. (2011) (notice the morphologies of the corrosion pit) (b) A simplified 

schematic diagram of the corrosion pit growth 
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Figure C.2 The original depth versus the depth growth rate adapted from (Kariyawasam 

et al., 2012) (negative rates are abandoned as we focus on the general monotonically 

increasing corrosion processes) 

 

 

Figure C.3 Projected view of the area growth of a corrosion pit 
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To characterize the corrosion pit volume growth, we consider the pit growth in both radial 

and depth directions as independent state-dependent Gamma processes. As shown in a 

simplified diagram of the corrosion pit (Figure C.1(b)), the corrosion pit is divided into sn  

sectors. We assume that the pit consists of many small squares (pixels), as projected in 

Figure C.3. It is evident that the pixel depth varies from one place to another. The volume 

growth process is described in Figure C.3. 

 

C.1 Corrosion Pit Area Growth 

It is widely accepted that as corrosion progresses, the produced corrosion layer prevents 

the atmosphere from contacting new metal and decreases corrosion growth rate (Vanaei et 

al., 2017). In the proposed state-dependent Gamma process (Wang et al., 2020a), we let 

the shape parameter be a function of the corrosion state (pixel depth or radial length), such 

that corrosion growth rate decreases with time. The corroded area grows as corrosion pit 

grows. As shown in Figure C.4 (a), suppose a pit is divided into sn  sectors, where the 

center of the pit corresponds to the location of the deepest pixel in the pit (which can be 

obtained by slicing the image of the pit horizontally). 
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(a) (b)

The       sector 
Radius increment 

( )jr t



thj
( )jR t

( )2 sin
2

jr t


 

Figure C.4 (a) The sectors of a corrosion pit (b) The area growth approximation of a 

sector 

The angle of each sector is 
2

=
sn


 . Suppose that at time t  the radius of the thj  sector 

is ( )jr t . We use ( )Ga x  to denote the probability density function (PDF) of the Gamma 

distribution. The radius growth ( )jR t  with starting value ( )jr t  follows a state-

dependent Gamma process with parameters 0 10 0,  0    ,  as 

 
( )0 1

1
( )~ ( ) ,  j j

j

R t Ga r t
r t


 

 
  

 +
 

  (C.1) 

where 
( )0 1

1

jr t +
 captures the dependency between the corrosion growth rate and the 

corrosion value such that larger ( )jr t  leads to smaller corrosion growth rate. The radii of 

the sectors grow independently. As shown in Figure C.4 (b), by simple geometry, the length 

of the arc is ( )2 sin
2

jr t


. Since the sectors are in the same corrosion pit, the parameters 

0 1,    ,  are assumed to be the same for all the sectors. All the newly corroded pixels 
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begin to grow immediately in the depth direction after they are corroded. As proved in 

section C.6, when the radius increment is small (growth time is small) and the angle is 

small, the area growth can be approximated precisely with a rectangle as shown in Figure 

C.4 (b). The area growth of sector j  in ( ),  1t t +  is ( ) ( ) ( )=2 sin
2

j j jS t r t R t


   and 

( )jS t  follows a Gamma distribution as shown in Eq. (C.2). 

 ( ) ( )
( )

( )
0 1

1
~ ,  2 sin

2
j j j
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  (C.2) 

The area of a pixel is 0s . The number of corroded pixels in sector j  in ( ),  1t t +  is 

 ( )
( )

( )
( )

( )
0 0 1 0

1
~ ,  2 sin

2

j

j j j

j

S t
N t Ga n t r t

s r t s

 

 

 
 =   

 +
 

  (C.3) 

Correspondingly, the increase of the number of corroded pixels in ( ),  1t t +  in the pit is 

( ) ( )
1

=
sn

j

j

N t N t
=

  . Let ( )
( )0 1

1
=j

j

t
r t


 +

, ( ) ( )
0

2 sin
2

j jt r t
s

 
 =  . 

( ) ,  1j sN t j n    are Gamma random variables with shape parameters ( ) j t  and 

scale parameters ( ) j t . According to Moschopoulos (1985), the PDF of ( )N t  is 
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where  



201 

 

 

( ) ( ) ( )( )
( )

1

1

s
i

n
t

j

j

C t t t


 
=

= , ( )
( ) ( ) ( )( )1

1

1
,  1, 2,

s

k
N

j j

k

j

t t t
t k

k

  


=

−
= = ,

( ) ( ) ( ) ( )
1

1 1 0

1

1
,  1

1

k

k j k j

j

t j t t t
k

   
+

+ + −

=

= =
+
 , ( ) ( )

1

sn

j

j

t t 
=

= .  

 

Note that the pixels corroded in the next time increment grow with an initial depth of 0.  

 

C.2 Volume Growth of the Corroded Pixels 

The corrosion pit volume growth is the sum of the volume growth of all the corroded pixels. 

Let ( )id t  denote the corrosion depth of corroded pixel i  at time t . The depth of pixel i  

at 1t +  is ( ) ( )( 1)i i iD t D t d t+ =  + , where ( )iD t  is the corrosion depth increment of 

pixel i  in ( , 1)t t + . The PDF of ( )iD t  is  
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  (C.5) 

where parameters 0 0  , 1 0  , 0  . They are the same for all the pixels. ( )AI x  is 

an indicator function defined as follows: 

( )
1    if 

0   if 
A

x A
I x

x A


= 
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Note that the parameters 0 1,     and 0 1 ,  jointly determine the shape of the pit. In 

general, a sheer-sided pit is formed whenever 0 0

1 1

 

 
  where the pit depth growth rate 

decreases slowly while the radial growth rates decrease relatively rapidly over time. In this 

scenario, the pixels in the center have a larger depth growth rate compared with that of the 

radial sectors and lead to deep pits. By contrast, a shallow pit is formed whenever 0 0

1 1

 

 
  

where the pit depth growth rate decreases rapidly while the radial growth rates decrease 

relatively slowly over time. In this scenario, the pixels in the center have a smaller depth 

growth rate compared with that of the radial sectors and the pit tends to be flat.  

 

Suppose that the area of all the existing corroded pixels (plan view area) at time t  is ( )s t , 

the total number of corroded pixels is ( )
( )

0

s t
n t

s
= . As discussed in section C.1, the 

increase in the number of pixels in ( ),  1t t +  is ( )N t . Let ( )iV t  denote the volume 

growth of pixel i , the overall incremental volume of the pit in the next time increment 

caused by all the corroded pixels is 

 ( ) ( )
( ) ( )

( )
( ) ( )

0

1 1

=
n t N t n t N t

i i

i i

V t V t s D t
+ +

= =
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where ( )N t  is a random variable. When ( ) ( )N t n t =  , ( )
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 is a Gamma 

random variable with shape parameter 
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  and scale parameter  .  

 

By the properties of Gamma distribution, ( )
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   and scale 

parameter 0s . As ( )N t  is a random variable, the PDF of ( )V t  is 
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C.3 The Incremental Volume with Covariates 

Corrosion is significantly affected by the atmospheric conditions, which include 

temperature, relative humidity Rh , pH levels and others (Soares et al., 2009, 

VanOverloop, 1990, Yang et al., 2009). We incorporate the effects of these covariates on 

corrosion volume growth in this section. Hughes et al. (2016) state that the corrosion 

volume growth rate (metal dissolution rate) is related to corrosion current density. 

Corrosion current arises when there is charge transfer between the anode (metal) and the 

cathode (Hughes et al., 2016). The corrosion reaction current ci  is approximately 

described as 
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where n  is the charge on the ion in equivalents/mol. F  is the Faraday constant 

(96,487C/equivalent), R  is the gas constant (8.314 J/mol-K), revE  is the reversible 

potential, E  is the applied potential,   is the charge transfer coefficient, 0i  is the 

exchange current, which is the current of a single electrode at equilibrium when the 

electrode material experiences no loss or gain. It is a function of soluble species 

concentration. Eyring (1935) shows that the rate of reaction is proportional to the 

concentration of reagent H +
and the water vapor in the atmosphere. Since ( ) 10 pHc H + −= , 

we rewrite Eq. (C.8) as 

 

1 2 3
0

3
0 1 2

exp

   = exp + +

Rh pH

ci e e
T

Rh pH
T

  



  

 
=  

 

 
 
 

  (C.9) 

 

where 0 1 2 3,  ,  ,        are constants. 0   reflects the corrosion rate in equilibrium, 

which is similar to the meaning of 0i   in Eq. (C.8). Eq. (C.8) describes the base 

corrosion (volume) rate, which corresponds to the base corrosion current density 

(exchange current rate). We incorporate the effect of temperature, pH  level, and Rh  

by modifying Eq. (C.7) as Eq. (C.10). 
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Similarly, the increase in depth is described as 

 ( ) ( )
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,   (C.11) 

The parameters can be estimated by MLE, as shown in section C.5 

 

C.4 Reliability and Remaining Life Prediction 

Failure occurs when either the maximum depth of the corrosion pit reaches the depth 

threshold or the volume of the corrosion pit reaches the volume threshold as shown in 

Figure C.5, we develop the reliability models based on the two failure modes respectively.  

 

(a) (b)

D

 

Figure C.5 (a) Failure caused by corrosion volume growth (b) Failure caused by 

corrosion depth growth 
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We use ( )GA   to denote the cumulative distribution function (CDF) of a Gamma 

distribution. We define the reliability in this situation as the probability that the component 

(structure) survives in time 1t +  given that it has not failed at time t . Let 
fT  denote the 

failure time, the reliability based on corrosion volume growth is  
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Theoretically, the maximum depth of the pit is the depth of the deepest pixel in the pit and 

the reliability should be estimated accordingly. However, as the center of the pit is corroded 

first and has the largest corrosion time, for simplicity, we assume that the maximum depth 

is the depth of the central pixel. However, in the estimation of the reliability regarding both 

the corrosion depth growth and volume growth simultaneously as discussed later, we will 

consider the depth of every pixel since the volume of a pixel is the area of the pixel times 

its depth. Let ( )*d t  represent the maximum depth of a corrosion pit. Let dc  denote the 

depth threshold. For the depth failure mode, the reliability is given by: 
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207 

 

 

As the corrosion volume growth is dependent on the depth growth of all the pixels and area 

growth of the sectors, we propose the following model to estimate the reliability regarding 

the two failure modes simultaneously: 
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where  
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The distribution of the remaining life is obtained using an iterative computational method 

as described next. Assume we have a series of corrosion pit growth measurements (3-D 

images) up to time t . The corrosion volume at that time is ( )v t , the maximum depth is 



208 

 

 

( )*d t  and the number of corroded pixels is ( )n t . The remaining life is predicted as 

follows: 

 

(1) Set k t=  . 

(2) Generate a random number ( )n k  using Eq. (C.4), update ( ) jr k  with 

( ) 1jr k + . Generate a random number ( )*d k  according to Eq. (C.5). 

(3) Generate a random number ( )v k  using Eq. (C.10).  

(4) Obtain ( ) ( ) ( )* * *1d k d k d k+ = +   and ( )1v k + = ( ) ( )v k V k+  . If ( )* 1 dd k c+   

and ( )1 vv k c+  , set 1k k= + , go to step (2). Otherwise, the failure time is 1k +  

and the remaining life 1T k t= + −  . 

(5) Repeat steps (2)-(4) pN times.  

 

Let mT  denote the m  percentile remaining life predicted. The obtained 90% confidence 

interval of predicted remaining life is ( )0.05 0.95,  T T . 

 

C.5 Parameters Estimation 

The parameters are estimated with MLE. The parameters of the proposed model include 

 0 1 0 1 1 2 3,  ,  ,  ,  ,  ,  ,  ,           , where  0 1,  ,      correspond to the parameters 

that determine the corrosion growth in the radial directions,  0 1,  ,      correspond to 

parameters that determine the corrosion growth in the depth direction,  1 2 3,  ,      is the 
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vector of the covariate parameters. Since we assume that the corrosion growth in both the 

radial directions and the depth direction to be independent, we obtain the likelihood 

functions for  0 1 1 2 3,  ,  ,  ,  ,         and  0 1,  ,     independently. The estimation of 

these parameters requires the corrosion depth growth data and corrosion radius growth data 

for different pits. Assume we have M  pits that are observed under different covariate sets. 

Let ( )mjr t  be the radius in the thj  sector of the 
thm pit at time t . Let ( )mid t  denote 

the depth of the 
thi  pixel of the 

thm pit at time t , where 1 m M   and ( )1 mi n t  , 

( )mn t  is the total number of pixels of the 
thm pit at time t . Let  

( ) ( ) ( ) ( )  1 2 3,  ,  m x m x m x m =x  be the covariate vector values for the 
thm  pit. The 

variable ( )1x m  is the Rh  value of the 
thm  pit, ( )2x m  is the pH  value of the

thm  pit 

and ( )3x m  is the temperature value of the 
thm  pit . For simplicity, let 

 ( )( ) ( ) ( )
( )

3
1 1 2 2

2

exp + +f m x m x m
x m


 
 

=   
 

x   (C.15) 

The likelihood function of  0 1 1 2 3,  ,  ,  ,  ,         with corrosion increments in radial 

directions is given by  
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Taking the natural logarithm of both sides yields 

( ) ( ) ( ) ( )( )

( )
( ) ( )( )
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The MLE estimators are obtained by solving the following equations set 

 
0 1

1 2 3

ln ln ln
0, 0, 0,

ln ln ln
0,  0,  0

d d d

d d d

l l l

l l l

  

  

  
= = =

  

  
= = =

  

  (C.18) 

 

The likelihood function of  0 1, ,    is given by 
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Taking the natural logarithm of both sides yields 
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( ) ( ) ( )( )
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The MLE estimators are obtained by solving the equations 

 
0 1

ln ln ln
0, 0, 0r r rl l l

  

  
= = =

  
  (C.21) 

C.6 True Area Growth and Recommendations to Select Number of Sectors 

In this section, we prove that the area growth of a sector proposed in Eq. (C.2) is a 

reasonable approximation of the true area growth and provide recommendations to select 

the number of sectors in a pit. The actual area growth of sector j  is represented by Eq. 

(C.22), where the superscript denotes that it is obtained by considering the area growth as 

part of an annulus. In comparison, the area growth of a sector obtained by considering the 

area growth as a rectangle is represented by Eq. (C.23) 

 

( ) ( ) ( )( )

( ) ( )( )

sec 2 2

2 2

1

            1
2

j j j

j j

S t r t r t
n

r t r t





 = + −

= + −

  (C.22) 

 ( ) ( ) ( ) ( )( )=2 sin 1
2

rec

j j j jS t r t r t r t


  + −   (C.23) 

The ratio of the area growth obtained in Eqs. (C.22) and (C.23) is 
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Figure C.6 The ratio of half the angle and its sine value versus the angle of the sector 

 

As shown in Figure C.6, the smaller the value of  , the closer the ratio sin
2 2

 
 to 1. 

When 0 → , sin 1
2 2

 
→ . However, smaller   means higher computation cost. The 

choice of   depends on the need of precision and computation cost. As shown in section 

C.1, ( )( ) ( )0 1 ( )j jE r t r t   = + , where 1 0,  0   . As given in Eq. (C.25), 
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+ +
 decreases as ( )jr t  increases. When ( )jr t → ,  
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Accordingly, 

 
( )

( )
( )

sec

1 as 
j

jrec

j

S t
r t

S t


→ →


  (C.26) 

In this appendix, with the data by Kariyawasam et al. (2012), the parameters in the radial 

directions are obtained as    0 1
ˆ ˆ ˆ,  ,  = 0.314,  0.127,  0.083   . Let ( )sec

jS t  denote the 

cumulative area of sector j  at time t , ( )ecr

jS t  denote the approximated cumulative area 

of sector j  at time t . When =150t , the ratio ( ) ( )sec rec

j jS t S t  is plotted against the total 

number of sectors as shown in Figure C.7. 

 

 

Figure C.7 The ratio of areas under different total number of sectors 

 

It is observed that ( ) ( )sec rec

j jS t S t  decreases as sn  increases. However, as larger sn  

indicates higher computation costs, we choose 36sn = , 
18


 = , such that 

sin 1.005
2 2

 
=  and ( ) ( )sec 1.015rec

j jS t S t = , which means the overall error is only 1.5%. 

The area growth obtained with Eq. (C.22) and Eq. (C.23) respectively are shown in Figure 
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C.8. In summary, the area growth of a sector approximated with Eq. (C.23) is accurate. 

Moreover, the growth rates over time are shown in Figure C.9.  

 

Figure C.8 The comparison of the actual growth obtained with Eq. (C.22) and area 

growth approximated with a rectangle obtained with Eq. (C.23) 

 

 

Figure C.9 The corrosion growth rate over time 

C.7 Case Study 

In general, to accurately estimate the reliability of the corroded component with the 

proposed model, 3D image data of corrosion pits are required as inputs. These data can be 
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obtained with NDT devices such as laser scanning microscope (Krawczyk et al., 2017), 

phased array and other 3D scanners (Turcotte et al., 2016). Figure C.10 shows the 

representative images of the corrosion pits obtained with a laser scanning microscope 

(Krawczyk et al., 2017). However, 3D images of pits are costly to obtain than longitudinal 

data. In the case where corrosion growth rate in both radial and depth directions are similar, 

depth data (longitudinal data) can be used to give an approximate estimate of the reliability 

metrics as an alternative. 

 

 

Figure C.10 Representative images of corrosion pits obtained with the (a) laser intensity 

image and (b) the corresponding 3D topography image (Krawczyk et al., 2017) 

 

In this case study, we demonstrate the performance of the model using corrosion depth 

growth rate data and depth growth data since the volume growth data are not readily 

available. The two datasets are the corrosion depth growth rates data by Kariyawasam et 

al. (2012) as shown in Figure C.2 and the corrosion depth growth data of ships by Soares 

et al. (2009). In the first dataset, the measurements are obtained under one operating 
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condition only. In the second dataset, the corrosion data are obtained under six different 

operating conditions. We describe the datasets and the corresponding results as follows. 

 

C.7.1 Kariyawasam’s dataset 

To illustrate the use of the model, we fit the corrosion depth growth rates data with the 

depth growth model given in Eq. (C.5) and estimate its parameters. We censor the data at 

depth ( ) 3mmd t =  and estimate the parameters  0 1
ˆˆ ˆ,  ,  =     0.314,  0.127,  0.083  

using MLE as shown in section C.5. Assuming the corrosion growths in the depth and the 

radial directions are determined by the same set of parameters, i.e.,

   0 1 0 1,  ,  ,  ,       = , we simulate the 3-D growth data of the corrosion pit with the 

estimated parameters as shown in Figure C.11. Suppose we are considering the metal loss 

of a pipe (Phillips & Johnston) with =200flow Mpa , =4pt mm , 19D mm=  , 10L mm= ,

0 =400  v cubic mm  and the operating pressure of the pipe is 0 79.83P Mpa= . The critical 

corrosion pit volume =70  vc cubic mm  and the critical depth threshold is 4dc mm= .  

 

With these estimated parameters, the expectation and the 90% confidence intervals of the 

maximum depth growth and volume growth are obtained as shown in Figures C.12 and 

C.13 respectively. We observe that the corrosion pit maximum depth and volume growth 

behave differently: the corrosion pit maximum depth growth rate is largest at the start of 

the corrosion process and decreases with time while the corrosion volume grows gradually, 
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and the volume growth rate increases over time. To evaluate the accuracy of the proposed 

model, we compare the reliability function of the pit’s maximum depth estimated with the 

proposed model (Eq. (C.5)) and the other four widely used models: the Gamma process 

(Van Noortwijk, 2009), the Brownian Motion process (Wang, 2010), the inverse Gaussian 

process (Ye et al., 2014) and the Markov Chains (Caleyo et al., 2009). Figure C.14 shows 

the comparison results of the five approaches and the real corrosion pits’ failure data, which 

are obtained by bootstrapping the corrosion growth incremental data in Figure C.2. We use 

the data in Figure C.2 with an original depth smaller than 5mm. The parameters of the four 

approaches are estimated with bootstrapped data by time 15t = .  

 

As shown in Figure C.14, the proposed model has the most accurate reliability estimation 

(based on the mean squared error (MSE) as shown in Table C.1). There are a few time 

instants when the MC and inverse Gaussian process have better estimates. Although the 

proposed model can accurately estimate the time that the maximum corrosion depth 

reaches its threshold, the reliability estimation of the corroded unit by solely relying on 

considering the depth growth is insufficient and may lead to inaccurate results as shown in 

Figure C.15. We observe that by time 24t =  the reliability regarding depth growth is high 

with a value of 0.75 and the condition of the unit can be considered as relatively “safe”. 

However, if we consider the failure caused by the corrosion pit volume growth, we find 

that the reliability is significantly smaller with a value of 0.16 and the unit is considered as 
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“unsafe”. It is evident that the decision made solely on the depth growth is deficient and 

should be improved by considering the two failure modes simultaneously as shown in 

Figure C.15. 

 

Table C.1 The MSEs of the reliability estimated using the five approaches 

Models Gamma 

process 

Brownian 

Motion 

process 

Inverse 

Gaussian 

process 

Markov 

Chain 

The 

proposed 

model 

MSE 0.0126 0.0166 0.0094 0.0104 0.0014 

 

 

Figure C.11 Selected simulated corrosion pit 3-D images from t=15 to t=45 
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Figure C.12 The predicted maximum depth growth 

 

 

Figure C.13 The predicted volume growth 
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Figure C.14 The comparison of the proposed model with others when estimating the 

reliability regarding corrosion pit’s maximum depth 

 

 

Figure C.15 Reliability when considering different failure modes 
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Figure C.16 The comparison of the proposed model and the physical model 

 

To validate the proposed corrosion volume growth model, we compare the corrosion 

volume growth results with the physics-based models (Harlow et al., 1998, Kondo et al., 

1989). According to Kondo et al. (1989) and Harlow et al. (1998), the corrosion volume 

growth rate is a constant determined by physical parameters of the corrosion process. From 

Figure C.13, we observe that in the later stage of the corrosion volume growth process, as 

time increases the corrosion volume growth shows a linear relationship with time. We fit 

the corrosion volume growth data from 25t =  years to 45t =  years with a linear 

regression model as shown in Figure C.16. This shows that the results from the stochastic 

model match that of the physics-based model. 

 

C.7.2 Soares’s Dataset 
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The model is also validated with the corrosion depth growth data obtained from deck 

plating above the ballast tanks of the crude oil tankers during the six ships’ service life in 

some particular routes through the Pacific Ocean as described by Soares et al. (2009). The 

operating conditions of the 6 ships are shown in Table C.2. The data sample size is 

increased by generating corrosion data with the deterministic model in the paper (Soares et 

al., 2009) and randomized with the Brownian motion process with drift, where the mean 

of the Brownian motion process is the same as that of the corrosion data. We censor the 

data at time 10 and estimate the parameters of the model as shown in section C.5. The 

corrosion data, the predicted expectation and 95% confidence interval of the corrosion pit 

depth in the 6 ships under different operating conditions are shown in Figure C.17. The 

means of the corrosion data are denoted in blue dash-dot lines. We observe that the model 

accurately predicts the expectation of the corrosion depth under different operating 

conditions. The MSE of the predicted mean path and the percent error (PE) of failure times 

are calculated and shown in Table C.2. Let 0t  denote the censoring time, the PE are 

defined as follows 

f r

r

T T
PE

T

−
=  

where ( )*d k  is the maximum depth of the pit at time k . ( )*d̂ k  is the predicted mean 

maximum depth of the pit at time k . fT  and rT  are the observed and true failure time.  
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Table C.2 The time to failure prediction accuracy 

 Ship 1 Ship 2 Ship 3 Ship 4 Ship 5 Ship 6 

Stresses T=283.85 

Rh=85.5% 

pH= 8.16 

T=289.75 

Rh=82.8% 

pH=8.15 

T=291.55 

Rh=83.3% 

pH=8.15 

T=293.35 

Rh=79.8% 

pH=8.14 

T=293.55 

Rh=82.3% 

pH=8.18 

T=296.05 

Rh=81.6% 

pH=8.18 

PE of T 1.685 1.163 -1.625 3.870 -0.132 -1.644 

MSE 0.000067 0.000130 0.000133 0.000406 0.000056 0.000063 

 

 

Figure C.17 The corrosion depth prediction when data are censored at t=10 
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Figure C.18 The corrosion volume prediction when data are censored at t=10 

 

 

Figure C.19 The reliability when considering both depth growth and volume growth 
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From Table C.2, it is shown that the proposed model accurately predicts the failure times 

of the corroded components subject to corrosion. The predicted corrosion volume growth 

paths are shown in Figure C.18. The reliability function considering both the corrosion 

depth growth and volume growth is shown in Figure C.19 when the maximum depth is 1.2 

and the volume threshold is 2.0. 

 

C.8 Conclusions 

The existing corrosion pit growth models are limited as they only capture the depth of the 

pit and may result in inaccurate life predictions of the corroded units. In this appendix, we 

propose a general degradation model that describes the corrosion pit volume growth over 

time. This is the first stochastic model that captures the corrosion volume growth when a 

critical amount of volume loss leads to failures of a component. The corrosion growth of 

the pit is modeled as a state-dependent Gamma process. The reliability model considers 

both the corrosion volume growth and depth growth and is more accurate than existing 

models. The influence of environmental factors is incorporated into the model by 

considering the corrosion chemistry reactions. Case studies show that the proposed model 

predicts the remaining life and reliability of the corroded units more accurately than 

existing models such as Markov Chains, Gamma process, inverse Gaussian process and 

Brownian Motion process. The agreement of the proposed model with a physics-based 
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model is verified with real data. The limitation of the work is that the pits overlap and the 

coalescence process is not thoroughly discussed or quantitively validated. We will address 

these topics in future research.  
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11 APPENDIX D THE CORROSION VOLUME THRESHOLD DERIVATION 

 

Corrosion may lead to failure in different ways, including leakage, burst or sudden rupture. 

For example, leakage occurs when the corrosion pit depth of a pipeline equals its wall 

thickness. When the remaining strength of the pipeline wall is too small to resist inner fluid 

or gas pressure, the burst will happen even when the corrosion pit depth is smaller than the 

thickness of the pipeline wall (Amirat et al., 2006, Jianan et al., 1997). Extensive research 

has been conducted on predicting the time for a corrosion pit to reach the wall thickness 

threshold. The work on predicting the failure time when the volume of the corrosion 

reaches a threshold is scarce. We consider two thresholds: the depth threshold dc  and the 

volume threshold vc . Ma et al. (2011) estimate the remaining strength of a pipeline as 

 0

0

1
2

1
1

flow p

A

t A
P

AD

A M


 

−  
 =
 − 
  

  (D.1) 

where 

 

2
2 2

1 0.6275 0.003375
p p

L L
M

Dt Dt

 
= + −   

 

  (D.2) 

where flow  is the yield strength of the pipe material. pt  is the wall thickness of the 

pipe. D   is the outer diameter of the pipe. A   is the local area of metal loss in the 

longitudinal plane, 0A   is the local original metal area, M   is the bulging stress 
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magnification factor (Folias factor). 0P   is the operating pressure. When 0P P  , the 

pipe fails. For the pipe, the failure threshold for the remaining strength is 0P . When 

0=P P , the critical corrosion loss area is  

 
0 ( 2 )

2

flow p

A

flow p

A t PD
c

PD
t

M





  −
=

  −

  (D.3) 

 

In the proposed model, we are concerned with volume loss within a fixed local area. Using 

the criteria above, after modifications of Eq. (D.3), we propose the critical volume loss 

threshold as 
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  (D.4) 

where M  is adjusted accordingly as 

 

2
2 2

1 0.6275 0.003375
p p

L L
M

Dt Dt

 
= + −   

 

  (D.5) 

where L  is the length of the defined area. For example, if we are interested in the volume 

loss of a whole pipeline, L  is the length of the pipeline. 0v  is the local original metal 

volume. 
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12 APPENDIX E PARAMETERS ESTIMATION IN THE CORROSION 

VOLUME GROWTH PROCESS BASED ON IIG PROCESS 

 

The parameters are estimated with MLE. The parameters of the proposed model include 

 0 1 0 1 1 2 3,  ,  ,  ,  ,  ,  ,  ,           , where  0 1,  ,      correspond to parameters that 

control corrosion growth in radial directions,  0 1,  ,      correspond to parameters that 

control corrosion growth in the depth direction.  1 2 3,  ,      is the vector of covariates 

parameters. Since we assume that the corrosion growth in both the radial directions and the 

depth direction to be independent, we obtain the likelihood functions for 

 0 1 1 2 3,  ,  ,  ,  ,         and  0 1,  ,      independently. The estimation of these 

parameters requires the corrosion area growth data and corrosion volume growth data for 

different pits. Assume we have M  pits which are observed under different covariate sets. 

Let ( )mjr t  be the radius in the thj  sector of the 
thm  pit at time t . Let 

( ) ( ) ( )1mj mj mjt r t r t = + −  be the corrosion growth increment of the thj  sector of the 
thm

pit in ( ),  1t t + . Let  ( ) ( ) ( ) ( )  1 2 3,  ,  m x m x m x m =x  be the covariate set values for the 

thm  pit. The variable ( )1x m  is the Rh  value of the 
thm  pit, ( )2x m  is the pH  value 

of the 
thm  pit and ( )3x m  is the temperature value of the 

thm  pit. For simplicity, let 

 ( )( ) ( ) ( )
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3
1 1 2 2
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The likelihood function of  0 1 1 2 3,  ,  ,  ,  ,         with corrosion increments in radial 

directions is given by 
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Taking the natural logarithm of both sides yields: 

 

( ) ( ) ( )( )

( ) ( )( )( ) ( )

( ) ( ) ( )( )( )

( ) ( )( )( ) ( )

11 0 1 1 2 3

0 1

1
2

0 1
1 1 1

2

0 1

ln 1 ,  ,  ,  ,  ,  ,  ,  ,  ,  

1 1 3
ln ln ( ) ln 2 ln

2 2 2

= ( )

2 ( )

s

s

r mj Mn

j mj

nM t

mj j
m h j

j mj

l h t

r t f m h

h r t f m

r t f m h

        

    

   

  

−

= = =

 
+ + − − 

 
 − − +
 +
 +
 



x

x

x

  (E.3) 

 

The MLE estimators are obtained by solving the following equations set 
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13 APPENDIX F PROOFS OF THE DEGRADATION BRANCHING 

EQUATIONS 

 

F.1 The PDF of the Total Degradation, the Reliability and the Expected Number of 

Branches 

In this section, the PDF of the total degradation, the expected number of branches and 

reliability at time t  are derived.  

 

Let 
1

i

i j

j

h x t 
=

 
−  

 
  denote the conditional PDF of 

1

i

i j

j

X t 
=

 
− 
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Accordingly, given there are n  branches at time t , the conditional PDF of the total 
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 , ( )g n t  is the probability mass function (PMF) of the number of branches n  

at time t . Let bn  denote the limit of the number of branches, the PDF of the total 

degradation is 

( ) ( ) ( )

( ) ( )
( )

 ( )

( )  ( )

1

1

1

1

* *

0

0 11 10 0

0 11 10 0

,

1
1 ,  ,  1

1 ,  ,  1

b

n

i

ib

n

i

ib

n

n

t
tn n nn

i i i i

n ii i

t
tn n nn

i i i i

n ii i

h x t g n t h x n t

g n t f F t h x t i n d
g n t

f F t h x t i n d





   

   

−

=

−

=

=

−

= == =

−

= == =

=


  

= − −    
  


  

= − −    
  



   

   

 

 (F.1) 

Q.E.D. 

 

Eq. (4.7) in Chapter 4 is derived as follows. When the threshold is c , the reliability is  
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where  ( ),  ,  1iH x t i n    denotes the conditional CDF of the total degradation given 

 ,  1i i n    are known. 

Q.E.D. 

 

When bn =  , the expected number of branches by time t , which is obtained with Eq. 

(4.2) in Chapter 4, is proved as follows. First, let 

N t  = the number of branches initiated by time t , 

( )M t  = the expected number of branches at time ( )t E N t= ,  

( )NS t  = the time by the initiation of the 
thN  branch, ( ) 1

1

N

N N i

i

S t   
=

= + + =  

The probability that there are N  branches by t  is the same as the probability that time 

t  lies between the initiation times of the 
thN  branch and the 1thN +  branch. Let 

( )N t  denote the CDF of ( )NS t , thus 

 ( ) ( )1 NP N T t t = −    

 
( ) ( )
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The expected value of N t  is then 
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As ( )F t = ( )1 t , ( )1N t+  can be obtained with the following equation 

 ( ) ( ) ( )1

0

t

N Nt t x f x dx+ =  −    

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 0

10

0

          =

          =

t

N

N

t

N

N

t

M t t t x f x dx

t t x f x dx

t M t x f x dx



=



=

=  +  −

 +  −

 + −







   

Let 

( )
( )dM t

m t
dt

=  

Elsayed (2012) obtains ( )m t  as follows. First ( )*m s  is obtained as  
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Take the inverse Laplace transform, ( )m t  can be obtained with   
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  (F.4) 

Accordingly, the expected number of branches at time t  is 
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F.2 The Expectation of the Total Degradation and the Mean Residual Life 

Eqs. (4.3), (4.4) and (4.5) in Chapter 4 are proved in this Appendix. When the times to 

initiate new branches follow a distribution with PDF of ( )f  , we propose a model to 

capture the expectation of the corresponding DBP. This method can be used to estimate the 

expectation of any DBP if the expectation of the number of branches by time t  is available. 
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The expectation of the total degradation increment ( )*dX t  is 

 

( )( ) ( ) ( )( )

( ) ( )( )

* *

00

*

0 00

b

b

t n

n

t n n

i

n i

E X t g n E dX n

g n E dX





 

 

==

= ==

 
=  

 

   
=     

   



 

  (F.6) 



236 

 

 

Consider a general degradation process whose mean function and variance function of a 

branch in ( ),  t t dt+  is dt  and 
2dt . The overall degradation at time t  is 
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The MRL is derived as follows. First, suppose by time t  the total degradation is ( )x t , 

the total number of branches is ( )n t  and the last branch is initiated at lt . The expectation 

of the total degradation at time rt t  is 
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where ( )( )( )* ,  ,  i r lE X t t t n t  denotes the expectation of the degradation of branch i  in 

( ),  rt t  given that the total degradation is ( )x t  at time t , the total number of branches is 

( )n t  and the last branch is initiated at lt  and ( ) ( )( )( )* ,  ,  r ln t
E X t t t n t

+
 denotes the 

expectation of the total degradation of the ( )
th

n t  and above branches. The MRL is 

obtained with the following equation. 
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F.3 The Variance of the Total Degradation 

The proof of Eq. (4.6), which is the variance of the total degradation, is provided in this 

Appendix. Given there are n  branches at time t , let ( ) ( )* *

1
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i

X t n X t n+
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= , according 

to the rule of squared sum, the conditional variance of the degradation of the n  branches 
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where 
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For 1 21 i i i    , let 
1i

x  and 
2i

x  denote the corresponding degradation value variable, 

we have 
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The conditional variance of the degradation of the n  branches given there are n  

branches is  
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The variance of the degradation of all the branches including the first degraded unit at time 

t  is 
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Q.E.D. 

 

F.4 The Expectation and Variance of the Branches 

The proofs of the expectation and variance of the degradation of the 
thi  branch, which are 

shown in Eqs. (4.9) and (4.10) in Chapter 4, are proposed in this section. The PDF of the 

degradation of the 
thi  branch is 
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The expectation of the degradation of the 
thi  branch is 
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The variance of the degradation of the 
thi  branch is 
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Q.E.D. 

 

F.5 The Mean and Variance of the Total Degradation where Time to Branch Follows 

an Exponential Distribution 

The proofs of Eqs. (4.12) and (4.13) in Chapter 4, which correspond to the mean and 

variance of the DBP process where time to branch follow an exponential distribution, are 

discussed in this section. In the case where N  follows a Poisson distribution with 
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parameter  , which corresponds to the DBP where the time to branch   follows an 

exponential distribution with a parameter of  , the expectation of the total degradation is   
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Q.E.D. 

 

The expectation of the degradation of the 
thi  branch given there are n  branches is 
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Accordingly, the expectation of the total degradation of the n  branches given there are 

n  branches is 
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The variance of the total degradation of the n  branches given there are n  branches is 
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In the proof of Eq. (F.23), we use the conclusions of Eqs. (F.24) and (F.25) as follows. 
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The variance of the total degradation of the branches at time t  is 
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As the growth of the branches (including the first degraded unit) are independent, the 

variance of the total degradation is the sum of the variances of the branches ( )( )*Var X t+  

and the variance of the first degraded unit ( )( )*

0Var X t  as shown in Eq. (F.27) 
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Q.E.D. 
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The MRL as shown in Eq. (4.18) in Chapter 4 is derived as follows. According to Eq. (F.9), 

for a general degradation process whose mean function and variance function of a branch 

in ( ),  t t dt+  is dt , the expectation of the total degradation increment in ( ),  rt t  is 

 

( )( )( )

( )( )( )
( )
( )

( )

( )

( )( )( )
( )

( )
( )

( )

*

1
( )

1 1

1
( )

1

, ,

1
1

10

1
2 0

b

b

r l

n
n n t n

r l l

r n
n il r l

n
n n t

l

r r l n
nl r l

E X t t t n t

g n t t t tn i
n t t t

ng t t t t

t t
n t t t g n t t n

g t t t t

 




+
−

= =

+
−

=

 − −+ −
 = + − +
 +− − 

 −
 = + − + −
 − − 

 



  (F.28) 

 

According to Eq. (F.28), the MRL is 

( )( )( )
( )

( )
( )

( )
( )

1
( )

1

inf 1
2 0

b
n

n n t
l

r r r l n
nl r l

MRL

t t
t n t t t g n t t n c x t

g t t t t




+
−

=

=

  − 
 + − + − = − 
 − −   


(F.29) 

 

Q.E.D. 

 

F.6 The Mean and Variance of the Branches where Time to Branch Follows an 

Exponential Distribution 

We prove Eq. (4.19) in Chapter 4 by induction. First, we prove that it holds when i =1. 

The expectation of the degradation of the first branch can be obtained according to Eq. 

(F.30) as follows: 
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The result is the same as that obtained with Eq. (4.19) as follows 
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Second, assume that Eq. (4.19) holds for i = n , we prove that it also holds for i = 1n + . 

According to Eq. (4.19) 
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According to the last two steps in Eq. (F.32), we have 
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Let 1k j= +  and t = 1t −  where 1  is a constant, we have  
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According to Eqs. (4.9) and (F.34), the expectation of the 1thn +  branch is derived as 

follows:  
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In the last step of Eq. (F.35), let 1k j= + we get  
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which is the same as the result obtained with Eq. (4.19) when 1i n= + .  
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We prove Eq. (4.20) by induction. First, we show that it holds when i =1. Given  j  are 

known, the conditional variance of branch i  is 
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When i =1, the variance of the degradation of the first branch can be obtained as follows: 
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The variance of the first branch obtained with Eq. (F.38) is the same as that obtained with 

Eq. (4.20). The first step of the proof is done. In the second step, we prove that if Eq. (4.20) 

holds for the 
thn  branch, it also holds for the 1thn +  branch. As 
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From the last two steps of Eq. (F.39), we know that 
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Let 1k j= + , t = 1t − , where 1  is a constant, we have  
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Then we obtain Eq. (F.42) as follows: 
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where B  can be decomposed into 1B  and 2B  as follows: 
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where 
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Let 1k j= + , Eq. (F.45) changes to  
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Similarly, 
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Then we get  
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Which is the same as the result obtained with Eq. (4.20) when 1i n= + .  

Q.E.D.  
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14 APPENDIX G MODIFIED K NEAREST NEIGHBOUR IMPUTATION 

 

In this section, we describe a non-parametric data interpolation approach modified from 

the k nearest neighbor imputation (kNNI) model (Batista et al., 2003). Suppose that the 

degradation dataset that includes observations from all the N  sensors is complete until 

time t . The first missing data is noticed at time 1t + . Suppose the first missing data 

among the N  sensors (by sensor index) appears from sensor i . The interpolation 

procedures are as follows: 

1) In each time instant ,  1t    , assign the N  observations 

( ) ,  1ud t u N    into k  clusters using k-means clustering algorithm. At 

each time instant, we index the clusters by the rank of its centroid from 1  to k . 

For example, cluster 1 corresponds to the cluster that has the smallest centroid 

while cluster k  corresponds to the cluster that has the largest centroid. For each 

sensor u , where 1 u N  , we have a cluster membership sequence as 

( ) ,  1uC t    . ( )uC t  takes one of the values from  1, , k .   

2) For each 1    , compare ( ) ,  1 ,  uC t u N u i     with ( )iC t , obtain 

the indicator matrix 

    ( )
( ) ( )

( ) ( )

0 if 

1 if 

u i

u

u i

M
C t C t

t
C t C t

 



 


= 




 =
. 

3) Calculate the similarity score of each sensor ( )1 ,  1u u NS t +    at time 1t +  

with the following formula 
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    ( ) ( ) ( )1

1

t

u uS t e t M t


  



+

=

=  

where ( )  1,  e t     are the weights of the similarity scores that follow a     

geometric series as  

      ( ) ( ) 1

1e t e t q



−=  

where q  satisfies  

     ( ) ( )1

1 1 1 0e t q e t q− − − + =  

The weights place higher importance on the recent cluster membership as the 

missing data is considered to be more closely related to recent measurements. 

4) Take the mean of the similarity scores of the sensors in each of the k  clusters at 

time 1t + . Take the centroid of the cluster that has the largest mean similarity 

score at time 1t +  as the interpolated data, which is denoted as ( )*

1id t + . 

5) Treat the interpolated data ( )*

1id t +  as observed value. Interpolate other missing 

values with the same procedures until there is no more missing data. 
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15 APPENDIX H IMPUTATION WITH BOOTSTRAP 

 

In this section, we describe a set of degradation data interpolation approaches modified 

from the previous work of the authors based on bootstrap (Guo et al., 2018). Bootstrap has 

been used primarily to obtain confidence intervals of statistical parameters. The general 

approach is to assume that the degradation increments are independent and identically 

distributed (i.i.d.), and approximate the distribution F  of ( )d t  by the empirical 

distribution 
*F  of the observed ( )d t . If we observe a sufficiently large sample, 

*F  

is then a reasonable approximation of F . Three scenarios are investigated and the 

corresponding missing degradation data interpolation models are proposed accordingly. 

 

H.1 Degradation Increments are i.i.d. 

If the degradation increments are approximately i.i.d., we propose to interpolate the 

missing degradation increments by bootstrapping the observed degradation increments. 

Suppose sensor i  has missing data. The specific interpolation procedures are as follows: 

1) Suppose we have an observed degradation dataset for sensor i  as 

( ) ,  i j jd t t A , where A  is the set of time indexes of non-missing observations. 

For simplicity, we define  1( ) ( ) ( ) ,  i j i j i j jd t d t d t t A+ = −   as the set of the 

corresponding degradation increments. ( )i jd t  is the increment corresponding 
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to the starting degradation ( )i jd t . Let { ( )},  i id t t A =  d . Because the 

missing data starts at time 1t + , set 1j = .  

2) Randomly draw a sample data 
*

1( )i jd t − +  from set d , the interpolated 

missing data at time 
jt +  is 

* * *

1 1( ) ( ) ( )i j i j i jd t d t d t  + − + − +=  + .  

3) Treat the interpolated data at observed data. Let 1j j= + , repeat (2) until all 

missing data have been interpolated. 

4) Follow the same procedures, interpolate other missing data. 

 

H.2 Residuals are Approximately i.i.d. 

The method described in section 1 assumes that the degradation increments 

( ) ,  i j jd t t A  are i.i.d. However, ( ) ,  i j jd t t A  may not always be i.i.d., because 

the mean or variance of ( ) ,  i j jd t t A  may change with time. In this section we are 

interested in the case where future degradation increments are dependent on current 

degradation states. The basic approach is that ( ) ,  i j jd t t A   are first transformed into 

an i.i.d. sequence, which can then be resampled and inversely transformed to produce the 

new ( )*

i jd t  sequence. More specifically, the increments are first fitted with a linear 

function of the degradation states. If the residuals i.i.d., they are then resampled and the 

interpolated increments are obtained accordingly. The procedures are as follows: 
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1) Suppose we have an observed degradation dataset of sensor i  as 

( ) ,  i j jd t t A , where A  is the set of the time indexes of the non-missing 

observations.  1( ) ( ) ( ) ,  i j i j i j jd t d t d t t A+ = −   is the set of the corresponding 

degradation increments. Use the degradation increments to fit the linear model: 

( )0 1( ) ( ) ,  i j i j i j jd t d t t t A   = + +   and obtain the estimate of the parameters 

0 1
ˆ ˆ ˆ{ ,  } =β . Check if the residuals ( ) ,  i j jt t A   are i.i.d. If the residuals 

( ) ,  i j jt t A   are identically distributed and independent of  ( ) ,  i j jd t t A , 

let ( ) ,  i i j jt t A=  . Because the missing data starts at time 1t + , let 1j = . 

2) Randomly draw a sample data ( )*

1i jt − +  from the set i , the corresponding 

interpolated missing data increment in ( )1 ,  j jt t − + +  is 

* * *

1 0 1 1 1
ˆ ˆ( ) ( ) ( )i j i j i jd t d t t    − + − + − + = + + . 

3) The interpolated missing data at time 
jt +  is 

* * *

1 1( ) ( ) ( )i j i j i jd t d t d t  + − + − +=  + . 

4) Treat interpolated data at observed data. Let 1j j= + , repeat (2) (3) until all the 

missing data have been interpolated 

 

H.3 Residuals are Non-i.i.d. 

In many cases, the residuals are not i.i.d., e.g., they are dependent on ( ) ,  i j jd t t A . 

Transformations of the residuals to i.i.d. values are required such that the bootstrap method 

can be effectively used. Common transformations include taking logarithms of the 
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residuals, squares of the residuals and roots of the residuals. Without loss of generality, we 

use square root transformation as an example to illustrate the procedures of interpolating 

the missing observations. 

1) Suppose we have an observed degradation dataset ( ) ,  i j jd t t A , where A  

is the set of the time indexes of non-missing observations. 

 1( ) ( ) ( ) ,  j i j i j jd t d t d t t A+ = −  is the set of the corresponding degradation 

increments. Use the degradation increments to fit the linear model: 

( )0 1( ) ( ) ,  i j i j i j jd t d t t t A   = + +   and obtain the estimates of the 

parameters 0 1
ˆ ˆ ˆ{ ,  } =β .When the residuals ( ) ,  i i j jt t A=  are dependent 

on ( ) ,i j jd t t A , the absolute values of the residuals as well as the preceding 

degradation states are transformed by taking the square roots. The transformed 

values are used to fit the linear model 

( )( ) ( ) ( )0 1 ,  i j i j i j jabs t c c d t t t A = + +   and estimate the parameters 

0 1
ˆ ˆ ˆ{ ,  }c c=c , where ( )( )( ) ( )0 1 ,  i j i j jE abs t c c d t t A = +  . Let 

( )( )( )
1

,  j

i j

t A

E abs t

 
 

 
 
 

 be the set of weights, update 0 1
ˆ ˆ ˆ{ ,  } =β  with 

weighted least square model.  Now 

( )
( )( )

( )( )( )
( )( )
( )0 1

= = ,  
ˆ ˆ

i j i j

i j j

i ji j

abs t abs t
t t A

c c d tE abs t

 





+

  are approximately i.i.d. The 
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normalized residuals are denoted as a dataset vector ( ) ,  i i j jt t A= ω . The 

missing data starts at time 1t + . Set 1j = . 

2) Randomly draw a sample data ( )*

1i jt − +  from set iω , the corresponding 

interpolated missing data increment in ( )1 ,  j jt t − + +  is 

( )( )( )1

2
*

1 0 1 1 1

*

1 0
ˆ ˆ ˆ ˆ( ) ( ) ti j i j ij jd t d t s c c td   − + − + −− + + = + + + , where s  is a 

number randomly generated from the set  1,  1− . 

3) The interpolated missing data at time 
jt +  is 

* * *

1 1( ) ( ) ( )i i i j i jd t d t d t  + − + − +=  + . 

Treat the interpolated data as observed data. Let 1j j= + , repeat (2) (3) until all the 

missing data have been interpolated 
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