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ABSTRACT OF THE DISSERTATION

Investigation of some nonlinear problems in Mechanics

by WEI WANG

Dissertation Director: Liping Liu

We investigate some nonlinear problems in mechanics, which include the dynamic

problem with nonlinear interaction, the optimal design of multi-phase conductive compos-

ite, and the phase transition of lattice structures governed by non-convex energy functions.

The first nonlinear problem we investigate is the dynamics of a two-dimensional lat-

tice with harmonic, weakly nonlinear, and strongly nonlinear interactions. Assuming the

nearest neighbor interaction, we derive the continuum approximation of the discrete sys-

tem in the long wavelength regime while keeping the Hamiltonian structure of the system.

For a hexagonal lattice with nontrivial shear resistance, we surprisingly find that solitary

wave solutions exist in certain directions related to the underlying symmetries of the lat-

tice. The properties of the solitary waves are also studied by numerical simulations of the

original discrete system. Besides being of fundamental scientific interest, the solitary wave

solutions in nonlinear hexagonal lattices are anticipated to have applications in the design

of shock absorbers, acoustic lens, non-destructive structural testing devices among many

others.

Secondly, the optimal design of multiphase conductive composites by estimating Hashin-

Shtrikman bounds (HS bounds) attainability in the constraint of volume fractions of the
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constituent phases. We derive the necessary condition by null lagrangian and maximum

principle. We address the sufficient condition of the HS bounds attainability by proposing

a new class of coated sphere comprised of three-phase and four-phase isotropic conductive

materials, and generalize the coated spheres to a larger number of phases. Combining the

necessary and sufficient condition of HS bounds attainability, we can precisely character-

ize the G-closure and effective properties of multiphase conductive materials for a broader

range.

Lastly, we design and characterize a two-dimensional (2D) crystal formed by a lattice

structure, which consists of repeating structure elements called unit cells. Based on the

minimization of total free energy of the unit cell, we find three stable phases coexist at

the critical loading which turns out naturally result in the microstructure. The microstruc-

ture of the lattice structure may easily buckle while the macrostructure of the lattice struc-

ture is in compression, the properties of the lattice structure are also studied by numeri-

cal simulations in a 2D biaxial stress system. Such lattice structures can undergo “phase

transitions” mimicking the Austenite-Martensite phase transition in shape memory alloys

(SMAs). More importantly, they offer directly observable material models that can shed

light on the fundamental mechanisms of the first-order non-diffusive phase transitions and

shape memory effects, their interactions with defects, and the physical origins of hysteresis.
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Chapter 1

Introduction

Nonlinear systems can be described as a system in which the principle of superposition

does not hold. It is ubiquitous in nature and has been an important topic for engineers,

biologists, physicists, mathematicians, and many other scientists [75]. Nonlinearities cover

almost all parts of mechanics, and accordingly nonlinear systems of equations related to

many problems have been discovered. Some of the principal examples include systems

arising (1) in the formulation of the nonlinear dynamics of discrete systems, (2) in connec-

tion with nonlinear optimization problems, (3) in connection with phase transition prob-

lems. Since the form and properties of these nonlinear systems are strongly affected by the

problem area and nonlinear sources, we focus ourselves in three specific mechanics prob-

lems, including the propagation of solitary waves in granular crystal, the optimal design of

multi-phase conductive composites and the phase transition of lattice structures governed

by non-convex energy functions.

In this dissertation, we first focus on dynamics in granular material with nonlinear in-

teraction. The initial motivation to investigate strongly nonlinear dynamics of the discrete

system was prompted by the challenges in the development of mitigating media to re-

duce high-amplitude compression pulses caused by impact or explosion[79]. Nesterenko

first solved the problem by Korteweg-de Vries (KdV) equation with a weakly nonlinear

one-dimensional chain of elastic spheres in the continuum approximation, However, this

approach had a mathematical and physical problem when the amplitude of the wave was

much larger than the initial precompression. Thus instead of a weakly nonlinear KdV

type of equation, a more complex strongly nonlinear wave equation was proposed [77, 78].

As initiated by the seminal work of Fermi-Pasta-Ulam (FPU), it has been found that 1D
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Hertzian granular crystals support the formation and propagation of highly nonlinear soli-

tary waves (HNSWs) [77], therefore, extensive research has focused on the propagation of

solitary waves in granular crystal.

Generic granular material is a collection of distinct macroscopic particles with vary-

ing shapes, sizes, and orientations. Some examples of granular materials are snow, nuts,

coal, sand, rice, coffee, corn flakes, fertilizer, and bearing balls. Granular crystal is a spe-

cial class of granular material since it is fabricated as tightly packed lattices or ordered

solid particles. The dynamic response of granular crystal is scalable and tunable ranging

from highly nonlinear to almost linear. For a one-dimensional (1D) granular crystals, i.e.,

a chain of balls, the equation of motion of the discrete system is derived by Hamilton’s

principle. Since the phase speed of a propagating disturbance is much larger than the par-

ticle velocities in the solitary wave, a complex long wave approximation is adopted, and

by the standard first-variation calculation, the associated Euler-Lagrange general equation

was found in the long-wavelength limit. However, few analytical calculations demonstrat-

ing the solitary wave solutions in higher dimensional granular crystals, which significantly

limit the engineering of such granular crystals. We focus on a 2D hexagonal lattice with

nontrivial shear resistance and general nonlinear interaction potentials. Aiming at analyt-

ical solutions, we pay close attention to approximating the discrete model in a systematic

manner. For the final continuum equations, we surprisingly find exact longitudinal solitary

wave solutions for systems with weakly nonlinear interactions and Hertzian interactions.

The second nonlinear problem we discuss is the optimal design of multiphase conduc-

tive composites. The quasi-convexification of the nonconvex function was proposed for the

optimal design problem of multiphase composites, the quasiconvex functions have proven

to be useful in describing, constructing and restricting microstructures [8], consequently,

the optimal design problem can be reformulated as a vector variational problem of the

minimization of the quasiconvex functions [85]. The optimal design problem has received

a lot of attention because of its relevance to bounding the effective properties of multi-

material mixtures. However, characterizing the effective properties is not easy because it
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depends on the detailed microstructure of composites. Therefore, much attention in this

area has focused on the study of optimal bounds of the effective properties. The well-

established strategy in seeking optimal bounds consists of two steps: the first is to derive

a microstructure-independent bound and the second is to study if this bound is attainable

and if so, by what kind of microstructures. Hashin et al. derived the Hashin–Shtrikman

bounds (HS bounds) by variational principles and applied the bound on the effective elastic

moduli of statistically isotropic heterogeneous materials [38, 39]. Moreover, the follow-

ing groups construct microstructures to explore the optimality of the bounds, the optimal

microstructures include spheres model [36], coated ellipsoids [68], finite rank laminates

[63, 82, 69, 27], “Vigdergauz microstructures” [33, 104]. However, the HS bounds are

not always optimal for more than two-phase composite based on the volume fractions of

the constituent phases [68]. Therefore, more work is needed to investigate the optimal

microstructures of multiphase composites and the attainment conditions of the HS bounds.

The first optimal three material microstructure is comprised of two kinds of Hashin–

Shtrikman coated sphere [68]. Further, Sigmund et al. proposed several new designs of ma-

terials with extremal elastic properties using a numerical topology optimization approach

[93, 94, 95, 92]. Besides constructing the optimal microstructure, the translation bounds

were also introduced to reproduce the HS bounds for multiphase conducting composites

[100, 76, 5]. Albin et al. expanded the attainable region of the translation bounds and

introduced a general algorithm for constructing the structures of three components in two

dimensions, and investigated the sufficient conditions of the attainability of HS bounds by

multi-rank laminates [3]. What’s more, Liu presented a new way derivation of the Hashin-

Shtrikman bounds and prescribed the attainment condition [59]. Although plenty of works

address the attainability of HS bounds for multiphase composite, there still lacks a sys-

tematic method to characterize all the attainable regimes. Followed by the previous work

of Liu [59], we construct a new optimal three-phase coated sphere: the core sphere oc-

cupied by one-phase and the external coating occupied by two-phase periodic E-inclusion

[61]. We demonstrate the optimality of the microstructure by applying local electrical fields
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and present the sufficient condition of HS bounds attainment in terms of volume fractions

of the constituent phases. We extend the microstructure to the optimal four-phase coated

sphere and generalize to a larger number of phases. Combining the necessary and suf-

ficient condition of HS bounds attainability, we summarize all the attainable region for

three-dimensional multiphase conductive composites.

The last nonlinear problem is the phase transition of lattice structure governed by non-

convex energy functions. By characterizing a two-dimensional (2D) crystal formed by a

lattice structure, we deal with phase transition to mimic the Austenite-Martensite phase

transition in shape memory alloys. Shape memory alloys (SMAs) are a group of metallic

alloys that can recover to their original shape when subjected to a certain stimulus such

as thermomechanical or magnetic variations. This phase transition is characterized as a

displacive, non-diffusive, first-order transition [9]. It is found that the free energy at critical

temperatures, at which transition occurs, becomes a nonconvex function, which can be

solved by the variational principle [26, 6, 17, 4]. From a microscopic point of view, the

shape memory effect (SME) consists in a transition from a crystallographic phase stable

at low temperature, i.e. martensite, to a different crystallographic phase stable at high

temperature, namely austenite [99, 15, 83, 84], which makes SMAs have applications in

numerous commercial fields [73, 98, 29, 53, 74]. However, most applications are limited to

NiTi-based SMAs, and NiTi-based SMAs have two major limitations: high materials cost

and the narrow temperature range. Therefore, it is important to understand the fundamental

mechanisms of phase transition and shape memory effect to develop new materials.

To understand the shape memory effect between austenite and martensite, James devel-

oped a mathematical formulation based on free energy minimization to theoretical approach

these fine phase mixtures [47, 49], they found that some of the common microstructures

in shape memory materials were depending on the lattice parameters. Based on the en-

ergy minimization theory, Bhattacharya further illustrated that energy minimization with

many variants naturally results in microstructure when the lattice parameters satisfying

some significant restrictions. Remarkable progress in mathematically understanding the
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relationship between the microstructure formation and lattice parameters of SMAs boosts

the design of new materials [12]. Moreover, advances in the understanding of the relation

between microscopic and macroscopic deformation also play a key role [50]. To mimic

the shape memory effect, we adopt a two-dimensional lattice with a simple stress-induced

phase transition [96, 103]. In this model, the microstructure of the lattice structure may

easily buckle when the macrostructure of the lattice structure are in compression. By the

Cauchy-Born rule, the free energy can be expressed as a function of the deformation gra-

dient and temperature. Minimizing the total free energy based on the geometrically linear

theory, we get four distinct stable configurations corresponding to four stable phases, and

transitions between these phases are regarded as phase transformations of the lattice struc-

ture. Applying the Hadamard compatibility condition, we found that the microstructure

forms when the lattice satisfies significant restrictions on the parameters.

The dissertation is organized as follows: in Chapter 2 we present the general scheme

of deriving continuum approximations to a discrete dynamic system for square lattice and

hexagonal lattice, and we derive explicit solitary wave solutions with respect to harmonic,

weakly nonlinear and Hertzian interactions. Moreover, we study the properties of soli-

tary waves and scaling laws by numerical simulations. In Chapter 3 we recall the gen-

eral scheme of Hashin-Shtrikman bounds (HS bounds) and their attainment conditions to

(N + 1)-phase isotropic conductive materials. We derive a necessary condition such that

HS bounds are attainable, and we derive a sufficient condition through constructing a new

type of optimal three-phase and four-phase coated spheres. Combining the necessary and

sufficient conditions of HS bounds, we present the Gθ -closure of multiphase conductive

composites. Chapter 4 we design and characterize the stress-induced phase transition of a

two-dimensional (2D) lattice structure. With the general deformation gradient, we derive

the four-phase of the unit cell by minimization of free energy. By extending the scheme to

2D lattice structure, we discuss the microstructure formed by two different types of load,

and numerically study the phase transformation of lattice structure under biaxial loading.

Finally, we conclude and present an outlook of possible applications in Chapter 5.
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Chapter 2

Solitary waves in two dimensional nonlinear lattices in the
continuum limit

2.1 Introduction

Generic granular materials can be described as densely packed discrete particles with vary-

ing shapes, sizes, and orientations. In fact, granular materials are ubiquitous in nature

and have broad applications ranging from man-made shock absorbers, bullet proof vests

[34, 51] to non-destructive structural testing [108], shock energy absorbing [91, 23], sound

scrambling [80, 22], and actuating devices [52]. Over the last several decades, considerable

efforts have been devoted to analyzing the wave propagations in ordered granular materi-

als (or granular crystals). However, many analytical works have been focused on one-

dimensional (1D) granular crystals, i.e., a chain of balls. As initiated by the seminal work

of Fermi-Pasta-Ulam (FPU), it has been found that 1D Hertzian granular crystals support

the formation and propagation of highly nonlinear solitary waves (HNSWs) [77]. Such

solitary waves have been experimentally validated [78, 90] and explored for a number of

novel applications, e.g., detecting orthopaedic implant stability [108], and monitoring the

hydration of cement [81]. It has also been found that heterogeneous chains robustly support

the formation and propagation of HNSWs, and the periodicity of the chain highly affect the

widths, propagation speed, and energy redistribution of the wave [42, 86]. The scalabil-

ity and tunability of HNSWs in granular crystals are ideal for studying the fundamental

physics of nonlinear system and promise novel designs of structures or devices that can

be used for high-throughput waveguides, vibration mitigation, and energy trapping among

many others.
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In contrast to granular chains, there are few studies focusing on two-dimensional (2D)

granular crystals. A particularly interesting question is whether there exist similar solitary

wave solutions in an ordered 2D lattice with nonlinear interaction potential [46, 28]. Ex-

perimentally, it has been found that the dynamic properties of square packing of spheres

are essentially one dimensional because of lack of shear resistance: an impulsive excitation

gives rise to a solitary wave traveling only in the initially excited direction [57]. However,

interesting dynamic properties of centered square packing of spheres and interstitial cylin-

ders are experimentally observed in [56], including controllable wavefronts and propaga-

tion speeds. Recently, the group investigated the dynamic responses of hexagonal packed

spheres and identified power laws between the propagation speed, propagation distance,

and wave amplitude [55]. These recent studies on 2D granular crystals have generated

considerable interest among the community and motivated the present study.

As shown in aforementioned works, propagating nonlinear waves in 2D granular crys-

tals preserve much of features of HNSWs in 1D chains. There is, however, few analyti-

cal calculations demonstrating the solitary wave solutions in higher dimensional granular

crystals, which significantly limits the engineering of such granular crystals. We are there-

fore motivated to systematically investigate the dynamic behaviors of 2D nonlinear lattice

models and in particular, the formation and propagation of solitary waves in 2D granu-

lar crystals. Another motivation lies in the suitable strain-gradient (possibly nonlinear)

for crystalline solids and complex granular media. It has been a widely accepted prac-

tice to understand the size-dependent elasticity and plasticity of solids by a strain-gradient

theory [30, 45, 2]. Upon specifying interaction potentials, it will be of interest to system-

atically coarse-grain the atomistic model to achieve a nonlinear strain-gradient continuum

model. Also, nonregular granular media such as desert dunes and pharmaceutical pills

have broad applications in industry. In the modeling of their mechanical behaviors, we

may question that, besides being consistent with thermodynamic constraints, are there any

other constraints on a physically reasonable nonlinear strain-gradient model as implied by

the underlying atomistic/discrete description?
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In pursuit of answers to the above questions, we begin with a general discrete model

for granular crystals, i.e., the classic spring-mass lattice connected by nonlinear springs.

To some extent, such a model has been extensively explored in the literature which is

too voluminous to recount here. Historically, the interest in the dynamics of nonlinear

lattice models was initiated by the seminal work of Fermi-Pasta-Ulam (FPU) for their quest

of time-scale to equipartition of energies after an initial excitation. For comprehensive

historical references, the reader is referred to recent review papers of [90], [51], and the

textbook of [24]. It turns out that similar technical problems appear in other scientific

areas including quantum field theory [102], nonlinear optics [16], and telecommunications

[62] among others. In the long wavelength limit, we coarse-grain the discrete microscopic

models with the Hamiltonian structure preserved [89]. Such an energy-based approach

has the advantage of obtaining the static and dynamic properties of the system in a unified

manner. For explicit calculations, we focus on a 2D hexagonal lattice with nontrivial shear

resistance and general nonlinear interaction potentials. Aiming at analytical solutions, we

pay close attention to approximating the discrete model in a systematic manner. For the

final continuum equations, we surprisingly find exact longitudinal solitary wave solutions

for systems with weakly nonlinear interactions and Hertzian interactions. Specifically, the

2D solitary wave has planar wavefront, is confined in the propagation direction but not the

other direction, and maintains its shape.

We also investigate the wave propagation properties in the 2D anharmonic lattices by

numerical solutions. Though the analytical solution is found for an infinite system in the

continuum limit, the numerical simulations can only be achieved for a finite system. To

eliminate the boundary effect, we assume a localized initial excitation at the center and

simulations are terminated once the wave reaches the boundary particles in the numeri-

cal model. Strictly speaking, the numerical solution we obtained has a circular wavefront

and decays as it propagates since the total energy has to be conserved, and hence does not

precisely mimic our analytic solution of the planar solitary wave. Nevertheless, if the ra-

dius of the numerical circular wavefront is large, we expect the dependence of the wave



9

propagation velocity on the wave amplitude in the numerical model well approximates the

analytical solutions. Moreover, the scaling laws regarding the propagation speed, propa-

gation distance and wave amplitude are explored by the numerical model which will be

valuable for designing shock and energy absorbing system and wave-tailoring and protec-

tive materials.

The paper is organized as follows. First, in Section 2.2 we present the general scheme

of deriving continuum approximations to a discrete dynamic system that preserves the

Hamiltonian structure for square lattice (§ 2.2.2) and hexagonal lattice (§ 2.2.3). In Sec-

tion 2.3 we present explicit wave solutions, in particular, solitary wave solutions, to the

coarse-grained continuum models with respect to harmonic, weakly nonlinear and Hertzian

interactions. In Section 4.3 we study the properties of solitary waves and scaling laws by

two different numerical methods: the fourth-order Runge-Kutta scheme and the explicit

Newmark scheme. Finally, we summarize and present an outlook of possible applications

in Section 4.4.

Notation. We employ direct notation for brevity if possible. Vectors are denoted by

bold symbols such as e,u, etc. When index notations are in use, the convention of summa-

tion over repeated index is followed. The inner (or dot) product of two vectors a,b ∈ R3 is

defined as 〈a,b〉 ≡ a ·b := (a)i(b)i whereas the inner (or dot) product between matrices A

and B of the same size is defined as A ·B := Tr(AT B) = (A)i j(B)i j. From the viewpoint

of matrices, the ith row vector of the gradient of a vector field, e.g., ∇u, is the gradient

of the ith component of u whereas the “div” operates on the row vectors of a matrix field.

Therefore, div∇u = ∆u and div[(∇u)T ] = ∇(divu). For a scaling parameter ε � 1, O(ε)

implies the asymptotic behavior O(ε)/ε→C 6= 0 as ε→ 0 whereas o(ε)/ε→ 0 as ε→ 0.
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2.2 Continuum approximations of 2D nonlinear lattices

2.2.1 Equations of motions of discrete systems

As shown in Fig. 2.1, we consider an infinite two-dimensional spring-mass system at the

reference Bravais lattice points:

xi j = ia1 + ja2 (i, j ∈ Z),

where a1,a2 ∈ R2 are lattice vectors. Let ui j(t) be the displacement of the mass point (i j)

Figure 2.1: Two dimensional square packing lattice.

with respect to its reference position ia1 + ja2 and ϕ : R→ R be the interaction potential

between nearest neighbors. Denote by N the set of indicial differences of the nearest

neighbors. For a square lattice, N = {(1,0),(0,1),(−1,0),(0,−1)}. As usual, we assume

that the interaction energy depends only on the change of distance, i.e., the interaction

energy between (i j)-mass point with (i+ k j+ l)-mass point is given by

ϕ(|yi+k j+l−yi j|− |xi+k j+l−xi j|)
(
(kl) ∈N

)
, (2.1)

where yi j = xi j+ui j is the current positions of the (i j)-lattice point. For small displacement

|ui j| � |ai|, a good approximation of the interaction potential energy (2.1) is given by

ϕ(|yi+k j+l−yi j|− |xi+k j+l−xi j|)≈ ϕ((ui+k j+l−ui j) · r̂kl),
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where rkl = xi+k j+l − xi j = ka1 + la2 and r̂kl = rkl/|rkl|. Therefore, the total potential

energy of the system is assumed as

V [ui j] =
1
2 ∑

i, j∈Z
∑

(kl)∈N
ϕ((ui+k j+l−ui j) · r̂kl). (2.2)

In addition, we assume that the reference lattice is a stable equilibrium in the sense that

∂V
∂ui j

= 0,
∂ 2V

∂ui j∂ui j
= K, (2.3)

where the derivatives are evaluated at ui j = 0 for all i, j ∈Z, and the 2×2 symmetric matrix

K is positive definite. Subsequently, we assume that

ϕ
′(0) = 0, ϕ

′′(0)> 0, (2.4)

which clearly guarantees the required constraints (2.3).

By definition, the Hamiltonian of the system can be written as

H[ui j] = T [ui j]+V [ui j], (2.5)

where T [ui j] = ∑i, j∈Z
1
2m|u̇i j|2 is the kinetic energy (m is mass). We are interested in the

dynamic and static behaviors of this 2D spring-mass lattice and in particular, if the system

sustains solitary waves when the interaction potential ϕ is nonlinear. By the Hamilton’s

principle or Newton’s Second Law, the equations of motions for the discrete system can be

written as (recall that rkl = ka1 + la2)

müi j = ∑
(kl)∈N

ϕ
′((ui+k j+l−ui j) · r̂kl)r̂kl. (2.6)

The above ordinary differential equations (ODE), though exactly describes the dynamics

of the system, are impractical for analytical solutions if the number of particles is large.

Nevertheless, the behaviors of propagating waves in the discrete system (2.6) can be well

described by a continuum theory in the long wavelength limit. To this end, we define the

continuum displacement φ(·, t) : R2→ R2 by interpolation such that

φ(xi,y j, t) = ui j(t), (xi = (ia1 + ja2) · ex, y j = (ia1 + ja2) · ey), (2.7)
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Also, we define the characteristic wavelength λ as 1/kmax with kmax being the wave number

that achieves the maximum of the spectrum density of |φ̂(k)|2, φ̂(k) =
∫
R2 φ(x)eik·xdx. Let

a∼ |ai| be the lengthscale of lattice spacing, u∼ |ui j| ∼ |φ | be the lengthscale of amplitude,

and c be the velocity of propagating wave. In the limit of long wavelength (i.e., a/λ � 1)

and small excitation (i.e., u/a� 1), we can approximate summations by integrals and

rewrite the kinetic energy of system as

T [φ ]≈ ∑
i, j∈Z

1
2

mφ
2
t (xi,y j) =

1
2

∫
R2

ρ|φ t |2dxdy, (2.8)

where ρ = m/|a1×a2| is the mass density (per unit area) of the continuum medium. Next,

we calculate the potential energy in terms of the continuum variable φ . There are two cases

that will be discussed separately.

2.2.2 Square lattice

For a square lattice, the lattice vectors a1 = aex, a2 = aey (a > 0 is the lattice spacing),

and the set N = {(1,0),(0,1),(−1,0),(0,−1)}. Our purpose here is to find an explicit

expression of the potential energy functional V [φ ]. To this end, it suffices to consider

displacements φ(x, t) that vanish if |x| is large enough. (In other words, φ is compactly

supported.)

Since a/λ � 1, by Taylor expansion and keeping terms up to O(a3) we obtain

ui+1 j−ui j = φ(xi+1,y j)−φ(xi,y j)

≈ a
∂

∂x
φ(xi,y j)+

a2

2
∂ 2

∂x2 φ(xi,y j)+
a3

6
∂ 3

∂x3 φ(xi,y j);

ui j+1−ui j = φ(xi,y j+1)−φ(xi,y j)

≈ a
∂

∂y
φ(xi,y j)+

a2

2
∂ 2

∂y2 φ(xi,y j)+
a3

6
∂ 3

∂y3 φ(xi,y j).

(2.9)

For brevity we write the x-component and y-component of the vector field φ as

ξ = φ · ex, ζ = φ · ey,
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respectively. Inserting (2.9) into (2.2) and converting the summation into an integral, we

obtain

V [ξ ,ζ ]≈
∫
R2

1
a2

[
ϕ(aξx +

a2

2
ξxx +

a3

6
ξxxx)+ϕ(aζy +

a2

2
ζyy +

a3

6
ζyyy)

]
dxdy

≈
∫
R2

1
a2

[
ϕ(aξx)+ϕ

′(aξx)(
a2

2
ξxx +

a3

6
ξxxx)+

1
2

ϕ
′′(aξx)(

a2

2
ξxx +

a3

6
ξxxx)

2

+ϕ(aζy)+ϕ
′(aζy)(

a2

2
ζyy +

a3

6
ζyyy)+

1
2

ϕ
′′(aζy)(

a2

2
ζyy +

a3

6
ζyyy)

2]dxdy,

(2.10)

where the second approximation follows from the Taylor expansion of ϕ . By the divergence

theorem and (2.4) we find that∫
R2

ϕ
′(ξx)ξxxdxdy =

∫
R2

ex ·∇[ϕ(ξx)]dxdy = 0,∫
R2

ϕ
′(ξx)ξxxxdxdy =

∫
R2

ex ·∇[ϕ ′(ξx)ξxx]dxdy−
∫
R2

ϕ
′′(ξx)(ξxx)

2dxdy.

Inserting the above equations and corresponding equations for ζ into (2.10), we obtain that

V [ξ ,ζ ] =
∫
R2

1
a2

[
ϕ(aξx)−

a4

24
ϕ
′′(aξx)(ξxx)

2 +ϕ(aζy)−
a4

24
ϕ
′′(aζy)(ζyy)

2]dxdy. (2.11)

Therefore, the action functional of the system is given by

S[ξ ,ζ ] =
∫

∞

0
T [ξ ,ζ ]−V [ξ ,ζ ]dt =

∫
∞

0

∫
R2

{1
2

ρ(ξ 2
t +ζ

2
t )

− 1
a2

[
ϕ(aξx)−

a4

24
ϕ
′′(aξx)(ξxx)

2 +ϕ(aζy)−
a4

24
ϕ
′′(aζy)(ζyy)

2]}dxdydt.

According to the Hamilton’s Principle, the actual motion of the system shall be a stationary

state of the action functional, satisfying that for all admissible perturbation of the system

φ 1,

d
dδ

S[φ +δφ 1]
∣∣∣
δ=0

= 0 ∀ φ 1.

By the standard first-variation calculation, we find the associated Euler-Lagrange general

equation for the system:
ξtt−

1
aρ

d
dx
{ϕ ′(aξx)+

a4

24
ϕ
′′′(aξx)ξ

2
xx +

a3

12
ϕ
′′(aξx)ξxxx}= 0,

ζtt−
1

aρ

d
dy

{
ϕ
′(aζy)+

a4

24
ϕ
′′′(aζy)ζ

2
yy +

a3

12
ϕ
′′(aζy)ζyyy

}
= 0.

(2.12)

From the above equation, we observe that the motions in two directions are decoupled

because of lack of shear resistance in a square lattice. Therefore, the system behaves exactly

like a 1D system as discussed in [78].
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2.2.3 Hexagonal lattice

Figure 2.2: Two dimensional hexagonal packing lattice.

The static and dynamic properties of hexagonal lattices are fundamentally different

from square lattices due to their nontrivial shear resistance. As shown in Fig. 2.2, let

f1 = ex, f2 =
1
2

ex +

√
3

2
ey

be the lattice vectors and consider a 2D hexagonal crystal with lattice points given by

xi j = a(if1 + jf2) (i, j ∈ Z).

Each lattice point at xi j has six nearest neighbors xi+k j+l with

(kl) ∈N := {(1,−1),(1,0),(0,1),−(1,−1),−(1,0),−(0,1)},

and in particular three nearest neighbor on its right with xi+k j+l = xi j + rkl:

rkl = kf1 + lf2 =


f1 if (kl) = (1,0),

f2 if (kl) = (0,1),

f3 := f1− f2 if (kl) = (1,−1).

To compute the potential energy of the hexagonal lattice in the long wavelength limit

as in (2.10), we introduce notation (see Section 2.6 for detailed expressions for m = 1,2)

Λ
m
α = 〈Dm

φ , fα ⊗·· ·⊗ fα︸ ︷︷ ︸
m+1

〉 ≡ (φ)i1,i2···im+1(fα)i1(fα)i2 · · ·(fα)im+1. (2.13)
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Then by Taylor expansion we have

(ui+k j+l−ui j) · r̂kl = aΛ
1
α +

a2

2
Λ

2
α +

a3

6
Λ

3
α +o(a3),

where α = 1 (resp. 2, 3) if (kl) = (1,0) (resp. (0,1), (1,−1)). Therefore,

∑
(kl)∈N

ϕ((ui+k j+l−ui j) · r̂kl)≈
3

∑
α=1

ϕ(aΛ
1
α +

a2

2
Λ

2
α +

a3

6
Λ

3
α). (2.14)

Inserting the above equations into (2.2) and converting the summation into integral, we

obtain

V [φ ]≈ 1
2 ∑

i, j∈Z

3

∑
α=1

ϕ(aΛ
1
α +

a2

2
Λ

2
α +

a3

6
Λ

3
α)≈

1
Ac

∫
R2

3

∑
α=1

ϕ(aΛ
1
α +

a2

2
Λ

2
α +

a3

6
Λ

3
α)dxdy

≈ 1
Ac

∫
R2

3

∑
α=1

[ϕ(aΛ
1
α)+ϕ

′(aΛ
1
α)(

a2

2
Λ

2
α +

a3

6
Λ

3
α)+

1
2

ϕ
′′(aΛ

1
α)(

a2

2
Λ

2
α +

a3

6
Λ

3
α)

2]dxdy,

where Ac =
√

3
4 a2 is the unit cell area. By the divergence theorem we find that∫

S
ϕ
′(aΛ

1
α)Λ

2
αdxdy =

∫
S

fα ·∇[ϕ(aΛ
1
α)]dxdy = 0∫

S
ϕ
′(aΛ

1
α)Λ

3
αdxdy =

∫
S

fα ·∇[ϕ ′(aΛ
2
α)]dxdy−

∫
S

ϕ
′′(aΛ

1
α)(Λ

2
α)

2dxdy.

Therefore, the potential energy can be rewritten as

V [φ ] =
1
Ac

∫
S

3

∑
α=1

[ϕ(aΛ
1
α)−

1
24

ϕ
′′(aΛ

1
α)(a

2
Λ

2
α)

2]dxdy. (2.15)

Again, we denote the x and y-components of φ by

ξ = φ · ex, ζ = φ · ey.

Then the action functional of the system is given by

S[ξ ,ζ ] =
∫

∞

0
T [ξ ,ζ ]−V [ξ ,ζ ]dt

=
∫

∞

0

∫
S

1
2

ρ(ξ 2
t +ζ

2
t )−

1
Ac

3

∑
α=1

[ϕ(aΛ
1
α)−

1
24

ϕ
′′(aΛ

1
α)(a

2
Λ

2
α)

2]dxdydt.
(2.16)

According to the Hamilton’s Principle, the equation of motion is determined by

d
dδ

S[φ +δφ 1]|δ=0 = 0 ∀ φ 1,
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where φ 1 = (ξ1,ζ1) is an admissible perturbation. By the standard first variation calcula-

tion, we obtain the associated Euler-Lagrange equations as
ρξtt +div[τx(φ)]−∇∇ · [Σx(φ)] = 0,

ρζtt +div[τy(φ)]−∇∇ · [Σy(φ)] = 0,
(2.17)

where, for brevity, we introduce notation:

τx(φ) =
3

∑
α=1

[−1
a

ϕ
′(aΛ

1
α)+

a3

24
ϕ
′′′(aΛ

1
α)(Λ

2
α)

2]`xα ,

τy(φ) =
3

∑
α=1

[−1
a

ϕ
′(aΛ

1
α)+

a3

24
ϕ
′′′(aΛ

1
α)(Λ

2
α)

2]`yα ,

Σx(φ) =
3

∑
α=1

[
a2

12
ϕ
′′(aΛ

1
α)(Λ

2
α)Mxα ],

Σy(φ) =
3

∑
α=1

[
a2

12
ϕ
′′(aΛ

1
α)(Λ

2
α)Myα ],

and vectors `xα , `yα ∈ R2 and symmetric matrices Mxα ,Myα ∈ R2×2 are such that

Λ
1
α = `xα ·∇ξ + `yα ·∇ζ ,

Λ
2
α = Mxα ·∇∇ξ +Myα ·∇∇ζ .

(2.18)

We remark that the vectors `xα , `yα ∈ R2 and matrices Mxα ,Myα ∈ R2×2 depend on geo-

metric properties of the hexagonal lattice and are explicitly calculated in the Section 2.6.

2.3 Explicit solutions to hexagonal lattice

2.3.1 Harmonic interaction

For the harmonic interaction potential ϕ(x) = 1
2Kx2, by (2.15) we find the potential energy:

V [φ ] =
∫
S
[Q(∇φ)−a2

Γ(∇∇φ)], (2.19)

where Q : R2×2→ R and Γ : R2×2×2→ R are quadratic forms given by

Q(∇φ) :=
K
2

3

∑
α=1

(Λ1
α)

2 =
3K
16

[
|∇φ |2 +Tr(∇φ)2 +(Tr∇φ)2

]
(2.20)
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and

Γ(∇∇φ) :=
K
24

3

∑
α=1

(Λ2
α)

2 =
K
24

[33
32

ξ
2
xx +

3
16

ξxxξyy +
3
8

ξ
2
xy +

9
32

ξ
2
yy

+
3

32
ζ

2
xx +

9
8

ζ
2
xy +

27
32

ζ
2
yy +

9
16

ζxxζyy

+
3
8

ξxxζxy +
3
8

ξxyζxx +
9
8

ξxyζyy +
9
8

ξyyζxy

]
,

(2.21)

respectively. From the above quadratic forms, we identify two tensors: the forth-order

stiffness tensor C : R2×2→ R2×2

(C)piq j =
3
8

K
[
(δpqδi j +δp jδiq)+

3
8

δpiδq j

]
, (2.22)

and the sixth-order dispersion tensor D : R2×2×2→ R2×2×2 such that (cf., (2.52))

1
2

∇∇φ ·D∇∇φ = Γ(∇∇φ). (2.23)

Therefore, the potential energy (2.19) can be rewritten as

V [φ ] =
∫
S

[ 1
2

∇φ ·C∇φ − 1
2

a2
∇∇φ ·D∇∇φ

]
, (2.24)

and we rewrite the general equation of motion (2.17) as

ρφ tt = div(C∇φ)+a2
∇∇ ·D∇∇φ . (2.25)

To find the dispersion relation, we consider a trial plane wave solution of the form [1]:

φ(x, t) = φ 0ei(k·x−ωt),

where φ 0 ∈C 2 is some nonzero complex vector, k ∈ R2 is the wave vector, and ω > 0 is

the frequency. Inserting the above trial solution into (2.25), we obtain the secular equation

for determining the dispersion relation as follows:

[(C)piq jkik j−a2(D)pi jqlmkik jklkm−ρω
2
δpq](φ 0)q = 0. (2.26)

For plane waves propagating along the x-direction with k = (k1,0), by (2.22) and (2.23) we

rewrite (2.26) in a matrix form (c2 = K/ρ):9
8c2k2

1−
11

128c2a2k4
1−ω2 0

0 3
8c2k2

1−
1

128c2a2k4
1−ω2

φ 0 = 0.
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Immediately, we find two nontrivial solutions:
ω1 = c

√
9
8k2

1−
11
128a2k4

1, φ 0 = (1,0),

ω2 = c
√

3
8k2

1−
1

128a2k4
1 φ 0 = (0,1).

(2.27)

The former of the above solution corresponds to the longitudinal wave with dispersion

relation v1 := ω1/k1 = c
√

9
8 −

11
128a2k2

1 whereas the latter describes the shear wave with

dispersion relation v2 := ω2/k1 = c
√

3
8 −

1
128a2k2

1. Incidentally, we find that if ak1 � 1,

we have v1 ≈ 3c
2
√

2
and v2 ≈ c

2

√
3
2 . Moreover, due to the six-fold symmetry, we conclude

that similar longitudinal and shear wave solutions can be found for propagating directions

k̂ =±f1,±f2,±f3.

2.3.2 Weakly nonlinear interaction

We now consider a weakly nonlinear potential energy ϕ = 1
2Kx2 + 1

3κx3.By (2.15) and

(2.18) we find that the potential energy is given by

V [φ ] =
1
2

K∇φ ·C∇φ − 1
2

Ka2
∇∇φ ·D∇∇φ +

κa
3

3

∑
α=1

(`xα ·∇ξ + `yα ·∇ζ )3, (2.28)

and the equation of motion (2.17) can be written as

ρφ tt =div(C∇φ)+a2
∇∇ ·D∇∇φ

+2aκ

∑
3
α=1(`xα ·∇ξ + `yα ·∇ζ )(`xα ⊗ `xα ·∇∇ξ + `xα ⊗ `yα ·∇∇ζ )

∑
3
α=1(`xα ·∇ξ + `yα ·∇ζ )(`yα ⊗ `xα ·∇∇ξ + `yα ⊗ `yα ·∇∇ζ )

 . (2.29)

To find a traveling wave solution to (2.29), we consider a trial solution of the form:

φ(x, t) = [ξ̂ (s),0], s = x−Vgt, (2.30)

where Vg > 0 is the (longitudinal) wave speed. Inserting (2.30) into (2.29)1 we obtain

V 2
g ρξ̂ss =

9
8

Kξ̂ss +
11

128
Ka2

ξ̂ssss +
33
16

κaξ̂sξ̂ss.

We also verify that the second of (2.29) is trivially satisfied by (2.30). Further, the above

equation can be rewritten as

[(V 2
g ρ− 9

8
K)ξ̂s−

11
128

Ka2
ξ̂sss−

33
32

κa(ξ̂ 2
s )]s = 0,
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implying that for some constant c1,

(V 2
g ρ− 9

8
K)ξ̂s−

11
128

Ka2
ξ̂sss−

33
32

κaξ̂
2
s = c1.

Setting w = ξ̂s and multiplying ws on both sides, we obtain

d
ds

[1
2
(V 2

g ρ− 9
8

K)w2− 11
256

Ka2(ws)
2− 11

32
κaw3− c1w

]
= 0.

Let η =
√

4κ

Kas and β = 64
11κa(

1
2V 2

g ρ− 9
16K). The above equation is equivalent to

d
dη

[
(wη)

2−βw2 +2w3− c′1w
]
= 0,

and hence for some integration constant c2,

w2
η −βw2 +2w3 = c′1w+ c2. (2.31)

By definition, a solitary wave requires that w,ws,wss→ 0 as x→ ∞, implying that c1 = 0,

c′1 = 0 and c2 = 0. Therefore, (2.31) can be rewritten as

dη =
dw√

βw2−2w3
,

and upon integration, yields

w(η) =
β

2
sech2(

√
β

2
η). (2.32)

It is clear that (2.32) represents a solitary wave solution to (2.29). In terms of strain ξ̂s(s)

and particle velocity v(s) = d
dt ξ̂ (s) (s = x−Vgt), the solitary wave solution (2.32) can be

rewritten as

ξ̂s(s) =
β

2
sech2(

√
β

2

√
4κ

Ka
s), v(s) =−Vg

β

2
sech2(

√
β

2

√
4κ

Ka
s). (2.33)

2.3.3 Hertzian interactions

For granular crystals with Hertzian interaction, the potential energy is given by ϕ = 2
5K|x| 52 .

By (2.15) and (2.18) we find the potential energy

V [φ ] =
2
5

Ka
1
2

3

∑
α=1

(`xα ·∇ξ + `yα ·∇ζ )
5
2

− 1
16

Ka
5
2

3

∑
α=1

(`xα ·∇ξ + `yα ·∇ζ )
1
2

3

∑
α=1

(Mxα ·∇∇ξ +Myα ·∇∇ζ )2.

(2.34)
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Then the equation of motion (2.17) can be written as (see Section 2.6 for explicit expres-

sions of vectors `xα , `yα and matrices Mxα , Myα )

ρξtt +K
3

∑
α=1

{
`xα ·∇

[
−a

1
2 (`xα ·∇ξ + `yα ·∇ζ )

3
2

+
a

5
2

32
(`xα ·∇ξ + `yα ·∇ζ )−

1
2 (Mxα ·∇∇ξ +Myα ·∇∇ζ )2

]
− a

5
2

8
Mxα ·∇∇

[
(`xα ·∇ξ + `yα ·∇ζ )

1
2 (Mxα ·∇∇ξ +Myα ·∇∇ζ )

]}
= 0,

(2.35)

ρζtt +K
3

∑
α=1

{
`yα ·∇

[
−a

1
2 (`xα ·∇ξ + `yα ·∇ζ )

3
2

+
a

5
2

32
(`xα ·∇ξ + `yα ·∇ζ )−

1
2 (Mxα ·∇∇ξ +Myα ·∇∇ζ )2

]
− a

5
2

8
Myα ·∇∇

[
(`xα ·∇ξ + `yα ·∇ζ )

1
2 (Mxα ·∇∇ξ +Myα ·∇∇ζ )

]}
= 0.

(2.36)

For a traveling wave solution, we again consider a trial solution of the form (2.30). By

(2.35) we obtain

ρ

K
V 2

g ξ̂ss−
51
32

a
1
2 (−ξ̂s)

1
2 ξ̂ss +

33
1024

a
5
2 (−ξ̂s)

− 3
2 ξ̂

3
ss

+
33

128
a

5
2 (−ξ̂s)

− 1
2 ξ̂ssξ̂sss−

33
128

a
5
2 (−ξ̂s)

1
2 ξ̂ssss = 0.

Also, equation (2.36) is automatically satisfied due to symmetries of `xα , `yα , Mxα and

Myα . Setting p =−ξ̂s ≥ 0 we rewrite the above equation as

V 2
g ps− c2[

17
16

p
3
2 +

33
160

a2 p
1
4 (p

5
4 )ss]s = 0, (2.37)

where c2 = K
ρ

a
1
2 . Upon a change of variable p→ z

4
5 and integration, we obtain that for

some constant c6,

V 2
g z

4
5 = c2[

17
16

z
6
5 +

33
160

a2z
1
5 zss]+ c6.

Further, setting z = (
4Vg√
17c

)5y and s =
√

33
170aη , we write the above equation into a dimen-

sionless form as

y
4
5 = y

6
5 + y

1
5 yηη + c7 ⇐⇒ yηη =− ∂

∂y
N(y), (2.38)
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where (c7,c8 are constants)

N(y) =−5
8

y
8
5 +

1
2

y2 + c8y
4
5 . (2.39)

The particular form of (2.38) prompts the analogy with particle motion in a potential (N(y))

with η being the “time” and y being the “coordinate” [54]. If c8 = 0, it is not hard to check

that y(η) = (4/5)−5/2 cos5(η/5) satisfies (2.38) with c7 = 0. In other words,

ξ̂s(s) =−(
20V 2

g

17c2 )
2 cos4(

√
170

5a
√

33
s), (2.40)

satisfies (2.37). However, the above solution represents a periodic traveling wave solution

instead of a soliton. As argued in [77], problem (2.38) does admit a solitary wave solution

if 0 < c8 < 5/27, which can be implicitly represented as

η = η0 +
∫ y

y0

dy√
−2[N(y)−N(ymax)]

, (2.41)

where ymax is related to the maximum strain of the solitary wave. However, since the

hexagonal lattice is initially uncompressed (or very weakly compressed), we shall pre-

scribe 0 < c8� 1. Then the propagating wave is expected to remain as a solitary wave (as

represented by (2.41)) whose profile is well approximated by one “hump” of the periodic

wave (2.42) with particle velocity v(s) =−Vgξ̂s given by one “hump” of

v(s) =Vg(
20V 2

g

17c2 )
2 cos4(

√
170

5a
√

33
s). (2.42)

2.4 Numerical results

It is enlightening to numerically simulate the dynamic responses of a hexagonal lattice of

size 100× 100. As shown in Fig. 2.3, the initial condition of the system is prescribed

as that the six spheres around the center sphere ( i, j = 50) have a velocity v0 = 0.5m/s

with the direction along with f1, f2, f3 and −f1,−f2,−f3, respectively. We employ both the

fourth-order Runge-Kutta and explicit Newmark method to solve the discrete equations of

motion:

mv̇i, j = ϕ
′|2af1 +ui−1, j−ui, j|−ϕ

′|2af1 +ui, j−ui+1, j|+ϕ
′|2af2 +ui, j−1−ui, j|

−ϕ
′|2af2 +ui, j−ui, j+1|+ϕ

′|2af3 +ui−1, j+1−ui, j|−ϕ
′|2af3 +ui, j−ui+1, j−1|.

(2.43)
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Figure 2.3: Initial particle velocity in the lattice

where v,u is the velocity and displacement of the sphere, respectively (see Appendix A for

detailed code) .

We show typical wave velocity profiles of the system with harmonic interactions in

Fig. 2.4(a)-(c) and that with weakly nonlinear interactions in Fig. 2.4(d)-(f), respectively.

The harmonic potential is chosen as ϕ(x) = K|x|2
2 with K = πaE

4 = 3.6× 107N/m, a =

4.76mm, and mass m = 4.4× 10−4kg, whereas the weakly nonlinear potential is given by

ϕ(x) = K|x|2
2 + κ|x|3

3 with the same K and κ = 9×1011N/m2. Since we are only interested

in the properties of propagating waves, the simulation is terminated once the wavefront

reaches the boundary spheres in the system. Numerically, the wavefront velocity ampli-

tude (Vp) is identified as the maximum particle velocity and the wavefront is defined as the

surface on which the particle velocity achieves the maximum. The wave propagation speed

(Vg) is defined as the propagation speed of wavefront (i.e., group velocity). In the systems

with both harmonic and weakly nonlinear interactions, we see that propagating waves are

generated in response to the initial impulse. As shown in Fig. 2.4, the wavefront roughly

remains to be circular and the velocity amplitude decreases as the wave propagates away

from the center. Also, as illustrated in Fig. 2.4 and Fig. 2.5 it is found that the interior parti-

cles have relatively large velocity which is unphysical since the energy of the system should

be conserved. This issue arises from the accumulation of numerical errors in the iterations
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Figure 2.4: (Color online) Numerical simulations of wave formation and propagation in
a hexagonal lattice with harmonic and weakly nonlinear interactions: velocity profile in
a harmonic lattice (K = 3.6× 107N/m) at (a) t = 40µs, (b) t = 60µs, and (c) t = 80µs;
velocity profile in a weakly nonlinear lattice (K = 3.6×107N/m, κ = 9×1011N/m2) at (d)
t = 40µs, (e) t = 60µs, (f) t = 80µs. The colorbar indicates particle velocity magnitude in
m/s.)

against discretized time steps. Nevertheless, the properties of the outermost wavefront can

be confidentially obtained as evident in the comparisons with analytical results for a har-

monic lattice (c.f., Fig. 2.6(a)-2.7(a)).

We next consider strongly nonlinear lattices with Hertzian potential ϕ(x) = 2K|x|
5
2

5 ,

where K = 2E
1−ν2

√a
2 . We remark that this particular K value corresponds to 2D gran-

ular crystals formed by stainless steel spheres of diameter a = 4.76mm, densities ρ =

7780kg/m3, Young’s modulus E = 193GPa, and Poisson ratio ν = 0.3. Figure 2.5(a)-

(f) show the formation and propagation of a wavefront. In response to the initial impulse,

the wave spatially spread about 4 sphere diameters and propagates in the direction normal

to the wavefront. We also observe that the wavefront preserves the shape of hexagonal in a

short period of time, and becomes smoother and more circular as time increases.

To have a better understanding of properties of the propagating waves, in Fig. 2.6(a),

(b), and (c) we plot the velocity amplitude versus the wavefront position of harmonic,
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Figure 2.5: (Color online) Numerical simulations of soliton formation and propagation
in a hexagonal lattice with the Hertzian interaction: velocity profiles at (a) t = 2µs, (b)
t = 20µs, (c) t = 40µs, (d) t = 80µs, (e) t = 120µs, and (f) t = 160µs. The colorbar
indicates particle velocity magnitude in m/s.

weakly nonlinear, and Hertzian interactions, respectively. In an ideal harmonic lattice,

the kinetic energy of a propagating wave equals to the potential energy and remains to be

constant, implying that

1
2

mV 2
p

2πR
2a
∼ const. ⇒ Vp ∝ R−1/2. (2.44)

Also, the propagation speed Vg shall be constant, independent of position and wavefront

velocity amplitude. Indeed, we find these expected behaviors in our numerical simulations

as shown in Fig. 2.6(a) and Fig. 2.7(a). The agreement between numerical results and

theoretical results for the harmonic lattice, to some extent, validates our numerical schemes

in capturing the properties of propagating wavefronts in spite of some numerical artifacts

near the center. For weakly nonlinear and Hertzian lattices, there is no simple argument to

show the scaling law analogous to (2.44). Numerically, we find that the wavefront velocity

amplitudes still depend on propagation distance according to power laws: Vp ∝ R−1/1.9

for weakly nonlinear interaction (Fig. 2.6(b)) and Vp ∝ R−1/2.4 for Hertzian interaction

(Fig. 2.6(c)).



25

Figure 2.6: (Color online)The log-log plot of the maximum particle velocity (or wave-
front velocity amplitude) versus wavefront position: (a) harmonic interaction, (b) weakly
nonlinear interaction, and (c) Hertzian interaction.

Figure 2.7: (Color online) The log-log plot of the propagation velocity versus the max-
imum particle velocity (or wavefront velocity amplitude): (a) harmonic interaction, (b)
weakly nonlinear interaction, and (c) Hertzian interaction.

Figure 2.7(a), (b) and (c) show the propagation speed versus the wavefront velocity am-

plitude for systems with harmonic, weakly nonlinear, and Hertzian interaction, respectively.

For a harmonic lattice, the propagation velocity is clearly independent of the wavefront ve-

locity amplitude and consistent with the theoretical prediction (2.27):

Vg ∝ V 0
p . (2.45)

For a weakly nonlinear lattice, the propagation velocity depends on the wavefront velocity

as shown in Fig. 2.7(b). Incidentally, we notice that the dependence agrees well with (2.33):

Vp ∝
16ρ

11κa
V 3

g −
18K
11κa

Vg, (2.46)

which is obtained for 2D planar solitary waves. The agreement is particularly well when Vp

is small or R(t) is large. This is consistent with the intuition that circular wavefronts better

approximate a planar wavefront if the radius of the circular wavefront is large. Finally, for
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a Hertzian lattice we plot the simulated propagation velocity versus the wavefront velocity

in Fig. 2.7(c). Again, we compare the numerical result with the analytic prediction (2.42):

Vg ∝ V
1
5

p . (2.47)

The agreement seems to be reasonable in spite of the fact that the wavefront in numerics

is circular while the wavefront in analysis is planar. We also highlight that the scaling

laws (2.45)-(2.47) are obtained in a single simulation instead of multiple simulations with

different initial velocity. Similar simulations have been performed for different initial ve-

locity v0 = 0.2,0.4m/s. The relations between the group velocity Vg and velocity wave

amplitude Vp extracted from these simulations are consistent with the theoretical results as

illustrated by Fig. 2.7 with similar trends (in a different regime of Vp).

2.5 Conclusion

The present work has focused on dynamic responses of a two-dimensional lattice with har-

monic, weakly nonlinear, and Hertzian interactions by analytical and numerical approach.

In the theoretical analysis, we have systematically derived the continuum approximations

to the discrete system in a square lattice and in a hexagonal lattice. For the hexagonal lat-

tice, we surprisingly find some nontrivial exact longitudinal solitary wave solutions along

certain symmetric directions for systems with weakly nonlinear and Hertzian interactions.

By numerical simulations, we have studied the properties of propagating waves and found

the scaling laws between the wavefront velocity amplitudes and propagation distance:

Vp ∝ R−1/1.9 for a weakly nonlinear lattice and Vp ∝ R−1/2.4 for a Hertzian lattice. The

closed-form solitary wave solutions and scaling laws are expected to be valuable for the

design of shock absorbers, acoustic lens, non-destructive structural testing devices among

many others.
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2.6 Appendix : calculations of relevant tensors of hexagonal lattices

From the definition (2.13), we find that

Λ
1
1 = 〈Dφ , f1⊗ f1〉=

∂φ

∂x
· f1 =

∂ξ

∂x
,

Λ
1
2 = 〈Dφ , f2⊗ f2〉= [

1
2

∂φ

∂x
+

√
3

2
∂φ

∂y
] · f2

=
1
4

∂ξ

∂x
+

√
3

4
∂ξ

∂y
+

√
3

4
∂ζ

∂x
+

3
4

∂ζ

∂y
,

Λ
1
3 = 〈Dφ , f3⊗ f3〉= [

1
2

∂φ

∂x
−
√

3
2

∂φ

∂y
] · f3

=
1
4

∂ξ

∂x
−
√

3
4

∂ξ

∂y
−
√

3
4

∂ζ

∂x
+

3
4

∂ζ

∂y
.

(2.48)

In addition, direct but tedious calculations yield that

Λ
2
1 = 〈D2

φ , f1⊗ f1⊗ f1〉=
∂ 2φ

∂x2 · f1 =
∂ 2ξ

∂x2 ,

Λ
2
2 =

1
8

∂ 2ξ

∂x2 +

√
3

4
∂ 2ξ

∂x∂y
+

3
8

∂ 2ξ

∂y2 +

√
3

8
∂ 2ζ

∂x2 +
3
4

∂ 2ζ

∂x∂y
+

3
√

3
8

∂ 2ζ

∂y2 ,

Λ
2
3 =

1
8

∂ 2ξ

∂x2 −
√

3
4

∂ 2ξ

∂x∂y
+

3
8

∂ 2ξ

∂y2 −
√

3
8

∂ 2ζ

∂x2 +
3
4

∂ 2ζ

∂x∂y
− 3
√

3
8

∂ 2ζ

∂y2 .

(2.49)

From (2.48), (2.49) and (2.18), we identify the vectors `xα , `yα and symmetric matrices

Mxα ,Myα explicitly as

lx1 =
[

1 0
]
, lx2 =

[
1
4

√
3

4

]
, lx3 =

[
1
4 −

√
3

4

]
,

ly1 =
[

0 1
]
, ly2 =

[ √
3

4
3
4

]
, ly3 =

[
−
√

3
4

3
4

]
,

(2.50)

and

Mx1 =

 1 0

0 0

 , Mx2 =

 1
8

√
3

8
√

3
8

3
8

 , Mx3 =

 1
8 −

√
3

8

−
√

3
8

3
8

 ,
My1 =

 0 0

0 1

 , My2 =

 √
3

8
3
8

3
8

3
√

3
8

 , My3 =

 −√3
8

3
8

3
8 −3

√
3

8

 ,
(2.51)
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respectively. Further, from the definition (2.21) we identify the six-order tensor D by the

following quadratic form:

Γ(∇∇φ) =
1
2

∇∇φ ·D∇∇φ =
K
24

3

∑
α=1

(Λ2
α)

2

=
K
24



ξxx

ξyy

ξxy

ζxx

ζyy

ζxy



T

 D1 D2

DT
2 D3





ξxx

ξyy

ξxy

ζxx

ζyy

ζxy


,

(2.52)

where

D1 =


33
32

3
32 0

3
32

9
32 0

0 0 12
32

 , D2 =


0 0 6

32

0 0 18
32

6
32

18
32 0

 , D3 =


3
32

9
32 0

9
32

27
32 0

0 0 36
32

 .
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Chapter 3

New classes of extremal microstructures and Gθ -closure
for isotropic multiphase conductive composites

3.1 Introduction

Composite material have attract tremendous attention due to their advanced properties in

recent years. The continuous expansion of composite materials in many fields show the

great need for developing a methodology to determine their effective properties. However,

characterizing the effective properties of a composite is not easy, the effective properties

requires solutions to partial differential equations which are generally impractical for re-

alistic microstructures. Since the seminal works of [105, 87, 41, 38, 39], much of the

attention in this area has focused on the study of optimal bounds on the effective proper-

ties with or without constraint on the volume fractions of the constituent phases. Among

them, one of the most celebrated results in the theory of composite is Hashin–Shtrikman

bounds (HS bounds) [38, 39]. Hashin et al. derived the bounds by variational principles

and indicated the bounds were attainable for all two-phase bulk modulus by applying the

bounds on the effective elastic moduli of isotropic composites [37]. Walpole extended the

HS bounds to the arbitrarily anisotropic composite utilizing a similar variational method

[107]. HS bounds restrict the effective properties in a range, that is, there exist compos-

ite with optimal properties when the HS bounds are attainable. In order to analyze the

optimality of the HS bounds, the following groups constructed diverse microstructures.

Hashin constructed the first microstructure by a composite spheres model, which attained

the optimal bulk modulus bounds [36]. Milton proposed composites comprised of coated

ellipsoids and illustrated the attainability of HS bounds [68]. The following group proved
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that all the properties allowed by the optimal bounds are attainable by proposing finite

rank laminates [63, 82, 69, 27]. Moreover, Vigdergauz constructed a new square symmet-

ric composites(“Vigdergauz microstructures”) to attain the HS bounds [33, 104]. All the

above microstructures can achieve the optimal properties in two phase composites. How-

ever, the HS bound are not always be optimal for more than two phase composite based

on the volume fraction and constituent phases [68]. Therefore, more work is needed to

understand the attainment condition of the HS bounds and improve the HS bounds for the

multiphase composites.

In order to explore the optimal property of multiphase composite, considerable efforts

have been devoted to constructing new microstructures and identifying the attainment con-

dition of HS bounds. Milton first suggested a three material microstructure, which was

comprised of two kinds of Hashin–Shtrikman coated sphere [68], and indicated that HS

bounds were the most restrictive bounds within the constraint. Sigmund et al. proposed

several new design of materials with extremal elastic properties using a numerical topology

optimization approach [93, 94, 95, 92]. Although many attempts have been made to find

the optimal microstructure, there is still a lack of a systematic approach to construct such

structure. For two-dimension multiphase composites, the attainable regimes of HS bounds

was restricted, so an improved bounds (translation bounds) was introduced to reproduce the

HS bounds for multiphase conducting composites [100, 76, 5]. Albin et al. expanded the at-

tainable region of the translation bound and introduced a general algorithm for constructing

the structures of three components in two dimension, they investigated the sufficient con-

ditions of the attainability of HS bounds by multi-rank laminates [3]. To further identify

the attainment condition of HS bounds, Gibiansky and Sigmund [31] described sufficient

conditions of the HS bounds attainability by combinations of coated sphere and laminates

for three-phase composites. Liu presented a novel derivation of the Hashin-Shtrikman (HS)

bounds for multi-phase composites and the associated attainment condition [59]. Cherkaev

found an explicit form of bounds for effective conductivity for three-phase isotropic and

anisotropic composites and extend to the exact lower bound on the effective elastic energy
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of two-dimensional three-material composite [18, 20, 19]. Although plenty of works ad-

dress the attainability of HS bounds for multiphase composite, there still lack systematic

method to characterize all the attainable regimes. In the construction of multiphase com-

posites, we may question that, besides coated spheres[36], coated ellipsoids[68], finite-rank

laminates[63, 82, 69, 27], and “Vigdergauz microstructures”[104], are there any other mi-

crostructure with optimal properties can attain the HS bounds ?

In pursuit of answers to the above questions, we follow the usual approach of finding

optimal bounds as the following steps: first we present a necessary condition for the HS

bounds attainability of multiphase composites in the constraint of volume fractions of the

constituent phases. Addressed by using a null lagrangian, the necessary condition gives

new restrictions on the attainability of HS bounds. Further, we construct a new optimal

three-phase coated sphere: the core sphere occupied by one-phase and the external coating

occupied by two-phase periodic E-inclusion[61], which is the mathematically natural gen-

eralization of an ellipsoid. We demonstrate the optimality of the microstructure by applying

local electrical fields and present the sufficient condition of HS bounds attainment in terms

of volume fractions of the constituent phases, our attainability condition recover the results

of Albin et al. [3]. We extend the optimal microstructure to a four-phase coated sphere

and demonstrate the optimal conductivity of both lower bounds and upper bounds, and

generalize the optimal coated sphere to a larger number phases. Moreover, we construct

a new optimal microstructure by combining the three-phase coated sphere with two-phase

periodic E-inclusion. By assuming each constituent part is optimal with Mce = McHS, we

systematically derive the sufficient condition for the attainability of HS bounds. Combining

the necessary and sufficient condition of HS bounds attainability, we precisely illustrate the

G-closure, which characterize the effective tensors with given material in prescribed vol-

ume fractions. Specialized to three-phase composites, the G-closure is described in closed

form since the necessary condition and the sufficient condition are coincide. For four-phase

composites, the G-closure labeled “attainable” is filled by both the new optimal microstruc-

tures and the four-phase coated sphere.
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The paper is organized as follows. First, in Section 3.2 we recall the general scheme

of Hashin-Shtrikman bounds and their attainment conditions to (N + 1)-phase isotropic

conductive materials. In Section 3.3 we derive a necessary condition such that Hashin-

Shtrikman bounds are attainable. In Section 3.4 we present a new type of optimal three-

phase and four-phase coated spheres in detail and extend the optimal microstructure to N

phases. in Section 3.5 we construct a new optimal microstructure comprised of three-phase

coated spheres and two-phase periodic E-inclusions, we derive a sufficient condition such

that Hashin-Shtrikman bounds are attainable. In Section 3.6 we present the Gθ -closure

of multiphase conductive composites. Finally, we summarize and present an outlook of

possible applications in Section 3.7.

Notation. We introduce some notation for future convenience. Denote by W κ,p
per (Y ) the

set {u|u:Rn→ Rm is periodic on Y and
∫

Y ∑
|α|≤κ

|Dαu|p <+∞}

3.2 The Hashin-Shtrikman bounds and their attainment conditions

In this section, we recall the Hashin-Shtrikman bounds attainment conditions of (N + 1)-

phase isotropic conductive materials. Let Ωi (i = 0, · · · ,N) with |∂Ωi| = 0 a measurable

disjoint subdivision of the unit cell Y = (0,1)n, and θi = |Ωi|/|Y | 6= 0 the volume fractions.

Without loss of generality, we assume Ω1, · · · ,ΩN is closed but Ω0 is open in Y . Consider

multiphase composite of isotropic materials with conductivities 0 < k0 < k1 < ... < kN−1 <

kN ,

A(x,O) = kiI if x ∈Ωi (i = 0,1, · · · ,N), (3.1)

where I is the identity matrix in Rn×n, O = (Ω1, · · · ,ΩN) is called the microstructure of the

composite, and (θ0, · · · ,θN) denote the volume fractions of Ω0, · · · ,ΩN in the unit cell Y

with ∑
N
i=0 θi = 1. The effective tensor Ae(O) =KeI admits rigorous bounds [37], which are

independent of the detailed microstructure O . We have the Hashin and Strikman bounds

in the following form with the superscript L(U) represent lower(upper) bounds, detailed
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description can be found in [59],

k0 +nk0/McL
HS = kL ≤ ke ≤ kU = kN +nkN/McU

HS (3.2)

where 
McL

i = nk0
ki−k0

, McL
HS =

θ0+∑
N
i=1 θiMcL

i /(1+McL
i )

∑
N
i=1 θi/(1+McL

i )
,

McU
i = nkN

ki−kN
, McU

HS =
θN+∑

N−1
i=0 θiMcU

i /(1+McU
i )

∑
N−1
i=0 θi/(1+McU

i )
.

(3.3)

The above equation hold as equalities if, and only if the following overdetermined problem

admits a solution ξ ∈W 2,2
per(Y ),

∆ξ = ∑
N
i=0 piχΩi on Y

∇∇ξ = Qi on Ωi, i = 1, · · · ,N

periodic boundary conditions on ∂Y

(3.4)

where χΩi is the characteristic function of Ωi(i = 1,...,N), the overdetermined conditions

Qi(i = 1,...,N) are given by

Qi = ∇∇ξ =
pi

n
I, (3.5)

and the constant pi for the lower and upper HS bounds as
pL

i = TrQL
i =

McL
i −McL

HS
1+McL

i
i = 1, ...,N,

pU
i = TrQU

i =
McU

i −McU
HS

1+McU
i

i = 0, ...,N−1.
(3.6)

3.3 Restrictions on the attainable Hashin-Shtrikman bounds

3.3.1 Necessary condition for the lower HS bounds

We derive a necessary condition such that the lower Hashin-Shtrikman(HS) bounds are

attainable. Based on HS bounds attainment conditions (3.2), finding a microstructure with

given volume fraction θi and constants pi(i= 0,1, ...,N) is not always possible due to strong
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restrictions by the overdetermined problem (3.5). Below we derive a necessary condition

such that (3.2) admits a solution ξ ∈W 2,2
per(Y ). In (3.6), we have

pL
i =

McL
i −McL

HS
1+McL

i
, pL

0 = 1, 0 < McL
N < McL

HS < McL
0 . (3.7)

where by(3.3) we have McL
i = nk0

ki−k0
.

Assume ξ satisfies 
∆ξ = ∑

N
i=0 pL

i χΩi

∇∇ξ =
pL

i
n I on Ωi, i = 1, · · · ,N.

It is clear that the boundary value of ∇∇ξ approached from interior Ω0 to Ωi is given by

∇∇ξ =
pL

i
n

I+(pL
0− pL

i )m⊗m on ∂Ωi∩∂Ω0.

where m is the unit normal on ∂Ω0. Let e ∈ Rn be an unit vector and ue = e · (∇∇ξ )e. We

verify 
∆ue = 0 on Ω0,

ue =
pL

i
n +(pL

0− pL
i )(e ·m)2 on ∂Ωi∩∂Ω0.

By the maximum principle applied to ue on Ω0, we have

ue ≥ λmin = min
α∈[0,1]

{ pL
i

n
+(pL

0− pL
i )α, i = 1, · · · ,N}.

Since the mapping McL
i 7→ pL

i =
McL

i −McL
HS

1+McL
i

is strictly increasing, we have pL
1 > pL

2 > · · · >

pL
N , pL

1 > 0 and pL
N < 0, upon inspection we observe that

λmin =
pL

N
n
. (3.8)

Further, noticing that det : Rn×n→ R is a null lagrangian [7]. By the divergence theorem,

we have

det(−λminI) =
∫
−

Y
det(∇∇ξ −λminI)

=
N

∑
i=1

θi

∫
−

Ωi

det(∇∇ξ −λminI)+θ0

∫
−

Ω0

det(∇∇ξ −λminI),
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where
∫
−V = 1

volume(V )

∫
V is the average value of the integrand in region V . Since ∇∇ξ −

λminI is positive semi-definite on Ω0, we have

det(−λminI)≥
N

∑
i=1

θi

∫
−

Ωi

det(∇∇ξ −λminI).

Inserting (3.8) into above inequalities, we obtain
N

∑
i=1

θi(1−
pL

i
pL

N
)n ≤ 1. (3.9)

By (3.7) and (3.3), the above inequalities (3.9) can be rewritten in terms of volume fraction

of each constituent phases as[
θ0 +

N−1

∑
i=1

θi
McL

i −McL
N

1+McL
i

]−n N−1

∑
i=1

θi

[
McL

i −McL
N

1+McL
i

]n

≤ 1, (3.10)

which is a necessary condition for the lower HS bounds (3.2) to be attainable.

3.3.2 Necessary condition for the upper HS bounds

Following the similar procedure, we derive a necessary condition such that the upper

Hashin-Strikman bounds are attainable. In (3.6), we have

pU
i =

McU
i −McU

HS

1+McU
i

, pU
N = 1, McU

N < McU
HS < McU

0 < 0. (3.11)

where by(3.3) we have McU
i = nkN

ki−kN
.

Assume ξ satisfies
∆ξ = ∑

N
i=0 pU

i χΩi

∇∇ξ =
pU

i
n I on Ωi, i = 0, · · · ,N−1.

It is clear that the boundary value of ∇∇ξ approached from interior ΩN to Ωi is given by

∇∇ξ =
pU

i
n

I+(pU
N − pU

i )m⊗m on ∂Ωi∩∂ΩN .

where m is the unit normal on ∂ΩN . Let e ∈ Rn be an unit vector and ue = e · (∇∇ξ )e. We

verify 
∆ue = 0 on ΩN ,

ue =
pU

i
n +(pU

N − pU
i )(e ·m)2 on ∂Ωi∩∂ΩN .
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By the maximum principle applied to ue on ΩN , we obtain that

ue ≥ λmin = min
α∈[0,1]

{pU
i /n+(pU

N − pU
i )α, i = 0, · · · ,N−1}.

Since the mapping McU
i 7→

McU
i −McU

HS
1+McU

i
is strictly decreasing, we have pU

0 < pU
1 < · · ·< pU

N−1,

pU
0 < 0 and pU

N−1 > 0, upon inspection we observe that

λmin =
pU

0
n
. (3.12)

Further, noticing that det : Rn×n→ R is a null lagrangian [7], we have

det(−λminI) =
∫
−

Y
det(∇∇ξ −λminI)

=
N−1

∑
i=0

θi

∫
−

Ωi

det(∇∇ξ −λminI)+θN

∫
−

ΩN

det(∇∇ξ −λminI).

Since ∇∇ξ −λminI is positive semi-definite on ΩN , we have

det(−λminI)≥
N−1

∑
i=0

θi

∫
−

Ωi

det(∇∇ξ −λminI).

Inserting (3.12) into above inequalities, we obtain

N−1

∑
i=0

θi(1−
pU

i

pU
0
)n ≤ 1. (3.13)

By (3.11)and (3.3), the above inequalities can be written as[
θN +

N−1

∑
i=1

θi
McU

i −McU
0

1+McU
i

]−n N−1

∑
i=1

θi

[
McU

i −McU
0

1+McU
i

]n

≤ 1, (3.14)

which is a necessary condition for the upper HS bounds (3.2) to be attainable.

3.4 Construction of the optimal multiphase coated spheres

3.4.1 Construction of the optimal three-phase coated spheres

In this section we construct the optimal three-phase coated spheres to attain HS bounds. We

describe in details the microstructure of the three-phase coated sphere of the α,β ,γ phases.
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Again, we denote by kα ,kβ ,kγ (min{kα ,kγ}< kβ < max{kα ,kγ}) the conductivities of the

three phases and θα ,θβ ,θγ their corresponding volume fractions within the coated sphere.

For future convenience, we introduce notation by (3.3) as

Mcγ =
nkα

kγ − kα

, Mcβ =
nkα

kβ − kα

. (3.15)

As shown in Fig 3.1, we assume that the coated sphere has an inner radius R1 and outer

radius R2, the core sphere is occupied by the β -phase, and external coating is occupied by

a composite of the α,γ phases, so that the corresponding volume fractions are given by

Figure 3.1: The microstructure of a three-phase coated sphere to attain HS bounds: the core
sphere is occupied by phase-β ; the external coating is occupied by two-phase periodic E-
inclusion with local shape matrix Q(x) and local volume fraction ρ(r), and the inclusions
are occupied by the γ-phase, the matrix is occupied by the α-phase.

θβ = (
R1

R2
)n, θα +θβ +θγ = 1. (3.16)

The microstructure of the composite is locally a periodic E-inclusion [61] correspond-

ing to the symmetric matrix Q(x) and local volume fraction ρ(x), and the inclusions are

occupied by the γ-phase, the matrix is occupied by the α-phase. The dependence of Q(x)

and ρ(x) on position x is assumed to be of the following form:

Q(x) = qν(r)er⊗ er +qτ(r)[I− er⊗ er], ρ(x) = ρ(r), (3.17)
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where the subscript ν (τ) represents the radian (tangential) direction, r = |x|, er = x/r, and

qν(r),qτ(r) satisfy

qν , qτ ≥ 0, qν +(n−1)qτ = Tr(Q(x)) = 1. (3.18)

More precisely, let A(x) describes the conductivity tensor of the coated sphere and the

ambient homogeneous medium of conductivity ke, aeI (ae ∈ R) be the applied electric

fields, v : Rn → Rn be the potential fields whose i-th component is the electric potential

corresponding to an applied electric field given by the i-th row vector of the matrix aeI.

Then the solution to 
div(A(x)∇v) = 0 on Rn,

∇v→ aeI as |x| →+∞,

(3.19)

satisfies

∇v = aeI outside the coated sphere. (3.20)

That is, the presence of the inhomogeneous coated sphere does not perturb the electric

fields in the ambient medium. The field on the periodic E-inclusion [61] is uniform and

given by

∇w+F = [I− (I+
Mcb

(1−θb)n
Q−1)−1]F, (3.21)

where w : Y → Rn are the electric potentials and F ∈ Rn×n is an average applied field. The

effective conductivity tensor of a periodic E-inclusions is given by the following closed-

form [58]

Ae/ka = I+
nθb

Mcb
I−θaθbQ[

θaMcb

n
Q+

Mc2
b

n2 I]−1. (3.22)

where the subscript a and b represent the matrix and inclusions, respectively. For the

overall medium including the core, the external coating, and the surrounding medium, the
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conductivity tensors are given by

A(x) =


kβ I if r < R1,

kν(r)er⊗ er + kτ(r)(I− er⊗ er) if R1 < |x|< R2,

keI if r > R2.

(3.23)

Inserting (3.17) into (3.22), we have kν and kτ on the external coating by

kν(r)
kα

= 1+
nρ(r)

n(1−ρ(r))qν(r)+Mcγ

,

kτ(r)
kα

= 1+
nρ(r)

n(1−ρ(r))qτ(r)+Mcγ

.

(3.24)

By symmetry, we observe that the solution to (3.19) is given by

v = ∇u, u = u(r) if r ≤ R2. (3.25)

Then the gradient field is given by

∇v = ∇∇u = u′′er⊗ er +
u′

r
(I− er⊗ er), (3.26)

and hence the current on the shell {R1 < r < R2} is given by

A(x)∇v = kν(r)u′′(r)er⊗ er + kτ(r)
u′

r
(I− er⊗ er). (3.27)

Therefore, the first of (3.19) can be written as

(kν(r)u′′)′+
n−1

r
[kν(r)u′′−

kτ(r)
r

u′] = 0. (3.28)

The field on the periodic E-inclusions can be calculated as follows, for a fixed point in

the external coating, the local field is given by ∇v = ∇∇u, which is the average applied

field for the underlying composite. Since the microstructures are periodic E-inclusions

corresponding to symmetric matrix Q(x) and volume fraction ρ(r) (cf., (3.17)), by (3.21)

we find the microscopic field on the periodic E-inclusions is given by

[I− (I+
kα

(1−ρ)(kγ − kα)
Q−1)−1]∇∇u =

u′′Mcγ

Mcγ +n(1−ρ)qν

er⊗ er +
Mcγu′/r

Mcγ +n(1−ρ)qτ

[I− er⊗ er].
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To attain the HS bound, from the attainment condition we shall require that

u′′Mcγ

Mcγ +n(1−ρ)qν

=
Mcγu′/r

Mcγ +n(1−ρ)qτ

= aγ if r ∈ (R1,R2), (3.29)

where aγ ∈ R is to be determined. Plugging (3.24) and (3.29) into (3.28), we obtain

[(1−ρ)qν +ρ]′+
(n−1)(1−ρ)

r
(qν −qτ) = 0 if r ∈ (R1,R2). (3.30)

Eliminating qν in (3.30), by (3.18) we are left with

−ρ
′qτr+(1−ρ)rq′τ − (1−ρ)(1−qτn) = 0 if r ∈ (R1,R2). (3.31)

The three ordinary differential equations (ODE) in (3.29) and (3.30) imply only one ODE (3.31)

for qτ ,ρ . Though equations (3.31) admit infinitely many different solutions to qτ ,ρ , we

focus on two simple solutions which will be discussed in the following two sections.

Optimal three-phase coated spheres of the first type

By assuming qτ is independent of r, the first simple solution to (3.31) is given by

qτ = const, ρ = 1− crδ , δ =
1
qτ

−n, (3.32)

where qν = 1−(n−1)qτ (cf., (3.18)) and c∈R is an integration constant to be determined.

Inserting the above equation to (3.29), and by integrating we find

u(r) =
1
2

aγr2 +
cnaγqτ

(δ +2)Mcγ

rδ+2 +d if r ∈ (R1,R2), (3.33)

where d is an irrelevant constant such that u is continuous at r = R1. To show the coated

sphere is a neutral inclusion [66] for an appropriate ambient medium, we need to solve

(3.29) for u. Again, from symmetry we infer the interior solution to (3.19) is given by

(3.25) and we have

u(r) =
1
2

aβ r2 if r < R1, (3.34)
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where aβ ∈ R is to be determined. Then the continuity of v = ∇u and the continuity of

normal current at the interface {r = R1} imply
aβ R1 = u′(R1+),

kβ aβ = kνu′′(R1+).

(3.35)

Inserting (3.24), (3.29) and (3.32) into (3.35), we obtain
aβ

aγ
= 1+ cnqτ Rδ

1
Mcγ

,

kβ aβ

kα aγ
= 1+ n

Mcγ
− cn(n−1)qτ Rδ

1
Mcγ

.

Solving the above equation, we get

aβ

aγ

=
1+1/Mcγ

1+1/Mcβ

, c =
Mcγ

nqτRδ
1

[
1+1/Mcγ

1+1/Mcβ

−1
]
. (3.36)

Additionally, by (3.16), we have the volume fractions θα ,θβ ,θγ satisfy that θβ =
(

R1
R2

)n
,

θγ

θα +θγ

=
n

Rn
2−Rn

1

∫ R2

R1

rn−1
ρ(r)dr = 1−

Mcγ

(n+δ )qτ

[
1+1/Mcγ

1+1/Mcβ

−1]
θ
−δ/n
β

−θβ

1−θβ

.

Noticing that n+δ = 1/qτ (cf., (3.32)) and θα +θγ = 1−θβ , we rewrite the above equation

as 
θα = Mcγ [

1+1/Mcγ

1+1/Mcβ

−1](θ−δ/n
β

−θβ ),

θγ = 1− Mcβ−Mcγ

1+Mcβ
θ
−δ/n
β

− 1+Mcγ

1+Mcβ
θβ .

(3.37)

Since qτ ≥ 0 and qν = 1− (n−1)qτ ≥ 0, we obtain the constraints qτ ∈ [0,1/(n−1)]. In

particular, we observe that when qτ = 1/(n−1) (and so δ = 1/qτ −n = −1, qν = 0), the

constructed three-phase coated sphere requires the least volume fraction of α-phase. In the

following section, we apply qτ = 1/(n−1) and δ =−1 directly without further discussion.

Below we calculate the conductivity of the ambient medium such that the coated sphere is

a neutral inclusion [66]. First, the average electric field on the coated sphere {r < R2} is

given by ∫
−
{r<R2}

∇v =
∫
−
{r<R2}

∇∇u =
I
n

∫
−
{r<R2}

∆u =
I

ωnRn
2

∫
{r=R2}

u′,
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where the last equality follows from the divergence theorem, ωn is the surface area of the

unit sphere in Rn, and hence ωnRn
2/n is the volume of the sphere {r < R2}. Inserting (3.33)

and (3.36) into the above equation and with θβ =
(

R1
R2

)n
, we obtain∫

−
{r<R2}

∇v = āI, ā =
u′

r
|r=R2 = aγ

[
1+
(

1+1/Mcγ

1+1/Mcβ

−1
)

θ
−δ/n
β

]
. (3.38)

Indeed, setting

u(r) =
1
2

ār2 +d′ if r > R2, (3.39)

(d′ is an irrelevant constant such that u(r) is continuous at r = R2) we verify the continuity

of v = ∇u and the continuity of normal current at the interface {r = R2} that
u′(R2−) = āR2,

kνu′′(R2−) = keā.

Finally, we have the effective conductivity ke in the following form

ke

kα

=
Mcγ +n− (n−1)θ−δ/n

β
Mcγ [

1+1/Mcγ

1+1/Mcβ

−1]

Mcγ +θ
−δ/n
β

Mcγ [
1+1/Mcγ

1+1/Mcβ

−1]
.

By (3.15), the above equation can be written as

Mce :=
nkα

ke− kα

=
Mcα +θα +Mcγ [

1+1/Mcγ

1+1/Mcβ

−1]θβ

θβ +θγ −Mcγ [
1+1/Mcγ

1+1/Mcβ

−1]θβ

,

which, unsurprisingly with volume fraction given by (3.37), coincides with the HS lower

bounds if kγ > kα and the HS upper bounds if kγ < kα . Particularly if δ = −1, the above

equation can be rewritten as

Mce =
Mcγ +θ

1/n
β

[
Mcβ−Mcγ

1+Mcβ
]

1−θ
1/n
β

[
Mcβ−Mcγ

1+Mcβ
]
. (3.40)

Optimal three-phase coated spheres of the second type

Parallel to the last section, we obtain the second simple solution to (3.31) as
qτ =

1
n + cr−n,

qν = 1
n − c(n−1)r−n,

ρ = const, (3.41)
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where c ∈ R is an integration constant. Inserting the above equations to (3.29), we find

u(r) =
1
2

aγ(1+
1−ρ

Mcγ

)r2−
cn(1−ρ)aγ

Mcγ(n−2)rn−2 +d if r ∈ (R1,R2), (3.42)

where d is a constant such that u is continuous at r = R1. Inserting (3.41) into (3.35) we

obtain 
aβ

aγ
= 1

Mcγ
[Mcγ +1−ρ + cn(1−ρ)

Rn
1

],

kβ aβ

kα aγ
= 1

Mcγ
[Mcγ +1+(n−1)ρ− cn(n−1)(1−ρ)

Rn
1

].

Solving the above equation, we have,

aβ

aγ

=
1+1/Mcγ

1+1/Mcβ

, c =

(
Mcγ(

1+1/Mcγ

1+1/Mcβ

−1)− (1−ρ)
)
Rn

1

n(1−ρ)
. (3.43)

Additionally, by (3.16), we have the volume fractions θα ,θβ ,θγ satisfy that θβ =
(

R1
R2

)n
,

θγ

θα +θγ

=
n

Rn
2−Rn

1

∫ R2

R1

rn−1
ρdr = ρ.

Noticing that θα +θγ = 1−θβ , we rewrite the above equation as
θα = (1−ρ)(1−θβ ),

θγ = ρ(1−θβ ).

(3.44)

Below we calculate the conductivity of the ambient medium such that the coated sphere is

a neutral inclusion [66]. By (3.42) and (3.43) we get the average electric field on the coated

sphere {r < R2} as∫
−
{r≤R2}

∇∇u =
I
n

∫
−
{r≤R2}

∆u = āI,

ā =
u′

r
|r=R2 = aγ [1+

1−ρ

Mcγ

(1−θβ )+(
1+1/Mcγ

1+1/Mcβ

−1)θβ ].

(3.45)

Indeed, setting

u(r) =
1
2

ār2 +d′ if r > R2, (3.46)
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(d′ is an irrelevant constant such that u(r) is continuous at r = R2) we verify the continuity

of v = ∇u and the continuity of normal current at the interface {r = R2} that
u′(R2−) = āR2,

kνu′′(R2−) = keā.

Finally, by (3.43) we express ke as

ke

kα

=
Mcγ +nρ +(1−ρ)− (n−1)[Mcγ(

1+1/Mcγ

1+1/Mcβ

−1)− (1−ρ)]θβ

Mcγ +(1−ρ)+ [Mcγ(
1+1/Mcγ

1+1/Mcβ

−1)− (1−ρ)]θβ

.

Further, we can get

Mce :=
nkα

ke− kα

=
Mcγ +(1−ρ)+ [Mcγ(

1+1/Mcγ

1+1/Mcβ

−1)− (1−ρ)]θβ

ρ− [Mcγ(
1+1/Mcγ

1+1/Mcβ

−1)− (1−ρ)]θβ

,

which, unsurprisingly with volume fraction given by (3.44), coincides with the HS lower

bounds if kγ > kα and the HS upper bounds if kγ < kα .

3.4.2 Construction of the optimal four-phase coated spheres

In this section, we explore the optimal microstructure of the four-phase coated sphere, and

generalize the optimal microstructure to a larger number of phases following the similar

procedure.

Construction of four-phase coated spheres attaining lower HS bounds

We construct a microstructure of four-phase coated sphere to attain the lower HS bounds.

Again, we denote by k0,k1,k2,k3 (k0 < k1 < k2 < k3) the conductivities of the four phases

and θ0,θ1,θ2,θ3 the corresponding volume fraction. For future convenience, we introduce

notation by (3.3) as

McL
1 =

nk0

k1− k0
, McL

2 =
nk0

k2− k0
, McL

3 =
nk0

k3− k0
. (3.47)

As shown in Fig 3.2, we constructed a four-phase coated sphere to attain the lower HS

bounds. We assume that the coated sphere has an inner radius R1, first outer layer of radius
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R2, and second outer layer of radius R3. The core sphere is occupied by the 1-phase,

the external coating is occupied by two layers of composites, the first layer of external

coating(R1 < r < R2) is occupied by 0-phase as matrix and 2-phase as inclusions, and the

second layer of external coating(R2 < r < R3) is occupied by 0-phase as matrix and 3-phase

as inclusions. The corresponding volume fractions θ1,θ
2
0 ,θ2,θ

3
0 ,θ3 are given by

Figure 3.2: The microstructure of a four-phase coated sphere to attain lower HS bounds:
the core sphere is occupied by phase-1; the external coating is occupied by two layers of
composites, the microstructure of the composite is a periodic E-inclusion with local shape
matrix Q(x) and local volume fraction ρ(r), the first layer of external coating is occupied
by 2,0-phase(the inclusions are occupied by the 2-phase, the matrix is occupied by the
0-phase), and the second layer of external coating is occupied by 3,0-phase(the inclusions
are occupied by the 3-phase, the matrix is occupied by the 0-phase)

θ1 = (
R1

R3
)n, θ1 +θ

2
0 +θ2 = (

R2

R3
)n,

θ1 +θ
2
0 +θ2 +θ

3
0 +θ3 = 1, θ0 = θ

2
0 +θ

3
0 .

(3.48)

where θ 2
0 and θ 3

0 are the volume fraction of matrix in the first and second layers of exter-

nal coating respectively. The microstructure of the external coating is locally a periodic

E-inclusion corresponding to the symmetric matrix Q(x) and volume fraction ρ(x). The

dependence of Q(x) and ρ(x) on position x is assumed to be of the following form:

Q(x) = qν(r)er⊗ er +qτ(r)[I− er⊗ er], ρ(x) = ρ(r), if r ∈ (R1,R3), (3.49)
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where the subscript ν (τ) represents the radian (tangential) direction, r = |x|, er = x/r, and

qν(r),qτ(r) satisfy

qν , qτ ≥ 0, qν +(n−1)qτ = Tr(Q(x)) = 1. (3.50)

More precisely, let A(x) describes the conductivity tensor of the coated sphere and the

ambient homogeneous medium of conductivity ke, aeI (ae ∈ R) be the applied electric

fields, v : Rn → Rn be the potential fields whose i-th component is the electric potential

corresponding to an applied electric field given by the i-th row vector of the matrix aeI.

Then the solution to 
div(A(x)∇v) = 0 on Rn,

∇v→ aeI as |x| →+∞,

(3.51)

satisfies

∇v = aeI outside the coated sphere. (3.52)

That is, the presence of the inhomogeneous coated sphere does not perturb the electric

fields in the ambient medium. The field on the periodic E-inclusion [61] is uniform and

given by

∇w+F = [I− (I+
Mcb

(1−θb)n
Q−1)−1]F, (3.53)

where w : Y → Rn are the electric potentials and F ∈ Rn×n is an average applied field. The

effective conductivity tensor of a periodic E-inclusions is given by the following closed-

form [58]

Ae/ka = I+
nθb

Mcb
I−θaθbQ[

θaMcb

n
Q+

Mc2
b

n2 I]−1. (3.54)

where the subscript a and b represent the matrix phase and inclusions, respectively. For the

overall medium including the core, the external coating, and the surrounding medium, the
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conductivity tensors are given by

A(x) =


k1I if r < R1,

kν(r)er⊗ er + kτ(r)(I− er⊗ er) if R1 < r < R3,

keI if r > R3.

(3.55)

Inserting (3.49) into (3.54), we can find the effective conductivity tensors on the external

coating by

kν(r)
k0

= 1+
nρ(r)

n(1−ρ(r))qν(r)+Mcγ(r)
,

kτ(r)
k0

= 1+
nρ(r)

n(1−ρ(r))qτ(r)+Mcγ(r)
,

(3.56)

where

Mcγ(r) =


McL

2 if r ∈ (R1,R2),

McL
3 if r ∈ (R2,R3).

By symmetry, we observe that the solution to (3.51) is given by

v = ∇u, u = u(r) if r ≤ R3. (3.57)

Then the gradient field is given by

∇v = ∇∇u = u′′er⊗ er +
u′

r
(I− er⊗ er), (3.58)

and hence the current on the shell {R1 < r < R3} is given by

A(x)∇v = kν(r)u′′(r)er⊗ er + kτ(r)
u′

r
(I− er⊗ er). (3.59)

Therefore, the first of (3.51) can be written as

(kν(r)u′′)′+
n−1

r
[kν(r)u′′−

kτ(r)
r

u′] = 0. (3.60)

Further, the field on the periodic E-inclusions can be calculated as follows. For a fixed point

in the external coating, the local field is given by ∇v = ∇∇u, which is the average applied
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field for the underlying composite. Since the microstructures are periodic E-inclusions

corresponding to symmetric matrix Q(x) and volume fraction ρ(r) (cf., (3.49)), from (3.53)

we find the microscopic field on the periodic E-inclusions is given by

[I− (I+
k0

(1−ρ)(kγ − k0)
Q−1)−1]∇∇u =

u′′Mcγ

Mcγ +n(1−ρ)qν

er⊗ er +
Mcγu′/r

Mcγ +n(1−ρ)qτ

[I− er⊗ er].

To attain the HS bound, from the attainment condition we shall require that

u′′Mcγ

Mcγ +n(1−ρ)qν

=
Mcγu′/r

Mcγ +n(1−ρ)qτ

= a(r), (3.61)

where

a(r) =


a2 if r ∈ (R1,R2),

a3 if r ∈ (R2,R3),

where a2,a3 ∈ R are to be determined. Inserting (3.56) and (3.61) into (3.60), we obtain

[(1−ρ)qν +ρ]′+
(n−1)(1−ρ)

r
(qν −qτ) = 0 if r ∈ (R1,R3). (3.62)

Eliminating qν in (3.62), by (3.50) we are left with

−ρ
′qτr+(1−ρ)rq′τ − (1−ρ)(1−qτn) = 0 if r ∈ (R1,R3). (3.63)

Thus, the three ordinary differential equations (ODE) in (3.61) and (3.62) imply only one

ODE (3.63) for qτ ,ρ . Though equations (3.63) admit infinitely many different solutions,

we focus on a simple solution as discussed in Section 3.4.1. By assuming qτ is constant in

region of r ∈ (R1,R3), the first simple solution to (3.63) is given by

qτ =
1

n−1
if r ∈ (R1,R3), ρ(r) =


1− c2r−1 if r ∈ (R1,R2),

1− c3r−1 if r ∈ (R2,R3),

(3.64)

where qν = 1− (n− 1)qτ = 0 (cf., (3.50)) and c2,c3 ∈ R are integration constants to be

determined. Inserting the above equation into (3.61), and by integrating we find

u(r) =


1
2a2r2 + c2na2

(n−1)McL
2
r+d1 if r ∈ (R1,R2),

1
2a3r2 + c3na3

(n−1)McL
3
r+d2 if r ∈ (R2,R3),

(3.65)
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where d1,d2 are irrelevant constant such that u is continuous at r = R1,r = R2, respectively.

To show the coated sphere is a neutral inclusion [66] for an appropriate ambient medium,

we need to solve (3.61) for u. Again, from symmetry we infer the interior solution to (3.51)

is given by (3.57) and we have

u(r) =
1
2

a1r2 if r < R1, (3.66)

where a1 ∈ R is to be determined. Then the continuity of v = ∇u and the continuity of

normal current at the interface {r = R1} imply
a1R1 = u′(R1+),

k1a1 = kν(R1+)u′′(R1+),

(3.67)

Inserting (3.61) and (3.64) into (3.67) we obtain
a1
a2

= 1+ c2n
(n−1)McL

2R1
,

k1a1
k0a2

= 1+ n
McL

2
− c2n

McL
2R1

,

Solving the above equation, we get

a1

a2
=

1+1/McL
2

1+1/McL
1
, c2 =

(n−1)R1

n
McL

1−McL
2

1+McL
1

. (3.68)

Further the continuity of v = ∇u and the continuity of normal current at the interface {r =

R2} imply 
u′(R2−) = u′(R2+),

kν(R2−)u′′(R2−) = kν(R2+)u′′(R2+).

(3.69)

Inserting (3.61) and (3.64) into (3.69) we obtain
a2
a3

=
McL

2((n−1)McL
3R2+nc3)

McL
3((n−1)McL

2R2+nc2)
,

a2
a3

=
McL

2(McL
3R2+nR2−nc3)

McL
3(McL

2R2+nR2−nc2)
.

Solving the above equation, we get

a2

a3
=

1+1/McL
3

1+1/McL
2
,

c3 =
R2(n−1)

n
McL

2−McL
3

1+McL
2

+
R1(n−1)

n
(1+McL

3)(McL
1−McL

2)

(1+McL
2)(1+McL

1)
.

(3.70)
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Additionally, by (3.48), we have the volume fractions θ1,θ
2
0 ,θ2,θ

3
0 ,θ3 satisfy that

θ1 =

(
R1

R3

)n

, θ1 +θ
2
0 +θ2 =

(
R2

R3

)n

,

θ2

θ 2
0 +θ2

=
n

Rn
2−Rn

1

∫ R2

R1

rn−1
ρ1(r)dr = 1− nc2

n−1
Rn−1

2 −Rn−1
1

Rn
2−Rn

1
,

θ3

θ 3
0 +θ3

=
n

Rn
3−Rn

2

∫ R3

R2

rn−1
ρ2(r)dr = 1− nc3

n−1
Rn−1

3 −Rn−1
2

Rn
3−Rn

2
.

Noticing that θ1 +θ 2
0 +θ2 +θ 3

0 +θ3 = 1, inserting (3.68) and (3.70) into above equation,

we have

θ2 =
(
(R2

R3
)n− (R1

R3
)n)− McL

1−McL
2

1+McL
1

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ 2
0 =

McL
1−McL

2
1+McL

1

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ3 =
(
1− (R2

R3
)n)− McL

2−McL
3

1+McL
2

(R2
R3
− (R2

R3
)n)− (1+McL

3)(McL
1−McL

2)

(1+McL
2)(1+McL

1)

(R1
R3
− R1

R3
(R2

R3
)n−1),

θ 3
0 =

McL
2−McL

3
1+McL

2

(R2
R3
− (R2

R3
)n)+ (1+McL

3)(McL
1−McL

2)

(1+McL
2)(1+McL

1)

(R1
R3
− R1

R3
(R2

R3
)n−1).

(3.71)

Below we calculate the conductivity of the ambient medium such that the coated sphere is

a neutral inclusion [66]. First, the average electric field on the coated sphere {r < R3} is

given by ∫
−
{r<R3}

∇v =
∫
−
{r<R3}

∇∇u =
I
n

∫
−
{r<R3}

∆u =
I

ωnRn
3

∫
{r=R3}

u′,

where the last equality follows from the divergence theorem, ωn is the surface area of the

unit sphere in Rn, and hence ωnRn
3/n is the volume of the sphere {r < R3}. Inserting (3.65)

into the above equation, we obtain∫
−
{r<R3}

∇v = āI, ā =
u′

r
|r=R3 = a3[1+

c3n
(n−1)McL

3R3
]. (3.72)

Setting

u(r) =
1
2

ār2 +d3 if r > R3, (3.73)

(d3 is an irrelevant constant such that u(r) is continuous at r = R3) we verify the continuity

of v = ∇u and the continuity of normal current at the interface {r = R3} that
u′(R3−) = āR3,

kν(R3−)u′′(R3−) = kL
e ā.
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Finally, we have kL
e in the following form

kL
e

k0
=

McL
3 +n− nc3

R3

McL
3 +

nc3

(n−1)R3

.

Further, by (3.70) and (3.48), we have

McL
e :=

nk0

kL
e − k0

=
McL

3 +
McL

2−McL
3

1+McL
2
(θ1 +θ 2

0 +θ2)
1/n +

(1+McL
3)(McL

1−McL
2)

(1+McL
2)(1+McL

1)
(θ1)

1/n

1− McL
2−McL

3
1+McL

2
(θ1 +θ 2

0 +θ2)1/n− (1+McL
3)(McL

1−McL
2)

(1+McL
2)(1+McL

1)
(θ1)1/n

.

(3.74)

By straightforward algebraic calculations, we verify that the effective conductivity given

by (3.74) attains the lower HS bound McL
e =McL

HS, if the volume fraction (3.71) is satisfied

with R3 ≥ R2 ≥ R1 ≥ 0, that is,

θ1 = (R1
R3
)n,

θ2 =
(
(R2

R3
)n− (R1

R3
)n)− McL

1−McL
2

1+McL
1

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ 2
0 =

McL
1−McL

2
1+McL

1

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ3 =
(
1− (R2

R3
)n)− McL

2−McL
3

1+McL
2

(R2
R3
− (R2

R3
)n)− (1+McL

3)(McL
1−McL

2)

(1+McL
2)(1+McL

1)

(R1
R3
− R1

R3
(R2

R3
)n−1),

θ 3
0 =

McL
2−McL

3
1+McL

2

(R2
R3
− (R2

R3
)n)+ (1+McL

3)(McL
1−McL

2)

(1+McL
2)(1+McL

1)

(R1
R3
− R1

R3
(R2

R3
)n−1),

(3.75)

which is a sufficient condition for the lower HS bounds McL
e = McL

HS to be attainable.

Construction of four-phase coated spheres attaining upper HS bounds

We construct a microstructure of four-phase coated sphere to attain the upper HS bounds.

Again, we denote by k0,k1,k2,k3 (k0 < k1 < k2 < k3) the conductivities of the four phases,

and for future convenience, we introduce notation

McU
0 =

nk3

k0− k3
, McU

1 =
nk3

k1− k3
, McU

2 =
nk3

k2− k3
. (3.76)

As shown in Fig 3.3, we constructed a four-phase coated sphere to attain the upper HS

bounds. We assume that the coated sphere has an inner radius R1, the first outer layer of
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radius R2, and the second outer layer of radius R3. The core sphere is occupied by the

2-phase, the external coating is occupied by two layers of composites, the first layer of

external coating(R1 < r < R2) is occupied by 3-phase as matrix and 1-phase as inclusions,

and the second layer of external coating(R2 < r < R3) is occupied by 3-phase as matrix and

0-phase as inclusions. The corresponding volume fractions θ2,θ
1
3 ,θ1,θ

0
3 ,θ0 within the

Figure 3.3: The microstructure of a four-phase coated sphere to attain upper HS bounds:
the core sphere is occupied by phase-2; the external coating is occupied by two layers of
composites, the microstructure of the composite is a periodic E-inclusion with local shape
matrix Q(x) and local volume fraction ρ(r), the first layer of external coating is occupied
by 1,3-phase(the inclusions are occupied by the 1-phase, the matrix is occupied by the
3-phase), and the second layer of external coating is occupied by 0,3-phase(the inclusions
are occupied by the 0-phase, the matrix is occupied by the 3-phase)

coated sphere are given by

θ2 = (
R1

R3
)n, θ2 +θ

1
3 +θ1 = (

R2

R3
)n,

θ2 +θ
1
3 +θ1 +θ

0
3 +θ0 = 1, θ3 = θ

1
3 +θ

0
3 .

(3.77)

where θ 1
3 and θ 0

3 are the volume fraction of matrix in the first and second layers of exter-

nal coating respectively. The microstructure of the external coating is locally a periodic

E-inclusion corresponding to the symmetric matrix Q(x) and volume fraction ρ(x). The
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dependence of Q(x) and ρ(x) on position x is assumed to be of the following form:

Q(x) = qν(r)er⊗ er +qτ(r)[I− er⊗ er], ρ(x) = ρ(r), if r ∈ (R1,R3), (3.78)

where the subscript ν(τ) represents the radian(tangential) direction, r = |x|, er = x/r, and

qν(r),qτ(r) satisfy

qν , qτ ≥ 0, qν +(n−1)qτ = Tr(Q(x)) = 1. (3.79)

More precisely, let A(x) describes the conductivity tensor of the coated sphere and the

ambient homogeneous medium of conductivity ke, aeI (ae ∈ R) be the applied electric

fields, v : Rn → Rn be the potential fields whose i-th component is the electric potential

corresponding to an applied electric field given by the i-th row vector of the matrix aeI.

Then the solution to 
div(A(x)∇v) = 0 on Rn,

∇v→ aeI as |x| →+∞,

(3.80)

satisfies

∇v = aeI outside the coated sphere. (3.81)

That is, the presence of the inhomogeneous coated sphere does not perturb the electric fields

in the ambient medium. For the overall medium including the core, the external coating,

and the surrounding medium, the conductivity tensors are given by

A(x) =


k2I if r < R1,

kν(r)er⊗ er + kτ(r)(I− er⊗ er) if R1 < r < R3,

keI if r > R3,

(3.82)

Inserting (3.78) into (3.54), we can find the effective conductivity tensors on the external

coating by

kν(r)
k3

= 1+
nρ(r)

n(1−ρ(r))qν(r)+Mcγ(r)
,

kτ(r)
k3

= 1+
nρ(r)

n(1−ρ(r))qτ(r)+Mcγ(r)
,

(3.83)
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where

Mcγ(r) =


McU

1 if r ∈ (R1,R2),

McU
0 if r ∈ (R2,R3).

By symmetry, we observe that the solution to (3.80) is given by

v = ∇u, u = u(r) if r ≤ R3. (3.84)

Then the gradient field is given by

∇v = ∇∇u = u′′er⊗ er +
u′

r
(I− er⊗ er), (3.85)

and hence the current on the shell {R1 < r < R3} is given by

A(x)∇v = kν(r)u′′(r)er⊗ er + kτ(r)
u′

r
(I− er⊗ er). (3.86)

Therefore, the first of (3.80) can be written as

(kν(r)u′′)′+
n−1

r
[kν(r)u′′−

kτ(r)
r

u′] = 0. (3.87)

Further, the field on the periodic E-inclusions can be calculated as follows. For a fixed point

in the external coating, the local field is given by ∇v = ∇∇u, which is the average applied

field for the underlying composite. Since the microstructures are periodic E-inclusions

corresponding to symmetric matrix Q(x) and volume fraction ρ(r) (cf., (3.78)), from (3.53)

we find the microscopic field on the periodic E-inclusions is given by

[I− (I+
k0

(1−ρ)(kγ − k0)
Q−1)−1]∇∇u =

u′′Mcγ

Mcγ +n(1−ρ)qν

er⊗ er +
Mcγu′/r

Mcγ +n(1−ρ)qτ

[I− er⊗ er].

from the attainment condition we shall require that

u′′Mcγ

Mcγ +n(1−ρ)qν

=
Mcγu′/r

Mcγ +n(1−ρ)qτ

= a(r), (3.88)

where

a(r) =


a1 if r ∈ (R1,R2),

a0 if r ∈ (R2,R3),
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where a1,a0 ∈ R are to be determined. Inserting (3.83) and (3.88) into (3.87), we obtain

[(1−ρ)qν +ρ]′+
(n−1)(1−ρ)

r
(qν −qτ) = 0 if r ∈ (R1,R3). (3.89)

Eliminating qν in (3.89), by (3.79) we are left with

−ρ
′qτr+(1−ρ)rq′τ − (1−ρ)(1−qτn) = 0 if r ∈ (R1,R3). (3.90)

Thus, the three ordinary differential equations (ODE) in (3.88) and (3.89) imply only one

ODE (3.90) for qτ ,ρ . Though equations (3.90) admit infinitely many different solutions,

we focus on a simple solution as discussed in In Section 3.4.1. By assuming qτ is constant

in region of r ∈ (R1,R3), the first simple solution to (3.90) is given by

qτ =
1

n−1
if r ∈ (R1,R3), ρ(r) =


1− c1r−1 if r ∈ (R1,R2),

1− c0r−1 if r ∈ (R2,R3),

(3.91)

where qν = 1− (n− 1)qτ = 0 (cf., (3.79)) and c1,c0 ∈ R are integration constants to be

determined. Inserting the above equation into (3.88), and by integrating we find

u(r) =


1
2a1r2 + c1na1

(n−1)McU
1

r+d1 if r ∈ (R1,R2),

1
2a0r2 + c0na0

(n−1)McU
0

r+d2 if r ∈ (R2,R3),

(3.92)

where d1,d2 are irrelevant constant such that u is continuous at r = R1,r = R2, respectively.

To show the coated sphere is a neutral inclusion [66] for an appropriate ambient medium,

we need to solve (3.88) for u. Again, from symmetry we infer the interior solution to (3.80)

is given by (3.84) and we have

u(r) =
1
2

a2r2 if r < R1, (3.93)

where a2 ∈ R is to be determined. Then the continuity of v = ∇u and the continuity of

normal current at the interface {r = R1} imply
a2R1 = u′(R1+),

k2a2 = kν(R1+)u′′(R1+).

(3.94)



56

Inserting (3.88) and (3.91) into (3.94) we obtain
a2
a1

= 1+ c1n
(n−1)McU

1 R1
,

k2a2
k3a1

= 1+ n
McU

1
− c1n

McU
1 R1

.

Solving the above equation, we get

a2

a1
=

1+1/McU
1

1+1/McU
2
, c1 =

(n−1)R1

n
McU

2 −McU
1

1+McU
2

. (3.95)

Further the continuity of v = ∇u and the continuity of normal current at the interface {r =

R2} imply 
u′(R2−) = u′(R2+),

kν(R2−)u′′(R2−) = kν(R2+)u′′(R2+).

(3.96)

Inserting (3.88) and (3.91) into (3.96) we obtain
a1
a0

=
McU

1 ((n−1)McU
0 R2+nc0)

McU
0 ((n−1)McU

1 R2+nc1)
,

a1
a0

=
McU

1 (McU
0 R2+nR2−nc0)

McU
0 (McU

1 R2+nR2−nc1)
.

Solving the above equation, we get

a1

a0
=

1+1/McU
0

1+1/McU
1
,

c0 =−R2(n−1)
n

McU
0 −McU

1

1+McU
1

+
R1(n−1)

n
(1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )
.

(3.97)

Additionally, by (3.77), we have the volume fractions θ2,θ
1
3 ,θ1,θ

0
3 ,θ0 satisfy that

θ2 =

(
R1

R3

)n

, θ2 +θ
1
3 +θ1 =

(
R2

R3

)n

,

θ1

θ 1
3 +θ1

=
n

Rn
2−Rn

1

∫ R2

R1

rn−1
ρ1(r)dr = 1− nc1

n−1
Rn−1

2 −Rn−1
1

Rn
2−Rn

1
,

θ0

θ 0
3 +θ0

=
n

Rn
3−Rn

2

∫ R3

R2

rn−1
ρ2(r)dr = 1− nc0

n−1
Rn−1

3 −Rn−1
2

Rn
3−Rn

2
.
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Noticing that θ2 +θ 1
3 +θ1 +θ 0

3 +θ0 = 1, inserting (3.95) and (3.97) into above equation,

we have

θ1 =
(
(R2

R3
)n− (R1

R3
)n)− McU

2 −McU
1

1+McU
2

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ 1
3 =

McU
2 −McU

1
1+McU

2

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ0 =
(
1− (R2

R3
)n)+ McU

0 −McU
1

1+McU
1

(R2
R3
− (R2

R3
)n)− (1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )

(R1
R3
− R1

R3
(R2

R3
)n−1),

θ 0
3 =−McU

0 −McU
1

1+McU
1

(R2
R3
− (R2

R3
)n)+ (1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )

(R1
R3
− R1

R3
(R2

R3
)n−1).

(3.98)

Below we calculate the conductivity of the ambient medium such that the coated sphere is

a neutral inclusion [66]. First, the average electric field on the coated sphere {r < R3} is

given by ∫
−
{r<R3}

∇v =
∫
−
{r<R3}

∇∇u =
I
n

∫
−
{r<R3}

∆u =
I

ωnRn
3

∫
{r=R3}

u′,

where the last equality follows from the divergence theorem, ωn is the surface area of the

unit sphere in Rn, and hence ωnRn
3/n is the volume of the sphere {r < R3}. Inserting (3.92)

into the above equation, we obtain∫
−
{r<R3}

∇v = āI, ā =
u′

r
|r=R3 = a0[1+

c0n
(n−1)McU

0 R3
]. (3.99)

Setting

u(r) =
1
2

ār2 +d3 if r > R3, (3.100)

(d3 is an irrelevant constant such that u(r) is continuous at r = R3) we verify the continuity

of v = ∇u and the continuity of normal current at the interface {r = R3} that
u′(R3−) = āR3,

kν(R3−)u′′(R3−) = kU
e ā.

Finally, we have kU
e in the following form

kU
e

k3
=

McU
0 +n− nc0

R3

McU
0 + nc0

(n−1)R3

.
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Further, by (3.97) and (3.77), we have

McU
e : =

nk3

kU
e − k3

=
McU

0 +
McU

1 −McU
0

1+McU
1

(θ2 +θ 1
3 +θ1)

1/n +
(1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )
(θ2)

1/n

1− McU
1 −McU

0
1+McU

1
(θ2 +θ 1

3 +θ1)1/n− (1+McU
0 )(McU

2 −McU
1 )

(1+McU
1 )(1+McU

2 )
(θ2)1/n

(3.101)

By straightforward algebraic calculations, we verify that the effective conductivity given by

(3.101) attains the upper HS bound McU
e = McU

HS, if the volume fraction (3.98) is satisfied

with R3 ≥ R2 ≥ R1 ≥ 0, that is,

θ2 = (R1
R3
)n,

θ1 =
(
(R2

R3
)n− (R1

R3
)n)− McU

2 −McU
1

1+McU
2

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ 1
3 =

McU
2 −McU

1
1+McU

2

(R1
R3
(R2

R3
)n−1− (R1

R3
)n),

θ0 =
(
1− (R2

R3
)n)+ McU

0 −McU
1

1+McU
1

(R2
R3
− (R2

R3
)n)− (1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )

(R1
R3
− R1

R3
(R2

R3
)n−1),

θ 0
3 =−McU

0 −McU
1

1+McU
1

(R2
R3
− (R2

R3
)n)+ (1+McU

0 )(McU
2 −McU

1 )

(1+McU
1 )(1+McU

2 )

(R1
R3
− R1

R3
(R2

R3
)n−1),

(3.102)

which is a sufficient condition for the upper HS bounds McU
e = McU

HS to be attainable.

3.4.3 Generalization of the optimal N-phase coated spheres

In this section, we summarize the generalization of the optimal N-phase coated sphere.

For the N-phase coated spheres attaining lower HS bounds, The microstructure is con-

structed as shown in Fig 3.4(a), We assume that the coated sphere has an inner radius R1,

and the external coating are occupied by layers of radius R2 to RN in ascending order. The

effective conductivity is given by

McL
e :=

McL
N +

N−1
∑
j=1

(1+McL
N)(McL

N− j−McL
N− j+1)

(1+McL
N− j+1)(1+McL

N− j)
(

RN− j
RN

)

1−
N−1
∑
j=1

(1+McL
N)(McL

N− j−McL
N− j+1)

(1+McL
N− j+1)(1+McL

N− j)
(

RN− j
RN

)

, (3.103)

where McL
i = nk0

ki−k0
, and Ri

RN
=
(
θ1 +

i−1
∑
j=2

(θ j + θ
j

0 )
) 1

n . The effective conductivity given by

(3.103) attains the lower HS bound McL
e =McL

HS, if the volume fractions are satisfied in the
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Figure 3.4: (a)The microstructure of a N-phase coated sphere to attain lower HS bounds:
the core sphere is occupied by phase-1; the external coating is occupied by two-phase
periodic E-inclusion: the matrix occupied by the 0-phase and the inclusion occupied by i-
phase(i = 2,3, ...,N) in ascending order. (b)The microstructure of a N-phase coated sphere
to attain upper HS bounds: the core sphere is occupied by phase-N−1; the external coating
is occupied by two-phase periodic E-inclusion: the matrix occupied by the N-phase and the
inclusion occupied by i-phase(i = N−2,N−3, ...,1,0) in descending order.

following form

θi = ( Ri
RN

)n− (Ri−1
RN

)n−
i−1
∑
j=1

(1+McL
N)(McL

N− j−McL
N− j+1)

(1+McL
N− j+1)(1+McL

N− j)
(

Ri− j
RN

)(( Ri
RN

)n−1− (Ri−1
RN

)n−1),

θ1 = ( R1
RN

)n,

θ i
0 = ( Ri

RN
)n− (Ri−1

RN
)n−θi i = 2, ...,N.

(3.104)

The above equation (3.104) is a sufficient condition for the lower HS bounds to be attain-

able.

For the N-phase coated spheres attaining upper HS bounds, The microstructure is con-

structed as shown in Fig 3.4(b). The effective conductivity is given by

McU
e :=

McU
0 +

N−1
∑
j=1

(1+McU
0 )(McU

j −McU
j−1)

(1+McU
j−1)(1+McU

j )
(

RN− j
RN

)

1−
N−1
∑
j=1

(1+McU
0 )(McU

j −McU
j−1)

(1+McU
j−1)(1+McU

j )
(

RN− j
RN

)

, (3.105)

where McU
i = nkN

ki−kN
, and Ri

RN
=
(
θN−1+

N−2
∑

j=N−i
(θ j +θ

j
N)
) 1

n . The effective conductivity given

by (3.105) attains the upper HS bound McU
e =McU

HS, if the volume fractions are satisfied in
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the following form

θi = (RN−i
RN

)n− (RN−i−1
RN

)n−
N−i−1

∑
j=1

(1+McU
0 )(McU

j −McU
j−1)

(1+McU
j−1)(1+McU

j )
(

RN−i− j
RN

)((RN−i
RN

)n−1− (RN−i−1
RN

)n−1),

θN−1 = ( R1
RN

)n,

θ i
N = (RN−i

RN
)n− (RN−i−1

RN
)n−θi i = N−2, ...,1,0.

(3.106)

The above equation (3.106) is a sufficient condition for the upper HS bounds to be attain-

able.

3.5 Attainment of the Hashin-Shtrikman bounds

In this section, we construct a new optimal microstructures of multiphase composites to de-

rive the sufficient condition of Hashin-Shtrikman bounds attainment. The building blocks

of our new optimal microstructures consist of three-phase coated spheres and two-phase

periodic E-inclusions [60]. Assuming the bound is optimal by setting Mce = McHS in each

constituent part, we systematically derive the sufficient condition for the attainability of HS

bounds in the constraint of volume fractions of the constituent phases. Specified to four-

phase cases, we compare the new optimal microstructures with four-phase coated sphere.

3.5.1 Brief description of the optimal microstructures

We summarize the properties of optimal three-phase coated sphere of the first type. By

straightforward algebraic calculations, we verify that the effective conductivity given by

(3.40) attains the HS lower bounds if kγ > kα and the HS upper bounds if kγ < kα , i.e.

Mce = McHS, the function Mce(θβ ;Mcβ ,Mcγ) is given by (3.40) as

Mce(θβ ;Mcβ ,Mcγ) :=
Mcγ +θ

1/n
β

[
Mcβ−Mcγ

1+Mcβ
]

1−θ
1/n
β

[
Mcβ−Mcγ

1+Mcβ
]
. (3.107)

For future convenience, we notice that if kγ > kα , the function θβ 7→ Mce(θβ ;Mcβ ,Mcγ)

given by (3.107) increases strictly from Mcγ to Mcβ when θβ increases from 0 to 1; if
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kγ < kα , θβ 7→ Mce(θβ ;Mcβ ,Mcγ) decreases strictly from Mcγ to Mcβ when θβ increases

from 0 to 1. We write the inverse function as

θ̃β = θ̃β (Mce;Mcβ ,Mcγ) :=
[

1−
(Mcβ −Mce)(1+Mcγ)

(1+Mcβ )(Mcγ −Mce)

]n

. (3.108)

and, by (3.37), we rewrite the volume fraction of α and γ-phase as
θ̃α(Mce;Mcβ ,Mcγ) := Mcγ [

1+1/Mcγ

1+1/Mcβ

−1](θ̃ 1/n
β
− θ̃β ),

θ̃γ(Mce;Mcβ ,Mcγ) := 1− Mcβ−Mcγ

1+Mcβ
θ̃

1/n
β
− 1+Mcγ

1+Mcβ
θ̃β .

(3.109)

Subsequently, for brevity we sometimes write the functions given by (3.107), (3.108),

(3.109) simply as Mce, θ̃β , θ̃α , θ̃γ if the omissions do not cause confusion. Next we summa-

rize the properties of a two-phase conductive composite with microstructure being periodic

E-inclusions with symmetric matrix Q. The theory of (periodic) E-inclusions has been de-

veloped in [61]. Note that the symmetric matrix Q is positive semi-definite with Tr(Q) = 1.

To avoid confusion, we denote by ka (kb) the conductivity of the matrix phase (the inclu-

sion phase), and by θa, θb their corresponding volume fractions. Consider the conductivity

problem for an average applied field F ∈ Rn×n,
div[(ka(1−χE)+ kbχE)(∇w+F)] = 0 on Y,

periodic boundary conditions on ∂Y,

where Y is the unit cell of the periodicity, e.g., (0,1)n, χE is the characteristic function of

the periodic E-inclusion in the unit cell Y , and w : Y →Rn are the electric potentials. Then

the field on the periodic E-inclusion is uniform and given by

∇w+F = [I− (I+
Mcb

(1−θb)n
Q−1)−1]F, (3.110)

and the effective conductivity tensor is given by

Ae/ka = I+
nθb

Mcb
I−θaθbQ[

θaMcb

n
Q+

Mc2
b

n2 I]−1. (3.111)

In particular, if Q = I/n, Ae = keI, we have

ke = ka(1+
n

Mce
), Mce = McHS =

1−θb +Mcb

θb
. (3.112)
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Noticing if ka < kb, the function θb 7→ Mce =
1−θb+Mcb

θb
decreases from +∞ to Mcb as θb

increases from 0 to 1; if ka > kb, θb 7→ Mce =
1−θb+Mcb

θb
increases from −∞ to Mcb as θb

increases from 0 to 1, we write the inverse function as

θ̃b = θ̃b(Mce;Mcb) =
1+Mcb

1+Mce
. (3.113)

3.5.2 Attainment of the lower Hashin-Shtrikman bounds

We propose an optimal microstructure attaining the lower HS bounds for (N +1)-phase

composites by combining three-phase coated spheres and two-phase E-inclusion. By (3.3),

we observe that 0 < McL
N < McL

HS < McL
0 , that is, McL

HS ∈ [McL
m+1,McL

m) for some m ∈

{N−1, ...,1,0}, (McL
m =+∞ if m = 0) and McL

HS =
1

ΓL −1 with ΓL = ∑
N
i=0

θi
1+McL

i
, thus we

have

1
1+McL

m
< Γ

L ≤ 1
1+McL

m+1
. (3.114)

The optimal (N +1)-phase composites is constructed by N-parts: (0, i , N)-phase coated

spheres and (0, j)-phase periodic E-inclusion, the volume fraction of each part is denoted by

θ ′k(k =1, ..., N) with θ ′k > 0. To attain the lower HS bounds, it is required that McL
e ≤ McL

HS

for each part of the composite. For (0, i, N)-phase coated sphere, by (3.107) we have

McL
e ∈ (McL

N ,McL
i ). To guarantee McL

e ≤ McL
HS ∈ [McL

m+1,McL
m), the i-phase can only be

chosen between (1, ...,m)-phase as shown in Fig. 3.5 ith-part. Again for (0, j)-phase E-

inclusion, by (3.112) we have McL
e > McL

j . To guarantee McL
e ≤ McL

HS ∈ [McL
m+1,McL

m),

the j-phase can only be chosen between (m+1, ...,N)-phase as shown in Fig. 3.5 jth-part.

Therefore, we construct the microstructure as shown in Fig. 3.5, the ith-part(i =1, ..., m)

consists of the three-phase coated spheres with the core occupied by i-th phase and the

external coating occupied by 0 and N-phase(0-phase as matrix and N-phase as inclusions);

the jth-part(j = m+1, ..., N) consists of two-phase E-inclusion with the matrix occupied

by 0 phase and the inclusion occupied by j-th phase. For the overall composite, we know

the volume fraction of each material phase as θi(i = 0,1, ...,N). By (3.108), we can get



63

Figure 3.5: The optimal microstructure of the overall composites: the ith-part(i = 1, ...,m)
consists of the(0, i , N)-phase coated spheres; the jth-part( j = m+ 1, ...,N) consists of 0,
j-phases periodic E-inclusion with the shape matrix Q = I/n. The volume fraction of each
part of the composite is denoted by θ ′k(k =1, ..., N) with θ ′k > 0 and the total volume fraction
of the composite is ∑

N
k=1 θ ′k = 1.

the volume fraction of i-phase(i = 1, ...,m) in terms of (0, i,N)-phase coated sphere by

replacing β with i, γ with N, and replacing McL
e with McL

HS

θ
β

i = [
1− (1+McL

N)∑
N
i=0

θi
1+McL

i

McL
i −McL

N
1+McL

i

]n i = 1, ...,m. (3.115)

By (3.109) and (3.115), we can get the volume fraction of N-phase in terms of (0, i,N)-

phase coated sphere by replacing γ with N, θβ with θ
β

i , and McL
e with McL

HS as

θ
γ

i = (1+McL
N)

N

∑
i=0

θi

1+McL
i
−

1+McL
N

1+McL
i

θ
β

i i = 1, ...,m. (3.116)

By (3.113) we can get the volume fraction of j-phase( j = m+ 1, ...,N) in terms of (0, j)-

phase E-inclusion by replacing b with j and McL
e with McL

HS as

θ
b
j = (1+McL

j )
N

∑
i=0

θi

1+McL
i

j = m+1, ...,N. (3.117)
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Further, we have the volume fraction of each part θ ′k (k = 1, ...,N) of the composite by

θ
′
i =

θi

θ
β

i

if i = 1, ...,m,

θ
′
j =

θ j

θ b
j

if j = m+1, ...,N−1,

θ
′
N =

1
θ b

N
[θN−

m

∑
i=1

θ
γ

i θ
′
i ],

(3.118)

where θ
′
i (i = 1, ..., m) is the volume fraction of (0, i, N)-phase coated sphere, θ

′
j(j = m+1,

..., N-1) is the volume fraction of (0, j)-phase E-inclusion, and θ
′
N is the volume fraction of

(0, N)-phase E-inclusion. We know the total volume fraction of the composite ∑
N
k=1 θ

′
k = 1

with θ ′k ≥ 0(k =1, ..., N). Specified by McL
e = McL

HS, the conductivity of the constructed

composite achieves the lower HS bounds since each part is optimal. Inserting (3.115),

(3.116), and (3.117) into (3.118), by direct calculations we obtain that

N

∑
k=1

θ
′
k =

N−1

∑
j=m+1

θ j

θ b
j
+

1
θ b

N
[θN +

m

∑
i=1

θi

θ
β

i

(θ b
N−θ

γ

i )] = 1.

with θ ′k ≥ 0 ∀ k = 1, ...,N, We have θ ′N = 1−θ ′1−θ ′2− ...−θ ′N−1 ≥ 0, which gives rise to

the following equation

[θ0 +
N−1

∑
i=1

θi
McL

i −McL
N

1+McL
i

]−n
m

∑
i=1

θi[
McL

i −McL
N

1+McL
i

]n+

[
N

∑
i=1

θi

1+McL
i
]−1

N−1

∑
j=m+1

θ j

1+McL
j
≤ 1.

(3.119)

which, together with (3.114), forms a sufficient condition such that the lower HS bounds

McL
e ≤ McL

HS is attainable (by the constructed composite). The necessary condition (3.10)

and the sufficient condition (3.114), (3.119) are explicit in terms of conductivities and vol-

ume fractions of the constituent phases. We remark that (3.119) is trivially satisfied if

m = 0, the lower HS bounds is attainable when McL
HS ≥ McL

1 , which consists with result

shown in [72, 64]. For three-phase composites(N = 2), we find the necessary condition

(3.10) guarantees (3.114), (3.119) for some m ∈ {N− 1, ...,0}, and hence is sufficient as

well. For N > 2, the attainability of the lower HS bounds can be easily studied for speci-

fied conductivities and volume fractions in three dimensions. In particular, for four-phase
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Figure 3.6: The attainability of lower HS bounds for four-phase composite in three dimen-
sions in terms of θ0 and θN(assuming the intermediate phases have equal volume fraction):
(a) Four-phase optimal microstructure constructed by three-phase coated sphere and two-
phase E-inclusion, material properties given on the top-right of the panel. The region nec-
essary condition violated is labeled as Unattainable, sufficient condition satisfied is labeled
as Attainable, and the gap between the necessary and sufficient condition is labeled as Un-
known. (b) Four-phase coated sphere with material properties given on the top-right of the
panel. The region necessary condition violated is labeled as Unattainable, sufficient con-
dition satisfied is labeled as Attainable, and the gap between the necessary and sufficient
condition is labeled as Unknown.

composites (N = 3), we present the sufficient condition of the lower HS bounds attainabil-

ity of the four-phase optimal microstructure in Fig. 3.6(a), and further compare with the

sufficient condition of four-phase coated sphere in Fig. 3.6(b). We assign specific conduc-

tivities k0,k1,k2,k3 and corresponding volume fractions θ0,θ1,θ2,θ3 (with equal volume

fraction of intermediate phases i.e. θ1 = θ2). Varying (θ0,θ3), we have the region of at-

tainability of the lower HS bounds. In Fig. 3.6(a), the region where the necessary condition

(3.10) violated implies that the lower HS bound is unattainable and is labeled as “Unattain-

able”, while the region where the sufficient condition (3.114) and (3.119) satisfied for some

m ∈ {0, ...,N−1} means that the lower HS bounds is attainable and is labeled as “Attain-

able”. The attainability of the lower HS bounds is unknown for the remaining region,

labeled as “Unknown”. In Fig. 3.6 (b), The region where the necessary condition (3.10)

violated implies that the lower HS bound is unattainable and is labeled as “Unattainable”,
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while the region where the sufficient condition (3.75) satisfied means that the lower HS

bound is attainable and is labeled as “Attainable”. The attainability of the lower HS bound

is unknown for the remaining region, labeled as “Unknown”. Compare the two figures

we observe that when θ3 ∈ (0.45,1), The four-phase optimal microstructure have more

attainable region, whereas when θ3 ∈ (0,0.45), the four-phase coated sphere have more

attainable region.

3.5.3 Attainment of the upper Hashin-Shtrikman bounds

We propose an optimal microstructure attaining the upper HS bounds for (N +1)-phase

composites by combining three-phase coated spheres with two-phase E-inclusions. By

(3.3), we observe that McU
N <McU

HS <McU
0 < 0, that is, McU

HS ∈ (McU
m+1,McU

m] for some m∈

{N−1, ...,1,0}, (McU
m+1 =−∞ if m = N−1) and McU

HS =
1

ΓU −1 with ΓU = ∑
N
i=0

θi
1+McU

i
,

thus we have

1
1+McU

m
≤ Γ

U <
1

1+McU
m+1

. (3.120)

The optimal (N +1)-phase composite is constructed by N-parts: (N, i , 0)-phase coated

spheres and (N, j)-phase E-inclusions, the volume fraction of each part is denoted by θ ′k(k

=0, ..., N-1) with θ ′k > 0. To attain the upper HS bounds, it is required that McU
e ≤McU

HS for

each part of the composite. For (N, i, 0)-phase coated spheres, by (3.107) we have McU
e ∈

(McU
i ,McU

0 ). To guarantee McU
e ≤ McU

HS ∈ [McU
m+1,McU

m), the i-phase can only be chosen

between (m+ 1, ...,N− 1)-phase as shown in Fig. 3.7 ith-part. Again for (N, j)-phase E-

inclusion, by (3.112) we have McU
e < McU

j . To guarantee McU
e ≤ McU

HS ∈ [McU
m+1,McU

m),

the j-phase can only be chosen between (0, ...,m)-phase as shown in Fig. 3.7 jth-part.

Therefore, we construct the microstructure as shown in Fig. 3.7, the ith-part(i =m+1, ..., N-

1) consists of the three-phase coated spheres with the core occupied by i-th phase and the

external coating occupied by N and 0-phase(N-phase as matrix and 0-phase as inclusions);

the jth-part(j = 0, 1, ..., m) consists of two-phase E-inclusion with the matrix occupied by

N-phase and the inclusions occupied by j-th phase. For the overall composite, we know
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Figure 3.7: The microstructure of the overall composite: the ith-part(i =m+1, ..., N-1)
consists of (N, i, 0)-phases coated spheres ; the jth-part(j = 0, 1, ..., m) consists of (N,
j)-phases periodic E-inclusion with the shape matrix Q = I/n. The volume fraction of the
each constituent part is denoted by θ ′k(k =0, ..., N-1) with θ ′k > 0 and ∑

N−1
k=0 θ ′k = 1.

the volume fraction of each material phase as θi(i = 0,1, ...,N). By (3.108), we can get the

volume fraction of i-phase(i = m+ 1, ...,N− 1) in terms of (N, i,0)-phases coated sphere

by replacing β with i, γ with 0, and replacing McU
e with McU

HS

θ
β

i = [
1− (1+McU

0 )∑
N
i=0

θi
1+McU

i

McU
i −McU

0
1+McU

i

]n i = m+1, ...,N−1. (3.121)

By (3.109) and (3.121), we can get the volume fraction of 0-phase in terms of (N, i,0)-

phases coated sphere by replacing γ with 0, θβ with θ
β

i , and McU
e with McU

HS as

θ
γ

i = (1+McU
0 )∑

N
i=0

θi
1+McU

i
− 1+McU

0
1+McU

i
θ

β

i i = m+1, ...,N−1. (3.122)

By (3.113) we can get the volume fraction of j-phase( j = 0, ...,m) in terms of (N, j)-phase

E-inclusion by replacing b with j and McU
e with McU

HS as

θ
b
j = (1+McU

j )
N

∑
i=0

θi

1+McU
i

j = 0, ...,m. (3.123)
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Further, we have the volume fraction of each part θ ′k (k = 0, ...,N−1) by

θ
′
i =

θi

θ
β

i

if i = m+1, ...,N−1,

θ
′
j =

θ j

θ b
j

if j = 1, ...,m,

θ
′
0 =

1
θ b

0
[θ0−

m

∑
i=1

θ
γ

i θ
′
i ],

(3.124)

where θ
′
i (i = m+1, ..., N-1) is the volume fraction of (N, i, 0)-phase coated sphere, θ

′
j(j

= 1, ..., m) is the volume fraction of (N, j)-phase E-inclusion, and θ
′
0 is the volume frac-

tion of (N, 0)-phase E-inclusion. We know the total volume fraction of the composite

∑
N
k=1 θ

′
k = 1 with θ ′k ≥ 0(k = 0, ...,N− 1). Specified by McU

e = McU
HS, the conductivity of

the constructed composite achieves the upper HS bound since each part is optimal. Insert-

ing (3.121), (3.122), and (3.123) into (3.124), by direct calculations we obtain that

N−1

∑
i=0

θ
′
i =

m

∑
j=1

θ j

θ b
j
+

1
θ b

0
[θ0 +

N−1

∑
i=m+1

θi

θ
β

i

(θ b
0 −θ

γ

i )] = 1.

with θ ′i ≥ 0 ∀ i = 0, ...,N−1, We have θ ′0 = 1−θ ′1−θ ′2− ...−θ ′N−1 ≥ 0, which gives rise

to

[θN +
N−1

∑
i=1

θi
McU

i −McU
0

1+McU
i

]−n
N−1

∑
i=m+1

θi[
McU

i −McU
0

1+McU
i

]n+

[
N−1

∑
i=0

θi

1+McU
i
]−1

m

∑
j=1

θ j

1+McU
j
≤ 1.

(3.125)

which, together with (3.120), forms a sufficient condition such that upper HS bounds

McU
e = McU

HS is attainable (by the constructed composite). The necessary condition (3.14)

and the sufficient condition (3.120), (3.125) are explicit in terms of conductivities and vol-

ume fractions of the constituent phases. We remark that (3.125) is trivially satisfied if

m = N− 1, the upper HS bounds is attainable when McU
HS ≤ McU

N−1 , which consists with

result shown in [72, 64]. For three-phase composites (N = 2), we find the necessary condi-

tion (3.14) guarantees (3.120), (3.125) for some m∈{N−1, ...,0}, and hence is sufficient as

well. In particular, for four-phase composites (N = 3), we present the sufficient condition of

the upper HS bounds attainability of four-phase optimal microstructure in Fig. 3.8(a), and
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Figure 3.8: The attainability of upper HS bounds for four-phase composites in three di-
mensions in terms of θ0 and θN (assuming the intermediate phases have the same volume
fraction): (a) Four-phase optimal microstructure constructed by three-phase coated spheres
and two-phase E-inclusions, material properties given on the top-right of the panel. The
region necessary condition violated is labeled as Unattainable, sufficient condition satis-
fied is labeled as Attainable, and the gap between the necessary and sufficient condition is
labeled as Unknown. (b) Four-phase coated sphere with material properties given on the
top-right of the panel. The region necessary condition violated is labeled as Unattainable,
sufficient condition satisfied is labeled as Attainable, and the gap between the necessary
and sufficient condition is labeled as Unknown.

further compare with the sufficient condition of four-phase coated sphere in Fig. 3.8(b). We

assign specific conductivities k0,k1,k2,k3 and corresponding volume fractions θ0,θ1,θ2,θ3

(with equal volume fraction of intermediate phases i.e. θ1 = θ2). Varying (θ0,θ3), we get

the region of attainability of the upper HS bounds. In Fig. 3.8(a), the region where the

necessary condition (3.14) violated implies that the upper HS bounds is unattainable and

is labeled as “Unattainable”, while the region where the sufficient condition (3.120) and

(3.125) satisfied for some m ∈ {0, ...,N−1} means that the upper HS bounds is attainable

and is labeled as “Attainable”. The attainability of the upper HS bounds is unknown for the

remaining region, labeled as “Unknown”. In Fig. 3.8(b), the region where the necessary

condition (3.14) violated implies that the upper HS bounds is unattainable and is labeled as

“Unattainable”, while the region where the sufficient condition (3.102) satisfied means that

the upper HS bounds is attainable and is labeled as “Attainable”. The attainability of the
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upper HS bounds is unknown for the remaining region, labeled as “Unknown”. Compare

the two figures we observe that when θ0 ∈ (0.42,1), The four-phase optimal microstruc-

ture have more attainable region, whereas when θ0 ∈ (0,0.42), the four-phase coated sphere

have more attainable region.

3.6 The GΘ-closure of multiphase conductive composites

Followed by attainment condition of both lower and upper HS bounds, we summarize the

GΘ-closure of multiphase conductive composites. G-closure is a set of tensors, which char-

acterize the effective properties of composite material. Specifically, GΘ-closure problems

are those placing a constraint on the volume fraction Θ to find optimal design of com-

posite. Lurie et al. solved the G-closure problem for two isotropic components using

translation method by finite rank laminates [63, 70]. Grabovsky extended the G-closure

problem for mixtures of two well-ordered possibly anisotropic conductors [32]. Further,

Milton and Cherkaev demonstrated the whole G-closure with infinitely rigid and infinitely

soft constituents [71]. In this section, we focus on the G-closure of multiphase conductive

composites. We demonstrate the necessary condition for the lower HS bounds by (3.10) as[
θ0 +

N−1

∑
i=1

θi
McL

i −McL
N

1+McL
i

]−n N−1

∑
i=1

θi

[
McL

i −McL
N

1+McL
i

]n

≤ 1. (3.126)

and also the sufficient condition for the lower bounds by constructing optimal composite

combining three-phase coated spheres and two-phase E-inclusions, by (3.114) and (3.119)

we have the sufficient condition given by

1
1+McL

m
< Γ

L ≤ 1
1+McL

m+1
, Γ

L =
N

∑
i=0

θi

1+McL
i
, (3.127)

[θ0 +
N−1

∑
i=1

θi
McL

i −McL
N

1+McL
i

]−n
m

∑
i=1

θi[
McL

i −McL
N

1+McL
i

]n+

[
N

∑
i=1

θi

1+McL
i
]−1

N−1

∑
j=m+1

θ j

1+McL
j
≤ 1.

(3.128)
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Figure 3.9: The GΘ-closure in three dimensions in terms of θ0 and θN (the intermediate
phases have the same volume fraction): (a) Three-phase composites with material prop-
erties given on the top-right of the panel, the GΘ-closure is presented in the green region
labeled as “Attainable”, where the sufficient condition(necessary condition) for attainabil-
ity of HS bounds are satisfied. (b) Four-phase composites with material properties given
on the top-right of the panel, the GΘ-closure is presented in the green region labeled as
“Attainable”, where the sufficient condition for attainability of HS bounds are satisfied.

In particular, we present four-phase coated sphere as an alternative four -phase optimal

microstructure to attain the lower HS bounds. The sufficient condition of lower HS bounds

attainment is given by (3.75), that is

θ1 = (R1
R3
)n,
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(
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θ 3
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(3.129)

where the total volume fraction of 0-phase is given by θ0 = θ 2
0 +θ 3

0 .

Further, we demonstrate the necessary condition for the upper HS bounds by (3.14) as[
θN +

N−1

∑
i=0

θi
McU

i −McU
0

1+McU
i

]−n N−1

∑
i=0

θi

[
McU

i −McU
0

1+McU
i

]n

≤ 1. (3.130)

and also the sufficient condition for the upper bounds by constructing optimal composite

combining three-phase coated spheres and two-phase E-inclusions by (3.120) and (3.125)
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we have the sufficient condition given by

1
1+McU

m
≤ Γ

U <
1

1+McU
m+1

, Γ
U =

N

∑
i=0

θi

1+McU
i
, (3.131)
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(3.132)

In particular, we present four-phase coated sphere as an alternative four -phase optimal

microstructure to attain the upper HS bounds. The sufficient condition of upper HS bounds

attainment is given by (3.102) , that is
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(3.133)

where the total volume fraction of 3-phase is given by θ3 = θ 1
3 +θ 0

3 . Combining the nec-

essary and sufficient attainment conditions of the lower and upper HS bound in terms of

θ , we get the GΘ-closure of multiphase conductive composites. As shown in Fig. 3.9,

we present GΘ-closure of three-phase and four-phase conductive composites in terms of

θ0,θN . For three-phase conductive composites, The GΘ-closure is presented in the green

region labeled as “Attainable”, which is satisfied by the sufficient condition of new opti-

mal microstructure (3.127),(3.128),(3.131),(3.132), and the necessary condition guarantees

the sufficient condition in this region; For the four-phase conductive composites, The GΘ-

closure is presented in the green region labeled as “Attainable”, which is satisfied by the

sufficient condition of new optimal microstructure (3.127),(3.128),(3.131),(3.132) and the

four-phase coated sphere (3.129)(3.133). there is an unknown region presented in brown

region, where we expect to construct more optimal microstructures to further expand the

GΘ-closure.
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3.7 Summary and discussion

We have achieved the set of optimal effective properties of multiphase composites by HS

bounds, and we have established the HS bounds attainability of multiphase composites by

the necessary conditions and sufficient conditions in the constraint of volume fractions of

the constituent phases. By constructing a new three-phase coated sphere and four-phase

coated sphere, we demonstrate that optimal conductivity is attainable and generalize the

coated sphere to a larger phase. Further, we propose new optimal microstructures com-

prised of three-phase coated spheres and two-phase E-inclusions, and systematically derive

the sufficient condition for the attainability of HS bounds in terms of conductivities and

volume fractions of the constituent phases. For three-phase composites, the necessary con-

dition guarantees the sufficient condition; whereas, for four-phase composite, there is a

gap between sufficient condition and necessary condition when θN is small, we apply both

four-phase coated sphere and four-phase optimal microstructure to minimize the gap. Com-

bining the necessary and sufficient condition of HS bounds attainability, we can precisely

characterize the G-closure and describe effective properties of multiphase conductive ma-

terials for a broader range, which are anticipated to have applications in actuators, phase

transitions, smart materials, and graded materials. Finally, the G-closure can be generalized

to other problems such as bulk modulus to of elastic material and permittivity of dielectric

materials.
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Chapter 4

Phase transitions of 3D printed artificial shape memory
crystals

4.1 Introduction

A lattice structure consisting of repeating structure elements, as called unit cells, can be

tessellated along any axis with no gaps between cells [40]. The versatility of additive

manufacturing allows for the fabrication of more creative and complicate lattice structures

[88, 21, 43, 44, 10, 65, 106], which can be applied to mimic some unique properties ob-

served in shape memory alloys. Shape memory alloys (SMAs) are a group of metallic

alloys that can recover to their original shape when subjected to a stimulus such as ther-

momechanical or magnetic variations. The transformation phenomenon between austenite

(one homogeneous phase) and martensite (other phases) is known as the shape memory ef-

fect [99, 15, 83, 84], which makes SMAs have applications in numerous commercial fields

[73], such as in structures and composites [29], automotive and aerospace [98, 35, 14],

microactuators and robotics [53, 97], and biomedical [67, 74]. As shown in the aforemen-

tioned works, most applications are limited to NiTi-based SMAs. However, NiTi-based

SMAs have two major limitations: high materials cost and the narrow temperature range.

Though the cost of iron-based and copper-based SMAs are low, their applications are lim-

ited due to instability, impracticability, and poor thermo-mechanic performance. Therefore,

it is important to stabilize and improve the shape-memory effect in known materials and

develop new materials.

To understand the phase transformation process between austenite and martensite and

shape memory effect, James theoretically approached these fine phase mixtures based on
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free energy minimization. The energetic interpretation of these configurations (phases) was

in terms of minimizing sequences rather than minimizers. By studying the minimizers and

minimizing sequences, they predicted that the microstructure is both a twinned marten-

site interface and an austenite/finely twinned martensite interface [48, 49]. According to

the energy minimization, Bhattacharya further illustrated that when the lattice parameters

satisfying some significant restrictions, energy minimization with many variants (phases)

naturally results in the microstructure. For polycrystals, the greater the change in sym-

metry during transformation, the greater the recoverable strain, their study suggested that

the microstructure and macroscopic properties depended very delicately on the lattice pa-

rameters [13, 12]. Remarkable progress in mathematically understanding the relationship

between the microstructure formation and lattice parameters of SMAs boosts the design

of new materials, advances in the understanding of the relation between microscopic and

macroscopic deformation also play a key role [50]. However, designing such new mate-

rial is challenging because compatibility conditions must be considered when multi phases

coexist at martensite.

To mimic the shape memory effect, we propose a two-dimensional (2D) lattice with

simple stress-induced phase transitions [103, 96]. Based on a one-dimensional (1D) elas-

tic bar model, we investigate the free energy density before and after buckling by free

energy minimization and extend to a two-dimensional lattice structure under compressive

load. The microstructure of the lattice structure may easily buckle by design, while the

macrostructure of the lattice structure is in compression. The structural behavior of the

entire lattice structure can be represented by the unit cell when a set of periodic boundary

conditions is applied. By the Cauchy-Born rule, we adopt the continuum model of the 2D

unit cell and assume that the bulk-free energy density depends on the local change in shape

measured by the deformation gradient. Minimizing the total free energy based on the ge-

ometrically linear theory, we get four distinct stable configurations corresponding to four

stable phases, the transitions between these phases of the unit cell are regarded as phase

transformations of the lattice structure. Applying the Hadamard compatibility condition,
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we found that when the lattice satisfies significant restrictions on the parameters, the mi-

crostructure forms as the lattice tends to keep in the bottom of the energy wells. Further, we

conduct numerical simulation to validate theoretical predictions. we observe the buckling

phenomenon of the 1D beam and 2D unit cell, and extend the analysis to 50 by 50 lattice

structures.

The paper is organized as follows. First, in Section 4.2.1 we present the general scheme

of deriving the free energy density before and after buckling of the 1D elastic bar. In

Section 4.2.2 we extend to a 2D unit cell model with general deformation gradients and get

four distinct stable configurations. We discuss the compatibility condition of the borderline

where multi phases coexist and discuss the microstructure formed by two different types

of load. In section 4.3 we study the buckling phenomenon of unit cell and lattice structure

under biaxial loading numerically and compare the results with theoretical predictions.

Finally, we summarize and present an outlook of possible applications in Section 4.4.

4.2 Material models

4.2.1 1D elastic bar deformation

In this section, we construct a one-dimensional (1D) elastic bar model to investigate free

energy density under compression, and we obtain free energy density before and after buck-

ling by the minimization of the total free energy. Let u be the displacement and ε = u,x

be the strain. Under the application of an external force (or stress) σ e [25], the total free

energy of the system is identified as

Ftot(u) =
∫ 1

0
[W (u,x )−σ

eu,x ]dx, (4.1)

where W (ε) is the free energy density of the elastic bar placed in the soft loading device,

that is, one end of the elastic bar is firmly fixed, the other end subjects to a given dead load,

and the boundary condition is u(0) = u′(0) = u′(L) = 0 and u(L) is determined by external

force σ e. For a stress-induced phase transition model in the elastic bar, we describe the
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free energy density in the following form

W (ε) = min{W1(ε),W2(ε)},


W1(ε) =

1
2E1ε2 in compression,

W2(ε) =
1
2E2ε2 + c1 in buckling,

(4.2)

where E1,E2 are Young’s modulus with E2 < E1, and c1 is a constant value to be deter-

mined. The free energy density of the two states are equal at the critical strain, and the

critical strain is derived as εcr = − 1
γ+1 with dimensionless parameter γ = AL2

8π2I by (4.60)

(see Section 4.5 for detailed calculations). Combining the above free energy density equa-

tions (4.2), we can express c1 in terms of E1,E2 as

c1 =
1
2
(E1−E2)(

1
γ +1

)2. (4.3)

According to the energy criterion, the equilibrium configurations satisfy the Euler-Lagrange

equations ∂W
∂ε

= σ e, we describe the minimum total free energy in the following form

Fmin
tot (ε) =


− (σ e)2

2E1
if σ e > σcr,

− (σ e)2

2E1
=− (σ e)2

2E2
+ 1

2(E1−E2)(
1

γ+1)
2 if σ e = σcr,

− (σ e)2

2E2
+ 1

2(E1−E2)(
1

γ+1)
2 if σ e < σcr,

(4.4)

where σcr =
E1
2γ

is the critical stress, which has been calculated by (4.49). Inserting the

critical stress into above equation, we get E2 in terms of E1 as

E2 =
(γ +1)2

4γ2 E1. (4.5)

Inserting (4.3) and (4.5) back to (4.2), we have the free energy density of 1D elastic bar as

W (ε) =


W1(ε) =

1
2E1ε2 if ε > εcr,

W2(ε) =
(γ+1)2

8γ2 E1ε2 +E1(
1

2(γ+1)2 − 1
8γ2 ) if ε ≤ εcr,

(4.6)

where the critical strain εcr =− 1
γ+1 with γ = AL2

8π2I . We remark that since the system is under

compressive load, both the external load and the strain are negative values. Therefore, when

ε > εcr the system is in compression and when ε ≤ εcr the system is in buckling, and this

clarification applies to all the following sections.



78

4.2.2 2D lattice with general deformation gradient

2D unit cell model

In this section, we construct a two-dimensional (2D) unit cell under the compressive load

to investigate the stress-induced phase transitions. A lattice structure consists of repeating

unit cells, when a set of periodic boundary conditions is applied to the representative unit

cell, its response represents the structural behavior of the entire lattice structure. Therefore,

based on the selection of the smallest repeatable unit of the geometry, we generalize the

unit cell to the generic of the lattice structure. The undeformed unit cell is constructed

as shown in Fig. 4.1(a) in ea-eb coordinate, the unit cell consist of four frame beams and

two diagonal beams with one diagonal beam along ea direction and the other one along eb

direction. Applying load P in the following form

Figure 4.1: Unit cell in ea-eb coordinate (a) undeformed (b) deformed

P =

 Paa Pab

Pab Pbb

 , (4.7)

the unit cell deforms as illustrated in Fig. 4.1(b). The configuration of the deformed unit

cell can be described by a deformation gradient F ∈ R2×2 relative to the reference square.

In other words, corresponding to the deformation gradient F, the vertices of the unit cell is
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given by

y = Fx, x ∈ V0, (4.8)

where V0 = {(x,y) : x,y ∈ {0,±
√

2
2 l,
√

2l}} denotes the set of vertices of the square of

side length l. In this study, we adopt a geometric linear theory [11], which uses transfor-

mation strains instead of transformation matrices to characterize different configurations.

Therefore, for prescribed vertices positions of the deformed unit cell, we can describe the

deformation gradient F as

F = I+E =

 1+ εaa εab

εab 1+ εbb

 , (4.9)

where the Green-Lagrange Strain E is given in the following form

E =
1
2
(FT +F)− I =

 εaa εab

εab εbb

 . (4.10)

The strain of the deformed diagonal beams are given by (4.10), and we get the linearized

strain of the deformed frame beams along e1 and e2 direction as ε11, ε22, respectively,
ε11 = e1 ·Ee1 =

1
2(εaa−2εab + εbb),

ε22 = e2 ·Ee2 =
1
2(εaa +2εab + εbb),

(4.11)

where e1 = [
√

2
2 ,
√

2
2 ]T , e2 = [−

√
2

2 ,
√

2
2 ]T are unit vector in 45◦ and 135◦, respectively.

Recall that the free energy density of 1D elastic bar has already been demonstrated by (4.6),

by integrating along the whole beam, we get elastic energy of a beam in the following form

W (ε) =


W1(ε) =

1
2E1ALε2 if ε > εcr,

W2(ε) =
(γ+1)2

8γ2 E1ALε2 +E1AL( 1
2(γ+1)2 − 1

8γ2 ) if ε ≤ εcr,

(4.12)

where E1 is the Yong’s Modulus and A,L is the cross section area and length of the beam,

respectively, and εcr =− 1
1+γ

is the critical strain with γ = AL2

8π2I . When ε > εcr, the beam is

in compression and the elastic energy is given by W1(ε); when ε < εcr, the beam is buckled
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and the elastic energy is given by W2(ε). We design the 2D unit cell as follows, the four

frame beams are strong enough when the load is applied, they are only in compression with

the deformation strains given by (4.11). While the two diagonal beams may easily buckle

with the deformation strains given by (4.10). Consequently, the total elastic energy may

have four distinct cases: the first case is both diagonal beams in compression; the second

case is the only diagonal beam in ea direction buckled; the third case is the only diagonal

beam in eb direction buckled; the fourth case is both diagonal beams buckled. Therefore,

we describe the total elastic energy of the 2D unit cell by the summation of four frame

beams and two diagonal beams as

W ∗(E) =
6

∑
i=1

W i(E)

=



E1A1L1
(1

4(εaa−2εab + εbb)
2 + 1

4(εaa +2εab + εbb)
2)

+1
2E1A2L2ε2

aa +
1
2E1A2L2ε2

bb if εaa > εcr,εbb > εcr,

E1A1L1
(1

4(εaa−2εab + εbb)
2 + 1

4(εaa +2εab + εbb)
2)

+ (γ2+1)2

8γ2
2

E1A2L2ε2
aa +

1
2E1A2L2ζ + 1

2E1A2L2ε2
bb if εaa ≤ εcr,εbb > εcr,

E1A1L1
(1

4(εaa−2εab + εbb)
2 + 1

4(εaa +2εab + εbb)
2)

+1
2E1A2L2ε2

aa +
(γ2+1)2

8γ2
2

E1A2L2ε2
bb +

1
2E1A2L2ζ if εaa > εcr,εbb ≤ εcr,

E1A1L1
(1

4(εaa−2εab + εbb)
2 + 1

4(εaa +2εab + εbb)
2)

+ (γ2+1)2

8γ2
2

E1A2L2ε2
aa +

(γ2+1)2

8γ2
2

E1A2L2ε2
bb +E1A2L2ζ if εaa < εcr,εbb < εcr,

(4.13)

where A1,A2 are the cross section of the frame beams and diagonal beams respectively,

and L1,L2 are the length of frame beams and diagonal beams respectively, I2 is the Area

Moment of Inertia of diagonal beam, and dimensionless parameter γ2 =
A2L2

2
8π2I2

and ζ =

( 1
(γ2+1)2 − 1

4γ2
2
). Further we introduce a new dimensionless parameter η = A1L1

A2L2
, and rewrite
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the above equation in vector form, we have

W ∗(E) =



1
2E1A2L2φ̂ ·KI φ̂ if εaa > εcr,εbb > εcr,

1
2E1A2L2φ̂ ·KII φ̂ + 1

2E1A2L2ζ if εaa ≤ εcr,εbb > εcr,

1
2E1A2L2φ̂ ·KIII φ̂ + 1

2E1A2L2ζ if εaa > εcr,εbb ≤ εcr,

1
2E1A2L2φ̂ ·KIV φ̂ +E1A2L2ζ if εaa < εcr,εbb < εcr,

(4.14)

where we introduce a strain vector φ̂ as

φ̂ =


εaa

εbb

εab

 , (4.15)

and the coefficient matrix of four phases as

KI =


η +1 η 0

η η +1 0

0 0 4η

 , KII =


η + (γ2+1)2

4γ2
2

η 0

η η +1 0

0 0 4η

 ,

KIII =


η +1 η 0

η η + (γ2+1)2

4γ2
2

0

0 0 4η

 , KIV =


η + (γ2+1)2

4γ2
2

η 0

η η + (γ2+1)2

4γ2
2

0

0 0 4η

 .
(4.16)

We plot the second derivative of total elastic energy of the 2D unit cell with specific values

of parameter γ = 380, η = 7.73, and the critical strain in percent εcr = − 1
γ+1 = −0.26%.

From Fig. 4.2 it can be see that the second derivative of total elastic energy are divided

into four region: region I is all the beams are in compression with εaa > εcr,εbb > εcr;

region II is the diagonal beam in ea direction buckled with εaa ≤ εcr,εbb > εcr; region III

is the diagonal beam in eb direction buckled with εaa > εcr,εbb ≤ εcr; and region IV is

both diagonal beam buckled with εaa < εcr,εbb < εcr. Given an applied load by (4.7), the

corresponding deformation strain and elastic energy are given by (4.10) and (4.14), so we
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Figure 4.2: The second derivative of total elastic energy of 2D unit cell.

can characterize the total free energy as

Ftot =
6

∑
i=1

W i(E)−
∫

P ·Edx

=



E1A2L2
(1

2 φ̂ ·KI φ̂
)
−L2φ̂ · P̂ if εaa > εcr,εbb > εcr,

E1A2L2
(1

2 φ̂ ·KII φ̂ + 1
2ζ
)
−L2φ̂ · P̂ if εaa ≤ εcr,εbb > εcr,

E1A2L2
(1

2 φ̂ ·KIII φ̂ + 1
2ζ
)
−L2φ̂ · P̂ if εaa > εcr,εbb ≤ εcr,

E1A2L2
(1

2 φ̂ ·KIV φ̂ +ζ
)
−L2φ̂ · P̂ if εaa < εcr,εbb < εcr,

(4.17)

where we introduce a vector form of load as

P̂ =


Paa

Pbb

2Pab

 .
Assuming that the unit cell will occupy the state that minimizes the total energy, by the

principle of minimum free energy, the equilibrium configuration is given by

∂Ftot

∂ φ̂
= 0,
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which gives us 

KI φ̂ = P̂
E1A2

if εaa > εcr,εbb > εcr,

KII φ̂ = P̂
E1A2

if εaa ≤ εcr,εbb > εcr,

KIII φ̂ = P̂
E1A2

if εaa > εcr,εbb ≤ εcr,

KIV φ̂ = P̂
E1A2

if εaa < εcr,εbb < εcr.

(4.18)

By direct calculation, we can describe the strain vector φ̂ in terms of the load vector P̂ as

φ̂ = K−1
I

P̂
E1A2

if εaa > εcr,εbb > εcr,

φ̂ = K−1
II

P̂
E1A2

if εaa ≤ εcr,εbb > εcr,

φ̂ = K−1
III

P̂
E1A2

if εaa > εcr,εbb ≤ εcr,

φ̂ = K−1
IV

P̂
E1A2

if εaa < εcr,εbb < εcr,

(4.19)

where the inverse of coefficient matrix of four phases K−1
I , K−1

II , K−1
III and K−1

IV have the

following form,

K−1
I =


a b 0

b a 0

0 0 1
4η

=


η+1
2η+1

−η

2η+1 0
−η

2η+1
η+1

2η+1 0

0 0 1
4η

 ,

K−1
II =


c d 0

d e 0

0 0 1
4η

=


4γ2

2 (η+1)
4ηγ2

2+(η+1)(γ2+1)2
−4ηγ2

2
4ηγ2

2+(η+1)(γ2+1)2 0

−4ηγ2
2

4ηγ2
2+(η+1)(γ2+1)2

4ηγ2
2+(γ2+1)2

4ηγ2
2+(η+1)(γ2+1)2 0

0 0 1
4η

 ,

K−1
III =


e d 0

d c 0

0 0 1
4η

=


4ηγ2

2+(γ2+1)2

4ηγ2
2+(η+1)(γ2+1)2

−4ηγ2
2

4ηγ2
2+(η+1)(γ2+1)2 0

−4ηγ2
2

4ηγ2
2+(η+1)(γ2+1)2

4γ2
2 (η+1)

4ηγ2
2+(η+1)(γ2+1)2 0

0 0 1
4η

 ,

K−1
IV =


f g 0

g f 0

0 0 1
4η

=


4γ2

2 (4ηγ2
2+(γ2+1)2)

(γ2+1)2(8ηγ2
2+(γ2+1)2)

−16ηγ4
2

(γ2+1)2(8ηγ2
2+(γ2+1)2)

0

−16ηγ4
2

(γ2+1)2(8ηγ2
2+(γ2+1)2)

4γ2
2 (4ηγ2

2+(γ2+1)2)

(γ2+1)2(8ηγ2
2+(γ2+1)2)

0

0 0 1
4η

 .

(4.20)
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Here and subsequently, we will apply the parameters a, b, c, d, e to simplify the expression.

Inserting (4.19) into (4.17) , we have the minimum total free energy of the 2D unit cell as

Fmin
tot =



− L2
2E1A2

P̂ ·K−1
I P̂ if εaa > εcr,εbb > εcr,

− L2
2E1A2

P̂ ·K−1
II P̂+ 1

2E1A2L2ζ if εaa ≤ εcr,εbb > εcr,

− L2
2E1A2

P̂ ·K−1
III P̂+ 1

2E1A2L2ζ if εaa > εcr,εbb ≤ εcr,

− L2
2E1A2

P̂ ·K−1
IV P̂+E1A2L2ζ if εaa < εcr,εbb < εcr.

(4.21)

We observe from Fig. 4.3 that in terms of dimensionless form of Paa and Pbb, the minimum

total free energy has four distinct configurations corresponding to four phases: phase I all

the beams in compression (blue region); phase II the diagonal beam in ea direction buckled

(red region); phase III the diagonal beam in eb direction buckled (green region); phase

IV both diagonal beams buckled (magenta region). When two-phases (or three-phases)

coexist, the overlap region forms a borderline which is illustrated in the dark line, we will

discuss in detail the compatibility of the borderline in the following sections.

4.2.3 Compatibility of the borderline

In this section, we will check the compatibility of the borderline where multi-phase coexist

based on the continuum theory. We rewrite the minimum total free energy (4.21) into

dimensionless form in terms of P̃ = P̂
E1A2

as

Fmin
tot

E1A2L2
=



−1
2 P̃ ·K−1

I P̃ if εaa > εcr,εbb > εcr,

−1
2 P̃ ·K−1

II P̃+ 1
2ζ if εaa ≤ εcr,εbb > εcr,

−1
2 P̃ ·K−1

III P̃+ 1
2ζ if εaa > εcr,εbb ≤ εcr,

−1
2 P̃ ·K−1

IV P̃+ζ if εaa < εcr,εbb < εcr.

(4.22)

where the dimensionless parameter ζ = ( 1
(γ2+1)2 − 1

4γ2
2
) as previous definition. Applying

load P̃, the corresponding strain matrices of three phases E1, E2 and E3 are given by (4.10)
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Figure 4.3: Minimum total free energy with specific values of parameter γ = 380, η = 7.73.
Phase I (Blue region) with εaa > εcr,εbb > εcr, Phase II (Red region) with εaa ≤ εcr,εbb >
εcr, Phase III (Green region) with εaa > εcr,εbb ≤ εcr, Phase IV (Magenta region) with
εaa < εcr,εbb < εcr.

and (4.19) as,

E1 =

(a+b)P̃aa 0

0 (b+a)P̃bb

 , (4.23)

E2 =

(c+d)P̃aa 0

0 (d + e)P̃bb

 , (4.24)

E3 =

(e+d)P̃aa 0

0 (c+d)P̃bb

 . (4.25)

We will discuss the compatibility of borderline by three cases.

Case I: borderline of phase I and phase II coexist

When phase I and phase II coexist, the overlap region forms a borderline. As shown in

Fig. 4.3, we find that the borderline is a straight line (black line between blue and red

region), which is determined when minimum total free energy of phase I and phase II are
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equal, that is

−1
2

P̃ ·K−1
I P̃ =−1

2
P̃ ·K−1

II P̃+
1
2

ζ . (4.26)

Simplify the above equation, by (4.20) we can get the borderline equation in terms of

parameters a,b,c,d,e as

(c−a)
ζ

P̃2
aa +

2(d−b)
ζ

P̃aaP̃bb +
(e−a)

ζ
P̃2

bb = 1 if P̃aa, P̃bb > P̃cr. (4.27)

where ζ = ( 1
(γ2+1)2 − 1

4γ2
2
), and P̃cr is the intersection point calculated by setting P̃aa = P̃bb,

that is

P̃cr =−
√

ζ

c+ e+2d−2a−2b
. (4.28)

Since the deformation is continuous, the kinematic compatibility condition of two phase

for some vectors a, n̂ is given by [48, 49, 12]

E1−E2 =
1
2
(a⊗ n̂+ n̂⊗a), (4.29)

where E1,E2 are strain of phase I and phase II respectively, which is given by (4.23). With

straightforward calculation we get∆εaa 0

0 ∆εbb

=

 a1n1
1
2(a1n2 +a2n1)

1
2(a1n2 +a2n1) a2n2

 ,
where ∆εaa = (a+b− c−d)P̃aa and ∆εbb = (a+b−d− e)P̃bb are the strain difference of

phase I and phase II. The above equation give us the compatibility equation as

∆εaa

∆εbb
=−(n1

n2
)2 ≤ 0,

which can be rewritten as

∆εaa∆εbb ≤ 0. (4.30)

Inserting the specific values of ∆εaa,∆εbb into above equation, we can get the compatibility

condition as

(a− c)(b−d)P̃2
aa +

(
(b−d)2 +(a− c)(a− e)

)
P̃aaP̃bb +(b−d)(a− e)P̃2

bb ≤ 0. (4.31)

Inserting the borderline equation (4.27) into the compatibility condition (4.31), we find the

whole borderline of phase I and phase II coexist is compatible.
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Case II: borderline of phase I and phase III coexist

When phase I and phase III coexist, the overlap region forms a borderline. As shown in

Fig. 4.3, we find that the borderline is a straight line (black line between blue and green

region), which is determined when the minimum total free energy of phase I and phase III

are equal, that is

−1
2

P̃ ·KIP̃ =−1
2

P̃ ·KIIIP̃+
1
2

ζ . (4.32)

Simplify the above equation, by (4.20) we can get the borderline equation in terms of

parameters a,b,c,d,e as

(e−a)
ζ

P̃2
aa +

2(d−b)
ζ

P̃aaP̃bb +
(c−a)

ζ
P̃2

bb = 1 if P̃aa, P̃bb > P̃cr. (4.33)

where ζ = ( 1
(γ2+1)2 − 1

4γ2
2
) and P̃cr = −

√
ζ

c+e+2d−2a−2b by (4.28). Since the deformation

is continuous, the kinematic compatibility condition of two phase for some vectors a, n̂ is

given by [48, 49, 12]

E1−E3 =
1
2
(a⊗ n̂+ n̂⊗a), (4.34)

where E1,E3 are strain of phase I and phase III respectively, which is given by (4.23). With

straightforward calculation we get∆εaa 0

0 ∆εbb

=

 a1n1
1
2(a1n2 +a2n1)

1
2(a1n2 +a2n1) a2n2

 ,
where ∆εaa = (a+b−d− e)P̃aa and ∆εbb = (a+b− c−d)P̃bb are the strain difference of

phase I and phase III. The above equation give us the compatibility equation as

∆εaa

∆εbb
=−(n1

n2
)2 ≤ 0,

which can be rewritten as

∆εaa∆εbb ≤ 0. (4.35)
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Inserting the specific values of ∆εaa, ∆εbb into above equation, we can get the compatibility

condition as

(a− e)(b−d)P̃2
aa +

(
(b−d)2 +(a− e)(a− c)

)
P̃aaP̃bb +(b−d)(a− c)P̃2

bb ≤ 0. (4.36)

Inserting the borderline equation (4.33) into the compatibility condition (4.36), we find the

whole borderline of phase I and phase III coexist is compatible.

Case III: borderline of phase II and phase III coexist

When phase II and phase III coexist, the overlap region forms a borderline. As shown in

Fig. 4.3, we find that the borderline is a straight line (black line between red and green

region). We can express the borderline of phase II and phase III coexist as

−1
2

P̃ ·KIIP̃+
1
2

ζ =−1
2

P̃ ·KIIIP̃+
1
2

ζ . (4.37)

Simplify the above equation, by (4.20) we can get the borderline equation in terms of

parameters a,b,c,d,e as

P̃aa− P̃bb = 0 if −
√

ζ

2 f+2g−c−e−2d ≤ P̃aa, P̃bb ≤−
√

ζ

c+e+2d−2a−2b . (4.38)

Since the deformation is continuous, the kinematic compatibility condition of two phase

for some vectors a, n̂ is given by [48, 49, 12]

E2−E3 =
1
2
(a⊗ n̂+ n̂⊗a), (4.39)

where E2,E3 are strain of phase II and phase III respectively, which is given by (4.23).

With straightforward calculation we get∆εaa 0

0 ∆εbb

=

 a1n1
1
2(a1n2 +a2n1)

1
2(a1n2 +a2n1) a2n2

 ,
where ∆εaa = (c− e)P̃aa and ∆εbb = (e− c)P̃bb are the strain difference of phase II and

phase III. The above equation give us the compatibility equation as

∆εaa

∆εbb
=−(n1

n2
)2 ≤ 0,
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which can be rewritten as

∆εaa∆εbb =−(c− e)2P̃aaP̃bb ≤ 0. (4.40)

Inserting (4.38) into (4.40), we get the compatibility condition for phase II and phase III

borderline

−(c− e)2P̃2
aa ≤ 0. (4.41)

which means that the whole borderline of phase II and phase III coexist is compatible.

4.2.4 Microstructure formation

From the previous section, we find that the borderline is compatible when multi-phase co-

exist, minimizing the total free energy based on the geometrically linear theory of the 2D

unit cell, we get four distinct stable configurations corresponding to four stable phases, and

the transitions between these phases of the 2D unit cell can be regarded as phase transfor-

mations of the lattice structure. In the transformation, the corresponding strain is the only

input, the microstructure arises as a consequence of energy minimization, which can pre-

dict various aspects of microstructure and macrostructure properties of the lattice structure.

In this section, we discuss when applying two different loads, what kind of microstructure

it will form. The microstructure forms as a consequence of the multi-phase (multi-well)

structure of the total free energy minimization. For a unit cell subjected to a boundary con-

dition, it tends to keep at the bottom of the energy wells and satisfy the imposed boundary

conditions [11]. If the boundary condition corresponds to one of the energy wells, then

the lattice can easily accommodate it. If on the other hand, the applied boundary condi-

tion corresponds to multi-energy wells, then the lattice can satisfy boundary condition by

making a mixture of different energy wells. However, the mixture cannot be arbitrary due

to the requirement of kinematic compatibility or coherent deformation. It is found that

fine mixing of the unit cells will greatly enhance the ability of lattice to meet the kinematic

compatibility restrictions. Therefore, the lattice structure typically contains microstructure,
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and the microstructure is reversible and macroscopically coherent. We will demonstrate the

microstructure formation by two cases.

Case I

The first case is when we apply load in the form as

P = σ

1 0

0 1

 ,
where σ is the stress under compression. Based on continuum theory, the deformation is

continuous, so the jump in strain across the surface must be a rank-one matrix, the well-

known Hadamard jump condition or compatibility condition ensures that the interface is

coherent [11]. Given the applied load, we get the constant strain matrices of three phases

E1, E2 and E3 by (4.10) and (4.19) respectively, it is possible to choose constant vectors

a, b, d, n̂, m̂ and q̂ for some vectors a, b and d, the interface is necessarily a plane with

normal n̂, m̂ and q̂. The strain of three phases are given by

E1 =

(a+b)σ 0

0 (b+a)σ

 ,
E2 =

(c+d)σ 0

0 (d + e)σ

 ,
E3 =

(e+d)σ 0

0 (c+d)σ

 .

By (4.28), σcr = P̃cr =−
√

ζ

c+e+2d−2a−2b is the critical load at the intersection point where

the three phase (phase I, phase II and phase III) coexist, the kinematic compatibility equa-

tions to form an interface are given by

E1−E2 =
1
2
(a⊗ n̂+ n̂⊗a),

E1−E3 =
1
2
(b⊗ m̂+ m̂⊗b),

E2−E3 =
1
2
(d⊗ q̂+ q̂⊗d).
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By direct calculation, we get the two solutions of the interface as

a =

√(c− e)[(c+d)− (a+b)]σ√
(c− e)[(a+b)− (d + e)]σ

 , n̂ =

−√ (c+d)−(a+b)
c−e√

(a+b)−(d+e)
c−e

 ,
b =

√(c− e)[(a+b)− (d + e)]σ√
(c− e)[(c+d)− (a+b)]σ

 , m̂ =

 √ (a+b)−(d+e)
c−e

−
√

(c+d)−(a+b)
c−e

 ,
d =

√2(c− e)σ
√

2(c− e)σ

 , q̂ =

 √
2

2

−
√

2
2

 .
We illustrate the microstructure of three phases coexist in Fig. 4.4, we find that phase I

(blue unit cell) and phase II (red unit cell) coexist with interface normal vector n̂, phase I

(blue unit cell) and phase III (green unit cell) coexist with interface normal vector m̂ and

phase II (red unit cell) and phase III (green unit cell) coexist with interface normal vector

q̂. On the interface, the unit cells of the two phases are coherent based on the compatibility

condition. The unit cells in phase I (blue unit cell) keep the square shape under critical

loading σcr, whereas the unit cells in phase II (red unit cell) are deformed to parallelogram

under critical loading and the diagonal beam in ea direction buckled, and the unit cells

in phase III (green unit cell) are deformed to parallelogram and the diagonal beam in eb

direction buckled.

Case II

The second case is when critical loading applied in the following form with σa 6= σb,

P =

σa 0

0 σb

 .
When σa, σb satisfy the borderline equation (4.27) where phase I and phase II coexist, that

is

(c−a)σ2
a +2(d−b)σaσb +(e−a)σ2

b = ζ , (4.42)

where ζ = 1
(γ2+1)2− 1

4γ2
2
. The corresponding strain of phase I and phase II can be determined
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Figure 4.4: Microstructure of three phase coexist with specific values of parameter γ = 380,
η = 7.73 and σ = σcr =−0.0336: phase I (blue unit cell), phase II (red unit cell) and phase
III (green unit cell). Phase I and phase II coexist with interface normal vector n̂, phase I
and phase III coexist with interface normal vector m̂, and phase II and phase III coexist
with interface normal vector q̂.

by (4.10) and (4.19) respectively,

E1 =

(a+b)σa 0

0 (b+a)σb

 , E2 =

(c+d)σa 0

0 (d + e)σb

 .

The interface of phase I and Phase II forms as the strain satisfy the kinematic compatibility

condition

E1−E2 =
1
2
(a⊗ n̂+ n̂⊗a).

By direct calculation, we get the two solutions of the interface as

a =

√[(c+d)− (a+b)]σa
(
[(a+b)− (d + e)]σb− [(a+b)− (c+d)]σa

)√
[(a+b)− (d + e)]σb

(
[(a+b)− (d + e)]σb− [(a+b)− (c+d)]σa

)
 ,

n̂ =

−√ [(c+d)−(a+b)]σa
[(a+b)−(d+e)]σb−[(a+b)−(c+d)]σa√

[(a+b)−(d+e)]σb
[(a+b)−(d+e)]σb−[(a+b)−(c+d)]σa

 .
We illustrate the microstructure of phase I and phase II coexist with interface normal
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Figure 4.5: Microstructure of phase I and phase II coexist with specific values of parameter
γ = 380, η = 7.73, σa =−0.02 and σb =−0.0182. The blue unit cells are in phase I, the
red unit cells are in phase II, the interface normal vector is n̂.

vector n̂ in Fig. 4.5, on the interface the unit cells of two phases are coherent based on

the compatibility condition, and the unit cells in phase I (blue unit cell) are deformed to

parallelogram under compressive loading with all beams in compression, whereas the unit

cells in phase II (red unit cell) are deformed to parallelogram with the diagonal beam in ea

direction buckled. When σa, σb satisfy the borderline equation (4.33) where phase I and

Phase III coexist, that is

(e−a)σ2
a +2(d−b)σaσb +(c−a)σ2

b = ζ . (4.43)

Where in this case, the corresponding strain of phase I and phase III can be determined by

(4.10) and (4.19) respectively,

E1 =

(a+b)σa 0

0 (b+a)σb

 , E3 =

(d + e)σa 0

0 (c+d)σb

 ,

the interface of phase I and phase III forms as the strain satisfy the kinematic compatibility

condition

E1−E3 =
1
2
(b⊗ m̂+ m̂⊗b).
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By direct calculation, we get the two solutions of the interface as

b =

√[(a+b)− (d + e)]σa
(
[(a+b)− (d + e)]σa− [(a+b)− (c+d)]σb

)√
[(c+d)− (a+b)]σb

(
[(a+b)− (d + e)]σa− [(a+b)− (c+d)]σb

)
 ,

m̂ =

 √ [(a+b)−(d+e)]σa
[(a+b)−(d+e)]σa−[(a+b)−(c+d)]σb

−
√

[(c+d)−(a+b)]σb
[(a+b)−(d+e)]σa−[(a+b)−(c+d)]σb

 .
We illustrate the microstructure of phase I and phase III coexist with interface normal vec-

Figure 4.6: Microstructure of phase I and phase III coexist with specific values of parameter
γ = 380, η = 7.73, σa =−0.0182 and σb =−0.02. The blue unit cells are in phase I, the
green unit cells are in phase III, the interface normal vector is m̂.

tor m̂ in Fig. 4.6, on the interface the unit cells of two phases are coherent based on the

compatibility condition. The unit cells in phase I (blue unit cell) are deformed to paral-

lelogram under compressive loading with all beams in compression, whereas the unit cells

in phase III (green unit cell) are deformed to parallelogram with the diagonal beam in eb

direction buckled.

4.3 Numerical validation

To validate the developed analytical methodology, a numerical approach based on the finite

element (FE) method is applied. To this end, we perform a numerical simulation with the
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commercial FE package ABAQUS Standard to demonstrate the phase transformation of

the 2D lattice structure under compression. In the simulation, the 2D lattice composed

of 50 by 50 unit cells and made of acrylonitrile butadiene styrene (ABS) with Young’s

Modulus E = 1.8 GPa and Poisson’s ratio ν = 0.35. An implicit time integration method

is applied and geometric nonlinearity is considered to represent the large deformation of

the structure. The simulation is force controlled, for 2D unit cell and lattice structure, we

apply concentrated loads to vertex points on the right and top edges along the horizontal

and vertical direction, respectively, a small force in z-direction was introduced to the center

of the diagonal beam to trigger out of plane buckling. For the boundary condition, the left

and bottom edges are fixed in the horizontal and vertical direction, respectively, and we

restrict the displacement in z-direction of the frame beam to avoid out of plane buckling.

All models are generated by beam elements (ABAQUS type B32 for diagonal beam and

B31 for the frame beam), and a mesh refinement study is conducted to ensure the accuracy.

In the following section, we show the buckling phenomenon of 1D beam and 2D unit cell

under compressive load with different design parameters. Further, we observe the phase

transformation of the lattice structure under compressive load based on the investigation of

the unit cell.

4.3.1 Buckling of 1D beam

In this section, we investigate the buckling phenomenon of one-dimensional (1D) beam

under compressive load numerically. We have theoretically derived the critical load with

clamped boundary condition by (4.48). In the numerical simulation, we apply a concen-

trated load to one end and introduce a small force to the center of the beam to trigger

buckling. We apply the clamped boundary condition, and generate all models by beam

elements (ABAQUS type B32). The beam of length l has a rectangular cross section with a

constant width = 1.4 mm and height h. We analyze the buckling phenomenon of the beam

with varying length l and height h under compressive load, and divide the results by the

critical load (4.48) to compare with the theoretical value. From Fig. 4.7 it can be seen that
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Figure 4.7: Buckling of 1D beam under compressive loading.

although varying the length l and the height h of the beam, the numerical results show an

excellent agreement with the theoretical predictions, the beam buckled when the applied

load is greater than the critical load in all cases.

4.3.2 Buckling of 2D unit cell

In this section, we investigate the buckling phenomenon of two-dimensional (2D) unit cell

under compressive load numerically. We have theoretically derived the critical load when

three phase coexist under compressive load, and the critical load is represented in (4.28).

The dimension of the unit cell is l by l, the frame beams have square cross section with

height a and the diagonal beams have rectangular cross section with width w and height h.

For better observation of the buckling phenomenon, we describe the critical load in terms

of diagonal beam. Since the frame beams only in compression under compressive load, by

(4.28), (4.23) and (4.11) and direct calculation, the critical load of diagonal beam Pdiag
cr is

given as

Pdiag
cr = P̃crEA2−

√
2

2
P̃cr(c+2d + e)EA1, (4.44)
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where the two terms on the right are the critical load of the 2D unit cell and the correspond-

ing load of frame beam. The result of (4.44) is illustrated in Fig. 4.8, we plot the critical

Figure 4.8: Theoretically derived critical buckling load of the diagonal beam in terms of
different unit cell parameters.

load of the diagonal beam versus the beam length l with different height of the frame beam

a and diagonal beam h. We observe that the critical buckling loads of diagonal beam de-

crease as the length of the unit cell increase, and the critical buckling load of diagonal

beam increase as the height of the frame and diagonal beam increase. For specific length

of the unit cell, we will compare the corresponding critical buckling load with numerical

simulation. In the numerical simulation, we adopt the same geometry as the theoretical

unit cell with constant length l = 40 mm and constant width of diagonal beam w = 2 mm,

and we analysis the critical load with varying design parameters: height of the frame beam

a and height of the diagonal beam h. In the Fig. 4.9, we present the critical load of diago-

nal beam versus the deflection of the center point, we represent x axis as deflection of the

center point of diagonal beam and y axis as the point loading of diagonal beam divided by

critical load in theoretical prediction (4.44). We illustrate only the point load of diagonal

beam in ea direction considering the point load of diagonal beam in eb direction has the

same results. Since the frame beams deform only in compression, the point load of the
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Figure 4.9: Numerically derived point load of the diagonal beam in terms of different unit
cell Parameters.

diagonal beam is estimated by subtracting the load of the frame beam from the point load

of the unit cell. We find that the numerical result coincident with the theoretical prediction

with different parameters: frame width a and diagonal beam width h, and we observe that

the diagonal beam buckled when the applied load is greater than the critical load. However,

as the height of frame beam and diagonal beam increase, the buckling phenomenon of the

diagonal beam becomes difficult to observe.

4.3.3 Phase transformation of lattice structure

In this section, we investigate the phase transformation of lattice structure under biaxial

compressive load by numerical simulation. We present the critical load of the diagonal

beam to observe the buckling phenomenon of the unit cell by (4.44) in previous section.

For a lattice model, if we apply the boundary condition corresponding to the stable phases

(stable configurations) of the unit cell, then the lattice can easily accommodate it, and the

transitions between these phases of the 2D unit cell can be regarded as phase transforma-

tions of the lattice structure. Therefore, we adopt the critical load of the unit cell to observe

the phase transformation phenomenon of the lattice structure in the numerical simulation.
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The lattice model consist of 50 by 50 repeated unit cells, the dimension of the unit cell is l

by l, the frame beams have square cross section with height a and the diagonal beam have

rectangular cross section with width w and height h. As mentioned previously, we focus

on the point load of the diagonal beam to better observe the buckling phenomenon. As

shown in Fig. 4.10, we plot the average point load of diagonal beam of the lattice structure

versus the average deflection of the diagonal beam. We represent the x axis as average

Figure 4.10: Numerically derived point load in terms of lattice Parameters.

deflection of diagonal beam and the y axis as the average point load of diagonal beam di-

vided by critical load of diagonal beam, the point load of diagonal beam is obtained by

subtracting the average load of the frame beam from the average point load of the lattice

structure. we observe the buckling phenomenon at critical load with different parameters

(height of frame beam a and height of diagonal beam h), and we find that the numerical

results are consistent with the theoretical predictions, which means that the diagonal beam

of lattice structure buckled when applied load is greater than critical load predicted by the

unit cell, while the macrostructure of the lattice structure is in compression. Therefore, the

transitions between phases of the 2D unit cell can be regarded as phase transformation of

the lattice structure.
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4.4 Conclusion

We have designed and characterized a two-dimensional (2D) crystal formed by a lattice

structure consisting of unit cells to mimic the Austenite-Martensite phase transition in

shape memory alloys (SMAs). We report a theoretical study on the behavior of stress-

induced phase transition of the unit cells by the continuum model. Based on the minimiza-

tion of the total free energy of unit cells, we observe four distinct stable configurations

corresponding to four stable phases, and consider the transitions between these phases as

phase transformations of the lattice structure. Extending the unit cell scheme to 2D lattice

structure, we found that when the lattice satisfies significant restrictions on the parameters,

the microstructure forms as the lattice tends to keep in the bottom of the energy wells and

holds the imposed boundary condition. Further, the properties of the lattice structure are

also studied by numerical simulations in 2D biaxial stress system. We conduct the buckling

analysis of a 1D beam and 2D unit cell with different design parameters, and we extend the

analysis to a 50 by 50 lattice structure and observe the phase transformation at critical load

by theoretical predictions. Such lattice structures can undergo “phase transitions” mim-

icking the Austenite-Martensite phase transition in shape memory alloys (SMAs) and may

realize the proposed applications of SMAs as transducers, actuators, and sensors. More

importantly, they offer directly observable material models that can shed light on the fun-

damental mechanisms of the first-order non-diffusive phase transitions and shape memory

effects, their interactions with defects, and the physical origins of hysteresis.

4.5 Appendix

In the appendix, we investigate the elastic energy of a beam before and after buckling, and

determine the corresponding critical strain by imposing equilibrium conditions. For a beam

subjects to a compressive load P with clamped boundary condition, the original length of

the beam is L, after deformation the length becomes l. We have the elastic energy before
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buckling as

W 1(ε) =
∫ L

0

1
2

E1Aε
2 =

1
2

E1ALε
2. (4.45)

After buckling, we have Euler–Bernoulli equation as

E1I
d4v
dx4 +Pcr

d2v
dx2 = 0,

where v is the deflection, E1 is the Young’s Modulus, I is the Area Moment of Inertia.

Solving the above equation, we get the general form of deflection v(x) as

v(x) = Ācos(kx)+ B̄sin(kx)+C̄x+ D̄. (4.46)

With the clamped boundary condition, we have v(0) = v(l) = v′(0) = v′(l) = 0. Applying

the boundary condition into (4.46), we can get the expression of the deflection as

v(x) = Ā
(

cos(
2nπ

l
x)−1

)
n = 1,2, ... (4.47)

where Ā is the amplitude of deflection to be determined. We have the critical loading and

critical stress as

Pcr =
4n2π2E1I

l2 , σcr =
4n2π2E1I

Al2 n = 1,2, ... (4.48)

by introducing a dimensionless parameter γ = AL2

8π2I , with n = 1 the second term of above

equation can be described as

σcr =
E1

2γ
. (4.49)

Further, We can obtain the amplitude of deflection based on the condition that the length

of the beam unchanged after buckling [101]. By assuming the beam is inextensible after

buckling, the length can be written as

L =
∫ l

0

√
1+ v′2dx. (4.50)

Inserting the expression of the deflection (4.47) with n = 1 into above equation (4.50), we

have

L =
∫ l

0

√
1+ Ā2 4π2

L2 sin2(
2π

l
x)dx. (4.51)
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Substituting θ = 2π

l x, we can rewrite the above integral with respect to θ as:

L =
l

2π

∫ 2π

0

√
1+ Ā2 4π2

L2 sin2(θ)dθ . (4.52)

Further introducing φ = π

2 −θ and m = Ā2 4π2

L2 , we rewrite the above equation as

L
l
=

1
2π

∫ π

2

− 3π

2

√
1+m(1− sin2(φ))dφ

=

√
1+m
2π

∫ π

2

− 3π

2

√
1− m

1+m
sin2(φ)dφ .

(4.53)

The above equation (4.53) can be simplify by the incomplete elliptic integral of the second

kind as:

L
l
=

√
1+m
2π

E(
π

2
| m
1+m

)−
√

1+m
2π

E(−3π

2
| m
1+m

), (4.54)

where E(ϕ|k2) =
∫ ϕ

0

√
1− k2 sin2(θ)dθ . Further, we rewrite the above equation into the

complete elliptic integral of the second kind by applying the property of the elliptic integral

E(λπm) = 2λE(m) for all integers λ , we have

L
l
=

√
1+m
2π

E(
m

1+m
)+

3
√

1+m
2π

E(
m

1+m
) =

2
√

1+m
π

E(
m

1+m
). (4.55)

when only considering the small amplitude (i.e. Ā→ 0), we can apply the Taylor expansion

of elliptic integral and get an approximation of above equation as

L
l
≈
√

1+m(1− m
4(1+m)

)≈ 1+
m
4
+O(m2). (4.56)

Substituting m = Ā2 4π2

L2 into (4.56), we get the amplitude Ā in terms of ε (ε = L−l
L ) as

Ā =
L
π

√
ε

1− ε
. (4.57)

The elastic energy after buckling are given by

W 2(ε) =
1
2

∫ l

0
EIκ

2dx =
1
2

∫ l

0
EI(

16π4

L4 Ā2 cos2(
2π

L
x))dx =

8EIπ4

L4 Ā2(
l
2
+

Lsin(4πl
L )

8π
),

where the curvature κ = v′′(x) = 4π2

L2 Ācos(2π

L x). Inserting (4.57) into the above equation,

we rewrite W 2 in terms of ε as

W 2(ε) =
8EIπ2

L
ε

1− ε

(1
2
(1− ε)− 1

8π
sin(4πε)

)
.
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Taking taylor expansion of the above equation and keeping up to O(ε5), we have

W 2(ε) =
4EIπ2

L
(ε− ε

2− ε
3 +(

8π2

3
−1)ε4)+O(ε5). (4.58)

Combining (4.45) and (4.58), we can describe the elastic energy of 1D elastic beam before

and after buckling in the following form

W (ε) =


W 1(ε) = 1

2EALε2 if ε ≤ εcr

W 2(ε) = 4EIπ2

L (ε− ε2− ε3 +(8π2

3 −1)ε4) if ε > εcr.

(4.59)

When W 1(ε) =W 2(ε), we can estimate the critical strain as

εcr ≈−
1

γ +1
, (4.60)

where the dimensionless parameter γ = AL2

8π2I .



104

Chapter 5

Conclusions

In this dissertation, we have investigated three nonlinear problems in mechanics. Firstly,

we describe dynamic responses of a two-dimensional lattice with harmonic, weakly non-

linear, and Hertzian interactions through the analytical and numerical approach. we have

theoretically derived the continuum approximations of the discrete system in a square lat-

tice and a hexagonal lattice. For the hexagonal lattice, we obtain some nontrivial exact

longitudinal solitary wave solutions along with certain symmetric directions for systems

with weakly nonlinear and Hertzian interactions. Through numerical simulations, we have

explored the properties of solitary waves and obtained the scaling laws between the wave-

front velocity amplitudes and propagation distance: Vp ∝ R−1/1.9 for a weakly nonlinear

lattice and Vp ∝ R−1/2.4 for a Hertzian lattice. The closed-form solitary wave solutions and

scaling laws are expected to have an important impact on the design of shock absorbers,

acoustic lens, non-destructive structural testing devices among many others.

Secondly, we have solved the exact description of the set of effective properties of

multiphase composites by deriving the necessary conditions and sufficient conditions of

the Hashin Shtrikman bounds attainability. Under the constraint of volume fractions of

the constituent phases, we have obtained the necessary condition by a null lagrangian, and

obtained sufficient conditions by constructing two kinds of microstructures: a new three-

phase and four-phase coated sphere; new optimal microstructures comprised of three-phase

coated spheres and two-phase E-inclusions. For three-phase composites, the necessary

condition guarantees sufficient condition. For four-phase composites, when θN is small,

there is a gap between sufficient condition and necessary condition , which will require

the construction of more optimal microstructures to fill the gap. Combining the necessary
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and sufficient condition of HS bounds attainability, we can precisely characterize the G-

closure to describe the set of effective properties of multiphase conductive materials for

a broader range, which is anticipated to have applications in actuators, phase transitions,

smart materials, and graded materials.

Finally, We have constructed a two-dimensional (2D) crystal formed by a lattice struc-

ture, which consists of repeating structure elements as called unit cells, to mimic the

Austenite-Martensite phase transition in shape memory alloys (SMAs). We theoretically

investigate the stress-induced phase transition of the unit cell by a continuum model. Ac-

cording to the geometric linear theory, we get four distinct stable configurations corre-

sponding to four stable phases by the total free energy minimization, and the transitions

between these phases are regarded as phase transformations of the lattice structure. Extend-

ing the unit cell scheme to 2D lattice structure, we found that the microstructure forms when

the lattice satisfies significant restrictions on the parameters by the Hadamard compatibility

condition. Further, We apply numerical simulation to study phase transition characteristics

of the lattice structure in the 2D biaxial stress system. By applying biaxial loading to the

2D unit cell and 50 by 50 lattice structure with different parameters, we observe that the

critical load when the phase transition occurs is consistent with the theoretical prediction.

Such engineered structures may realize the proposed applications of SMAs as transducers,

actuators, and sensors. More importantly, they offer directly observable material models

that can shed light on the fundamental mechanisms of the first-order non-diffusive phase

transitions and shape memory effects, their interactions with defects, and the physical ori-

gins of hysteresis.
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Appendix A

Core codes (Matlab) for 2D hexagonal packing lattice with
hertzian interactions

% The main code investigates the solitary wave in 2D hexagonal packing

% of steel balls. We set initial velocity for the six spheres around

% the center sphere, and employ the fourth-order Runge-Kutta method

% for the simulation.

clear all;

clc;

time steps = 500;

dt = 5e-7;

q = 100; % Number of balls in each row and column are 100

N = 10000; % Total number of balls are 10000

init vel = 0.5; % Initial velocity

% Creating position, velocity and acceleration matrices.

[mass, E, R, poisson, position x, position y,...

velocity x, velocity y,velocity, ...

overlaps e11,overlaps e21,overlaps e31, A] = ...

twodrkhertz0906initialise(time steps, N, q, init vel);

% Iterating forward in time:

velocity(:,:,1)=sqrt(velocity x(:,:,1).ˆ2+velocity y(:,:,1).ˆ2);

position(:,:,1)= sqrt((position x(:,:,1)-position x(50,50,1)).ˆ2...

+(position y(:,:,1)-position y(50,50,1)).ˆ2);

i=2;

while(i<time steps+1)

% We apply the 4th runge-kutta method to integrate our
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% equations forward in time:

[velocity x(:,:,i), velocity y(:,:,i), position x(:,:,i),...

position y(:,:,i)] = twodrkhertz0906(position x(:,:,i-1),...

position y(:,:,i-1), velocity x(:,:,i-1), velocity y(:,:,i-1),...

q, N, R, mass, E, poisson, i, dt, A);

position(:,:,i)= sqrt((position x(:,:,i)-position x(50,50,1)).ˆ2...

+(position y(:,:,i)-position y(50,50,1)).ˆ2);

velocity(:,:,i)=sqrt(velocity x(:,:,i).ˆ2+velocity y(:,:,i).ˆ2);

i=i+1;

end

% Plot the propagation of solitary wave

x=1:q;

y=1:q;

X=position x(x,y,1);

Y=position y(x,y,1);

Z= velocity(x,y,1);

axis equal tight ;

colormap(jet);

surf(X,Y,Z);

caxis([0,0.5]);

U = velocity x(x,y,1);

V = velocity y(x,y,1);

title('The velocity')

figure

contour(X,Y,Z)

hold on

quiver(X,Y,U,V,5);

hold off

% Initialization function

function [mass, E, R, poisson, position x, position y,...

velocity x,velocity y, velocity, overlaps e11,...

overlaps e21, overlaps e31, A] = ...

twodrkhertz0906initialise(time steps, N, q, init vel)
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% Parameter definitions

rho steel = 7780; % Density of steel

E steel = 1.93*10ˆ11; % Young's modulus for steel

rad = 0.00476/2; % Ball radius

poisson steel = 0.3; % Poisson ratio for steel

%Creating vectors for the material properties

mass = zeros(q,q);

E = zeros(q,q); % Young's modulus matrix

R = zeros(q,q); % Radius matrix

poisson = zeros(q,q); % Poisson ratio matrix

A = zeros(q, q); % Force coefficients matrix

% Assign values to material properties

E(1:q,1:q) = E steel;

R(1:q,1:q) = rad;

poisson(1:q,1:q) = poisson steel;

mass(1:q,1:q) = 0.00045;

A(1:q,1:q) = 2*E(1:q,1:q).*sqrt(R(1:q,1:q))...

./(1-poisson(1:q,1:q).ˆ2);

% Creating the matrices for the positions and velocities.

position x = zeros(q,q,time steps);

position y = zeros(q,q,time steps);

velocity x = zeros(q,q,time steps);

velocity y = zeros(q,q,time steps);

velocity = zeros(q,q,time steps);

% overlaps e1 represent overlap on e 1 direction;

overlaps e1 = zeros(q,q,time steps);

% overlaps e2 represent overlap in e 2 direction;

overlaps e2 = zeros(q,q,time steps);

% overlaps e3 represent overlap in e 3 direction;

overlaps e3 = zeros(q,q,time steps);

% The overlap between the 1st ball and its left neighbour:

overlaps e11(:,:,1) = zeros(q,q);

overlaps e21(:,:,1) = zeros(q,q);

overlaps e31(:,:,1) = zeros(q,q);
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% Initialize the positions:

i=1;

while(i<q+1)

position x(i,:,1) = 1+(i-1)/2.0 : 1 : q+(i-1)/2.0;

position y(i,:,1) = ones(1,q)*i*sqrt(3)/2;

i=i+1;

end

% Initialize the velocities:

velocity x(:,:,1) = zeros(q,q);

velocity x(49,51,1) = 1/2*init vel;

velocity x(51,49,1)= -1/2*init vel;

velocity x(49,50,1) = -1/2*init vel;

velocity x(51,50,1)= 1/2*init vel;

velocity x(50,49,1) = -init vel;

velocity x(50,51,1)= init vel;

velocity x(q,q,1)=0;

velocity y(:,:,1) = zeros(q,q);

velocity y(49,51,1) = -sqrt(3)/2*init vel;

velocity y(51,49,1)= sqrt(3)/2*init vel;

velocity y(49,50,1) = -sqrt(3)/2*init vel;

velocity y(51,50,1)= sqrt(3)/2*init vel;

velocity y(q,q,1)=0;

end

% This function update velocities and positions of

% each ball using a 4th order Runge-Kutta method.

function [u new, v new, x new, y new] =...

twodrkhertz0906(x old, y old, u old,...

v old, q, N, R, mass, E, poisson, i, dt, A)

% Firstly, we create matrix for the k1, k2, k3, k4 :

% k1,k2,k3,k4 represent position and velocity in e1 direction.

k1 x = zeros(q,q); k1 u = zeros(q,q);

k2 x = zeros(q,q); k2 u = zeros(q,q);

k3 x = zeros(q,q); k3 u = zeros(q,q);
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k4 x = zeros(q,q); k4 u = zeros(q,q);

k1 y = zeros(q,q);

k2 y = zeros(q,q);

k3 y = zeros(q,q);

k4 y = zeros(q,q);

% f1,f2,f3,f4 represent velocity in e2 direction.

f1 u = zeros(q,q); f1 v = zeros(q,q);

f2 u = zeros(q,q); f2 v = zeros(q,q);

f3 u = zeros(q,q); f3 v = zeros(q,q);

f4 u = zeros(q,q); f4 v = zeros(q,q);

% g1,g2,g2,g4 represent velocity in e3 direction.

g1 u = zeros(q,q); g2 u = zeros(q,q);

g3 u = zeros(q,q); g4 u = zeros(q,q);

g1 v = zeros(q,q); g2 v = zeros(q,q);

g3 v = zeros(q,q); g4 v = zeros(q,q);

% Create matrix for the overlaps:

overlaps e11 = zeros(q, q);

overlaps e21 = zeros(q, q);

overlaps e31 = zeros(q, q);

overlaps e12 = zeros(q, q);

overlaps e22 = zeros(q, q);

overlaps e32 = zeros(q, q);

overlaps e13 = zeros(q, q);

overlaps e23 = zeros(q, q);

overlaps e33 = zeros(q, q);

overlaps e14 = zeros(q, q);

overlaps e24 = zeros(q, q);

overlaps e34 = zeros(q, q);

% Create matrix for the temporary displacement and velocity:

xx1 = zeros(q, q);

yy1 = zeros(q, q);

uu1 = zeros(q, q);

vv1 = zeros(q, q);

% Calculate k1 x, k1 y:
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k1 x = dt * u old;

k1 y = dt * v old;

% Check for contacts in e 1 direction:

overlaps e11 = twodrkhertz0906contacts1(N, q, x old, R);

% Calculate k1 u:

k1 u(1:q,1) = dt*(-(A(1:q,1)).*overlaps e11(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

k1 u(1:q,2:q)=dt*(A(1:q,1:(q-1)).*overlaps e11(1:q,1:(q-1))...

.ˆ(3/2)./mass(1:q,2:q) - (A(1:q,2:q)).* ...

overlaps e11(1:q,2:q).ˆ(3/2)./mass(1:q,2:q));

% Check for contacts in e 2 direction:

overlaps e21 = twodrkhertz0906contacts2(N, q, x old, y old, R);

% Calculate f1 u:

f1 u(1,1:q) = dt/2*(-(A(1,1:q)).*overlaps e21(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f1 u(2:q,1:q)=dt/2*(A(1:(q-1),1:q).*overlaps e21(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e21(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Calculate f1 v:

f1 v(1,1:q) = sqrt(3)*dt/2*(-(A(1,1:q)).*overlaps e21(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f1 v(2:q,1:q)=sqrt(3)*dt/2*(A(1:(q-1),1:q)...

.*overlaps e21(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e21(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Check for contacts in e 3 direction:

overlaps e31 = twodrkhertz0906contacts3(N, q, x old, y old, R);

% Calculate g1 u:

g1 u(1:q,1) = dt/2*(-(A(1:q,1)).*overlaps e31(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g1 u(1:(q-1),2:q)=dt/2*(A(2:q,1:(q-1)).*overlaps e31(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e31(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g1 u(q,2:q)=dt/2*(-A(q,1:(q-1)).*overlaps e31(q,2:q))...
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.ˆ(3/2)./mass(q,2:q);

% Calculate g1 v:

g1 v(1:q,1) = -sqrt(3)*dt/2*(-(A(1:q,1)).*overlaps e31(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g1 v(1:(q-1),2:q)=-sqrt(3)*dt/2*(A(2:q,1:(q-1))...

.*overlaps e31(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e31(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g1 v(q,2:q)=-sqrt(3)*dt/2*(-A(q,1:(q-1)).*overlaps e31(q,2:q))...

.ˆ(3/2)./mass(q,2:q);

% Update temporary displacements and velocities:

xx1 = x old + 0.5 * k1 x;

yy1 = y old + 0.5 * k1 y;

uu1 = u old + 0.5 * (k1 u + f1 u + g1 u);

vv1 = v old + 0.5 * ( f1 v + g1 v);

% Calculate k2 x k2 y:

k2 x = dt * uu1;

k2 y = dt * vv1;

% Check for contacts between balls using the new xx1 values:

overlaps e12 = twodrkhertz0906contacts1(N, q, xx1, R);

% Calculate k2 u:

k2 u(1:q,1) = dt*(-(A(1:q,1)).*overlaps e12(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

k2 u(1:q,2:q)=dt*(A(1:q,1:(q-1)).*overlaps e12(1:q,1:(q-1))...

.ˆ(3/2)./mass(1:q,2:q) - (A(1:q,2:q))...

.*overlaps e12(1:q,2:q).ˆ(3/2)./mass(1:q,2:q));

% Check for contacts in e 2 direction:

overlaps e22 = twodrkhertz0906contacts2(N, q, xx1, yy1, R);

% Calculate f2 u:

f2 u(1,1:q) = dt/2*(-(A(1,1:q)).*overlaps e22(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f2 u(2:q,1:q)=dt/2*(A(1:(q-1),1:q).*overlaps e22(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e22(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));
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% Calculate f2 v:

f2 v(1,1:q) = sqrt(3)*dt/2*(-(A(1,1:q)).*overlaps e22(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f2 v(2:q,1:q)=sqrt(3)*dt/2*(A(1:(q-1),1:q)...

.*overlaps e22(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e22(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Check for contacts in e 3 direction:

overlaps e32 = twodrkhertz0906contacts3(N, q, xx1, yy1, R);

% Calculate g2 u:

g2 u(1:q,1) = dt/2*(-(A(1:q,1)).*overlaps e32(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g2 u(1:(q-1),2:q)=dt/2*(A(2:q,1:(q-1)).*overlaps e32(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e32(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g2 u(q,2:q)=dt/2*(-A(q,1:(q-1)).*overlaps e32(q,2:q))...

.ˆ(3/2)./mass(q,2:q) ;

% Calculate g2 v:

g2 v(1:q,1) = -sqrt(3)*dt/2*(-(A(1:q,1)).*overlaps e32(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g2 v(1:(q-1),2:q)=-sqrt(3)*dt/2*(A(2:q,1:(q-1))...

.*overlaps e32(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e32(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g2 v(q,2:q)=-sqrt(3)*dt/2*(-A(q,1:(q-1)).*overlaps e32(q,2:q))...

.ˆ(3/2)./mass(q,2:q);

% Update temporary displacements and velocities:

xx1 = x old + 0.5 * k2 x;

yy1 = y old + 0.5 * k2 y;

uu1 = u old + 0.5 * (k2 u + f2 u + g2 u);

vv1 = v old + 0.5 * ( f2 v + g2 v);

% Calculate k3 x k3 y:

k3 x = dt * uu1;

k3 y = dt * vv1;
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% Check for contacts between balls, using the new xx1 yy1 values:

% Check for contacts in e 1 direction:

overlaps e13 = twodrkhertz0906contacts1(N, q, xx1, R);

% Calculate k3 u:

k3 u(1:q,1) = dt*(-(A(1:q,1)).*overlaps e13(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

k3 u(1:q,2:q)=dt*(A(1:q,1:(q-1)).*overlaps e13(1:q,1:(q-1))...

.ˆ(3/2)./mass(1:q,2:q) - (A(1:q,2:q))...

.*overlaps e13(1:q,2:q).ˆ(3/2)./mass(1:q,2:q));

% Check for contacts in e 2 direction:

overlaps e23 = twodrkhertz0906contacts2(N, q, xx1, yy1, R);

% Calculate f3 u:

f3 u(1,1:q) = dt/2*(-(A(1,1:q)).*overlaps e23(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f3 u(2:q,1:q)=dt/2*(A(1:(q-1),1:q).*overlaps e23(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e23(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Calculate f3 v:

f3 v(1,1:q) = sqrt(3)*dt/2*(-(A(1,1:q)).*overlaps e23(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f3 v(2:q,1:q)=sqrt(3)*dt/2*(A(1:(q-1),1:q)...

.*overlaps e23(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e23(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Check for contacts in e 3 direction:

overlaps e33 = twodrkhertz0906contacts3(N, q, xx1, yy1, R);

% Calculate g3 u:

g3 u(1:q,1) = dt/2*(-(A(1:q,1)).*overlaps e33(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g3 u(1:(q-1),2:q)=dt/2*(A(2:q,1:(q-1)).*overlaps e33(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e33(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g3 u(q,2:q)=dt/2*(-A(q,1:(q-1)).*overlaps e33(q,2:q))...

.ˆ(3/2)./mass(q,2:q) ;
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% Calculate g3 v:

g3 v(1:q,1) = -sqrt(3)*dt/2*(-(A(1:q,1)).*overlaps e33(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g3 v(1:(q-1),2:q)=-sqrt(3)*dt/2*(A(2:q,1:(q-1))...

.*overlaps e33(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e33(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g3 v(q,2:q)=-sqrt(3)*dt/2*(-A(q,1:(q-1)).*overlaps e33(q,2:q))...

.ˆ(3/2)./mass(q,2:q);

% Update temporary displacements and velocities:

xx1 = x old + k3 x;

yy1 = y old + k3 y;

uu1 = u old + (k3 u + f3 u + g3 u);

vv1 = v old + ( f3 v + g3 v);

% Calculate k4 x:

k4 x = dt * uu1;

k4 y = dt * vv1;

% Check for contacts between balls using the new xx1 values:

overlaps e14 = twodrkhertz0906contacts1(N, q, xx1, R);

% Calculate k4 v:

k4 u(1:q,1) = dt*(-(A(1:q,1)).*overlaps e14(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

k4 u(1:q,2:q)=dt*(A(1:q,1:(q-1)).*overlaps e14(1:q,1:(q-1))...

.ˆ(3/2)./mass(1:q,2:q) - (A(1:q,2:q))...

.*overlaps e14(1:q,2:q).ˆ(3/2)./mass(1:q,2:q));

% Check for contacts in e 2 direction:

overlaps e24 = twodrkhertz0906contacts2(N, q, xx1, yy1, R);

% Calculate f4 u:

f4 u(1,1:q) = dt/2*(-(A(1,1:q)).*overlaps e24(1,1:q)...

.ˆ(3/2)./mass(1,1:q));

f4 u(2:q,1:q)=dt/2*(A(1:(q-1),1:q).*overlaps e24(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e24(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Calculate f4 v:
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f4 v(1,1:q) = sqrt(3)*dt/2*(-(A(1,1:q))...

.*overlaps e24(1,1:q).ˆ(3/2)./mass(1,1:q));

f4 v(2:q,1:q)=sqrt(3)*dt/2*(A(1:(q-1),1:q)...

.*overlaps e24(1:(q-1),1:q)...

.ˆ(3/2)./mass(2:q,1:q) - (A(2:q,1:q))...

.*overlaps e24(2:q,1:q).ˆ(3/2)./mass(2:q,1:q));

% Check for contacts in e 3 direction:

overlaps e34 = twodrkhertz0906contacts3(N, q, xx1, yy1, R);

% Calculate g4 u:

g4 u(1:q,1) = dt/2*(-(A(1:q,1)).*overlaps e34(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g4 u(1:(q-1),2:q)=dt/2*(A(2:q,1:(q-1)).*overlaps e34(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e34(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g4 u(q,2:q)=dt/2*(-A(q,1:(q-1)).*overlaps e34(q,2:q))...

.ˆ(3/2)./mass(q,2:q);

% Calculate g4 v:

g4 v(1:q,1) = -sqrt(3)*dt/2*(-(A(1:q,1)).*overlaps e34(1:q,1)...

.ˆ(3/2)./mass(1:q,1));

g4 v(1:(q-1),2:q)=-sqrt(3)*dt/2*(A(2:q,1:(q-1))...

.*overlaps e34(2:q,1:(q-1))...

.ˆ(3/2)./mass(2:q,1:(q-1)) - A(1:(q-1),2:q)...

.*overlaps e34(1:(q-1),2:q).ˆ(3/2)./mass(1:(q-1),2:q));

g4 v(q,2:q)=-sqrt(3)*dt/2*(-A(q,1:(q-1)).*overlaps e34(q,2:q))...

.ˆ(3/2)./mass(q,2:q);

% Now we go forward in time:

u new = u old + (1/6) * (k1 u + 2*k2 u + 2*k3 u +k4 u)+...

(1/6) * (f1 u + 2*f2 u + 2*f3 u +f4 u)+...

(1/6) * (g1 u + 2*g2 u + 2*g3 u +g4 u);

v new = v old +(1/6) * (f1 v + 2*f2 v + 2*f3 v +f4 v) ...

+(1/6) * (g1 v + 2*g2 v + 2*g3 v +g4 v);

x new = x old + (1/6) * (k1 x + 2*k2 x + 2*k3 x +k4 x);

y new = y old + (1/6) * (k1 y + 2*k2 y + 2*k3 y +k4 y);

end
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% This function calculating overlap between neighboring balls

% in e1 direction

function [new overlaps] = twodrkhertz0906contacts1(N, q, xx1, R)

new overlaps = zeros(q,q);

i=1;

while(i<q+1)

new overlaps(i,1:(q-1)) = max(0, 1 + xx1(i,1:(q-1)) -...

xx1(i,2:q));

% Deal with the Nth ball/wall interaction

new overlaps(i,q) = max(0, xx1(i,q)-q-(i-1)/2.0 );

i=i+1;

end

end

% This function calculating overlap between neighboring balls

% in e2 direction

function [new overlaps] = twodrkhertz0906contacts2(N, q, xx, yy, R)

new overlaps = zeros(q,q);

new overlapsx = zeros(q,q);

new overlapsy = zeros(q,q);

i=1;

while(i<q+1)

new overlapsx(1:(q-1),i) = max(0, 0.5 + xx(1:(q-1),i) -...

xx(2:q,i));

new overlapsy(1:(q-1),i) = max(0, yy(1:(q-1),i) -...

yy(2:q,i) + sqrt(3)/2);

i=i+1;

end

new overlapsx(q,1:q)= max(0,xx(q,1:q)-q-(q-1)/2);

new overlapsy(q,1:q)= max(0, yy(q,1:q)-q*sqrt(3)/2);

new overlaps= sqrt(new overlapsx.ˆ2 + new overlapsy.ˆ2);

end
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% This function calculating overlap between neighboring balls

% in e3 direction

function [new overlaps] = twodrkhertz0906contacts3(N, q, xx, yy, R)

new overlaps = zeros(q,q);

new overlapsx = zeros(q,q);

new overlapsy = zeros(q,q);

new overlapsx(1,1:q) = 0;

new overlapsy(1,1:q) = 0;

i=2;

while(i<q+1)

new overlapsx(i,1:(q-1)) = max(0, 0.5+xx(i,1:(q-1)) -...

xx((i-1),2:q));

new overlapsy(i,1:(q-1)) = max(0, (-yy(i,1:(q-1)) +...

yy((i-1),2:q)) + sqrt(3)/2);

% Deal with the (i,q) ball

new overlapsx(i,q) = max(0, xx(i,q) - q - (i-1)/2);

new overlapsy(i,q) = max( 0, i*sqrt(3)/2- yy(i,q));

i=i+1;

end

new overlaps= sqrt(new overlapsx.ˆ2 + new overlapsy.ˆ2);

end
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