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ABSTRACT OF THE THESIS

Data-Driven Methodologies for
Cuff-Less Blood Pressure Estimation

By Weinan Wang

Thesis Director:

Laleh Najafizadeh

Cuff-less blood pressure (BP) estimation methods are the highly-desired replacement for con-

ventional cuff-based methods, as they enable long-term and continuous monitoring of the BP

with limited disturbance or need for manual operation. Cuff-less BP estimation methods can

be generally classified into model-driven and data-driven methods. Both methods often uti-

lize photoplethysmogram (PPG) or electrocardiogram (ECG), which can be continuously and

non-invasively acquired.

Model-driven methods are based on the pulse wave transition theory, which relates the pulse

transit time (PTT) to the blood pressure. An advantage that model-driven methods offer is that

very few parameters have to be learned from the training set, thereby, making them efficient

and computationally inexpensive. However, these methods require individual calibration, their

accuracy decreases over time, and they generally require recordings of both ECG and PPG,

which is hard to maintain over long periods. On the other hand, in data-driven methods, the

need for subject-specific calibration and the requirement of using two or more physiological

recordings are released. However, these methods typically require high computational budget

and massive training datasets for learning a much larger quantity of parameters.

In this thesis, we first provide a comprehensive review of seven models that have been
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utilized in model-driven BP estimation methods, and discuss their advantages and limitations.

We then present an overview of existing data-driven methods that have used ECG alone, PPG

alone, or both signals for BP estimation.

Motivated by the notable performance of PPG-based data-driven BP estimation methods,

we then present a novel transfer learning-based blood pressure estimation algorithm that utilizes

visibility graph to form images from PPG recordings. The proposed method provides accurate

BP estimation with only one PPG beat, while being computationally efficient requiring train-

ing of only one dense layer. Experimental results demonstrate that the proposed method of-

fers comparable or better BP estimation accuracy compared to other data-driven methods with

higher computational complexity, making it a suitable candidate for continuous BP monitoring

applications.
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Chapter 1

Introduction

1.1 Background

As one of the leading causes of lethal diseases across the world, hypertension has long

remained a wide-spread public health challenge that leads to cardiomyopathy, arterial fabri-

cation, and other cardiovascular diseases accounting for more than 15% of health problems

among mid-aged people, and 20% for those who are older [1]. What makes it exclusively detri-

mental besides its direct damage to the cardiovascular system is that it boosts other chronic

diseases, such as brain and kidney impairment causing strokes [2] and diabetes [3].

Hypertension is noticeably pervasive yet has not been effectively controlled in the United

States. A recent study [4] reported that the prevalence of hypertension among US adults is

29.0%, with a trend that increases with age and reaches as high as 63.1% among elders aged

over 60. Even under relaxed standards of controlling the systolic and diastolic blood pressure

(SBP, DBP) under the level of stage 2 hypertension, only 48.3% of the patients have their blood

pressure (BP) under control, which is below the goal of 61.2% set by the U.S. Department of

Health and Human Services for 2020 [5].

Generous number of home-measured blood pressures are informative and helpful for treat-

ing hypertension. Free from the bias caused by observers at the scene, the well-known Ohasama

follow-up study on local residents [6] concluded that home-measured blood pressure has better

reprehensibility than those readings measured for screening at the clinic, being more signifi-

cantly related to patient’s risk of cardiovascular mortality even when the number of measure-

ments are the same. The study also suggested an increment in health status predictability with

the growth of number of home-measured blood pressures, as averaging among vast records

eliminates the bias and yields a more representative value. Additional studies conducted on
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comprehensive medical records from U.S., Canada and European countries also supported sim-

ilar conclusions [7]. Besides the rich information that these readings provide for therapy, they

also enhance patients’ long-term adherence and compliance to clinical advice [8], which is also

significant for keeping the blood pressure under control. Therefore, organizations such as the

European Society of Hypertension recommends taking an adequate number of blood pressure

readings of 2 daily measurements, 2 readings for each measurement, for appropriate diagnosis

or treatment [9].

However, patients’ actual adherence to the guidelines is not optimistic. Recent study shows

that among patients with known or suspected hypertension, who have a BP monitoring device

at home, merely 29% of them measured their blood pressure more frequently than twice a

day [10], let alone problems of not strictly following the guidelines such as properly waiting

between readings or taking multiple readings in single measurement.

The abovementioned issues originate from the intrinsic inconvenience of conventional blood

pressure monitoring devices such as sphygmomanometer [11] and oscillometry-based monitors

[12]. For sphygmomanometers, SBP and DBP are measured by recording the instant pressure

reading on the manometer when the first and fifth Kortokoff sound are detected [11]. For the

oscillometry monitor, the mercury manometer is replaced by an electronic pressure sensor. The

variation in the amplitude of obtained pressure signal is analyzed to estimate the mean arterial

pressure (MAP), and SBP and DBP are calculated consequently [13]. For both types of de-

vices, an inflatable cuff is required to occlude the main artery of the user’s upper arm, which

fully occupies user’s time and attention and makes multiple daily measurements an unpleasant

and cumbersome experience, as the user feels obvious bondage on the arm. It is thus impossible

to acquire blood pressure readings continuously and automatically without distracting the user

with these cuff-based devices. Figure 1.1 demonstrates an example of such a device.
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Figure 1.1: A user taking blood pressure readings from a commonly used cuff-based oscillom-

etry monitor [14]. User has to manually initiate the measurement by wearing the cuff on the

upper arm and pressing the button on the device. After the measurement has started, the device

inflates the cuff and its pressure to the whole upper arm fully occupies user’s attention in the

following 40∼ 50 seconds until one pair of SBP and DBP reading is obtained.

1.2 Existing Works

To address the limitations of cuff-based methods, several cuff-less approaches have been

proposed over the past decades, which can be categorized as model-driven and data-driven

methods.

Model-driven BP estimation techniques aim at deriving BP from its physiological relation-

ship with pulse wave velocity (PWV). By manually analyzing and properly simplifying the

physiological processes that relates PWV to BP, parametric models can be formed and cal-

ibrated via solving a simple regression problem with manually-specified model parameters.

PWV can be measured from a pair of synced physiological signals, such as electrocardiogram

(ECG) and photoplethysmogram (PPG). These signals can be automatically and continuously

recorded from sensors and electrodes attached to human body without disturbing user’s daily

activity. Figure 1.2 demonstrates a device utilizing this method to estimate blood pressure.
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Figure 1.2: A cuff-less blood pressure monitor [15]. Blood pressure values are indirectly esti-

mated from ECG, PPG and ICG signals, and no cuff is required. These signals can be automat-

ically and continuously recorded, so blood pressure readings can be measured and monitored

without any manual intervention or any disturbance to user’s daliy activity.

Model-driven techniques have their advantages of simplicity and interpretability. Param-

eters in the model are manually specified to represent some physiological parameters or pro-

cesses, which can be calibrated with a small training set. However, measuring PWV requires

at least 2 synced signals as inputs, which could not be feasible over a long period of time.

Also, the simplified model parameters often lacks generalizability, which have to be frequently

calibrated individually for each subject.

Apart from the pressure-velocity relationship requiring both ECG and PPG as inputs, there

is also a pressure-volume relationship that correlates PPG signal with BP, which potentially

yields an algorithm requiring only PPG as the input. The pressure-volume relationship is highly

dynamic and inconsistent to be manually modeled with a few parameters, which is thus studied

with statistical and data-driven methods such as feature selection and machine learning (ML).

Many morphological features with good BP predictability can be extracted from the PPG signal,

whose relationships with BP are formed as a multiple regression problem, and is solved by ML

algorithms without manually specifying the parameters in the model.
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Data-driven methods addressed some drawbacks of the model driven methods. By includ-

ing more features and more parameters in the model, the model out of ML methods has good

generalizability to be applied on a group of subjects without requiring individual calibration.

These methods also release the rigid requirement of having 2 signals, making them easier to

implement. However, these models lack interpretability and have to be trained on massive

datasets with high computational budget.

In the past two decades, the literature has proposed lots of studies using both methods. Most

of these works share a similar processing pipeline from acquiring the datasets to the assessment

of final performance of model, which is summarized below and in Figure 1.3.

 

Signal preprocessing

Sample rate 
adjustment

Signal filtering

 

Dataset acquisition

Raw signal 
acquisition

Reference BP 
measurement

 

Characteristic points 
detection

Cycle 
seperation

Locate 
characteristic 

points 

 

Feature Extraction

Feature 
calculation

Feature 
selection

 

Model training

Model 
selection

Model training
or

parameter 
calibration

 

Model testing

BP estimation

Error 
evaluation 

from referenceSignal quality 
evaluation

Figure 1.3: A typical flow chart for cuff-less BP estimation studies.

1. Dataset acquisition: A dataset including digital recordings of raw physiological sig-

nals and reference BPs is collected from customized experiments or taken from online

datasets, such as the MIMIC waveform database [16]. For model-driven methods, record-

ings of ECG and PPG are required to be synced for accurately extracting PWV indicators.

Usually, the dataset includes recordings for multiple subjects to show model generaliz-

ability and meet main stream requirements for blood pressure monitoring devices, such

as the the AAMI SP-10 protocol from the American Association for the Advancement of

Medical Instrumentation (AAMI), which requires having more than 15 subjects [12].

2. Signal preprocessing: Raw physiological signals from sensors or open datasets are

prone to be affected by multiple sources of interference, such as motion artifacts, base-

line wandering, and powerline noises. These interferences introduce additional ripples

or spikes to signal morphology and obstruct the detection of characteristic points and

proper extraction of features. Therefore, the signals are often processed via band pass
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digital filters or wavelet decomposition to rejects the effect of interference. For random

or time-variant interference being hard to remove from recorded signal, the signal quality

within a segment in the recording is often evaluated in order to exclude segments with

poor quality for later analysis.

3. Characteristic point extraction: PWV and PPG features are often defined on the tem-

poral position or amplitude of characteristic points in each cycle, so the first step before

feature extraction is to separate the signal into individual cycles and locate positions of

characteristic points in each cycle. In most cases, the characteristic points are related

to peaks of the original signal or its derivatives, so a robust peak detection algorithm is

often essential.

4. Feature extraction: Features are often calculated from the relative position of charac-

teristic points, such as the time delay between them or the ratio of their amplitudes. If a

large feature pool is considered, a feature selection algorithm is often utilized to exclude

redundant features having low correlation with BP or colinearity with other features to

optimize the subsequent training process.

5. Model training: In model-driven cases, a parametric model is manually designed to

depict the relationship between the PWV indicator and the BP. These manually defined

parameters in the model are related to physiological properties of the human artery, which

are subject specific. Being hard or impossible to measure directly, these parameters

are determined using simple regression methods such as least square regression with

a training set including part of the extracted indicators and their corresponding blood

pressure values. In data-driven cases, instead of a parametric model, a ML model such as

support vector machine, regression tree or neuron network is selected, which is expected

to spontaneously forms the relationship between the features and the BP from the training

set.

6. Model testing: After all parameters in the model have been determined, the algorithm

can be used to estimate BP values from new inputs in the testing set. Estimated BP values

are compared to the corresponding reference BP values to evaluate the performance of
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obtained model. Regression metrics such as Pearson’s correlation coefficients, mean er-

ror, mean absolute error and root mean square error are often calculated for performance

comparison among multiple models if same or comparable dataset is used.

Existing works have made major improvements for both approaches. For the model-driven

approach, studies have sought for new forms of parametric models that better describe the

PWV-BP relationship, while for the data-driven approach, studies have focused on extracting

new features and their combination with proper ML model to improve the regression accuracy.

We describes these advances below.

• Parametric models in model-driven studies: Great efforts have been made by re-

searchers to derive new PWV-BP models with better regression accuracy. Examples

include using various linear or non-linear equations to describe the relationship between

PWV and BP as well as adding more parameters to consider additional physical factors

or effects that alter the relationship. Chapter 2 of this thesis will review derivation and

performance of the following 7 commonly-used models:

Linear Model: BP = a1×PAT +a2, (1.1)

Inverse Model: BP = a1×
1

PAT
+a2, (1.2)

Logarithmic Model: BP = a1× ln(PAT )+a2, (1.3)

Inverse Square Model: BP = a1×
1

PAT 2 +a2, (1.4)

MAP Model: MAP = a1× ln(PAT )+a2,

PP = a3×
1

PAT 2 ,
(1.5)

Trimmed Inverse Square Model: BP = a1×
1

(PAT −a2)2 +a3, (1.6)

Square Root Model: BP =

√
a1×

1
PAT 2 +a2 +a3, (1.7)

where a1, a2 and a3 are the model parameters to be determined from the training set.

• Exploration of features in data-driven studies: Data-driven studies have developed

along the expansion of the feature pool, especially features extracted from PPG. Explicitly-

defined PPG features calculated from the duration, amplitude, area under waveform, and
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statistical indices of the signal have been added to the feature pool, with studies proving

their BP predictability. Later, frequency domain features of the PPG were used as semi-

defined features, and some of the recent works take a whole-based feature approach,

in which samples of the PPG signal are given to the ML model without extracting any

predefined feature. Data-driven approaches are reviewed in Chapter 3 of this thesis.

1.3 Motivation

Motivated by the promising accuracy of recent data-driven BP estimation algorithms, we

endeavor to develop a new PPG-only method addressing the limitation of existed methods.

Utilizing transfer learning, our proposed method is free of individual calibration while having

much less parameters to be trained compared to existed works with similar performance, lower-

ing the computational budget of data-driven method. The proposed approach will be presented

in Chapter 4.

1.4 Thesis Layout

The rest of this thesis is organized as follows. Chapters 2 and 3 present comprehensive

literature review of key methodologies in existing model-driven and data-driven studies. In

Chapter 4, we present our study proposing a new data-driven BP estimation method using only

PPG as input, which utilizes transfer learning by converting the time series of PPG signal to

visibility graph. Finally, the thesis is concluded in Chapter 5.
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Chapter 2

Model Driven Methodologies for Cuff-less Blood Pressure
Estimation

2.1 Introduction

For decades, researchers have been looking for alternative ways other than cuff-based meth-

ods, such as sphygmomanometers or oscillometry devices, to measure the blood pressure (BP)

noninvasively, not only for eliminating the inconvenience and discomfort caused by the pres-

sure and the large size of the inflatable cuff, but also to enable the possibility of continuous BP

monitoring that offers essential information for the diagnosis of cardiovascular diseases and

personalized healthcare.

Among the studies, model-driven BP estimation techniques derive BP indirectly from pulse

wave velocity (PWV)-related indicators. The velocity of wave propagation is related to the

density and the bulk modulus of the media, while these stiffness parameters of human artery

is related to BP. Therefore, the relationship between PWV and BP can be described using

manually derived mathematical models.

Being inversely related to PWV, the pulse transit time (PTT) is an indicator of PWV defined

as the time for the pulse wave to travel over a certain distance, which can be obtained from

two synced physiological recordings taken from proximal and distal spots. However, the pulse

arrival time (PAT), which is a biased measure of PTT, is often utilized as the PWV indicator due

to the wide utilization of electrocardiogram (ECG) and photoplethysmogram (PPG) signals.

Previous works have been endeavoring on proposing new models with better BP prediction

accuracy. Some models are derived from fundamental physical relationships between PWV

and BP, while others are trimmed from existing models by adding extra parameters to compen-

sate potential measurement bias, considering additional factors that alter arterial physiology, or
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simplifying the model by neglecting some parameters.

In this chapter, we present an overview of some existing models that are used to estimate

the blood pressure. After explaining some of the basic terminologies and background theories,

this chapter reviews and summarizes these models in terms of their derivation, and makes a

comparative discussion of their application and performance.

2.2 Background

2.2.1 Pulse Wave Velocity (PWV) and Pulse Transit Time (PTT)

Pulse wave is repeatedly generated by heart contraction as the heart beats. In each cardiac

cycle when the blood is ejected from the heart chamber to the aorta, an acute increase of blood

volume dilates the artery’s wall, and creates a pressure wave in the vessel [17], which is referred

to as the pulse wave. The pulse wave velocity (PWV) is therefore defined as the speed that this

pressure wave created by the heart systole propagates in the vessel in each cardiac cycle.

The mechanism of pulse wave generation through heartbeats determines its transmission

direction, originating from the ventricle and transitioning along the arterial tree, through the

main aorta to the peripheral arteries. Consequently, the PWV is often measured as the average

wave speed over a known length of artery by measuring the pulse transit time (PTT), which is

defined as the time taken for the pulse wave to transit from a proximal spot to a distal spot [18].

Although PWV and PTT are related by the transit distance L by

PWV =
L

PT T
, (2.1)

we don’t have to actually measure the distance since L can be obtained from regression.

2.2.2 Electrocardiogram (ECG) and Photoplethysmogram (PPG)

Two synced physiological signal recordings are required to measure PTT from the time dif-

ference between their beat-to-beat characteristic points, indicating the transmission of the pulse

wave. In order to accommodate the demand of measuring the blood pressure in a continuous

and disturbance-free way, the signal must be available through a non-invasive method without

requiring for manual interventions. ECG and PPG are signals that are most frequently used for
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estimating BP from PWV due to their easy, safe and standardized sensor placement and low

hardware budget.

• ECG: ECG is a voltage waveform evaluated from multiple electrodes attached to the

body, which measures the electrical activity of the heart. It represents the change of

electric potential of cardiac muscles as the heart intakes and ejects blood at each heartbeat

cycle [19]. A simple ECG setup with 3 electrodes is enough to capture the procedure of

ventricle depolarization, in which the muscles in the heart chamber, under the control of

electrical signal generated by the pacemaker cells [20], contracts and pushes the blood

from the heart chamber to the main artery, generating the pulse wave. The procedure

appears as the QRS complex on the ECG waveform, which is morphologically the major

spike of the ECG signal in a given cycle.

The characteristic point of ECG indicating the generation of pulse wave is selected to

be the peak of the QRS complex in each cycle, which is known as the R-peak. Figure

2.1 depicts the shape of an ECG waveform, the location of the QRS complex, and the

position of the R-peak. The ECG R-peak is often used as the proximal indicator of the

pulse wave.
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Figure 2.1: Plot of the ECG waveform, its QRS complex and its R-peak in a cycle.

• PPG: PPG is another voltage waveform measured from optical sensors placed on the
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peripheral body tissues such as fingertip, toe or earlobe. The sensor records changes in

the blood volume of peripheral artery in each cardiac cycle using a light emitter and a

photodector placed at the same (reflection mode) or opposite (transmission mode) sides

of the tissue. The arterial pulsation at the distal spots, caused by the transmission of pulse

wave, changes the peripheral blood volume in a quasiperiodic way, which alters the path

length of the light transmission between the emitter and the detector, changing the light

energy absorbed across the path and received by the photodector [21]. Consequently, the

time instance of the pulse wave arrival can be located in the waveform.

In each cycle, the PPG waveform consists of a rising systolic phase and a falling diastolic

phase. Unlike ECG with its distinct R-peak, various characteristics can be extracted from

the PPG waveform [22, 23, 24]. Some of the mostly-used characteristics are summarized

below:

– Foot: End of the diastolic phase of the previous cycle and start of the systolic phase

of the current cycle.

– Maximum slope: The time instance at which the maximum dPPG amplitude in the

systolic phase of the current cycle is obtained, where dPPG represents the derivative

of the PPG signal.

– Peak: The time instance at which the maximum PPG amplitude is obtained in each

cycle.
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Figure 2.2: Plot of a PPG waveform, its systolic and diastolic phases, and position of various

characteristic points in a cycle.

2.2.3 Pulse Arrival Time (PAT) and Pulse Transit Time (PTT)

Although many existing works do not distinguish between the pulse transit time (PTT) and

the pulse arrival time (PAT), the concepts are different. PTT can be measured from various

signal sources as long as the delay between their characteristic points reflects the time taken for

the pulse wave to travel in the vessel. However, PAT is defined as the time interval between the

occurrence of the ECG R-peak and the PPG characteristic point in each cardiac cycle. Some-

times depending on the definition of the used PPG characteristic point, the derived PAT gets an

additional notation. For example, ‘PATf’ is used when PPG foot is used for the calculation of

PAT, or ‘PATd’ is used when the maximum slope of PPG is used for PAT calculation. As an

example, Figure 2.3 demonstrates the extraction of PATd from the ECG and PPG signals.
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Figure 2.3: Plot of extracting PATd from the time difference of the characteristic points of ECG

and PPG.

The subtle difference between PAT and PTT does not end at their definitions. An electrical-

mechanical delay exists between ventricle depolarization, recorded as R-peak in the ECG wave-

form, and the actual contraction of the muscles in the heart chamber, which ejects the blood

to the artery and generates the pulse wave [25]. This delay is referred to as the pre-ejection

period (PEP). This additional delay will be included when using the ECG R-peak as proximal

characteristic point to extract PAT, with their relationship given as

PAT = PEP+PT T . (2.2)

Unlike PTT, which is physically related to PWV by (2.1), there is no direct theoretical relation-

ship between PEP and PWV.

While PAT has been widely utilized due to convenience and wide signal availability in

large datasets, some previous works have endeavored to exclude PEP and measure accurate

PTT values by using additional signal sources. In the literature, two major methods are utilized

to address the problem:

1. Replace proximal signal: Instead of using ECG reflecting electrical activities of heart,

signals indicating volume changes of central artery after generation of pulse wave ex-

cludes the electrical-mechanical delay. Impedance cardiogram (ICG), for example, is an
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ideal alternative. It measures the variation of thorax impedance, which is caused by two

heartbeat-related factors: the blood volume changed by ventricle blood ejection, and the

orientation of erythrocytes changed by blood flow [26].

2. Use additional distal signal: For example, we can measure PTT from the delay between

characteristic points of PPG signals taken from the fingertip and the earlobe, as is shown

in Figure 2.4. The theory behind this method is explained below.

In the first method using one proximal and one distal signals, the waveforms are utilized

as indicators to calculate the time taken for the pulse wave to travel along single artery.

For example, as is shown in Figure 2.5, if we use ICG and fingertip PPG to measure PTT,

then we are estimating the PWV in the axillary artery. However, in the second method

where we use two distal signals, two different paths are involved. Taking our example

depicted in Figure 2.4, and for better explanation, suppose that we calculate PTT by

subtracting the PATFingertip and PATEarlobe as

PT T = PATFingertip−PATEarlobe

= (PEP+
LAxillaryArtery

PWVAxillaryArtery
)− (PEP+

LCarotidArtery

PWVCarotidArtery
)

=
LAxillaryArtery

PWVAxillaryArtery
−

LCarotidArtery

PWVCarotidArtery
.

(2.3)

Consequently, PEP is canceled out. Furthermore, we assume that PWV is the same in

both arteries, i.e.,

PWV = PWVAxillaryArtery = PWVCarotidArtery, (2.4)

and from (2.3) and (2.4), we have

PT T =
LAxillaryArtery−LCarotidArtery

PWV

=
LDi f f erence

PWV
.

(2.5)

Therefore, the PTT estimated with this method does not reflect the speed of pulse wave

in any physical section of an artery, but is measured from the length difference between

two arteries. It is worth noticing that the equality in (2.4) needs to be discussed as a

stand-alone topic.
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Figure 2.4: Plot of extracting accurate PTT from two distal signals, using the example of ear-

lobe and fingertip-measured PPG signals. ECG signal is not required to obtain PTT, but is used

as a reference for explaining how PEP is excluded.

Figure 2.5: A simplified figure of human arteries, as well as the locations that ECG, ICG and

PPG signals measure the pulse wave with their characteristics.

The expectation is that using same parametric model, by accurately measuring PTT that

excludes PEP, a more accurate BP estimation results will be achieved compared to using PAT.

As will be discussed in Section 2.4, this is due to the fact that the models are derived based

on the physical relationships between PWV and BP, without expecting PEP to be included



17

in the measurement. However, results from [27, 28] show that a theoretically more accurate

estimation of PWV from PTT does not always have better BP regression performance than

using PAT. Their details are discussed below.

Using Method 1, the work from Wong et al. (2011) [27] utilized ECG, fingertip PPG, and

ICG signals to extract PAT, PTT and PEP from 22 normotensive subjects to compare their ac-

curacy of BP estimation using a linear model. They found significant variation in SBP, PAT

and PEP after intervening subject’s BP level through exercising, while PTT and DBP varied

insignificantly. Similar conclusion indicating that PEP has higher influence to PAT than PTT,

when BP level is intervened by exercising, is also reported in [29]. Pearson’s correlation co-

efficients (R) between the indicators and the BP values were calculated, and are summarized

in Table 2.1. Their results showed that PAT has better SBP predictability compared to PTT,

in terms of more significant correlation and lower error deviation. For DBP, the comparison is

less meaningful due to a generally insignificant correlation close to 0.

Table 2.1: Summary of correlation between PWV-related indicators and BP values proposed by
the work from Wong et al. [27]. Since the linear model is used to estimate BP values, absolute
value of presented correlation will be equivalent to the absolute value of correlation between
estimated and reference BP values.

Average Pearson’s Correlation Coefficient (R) SBP DBP
PAT −0.81 −0.16
PTT −0.61 −0.09
PEP −0.25 −0.19

Additionally, Proença et al. (2010) [28] utilized ECG, ICG, fingertip PPG and earlobe PPG

signals from 20 healthy subjects to make similar comparison that Wong’s work did, but using

a logarithmic model, with additional PTT extracted with Method 2 from fingertip and earlobe

PPG. As is summarized in Table 2.2, the SBP values estimated from PTT extracted with both

methods show much lower correlation to the reference values than the results from PAT. No

results were reported for DBP because the DBP variation from exercise intervention is small,

which is of the same situation observed in Wong’s work.

While [27, 28] seem to advocate the advantage of PAT over PTT for SBP estimation, studies

from Chen et al. (2009) [30] suggests different results for DBP. Their works used Method 2

in the same way as [28], but replaced fingertip PPG with toe PPG to yield the largest possible
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Table 2.2: Summary of correlation results between BP values estimated using a logarithmic
model and reference BP values by the work from Proença et al. [28].

Average Pearson’s Correlation Coefficient (R) SBP DBP
BP= a1× ln(PAT )+a2 0.85 N/A
BP= a1× ln(PT T )+a2, Method 1 0.22 N/A
BP= a1× ln(PT T )+a2, Method 2 0.22 N/A

distance difference of artery (LDi f f erence). Using an exponential model, their study involving 23

patients reported an optimal DBP correlation coefficient of 0.94 (converted from reported R-

square value), which is better than most of PWV parametric model based works using PAT, in

terms of DBP correlation. However, the work lacks results of SBP performance and comparison

with BP estimations from PAT under same datasets.

Although the aforementioned works intentionally distinguished PAT and PTT and com-

pared their performance of BP regression, the majority of PWV model-based works, which

will be discussed below, neglect the effect of PEP and treat PAT as PWV indicator without

differentiating it from PTT.

2.3 Protocol of Literature Review

7 PWV-based parametric models are discussed in the next section, along with selected

studies that utilized them with various implementation. For comparison, studies related to each

model are summarized as tuples in a table. With each publication reporting various methods

and results based on different standards, it is necessary to clarify the protocol we used to decide

what to include in our tables of comparison. The columns in each table are explained as follow:

Year, Citation: Studies in each table are sorted in chronological order.

Dataset: The following items are recorded:

• Number of subjects involved in the study as well as their health status are recorded,

reflecting the size of dataset as well as the model’s adaptability. As most related studies

use subject-specific calibration, it is significant to verify if the model works for many

individuals. Moreover, the model will be more promising for clinical applications if

good results come from dataset consisting of heterogeneous subjects, i.e., including both
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healthy individuals and those suffering from BP-related problems.

• Method for acquiring reference BP values in the dataset is recorded. This information

indicates the location that reference BPs are measured and the frequency that the refer-

ence values have been acquired. It also gives a hint about the total number of estimations

in the regression analysis, because each BP value estimated from the model needs to

have a reference value for error and correlation calculations. Intervention methods are

categorized as follow:

– Cuff BP reference: Using a sphygmomanometer or an oscillometry device, the or-

dinary non-invasive cuff-based BP measurement method takes a 30∼ 40 s measur-

ing procedure to acquire 1 pair of brachial SBP and DBP values from the subject’s

upper arm.

– Arterial BP reference: Formally named as catheterization, this invasive method

measures continuous and instantaneous brachial BP values by placing a gauge in

direct contact with blood. 1 pair of SBP and DBP values can be extracted from

each beat, which is much more frequent than the ordinary cuff BP method.

– Volume clamping BP reference: This non-invasive method uses a cuff wrapped

on subject’s finger to acquire continuous and instantaneous finger BP values. For

each beat, 1 pair of SBP and DBP values can be extracted.

– Finapres BP reference: Finapres is a medical system that noninvasively measures

continuous brachial BP values with both brachial and finger cuff. The brachial BP

values are converted from the finger BP values acquired from the finger cuff with

volume clamping method. The conversion is based on the reference values from

the brachial cuff.

Intervention: BP is relatively steady in short time intervals when the subject is at rest.

Since most models include a constant term, least square model parameter calibration with non-

varying BP references will assign most model parameters (other than the constant term) to

values close to 0, which conceals the potential advantage of the model in tracking BP varia-

tions. Therefore, in the data collection procedure, obtaining sufficient reference BP variation
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from the subject is of significance for both model calibration (training) and validation (testing).

Intervention methods are categorized as follow:

• None: This term means that no manual operation is conducted to elevate or lower the BP

level. This is applicable when subjects are undergoing surgeries. Absence of intervention

will also be reasonable if the BP values are constantly recorded along very long intervals,

e.g. for hours, in which BP values can naturally fluctuates.

• Rest: This term means that subjects are required to sit still and / or minimize their activity

(e.g. keep quiet) to maintain a stable BP value.

• Exercise: This term means that physical exercises such as running, stair climbing and

cycling are utilized to elevate subject’s blood pressure values.

If the employed method does not belong to above categories, it will be specified in the table.

PWV Feature Type: The inputs to PWV models are recorded. Terms are explained below:

• PAT, PAT f, PAT d, PAT p: If no additional specification is made, then this term implies

that the PAT extracted from the ECG R-peak and the characteristic point of fingertip PPG

is utilized as the PWV feature.

• PTT: This term implies that PTT, with PEP being excluded using any method, is used as

the PWV feature. The particular signals used for extracting PTT are specified after the

term.

Recent studies tend to enhance model’s performance by adding new indicators to the orig-

inal model. These additional features, as well as other methods that do not belong to ordinary

PAT or PTT, will be specified in tables. If applicable, the total number of extracted features or

feature vectors (when more than 1 feature is used), each corresponding to 1 set of BP estimation

(i.e., 1 pair of SBP and DBP estimations), is recorded as N.

Calibration: The methods that the studies have employed to determine the unknown pa-

rameters are recorded. These methods are categorized as follow:

• Subject-specific: This term implies that the model parameters are determined for each
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subject using the extracted PWV features and the reference BP values, coming exclu-

sively from that subject. Consequently, each subject will have different model parame-

ters.

• Grouped: This term implies that the model parameters are determined for a group of

subjects (or all subjects) using the extracted PWV features and the reference BP values

chosen from more than one subjects. Consequently, subjects in the group will have same

model parameters.

• Training set: This term implies that there exists non-overlapping training and testing

sets. Model parameters are determined using the training set, while the metrics of error

performance are calculated using the model parameters obtained from the training set,

and the data in the testing set.

• Regression: This term implies that there is no separation of training and testing sets.

Both model parameters and the BP estimations are acquired using the whole dataset.

Metrics of error performance are evaluated between the estimated model and the refer-

ence values over the whole dataset.

Proposed Model: Studies are classified in each table with respect to the parametric models

they proposed for the estimation of BP. If a study is categorized in a table corresponding to a

model, it means that either the work advocates for the usage of the model or it presents a new

method based on the modification of the model, or it reports the best results with the model

compared to other methods.

Performance: Recorded in the tables are the optimal overall or typical performance that

reflects the model’s performance on most or all the subjects involved in the study. The values

are presented as a stand alone Value, or in the form of Value1±Value2, or N/A indicating that

corresponding value is not reported in the publication.

Metrics are evaluated independently for SBP, DBP and mean arterial BP (MAP). These

metrics are:

• Pearson’s correlation coefficients (R): This metric represents the correlation between

the estimated BP and the reference BP.
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– If the study reports R-squared instead of R, it has been converted to R in the tables,

assuming that R is positive.

– Some studies use linear model and report the negative correlation between PAT/PTT

and BP instead of the positive correlation between estimated BP and reference BP.

In such case if no other results are available, the absolute value of PAT/PTT-BP

correlation is regarded as the positive correlation between estimated and reference

BP.

• Error (E): Error is defined as the difference between the estimated BP and the reference

BP, in mmHg.

– Value indicates the mean error (ME) evaluated on all estimations from all subjects

in the group.

– Value1±Value2 indicates ME± standard deviation of errors evaluated on all esti-

mations from all subjects in the group.

∗ Some studies report the confidence interval instead of the standard deviation.

In such situations, the standard deviation is converted from the confidence in-

terval using the z-score table.

• Absolute error (AE): Absolute error is defined as the absolute value of difference be-

tween the estimated BP and the reference BP, which is in mmHg.

– Value indicates the mean absolute error (MAE) evaluated on all estimations from

all subjects in the group.

– Value1±Value2 indicates MAE ± standard deviation of absolute errors evaluated

on all estimations from all subjects in the group.

• Root mean square error (RMSE): Root mean square error is defined as

RMSE =

√
1
N

N

∑
i=1

Error2
i , (2.6)

which is also in mmHg.

– Value indicates the RMSE evaluated on all estimations from all subjects in the

group.
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– Value1±Value2 indicates that the RMSE is individually estimated for each sub-

ject’s estimation, and is reported as an overall metric in the form of mean value ±

standard deviation.

Key Conclusion: The important points taken from the study are summarized.

2.4 Review of Parametric Models

2.4.1 The Logarithmic Model

Model Derivation

PWV, the speed that the pressure wave created from heart systole travels in the main artery,

is related to the stiffness of the blood vessel wall. This relationship is often described by

the well-known Moens-Korteweg equation proposed in Moens’s study [31]. By modeling the

human artery as a cylinder tube with negligible wall thickness filled up with incompressible

fluid, PWV can be related to the elasticity of the wall of the tube, and is given as

PWV =

√
Eh

2ρR
, (2.7)

in which E is the Young’s modulus of artery wall elasticity, h denotes the thickness of artery

wall, ρ is the density of blood, and R represents the radius of the artery.

On the other hand, the variation of Young’s modulus with the pressure inside the tube is

explained by the Hughes’ empirical equation proposed in his experiments of dogs [32] as

E = E0eαP, (2.8)

where E is the Young’s modulus under loaded pressure, P is the intrinsic pressure, E0 denotes

the Young’s modulus under zero pressure, and α is the constant parameter obtained by regres-

sion. Using (2.7) and (2.8), the logarithmic model is derived as

BP =
2
α

ln(PWV )+
1
α

ln(
2ρR
E0h

)

= a1× ln(PT T )+a2,
(2.9)

where the unknown parameters a1 and a2 sum up the effects of aforementioned physical and

mechanical constants of the artery, such as stiffness, wall thickness and blood density, to the
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relationship between BP and PWV. These constants have been proven to be subject-specific in

Hughes’ study, and are determined for each particular subject by using regression with some

reference BP values measured with conventional methods from that subject. The process of

finding these parameters for each subject is known as ‘model calibration’, which is widely

applied in model-based methods reviewed in this chapter.

A problem of this model is that as a1 will be calibrated to a negative value, large PTT values

will correspond to negative BP values, making the model hard to use as the calibrated model

has a risk of yielding unrealistic BP estimation with given PTT.

Performance of Related Works

Table 2.3: Summary of studies related to the logarithmic model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2008 [33]
4 hospital subjects
during 8 h
neurosurgical
operation;
arterial BP reference

None PAT d

Subject specific;
regression,
15 beats
(max correlation,
min deviation of error )

Logarithmic
0.78(R)
N/A±6.8(ME)

N/A N/A Correlation and accuracy
degeneration between PAT
estimated BP and reference
BP is fastSubject specific;

regression,
360 beats
(min correlation,
max deviation of error )

Logarithmic
0.63(R)
N/A±12.4(ME)

N/A N/A

2010 [28]
20 healthy subjects;
volume clamping
BP reference

Exercise
PAT f

Subject specific;
regression

Logarithmic
0.85(R) N/A N/A Compared to ln(PAT)

having high correlation,
ln(PTT) (either way) and
SBP has very low correlation

PTT
(ICG and PPG)

0.22(R) N/A N/A

PTT
(finger and earlobe)

−0.22(R) N/A N/A

2015 [34]
15 healthy subjects;
volume clamping
BP reference

Exercise

PTT
(BCG and
finger cuff BP)

Subject specific,
regression

Logarithmic
0.67(R) 0.70(R) 0.71(R) BCG is adequate as a

proximal signal;
BCG-based PTT may
be superior to PAT
in estimating DBP

PAT
(ECG and
finger cuff BP)

0.59(R) 0.51(R) 0.47(R)

Derived from the Moens-Korteweg equation [31] and the Hugh’s equation [32] proposed

in 1963 and 1979, the logarithmic model is one of the earliest models with limited regression

performance, and is nowadays used more as a performance baseline to be compared with newly-

proposed models (see Table 2.4). However, the simplicity and robustness of the logarithmic

model and the linear model, especially compared to models including the 1
PT T term being very

sensitive to PTT changes and outliers, makes them ideal for preliminary studies when new

methods for extracting PAT or PTT are tested out.

Poon et al. (2008) [33] proposed one of the earliest works discussing the problem of fast ac-

curacy degeneration and the need of frequent calibration when applying the parametric model

for BP estimation. While [33] referred to this problem on the logarithmic model, the same
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problem would later be discussed for the MAP model and the linear model, revealing its uni-

versality. [33] utilized linear regression between reference SBP, continuously acquired from

invasive arterial BP, and the value of ln(PAT) calculated from beat-to-beat PAT values, on dif-

ferent numbers of consecutively acquired beats. The correlation and accuracy degeneration of

the logarithmic model is demonstrated, as the R value between the estimated and reference

SBP drops from 0.78 to 0.63, and the standard deviation of the error rises from 6.8mmHg to

12.4mmHg, as the number of beats increases from 15 to 360. The results can be interpreted

as follows. If beat-to-beat SBP is estimating using the logarithmic model through PAT after an

initial parameter calibration with reference values, then the maximum possible estimation error

could double in about 5 minutes if no repetitive calibration is done.

We have already discussed the details of the work from Proença et al. (2010) [28] in Section

2.2.3 distinguishing PTT from PAT. Although the reported SBP correlation (0.85) is among

the highest for the logarithmic model, as will be shown in the next sections, it is still not very

impressive as other models generally have SBP correlation between 0.85 and 0.95, which again

states the inferior performance of the model.

Kim et al. (2015) [34] utilized the logarithmic model in their study proposing a new way

for extracting PTT, using ballistocardiogram (BCG) as a substitution for ECG. Their result

suggests that the logarithmic model provides better estimates for DBP or MAP, compared to

SBP. One limitation of this work is that the distal signal is finger BP (instead of finger PPG).

2.4.2 The Inverse Square Model

Model Derivation

Another model that has been proposed for estimating BP from PTT is the inverse square

model [30, 35]. The key difference in deriving this model compared to the logarithmic model

is to replace the empirical exponential relationship in (2.8) with a linear version, which is based

on the Laplace law in cylindrical tube, when the wall is considered to be thin [36] as follow

σ =
∆PR

h
= E× ∆R

R
, (2.10)

in which E is the Young’s modulus, σ is the circumferential wall stress, ∆P denotes the change

of blood pressure, h represents the wall thickness, R is the inner radius of circular cylinder, and
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∆R is the change of radius caused by change of blood pressure, as is displayed in Figure 2.6:

Figure 2.6: Sectional drawing of blood vessel modeled as cylinder tube with thin wall.

Consequently, the E-P relationship will be given as

E =
∆PR2

h∆R

= c0×
P−P0

∆R
,

(2.11)

with c0 =
R2

h . Usually, ∆R is considered to be a small constant that is independent of the blood

pressure [35], thus yielding an approximately linear relationship between E and P. Finally,

(2.7) and (2.11) yields

BP =
2ρR∆R

c0h
×PWV 2 +BP0

= a1×
1

PT T 2 +a2.
(2.12)

In another approach for deriving the inverse square model [37], the BP-PWV relationship is

re-considered from the perspective of the kinetic energy theorem. By considering the work done

by the pulse wave on the blood and the change in potential and kinetic energy of the blood as

the pulse wave pushes the blood from proximal to distal spot, the kinetic energy theorem yields
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the following equivalences

F×d =
1
2

m×PWV 2 +mgh,

F = ∆BP× s,

ρ =
m
ad

,

(2.13)

in which F is the force created by blood pressure difference loaded on blood, d is the distance

that the pulse wave travels, m is the mass of blood, mgh denotes the change in gravitational

potential energy of the blood, ∆BP represents the pressure difference, s is the area of cross

section of vessel, and ρ is the density of the blood. Rewriting (2.13) as the relationship between

∆BP and PWV yields

∆BP =
1
2

ρ×PWV 2 +ρgh. (2.14)

Finally, the pressure difference is considered to be proportional to arterial blood pressure

[38]:

BP =
∆BP
0.7

= a1×
1

PT T 2 +a2.
(2.15)

Performance of Related Works

Table 2.4: Summary of studies related to the inverse square model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2004 [37]

22 hospital subjects
undergoing cesarean
section spinal anesthesia;
cuff BP reference

Drug
PAT d
(N = 4660)

a 1: subject specific,
calculated from
subject height;
a 2: subject specific,
recursively calibrated for
new-coming reference BP
by total least square

Inverse Square −0.0790±11.32(ME) N/A N/A

Derived the
inverse square model
from theorems of kinetic
and gravitational energy

2006 [29]
18 healthy subjects;
cuff BP reference

Exercise PAT f

Subject specific,
regression

Inverse Square 3.6(RMSE) N/A N/A PEP dominants the PAT
variation in short-term
exercising; proposed a
subject-specific
calibration method
requiring only 1
reference value for
new subjects

Comparison:
Inverse

3.9(RMSE) N/A N/A

Comparison:
Logarithmic

4.4(RMSE) N/A N/A

Averaged
sensitivity factor (a 1),
subject specific
offset factor (a 2)

Inverse Square 7.3(RMSE) N/A N/A

Comparison:
Inverse

6.9(RMSE) N/A N/A

Comparison:
Logarithmic

7.5(RMSE) N/A N/A

2013 [39]
2 anesthesized female sheep;
arterial BP reference

Dopamine
injection

PAT d
(N = 12000)

Subject specific,
training set

Inverse Square
0.94(R)
N/A±6.7(ME)
N/A±5.5(MAE)

0.85(R)
N/A±6.5(ME)
N/A±5.3(MAE)

0.89(R)
N/A±6.4(ME)
N/A±5.3(MAE)

PAT is promising
for BP estimation

2018 [40]
15 healthy subjects;
cuff BP reference

Exercise

PTT
(IPG and PPG),
IPG

Subject specific,
training set

Inverse Square,
with a 1 being
an additional variable
related to IPG

0.88(R)
0.31±8.55(ME)
8.47±0.91(RMSE)

0.88(R)
−0.5±5.07(ME)
5.02±0.73(RMSE)

N/A Added Impedance cardiography
to model variation of artery’s
cross sectional area; results
are better than MAP
model and linear model

PTT
Comparison:
MAP

0.59(R)
26.43±6.85(RMSE)

0.64(R)
14.53±3.9(RMSE)

N/A

PTT
Comparison:
Linear

0.59(R)
17.96±3.54(RMSE)

N/A N/A

The inverse square model is a decent combination of accuracy and simplicity. With studies
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[29, 39, 40] advocating accuracy advantages of the inverse square model compared to loga-

rithmic and linear model, it is also admirable to see that parameter calibration of the model is

easily done with a least square linear regression between 1
PT T 2 and BP values.

The study from Fung et al. (2004) [37] proposed the abovementioned derivation of the

inverse square model. In [37], the parameter a1 is directly calculated for each subject with

subject’s height and the blood density constant ρ using (2.13), with the pulse transition distance

L approximated from subject’s height.

The accuracy advantage of the inverse square model can be found in the study from Muehlst-

eff et al. (2006) [29], in which the regression performance of the inverse square model, the in-

verse model, and the logarithmic model were compared against each other on the same dataset.

Although results for DBP were not presented, it was reported that the inverse square model

offers the best accuracy in terms of RMSE under subject-specific calibration condition. When

physical exercise is utilized to create large BP elevation (especially for SBP compared to DBP

[27]), it seems that the 1
PT T 2 term, being the most sensitive to PTT variations compared to 1

PT T

or PT T , offers the advantage of tracking large BP variations. However, such sensitivity could

also lead to larger errors if the parameters are not optimally tailored for each subject, which

could explain its inferior accuracy when averaged sensitivity factor is used in the comparative

results.

Furthermore, the work from Theodor et al. (2013) [39] reported more promising results

with the inverse square model using animal subjects. Very high SBP correlation (0.94), de-

cent DBP and MAP correlation (≥ 0.85) and a relatively small error deviation was presented.

Demonstrating the highest correlation among other works in Table 2.4, we highlight specified

points in this work that may have contributed to enhancing the BP estimation performance

besides selection of the model:

• PPG placement: In this animal study on two sheep, the reflective PPG sensor is placed

directly on the neck muscle under the skin. This setup greatly reduces the power of

the AC component of the PPG signal, compared to the PPG signals acquired from hu-

man finger, because the density of capillary under the neck muscle is much lower than

that under fingertip skin. This setup could be helpful to alleviate the negative effects

of pulse wave reflection and change of PWV caused by shrinking of the vessel diameter
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and branching from the main artery to peripheral capillaries, which is the case when PPG

is acquired from the fingertip. With PPG measured from spot closer to the main artery

(carotid artery), the estimated PAT could better represent PWV in the main artery. How-

ever, realizing such ideal situations could be impractical when migrating the method to

human subjects.

• Respiration filtering of PAT and BP: [39] presented two sets of results from raw beat-

to-beat PAT and BP values, and from the values filtered with 20-point moving average.

The work assumes that PAT and BP values are affected by respiration, and such filtering

is helpful for removing the interference, with results confirming better performance after

filtering (recorded in Table 2.4), compared to using raw data (R=0.89, ME=N/A±9.8 for

SBP). This could be essential for enhancing the performance of the inverse square model,

since the sensitivity of this model to small PAT variations also means being more prone

to producing outlier estimations (i.e. unreasonably large or small BP values), and moving

average filtering to PAT values (and reference BP values) is a good practice of smoothing

the PAT values. However, this approach could also result in degenerated accuracy when

BP changes abruptly instead of smoothly.

Also reported in [39] is an outstanding pulse pressure (PP) estimation performance with inverse

square model (R=0.95, ME=N/A±2.4). This strengthened the idea presented in MAP model

of using inverse square model to estimate PP.

In (2.12), ∆R is considered as a constant to simplify the variables in the model to only PTT

and BP. The most recent study from Huynh et al. (2018) [40], however, considered its variation

with a new indicator: the arterial impedance measured from the impedance cardiogram (ICG)

signal. The inverse square model is consequently modified as

BP = a1×
1

PT T 2 × ln(1+a2(Z(t)−Z0))+a3, (2.16)

in which Z(t)is the time-varying body impedance acquired from the ICG signal.

Study [40] concluded that model (2.16) has better performance compared to MAP or linear

models, from its comparative study under same dataset. Having Z(t) acquired from the ICG

signal as an additional indicator in model (2.16) compared to the original inverse square model,
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model (2.16) still maintains its simplicity of requiring only 2 signal inputs, since ICG is also

used for PTT extraction. Moreover, with ICG measured at wrist, and PPG measured at fingertip,

the method can be integrated compactly on one small device that the user wears on wrist, which

is more compact compared to methods requiring ECG nodes to be adhered on body surface with

long wires.

Having its advantages, extracting PTT from wrist ICG and fingertip PPG could yields draw-

backs in PTT accuracy. The SBP performance from the MAP model (RMSE = 26.43 mmHg)

and the linear model (RMSE = 17.96 mmHg) reported in [40] appear to be much inferior to

the SBP performance from the inverse square model (RMSE = 3.6 mmHg), the inverse model

(RMSE = 3.9 mmHg) and the logarithmic model (RMSE = 4.4 mmHg) reported in [29], under

subject-specific calibration. Besides the difference in dataset and model, it is also expected

that while in [40] PTT is acquired from wrist ICG signal and fingertip PPG signal, the short

wrist-fingertip distance yields smaller PTT values and larger relative deviation when the signal

is affected by noise or artifact, compared to the classical PAT method applied in [29] having a

much larger proximal-distal distance. In addition, as is discussed for study [39], the physiolog-

ical complexity of peripheral vessels when extracting PTT in [40] could also negatively affect

the performance reported in [40].

2.4.3 The Square Root Model

Model Derivation

Apart from focusing on the change of the Young’s modulus in the logarithmic and the

inverse square model, the relationship between the artery stiffness and PWV can be described

in other forms. The square root model discusses PWV as the the wave speed in a transmission

line model of artery as

PWV =
1√
LC

, (2.17)

where C is the compliance, and L is the inertance measuring compressibility (stiffness) and

inertia (pressure required to accelerate blood) of the artery. L is a constant defined as ρ/A,

where ρ denotes the density of the blood, and A represents the cross-section area. C is related
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to the blood pressure via an empirical quadratic equation following [41], and is given by

C =
Cm

1+(BP−BP0
BP1

)2
, (2.18)

where Cm indicates the maximum compliance, and BP0, BP1 denote the essential BP levels

acquired from regression.

Finally, using (2.17) and (2.18), a square root relationship between BP and PWV is obtained

as [22]

BP = BP1×
√

ρCm

A
×PWV 2−1+BP0

=

√
ρCmBP2

1
A

×PWV 2−BP2
1 +BP0

=

√
a1×

1
PT T 2 +a2 +a3.

(2.19)

Performance of Related Work

Table 2.5: Summary of study related to the square root model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2017 [22]
32 healthy subjects;
cuff BP reference

Exercise
PAT p
(N = 173)

Subject specific;
training set

Square Root

0.95(R)
0.12±6.15(ME)
4.71(MAE)

0.84(R)
1.31±5.36(ME)
4.44(MAE)

N/A The model is
reliable for both
PAT and PTT

PTT p
(PCG and PPG)

0.89(R)
−0.28±9.44(ME)
6.22(MAE)

0.84(R)
1.03±5.15(ME)
3.97(MAE)

N/A

One problem of the square root model in (2.19) is the existence of parameter a2, which

complicates the calibration procedure. A recent study from Esmaili et al. (2017) [22] presents

BP estimation results among the top-of-the-line performances of model-based works. In this

work, a novel method is proposed to address the parameter calibration problem, in which the

model is first calibrated as the inverse model assuming a2 is equal to 0. After that, gradient

descent optimization is applied to acquire the final values of a1, a2 and a3. Realization of this

method on other datasets, however, could be more complicated than described. (2.19) implies

a2 to be a negative value, which, during the gradient descent procedure, could drive the model

to produce negative values in the a1× 1
PT T 2 + a2 term under the square root. Restrictions to

training epochs, learning rates or gradient directions are therefore required.
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2.4.4 The Linear Model

Model Derivation

Another model used for estimating BP from PTT is the linear model. It is natural to assume

linear relationship between PTT and BP, if high correlation is observed, which is often the

case for SBP. Alternatively, the linear model can be considered as a small signal linearization

of non-linear model at a given nominal point, around which the PTT does not change much

and all other related parameters can be assumed to be constant within a short interval around

the considered point. This situation is true in many cases, which can explain the reason that

changing from non-linear models to linear model sometimes does not significantly alter the

correlation between the estimated and reference BPs. To derive the linear model, one can start

with the logarithmic model in (2.9). Applying linearization yields [42]

BP = BP0 +(PT T −PT T0)×
d(c1× ln(PT T )+ c2)

dPT T

∣∣∣∣
PT T=PT T0

= BP0 +(PT T −PT T0)×
c1

PT T0

= a1×PT T +a2,

(2.20)

where BP0 and PT T0 denote BP and PTT at the nominal point, c1 and c2 represent the model

parameters determined for the logarithmic model, and a1 and a2 are the model parameters of

the linear model, which is given by

a1 =
c1

PT T0
,

a2 = BP0− c1.
(2.21)

In practice, a1 and a2 are often acquired by simple linear regression.

Performance of Related Works

With linearization of the logarithmic model proposed by Chen et al. (2000) [42], the linear

model is undoubtedly the most cited and used model. In [42], BP estimation is conducted with

consecutive beat-to-beat PAT and reference BP (SBP, particularly) values. The time-varying

BP values of the subject is considered as the sum of two time series, given by

BP(t) = BPHF(t)+BPLF(t), (2.22)
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Table 2.6: Summary of studies related to the linear model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2000 [42]
20 cardiovascular
surgery subjects;
arterial BP reference

None

PAT f,
beat-to-beat,
interpolated to
PAT signal @1Hz

Subject specific;
BPHF

= PAT ×a1;
BPLF calibrated
from interpolation of
intermittent calibrated
BP values
(every 5 minute)

Linear
(BPLF

+BPHF )

0.97(R)
0.06(ME)
3.7(RMSE)

N/A N/A

High frequency
components
of PAT can track
high frequency
variation of SBP
(small signal model method)

2006 [43]
20 healthy male subject;
arterial BP reference

Drug
PAT Subject specific;

regression
Linear

0.62(R)
N/A±8.67(ME)

0.14(R) 0.28(R) PEP significantly contribute
to PAT; PAT is not usable
for predicting DBP or MAPPTT

(ICG and PPG)
0.57(R)

0.64(R)
N/A±8.83(ME)

0.67(R)

2009 [44]
14 healthy subjects,
repeated after half-year;
cuff BP reference

Exercise PAT d

Subject specific;
regression,
initial dataset Linear

0.92(R)
0±4(ME)

0.38(R)
0±3.5(ME)

N/A Regression coefficients obtained
half year ago could not
predict BP well in all subjectsSubject specific;

regression,
repeated dataset

0.87(R)
0±5.3(ME)

0.3(R)
0±2.9(ME)

N/A

Subject specific;
repeated dataset,
using parameters
obtained from
initial dataset

1.4±10.2(ME) 2.1±7.3(ME) N/A

2011 [27]
22 healthy subjects;
cuff BP reference

Exercise
PAT d

Subject specific;
regression

Linear

0.81(R)
3.1±5.0(2, rest)
−1.4±5.4(2, exercised)

0.16(R)
2.2±3.5(2, rest)
−1±3(2, exercised)

N/A PAT with inclusion
of PEP is significant
for achieving good SBP
estimation accuracy

Comparison:
PTT
(ICG and PPG)

0.25(R)
4.8±5.2(2, rest)
−2.2±9.8(2, exercised)

0.09(R)
2.2±3.7(2, rest)
−1±3.1(2, exercised)

N/A

Comparison:
PEP

0.61(R)
4.4±4.8(2, rest)
−2±7.2(2, exercised)

0.19(R)
2.4±3.1(2, rest)
−1.1±3.0(2, exercised)

N/A

2016 [45]
22 subjects;
volume clamping
BP reference

Mental arithmetic,
cold pressor,
exercise
(3 elevated BP
and 3 rest BP
for each subject)

PTT f
(BCG and
foot PPG)

Subject specific;
regression

Linear
0.80(R)
8.50±0.70(RMSE)

0.80(R)
5.7±0.4(RMSE)

N/A Whether PEP tracks BP
variation is dependent of
BP intervention methodComparison:

PAT f
(ECG and
finger PPG)

0.66(R)
10.1±0.7(RMSE)

0.60(R)
7.1±0.6(RMSE)

N/A

where BPHF is the high frequency variation, and BPLF is the baseline (DC component) and

low frequency variation. The work aims at estimating BPHF by linearly scaling the high fre-

quency component of extracted beat-to-beat PAT values, while directly acquiring BPLF from

interpolation of intermittently-acquired reference BP values. Consequently, BP is estimated

using

BP(t) = a1×PT T (t)+BPLF(t). (2.23)

While a2 in (2.20) is a constant determined by the DC component of BP and PTT, it is replaced

by BPLF(t) in (2.23), which is not a constant as it includes the low frequency variation of BP.

This highlighted difference between (2.20) and (2.23) adds some restrictions to the application

of (2.23) that produced excellent SBP estimation performances in [42]. We illustrate this via

an example. Assume we would like to estimate BP at 2.5 min from PTT measured at 2.5 min.

This is doable using (2.20). However, to estimate BP from (2.23), we first need to find BPLF

at 2.5 min, which according to [42] is obtained from linear interpolation between BP measured

at 0 min and at 5 min. This dependency on future values limits the application of (2.23) in

realistic scenarios.

Similar to [27] discussed in Section 2.2.3, Payne et al. (2006) [43] compares the linear
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regression performance of PAT and PTT, while changing the method of BP intervention from

exercise to drug. The work drew a similar conclusion that PEP dominates PAT variation after

BP intervention, while reporting a better DBP correlation when using PTT (R2 = 0.41 between

PTT and DBP, |R|= 0.64) compared to [27] (R =−0.09 between PTT and DBP), which could

be the result of intervention difference, as in [27] insignificant DBP increment of 11.8% af-

ter exercise was reported, while in [43] DBP decreases as much as 44.6% after the usage of

salbutamol, i.e., a much larger variance of reference DBP value to be correlated with PTT. [43]

intuitively demonstrated how the difference in intervention method could affect the outcomes.

In another work that employed linear model from Wong et al. (2009) [44], the problem

of accuracy reduction with data obtained half a year later than the initial data was collected.

The results clearly demonstrated how variations in estimation error doubled when the model

parameters were obtained with the data from half a year earlier (ME = 1.4± 10.2 mmHg for

SBP, ME = 2.1± 7.3 mmHg for DBP), compared to results from re-calibrated parameters

(ME = 0±5.3 mmHg for SBP, ME = 0±2.9 mmHg for DBP).

In another work, Martin et al. (2016) [45] proposes a weight-scale like device that extracts

PTT from BCG and foot PPG, demonstrating a better linear regression performance from PTT

compared to conventional PAT. With BCG signal marking time instances of ventricle blood

ejection, it seems that the PTT measured with this method takes the advantages of smaller

relative error from the long transmission distance compared to conventional combination of

ECG and fingertip PPG, and less PWV variation as the pulse wave travels along femoal artery

without much interference from vessel branching. Another novelty of this study is its rich

selection of BP intervention methods, in which mental arithmetic, cold pressor and physical

exercise (stair climbing) are experimented on each subject in sequence. The study chose these

methods to demonstrate how they affect BP and PEP differently: mental arithmetic and physical

exercise increase BP and decrease PEP, while cold pressor increases both BP and PEP, revealing

a potential bias in the datasets from works advocating PAT over PTT, since most of them used

physical exercise for BP intervention in which PEP varies concertedly with PTT.
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2.4.5 The Inverse Model

Model Derivation

Similar to the linear model, a direct linear correlation can be established between PWV and

BP [46, 47]. Under such an assumption, the inverse PTT model is just the linear model between

PWV and BP.

Derivation of the inverse model [48] is a linear approximation of the square root model

depicted in (2.19)

BP = BP1×
√

ρCm

A
×PWV 2−1+BP0

≈

√
ρCmBP2

1
A

×PWV +BP0

= a1×
1

PT T
+a2.

(2.24)

Performance of Related Works

Table 2.7: Summary of studies related to the inverse model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2011 [49]
33 healthy subjects;
cuff BP reference Exercise PAT d

Subject specific;
training set Inverse

0.94(R)
−0.058±6.61(ME)

0.88(R)
−0.25±5.64(ME)

N/A The mid-term (30 days)
BP estimation accuracy
is only slightly deteriorated10 recalled subjects

after 30 days

Using earlier
calibrated
parameters

0.90(R)
−1.74±7.72(ME)

0.86(R)
−0.36±5.80(ME)

N/A

2012 [50]
63 subjects free
of cardiovascular
diseases;
cuff BP reference

Exercise
PAT d,
height

a1 ∼ a4: training set;
b:
subject specific
one-point calibration;
train on 13 subjects
(N = 58)

Exponential
+ polynomial
of PWV
(from PAT
and height)

0.89(R) N/A N/A Group calibration on most
parameters, combined with
individual calibration
on the rest, is feasible
for SBP estimationTest on 50 subjects

(N = 267)
0.83(R)
N/A±10.1(ME)

N/A N/A

2014 [51]
31 healthy subjects;
cuff BP reference

Posture
change

PAT p
Subject specific;
train on sit and stand
dataset, test on another
sit dataset

Inverse
+Linear
+std(PAT)

0.980(R)
−0.2±2.4(ME)

0.841(R)
−0.5±3.9(ME)

N/A Proposed model is better
than the inverse model,
especially for DBPComparison:

Inverse
0.978(R)
0.1±2.5(ME)

0.517(R)
1.3±7.4(ME)

N/A

Although the literature review [48] demonstrated derivation of the inverse model by sim-

plifying the square root model, other works [50, 51] have developed their own models starting

from a linear relationship between PWV and BP, which results in the inclusion of the 1
PT T term.

Assuming a linear relationship between PWV and BP seems to be more promising than that

of between PTT and BP, since no restriction of small signal approximation is required: a large

PTT value will neatly predict a small, positive BP value, instead of a negative BP value that the

linear model may do.
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Masè et al. (2011) [49] used the inverse model to test the validity of model parameter

with subjects’ data obtained 30 days after their initial measurement, producing a high SBP and

DBP accuracy with acceptably small accuracy degeneration after 30 days. It is worth noticing

that results reported from this work are very close to the results reported in [22] using the

square root model, which could imply the efficiency of simplification from square root model

to inverse model, in terms of much easier parameter calibration with no compromise to the

accuracy.

Gesche et al. (2012) [50] proposed an empirical model between PWV and BP as

BP = a1×PWV × ea3×PWV +a2×PWV a4 +b,

PWV =
c×h
PT T

,
(2.25)

where h is the height of the subject and c is a known constant related to sensor placement. This

study is a very rare example in model-driven works in which most model parameters are trained

with grouped data from multiple subjects. In the proposed method taking PAT d and subject’s

height as model input, parameters a1, a2, a3 and a4 are obtained from a training set consisting of

reference values from 13 subjects. When the model is applied to the testing set of 50 subjects,

only b is determined with one-point calibration for each subject. Although no corresponding

metric is reported to compare this work with [29], which also endeavored to yield a mostly-

universal model with constant parameters for all subjects, reported SBP correlation and error

performance of this work can still be rated as decent.

In addition, [50] provides a great idea for many models to relieve the requirement of in-

dividually calibrating a1. In most models, the sensitivity factor a1 summarizes the effects of

multiple properties, including the subject specific pulse wave transition distance. If metrics

such as subject’s height can be used as an additional parameter in the model to explain the

difference of pulse wave transition distance among subjects, then the difference of transition

distance among subjects will no longer varies a1, which makes it possible to obtain a unified

model with decent performance.

Ma et al. (2014) [51] proposed another form of the inverse model, which generates 1 pair
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of BP estimations from 5 successively-acquired beat-to-beat PAT values as

BP = a1×
1

mean(PT T )
+a2×mean(PT T )+a3× std(∆PT T )+a4,

PT T = {PT Ti}, i = 1,2,3,4,5 ,

∆PT T = {∆PT Ti}= {PT Ti−PT Ti−1}, i = 1,2,3,4,5 ,

(2.26)

where mean(x) and std(x) stand for the average value and the standard deviation of elements in

set x, respectively. The study reported considerable improvement in DBP estimation accuracy

compared to the inverse model, and an excellent SBP accuracy with smallest error deviation and

highest correlation coefficient among all works reviewed in this chapter. However, considering

the fact that the testing set of this work only included data measured from seated subjects, the

high accuracy could be due to smaller SBP variation in the dataset, compared to other works

having both rest and elevated BP levels in their testing set. An example can be find in [27], in

which the linear model showed larger error variation when it is tested on the exercised dataset,

compared to on the resting dataset.

2.4.6 The MAP Model

Model Derivation

The MAP model combines the logarithmic model and the inverse square model as a trial

to make utilization of these equations as close as possible to their original definition. Note that

while in (2.8) P is the absolute pressure, in (2.10) the linear relationship is between E and ∆P.

Therefore, the MAP model estimates PP, the increment between SBP and DBP, with inverse

square model, while estimating the MAP with the logarithmic model [52].

The relationship between SBP, DBP, MAP and PP is shown as

MAP =
1
3

SBP+
2
3

DBP,

PP = SBP−DBP,
(2.27)

while MAP and PP are estimated as:

MAP = a1× ln(PT T )+a2,

PP = a3×
1

PT T 2 ,
(2.28)
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and SBP and DBP can be derived as:

SBP = MAP+
2
3

PP

= a1× ln(PT T )+
2a3

3
× 1

PT T 2 +a2,

DBP = MAP− 1
3

PP

= a1× ln(PT T )− a3

3
× 1

PT T 2 +a2.

(2.29)

Performance of Related Works

Table 2.8: Summary of studies related to the MAP model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2006 [53]
85 subjects
(39 hypertensives);
cuff BP reference

None
PAT,
averaged over 45 s
(N = 999)

Subject specific;
training set

MAP 0.6±9.8(ME) 0.9±5.6(ME) N/A
Proposed the MAP
model and its potential
for cuff-less BP estimation

2013 [54]

15 healthy subjects;
cuff BP
(every 2 min,
for 30 min)

None PAT p

Subject specific;
intermittent calibration
every 8 min
(min deviation of error)

MAP
1.08±9.74(ME) N/A N/A Large error, while smaller

change of error indicates
that MAP model better
capability of explaining
BP variation than linear
model

Subject specific;
intermittent calibration
every 6 min
(max deviation of error)

1.4±10.59(ME) N/A N/A

Subject specific;
intermittent calibration
every 4 min
(min deviation of error)

Comparison:
Linear [42]

−0.03±0.07(ME) N/A N/A Rapid accuracy degeneration
after the interval between two
calibrations exceeds 8 min

Subject specific;
intermittent calibration
every 12 min
(max deviation of error)

−3.42±29.22(ME) N/A N/A

2014 [52]

10 healthy subjects;
cuff BP reference
(every 30 min,
for 24 h)

None

PAT d,
acquired at
nighttime,
PAT and SBP
interpolated
and smoothed to
align the
time stamp
(N = 70)

Subject specific;
training set

MAP

−0.8(R, between
SBP and PAT)
2.4±5.7(ME)
6.2(RMSE)

N/A N/A

Revealed problem of
synchronization and energy
consumption in long time
signal and reference acquisition

2015 [55]
27 healthy subjects;
Finapres reference BP

None
PAT d, PPG
(N = 1713)

Subject specific;
training set

MAP,
replaced MAP estimation
with DBP estimation
from PPG intensity ratio

0.91(R)
−0.37±5.21(ME)
4.09(MAE)

0.88(R)
−0.08±4.06(ME)
3.18(MAE)

0.89(R)
−0.18±4.13(ME)
3.18(MAE)

Beat-to-beat BP is more
effectively estimated with
PPG intensity ratio estimating
low frequency variations (DBP)
and PAT estimating high
frequency variations (PP)

Comparison:
MAP

−0.11±7.31(ME)
5.76(MAE)

0.19±6.03(ME)
4.80(MAE)

0.09±6.25(ME)
4.96(MAE)

Comparison:
Linear

0.19±6.21(ME)
4.94(MAE)

N/A N/A

Earliest usage of the MAP model can be traced back to the work from Poon et al. (2006)

[53], reporting an inferior SBP accuracy (ME = 0.6± 9.8 mmHg) and a similar level of DBP

accuracy (ME = 0.9±5.6 mmHg), compared with works using only the inverse square model

[39] (ME = N/A±6.7 mmHg for SBP, ME = N/A±6.5 mmHg for DBP). It seems that more

evidence is required to prove the advantage of the MAP model over the logarithmic model and

the inverse square model that it combined.

After the MAP model and the original linear model from [42] were proposed, McCarthy

et al. (2013) [54] tried to find their performance with variable intervals between intermittent

calibrations, concluding that none of these two models are reliable. The authors validated the
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performance of these two models by gradually increasing the interval between two intermittent

calibrations from 2 min to 12 min. For the linear model, large accuracy degeneration was

clearly observed, as the standard deviation of error rises from a minimum of 0.07 mmHg (4

min) to a maximum of 29.22 mmHg (12 min). For the MAP model, the difference between the

best case and worst case accuracy was relatively smaller, showing the advantage of the MAP

model over the linear model on estimating BP. However, the accuracy of the MAP model was

still mediocre compared to other models.

Zheng et al. (2014) [52] proposed a unique study of cuff-less BP estimation considering

a situation closer to real-life continuous BP monitoring. In most studies, data from each sub-

ject, including physiological signals and reference BP values, are acquired consecutively during

short sessions that last from minutes to hours, in which fast BP variation is manually created via

intervention. The accuracy of estimation results consequently only reflects model’s predictabil-

ity over a short interval, while in real-life cases of continuous BP monitoring, subject’s BP value

could vary slowly and naturally in longer intervals, while the monitor is expected to provide

accurate BP readings 24 hours a day. To address this limitation, subjects in this study wore

ECG, PPG and reference BP monitor for 24 hours, and signals were automatically recorded

every 30 minutes. Challenges were encountered in keeping the sensor signals and reference

BP readings synced under limited power budget and a long running time of 24 hours, but were

addressed with an approximate method including outlier removal, signal interpolation and data

smoothing. The results show low correlation between daytime reference BP values and PAT

values, and a relatively higher correlation of −0.8 with data acquired during nighttime. The

MAP model was tested on nighttime data, and a biased error performance of 2.4±5.7 mmHg

was obtained under the best case settings. This study is a reminder of the awaiting challenges

between the decade-long model-based BP estimation studies and their real-life application out-

side laboratory environments.

Ding et al. (2015) [55] improved the MAP model by replacing the MAP estimation obtained

from the logarithmic model with DBP estimation from a new indicator, the PPG intensity ratio

(PIR), similar to the model described in (2.16). Furthermore, spectral analysis of time-varying

BP, PAT and PIR values demonstrated that both low frequency and high frequency variations

are present in SBP, while DBP only has low frequency components. The study states that PAT
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has only high frequency variations, while the complementary low frequency components are

found in PIR. Consequently, the study advocates for the usage of additional indicators in the

model as

DBP = a1×
1

PIR
, (2.30)

PP = a2×
1

PT T 2 , (2.31)

SBP = DBP+PP, (2.32)

PIR =
max(V PPG)

min(V PPG)
, within each PPG cycle, (2.33)

where V PPG is the amplitude of PPG signal. The proposed method shows improvement in

SBP, DBP and MAP accuracy in comparison to the MAP model and linear model without

requiring additional inputs besides ECG and PPG.

2.4.7 The Trimmed Inverse Square Model

Model Derivation

The trimmed inverse square model aims at addressing problems in the linear model de-

scribed in (2.20). Note that in linear model, parameter a1 will be calibrated to a negative value,

which is inappropriate for dealing with large BP variation because:

• The linearization is under the assumption of small PTT variation around the nominal

point.

• The linear model indicates that large BP values correspond to negative PTT values, which

is unrealistic.

To address these problems, Wibmer et al. (2014) [56] empirically derived the trimmed

inverse square model based on the inverse square model to create an asymptotic behavior for

larger BP values (PT T → PT T0 as BP→ ∞), by adding an additional degree of freedom to the

inverse square model:

BP = a1×
1

(PT T −a2)2 +a3. (2.34)

In the inverse square model, parameter a1 changes the curvature of the quadratic curve that

relates 1
PTT and BP, while parameter a2 shifts the PTT-BP regression curve on Y (BP) axis. The
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trimmed inverse square model, in addition, allows for the regression curve to shift on X (PTT)

axis, which is expected to help further reduce the BP estimation error.

Performance of Related Work

Table 2.9: Summary of study related to the trimmed inverse square model.

Year Ref. Dataset Intervention PWV Feature Type Calibration Proposed Model
Performance

Key Conclusion
SBP DBP MAP

2014 [56]
20 patients;
cuff BP reference

Exercise
PAT d, smoothed
(6∼ 9
estimations
per subject)

Subject specific;
regression

Trimmed inverse square model
0.975(R)
0±5.56(ME)

0.653(R)
0±4.54(ME)

N/A Proposed the trimmed
inverse square model
and its advantage over
linear model

Comparison:
Linear

0.967(R)
−0.05±6.71(ME)

0.566(R)
0±4.85(ME)

N/A

Few discussion have been made to this model besides its original publication from Wibmer

et al. (2014) [56]. The work only reported subject specific correlation performance, therefore

the recorded values are the mean correlation coefficient among all subjects. Achieving better

SBP and DBP accuracy over the linear model, the SBP estimation performance is excellent

among all subjects with very high correlation and top-level accuracy, while the DBP correlation

is not so novel.

2.5 Conclusions, Limitations and Suggested Future Works

In this chapter we provided an overview of most commonly used models for estimating

blood pressure, and discussed their advantages and disadvantages. In summary, the following

points can be made for the model-based BP estimation methods:

• Nonlinear vs linear models: As seen in Table 2.6 and in studies that used the same

dataset to compare models, we can conclude that nonlinear models perform better than

linear models. Theoretically, the linear model (as seen in (2.20)) is derived from small

signal linearization of the logarithmic model and as such, its validity is only true under

very restrictive conditions [42], and it won’t be usable under large BP and PTT variations.

Practically, the nonlinear term in nonlinear models enables the model to have large BP

sensitivity under small PTT changes, which is more feasible considering the fact that the

large pulse wave speed and short transition distance makes both the PTT value and its

changes small.
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• Performance variability of the same model: Differences in dataset in terms of subject’s

health status and BP intervention methods, as well as other factors including calibration,

data smoothing and signal filtering could result in different regression results for the same

model, which leads to variable performance. Therefore, optimizing the entire process

from raw signal to BP estimations appears to be more important than finding the best

performing model.

• Subject-specific calibration: The vast majority of model-based methodologies in the lit-

erature require subject-specific parameter calibration, which is incompatible with some

health standards [23] and could potentially limit the application of all model-based meth-

ods. However, the problem could hopefully be addressed by adding more indicators to

the model, such as subject’s height, as shown in studies from Fung et al. [37] and Gesche

et al. [50]. Moreover, study like [57] advocates for developing a new standard (IEEE

1708 project [58]) that is specifically designed for cuff-less BP monitors, which accepts

calibration as part of the device validation procedures.

• Accuracy degradation over time: Decreases in model accuracy have been reported

over short-term ([54, 33], from beats to minutes), mid-term ([49], 30 days) and long-

term ([44], half a year). These results suggest that physiology parameters in the model

can only be assumed to be constant over a short time period, suggesting the need for fre-

quent intermittent calibration. Additional indicators extracted from sensor signals could

help reflecting the real-time physiological status of the subject, addressing this problem.

However, few studies have validated the performance of modified models with additional

indicators over time, and future studies are needed.

In addition, limitations of reviewed studies in the chapter are summarized as follow, with

recommended future works given accordingly:

• Limitation of short sessions: Most studies were limited to lab environments with man-

ually created fast BP variations. Such settings are not consistent with real-life environ-

ment for continuous BP monitoring. The low daytime correlation between PAT and BP

reported in [52] could suggest that some PWV model-based methods may lack the ability

to track slow varying BP values during long sessions. While the literature has already
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devoted much attention to study the accuracy degradation with data acquired in short ses-

sions, further studies that bring the experiments closer to real-life application are needed.

• Limitation of BP intervention: It can be observed that most studies advocating the

advantage of PAT over PTT were using physical exercises for BP intervention, while [45]

has provided evidence that the performance of PAT and PTT is dependent on the method

used for BP intervention. In addition, while most intervention methods can effectively

trigger an variation in SBP, some of them are not so effective at changing the DBP [27].

It is thus suggested that multiple intervention methods should be used in the same study

to select the optimal model with the presence of heterogeneous BP variation.

• Limitation of comparability across studies: Different choice of performance metrics

reported in different studies makes the comparison among different works difficult, be-

cause the 4 widely applied metrics (R, ME, MAE, RMSE) are not interconvertible. Al-

though differences in datasets might imply that such comparisons are meaningless, re-

porting multiple metrics, the distribution of reference SBP and DBP levels, as well as the

total amount of estimations used when calculating these metrics can enable fair compar-

ison across works.

• Larger transition distance and alternative sensor placement: Advantages of larger

pulse wave transition distance and alternative sensor placement setup being closer to the

main artery were discussed in [39] and [45]. Longer distance between proximal and

distal spots scales up the PTT value and reduces the relative change caused by the in-

terference, while alternative sensor placement could help reducing the negative effect of

artery branching and wave reflection that deviate the experiment situation from the the-

oretical situations. Future work can further explore the feasibility of placing the sensors

at different locations as alternatives to ECG and fingertip PPG.
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Chapter 3

Data-driven Methodologies for Cuff-less Blood Pressure Estimation

3.1 Introduction

In Chapter 2, we presented an overview of model-driven methods for estimating BP. An-

other class of cuff-less BP estimation approaches is based on data-driven methods, which are

going to be reviewed in this chapter. While model-driven methods are theoretically supported

by the PWV-BP relationship, data-driven methods mostly originate from the PPG-BP relation-

ship, with no intersection with PWV.

In this chapter, we focus on reviewing existing data-driven studies of cuff-less BP estima-

tion. As will be shown, most data-driven methods use either only PPG features, or PPG features

plus PAT. We first provide explanations about basic machine learning methods, and then review

existing studies by categorizing them with respect to the input signal(s), which generally falls

into three categories: studies using only PPG signal, studies using both PPG and ECG signals,

and studies using only ECG signals. After discussing the selection of features, the machine

learning methods and the BP estimation accuracy of these studies, we summarize the novelty

and limitations of existing data-driven studies.

3.2 Review of Machine Learning (ML) Methods

While model-driven studies tend to use standardized features (PTT or PAT) and customized

models, data-driven studies often utilize standardized regression models with customized se-

lection of features. Therefore, a brief summary of standardized machine learning methods

is presented before discussing features that lead to BP estimation. Specifically, two types of

methods are addressed: the multiple regression methods for spontaneously forming the math-

ematical relationship between multiple features and the BP to be estimated, and the feature
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selection methods for reducing and controlling the size of feature vector.

3.2.1 Multiple Regression Methods

Suppose that N training entries of the feature vector x ∈ RP and corresponding regres-

sion target y ∈ R (reference blood pressures, in our case) are given in pairs as a training set

{(xi,yi)}N
i=1. A multiple regression method aims at finding a function that gives estimation

of y: ŷ = F(x) from input x, with F determined by minimizing the loss function L({(y, ŷ)})

evaluated on the training set as

F = argmin
F :RP→R

L({(yi, ŷi = F(xi))}N
i=1). (3.1)

Specifically in our application of BP estimation, the loss function is most commonly selected

to be the L2 loss, i.e. the (mean) squared error given by

L({(yi, ŷi)}N
i=1) =

N

∑
i=1

(ŷi− yi)
2. (3.2)

The major difference between regression methods is the assumptions they make to form func-

tion F .

Multiple Linear Regression (MLR)

The MLR method assumes F to be a linear model

FMLR(x) = x>a+b

=
[
x> 1

]
×

a

b


= x̃>w, a ∈ RP, b ∈ R, x̃,w ∈ RP+1,

(3.3)

where a is the normal vector, and b is the intercept term. To simplify the model into a ma-

trix multiplication form, x̃ and w are formed as the augmented input vector and augmented

regression coefficients vector.

Advantages of this method are its simplicity and efficiency, as F (i.e. w) has closed-form
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solution subjecting to (3.1) and (3.2), which is given as

w = (X̃>X̃)−1X̃>y,

X̃ =



x>1 1

x>2 1
...

...

x>N 1


,

y =



y1

y2

...

yN


,

(3.4)

where X̃ is the augmented matrix of independent variables and y is the vector of dependent

variables, which are formed by concatenating the feature vectors xi and the regression targets

yi observed in the training set {(xi,yi)}N
i=1.

The MLR method cannot form nonlinear relationships between the features in x and the re-

gression target y, which is a major limitation in our application considering the nonlinearity of

the physiological mechanisms and the empirical inferiority of simple linear model, as demon-

strated in Chapter 2. Therefore, the key to improve the regression method for BP estimation is

in involving nonlinear relationships in F .

Kernel-based Methods: Support Vector Regression (SVR) and Kernel Ridge Regression

(KRR)

One way to introduce nonlinearity in the model is to manually add new values calculated

with nonlinear functions from the original features to the feature vector before utilizing linear

regression, which is similar to the formation of nonlinear PWV models described in Chapter

2. The kernel-based approaches can be interpreted as systematically-optimized methods of this

idea, which enables the model to be nonlinear while using the kernel method to address the

increase in computational complexity. In order to demonstrate the idea of kernel methods, we

use KRR as example.

Suppose we have a mapping function φ(x) : RP → RQ that extends the original feature
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vector x of dimension P to Q by adding nonlinear terms calculated from original features in x.

The problem is that as we solve for w using (3.4), the computational complexity approximately

grows from O(P3)+O(P2N) to O(Q3)+O(Q2N) due to the high cost of calculating X̃>X̃ and

the matrix inversion, which is an unacceptable growth. Two modifications are therefore made

to this method:

Dual solution of w: First, an additional regularization term besides the L2 loss is added

into the loss function

L({(yi, ŷi)}N
i=1,w) =

N

∑
i=1

(ŷi− yi)
2 +λ ||w||22, (3.5)

where λ is the shrinkage parameter that helps avoid over-fitting and keep w solvable. Then,

under the same model assumption in (3.3), solution of w subjecting to (3.1) and (3.5) is given

as

w = (λ I+ X̃>X̃)−1X̃>y, (3.6)

where I is the identity matrix with same dimension as X̃>X̃. Comparing (3.6) to (3.4), it is

obvious that the modification to the L2 loss in (3.5) does not change the order of growth in

computational complexity when solving for w.

Next, note the following equality of matrix inverse

(D−1 +B>R−1B)−1B>R−1 = DB>(BDB>+R)−1, (3.7)

where D, R and B are any matrices with proper dimension and invertibility. The equality can

be verified by multiplying (D−1 +B>R−1B) to the left side and multiplying (BDB>+R) to

the right side as

(D−1 +B>R−1B)× (D−1 +B>R−1B)−1B>R−1× (BDB>+R)

= (D−1 +B>R−1B)×DB>(BDB>+R)−1× (BDB>+R),

⇒ B>R−1× (BDB>+R) = (D−1 +B>R−1B)×DB>,

⇒ B>R−1BDB>+B> = B>+B>R−1BDB>.

(3.8)

By letting D = I, R = λ I, and B = X̃, we have

(λ I+ X̃>X̃)−1X̃> = X̃>(λ I+ X̃X̃>)−1, (3.9)
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and the solution of w in (3.6) can thus be rewritten as

w = X̃>(λ I+ X̃X̃>)−1y, (3.10)

which is referred to as the dual form solution of w. The key idea of these operations is to change

the X̃>X̃ term inside the inverse operator to X̃X̃>. While the time complexity of calculating

(X̃>X̃)−1 is approximately O(P3) + O(P2N), calculating (X̃X̃>)−1 takes O(N3) + O(N2P),

which grows much less with increment of P. However, the complexity can be further optimized.

The kernel method: Now assume that we map x ∈RP to φ(x)∈RQ, and solve for w using

(3.10). When calculating X̃X̃> one gets

X̃X̃> =



φ(x1)
> 1

φ(x2)
> 1

...
...

φ(xN)
> 1


N×(Q+1)

×

φ(x1) φ(x2) . . . φ(xN)

1 1 . . . 1


(Q+1)×N

=



φ(x1)
>φ(x1)+1 φ(x1)

>φ(x2)+1 . . . φ(x1)
>φ(xN)+1

φ(x2)
>φ(x1)+1 φ(x2)

>φ(x2)+1 . . . φ(x2)
>φ(xN)+1

...
...

. . .
...

φ(xN)
>φ(x1)+1 φ(xN)

>φ(x2)+1 φ(xN)
>φ(xN)+1


N×N

,

(3.11)

for which the computational complexity is O(N2Q) due to the dimension increase.

The growth of complexity is addressed with the kernel method. Calculation of inner product

after the mapping: < φ(xi),φ(x j) >= φ(xi)
>φ(x j), takes a complexity of O(Q). Instead of

defining the mapping function φ(x), the kernel method directly defines the result of this inner

product as a function given as

k(xi,x j) =< φ(xi),φ(x j)> , (3.12)

which gives the results after mapping from the original feature vectors xi without actually map-

ping it to φ(xi), and obtains a close-to-constant complexity. As many kernel-based ML methods

use Q >> P, the kernel approach can significantly reduce the computational complexity.

SVR is the most commonly used kernel-based ML method for BP estimation [59, 60, 61].
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Using the abovementioned kernel approach, SVR, KRR as well as other kernel-based regres-

sion methods introduce various nonlinear relationships to the models by selecting different

kernel functions, while maintaining the computational efficiency.

Decision-based Methods: Regression Tree, Random Forest Regression (RFR) and Adap-

tive Boosting (AdaBoost)

Regression tree: Decision-based regression methods define F as a series of decision rules

f on the input feature vector x. Regression tree is the basic implementation of this idea, which

is generated recursively by learning a series of tree-structured binary decision rules from the

training set. Let xi
j be the value on the j-st dimension of the P dimensional feature vector xi, and

let {(xm,ym)}Ck be a subset of the training set {(xi,yi)}N
i=1 that belongs to the class Ck(k ≥ 0).

A binary decision rule f( jk,tk)(x) inspects the value on the jk-st dimension of vector x with

threshold tk, and splits {(xm,ym)}Ck into 2 sub-classes, {(xp,yp)}C2k+1 and {(xq,yq)}C2k+2 , as

f( jk,tk)({(xm,ym)}Ck) = [{(xp,yp)}C2k+1 ,{(xq,yq)}C2k+1 ],

{(xp,yp)}C2k+1 = {(xp,yp) ∈ {(xm,ym)}Ck | x
p
jk ≤ tk},

{(xq,yq)}C2k+2 = {(xq,yq) ∈ {(xm,ym)}Ck | x
q
jk > tk}.

(3.13)

The decision rule (i.e. the selection of jk and tk) is optimal when the loss between the reference

values ym and their estimations ŷm in class Ck is minimized as (3.1) describes, i.e.

( jk, tk) = argmin
jk,tk

L({(ym, ŷm)}Ck). (3.14)

The selection of jk and tk will affect the loss L, since ŷm is given according to the sub-class that

ym belongs after the split as

ŷm =


mean({yp|(xp,yp) ∈ {(xp,yp)}C2k+1}) , if (xm,ym) ∈ {(xp,yp)}C2k+1

mean({yq|(xq,yq) ∈ {(xq,yq)}C2k+2}) , if (xm,ym) ∈ {(xq,yq)}C2k+2

. (3.15)

Without a closed-from solution, jk and tk are found by trying all possible values [62].

To form a regression tree from a training set, the recursion start from a root class C0 :

{(xm,ym)}C0 = {(xi,yi)}N
i=1, which is the training set. Following the aforementioned rules of

splitting an existing class into 2 smaller sub-classes, the loss between the estimations ŷ and the
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references y on the entire training set is reduced in a greedy way. By repeating the split on the

classes that have not been splitted previously, a binary tree with each node corresponding to a

class can be formed, which becomes the regression tree. When a new input x is presented to

the regression tree FRT (x), it recursively classifies x to one of its non-overlapping classes CLeave

at the leave nodes of the tree, and the output ŷ is given as

ŷ = FRT (x) = mean({yL|(xL,yL) ∈ {(xL,yL)}CLeave}). (3.16)

The working principle of the regression tree is very similar to the way that human makes

a final decision ŷ by inspecting and judging the circumstances of each factors x j given in the

new task x, classifying the new task into a type CLeave, and then come up with a solution ŷ

by referencing and averaging his previous experiences yL for previous tasks xL that belongs to

the same type. As such, regression tree provides remarkable interpretability compared to other

nonlinear methods.

Bagging and boosting: The accuracy of the regression tree method is often unremarkable

in terms of large bias, because its output is restricted to the finite number of outputs that CLeave in

the regression tree can produce. Moreover, the method suffers from undesirable high variance

being sensitive to the presented training set, which means that models trained from different

subsets of the same training set will have very different decision rules [62], and consequently,

very different outputs when the same input is presented. Therefore, bagging and boosting

methods are often applied to improve the performance of the regression tree, with their specific

implementations becoming the widely-applied RFR and AdaBoost methods.

• Bagging and RFR: Bagging is a method that trains multiple models from multiple train-

ing subsets in parallel, with all subsets generated from the original training set by boot-

strapping. The target of this idea is to lower the estimation variance by averaging over

multiple estimations from models with variety.

Bootstrapping is an approach that generates training subsets by randomly sampling in-

dices {(xk,yk)}q from the original training set {(xi,yi)}N
i=1 with replacement, and adding

it to the subset. The process is repeated for K ×Q times to generate Q training sub-

sets with K indices in each subset, allowing for duplication. Application of bagging on

regression tree uses these training subsets to obtain an ensemble of Q regression trees,
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{Fq(x)}Q
q=1, which is referred to as bagged regression trees or a forest. When a new in-

put is presented to the forest, each regression tree in the forest individually produces an

output from the same input, and the output of the forest is given as

FBagged,Q(x) =
1
Q

Q

∑
q=1

Fq(x). (3.17)

The RFR method is a further optimized implementation of bagged regression trees. It

restricts the decision dimension jk selected at each split to a randomly selected subset

of all P available features when generating each tree. Such restriction forces most trees

in the ensemble {Fq(x)}Q
q=1 to be uncorrelated, which further reduces the variance of

estimations that the forest produces [63].

• Boosting and AdaBoost: Boosting is a method that sequentially generates multiple mod-

els, with the training set renewed after each iteration. The target is to lower the estimation

bias after every iteration by using the model trained in the previous iteration to guide the

training of model in the next iteration.

One basic method to achieve this target is to train the new model with the error between

yi and ŷi, where ŷi are estimated with models formed in previous iterations, which is

referred to as the boosted regression trees [62]. When the boosted regression trees are

trained, an ensemble of regression trees is generated iteratively with renewed regression

targets. After B iterations, the ensemble will have B trained regression trees {Fb(x)}B
b=1,

with the output from the ensemble given as

FBoosted,B(x) =


∑

B
b=1 λFb(x) , if B > 0

0 , if B = 0
, (3.18)

with λ being the shrinking parameter affecting the rate that the ensemble improves. In

the next iteration, the training target of FB+1(x) is the residual of current ensemble given

as

FB+1(x) = argmin L({(FB+1(xi),yi−FBoosted,B(xi))}N
i=1). (3.19)

The iteration stops if certain criteria is met.

Another method is known as the AdaBoost [64] algorithm, which trains the new model

in the successive iteration with training indices that have poor estimation accuracy when
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estimated using the model formed in previous iterations. Bootstrap sampling with non-

uniform probability distribution is applied in this method to generate different training

subset at each iteration. In the b-st iteration, the training subset {(xk,yk)}b is sampled

from {(xi,yi)}N
i=1, with probability of sampling each index given as

pb =



p1

p2

...

pN


. (3.20)

After training, the obtained model Fb(x) is validated on the whole training set {(xi,yi)}N
i=1,

and the probability of selecting each index is updated to pb+1 with respect to the loss be-

tween yi and ŷi, for i = 1,2...N. If the loss between yn and ŷn is larger than others, then pn

will be raised so that (xn,yn) appears more frequently in the training subset in successive

iterations. The loss also affects the confidence of model obtained in each iteration, with

models achieving less loss assigned to higher confidence (i.e. weight). Finally, the output

of the ensemble {Fb(x)}B
b=1 after B iterations is considered over all models with respect

to their confidences c, with different forms in specific implementations, such as

FAdaBoost,B(x) =


median({cbFb(x)}B

b=1) , for AdaBoost.R2 [65]

∑
B
b=1 cbFb(x) , for AdaBoost.RT [66]

. (3.21)

Neuron-based Method: Artificial Neuron Network (ANN)

Neuron-based methods imitate the functions of the biological neuron network, which forms

the nervous system of creatures. The nonlinear behavior of biological neuron networks that

creates human intelligence is formed with an essential activation mechanism: Each neuron ag-

gregates the total amount of neurotransmitter it received from other neurons connected to it, and

is either activated and delivers neurotransmitter to the neurons it connected to when the amount

of received neurotransmitter is over certain threshold, or has no output at all. With its activation

controlled by a threshold rule (i.e. a step function), this type of neuron is referred to as pre-

ceptron. With the development of other activation functions, this term now also indistinctively

represent artificial neuron with any activation function.
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Figure 3.1: Structure of a MLP with Q hidden layers. hq is the vector representing neurons in

layer q, while Mq (weight matrices) and bq (bias vectors, not shown in the figure) define the

connections between consecutive layers.

The most basic implementation of the ANN is the multi-layer perceptron (MLP). The MLP

setup of the regression problem described in (3.1) for this problem is FMLP(x), whose structure

is shown in Figure 3.1. In MLP, each layer with k neurons corresponds to a k dimensional vec-

tor, including the input layer h0 with P neurons corresponding to the input vector x, the output

layer hQ+1 with 1 neuron corresponding to the output y, and Q hidden layers h1,h2...hQ with

number of neurons k1,k2...kQ determined by design. Connections between every 2 adjacent

layers are determined with matrices M0,M1...MQ as

hq+1
kq+1×1

= Σq( Mq
kq+1×kq

× hq
kq×1

+ bq
kq+1×1

), (3.22)

where Σq is the activation function of each layer defined as

Σq( v
k×1

) =



σq(v1)

σq(v2)

...

σq(vk)


. (3.23)

(3.22) and (3.23) demonstrate the following characteristics of artificial neuron networks,

which imitate the behavior of biological neuron networks:
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• Aggregation: The connection between any 2 neurons is weighted. The input of each

neuron is the weighted sum of the outputs from the neurons in the previous layer that are

connected to it, plus a bias. All weights and bias connecting neurons in layer q and q+1

are given as Mq and bq.

• Activation: The output of each neuron is a scalar function σq(v) of its input, which is

named as the activation function. Neurons in the same layer share the same activation

function, as is shown in (3.23). The activation function of each layer is chosen from

design, which is nonlinear in most cases.

• Forward propagation: From the first layer formed by the input vector, the outputs from

neurons in a layer propagate to the next layer as inputs of its neurons. Such propagation

repeats until the final layer is reached, whose output is the output of the network. The

process of calculating output from input of ANN is referred to as forward propagation.

With the structure of FMLP(x) determined from design, minimizing the loss described in

(3.2) is equivalent to optimizing {Mq,bq}Q
q=0. Without an analytical solution [67], the values

are randomly initialized, and are determined by optimization algorithms with gradient informa-

tion obtained from backward propagation.

The effectiveness of the MLP as a ML algorithm has been shown in [68], which proved that

MLP is capable of approximating any continuous function with a finite size. MLP’s approxi-

mation to the function gets better as the number of hidden neurons increases [69]. To increase

the number of hidden neurons, an option is to include more hidden layers. ANNs containing

MLP with Q≥ 2 are often referred to as deep neuron networks (DNNs). For cuff-less BP esti-

mation, most studies use MLP with Q = 1 [70, 71, 72, 73], while applications of DNN are still

preliminary [74, 75, 76].

3.2.2 Feature Selection Methods

While many model-driven methods use only the PTT, data-driven methods use much more

features. A very recent study from Lin et al. (2021) [77] utilized 65 PPG features, 35 newly

proposed and 30 summarized from previous studies, for BP estimation using MLR method.

Their results showed that usage of all 65 features is achieving better accuracy than comparisons
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using a subset of 14 or 6 features, which raises one question: does utilizing more features in

the algorithm always imply better BP estimation accuracy?

Previous studies suggest a negative answer to this question, which is summarized as ‘the

curse of dimensionality’. It has been shown theoretically that the increment of feature vec-

tor dimension first improves the estimation accuracy of a Bayesian learning algorithm whose

parameters are determined from a training set of finite size, then at certain point the accuracy

reaches the maxima and start to consistently decrease [78, 79]. The degradation of accuracy is

caused by data sparsity, which is explained as follow. Assume that a training set {(x,y)} of size

N is sampled from the population, and assume that each element xp in the feature vector x has

M possible values in the population. If additional features are added to extend the dimension

of feature vector from P to Q, then the quantity of possible x in the population grows exponen-

tially from MP to MQ, and consequently the training set with fixed size N lose its generality

to represent the majority of x in the population, which in the end manifests as under-fitting

or over-fitting when the ML model is tested on new samples from the population. Although

the data sparsity problem can be addressed by exponentially increasing N along the growth

of P [80], the computation power required for keeping the running time of the model training

process acceptable grows dramatically, which is often impracticable in real-life scenarios.

Therefore, with restricted computational budget and dataset size, a challenge in data-driven

studies is to select a limited amount of features in the feature pool that gives optimal BP es-

timation with best accuracy. Feature selection methods address this problem by providing

references to judge if a feature is valid for improving the estimation, or is redundant, irrelevant

or ineffective. These methods can be categorized into the following classes:

Empirical Feature Selection

A very straightforward method for feature selection is to empirically select a subset of

features from all available features, extract the features from the waveform provided in the

dataset, train the model with selected features, and compare the testing performances with other

selections. The empirical selections of features can come from prior experiences, literature

review, or trial-and-error. If no feature selection method is mentioned in the study, then it is

very likely that the features are empirically selected.
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Linear Correlation-based Feature Selection

Similar to the cases of linear models between PTT/PWV and BP discussed in Chapter 2,

linear relationship is often a good practice for considering a regression problem. For feature

selection, linear relationships are considered as the following principles:

• A feature is less likely to be inefficient or irrelevant if it can accurately estimates BP via

a linear regression (LR) model.

• A feature is redundant if it can be accurately estimated from other features that have been

added to the feature vector with a MLR model.

As such, the following linear correlation matrices are considered:

• Pearson’s correlation coefficient (R): R can be used to evaluate the feasibility of esti-

mating BP with a feature by LR model. For explanation, we derive R from the coefficient

of determination (R-squared).

Let {(xi,yi)}N
i=1 represent a training set, with x being the feature and y indicating the ref-

erence BP value, and let ŷi indicate the BP value estimated from xi. The R-squared metric

compares the squared error between the reference values {yi}N
i=1 and the estimated values

{ŷi}N
i=1 from a given model F(x), to the squared error between the reference values and

the optimal estimation of y under the assumption that x and y are independent, which is

the sample mean given as FNULL(x) = ȳ = mean({yi}N
i=1). As such, R-squared is defined

as

R2 = 1− ∑
N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳ)2

≤ 1. (3.24)

The R-squared metric gives an insight of the performance of F(x) in the training set,

where a high value close to 1 indicates good accuracy.

Then, let F(x) be the LR model given as

ŷ = F(x) = a1x+a2, (3.25)

where a1 and a2 are the regression parameters. To evaluate the best-case feasibility of

the LR model between the feature and the BP, we maximize the R-squared metric of
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F(x) over the training set by solving for F(x) that yields minimal squared error, i.e.,

minimizing the L2 loss. As such, the solutions to a1 and a2 are given as

a1 =
∑

N
i=1(xi− x̄)(yi− ȳ)

∑
N
i=1(xi− x̄)2

,

a2 = ȳ−a1x̄,

(3.26)

where x̄=mean({xi}N
i=1) and ȳ=mean({yi}N

i=1). (3.25) and (3.26) indicate the following

equalities

ŷi− ȳ = (a1xi +a2)− (a1x̄+a2)

= a1(xi− x̄),
(3.27)

N

∑
i=1

(yi− ŷi)(ŷi− ȳ) = a1

N

∑
i=1

(yi− ŷi)(xi− x̄)

= a1

N

∑
i=1

[(yi− ȳ)− (ŷi− ȳ)](xi− x̄)

= a1

N

∑
i=1

[(yi− ȳ)−a1(xi− x̄)](xi− x̄)

= a1

N

∑
i=1

(yi− ȳ)(xi− x̄)−a2
1

N

∑
i=1

(xi− x̄)2

= 0,

(3.28)

(3.27), (3.28) and (3.24) yields

R2 = 1− ∑
N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳ)2

=
∑

N
i=1(yi− ȳ)2−∑

N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳ)2

=
∑

N
i=1[(yi− ŷi)+(ŷi− ȳ)]2−∑

N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳ)2

=
∑

N
i=1(ŷi− ȳ)2 +2∑

N
i=1(yi− ŷi)(ŷi− ȳ)

∑
N
i=1(yi− ȳ)2

=
∑

N
i=1(ŷi− ȳ)2

∑
N
i=1(yi− ȳ)2

=
a2

1 ∑
N
i=1(xi− x̄)2

∑
N
i=1(yi− ȳ)2

=
[∑N

i=1(xi− x̄)(yi− ȳ)]2

∑
N
i=1(xi− x̄)2 ∑

N
i=1(yi− ȳ)2

=
Cov(x,y)2

Var(x,x)2Var(y,y)2 ,

(3.29)
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where Cov and Var denotes covariance and variance. Finally, let R = ±
√

R2, with +

indicating positive correlation and − indicating negative correlation, and the Pearson’s

correlation coefficient is given as

R =
Cov(x,y)

Var(x,x)Var(y,y)
∈ [−1,1]. (3.30)

The above derivation shows that the Pearson’s correlation coefficient between x and y

is a metric that instantly gives the feasibility of fitting x to y with a LR model, with its

accuracy described by the coefficient of determination. If |R| is close to 1, it means that

the LR fitting is highly desirable as the model gives estimations that is almost identical

to the references in the training set, which suggests that x and y are very likely to have

linear correlation. A feature with high |R| value has significant linear correlation with

reference BP, and should be included in the feature vector.

• Multiple correlation coefficient (R): The multiple correlation coefficient is just the

Pearson’s correlation coefficient evaluated between the estimations obtained from MLR

model and the reference values, therefore having the same R notation. In feature selec-

tion, it is mostly used to judge if a feature can be accurately estimated with linear combi-

nation of other features. Let y be a feature, and let x ∈ RP be the P-dimensional feature

vector formed by other features. In order to see if feature y can be estimated from other

features, MLR is used to obtain a model F(x) from the training set, with its solution ob-

tained from (3.4). Afterward, Pearson’s correlation coefficient between {ŷi = F(xi)}N
i=1

and {yi}N
i=1 is calculated using (3.30). A feature having high R value with existed feature

vector is said to have colinearity, and should be considered as redundant.

• Variance inflation factor (VIF): VIF is another form of multiple correlation coefficient,

which is given as:

V IF =
1

1−R2 . (3.31)

It is suggested that features with V IF > 10 should be discarded from the feature vector

[81].
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Mutual Information (MI)-based Feature Selection

MI is another method to determine if one random variable is correlated with another, which

has its root in the information theory and is given as:

MI(x,y) =


∑x,y p(x,y) ln p(x,y)

p(x)p(y) , discrete random varaibles∫∫
f (x,y) ln f (x,y)

f (x) f (y)dxdy, continuous random varaibles
, (3.32)

in which p and f are the probability mass functions and probability distribution functions. In

actual applications where the probability distributions are not available, p or f are often esti-

mated from the samples in the training set with various methods such as kth nearest neighbor-

hood [82]. Although further discussion is beyond the scope of this review, the method basically

implies that if knowing the distribution of one variable is reducing the uncertainty of another

variable [83], then it is more likely that those variables are correlated.

In the reviewed studies, MI based methods are often used to determine the strength of

correlation between the feature and the BP. A basic application of MI is similar to the lin-

ear correlation-based feature selection, which ranks the available features with respect to their

MI with BP and select features with high MI. However, in both cases if more than 1 fea-

tures are showing strong correlation with BP, then it is likely that these features are also

strongly correlated with each other, which indicates redundancy. While linear correlation-based

methods check colinearity between selected features to avoid redundancy, MI-based methods

have their own advanced implementations to deal with the redundancy problem, such as the

maximum information coefficient (MIC) method [84] or the minimal-redundancy-maximal-

relevance (mRMR) method [85].

3.3 Protocol of Literature Review

Some representative data-driven studies are discussed in the following sections. Summaries

of studies presented in the tables in this chapter generally follows the same protocol as Chapter

2, except that the ‘Feature Type’ and the ‘ML Method’ columns replace the ‘Proposed Model’

column in Chapter 2 due to the difference in methodologies between model-driven and data-

driven studies. In addition, we highlight another point that is exclusive in data-driven studies:
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Estimation Type: PWV features, including PTT and PAT, can be extracted in every car-

diac cycle. Since most model-driven methods use only PWV features to estimated BP, these

methods are capable of producing BP estimations from signal recordings with duration as short

as containing only 1 beat. Methods with such capability are named as beat-to-beat methods.

However, when utilizing other features in data-driven methods, signal recordings with longer

duration are sometimes required for extracting the features. Therefore, methods reviewed in

this chapter are classified according to the shortest duration of raw signal required for making 1

set of BP estimation (i.e. simultaneously acquired SBP/DBP/MAP reading(s)), which belongs

to one of the following categories:

• Beat-to-beat: This term implies that the method is capable of producing 1 set of BP

estimation as long as the input signal contains 1 complete beat (cycle).

• Window: This term implies that signal recording with longer duration is required, either

including multiple beats or achieving certain length. Specific requirement will be noted.

3.4 Methods Using Only PPG: A Review of Feature Studies

The pressure-volume relationship of human finger arteries has determined the correlation

between PPG and BP in a theoretical way [86]. Elasticity of human artery leads to quasi-

periodic changes in vessel diameter and blood volume as the arterial BP oscillates between

SBP and DBP in each cardiac cycle, which is recorded by the PPG signal. An intuitive prove

of relevance between the BP and the vessel volume is by volume clamping, which shows that

if an external pressure being continuously equivalent to the internal BP is applied to the vessel

via a finger cuff, then the blood volume monitored by the PPG sensor remains unchanged. The

morphological and periodical similarity of PPG and arterial BP (ABP) waveforms depicted

in Figure 3.2 is another concrete embodiment of their time and frequency domain correlations

[87, 70]. Therefore, it is very desirable and promising to interpret the close relationship between

BP and blood volume as mathematical models between characteristics of the PPG signals and

the BP values.
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Figure 3.2: Similarity in the waveform morphology and cycle duration of the PPG and the ABP
signal [87].

3.4.1 Temporal Domain Features Based on Waveform Morphology

Temporal domain features are the most commonly used PPG features in existing studies,

which are extracted from the morphological characteristics of the PPG waveform. Temporal

domain features are often defined as the relative positions of characteristics extracted from the

PPG waveform, such as the ratio of amplitudes or the time difference between two points. Tem-

poral domain features are explicitly defined, with each feature distinctively expressed as one

numerical value, thereby having great interpretability. However, with some temporal domain

PPG features defined only on the fingertip PPG waveforms with normal shape and quality, their

application could be limited when migrating the features to other PPG signals, such as those

measured from earlobe, toe, or animals.

The characteristics of temporal domain PPG features make one-by-one verification an ideal

method for determining the BP predictability of each feature. Therefore, we divide the review

into two parts. In The Correlation Studies part, we look into studies using only one or a

few types of temporal domain features. These works could be limited to inferior accuracy, but

are very helpful for validating the BP correlation of specific feature. In The Comprehensive

Studies part, we review studies using inclusive and heterogeneous temporal domain features
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with advantages in performance.

The Correlation Studies

Temporal domain PPG features can be classified into 4 categories: durations, amplitudes,

areas, and statistical indices.

Durations: PPG duration features are often defined as the width of a PPG cycle at different

percentage of normalized amplitude, with some commonly-used examples shown in Figure

3.3. To extract these features, the PPG cycle is firstly divided into the systolic phase and

the diastolic phase with respect to the position of the systolic peak. Afterward, the systolic

upstroke time (SUT), the diastolic time (DT), as well as the systolic widths (SW) and the

diastolic widths (DW) at different percentage of amplitude are acquired. The total width (W)

can be calculated from SW +DW . From Figure 3.3, one can seize the key idea of designing

PPG duration features, that is, to normalize the amplitude of the PPG cycle and to represent its

morphology by sampling its width at different height.
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Figure 3.3: Definitions of some commonly-used PPG duration features.

The study from Awad et al. (2001) [88] is one of the earliest works that proposed the idea

of estimating BP with features extracted from only PPG. In [88], only the width of PPG cycle at

50% of the amplitude (W50) was explored as the duration feature, which was compared against
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Table 3.1: Summary of studies related to PPG duration features.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2001 [88]
20 patients;
arterial BP reference

None PPG width
Beat-to-beat
(N = 41293) Linear regression

Grouped;
10 subjects
training set

0.8±0.1(R) 0.76±0.1(R) 0.8±0.1(R) Width of earlobe
PPG has high
correlation with BP

(N = 62077)
10 subjects
testing set

−8.96±47.94(ME) N/A −5.04±29.47(ME)

2003 [89]
15 healthy subjects;
cuff BP reference

Exercise PPG Diastolic time Beat-to-beat Linear regression Subject specific
0.811(R)
0.21±7.32(ME)

0.690(R)
0.02±4.39(ME)

N/A
Diastolic time has
high correlation with BP

2013 [75]
MIMIC database;
arterial BP reference

None
21 PPG duration
features

Beat-to-beat
(N > 15000)

MLP with
2 hidden layers

Grouped;
70% training,
15% validation,
15% testing

3.80±3.46(MAE) 2.21±2.09(MAE) N/A

Diastolic time and BP has
low correlation outside
healthy subjects;
improved accuracy
with ANN

2018 [90]
32 subjects from
University of
Queensland
database;
non-invasive
arterial BP
reference

None Area, SUT, W25
5 seconds window
(N = 8133)

Multicollinearity-based
feature selection;
Regression tree

Grouped;
10 fold cross
validation

−0.1±6.5(ME) −0.6±5.2(ME) N/A Regression tree yields
best performance; there
exists colinearity within
width features; inferior
accuracy in hypotensive
and hypertensive group

Comparison:
Support vector regression

−0.5±15.3(ME) 0.05±9.0(ME) N/A

Comparison:
Multiple linear regression

−3.9±15.9(ME) 1.2±8.5(ME) N/A

other features including the amplitude and the pulse area extracted from both fingertip and

earlobe PPG. The results confirmed that W50 extracted from earlobe PPG has high correlation

with SBP, DBP and MBP (R ≥ 0.76), while all other features showed very low correlation

(R < 0.31) in the grouped training set. However, trials of estimating BP from W50 with a

linear model resulted in unacceptable large error in the grouped testing set.

Another study from Teng et al. (2003) [89] demonstrated the individual difference of model

parameters similar to the cases in model-driven studies using PWV features, which utilized DT

with same linear regression method as [88], but obtained much lower error from subject-specific

parameter calibration. Early studies like [88, 89] has provided insights of the BP predictability

of PPG features, while pointing out the limitations of simple regression methods with only a few

features involved. It seems that including more features and increasing the model complexity

is the key to develop universal models.

The idea of including more features and using advanced ML method was carried out in the

study from Kurylyak et al. (2013) [75], which extended the PPG duration features to more

widths in different vertical positions. Using all 14 features depicted in Figure 3.3 as well as

their combinations and ratios, the work formed a 21-dimensional feature vector to train a MLP

with 2 hidden layers, providing improved accuracy compared to [88]. The feature set with 21

PPG duration features proposed in [75] has been frequently cited and applied as part of the

feature vector in the subsequent comprehensive studies.

While there is no feature selection process included in [75], it is natural to imagine that all

the widths features depicted in Figure 3.3 increase synchronously if the duration of the PPG

cycle increases, which implies potential colinearity in the PPG duration feature set. A work
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from Khalid et al. (2018) [90] studied the colinearity of a 5-element feature set, including pulse

area, SUT, W25, W50 and W75, by evaluating the VIF of each feature against the rest. Their

results showed that W50 and W75 are redundant in this dataset, with V IF > 10, which implies

that the feature set proposed in [75] can be further reduced and optimized. After removing W50

and W75, the 3-dimensional feature vector is applied to regression tree, SVR and MLR models

for comparison of BP estimation accuracy. The optimal results from regression tree is close to

the results reported in [89], while being free of subject-specific calibration.

Amplitudes and areas: Features extracted from amplitudes of the PPG signal or the areas

under the waveform are often selected due to their indication of certain physiological parame-

ters or processes, whose relationship with BP could be complicated and nonlinear. Therefore,

unlike the duration features whose BP predictability can be validated via LR or MLR, the mo-

tivation of applying amplitude and area features could be more empirical than statistical.
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Figure 3.4: Definitions of some commonly-used PPG amplitude and area features.

As is shown in Figure 3.4, locating the position of characteristic points is the first step of

extracting amplitude and area features. The characteristic points include the maximum slope,

the systolic peak, the dicrotic notch, the inflection point, and the diastolic peak. The amplitudes

of these points and their ratios form the basic amplitude features. Afterward, the area under the

waveform is divided into 4 sections with respect to the positions of the maximum slope, the
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systolic peak and the inflection point, which forms 4 area features A1∼A4.

Elgendi et al. (2012) [91] proposed a thorough review of PPG duration, amplitude and area

features based on their physiological, vasculature and hemogynamic backgrounds. Some fea-

tures reviewed in [91] have strong theoretical support to be correlated with specific biological

properties, which could be particularly useful for BP estimation. These features are manually-

designed indices calculated from the basic amplitudes and areas shown in Figure 3.4, which are

summarized below:

• Augmentation index (AI) [92]: AI = VD
VS

is a measure of pulse wave reflection from

peripheral location [93].

• Inflection point area ratio (IPA) [94]: IPA = A4
(A1+A2+A3) is a measure of total peripheral

resistance.

• PPG intensity ratio (PIR) [55]: PIR = max(V PPG)
min(V PPG) has high correlation with DBP, which

is verified not only by its original PWV-model based work, but also by later works com-

paring PIR with other features [95].
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Figure 3.5: Definitions of amplitude features extracted from the second derivative of PPG
signal.

Besides the original PPG signal, features extracted from the second derivative of PPG

(SDPTG), which is also referred to as the acceleration PPG (APG), are also widely applied.
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5 APG amplitude features are depicted in Figure 3.5 as a, b, c, d and e. Their ratios are related

to arterial stiffness [92], which has close relationship with BP, as is discussed in Chapter 2.

Table 3.2: Summary of studies related to PPG amplitude and area features.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2006 [96]
4 healthy subjects;
Finapres BP reference

Posture
change

Amplitude of
PPG systolic peak

Beat-to-beat Non-linear model
Subject specific;
regression for
20 seconds signal

N/A N/A N/A±8.37(ME)
Correlation between PPG
and MBP is not consistent
for larger time scale

2008 [97]
34 healthy,
aged subjects;
cuff BP reference

Rest
5 APG amplitude
features

Beat-to-beat
(N = 155)

Manual classification
+regression

Grouped;
regression

0.89(R)
N/A±8.2(ME)

N/A N/A APG features has great
differences among age groups,
which is better addressed
through decision-based method

Comparison:
Regression only

0.67(R)
N/A±13.7(ME)

N/A N/A

2017 [98]
25 subjects;
cuff BP reference

Rest

25 features:
15 APG
(5 duration
+10 amplitude),
4 subject
information,
heartrate

Beat-to-beat
(N = 122)

MLR

Grouped; training
with stand-alone
dataset, testing
on 25 subjects

0.8(R)
1.58±8.54(ME)

N/A N/A
APG features are
feasiable for BP
estimation

For correlation studies, one early work from Shaltis et al. (2006) [96] tried to estimate MAP

from the amplitude of PPG systolic peak (Vs), with a non-linear model:

MAP = a1ea2Vs +a3ea4Vs . (3.33)

While most duration features and some amplitude or area features expressed as ratios can be

extracted from preprocessed PPG signals with normalized amplitude in each cycle, as is the

case in Figure 3.3, direct application of PPG amplitudes in the model requires the relative sig-

nal magnitude among beats to be preserved, which could introduce additional difficulties in

peak detection if there exists large PPG amplitude variation over time. Additionally, due to

the differences in measurement hardware, tissue thickness and sensor placement, the amplitude

of PPG signal is inevitably inconsistent across trials or subjects, which restricted the method

to subject-specific calibration. Results from [96] confirmed the correlation between PPG am-

plitude and MAP in a short, 20 seconds time scale, while pointing out that the correlation is

not consistence with prolonged timescales. The results thereby demonstrated the necessity of

feature engineering when the model is relatively simple. However, as the model complexity

increases in later works [99, 100], the raw amplitudes of the PPG signal is again considered as

a reasonable input of ML algorithms.

The APG amplitude features have drawn special attention from the researchers. Suzuki

et al. (2008) [97] and Atomi et al. (2017) [98] proposed their methods using only or mostly

APG amplitude features. [97] directly utilized the 5 amplitudes (a∼e), while [98] added their

positions on the timeline, their ratios, as well as additional subject information including height,
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weight, age and sex. [97] and [98] reported similar BP estimation accuracy (R ≥ 0.8), which

sufficiently validated the predictability of these features. [97] noted that the a∼e has large

variation among the elder age groups, and suggested a method that combines classification and

regression by first classifying the grouped dataset into 4 subgroups with manually designed

decision rules on the value of a∼e, and then conduct subgroup-specific regression (unspecified

regression method in publication). A better accuracy obtained from this method may imply

advantages in decision-based methods when dealing with discontinuously changing feature

vectors.

Statistical Indices: Statistical indices are evaluated over multiple samples of the PPG sig-

nal to reflect the properties of their value distribution. A review from Elgendi et al. (2016) [101]

suggested that statistical indices evaluated over the amplitudes of PPG samples is indicative of

the quality of PPG signal. With N samples of the PPG signal given as {xi}N
i=1, the following

statistical indices can be evaluated according to [101]:

• Mean (µ), Variance (σ )

• Skewness (S): S = 1
N ∑

N
i=1(

xi−µx
σx

)3, usage on PPG suggested by [102].

• Kurtosis (K): K = 1
N ∑

N
i=1(

xi−µx
σx

)4, usage on PPG suggested by [103].

• Entropy (E): E =−∑
N
i=1 x2

i ln(x2
i ), usage on PPG suggested by [103].

• Zero crossing rate (Z): Z = 1
N−1 ∑

N−1
i=1 |sgn(xi+1)−sgn(xi)|, usage on PPG suggested by

[104].

Table 3.3: Summary of study related to PPG statistical features.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2011 [59]
410 subjects;
cuff BP reference

None

33 features:
30 PPG
statistical indices
+ 3 subject
information

1 min window
(N = 410)

RFR
Grouped;
80% training,
20% testing

0.95(R) 0.93(R) N/A
Proposed an effective
BP estimation system
using statistical features

Comparison:
SVR

0.85(R) 0.82(R) N/A

Comparison:
MLP

0.81(R) 0.79(R) N/A

Comparison:
MLR

0.77(R) 0.73(R) N/A

Besides the amplitudes of PPG samples, the abovementioned statistical indices can also be

evaluated on many other parameters calculated from the PPG signal. A method using mostly

statistical indices was proposed by Monte et al. (2011) [59]. Statistical indices are evaluated
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over various parameters to form a feature vector for each 1-min PPG window. Utilization of

some statistical features in this work are summarized as follows:

• First, 24 overlapping frames were separated from the 1-min PPG window.

• The Kaiser-Teager Energy (KTE) [105] was calculated for each of 24 frames in the win-

dow, and µ , σ , S and interquartile range (IQR) were evaluated over the KTE values in

the window.

• Heart rate (HR) was calculated for each frame, and µ , σ , S and IQR were evaluated over

all values from the frames in the window.

• Fast Fourier transform (FFT) of each frame wad calculated. E was evaluated over the

FFT of each frame, and µ , σ , S and IQR were evaluated over the E values from all

frames in the window.

• Log energy profile was evaluated for each frame, and σ and IQR were evaluated over all

values from the frames in the window.

Results from [59] showed notable high correlation using the RFR model, which demonstrated

the possibility to interpret PPG-extracted parameters in a pure statistical way. However, the

method proposed in [59] requires 1-min PPG window to make 1 set of BP estimation, which is

a major drawback. Moreover, the statistical features often lack interpretability compared to the

morphological features, which can be observed directly from the waveform.

The Comprehensive Studies

In the study from Gaurav et al. (2016) [106], 46 PPG features were utilized, including

4 PPG duration and amplitude features, 19 APG duration and amplitude features, 4 statistical

indices evaluated on PPG amplitude, 11 features based on statistical analysis of successive heart

rate in the 10-beats window, and 8 non-linear combinations of the aforementioned features. The

ML model in [106] is an ensemble of 6 deep MLPs, 3 estimating SBP and 3 for DBP, with each

MLP having 4 hidden layers. The reference DBP values are used as an additional 47th feature

to train the 3 MLPs estimating SBP. Their results are state-of-the-art among studies [70, 76]

using dataset with similar scale.
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Table 3.4: Summary of comprehensive studies using only PPG to estimate BP.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2016 [106]

3000 subjects from
UCI machine learning
repository;
arterial BP reference

None

46 PPG temporal features
(8 PPG, 19 APG,
11 heartrate,
8 ratios of features)

10 beats window
(N = 151487)

Combinatorial
ANN with
6 MLPs

Grouped;
80%training,
20% testing

0.16±6.85(ME)
4.47(MAE)

0.03±4.72(ME)
3.21(MAE)

N/A

Proposed a novel
method that can
potentially be integrated
on smartphone

2016 [60]
32 subjects from
University of
Queensland database;
non-invasive
arterial BP reference

None
57 PPG temporal features

10 seconds window
(N = 7678)

MI and
colinearity-based
feature selection;
SVR

Grouped;
6143 training,
1535 testing

4.76±7.52(MAE) 3.42±5.19(MAE) 3.33±5.41(MAE) Proposed an effective
feature selection
methodology

18 selected features 4.63±7.43(MAE) 3.29±5.09(MAE) 3.30±5.25(MAE)

11 selected features
for SBP;
11 selected features
for DBP
and MBP

4.77±7.68(MAE) 3.67±5.69(MAE) 3.85±5.87(MAE)

2017 [61]
MIMIC-II database;
arterial BP reference

None
35 PPG temporal features:
21 PPG, 14 APG

Beat-to-beat
(N = 910)

SVR
Grouped;
648 training,
262 testing

8.54(MAE)
10.9(RMSE)

4.34(MAE)
5.8(RMSE) N/A

Improved accuracy with
APG features

Comparison:
21 PPG duration
features [75]

13.6(MAE)
13.6(RMSE)

7.7(MAE)
7.9(RMSE)

2019 [107]

942 subjects from
UCI machine learning
repository;
arterial BP reference

None

6 types of
PPG temporal features
and their non-linear
combinations

Beat-to-beat

AdaBoost
Grouped;
10-fold
cross validation

0.78(R)
0.09±10.38(ME)
8.22(MAE)

0.72(R)
0.23±4.22(ME)
4.17(MAE)

0.75(R)
−0.02±5.53(ME)
4.58(MAE)

Improved accuracy
with Adaboost;
proposed ranking of
feature importanceComparison:

RFR

0.75(R)
−0.17±10.35(ME)
10.29(MAE)

0.69(R)
−0.14±5.43(ME)
5.77(MAE)

0.72(R)
0.07±6.62(ME)
6.38(MAE)

Comparison:
Regression tree

0.54(R)
−0.71±15.29(ME)
13.87(MAE)

0.44(R)
0.17±8.91(ME)
6.82(MAE)

0.49(R)
0.02±9.02(ME)
8.18(MAE)

Comparison:
MLR

0.37(R)
0.17±10.03(ME)
16.12(MAE)

0.35(R)
−0.11±5.81(ME)
7.04(MAE)

0.34(R)
0.13±6.25(ME)
8.89(MAE)

2021 [77]
109 subjects from
MIMIC-II database;
arterial BP reference

None

69 PPG temporal features
Beat-to-beat
(N > 729000)

MI-based
feature selection;
MLR

Subject specific;
75% training,
25% testing

0.73(R)
−0.00±6.00(ME)
4.59(MAE)

0.73(R)
0.00±3.30(ME)
2.47(MAE)

N/A
Proposed a
comprehensive ranking
of feature importance10 PPG features

from feature selection

0.64(R)
N/A±6.90(ME)
5.39(MAE)

0.65(R)
N/A±3.71(ME)
2.83(MAE)

N/A

Comparison:
14 PPG+ECG features:
11 PPG features,
3 PAT features[108]

0.62(R)
N/A±7.02(ME)
5.50(MAE)

0.61(R)
N/A±3.80(ME)
2.90(MAE)

N/A

Comparison:
10 PPG+ECG features:
7 PPG features,
3 PAT features [23]

0.65(R)
N/A±6.74(ME)
5.25(MAE)

0.64(R)
N/A±3.70(ME)
2.82(MAE)

N/A

Another study from Duan et al. (2016) [60] demonstrated how proper feature selection

can improve the efficiency of model formation. Starting with a 57-element feature pool, [60]

utilized a feature selection method considering the computational complexity, the maximum

information coefficient (MIC) with BP, and the colinearity of selected features to reduce the

amount of feature to 11, individually selected for SBP and DBP. The comparison between 3

feature sets with 57, 18 and 11 elements shows that it is possible to significantly cut down the

dimension of feature vector while only negligibly affect the estimation accuracy.

Liu et al. (2017) [61] combined the PPG duration feature set proposed in [75] and the

features extracted from APG to form a larger feature vector. Results showed major accuracy

improvement (MAE = 8.54 mmHg for SBP, MAE = 4.34 mmHg for DBP) compared to using

only the duration features (MAE = 13.6 mmHg for SBP, MAE = 7.7 mmHg for DBP), which

demonstrated the novel BP predictability of APG features.

Study from Hasanzadeh et al. (2019) [107] demonstrated how bagging and boosting meth-

ods improve the performance of regression tree. [107] compared the results out of a RFR model

with 100 regression trees (R = 0.78 for SBP) and an AdaBoost model with 200 trees (R = 0.75
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for SBP) against the results from basic regression tree (R = 0.54 for SBP) and MLR (R = 0.37

for SBP), which shows clear improvements. [107] also proposed a ranking of feature impor-

tance for MAP estimation out of the AdaBoost model, the top 10 of which is listed as follow:

(from most significant to less significant)

For MAP estimation:

1. ln(HR×mNPV ), HR: heart rate; mNPV = max(V PPG)−min(V PPG)
max(V PPG) .

2. ln(DRI), DRI: Dicrotic reflection index, DRI = VDicrotic notch
VS

.

3. LF(HRV )
HF(HRV ) , the ratio of low frequency components and high frequency components of heart

rate variation.

4. ln(IRI), IRI: Inflection point reflection index, IRI = VIn f lection point
VS

.

5. IPA: Inflection point area ratio.

6. LASI: Large artery stiffness index, the ratio of subject’s height and the time duration

between systolic peak and inflection point.

7. A1+A2+A3+A4, the total area under the PPG pulse.

8. ln(HR).

9. µHRV .

10. SUT

Lin et al. (2021) [77] proposed a very inclusive study of 69 temporal domain PPG fea-

tures. However, probably due to the utilization of a simple MLR method, [77] requires subject-

specific model calibration. The feature selection method proposed in [77] considered the mu-

tual information between the features and the BP for each subject, and the stability of the

feature-BP correlation among all subjects. The feature ranking proposed in [77] is summarized

as follows: (from most significant to less significant)

For SBP estimation:

1. Width at 10
11 of amplitude.
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2. dPIR, PIR of the 1th derivative of PPG.

3. sdPIR, PIR of APG.

4. sdRIPV ,RIPV of APG, RIPV = max(V PPG)
min(V PPGVally)

.

5. Width at 9
11 of amplitude.

6. Slope from onset to maximum peak of PPG.

7. A4.

8. Width at 8
11 of amplitude.

9. A3+A4.

10. A3.

For DBP estimation:

1. Width at 10
11 of amplitude.

2. dPIR.

3. sdPIR.

4. LASI.

5. Width at 2
11 of amplitude.

6. Width between systolic peak and end of cycle.

7. sdRIPV .

8. A4.

9. Width at 3
11 of amplitude.

10. Width between maximum peak and end of cycle of the 1th derivative of PPG.

By comparing the results using only PPG features and the results using both PPG and PAT fea-

tures, [77] concluded that PPG features are sufficient to substitute the usage of PWV features.

However, the conclusion was not validated using a universal model in [77].
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3.4.2 Spectral Domain Features Based on Waveform Spectrum

Temporal domain features are explicitly defined, with each feature distinctively expressed

as a numerical value. Spectral domain features, on the other hand, can be described as semi-

defined: while the feature is defined as the frequency domain information of the PPG signal,

the feature is fed into the ML algorithm as a series of values. For example, spectral domain

features are often presented to the ML models by using all FFT coefficients that belong to a

frequency band as a feature vector [70, 71].

The similarity in cycle duration between PPG and ABP waveform depicted in Figure 3.2

intuitively suggests that both signals share similar harmonic components. Therefore, it could

be feasible to design a filter whose input is PPG and output is estimated ABP. Millasseau et

al. (2000) [109] tried to find the frequency response of such filter H( f ) by dividing the FFT

coefficients of these two signals for each subject:

H( f ) =
FFTBP( f )

FFTPPG( f )
, (3.34)

Then, a universal filter is acquired by averaging H( f ) across all subjects. [109] involved 60

normaltensive and hypertensive subjects and measured the PPG and fingertip ABP waveform

under rest condition, then estimated the ABP waveform with the PPG signal using H( f ), and

reported an overall RMSE of 4.4±2.0 mmHg. The novel results out of [109] as well as other

studies sharing similar ideas [110, 111] imply a universal linear correlation between frequency

components of PPG and ABP, suggesting that spectral domain information of PPG could be

feasible features in ML algorithms.

Table 3.5: Summary of studies using spectral PPG features to estimate BP.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2016 [70]
69 subjects from
MIMIC-II database;
arterial BP reference

None
FFT frequency bins
under 10.8 Hz

1 window
=10% previous cycle
+ complete cycle
+ 5% following cycle
(N = 175477)

MLP with
single hidden layer

Grouped;
70% training,
15% validation,
15% testing

0.06±7.08(ME) 0.01±4.66(ME) N/A PPG spectrum is
feasible for
BP estimation

Averaged over 5 beats 0.06±5.57(ME) 0.01±3.69(ME) N/A

23 additional subjects Averaged over 8 seconds Additional testing −1.67±2.46(ME) −1.29±1.71(ME) N/A

2018 [71]
72 subjects from
MIMIC database;
arterial BP reference

None

22 PPG features:
20 frequency bins
below 10 Hz,
SUT, DT

Beat-to-beat
(N = 58795)

MLP with
single hidden layer

Grouped;
70% training,
15% validation,
15% testing

−0.0217±4.8950(ME)
4.02±2.79(MAE)

0.0975±2.9160(ME)
2.27±1.82(MAE)

N/A
Advocate multitaper method
for estimating PPG spectrum

Recent studies have tried to utilize spectral domain PPG features in ML models. Study

from Xing et al. (2016) [70] formed a MLP with single 35-neuron hidden layer, while using

the FFT coefficients (magnitudes and phases) calculated from the PPG window directly as the
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feature vector. [70] reported comparable or better accuracy compared to methods using 40∼ 60

temporal domain features [106, 77]. Since temporal domain PPG features have to be extracted

by manually-designed algorithms that accord with their definitions, the FFT-MLP method in

[70] is much easier to implement than [106, 77]. The accuracy of the FFT-MLP can be further

improved by averaging over multiple windows, as is reported in [70].

Another study from Wang et al. (2018) [71] utilized a method similar to [70], while adding

2 additional temporal domain features, SUT and DT, into the feature vector. [71] also advo-

cated for using the multi-taper method [112] to estimate the spectrum of the PPG signal instead

of using FFT. [71] reported better result than [70] under the same beat-to-beat condition. How-

ever, dataset used in [71] is only about half the size of dataset used in [70], which indicates a

potentially unfair comparison.

Besides FFT, trials have also been made to extract the spectral domain PPG features for BP

estimation with discrete wavelet transform (DWT) [113] or discrete cosine transform (DCT)

[114]. However, biased BP estimation errors are reported in [113, 114].

3.4.3 Whole-based Features

While the temporal domain features are explicitly defined and the spectral domain features

are semi-defined, both of them have to be extracted with predefined algorithms, such as the peak

detection algorithms or the FFT. The whole-based PPG feature, on the other hand, is a feature

vector formed by the PPG signal itself (sometimes with necessary processing for dimension

reduction, e.g. principle components analysis (PCA)). The ML algorithm is therefore expected

to spontaneously find and extract appropriate features from the PPG signal. Utilization of

whole-based features often requires advanced ML models with enough complexity.

Whole-based PPG feature is by now the latest concept in cuff-less BP estimation stud-

ies. Mousavi et al. (2019) [99] proposed a method in which the feature vector is formed by

preprocessed PPG samples within a cycle between 2 consecutive systolic peaks. The PPG

samples are zero-mapped to a fixed length of 625 samples, and is subsequently reduced to 43

samples by PCA, which directly forms the 43-dimensional feature vector as the input of 500

AdaBoosted regression trees. SBP and MAP results (ME = 0.187± 4.173 mmHg for SBP,

ME = 0.067±4.911 mmHg for MAP) reported in [99] are top-of-the-line, while DBP results
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Table 3.6: Summary of studies using whole-based PPG features to estimate BP.

Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training
Performance

Key Conclusion
SBP DBP MAP

2019 [99]
> 441 subjects from
MIMIC-II database;
arterial BP reference

None
PPG samples
between 2 consecutive
systolic peaks

Beat-to-beat
(N = 1323)

PCA for
dimension reduction;
AdaBoost
on regression tree

Grouped;
10 fold
cross validation

0.91(R)
0.187±4.173(ME)

0.90(R)
−0.050±8.901(ME)

0.91(R)
0.067±4.911(ME)

Advocate usage of
whole-based features

Comparison:
RFR

0.196±4.731(ME) 0.155±10.683(ME) 0.196±5.714(ME)

Comparison:
SVR

−0.655±7.506(ME) −0.903±16.717(ME) −0.597±9.055(ME)

Comparison:
Regression tree

−0.247±6.736(ME) 0.021±18.543(ME) −0.050±9.594(ME)

2019 [100]

478 young subjects,
normaltensive
and hypertensive;
cuff BP reference

None
19 features:
4+8 whole-based
PPG and APG features
from PCA,
4 APG amplitude
features, LASI,
heart rate, BMI

Beat-to-beat
(N = 739)

PCA for
dimension reduction;
RFR

Grouped;
leave 1 subject
out each time

0.86(R)
0.45±11.3(ME)

0.83(R)
0.31±8.55(ME)

N/A Algorithm has better
performance in the
young group and
in the normaltensive
group

754 aged subjects,
normaltensive
and hypertensive;
cuff BP reference

Beat-to-beat
(N = 1340)

0.79(R)
−0.68±14.1(ME)

0.81(R)
−0.20±9.0(ME)

N/A

are inferior in terms of large error variance (ME = −0.050± 8.901 mmHg). One drawback

of study [99] is its relatively-small dataset size (N = 1323) among data-driven studies, which

could imply unfair comparison.

Another study from Xing et al. (2019) [100] extracted whole-based features from both PPG

and APG with a similar method to [99], but utilized a feature vector with lower dimension.

Using PCA, a PPG cycle is reduced to 4 and 8 points whole-based features for PPG and APG,

which are combined with other 6 temporal domain features and subject’s BMI to form the final

feature vector with 19 elements. Probably due to the reduced number of elements in whole-

based features and the absence of inclusive temporal features, results from [100] is inferior to

[99].

3.5 Methods Using Both ECG and PPG: The Pay and Gain From An Additional

Sensor

From existing studies [72, 23, 73, 95], it seems that the only purpose of utilizing both

ECG and PPG signals in a data-driven method is to include PAT in the feature vector, while

most of other involved features are still PPG features. An algorithm requiring both ECG and

PPG signals as input is less desirable for wearable device implementation compared to those

requiring only PPG, as more power has to be consumed for measuring an additional signal,

and more data has to be stored. In order to extract PAT, the ECG and PPG signals need to be

continuously synced, which is hard to maintain over long period of time. Moreover, a device

measuring both ECG and PPG will take up more space (see Figure 1.2 in Chapter 1, in which

extra cables are required to connect ECG nodes to the device), and is less comfortable to wear
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compared to devices that only measures PPG. With all these price paid for including PAT in the

BP estimation algorithm, a question ask is whether PAT is so effective for estimating BP that

the gains outweighs the pays.

Table 3.7: Summary of studies using PPG features and PAT to estimate BP.
Year Ref. Dataset Intervention Feature Type Estimation Type ML Method Training

Performance
Key Conclusion

SBP DBP MAP

2006 [72]
45 healthy male
subjects;
SBP references

None
3 features:
PAT p, weight, arm length

Beat-to-beat
(N = 180)

PCA and correlation-based
feature selector;
MLP with
single hidden layer

Grouped;
160 training,
20 testing

4.53±2.68(ME) N/A N/A
Proposed PAT method
without individual
calibration

2016 [23]
942 subjects from
MIMIC-II database;
arterial BP reference

None

10 features:
PAT f, PAT d, PAT p,
heart rate, AI, LASI,
A1∼A4

2-beat window
(N = 3663)

AdaBoost
Grouped;
10-fold cross validation

0.59(R)
N/A±10.09(ME)
11.17(MAE)

0.48(R)
N/A±6.14(ME)
5.35(MAE)

0.56(R)
N/A±5.38(ME)
5.92(MAE)

An additional calibration
process could help enhancing
the accuracy;
AdaBoost yields better
performance than
SVR, RFR, MLR
and decision tree

Comparison:
15 whole-based
PPG features from PCA

N/A±10.30(ME)
11.87(MAE)

N/A±6.61(ME)
5.78(MAE)

N/A

10 features
Additional one-point
calibration for groups
in testing set

0.54(R)
N/A±5.45(ME)
8.21(MAE)

0.57(R)
N/A±3.52(ME)
4.31(MAE)

N/A

2017 [73]
7 healthy subjects;
Finapres BP reference

Rest
15 features:
PAT, 14 PPG temporal features

Beat-to-beat
MLP with
single hidden layer

Subject-specific;
first 5 min data for training,
last 10 min data for testing

1.08±4.87(ME) −0.52±3.84(ME) N/A Additional calibration could
further improve performance

Additional calibration
by forming a regression
curve in the training set

0.994(R)
0.41±2.02(ME)

0.990(R)
0.46±2.21(ME)

N/A

2017 [95]

73 healthy subjects;
Finapres BP reference

Rest 14 features:
PAT f, PAT d, PAT p,
4 PPG temporal features,
2 PPG first derivative
temporal features,
4 APG temporal
features, heart rate

Beat-to-beat

Conlinearity-based
feature selector;
MLR

Subject specific
0.824(R)
0.0016±3.449(ME)

0.754(R)
0.0017±2.468(ME)

N/A Significance of feature
is subject specific;
feature importance is
similar between Rest and Exercise
subsets; proposed feature importance
ranking shows that PAT is the
most significant feature for SBP,
while for DBP it is PIR

35 healthy subjects Exercise
0.941(R)
−0.046±4.705(ME)

0.923(R)
−0.071±2.839(ME)

N/A

10 healthy subjects;
follow up after 6 months

Rest
Subject specific;
use parameters trained
from Rest dataset

0.619(R)
−1.267±5.98(ME)

0.549(R)
−1.38±5.49(ME)

N/A

Comparison Subset N/A Subject specific
−0.54±3.39(ME) −0.002±2.60(ME) N/A

Comparison:
PAT+PIR

Comparison:
Model-based [55]

−0.23±8.57(ME) −0.61±5.51(ME) N/A

From Chapter 2, we have discussed that the relationship between PTT and BP is dependent

of the transit distance that the pulse wave travels, which is subject-specific. A study from Kim et

al. (2006) [72] tried to get rid of subject-specific model calibration by including addition subject

information related to the transit distance as feature. [72] utilized MLP to form the relationship

between PAT and BP in a data-driven way. Besides PAT, [72] selected 2 additional features from

a pool of 6 individual information features including weight, BMI, body fat, height, arm length

and arm circle. Feature selection is conducted using a PCA-based method, where features

having highest correlation with the principle component and the BP are selected. The selected

features are weight and arm length, which is reasonable since arm length is approximately the

transit distance between heart and fingertip. However, SBP estimation performance reported

by [72] has biased error.

A more recent study from Kachuee et al. (2016) [23] compared the BP estimation perfor-

mance between an algorithm using a 10-element feature set including 3 types of PATs, and

another algorithm using a 15-element whole-based PPG feature set, whose dimension is re-

duced from 190 PPG samples using PCA. Both algorithms used 1000 AdaBoosted regression

trees for ML, and reported very close performance. [23] also proposed an addition calibration

method after model training, in which the model trained on the training set is calibrated on 1
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data in each subgroup in the testing set. The addition calibration procedure proposed in [23]

lowers the variance of estimation error, but is not capable of improving the correlation between

estimated and reference BPs.

Xu et al. (2017) [73] reported better results than [23] by turning back to subject-specific

calibration and adding more PPG features to the feature set. Very small error (ME = 0.41±2.02

mmHg for SBP, ME = 0.46±2.21 mmHg for DBP) and extremely high correlation (R = 0.994

for SBP, R= 0.990 for DBP) has been reported by [73], with an additional calibration procedure

after model training on the training set that forms a regression curve for error correction, which

is more reasonable than [23] whose calibration procedure is on the testing set and could indicate

data leakage. However, dataset used in [73] contains only 7 subjects.

Study from Miao et al. (2017) [95] discussed the accuracy degradation problem in data-

driven method. In [95], results tested on follow-up data (ME = −1.267± 5.98 mmHg for

SBP) acquired 6 months after the subject-specific model calibration (ME = 0.0016± 3.449

mmHg for SBP) showed that ML model can better preserve accuracy over time compared to

model-driven methods based on PWV [44] (SBP: error increased from ME = 0± 4 mmHg

to ME = 1.4± 10.2 mmHg after 6 months). The MLR model proposed in [95] also shows

advantage in accuracy when compared to the PWV model proposed in [55] under same dataset.

[95] also proposed a general feature ranking by averaging the feature importance evaluated over

each subject among all subjects, which is summarized as follows: (from most significant to less

significant)

For SBP estimation:

1. PAT d.

2. PPG characteristic value.

3. PIR.

4. b.

5. Width of APG.

6. PAT f .
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7. Amplitude of 1st derivative of PPG.

8. Width of 1st derivative of PPG.

9. a+b.

10. a.

For DBP estimation:

1. PIR.

2. Width of APG.

3. b.

4. PPG characteristic value.

5. PAT d.

6. Width of 1st derivative of PPG.

7. a.

8. Amplitude of 1st derivative of PPG.

9. DT .

10. HR.

The feature ranking proposed by [95] has its novelty of including PAT in the feature pool,

compared to [107, 77] which only compared the importance of PPG features. The ranking

shows that PAT could be a desirable indicator (especially for SBP), but probably only in cir-

cumstances where the model is subject-specifically calibrated.

3.6 Methods Using Only ECG: Thoughts Beside Ordinary Waveform Morphol-

ogy

Unlike PPG signal having a large variety of interpretable morphological features with high

correlation with BP, their is little correlation, both theoretically and empirically, between ECG
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morphology and BP. Therefore, very few studies have considered ECG alone as a usable BP

indicator. However, some very recent works are offering heuristic perspectives outside the

signal morphology, which could be revolutionary.

Table 3.8: Summary of studies using only ECG to estimate BP.
Year Ref. Dataset Intervention Feature Type Window / Estimation Type Machine Learning Method Training

Performance
Key Conclusion

SBP DBP MAP

2018 [115]

51 subjects from
mixed sources;
mix of cuff and
arterial BP reference

None

7 features:
mobility, complexity,
fractal dimension,
entropy, autocorrelation
of ECG, age;
hypertension level
from stacked classifier

30 s window
(N = 3129)

Stacked classifier to
classify hypertension level;
RFR

Grouped;
60% subjects
training,
10% subjects
validation,
30% subjects
testing

8.64±10.74(MAE)
10.97(RMSE)

18.20±8.45(MAE)
19.34(RMSE)

13.52±8.06(MAE)
15.07(RMSE)

Statistical index of signal
complexity can be used
for BP estimation

2020 [76]

1711 subjects from
MIMIC-III database;
arterial BP reference

None ECG samples
3-beat window
(N = 897743)

Deep learning combining
50-layer ResNet and 2-layer
LSTM (404520 parameters)

Grouped;
65% subjects
training,
10% subjects
validation,
25% subjects
testing

0.88(R)
−0.11±9.99(ME)
7.10(MAE)

0.71(R)
0.01±6.29(ME)
4.61(MAE)

0.85(R)
−0.03±6.66(ME)
4.66(MAE)

Proposed deep learning-based
method to estimate BP from
ECG with novel accuracy

30 arrhythmia patients
from ARR database

(N = 1342) Additional testing
0.96(R)
−0.22±5.82(ME)
4.41(MAE)

0.74(R)
−0.75±5.62(ME)
4.37(MAE)

0.91(R)
−0.57±4.39(ME)
3.56(MAE)

Simjanoska et al. (2018) [115] proposed a method in which features extracted from ECG

are purely statistical indices, including mobility, complexity, fractal dimension, entropy and

autocorrelation. Moreover, similar to the combination of classification and regression presented

in [97], [115] first trains a stacked classifier that takes the feature vector as input and output a

class corresponding to BP level (normaltension, pre-hypertension, hypertension), and then uses

this class as an additional feature for training the RFR model. However, the reported accuracy

is not novel.

Another recent study from Miao et al. (2020) [76] is the first ECG-based method that

achieved BP estimation accuracy comparable to PPG-based or PWV-based methods. In [76],

the BP estimation problem is interpreted under an intact whole-based, end-to-end deep learn-

ing framework. While previous studies utilizing whole-based features [99, 100] used PCA to

reduce the dimension of feature vector after the feature vector is formed by samples of the PPG

signal, [76] used a 50-layer ResNet [116] to learn the features from the raw ECG signal in a

completely spontaneous way, and a 2-layer LSTM network [117] to form the relationship be-

tween the learned features and the BP. The model proposed in [76] involves 404520 parameters

trained from a dataset with 897743 indices, which is a scale that has never been reached in

previous studies.
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3.7 Conclusions, Limitations and Suggested Future works

In this chapter we provided a review of data-driven studies for estimating BP, with respect

to the features and the ML methods, the BP estimation performance and the novelty as well as

limitations of these works. In summary, the following points can be highlighted:

• Model generalization: While model-driven works reviewed in Chapter 2 generally re-

quire subject-specific model calibration, most data-driven ML models discussed in this

chapter can be trained and tested on grouped datasets involving multiple subjects, while

obtaining comparable or ever better BP estimation accuracy compared to model-driven

methods, such as [106] utilizing 46 PPG temporal domain features and [70] using PPG

spectral domain features. As such, data-driven methods are very promising for develop-

ing universal models and devices that accurately measure cuff-less BP for the population.

• PPG signal and PPG features: Many studies reviewed in this chapter [59, 106, 60, 70,

71, 99] provide novel BP estimation accuracy from only the PPG signal. With evidences

from theoretical studies revealing the biological connections between PPG and ABP [86,

87] and correlation studies validating the statistical correlations between PPG features

and BP [88, 89, 75], we conclude that PPG is very feasible for BP estimation.

• Model complexity and feature vector dimension: Results from reviewed studies such

as [107, 59, 99, 76] showed that advanced machine learning methods with more com-

plexity such as bagging, boosting, SVR or MLP are more likely to produce better results

compared simple methods such as MLR or regression tree. Moreover, it seems that stud-

ies including more features generally achieve better accuracy [75, 106, 61], as long as the

features are properly selected from necessary redundancy removal processes [60, 77]. An

increase of dataset size can also be observed in [106, 60, 77] for addressing the data spar-

sity problem discussed in Section 3.2.2.

• Efficiency of utilizing both ECG and PPG: Although correlation between PAT and BP

has been validated when the dataset is limited to one subject [73, 95], it seems that adding

ECG signal to include PAT as an additional feature of a universal model that mostly relies

on PPG features is not an efficient idea [23]. While [72] has shown the importance of
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including transition distance indicators in the model for getting rid of subject-specific

calibration, it is hard to find such indicator in PPG features, which could explain the

inferior results reported from [23] when the dataset included multiple subjects. However,

with new methods of analyzing the ECG signal proposed in recent studies [115, 76],

it is possible for future algorithms combining ECG and PPG signals to produce novel

accuracy.

In addition, limitations of reviewed studies and suggested topics for future works are sum-

marized below:

• Limitation of model interpretability: Generally, data-driven cuff-less BP estimation

methods are still at a preliminary stage. Studies with novel performance [59, 106, 60,

70, 71, 99] are very different from each other in terms of the selections of features and

ML methods, such that it is hard to tell which factor is contributing most to a good

model. Such limitation in model interpretability also casts doubts on the reliability of

data-driven models when migrating to other groups of populations. With recent work

[76] visualizing the features extracted by the ResNet with a deconvolution process, it is

suggested that future studies can deepen our interpretations of data-driven methods.

• Limitation of datasets: Data-driven methods require much larger datasets (N = 102 ∼

106) compared to model-driven methods (N = 101 ∼ 103). In model-driven studies, var-

ious BP intervention methods, such as exercise, drug, mental arithmetic and cold press,

can be utilized because the required datasets are small enough to be acquired from cus-

tomized experiments. However, most data-driven studies rely on online open datasets

to train the ML models, because the ML models have much more parameters than the

PWV models and require larger datasets to avoid over-fitting. With most of these online

datasets acquired from hospitalized patients, there could potentially exist a bias in the

training set. We therefore advocate for a combined training process in which the model is

pre-trained on large, open datasets, and then tested or further trained on other customized

datasets to address the potential training bias and further improve the generalizability of

the model in different scenarios.

• High computational budget for model training: Implementing of some best-performing
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methods [106, 70, 76] from scratch could be very hard due to their high computation cost

to train the models on massive datasets (N = 106). It is thus suggested that the training ef-

ficiency of data-driven methods should be considered as another important factor besides

their BP estimation accuracy. Future works can also explore the feasibility of utilizing

pre-training methods for BP estimation, such as transfer learning.

• Semi-defined and whole-based features: Extraction of explicitly defined PPG features

could be difficult or computational expensive in some situations, such as when the PPG

signal is interfered by noise or artifacts, when the PPG signal is measured from animals

or tissues other than fingertip, or when massive amount of features are required. Semi-

defined or whole-based features such as spectrum or whole-based features have their

advantage of easier implementation and better generality over PPG signals measured

from different sources. Considering the promising accuracy of newly proposed works

[99, 70, 76], it is very desirable if such methods can be further developed.

• Interdisciplinary methods: The data-driven machine learning problem can be con-

sidered in many other ways besides features and their correlations with BP: [109] has

demonstrated how this problem can be interpreted as finding a filter whose input is the

PPG signal and output is the the ABP signal; [76] exhibited another perspective in which

the problem is addressed in a way closer to image recognition and computer vision prob-

lems. Ideas and concepts from other fields could potentially become breakthroughs. As

such, we should be encouraged to seek for improvements outside the current scope.
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Chapter 4

PPG-Based Blood Pressure Estimation Method Using Visibility
Graph Features and Deep Learning

4.1 Introduction

From all studies reviewed in Chapter 2 and Chapter 3, we noticed that the state-of-the-art

studies are among data-driven works in Chapter 3, which utilize explicitly-defined temporal

domain features [59, 106, 60], semi-defined spectral domain features [70, 71], or whole-based

features [99]. Advantages of these methods are top-of-the-line BP estimation performances,

good model generalizability being free of subject-specific calibrations, and requiring only PPG

signal as input. However, most of these methods are computationally expensive for imple-

mentation: in [59, 106, 60], more than 30 features have to be extracted from the PPG signal

with different manually-designed algorithms that accord with their definitions, which is not

only costly, but also prone to error; in [70, 71], the demanded size of training set is massive

(N = 104 ∼ 105), which again requires high computational budget to train the model from

scratch.

Motivated by the novelty of the abovementioned PPG-based data-driven BP estimation

methods, in this work, we present a new BP estimation method that preserves their advantages,

while addressing their limitation of being computationally expensive. Our proposed framework

utilizes a method, called visibility graph (VG) [118], for converting segments of PPG signals

into images, followed by transfer learning with Inception v3 [119], a convolutional neuron net-

work (CNN) with top-of-the-line image classification performance pre-trained on the ImageNet

database [120]. Our method achieved the following targets:

• It requires only one type of physiological signal, which facilitates the data acquisition

process.
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• It eliminates the need for subject-specific calibration by having one universal model ap-

plicable to all subjects.

• It enables the BP estimation problem to be addressed with transfer learning method by

converting time series into images, which greatly reduces the computational budget re-

quired for training a model from scratch.

The proposed method provides novel accuracy in terms of correlation and estimation error

compared to the reference values. Under optimal setting, the mean and the standard deviation

(SD) of the error between the estimated and reference BP with proposed method are −0.209±

9.476 mmHg for SBP, and −0.067± 4.491 mmHg for DBP, respectively. The SBP accuracy

ranks grade C, while the DBP accuracy ranks grade A, under the British Hypertension Society

(BHS) protocol.

4.2 Proposed Methods

4.2.1 Dataset Information

The dataset used in this study was selected from the UCI Machine Learning Repository of

cuff-less blood pressure estimation [121], which is a subset of the Multi-parameter Intelligent

Monitoring in Intensive Care (MIMIC) II waveform database [122]. The UCI dataset contains

12000 segments, with each segment containing continuous PPG, ECG, and invasively measured

arterial BP (ABP) signal, with the sampling rate of 125 Hz. Our proposed method uses the PPG

signal as input, and the ABP signal as reference values to evaluate the error of estimated SBP

and DBP.

Manual segment selection was conducted to select a subset from the UCI dataset for this

study with reduced size but sufficient SBP and DBP variation for training and validation. For

all segments, the beat-to-beat SBP and DBP values were extracted from the ABP signal and

32 segments were selected. Figure 4.1 shows the histogram of extracted SBP and DBP in the

original dataset, and in the selected dataset. As can be seen in the UCI dataset, the mean and

the SD for SBP and DBP are 128.39±22.05 mmHg and 66.44±11.29 mmHg, respectively. In

the selected subset dataset, these are 132.15±18.50 mmHg and 68.18±9.40 mmHg for SBP
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and DBP, respectively, indicating that our selected subset sufficiently covers the variations in

BP that exist in the original dataset.

Figure 4.1: Histogram of all SBP (top) and DBP (bottom) values in the whole UCI dataset (blue
bars), and in the subset (red bars) selected for this study.

4.2.2 Preprocessing

The signals in each segment were filtered with a forward-backward Butterworth filter. The

forward-backward filtering process has zero phase response, which preserves signal morphol-

ogy with no phase distortion and keeps the signals synced. As the effective frequency compo-

nents of the PPG signal remain lower than 11 Hz [123], to remove noise and artifacts the PPG

signal was band-pass filtered at 0.5 ∼ 10 Hz. The ABP signal was low-pass filtered at 0 ∼ 10

Hz to remove high frequency interference.

4.2.3 Peaks Detection and Windowing

After preprocessing, a windowing method was applied to the PPG signal, so the beat-to-

beat BP values can be estimated from the corresponding non-overlapping PPG windows. Non-

overlapping PPG windows were selected to prevent potential data leakage between the training

and testing sets.
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The windowing method starts with the detection of the systolic peaks in the PPG signal.

First, each segment is divided into 20 seconds sub-segments. For each sub-segment the am-

plitude of the 1st derivative of the signal is derived and remapped between 0 and 1. Next, all

possible peaks within the sub-segment are detected. A small interval of the 1st derivative of the

signal before each peak is inspected, and its maximum amplitude is found. A threshold level

can then be selected to separate the systolic peaks from other peaks, as the fast rising systolic

phase before the systolic peak shows as a high spike in the 1st derivative, making the systolic

peak distinguishable from other peaks, as is shown in Figure 4.2. After applying the threshold,

the systolic peaks can be identified, while other peaks are excluded.
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Figure 4.2: The proposed systolic peak detection method. Top: a 20 seconds sub-segment of
PPG signal and all detected peaks for selection (red circles). Bottom: zoomed-in specification
of the 2 ∼ 6 second of the signal and its first derivative. The threshold (red solid line) applied
to the searching intervals (magenta solid line) extracted from the first derivative of signal (blue
dashed line) selects systolic peaks from other peaks.

Once the systolic peaks in a segment are located, the PPG signal from the corresponding

segment was divided into windows, with one pair of SBP and DBP estimation expected from

each window. 3 settings of window duration, which is referred to as 1-beat, 2-beat and 3-

beat settings, were experimented to find the optimal window duration that provides best BP

estimation accuracy. For 1-beat, 2-beat or 3-beat setting, the window contains 1, 2 or 3 complete

PPG cycle(s), which is located by the positions of systolic peaks. Figure 4.3 demonstrates the

positions of 3 consecutive windows under 1-beat setting, with the position of each window

located by every 3 consecutive systolic peaks. Under the 2-beat or 3-beat setting, the position
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of each window is located by every 4 or 5 consecutive systolic peaks, respectively.
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Figure 4.3: Result of the proposed windowing method under 1-beat setting. Top: consecutive
PPG waveform. Bottom: 3 non-overlapping windows extracted from the PPG waveform.

4.2.4 VG Extraction

The challenge for using transfer learning in this application is to select a proper method

for domain transformation, such that the key information is efficiently described in the alter-

native domain. To address this issue, we chose to convert the time-domain PPG signals into

images because the similarity between characteristics of image recognition problem and the

time-domain signal interpretation problem is significant to make our method promising.

To create images where temporal information of PPG signals is preserved, we used VG.

VG is a method that maps a time series into an undirected graph [118, 124], and has shown

great promise in extracting temporal information from physiological signals [125, 126, 127].

Let x = [x1, · · · ,xN ] represent a time series of N points, where xi (i = 1, · · · ,N) denotes the ith

sample in the time series. Let ti represent the time corresponding to occurrence of sample xi.

To construct the visibility graph for this time series, each sample is considered as a node in the

graph. An undirected edge is formed between any two nodes if the nodes are considered to be

naturally visible, i.e., for two nodes h and l (th < tl), there will be an undirected and unweighted

edge if

xp < xl +(xh− xl)
tl− tp

tl− th
,∀p ∈ {p|th < tp < tl}. (4.1)

Here, 2 VGs are formed for every PPG window, as is shown in Figure 4.4 where the window
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duration is under 1-beat setting. First, the number of samples in all PPG windows was adjusted

to a fixed length by zero-mapping at the end. For the windows under 1-beat, 2-beat or 3-

beat settings, the length is set to 250, 375 and 500 samples, respectively. Next, the inverted

version of the waveform for each window was obtained. Finally, in all windows, the time

series of both the original waveform and the inverted waveform were converted to VG, with

each VG described with adjacency matrix filled with 0 and 1. The matrix here was considered

as an image to form the input of CNN. We refer to the image corresponding to original PPG

waveform as VG POS, and the image corresponding to inverted PPG waveform as VG INV.
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Figure 4.4: Plot of a zero-mapped window, the inverted window, and 2 VGs (VG POS and
VG INV) formed with the PPG samples in that window. Here, the window duration is under
1-beat setting.

4.2.5 Transfer Learning with CNN

Since the Inception v3 model takes 3-channel RGB images as input, the VG matrix was

firstly extended to 3 channels by replicating itself. Next, the VG matrix was directly passed to

the bilinear rescaling layer of the model. By forward propagation, a 2048-dimension feature

vector was obtained from the bottleneck layer before the softmax layer of the CNN, as is shown

in Figure 4.5. Finally, we trained a dense layer between the feature vector and SBP and DBP
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estimation outputs by minimizing the mean squared error between reference and estimated SBP

and DBP values in the training set, under 3 settings: If only VG POS or VG INV is used, then

the size of dense layer is 2048× 2; If both VG POS and VG INV are used, then the feature

vector is the concatenation of 2 feature vectors from each VG, and the size of dense layer is

4096×2, as is shown in Figure 4.6.

Figure 4.5: Flow chart of the transfer learning process. Yellow blocks indicate activated layers
in the forward propagation process.

Figure 4.6: Formation of the feature vector and the dense layer using only VG POS or VG INV
(top) or both VG POS and VG INV (bottom).
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Table 4.1: Summary of SBP and DBP estimation performance under different combinations of
window duration settings and VG usage settings. Bold font indicates optimal performances.
VG Features Window N SBP DBP

R ME±SD (mmHg) MAE±SD (mmHg) RMSE (mmHg) R ME±SD (mmHg) MAE±SD (mmHg) RMSE (mmHg)

1-beat 8676 0.859 -0.209±9.476 6.890±6.509 9.478 0.879 -0.067±4.491 3.146±3.205 4.491

POS+INV 2-beat 5907 0.832 0.121±10.175 7.418±6.964 10.175 0.850 0.075±4.929 3.418±3.552 4.929

3-beat 4368 0.812 0.156±10.744 7.820±7.368 10.744 0.841 0.071±5.050 3.582±3.559 5.050

1-beat 8676 0.838 -0.080±10.097 7.419±6.849 10.097 0.859 0.057±4.814 3.395±3.414 4.815

POS 2-beat 5907 0.804 0.028±10.931 8.136±7.299 10.930 0.834 0.031±5.153 3.619±3.668 5.152

3-beat 4368 0.772 -0.144±11.706 8.679±7.854 11.705 0.806 -0.029±5.507 3.903±3.885 5.507

1-beat 8676 0.802 -0.040±11.065 8.310±7.306 11.064 0.841 0.167±5.085 3.631±3.565 5.088

INV 2-beat 5907 0.778 -0.246±11.548 8.684±7.614 11.549 0.805 0.009±5.543 3.919±3.919 5.542

3-beat 4368 0.756 -0.156±12.063 9.034±7.995 12.063 0.791 -0.027±5.698 4.061±3.996 5.697

4.3 Results

Using 10-fold cross validation, Table 4.1 summarizes the error performance under 9 dif-

ferent combinations of VG usage settings and window duration settings. The optimal result is

achieved by utilizing both VG POS and VG INV, under 1-beat setting. For SBP and DBP, the

correlation coefficient is 0.859 and 0.879, and the mean error and SD of error is−0.209±9.476

mmHg and −0.067±4.491 mmHg, respectively.

Under this optimal setting, the regression plot of reference and estimated BPs is shown in

Figure 4.7, and the Bland-Altman plot of SBP and DBP are shown in Figure 4.8.
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Figure 4.7: Regression plot between reference and estimated BP values.
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Figure 4.8: Bland-Altman plot of estimated SBP and DBP.

4.4 Discussions

The results listed in Table 4.1 demonstrated that using the proposed method, the DBP has

a generally better estimation accuracy than the SBP under all settings in terms of smaller mean

absolute error (MAE), root mean square error (RMSE), and standard deviation of error. The

DBP performance under all settings are within the limits of the American National Standards

of the Association for the Advancement of Medical Instrumentation (AAMI) [12], where the

maximum acceptable error is 5± 8 mmHg. Under the optimal setting, the SBP estimation

performance ranked grade C under the British Hypertension Society (BHS) protocol, while the

DBP ranked grade A, as is shown in Table 4.2.

Table 4.2: Estimation accuracy of proposed work compared to the BHS protocol under the

optimal setting using both VG POS and VG INV. SBP accuracy achieves grade C while DBP

achieves grade A.

Item Precentage

≤ 5mmHg ≤ 10mmHg ≤ 15mmHg

SBP 48.77% 78.31% 90.32%

DBP 81.49% 96.04% 98.78%

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

Under any given setting of VG usage, the results in Table 4.1 lead to the conclusion that
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both SBP and DBP estimation accuracy drop as the window duration becomes longer. The

decrease in accuracy could be relevant to the transfer learning procedure, as the Inception v3

model use bilinear resizing algorithm to shrink the input image to a 299× 299 matrix. With

the size of input VG matrix becomes larger along the increase of window duration, shrinking

a large VG matrix to a fixed size could lead to losing more details compared to shrinking a

smaller matrix, where here the details are relevant to the morphological features of the PPG

signal. Additionally, previous studies utilizing temporal domain PPG features [59, 106, 60]

and whole-based PPG features [99] have been focusing on the beat-wise morphology of the

PPG instead of characteristics among multiple beats, which implies advantage of 1-beat setting

over others.

On the other hand, under same window duration setting, comparisons among different VG

usage settings show that using both VG POS and VG INV yields better results than using

any one of them alone, which implies that VG POS and VG INV are complementary to some

extent. However, the performances of proposed method under all 3 different VG usage settings

are close to each other, which indicates redundancy between VG POS and VG INV.

Table 4.3: Summary of dataset and methods used in works for comparison. All listed works
use only the PPG waveform for BP estimation. Bode font indicates this work.

Citation Dataset Dataset size Model Validation R Error

SBP DBP SBP DBP

This Work UCI dataset 8676 beats CNN 10 fold
cross validation 0.859 0.879 6.890±6.509

(MAE±SD)
3.146±3.205
(MAE±SD)

-0.209±9.476
(ME±SD)

-0.067±4.491
(ME±SD)

[107] Hasanzadeh et al. (2019) UCI dataset 942 subjects AdaBoost
10 fold
cross validation

0.78 0.72
8.22±10.38
(MAE±SD)

4.17±4.22
(MAE±SD)

[100] Xing et al. (2019) Self prepared 739 beats Random forest Leave one out 0.86 0.83
0.45±11.3
(ME±SD)

0.31±8.55
(ME±SD)

[99] Mousavi et al. (2019)
MIMIC
database

1323 beats
Random forest (SBP)
AdaBoost (DBP)

10 fold
cross validation

0.91 0.90
0.19±4.17
(ME±SD)

−0.05±8.90
(ME±SD)

[71] Wang et al. (2018)
MIMIC
database

58795 beats ANN
Training
and testing

N/A N/A
4.02±2.79
(MAE±SD)

2.27±1.82
(MAE±SD)

[70] Xing et al. (2016)
MIMIC
database

175477 windows ANN
Training
and testing

N/A N/A
0.06±7.08
(ME±SD)

0.01±4.66
(ME±SD)

[90] Khalid et al. (2018)
University of
Queensland
database

8133 windows Regression tree
10 fold
cross validation

N/A N/A
−0.1±6.5
(ME±SD)

−0.6±5.2
(ME±SD)

[60] Duan et al. (2016)
University of
Queensland
database

7678 windows SVR
10 fold
cross validation

N/A N/A
4.77±7.68
(MAE±SD)

3.67±5.69
(MAE±SD)

For performance comparison, in Table 4.3 we summarized general information and best
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recorded estimation accuracy of 7 related works published within the last four years that esti-

mate BP from PPG, similar to this work. These studies have been discussed in Chapter 3 with

more details. Some of the listed studies have specific comparability to us. For example, [107]

shares the same dataset with this work but utilized the entire dataset; [90] and [60] use dataset

with similar size to us; [99] used a way of beat-to-beat window segmentation method similar

to this work. It can be seen that our work outperformed [107] in SBP and DBP correlation,

[107, 100] in SBP error, and [107, 100, 90, 60, 99] in DBP error.

4.5 Conclusions

In this chapter, we presented a new approach for effectively transforming the temporal do-

main information into image domain, which leads to development of a new data-driven frame-

work for cuff-less BP monitoring with deep learning models. Our results demonstrate that the

proposed method achieves our desire of using only PPG signal, eliminating the need for in-

dividual calibration, and reducing the number of parameters to be trained by utilizing transfer

learning with pre-trained deep network. The method provides accurate BP estimation with only

one PPG beat, while keeping its simplicity of implementation and requiring training only one

dense layer. Our proposed work is thereby a suitable candidate for cuff-less and continuous BP

monitoring.
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Chapter 5

Conclusions

Cuff-less blood pressure (BP) estimation methods are the next generation replacement of

traditional cuff-based BP methods, which can enable the possibility of 24-hour continuous

and disturbance-free personalized healthcare. Most of such methods estimate BP values from

physiological signals based on pulse wave velocity-BP relationship or pulse volume-BP rela-

tionship. There are two classes of methods for cuff-less BP estimation: model-driven methods

which use parametric models, and data-driven methods which rely on extracted features from

physiological recordings and machine learning. In this thesis, a thorough review of both classes

of methods was presented to offer a summary of existing works, with respect to the derivation

and application of parametric models and the feature pool of data-driven methods. It is worth

mentioning that existing studies are still in preliminary stages, where model accuracy and reli-

ability over time and population are only validated within limited range.

While model-driven methods offer advantages of simplicity and good interpretability, it

seems that data-driven methods are more promising in the future due to their accuracy and

good generalizability over the population. To reduce the computational budget of existing data-

driven methods, we proposed a novel method that effectively transforms the temporal domain

information in the PPG signal into image domain using visibility graph, thereby, enabling the

machine learning model to be a pretrained deep convolutional image classification network

instead of a model to be trained from scratch. The proposed method offers comparable or

better results when compared to other methods with much more complicated and costly training

process.

Future work should be focused on further improving and extending data-driven methods

based on semi-defined or whole-based features combined with deep learning. Interpretability

problem of machine learning models is also a valuable topic in future studies for improving our
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understanding of feature predictability and model reliability.
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