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ABSTRACT OF THE DISSERTATION

Game Theory Applications in Security

by ABDOLMAJID YOLMEH

Dissertation Director:

Melike Baykal-Gürsoy

In this dissertation, we study the applications of game theory in determining

protection strategies for various infrastructures. The game models are played between

a defender (she) and an adversary (he). The defender seeks to minimize the damage to

the infrastructure network, while the adversary aims to maximize it. This dissertation

is divided into two parts. In the first part, we consider the resource allocation game

models, and in the second part, we study patrolling and search games.

In the area of resource allocation games, we address some of the existing limi-

tations in literature. One such limitation is that most of these models assume that

the parameters of the game are either deterministic or follow a known distribution.

Whereas in reality, some parameters of the game may be uncertain with no known

distribution or distributional information about them may be unreliable. To this

end, we study one-shot security games under uncertainty about target valuations.

We propose a model in which both players use a robust approach to contend with the

uncertainty of target valuations. We show that the Nash equilibrium for this model

is of threshold type and develop closed-form solutions to characterize the equilibrium

point. We then apply our model to a real case of assigning funds for security to 10

urban areas in the United States.

Another limitation is the lack of models that address hierarchical decision mak-

ing. Protecting infrastructures and their users against intentional attacks involves

making both strategic and operational decisions in an organization’s hierarchy. Al-
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though usually analyzed separately, these decisions influence each other. To address

this issue, we develop a two-stage game model. In the first stage, the players make in-

vestment decisions and in the second stage, they decide which sites to defend/attack.

We distinguish between two types of games that arise in the second stage: Maxi-

mal Damage game and Infiltration/Harassment game. We prove that the solution to

this game under budget constraints is unique. In fact, when the second stage game

is of Infiltration/Harassment type, the invest-defend game has a unique closed-form

solution that is very intuitive. The results reveal that an increase in defense invest-

ments on a target site decreases the probability of both defending and attacking that

target. However, an increase in attack investments increases the probability of both

defending and attacking that target. Similarly, an increase in the defender’s (at-

tacker’s) investment efficiency leads to a decrease (increase) in investments of both

the defender and the attacker. We also apply the proposed model to a real case. The

results from real data demonstrate that the attacker’s penalty from a failed attack is

an important factor in determining the defender’s optimal distribution of investments

and defense probabilities. The defender’s second stage defense decisions complement

the first stage investment decisions. That is, among target sites that receive little

or zero investment, the most important one is covered with a relatively high defense

probability in the second stage. Moreover, as the attacker’s budget increases, the

defense investments shift from less important sites to the more important ones.

We also investigate the overarching protection options in the resource allocation

models. An overarching protection refers to an option that protects multiple targets

at the same time, e.g., emergency response, border security and intelligence. Most

of the defensive resource allocation models with overarching protections assume that

there is only one overarching protection option that protects all targets. However,

this may not be realistic, for example, emergency response investment may cover only
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a certain region. To address this issue, we develop a new resource allocation model

to accommodate generalized overarching protections against intentional attacks. The

model also considers multiple natural disaster types. We show that our proposed

model is a convex optimization problem and therefore can be solved to optimality in

polynomial time. Furthermore, the overall country-level resource allocation problem

can be decomposed into smaller city-level subproblems, thus resulting in a more

efficient algorithm. The numerical experiments demonstrate the performance of the

proposed approach.

Patrolling and search games are usually played on a graph where players make

decisions over a time horizon. In patrolling games, the defender controls a set of

patrollers and directs them to follow a walk on the graph to minimize the damage of

attacks of the adversary, while the adversary selects a target and a time to attack. In

order to successfully destroy a target site, the adversary needs some preparation time

without being interrupted by the patrollers. Most patrolling game models assume that

the site values are either the same or that they do not change over time. However,

this is not a realistic assumption. Particularly in the case of soft targets, these values

may correspond to the occupancy level of a site, thus, as such may be different and

may change over time. We propose new models with time-dependent node values and

node-based attack times. We solve these models numerically using algorithms like

column generation, and column and row generation. We apply these algorithms to a

real case of an urban rail network in a major US city. The results show the efficiency

of the proposed solution approach. They also demonstrate a diminishing returns for

additional patrollers.

In search games, a Hider hides a set of objects in a set of potential hiding locations.

The Searcher controls a set of search teams and directs them to follow a walk on the

network and find the hidden objects such that an objective function is optimized.
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Most search game models assume that the hiding places are identical and the players’

objective is to optimize the search time. However, there are some cases in which

the players may differentiate the hiding places from each other and the objective is

to optimize a weighted search time. To address this, we introduce a new discrete

search game with consideration given to the weights at different locations. We show

that, under certain conditions, the game has a closed-form Nash equilibrium. For

the general case, we develop an algorithm based on column and row generation. We

show that the Searcher’s subproblem is NP-hard and propose a branch and price

algorithm to solve it. We also present a polynomial time algorithm for the Hider’s

subproblem. Numerical experiments investigate the performance of the approach and

reveal insights on the properties of this game.
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Chapter 1

Introduction

Terrorist attacks are a serious concern for the national economy and the quality of

life. Every year, thousands of people lose their lives or get injured or kidnapped

due to these attacks. In 2015, a total of 11,774 terrorist attacks occurred worldwide,

resulting in more than 28,300 deaths and more than 35,300 injuries. In addition, more

than 12,100 people were kidnapped or taken hostage [22]. The psychological impact

of the continued threat of terrorism is also considerable. Such incidents create fear,

panic, anxiety and distress in the society.

Protecting critical infrastructures against terrorism is one of the top priorities in

homeland security [104]. The physical protection of critical infrastructure can prevent

the successful execution of high-impact terrorist attacks. In addition, the immediate

response to a terrorist attack against critical infrastructures can prevent the cascading

effects associated with such attacks.

These reasons along with the many high profile terrorist attacks that have hap-

pened during the past couple of decades, have highlighted the modeling and analyzing

security of such infrastructures as a major research agenda. The consequences of at-

tacks could be substantially reduced by evaluating the risk associated with each site

within the infrastructure, mitigation planning, and designing protection strategies
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and response policies. Infrastructure security has recently been a subject of increased

interest from researchers. Different approaches have been proposed to model strate-

gic interactions in security problems, these methods include system analysis [115],

mathematical modeling [51], probabilistic risk analysis [33, 39, 73, 100, 115, 116], and

adversarial risk analysis [123]. However, since the terrorists can be strategic in their

attacks, game-theoretic analysis of such attacks yields more realistic results. Thus,

recent studies concentrated on developing game-theoretic models to capture terrorism

risk and applying the results in enhancing security measures. One such model, AR-

MOR [112, 113, 114, 118] has been deployed at the Los Angeles International Airport

(LAX) to enhance security of the airport.

This research focuses on game theory applications in finding the optimal protection

strategies for various infrastructures against intentional attacks. This work can be

divided into two parts: resource allocation models, and patrolling and search game

models.

Resource allocation to protect against intentional attacks is generally expensive

and deciding how to allocate resources in order to protect critical infrastructures is

a difficult problem. Many factors affect such allocation policy, for example, equity

plays a significant role in determining defense allocations in practice [129]. Moreover,

creating a balance to protect against different types of threats (e.g. biological attacks

versus bomb attacks, or between terrorism and nonterrorism prevention activities) is

another factor. Some of these factors have already been addressed in the literature of

static security games. However, there are still some limitations. For example, most

infrastructure security games assume that the parameters of the game are either de-

terministic or follow a known distribution. Whereas in reality, some parameters of

the game may be uncertain with no known distribution or distributional information

about them may be unreliable. In this study, we develop robust distribution-free
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models of the incomplete-information infrastructure security game with and without

private information. Moreover, hierarchical nature of decision making is often ignored

in the literature. However, allocating resources to protect critical infrastructures in-

volves decision making at different levels in an organization’s hierarchy: strategic

and operational decisions. The decisions influence each other and need to be studied

simultaneously. In this research, we develop two-stage game models to address this

issue. Moreover, most of the existing resource allocation models with overarching

protection options assume that there is only one overarching protection option that

protects all targets. However, in reality there may be many overarching protection

options and each option may cover only a subset of targets. To address this issue, we

develop a new resource allocation model with generalized overarching protection op-

tions. We also develop efficient decomposition algorithms to find the optimal resource

allocation.

The patrolling and search games are usually played on a graph where the players

make decisions over a time horizon. Designing patrols to protect open mass transit

systems and other soft targets poses unique challenges that have not been addressed

in the patrolling games literature so far. One of these challenges is the dynamic na-

ture of crowd sizes inside these systems. Because the adversary’s primary objective

is to inflict human casualties, the node values depend on the number of people re-

siding in those nodes. These numbers change over time and the terrorists tend to

time their attacks according to these changes [68]. Other challenges include dealing

with multiple attackers, accommodating human resource limitations, and developing

efficient methods to design patrols for a general network. We address these challenges

by developing new models with dynamically changing node values, node-based attack

times, multiple patrollers, and multiple attackers. In order to efficiently solve these

models, we develop advanced solution algorithms such as column generation, and
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column and row generation. In the search games, a Hider hides a set of objects in

a set of potential hiding locations. The Searcher controls a set of search teams and

directs them to follow a walk on the network and find the hidden objects such that

an objective function is optimized. Most search game models assume that the hiding

places are identical and the players’ objective is to optimize the search time. However,

there are some cases in which the players may differentiate the hiding places from

each other and the objective is to optimize a weighted search time. To address this,

we introduce a new discrete search game with consideration given to the weights at

different locations.

1.1 Problem Statement and Motivation of Research

The main problem under consideration in this research is to determine the optimal

protection strategies against intentional disruptions such as terrorist attacks. Because

adversaries are also strategic in their decision making, game-theoretic analysis of these

problems yields more realistic results. The game models considered in this research

are played between a defender (she) and an adversary (he). The defender wants to

minimize the damage to the infrastructure network, while the adversary wants to

maximize it. The models can be categorized into two classes: resource allocation

games, and patrolling and search games. In the resource allocation models, there is

a set of N targets. Each target i has a value of Ci. The defender decides on which

target to defend, while the adversary decides on which one to attack. If both players

choose the same target i, then with probability δi, the attack will be detected and

thwarted. This probability is called the detection probability. Component (i, j) of the

following matrix shows the expected damage if the defender chooses target i and the

adversary chooses target j. Note that, this matrix corresponds to the payoff matrix
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of the adversary, who tries to maximize the expected damage.



i \ j 1 2 · · · N

1 (1− δ1)C1 C2 · · · CN

2 C1 (1− δ2)C2 · · · CN
...

...
...

. . .
...

N C1 C2 · · · (1− δN)CN


.

Our aim is to characterize the Nash equilibrium (NE) in closed-form under various

conditions such as the uncertainty of game parameters, and the existence of private

information.

Another issue that we address in this dissertation is the hierarchical nature of

decision making. Protecting infrastructures and their users against disruptions in-

volves making both strategic and operational decisions in an organization’s hierarchy

(See Figure 1.1). The strategic decisions are long-term decisions with long-lasting

effects. For example, investment decisions on “hardening” [17] of target sites to de-

crease success probability of attack is classified as a strategic decision. These include

investment on new technologies to enhance security of a site. On the other hand, the

operational decisions are short-term decisions that relate to the routine day-to-day

operations such as patrolling, assigning first responders, and scheduling vehicle check-

points. Note that, the word “strategic” can also be used to describe players. In this

context a “strategic player” means a rational player whose objective is to maximize

payoff. Therefore, in this dissertation “strategic decision” means long-term decision

with long-lasting impacts and “strategic player” means a rational player whose ob-

jective is to maximize payoff. Most research only focus on either purely strategic

decisions [63, 107] or purely operational decisions [16, 35, 36, 38]. However, these

decisions influence each other. For instance, installing a CCTV camera in a certain

area might render patrolling that area unnecessary. Or allocations of metal detectors



6

Figure 1.1: Strategic decisions vs operational decisions

and screening systems to target sites may affect optimal scheduling of patrol units

among those targets. Moreover, investing in a new technology to enhance security

of a certain target site may reduce its target attractiveness and affect the optimal

probability of defending that target. Therefore, considering strategic and operational

decisions in the same model would yield a more holistic analysis.

We study the effect of overarching protection options in resource allocation models

considering both manmade and natural disasters. Overarching protection options re-

fer to the alternatives that can protect multiple targets simultaneously. For example,

investments in border security and intelligence efforts are expected to protect mul-

tiple targets from the threat of terrorism. The limitation of the existing literature

in this area is that most of the existing models only consider a single overarching

protection option that protects all targets. However, this may not be an accurate

representation of reality. For example, investment in border security can be divided

into different points of entry, each of which is expected to benefit areas that are closer

to that particular point of entry. To this end, a new resource allocation model that
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accommodates multiple overarching protections that protect a subset of the targets,

would lead to a more realistic analysis.

A patrolling game G investigated in this research is a zero-sum game played by a

defender and an adversary on a connected graph Q = (N , E) with the set of nodes

N and the set of edges E over the time horizon T . The defender controls a set of

security personnel (patrollers) S and directs them to follow a walk on the graph to

minimize the damage of attacks from the adversary. While the adversary controls

a set of attackers A and chooses a node and a time to attack for each attacker. In

order to successfully destroy a target site, an attacker needs a certain number of time

units on the target uninterrupted by any patroller. Majority of the papers in the

literature of patrolling games assume that the adversary chooses a single target to

attack, the target values are fixed over time, and some even assume that all targets

are indistinguishable, i.e., they all have the same value. However, this is not the case

in many realistic situations. For example, at a transportation facility, the number

of people, occupancy level, at each location may be considered as the value of that

location. Moreover, occupancy levels may change over time, it is expected that, during

the rush hours, the occupancy levels would be higher than normal hours. Therefore, a

patrolling game model with time-dependent node values, node-specific attack times,

multiple patrollers and multiple attackers would lead to results that are more aligned

with reality.

The search games considered in this research are played between a Searcher and a

Hider. The Searcher controls a set of S search teams and the Hider controls a set of

H objects to hide. The game is played on a complete graph Q = (N , E), where N =

{0, 1, 2, . . . , N} is the set of nodes in the graph and E = {(i, j) : i, j ∈ N , i 6= j} is the

set of edges. Most of the search game models in the literature assume that the hiding

places are identical and the players’ objective is to optimize the search time. However,
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there are some cases in which the players may differentiate the hiding places from each

other and the objective is to optimize a weighted search time. For example, in certain

attacks (biological or chemical), casualty rate depends on factors such as population

density, environment conditions etc. Therefore, different locations may have different

casualty rates and the overall damage will be proportional to exposure time and

casualty rate. Another example is the problem of detecting an eavesdropping agent

over communication channels [37]. Different channels may have different transmission

capacities and the rate of damage to the network will be proportional to the detection

time and the capacity of the channel. Moreover, the hiding locations may be dispersed

throughout a large area and the search may involve multiple search teams. To this

end, a new search game that accommodates different weights at different locations,

will lead to a more realistic analysis.

1.2 Research Contributions

In this research, new game-theoretic models are proposed to address some of the

existing gaps in the areas of resource allocation games, and patrolling and search

games. In the area of resource allocation games, the main contributions are: extending

the existing models to handle hierarchical decision making; introducing generalized

overarching protection options; addressing parameter uncertainties using a robust

approach; and developing new models that are amenable to more efficient algorithms.

In the area of patrolling and search games, our main contributions are: incorporating

time-dependent node values, as well as multiple patrollers and multiple attack points;

and introducing new and more efficient algorithms to solve the game-theoretic models.

In the next sections we will present our main contributions as given below.

1. We develop a robust approach to cope with parameter uncertainties in the

security games and provide closed-form NE strategies in Chapter 2.
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2. To address the hierarchical nature of decision making to protect against in-

tentional attacks, in Chapter 3, we introduce a two-stage invest-defend game

model and derive closed-form NE strategies under certain conditions. This

model captures the combined effect of strategic investment decisions and oper-

ational attack/defense decisions.

3. In Chapter 4, we present a new resource allocation model for the protection of

assets against both manmade and natural disasters with generalized overarching

protection. This model is shown to lead to a convex optimization problem that

is decomposable, thus can be efficiently solved.

4. In Chapters 5 and 6, we introduce new patrolling game models with time de-

pendent node values, node based attack times, multiple patrollers, and multiple

attack points; and develop efficient solution approaches, based on column gen-

eration, and column and row generation to solve realistic size problems.

5. We introduce a new search game model with different node weights, multiple

search teams, multiple objects to hide, and dispersed hiding locations; and

efficient solution approaches, based on column and row generation, to solve

realistic size models in Chapter 7.

6. We present the conclusions of this research and discuss future research ideas in

Chapter 8.
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Part I

Resource Allocation Security

Games
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Chapter 2

Infrastructure Security Games

Under Uncertainty: a Robust

Approach

2.1 Introduction and Literature Review

Most studies in the literature of security games assume that the parameters of a

game (such as occupancy levels, detection probabilities etc.) are known with cer-

tainty. However, this is not a realistic assumption because in reality we can only

estimate some of these parameters based on historical data or expert judgments,

both of which can be inaccurate. Although occupancy levels may be available to the

defender through infrared or vision sensors, the attacker may only gather historical

data. One possible approach to incorporate parameter uncertainty within a game is

the Bayesian game model [52, 53, 54] that uses distributional information about the

parameters of the game. However, such distributional information may not also be

readily available to the players, or they may opt not to use potentially inaccurate dis-

tributional information. Moreover, the equilibrium strategy of the defender may be
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seriously affected by such pre-specified probability distributions. Consequently, some

researchers consider robustness to address parameter uncertainty in game theoretic

models. For example, Aghassi and Bertsimas [1] relax the assumptions of Harsanyi’s

Bayesian game model and present an alternative distribution-free equilibrium concept,

robust-optimization equilibrium, for games with payoff uncertainty. In this approach,

players try to optimize their worst case payoff functions simultaneously. The authors

prove the existence of such equilibria for arbitrary robust finite games with bounded

polyhedral payoff uncertainty sets. In the context of security applications, Nikoofal

and Zhuang [107] develop a game theoretic model in which the defender uses a ro-

bust approach to tackle her uncertainty about the attacker’s target valuation. In this

model, they suggest a Stackelberg game model in which the defender acts as the leader

and the attacker is the follower. This means that the attacker can observe the the

defender’s decision and acts accordingly, which might not always be the case. In some

cases, the defender may opt not to reveal her decision, in such cases, simultaneous

move games are more appropriate than Stackelberg games. Nikoofal and Zhuang [108]

study the significance of the first mover’s advantage and robustness of strategies un-

der secrecy in the presence of private information. Shan and Zhuang [130] investigate

the robustness of the proposed game theoretic model under the presence of strategic

and non-strategic attackers. One difference between their model and ours is that in

their model, one of the attackers is completely non-strategic, however, in our model,

attackers are both strategic but have different objectives. Moreover, robustness in

their paper refers to the sensitivity of the equilibrium to the defender’s mistaken as-

sumption about the attacker’s type. However, in our study, robustness is introduced

with respect to the parameter uncertainty. Kiekintveld et al. [75] present Stackelberg

type security games and apply a robust optimization approach to optimize the worst

case payoff to the defender. However, they do not address the attacker’s private
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information in their model. Kardeş [74] proposes a robust optimization model for

n-person stochastic games with finite states and actions, and uncertain payoffs. He

develops an explicit mathematical programming formulation to compute equilibrium

strategies for the case of polytopic uncertainty sets. The private information about

player types is not included in the model. However, in reality, players may have some

private information, such as their personal preferences or their attitude toward risk,

that is not shared with other players. Qian et al. [121] study a Stackelberg game

in which the adversary is risk averse, however, the defender is uncertain about the

degree of the attacker’s risk aversion and uses a robust approach to contend with

this uncertainty. In this model, the adversary has complete knowledge about the

defender’s payoff, however, in our model both players are uncertain about the game

parameters. Xu and Zhuang [140] introduce a game model in which the defender

has private information about her own vulnerability. The adversary can invest in

learning activities to gain intelligence about the defender’s private information, while

the defender decides on investment in counter-learning efforts. This paper is different

from our study in the sense that in this paper, the defender has private information,

while in our model, the adversary has private information. Moreover, they do not

address parameter uncertainty in their model.

In this chapter, we develop robust models for infrastructure security games, both

with and without private information, in which the players use a robust optimization

approach to cope with payoff uncertainty. We present analytical results about the

existence and uniqueness of the robust equilibrium for each game. We apply the pro-

posed approach to real data on annual terrorism losses in the 10 most valuable urban

areas of the United States. The results of the proposed model can be implemented to

determine the optimal defensive resource allocation among these areas. The rest of

the chapter is organized as follows. In section 2.2, the problem under consideration is
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described, three models are proposed to capture the security game under uncertainty.

In section 2.3, the proposed approach is applied to real data.

2.2 Proposed Model

This section introduces a one-shot infrastructure security game. There are N sites in

the infrastructure that are potential targets. There is a single defender and a single

adversary, therefore, each player can choose only one site in the one-shot game. The

adversary and the defender simultaneously choose their strategies over the potential

sites. Payoff matrices for both the defender and the adversary are based on the

occupancy level, C̃i, of each site i in the infrastructure. C̃i is an uncertain parameter

that has a compact and convex support
[
Ci,Ci

]
, and this range is known to both

players. If the defender defends site i and the adversary attacks site j, j 6= i, a

successful attack on site j will be launched. Therefore, payoff to the defender is −C̃j

and the adversary receives a payoff of C̃j. However, if both players choose the same

site i, the attack will be detected with probability δ̃i, which is also uncertain and

δ̃i ∈
[
δi, δi

]
. Hence the defender’s payoff becomes −

(
1− δ̃j

)
C̃j and the adversary’s

becomes
(

1− δ̃j
)
C̃j. This means that, even when both rivals are at the same site,

there is a probability that the defender may not detect the adversary. There are

no assumptions about distributions of the uncertain parameters over their respective

uncertainty intervals.

While the defender always attempts to minimize her expected damage, the objec-

tive of the adversary may vary depending on his type. There are two possible types of

the adversary: maximum damage (MD) adversary and infiltration/harassment (INF)

adversary. The MD adversary seeks to maximize his expected payoff, thus differen-

tiates between the potential sites based on their occupancy levels. However, this is

not the case for an INF adversary, for whom all sites are the same and the aim is to
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increase the probability of having a successful attack. In this section, three models

are investigated. In the first model, the defender plays the security game with a MD

adversary and knows the type of the adversary, in the second model the defender plays

the security game against an INF adversary type, in the third model the defender

is uncertain about the type of the adversary and only knows that with probability

q, the adversary is a MD adversary and with probability 1 − q the adversary is an

INF adversary. Throughout the chapter, we assume that the sites are sorted in the

order of decreasing Cis and Cis are distinct i.e. C1 > C2 > · · · > CN . The first

assumption is not restrictive by any means, it only requires rearrangement of site

indexes so that the sites are sorted. As for the second assumption, our results will

still hold even when Cis are not distinct, however, we are making this assumption

in order to simplify the resulting formulas. In the following subsections, we describe

and analyze our proposed models.

2.2.1 Model 1: Maximum Damage Game

In this model, the adversary wants to inflict the maximum damage. We assume that

the defender knows the intention of the adversary i.e. there is no private information.

In this case, the payoff to the adversary is:

u1
A (x,y) =

N∑
i=1

(
1− δ̃ixi

)
C̃iyi,

where xi and yi are the probability of choosing site i, by the defender and adver-

sary, respectively. Therefore x = [x1, x2, ..., xN ] and y = [y1, y2, ..., yN ] are the de-

fender’s and the adversary’s mixed strategies, respectively, and yi ≥ 0, xi ≥ 0,∀i =

1, 2, . . . , N,
∑

i xi =
∑

i yi = 1. In order to contend with the uncertainty of the game,

both players use the robust approach, meaning that they seek to optimize their worst

case expected payoff, where the worst case is taken with respect to the set of possi-

ble values for the uncertain parameters and the expectation is taken with respect to
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the mixed strategies of both players [1]. Hence, the adversary’s best response to the

defender’s strategy x is:

y∗ = arg max
y

min
δ̃i∈[δi,δi]
C̃i∈[Ci,Ci]

(
N∑
i=1

(
1− δ̃ixi

)
C̃iyi

)
.

Note that, the minimum of

(
N∑
i=1

(
1− δ̃ixi

)
C̃iyi

)
in the above equation occurs when

δ̃i = δi and C̃i = Ci, thus giving the attacker’s best response as

y∗ = arg max
y

(
N∑
i=1

(
1− δixi

)
Ci,yi

)
. Using the same robust approach, the defender

wants to minimize the maximum expected damage, therefore her best response to the

adversary’s mixed strategy y is:

x∗ = arg min
x

max
δ̃i∈[δi,δi]
C̃i∈[CiCi]

(
N∑
i=1

(
1− δ̃ixi

)
C̃iyi

)
.

The maximum of

(
N∑
i=1

(
1− δ̃ixi

)
C̃iyi

)
in the above equation happens at δ̃i = δi and

C̃i = Ci. Hence, the defender’s best response is x∗ = arg min
x

(
N∑
i=1

(1− δixi)Ciyi

)
.

The following presents the payoff matrix to both players:



i \ j 1 2 · · · N

1 −(1− δ1)C1, (1− δ1)C1 −C2, C2 · · · −CN , CN

2 −C1, C1 −(1− δ2)C2, (1− δ2)C2 · · · −CN , CN

...
...

...
. . .

...

N −C1, C1 −C2, C2 · · · −(1− δN)CN , (1− δN)CN


.

In this matrix, at each position, the first number is the payoff to player 1 (defender)

and the second number is the payoff to player 2 (adversary). Since the payoffs to

the players do not add up to zero, or a fixed amount, this is a non-zero sum game.

The following lemma gives the necessary and sufficient condition for the non-zero sum

game to have a pure Nash Equilibrium (NE).

Lemma 2.1. The maximum damage game has a pure Nash equilibrium if and only

if
(
1− δ1

)
C1 ≥ C2.
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Proof. Suppose we have
(
1− δ1

)
C1 ≥ C2. It is easy to check that x = (1, 0, 0, ..., 0) , y =

(1, 0, 0, ..., 0) is a pure NE strategy pair. This establishes the sufficiency part. We

prove the necessity part by contradiction, suppose that
(
1− δ1

)
C1 < C2 and the

game has a pure NE, this pure NE is definitely not x = (1, 0, 0, ..., 0) , y = (1, 0, 0, ..., 0),

because at this strategy profile the adversary can strictly increase his/her payoff by

attacking site 2. Moreover it has to be on the diagonal of the matrix i.e. xi = yi = 1

for some i > 1 however, this implies that
(
1− δi

)
Ci ≥ C1 which contradicts our

assumption of sorted Cis, thus proving the necessity part.

Lemma 2.2 characterizes the conditions under which some strategies of the adver-

sary are dominated by a linear combination of other strategies. This lemma helps us

find a critical index to compute the NE.

Lemma 2.2. If
k∑
j=1

Cj−Ck
δjCj

> 1, then the adversary’s strategies l ≥ k are strictly dom-

inated by a mixed strategy that is composed of pure strategies j for 1 ≤ j < k, i.e.,

there exist λi ≥ 0, 1 ≤ i ≤ k − 1 with
k−1∑
i=1

λi = 1 such that:

λ1



(
1− δ1

)
C1

C1

C1

...

C1


+λ2



C2(
1− δ2

)
C2

C2

...

C2


+· · ·+λk−1



Ck−1

...(
1− δk−1

)
Ck−1

...

Ck−1


>



C l

...

...(
1− δl

)
C l

...

C l


.

Proof. The inequality holds for rows r ≥ k because Cis are sorted, i.e.,
∑k−1

j=1 λjCj >

Ck.

For rows r < k, consider the assumption
k−1∑
j=1

Cj−Ck
δjCj

> 1. After some algebraic
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manipulations, this inequality can be rewritten as:(
1− δr

)
Cr

δrCr

k−1∑
m=1

1
δmCm

+
k−1∑

j=1,j 6=r

Cj

δjCj

k−1∑
m=1

1
δmCm

> Ck.

Setting λj = 1

δjCj

k−1∑
m=1

1
δmCm

gives the result as:

λr
(
1− δr

)
Cr +

k−1∑
j=1,j 6=r

λjCj > Ck > C l.

Lemma 2.3 complements lemma 2.2 in characterizing the sites that should be in

the mixed Nash equilibrium.

Lemma 2.3. If
k∑
j=1

Cj−Ck
δjCj

< 1, any strategy profile with xk = 0 is not a Nash

equilibrium.

Proof. By contradiction. Suppose the Nash equilibrium holds with xk = 0. If yk = 0,

consider a critical k∗ ≥ k such that
k∗∑
j=1

Cj−Ck∗
δjCj

< 1 <
k∗+1∑
j=1

Cj−Ck∗+1

δjCj
. Using Lemma

1, we can conclude that both players are playing a mixed strategy. Moreover using

lemma 2 we have: xj = 0, yj = 0, ∀j > k∗. Therefore the adversary is indifferent to-

wards his choices i = 1, ..., k∗, i 6= k, in other words:
(
1− δ1x1

)
C1 =

(
1− δ2x2

)
C2 =

... =
(
1− δk−1xk−1

)
Ck−1 =

(
1− δk+1xk+1

)
Ck+1 = ... =

(
1− δk∗xk∗

)
Ck∗ . Solving

these equations along with the equation
k∗∑

j=1,j 6=k
xj = 1 yields:

xk∗ =

1−
k∗∑

j=1,j 6=k

Cj−Ck∗
δjCj

δk∗Ck∗

k∗∑
j=1,j 6=k

1
δjCj

.

Since
k∗∑
j=1

Cj−Ck∗
δjCj

< 1 and Ck∗ ≤ Ck, the following inequality holds

k∗∑
j=1,j 6=k

Cj − Ck

δjCj

< 1,
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which could be rewritten as:

k∗∑
j=1,j 6=k

Cj − Ck∗ + (Ck∗ − Ck)

δjCj

< 1.

This further simplifies to

(Ck∗ − Ck) <

1−
k∗∑

j=1,j 6=k

Cj−Ck∗
δjCj

k∗∑
j=1,j 6=k

1
δjCj

= δk∗Ck∗xk∗ ,

giving
(
1− δk∗xk∗

)
Ck∗ < Ck. Therefore, the adversary can strictly improve his/her

payoff by increasing yk to 1. Hence yk = 1 should hold. Now the defender can

strictly increase his/her payoff by increasing xk to 1. This is in contradiction with

our assumption of xk = 0 being in a Nash equilibrium.

Theorem 2.1 states the uniqueness of the Nash equilibrium.

Theorem 2.1. The maximum damage game has a unique NE.

Proof. Consider a critical k∗ such that
k∗∑
j=1

Cj−Ck∗
δjCj

< 1 <
k∗+1∑
j=1

Cj−Ck∗+1

δjCj
, if k∗ = 1

then lemma 1 and lemma 2 imply that the game has a unique pure strategy Nash

equilibrium. If k∗ ≥ 2, then using lemma 2 and lemma 3, the mixed strategy Nash

equilibrium is determined by solving the following systems of equations:

System 1:

(
1− δ1x1

)
C1 =

(
1− δ2x2

)
C2 = ... =

(
1− δk∗xk∗

)
Ck∗ ,

k∗∑
j=1

xj = 1.

System 2:

− (1− δ1)C1y1 −
k∗∑

j=1,j 6=1

Cjyj = ... = − (1− δk∗)Ck∗yk∗ −
k∗∑

j=1,j 6=k∗
Cjyj,

k∗∑
j=1

yi = 1.

Both systems have unique solutions.
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2.2.2 Model 2: Infiltration Game

In this model, the adversary wants to infiltrate, i.e., the adversary values all sites

equally. Let C̃ with C̃ ∈
[
C,C

]
denote this common value. Assume that the defender

knows the intention of the adversary. Hence the expected payoff to the adversary

under the mixed strategy pair (x,y) of the defender and the adversary, respectively,

is:

u2
A (x,y) =

N∑
i=1

(
1− δ̃ixi

)
C̃yi.

Following the robust approach, the adversary seeks to maximize the minimum

expected damage. Using the same reasoning as in Model 1, the adversary’s best

response to the defender’s mixed strategy x is:

y∗ = arg max
y

(
N∑
i=1

(
1− δixi

)
C yi

)
.

Similarly, the defender wants to minimize the maximum expected damage, there-

fore her best response is:

x∗ = arg min
x

(
N∑
i=1

(1− δixi)Ci yi

)
.

The following matrix demonstrates the payoff to both players:



i \ j 1 2 · · · N

1 −(1− δ1)C1, (1− δ1)C −C2, C · · · −CN , C

2 −C1, C −(1− δ2)C2, (1− δ2)C · · · −CN , C

...
...

...
. . .

...

N −C1, C −C2, C · · · −(1− δN)CN , (1− δN)C


.

Note again that, this is a non-zero sum game. It is obvious that the infiltration game

does not have a pure NE. Lemma 4 uses this fact to characterize the strategies that

take part in the mixed strategy NE. Specifically, this lemma proves that all of the

sites will take part in the mixed strategy NE.
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Lemma 2.4. For the infiltration game, any strategy profile with xk = 0 for some

1 ≤ k ≤ N is not a Nash equilibrium.

Proof. By contradiction. Clearly, such a game does not have a pure Nash equilibrium.

Suppose that there is a Nash equilibrium with xk = 0 and xj > 0 ∀j 6= k. The mixed

strategy of the defender is determined by solving the following system of equations:

(
1− δ1x1

)
C =

(
1− δ2x2

)
C = . . . =

(
1− δk−1xk−1

)
C =

(
1− δk+1xk+1

)
C = . . . =

(
1− δNxN

)
C,

which along with
N∑

j=1, j 6=k
xj = 1, gives:

xj =

1
δj(

N∑
i=1, i 6=k

1
δi

) ∀j 6= k.

Since xj > 0 for j 6= k, this implies that:

(
1− δjxj

)
C =

1− 1(
N∑

i=1, i 6=k

1
δi

)
C < C,

with the right hand side corresponding to the adversary’s payoff if an attack targets

node k. Therefore the adversary can strictly increase his payoff by increasing yk to 1.

The defender can also improve her payoff by setting xk = 1, however, this contradicts

our assumption that the current set of strategies is a NE.

Theorem 2.2. The infiltration game has a unique NE.

Proof. Lemma 4 implies that all of the sites should be involved in the mixed strategy

NE. Therefore, mixed strategy NE is the unique solution to the following system of

2N linearly independent equations with 2N unknowns:

(
1− δ1x1

)
C =

(
1− δ2x2

)
C = ... =

(
1− δNxN

)
C, (2.1)

N∑
i=1

xi = 1, (2.2)
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− (1− δ1)C1y1 −
N∑

j=1,j 6=1

Cjyj = ... = − (1− δN)CNyN −
N∑

j=1,j 6=N

Cjyj, (2.3)

N∑
i=1

yi = 1. (2.4)

Remark 2.1. Clearly, C can be eliminated in Equation (2.1). Therefore the Nash

equilibrium does not depend on the value of C or C (upper and lower bounds on

the infiltrating adversary’s valuation). This is natural because for the infiltrating

adversary all sites are equal and the value of these sites does not affect his behavior.

Moreover, the defender has her own valuation of the sites, therefore the value of C or

C does not affect her behavior either. Hence it is natural that the NE does not depend

on the value of C or C. However, this was not the case in the previous infrastructure

security game models. This is mainly due to the zero-sum nature of the previous

models [35].

2.2.3 Model 3: Security Game with Private Information

In this model, we assume that the defender does not know about the intention of the

adversary (inflict maximum damage or infiltrate). We use a Bayesian-robust approach

to model this game. Meaning that all players use a robust approach to contend

with uncertainty of C̃, C̃i and δ̃i, however, the defender uses a Bayesian approach

to contend with the information asymmetry. In other words, the defender knows

that the adversary attempts to inflict maximum damage with probability q, and he

attempts infiltration with probability 1− q. Using the Bayesian robust approach and

the definition of NE, the following conditions should be satisfied:

y1∗ = arg max
y1

min
δ̃i∈[δi,δi],
C̃i∈[Ci,Ci]

(
N∑
i=1

(
1− δ̃ix∗i

)
C̃iy

1
i

)
,

N∑
i=1

y1∗
i = 1, y1∗

i ≥ 0,
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y2∗ = arg max
y2

min
δ̃i∈[δi,δi],
C̃∈[C,C]

(
N∑
i=1

(
1− δ̃ix∗i

)
C̃y2

i

)
,

N∑
i=1

y2∗
i = 1, y2∗

i ≥ 0,

x∗ = arg min
x

max
δ̃i∈[δi,δi],
C̃i∈[Ci,Ci]

(
q

N∑
i=1

(
1− δ̃ixi

)
C̃iy

1∗
i + (1− q)

N∑
i=1

(
1− δ̃ixi

)
C̃iy

2∗
i

)
,

N∑
i=1

x∗i = 1, x∗i ≥ 0,

where y1 is the mixed strategy of the maximum damage adversary, y2 is the mixed

strategy of the infiltrating adversary, and x is the defender’s mixed strategy as

before. Note that

(
N∑
i=1

(
1− δ̃ix∗i

)
C̃iy

1
i

)
is minimized at δ̃i = δi and C̃i = Ci,(

N∑
i=1

(
1− δ̃ix∗i

)
C̃y2

i

)
is minimized at δ̃i = δi and C̃ = C, finally(

q
N∑
i=1

(
1− δ̃ixi

)
C̃iy

1∗
i + (1− q)

N∑
i=1

(
1− δ̃ixi

)
Ciy

2∗
i

)
is maximized at δ̃i = δi and

C̃i = Ci. Thus

y1∗ = arg max
y1

(
N∑
i=1

(
1− δix∗i

)
Ciy

1
i

)
,

y2∗ = arg max
y2

(
N∑
i=1

(
1− δix∗i

)
Cy2

i

)
,

and

x∗ = arg min
x

(
q

N∑
i=1

(1− δixi)Ciy
1∗
i + (1− q)

N∑
i=1

(1− δixi)Ciy
2∗
i

)
.

This optimization problem can be solved by direct application of Karush–Kuhn–

Tucker conditions [78]. However, more insight can be gained by analyzing this game.

The following theorem characterizes the Nash equilibrium for the security game with

private information.

Theorem 2.3. The following strategy profile is a Nash equilibrium for the security

game with private information. Let k be an integer such that φk ≤ 1 < φk+1 where

φi =
i∑

j=1

Cj−Ci
δjCj

, and m be an integer such that ψm−1 < q ≤ ψm where ψi =

(
i∑

j=1

1
δjCj

)
(

N∑
j=1

1
δjCj

) .
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If m ≤ k then

x∗j =



1+
m∑
j=1

C1−Cj
Cjδj

+
C1−Cm
Cm

N∑
j=m+1

1
δj(

m∑
j=1

C1δ1
Cjδj

+
C1δ1
Cm

N∑
j=m+1

1
δj

) , j = 1,

C1δ1
Cjδj

x1 −
C1−Cj
Cjδj

, 2 ≤ j ≤ m,

xmδm
δj

, j > m,

(2.5)

y∗1j =



1

q(δjCj)
(
N∑
i=1

1
δiCi

) , j < m,

1−
∑m−1
i=1

1
δiCi

q
∑N
i=1

1
δiCi

, j = m,

0, j > m,

(2.6)

and

y∗2j =



0, j < m,(
m∑
j=1

1
δjCj

)
−q
(

N∑
j=1

1
δjCj

)

(1−q)
(

N∑
j=1

1
δjCj

) , j = m,

1

(1−q)(δjCj)
(
N∑
i=1

1
δiCi

) , j > m.

(2.7)

If m > k then
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x∗j =


1

δjCj

k∑
i=1

1
δiCi

(
1−

k∑
i=1

Ci−Cj
δiCi

)
, j ≤ k,

0, j > k,

(2.8)

y∗1j =


1

δjCj

k∑
l=1

1
δlCl

, j ≤ k,

0, j > k,

(2.9)

y∗2i <
q

(1− q)


1

δiCi

k∑
l=1

1
δlCl

,

 ∀i > k,

N∑
j=k+1

y∗2j = 1. (2.10)

Proof. See Appendix A.1

Remark 2.2. Similar to the infiltration game, also in this game the Nash equilibrium

does not depend on the value of C or C (upper and lower bounds on the infiltrating

adversary’s valuation).

Remark 2.3. For the second case, i.e., m > k, similar to [35] there is a continuum

of NE strategies for the infiltrating adversary.

2.3 Numerical Analysis

In this section, we apply our approach to real data from [139] which provides estimates

of the expected annual terrorism losses for the 10 most valuable urban areas of the

United States. We use the proposed robust game model to allocate defensive resources

among these urban areas. The data is presented in Table 2.1. In this table, three

aspects of the expected damage have been estimated: monetary value (represented

by expected property loss), mortality value (represented by total number of fatalities

and injuries) and political value (represented by total air departures from major and
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minor airports). In the following subsections, each one of these dimensions will be

investigated individually.

Table 2.1: Expected damage data for 10 urban areas with highest losses

Urban Area
Expected property loss

($million)

Expected Fatalities

& Injuries

Air Departures

(Major & Minor Airports)

New York (NY) 413 5350 23599

Chicago (CH) 115 1212 39949

San Francisco (SF) 57 472 19142

Washington, DC-MD-VA-WV (WDC) 36 681 17253

Los Angeles-Long Beach (LA) 34 402 28816

Philadelphia, PA-NJ (PHL) 21 199 13640

Boston, MA-NH (BSTN) 18 225 11625

Houston (HSTN) 11 160 20979

Newark (NW) 7.3 74 12827

Seattle-Bellevue-Everett (STL) 6.7 88 13578

Total 719 8863 201408

2.3.1 Analysis for Monetary Value Data

In this section, we perform the analysis based on the monetary data for each urban

area. We study how the defender’s strategy is affected by the probability of a max-

imum damage type adversary, q. This probability is an indicator of the uncertainty

over type of the adversary i.e. maximum damage or infiltrating. We also study the

effect of this probability on the expected property loss at each urban area.

For the probability of detecting an attack set to 0.9, i.e., δ = 0.9, Figure 2.1

displays how defensive strategy may vary among sites for different values of q, and

also Figure 2.2 illustrates how the expected property loss at each urban area may vary

over q. Figure 2.1 shows that the defensive resources are evenly distributed for low

values of q. This is due to the fact that for low values of q, the defender effectively
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Figure 2.1: Allocation of defensive resources for

monetary data

Figure 2.2: Distribution of expected property

loss for monetary data

plays the game against an infiltration type attacker, hence the defense resources

are distributed proportionally with respect to the detection probabilities at different

urban areas. However, since we have assumed the same detection probability for each

area as δi = δ = 0.9, the defensive resources are evenly distributed. As q increases

beyond a certain level, more resources are allocated to NY and CH, which are the

areas with highest property loss, and fewer resources are allocated to other areas. This

shift in resource allocation happens around q = 0.05, that corresponds to a threshold

point. As q increases further, the game is effectively turned into a maximum damage

game and all defensive resources are distributed between two areas, namely NY and

CH. Further increase in q does not change the allocation of resources. Figure 2.2

shows distribution of the expected property loss at each urban area as a function of

q. As seen in this figure, for low values of q, since the attacks are distributed among

all areas and the defensive strategy is also to distribute the defensive resources evenly

among all areas, the expected damage is roughly the same for all areas. As the value

of q increases beyond a certain level, the defensive strategy changes to play the MD

game. As the value of q increases further, the expected damage to important areas

(such as NY, CH and SF) increase and the expected damage to other areas decrease.
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Figure 2.3: Expected property loss over various

detection probabilities

Figure 2.4: Expected property loss over various

uncertainty ranges

This effect is observed because the adversary’s attacks get more targeted towards high

impact areas as q increases. Figure 2.3 shows the expected total property loss as a

function of q for different values of probability of detection, δ. As seen in this figure,

the damage is higher for smaller values of δ and the difference increases as q increases.

This is due to the increasing importance of the efficiency of defensive resources as the

adversary targets high impact areas with higher probability.

Figure 2.4 displays how expected total property loss changes as a function of q over

the various uncertainty ranges. As seen in this figure, for wider ranges of uncertainty,

the expected total damage is higher than scenarios with smaller uncertainty ranges.

2.3.2 Analysis for Mortality Value Data

In this section, we perform the robust game analysis based on the mortality value

of each urban area. We study how the defenders strategy is affected by q. For

δi = δ = 0.9, Figure 2.5 illustrates how the defensive strategy changes for various

values of q. As seen in the figure, for low values of q, because the game is effectively

an infiltration game, defensive resources are evenly distributed among urban areas.

As q increases beyond a certain level, more resources are allocated to NY and CH,
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Figure 2.5: Allocation of defensive resources for

mortality data

Figure 2.6: Distribution of expected damage for

mortality data

which are the areas with highest population density, and fewer resources are allocated

to other areas. This shift in resource allocation happens around q = 0.05, which

corresponds to a threshold point. As q increases further, the game is effectively turned

into a MD game and all defensive resources are distributed between two major areas,

namely NY and CH. Further increase in q does not change the allocation of resources.

Figure 2.6 shows how the expected number of fatalities and injuries at each urban

area changes for different values of q. As seen in this figure for low values of q, the

expected damage is roughly the same for all areas. As the value of q increases beyond

a certain level, the defensive strategy changes to play the MD game. As the value

of q increases further, the expected damage on important areas (such as NY, CH

and SF) increases and the expected damage for other areas decrease. This is due to

the fact that as q increases, the adversary targets more important areas with higher

probability. Figure 2.7 displays the expected total damage as a function of q for

various values of δ. As seen in this figure, the damage is higher for smaller value of

δ and the difference increases as q increases. Figure 2.8 illustrates how the expected

total damage changes as a function of q for various uncertainty ranges. As seen in

this figure, for wider ranges of uncertainty the expected total damage is higher than
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Figure 2.7: Expected total damage for various

detection probabilities

Figure 2.8: Expected total damage for various

uncertainty ranges

Figure 2.9: Allocation of defensive resources for

political data

Figure 2.10: Distribution of expected damage

for political data

scenarios with smaller uncertainty ranges.

2.3.3 Analysis for Political Value Data

In this section, we perform the analysis based on the political value of each urban

area. We study the effect of q on the defenders strategy. For δi = δ = 0.9, Figure 2.9

shows how the defensive strategy changes for different values of q, and also Figure

2.10 shows how the expected damage on each urban area may vary for different values

of q.
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As seen in Figure 2.9, for low values of q, defensive resources are evenly distributed.

As q increases beyond a certain level, more resources are allocated to CH, LA and NY

which are the most important areas in terms of political value, and fewer resources are

allocated to other areas. This shift in resource allocation happens around q = 0.05,

which corresponds to a threshold point. Further shifts in defensive strategy happen

at around q = 0.1, q = 0.15 and q = 0.2. At each of these threshold points, more

defensive resources are assigned to the most important areas and fewer resources are

allocated to other areas. As q increases further, the game is effectively a MD game

and all defensive resources are distributed among four areas, namely CH, LA, NY

and HSTN. After a certain point, further increase in q does not change the allocation

of resources.

Figure 2.10 displays the average expected damage to each urban area as a function

of q, for low values of q, the expected damage is roughly the same for all areas. As

the value of q increases further, both defender and the adversary focus more on the

most important areas, therefore the expected damage on important areas (such as

CH, LA, NY and HSTN) increases and the expected damage for other areas decrease.

Figure 2.11 shows the expected total damage as a function of q for various values

of δ. As seen in this figure, the damage is higher for smaller value of δ and the

difference increases as q increases.

Figure 2.12 illustrates how the expected total damage changes as a function of q

for various uncertainty ranges. As seen in this figure, for wider ranges of uncertainty

the expected total damage is higher than scenarios with smaller uncertainty ranges.
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Figure 2.11: Expected total damage for various

probability of detection

Figure 2.12: Expected total damage for various

uncertainty ranges



33

Chapter 3

A Two-Stage Invest-Defend Game:

Balancing Strategic and

Operational Decisions

3.1 Introduction and Literature Review

Protecting infrastructures against disruptions involves decision making at different

levels in an organization’s hierarchy: strategic and operational decisions. However,

most of the research papers only focus on either purely strategic decisions [63, 107]

or purely operational decisions [16, 35]. Baykal-Gürsoy et al. [16] consider an in-

frastructure containing multiple sites with a single defender and a single attacker.

Both players make operational decisions of which site to defend/attack. They as-

sume that the detection probabilities are fixed and cannot be changed. Garnaev and

Baykal-Gürsoy [35] study operational decision of which sites to defend/attack with

consideration given to the uncertainty of the attack type. Shan and Zhuang [131]

study defender’s operational decisions such as container screening rate to deter nu-

clear smuggling. They show how the inspection rates should be modified in presence



34

of non-credible retaliation threat to deter nuclear smuggling. There are other pa-

pers in the literature that focus on purely operational decisions such as allocating

defenders [38], patrolling [118, 134] and scheduling [137]. The literature on strategic

decisions include Nikoofal and Zhuang [107] who consider a game in which a defender

makes strategic decision of allocating resources to harden a set of target sites so as

to minimize the maximum damage of an attack. Hausken and Zhuang [63] analyze

a two-stage resource allocation game between a government and a terrorist. In this

Stackelberg game, the government moves first and allocates its resources between

attacking to downgrade the terrorist’s resources and defending against the terrorist

attack. Then, the terrorist allocates his/her resources between attack and defend op-

tions. Other papers study strategic decision of resource assignment to protect targets

against attacks [47, 130, 145]. In the context of making strategic decisions in secu-

rity, several papers consider multi-period models where strategic decisions are made

throughout multiple periods [63, 69, 132, 146]. These multi-period security games

consider the same strategic decisions throughout multiple periods, and hence they

focus on the effect of timing of these strategic decisions.

Even though most papers study models with purely strategic or purely opera-

tional decisions, these decisions influence each other. For instance, installing a CCTV

camera in a certain area might render patrolling that area unnecessary. Or different

allocations of metal detectors and screening systems to target sites may affect optimal

scheduling of patrol units in those targets. Moreover, investing on a new technology to

enhance security of a certain target site may reduce its probability of being attacked

and affect the optimal probability of defending that target. Therefore, considering

strategic and operational decisions in the same model would yield a more realistic

analysis.
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3.2 Proposed Model

We consider a two-stage invest-defend game between a single defender and a sin-

gle attacker. We assume that both players are fully rational and aim to maximize

their own payoff values. In the first stage, both the defender and the adversary si-

multaneously make strategic decision of investing on targets to change the detection

probabilities in their own favor and then in the second stage the defender and the ad-

versary simultaneously make operational decision of selecting which target to assign

defender/attacker i.e. which target to defend/attack. In other words, in the second

stage, the defender and the attacker play a matrix game where they have to decide

which site to defend or attack.

Each target i has a value of Ci for the defender. This value could be determined

by occupancy levels or any other valuation criterion e.g. monetary or political value.

We assume that the adversary’s target valuations are the same as the defender’s

valuations as in [45, 119, 129] and [130]. While we acknowledge that the adversary

may value the targets differently, using the same target valuations for the adversary

results in a game in which the players’ payoffs are in opposite direction and it is useful

in a worst case analysis. Wang and Bier [138] use multi-attribute utility functions

to model the attacker’s preferences. Robust games against an attacker with private

target preference have been studied by [107] and [142].

The second stage game is a matrix game where players make operational decision

of choosing which target to defend/attack. If the defender defends site i and the

adversary attacks site j, j 6= i, a successful attack on site j will be launched. Therefore

payoff of the defender will be −Cj and the adversary will get a payoff of Cj. However,

if both players choose the same site i, the attacker will be detected (and thwarted)

with probability δi. We assume that the attacker suffers a disutility of P in case

of a failed attack. Therefore the defender will get a payoff of − (1− δj)Cj and the
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adversary will get (1− δj)Cj−δjP . This means that even when both rivals are at the

same site, there is a probability that the defender may not detect the adversary. Other

studies have also modeled detection in different contexts such as deterring smuggling

of nuclear weapons through containers [50], detecting concealed targets [84], detecting

genuine target from false targets [85] and detecting outcome of attacks [87, 88].

The objective of each player is to maximize his/her own total payoff, which is

equal to sum of the payoff from first stage and the payoff from the second stage. If

Ci = C, ∀i = 1, . . . , N, then the second stage game is called Infiltration/Harassment

game, otherwise it is called Maximal Damage game. In other words, in the Infiltra-

tion/Harassment game, because all targets have the same value, the players do not

differentiate the sites from each other and only care about minimizing/maximizing

the probability of a successful attack.

The parameters of our model are listed as follows:

• N : number of target sites.

• Ci : value of site i. We can, without loss of generality, assume that Cis are

sorted in a decreasing order, i.e., C1 ≥ C2 ≥ . . . ≥ CN . If the site values are not

sorted, we can renumber their indices so that they are sorted. This renumbering

does not change the problem.

• P : disutility (penalty) of an unsuccessful attack for the attacker.

• A : total budget for defensive investments in the budget constrained model.

• B : total budget for attack investments in the budget constrained model.

Decision variables and functions that use these variables are listed as follows:

• αi : strategic decision for the defender. Amount of investment on defending site i

in the first stage, where 0 ≤ αi <∞ for all i = 1, ..., N . Let α = (α1, α2, ..., αN)

represent the defensive investment vector.
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• βi : strategic decision for the attacker. Amount of investment on attacking site i

in the first stage, where 0 ≤ βi <∞ for all i = 1, ..., N . Let β = (β1, β2, ..., βN)

represent the attack investment vector.

• δi(αi, βi) : probability of detection at site i in the second stage. If both play-

ers select site i, then with probability δi(αi, βi) the attack will successfully be

thwarted and the adversary will be detected; with probability 1− δi(αi, βi), the

attacker will successfully destroy the target. Assume that δi(αi, βi) is a contin-

uous, strictly increasing and concave function of defensive investments in the

first stage i.e. αi. Also assume that δi(αi, βi) is a continuous, strictly decreasing

and convex function of attack investments in the first stage i.e. βi.

• x = (x1, x2, . . . , xN) : operational decision for the defender. Mixed policy of the

defender with xi denoting the probability of defending site i in the second stage

game, where 0 ≤ xi ≤ 1 for all i = 1, . . . , N and
∑N

i=1 xi = 1.

• y = (y1, y2, . . . , yN) : operational decision for the attacker. Mixed policy of the

attacker with yi denoting the probability of attacking site i in the second stage

game, where 0 ≤ yi ≤ 1 for all i = 1, . . . , N and
∑N

i=1 yi = 1.

• ud1(α) : first stage payoff of the defender in the unconstrained model, where

ud1(α) = −
∑N

i=1 αi.

• ud2(α, β, x, y) : second stage payoff of the defender, we have: ud2(α, β, x, y) =

−
∑N

i=1 (Ci(1− δi(αi, βi)xi)yi) [16].

• udt (α, β, x, y) : total payoff of the defender. In the unconstrained model the de-

fender’s total payoff is given by udt (α, β, x, y) = ud1(α) +ud2(α, β, x, y). In the

budget constrained model, the defender’s total payoff is given by udt (α, β, x, y) =

ud2(α, β, x, y) with budget constraint i.e.
∑N

i=1 αi ≤ A.
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• ua1(β) : first stage payoff of the attacker in the unconstrained model, where

ua1(β) = −
∑N

i=1 βi.

• ua2(α, β, x, y) : second stage payoff of the attacker, we have: ua2(α, β, x, y) =∑N
i=1 (Ci(1− δi(αi, βi)xi)− δi(αi, βi)xiP ) yi.

• uat (α, β, x, y) : total payoff of the attacker. In the unconstrained model the

attacker’s total payoff is given by uat (α, β, x, y) = ua1(β)+ua2(α, β, x, y). In the

budget constrained model the attacker’s total payoff is given by uat (α, β, x, y) =

ua2(α, β, x, y) with budget constraints i.e.
∑N

i=1 βi ≤ B.

3.3 A Backward Induction Approach to Solve the

Two-Stage Invest-Defend Game

We assume that players make their decisions simultaneously at both stages. In other

words, at each stage the players will not know about the other player’s decision.

However, first stage decisions will be revealed to both players at the beginning of the

second stage. To solve this game, we use the backward induction method and start

from the last stage i.e. the second stage. The second stage game is solved assuming

fixed values for the first stage decisions, i.e. (α, β), and the equilibrium policy of

each player in the second stage, x and y, are obtained in terms of (α, β). The second

stage solution, (x, y), is then used in the first stage game to compute the first stage

equilibrium point.

3.3.1 Second Stage Game

At the second stage game, the first stage decisions, i.e., strategic decisions (α, β),

are assumed to be fixed parameters and the second stage decisions, i.e., operational
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decisions (x, y), are made. The following matrix demonstrates the payoff to both

players:



i \ j 1 2 · · · N

1 −(1− δ1)C1, (1− δ1)C1 − δ1P −C2, C2 · · · −CN , CN

2 −C1, C1 −(1− δ2)C2, (1− δ2)C2 − δ2P · · · −CN , CN
...

...
...

. . .
...

N −C1, C1 −C2, C2 · · · −(1− δN)CN , (1− δN)CN − δNP


.

In this matrix, the first element is the payoff to the defender and the second element

is the payoff to the attacker. If we assume that P = 0, then this matrix game turns

into a zero sum game, i.e. ud2(α, β, x, y) = −ua2(α, β, x, y). For this zero-sum game

[16] give a unique saddle-point equilibrium. In this section, we extend their result to

the case where the attacker suffers a disutility for an unsuccessful attack i.e. P > 0.

Theorem 3.1. The Nash Equilibrium for the second stage game is given in terms

of an index k ∈ {1, . . . , N} such that φk(α, β) ≤ 1 < φk+1(α, β), where φi(α, β) is

defined as φi(α, β) =
∑i

j=1
Cj−Ci

δj(αj ,βj)(Cj+P )
for i ∈ 1, . . . , N and φN+1(α, β) =∞. The

strategy of the defender is of threshold type:

x∗i =



1

δi(αi, βi)(Ci + P )

∑k
j=1

1

δj(αj, βj)(Cj + P )

(
1−

∑k
j=1

Cj−Ci
δj(αj ,βj)(Cj+P )

)
, i ≤ k,

0, i > k.

(3.1)

The strategy of the attacker is also of threshold type:

y∗i =



1

δi(αi, βi)Ci

∑k
j=1

1

δj(αj, βj)Cj

, i ≤ k,

0, i > k.

(3.2)
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And the equilibrium payoffs are given as:

ud2(α, β, x∗, y∗) =

1−
∑k

j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

, (3.3)

ua2(α, β, x∗, y∗) = −
1−

∑k
j=1

Cj

δj(αj, βj)(Cj + P )

∑k
j=1

1

δj(αj, βj)(Cj + P )

. (3.4)

Proof. See Appendix A.2.

Remark 3.1. If C1 = · · · = CN = C, i.e. the second stage game is of Infiltra-

tion/Harassment type, then the Nash Equilibrium requires the use of all target sites,

since φi(α, β) = 0, ∀i = 1, . . . , N , i.e., k = N. In fact, in this case the defense and

attack probabilities are 1/δi(αi, βi) portion of sum of all 1/δi(αi, βi)’s, i.e.,

x∗i = y∗i =
M

δi(αi, βi)
, ∀i = 1, . . . , N, (3.5)

and:

u2
d(α, β, x

∗, y∗) = C(M − 1), (3.6)

u2
a(α, β, x

∗, y∗) = (C + P )(
C

C + P
−M), (3.7)

where M =
1

∑N
j=1

1

δj(αj, βj)

.

Corollary 3.1. An increase in attacker’s investment in site i, i.e. βi, leads to an

increase in probability of both attacking and defending site i. However, an increase

in defender’s investment in site i leads to a decrease in probability of both attacking

and defending site i.
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Proof. From equation (3.2), an increase in βi leads to a decrease in δi(αi, βi). There-

fore 1/δi(αi, βi) increases, which leads to an increases in y∗i . Using equation (3.1), an

increase in βi leads to a decrease in δi(αi, βi). Therefore 1/δi(αi, βi) increases, which

leads to an increases in x∗i . Similarly we can prove the effect of increasing αi on x∗i

and y∗i .

Remark 3.2. The effect of an increase in defender’s investment in site i, seems

counter-intuitive at first. However, it can be explained with intuitive arguments. An

increase in defender’s investment will lead to a decrease in attack probability, therefore

the defender will decrease her defence probability. In other words, knowing that the

attacker is less likely to attack a site leads the defender to defend that site with lower

probability. In extreme case, if the defender knows that the attacker will never attack

site i, then the defender will never defend site i.

3.3.2 First Stage Game

Knowing the outcome of the second stage, we can immediately write down the payoff

functions at the first stage for both players. We consider two models: unconstrained

and budget constrained model. In the unconstrained model, there is no budget con-

straint but the players receive a disutility when investing in the first stage. In the

budget constrained model, both players have limited budgets that cannot be exceeded.

Unconstrained Model

In this section, we study the unconstrained model with no budget constraints, but

there is investment disutility which is considered in the players’ respective payoff



42

functions. Hence, the payoff functions for both players are given as follows:

udt (α, β, x, y) = ud1(α) + ud2(α, β, x∗, y∗) = −
N∑
i=1

αi +

1−
∑k

j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

,

uat (α, β, x, y) = ua1(β) +ua2(α, β, x∗, y∗) = −
N∑
i=1

βi−
1−

∑k
j=1

Cj

δj(αj, βj)(Cj + P )

∑k
j=1

1

δj(αj, βj)(Cj + P )

.

The following lemmas characterize the conditions under which the payoff functions

are continuous and concave.

Lemma 3.1. If P = 0 or if the second stage game is of Infiltration/Harassment type,

i.e. C1 = · · · = CN = C, then udt (α, β, x
∗, y∗) and uat (α, β, x

∗, y∗) are continuous

in α and β.

Proof. See Appendix A.3.

Lemma 3.2. If P = 0 or if the second stage game is of Infiltration/Harassment type,

i.e. C1 = · · · = CN = C, then udt (α, β, x
∗, y∗) and uat (α, β, x

∗, y∗) are strictly

concave in each αi and βi, respectively.

Proof. See Appendix A.4.

Lemma 3.3. If the second stage game is of Infiltration/Harassment type, i.e., C1 =

· · · = CN = C then utd(α, β, x
∗, y∗) and uta(α, β, x

∗, y∗) are concave in α and β,

respectively.

Proof. See Appendix A.5.

The following theorem characterizes the conditions under which there exist a Nash

equilibrium for the two-stage invest-defend game.
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Theorem 3.2. If the second stage game is of Infiltration/Harassment type, i.e., for

C1 = ... = CN = C, then the overall invest-defend game has a Nash Equilibrium.

Proof. It is easy to confirm that the strategy space for both players is compact and

convex (note that investment values are bounded). In lemma 3.1 and lemma 3.3 we

have established that the payoff function for both players is continuous and concave

with respect to their own strategy. Therefore, applying Debreu’s existence theorem

(see [27] ), there exist at least one Nash equilibrium.

Remark 3.3. Proving uniqueness of the Nash equilibrium is challenging, however,

based on some numerical experiments, we conjecture that it is true.

We now consider the following detection probability function:

δi(αi, βi) =
ediαi + Li

ediαi + eai βi + Ui
, 0 ≤ Li ≤ Ui, Ui 6= 0. (3.8)

In this formula, parameters edi > 0 and eai > 0 are investment efficiency factors of

site i for the defender and the attacker, respectively. Parameters Li and Ui are there

so that when both investment efforts are zero, we have 0 ≤ δi(αi, βi) ≤ 1. This

function satisfies our assumptions for a detection probability function, i.e., it is a

continuous, strictly increasing and concave function of defensive investments αi and

it is a continuous, strictly decreasing and convex function of attack investments βi.

Corollary 3.2. If the detection probability function is given in equation (3.8), and

we have
(C+P )

eai
ed
i(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Li
edi

and
(C+P )

eai
ed
i

C+P
C(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Ui−Li
eai

, and the second stage

game is of Infiltration/Harassment type, i.e. C1 = · · · = CN = C, then the first stage

game has a unique closed form solution given by:

α∗i =
(C + P )

eai
edi(

N + C+P
C

∑N
j=1

eaj
edj

)2 −
Li
edi
, (3.9)
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β∗i =
(C + P )

eai
edi

C+P
C(

N + C+P
C

∑N
j=1

eaj
edj

)2 −
Ui − Li
eai

, (3.10)

δ∗i =
edi

edi + eai
C+P
C

. (3.11)

Proof. The conditions
(C+P )

eai
ed
i(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Li
edi

and
(C+P )

eai
ed
i

C+P
C(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Ui−Li
eai

ensure

that the obtained solution is non-negative. Now it is easy to check that the provided

solution satisfies the first order conditions and it is the only solution that can be

derived from the first order conditions.

Corollary 3.3. If the detection probability function is given in equation (3.8), the

second stage game is of Infiltration/Harassment type, i.e. C1 = · · · = CN = C,

Li, Ui � C and C+P
C

eai
edi
< N then increasing edi will decrease both α∗i and β∗i . On the

other hand, increasing eai will increase both α∗i and β∗i .

Proof. Conditions Li, Ui � C ensure that the solution in equations (3.9) and (3.10)

is valid. Now, from these equations, it is easy to take the first derivatives with respect

to edi and eai and verify the following:
∂α∗i
∂edi
≤ 0,

∂β∗i
∂edi
≤ 0,

∂α∗i
∂eai
≥ 0 And

∂β∗i
∂eai
≥ 0.

Remark 3.4. Corollary 3.3 states that if investment efficiency factor for the attacker

increases, the investment levels for both players increase. On the other hand, if in-

vestment efficiency factor for the defender increases, the investment levels for both

players decrease. This is an interesting result which is also valid for the budget con-

strained case (see corollary 3.5). If we consider the increase in investment efficiency

as discovering a new technology, if a hostile agent, i.e. the attacker, obtains this new

technology, then we observe a proliferation in security investments. However, if this

new technology is obtained by a non-hostile agent, i.e. the defender, it leads to a

reduction in security investments.
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In the next example, we analyze the Nash Equilibrium for the case with two

targets.

Example. We consider an example with two targets where the second stage game

is of Infiltration/Harassment type, i.e. C1 = C2 = C, and the detection probability

function form is given in equation (3.8). We assume that P = 100, L1 = L2 =

0.9, U1 = U2 = 1, ed1 = ed2 = 1 and ea1 = ea2 = 1. Using corollary 3.2 we can compute

the unique Nash Equilibrium for this example. We further analyze the effect of

players’ deviations in their utility and best response strategies. First, we compute

the effects of such deviations on players’ total utility. The total payoff for the attacker

is given as:

uat (α, β, x, y) = ua1(β)+ua2(α, β, x∗, y∗) = −β1−β2−
C + P

1
δ1(α1,β1)

+ 1
δ2(α2,β2)

+C. (3.12)

Figure 3.1 shows the attacker’s total utility as a function of his investment on target 1

when all other decision variables are at their equilibrium level. This figure shows that

the attacker’s utility has an inverse U shaped form. This is a well-known shape that

has been identified by many papers in the literature for attacker’s utility (e.g. [86]),

attacker’s investments (e.g. [60]) and defender’s investments (e.g. [55]). Moreover,

Figure 3.1 shows that the payoff is higher for higher target values and optimal attack

investments increase for higher target values. The total payoff for the defender is

given as:

udt (α, β, x, y) = ud1(β) + ud2(α, β, x∗, y∗) = −α1 − α2 +
C

1
δ1(α1,β1) + 1

δ2(α2,β2)

− C. (3.13)

Figure 3.2 shows the defender’s payoff as a function of her investments on target 1

when all other decision variables are at their equilibrium level. This function is also

concave, as was proved in lemma 3.2. Moreover for higher target values, the optimum

investment value is higher. This is in line with other results in the literature ( e.g.

[61]).
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Attacker’s best response

We now compute the attacker’s best investment level in target 1 as a function of

defender’s investment in target 1. We use the first order condition to obtain the best

response:

∂uat (α, β, x, y)

∂β1

= −1− (C + P )

∂δ1(α1,β1)
∂β1

δ21(α1,β1)(
1

δ1(α1,β1)
+ 1

δ2(α2,β2)

)2 = 0, (3.14)

∂δ1(α1,β1)
∂β1

δ21(α1,β1)(
1

δ1(α1,β1)
+ 1

δ2(α2,β2)

)2 =
−1

C + P
. (3.15)

For our example:

β∗1 =

√
(C + P )ea1(ed1α1 + L1)− (ed1α1 + L1)( 1

δ2(α2,β2)
+ 1)− (U1 − L1)

ea1
. (3.16)

Figure 3.3 shows the attacker’s best response as a function of the defender’s invest-

ments when all other decision variables are in equilibrium. According to this figure, as

defensive investments increase, the attacker at first increases the attack investments

to keep up with the defender, but after a certain point, the attacker starts decreasing

his investments, until he is completely deterred from investing.

Defender’s best response

We use the first order condition to obtain the defender’s best response function. We

have:

∂udt (α, β, x, y)

∂α1

= −1 + C

∂δ1(α1,β1)
∂α1

δ21(α1,β1)(
1

δ1(α1,β1)
+ 1

δ2(α2,β2)

)2 = 0, (3.17)

∂δ1(α1,β1)
∂α1

δ21(α1,β1)(
1

δ1(α1,β1)
+ 1

δ2(α2,β2)

)2 =
1

C
. (3.18)

Giving:

α∗1 =
1

ed1

(√
Ced1(ea1β1 + U1 − L1)− (ea1β1 + U1 − L1)

1
δ2(α2,β2)

+ 1

)
− L1

ed1
. (3.19)
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Figure 3.3: Attacker’s best response
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Figure 3.4: Defender’s best response

Figure 3.4 shows the defender’s best response as a function of the attacker’s invest-

ments when all other decision variables are in equilibrium. According to this figure, as

attack investments increase, the defender at first increases the defensive investments

to keep up with the attacker, but after a certain point, the defender starts decreasing

her investments, until she is completely deterred from investing. Moreover, defender’s

optimum investment level is higher for higher target values. This is in line with other

results in the literature ( e.g. [61]).



48

Budget Constrained Model

In this section, we investigate the budget constrained model where there is no invest-

ment disutility in the first stage, however, both players have a budget limit. Equations

(3.20) and (3.21) show the player’s total payoff functions.

udt (α, β, x, y) = ud2(α, β, x∗, y∗) =

1−
∑k

j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

, (3.20)

uat (α, β, x, y) = ua2(α, β, x∗, y∗) = −
1−

∑k
j=1

Cj

δj(αj, βj)(Cj + P )

∑k
j=1

1

δj(αj, βj)(Cj + P )

. (3.21)

The following lemma shows quasi-concavity of payoff function for both players.

Lemma 3.4. ud2(α, β, x∗, y∗) and ua2(α, β, x∗, y∗) are quasi-concave in α and β,

respectively.

Proof. See Appendix A.6.

The following theorem establishes existence and uniqueness of the Nash equilib-

rium for the budget constrained invest-defend game.

Theorem 3.3. The budget constrained game has a unique Nash Equilibrium (α, β).

Proof. See Appendix A.7.

To compute the unique Nash Equilibrium, we use the Karush-–Kuhn—Tucker

(KKT) [78] conditions for both the defender and the adversary. The optimization

problem for the defender is as follows:

max ud2(α, β) (3.22)
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k∑
j=1

αj = A, (3.23)

αj ≥ 0. (3.24)

KKT conditions for this optimization problem are as follows:

∂ud2(α, β)

∂αj
= λ− µj, (3.25)

k∑
j=1

αj = A, (3.26)

µjαj = 0, (3.27)

µj ≥ 0, αj ≥ 0. (3.28)

Remark 3.5. If a site receives investment 0 < αi ≤ A, at optimality we have:

∂ud2(α,β)

∂αi
= λ. This implies that if αi, αj > 0 for i 6= j then:

∂ud2(α,β)

∂αi
=

∂ud2(α,β)

∂αj
.

The optimization problem for the adversary is as follows:

max ua2(α, β) (3.29)

k∑
j=1

βj = B, (3.30)

βj ≥ 0. (3.31)

KKT conditions for this optimization problem are as follows:

∂ua2(α, β)

∂βj
= γ − πj, (3.32)
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k∑
j=1

βj = B, (3.33)

πjβj = 0, (3.34)

πj ≥ 0, βj ≥ 0. (3.35)

Remark 3.6. If a site receives investment 0 < βi ≤ B, at optimality we have:

∂ua2(α,β)

∂βi
= γ. This implies that if βi, βj > 0 for i 6= j then:

∂ua2(α,β)

∂βi
=

∂ua2(α,β)

∂βj
.

Although there is no closed-form equilibrium for the invest-defend game when the

second stage game is of the Maximal Damage type, under certain detection proba-

bility functions, a closed-form equilibrium exists when the second stage game is of

Infiltration/Harassment type .

Corollary 3.4. For the budget constrained game, if the second stage game is of

Infiltration/Harassment type, i.e. when C1 = · · · = CN = C, and the detection

probability function is given in equation (3.8), if

eai
ed
i∑N

j=1

ea
j

ed
j

(
B +

∑N
j=1(

Uj
eaj
− Lj

eaj
)
)
−(Ui

eai
−

Li
eai

) ≥ 0 and

eai
ed
i∑N

j=1

ea
j

ed
j

(
A+

∑N
j=1

Lj
edj

)
− Li

edi
≥ 0 for i = 1, . . . , N , then the first stage

game has a unique closed form solution given by:

β∗i =

eai
edi∑N
j=1

eaj
edj

(
B +

N∑
j=1

(
Uj
eaj
− Lj
eaj

)

)
− (

Ui
eai
− Li
eai

), i = 1, . . . , N, (3.36)

α∗i =

eai
edi∑N
j=1

eaj
edj

(
A+

N∑
j=1

Lj
edj

)
− Li
edi
, i = 1, . . . , N, (3.37)

with:

δ∗i =
A+

∑N
j=1

Lj
edj

A+
∑N

j=1
Lj
edj

+B +
∑N

j=1(
Uj
eaj
− Lj

eaj
)
, i = 1, . . . , N. (3.38)
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Proof. The conditions

eai
ed
i∑N

j=1

ea
j

ed
j

(
B +

∑N
j=1(

Uj
eaj
− Lj

eaj
)
)
− (Ui

eai
− Li

eai
) ≥ 0 and

eai
ed
i∑N

j=1

ea
j

ed
j

(
A+

∑N
j=1

Lj
edj

)
− Li

edi
≥ 0 for i = 1, . . . , N ensure that the optimal investment

strategies for both players are non-negative. Based on the assumptions, and using

the KKT conditions with πj = µj = 0 for j = 1, . . . , N , the equations in the corollary

are obtained.

Remark 3.7. Note that, when the second stage game is of Infiltration/Harassment

type, the equilibrium investment strategy succeeds in making all detection probabilities

the same, hence making the optimal defend-attack strategies uniformly distributed over

the targets.

Corollary 3.5. For the budget constrained game, if the detection probability function

is given in equation (3.8), the second stage game is of Infiltration/Harassment type,

i.e. C1 = · · · = CN = C, Li, Ui � A,B, then increasing edi will decrease both α∗i and

β∗i . On the other hand, increasing eai will increase both α∗i and β∗i .

Proof. The condition Li, Ui � A,B ensures that the solution in equations (3.36) and

(3.37) is always valid. From these equations, it is easy to take the first derivatives

with respect to edi and eai and verify the following:
∂α∗i
∂edi
≤ 0,

∂β∗i
∂edi
≤ 0,

∂α∗i
∂eai
≥ 0 And

∂β∗i
∂eai
≥ 0.

Remark 3.8. Corollary 3.5 states that, if investment efficiency factor for the at-

tacker increases, the investment levels for both players increase. On the other hand,

if investment efficiency factor for the defender increases the investment levels for both

players decrease. This is the budget constrained equivalent of corollary 3.3.
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3.4 Application to Real Data

In this section, we apply the budget constrained model to real data from [139] pre-

sented in Table 3.1. This table provides estimates on the expected annual terrorism

losses to the 10 most valuable urban areas of the United States. It also presents

the grant allocation data for these areas. We consider two aspects of the expected

damage: monetary value (represented by expected property loss) and fatality value

(represented by total number of fatalities and injuries). For each of these two as-

pects, we use the proposed two-stage approach to allocate defensive resources among

these urban areas. We use the total grant allocation (for all 10 urban areas i.e. 270

million dollars) as the total available budget for the defender and consider different

values for adversary’s budget. [18] have also used this data set to study the effect

of different factors on the optimal allocation of resources. We compare our results

with the results obtained by [18] whenever possible throughout our experiments. We

assume that the detection probability function is of the form presented in equation

(3.8). Unless stated otherwise, we use the following values for parameters of the

game: Li = 0.9, Ui = 1, edi = eai = 1 for i = 1, 2, . . . , N, and B = 0.3A. Also note

that because the target valuations are not the same, i.e. C1 = · · · = CN = C does

not hold, the second stage game in this section is of Maximal Damage type.

3.4.1 Analysis for Monetary Value Data

In this section, we perform the analysis based on the monetary value of each urban

area. Table 3.2 shows the optimal strategies of both players for P = 400 and differ-

ent values for attacker’s budget. This table shows that, for B = 0.3A, the defender

distributes the investments among the first six most important areas and the level of

investments decreases as the value of the area decreases. No investment is allocated

to the next important area, i.e. BSTN, however, the second stage strategy comple-
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Table 3.1: Expected damage data for 10 urban areas with highest losses

Urban Area
Expected property loss

($million)

Expected Fatalities

& Injuries

FY2004 UASI Grant

Allocation ($ million)

New York (NY) 413 5350 47

Chicago (CH) 115 1212 34

San Francisco (SF) 57 472 26

Washington DC (WDC) 36 681 29

Los Angeles (LA) 34 402 40

Philadelphia (PHL) 21 199 23

Boston (BSTN) 18 225 19

Houston (HSTN) 11 160 20

Newark (NW) 7.3 74 15

Seattle (STL) 6.7 88 17

Total 719 8863 270

ments the first stage investment decision by covering BSTN with a relatively high

probability. Bar this exception, the second stage defense probabilities also decrease

as the value of the area decreases. For the attacker, all of the first stage investments

go to BSTN and most of the second stage effort is concentrated in BSTN. This is,

roughly speaking, in line with the assumptions of other models, including [18], that

the adversary concentrates his efforts on one area. However, the complementary in-

teraction between the first stage and second stage decisions has not been observed

in previous studies. Another interesting observation is that as the attacker’s budget

increases, both first stage and second stage decisions shift towards more important

areas.

Next, we study the effect of attacker’s disutility from a failed attack, P , on the

optimal first stage and second stage decisions for both players. Figure 3.5a shows
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Table 3.2: Optimal investment and defend/attack strategies for monetary data with P = 400

B = 0.3A B = 0.6A B = 0.9A

α∗i β∗i x∗i y∗i α∗i β∗i x∗i y∗i α∗i β∗i x∗i y∗i

NY 59.82 0.00 0.487 0.000 67.28 0.00 0.483 0.000 97.59 0.00 0.467 0.000

CH 56.01 0.00 0.190 0.002 62.31 0.00 0.184 0.001 85.35 0.00 0.158 0.001

SF 50.16 0.00 0.087 0.003 54.54 0.00 0.080 0.002 64.29 0.00 0.051 0.001

WDC 42.42 0.00 0.043 0.005 43.91 0.00 0.035 0.003 22.78 0.00 0.005 0.002

LA 41.05 0.00 0.038 0.006 41.97 0.00 0.031 0.003 0.00 243.00 0.318 0.995

PHL 20.53 0.00 0.009 0.009 0.00 162.00 0.187 0.990 0.00 0.00 0.000 0.000

BSTN 0.00 81.00 0.145 0.974 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000

the effect of P on defender’s optimal investment decisions. As seen in this figure, as

attacker’s disutility of a failed attack increases, the defender distributes the invest-

ments to cover more targets. This is due to the fact that as disutility of a failed

attack increases, the attacker is less willing to risk being caught and more willing to

attack more vulnerable targets where he is less likely to have an unsuccessful attack.

In response, the defender distributes her investments to cover more targets. Figure

3.5b shows the effect of P on attacker’s optimal investment decisions. According

to this figure, attacker’s investments generally concentrate on a single area which is

an unprotected area (in terms of defender’s first stage investments) with the highest

value. Figure 3.5c shows the defender’s second stage defense probability assignments

as a function of P . As seen in this figure, defender’s probability assignments are

similar to her first stage investment assignments in the sense that more areas get

covered as P increases. Moreover, the complementary interaction observed in table

3.2, is also visible in figure 3.5c. For example, for around the point with P = 150, the
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(c) Optimal allocation of second stage probabilities for de-
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(d) Optimal allocation of second stage probabilities for at-

tacker

Figure 3.5: Analysis for monetary value data

investments are distributed between two most important areas i.e. NY and CH. The

next most important area, SF, receives no investments in the first stage. However,

the second stage defense probability assignment complements the first stage decision

by defending SF with a relatively high probability. Figure 3.5d shows the attacker’s

second stage probabilities as a function of P . As seen in this figure, the second stage

attack probabilities are in line with the first investment decisions. In other words, the

second stage probabilities are concentrated on the same target that received majority

of the investments in the first stage.
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3.4.2 Analysis for Fatality Value Data

In this section, we perform the two-stage game analysis based on the fatality value

of each urban area. We study the effect of the attacker’s budget on both players’

strategies. This budget is represented by a percentage of the defender’s budget.

Table 3.3 shows the optimal strategies of both players for P = 5000 and different

values for attacker’s budget. This table shows that, for B = 0.3A, the defender

distributes the investments among the first six most important areas and the level of

investments decrease as the value of the area decreases. No investment is allocated to

the next important area, i.e. PHL, however, the second stage strategy complements

the first stage investment decision by covering PHL with a relatively high probability.

Ignoring this exception, the second stage defense probabilities are also distributed

proportional to the value of the area. For the attacker, all of the first stage investments

go to PHL and most of the second stage effort is concentrated in PHL. This is,

roughly speaking, in line with the assumptions of other models, including [18], that

the adversary concentrates his efforts on one area. Moreover, similar to the results

of [18], different valuations of targets lead to different investment allocations. Similar

observations can be made for other values of attacker’s budget. Another interesting

observation is that as the attacker’s budget increases, both first stage and second

stage decisions shift towards more important areas.

Next, we study the effect of attacker’s disutility from a failed attack, P , on the

optimal first stage and second stage decisions. Figure 3.6a shows the effect of P

on defender’s optimal investment decisions. As seen in this figure, similar to the

case of monetary value analysis, as attacker’s disutility of a failed attack increases,

the defender distributes the investments to cover more targets. Figure 3.6b shows

the effect of P on attacker’s optimal investment decisions. According to this figure,

attacker’s investments generally concentrate on a single unprotected area (in terms
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Table 3.3: Optimal investment and defend/attack strategies for fatality data with P = 5000

B = 0.3A B = 0.6A B = 0.9A

α∗i β∗i x∗i y∗i α∗i β∗i x∗i y∗i α∗i β∗i x∗i y∗i

NY 59.37 0.00 0.499 0.000 75.95 13.48 0.574 0.000 158.23 0.00 0.452 0.000

CH 55.13 0.00 0.165 0.002 64.56 11.55 0.185 0.002 111.77 0.00 0.087 0.002

WDC 50.49 0.00 0.087 0.003 53.09 9.60 0.094 0.003 0.00 243 0.461 0.997

SF 45.34 0.00 0.052 0.005 41.49 7.63 0.053 0.005 0.00 0.00 0.00 0.00

LA 42.15 0.00 0.039 0.005 34.91 6.52 0.039 0.006 0.00 0.00 0.00 0.00

BSTN 17.52 0.00 0.007 0.010 0.00 113.23 0.055 0.984 0.00 0.00 0.00 0.00

PHL 0.00 81.00 0.152 0.975 0.00 0.00 0.000 0.000 0.00 0.00 0.00 0.00

of defender’s first stage investments) with the highest value. Figure 3.6c shows the

defender’s second stage defense probability assignments as a function of P . As seen in

this figure, similar to her first stage investment assignments, more areas get covered

as P increases. Moreover, the complementary interaction between the firsat stage and

second stage decisions, as observed in table 3.3, is also visible in figure 3.6c. Figure

3.6d shows the attacker’s second stage probabilities as a function of P . According

this figure, the second stage attack probabilities are in line with the first investment

decisions. In other words, the second stage probabilities are concentrated on a single

target which is the same target that received majority of the investments in the first

stage.
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Figure 3.6: Analysis for fatality value data
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Chapter 4

A Decomposable Resource

Allocation Model with Generalized

Overarching Protections

4.1 Introduction and Literature Review

Defensive resource allocation to protect a set of valuable assets against terrorist at-

tacks or natural disasters has been the subject of intensive studies [18, 21, 62, 126,

145]. One aspect of this problem is to strike a balance between protecting individ-

ual assets and the overarching protection options. Overarching protections refer to

the options that protect multiple assets at the same time. For example, a country

can allocate resources to protect its borders to reduce the potential damage from

international terrorism. Similarly, expending resources on gathering information and

intelligence to counter terrorism is another form of overarching protection.

Powell [120], and Haphuriwat and Bier [49] conducted the early studies on the

trade-off between individual target hardening and overarching protection. Powell in-

vestigated a model in which the defender has the option of allocating resources to
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harden the targets individually or to protect all of the targets via enhancing the bor-

der security. Haphuriwat and Bier introduced a model to allocate resources between

target hardening and an overarching protection option covering all targets. They

studied the effect of various factors on the relative desirability of each option. Gola-

likhani and Zhuang [44] developed a model with a defender simultaneously protecting

any subset of targets based on their functional similarity or geographical proximity.

Hausken [57] presented a two-period resource allocation game. In the first period,

both players allocate their resources to engage in an overarching contest covering all

of the targets. If the attacker wins the overarching contest, in the second period, the

players decide on resource allocation to defend/attack individual targets. Hausken

[58] considered a system consisting of two components either in series or in parallel.

In his model, the players can either allocate resources to special efforts to protect

individual components or a general effort to protect both components in the system.

The difference of this model from the existing ones with overarching protection is

that, the existing models regard the overarching protection as an extra layer of pro-

tection that the attacker has to breach to have a successful attack. However, in his

proposed model, there is only one protection layer and the special and general pro-

tection efforts operate additively to contribute to a single joint protection. Hausken

[59] investigated a similar system with two independent components.

There are a number of studies that considered systems consisting of logically

linked components. For example, Levitin and Hausken [86] examined individual and

overarching protections for series and parallel systems. Hausken [56] expanded this

model to include heterogeneous unit protection costs. Levitin et al. [89] introduced

a model that generalizes the k-out-of-n system. In this model, the damage to the

system depends on the number of destroyed elements as well as the unfulfilled de-

mand. Levitin et al. [90] developed a three-stage minimax game model with multiple
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overarching protections and a system consisting of identical elements. In this model,

the defender decides the number of groups of targets to protect using overarching pro-

tections as well as the number of targets to protect individually within each group.

Peng et al. [117] considered the resource allocation problem to individual, overarching

protection and replacement for a parallel system of heterogeneous components.

Most existing models in literature assume that there is only one overarching pro-

tection option that protects all of the targets. However, this may not be true in

reality. For example, in case of emergency response, investment is not limited to only

one option that covers the entire country. It is possible to make targeted investments

that are focused on a city or an area inside a city. Moreover, investment in border

security can be divided into different points of entry, each of which is expected to

benefit areas that are closer to that particular point of entry. The only model with

multiple overarching protections is proposed by Levitin et al. [90]. However, this

model assumes that the targets are identical and each overarching protection covers

a fixed number of targets. Therefore, the overarching protection options are identical

and the defender decides on how many times to use this option. In reality, the tar-

gets may not be identical and, depending on the subset of targets that are covered,

various options for overarching protections may be available. To this end, we intro-

duce overarching protection options that protect a subset of targets. We consider two

types of overarching protections: country-level overarching protections and city-level

overarching protections. Each country-level overarching protection option protects

all of the assets in a set of cities. And each city-level overarching protection option

in a city protects a subset of assets. Moreover, there are different types of natural

disasters and the defender has to decide on how much to invest to protect against

each disaster type in each city. Another consideration in this area is that the number

of targets maybe very large and a practical resource allocation model needs to be
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scalable for problems of realistically large size. We show that our proposed resource

allocation model is a convex optimization problem that can be solved in polynomial

time. Moreover, we also demonstrate that the proposed model can be decomposed

into smaller city-level subproblems. Using this observation, we develop an efficient

decomposition approach to optimally solve the proposed resource allocation problem.

The rest of this chapter is organized as follows. Section 4.2 introduces the pro-

posed resource allocation model. Section 4.3 develops a solution approach based on

decomposing the problem into city-level subproblems to solve the proposed model.

Section 4.4 demonstrates numerical experiments to investigate the efficiency of the

proposed algorithms and to gain insight into properties of the model.

4.2 Problem Description

A defender has a budget, say B, to allocate in order to protect cities in a country

against both natural and man-made disasters. Each asset j in city i has a value Cij

that will be lost in case of a successful attack or a natural disaster. Against man-made

attacks, the defender can either protect assets in cities individually or collectively

through overarching protection options. Overarching protection refers to alternatives

that lead to protecting more than one individual asset, e.g., border security, public

health, emergency response, or intelligence. Two types of overarching protections

exist: country-level overarching protections and city-level overarching protections.

Each country-level overarching protection option o protects all of the assets in a set

of cities Γo. On the other hand, each city-level overarching protection option l in

city i protects a set of assets Λil. A single adversary is the perpetrator of a man-

made disaster and chooses the asset with the highest expected damage to attack.

If there are multiple assets with the highest expected damage, we assume that the

adversary chooses one of them arbitrarily. In order to successfully destroy an asset, all
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of the protection measures need to be breached. There are different types of natural

disasters and the defender decides how much to invest for protection against each

disaster type in each city.

Model parameters are listed as follows:

• i : Index for cities, i = 1, . . . , I.

• j : Index for assets in city i, j = 1, . . . , Ji.

• k : Index for the type of natural disaster, k = 1, . . . , K.

• ρ : Probability of an intentional attack.

• ωk : Probability of a type k natural disaster.

• B : Defender’s budget.

• Cij : Value of asset j in city i.

• xi : Amount of resource allocated to protect city i against intentional attacks.

• xHij : Amount of resource allocated to harden asset j in city i against intentional

attacks.

• xCo : Amount of resource allocated to country-level overarching protection option

o.

• xNik: Amount of resource allocated to protect city i against natural disaster of

type k.

• xLil: Amount of resource allocated to city-level overarching protection option l,

in city i.

• Γo: Set of cities that are protected in country-level overarching protection option

o.
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• Ψi : Set of country-level overarching protection options that protect city i.

• Λil : Set of assets in city i that are protected through city-level overarching

protection option l.

• Ωij : Set of city-level overarching protection options in city i that protect asset

j.

• fi(xi) : Expected damage from a man-made attack in city i, given that budget

level is xi, and all of the country-level overarching protections are breached.

• PC
o (xCo ): Probability of breaching country-level overarching protection option

o.

• PL
il (x

L
il) : Probability of breaching city-level overarching protection in city i

option l.

• PH
ij (xHij ) : Probability of breaching hardening protection in for asset j in city i.

• PN
ik (xNik) : Probability of failure of protection against natural hazard type k in

city i.

Using this notation, the resource allocation problem can be formulated as follows:

Min ρ

max
(i,j)

CijPHij (xHij )
∏
l∈Ωij

PLil (x
L
il)
∏
o∈Ψi

PCo (xCo )


+

∑
k

ωk
∑
i

PNik (xNik)
∑
j

Cij (4.1)

subject to

∑
i

∑
j

xHij +
∑
l∈Ωij

xLil

+
∑
o∈Ψi

xCo

+
∑
i

∑
k

xNik ≤ B, (4.2)

xHij , x
L
il, x

C
o , x

N
ik ≥ 0, ∀ k = 1, . . . ,K, o ∈ Ψi, l ∈ Ωij for i = 1, . . . , I, j = 1, . . . , J. (4.3)

In this formulation, the objective function is to minimize the expected damage

from both man-made and natural disasters. The first term is the expected damage



65

from man-made disasters. For each asset j in city i, the probability of a successful

attack is PH
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il)
∏

o∈Ψi
PC
o (xCo ). Therefore, the expected damage of

an attack on asset j in city i is CijP
H
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il)
∏

o∈Ψi
PC
o (xCo ). The attacker

chooses the asset that leads to the maximum expected damage. The second term in

the objective function is the expected damage from natural disasters. We assume

that natural disasters affect entire cities, thus investments to protect against them

need to cover all assets in a city. Therefore, for each city i, the expected damage from

a natural disaster of type k is equal to
∑

i P
N
ik (xNik)

∑
j Cij. Clearly, total investment

is constrained by the budget.

The following lemma shows the conditions under which the above formulation is

a convex optimization program.

Lemma 4.1. If the success probability functions are log-convex, then the resource

allocation problem is a convex optimization problem.

Proof. For each pair (i, j), the expression PH
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il)
∏

o∈Ψi
PC
o (xCo ) is a

log-convex function. Note that log-convex functions are also convex.

Thus max(i,j)

{
CijP

H
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il)
∏

o∈Ψi
PC
o (xCo )

}
is a point-wise maximum of

a set of convex functions. This means that

max(i,j)

{
CijP

H
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il)
∏

o∈Ψi
PC
o (xCo )

}
is convex. Therefore, the objec-

tive function is a linear combination of convex functions, which is convex. Moreover,

the constraint is linear. Therefore, the resource allocation problem (4.1)-(4.3) is to

minimize a convex function with linear constraints. This completes the proof.
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4.3 A Decomposition Approach to Solve the Re-

source Allocation Problem

If functions PC
o (xCo ), PL

il (x
L
il), and PH

ij (xHij ) are log-convex, then the resource allocation

problem can be decomposed into smaller city-level resource allocation problems. The

assumption of log-convexity is not very limiting and many of the existing functions

in literature have this property [18, 48, 49, 138, 144]. We can rewrite the defender’s

resource allocation problem as follows:

min
xi,xCo ,x

N
ik

[(
max
i
ρfi(xi)

) ∏
o∈Ψi

PC
o (xCo ) +

∑
k

ωk
∑
i

PN
ik (xNik)

∑
j

Cij

]
(4.4)

subject to
∑
i

(
xi +

∑
o∈Ψi

xCo

)
+
∑
i

∑
k

xNik ≤ B, (4.5)

xi, x
C
o , x

N
ik ≥ 0, ∀ o ∈ Ψi, l ∈ Ωij for i = 1, . . . , I. (4.6)

In this formulation, fi(xi) is the expected damage of a man-made attack in city i if xi

amount has been allocated to this city for its protection against intentional attacks

and all country-level overarching protections have been breached. The value of fi(xi)

is obtained by solving the following city-level resource allocation problem against

intentional attacks:

fi(xi) = min
xHij ,x

L
il

max
j
CijP

H
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il) (4.7)

subject to
∑
j

xHij +
∑
l

xLil ≤ xi, (4.8)

xHij , x
L
il ≥ 0, ∀ l ∈ Ωij, for i = 1, . . . , I, j = 1, . . . , J. (4.9)

We refer to the above optimization problem as the city-level subproblem and

show that this problem, under the conditions of Lemma 1, is a convex optimization

problem. First, we need the following lemma, which is adapted from [19].
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Lemma 4.2. Let function g0 : Rn −→ R be log-convex and g1, g2, . . . , gh : Rn −→ R be

convex. Then, f ∗(x) = infu{g0(u)|u ∈ D, gi(u) ≤ xi, i = 1, 2, . . . , h} is log-convex.

Proof. Let function G(u,x) ≡ g0(u) be defined in the domain, {(u,x)|u ∈ D, gi(u) ≤

xi, i = 1, 2, . . . , h}. Define the domain of f ∗(x) as dom f ∗(x) = {x|(u,x) ∈ dom G

for some u ∈ Rn}. It is easy to see that the domain of G(u,x) is convex. There-

fore, G(u,x) is log-convex. Next, we show that f ∗(x) = infuG(u,x) is log-convex.

Consider two points (x1) and (x2) both in dom f ∗. For ε > 0 there are u1 and u2 in

dom G such that G(ui, xi) ≤ f ∗(xi) + ε. We have:

f ∗(θx1 + (1− θ)x2) = inf
u
G(u, θx1 + (1− θ)x2)

≤ G(θu1 + (1− θ)u2, θx1 + (1− θ)x2)

≤ G(u1, x1)θG(u2, x2)(1−θ) ≤ (f ∗(x1) + ε)θ(f ∗(x2) + ε)(1−θ)

≤ f ∗(x1)θf ∗(x2)(1−θ) + δ(ε),

with δ(ε) that converges to zero as ε goes to zero. Since this holds for any ε > 0, we

have:

f ∗(θx1 + (1− θ)x2) ≤ f ∗(x1)θf ∗(x2)(1−θ).

This completes the proof.

Based on this lemma for h = 1, the following corollary holds:

Corollary 4.1. If PH
ij (xHij ) and PL

il (x
L
il) are log-convex, then fi(xi) is also log-convex.

Using Corollary 4.1, an iterative outer approximation method can be used to solve

the decomposed problem. Given a set of points xmi for m ∈ Φ, we can develop the
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following master problem:

min
xi,xCo ,x

N
ik

z +
∑
k

ωk
∑
i

PN
ik (xNik)

∑
j

Cij (4.10)

subject to z ≥ ρfi(x
m
i )e

f ′i(x
m
i )

fi(x
m
i

)
(xi−xmi ) ∏

o∈Ψi

PC
o (xCo ), ∀i = 1, . . . , I, m ∈ Φ, (4.11)

∑
i

xi +
∑
o∈Ψi

xCo +
∑
i

∑
k

xNik ≤ B, (4.12)

xi, x
C
o , x

N
ik, z ≥ 0, ∀ k = 1, . . . , K, o ∈ Ψi, for i = 1, . . . , I. (4.13)

In this formulation, f ′i(x
m
i ) is the first derivative of fi(xi) with respect to xi eval-

uated at xi = xmi . Note that, because fi(xi) is a log-convex function, the solution

of this master problem gives a lower bound to the optimal solution of the resource

allocation problem. We use the obtained xi values to set xM+1
i = xi, Φ = Φ

⋃
{M+1}

and M = M + 1. We then use the xM to solve the subproblems:

fi(x
M
i ) = min

xHij ,x
L
il

max
j
CijP

H
ij (xHij )

∏
l∈Ωij

PL
il (x

L
il) (4.14)

subject to
∑
j

xHij +
∑
l

xLil ≤ xMi , (4.15)

xHij , x
L
il ≥ 0. (4.16)

Note that, in the subproblem, xMi values are fixed and they are treated as param-

eters. Solving the subproblems gives an upper bound which can be computed as

UB = maxi ρfi(xi)
∏

o∈Ψi
PC
o (xCo ) +

∑
k ωk

∑
i P

N
ik (xNik)

∑
j Cij. We continue itera-

tively solving the master problem and the subproblems until the lower and upper

bounds converge. Algorithm 1 provides the pseudo-code for the overall decomposi-

tion procedure. The algorithm starts by initializing M = 0 and Φ = ∅. Then the

master problem is solved to obtain the optimal solution as x∗ = [x∗i ], [xC∗o ] and [xN∗ik ].

The algorithm then sets the current lower bound LB as the optimal objective func-

tion obtained by solving the master problem. In the next step, the algorithm adds
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the current point x∗ to the set of points xmi , m ∈ Φ, and updates M and Φ. We

then use xM to solve the subproblems (4.14)-(4.16) and obtain [xH∗ij ] and [xL∗il ]. In

the next step, the algorithm uses the current solution to compute an upper bound on

the optimal objective function. In the next step, the current lower and upper bounds

are compared to check if they are close enough. If the difference between the bounds

is smaller than ε, then the algorithm terminates and the current solution is returned.

Otherwise, we go back to line 2 to repeat the procedure until the bounds converge.

Algorithm 1: Pseudo-code for the overall decomposition algorithm

1 Initialize M = 0 and Φ = ∅.

2 Solve master problem (10)-(13) to obtain x∗ = [x∗i ], [xC∗o ] and [xN∗ik ].

3 Set the lower bound LB as the optimal objective function of the master

problem.

4 Set xM+1 = [xM+1
i ] = x∗, Φ = Φ

⋃
{M + 1} and M = M + 1.

5 Use xM to solve the subproblems (14)-(16) to obtain [xH∗ij ] and [xL∗il ].

6 Compute the upper bound

UB = maxi ρfi(x
∗
i )
∏

o∈Ψi
PC
o (xC∗o ) +

∑
k ωk

∑
i P

N
ik (xN∗ik )

∑
j Cij.

7 if (UB − LB) ≤ ε then

8 Return the current solution as the optimal solution of the problem.

9 Terminate the procedure.

10 else

11 Go to Line 2.

12 end

Remark 4.1. At every iteration of the decomposition algorithm, the values of fi(x
m
i )

and f ′i(x
m
i ) give an aggregation of the asset-level data for each city i. Using these val-

ues, one can compare the cost effectiveness of investments in different cities with
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differing numbers of assets (and differing asset values). Specifically, at the cur-

rent level of investments, a lower bound on the expected damage from man-made

disasters in city i is given in the form of Cie
−λi(xi−xmi ), where λi = −f ′i(x

m
i )

fi(xmi )
and

Ci = fi(x
m
i )
∏

o∈Ψi
PC
o (xCo ). This bound is tight at the current level of investments.

Moreover, λi can be interpreted as the cost effectiveness of the new investments in

city i. For example, if λi = 0.01, an extra unit of investment in city i will lead to a

reduction of about 1% in the expected damage in city i.

Remark 4.2. Note that a similar decomposition approach can be developed for the

case in which, instead of using a budget constraint, investment costs are added to the

objective function.

4.4 Numerical Experiments

In this section, we perform computational experiments to investigate the efficiency

of the proposed algorithm and to gain insight into the properties of the game. The

algorithms are coded in GAMS and the IPOPT (Interior Point OPTimizer) solver

has been used to solve the NLPs. The computational experiments are performed on a

computer with 2.6 GH processor and 32 GB of RAM. Throughout this section, unless

mentioned otherwise, we use the following parameter values. Similar to [49], power-

law functions represent the success probability of an attack and the failure probability

of protection against natural hazards. Specifically, assume PH
ij (xHij ) ≡

(
αHij

αHij+xHij

)κHij
,

where αHij and κHij are positive-valued parameters that determine the cost effectiveness

of defensive investment. Similarly, let PL
il (x

L
il) ≡

(
αLil

αLil+x
L
il

)κLil
, PC

o (xCo ) ≡
(

αCo
αCo +xCo

)κCo
,

and PN
ik (xNik) ≡

(
αNik

αNik+xNik

)κNik
. In addition, assume κHij = κLil = κCo = κNik = 7, αHij =

0.01, αLil = 0.1, and αCo = αNik = 1. The acceptable gap of the optimum objective

function value, ε, is set as 0.001. Thus, in all experiments, the run time represents
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the time it takes the algorithm to reach a gap of less than or equal to ε. Furthermore,

assume that all types of disasters are equally likely to happen with a probability of

0.001.

Table 4.1: Average run times (in seconds) of the decomposition approach (DA) and the direct

optimization (DO) of the mathematical model

I

J = 200 J = 250 J = 300 Mean

DO DA DO DA DO DA DO DA

100 71.79 30.49 79.73 38.33 97.19 46.74 82.91 38.52

150 151.76 48.03 153.11 58.42 190.24 72.19 165.04 59.55

200 189.37 67.79 258.04 81.06 264.86 97.50 237.42 82.12

Mean 137.64 48.77 163.63 59.27 184.10 72.14 161.79 60.06

In the first experiment, we compare the performance of the decomposition ap-

proach with directly solving the mathematical model. We generate the instances for

these experiments randomly. Asset values are uniform random variables in the range

[43, 56]. This range includes the minimum and maximum risk scores given in the

case study by Haphuriwat and Bier [49]. We use L1 and L2 to denote the number

of country-level and city-level overarching protections, respectively. For all possible

combinations of I ∈ {100, 150, 200}, J ∈ {200, 250, 300}, K,L1, L2 ∈ {10, 15, 20},

we generated an instance of the problem to obtain a data set of 243 problem in-

stances. We then used our proposed decomposition approach as well as the direct

optimization approach to solve all of these problem instances. Table 4.1 exhibits the

average run times for different number of cities (I) and number of assets in each city

(Ji = J,∀i = 1, . . . , I). The columns DA and DO show the average run times for the

decomposition approach and the direct optimization method, respectively. As seen in
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this table, the decomposition approach performs significantly better than the direct

optimization approach. This table also reveals that the run times for both DA and

DO increase as the number of cities increases. Moreover, the run times also increase

as the number of assets inside each city increases.

Table 4.2: Average run times (in seconds) of the decomposition approach (DA) and the direct

optimization (DO) of the mathematical model

I

K = 10 K = 15 K = 20 Mean

DO DA DO DA DO DA DO DA

100 83.42 38.80 84.77 38.60 80.53 38.16 82.91 38.52

150 149.47 59.24 194.48 59.25 151.17 60.16 165.04 59.55

200 240.14 81.28 237.35 82.90 234.77 82.18 237.42 82.12

Mean 157.68 59.77 172.20 60.25 155.49 60.16 161.79 60.06

Table 4.2 shows the average run times for different number of cities and number

of natural disasters (K). The columns DA and DO present the average run times for

the decomposition approach and the direct optimization method, respectively. The

decomposition approach performs significantly better than the direct optimization

approach. The run times for DO increase as the number of natural disaster types

increases. However, the number of natural disaster types does not seem to influence

the run times of DA.

Table 4.3 exhibits the average run times for different number of country-level (L1)

and city-level overarching protections (L2). The columns DA and DO show the aver-

age run times for the decomposition approach and the direct optimization approach,

respectively. The decomposition approach performs significantly better than direct

optimization of the mathematical model. In general, the run times for both DA and
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Table 4.3: Comparison of the decomposition approach with the mathematical model

L1

L2=10 L2=15 L2=20 Mean

DO DA DO DA DO DA DO DA

10 123.90 48.09 148.76 62.69 176.83 74.43 149.83 61.74

15 129.58 46.12 152.57 61.59 180.66 71.84 154.27 59.85

20 178.34 45.45 165.37 60.47 200.09 69.90 181.27 58.60

Mean 143.94 46.55 155.57 61.58 185.86 72.05 161.79 60.06

DO increases as the number of city level overarching protections increases. Increasing

the number of country-level overarching protections, leads to an increase in the run

times of DO but decreases the run times of DA.
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Figure 4.1: The effect of number of assets per city on the optimal resource allocation

In our next experiment, we study the effect of some of the model parameters on

the optimal resource allocation. For this experiment, we assume that all assets have

the same valuations, i.e., Cij = 1. We consider 5 randomly generated country-level

overarching protection options. We also assume that, for each city, there is only



74

one city-level overarching protection option, and it covers all of the assets inside the

city. Figure 4.1 demonstrates the effect of number of assets per city on the optimal

allocation of resources. In this figure, C and L refer to the portion of the budget

that has been assigned to country-level and city-level overarching protection options,

respectively. Moreover, H refers to the proportion of the budget that has been as-

signed to individual target hardening. According to this figure, as J increases, the

resource amount allocated to individual target hardening decreases and the resources

are shifted toward the overarching protection types. This is in line with existing ob-

servations in the literature. Moreover, as J increases, the optimal resource allocation

levels converge and after a certain point, the optimal allocation of resources does not

change.

Figure 4.2 displays the effect of number of cities on the optimal allocation of

resources. In this figure, the optimal resource level for country-level overarching

protection options increases as I increases. However, as I increases, the amount of

resource allocated to city-level overarching protection options decreases. Moreover,

the effect of I on the amount of resource allocated to target hardening options is not

monotonic. Specifically, as I increases, the amount of resource allocated to target

hardening options increases at first, then decreases.

The effect of I on the resource allocated to different protection options depends

on the cost efficiency of these options. For example, Figure 4.3 shows the effect

of number of cities on the optimal allocation of resources, for the case with αLij =

0.075 parameter. This is a slight change from Figure 4.2, in which we had αLij =

0.1. As seen in this figure, the effect of I on the amount of resource allocated to

city-level overarching protections and target hardening is different from Figure 4.2.

This highlights the importance of having accurate estimates of the parameters that

determine the cost efficiency of the protection options.
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Figure 4.2: The effect of number of cities on the optimal resource allocation for αL
ij = 0.1

Figure 4.4 exhibits the effect of αHij on the optimal resource allocation. As seen

in this figure, as αHij increases, the amount of resource allocated to harden individual

targets decreases while amounts allocated to city-level and country-level overarching

options both increase. This is due to the fact that, as αHij increases, the cost efficiency

of target hardening decreases. Therefore, allocating resources to other protection

options becomes more appealing.

Figure 4.5 displays the effect of αCo on the optimal resource allocation. As αCo

increases, the amount of resources allocated to country-level overarching options de-

creases and the amount allocated to other protection options increases. This is due to

the fact that, as αCo increases, the cost efficiency of country-level overarching options

decreases. Therefore, allocating resources to other protection options becomes more

appealing.

In many realistic situations, the cities are not identical and they differ in the

number and valuation of their assets. In such cases, an interesting question to

address is how to compare the cost effectiveness of investments in different cities.

In this experiment, we highlight the ability of the decomposition approach to ag-
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Figure 4.3: The effect of number of cities on the optimal resource allocation for αL
ij = 0.075

gregate asset-level data to compare cities in terms of cost effectiveness. For this

experiment, we ignore the natural disasters and assume that there are no over-

arching protection options. Therefore, all of the available resources will be as-

signed to individual target hardening against intentional attacks. Given a budget

of 100 units, we consider two cities; the first one has 10 assets with the values

given as (C1,1, C1,2, . . . , C1,10) = (10, 10, 5, 8, 10, 10, 7, 5, 10, 10). Moreover, we have

(αH1,1, α
H
1,2, . . . , α

H
1,10) = (1, 3, 4, 2, 4, 1, 5, 3, 4, 3). The other city has only one asset

with C2,1 = 5 and αH2,1 = 2. Using the decomposition approach we solve this instance

of the problem and obtain the expected damage from an intentional attack as 1.94

units under the optimal resource allocation policy. The optimal policy is to assign

96.84 units to the first city and 3.16 units to the second city. At the optimal solution,

we have f1(x1) = f2(x2) = 1.94, f ′1(x1) = −0.0153 and f ′2(x2) = −0.3761. These

values aggregate the asset-level data and enable us to compare these two cities in

terms of the current expected damage due to an attack and the cost effectiveness of

new investments. Both cities have the same level of expected damage from an attack,

f1(x1) = f2(x2) = 1.94.
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Figure 4.4: The effect of αH
ij on the optimal resource allocation

The decomposition approach also gives us an idea about the cost effectiveness of

investment in each city. Because the first city has more assets, which in general have

higher values than the asset in the second city, we expect protecting the first city

to be more costly than protecting the second city. In other words, for each unit of

extra investment, we expect the rate of reduction in the expected damage for the

first city to be smaller than for the second city. However, quantifying the difference

is not a trivial task. The decomposition approach offers a way to address this issue.

Specifically, the values f ′1(x1) = −0.0153 and f ′2(x2) = −0.3761 give us an idea about

the cost effectiveness of the two cities for new investments. Based on these numbers,

protecting the first city is roughly 24 times more costly than protecting the second

city.
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Part II

Patrolling and Search Games
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Chapter 5

Patrolling Games on General

Graphs with Time-Dependent

Node Values

5.1 Introduction and Literature Review

One of the most important issues in homeland security is protecting critical infras-

tructures against terrorist attacks [104]. Among these infrastructures, transportation

systems, serving 32 million passengers daily in the United States, are critical for

supporting the national security and economic well-being. Public surface transporta-

tion systems such as trains, metros, subways and buses offer terrorists easy access

to crowds of people. This makes them especially attractive to terrorists seeking high

body counts. Such open systems are considered to be soft targets by the terrorists.

Bombings in Brussels and Istanbul along with many other cases indicate that terror-

ists tend to target such large crowds to cause mass human casualties in addition to

panic and chaos. Therefore, it is important to protect such infrastructures.

Analyzing the risk associated with attack to each infrastructure component, mit-
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igation planning and designing efficient response policies could substantially reduce

the threat to these infrastructures. One component of such planning is designing

efficient patrols to secure vulnerable areas. One of the challenges involved in design-

ing patrol schedules to safeguard open mass transit systems and other soft targets is

time-dependent node values. Because the adversary’s primary objective is to inflict

human casualties, the node values depend on the number of people residing in those

nodes. These numbers change over time and the terrorists tend to time their attacks

according to these changes [68]. Another challenge is to develop efficient methods

to design patrols for a general network. In this chapter, we try to address these

challenges in a patrolling game setting.

Patrolling problems arise in many situations in real life. Police officers patrol

cities; security officers patrol terminals at airports and transportation centers; security

guards patrol museums and shopping malls. Patrolling problems involve decisions

on how to route a patroller through many locations in order to safeguard the area

from adversarial intruders or illicit activity. With recent advancements in technology,

patrolling decisions arise even more frequently with applications in routing unmanned

aerial vehicles and robots.

The patrolling problems have been studied since 1970s. Several studies have fo-

cused on allocating patrols to different areas to optimize performance measures such

as patrol delays, average waiting time and total response time [24, 25, 82, 109]. These

studies assume that crime frequency in different regions remain fixed and known to the

patroller. However, this is not a realistic assumption due to the strategic behaviour of

the adversaries. In other words, the adversaries can change their strategy in response

the patroller’s strategy. Therefore, game theoretic analysis of such problems yields

more realistic results. Basilico et al. [14] introduce a two-player multi-stage security

game with an underlying infinite horizon setting in which there are potentially in-



82

finitely many decision nodes. In this model, the attacker has the complete knowledge

of the strategy to which the patroller committed to. The attacker can also observe

the location and movements of the patroller at any time and chooses his best attack

strategy based on this information. They study Markovian strategies of different or-

ders for this problem and show that, even though first order Markovian strategies

may not always be optimal, they have comparable quality with respect to higher or-

der Markovian strategies. Basilico et al. [13] consider a similar patrolling game model

with the patroller employing spatially uncertain alarm signals. They prove that this

problem is NP-hard for a general graph, they also show that for special graphs, like

paths or cycle graphs, the optimal strategy can be found in polynomial time. In-

finite horizon nature of the games studied in [14] and [13] leads to the application

of stationary Markovian strategies by the patroller. This means that the timing of

attacks becomes irrelevant in such games. However, this may not be valid in realistic

situations, for example, when node values change over time.

Alpern et al. [10] introduce a finite horizon patrolling game played on a graph,

Q, with n nodes. The game has two players, a defender patrolling a set of nodes on

Q, and an adversary targeting a node to attack. The adversary needs m consecutive

periods, uninterrupted by the defender, to successfully damage the node. He aims to

maximize the probability of a successful attack, while the defender tries to minimize

this probability. Hence, the proposed model is a zero-sum game and the solution to

this game is called a saddle point [29]. Papadaki et al. [111] study the same patrolling

problem on a line graph. They solve this patrolling game for any values of m and n,

to find a saddle point.

Both [10] and [111] assume that all nodes have the same value, they also assume

that the attack time, m, is fixed and does not depend on the node under attack.

However, as we have discussed earlier in this section, these assumptions may not be
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valid in reality. Especially in public transportation systems and other soft targets

when node values represent the number of people present, called occupancy level,

different nodes may have different values and these values may change over time.

Morevover, some nodes may be harder to attack than others, therefore, it may take

more time to launch a successful attack.

Lin et al. [93] attempt to address this gap by studying patrolling models with

different node values and attack time distributions. They consider both random and

strategic attackers. A random attacker uses a fixed and known probability distribution

to launch attacks on nodes; while a strategic attacker plays a zero-sum game with

the patroller. The authors develop linear programming models to find the optimal

solutions for both players. They also propose index-based heuristics to solve the

problems of larger size. Lin et al. [94] extend the model of [93] by allowing imperfect

detection. In other words, there is a possibility of observing a false negative when the

patroller inspects a node. They introduce efficient index based heuristics to obtain

near optimal policies in a reasonable amount of time. Although [93, 94] resolve some

of the shortcomings of the previous models, their models still do not consider time-

dependent node values and the importance of the timing of attacks.

There are a number of studies accommodating multiple patrollers in their models.

Jain et al. [67] study Stackelberg security games with arbitrary schedules and multiple

patrollers. They develop a branch and price algorithm to efficiently solve this game.

Their algorithm involves a column generation step that exploits a novel network flow

representation avoiding the combinatorial explosion of schedule assignments. Korzhyk

et al. [77] investigate the case with multiple defenders and multiple attackers where

the attacker can attack multiple targets. They propose a polynomial time algorithm

to find the Nash equilibrium for this game. Hochbaum et al. [64] consider a pa-

trolling problem with multiple patrollers (vehicles) on a network with edges targeted



84

by a strategic adversary. They present a novel decomposition approach that requires

the solution of a multivehicle rural Chinese postman problem [46]. Lou et al. [96]

model a security game with multiple decentralized defenders in charge of defending

disjoint subsets of, possibly interdependent, targets. They analyze the existence of a

Nash equilibrium for this game under various conditions. Lagos et al. [79] study a

Stackelberg security problem with multiple patrols and multiple targets. They pro-

pose a branch and price approach to efficiently solve this problem. McGrath and Lin

[101] investigate a patrol problem with multiple patrollers and dispersed heteroge-

neous attack locations. Their model accounts for the travel time between nodes, and

includes node-specific features such as the inspection time, the time required for the

adversary to carry out an attack, and the cost of a successful attack. They show that,

for the case of a single patroller, the optimal solution can be obtained by solving a

linear program. For the case with multiple patrollers, they propose heuristic solutions

based on shortest paths and set partitions.

Majority of the papers in the literature of patrolling games assume that a single

adversary chooses a target to attack, the target values are fixed over time, and some

even assume that all targets are indistinguishable, i.e., they all have the same value.

However, this is not the case in many realistic situations. For example, at a trans-

portation facility, the number of people, occupancy level, at each location may be

considered as the value of that location. Moreover, occupancy levels may change over

time, it is expected that during the rush hours the occupancy levels would be higher

than normal hours. In this chapter, we study a patrolling game model with time-

dependent node values, node-specific attack times, multiple patrollers and multiple

attackers. We propose a solution approach to efficiently solve the game under gen-

eral graphs. The computational results show the efficiency of the proposed approach.

The rest of this chapter is organized as follows. In section 5.2, the problem under
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consideration is described. The proposed solution approach is explained in section

5.3. Section 5.4 presents the computational results.

5.2 Proposed Model

In this section, we describe the problem under consideration. Our work extends the

model of [10] by considering different and time-dependent node values, node-specific

attack times, multiple patrollers and multiple attackers. Here is a list of parameters

of the model:

• N : Number of nodes.

• N = {1, 2, . . . , N} : Set of nodes.

• i, j ∈ N : Node indices.

• s ∈ S : Index of patrollers (security personnel).

• a ∈ A : Index of attackers.

• T : Number of patrolling time periods.

• T = {0, 1, . . . , T − 1} : Set of time periods in the time horizon.

• t, τ ∈ T : Time period indices.

• mi : Attack time, consecutive number of periods needed to attack node i. Let

m = (m1,m2, . . . ,mN).

• E : Set of edges, where (i, j) ∈ E if there is an edge between nodes i and j.

• Cit : Value of node i at time t. Let C = [Cit] be a N × T matrix containing all

of Cit values, with element in row i and column t being Cit.
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The patrolling game G = G(Q, T,m, c) introduced in this chapter is a zero-sum

game between a defender (she) and an adversary (he). The defender controls a set of

patrollers S. The adversary controls a set of attackers A. The game is played on a

connected graph Q = (N , E) with the set of nodes N and the set of edges E over the

time horizon T .

A pure strategy for the adversary is to select a pair (ia, Ia) for each attacker,

a ∈ A, where ia ∈ N is the target node and Ia is the attack interval defining the

beginning, τa, and the end of the attack, which is a set of mj consecutive time periods,

i.e., Ia = {τa, τa + 1, . . . , τa + mj − 1} ∈ T , where j = ia. We can also represent an

attack strategy as (ia, τa). Note that, for each attacker a, the start of attack interval,

τa, should be early enough for the attack interval to finish before the end of the time

horizon T , i.e., τ ≤ T − mj, where j = ia. We assume that the adversary cannot

assign an attack pair to more than one attacker.

We define a patrol as a walk P : T → Q on graph Q during the time horizon

T . A pure strategy for the defender is to select a patrol P s for each patroller s ∈ S.

If ia ∈ P s(Ia) for some s ∈ S, i.e., patroller d interrupts the attacker a, the attack

will be unsuccessful. Otherwise, if ia /∈ P s(Ia) ∀s ∈ S the attacker a successfully

damages node ia, the adversary gains a payoff of Cj,τa+mj−1, where j = ia, and the

defender loses a payoff of Cj,τa+mj−1. The defender aims to minimize the expected

total damage incurred from all attackers and the adversary wants to maximize it.

The players play a zero-sum matrix game with the defender playing as the row

player and the set of all possible defense strategies constituting the rows of the matrix.

The adversary plays as the column player, with the set of all possible attack strategies

constituting the columns of the game matrix. We use K to denote the set of all

possible defense strategies and k to index them. Let xk be the probability of using

defense strategy k in the defender’s mixed strategy. Hence x = (x1, x2, . . . , x|K|)
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represents a mixed strategy of the defender, where |K| denotes the cardinality of

K, xk ≥ 0 ∀k ∈ K and
∑k=|K|

k=1 xk = 1. Similarly, we use L to denote the set of

all possible attack strategies and index them by l. Let yl denote the probability

of using attack strategy l. Hence, a mixed strategy of the adversary is denoted as

y = (y1, y2, . . . , y|L|), yl ≥ 0 ∀l ∈ L, and
∑l=|L|

l=1 yl = 1. The saddle point (Nash

equilibrium) of the game is a point (x∗,y∗) at which the following inequalities hold:

v(x∗,y) ≤ v(x∗,y∗) ≤ v(x,y∗),

where v(x,y) is the expected damage if the defender and the adversary use mixed

strategies x and y, respectively.

Although our model is a generalization of the model proposed by [10], some of

their results are still valid for our model. We will use the following lemma that has

been proved in [10] directly since the proof does not depend on the node values.

Lemma 5.1. Suppose Q is connected, T ≥ 3 and mi ≥ 2,∀i. Then patrols that stay

on any node for three consecutive periods are dominated.

The game can be solved by generating all of the possible strategies for both players,

however, this may not be efficient for games of larger size. In the next section, we

develop a solution approach to obtain a saddle-point equilibrium for this game.

5.3 Solution Procedure

In this section, a solution algorithm based on column and row generation [105, 122] is

developed to obtain a saddle point for the patrolling game described in the previous

section. The main challenge that may arise when developing a column and row

generation algorithm is that the structure of the subproblems may be destroyed due

to the addition of new rows [12]. However, in our case, since the new rows only affect
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the objective function coefficients, this difficulty does not arise. The solution method

can also be described as a modification of the algorithm proposed by [42, 43].

Because this is a zero-sum game, a linear program (LP) can be developed to obtain

a saddle-point equilibrium of this game. To formulate the LP for this game, we use

the following binary parameters:

• wkiτ =


1 if defense strategy k interrupts attack pair (i, τ),

0 Otherwise.

• zliτ =


1 if attack strategy l involves attack pair (i, τ),

0 Otherwise.

Using this notation, the following LP formulation can be developed to obtain a saddle-

point equilibrium for this game:

Minimize u

subject to u ≥
∑
k∈K

∑
i,τ

Ci,τ+mi−1z
l
iτ (1− wkiτ )xk, ∀l ∈ L,

∑
k∈K

xk = 1,

xk ≥ 0, ∀k ∈ K.

This problem is called the linear programming master (LPM). In this formulation,

xk is a decision variable representing the probability of using defense strategy k ∈ K

in the defender’s mixed strategy. In general, the sets K and L may be exponentially

large; however, the number of used strategies is expected to be much smaller. The

proposed solution algorithm uses this idea to start with a small subsets K′ ⊂ K and

L′ ⊂ L of defense and attack strategies and generates them as needed. In other words,

we generate the defense strategies (columns) and attack strategies (rows) on the fly.
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The starting subsets K′ and L′ could be any set of strategies. Using the restricted set

of strategies K′ and L′, we obtain the following LP:

Minimize u (5.1)

subject to u ≥
∑
k∈K′

∑
i,τ

Ci,τ+mi−1z
l
iτ (1− wkiτ )xk, ∀l ∈ L′, (5.2)

∑
k∈K′

xk = 1, (5.3)

xk ≥ 0, ∀k ∈ K′. (5.4)

This problem is called Restricted LPM (RLPM). The dual of RLPM is:

Maximize v (5.5)

subject to v ≤
∑
l∈L′

∑
i,τ

Ci,τ+mi−1z
l
iτ (1− wkiτ )yl, ∀k ∈ K′, (5.6)

∑
l∈L′

yl = 1, (5.7)

yl ≥ 0, ∀l ∈ L′. (5.8)

In this formulation, yl is the dual variable corresponding to constraint (5.2) in RLPM.

This variable represents the probability of using attack strategy l in the adversary’s

mixed strategy. Moreover, v is the dual variable corresponding to constraint (5.3)

which represents the minimum expected damage. Next step is to find new strategies

in K \ K′ and L \ L′ that could improve the current optimal solution for the cor-

responding players. Given the optimal dual solution yl of RLPM, the reduced cost

of defense strategy k ∈ K \ K′ is given by
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1 − wkiτ )yl − v.

Based on the concept of duality in linear programming, optimality of RLPM is

equivalent to the feasibility of its dual. Therefore, defense strategies that violate

the constraint v ≤
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1 − wkiτ )yl can improve the current opti-

mal solution. Thus, one should look for a defense strategy k with wkiτ such that:

v >
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1−wkiτ )yl. Note that yl’s are fixed, and the problem is to
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find a defense strategy k with wkiτ such that v >
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1 − wkiτ )yl.

In other words, one looks for a new defense strategy k that leads to a smaller ex-

pected total damage,
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1 − wkiτ )yl, than the current expected

total damage, v. To obtain an improving attack strategy for the adversary, con-

sider RLPM. Given the optimal solution xk of RLPM, the current total expected

damage is u. The total expected damage incurred by using attack strategy l is∑
k∈K′

∑
i,τ Ci,τ+mi−1z

l
iτ (1−wkiτ )xk. Therefore, for fixed values of xk, one should find

a new attack strategy l with zliτ such that
∑

k∈K′
∑

i,τ Ci,τ+mi−1z
l
iτ (1 − wkiτ )xk > u.

In the following subsections, we develop mathematical programs to solve the players’

subproblems, and describe the overall solution algorithm.

5.3.1 Mathematical Formulations for the Defender’s Subprob-

lem

In this section, we present two mathematical formulations to solve the defender’s

subproblem: A hop-type formulation and a flow-type formulation. We will compare

the performance of these formulations numerically in section 5.4. Here is a list of

binary variables used to formulate the defender’s subproblem:

• vsit =


1 if patroller s visits node i at time t,

0 Otherwise.

• wiτ =


1 if a patroller visits node i at time interval [τ, τ +mi − 1],

0 Otherwise.
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Using this notation, the following hop-type formulation can be developed for the

defender’s subproblem:

Maximize
∑
i,τ

Ci,τ+mi−1wiτ
∑
l∈L′

ylz
l
iτ (5.9)

subject to wiτ ≤
∑
s∈S

τ+mi−1∑
t=τ

vsit, ∀i, τ, (5.10)

N∑
i=1

vsit = 1, ∀t, s, (5.11)

vsit + vsj,t+1 ≤ 1, ∀i, j, t, s|i 6= j, (i, j) /∈ E , (5.12)

wiτ ∈ {0, 1}, ∀i, τ, (5.13)

vsit ∈ {0, 1}, ∀i, t, s. (5.14)

In this formulation, equation (5.9) represents the objective function which is min-

imizing the expected damage. Note that, the expected damage is equal to∑
l∈L′

∑
i,τ Ci,τ+mi−1z

l
iτ (1−wiτ )yl =

∑
l∈L′

∑
i,τ Ci,τ+mi−1z

l
iτyl−

∑
l∈L′

∑
i,τ Ci,τ+mi−1z

l
iτwiτyl

where the first term is constant; hence, minimizing the expected damage is equiva-

lent to maximizing
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτwiτyl =

∑
i,τ Ci,τ+mi−1wiτ

∑
l∈L′ ylz

l
iτ . The

term
∑

l∈L′ ylz
l
iτ in the objective function can be interpreted as the probability of

using attack pair (i, τ) by the adversary. Equation (5.10) ensures that, if no patroller

interrupts attack pair (i, τ), then wiτ is equal to zero. Equation (5.11) indicates that,

for each patroller s, at each time t the patroller can be at exactly 1 node. Equation

(5.12) ensures that, the patroller can not move from node i to node j if there is no

edge between these nodes. Constraints (5.13) and (5.14) are the integrality constraint

for variables wiτ and vsit.

Note that, lemma 5.1 can be used to incorporate a new constraint to this formula-

tion. Specifically, the constraint vsi,t + vsi,t+1 + vsi,t+2 ≤ 2, ∀i, t, s can be added to the

formulation to eliminate the patrols that stay in the same node for three consecutive

time periods. In the numerical experiments section, we will study the effect of this
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constraint on the overall performance of the algorithm.

A flow-type mathematical formulation can also be developed to solve the de-

fender’s subproblem. The subproblem is formulated as follows:

Maximize
∑
i,τ

Ci,τ+mi−1wiτ
∑
l∈L′

ylz
l
iτ (5.15)

subject to wiτ ≤
τ+mi−1∑
t=τ

∑
j

f tij, ∀i, τ, (5.16)

∑
i,j

f 0
ij = |S|, (5.17)

∑
i

f tij =
∑
l

f t+1
jl , ∀j, t, (5.18)

wiτ ,∈ {0, 1}, ∀i, τ, (5.19)

f tij,∈ Z+, ∀i, j, t. (5.20)

In this formulation, f tij is an integer variable that represents the flow of patrollers from

node i to node j at time t. Equation (5.15) presents the objective function, which is

identical to the objective function in equation (5.9). Constraint (5.16) ensures that, if

no patroller interrupts (i, τ) attack pair, then wiτ is equal to zero. Constraint (5.17)

indicates that, the initial flow of patrollers should be equal to the number of available

patrollers, i.e. |S|. Constraint (5.18) is the flow conservation constraint. It ensures

that, for each node j, the total incoming flow at time t is equal to the outgoing total

flow at time t + 1. Constraints (5.19) and (5.20) are the integrality constraints for

variables wiτ and f tij, respectively. The flows obtained from this formulation can be

transformed into patrols using the well-known flow decomposition algorithm [110].

Theorem 5.1. The defender’s subproblem is NP-hard.

Proof. See Appendix A.8

Remark 5.1. Theorem 5.1 is valid even if Ciτ = 1,∀i, τ and mis are equal to each

other. In other words, even if we solve the model proposed by [10] using our proposed
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solution method, under a general graph, the defender’s subproblem will still remain

NP-hard.

Even though Theorem 5.1 indicates that the defender’s subproblems are hard

to solve, the computational results show that, for problems with up to 30 nodes,

the solution algorithm is able to find the Nash equilibrium by directly solving the

subproblem formulations.

5.3.2 Mathematical Formulation for the Adversary’s Sub-

problem

The adversary’s subproblem is formulated as follows:

Maximize
∑
i,τ

Ci,τ+mi−1ziτ
∑
k∈K′

(1− wkiτ )xk (5.21)

subject to
∑
i,τ

ziτ ≤ |A|, (5.22)

ziτ ∈ {0, 1}, ∀i, τ. (5.23)

In this formulation, ziτ is a binary variable equal to 1 if an attacker is assigned attack

pair (i, τ). Equation (5.21) presents the objective function, which is maximizing the

expected damage. In this expression, the term
∑

k∈K′(1− wkiτ )xk can be interpreted

as the probability of not interrupting attack pair (i, τ). Constraint (5.22) indicates

that, at most |A| attack pairs can be chosen to assign to attacker. Finally, constraint

(5.23) is the integrality constraint for variable ziτ .

The attacker’s subproblem is a special case of 0-1 knapsack problem with unit

item weights. Note that this problem can be solved in polynomial time by sorting

the attack pairs (i, τ) in a non-increasing order of Ci,τ+mi−1

∑
k∈K′(1 − wkiτ )xk and

choosing the first |A| attack pairs.
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5.3.3 Overall Solution Procedure

Algorithm 2 provides the pseudo-code for the overall solution procedure. The algo-

rithm starts by randomly generating a set of initial strategies. Then, using this set of

strategies, the RLPM is solved to obtain a solution x and a vector of dual values y.

Dual values y are then used in the defender’s subproblem to generate a new defense

strategy. If a new defense strategy with a smaller expected damage is obtained, it

is added to K′. Then the adversary’s subproblem is solved to generate a new attack

strategy. If a new attack strategy with a greater expected damage is obtained, it is

added to L′. If, during the last two steps, either K′ or L′ has been updated, then

the process is repeated; otherwise the procedure terminates. Because the number of

possible strategies for both players is finite, the algorithm terminates after a finite

number of iterations. Moreover, when the algorithm terminates, no player can im-

prove the expected damage in their own favor by changing their strategies. Therefore,

by definition, the algorithm returns a saddle-point upon termination.

5.4 Numerical Experiments

In this section, we perform computational experiments to investigate the efficiency

of the proposed solution approaches and gain insight on some of its properties. The

algorithms are coded in C++ and CPLEX 12.6 solver is used to solve the LPs and the

defender’s subproblems. A computer with 2.4 GH processor and 4 GB of RAM is used

to run the numerical experiments. Our base set of test instances consists of randomly

generated instances with underlying graph types including paths, cycles, grids and

general planar graphs. To generate general planar graphs, the expected edge density

(measured as |E|
|N |(|N |−1)

, where we do not consider self-loop edges in calculating the

edge density) of 15% is used, and the number of nodes, N , ranges from 10 to 30. In
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Algorithm 2: Pseudo-code for the overall solution algorithm

1 Initialize sets K′ and L′.

2 Solve RLPM. Let x = [xk], y = [yl] and u be the optimal primal solution,

dual solution and objective function value, respectively.

3 Solve the defender’s subproblem using y as dual values and let w* = [w∗iτ ]

denote the optimal solution.

4 if v >
∑

l∈L′
∑

i,τ Ci,τ+mi−1z
l
iτ (1− w∗iτ )yl then

5 Add the new defense strategy w* to K′.

6 end

7 Solve the attacker’s subproblem using x as primal values and let z* = [z∗iτ ] be

the optimal solution.

8 if
∑

k∈K′
∑

i,τ Ci,τ+mi−1z
∗
iτ (1− wkiτ )xk > v then

9 Add the new attack strategy z* to L′.

10 end

11 if K′ or L′ has been updated then

12 Go to Line 2.

13 else

14 Return v as the value of the game.

15 Terminate the procedure.

16 end
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generating general graphs, we first start with a random tree and then add random

edges (such that the graph remains planar) until the edge density reaches 15%.

In our first experiment, we compare the performances of different subproblem for-

mulations for the defender. Specifically, we consider three cases: the hop-type formu-

lation of (5.9) to (5.13) without the use of lemma 5.1 (HT), the hop-type formulation

of (5.9) to (5.13) with the use of lemma 5.1 (HTL) and the flow-type formulation of

(5.15) to (5.20) (FT). We consider 45 instances for each problem size, with various

values of T ∈ {5, 6, . . . , 9}, |S| ∈ {1, 2, 3} and |A| ∈ {1, 2, 3}. Tables 5.1 and 5.2 show

the average computation times observed for these three approaches for paths, cycles,

general planar graphs and grids. In these tables, the best results are highlighted in

bold. As seen in the tables, the flow-type formulation performs significantly better

than the other formulations. Moreover, for most of the instances, the use of lemma

5.1 is not helpful and it leads to higher CPU times than when the lemma is not used.

In the remaining experiments in this section, we will always use the FT formulation

to solve the defender’s subproblem; as it is the most efficient formulation out of the

three possible ones. Figure 5.1 shows the convergence trajectory of the solution al-

gorithm for the general planar graphs under various values of N . In this figure, the

vertical axis denotes the relative percent deviation (RPD) from the expected damage

in equilibrium. One can see that, expected damage values stabilize way before the

algorithm terminates, implying that, after the expected damage values stabilize, we

can terminate the algorithm without undermining the solution quality drastically.

Next, we study the effect of the number of patrollers and attackers on the expected

damage in equilibrium. An experiment is designed with general planar graphs, |S| ∈

{1, 2, . . . , 10} and |A| ∈ {1, 2, . . . , 5}. Figure 5.2 exhibits the effect of number of

defenders, |S|, on the equilibrium expected damage for various number of attackers,

|A|. Figure 5.2 demonstrates that, as the number of defenders increases, the expected
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Table 5.1: CPU run times (in seconds) for paths and cycles

Path Cycle

N HT HTL FT HT HTL FT

10 32.83 29.94 11.71 38.61 41.44 29.44

15 120.03 119.11 25.91 301.74 332.30 35.91

20 252.39 408.31 30.12 402.73 436.94 36.11

25 435.88 464.59 46.97 412.95 427.83 65.92

30 496.84 529.23 61.98 542.12 572.56 65.13

Table 5.2: CPU run times (in seconds) for general graphs and grids

General Grid

N HT HTL FT HT HTL FT

10 18.64 18.84 8.22 22.37 23.83 10.30

15 207.52 221.02 37.49 153.42 162.17 34.98

20 404.96 431.14 100.41 396.91 463.22 41.79

25 539.08 574.49 124.97 543.61 573.61 68.41

30 700.48 742.31 341.36 690.21 714.65 93.46
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Figure 5.1: Convergence of the solution algorithm

damage decreases. Moreover, a diminishing returns effect is visible in the reduction

in expected damage for each unit increment in |S|.
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Figure 5.2: The effect of number of defenders on the expected damage in equilibrium

Next, we study the size of patrol portfolio for the case of |S| = |A| = 1. As

mentioned earlier, the total number of defense strategies may be exponentially large;

however, the number of defense strategies used in the saddle-point equilibrium is

expected to be much smaller. In fact, when |S| = |A| = 1, the number of defense

strategies used in the equilibrium with a positive probability is at most equal to the

number of constraints in the LPM, which is limited from above by N ×T + 1. Figure
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5.3 displays the size of patrol portfolio as a percentage of N × T + 1 for different

values of N and T . As seen in this figure, the actual size of the patrol portfolio is

significantly smaller than N × T + 1. It is always less than 50 percent of N × T + 1

and can be as low as 10 percent. Moreover, as T increases, the percentage decreases.

However, not much can be said about the effect of N on the patrol portfolio size as

a percentage of N × T + 1.
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Figure 5.3: Effect of N and T on the size of patrol paortfolio

In our next experiment, we demonstrate that one of the results obtained in [10]

is not valid for our more general model. Specifically, [10] prove that if all nodes

have the same fixed value, then attacks on penultimate nodes are dominated. A

penultimate node is defined as a non-leaf node adjacent to a leaf node. We show

that, if the node values are different, then attacks on penultimate nodes may not

be dominated. To this end, we use an instance of a game played on a line graph

with T = 5, N = 8, |S| = |A| = 1 and mi = 3,∀i ∈ N . Node values are assumed

to be fixed over the time horizon. Figure 5.4 shows the graph of this game with

corresponding node values represented above each node. As seen in this figure, node

2 is a penultimate node with value c; other nodes all have a value of 1 unit.

We solve this game for different values of c under two cases: unconstrained case
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where the attacker is free to attack any node, and constrained case where the attacker

cannot attack node 2. Figure 5.5 shows the results for various values of c. As seen in

this figure, the unconstrained attacker can cause more damage than the constrained

attacker. Moreover, as the value of c increases, the difference between constrained and

unconstrained case increases and the attacker has more incentive to attack node 2.

In other words, by being able to attack node 2, the attacker can increase the damage.

This means that attacking node 2 dominates not attacking node 2. Therefore, attacks

on penultimate nodes may not be dominated.
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In our final set of experiments, we study a real case of an urban rail network with

51 nodes used by [143]. In this case, the nodes in the network represent the stations

and the edges represent the connections among these stations. The rail network for

this case consists of two main lines that are connected with a free interchange point

between them. Node values represent the time-dependent occupancy levels in each
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station. We consider a 12-hour work-shift, starting from 5:00 AM and ending at 5:00

PM, for this case. For more details about this case, please refer to [143]. We used our

proposed solution approach to solve this problem for |A| = 3 and |S| = 10. For this

instance of the problem, the algorithm terminates after 88 minutes. Figure 5.6 shows

the obtained expected damage in the first 100 iterations of the solution algorithm

for this case. As seen in this figure, after around 90 iterations, the expected damage

value stabilizes and does not change drastically after this point. This observation is

in line with our previous experiments.
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Next, we study the distribution of patroller visits across different stations. Figure

5.7 shows the expected number of visit in a 1-month period for 5 most important

stations for the case with 10 patrollers and 3 attackers. As seen in this figure, for

most stations, the visits are almost equally distributed throughout the time horizon

with a noticeable valley in the beginning hours and two slight peaks: one starts

around 7:00 AM and ends around 9:00 AM, another one starts around 2:00 PM and

ends around 4:00 PM. Next, we study the distribution of expected damage across

most vulnerable stations. Figure 5.8 shows the distribution of expected damage over

the time horizon for 10 most vulnerable stations, for the case with 10 patrollers and 3
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attackers. As seen in this figure, for most stations, the expected damage concentrates

on two time intervals: one starts around 7:00 AM and ends around 9:00 AM, another

one starts around 1:00 PM and ends around 4:00 PM.

 

0

2

4

6

8

10

12

14

16

18

20

5:00

AM

6:00

AM

7:00

AM

8:00

AM

9:00

AM

10:00

AM

11:00

AM

12:00

PM

1:00

PM

2:00

PM

3:00

PM

4:00

PM

E
x
p

ec
te

d
 D

am
ag

e

Time of Day

Station 34 Station 47 Station 17 Station 22 Station 6

Station 38 Station 27 Station 44 Station 13 Station 10
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Next, we study the effect of the number of patrollers and attackers on the expected

damage. Figure 5.9 shows the expected damage in equilibrium for different values of

number of patrollers, |S|, and number of attackers, |A|. As seen in this figure, as the

number of patrollers increases, the expected damage decreases. There is also a visible

diminishing returns effect. Meaning that, as the number of patrollers increases, the



103

reduction in expected damage by adding one more patroller, decreases.
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Chapter 6

A Patrolling Model for Urban Rail

Networks

6.1 Introduction and Literature Review

Protecting critical infrastructures against terrorism is one of the top priorities in

homeland security [104]. Among these critical infrastructures, transportation sys-

tems, which serve 32 million passengers every day in the United States, are critical

for supporting the national security and economic well-being. For decades, public

transit systems around the world have been considered as a principal target for ter-

rorist acts [136]. Among these systems, airliners and airports are considered to be

hard targets due to the implementation of security checkpoints and increased secu-

rity measures. Over the years, the number of attempted hijackings and bombings has

declined gradually (although the public areas of airports still remain vulnerable). Un-

like airports, where security checkpoints screen passengers and luggage, mass transit

options like subways, passenger trains, and buses, are designed to be easily accessible

and are therefore harder to protect. Ground transportation systems, which often in-

clude enclosed spaces packed with people, could prove attractive targets for terrorists.
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Therefore, such open transit systems are considered to be soft targets for the terror-

ists. The attacks in Brussels and Istanbul along with many other incidents indicate

that terrorists tend to target such large crowds to cause mass human casualties in

addition to panic and chaos. These incidents along with many others highlight the

importance of protecting such infrastructures. The threat to these infrastructures

could be substantially reduced by analyzing the risk associated with attack to each

infrastructure component, mitigation planning and designing efficient response poli-

cies. This includes assigning security teams and designing efficient patrol schedules

to protect vulnerable areas.

Patrol scheduling involves the process of constructing optimized work timetables

for security staff in order to minimize the potential damage of possible attacks. De-

signing patrols to protect public transport systems and other soft targets poses unique

challenges that have not been properly addressed in the literature of patrol schedul-

ing so far. One of these challenges is the dynamic nature of crowd size inside these

systems. Because the adversary’s primary objective is to inflict human casualties, the

attacker’s payoff value for each station depends on the number of people residing in

the station. These numbers may change over time. Another challenge is to develop

schedules that observe the constraints regarding human resources, for example the

generated schedules may be required to include breaks for the security teams and

these breaks should not be consecutive. Moreover, efficient methods are needed to

design patrols for a general network. In this section, we address these challenges in a

patrolling game setting.

The most relevant paper to our study is conducted by Lau et al. [83]. They study

the problem of generating patrolling schedules for security teams to patrol a mass

rapid transit rail network of an urban area. Their objective is to deploy patrolling

units to the stations in different time units so that some scheduling and security
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related constraints are satisfied. They develop various mathematical models and

apply it to a real rail network. The shortcoming of their model is that, because it is not

a game based model, it is not designed to generate randomized schedules. To remedy

this, they propose to generate randomized solutions by varying some of the problem

parameters such as the start time and break time for each team. However, this may

lead to sub-optimal patrol schedules. Moreover, the adversary’s attack probabilities

are assumed to be fixed and known. Again this is not a realistic assumption because

terrorists can change the location and timing of their attacks in response to the patrol

strategy. Game theoretic models are designed to generate randomized strategies and

are more suited for such adversarial settings.

In this study, we develop a game theoretic model to schedule security teams in

order to protect an urban rail network against terrorist attacks. We develop column

generation based algorithms to efficiently solve the game under general network struc-

tures. The computational results show the efficiency of the proposed algorithms. The

rest of this section is organized as follows. In section 6.2, the problem under consider-

ation is described. The proposed column generation approach is explained in section

6.3. In section 6.4, a heuristic algorithm is presented to efficiently solve the pricing

sub-problem. Section 6.5 demonstrates the computational results.

6.2 Proposed Model

The patrolling problem considered in this study involves scheduling a set of security

teams S to protect a set of stations N on an urban rail network over a time horizon

of T time periods. The time periods can represent the working hours in a day. Figure

6.1 shows some examples of urban rail networks. Most of these networks consists of

multiple lines that are connected via interchange stations. The patrolling problem

is modelled as a simultaneous game between a defender and a single adversary. The
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Figure 6.1: Examples of urban rail networks in metropolitan cities such as Bangkok, Amsterdam,

Boston and Melbourne
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defender controls the security teams and chooses a schedule to minimize the damage

from the adversary’s attack, while the adversary chooses the station and time to

attack. A pure strategy for the adversary is represented by a pair (j, t) which indicates

the station j and time t to attack. A pure strategy for the defender is a schedule

that determines the complete course of actions for all teams throughout the time

horizon. These actions include patrolling different stations or taking a break. Each

team should have a prespecified number of breaks and these breaks should not be

consecutive or scheduled at the beginning or end of the time horizon. The payoffs

to the players are determined by the expected damage to the network. While the

defender wants to minimize the expected damage, the adversary wants to maximize

it. We denote the value of station j at time t by Cjt, this value can represent the

number of affected people if a successful attack is launched. If the adversary decides

to attack station j at time t and the station is not being patrolled by a security team,

the adversary wins a payoff of Cjt. On the other hand, if the station is being patrolled

by a security team at the time of attack, with some probability δj the attack will be

thwarted and with probability 1 − δj the attack will be successful. Therefore the

expected damage is (1 − δj)Cjt. We represent the set of all possible schedules by K

and index them by k with k = 1, 2, . . . , |K|.

The players play a zero-sum matrix game where the defender plays as the row

player; with the set of all possible schedules constituting the rows of the matrix.

The adversary is the column player, with the set of all possible attack pairs (j, t)

constituting the columns of the game matrix. The game can be solved by generating

all of the possible strategies for both players. However, for the games of large size,

the set of all possible strategies is exponentially large for the defender and generating

all of them becomes impractical. In the next section we develop an efficient column

generation approach to obtain the Nash equilibrium for this game.
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6.3 Column Generation Procedure

In this section, we develop a column generation algorithm to obtain the Nash equi-

librium point for the patrolling game described in section 6. We can write the linear

program (LP) to obtain the Nash equilibrium of this game as:

Minimize u

subject to u ≥
∑
k∈K

Cjt(1− wkjtdj)xk, ∀j, t,

∑
k∈K

xk = 1,

xk ≥ 0, ∀k ∈ K.

In this formulation xk is the probability of using schedule k ∈ K in the defender’s

mixed strategy. wkjt is a binary parameter that is equal to 1 if schedule k interrupts an

attack strategy (j, t), zero otherwise. In the terminology of column generation, this

LP is called the linear programming master problem (LPM). Note that each column in

the LPM corresponds to a schedule. In general the set K, may be exponentially large;

however, the number of non-zero variables (the basic variables) in the LPM is equal

to the number of constraints i.e. the total number of (j, t) pairs: T |J |. Therefore,

even though the number of possible schedules K is large, only a small number of

them is used in the Nash equilibrium. Column generation algorithm uses this idea to

start with a subset K′ ⊂ K of columns and generate columns as needed. The starting

subset K′ could be any set of feasible schedules. Using the restricted set of schedules
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K′ we obtain the following LP:

Minimize u (6.1)

subject to u ≥
∑
k∈K′

Cjt(1− wkjtδj)xk, ∀j, t, (6.2)

∑
k∈K′

xk = 1, (6.3)

xk ≥ 0, ∀k ∈ K′. (6.4)

This problem is called Restricted LPM (RLPM). The dual of RLPM is:

Maximize v

subject to v ≤
∑
j,t

Cjt(1− wkjtdj)qjt, ∀k ∈ K′,

∑
jt

qjt = 1,

qjt ≥ 0, ∀j, t.

where qjt is the dual variable associated with constraint (j, t) in the RLPM. Next

step is to find a column (schedule) in K \ K′ that could improve the current optimal

solution of RLPM. Given the optimal dual solution qjt of RLPM, the reduced cost

of column k ∈ K \ K′ is
∑

j,tCjt(1 − wkjtδj)qjt − v. Based on the concept of duality

in linear programming, optimality of RLPM is equivalent to feasibility of the dual.

Therefore, patrols that violate constraint v ≤
∑

j,tCjt(1 − wkjtδj)qjt can improve the

current optimal solution. Therefore we should look for a column (schedule) k such

that:
∑

j,tCjt(1 − wkjtδj)qjt − v < 0. Note that qjt are fixed, and the problem is to

find a schedule k with wkjt such that:
∑

j,tCjt(1− wkjtδj)qjt − v < 0. This problem is

called the pricing subproblem. The pricing subproblem involves finding a column, i.e.

a schedule, with a negative reduced cost. Subsection 6.3.1 develops a mathematical

program to solve the pricing subproblem. Subsection 6.3.2 presents the overall column

generation algorithm and a lower bound on the value of the game.
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6.3.1 Mathematical Formulation to Solve the Pricing Sub-

problem

In this section, we develop a mathematical formulation to solve the pricing sub-

problem. Here is a list of parameters and variables used to formulate the pricing

subproblem:

• ajj′ : Binary parameter, is equal to 1 if it is feasible to visit stations j and j′

consecutively; 0 otherwise.

• xsjt : Binary variable, 1 if team s patrols station j at time t; zero otherwise.

• ysjt : Binary variable, 1 if team s takes a break at station j at time t; zero

otherwise.

• wjt : Binary variable, 1 if a team patrols station j at time t, zero otherwise.
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Using this notation, the pricing subproblem is formulated as follows:

Maximize
∑
j∈N

∑
t∈T

Cjtwjtqjtδj (6.5)

subject to
∑
j

(xsjt + ysjt) = 1, ∀s, t, (6.6)

xsjt + ysjt + xsj′,t+1 + ysj′,t+1 ≤ ajj′ + 1, ∀s, j, j′, t, (6.7)∑
s

xsjt ≤Mwjt, ∀j, t, (6.8)

wjt ≤
∑
s

xsjt, ∀j, t, (6.9)

∑
j,t

ysjt = 2, ∀s, (6.10)

∑
j

ysjt +
∑
j

ysj,t+1 ≤ 1, ∀s, t, (6.11)

∑
j

ysjt = 0, ∀s ∈ S, t ∈ {1, T}, (6.12)

xslt, wjt ∈ {0, 1}. (6.13)

In this formulation equation (6.5) is the objective function which is minimizing the

reduced cost. Note that the reduced cost is equal to
∑

j,tCjt(1−wjtδj)qjt− v which,

after removing the fixed terms, is equivalent to maximizing
∑

j∈N
∑

t∈T Cj,twjtqjtδj.

Equation (6.6) ensures that each team at each time can be assigned to exactly one

job. This job can be patrolling a station or taking a break. Equation (6.7) ensures for

each team that the pairs of jobs undertaken consecutively are feasible, for example

the team cannot consecutively patrol two stations that a far apart from each other,

or they cannot take two consecutive breaks. Equation (6.8) ensures that if any team

is patrolling station j at time t then wjt is equal to 1. Equation (6.9) ensures that

if no team is patrolling station j at time t then wjt is equal to 0. Constraint (6.10)

ensures that the number of breaks for each team is exactly equal to 2. Constraint

(6.11) ensures that consecutive breaks do not happen. Constraint (6.12) ensures that
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the breaks are not scheduled at the beginning or the end of time horizon. Constraint

(6.13) is the integrality constraint for variables wjt and xijt.

6.3.2 Overall Column Generation Procedure and a Dual Bound

Algorithm 3 presents the pseudo-code for the overall column generation algorithm. As

seen in this figure, the column generation algorithm starts with a randomly generated

set of initial columns (schedules). The RLPM is solved using this set of initial columns

and the vector of dual values is obtained. Dual values are then used in the pricing

subproblem to generate a new column (schedule). If a new column with a negative

reduced cost is obtained, it is added to the RLPM and the process is repeated;

otherwise the procedure terminates. During column generation we have access to a

Algorithm 3: Pseudo-code for the overall column generation algorithm

1 Initialize set of schedules K′.

2 Solve RLPM. Let q = (qjt) and v be the obtained optimal dual values and

objective function value, respectively.

3 Solve the pricing subproblem using q as dual values and let w* = (w∗jt) be

the obtained optimal solution.

4 if
∑

jtCjt(1− w∗jtδj)qjt − v < 0 then

5 Add the new schedule w* to K′.

6 Go To Line 2.

7 else

8 Return v as the value of the game.

9 Terminate the procedure.

10 end
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dual bound on value of the game so that we can terminate the algorithm when a

desired solution quality is reached. The following lemma offers a lower bound on the

value of the game which can be computed in each iteration of the column generation

algorithm.

Lemma 6.1. (Dual bound) Let v(RLPM) and v(LPM) denote the optimum objective

function value of the current RLPM and LPM , respectively. Also let v(PP ) be the

minimum reduced cost obtained by solving the pricing subproblem to optimality. We

have: v(LPM) ≥ v(RLPM) + v(PP )

Proof. General form of this result can be found in [97]. Because we know that∑
k∈K′ xk = 1 for an optimal solution of the MP, one cannot improve v(RLPM) by

more than 1 times the smallest reduced cost v(PP ), hence v(LPM) ≥ v(RLPM) +

v(PP ).

Remark 6.1. Note that in order for the bound in lemma 6.1 to be valid, the pricing

subproblem should be solved to optimality. In general, the dual bound is not monotone

over the iterations, this is called the yo-yo effect.

6.4 A Heuristic Solution Approach for the Pricing

Subproblem

In this section, we develop a dynamic programming based greedy algorithm to obtain

an approximate solution to the pricing subproblem. This heuristic algorithm can be

used inside the column generation procedure to obtain an approximate solution for

the patrolling game. To solve the pricing subproblem we use a greedy algorithm to

generate schedules. We define a patrol as a detailed course of action for one team that

determines what to do at each time period t. Note that, a patrol is different from a
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schedule. While a schedule determines the complete course of action for all teams, a

patrol does so for only one team. The definitions match if we have only one security

team. For each security team the greedy algorithm assigns a patrol that maximizes∑
j∈N

∑
t∈T Cjtqjtδja

p
jt(1 − wjt), where wjt is a binary variable equal to 1 if station

j at time t is already covered. To find such patrol we use a dynamic programming

algorithm. In the following subsections, the details of the dynamic programming

approach, the overall greedy algorithm, as well as some results on the quality of the

proposed algorithm are presented.

6.4.1 Dynamic Programming Procedure to Find a Greedy

Patrol

In this section, we develop a dynamic programming (DP) procedure to solve the

pricing subproblem to find a greedy patrol. The aim is to find a patrol p with apjt

such that
∑

j∈N
∑

t∈T Cjtqjtδja
p
jt(1− wjt) is maximized.

DP is a method for solving complex problems by breaking them down into smaller

problems [81]. In order to solve a problem using DP, the problem must be divided

into smaller problems called stages. The stages are often solved backward which is

the case in the proposed DP procedure. Each stage has a number of states that are

generally the information needed to solve the stage. The decision at a stage updates

the state for the current stage to the state for the next stage. Given the current

state, the optimal decision for the remaining stages is independent of the decisions

made in the previous stages. This is the fundamental principle of optimality in DP.

It means that the problem can be broken down into smaller problems which can be

solved independently. Finally a recursive relationship between the values of decision

at the current stage and the optimum decisions at previous stages must be identified.

In other words the optimum decision uses the previously found optimum decision
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values. Elements of the proposed dynamic programming procedure are as follows:

• t = 1, 2, . . . , T : Stage variable, each time shift is considered a stage.

• x(t) = [b(t), l(t)] : State variable at stage t, consists of two components: number

of breaks until time shift t : b(t) and location at time t : l(t).

• u(t) : Decision at time t, take a break at an adjacent station j or patrol an

adjacent station j.

• r(x, t, u) : Instant reward in state x at stage t if action u is taken. If the

action is to patrol an adjacent station j then the obtained instant reward is

r(x, t, u) = Cjtqjtδj(1 − wjt). If the action is to take a break at an adjacent

station j then the reward is r(x, t, u) = 0.

• R(x, t) : Optimum accumulated reward with state x at stage t.

• u∗(x, t) : Optimum action with state x at stage t.

• F (x, u) : Transition function, if action u is taken in state x, then the state in

the next stage will be F (x, u). If the action is to patrol an adjacent station j

then the next state is x(t + 1) = [b(t + 1), l(t + 1)] = [b(t), j]. If the action

is to take a break at an adjacent station j then the next state is x(t + 1) =

[b(t+ 1), l(t+ 1)] = [b(t) + 1, j].

Now using these parameters, a recursive equation can be written for the optimum

accumulated reward functions:

R(x, t) = max
u(x)
{r (x, t, u) +R (F (x, u), t+ 1)} . (6.14)

This equation describes an iterative relation for determining R(x, t), for all feasible

x and t, from the knowledge of R(x, t + 1) for all feasible x. R(x, T ) can be easily

solved by using R(x, T ) = maxu(x) {r (x, T, u)} then R(x, T − 1) can be determined

using equation (6.14). Continuing this backward procedure R(x, 1) is determined.
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6.4.2 Overall Heuristic Procedure

Algorithm 4 presents the pseudo code for the overall greedy approach. As seen in

this pseudo code, the algorithm starts with initializing wjt to indicate that no patrols

have been assigned to any security team. Then the DP is used to obtain a patrol

with maximum
∑

j∈N
∑

t∈T Cjtqjtδja
p
jt(1 − wjt). Next we assign the obtained patrol

to the security team and update wjt so that is reflects the covered (j, t) pairs. This

process is repeated for all available security teams. The following lemma shows that

the greedy algorithm achieves an approximation ratio of 1− (1− 1
|S|)
|S|.

Algorithm 4: Pseudo-code for the greedy algorithm

1 for j ← 1 to |N | do

2 for t← 1 to |T | do

3 wjt ← 0

4 end

5 end

6 for s← 1 to |S| do

7 Obtain a new patrol using DP and let a* = (a∗jt) be the obtained optimal

patrol.

8 Assign patrol a* to team S.

9 foreach (j, t) with a∗jt = 1 do

10 wjt ← 1

11 end

12 end

Lemma 6.2. For fixed values of qjt Suppose w∗jt and wGjt are the optimal and greedy

values of wjt. Then we have:
∑

j∈N
∑

t∈T Cjtw
G
jtqjtδj ≥ (1−(1− 1

|S|)
|S|)
∑

j∈N
∑

t∈T Cjtw
∗
jtqjtδj >

(1− 1
e
)
∑

j∈N
∑

t∈T Cjtw
∗
jtqjtδj.
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Proof. The pricing subproblem is in fact a weighted maximum coverage problem with

Cjtqjtδj acting as weights and |S| as the maximum number of sets to be selected. The

result comes from the fact that for the weighted maximum coverage problem the

greedy algorithm achieves an approximation ratio of 1− (1− 1
|S|)
|S| [106].

The next lemma shows the impact of using the greedy algorithm in the column

generation procedure instead of solving the subproblem to optimality.

Lemma 6.3. Let v(RLPM) and v(LPM) denote the optimum objective function

value of the current RLPM and LPM , respectively. Also let v(PPG) be the reduced

cost obtained by solving the pricing subproblem using the greedy algorithm. We have:

v(LPM) ≥ v(RLPM) + v(PPG)

1−(1− 1
|S| )
|S| > v(RLPM) + v(PPG)

1− 1
e

.

Proof. Let v(PP ) be the optimal solution of pricing subproblem. From lemma 6.2

we have v(PPG) ≤ (1− (1− 1
|S|)
|S|)v(PP ) < (1− 1

e
)v(PP ). Thus:

v(PP ) ≥ v(PPG)

1− (1− 1
|S|)
|S| >

v(PPG)

1− 1
e

. (6.15)

Moreover from lemma 6.1 we have:

v(LPM) ≥ v(RLPM) + v(PP ). (6.16)

The result follows from inequalities (6.15) and (6.16).

Remark 6.2. Note that when |S| = 1, when there is only one security team, the

bound in lemma 6.2 is tight and the greedy algorithm obtains the optimal solution.

Remark 6.3. Even-though we cannot prove a tighter bound for the greedy algorithm,

the numerical experiments show that the solutions obtained using the greedy algorithm

match the optimal solution in every instance. Therefore we conjecture that the greedy

algorithm finds the optimal solutions for the pricing subproblem.
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6.5 Numerical Experiments

In this section, we perform computational experiments to investigate efficiency of the

proposed algorithms and gain insight on some properties of the game. The algorithms

are coded in C++ and CPLEX 12.6 solver has been used to solve the LPs and the

pricing subproblems. The computational experiments are performed on a computer

with 2.4 GH processor and 4 GB of RAM.

In our first experiment, we compare the performances of the proposed exact col-

umn generation approach (ECG) with the greedy column generation (GCG). Our

base set of test instances consists of randomly generated instances with underlying

general graphs. To generate general graphs, the expected edge density (measured as

|E|
|N |(|N |−1)

, where we do not consider self-loop edges in calculating edge density) of 60%

is used for the graph, and the number of stations, |N |, ranges from 20 to 40. In gen-

erating general graphs, we first started with a random tree and added random edges

until the edge density reaches 60%. We generated five instances for each problem

size, with different values of T ∈ {10, 11, . . . , 15} and |S| ∈ {1, 2, . . . , 5}.

Our results show that the GCG always finds the same expected damage value

as the ECG. This leads us to conjecture that the GCG always finds the optimal

solution. We then compare the algorithms in terms of their run times. Tables 6.1

and 6.2 show the obtained run times in seconds. In these tables for each instance the

smaller run time is highlighted in bold. As seen in these tables GCG performs better

than ECG for all instances of the problem. Moreover, for both algorithms, the run

time generally increases as the number of stations, i.e. |N |, and the number of time

periods, i.e. |T |, increases. Figure 6.2 shows the effect of increasing the number of

security teams on the expected damage for different number of stations. As seen in

this figure, the expected damage decreases as the number of security teams increase.

However, the amount of decrease in expected damage also decreases as the number
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of security teams increases. This diminishing returns effect is visible for all values of

|N |.

Table 6.1: Comparison of exact column generation and greedy column generation run times (se-

conds)

T=10 T=11 T=12

N ECG GCG ECG GCG ECG GCG

20 195.01 64.18 228.04 62.37 323.93 119.62

25 354.48 115.77 471.22 153.19 519.32 208.09

30 477.88 146.73 554.75 229.61 776.09 236.04

35 891.87 276.07 1015.90 422.39 1287.66 503.86

40 1147.89 336.41 1855.11 719.51 2830.80 663.60

Table 6.2: Comparison of exact column generation and greedy column generation run times (se-

conds)

T=13 T=14 T=15

N ECG GCG ECG GCG ECG GCG

20 382.34 146.01 385.26 199.01 472.00 201.62

25 707.37 383.70 725.17 272.52 987.22 430.63

30 1272.09 619.50 1595.14 829.14 1945.62 1187.35

35 1384.21 578.76 2044.15 932.16 2554.24 1352.95

40 2746.47 1297.65 2897.79 1432.55 3736.70 2273.71

Figure 6.3 shows convergence of the lower and upper bounds of GCG over itera-

tions for an instance of the problem with |S| = 1, T = 10 and different values of |N |.

In each iteration the lower bound is computed using lemma 6.3 and the upper bound
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Figure 6.2: The effect of number of security teams on Expected Damage

is taken as the current objective function value. As seen in this figure, the lower

bound is not monotone over the iterations and the yo-yo effect is visible. Moreover,

for most cases, the upper bound value stabilizes way before the algorithm terminates.

This means that after the upper bound values stabilize, we can terminate the column

generation algorithm without undermining the solution quality drastically.
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Figure 6.3: Convergence of GCG over iterations

Next, we analyze the effect of detection probabilities on the expected damage, here

we assume that the detection probabilities equal to each other. Figure 6.4 shows the

effect of detection probability on the expected damage for different values of number

of security teams |S|. As seen in this figure, the expected damage is smaller when

there are more security teams. Moreover, as the detection probability increases, the
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expected damage, generally, decreases and this decrease, roughly speaking, behaves

linearly for higher values of detection probability. Next, we consider a real case
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Figure 6.4: The effect of detection probability on Expected Damage

of an urban rail network with 51 stations. Figure 6.5 shows the network graph of

this case. As seen in this figure, there are two main lines that connect different

parts of the city together. There is one free interchange between stations 41 and 16.

Occupancy levels in each station are collected based on ridership totals which are

in turn based on turnstile entry and exclude free interchange ridership. A 15 hour

planning time horizon, starting from 5:00AM and ending at 8:00pm, is considered

for this problem (i.e. T = 15 is considered). Based on this information, we run the

GCG algorithm to obtain the best patrolling strategy for |S| ∈ {1, 2, . . . , 10}. We

first study the effect of the defender’s deviation from the Nash equilibrium on the

expected damage. Specifically we consider the case that the defender, in deriving

her strategy, mistakenly, thinks that the attack probabilities are the same and are

uniformly distributed over stations. She then uses a probabilistic approach (PA) to

obtain a single schedule. We compare the expected damage in this case with the

expected damage in the Nash equilibrium (NE). Figure 6.6 shows the results of this

comparison. As seen in this figure, Nash strategy results in smaller expected damage

values for all instances. Moreover, as the number of teams increases, the expected
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Figure 6.5: Case network

damage decreases for both NE and PA. The diminishing returns phenomenon is visible

for NE, however, this effect does not exists for PA. We now study the distribution of
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Figure 6.6: The effect of number of security teams on Expected Damage

the expected number of visits in important stations. Figure 6.7 shows the expected

number of visits over a 30 day period for 5 most visited stations based on time of

the day. As seen in this figure, majority of the stations have two peak visit times:

one starts around 7:00 AM and end around 10:00 AM, the other one starts around

2:00 PM and end around 5:00 PM. Some stations also have peak visit times at the
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start and end of times horizon. Next, we study the distribution of the expected

Figure 6.7: Expected number of visits for five most visited stations

damage among stations based on time of the day. Figure 6.8 shows the distribution

of expected damage for 10 stations with highest expected damage values. As seen in

this figure, for majority of the stations there are two peak times for expected damage:

one starts around 7:00 AM and end around 10:00 AM, the other one starts around

1:00 PM and end around 5:00 PM.
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Figure 6.8: Distribution of expected damage for 10 stations with highest expected damage values
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Chapter 7

Weighted Search Games with

Multiple Hidden Objects, Multiple

Search Teams and Dispersed

Hiding Locations

7.1 Introduction and Literature Review

The search games were first introduced by Rufus Isaacs in 1965 [66]. His “simple

search game” is defined on an arbitrary region R. The Hider picks a point in R and

the Searcher selects a unit speed trajectory in R to find the Hider. Payoff to the

players is the search time, which is the time required for the Searcher’s trajectory to

meet the Hider for the first time. Gal [30] provides a more precise formulation of the

search game defined on a network Q consisting of a finite set of connected arcs and a

predetermined starting point O. The Hider picks a point in Q to hide and the Searcher

selects a unit speed path starting from O. Since then, many variations of the network

search games have been introduced [2, 3, 4, 6, 7, 8, 9, 15, 26, 31, 34, 147]. For example,
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Dagan and Gal [26] consider an arbitrary starting point for the Searcher, Alpern [3]

studies a find-and-fetch search model. Other examples include search problems on

networks with asymmetric travel times [2, 8], an expanding search paradigm [7], search

games on a lattice [147], search games with searching costs at nodes [15], bi-modal

search games to find a small object [9], and search games with combinatorial search

paths [4]. For a more recent survey of search games see [32, 65]. For a background in

search games see [6, 8, 31, 34].

In this chapter, we study a game played between a Hider and a Searcher. The

Hider picks one or more locations on a network to hide some objects and the Searcher

follows a path to find the hidden objects such that an objective function is optimized.

The objective function is usually assumed to be the search time. While the Hider

aims at maximizing the search time, the Searcher wants to minimize it. Therefore,

this problem can be formulated as a zero-sum game. Majority of the papers in the

literature of search games assume that the players do not have preference over different

locations on the network and they only care about the search time. However, there

are some cases in which the players differentiate the hiding places from each other.

In these cases, the players may want to minimize/maximize a weighted search time

with node weights representing the rate of damage. For example, in certain attacks

(biological or chemical), casualty rate depends on factors such as population density,

environment conditions etc. Therefore, different locations may have different casualty

rates and the overall damage will be proportional to time and casualty rate. Another

example is the problem of detecting an eavesdropping agent over communication

channels [37]. Different channels may have different transmission capacities and the

rate of damage to the network will be proportional to the detection time and the

capacity of the channel. The only study that considers node weights in the search

games is conducted by Zoroa et al. [148]. However, they only consider such games on
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lattices, not general graphs.

The problem of searching for a hidden object in discrete time and discrete space

has been well studied in the literature. Blackwell studied the problem of finding a

hidden object in a set of boxes [99]. Given a probability distribution over which box

contains the hidden object and a search cost for each box, the objective is to minimize

the expected cost of finding the object. Game-theoretic variants of this game have

also been studied [20, 41, 95, 124, 125]. Less attention has been given to the search

games with multiple hidden objects. Assaf and Zamir [11] and Sharlin [133] study

a search game with several hidden objects with the objective of finding one of these

objects with minimum expected cost. Lidbetter [91] investigates a game in which

all of the hidden objects have to be found at minimum expected cost. Alpern et

al. [5] introduce caching games in which a Searcher with a limited resource aims at

maximizing the probability of finding a certain number of hidden objects. Lidbetter

and Lin [92] introduce multi-look search problems in which the Searcher can find at

most one hidden object each time a box is opened. In other words, to find all of the

hidden objects in a box, the Searcher may have to open it multiple times.

We propose a new discrete search game in which different hiding locations have

different weights and the payoff to the players is proportional to the search time and

the location weight. In this setting, the location weights represent the rate of damage

at that location. The players want to minimize/maximize the overall damage to the

network, which is represented as a weighted search time. The game is played between

a Searcher who controls a set of homogeneous search teams and a Hider who picks

hiding locations to hide the objects. The hiding locations are dispersed on a network

and the time it takes to visit a location depends on the previously visited location.

We first consider a special case of this game and characterize the Nash equilibrium.

Afterwards, we develop a column and row generation procedure to solve the general
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form of the game. The rest of this chapter is organized as follows. In section 7.2, the

proposed weighted discrete search game is presented and some properties of this game

are proven. In section 7.3, a solution approach based on column and row generation

is developed to solve this game in its general form. Section 7.4 presents numerical

experiments to investigate the efficiency of the proposed algorithms and gain insight

on some properties of the game.

7.2 Proposed Model

A Searcher and a Hider play a zero-sum weighted search game. The Searcher controls

a set of S search teams and the Hider controls a set of H objects to hide. The game

is played on a complete graph Q = (N , E), where N = {0, 1, 2, . . . , N} is the set

of nodes in the graph and E = {(i, j) : i, j ∈ N , i 6= j} is the set of edges. Using

Gal’s [30] approach, let node 0 represent the origin, which is a predetermined location

where all search teams are initially located. Let Nh = {1, 2, . . . , N} denote the set of

N potential hiding locations. These locations are dispersed throughout a large area,

and each location may differ in rate of damage, and difficulty to search. The Hider

hides the objects in these potential locations. The Searcher uses a set of homogeneous

search teams to find the hidden objects. It takes a search team vi time units to inspect

location i ∈ Nh and, for each edge (i, j) ∈ E , the time required to travel from location

i to location j is denoted by dij. If a location is inspected, the search team will find

the hidden object, if any, i.e., false negative response is not possible. Each location

i has a weight denoted by Ci. This weight represents the rate of damage to the

network, if the Hider decides to hide an object at location i. Throughout the chapter,

we assume, without loss of generality, that the locations are sorted in the order of

decreasing weights, i.e., C1 > C2 > · · · > CN .

The objective of the Hider is to maximize the total damage to the network, while
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the Searcher wants to minimize the damage. A pure strategy for the Hider (also

called a pure hiding strategy throughout the chapter) is to select a hiding location to

hide each object. We assume that, hiding more than one object in a location does not

increase the rate of damage in that location. Hence, it is not beneficial for the Hider

to hide multiple objects in a single location. A pure strategy for the Searcher (also

called a pure search strategy throughout the chapter) is to select a joint schedule for

the search teams.

The players play a zero-sum matrix game with the Searcher playing as the row

player, and the set of all possible pure search strategies constituting the rows of the

matrix. The Hider plays as the column player, with the set of all possible pure hiding

strategies constituting the columns of the game matrix. We use K to denote the set

of all possible pure search strategies and k to index them. Let xk be the probability of

using search strategy k in the Searcher’s mixed strategy. Hence x = (x1, x2, . . . , x|K|)

represents a mixed strategy of the Searcher, where |K| denotes the cardinality of

set K, xk ≥ 0, for all k ∈ K and
∑|K|

k=1 xk = 1. Similarly, we use L to denote

the set of all possible pure hiding strategies and index them by l. Let yl denote the

probability of using hiding strategy l. Hence, a mixed strategy of the Hider is denoted

as y = (y1, y2, . . . , y|L|), yl ≥ 0, ∀l ∈ L, and
∑|L|

l=1 yl = 1. We use parameter tki to

denote the time at which joint schedule k completes inspection in location i, and

rki to denote the order of visiting location i while using schedule k. We also define

binary parameter zli, which is equal to 1 if hiding strategy l involves hiding an object

in location i, 0 otherwise. If the Searcher and the Hider use mixed strategies x and

y, respectively, then the expected total damage is v(x,y) =
∑

k∈K
∑

l∈Lwit
k
i z

l
ixkyl.

The Nash equilibrium (saddle point) of the game is (x∗,y∗) at which the following

inequalities hold:

v(x∗,y) ≤ v(x∗,y∗) ≤ v(x,y∗).
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The following theorem describes the saddle-point equilibrium for a special case of

the game.

Theorem 7.1. If dij = d, vi = v,∀(i, j) ∈ E , i ∈ Nh and H = S = 1, then the

equilibrium is characterized by

qi =


1
Ci∑m
j=1

1
Cj

, i = 1, 2, . . . ,m,

0, i = m+ 1, . . . , N,

(7.1)

E [search order of the ith node] =
∑
k∈K

rki xk =
m(m+ 1)

2

1
Ci∑m
j=1

1
Cj

, i = 1, 2, . . . , N, (7.2)

where qi is the probability of hiding the object at node i for the Hider, and m is the

index s that leads to the maximum value of:
s(s+1)

2∑s
j=1

1
Cj

.

Value of the game is: V ∗ = (d+ v)
m(m+1)

2∑m
j=1

1
Cj

.

Note that in this case, one can write tki simply as tki = rki (d+ v).

Proof. Based on the definition of Nash Equilibrium, (x,q) is an equilibrium if and

only if for some u:

(d+ v)Ci
∑
k∈K

xkr
k
i


= u, qi > 0,

≤ u, qi = 0,

⇒ Ci
∑
k∈K

xkr
k
i


= u

d+v
≡ ū, qi > 0,

≤ ū, qi = 0.

(7.3)

Similarly,

N∑
i=1

Ciqir
k
i


= ū, xk > 0,

≥ ū, xk = 0.

(7.4)

We define A as the set of active nodes in which the Hider hides the object with

a positive probability, i.e., A = {i|qi > 0}. Clearly, if i, j ∈ A with Ci > Cj, the

expected search orders will satisfy

E [search order of the ith node] =
∑
k∈K

xkr
k
i =

ū

Ci
<

ū

Cj
= E [search order of the jth node] .

(7.5)
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On the other hand, given the set of active nodes A, if Ciqi = c, a constant for all

i ∈ A, i.e., qi = c/Ci =
1
Ci∑

j∈A
1
Cj

since
∑

i∈A qi = 1, then by [80]

∑
i∈A

Ciqir
k
i =

1∑
j∈A

1
Cj

∑
i∈A

rki ≥
|A|(|A|+ 1)

2

1∑
j∈A

1
Cj

. (7.6)

Moreover, the minimum of the left hand side of (7.6) is achieved only in the case

that the order of visiting all nodes in A, follows the natural numbers up to |A|, that

is
∑

i∈A r
k
i =

∑|A|
r=1 r = |A|(|A|+1)

2
. Thus, the searcher should visit during the first

|A| instances, each one of the locations in A, regardless of the exact order, that is

rki ∈ {1, . . . , |A|} for all i ∈ A, and k ∈ B = {l : xl > 0}.

Following the above discussion, given the set of active nodes A, we can show that the

following is a solution to equations (7.3) and (7.4):

qi =


1
Ci∑

j∈A
1
Cj

, i ∈ A,

0, i /∈ A.

(7.7)

E [search order of the ith node] =
∑
k∈K

xkr
k
i


= |A|(|A|+1)

2

1
Ci∑

j∈A
1
Cj

, i ∈ A,

≤ |A|(|A|+1)
2

1
Ci∑

j∈A
1
Cj

, i /∈ A.
(7.8)

Moreover, we can show that, based on this solution, the expected total damage is

ETD(A) = (d + v)
|A|(|A|+1)

2∑
j∈A

1
Cj

. Note that, using schedules that visit nodes in set A

before other nodes, the quantity ū can be obtained from (7.4), which can be used to

derive (7.8) from (7.3).

Next step is to characterize the active set A. We show that, for any active set A

with i ∈ A, j /∈ A,Cj > Ci, the Hider can replace node i with node j to create an

active set A′ that leads to a higher ETD. This is because ETD(A) = (d+ v)
|A|(|A|+1)

2∑
j∈A

1
Cj

is an increasing function of Ci, i ∈ A. Therefore, replacing Ci with Cj will lead to a

higher ETD. Thus, knowing that Ci values are sorted, the active set with the highest
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ETD is of the form A = {1, 2, . . . , l} and the cut-off index l = m is, by assumption,

the cut-off index that leads to the highest ETD. Therefore, the Hider cannot increase

the ETD by changing the active set from A = {1, 2, . . . ,m} to any other set.

Next, we show that there exists a search strategy characterized by equation (7.2).

The space of possible vectors for the expected visiting orders is the convex hull of all

permutations of the set {1, 2, . . . , N}. This space is called permutahedron and is not

full-dimensional [80].

Conv(R) =

r̄ ∈ RN ,

N∑
i=1

r̄i =
N(N + 1)

2
,
∑
i∈Q

r̄i ≥
(
|Q|+ 1

2

)
Q ⊆ {1, 2, . . . , N}

 , (7.9)

where r̄i is the expected visiting order of node i, i.e., r̄i =
∑

k∈K r
k
i xk. To show that

there exists a strategy for the Searcher, we need to prove that the expected visiting

orders, from equation (7.2), are in the permutahedron. Obviously,
∑N

i=1 r̄i = N(N+1)
2

is true. We proceed to show the other inequalities are also valid. We show that the

inequality is valid for |Q| = l with 1 ≤ l < N . For each l, it is enough to show the

inequality for Q = {1, 2, . . . , l} (for other sets of size l, the inequality will follow due

to ordered node weights). We need to show that:

l∑
i=1

m(m+ 1)

2

1
Ci∑m
j=1

1
Cl

≥
(
l + 1

2

)
=

(l + 1)l

2
.

In other words, we need to show that:

m(m+1)
2∑m

j=1
1
Cl

≥
l(l+1)

2∑l
i=1

1
Cl

.

But, this is true based on the assumption that index m is chosen so that this inequality

holds. Therefore, there exists a search strategy that satisfies the equation (7.2). This

completes the proof.

Remark 7.1. Using the expected search order values obtained in equation (7.2), we

can compute a complete search strategy for the Searcher in polynomial running time

of O(N2). This can be done using the decomposition algorithm provided in [141].
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Remark 7.2. Theorem 7.1 indicates that, when dij = d, vi = v, ∀(i, j) ∈ E , i ∈ Nh

and H = S = 1, the Nash equilibrium is of threshold type. Meaning that, there exists

a cut-off index, m, such that the Hider will only consider the first m locations and

ignore the remaining ones. This theorem can be used to obtain an upper bound on the

value of the game in general by taking d = maxi,j dij and v = maxi vi. Similarly, a

lower bound can be computed by taking d = mini,j dij and v = mini vi.

Remark 7.3. The Nash equilibrium characterized in Theorem 7.1 prescribes lower

hiding probabilities for locations with higher weights. The reason for this counter-

intuitive outcome is that, the expected visiting order of the locations with higher

weights is smaller in equilibrium. Therefore, even though the rate of damage is higher

for locations with higher weights, the expected duration of damage is smaller for these

locations. This observation is in line with the results obtained in the area of security

games [16, 142].

Lemma 7.1. Given an upper bound V on the value of the game, any search strategy

k ∈ K that completes inspection at any node i at time tki with tki >
V
Ci

does not belong

to a Nash equilibrium.

Proof. We show that the Hider can improve his payoff by hiding an object in location

i. The expected damage from hiding an object in location i is: Cit
k
i > V ≥ V ∗.

Therefore, using search strategy k leads to an expected damage value that is higher

than the expected damage in equilibrium. Therefore, strategy k does not belong to

a Nash equilibrium.

The game can be solved by generating all possible pure strategies for both players.

However, this may not be efficient for games of larger size. In the next section, we

develop an efficient algorithm to obtain a Nash equilibrium for this game.
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7.3 Solution Approach for General Weighted Search

Games

In this section, we develop a solution algorithm based on column and row generation

[105, 122] to find a Nash equilibrium for the weighted search game introduced in the

previous section. The proposed solution method can also be described as a modifica-

tion of the algorithm proposed in [42, 43]. Because this is a zero-sum game, we can

write the following linear program (LP) to obtain a Nash equilibrium for this game:

LPM Minimize u

subject to u ≥
∑
k∈K

xk
∑
i∈Nh

Cit
k
i z

l
i, ∀l ∈ L,

∑
k∈K

xk = 1,

xk ≥ 0, ∀k ∈ K.

This LP is called the linear programming master problem (LPM). In this formu-

lation, K is the set of all possible joint schedules, indexed by k. xk is a decision

variable representing the probability of using joint schedule k ∈ K in the Searcher’s

mixed strategy. In general, the sets K and L may be exponentially large; however,

the number of strategies used is expected to be much smaller. Our proposed column

and row generation algorithm uses this idea to start with small subsets K′ ⊂ K and

L′ ⊂ L of search and hiding strategies and generates them as needed. The starting

subsets K′ and L′ could be any set of feasible strategies. Using the restricted set of
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strategies K′, we obtain the following LP:

LPM-RS Minimize u (7.10)

subject to u ≥
∑
k∈K′

xk
∑
i∈Nh

Cit
k
i z

l
i, ∀l ∈ L′, (7.11)

∑
k∈K′

xk = 1, (7.12)

xk ≥ 0, ∀k ∈ K′. (7.13)

This problem is called LPM with Restricted Strategies (LPM-RS). The dual of LPM-

RS is

Dual LPM-RS Maximize v (7.14)

subject to v ≤
∑
l∈Λ′

∑
i∈Nh

Cit
k
i z

l
iyl, ∀k ∈ K′, (7.15)

∑
l∈L′

yl = 1, (7.16)

yl ≥ 0, ∀l ∈ L′. (7.17)

In this formulation, yl is the dual variable corresponding to constraint (7.11) in LPM-

RS. This variable represents the probability of using hiding strategy l in the Hider’s

mixed strategy. Moreover, v is the dual variable corresponding to constraint (7.12)

which represents the minimum expected total damage. Next step is to find new

strategies in K\K′ and L\L′ that could improve the current optimal solution for the

corresponding players. Given the optimal dual solution yl of LPM-RS, the reduced

cost of joint schedule k ∈ K \ K′ is given by
∑

l∈L′
∑

i∈Nh Cit
k
i z

l
iyl − v. Based on

the concept of duality in linear programming, optimality of LPM-RS is equivalent

to the feasibility of its dual. Therefore, joint schedules that violate the constraint

v ≤
∑

l∈L′
∑

i∈Nh Cit
k
i z

l
iyl, can improve the current optimal solution. Consequently,

we need to look for a joint schedule k such that:
∑

l∈L′
∑

i∈Nh Cit
k
i z

l
iyl − v < 0. Note

that yl values are fixed, and the problem is to find a joint schedule k with tki such that:
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∑
l∈L′

∑
i∈Nh Cit

k
i z

l
iyl − v < 0. Therefore, we are looking for a new joint schedule k

that leads to a smaller expected total damage,
∑

l∈L′
∑

i∈Nh Cit
k
i z

l
iyl, than the current

expected total damage, v. To obtain an improving strategy for the Hider, we consider

the LPM-RS. Given the optimal solution xk of LPM-RS, the current expected total

damage is u. Therefore, the Hider should look for a new hiding strategy l with zli

such that the expected total damage, i.e.,
∑

k∈K
∑

i∈Nh Cit
k
i z

l
ixk, is greater than the

current expected total damage, i.e., u.

In the following subsections, we develop mathematical programs and solution

algorithms for the Searcher’s and Hider’s subproblems. We also present the overall

column and row generation algorithm and provide bounds on the value of the game.

7.3.1 The Searcher’s Subproblem

In this section, a flow type formulation is developed for the Searcher’s subproblem.

Here is a list of parameters and variables used to formulate the Searcher’s subproblem:

• xij: Binary variable, for (i, j) ∈ E , it is equal to 1 if a search team visits location

j immediately after visiting location i.

• ti : Non-negative variable, time at which a search team completes inspection at

location i.

• N+(i): Set of immediate successors of node i in graph G, i.e., N+(i) = {j ∈

N|(i, j) ∈ E}.

• N−(i): Set of immediate predecessors of node i in graph G, i.e., N−(i) = {j ∈

N|(j, i) ∈ E}.

• M : A big number.
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Using this notation, the Searcher’s subproblem can be formulated as follows:

Minimize
∑
i∈Nh

Ci
∑
l∈L′

zliylti (7.18)

subject to
∑

j∈N+(i)

xij = 1 ∀i ∈ Nh, (7.19)

∑
j∈N+(i)

xij −
∑

j∈N−(i)

xji = 0, ∀i ∈ Nh, (7.20)

∑
i∈N+(0)

x0i = S, (7.21)

ti + vj + dij − tj ≤M(1− xij), ∀(i, j) ∈ E , j 6= 0, (7.22)

xij ∈ {0, 1}, ∀(i, j) ∈ E , (7.23)

ti ≥ 0, ∀i ∈ N . (7.24)

In this formulation, the objective function (7.18) is minimizing the reduced cost.

Constraint (7.19) ensures that each location is visited exactly once. Constraint (7.20)

is the flow conservation constraint for the search teams. Constraint (7.21) ensures

that each search team exits the origin exactly once. Constraint (7.22) computes the

visit times for each location. This constraint also eliminates the infeasible subtours.

The Searcher’s subproblem is a generalization of the multiple travelling repairman

problem [98] with weighted delays. Because the travelling repairman problem is NP-

hard, the Searcher’s subproblem is also NP-hard. This indicates that the Searcher’s

subproblems are hard to solve. Therefore, in the next subsections, we develop efficient

algorithms to solve the Searcher’s subproblems.

Remark 7.4. Even though the Searcher’s subproblem is NP-hard in general, if S = 1

and dij = dj, for all (i, j) ∈ E, then this problem can be solved in polynomial time.

Specifically, in this case, the Searcher’s subproblem is equivalent to a single machine

scheduling problem to minimize the weighted sum of completion times. This problem

can be solved by using Smith’s rule [135], that is visiting nodes by non-increasing
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order of
Ci
∑
l∈L′ z

l
iyl

di+vi
.

A Simulated Annealing Search Strategy Generator for the Searcher’s Sub-

problem

In this subsection, we develop a simulated annealing (SA) algorithm to rapidly ob-

tain a high quality solution to the Searcher’s subproblem. SA is a probabilistic search

method to approximate the global optimal solution in a large search space [76]. Our

proposed SA algorithm starts with an initial solution obtained from the strategies

that are used with a positive probability in the current LPM-RS. We then randomly

generate a neighborhood solution by applying one of the following operations: (1) ran-

domly selecting two hiding locations and swapping their places in the search schedule.

(2) randomly selecting a hiding location and randomly assigning it to another search

team. If the newly generated solution leads to a better objective function than the

current solution, then it replaces the current solution. The new solution may still

replace the current solution even if it leads to a worse objective function value. This

happens with probability e−∆/T , where ∆ is the amount of deterioration in the objec-

tive function if the new solution replaces the current solution and T is a parameter

called temperature. The algorithm starts with a relatively high temperature and re-

duces the temperature as the algorithm proceeds. Therefore, in the initial iterations,

the algorithm tends to explore more areas in the solution space and in the final phases,

it tries to exploit the current area.

SA is an efficient algorithm in providing a fast high quality solution. However,

it cannot prove optimality of the solution. Therefore, when SA fails to result in an

improving solution, we will need an exact solution method to prove optimality. To

this end, we develop a branch and price algorithm to solve the Searcher’s subproblem

to optimality.
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A Branch and Price Algorithm to Solve the Searcher’s Subproblem

In this section, we propose a branch and price (BP) algorithm to solve the Searcher’s

subproblem. To this end, we use Dantzig-Wolfe decomposition to reformulate the

problem as a set covering model and develop a branch and price algorithm to solve

it. Let Ω denote the set of all admissible search schedules for the search teams. The

expected damage of search schedule s ∈ Ω is: EDs =
∑

i∈Nh Ci
∑

l∈L′ z
l
iyltis, where

tis is the time at which schedule s completes inspection at location i. Let ais denote

a binary parameter indicating if search schedule s visits location i. In other words,

ais is equal to 1 if search schedule s visits location i, 0 otherwise. For each schedule

s, binary variable θs is equal to 1 if the schedule s is assigned to a search team, 0

otherwise. Using this notation, the following set covering formulation can be written

for the Searcher’s subproblem:

LMP Minimize
∑
s∈Ω

EDsθs (7.25)

subject to
∑
s∈Ω

aisθs ≥ 1, ∀i ∈ Nh, (7.26)

∑
s∈Ω

θs ≤ S, (7.27)

θs ∈ {0, 1}, ∀s ∈ Ω. (7.28)

The objective function (7.25) minimizes the expected total damage corresponding to

the selected search schedules. Constraint (7.26) indicates that every location needs

to be visited at least once. Constraint (7.27) ensures that the number of selected

search schedules is limited by the number of search teams. Constraint (7.28) is the

integrality constraint.

Column generation

In this subsection, we develop a column generation approach to solve the linear pro-

gramming relaxation of the model (7.25)-(7.28), with the addition of appropriate
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branching decisions. We call the linear relaxation of the model (7.25)-(7.28) the Lin-

ear Master Problem (LMP). The optimal solution to LMP is a lower bound to the

corresponding node in the branch and bound tree. Column generation algorithm

starts with a small subset of columns Ω′ ⊂ Ω and generates new columns as needed.

LMP with restricted columns is called restricted linear master problem (RLMP) and

the problem of finding a new column is called the pricing subproblem. In other words,

given the dual solution of the current RLMP, the goal of the pricing subproblem is

to find columns in Ω \ Ω′ with negative reduced cost. If we are unable to find such a

column, then the optimal solution of current RLMP is the optimal solution of LMP

and we can terminate the procedure. Otherwise, we add the new columns to RLMP

and repeat the process.

The pricing subproblem

At each branch and bound node, the column generation procedure is performed to

get a lower bound for the Searcher’s subproblem. The RLMP is developed as follows:

Minimize
∑
s∈Ω′

EDsθs (7.29)

subject to
∑
s∈Ω′

aisθs ≥ 1, ∀i ∈ Nh, (7.30)

∑
s∈Ω′

θs ≤ S, (7.31)

0 ≤ θs ≤ 1, ∀s ∈ Ω′. (7.32)

To check if the optimal solution of the current RLMP is optimal for LMP, we solve

the pricing subproblem. In other words, we look for a new column with a negative

reduced cost. We use π = (π1, π2, . . . , πN) and µ to denote the corresponding dual

variables for constraints (7.30) and (7.31), respectively. We use (π̂, µ̂) to denote the

optimal dual solution for the current RLMP. Using this dual solution, the reduced

cost of schedule s is RCs = EDs−
∑

i π̂iais− µ̂. Hence, we can formulate the pricing
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subproblem as follows:

Minimize
∑
i∈Nh

(Ci
∑
l∈L′

zliylti − π̂i
∑

j∈N+(i)

xij)− µ̂ (7.33)

subject to
∑

j∈N+(0)

x0j = 1, (7.34)

∑
j∈N+(i)

xij =
∑

j∈N−(i)

xji, ∀i ∈ Nh, (7.35)

∑
j∈N+(i)

xij ≤ 1, ∀i ∈ Nh, (7.36)

ti + vj + dij − tj ≤M(1− xij), ∀(i, j) ∈ E , j 6= 0, (7.37)

xij ∈ {0, 1}, ∀(i, j) ∈ E . (7.38)

In this formulation, the objective function (7.33) is to minimize the reduced cost.

Constraint (7.34) ensures that the search schedule starts from the origin. Constraint

(7.35) is the flow conservation constraint. Constraint (7.36) ensures that each location

is visited at most once. Constraint (7.37) indicates that, if location j is visited

immediately after location i, then the visit time of location j is at least ti + vj + dij.

Constraint (7.38) is the integrality constraint for variable xij.

A special case of this pricing subproblem has been shown to be NP-hard in [98].

Therefore, this pricing subproblem is also NP-hard. Thus, solving the formulation

(7.33)-(7.38) directly maybe computationally expensive. To this end, we propose a

branch, bound and remember (BBR) algorithm to solve the pricing subproblems.

BBR is a branch and bound algorithm that uses memory to avoid revisiting partial

solutions that have already been visited. In BBR, before branching on a partial

solution, it is looked up in the memory to see if it has already been visited. This idea

has been used in different fields of combinatorial optimization [70, 102, 127]. The

details of the proposed BBR algorithm are as follows.

• Branching: The branch and bound algorithm explores partial solutions through
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an enumeration tree. We denote a partial solution as P = (U, l1, l2, . . . , lp),

where U is the sets of unvisited locations; p is the number of nodes visited

by the partial solution and li is the ith visited location for i = 1, 2, . . . , p.

Branching on a partial solution means extending it by removing one of the

locations from U and adding it to the list of visited locations. This leads to

new partial solutions that need to be evaluated by computing upper and lower

bounds for their objective function.

• Lower Bound: To obtain a lower bound for a partial solution, we use the La-

grangian relaxation method. We relax the constraint that each location needs to

be visited at most once. Therefore, we have the following Lagrangian problem:

Minimize
∑
i∈Nh

(Ci
∑
l∈L′

zliylti − π̂i
∑

j∈N+(i)

xij)− µ̂+
∑
i∈Nh

λi(1−
∑

j∈N+(i)

xij)

(7.39)

subject to
∑

j∈N+(0)

x0j = 1, (7.40)

∑
j∈N+(i)

xij =
∑

j∈N−(i)

xji, (7.41)

ti + vj + dij − tj ≤M(1− xij), ∀(i, j) ∈ E , j 6= 0, (7.42)

xij ∈ {0, 1}, ∀(i, j) ∈ E , (7.43)

where λ = (λ1, λ2, . . . , λN), λi ≥ 0 is a vector of Lagrangian multipliers. This

problem can be solved in pseudo-polynomial time using a dynamic program-

ming approach. It is well-known that, for any vector of Lagrangian multipliers

λ = (λ1, λ2, . . . , λN), λi ≥ 0, the optimal solution to the Lagrangian problem

(7.39)-(7.43) gives a lower bound to the original problem (7.33)-(7.38). More-

over, the optimal solution to the Lagrangian problem (7.39)-(7.43) is a concave

function of λ. We use a subgradient algorithm to estimate the optimal La-

grangian multipliers.
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• Use of memory: BBR memorizes already visited partial solutions. Before con-

sidering a partial solution N = (U, l1, l2, . . . , lp), BBR checks the memory to

see if there is a partial solution with the same set of unvisited nodes, U , and

the same current location, lp, if there is such a partial solution M = (U ′ =

U, l′1, l
′
2, . . . , l

′
p = lp), the objective function computed so far by N is greater

than or equal to the objective function computed so far by M and the time

computed so far by N is greater than or equal to the time computed so far by

M, then N is dominated by M and N can be pruned. BBR uses a hash table

to store already visited partial solutions along with their computed objective

function and time values.

• Search strategy: Preliminary numerical tests revealed that the best first search

(BFS) strategy, in which nodes with smaller lower bounds have higher priority

of being selected, was unable to rapidly find the optimal solution for some prob-

lems. Using BFS, the search algorithm tends to spend a lot of time exploring

the nodes in the middle of the enumeration tree rather than choosing the nodes

that are deeper in the enumeration tree. Therefore, the algorithm generated

very few complete solutions before exploring all of the nodes in the middle of

the enumeration tree. To avoid this issue, we use the cyclic best first search

(CBFS) strategy [71, 72, 128, 103] in our BB&R algorithm. CBFS systemat-

ically chooses the best nodes at all possible depths in the enumeration tree.

Specifically, starting by choosing the best nodes at depth 1, CBFS continues to

choose the best nodes at deeper levels in the enumeration tree until it reaches

the deepest level. At this point, the algorithm goes back to depth 1 and repeats

this process until all nodes are explored.

Branching strategy

At each node of the branch and bound tree, we use the column generation algorithm
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to obtain an optimal solution to the linear relaxation of the model (7.25)-(7.28). The

resulting value is a lower bound for the corresponding node. If this lower bound is

greater than or equal to the current upper bound, then the node is pruned. Otherwise,

we must branch further. If the solution obtained at the current node is integral and

the solution value is smaller than the current upper bound, then the upper bound is

updated.

Branching on θs variables is not beneficial. Fixing θs variables at 0 leads to stop-

ping BBR from generating a set of specific schedules, which complicates the solution

of the pricing subproblem. Moreover, ruling out a specific schedule is not possible

until almost all of the schedule has already been considered by the enumeration tree.

Therefore, branching on θs variables is not helpful in ruling out candidate solutions

early on in the enumeration tree. Thus, it is better to opt for other branching strate-

gies that are more compatible with the pricing subproblem and BBR algorithm. In

our proposed branch and price algorithm, we branch on the edges. We choose the

edge (i, j) with fractional flow x̂ij farthest to an integer value to branch on. The flow

on each edge can be calculated as x̂ij =
∑

s∈Ω′ θsbijs, where bijs is a binary parameter

which is equal to 1 if edge (i, j) is used in schedule s, 0 otherwise. After selecting the

edge (i, j) to branch on, two child nodes are created: by setting xij = 0 and xij = 1.

Fixing xij = 0 implies that the edge (i, j) is forbidden. To enforce this constraint in

the pricing subproblem, we delete edge (i, j) from E and, for all schedules s containing

edge (i, j), we remove the corresponding variable θs from the RLMP. Setting xij = 1

implies that the edge (i, j) must be used. To enforce this constraint in the pricing

subproblem, we eliminate all of the edges (i, j′) and (i′, j) with i 6= i′ and j 6= j′.

Note that, branching on the edges only leads to changes in the underlying graph and

it does not require modifying the BBR algorithm.
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7.3.2 The Hider’s Subproblem

In this section, we formulate the Hider’s subproblem to obtain an improving hiding

strategy. The Hider’s subproblem is formulated as follows:

Maximize
∑
i∈Nh

ziCi
∑
k∈K

tki xk (7.44)

subject to
∑
i∈Nh

zi ≤ H, (7.45)

zi ∈ {0, 1}, ∀i ∈ Nh. (7.46)

In this formulation, zi is a binary variable which is equal to 1 if the Hider hides

an object in location i. Equation (7.44), the objective function, is the expected total

damage. Equation (7.45) corresponds to the constraint on the number of hidden

objects. Finally, constraint (7.46) is the integrality constraint for variable zi.

The Hider’s subproblem is a special case of 0-1 knapsack problem with unit item

weights. This problem can be solved in polynomial time by sorting the hiding lo-

cations i in a non-increasing order of Ci
∑

k∈K t
k
i and choosing the first H hiding

locations.

7.3.3 Overall Solution Procedure and Bounds

Algorithm 5 provides the pseudo-code for the overall solution procedure. The column

and row generation algorithm begins by randomly generating a set of initial strategies.

Then, using this set of strategies, the LPM-RS is solved to obtain a solution x and

a vector of dual values y. Dual values y are then used in the Searcher’s subproblem

to generate a new search strategy. If a new search strategy with a smaller expected

total damage is obtained, it is added to K′. Then the Hider’s subproblem is solved to

generate a new hiding strategy. If a new hiding strategy with a greater expected total

damage is obtained, it is added to L′. If, during the last two steps, either K′ or L′
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has been updated, then the process is repeated; otherwise the procedure terminates.

Because the number of possible strategies for both players is finite, the algorithm ter-

minates after a finite number of iterations. Moreover, when the algorithm terminates,

no player can improve the expected total damage in their own favor by changing their

strategies. Therefore, by definition, the algorithm returns a Nash equilibrium point

upon termination. During solution procedure, we have access to lower and upper

Algorithm 5: Pseudo-code for the overall solution algorithm

1 Initialize sets K′ and L′.

2 Solve LPM-RS. Let x = [xk], y = [yl] and u be the optimal primal solution,

dual solution and objective function value, respectively.

3 Solve the Searcher’s subproblem using y as dual values and let t* = [t∗i ]

denote the optimal solution.

4 if v >
∑

i∈Nh t
∗
iCi
∑

l∈L′ z
l
iyl then

5 Add the new search strategy t* to K′.

6 end

7 Solve the Hider’s subproblem using x as primal values and let z* = [z∗i ] be

the optimal solution.

8 if
∑

i∈Nh z
∗
iCi

∑
k∈K′ t

k
i xk > v then

9 Add the new hiding strategy z* to L′.

10 end

11 if K′ or L′ has been updated then

12 Go to Line 2.

13 else

14 Return v as the value of the game.

15 Terminate the procedure.

16 end
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bounds on the value of the game so that we can terminate the algorithm when a de-

sired solution quality is reached. The following lemma offers solution bounds on the

value of the game which can be computed in every iteration of the solution algorithm.

Lemma 7.2. Optimal solution to the Searcher’s (Hider’s) subproblem yields a lower

bound (an upper bound) to the expected total damage in equilibrium.

Proof. Because the Hider’s strategy set is restricted, i.e. L′ ⊆ L, solving the Searcher’s

subproblem leads to a lower bound on the expected total damage in equilibrium.

Similarly, because the Searcher’s strategy space is restricted, solving the Hider’s sub-

problem leads to an upper bound on the value of the game.

Remark 7.5. Note that, in order for the bound in Lemma 7.2 to be valid, the

Searcher’s subproblem should be solved to optimality. In general, this bound is not

monotone over the iterations, this is called the yo-yo effect [97].

7.4 Numerical Experiments

In this section, we perform computational experiments to investigate efficiency of the

proposed algorithms and gain insight on some properties of the game. The algorithms

are coded in C++ and CPLEX 12.8 solver has been used to solve the LPs and the

pricing subproblems. The computational experiments are performed on a computer

with 2.6 GH processor and 32 GB of RAM. We used a maximum running time of 2

hours (7200 seconds), for all of the algorithms involved in this section.

Our base set of test instances consists of randomly generated instances. The

location of the potential hiding places are randomly generated on a hypothetical

square with side of n units. Manhattan distance is used to compute the travel times,

dij, between these locations. Location weights, Ci, are generated randomly from the
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range [1, N ]. Similarly, the visit times, vi, are generated randomly from the range

[1, N ].

In our first experiment, we compare the performances of different methods for

solving the Searcher’s subproblem. Specifically, we consider two cases: the flow-type

mathematical formulation (MF) of (7.18) to (7.24) and the branch and price algorithm

(BP) developed in section 7.3.1. We consider 16 instances for each problem size, with

various values of S ∈ {2, 3, 4, 5} and H ∈ {1, 2, 3, 4}. Tables 7.1 and 7.2 compare

the average run times of these algorithms for different values of the number of search

teams and the number of hidden objects, respectively. Based on these tables, for all

problem sizes, BP performs significantly better than MF. Moreover, for both MF and

BP algorithms, the running time increases as n increases and it, generally, decreases

as S increases. However, no clear pattern is observed on the effect of increasing H on

the running time.

Tables 7.3 and 7.4 demonstrate the average optimality gap, in percent, obtained

for different number of search teams and hidden objects, respectively. In these ex-

periments, while both algorithms are able to find the optimal solution for problems

of smaller size, BP performs significantly better than MF for larger-sized problems.

Moreover, for both MF and BP algorithms, the average gap time increases as N in-

creases and it decreases as S increases. However, no clear pattern is observed on the

effect of increasing H on the average optimality gap.

Figure 7.1 shows the convergence of the solution for different problem sizes. The

number of iterations needed for convergence increases as the problem size increases.

Moreover, the bounds are not monotone over the iterations and the yo-yo effect is

visible due to the non-monotonicity of the bound in Lemma 7.2. Another interesting

observation is that, the upper bound values stabilize much earlier than the termination

of the algorithm. This means that after the upper bound values stabilize, we can
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Table 7.1: Average running times for different number of search teams (in seconds)

N

S=2 S=3 S=4 S=5

MF BP MF BP MF BP MF BP

10 2.02 0.26 1.42 0.34 0.82 0.15 0.52 0.32

15 15.67 2.59 8.01 2.28 3.94 0.69 1.11 0.18

20 7200.00 83.82 838.34 27.42 60.04 40.62 13.83 2.71

25 7200.00 7200.00 7200.00 2696.27 7200.00 4055.85 4537.37 520.81

30 7200.00 7200.00 7200.00 7200.00 7200.00 5480.06 7200.00 1848.59

Table 7.2: Average running times for different number of hidden objects (in seconds)

N

H=1 H=2 H=3 H=4

MF BP MF BP MF BP MF BP

10 1.34 0.53 1.08 0.18 1.14 0.18 1.19 0.19

15 4.00 0.71 6.83 0.80 9.37 1.32 8.51 2.91

20 1914.93 38.84 1913.25 21.70 2015.77 51.84 2268.26 42.18

25 5506.43 4214.13 6230.94 4296.92 7200.00 2787.20 7200.00 3174.74

30 7200.00 5192.93 7200.00 5420.28 7200.00 4901.70 7200.00 6214.18
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Table 7.3: Average optimality gap for different number of search teams (%)

N

S=2 S=3 S=4 S=5

MF BP MF BP MF BP MF BP

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 43.50 0.40 35.33 0.00 6.49 0.12 0.50 0.00

30 130.27 8.31 75.61 5.94 45.30 0.10 9.77 0.03

Table 7.4: Average optimality gap for different number of hidden objects (%)

N

H=1 H=2 H=3 H=4

MF BP MF BP MF BP MF BP

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.32 0.00 0.23 0.00 0.08 0.00 0.10 0.00

25 22.78 0.12 18.94 0.23 21.11 0.13 23.01 0.05

30 61.12 4.60 61.36 2.72 53.90 2.41 84.56 4.65
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Figure 7.1: Convergence of the proposed column and row generation algorithm

terminate the solution algorithm without undermining the solution quality too much.

Next, we study the effect of the number of search teams and hiding objects on the

expected total damage in equilibrium. An experiment is designed with S ∈ {2, 3, 4, 5}

and H ∈ {1, 2, 3, 4}. Figure 7.2 demonstrates that, as the number of search teams

increases, the expected damage decreases. Moreover, a diminishing returns effect is

visible in the reduction in expected total damage for each unit increment in S. Figure

7.3 shows that the expected total damage increases almost linearly with the number of

hidden objects. Moreover, the rate of increase is greater for smaller number of search

teams. In our next experiment, we study the effect of the Searcher’s deviation from

the equilibrium on the value of the game. Specifically, we consider the case that the

Searcher, in deriving her strategy, mistakenly, thinks that the node weights are the

same. We compare the weighted search time values in this case with the weighted

search time values in equilibrium. Table 7.5 show the obtained results for different

problem sizes. In this tables, the “ENWS” (Equal Node Weight Strategy) column

shows the expected weighted search time when the Searcher deviates from the Nash
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strategy to use a strategy based on equal node weights assumption. “NE” column

shows the expected weighted search time in the Nash Equilibrium and “Increase

(%)” column shows the percentage of increase in the expected weighted search time

as a result of the Searcher’s deviation from the equilibrium. As seen in these tables,

deviation of the Searcher from the Nash equilibrium can lead to an increase of up

to 63 percent in expected weighted search time. This increase is at least 9 percent

across all problem instances. This highlights the importance of using the information

about node weights.

Table 7.5: Comparison of NE with ENWS for moderate instances

N NE ENWS Increase(%)

10 165.00 270.00 63.64

15 384.00 422.38 9.99

20 616.00 904.29 46.80

25 1118.00 1511.80 35.22

30 1856.00 2610.00 40.63
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Chapter 8

Conclusions

This dissertation develops game-theoretic models to determine protection strategies

for infrastructures including their users. The game models studied in this research

include resource allocation models, as well as patrolling and search games. These

models address the strategic decision making process of competing agents: defender

vs attacker in resource allocation and patrolling games, and searcher vs hider in

hide-and-seek games. Most of the existing resource allocation models assume that

the parameters of the game are either deterministic or follow a known distribution.

Whereas in reality, some parameters of the game may be uncertain with no known

distribution or distributional information about them may be unreliable. To this

end, we look at one-shot security games under uncertainty about site valuations.

We propose a model where both players use a robust approach to contend with the

uncertainty of site valuations. We then apply our model to a real case of assigning

grant resources to 10 urban areas in the United States. Another limitation is the lack

of models that address hierarchical decision making. Protecting infrastructures and

their users against terrorism involves making both strategic and operational decisions

in an organization’s hierarchy. Although usually analyzed separately, these decisions

influence each other. To address this issue, we develop a two-stage game model
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where in the first stage, the players make investment decisions and in the second

stage, they decide which sites to defend/attack. We then characterize the existence

and uniqueness conditions for the Nash equilibrium of this game. Afterwards, we

apply the proposed model to a real case. Another limitation of the existing resource

allocation models is that most of the models with overarching protection options only

consider a single option that covers all targets. However, in reality, there maybe

multiple overarching protection options and each option may cover only a subset

of targets. To address this issue, we develop a new resource allocation model with

generalized overarching protection options. Specifically, we assume that there are

multiple overarching protection options and each option covers a subset of targets.

We also develop an efficient decomposition algorithm to solve this problem.

In the second part of the dissertation, we study patrolling and search games.

Most of the patrolling game models assume that the site values are either the same

or that they do not change over time. However, this is not a realistic assumption.

Particularly in the case of soft targets, these values may be different and may change

over time. We propose new models with dynamically changing node values and node-

based attack times. We solve these models numerically using algorithms like column

generation, and column and row generation. We then apply these models to a real

case of an urban rail network in a major US city. In the area of search games, most

of the models assume that the hiding places are identical and the players’ objective

is to optimize the search time. However, there are some cases in which the players

may differentiate the hiding places from each other and the objective is to optimize

a weighted search time. To address this, we introduce a new discrete search game

with consideration given to the weights at different locations. For a special case of

the problem, we show that the game has a closed-form Nash equilibrium. For the

general case, we develop an algorithm based on column and row generation. We
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show that the Searcher’s subproblem is NP-hard and propose a branch and price

algorithm to solve it. We also present a polynomial time algorithm for the Hider’s

subproblem. Numerical experiments investigate the performance of the approach and

reveal insights on the properties of this game.

This dissertation addresses some of the gaps existing in the literature of resource

allocation for security as well as patrolling and search games. However, the current

models can be further extended to address other remaining issues. For example, in the

two-stage invest/defend game we are interested in further investigating multi-period

invest-defend games with multiple defenders. Another area of interest is the effect

of investment transparency vs secrecy, and of side information on the defense policy.

In the area of security resource allocation models, there are many ways to extend

the current resource allocation models to include generalized overarching protection

options. One way to extend this model is to consider all-hazard protection options.

Some of the protection alternatives may protect against both terrorism and natural

disasters; e.g., hardening a bridge. Using a similar argument to the proof of Lemma

4.1, we can show that the resource allocation model still remains a convex optimiza-

tion problem after adding all-hazard protection options. Developing a decomposition

approach for the problem with the addition of all-hazard protection options is rec-

ommended as a future research idea in this area. Another extension is to incorporate

discrete decision variables into the model in case protection decisions are not contin-

uous and it is more appropriate to model them as binary or integer variables. The

addition of discrete decision variables into the model will make the problem a mixed

integer nonlinear program (MINLP). We expect the resulting MINLP to be amenable

to outer approximation approaches similar to the one proposed in [28].

In the area of patrolling and search games, accommodating mobile adversaries

and imperfect detection is an interesting idea. Most of the models in the literature
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of patrolling games assume that once the patroller and the attacker are in the same

location, the patroller will successfully capture the attacker. However, this assump-

tion may not be realistic and patroller’s detection and capturing capabilities may be

imperfect. Moreover, most of the models assume that all of the targets are equally

accessible to the attacker and attacker can jump on the intended target eliminating

the need to traverse the graph and the risk of being caught in the process. However,

in reality attacker may get caught in the process of moving towards the target site.

Therefore, developing a model with entrance nodes and imperfect detection, is an

interesting research topic in this area.
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Appendix A

Proofs of Selected Theorems and

Lemmas

A.1 Proof of Theorem 2.3

Proof. The proof follows similar steps as the one in [35]. By definition of Nash

Equilibrium, (x, (y1,y2)) is an equilibrium if and only if for some v1, v2 and v:

(δixi − 1)Ci


= v1, y1

i > 0,

> v1, y1
i = 0,

(A.1)

(δixi)C


= v2, y2

i > 0,

> v2, y2
i = 0,

(A.2)

q

(
δiCiy

1
i −

N∑
j=1

Cjy
1
j

)
+ (1− q)

(
δiCiy

2
i −

N∑
j=1

Cjy
2
j

) 
= v, xi > 0,

< v, xi = 0.

(A.3)

These conditions imply that 0 ≤ v2 ≤ C and v1 ≤ 0. There are two possible cases:

(A) xi > 0 for every i. (B) xi = 0 for some i. As will be shown shortly, these two
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cases are equivalent to the cases m ≤ k and m > k, respectively.

Case (A): xi > 0 for all i

Then, Eq. (A.2) indicates that v2 > 0. Moreover, from Eq. (A.3), for every i, one

can deduce that only three cases are possible:

Case A1: y1
i > 0, y2

i > 0

By equations (A.1) and (A.2), we have that (δixi−1)Ci = v1, and δixiC = v2. Hence

Ci = − v1

1− v2

C

, and xi =
v2

δiC
=

1

δi

(
v1

Ci

+ 1

)
, for y1

i , y
2
i > 0. (A.4)

Case A2: y1
i > 0, y2

i = 0

Then, the appropriate equality and inequality from (A.1) and (A.2) become (δixi −

1)Ci = v1 and δixiC > v2, respectively, thus giving

Ci > −
v1

1− v2

C

, and xi =
1

δi

(
v1

Ci

+ 1

)
for y1

i > 0, y2
i = 0. (A.5)

Case A3: y1
i = 0, y2

i > 0

The appropriate inequality and equality from (A.1) and (A.2) are (δixi − 1)Ci ≥ v1

and δixiC = v2, respectively, therefore

Ci < −
v1

1− v2

C

, and xi =
v2

δiC
y1
i = 0, y2

i > 0. (A.6)

Now, since Ci values are sorted it is obvious that there exists an m such that

Cm = − v1

1− v2

C

,

y1
i



> 0, i ≤ m− 1,

≥ 0, i = m,

= 0, i ≥ m+ 1,

(A.7)
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y2
i



= 0, i ≤ m− 1,

≥ 0, i = m,

> 0, i ≥ m+ 1,

(A.8)

and:

xi =



1
δi
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)
, i ≤ m− 1,

v2

dmC
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δm
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δiC
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(A.9)

In turn, equations (A.3), (A.7) and (A.8) imply:
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(A.11)

and:
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)
. (A.12)

From equations (A.10) and (A.11) it can be easily seen that the right hand side of

(A.12) can be written as

qy1
m + (1− q)y2

m =
δiCiqy

1
i

δmCm

, ∀i ≤ m− 1, (A.13)
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qy1
m + (1− q)y2

m =
δiCi(1− q)y2

i

δmCm

, ∀i ≥ m+ 1. (A.14)

Because y1 and y2 are probability vectors, we have

N∑
j=1

y1
i = 1, and

N∑
j=1

y2
i = 1.

Hence, summing equations (A.13) for 1 ≤ i ≤ m − 1 yields 1 − y1
m, while summing

equations (A.14) for m + 1 ≤ i ≤ N yields 1 − y2
m and both provide the following

equalities respectively.

qy1
m

m∑
j=1

1

δjCj

+ (1− q)y2
m

m−1∑
j=1

1

δjCj

=
q

δmCm

,

qy1
m

N∑
j=m+1

1

δjCj

+ (1− q)y2
m

N∑
j=m

1

δjCj

=
1− q
δmCm

.

Finally, summing the above equations gives

qy1
m + (1− q)y2

m =
1

δmCm

∑N
j=1

1
δjCj

,

in turn this leads to the unique solution in equations (2.6) and (2.7).

In order to compute m note that y1 and y2 are probability vectors, thus y2
m ≥ 0, y1

m ≥

0 in equations (2.6) and (2.7), implying that q ≤ ψm and q ≥ ψm−1, respectively.

The defender’s strategy can be obtained from (A.1) and (A.2) that indicate

xi =
v1 + Ci

Ciδi
, i ≤ m, (A.15)

xi =
v2

Cδi
, i ≥ m, (A.16)

together with the normalization equation,
∑N

i=1 xi = 1, yielding the equation (2.5).

To show that m ≤ k, it is enough to show φm ≤ 1. From equation (A.15), we have

xm =
v1+Cm
Cmδm

, which leads to v1 ≥ −Cm. Using this inequality, we have:

φm =
m∑
j=1

Cj − Cm

δjCj

≤
m∑
j=1

Cj + v1

δjCj

=
m∑
j=1

xj ≤ 1.
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Case B:

Suppose there exists an i such that xi = 0. Then by (A.2) v2 = 0, therefore y2
i = 0

for xi > 0. From equations (A.1) to (A.3), for every i, one can deduce that only three

cases are possible:

Case B1: y1
i > 0, y2

i > 0

By equations (A.1) and (A.2), we have that (δixi−1)Ci = v1, and δixiC = v2. Hence

Ci = − v1

1− v2

C

, and xi =
v2

δiC
=

1

δi

(
v1

Ci

+ 1

)
= 0, for y1

i , y
2
i > 0. (A.17)

Case B2: y1
i > 0, y2

i = 0

Then, the appropriate equality and inequality from (A.1) and (A.2) become (δixi −

1)Ci = v1 and δixiC ≥ v2, respectively, thus giving

Ci > −
v1

1− v2

C

, and xi =
1

δi

(
v1

Ci

+ 1

)
for y1

i > 0, y2
i = 0. (A.18)

Case B3: y1
i = 0, y2

i > 0

The appropriate inequality and equality from (A.1) and (A.2) are (δixi − 1)Ci ≥ v1

and δixiC = v2, respectively, therefore

Ci < −
v1

1− v2

C

, and xi =
v2

δiC
= 0 y1

i = 0, y2
i > 0. (A.19)

Now, since Ci values are sorted , there exists a k such that

xi


≥ 0, i ≤ k,

= 0 i > k,

(A.20)

y1
i


≥ 0, i ≤ k,

= 0 i > k,

(A.21)
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y2
i


= 0, i ≤ k,

≥ 0 i > k.

(A.22)

Moreover, by equation (A.1), we have:

xi =


1
δi

(
v1

Ci
+ 1
)
, y1

i > 0,

0, y1
i = 0.

(A.23)

In turn, equations (A.3), (A.21), and (A.22) imply

y1
i =


v+(1−q)

∑N
j=1 Cjy

2
j+q

∑N
j=1 Cjy

1
j

δiCiq
, i ≤ k,

0, i > k,

(A.24)

y2
i


= 0, i ≤ k,

≤ v+q
∑N
j=1 Cjy

1
j+(1−q)

∑N
j=1 Cjy

2
j

δiCi(1−q)
, i > k.

(A.25)

Moreover, we have:
k∑
j=1

y1
i = 1,

k∑
j=1

xi = 1.

Solving these equations leads to the solution characterized in equations (2.8) to (2.10).

To compute k, we have xk ≥ 0, this leads to φk ≤ 1. To show that m > k it is enough

to show ψk < q. From equation (2.10) we have:

y∗2i <
q

(1− q)


1

δiCi

k∑
l=1

1
δlCl

,

 ∀i > k,

N∑
j=k+1

y∗2j = 1.

Using these equations, we have:

1 =
N∑

j=k+1

y∗2j <
q

1− q

∑N
j=k+1

1
δjCj∑k

j=1
1

δjCj

 .
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Which leads to ψk =

∑k
j=1

1
δjCj∑N

j=1
1

δjCj

< q. This completes the proof.

A.2 Theorem 3.1

Proof. To prove this theorem we first establish some lemmas.

Lemma A.1. The second stage matrix game has a pure Nash Equilibrium if and only

if (1− δ1)C1 − δ1P ≥ C2.

Proof. Suppose we have (1− δ1)C1 − δ1P ≥ C2. It is easy to check that x =

(1, 0, 0, ..., 0) , y = (1, 0, 0, ..., 0) is a pure Nash Equilibrium strategy pair. This es-

tablishes the sufficiency part. We prove the necessity part by contradiction, suppose

that (1− δ1)C1 − δ1P < C2. and the game has a pure Nash Equilibrium, this pure

Nash Equilibrium is definitely not x = (1, 0, 0, ..., 0) , y = (1, 0, 0, ..., 0), because at

this strategy profile the adversary can strictly increase his payoff by attacking site 2.

Moreover it has to be on the diagonal of the matrix i.e. xi = yi = 1 for some i > 1

however, this implies that (1− δi)Ci − δiP ≥ C1 which contradicts our assumption

of sorted Cis, thus proving the necessity part.

Lemma A.2 characterizes the conditions under which some strategies of the ad-

versary are dominated by a linear combination of other strategies. This lemma helps

us find a critical index to compute the Nash Equilibrium.

Lemma A.2. If
k∑
j=1

Cj−Ck
δj(Cj+P )

> 1, then the adversary’s strategies l ≥ k are strictly

dominated by a mixed strategy that is composed of pure strategies j for 1 ≤ j < k,
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i.e., there exist λi ≥ 0, 1 ≤ i ≤ k − 1 with
k−1∑
i=1

λi = 1 such that:

λ1



(1− δ1)C1 − δ1P

C1

C1

...

C1


+· · ·+λk−1



Ck−1

...

(1− δk−1)Ck−1 − δk−1P

...

Ck−1


>



Cl

...

...

(1− δl)Cl − δlP
...

Cl


.

Proof. The inequality holds for rows r ≥ k because Cis are sorted, i.e.,
∑k−1

j=1 λjCj >

Ck for all λi ≥ 0, 1 ≤ i ≤ k − 1 with
k−1∑
i=1

λi = 1

For rows r < k, consider the assumption
k∑
j=1

Cj−Ck
δj(Cj+P )

> 1 After some algebraic

manipulations this inequality can be rewritten as:

(1− δr)Cr − δrP

δr(Cr + P )
k−1∑
m=1

1
δm(Cm+P )

+
k−1∑

j=1,j 6=r

Cj

δj(Cj + P )
k−1∑
m=1

1
δm(Cm+P )

> Ck.

Setting λj = 1

δj(Cj+P )
k−1∑
m=1

1
δm(Cm+P )

gives the result as:

λr (1− δr)Cr +
k−1∑

j=1,j 6=r

λjCj > Ck ≥ Cl.

Lemma A.3 complements Lemma A.2 in characterizing the sites that should be in

the mixed Nash Equilibrium.

Lemma A.3. If
k∑
j=1

Cj−Ck
δj(Cj+P )

< 1, any strategy profile with xk = 0 is not a Nash

Equilibrium.

Proof. By contradiction. Suppose the Nash Equilibrium holds with xk = 0. If yk = 0,

consider a critical k∗ ≥ k such that
k∗∑
j=1

Cj−C∗k
δj(Cj+P )

< 1 <
k∗+1∑
j=1

Cj−Ck∗+1

δj(Cj+P )
. Using Lemma
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A.1 we can conclude that both players are playing a mixed strategy. Moreover using

Lemma A.2 we have: xj = 0, yj = 0, ∀j > k∗. Therefore the adversary is indifferent

towards his choices i = 1, ..., k∗, i 6= k, in other words:

(1− δ1x1)C1 − δ1x1P = · · · = (1− δk−1xk−1)Ck−1 − δk−1xk−1P =

(1− δk+1xk+1)Ck+1 − δk+1xk+1P = · · · = (1− δk∗xk∗)Ck∗ − δk∗xk∗P.

Solving these equations along with the equation
k∗∑

j=1,j 6=k
xj = 1 yields:

xk∗ =

1−
k∗∑

j=1,j 6=k

Cj−Ck∗
δj(Cj+P )

δk∗(Ck∗ + P )
k∗∑

j=1,j 6=k

1
δj(Cj+P )

.

Since
k∗∑
j=1

Cj−Ck∗
δj(Cj+P )

< 1 and Ck∗ ≤ Ck, the following inequality holds

k∗∑
j=1,j 6=k

Cj − Ck
δj(Cj + P )

< 1,

which could be rewritten as:

k∗∑
j=1,j 6=k

Cj − Ck∗ + (Ck∗ − Ck)
δj(Cj + P )

< 1.

This further simplifies to:

(Ck∗ − Ck) <
1−

k∗∑
j=1,j 6=k

Cj−Ck∗
δj(Cj+P )

k∗∑
j=1,j 6=k

1
δj(Cj+P )

= δk∗(Ck∗ + P )xk∗ ,

giving (1− δk∗xk∗)Ck∗ − δk∗xk∗P < Ck. Therefore the adversary can strictly improve

his payoff by increasing yk to 1. Hence yk = 1 should hold. Now the defender can

strictly increase her payoff by increasing xk to 1. This is in contradiction with our

assumption of xk = 0 being in a Nash Equilibrium.

We are now ready to prove the theorem. Consider a critical k∗ such that
k∗∑
j=1

Cj−Ck∗
δj(Cj+P )

<

1 <
k∗+1∑
j=1

Cj−Ck∗+1

δj(Cj+P )
, if k∗ = 1 then Lemma A.1 and Lemma A.2 imply that the game



184

has a unique pure strategy Nash Equilibrium. If k∗ ≥ 2, then using lemma A.2 and

lemma A.3, the mixed strategy Nash Equilibrium is determined by solving the fol-

lowing systems of equations:

System 1:

(1− δ1x1)C1 − δ1x1P = (1− δ2x2)C2 − δ2x2P = ... = (1− δk∗xk∗)Ck∗ − δk∗xk∗P,
k∗∑
j=1

xj = 1.

System 2:

− (1− δ1)C1y1−
k∗∑

j=1,j 6=1

Cjyj = − (1− δ2)C2y2−
k∗∑

j=1,j 6=2

Cjyj = ... = − (1− δk∗)Ck∗yk∗−
k∗∑

j=1,j 6=k∗

Cjyj ,

k∗∑
j=1

yi = 1.

Both systems have unique solutions. Solving these systems lead to the solution in

equations (3.1) to (3.4).

A.3 Lemma 3.1

Proof. Because the first stage payoffs, ud1(α) and ua1(β), are linear in α and β, they

are continuous in α and β. Therefore, in order to prove that the total payoff functions

are continuous, we only need to prove that the second stage payoffs are continuous.

We first prove that the second stage payoff function for the defender is continuous in

both players’ strategies. Here is the payoff function:

ud2(α, β, x∗, y∗) =

1−
∑k

j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

.

For a fixed value of k, clearly the payoff function is continuous, therefore we only

need to prove that it is also continuous when the value of k changes. If Ci = C, ∀i =
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1, . . . , N, then k = N always holds and the result follows. We now focus on the case

of P = 0. The value of k changes only when φk(α, β) =
∑k−1

j=1

Cj − Ck
δj(αj, βj)(Cj)

= 1 and

a small change in either α or β results in φk(α, β) > 1, hence causing the value of

k decreased by one unit. At this point the expected damage is computed using the

formula k′ = k− 1 as the threshold value. We prove that the expected damage under

both threshold indices k,or k − 1, lead to the same value:

∣∣ud2(α, β, x∗, y∗)|k′ − ud2(α, β, x∗, y∗)|k
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣
1−

∑k−1
j=1

1

δj(αj, βj)

∑k−1
j=1

1

δj(αj, βj)Cj

−
1−

∑k
j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣
1

δk(αk, βk)Ck

1−
∑k−1

j=1

Cj − Ck
δj(αj, βj)Cj

∑k−1
j=1

1

δj(αj, βj)Cj

∑k
j=1

1

δj(αj, βj)Cj

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This establishes continuity of the defender’s payoff. Same argument applies when

proving continuity of the adversary’s payoff function.

A.4 Lemma 3.2

Proof. We have already established continuity of the payoff functions. In order to

prove concavity we show that the second derivative is negative. The first derivative

of udt (α, β, x, y) is given as:

∂udt (α, β, x, y)

∂αi
= −1 +



1

δ2
i (αi, βi)Ci

1−
∑k

j=1

Cj − Ci
δj(αj, βj)Cj


∑k

j=1

1

δj(αj, βj)Cj


2


∂δi(αi, βi)

∂αi
.
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Then the second derivative satisfies:

∂2udt (α, β, x, y)

∂α2
i

=

(
2

δ3
i (αi, βi)Ci

(
1−

k∑
j=1

Cj − Ci
δj(αj, βj)Cj

)) 1

δi(αi, βi)Ci
−
∑k

j=1

1

δj(αj, βj)Cj

∑k
j=1

1

(δj(αj, βj)Cj)3

∂δi(αi, βi)

∂αi

+

1

δ2
i (αi, βi)Ci

1−
∑k

j=1

(Cj − Ci)
(δj(αj, βj)Cj)


(
∑k

j=1

1

δj(αj, βj)Cj
)2

∂2δi(αi, βi)

∂α2
i

< 0.

The last inequality is valid because from the assumptions either P = 0 or Ci =

C, ∀i = 1, . . . , N, holds. Therefore udt (α, β, x, y) is strictly concave in αis. One can

similarly show that uat (α, β, x, y) is strictly concave in βis.

A.5 Lemma 3.3

Proof. To prove the lemma for udt (α, β, x
∗, y∗), we first prove that ud2(α, β, x∗, y∗)

is concave in (δ1(α1, β1), δ2(α2, β2), ..., δN(αN , βN)). Here is the Hessian matrix for



187

ud2(α, β, x∗, y∗):

H =
2C∑N
j=1

1

δj


3



 1

δ1

−
∑N

j=1

1

δj


δ3

1

1

δ2
1δ

2
2

. . .
1

δ2
1δ

2
N

1

δ2
2δ

2
1

 1

δ2

−
∑N

j=1

1

δj


δ3

2

. . .
1

δ2
2δ

2
N

...
...

. . .
...

1

δ2
Nδ

2
1

1

δ2
Nδ

2
2

. . .

 1

δN
−
∑N

j=1

1

δj


δ3
N



.

Let Hl be the submatrix of H obtained by taking the upper left hand corner l× l

matrix of H. Furthermore let |Hl|, be the lth principal minor of H.

We need to show that the principal minors of H alternate in sign, starting with

negative i.e. (−1)l |Hl| > 0 for l = 1, 2, . . . , N − 1 and |H| = 0. Because we are only

concerned about sign of the determinant of H, we can divide (or multiply) rows and

columns of H with positive quantities. Therefore, we divide row i by 2C

δi

(∑N
j=1

1
δj

)3

for i = 1, 2, . . . , N , then we multiply column i by δi for i = 1, 2, . . . , N . Here is the

resulting matrix:

H ′ =



1

δ1

 1

δ1

−
∑N

j=1

1

δj

 1

δ1δ2

. . .
1

δ1δN

1

δ2δ1

1

δ2

 1

δ2

−
∑N

j=1

1

δj

 . . .
1

δ2δN

...
...

. . .
...

1

δNδ1

1

δNδ2

. . .
1

δN

 1

δN
−
∑N

j=1

1

δj





.
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H ′ is a symmetric diagonally dominant matrix because absolute value of each element

on the diagonal is equal to sum of absolute values of all other elements in the same row.

Therefore H ′ is a negative semi-definite matrix. Hence the leading principal minors of

H ′ alternate in sign, starting with negative i.e. (−1)l |H ′l | > 0 for l = 1, 2, . . . , N − 1

and |H ′| = 0. Because we obtained H ′ by multiplying rows and columns of H with

positive quantities, H ′ and H have the same determinant sign, this is also true for

their leading principal minor signs. Therefore the leading principal minors of H

alternate in sign, starting with negative i.e. (−1)l |Hl| > 0 for l = 1, 2, . . . , N − 1 and

|H| = 0. Hence ud2(α, β, x∗, y∗) is concave in (δ1(α1, β1), δ2(α2, β2), ..., δN(αN , βN)).

It follows that ud2(α, β, x∗, y∗) is concave in α, because increasing concave function

of a concave function is concave. It then follows that udt (α, β, x
∗, y∗) is concave in

α, because sum of two concave functions is concave. One can similarly prove the

lemma for uat (α, β, x, y).

A.6 Lemma 3.4

Proof. To prove this lemma for ud2(α, β, x∗, y∗), we prove that all of its upper level

sets are convex. Suppose for two points α and α′ and some L we have:

ud2(α, β, x∗, y∗) =

1−
∑k

j=1

1

δj(αj, βj)

∑k
j=1

1

δj(αj, βj)Cj

≥ L, (A.26)

and

ud2(α′, β, x∗, y∗) =

1−
∑k

j=1

1

δj(α′j, βj)

∑k
j=1

1

δj(α′j, βj)Cj

≥ L. (A.27)
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We prove that for all λ with 0 ≤ λ ≤ 1 we have:

ud2(λα+ (1− λ)α′,β, x∗, y∗) ≥ L.

To prove this, from equation (A.26) we have:

k∑
j=1

1 +
L

Cj
δj(αj, βj)

≤ 1.

Similarly from equation (A.27) we have:

k∑
j=1

1 +
L

Cj
δj(α′j, βj)

≤ 1.

From these two equations we have:

k∑
j=1

(1 +
L

Cj
)(

λ

δj(αj, βj)
+

1− λ
δj(α′j, βj)

) ≤ 1.

Now ud2(λα + (1 − λ)α′,β, x∗, y∗) ≥ L follows from the convexity of 1
δj(αj ,βj)

for all

j. Proof of quasi-concavity for ua2(α, β, x∗, y∗) is similar to ud2(α, β, x∗, y∗).

A.7 Theorem 3.3

Proof. We fix the critical index k and write down the optimization problem for both

players. For the defender we have the following optimization problem:

max ud2(α, β) (A.28)

k∑
j=1

αj = A, (A.29)

φk(α, β) ≤ 1, (A.30)
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αj ≥ 0, (A.31)

where φi(α, β) =
∑i

j=1
Cj−Ci

δj(αj ,βj)(Cj+P )
for i ∈ 1, . . . , N and φN+1(α, β) = ∞. It

is easy to see that constraints (A.29) and (A.31) lead to convex strategy space for

the defender. We show that the strategy space characterized by constraint (A.30)

is also convex and therefore the whole strategy space is convex (because intersection

of convex sets is convex). Consider two points α and α′ with φk(α, β) ≤ 1, and

φk(α
′, β) ≤ 1. We show that any convex combination of α and α′ also satisfies

constraint (A.30). Note that φk(α, β) is a convex function of α because it is sum of

convex functions. We have: φk(λα+(1−λ)α′,β) ≤ λφk(α, β)+(1−λ)φk(α
′, β) ≤ 1.

The first inequality comes from convexity of φk(α, β) and the second inequality comes

from assumption of φk(α, β) ≤ 1, and φk(α
′, β) ≤ 1. Therefore defender’s strategy

space is convex. It is easy to check that the strategy space is also compact.

The optimization problem for the adversary is as follows:

max ua2(α, β) (A.32)

k∑
j=1

βj = B, (A.33)

φk+1(α, β) ≥ 1, (A.34)

βj ≥ 0. (A.35)

The strategy space for the defender is also convex and compact (the proof is similar

to the convexity proof of defender’s strategy space). Therefore the strategy space

for both players are convex and compact. In lemma 3.4 we established that the

payoff functions for both players are quasi-concave with respect to their own strategy.
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Moreover, because we fixed the critical index k, the payoff functions are continuous.

We also know that, because φi(α, β) is increasing in i, for each (α, β) there exists an

index k such that (α, β) is feasible. Therefore, applying Debreu’s existence theorem

(see [27] ), there exist at least one Nash Equilibrium.

To establish uniqueness, we use the index theory approach (see Theorem 7 in [23]).

Because first derivatives are all positive, there is no point with
∂ud2(α,β,x,y)

∂αi
= 0 and

∂ua2(α,β,x,y)

∂βi
= 0 for i = 1, 2, ..., N , therefore conditions of this theorem are, vacuously,

satisfied. Therefore there exists at most one Nash Equilibrium.

A.8 Proof of Theorem 5.1

Proof. Our proof is similar to the NP-hardness proof of the DET-STRAT problem

(Theorem 4.4) in [14]. We first prove the result for the case with |S| = |A| = 1. Once

the NP-hardness of this case is established, NP-hardness of the case with multiple

patrollers and attackers follows due to the added complexity. To prove NP-hardness,

we prove that the corresponding decision problem is NP-complete. Here is the corre-

sponding decision problem:

Given a patrolling game G = G(Q, T,m, c) and dual values [yiτ ] (note that we as-

sumed there is only one attacker and yiτ is the probability of using attack pair (i, τ)

by this single attacker) is there a patroll with [wiτ ] such that:

N∑
i=1

T−mi∑
τ=0

yiτCi,τ+mi−1wiτ ≥ L?

For future references, we call this problem DP. It is easy to see that DP is in NP. A non-

deterministic machine could guess a patrol with wiτ and check if
∑N

i=1

∑T
τ=0 yiτCi,τ+mi−1wiτ ≥

L is true, in polynomial time. Its NP-completeness can be shown by reducing the

Hamiltonian path (HP) problem to DP. HP is a well-known NP-complete problem

[40]. It is the problem of determining if a Hamiltonian path, i.e., a path that visits
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each vertex exactly once, exists on a given graph. Following [14] let us consider a

generic HP problem given by a graph Gh = (V h, Ah) where V h is the set of vertices

and Ah is the set of edges. From this graph, an instance of the DP problem with

G = G(Q, T,m, c), L and [yiτ ] can be constructed in polynomial time by setting

Q = Gh, T = |V h|, mi = |V h|, yiτ = 1, ∀i, τ , Ciτ = 1, ∀i, τ and L = |V h|. It is

easy to see that a solution to DP with G = G(Q, T,m, c), L and [yiτ ], if exists, is

a Hamiltonian path. To achieve L = |V h|, every node should be fully covered by

the patrol i.e. all attack pairs (i, τ) should be caught by the patrol. Note that, for

every node i, the only admissible attack start time is τ = 0. Therefore, there are |V h|

attack pairs and to achieve L = |V h|, all of these attack pairs should be interrupted.

To interrupt each attack pair (i, τ), it is enough to visit node i during time interval

[0, T − 1]. Because the length of time horizon is equal to the number of nodes, the

patrol should visit each node exactly once, because otherwise at least one node will

not be covered. Therefore, computing a solution for DP with G = G(Q, T,m, c), L

and [yiτ ] provides a solution for the HP problem with Gh. Thus the HP problem can

be reduced to DP. This proves that DP is NP-complete.
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