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This thesis focuses on some fundamental problems in machine learning that are posed
as nonconvex matrix factorizations. More specifically we investigate theoretical and
algorithmic aspects of the following problems: i) inductive matrix completion (IMC),
ii) structured dictionary learning (DL) from tensor data, iii) tensor linear regression
and iv) principal component analysis (PCA). The theoretical contributions of this thesis
include providing recovery guarantees for IMC and structured DL by characterizing the
local minima and other geometric properties of these problems. The recovery results
are stated in terms of upper bounds on the number of observations required to recover
the true matrix (dictionary in the case of DL) underlying the data. Another major
theoretical contribution of this work is providing fundamental limits on the performance
of tensor linear regression solvers by deriving a lower bound on the worst case mean
squared error of any estimator. On the algorithmic side, this thesis proposes novel
online and batch algorithms for solving structured dictionary learning problem as well
as a novel multi-stage accelerated stochastic PCA algorithm that achieves near optimal

results.
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Chapter 1

Introduction

1.1 Motivation

Many fundamental problems in machine learning, statistics, and signal processing can
be seen as matriz estimation problems. Examples of such problems include matrix
sensing [I} 2], matrix completion [3-5], phase retrieval [0} 7], dictionary learning [8), 9],
principal component analysis (PCA) [10], robust PCA [11], and blind deconvolution
[12]. One common approach to solving these problems is resorting to convex relaxations
and applying well-known convex optimization methods. While convexified formulations
allow for employing well-established analytical tools to provide statistical performance
guarantees for these problems, the computational cost and storage requirement of con-
vex optimization methods makes them unsuitable for large-scale problems. Nonconvex
matrix factorization schemes on the other hand enjoy lower storage requirements and
per-iteration computational cost, and are amenable to parallelization. With prevalence
of big data, these properties have become more important than ever since information
processing and learning applications often involve dealing with high dimensional and/or
high volume data, resulting in large-scale matrix factorization problems. Emergence
of such large-scale problems necessitates development of efficient matrix factorization
methods whose computational and storage costs scale favorably with matrix dimensions.

This thesis focuses on providing theoretical guarantees as well as developing efficient
algorithms for some fundamental matrix factorization problems with applications in

representation learning, recommendation systems, and other areas of machine learning.



1.2 Major Contributions

In this body of work we study three problems that can be formulated as nonconvex
matrix decomposition problems. We first provide theoretical recovery guarantees for
inductive matrix completion (IMC) by characterizing its optimization landscape.
Then, we propose a novel structured dictionary learning model for learning sparse
representations of tensor data and develop theory and numerical algorithms to validate
the usefulness of this model. We also study the fundamental limits of estimation in
a tensor linear regression problem and demonstrate the benefits of preserving the
tensor structure of data and exploiting multi-directional interdependence among model
variables in this problem. Finally, we develop a momentum-based accelerated algo-
rithms for the streaming principal component analysis (PCA) problem and study
the impact of introducing a momentum term in to a classic solver of this nonconvex
problem. A more detailed overview is provided in the following.

In Chapter [2| we present our first major contribution. That is, we provide re-
covery guarantees for inductive matrix completion (IMC), a powerful technique with
applications recommendation systems with side information. The aim of IMC is to
reconstruct a low-rank matrix from a small number of given entries by exploiting the
knowledge of the feature spaces of its row and column entities. We study the opti-
mization landscape of this nonconvex problem and show that given sufficient number of
observed entries, all local minima of the problem are globally optimum and all saddle
points are “escapable”. The immediate consequence of this result is that any first order
optimization method such as gradient decent can be used to recover the true matrix.
Moreover, we characterize how the knowledge of feature spaces reduces the number of
required observed entries to recover (identify) the true matrix.

Our second main contribution, presented in Chapter [3| focuses on sparse repre-
sentation learning for tensor (multidimensional) data. To this end, we study dictionary
learning (DL), an effective and popular data-driven technique for obtaining sparse rep-
resentations of data [8 [13], for tensor data. Traditional dictionary learning methods

treat tensor data as vector data by collapsing each tensor to a vector. This disregards



the multidimensional structure in tensor data and results in dictionaries with large
number of free parameters. With the increasing availability of large and high dimen-
sional data sets, it is crucial to keep sparsifying models reasonably small to ensure their
scalable learning and efficient storage. Our focus in this work is on learning of compact
DL models that yield sparse representations of tensor data. Recently, some works have
turned to tensor decompositions such as the Tucker decomposition [14] and CANDE-
COMP/PARAFAC decomposition (CPD) [I5] for learning of structured dictionaries
that have fewer number of free parameters. In particular, separable DL reduces the
number of free parameters in the dictionary by assuming that the transformation on
the sparse signal can be be implemented by performing a sequence of separate trans-
formations on each signal dimension [I6]. While separable DL methods enjoy lower
sample/computational complexity and better storage efficiency over traditional DL [17]
methods, the separability assumption among different modes of tensor data can be
overly restrictive for many classes of data [18], resulting in an unfavorable trade-off
between model compactness and representation power. In this work, we overcome this
limitation by proposing a generalization of separable DL that we interchangeably refer
to as learning a mixture of separable dictionaries or low separation rank DL (LSR-DL).
This model provides better representation power than the separable model while hav-
ing smaller number of parameters than traditional DL by allowing for increasing the
number of parameters in structured DL in a consistent manner. To show the usefulness
of our proposed model, we study the identifiability of the underlying dictionary in this
model and derive the sufficient number of samples for local identification of the true
dictionary under the LSR-DL model. Our results show that while the sample com-
plexity of LSR-DL is slightly higher sample complexity than that of separable DL, it
can still be significantly lower than that of traditional DL. We further develop efficient
batch and online numerical algorithms to solve the LSR-DL problem.

Our third main contribution, which appears in Chapter focuses on using an
information theoretic approach to derive minimax risk (best achievable performance
in the worst case scenario) of estimating the true parameter variables in a linear re-

gression problem with tensor-structured data. Our results show a reduction in sample



complexity required for achieving a target worst case risk compared to the case where
the data samples are treated as vectors and thus demonstrate the benefits of preserv-
ing the spatial structure of data and exploiting the multi-directional interdependence
among model variables in the tensor linear regression model.

Finally, in Chapter we present our fourth contribution. In this chapter we
study the principal component analysis (PCA) problem when data arrives in a stream-
ing fashion. We investigate the effect of adding a momentum term to the update rule
of well-known stochastic PCA algorithm called Oja’s method. While the efficacy of
momentum-based acceleration for stochastic algorithms is not well-established in gen-
eral, our proposed multi-stage accelerated variant of Oja’s method achieves near opti-
mal convergence rate in both in both noiseless case (bias term) and noisy case (variance

term).



Chapter 2

Global Optimality in Inductive Matrix Completion

2.1 Introduction

Matrix completion [3, [I9] is an important technique in machine learning with applica-
tions in areas such as recommendation systems [20] or computer vision [2I]. The task
is to reconstruct a low-rank matrix M* € R™*"2 from a small number of given entries.
Theoretical results in the literature show that the number of required samples for ex-
act recovery is O(rnlog®n) where n = ny + ny and r = rank(M*) [22, 23]. In some
applications, the algorithm may have access to side information that can be exploited
to improve this sample complexity. For example, in many recommendation systems
where the given entries of M* represent the ratings given by users (row entities) to
items (column entities), the system has additional information about both user profiles
and items.

Among the many approaches to incorporate side information [24H30], inductive ma-
triz completion (IMC) [24, 25] models side information as knowledge of feature spaces.
This is incorporated in the model by assuming that each entry of the unknown matrix
of interest M* € R™*"2 ig in form of M, = xZ-TW*yj, where x; € R and yj € R%
are known feature vectors of i-th row (user) and j-th column (item), respectively. The
low-rank matrix completion problem in this case can be formulated as recovering a
rank-r matrix W* € R%4*% guch that the observed entries are M;; = xiTW*yj. In
fact, the IMC problem translates to finding missing entries of M* as recovering matrix
W* from its measurements in form of x,; W*y; = <x2-ij, W*> for (i,7) € Q.

Using this model, the sample complexity decreases considerably if the size of matrix
M is much larger than W*. Another advantage of this model is that rows/columns of

the unknown matrix can be predicted without knowing even one of their entries using



the corresponding feature vectors once we recover W* using the given entries. This is
not possible in standard matrix completion since a necessary condition for completing a
rank-r matrix is that at least r entries of every row and every column are observed [3].

The nonconvex rank-r constraint makes the problem challenging. There are two
main approaches in the matrix recovery literature to impose the low-rank structure in
a tractable way. The first approach is using convex relaxations of the nonconvex rank-
constrained problem [3], 11l 23, BIH33]. In the IMC problem, at least O(rdlogdlogn)
samples are required for recovery of W* using a trace-norm relaxation, where d =
dy + do [24, 25]. The trace-norm approach has also been proposed for the IMC problem
with noisy features where the unknown matrix is modeled as XW*Y7T + A where the
residual matrix N models imperfections and noise in the features [27].

Another approach uses matrix factorization, where the di x do matrix W is ex-
pressed as W = UVT, where U € RU*" and V € R®>" [20, 34]. Jain et al. show
that alternating minimization (AM) converges to the global solution of matrix sens-
ing and matrix completion problems in linear time under standard conditions [34].
Inspired by this result, Zhong et al. [25] show that for the factorized IMC problem,
O(r3dlog d max{r,logn}) samples are sufficient for e-recovery of W* using AM.

On the computational side, the per-iteration cost of the solvers of the convex matrix
estimation problem is high since they require finding the SVD of a matrix in case of
implementing singular value thresholding [35] or proximal gradient methods [36], or
they involve solving a semi-definite program. On the other hand, both empirically
and theoretically, stochastic gradient descent (SGD) and AM have been shown to find
good local optima in many nonconvexr matrix estimation problems and that suitable
modifications to the objective function can find global optima [34, 37]. These simple
local search algorithms have low memory requirement and per-iteration computational
cost, due to the fact that in low-rank problems r < di,ds. Although the IMC model
reduces the dimensionality of the matrix estimation problem from n; X ng to di X da,
the lower complexity of the solvers of the factorized model is appealing [25].

On the theoretical side, the trace-norm based model is intriguing in that it allows

for employing well-established tools to analyze the statistical performance of the convex



program. Although the matrix factorization based models in general are theoretically
less understood, recent works have studied the optimization landscape of some of these
nonconvex problems and show that their objective functions are devoid of “poor” local
minima. Problems such as matrix completion [4, [5], matrix sensing [I}, 2], phase re-
trieval [7], deep (linear) neural networks [38] [39] are amenable to this approach. To the
best of our knowledge, this work is the first to study the geometry and the statistical
performance of IMC under the factorized model.

The work in this chapter is motivated by the recovery guarantees of AM for the
(nonconvex) factorized IMC problem. Our key technical contribution is to use con-
centration inequalities to show that given a sufficient number of measurements, the
ensemble of sensing matrices Xz-y? almost preserves the energy of all rank-2r matrices,
i.e. it satisfies restricted isometry property of order 2r. This allows us to use the frame-
work of Ge et al. [5] for matrix sensing problems. Our final result is that given at least
O(dr max{r?,log® n}) observations, in the (regularized) factorized IMC problem i) all
local minima are globally optimal, ii) all local minima fulfill UVT = W*, and 4ii) the
saddle points are escapable in the sense that the Hessian at those points has at least
one negative eigenvalue.

Our result implies that the success of AM in the nonconvex IMC problem is to some
degree a result of the geometry of the problem and not solely due to the properties of
the algorithm. In fact, any algorithm with guaranteed convergence to a local minimum,

e.g. SGD [37], can be used for solving the factorized IMC problemm

2.2 Problem Model

Notation and Definitions. Throughout this chapter, vectors and matrices are, re-
spectively, denoted by boldface lower case letters: a and boldface upper case letters: A.
We denote by A;; the j-th element of the i-th row of A. The smallest eigenvalue of A
is denoted by Amin(A). In matrix completion, the set of indices of the observed (given)

entries of an incomplete matrix A € R"*"2 is denoted by Q with size m = |Q2]. Also,

!The results presented in this chapter have been published in Proceedings of 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing [40]



A denotes the linear projection of A onto the space of n; X no matrices whose entries
outside  are zero. The inner product of two matrices is defined as (A, B) = Tr(ATB).
In a noncovex optimization problem, a poor local minimum is a local minimum which
is not globally optimum.

We repeatedly use the (matriz) restricted isometry property (RIP) [31] and the strict

saddle property [37, 41] defined below.

Definition 1. A linear operator A(-) : R4*% — R™ satisfies r-RIP with 6, RIP

constant if for every W € R4 >*% sych that rank(W) < r it holds that
(1= 6,) W% < JAW)3 < (146,) [[W]% .

Definition 2. A twice differentiable function f(x) is strict saddle if Amin (V2f(2)) < 0

at its saddle points.

Inductive Matrix Completion. Consider the nonconvex low-rank matrix completion

problem

min  [|[M§, — Mg|% s.t. rank(M) <. (2.1)
MeRn1 %12

In an inductive matrix completion problem, the underlying matrix has the form M* =
XW*YT where the side information matrices X € R"*% and Y € R"2*% are known
and W* = U*V*T with U* € R1*" V* € R2*" ig unknown. Therefore, the problem

can be written as

min ||(M* - XWYT)
WcRd1 xd2

s.t.  rank(W) <r. (2.2)

2
allr

This problem can be reformulated into an unconstrained nonconvex problem by ex-
pressing W as UVT, where U € RUX7 V¢ Ré2xT:

min f(U,V) = |(M* —XUVTYT) ||+ R(U,V) (2.3)

2



The regularization term R(U, V) is added to account for the invariance of the asymmet-

ric factorized model to scaling of the factor matrices by reciprocal values. A common

choice that suits our model is R(U, V) = 3|UUT — VVT |2 [2, A].

The objective function f(U, V) in problem (2.3)) alternatively can be written as

. 1
FOV) = 30 (Mg = Gyl UVT) 4 [[UUT - VT
(4,5)€Q
T

(xiy], UVT) =x]UVTy,;.

where x! and yf respectively are the ith and jth rows of X and Y. Observe that

This shows that the IMC problem can be thought of as a matrix sensing
problem where we are given linear measurements of the d; x do matrix W* by sensing
matrices A;; = xiij. Define the linear operator A such that A(W) is a vector whose
elements are the measurements ﬁ (Aij, W).

In this chapter, we make the following assumptions regarding the side information

matrices and the sampling model.

Assumption 1 (Side information). The side information matrices satisfy X'X =
nily, and YIY = nQId2E| We also make the assumption that for any given matrices
U and V with orthogonal columns, the rows of the side information matrices (feature
vectors) satisfy Hﬂszg < ur and HVyjHZ < i, where T = max(r,logni,lognsy) and p
is a positive constant. This assumption, for example, is satisfied with high probability
when the side information matrices X and Y are instances generated from a random
orthonormal matriz model (the first di (respectively da) columns) and rescaled by \/n,

(respectively \/n,) [3, [25)].

Assumption 2 (Sampling model). Indices i and j are independent and uniformly

distributed on {1,2,...,n}.

2This is not a restrictive assumption since we can apply orthonormalization methods such as Gram-
Schmidt process [42] and then rescale to ensure this assumption is satisfied.
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2.3 Geometric Analysis

We are interested in the geometric landscape of the objective function in the IMC prob-
lem . We will show that simple algorithms like AM can recover the true underlying
matrix with arbitrary accuracy because given enough observations, the objective func-
tion in this problem 4) has no poor local minima, 4i) has only local minima which satisfy
UVT = W*, and iii) is strict saddle.

We employ the framework developed by Ge et al. [5] for matrix sensing to show
that the objective function of the IMC problem satisfies properties i), i), and

ii1). Theorem [l states the main result of this chapter.

Theorem 1. Consider the IMC problem seen as a matrix recovery problem with
sensing matrices A;; = xiy;fp for (i,j) € Q, such that Assumptions and@ hold.
Let 7 = max{r,logny,logna}. If the number of measurements is m = O (,uzdrzf), then
there exists a positive constant h such that with probability higher than 1 —2exp (—hm),
the nonconvex objective function f(U, V) has the following properties: i) all its local
minima are globally optimal , ii) all its local minima satisfy UVT = M*, and iii) it

satisfies the strict saddle property.

The proof strategy here is to show that at any stationary point of f(U, V) (and its
neighborhood), the “difference” A between the point and the true solution (which is
basically the Euclidian distance between the point and its nearest global minimum) is
a descent direction. This means that (U, V) cannot be local minimum unless A = 0
(no poor local minima and exact recovery) and that the Hessian at the saddle points

cannot be positive semidefinite (strict saddle property). To this end, following the

U
proposed strategy by Ge, Jin, and Zheng [5], we construct B = € Rlditd2)xr
A%

W = UVT and N = BB” and reformulate problem (2.3) as the positive semidefinite

(PSD) low-rank matrix recovery problem

min f(B) = | T(N) — T(BB)]5. (2.4)
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*

where B* = , N* = B*B*T | and T is a linear operator such that 7(N) is an
V*

ensemble of m measurements (T;;, N') such that

(T, V) = — (4(Ay5, W) +[UUT - VVT3).

3=

The following definition captures the invariance of the solution of symmetric matrix

recovery to rotation, negation, or column permutation.

Definition 3. Given matrices B,B* € R¥", define the rotation invariant difference

A(B;B%) 2B - B*D, where D=  argmin  |B — B*Z||7.
7:27Z7=7T7=I,

We use the shorthand A for A(B;B*) in the rest of this chapter. The second
order term in the Taylor expansion of f(B) becomes dominant in the neighborhood of
stationary points. Therefore it suffices to show that 67 V2 f(B)d, where § = vec(A),
is strictly negative for points in these regions, except when A = 0, to prove that A
is a descent direction. Theorem [2| states that if linear operator B is RIP, then we can
show 67V2f(B)§ is strictly negative in the neighborhood of stationary points unless
they correspond to N* (and its submatrix W*) and consequently M* = XW*Y7 | the

ground truth matrix in problem ([2.3)).

Theorem 2. Consider the objective function of the PSD matrix recovery problem
(2.4). If the measurement operator T satisfies (2r,09,)-RIP, then any point satisfy-
ing [Vf(B)|lp < &, the quadratic form §TV2f(B)d for § = vec(A) defined above is

negative unless ||Allp < K&/ (1 — 5d2,) for some positive constant K.

Proof sketch. The proof is based on the following equality (Lemma 7 in [5]):
2 *
8TV f(B)d = ||T (AAT)||, = 3T (N —N*)|5 +4(VF(B),A). (2.5)

Using the RIP property of 7, which implies that the measuring operator captures

the energy of the observed matrix with small deviation, and applying the bounds
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HAATH? <2[N = N*|% and k|| A% < ||V = NV*||% (Lemma 6 in [5]) results in
8"V f(B)S < —k (1 —562,) | A7+ 4¢ |A| - (2.6)

Therefore the bilinear form on the left cannot be nonnegative unless we have HA||2F <
1/ (k (1= 555,)).
O

Now, we show that the linear operator A and consequently 7 are 2r-RIP. Note that
it is important that we show 2r-RIP rather that r-RIP because in Theorem [2 7 is
applied to B — B* which can be of rank at most 2r. It also guarantees that the null
space of T does not include any matrices of rank 2r or less, which is a necessary and

sufficient condition for unique recovery [43], 44].

Theorem 3. Consider the IMC problem seen as a matriz recovery problem with
sensing matrices A;; = xiij for (i,7) € Q, such that Assumptions and@ hold. If the
number of measurements m = O (p?di*r log(36v/2/6)/6?), then there exists a positive
constant h such that with probability higher than 1 — 2exp (—hm), the linear operator

A(+), seen as an ensemble of m measurements ﬁ (Ayj,-), ts 2r-RIP with RIP constant

dor = 20.

Proof. We show that HA is close to HWH? for all rank-2r matrices W, ie.,

s
|HA H2 HWHF‘ < 627"HWHF' We use Bernstein’s inequality to find a bound on
the deviation of the sum of m random variables \/—%<xiy§-ﬁ, W> from their mean HWH?
for a given rank-2r matrix W. This is formally stated in Lemma [l Then we find a

similar bound for all rank-2r (or less) matrices.

Lemma 1. Consider the same setting as Theorem E For a given matriz W of rank
2r, with probability at least 1 — Cexp (—em), for some positive constatnts C' and ¢, we

have

(1= b20) [W < JAW) 5 < (14 20) [ W[
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Proof of Lemma([]l In order to show that the average random measurement, denoted
by ||A(W)H% =1 > i (Aij,W>2, is close to its expectation ||{\7\//'H2 , we use Bernstein’s

inequality [45]:

—me? /2 )

P(|Z - >S2(
(17 =nz| > €) < 2exp w2 Var(Zij) + Bze/3

where Z = % > j Z;i; and 1z is the mean of the random variables. To apply Bernstein’s
inequality, we need to find the expectation, the variance (or an upper bound on the
variance), and an upper bound on the absolute value of the random variables in the
summand, denoted by Z;; = X?WyjijVin. Note that X and Y are known orthogonal
matrices and the only source of randomness is the choice of (i, 7). First, we find the

mean of the random variables:

nz =E X?WYjY?WXi}

. _
=E |/ XUV' Y7e;e] YWTX ¢}

—E[Tr (\NITYTeje?YWTXTeieiTij)}
=Tr (VIYTE [eje] | YWTXTE [e;e] | XU)

2 (VIYTYWTXTXU)

(2.7)

where W = UVT, equality (a) follows from E [e;e] | = n%Im and (b) follows from

7

Assumption |1l Next we find an upper bound Bz on |Z;;|:

A~ AN~

~~~T T
Zijl = x] USV y; -y, USV x;

(

~ 2 ~
=t [V ], 0"

IN

N N N 2
TG T
%, 2 i 2)

2

2

< 2202, (2.8)
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where USV" is the SVD of W, o = HWHQ, and the last inequality follows from

Assumption |1l Finally, for the variance of the random variables we have

L g< L 2
o %:Var(Z,]) < ZJ:E (23]

a

1
< —B, E|Z;;
2 e

—
=

< Pl | W%, (2.9)

where inequality (a) is due to the fact that Z;;’s are nonnegative random variables.

Using Bernstein’s inequality we get the following.

__ — 2/2
P AWQ—W2)> <2 - me’/
(IIAW)IE ~ W] > ¢) < 2exp TS VarlZy) 5 B
2/9
<2exp | — _me’/ . (2.10)
21202 W2 + r220%e/3

Set € = § |W||%. We have

Sz 1 . 52| [WI[/2
2 _ 2 2) <9 . m F
P(IIIAW)3 W] > 5[ WIi) < exp( L33

md?/2
< 2exp <_M2T2(1‘f{5/3)> . (2.11)

Set § =4/ W. If m > 4u721og(2/p) we have § < 1. Therefore,

N —~ —~ mé>
(LA - IWI3| > S1WIE) <20 ().

This concludes the proof of Lemma O

Now we return to the proof of Theorem[3] The rest of the proof is based on Theorem

2.3 in [46]. We showed in Lemma [1| that for a given matrix of rank at most 2r,

P([IAW)IB ~ [WIE| > IW|E) < Cexplem),
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for positive constants C' and c¢. In order to extend the result such that a similar
result holds for all rank-2r (or less) matrices, we use the union bound for an e-net
[47] of the space of such matrices with unit Frobenius norm. For the set Sg. =

{\7\7 € Réxd . rank(W) < 2r,

WH = 1}, there exists an ¢-net S¢. C S such that
F

IS4 | < (9/¢)Rd+1)2r [43 [46]. Tt follows from and the union bound that

IP’( max

Wesd HA (W> Hz B 1‘ - 5) < |84,|C exp(—cm).
2r

Setting € = §/(41/2) results in

IP’( max

Wesd HA <W> H2 B 1’ > 5) < Cexp ((Zd +1)2r log(36v/2/6) — cm)

2

= Cexp (C/dT — cm)

< Cexp(—hm), (2.12)

where ¢ = 6log(361/2/6) and h = ¢ — ¢'/(K). We need m > Kdr so that the last
inequality above holds, and we need K > ¢//c so that h becomes positive. This means
that m > ¢/dr/c. Plugging in the values for C, ¢, and ¢, we get that if with probability

at least 1 — 2exp (—hm),

max
Wesy,

4o 1] <5

Tt follows from this bound that for all W of rank at most 2r that with probability at

least 1 — 2exp (—hm) [46],

2

1-25 < HA(H%'%) 14 2.

2

3An e-net is a set of points such that the union of radius-e balls centered at these points covers the
space
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Since A is a linear operator, for all W with rank(W) < 2r,
(1—26) [W[E < [A(W)II3 < (1+20) W]

This means that A is 2r-RIP with do, = 20 when m = O (p2di®rlog(36v/2/6)/6%). O

Finally, we show that the sensing operator 7 is RIP on (d; + d2) X (d1 + d2) PSD
matrices of rank at most 2r. Any of these PSD matrices can be written in form of
uu” Uv” ~ ~
N=|_ _ __ where U € R4*?" and V € R%*2". We defined 7 such that
viu vvT
TW) = 4ATVT) & [TOT|% 4 [|VVT|% — 2| W[ where W = OVT. Since

IVl = [OU" |+ [V VTG + 2 W

if we have

) W < [AW)5 = W1 < (1+6) [WII

s -

then it follows that
(1=20) [N < [TW)II5 = Wl < (+28) [|V]]5.

Note that the deduction of the RIP of 7 from the RIP of A is thanks to the choice of
the regularizer in ([2.3).

2.4 Conclusion and Future Work

In this chapter, we discussed the geometric landscape of the inductive matrix completion
(IMC) problem. The IMC model incorporates the side information in form of features of
the row and column entities (x;’s and y;’s) and can be formulated as a low-rank matrix
recovery problem where each observed entry of M* = XW™*Y is seen as a measurement
of W*, that is M;; = xl-TW*yj. Motivated by the recovery guarantees of local search
algorithms like AM for the factorized IMC problem [25], we study the optimization

landscape of the factorized IMC problem. Using a framework developed by Ge et al. [5]
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for matrix sensing problems, we show that, given O(max{r? logZn}rd) observations,
for the (regularized) factorized IMC problem ) there are no poor local minima, %) the
global minima satisfy UVT = W*, iii) The Hessian at the saddle point has at least
one negative eigenvalue.

This result shows that the recovery guarantees of AM in the IMC problem is not
merely due to the algorithm and the geometry of the problem plays an important role.
In fact, any algorithm, such as SGD, that can efficiently escape saddle points and find
a local minimum can be used for solving the factorized IMC problem.

The IMC model has been studied extensively in the recent years. It has been
employed in a variety of applications [48-51] and has been extended to more general
settings such as IMC with noisy side information [27], high rank IMC [52], and non-
linear IMC [53]. However, there are still many possible directions that have not yet
been adequately explored. For example, tensor completion with side information is an
area that although has received some attention in the recent years. A natural way to
extend the IMC model to tensors is based on Tucker tensor decomposition. The Tucker

decomposition factorizes an N-way tensor M € R™:"2 4~ i the following manner:

M =W x;1U; xo Uz x3--- xny Up,

where W € RP1XP2XXPN denotes the core tensor, U,, € R%*Pr denote factor matrices
along the n-th mode of A for n € [N] and x,, denotes the mode-n product between a
tensor and a matrix. Similar to inductive matrix completion, in many cases we have
side information in form of feature matrices for the n mode entities, i.e. knowledge
of the latent spaces of the underlying tensor. While there are a few recent works
that explore this approach to incorporate side information into tensor completion [54-
56], our understanding of this problem in terms of sample complexity, optimization
landscape, and many other aspects is limited. While we leave extension the study of
tensor completion with side information to future work, in the next chapter we employ
some of the analytical tools that we use in Chapter [2| to provide recovery guarantees

for a tensor problem, namely structured dictionary learning for tensor data.
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Chapter 3

Learning Mixtures of Separable Dictionaries for Tensor
Data

3.1 Introduction

Many data processing tasks such as feature extraction, data compression, classification,
signal denoising, image inpainting, and audio source separation make use of data-driven
sparse representations of data [8,[9] [I3]. In many applications, these tasks are performed
on data samples that are naturally structured as multiway arrays, also known as mul-
tidimensional arrays or tensors. Instances of multidimensional or tensor data include
videos, hyperspectral images, tomographic images, and multiple-antenna wireless chan-
nels. Despite the ubiquity of tensor data in many applications, traditional data-driven
sparse representation approaches disregard their multidimensional structure. This can
result in sparsifying models with a large number of parameters. On the other hand,
with the increasing availability of large data sets, it is crucial to keep sparsifying models
reasonably small to ensure their scalable learning and efficient storage within devices
such as smartphones and drones.

Our focus in this chapter is on learning of “compact” models that yield sparse
representations of tensor data. To this end, we study dictionary learning (DL) for
tensor data. The goal in DL, which is an effective and popular data-driven technique
for obtaining sparse representations of data [8, [0, [13], is to learn a dictionary D such
that every data sample can be approximated by a linear combination of a few atoms
(columns) of D. While DL has been widely studied, traditional DL approaches flatten
tensor data and then employ methods designed for vector data [I3, 57]. Such sim-
plistic approaches disregard the multidimensional structure in tensor data and result

in dictionaries with a large number of parameters. One intuitively expects, however,



19

ATAT 1A TN TAATTUNS FRAFVENFLREGEDEPLrF SSNIEZMEQNSESNELE
AMAMTATNTAATYANS EVEAENFFFEEEREFER S99 W5 25 S 5 580 EwEnss
EFLFELIFIFLLIFLIE SNl dENan S SIumesedn=nnpnes
EFEFELEPFLLF LT T 00T 0G0 00 0 0 0l 7070 0 0 G 0 e P D 5 A
IMPOAA N NAME NN NN LNTN PWAM NS N I P R T N R O = R
UMUM A M™MTUUTTUTS TN SA NN GASENHM RGOSR

HIPTHTE TR ATTRIRPTETRITO 6 0 D 50 NN Y O O O O 2 O 0 0 0 N 8 O O e
EFLEFELEPFLLFFLED IO COLS VI R LA COTREP LArS 555 0o U 0 N 0 o D 0 0 N
L P Pl Y Wl U O P P T O N A 5 8 T
EFLFELEILALIFLIE NAVEANWAAA NN NYEY 586N LNZ ey ama

AL 0 A T LA O LD G O O T 25 I S e 2
AN N NS N AN AN P e Y Y D N S N 08 O R
EFLFILDPT LT L n T 0 0 0 O I 0 S DA 2 o e R e
VA 0O Y Y UL Y PO L T T O A
YA ANV AAYYANS ] COHMCUR DM LAY 50 5 M 0 S 3 I
EFEFEREPrLLF LTS 0007 I 007 0 I 0D N0 IO 6 R O D

Figure 3.1: Dictionary atoms for representing RGB image Barbara for separation rank
(left-to-right) 1, 4, and 256.

that dictionaries with smaller number of free parameters that exploit the correlation
and structure along different tensor modes are likely to be more efficient with regards
to storage requirements, computational complexity, and generalization performance,
especially when training data are noisy or scarce.

To reduce the number of parameters in dictionaries for tensor data, and to bet-
ter exploit the correlation among different tensor modes, some recent DL works have
turned to tensor decompositions such as the Tucker decomposition [14] and CANDE-
COMP/PARAFAC decomposition (CPD) [15] for learning of “structured” dictionaries.
The idea in structured DL for tensor data is to restrict the class of dictionaries dur-
ing training to the one imposed by the tensor decomposition under consideration [58].
For example, structured DL based on the Tucker decomposition of N-way tensor data
corresponds to the dictionary class in which any dictionary D € R™*P consists of the
Kronecker product [59] of N smaller subdictionaries {D,, € R™»*Pn3N_ [17 [60/64].
The resulting DL techniques in this instance are interchangeably referred to in the
literature as separable DL or Kronecker-structured DL (KS-DL).

In terms of parameter counting, the advantages of KS-DL for tensor data are
straightforward: the number of parameters needed to be estimated and stored for un-
structured dictionary learning is mp = HnNzlmnpn, whereas the KS-DL model requires
only the sum of the subdictionary sizes Z]n\f:l mnpn. Nonetheless, while existing KS-
DL methods enjoy lower sample/computational complexity and better storage efficiency
over unstructured DL [I7], the KS-DL model makes a strong separability assumption

among different modes of tensor data. Such an assumption can be overly restrictive for
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many classes of data [18], resulting in an unfavorable tradeoff between model compact-
ness and representation power.

Here, we overcome this limitation by proposing and studying a generalization of
KS-DL that we interchangeably refer to as learning a mizture of separable dictionaries
or low separation rank DL (LSR-DL). The separation rank of a matrix A is defined as
the minimum number of KS matrices whose sum equals A [65], [66]. The LSR-DL model
interpolates between the under-parameterized separable model (a special case of LSR-
DL model with separation rank 1) and the over-parameterized unstructured modelﬂ
Figure provides an illustrative example of the usefulness of LSR-DL, in which one
learns a dictionary with a small separation rank: while KS-DL learns dictionary atoms
that cannot reconstruct diagonal structures perfectly because of the abundance of hor-
izontal /vertical (DCT-like) structures within them, LSR-DL also returns dictionary

atoms with pronounced diagonal structures as the separation rank increasesﬂ

3.1.1 Main Contributions

We first propose and analyze a generalization of the separable DL model—which we
call a mixture of separable dictionaries model or LSR-DL model—that allows for better
representation power than the separable model while having smaller number of param-
eters than standard DL. Our analysis assumes a generative model involving a true LSR
dictionary for tensor data and investigates conditions under which the true dictionary
is recoverable, up to a prescribed error, from training tensor data. Our first major
set of LSR dictionary identifiability results are for the conventional optimization-based
formulation of the DL problem [9], except that the search space is constrained to the

class of dictionaries with maximum separation rank r (and individual mixture terms

"While KS-DL corresponds to Tucker decompostition, its generalization LSR-DL does not correspond
to any of the well-known tensor factorizations.

2The results presented in this chapter have been published in Proceedings of 2017 IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing [67], Proceedings
of 2019 IEEE International Symposium on Information Theory [68], and IEEE Transactions on Signal
Processing [69].
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having bounded norms when N > 3 and r > 2)E| Similar to conventional DL problems,
this LSR-DL problem is nonconvex with multiple global minima. We therefore focus on
local identifiability guarantees, meaning that a search algorithm initialized close enough
to the true dictionary can recover that dictionaryﬁ To this end, under certain assump-
tions on the generative model, we show that Q(T(EnNz1 mnpn)pr_z) samples ensure
existence of a local minimum of the constrained LSR-DL problem for Nth-order tensor
data within a neighborhood of radius p around the true LSR dictionary.

Our initial local identifiability results are based on an analysis of a separation rank-
constrained optimization problem that exploits a connection between LSR (resp., KS)
matrices and low-rank (resp., rank-1) tensors. However, a result in tensor recovery
literature [70] implies that finding the separation rank of a matrix is NP-hard. Our
second main contribution is development and analysis of two different relaxations of
the LSR-DL problem that are computationally tractable in the sense that they do not
require explicit computation of the separation rank. The first formulation once again
exploits the connection between LSR matrices and low-rank tensors and uses a convex
regularizer to implicitly constrain the separation rank of the learned dictionary. The
second formulation enforces the LSR structure on the dictionary by explicitly writing
it as a summation of r KS matrices. Our analyses of the two relaxations once again
involve conditions under which the true LSR dictionary is locally recoverable from
training tensor data. We also provide extensive discussion in the sequel to compare and
contrast the three sets of identifiability results for LSR dictionaries.

Our third main contribution is development of practical computational algorithms,
which are based on the two relaxations of LSR-DL, for learning of an LSR dictionary
in both batch and online settings. We then use these algorithms for learning of LSR
dictionaries for both synthetic and real tensor data, which are afterward used in de-
noising and representation learning tasks. Numerical results obtained as part of these

efforts help validate the usefulness of LSR-DL and highlight the different strengths and

3While we also provide identifiability results for LSR dictionaries without requiring the boundedness
assumption, those results are only asymptotic in nature; see Section for details.

4This is due to our choice of distance metric, which is the Frobenius norm.
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weaknesses of the two LSR-DL relaxations and the corresponding algorithms.

3.1.2 Relation to Prior Work

Tensor decompositions [71], [72] have emerged as one of the main sets of tools that help
avoid overparameterization of tensor data models in a variety of areas. These include
deep learning, collaborative filtering, multilinear subspace learning, source separation,
topic modeling, and many other works (see [73, [74] and references therein). But the use
of tensor decompositions for reducing the (model and sample) complexity of dictionaries
for tensor data has been addressed only recently.

There have been many works that provide theoretical analysis for the sample com-
plexity of the conventional DL problem [75-78]. Among these, Gribonval et al. [77]
focus on the local identifiability of the true dictionary underlying vectorized data using
Frobenius norm as the distance metric. Shakeri et al. [I7] extended this analysis for
the sample complexity of the KS-DL problem for Nth-order tensor data. This analysis
relies on expanding the objective function in terms of subdictionaries and exploiting the
coordinate-wise Lipschitz continuity property of the objective function with respect to
each subdictionary [I7]. While this approach ensures the identifiability of the subdic-
tionaries, it requires the dictionary coefficient vectors to follow the so-called separable
sparsity model [79] and does not extend to the LSR-DL problem. In contrast, we pro-
vide local identifiability sample complexity results for the LSR-DL problem and two
relaxations of it. Further, our identifiability results hold for coefficient vectors following
the random sparsity model and the separable sparsity model.

In terms of computational algorithms, several works have proposed methods for
learning KS dictionaries that rely on alternating minimization techniques to update
the subdictionaries [61], [63], [79]. Among other works, Hawe et al. [60] employ a Rieman-
nian conjugate gradient method combined with a nonmonotone line search for KS-DL.
While they present the algorithm only for matrix data, its extension to higher-order
tensor data is trivial. Schwab et al. [80] have also recently addressed the separable
DL problem for matrix data; their contributions include a computational algorithm

and global recovery guarantees. In terms of algorithms for LSR-DL, Dantas et al. [62]
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proposed one of the first methods for matrix data that uses a convex regularizer to
impose LSR on the dictionary. One of our batch algorithms, named STARK [R1], also
uses a convex regularizer for imposing LSR structure. In contrast to Dantas et al. [62],
however, STARK can be used to learn a dictionary from tensor data of any order.
The other batch algorithm we propose, named TeFDiL, learns subdictionaries of the
LSR dictionary by exploiting the connection to tensor recovery and using tensor CPD.
Recently, Dantas et al. [82] proposed an algorithm for learning an LSR dictionary for
tensor data in which the dictionary update stage is a projected gradient descent algo-
rithm that involves a CPD after every gradient step. In contrast, TeFDiL only requires
a single CPD at the end of each dictionary update stage. Finally, while there exist a
number of online algorithms for DL [57], [83],[84], the online algorithms developed in here

are the first ones that enable learning of structured (either KS or LSR) dictionaries.

3.2 Preliminaries and Problem Statement

Notation and Definitions: We use underlined bold upper-case (A), bold upper-
case (A), bold lower-case (a), and lower-case (a) letters to denote tensors, matrices,
vectors, and scalars, respectively. For any integer p, we define [p] 2 {1,2,---,p}. We
denote the j-th column of a matrix A by a;. For an m x p matrix A and an index
set J C [p], we denote the matrix constructed from the columns of A indexed by J as
A 7. We denote by (A,)N_, an N-tuple (Aq,---,Ay), while {A,,})_; represents the
set {Ay, - ,Anx}. We drop the range indicators if they are clear from the context.

Norms and inner products: We denote by ||v||, the £, norm of vector v, while we use
|All2, |Al|F, and ||Al],, to denote the spectral, Frobenius, and trace (nuclear) norms of
matrix A, respectively. Moreover, ||Alj2. = max;||a;|2 is the maz column norm and
A1 £ >_;llajll1. We define the inner product of two tensors (or matrices) A and B
as (A, B) £ (vec(A), vec(B)) where vec(-) is the vectorization operator. The Euclidean
distance between two tuples of the same size is defined as ||(A,)N_; — (Bn)2_, || P =
VI AL - Bl

Kronecker product: We denote by A ® B € R™™2XP1P2 the Kronecker product of
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matrices A € R™*P1 gnd B € R™2*P2, We use ®sz1 Ai2A QA ® - @Ay for
the Kronecker product of N matrices. We drop the range indicators when there is no
ambiguity. We call a matrix a (N-th order) Kronecker-structured (KS) matrix if it is a
Kronecker product of N > 2 matrices.

Definitions for matrices: For a matrix D with unit fo-norm columns, we define
the cumulative coherence g as s = max| z|<s MaX; ¢ 7 HDngHl. We say a matrix D
satisfies the s-restricted isometry property (s-RIP) with constant dy if for any v € R®
and any J C [p] with |7] < 5, we have (1 — 8,)[v]3 < [IDv]3 < (1+6,)|v]3

Definitions for tensors: We briefly present required tensor definitions here: see
Kolda and Bader [7I] for more details. The mode-n unfolding matrix of A is denoted
by A (), where each column of A, consists of the vector formed by fixing all indices
of A except the one in the nth-order. We denote the outer product (tensor product) of
vectors by o, while x,, denotes the mode-n product between a tensor and a matrix. An
N-way tensor is rank-1 if it can be written as outer product of NV vectors: vio---ovy.
Throughout this chapter, by the rank of a tensor, rank(A), we mean the CP-rank of
A, the minimum number of rank-1 tensors that construct A as their sum. The CP
decomposition (CPD), decomposes a tensor into sum of its rank-1 tensor components.
The Tucker decomposition factorizes an N-way tensor A € RM1XM2X"XMN a9 A =
X x1 D1 X9 Dg X3 --- xny Dy, where X € RP1*P2X"XPN denotes the core tensor and
D,, € R™»*Pr denote factor matrices along the n-th mode of A for n € [N].

Notations for functions and spaces: We denote the element-wise sign function by
sgn(-). For any function f(x), we define the difference Af(x1;x2) = f(x1) — f(x2).
We denote by Uy, x, the Euclidean unit sphere: Uy, = {D € R™*P||D||p = 1}. We
also denote the Euclidean sphere with radius o by odfy,xp. The oblique manifold in
R™*P is the manifold of matrices with unit-norm columns: Dp,x, 2 (D e R™*PlYj €
[p], dfdj = 1}. We drop the dimension subscripts and use only D when there is no
ambiguity. The covering number of a set .4 with respect to a norm || - ||, denoted by
Ny (A, €), is the minimum number of balls of *-norm radius € needed to cover A.

Dictionary Learning Setup: In dictionary learning (DL) for vector data, we
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assume observations y € R™ are generated according to the following model:
y =D%" + ¢, (3.1)

where D? € Dyyxp C R™*P is the true underlying dictionary, xY € R? is a randomly
generated sparse coefficient vector, and € € R™ is the underlying noise vector. The goal
in DL is to recover the true dictionary given the noisy observations Y £ {yl}lL:1 that
are independent realizations of . The ideal objective is to solve the statistical risk
minimization problem

min fp(D) 2 Ey~p fy(D), (3:2)

where P is the underlying distribution of the observations, C C D, is the dictionary
class, typically selected for vector data to be the same as the oblique manifold, and

a el 2
fy(D) = inf o Iy = Dx|l; + Allx[|i. (3.3)

However, since we have access to the distribution P only through noisy observations
drawn from this distribution, we resort to solving the following empirical risk minimiza-

tion problem as a proxy for Problem (3.2):

. A 1 L
min Fy(D) £ 23 " fy (D). (3.4)

Dictionary Learning for Tensor Data: To represent tensor data, conventional
DL approaches vectorize tensor data samples and treat them as one-dimensional arrays.
One way to explicitly account for the tensor structure in data is to use the Kronecker-
structured DL (KS-DL) model, which is based on the Tucker decomposition of tensor
data. In the KS-DL model, we assume that observations Y; € R"1*"*™N are generated

according to

Y, = X! x; DY xo DY x3--- xy DY + &, (3.5)
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where {DY € R™»*PnIN_ are generating subdictionaries, and X9 and &, are the coef-
ficient and noise tensors, respectively. Equivalently, the generating model (3.5)) can be

stated for y; £ vec(Y,) as:
yi= (DY @D}y @ @D)x} +e, (3.6)

where x! £ vec(X?)) and € = vec(&;) [71]. This is the same as the unstructured model
y = DOX? + €; with the additional condition that the generating dictionary is a Kro-
necker product of N subdictionaries. As a result, in the KS-DL problem, the constraint
set in becomes C = ICI],YLP, where K,]flvp £ (D € Dyp/D = ®g:1 D,, D, €
R™»*Pr} g the set of KS matrices with unit-norm columns and m and p are vectors
containing m,,’s and p,’s, respectivelyﬂ

In summary, the structure in tensor data is exploited in the KS-DL model by as-
suming the dictionary is “separable” into subdictionaries for each mode. However, as
discussed earlier, this separable model is rather restrictive. Instead, we generalize the

KS-DL model using the notion of separation rank[l|

Definition 4. The separation rank %%’p(-) of a matriz A € RInmnXnbn s the mini-
7
mum number r of Nth-order KS matrices A¥ = @N_| A¥ such that A = 3. Q_, Ak,
k=1

where AF € R™MnxPn,

The KS-DL model corresponds to dictionaries with separation rank 1. We instead
propose the low separation rank (LSR) DL model in which the separation rank of
the underlying dictionary is relatively small so that 1 < Ry p(D°) < min{m, p}. This
generalizes the KS-DL model to a generating dictionary of the form D? = 37, _ [D%1°®
D% ]°® .- @ [D4]°, where r is the separation rank of D?. Consequently, defining

ICIZX’;, £2De Dmxp|i¥iﬁ7p(D) < r}, the empirical rank-constrained LSR-DL problem is

min Fy (D). (3.7)
DekNh

®We have changed the indexing of subdictionaries for ease of notation.

5The term was introduced in [66] for N = 2 (see also [65]).
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However, the analytical tools at our disposal require the constraint set in to be
closed, which we show does not hold for IC%’;, when N > 3 and r > 2. In that case,
we instead analyze with ICIJY{,L replaced by (i) closure of IC%’;, and (i7) a certain
closed subset of IC,]:T{E,. We refer the reader to Section for further discussion.

In our study of the LSR-DL model, which includes the KS-DL model as a spe-
cial case, we use a correspondence between KS matrices and rank-1 tensors, stated in
Lemma[2] below, which allows us to leverage techniques and results in the tensor recov-
ery literature to analyze the LSR-DL problem and develop tractable algorithms. (This

correspondence was first exploited in our earlier work [81].)

Lemma 2. Any Nth-order Kronecker-structured matric A = A1 QR As® - Ay can

be rearranged as a rank-1, Nth-order tensor AT = ayo---oagoa; with a, = vec(Ay).

The proof of Lemma [2| (details of the rearrangement procedure) is provided in the
Appendix (Section . It follows immediately from Lemma |2/ that if D = >, _, D/ ®
Di®-- -®D§“V, then we can rearrange matrix D into the tensor D™ = >}, d’]‘f\,odéﬁ\,_1 )

- od¥, where dt = vec(DE). Therefore, we have the following equivalence:
%r]}[w(D) <r <= rank(D") <r.

This correspondence between separation rank and tensor rank highlights a challenge
with the LSR-DL problem: finding the rank of a tensor is NP-hard [70] and thus so is
finding the separation rank of a matrix. This makes Problem in its current form
(and its variants) intractable. To overcome this, we introduce two tractable relaxations
to the rank-constrained Problem that do not require explicit computation of the
tensor rank. The first relaxation uses a convex regularization term to implicitly impose
low tensor rank structure on D™, which results in a low separation rank D. The resulting
empirical regularization-based LSR-DL problem is

. reg
DGleTInle Fy*(D) (3.8)

with Fy#(D) £ %Zlel [y, (D) + A1g1(D™), where fy(D) is described in (3.3) and
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g91(D™) is a convex regularizer to enforce low-rank structure on D”™. The second re-
laxation is a factorization-based LSR-DL formulation in which the LSR dictionary is
explicitly written in terms of its subdictionaries. The resulting empirical risk minimiza-

tion problem is

min FE({DEY), (3.9)
{Dk}: Y @) DEEDmxy

where Fize({DF}) 2 LS°0 flac({Dk}) with

r N 2
y= (3, &, Dh)x|| + Al

fac k A
f D = inf
y ({ n}) leRP

and the terms ®nN:1 DF are constrained as || ®7]:[:1 DF||r < ¢ for some positive constant
cwhen N >3 and r > 2.

In the rest of this chapter, we study the problem of identifying the true underly-
ing LSR-DL dictionary by analyzing the LSR-DL Problems f introduced in
this section and developing algorithms to solve Problems and in both batch
and online settings. Note that while Problem (and its variants when N > 3
and r > 2) cannot be explicitly solved because of its NP-hardness, identifiability anal-
ysis of this problem—provided in Section [3:3}—provides the basis for the analysis of
tractable Problems and , provided in Section To improve the readability
of our notation-heavy discussions and analysis, we have provided a table of notations

(Table [3.1)) for easy access to definitions of the most commonly used notation.

3.3 Identifiability in the Rank-constrained LSR-DL Problem

In this section, we derive conditions under which a dictionary D° € IC%’;, is identifiable
as a solution to either the separation rank-constrained problem in (3.7) or a slight
variant of when N > 3 and r > 2. Specifically, we show that under certain
assumptions on the generative model, there is at least one local minimum D* of either
Problem or one of its variants that is “close” to the underlying dictionary DV.

Notwithstanding the fact that no efficient algorithm exists to solve the intractable
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Table 3.1: Table of commonly used notation in Chapter

Notation Definition
m,p Hf:[:1 M, HnN:1 Pn
N N
m,p (mn>n:1a (pn)n:1
Ni(A,€) Covering number of set A w.r.t. norm x
R D) Separation rank of matrix D
Dinxp Oblique manifold in R™*P
U xp Euclidean unit sphere in R™*P
[ﬁﬁ, Set of LSR matrices: {D € ]RmXp|9‘{ﬁ,p(D) <r}
Ko Lo N Dy
Ky p IC%’;, with r = 1: Set of KS matrices on D,
Kl p KN, with N = 2
“Knip {D € Kinpll| @ DE|Ir < c.c > 0}
Kﬁ’; Closure of ICIZI\Q’;)
c Compact constraint set in LSR-DL problem:
one of KN K& ke or e
m,p> ,p) Nmp, m,p
B, D e ClID - Dr < o
Af(x1;x2) f(x1) — f(x2)
fy(D) infyere 5 |ly — Dx][5 + Allx[s
fr(D) Ey~p fy(D)
Afp(p) infpesp, Afp(D; DY)
Fy(D) L2 fy,(D)
Fy*(D) 1211 (D) + Mg (D)
PUDED | infrere [ly = (Xhey @y DE)X[3 + Axly
Fg°({Dy}) 130, fle({DE})

Problem , this identifiability result is important in that it lays the foundation for
the local identifiability results in tractable Problems and .

Generative Model: Let DO ¢ IC%’;) be the underlying dictionary. Each tensor
data sample Y € R™Xm2XXMN ip itg vectorized form is independently generated
using a linear combination of s < p atoms of dictionary DY with added noise: y =
vec(Y) = D%° + €, where HXOHO < s. Specifically, s atoms of D are selected uniformly
at random, defining the support J C [p]. Then, we draw a random sparse coefficient

vector xV € R? supported on J. We state further assumptions on our model similar to

the prior works [17, [77].
Assumption 1 (Coefficient Distribution). We assume that

i) the nonzero elements of X" are zero-mean and uncorrelated:
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E{x%[x%]ﬂj} =E{z?} -1,

.. A
ii) the nonzero elements of s° = sgn(x") are zero-mean and uncorrelated:

B{s(s3)717} = L.,
iii) x° and s° are uncorrelated: E{s%[x%]T|j} = E{|z|} - I,
i) x° has bounded norm almost surely: HXOH2 < M, with probability 1,

v) nonzero elements of x° are far from zero almost surely: Hli}l |x§~)] > x with proba-
je

bility 1.

Assumption 2 (Noise Distribution). We make the following assumptions on the dis-

tribution of the noise €:
i) the elements of € are zero-mean and uncorrelated: E{ee” | T} = E{e*} -1,
i) € is uncorrelated with x and s°: E{x"€e’|7} = E{s""|T} =0,
iii) € has bounded norm almost surely: ||€ll, < Mc with probability 1.

Note that Assumptions [l}iv and [2}iii imply the magnitude of y is bounded: [y|2 <

M,. Next, we define positive parameters A = E{|/\w|}’ Crax = 271%[? (1 —2u5(D0)),

1] W ) (SO
) v’\)x—)&)‘x},)) cee Ll
58 nES'E e
| »
e oA
ﬁ ¢ Q\§ * N
‘ . . . . = B -
. . . 0 . . =] -
o . = i -l
. L] N (CJ‘ -~
=2 0 <
e rearrangement B o = QL
S —— &S |
| | —_ == : =
= = S ot = g = B 5
= ol - | Q
I . . = . . A: ..-‘7.0.}—{_‘\_}
. “. . . . ™ = HH

Kronecker-structured Matrix Rearranged Rank-1 Tensor

Figure 3.2: Example of rearranging a Kronecker structured matrix (N = 3) into a third
order rank-1 tensor.
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and Chin 2 24%{{@2}}2 (HDOH2 + 1)2 % H DYDY — IHF for ease of notation. We use the

following assumption, similar to Gribonval et al. [77, Thm. 1].

Assumption 3. Assume Cpin < Cpax, A < 2/4, s <

—rLr DY) < 1/4, and
oy 1D = 1o

the noise is relatively small in the sense that %ﬁ < % (Cmax — Chin) A

x

Our Approach: In our analysis of the separation rank-constrained LSR-DL prob-
lem, we will alternate between four different constraint sets that are related to our
dictionary class K%, namely, Karp, K3 p» the closure Eﬁ’;) 2 C(KNh) of KA
under the Frobenius norm, and a closed subset of IC]J{;,, defined as CIC%’;) = {D e
ICIJY{,;\ | @ DE||F < ¢,c > 0}. We often use the generic notation C for the constraint set
when our discussion is applicable to more than one of these sets.

We want to find conditions that imply the existence of a local minimum of the

problem gﬂ% Fy (D) within a ball of radius p around the true dictionary D € ICIZ:]{,?;,:
€

B, £{Dec||D-D, <p} (3.10)

for some small p > 0. To this end, we first show that the expected risk function fp(D)
in has a local minimum in B, for the LSR-DL constraint set C.

To show that a local minimum of fp : C — R exists in B,, we need to show that
fr(D) attains its minimum over B, in the interior of Bpm We show this in two stages.
First, we use the Weierstrass Extreme Value Theorem [85], which dictates that the
continuous function fp(D) attains a minimum in (or on the boundary of) B, as long as
B, is a compact set. Therefore, we first investigate compactness of B, in Section
Second, in order to be certain that the minimum of fp(D) over B, is a local minimum
of D € C — fp(D), we show that fp(D) cannot obtain its minimum over B, on the

boundary of B, denoted by 9B,. To this end, in Section [3.3.2] we derive conditions

"Having a minimum D* on the boundary is not sufficient since the function might achieve lower
values in the neighborhood of D* outside B,.



32

that if 9B, is nonempty thenﬁ

Afp(p) = inf Afp(D;D") >0, (3.11)

P

which implies fp(D) cannot achieve its minimum on 9B,
Finally, in Section we use concentration of measure inequalities to relate Fy (D)
in (3.4) to fp(D) and find the number of samples needed to guarantee (with high

probability) that Fy (D) also has a local minimum in the interior of B,.

3.3.1 Compactness of the Constraint Sets

When the constraint set C is a compact subset of the Euclidean space R™*P, the subset
B, is also compact. Thus, we first investigate the compactness of the constraint set
ki, Since Khh is a bounded set, according to the Heine-Borel Theorem [85], it is
a compact subset of R™*P if and only if it is closed. Also, IC%’;, can be written as
the intersection of LN £ {D € R™P|RY (D) < r} and the oblique manifold D. In
order for KX = L5 ND to be closed, it suffices to show that Ly and D are closed.
It is trivial to show D is closed; hence, we focus on whether E%ﬁ, is closed.

In the following, we use the facts that the constraint %%,p(D) < r is equivalent
to rank(D™) < r and that the rearrangement mapping that sends D to D™ preserves
topological properties of sets such as the distances between the set elements under the

Frobenius norm. These facts allow us to translate the topological properties of tensor

sets into properties of the structured matrices that we study here.

Lemma 3. Let N > 3 and r > 2. Then, the set ,C%’f;, is not closed. Howewver, the set

of KS matrices E%’i and the set Efﬁfp are closed.

Proof. Proposition 4.1 in De Silva and Lim [86] shows that the space of tensors of order
N > 3 and rank r > 2 is not closed. The fact that the rearrangement process preserves
topological properties of sets means that the same result holds for the set .C%’;, with

N > 3 and rank r > 2.

81f the boundary is empty, it is trivial that the infimum is attained in the interior of the set.
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The proof for closedness of L%’}, and Ei’{p follows from Propositions 4.2 and 4.3 in
De Silva and Lim [86], which can be adopted here due to the relation between the sets

of low-rank tensors and LSR matrices. O

To illustrate the non-closedness of E%’; for N > 3 and r > 2 and motivate the
use of the sets Kﬁ’; and C/Cr]\li’;, in lieu of ICIAA’;,, we provide an example. Consider the
sequence D; =t (A1 + %Bl) ® (Ag + %Bg) ® (Ag + %Bg)) —tA; ® Ay ® Az where
A;, B; € R™*Pi are linearly independent pairs. It is clear that ﬂ%f’n,p(Dt) < 2 for any
t. The limit point of this sequence, however, is lim; oo D = A1 @ Ay @ B3+ A1 ®
Bo® A3+ B ® Ay ® B3, which is a separation-rank-3 matrix. Therefore, the set [,ifp
is not closed.

The non-closedness of Eﬁf{g, means there exist sequences in Eﬁﬁ) whose limit points
are not in the set. Two possible solutions to circumvent this issue include: (i) use the
closure of E%ﬁ, as the constraint set, and (i) eliminate such sequences from 5%’;. We

discuss each solution in detail below.
Adding the limit points
We denote the closure of ﬁfﬁg’;, by Zﬁ’; = cl(ﬁ%’},). By slightly relaxing the constraint

set in (3.7)) to Zﬁ’; N D, we can instead solve the following:

min Fy (D), (3.12)

DeKp
where Kﬁ’; = Zﬁ’fp N D. Note that (i) a solution to (3.7) is a solution to (3.12)) and
(7i) a solution to (3.12)) is either a solution to (3.7)) or is arbitrarily close to a member

N
of Km'p

“The first argument holds since if Fy (D*) < Fy(D) for all D € K%, by continuity it also holds

for all D € Kﬁ”;. The second argument is trivial.
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Eliminating the problematic sequences

In order to exclude the sequences D; — D such that D; € L’%’}, for all t and D ¢ Er]\,i’f;,,

we first need to characterize them.

Lemma 4. Assume D; — D where %%,p(Dt) <r and 9{%7P(D) > r. We can write
D; =Y M\ ®7]1V:1[Dfl]t where H[DZ]tHF = 1. Then, maxy |\f| = oo ast — co. In

act, at least two of the coefficient sequences \¥ are unbounded.
t

Proof. The rearrangement process allows us to borrow the results in Proposition 4.8 in

De Silva and Lim [86] for tensors and apply them to LSR matrices. O]

The following corollary of Lemma [4] suggests that one can exclude the problematic

sequences from L'%’; by bounding the norm of individual KS (separation-rank-1) terms.

r N
Corollary 1. Consider the set Eﬁf{g, whose members can be written as D = . @ DE
k=1n=1
such that DE € R™ P Then, for any ¢ > 0 the set “Logy = {De Lo | @D, <
c} is closed.
We have now shown that the sets ICIZI’lfp, IC%J) £ ICIJYI’},, CK%”; = cﬁﬁ’gp N D, and
—N,r

Kmp = Zﬁfl’; N D are compact subsets of R™*P. Next, we provide asymptotic identifi-

ability results for these compact constraint sets.

3.3.2 Asymptotic Analysis for Dictionary Identifiability

Now that we have discussed the compactness of the relevant constraint sets, we are
ready to show that the minimum of fy (D) over B, defined in (3.10)), is not attained on
0B,. This will complete our proof of existence of a local minimum of fp(D) in B,. In

our proof, we make use of a result in Gribonval et al. [77], presented here in Lemma

Lemma 5 (Theorem 1 in Gribonval et al. [77]). Consider the statistical DL Problem

(3-2) with constraint set D. Suppose the generating dictionary D € D and Assumptions
g g Y

ﬁ hold. Then, for any p such that A\Cuin < p < ACmax and J]\\/[L < %(XCmax —p), we

x
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have

-p (p— ACrin) > 0. (3.13)

for all D € D such that |D — D°||r = p.

Interested readers can find the detailed proof of Lemma [5in Gribonval et al. [77].

The following theorem states our first identifiability result for the LSR-DL model.

Theorem 4. Consider the statistical DL Problem (3.2) with constraint set C being

either /C?ﬁfp, KN

m.p’ C/CIJY{E, or Kﬁ’;. Suppose the generating dictionary D° € C and

Assumptions ﬁ hold. Then, for any p such that \Cypin < p < ACmax and Aﬂ/ﬁ <
2 (ACrmaz — p), the function D € C — fp(D) has a local minimum D* such that

ID* = DOl <.

Proof. Since fp(D) is a continuous function and the ball B, = {D € C| ||D — DOHF <
p} is compact, by the extreme value theorem, D € B, — fp(D) attains its infimum at
a point in the ball. If this minimum is attained in the interior of B, then it is a local
minimum of D € C — fp(D). Therefore, a key ingredient of the proof is showing that
frp(D) > fp(DO) for all D € 8B, if B, is nonempty. Lemma 5 states the conditions
under which fp(D) > fp(D°) on dS,, where S, £ {D € D ‘ HD — DOHF < p}.

Since 0B, C 0S,, the result of Lemma [5| can be used for our problem as well, i.e.
for any D € 0B, we have fp(D) > fp(D%), when CrpinA < p < CaxA. It follows from
this result together with the existence of the infimum of fp(D) : B, — R in B, that
Problem has a local minimum within a ball of radius p around the true dictionary
DO. O

Next, we discuss finite sample identifiability of the true dictionary DY for three of
the constraint sets.

3.3.3 Sample Complexity for Dictionary Identifiability

We now derive the number of samples required to guarantee, with high probability,

that Fy : C — R has a local minimum at a point “close” to DY when the constraint set
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C is either ICIz{lfp, ki

m,ps OF C/Cﬁ[{f;, for N > 3 and r > 2. First, we use concentration of

measure inequalities based on the covering number of the dictionary class C C IC%’;) to
show that the empirical loss Fy (D) uniformly converges to its expectation fp(D) with

high probability. This is formalized below.

Lemma 6 (Theorem 1 and Lemma 11, Gribonval et al. [87]). Consider the empirical
DL Problem (3.4) and suppose Assumptions and are satisfied. For any v > 0 and
constants c1 > My2/\/§ and cp > max(1,log cox/gMy), with probability at least 1 — 2e™

we have

covlog L coV t+u
sup \FY(D)—fp(D)\§3c1\/2 = —1—01\/2L , (3.14)
DecC

where v is such that Naoo(C,€) = (2)".

€

Define 17, £ 3¢/ CQVITUSL + 1 % It follows from (3.14)) that with high proba-
bility (w.h.p.),

AFy(D; D) > Afp(D;D°) — 2y, (3.15)

for all D € C. Therefore, when n;, < Afp(D;D%)/2 for all D € 9B,, we have
AFy(D;D% > 0 for all D € 9B,. In this case, we can use similar arguments as
in the asymptotic analysis to show that Fy : C — R has a local minimum at a point in
the interior of B,. Hence, our focus in this section is on finding the sample complexity
L required to guarantee that n; < Afp(p)/2 w.h.p. We begin with characterization
of covering numbers of the three constraint sets, which may also be of independent
interest to some readers.

Covering Numbers: The covering number of the set ICng with respect to the

norm || - ||2,00 is known in the literature to be upper bounded as follows [87]:
Naoo(K pr€) < (3/) 2 mims, (3.16)

We now turn to finding the covering numbers of LSR sets K?ﬁfp and CICIJY{,;. The

following lemma establishes a bound on covering number of K?ﬁfp, which depends on
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the separation rank r exponentially.

Lemma 7. The covering number of the set ICIQT’:I) with respect to the norm || - ||2,00 is

upper bounded as follows:
2,r r(m +m +1
Na oo (K3, €) < (9p/e)rtmaprtmapath),

Proof. Let M7, ,, be the manifold of rank-r matrices on the Euclidean unit ball

M, = {D € U|rank(D) < r}.

32, 2, . . .
Moreover, define L p = Lmp NU. Since the rearrangement operator is an isometry

w.r.t. the Euclidean distance, the image of an e-net of Zfﬁfp w.r.t. the Frobenius norm

T

under this rearrangement operator is an e-net of M7, . (m' = maps and p’ = mip1)

w.r.t the Frobenius norm. Thus,
Np(LE o €) = Ne(Miy 6.

Also, from Np(M” €) < (9/e)" ("' +P'+1) 6] we have that

m/xXp'’

Np(LE€) < (9/e)rmprtmapatl) (3.17)

m,p’

On the other hand, for the oblique manifold we have D,,x, C pl{ and therefore, /C?ﬁfp -
pEQI{f:p. Hence,

NQ,OOUC?r’l?:p) < NQ,OO(pEZn{p7 6)'

Also, since |M]|, ., < [|[M]| for any M, it follows that an e-covering of any given set
w.r.t. the Frobenius norm is also an e-covering of that set w.r.t. the max-column-norm.
Thus

Nooo(Kilp) < Nooo(pLipr€) < N (pLy s €)-
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Moreover, it follows from the fact Ny (pLar €)= Nrp(LE p»>€/p) that

Naoo(KE o €) < Np(LZ . €/p). (3.18)

Thus, from (3.17) and (3.18]) we see that

N2,OO(IC12nTpa ) < (9p/€)r(m1m+m2p2+1)’

which concludes the proof. O

Next, we obtain an upper bound on the covering number of CICIJX{E, for a given

constant c.

Lemma 8. The covering number of the set CICIJYI’E, with respect to the maz-column norm

| [|2,00 is bounded as follows:
Nooo(CKNT €) < (3refe)r Zimamii,

Proof. Each element D € ClCmp can be written as a summation of at most r KS
matrices @ DF such that ||@ DE|| » < c. This implies that i is a subset of the
Minkowski sum (vector sum) of r copies of CIC%’&,, the set of KS matrices within the
Fuclidean ball of radius c. It is easy to show that the Minkowski sum of the e-coverings
of r sets is an re-covering of the Minkowski sum of those sets in any norm. Therefore,

we have
Nooo (KN €) < (Moo (KNL /) (3.19)

<

Moreover, we have CICIJY{,}, C cICN We also know from equation (16) that N (K2 p€) <

(3/e)2i= Zimpi | Thus,

Nooo (KN €) < (Moo (KR o e/r))"

< (3rc/e) Zicamipi (3.20)
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O]

Now that we established covering numbers for our constraint sets of interest, we can
now find the sample complexity of the LSR-DL Problem (3.4)) by plugging in the values

of v and ¢y in Lemma [6]

Theorem 5. Consider the empirical LSR dictionary learning Problem (3.4) with con-

straint set C being lC?,’lfp, ’Cﬁ,p; or CK%’;,. Fiz any u > 0. Suppose the generating

dictionary D° € C and Assumptions are satisfied. Assume ACoin < p < ACmax

and Aj‘é/{; < %(E\Cmax — p). Define a constant v that depends on the dictionary class:

o V= Zf\;1 m;p; and cog = 3 when C = K%,p,

o v =2r(mip1 +maps + 1) and ¢y = 9p when C = IC?ﬁfp,

N
o v=r Zfil m;p; and co = rc when C = “Ky'p.

Then, given a number of samples L satisfying

L ~¢ 2 (vl + u) M, (3.21)
> Cp* (vlogeo +u - )
log L (p (p — )\C’min) SE{x2})2

where C' is a constant, with probability no less than 1 —e™", the empirical risk objective

function D € C — Fy (D) has a local minimizer D* such that HD* — DOHF < p.

Proof. We take a similar approach to the proof of Theorem [l Due to compactness of
the ball B, = {D € C|||D — D°||, < p} and continuity of Fy (D), it follows from the
extreme value theorem that D € B, — Fy(D) attains its minimum at a point in B,.
It remains to show that AFy(D;D?) > 0 for all D € 98, which implies existence of a
local minimizer of Fy : C — R at D* such that HD* — DOHF < p.

Inequality shows that it suffices to set n;, < A fp(D;DY)/2 in order to have
AFy(D; D% > 0. From Lemma|§|we know 7y, > 3c14/ % +c1 % Therefore,
using the lower bound on Afp(p) we have with probability at least 1 —e™

|covlog L [cov+u _ E{x?} s <
3cy T + ¢ I < 16 ’ ]; 4 (,0 - Acmin)
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with ¢; > My2/\/§ and ¢y > max(1,log co\/gMy) Rearranging, we get

L 2 <3\/027+\/021/+u>2 ( 16 p)Q. (3.22)

logL = '\ p(p— ACuuin) E{z?} s
Setting ¢; > My2/\/§ and ¢y = c3logcy > max(1,log cox/gMy) we get the lower bound

M2 2
y
p (p — S\Cmin) sE{x2}>

L \
> 1
I%L—@MV%%+M<

with probability at least 1 — e™. Given that the number of samples satisfies
for ANCpin < p < ACmax, With high probability AFy > 0 for any D € 0B,. Therefore,
it follows from the existence of the infimum of D € B, — Fy(D) in B, that D €
C — Fy (D) has a local minimum at a point within a ball of radius p around the true

dictionary D. O

The Q(T(Zn mnpn)pr_Q) sample complexity we obtain here for rank-constrained
LSR-DL is a reduction compared to the Q(mp?p~2) sample complexity of standard DL
in [77]. However, a minimax lower bound scaling of Q(p 3", mnpnp~?) in [64] for KS-DL

(r = 1) suggests an O(p) gap with our upper bound.

3.4 Identifiability in the Tractable LSR-DL Problems

In Section [3.2] we introduced two tractable relaxations to the rank-constrained LSR-
DL problem: a regularized problem with a convex regularization term and a
factorization-based problem in which the dictionary is written in terms of its
subdictionaries. Based on our results in Section for the rank-constrained problem,
we now provide results on the local identifiability of the true dictionary D? in these
problems, i.e., we find conditions under which at least one local minimizer of these
problems is located near the true dictionary D°. Such local identifiability result implies

that any DL algorithm that converges to a local minimum of these problems can recover

10Under the conditions of this theorem, M, < /1 + §5(D9)M,, + M., where 65;(D°) denotes the RIP
constant of D°.
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DO up to a small error if it is initialized close enough to DP.

3.4.1 Regularization-based LSR Dictionary Learning

The first tractable LSR-DL problem that we study is the regularized problem .
Exploiting the relation between %ﬁ,p(D) and rank(D"), the LSR structure is enforced
on the dictionary by a convex regularizer that imposes low tensor rank structure on
D7™. The regularizer that we use here is a commonly used convex proxy for the tensor
rank function, the sum-trace-norm [88], which is defined as the average of the trace
(nuclear) norms of the unfoldings of the tensor: [|A|l,, = 27]:[:1 HA(") Htr.

The first question we address is whether the reference dictionary that generates the
observations {Y;}/, is identifiable via Problem (3.8). Our local identifiability result
here is limited to when D? € KX

m,p’

show that there is at least one local minimizer D* of F5,*(D) under Assumptions

i.e. the true dictionary is KS. For such D°, we

that is close to DVY.

Theorem 6. Consider the regularized LSR-DL problem (3.8)). Suppose that the gener-

ating dictionary DO € ICIJYLP and Assumptions ﬁ are satisfied. Moreover, let ACpin <

p < ACpax and ]\Af[; < %(S\C’mm — p). Then, the expected risk function D € D —
E[F{fg(D)] has a local minimizer D* such that HD* — DOHF <p.

Moreover, given L samples such that

2
M2 E+p+ (3E +0)?
poan et GeroT) (3.23)

L > Cop?(mp + u) <Ew2 . G

where u and C' are positive constants, then, we have with probability no less than 1—e™"

that the empirical risk function D € D — Fy*(D) has a local minimum at D* such

that HD* — DOHF < p.

Proof. Consider the ball B, = {D € D| HD - DOHF < p}. It follows from the extreme
value theorem [85] that D € B, — Fy*(D) attains its minimum at a point in B,. This
is based on compactness of B, = {D € C| ||D — DOHF < p} and continuity of Fi#(D).

Similarly, D € B, — f5%(D) £ E[Fy®] reaches its minimum at a point in B,. We now
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need to show in either case the minimum is not attained on the boundary of B,. To
this end, we show in the following that AFy*(D;D%) > 0 and A f5*(D;D?) > 0 for
any D € 0B,,.

Incorporation of the trace-norm regularization term in ([3.8) whithin the objective
in introduces a factor [|D" |, — ||[D°)7|,,, = S (ID™|,. = [DO1™]|..) to
Afp(D; DY and AFy (D;D%). We know from Lemma that when the true dictionary
is a KS matrix (D° € Kﬁp), its rearrangement tensor [DY]™ is a rank-1 tensor and
therefore all unfoldings [D°](™ of [D]™ are rank-1 matrices. This implies D™, =
|IDM||p. Likewise, for all D € D, we have HD HF = ||[D"] () | » = /p- Therefore,

[P, = D™, =327 ox D) ~vp
> \/Z;"l o3(DM) = \/p =0,

where 7, 2 rank(D() and o, (D) denotes the k-th singular value of D). Therefore,
we conclude that AFy®(D; D% > AFy(D; DY) and Afp#(D;D%) > Afp(D; DY) for
any D € D. According to Lemma [5, A fp(D;D") > 0 for all D on the boundary of the
ball B,. Furthermore, under the assumptions of the current theorem, given a number
of samples satisfying , Gribonval et al. [77] show that the empirical difference
AFy(D;D%) > 0 for all D on the boundary of S, = {D € D ‘ HD — DOHF < p}, and
therefore on the boundary of B, C S,, with probability at least 1 —e™". Therefore, for
both fp®#(D) and Fy*(D), the minimum is attained in the interior of B, and not on

its boundary. 0

3.4.2 Factorization-based LSR Dictionary Learning

We now shift our focus to Problem (3.9), which expands D as ), _; ® D¥ and optimizes
over the individual subdictionaries, and show that there is at least one local minimum
{[DE]*} of the factorization-based LSR-DL Problem such that Y~ @[DE]* is close
to the underlying dictionary D°. Our strategy here is to establish a connection between
the local minima of and those of . Specifically, we show that when the
dictionary class in matches that of , for every local minimum D of ,
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there exists a local minimum {f)ﬁ} of such that D = > f)ﬁ Furthermore, we
use the result of Theorems [ and [l that there exists a local minimum D* of Problem
within a small ball around DP. It follows from these facts that under the generating
model considered here, a local minimum {[D¥]*} of is such that > @[DF]* is close
to DV,

We begin with a bound on the distance between LSR matrices when the tuples of

their factor matrices are e-close.

Lemma 9. For any two tuples (AF) and (BE) such that AE BE € ally,, «p, for
all n € [N] and k € [r], if the distance H(AZ) - (BZ)HF < € then H Sho Ak
> i1 @BL|, < oV N

Proof. According to Lemma 2 in Shakeri et al. [I7], for any {A,,} and {B,} we have

N
=Y Ti® @A, -By)e- - aTy, (3.24)

where T',, = A, or T';, = B,, depending on n. Let €¥ £ ||Ak — BE||r. Using equality

(3.24), we have

1>, @A -3, @Bl

r N
:||ZZF’§®--~®(A§—Bﬁ)@---@FﬁVHF

k=1n=1
r N
<M M rte-e@Al-BYe - oTy|,
k=1n=1
N k@
=o' Zen < a7V Nre, (3.25)
k=1n=1
where the inequality (a) follows from ||(e®)|l1 < VN7 ||(€F)]2 < V/Nre. O

Theorem 7. Consider the factorization-based LSR-DL problem (3.9). Suppose that

Assumptions ﬁ are satisfied and J]\\/ﬁ < %(X\Cmax — p) with ACpin < p < ACmax.

Then, the expected risk function E[F({DEF})] has a local minimizer ([DE]*) such that
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X ®D}]* =D, < p.
Moreover, when the sample complezity requirements (3.21) are satisfied for some
positive constant u, then with probability no less than 1 —e™" the empirical risk function

FE&<({DF}) has a local minimum achieved at ([DE]*) such that HZ R [DF]* DOHF

p.

Proof. Let us first consider the finite sample case. Theorem [5| shows existence of a local

minimizer D* of Problem ) for constraint sets KN K?ﬁfp, and CICI];[{,TP, such that

m,p>
|D* —D°||r < p w.h.p. Here, we want to show that for such D*, there exists a {[D¥]*}
such that D* = 5~ @[D%]* and {[Dk]*} is a local minimizer of Problem (3.9).

First, let us consider Problem with CICrJY,’;,. It is easy to show that any D €
CIC,]X’;, can be written as >_;_, @ D for all k € [r] and n € [N] such that, without loss

of generality, DX € aldy,,x, where a = N-/c. Define
Cfoc 2 {(Dg)| 3 R D € kN : ki, D € aumxp}

Since D* € CIC%;, there is a ([D]*) € Cf¢ such that D* = 3" ®[DE]*. According to
Lemma@7 for any {D%} € C™< it follows from ||(DF)— ([D%]%)|| , < ¢’ that | > @ Df —

> ®[Dfl]*HF < o1V Nré = ¢v/Nre'. Since D* is a local minimizer of (3.7), there
exists a positive € such that for all D € CIC%’; satisfying |D — D*||p < €, we have
Fy(D*) < Fy(D). If we choose € small enough such that cv/Nre' < ¢, then for any
(D) € €™ such that ||(DF) — ([Df HF
means that F¢({DF}) — FE({[Df]*}) = Fy (X @ D) — Fy(D*) > 0. Therefore,

< €, we have || > @Dk — D*H < € and this

([DE]*) is a local minimizer of Problem (3.9). This concludes our proof for the finite
sample case with constraint set CICIJY{T

Note that we can write ICQLP = ICI],YIL and ICmp = lC?nrp with ¢ > p. Therefore,
the above results also hold for Kﬁvp and ICn’:p since they are special cases of chm’;J

It is easy to see similar relation exists between the local minima of fy(D) and
f}f,ac({D }) £ E[Fi¢({Dk})], proving the asymptotic result in the statement of this

theorem. O
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3.4.3 Discussion

In this section, we discuss the local identifiability of the true dictionary in the regulariza-
tion based formulation and the factorization-based formulation. For the regularization-
based formulation, our results only hold for the case where the true dictionary is KS,
ie. D e ICng. We obtain sample complexity requirement of Q(mp3p~2) in this case,
which matches the sample complexity requirement of the unstructured formulation [77].
We believe there is room to improve this result as future work.

For the factorization-based formulation, we show that Q(pp=2r ", m,p,) samples
are required for local identifiability of a dictionary of separation-rank r. This result
matches that of our intractable formulation. Note that when the separation rank is 1,
this result gives a bound on the sample complexity of the KS-DL model as a special
case. Unlike the analysis in [17] (limited to KS-DL model) where they obtain a sample
complexity of L = max,eqy . N} Q(mapip;,?), our analysis of the factorized model does
not ensure identifiability of the true subdictionaries in the LSR-DL model. However, the
result in [I7] requires the dictionary coefficient vectors to follow the separable sparsity
model. In contrast, our result does not require any constraints on the sparsity pattern

of the coefficient vector.

3.5 Computational Algorithms

In Section we showed that the tractable LSR-DL Problems and each
have at least one local minimum close to the true dictionary. In this section we develop
algorithms to find these local minima. Solving Problems and require mini-
mization with respect to (w.r.t.) X £ [x7, .- xL]. Therefore, similar to conventional
DL algorithms, we introduce alternating minimization-type algorithms that at every
iteration, first perform minimization of the objective function w.r.t. X (sparse coding
stage) and then minimize the objective w.r.t. the dictionary (dictionary update stage).

The sparse coding stage is a simple Lasso problem [89, [00] and remains the same in

our algorithms. However, the algorithms differ in their dictionary update stages, which

we discuss next.
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Remark. We leave the formal convergence results of our algorithms to future work.
However, we provide a discussion on challenges and possible approaches to establish

convergence of our algorithms in Appendix A, Section [3.5.4

3.5.1 STARK: A Regularization-based LSR-DL Algorithm

We first discuss an algorithm, which we term STructured dictionAry learning via Regu-
larized low-ranK Tensor Recovery (STARK), that helps solve the regularized LSR-DL
problem given in and discussed in Section using the Alternating Direction
Method of Multipliers (ADMM) [91].

The main novelty in solving (3.8) using g;(D™) = ||[D™||,,, is the dictionary update

str
stage. This stage, which involves updating D for a fixed set of sparse codes X, is partic-
ularly challenging for gradient-based methods because the dictionary update involves
interdependent nuclear norms of different unfoldings of the rearranged tensor D™. In-

spired by many works in the literature on low-rank tensor estimation [88] 92, 93], we

instead suggest the following reformulation of the dictionary update stage of (3.8):

N
1
5 IY = DX+ 20> || wi
N n=1

min
D€D7E17"' 7& tr

s.t. Vn W, =D". (3.26)

In this formulation, although the nuclear norms depend on one another through the
introduced constraint, we can decouple the minimization problem into separate sub-
problems. To solve this problem, we first find a solution to the problem without the
constraint D € D, then project the solution onto D by normalizing the columns of D.
We can solve the objective function (3.26)) (without D € D constraint) using ADMM,
which involves decoupling the problem into independent subproblems by forming the

following augmented Lagrangian:

ExYop)

N

1 n

£y =5 IY =DX[}+ 3 (h Wi
n=1

™ ’y ™
~(A,, D"-W,)+ 1| D" - W,|} ),

tr

(3.27)
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where L, is shorthand for £,(D™,{W,,},{A,,}). In order to find the gradient of (3.27)

with respect to D™, we rewrite the Lagrangian function in the following form:

tr

1 N
Ly=5lly =T@I; + Zl ([ wi

7 g 7

Here, y £ vec(Y) (not to be confused with our earlier use of y for vec(Y)) and the
linear operator T(D™) £ vec(DX) = XTTI7 vec(D™), where X = X @ I, and II is
a permutation matrix such that vec(D") = IIvec(D). The procedure to find II is
explained in Appendix A, Section In the rest of this section, we discuss derivation
of the update steps of ADMM.

ADMM Update Rules: Each iteration 7 of ADMM consists of the following steps
[91]:

D™ (r) = ar;g)rfrlin L,(D", W, (tr—1),A,(tr —1)), (3.28)
W, (1) = argmin L, (D" (1), W, A, (T — 1)), Vn € [N], (3.29)
A, (1) =A,(1—1) =y (D7(1) = W, (7)), Vn e [N] (3.30)

The solution to (3.28) can be obtained by taking the gradient of £,(-) w.r.t. D™ and

setting it to zero. Suppressing the iteration index 7 for ease of notation, we have

oL,
oD"

N N
=T(TD") -y) - A, +> 7(D"-W,),
n=1 n=1

where T*(v) = vec™! (Hf(v) is the adjoint of the linear operator 7 [93]. Setting the

gradient to zero results in

N
THTMD) +7N D" =T*(y) + > (A, +7W,,).

n=1
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Equivalently, we have

N
vec ! ([H)NQETHT + VNI} vec(Q“)) = vec HIIXy) + Z (A, +7W,,). (3.31)
n=1
Therefore, the update rule for D™ is
D™(r) = vec™! ( [ITXXTT + /N1 -
N
: {HT)NCy—i—mc (Z(An(T— 1)+ YW, (1 — 1)))]) (3.32)

n=1

To update {W,,}, we can further split (3.29) into N independent subproblems (sup-

pressing the index 7):

==n’

min Ly =\ HW,@

v
(A, DT = W,) + || D"~ W, |}

We can reformulate Ly as

n)

Al

A1 HW&J") )H2F + const.

3w~ (e

The minimizer of £y, with respect to W,(Z‘) is shrink ([D”](") — %A;n), %) where
shrink(A, z) applies soft thresholding at level z on the singular values of matrix A

[94]. Therefore,
: m1(n) 1 (n) AL
W, (7) —refold(shrlnk ([D 1Y (1) AV (T —1), 5 )), (3.33)

where refold(-) is the inverse of the unfolding operator. Algorithm (1| summarizes this

discussion and provides pseudocode for the dictionary update stage in STARK.

3.5.2 TeFDiL: A Factorization-based LSR-DL Algorithm

While our experiments in Section validate good performance of STARK, the algo-

rithm finds the dictionary D € R™*? and not the subdictionaries {D,, € R™»*Pn} V.

Tn the body of Algorithms we drop the iteration index ¢ for simplicity.
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Algorithm 1 Dictionary Update in STARK for LSR-DL

Require: Y, IT, A\; > 0, v > 0, X ()]
1: repeat
Update D™ according to update rule
for n € [N] do
Update W,, according to (3.33])
end for
for n € [N] do
An FAn _’Y(Dﬂ— _wn>
8: end for
9: until convergence
10: Normalize columns of D
11: return D(t +1)

Moreover, STARK only allows indirect control over the separation rank of the dictionary
through the regularization parameter A;. This motivates developing a factorization-
based LSR-DL algorithm that can find the subdictionaries and allows for direct tuning
of the separation rank to control the number of parameters of the model. To this end,
we propose a factorization-based LSR-DL algorithm termed Tensor Factorization-Based
DL (TeFDiL) in this section for solving Problem (3.9).

We discussed earlier in Section m that the error term ||[Y — DX]|% can be re-
formulated as |ly — 7(D")||> where 7(D™) = XTTI” vec(D™). Thus, the dictionary
update objective in (3.9) can be reformulated as ||y — T (> j_; d% o --- o d¥)|? where
d* = vec(DF). To avoid the complexity of solving this problem, we resort to first
obtaining an inexact solution by minimizing ||y — 7(A)||*> over A and then enforc-
ing the low-rank structure by finding the rank-r approximation of the minimizer of
ly — T(A)||?>. TeFDiL employs CP decomposition (CPD) to find this approximation
and thus enforce LSR structure on the updated dictionary.

Assuming the matrix of sparse codes X is full row-ran < then X7 is full column-
rank and A = TH(y) = vec! (H(XXT)_I)Ey) minimizes ||y — 7(A)||?>. Now, it
remains to solve the following problem to update {dfl}:

min ||Zd]fvo---od]f—7-+(y)H?.
(S

1211 our experiments, we add I to XX with a small § > 0 at every iteration to ensure full-rankness.
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The problem of finding the best rank-r approximation (r-term CPD) of a tensor is
ill-posed in general in that a solution may not exist for » > 1 and N > 2, due to
the fact that the set over which one optimizes is not closed [86]. However, various
numerical algorithms exist in the tensor recovery literature to find a “good” rank-
r approximation of a tensor [71l, 86] by updating . Perhaps the most common yet
simplest of CP Decomposition algorithms is alternating least squares (ALS).

TeFDiLL can employ any CP Decomposition algorithm to find the r-term CPD,
denoted by CPD,.(-), of T*(y). At the end of each dictionary update stage, the columns
of D = 5" ® Dk are normalized. Algorithm [2] describes the dictionary update step of

TeFDiL.

Algorithm 2 Dictionary Update in TeFDiL for LSR-DL
Require: Y, X(t), I, r

Construct 7 (y) = vec™? (H(if{T)_liy)

D™ + CPD,(T *(y))

D + vec™! (II7 vec(D™))

Normalize columns of D

return D(¢t+1)

3.5.3 OSubDil: An Online LSR-DL Algorithm

Both STARK and TeFDiLL are batch methods in that they use the entire dataset for
DL in every iteration. This makes them less scalable with the size of datasets due to
high memory and per iteration computational cost and also makes them unsuitable
for streaming data settings. To overcome these limitations, we now propose an online
LSR-DL algorithm termed Online SubDictionary Learning for structured DL (OSubDil)
that uses only a single data sample (or a small mini-batch) in every iteration (see Algo-
rithm. This algorithm has better memory efficiency as it removes the need for storing
all data points and has significantly lower per-iteration computational complexity. In
OSubDil, once a new sample Y (¢ + 1) arrives, its sparse representation X(¢ + 1) is found
using the current dictionary estimate D(¢) and then the dictionary is updated using

Y (¢t +1) and X(¢t + 1). The dictionary update stage objective function after receiving
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the T-th sample is

P = 53 Iy~ (X @ Dhx(nP

We can rewrite this objective as

Jp = Z Y™ () Z DEX™ (1) Ck (1) |2
= thl Y () - DnX("’ (HCHOF
= Tr ([DX)"DEAL(®)) — 2T ([DEBE(1)) + const.,

where, dropping the iteration index ¢, the matrix
k& (k k k K\
Cn = (DN®"'®Dn+1®Dn—1"'®D1>

and the estimate Y™ £ y(®) — S DX CE . We can further define the matrices
ik

AL () £ X () Ch(nCHO X)) € Reen

and

BA() 2 3 YO ()ICh )T X ()T € me

=1
To minimize Jr with respect to each D¥ ~, we take a similar approach as in Mairal et
al. [07] and use a (block) coordinate descent algorithm with warm start to update the
columns of D¥ in a cyclic manner. Algorithm [3|describes the dictionary update step of

OSubDil.

3.5.4 Discussion on Convergence of the Algorithms

The batch algorithms proposed in Section are essentially variants of alternating
minimization (AM). Establishing the convergence of AM-type algorithms in general
is challenging and only known for limited cases. Here, we first present a well-known

convergence result for AM-type algorithms in Lemma[l10]and discuss why our algorithms
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Algorithm 3 Dictionary Update in OSubDil for LSR-DL

Require: Y(1), {D} (1)}, Ak (1), BE(t), X (1)
1. for all k € [r] do
2:  for all n € [N] do
3: Ct« (D5 ®---@Dk, @Dt |...@ Dk’
1; Y™ Yy Zg:}c Di XM

5 Akl Ak 4 XM CE[CE)TXM]T

6: BY « BF + Y [CFT[X(™)T

7 for j=1,--- ,p, do

8 ID3]j < atp (Bl — DRAL]) + Dyl
9 end for

10:  end for

11: end for

12: Normalize columns of D = >"" | ®7]:[:1 DF
13: return {D(t +1)}

STARK and TeFDiL do not satisfy the requirements of this lemma. Then, we show a
possible approach for proving convergence of STARK. We do not discuss convergence
analysis of OSubDil here since it does not fall in the batch AM framework that we
discuss here. We leave formal convergence results of our algorithms as open problems
for future work.

First, let us state the following standard convergence result for AM-type algorithms.

Lemma 10 (Proposition 2.7.1, [95]). Consider the problem

min X
X=(X1,...,Xp1)EE=E1 X E2 X - X Epp f( )

where &; are closed convex subsets of the Euclidean space. Assume that f(-) is a con-

tinuous differentiable over the set £. Suppose for each i and all x € £, the minimum

minf(xl,-- ' 7Xi—17€7Xi+17"' 7XM)
§EE,;

is uniquely attained. Then every limit point of the sequence {x(t)} generated by block

coordinate descent method is a stationary point of f(-).

The result of Lemma [10|cannot be used for TeFDIiL since its dictionary update stage

does not have a unique minimizer (nonconvex minimization problem with multiple
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global minima)). Moreover, as discussed in Section [3.5.2 TeFDIiL only returns an
inexact solution.

Similarly, this result cannot be used to show convergence of STARK to a stationary
point of Problem due to the fact that the constraint set D,,y, is not convex.
However, we show next that dropping the unit column-norm constraint allows us to
provide certain convergence guarantees. The unit column-norm constraint is essential in
standard DL algorithms since in its absence, the ¢1 norm regularization term encourages
undesirable solutions where || X|| is very small while |D|| is very large. However, in
the regularization-based LSR-DL problem, the additional regularization term ||D™||,
ensures this does not happen. Therefore, dropping the unit column-norm constraint is
sensible in this problem.

Let us discuss what guarantees we are able to obtain after relaxing the constraint

set Dypxp. Consider the minimization problem

min Y — DX|)% + A\, | D7

DeR™XP X cRP*XL + /\HXHI,I (334)

str

We show that under the following assumptions, STARK converges to a stationary point
of Problem (3.34) (when the normalization step is not enforced). Then we discuss how
this problem is related to Problem ((3.8).

Assumption 4. Consider the sequence (D(t), X(t)) generated by STARK. We assume

that for all t > 0:

I) Classical optimality conditions for the lasso problem (see Tibshirani [96]) are sat-

isfied.
II) X(t) is full row-rank at all t.
Proposition [1| establishes the convergence of STARK (without normalization).

Proposition 1. Under Assumption[f, STARK converges to a stationary point of prob-

lem (3.34).

Proof. We invoke Lemma [10] to show the convergence of STARK. To use this lemma,
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the minimization problem w.r.t. each block needs to correspond to a closed convex
constraint set and also needs to have a unique minimizer.

In the sparse coding stage, given Assumption 41, the minimizer of the lasso problem
is unique. In the dictionary update stage of STARK, the objective of problem (|3.34)
is strongly convex w.r.t. D under Assumption [4HI and thus has a unique minimizer.
Moreover, the constraint set RP*! is closed and convex. To utilize Lemma it remains

to show that this minimum is actually attained by ADMM. To this end, we restate

Problem (3.26]) as

st. W =HD", (3.35)

where f1(D™) = 1 ||Y — DX |3 (note that DX is a linear function of D™) and fs (ﬁ) =
A Zgil H(ﬂn)(n)H* It is clear that HH* is convertible. Therefore, according to

Lemma [11] stated below, the ADMM algorithm converges to the unique minimizer of
Problem (3.26]).

Lemma 11 (Chapter 3, Proposition 4.2, [97]). Consider the problem

Xegl’izne o f1(x) + fa(2)

s.t. z=A(x) (3.36)

Then, if AA* is invertible or if C1 is bounded, the sequence generated by the ADMM
algorithm applied to the Augmented Lagrangian function converges to an optimum of

(3-36).

This concludes the proof. O

So far we discussed convergence of STARK to Problem while our identi-
fiability results are for problem . There is, however, a strong connection be-
tween minimization Problems and : for each local minimum D of prob-
lem (3.8), there exists an X such that (ﬁ,}A() is a local minimum of (3.34). Define
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(55D, X) = LY = DX|| 2+ D ||y, + 2 X[[1,1. Consider any D that is a local min-
imum of and let X = argminy cgpxr fg?g(f),X). We have fg?g(]/j,ﬁ) = F{fg(f))
Since D is a local minimizer of Fy5(D), F{fg(ﬁ) < Fy®(D) for any D in the lo-
cal neighborhood of D. Also by definition, Fit8(D) < (5(D,X) for any X. Thus,
€$g(]’j,i) < (y*(D,X) for any (D,X) in the local neighborhood of (D, X), meaning
that (D, X) is a local minimizer of (3-34). Since we showed in Section [3.4] that a local
minimum D* of is close to the true dictionary D, we can say there is a local
minimum (D*, X*) of such that D* is close to D°. So our recovery result for

(3.8) can apply to our proposed algorithm for solving (3.34)) as well.

3.6 Numerical Experiments

We evaluate our algorithms on synthetic and real-world datasets to understand the
impact of training set size and noise level on the performance of LSR-DL. In particular,
we want to understand the effect of exploiting additional structure in representation
accuracy and denoising performance. We compare the performance of our proposed
algorithms with existing DL algorithms in each scenario and show that in almost every
case our proposed LSR-DL algorithms outperform K-SVD. Our results also offer in-
sights into how the size and quality of training data can affect the choice of the proper
DL model. Specifically, our experiments on image denoising show that when noise level
in data is high, TeFDiL performs best when the separation rank is 1. On the other
hand, in low noise regimes, the performance of TeFDiL improves as we increase the
separation rank. Furthermore, our synthetic experiments confirm that when the true
underlying dictionary follows the KS (LSR) structure, our structured algorithms clearly
outperform K-SVD, especially when the number of training samples is very small. This
implies the potential of the LSR-DL model and our algorithms in applications where
the true dictionary follows the LSR structure more closely.

Synthetic Experiments: We compare our algorithms to K-SVD[I3] (standard
DL) as well as a simple block coordinate descent (BCD) algorithm that alternates
between updating every subdictionary in problem . This BCD algorithm can be

interpreted as an extension of the KS-DL algorithm [79] for the LSR model. We show
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how structured DL algorithms outperform the unstructured algorithm K-SVD[I3] when
the underlying dictionary is structured, especially when the training set is small. We
focus on 3rd-order tensor data and we randomly generate a KS dictionary D = D1 ®
Dy ® D3 with dimensions m = [2,5,3] and p = [4,10,5]. We select i.i.d samples from
the standard Gaussian distribution, N (0,1), for the subdictionary elements, and then
normalize the columns of the subdictionaries. To generate x, we select the locations of
s = 5 nonzero elements uniformly at random. The values of those elements are sampled
ii.d. from A(0,1). We assume observations are generated according to y = Dx. In
the initialization stage of the algorithms, D is initialized using random columns of
Y for K-SVD and random columns of the unfoldings of Y for the structured DL
algorithms. Sparse coding is performed using OMP[98]. Due to the invariance of
DL to column permutations in the dictionary, we choose reconstruction error as the
performance criteria. For L = 100, K-SVD cannot be used since p > L. Reconstruction

errors are plotted in Figure It can be seen that TeFDiL outperforms all the other

algorithms.

5 KS-DL for Synthetic 3D data I-g%use Denoising using Online Algorithms
5 S
T 4 30 ﬁ
@ -
O 3| o —Online DL 0=10
- Z 50! —OSubDIL 0=10 | |
Q| & - -Online DL 0=50
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Figure 3.3: (a) Normalized representation error of various DL algorithms for 3rd-order
synthetic tensor data. (b) Performance of online DL algorithms for House.

Real-world Experiments: In this set of experiments, we evaluate the image
denoising performance of different DL algorithms on four RGB images, House, Castle,
Mushroom, and Lena, which have dimensions 256 x 256 x 3, 480x 320x 3, 480x 320x 3, and
512 x 512 x 3, respectively. We corrupt the images using additive white Gaussian noise

with standard deviations o = {10,50}. To construct the training data set, we extract
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overlapping patches of size 8 x8 from each image and treat each patch as a 3-dimensional
data sample. We learn dictionaries with parameters m = [3,8, 8] and p = [3, 16, 16]. In
the training stage, we perform sparse coding using FISTA [99] (to reduce training time)
with regularization parameter A = 0.1 for all algorithms. To perform denoising, we use
OMP with s = [p/20]. To evaluate the denoising performances of the methods, we
use the resulting peak signal to noise ratio (PSNR) of the reconstructed images [100].
Table demonstrates the image denoising results.

LSR-DL vs Unstructured DL: We observe that STARK outperforms K-SVD
in every case when the noise level is high and in most cases when the noise level is
low. Moreover, TeFDiL outperforms K-SVD in both low-noise and high-noise regimes
for all four images while having considerably fewer parameters (one to three orders of
magnitude).

LSR-DL vs KS-DL: We compare our results with KS-DL algorithms SeDiL [60]
and BCD [79]. Our LSR-DL methods outperform SeDiLi and while BCD has a good
performance for o = 10, its denoising performance suffers when noise level increasesf—_g]

Table demonstrates the image denoising performance of TeFDiL. for Mushroom
based on the separation rank of TeFDiL. When the noise level is low, performance
improves with increasing the separation rank. However, for higher noise level ¢ =
50, increasing the number of parameters has an inverse effect on the generalization
performance.

Comparison of LSR-DL Algorithms: We compare LSR-DL algorithms BCD,
STARK and TeFDiL. As for the merits of our LSR-DL algorithms over BCD, our ex-
periments show that both TeFDiL and STARK outperform BCD in both noise regimes.
In addition, while TeFDil. and STARK can be easily and efficiently used for higher
separation rank dictionaries, when the separation rank is higher, BCD with higher rank
does not perform well. While STARK has a better performance than TeFDiL. for some
tasks, it has the disadvantage that it does not output the subdictionaries and does not

allow for direct tuning of the separation rank. Ultimately, the choice between these

13Note that SeDilL results may be improved by careful parameter tuning.
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two algorithms will be application dependent. The flexibility in tuning the number of
KS terms in the dictionary in TeFDiL (and indirectly in STARK, through parameter
A1) allows selection of the number of parameters in accordance with the size and qual-
ity of the training data. When the training set is small and noisy, smaller separation
rank (perhaps 1) results in a better performance. For training sets of larger size and
better quality, increasing the separation rank allows for higher capacity to learn more
complicated structures, resulting in a better performance.

OSubDil vs Online (Unstructured) DL: Figure[3.3b|shows the PSNR for recon-
structing House using OSubDil and Online DL in [57] based on the number of observed
samples. We observe that in the presence of high level of noise, our structured algorithm

is able to outperform its unstructured counterpart with considerably less parameters.

3.7 Conclusion and Future Work

We studied the low separation rank model (LSR-DL) to learn structured dictionaries
for tensor data. This model bridges the gap between unstructured and separable dic-
tionary learning (DL) models. For the intractable rank-constrained and the tractable
factorization-based LSR-DL formulations, we show that given Q(T(Zn mnpn)pr*Z)
data samples, the true dictionary can be locally recovered up to distance p. This is a
reduction compared to the Q(mp3p~2) sample complexity of standard DL in [77]. How-
ever, a minimax lower bound scaling of Q(p >, muppp~?) in [64] for KS-DL (r = 1)
has an O(p) gap with our upper bound. One future direction is to close this gap. Fur-
thermore, we show in the regularization-based formulation that Q(mp3p~2) samples are
sufficient for local identifiability of the true Kronecker-structured (KS) dictionary up
to distance p. Improving this result and providing sample complexity results for when
the true dictionary is LSR (and not just KS) is also another interesting future work.
Another interesting theoretical direction of work is providing global identifiability
guarantees for the LSR-DL problem. The first hurdle in this direction is that, as men-
tioned in the introduction of this chapter, our choice of Frobenius norm as the metric

results in an optimization problem with multiple global minima, therefore convergence
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to a global minimum does not necessarily mean global identifiability. An interesting fu-
ture direction is to consider alternative (permutation and sign-invariant) distances that
result in a single global minimum. The second obstacle in this direction is the difficulty
in establishing global convergence results for nonconvex optimization problems. In the
recent years, researchers have proposed DL algorithms guaranteed to converge to global
optimizers of the nonconvex DL problem [80, 10T, [102]. Moreover, Sun et al. [I03] show
that for the special case of complete dictionary learning, the local minima of the prob-
lem are all globally optimum and the saddle points are escapable. While establishing
local identifiability is an important first step, obtaining geometric characterization of
the optimization landscape of the LSR-DL problem and developing algorithms with
global convergence guarantees is an interesting future direction.

Finally, we presented two LSR-DL algorithms and showed that they have better
generalization performance for image denoising in comparison to unstructured DL al-
gorithm K-SVD [13] and existing KS-DL algorithms SeDiL [60] and BCD [79]. We
also present OSubDil that to the best our knowledge is the first online algorithm that
results in LSR or KS dictionaries. We show that OSubDil results in a faster reduction
in the reconstruction error in terms of number of observed samples compared to the
state-of-the-art online DL algorithm [57] when the noise level in data is high.

The experimental and theoretical results in this chapter and in the related literature
showcase the benefits of exploiting tensor structure of data in the dictionary learning
problem. Inspired by these results, in the next chapter we study the benefits of exploit-
ing tensor structure of data in another learning problem, namely the linear regression.
Some of the analytical tools used in this chapter will also prove useful in our analysis

of tensor linear regression in the next chapter.
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Chapter 4

Tensor Regression

In this chapter, we study a tensor-structured linear regression model with tensor-
structured predictor and regression parameters and scalar response variables. We focus
on the fundamental limits on the accuracy and the sample complexity of estimating
the tensor-valued regression parameters (regression tensors) in this model. Specifically,
we obtain a lower bound on the minimax risk of estimating the underlying N-th order
regression tensor B* € R"1* XN from L predictor-response pairs (X;,y;). By com-
paring this lower bound to the known lower bounds for standard linear regression, we
provide an insight into the benefits of exploiting the tensor structure of B* in tensor

linear regression.

4.1 Introduction

Many modern machine learning and data science problems involve high dimensional
multiway (tensor) structures. Examples of problems wherein tensors have found appli-
cations include (but are not limited to) recommendation systems [74, [I04-106], mixture
and topic modeling [107, [108], deep learning [73, T09HIT3], multilinear subspace learn-
ing [114], [I15], and speech source separation [116, [117]. As we discussed in Chapter
taking advantage of the structured and the higher order correlations in tensor structures
reduces the dimensionality of the problem and can result in more accurate predictions
or estimations (or equivalently lowering sample complexity required to obtain a target
accuracy). In this chapter, we study low-rank tensor linear regression (TLR), a class
of supervised learning models that aim to exploit the tensor structure in the predictors
and the regression parameters to allow for solving high dimensional linear regression

problems accurately when the number of observations is only a small fraction of the
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number predictors. Tensor linear regression has application in many areas including
multitask learning [88], complex network analysis [I18], and neuroimaging data analysis
[119, [120].

Tensor regression models methods share the assumption that the model parameters
form a high order tensor and there exists a low dimensional factorization for the re-
gression tensor. The model we consider here is based on CANDECOMP/PARAFAC
(CP) decompostion of tensors which allows for explicit accounting of interdependencies
along different modes of tensor arrays.

Here, we focus on providing lower bounds on minimax risk of estimating the regres-
sion tensor using any estimator. By comparing these bounds to those of standard (i.e.
vectorized) linear regression, we show the benefits of exploiting the tensor structure in
the linear regression problem with tensor-structured predictors and parameters. For
standard linear regression, the lower bound on the minimax risk of estimating a pa-
rameter vector in R™ is Q(#"jlz) where Y, is the covariance matrix of the predictor
vector and o is the noise variance [I21]. Therefore, by vectorizing tensor data samples

in RMXm2xXmny - we have a lower bound on the worst case MSE of estimating the

true model parameters in form of

2
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In contrast, we show that when the spatial structure of data is preserved and a CP-rank-
p structure is imposed on the parameter tensor, the minimax lower bound is reduced
to

oSN m
> Q(ﬂ) 42
NI “2)

4.1.1 Relation to Prior Work

Tensor decompositions have received a lot of attention in the recent years as a tool to
avoid overparameterization in tensor data models [71],[72, [122]. The resulting more com-

pact models tend to be more efficient with regards to storage, computational complexity,
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and generalization performance. This has motivated the use of tensor decompositions
in a variety of areas, including deep learning [73], [109], collaborative filtering [74 [105],
multilinear subspace learning [114], source separation [116], topic modeling [108], and
many other works [74]. In the recent years, tensor decompositions have also received
attention in regression problems such as neuroimaging data analysis [119, [120] where
data is tensor structured and high dimensional but the sample size is relatively small.

While some works in the literature consider tensor linear regression problems with
tensor responses [123H126], our focus in this work is on the model with scalar response.
A majority of the works on tensor linear regression (TLR) focus on the algorithmic
aspects of TLR and developing efficient solvers for the problem under different settings
[119, 120}, 127HI34]. In contrast, fewer works study the theoretical aspect of the TLR
problem in terms of the fundamental limits of the TLR models. Wimalawarne et al.
study regularized tensor regression with different choices of the regularization term
and derive excess risk bounds for each regularized model. Zhou et al. [I19] study the
conditions for local identifiablity of the true parameter tensor in CP-based TLR model.
The CP-based model assumes that the parameter tensor has a low-CP-rank structure
(i.e. the CP-rank is at most p for some small p). The authors show that the required
number of samples for idetifiability is reduced from Q( HnN:1 mn) to Q(p Zflvzl mn). In
the same vein, Li et al. [I120] investigate the TLR model based on Tucker decomposition,
where the assumption is that the Tucker-rank of the parameter tensor is small. The
authors show that, similar to the CP-based model, the required sample complexity for
local identifiability of the true tensor is a linear function of the number of parameters
(degrees of freedom) in the model. In terms of works on the minimax risk in TLR,
Suzuki [I35] obtain results for CP-based tensor completion (which can be though of
as a special case of tensor regression, where the elements of predictor tensors are all
zero except for a single element with value 1). Their result, however, does not trivially
extend to the general TLR problem. To the best of our knowledge, our work is the first
result on minimax risk in the general CP-based TLR model.

Our approach for deriving minimax result is a well-established information theoretic

method that was first proposed by Khas’minskii [136] and was later developed further
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by other researchers [I137, [138]. Specifically, because of our analysis of tensor-structured
parameters, our proofs borrow many analytical tools from the works by Jung et al. [139]

and Shakeri et al. [64], [140].

4.2 Preliminaries and Problem Statement

4.2.1 Notation and Definitions

We use underlined bold upper-case (A), bold upper-case (A), bold lower-case (a),
and lower-case (a) letters to denote tensors, matrices, vectors, and scalars, respec-
tively. For any integer p, we define [p] £ {1,2,--- ,p}. We denote by {A, })_, the set
{A1, - ,An}. We drop the range indicators if they are clear from the context.

Norms and inner products: We denote by ||v||, the £, norm of vector v, while
we use ||All2 and ||A||r to denote the spectral and the Frobenius norm of matrix
A, respectively. We define by ||Allp the number of nonzero elements of matrix (or
vector) A. We define the inner product of two tensors (or matrices) A and B as
(A,B) = (vec(A), vec(B)) where vec(-) is the vectorization operator.

Matriz products: We denote the Hadamard product (element-wise product) of ma-
trices A € R™*P and B € R™*P by A e B € R™*P. We denote by A ® B € R"1"2xP1p2
the Kronecker product of matrices A € R™1*P1 and B € R™2*P2. We use ®nN:1 A2
A1 ®Ay®---® Ay for the Kronecker product of N matrices. The Khatri-Rao product
of two matrices C € R"*P and D € R"2*P is denoted by C ® D € R™™2*P_ We use
@nN:1 Ci2£C,®Cy®---®Cy for the Khatri-Rao product of N matrices.

Definitions for tensors: We denote the outer product (tensor product) of vectors
by o, while X, denotes the mode-n product between a tensor and a matrix. An N-
way tensor is rank-1 if it can be written as outer product of N vectors: vy o---ovy.

A superdiagonal tensor S € R™1*™M2X"XMN jg g tensor with all zero elements except

for the superdiagonal elements, i.e., the elements indexed by (i1,42,-- ,ix) such that
i1 =13 = --- = iy. We denote by SI])V the set of all N-way superdiagonal tensors in
RPXPX-Xp_

Throughout this chapter, by the rank of a tensor, rank(A), we mean the CP-rank
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of A, the minimum number of rank-1 tensors that construct A as their sum. The CP
decomposition (CPD), decomposes a tensor into sum of its rank-1 tensor components.
The Tucker decomposition factorizes an N-way tensor A € RM1IXM2X"XMN a9 A =
X x1 D1 x9 Dy x3--- Xy Dy, where X € RP1*P2X"XPN denotes the core tensor and
D,, € R™»*Pn denote factor matrices along the n-th mode of A for n € [N].

Notations for functions and spaces: We denote by Dp,x, the oblique manifold in
R™*P; the manifold of matrices with unit-norm columns: Dp,x, = {D € R™*P|Vj €

[p], dfdj =1}.

4.2.2 Low-Rank Tensor Linear Regression

In tensor linear regression we assume that each scalar response y; € R is generated

according to
y = (B*, X)) + ¢, (4.3)

where B* € R™ X"~ jg the true underlying regression tensor, {X; € R™ > xm~y}L
is the corresponding (randomly generated) predictor tensor, and ¢; € R is the obser-
vation noise. In order to explicitly account for the tensor structure in the coefficient
tensor, we adopt a tensor-factorization based model. While there are many ways to
factorize a tensor, we consider a model based on well-known tensor factorization called
the CANDECOMP/PARAFAC (CP) decomposition (Also known as the tensor rank
decomposition[l). The CP decomposition factorizes a tensor into sum of its rank-1

tensor components:

r
k=1

1Sometimes CP decomposition is is considered as the generalization of the tensor rank decomposition
where the number of the terms can be larger than the rank of the tensor. In this Chapter, however,
we use only consider the case with minimal number of terms (minimal CP decomposition) and use the
two names interchangeably.
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k

where a;

is a unit-norm vector for k£ € [r|] and n € [N]. When the number of terms r is
minimal in the above expression, then r is called the CP-rank of the tensmﬂ Therefore

we can write the underlying low-rank coefficient tensor B* as
P
* * * *
B*=) g bjjo-oby,
j=1

where p is small (p < min [[ my). We can write the CP decomposition of B* in the
on#£i
following more compressed way

B'=G"x1 8] xn By €B, (4.5)
where the set B is defined as
B = {g X1 Bl X+ XN /GN|Q S Séva Bn S DmnXPv Vn € [N]}a (46)

where S;,V is the set of N-way superdiagonal tensors in RP*"*P and D,y,,, «, is the oblique
manifoldlﬂ in R™»*P_ We can then express the tensor regression model in the following

way:

yr = (vec(B*), vec(X)) + ¢
= ((Bn @ -+ @ Br)vec(G"), vec(Xy)) + €

(), B veolG).vee(X)) + a1 ()

Therefore, the problem reduces from estimating B* to estimating {3:})_, and the
superdiagonal elements of G*, considerably reducing the number of parameters to be

estimated in the problem.

2Throughout this Chapter, by the rank of a tensor, rank(A), we mean the CP-rank of A.

3The unit-norm condition on columns of {Br} is to simplify the analysis by avoiding the ambiguity
stemming from the invariance of CP decomposition to scaling of factor matrices.
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4.2.3 Minimax Risk

Many learning problems, including linear regression, boil down to estimation problem
where some model parameters need to be estimated. Minimax risk, defined as the low-
est risk achievable by any estimator in the worst possible case allowed in an estimation
problem, is an important theoretical tool in understanding the fundamental limits of
such learning problems. These fundamental limits are in terms of bounds on the per-
formance of estimation (or optimization) algorithms. Such bounds are important in
understanding whether the existing algorithms to solve a problem are optimal (with
respect to a certain metric) or one can still develop more efficient algorithms in that
metric. Moreover, these bounds can be used to compare different approaches in mod-
eling a learning problem and understanding the benefits of exploiting our knowledge of
certain structures in data or the underlying generative model of the data.

Let us now formally define the minimax risk in an estimation problem. let P denote
a family of distributions on a sample space X, and let 8 : P — © denote a mapping
P — O(P). The goal is to estimate the true model parameter 6(P) based on i.i.d.
observations X7 € X drawn from an unknown distribution P € P. To measure the
error of an estimator of parameter 6, we employ the (semi-)metric p: © x © — R;.
Given a set of observations X1, --- , X, the minimax risk achieved by any estimator of

0 is defined as

inf sup Ep [p(é(Xl, . ,XL),G(P))} , (4.8)
0cO PcP

where the supremum (representing worst case scenario) is taken over all possible dis-
tributions in P and the infimum is taken over all estimators.

Fano’s inequality: A common technique for finding lower bounds on minimax risk in
estimation problems, which we adopt in this work, involves connecting the estimation
problem to a multiple hypothesis testing problem. Fano’s inequality provides lower
bounds on the error in a multiple hypothesis testing problem, is an essential component

of this technique.

Lemma 12 (Fano’s Inequality). Let V' be a random variable taking values in a finite
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set V with cardinality |V| > 2. Consider any Markov chain V- — X — V. Let e denote

the occurrence of 1% % V. Then, we have
H(e) +P(e) log(|V| — 1) > H(V|V), (4.9)

where H(A) is the entropy of random variable A and H(A|B) is the conditional entropy
of A given B.

4.3 Minimax Risk of Tensor Linear Regression

We wish to put a lower bound on the minimax risk of estimators for estimating the
rank-p coefficients tensor B* in the low-rank tenor regression problem, based on obser-
vations (X, y;). As mentioned earlier, here we consider the CP-based model where the

observations are generated according to

= () B vec(G*), vee(X))) + €. (4.10)
ne[N]

We further make the following assumptions on the generating model:

Assumption 5 (Model assumptions). We assume that in the generating model (4.10)),

we have

1. B* € R™M>XMN s the true, unknown N-way coefficient tensor.

2. X, € R™M>*X"MN s the N-way covariate tensor (tensor predictor) with some

known distribution and covariance ¥,

3. e ~ N(0,0?) is zero-mean Gaussian noise, independent and uncorrelated to the

class parameter B* and predictor variable X;.

Under the CP-based model, the tensor linear regression problem reduces to estimating
{B:}_, and the superdiagonal core tensor G*. For the ease of analysis, we assume
that we have the a priori knowledge of the superdiagonal elements of G*, and the N

factor matrices remain to be estimated.
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The analysis that we provide here is local in that we assume that the true coefficients

tensor B* lies in a neighborhood of radius r around a fixed reference tensor
B =G x, 8- xn 8% € B, (4.11)
denoted by
B, = {B € B|p(B,B°) < r}. (4.12)

where B is defined in ([4.6]). In this work, we choose the semi-metric p(B, B’) is chosen to
be |B — B’||%. This local analysis avoids ambiguity issues intrinsic to tensor regression
problem due to non-uniqueness of CP decomposition. It is trivial to show, however,
that lower bounds on the minimax risk in the local setting also apply to the global
setting (r — 00).

We define the minimax risk as the worst-case mean squared error (MSE) that can

be obtained by the best rank-p tensor estimator B:

¢ £inf sup Eg ||B - BJ} . (4.13)
B BebB,

Our goal here is to provide a lower bound on €* using an information-theoretic method-

ology that we describe in detail next.

4.3.1 Our Approach

We will follow the information-theoretic approach known as Fano’s method [121], 136+
138]. First, we reduce the problem of estimating B* to a multiple hypothesis testing
problem between a finite family of coefficient tensors: By = {Bl, ...,BT} € B,. In this
approach, we assume that the true dictionary is chosen uniformly at random from the
set Bp. If there is an estimator with small enough worst case MSE, then we can use
this estimator to solve the multiple hypothesis testing problem. We then can use Fano’s
inequality that lower bounds the error in multiple hypothesis testing problem which we

will use to provide a lower bound on the worst case MSE of the best estimator, i.e.
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the minimax error. Now the question becomes how to set up the multiple hypothesis
testing problem such that we can obtain tight lower bounds on the minimax error in
the estimation problem. We discuss this next.

In the hypothesis testing problem, we assume that nature chooses a t* uniformly at
random from the index set [T]. The task is now detecting the true coefficient tensor
B,. € By using observations (X;,y;). The following lemma, which is an adaptation of
Proposition 2.3 in Duchi [I121], formalizes the relation between this hypothesis testing

problem and the original tensor regression problem.

Lemma 13. Consider the regression model with minimaz risk € defined in
. Let B denot an arbitrary estimator for the true coefficient tensor B* defined
in model . Moreover, consider the set By = {By,--- ,Bp} C B,. consider
the multiple hypothesis testing problem where the the true coefficient tensor is chosen
uniformly at random from By and is indexed by t*. Let f(B) denote a minimum distance
detector such that

{(B) = argmin |B — B,||%,
te(T]

where By € B, for allt € [T]. Then, we have

*> min ||B, — B,/||% - inf P(£(B) # t*). 4.14
€ —t71t¥1€1[r%]H7t By|l% lg (t(B) #t*) (4.14)

Lemma [13] indicates that in order to obtain tight lower bounds on the minimax
risk, we need to construct By such that the distance between any two tensors in B is
large (maximizing the first term in the lower bound ) while the hypothesis testing
problem is also hard, i.e., two distinct coefficient tensors produce similar observations
(maximizing the second term in the lower bound (4.14))).

More details of the construction will be provided in the proof of Theorem |8, our

main result.

“Throughout this chapter we suppress the dependence B on the random observations {X,y)}
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4.3.2 Main Result

Here, we first state the main result of this chapter on the minimax risk of CP-based
tensor linear regression in Theorem [8 and then discuss the proof of the theorem in both

big picture and detail.

Theorem 8. Consider a tensor linear regression problem with L i.i.d. observations
generated according to model where the core tensor G* is known. Fiz a refer-
ence tensor B® satisfying and a positive constant r and suppose that the true
parameter tensor B* in model belongs to B, defined in . Further, assume
that Assumption @ holds. Then, the minimaz lower bound €* defined in can be

bounded as follows

RS (e e
‘ szm{ k2 7 2pNg2 '’
<01 PN (m,—1)+ N (1—1logyN) — 2) o?

: 415
INL[Sallp oo

where t < min,¢|y) ﬁ and 0 <c1 <1 and k> 1.

p

We first provide an outline of the proof, then provide the formal proof.

Outline of the proof of Theorem[§. We set up a multiway hypothesis testing problem by

constructing a set of T' distinct tensors in the parameter space By = {B!, - -- ,BT} € B,
where
B.2{BeBl|B-Br<r} (4.16)
such that
min B - B3 > 26 (4.17)

for some positive value §. The true coefficient tensor, indexed by t*, then is chosen

uniformly at random from the set Br. It follows from the generating model (4.7)) that
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the responses y generated using this parameter tensor follow a Gaussian distribution,
conditioned on the predictor tensor X whose distribution is known. This allows us to
provide an upper bound on the mutual information I(#*;y|X) in terms of {m,}"_;, p,
N, o, ¥, r, and some parameter ¢ > 0 that we will connect to €*. Since we also have

the lower bound

Ity X) > (1 - Pt #t*)logy T — 1 (4.18)

from Fano’s inequality and data processing inequality, we will obtain a relation in the

following form that will allow us to provide lower bound on the minimax error:

(1= (i # ) log, T — 1 < I(t% y|X) < (e, (4.19)

where h(-) is a linear function. We choose § to be the smallest value large enough
that P, is less then an arbitrary constant, making the lower bound on I(t*;y|X) only
a function of T'. By choosing the value of § not larger than required, we ensure that
the maximum distance between any two points, and therefore maximum KL divergence
between any two distributions is small (i.e. upper bound on I(¢t*;y|X) is tight). Finally,
we can compare the lower bound and the upper bound on I(t*; y|X) to get the desired

result. O

Next, we present the formal proof of Theorem [§ In order to prove the minimax
lower bound in Theorem 8] we employ the results of Lemmas [T4} Proofs of Lemmas
and [I5] are provided at the end of this chapter, in Section [£.5] Proof of Lemma

is a simple adaptation of that of Lemma IV.4 in Jung et al. [139].

Proof of Theorem[8. The proof of Theorem [§]is based reducing the estimation problem
under consideration to a multiple hypothesis testing problem. The hypothesis test is
performed among the members of By = {BI,EQ, i ,BT} € B, where B, is defined
in . We assume that the true dictionary, indexed by t*, is chosen uniformly at
random from the set Br.

It follows from Lemma [13| that in order to obtain a tight lower bound on minimax



73

error €', we need to construct By such that the minimum pairwise distance of its

elements is large, i.e.,

in |B' — BY||% > 2§ 4.20
min [B* - B*|l7 > 25, (4.20)

for some large § > 0, while the KL divergence between pairs of conditional distributions

of the response variables, denoted by Dy, (th (yIX)llfB, (y|X)), is small, i.e.

Dir(fs,(yIX)||f8, (yIX)) <n (4.21)

for some small n > 0. To find sufficient condition on cardinality 7' such that a con-

struction satisfying conditions (4.20) and (4.21)) exists, we rely on the following lemma.

Lemma 14. Consider a constant o > 2, an integer p, and N positive integers m,, for

n € [N]. Consider N positive integers T,, for n € [N] such that

mnp(2 B Q)Q

! T,
082(Tn) < 402 log(2)

1

for all n € [N]. Then, there exist N sets in form of A, = {A} € R"™*P:{ € [T,]} for

n € [N] where each set is comprised of binary matrices

At el ! L (4.23)
" NG '

satisfying

> mnp

HAt _At'
n n 0 o

(4.24)

for all t,t' € T,.

Next, we derive sufficient conditions on cardinality 7" and parameter € of the con-
struction such that we guarantee existence of the construction satisfying (4.20) and
(4.21]). We also specify the values of § and 7 in the lower bound (4.20)) and the upper

bound (4.21)) in terms of the parameters of our construction.
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Lemma 15. Consider the tensor regression generative model in (4.10). Fiz r > 0

and a reference tensor according to (4.11)). Then there exists a collection of L tensors

mp—1 27042
> ( 4a2)1§é(2)) 7%10g2(N)+N

Br = {B,,B,,...,By} C B, of cardinality T = 2"€] , such
. 2 . .
that for any 0 <t < nrg[lﬁ] T =T)p and € > 0 satisfying
2
e < Inin{l, 2])7]\],}, (425)
we have
/112 2te
B' -B'| >~ |G*|3 4.26
|B' -8 >=Jle (4.26)
for all pairs of t,t' € [T], t #t', and
2LNp||IG*||% ||1E

o2

As we discussed in the outline of the proof of Theorem |8 our approach is based on
connecting the minimax error to model parameters by providing an upper bound and a
lower bound on the conditional Mutual information I(t*; y|X). While in Lemma[L5] we
obtain an upper bound on the I(t*; y|X), we do not explicitly obtain a lower bound on
this quantity. Instead, Lemma [15| gives a lower bound on the distance between any two
points in our construction. In the following lemma, however, we connect lower bounds
on pairwise distances in the construction to a lower bound on the conditional Mutual

information.

Lemma 16 (Lower bound on MI). Consider the linear regression model in (4.10)
and suppose that the minimaz risk €* < g for some § > 0. Assume that there exists
a finite set of L distinct coefficient tensors By, = {B1,...0r} C N.(Bo) such that

ming y e |B; — Byl|F: > 20, Then, we have
1 *
B logy T — 1 < I(t"; y|X). (4.28)

It follows from Lemma that for any ¢ > 0 satisfying condition (4.25)), there exists
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% logs (N)+N

an set of By C B, with cardinality 7' = 2 Lne)(mn—1)p= that satisfies

(4.27), where ¢; = 42‘22_17;;)(22) < 1 for some o > 2. Moreover, Lemma (15 implies that if

there exists an estimator with worst case MSE smaller than

t||G*]|2
||4/£2|F min{l, —

2t||GHF

then we can set € such that e = &¢*. This means that there exists a 6 > 0 such

that § > 4¢* and min, yepr) [|B; — By||% > 26, which means that lower bound (4.28)

also holds. Therefore, under these conditions we have

862 |G [F-LNP [[Eelly .

1
ilogQT— 1 <I(t";yX) <

* € ’
t|G*||%0?
or
N . 16k2LNp |2, o
c1 Y (mn—1)p— - logy(N) + N =2 <I(t";y|X) < pr s s (4.29)

n€[N]

which gives us

. ta?(c1 Y e (mn — 1)p — Floga(N) + N — 2) (430)
€ .
- 16k2LNp (|2, ’

which concludes the proof. O

4.3.3 Discussion

First we note that while our analysis is a local one, meaning that we only consider a
neighborhood of radius r around a reference dictionary, our lower bound trivially holds
for the global case where r — oo. Moreover, when sufficient number of samples are
given, the minimax bound we provide has no dependence on the neighborhood size r,
suggesting that the local nature of our analysis is not limiting.

Let us know investigate the lower bound in Theorem [8 on the minimax risk

in the tensor linear regression problem. Our bound, for sufficient large number of
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samples, depends on the number of tensor order N, the parameters (p ij:l My, NUM-
ber of samples L, noise variance o2, and the covariance matrix of the predictors X,.

a2 HTIZI=1 mn)

When we compare our minimax lower bound for CP-based TLR to the Q( AN

minimax lower bound of the ordinary (vectorized) linear regression, it becomes ob-
vious that the dependence of the minimax error on the dimensions is reduced from
QT ma) to Q(p 2N m,) when the tensor structure is taken into account in the
tensor linear regression model. This confirms our intuition regarding benefits of ex-
ploiting tensor structure in linear regression problems with tensor. Specifically, by
exploiting the tensor structure, it is possible to design estimators with improved worst
case accuracy. Equivalently, we can present the improvement in terms of the sample
complexity required to achieve a target expected worst case error: we show a reduction

a? H2]=1 My a?p 22;1 My A . . . .
from L > Q(W) to L > Q(W) This is especially important since in
many applications of linear regression with tensor data, number of sample is quite small
compared to the dimensions of the problem [12) 119]. Moreover, our bound shows in-

verse relation between minimax error and the sample size the SNREL which is desirable.

We also see an inverse relation between €* and N for a fixed number of parameters.

4.4 Conclusion and Future Work

In this chapter we demonstrated the benefits of exploiting the tensor structure in linear
regression problems with tensor data by quantifying the reduction in the minimax risk
of estimating the true model parameters. We adopted a well-established information-
theoretic approach to provide a lower bound on the minimax risk of estimating the true
parameter tensor which we assumed it has a low CP rank. To this end, we reduced the
estimation problem to a multiple hypothesis testing problem by constructing a finite
set of low CP-rank tensors in a local neighborhood of a fixed reference dictionary and
assuming the true tensor is chosen uniformly at random from this finite set. We then
used Fano’s inequality and properties of Gaussian distributions to provide upper and

lower bounds on the mutual information between the observations and the parameter

SNote that we have SNR = 252) > [Zzl

o
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tensor in the model, which allowed us to find a lower bound on the minimax risk in the
low-CP-rank tensor regression problem. To the best of our knowledge, this is the first
result on lower bounds on minimax risk of estimating the tensor parameter in tensor
linear regression problem.

In terms of future work, an obvious generalization is obtaining a minimax lower
bound for CP-based model without a priori knowledge of the core tensor. Moreover,
in this work we framed the CP model as a special case of the Tucker-based model. In
the Tucker-based model the core tensor in the Tucker decomposition of the parameter
tensor B is not necessarily diagonal, and the dimensions of the core tensor can be
different from one another. Providing minimax lower bounds for this more general case

is a natural next step.

4.5 Proofs

In this section, we provide the proofs for Lemmas [14] and To improve readability,

the lemma statements are repeated here.

Lemma (Lemma. Consider a constant o > 2, an integer p, and N positive integers

my, for n € [N]. Consider N positive integers T,, for n € [N] such that

mpp(2 —a)? 1
I T, —_— — 1] N 1
Og?( ) < 40(2 10g(2) 9 Og?( ) +

for all n € [N]. Then, there exist N sets in form of @, = {®ln € R™*P : ¢, € [T,]}

for n € [N] where each set is comprised of binary matrices

-1 1 "™
din ¢ { : }
NN
satisfying

m
> nP
0 «

o -0

for all t,,t), € T,.
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Proof of Lemma[TJ. consider N sets in form of ¢, = {®!r € R™*P : ¢, € [T,]} forn €
[N]. Let each set ¢y, be a set of T}, matrices where each contains m x p independent and
identically distributed random variables taking values 4 \/}Tn uniformly. We <I>t”’

Dl e <I>Z” be the Hadamard multiplication between ®!» and <I>n”. Moreover, let gz@nt? "

be the i-th element of Vec(i’f{“t;‘). We have

tn t

= (mn = 1) [ Zgb W'] (4.31)

Therefore,

i <H¢f; — ot

(m . 1)p (mn_l)p .
<—"—) =P|p-— matn < =
0 « ) P Z ¢

(mn—1)p

2 —a)
_p j it —(
(@) -2 (")
S exXp E(mn_l)p( 9 )2
=1 /(mn_l)
mn, — 1p(2 — a)?
— exp [—( 2)5 2( ) ] (4.32)

where (a) follows from Hoeffding’s inequality [45], [141] which we are allowed to use due

to assumption o > 2. Taking a union bound over all pairs t,,t, € [T),] for all n € N:

< (m”_l)p>
0 «
<3 (7)o [ g
< N max (1;3 exp [_ (my, — 1)p(2 — a)2:|>

neN 202

P <E|n, bt H@ﬁ; —ptn

= ma <exp [— (mn = 12)52(2 —o)” 2108(T/2) + log(N)]> . (4.33)

In order for the statement of the lemma to hold, we need the probability in (4.33)) (the

probability that the distance condition is violated for at least one pair of factor matrices
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&l and <I>$L;l) to be less than 1. That is,

n—Dp(2 — a)?
_(m 2)52( A L 210g(To/2) +log(N) <0, Vne N. (4.34)

Therefore, we have

(mn —1)p(2 — ) log(N)

log(Ty,) < +log(2), VneN,

402
or
(my —1)p(2 — a)2 1
1 T, — =1 N 1V N. 4.35

We can further write this condition as

(mn—1)p2—a)? 1
0< T, <2 ifloa@ 28y o\ (4.36)

This concludes the proof. ]

Lemma (Lemmall5)). Consider the tensor regression generative model in (4.10). Fix

r > 0 and a reference tensor according to (4.11). Then there exists a collection of L

mn — 70(2
> et S loga(N)+N

tensors By = {B,,B,,...,Br} C B, of cardinality T = 2"€) ,

such that for any 0 < t < min

2 . .
it G Dp and € > 0 satisfying

2

£ < min{1, 2;—]\7},

we have

HBt g 2 2t

2
p > FHQ*HFv

for all pairs of t,t' € [T], t #t', and

< 2LNDIG [ el

I(t"; y|X) 5

g



80

Proof of Lemma [ Let B’ = G* x; B xn ﬁ?\/ be a rank-p reference tensorﬁ such
that the columns of B0 have unit norm for all n € [N]. Let {U,; € R™nxmn }§:1 for

n € [N] be arbitrary real unitary matrices such that
by ; = Upjer, ¥n € [N], (4.37)

is the j-th column of BY. It follows from Lemma that there exist N sets B, C

R(Mn=DXP for n € [N] with elements

y 1 1 (mn—1)
e {_wmn—n’ ¢<mn—1>} et

Qtn 7t'ln (mn—1) :
such that mmﬁ_n BiheB, Bir — By . > P for some o > 2, if
(m, —p(2—-a)®? 1
I T, — =1 N 1

for all n € N. Now, we construct N sets B,, C R"™*? based on (and with the same
cardinality as) the sets B" C R =1)%P in the following manner.
We construct each matrix B% € B, based on the matrix 8f» € B, and unitary

matrices {U, ; }§:1 such that the j-th column of Bt is given by

N 0
b = Uy ol Vn € [N]. (4.38)

n?]

Due to the constructions and = 1, we have
2
tn 0 0 _
bir. L b, bm‘ _1.

Now, we are ready to construct Bp Wlth cardinality 7" where each B, € By is in

form of

B! =G* x; 8" xy BY, (4.39)

Sremember that we assume knowledge of core tensor G*
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fort € T and t,, € T),, n € [N]. We construct By such that
B =V1—eB) + Ve, (4.40)

for some 0 < ¢ < 1. We will next derive conditions on ¢ and T. Throughout our
analysis we utilize the fact that Hbt” |2 =1 and ||B8||F = /b
Condition on T: We also derive the following condition on T' = |Br| based on

condition (4.22)) in the statement of Lemma [14] that

(mn—Dp2-a)? 1
o ] Lo < T 2 b
ne[N] n€e[N]

n_l 2— n
R

, (4.41)

for some o > 2.

Condition on e: Next, in order to ensure that By C B,, we show that |B’ — B°||2

for all B' € By. We consider the following expansion of B, to aid in our future analysis:

B! — Z aV il gl ®F£n vec(G*), (4.42)

N ie{0,1}V née[N]

where i 2 (i1,...,in), a 2= 1 —¢, b=/, FY = 8% and F! = 3. We can proceed
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B~ B[,
2
=l & B | vec(G S Nl [ Q) Fin | | vee(G?)
n€E[N] iE{O,l}N n€[N] P
2
@ @ 50 VeC Z aN_||i||1b||i||1 @ Fén Vec(g*)
n€[N] iE{O,l}N n€[N] P
2
= 1 — a @ 160 @ BO VeC )
HE[N] TLE[N r
B 2
<lla=aMy [ OB - | 3 Vil ) Fi Ivec(G*)|2
nelN] ie{0, 1}V nelN]
L llill;#0 »
2 2
n€(N] o i€q0, l}N ne[N] P
- ll]l, #0

where (a) follows from the fact that G* is superdiagonal.

For the first term in the

bracket, i.e. (1 —a¥ H( ne[N] ,62) ‘i we have
1—a (@B()) = l—aN)2p
ne[N] F
<(1-a*)p
<(1-a)(1+a’+- - +a* ¥ D)p
< eNp. (4.43)

Moreover, for the second term in the bracket, Zie{o,l}N a? N =l p21lL

lléll, 7#0

L2
Onepy For -
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we have

S Olgil | () Finl| = ST QT2

i€{0,1}N ne[N] o i€{0,1}
llill,#0 lléll; #0
—p Z e)N- lilly lilly
ie{0,1}N
ll4]l, #0

5 (oo

@ p(1 - (1-e))

(b)
< eNp.

Thus, we have
B - B[}, < [2:Np] | G* 3.

. i.e., B! € B,. Remember

2pN, we ensure that HBt BO|

that we also have 0 < ¢ < 1 from (4.40). Therefore,

2

r
0 1 4.44
< & < min{1, '3 N} (4.44)

Lower bound on distance Hﬁt — BOH I We now find a lower bound on the distance

between any two elements in the set By :

2

/7 2 ! *
B -8B = |l| ® 8- ® B | vee(@)
ne[N] ne[N] F
T
=vec(G) | @ B - Q Br| | @ B — Q Bl | vee(GY)
ne[N] ne[N] ne[N] ne[N]
= vec(G*)TM vec(G*)
> 02 (M) [[vec(G¥)|3, (4.45)
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where

T

Mo 2| & 8- &R B R B - R B | e R,

ne[N] ne[N] ne[N] ne[N]

and O’min(tht% ) is the minimum singular value of My, 41 - Assuming that omin > 0,

we have
2 2
> Mt [ o Mt |l
O i (Mt b ) 2 2 (446)
min nyln pN ’%%n’t’ pN H2 y
02 (M
where ry, y = %:::f‘)) and Kk 2 max iy, g, In order to evaluate (4.46)), we must
‘natn vn

2

tn
Qnen] By — Qe B -
any two distinct ®ne[ N Bl and @ Ne[N] Bf;”, it is sufficient that ¢, # ¢/, for only one

find a lower bound on

We begin by stating that for

n € [N] (only one factor matrix is different) [64]. Assume that Ny out of N factor
matrices are distinct, and without loss of generality we assume that factor matrices

labeled 1, --- , Ny are distinct, and factor matrices labeled Ny + 1,--- , N are identical.
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Thus we have:

2
" o Y o !
| @ 6~ @ i, = ot e om0 ooy
ne[N] n€[N]
# t 2
-B8'® ®16 ®61\Jf\;d:11 ®BJ\J/V ’F
Ny Ny ¢ 2
= H(@ﬂfr —®ﬁ£¢> ® By @ @B
n=1 n=1 F
N Ng Ngq 2
- T | (@0 - @t
n=Ng+1 n=1 n=1 E
Nd Nd 2
@ pN-Na|| ST Na-lilplil, (@ Fin — ®F;fn>
ic{0,1}Va n=1 n=1 F
@ pN—Nd ) Z a2WNa—llilly) 2l
ie{0,1}d, |i|l170
2

II el | ® sr- & 8¢
TLG[Nd} nE[Nd]: in=1 ’nE[Nd]: in=1 la
in=0

(4.47)

where FO = F/0 = 80 F! = 3» and F! = BZ” Also, (a) follows from expansion

n

(4.42)), and (b) follows from orthogonality of the terms in the summation. For the term
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above, we have

'|®ne[N]BfL” - ®ke[Kd]B$Ln

in=1 in=1 F
2 2 2
®d: - @5 = | ®a| +| @8] 1] @
ne[N] ne[N] ne[N] ne[N] ne[N]
in=1 in=1 r in=1 o in=1 o in=1
1
> _ _ _ _
2 [ » 2H< my —1)p) = 1) mn—1>
nE[Nyg) n€[Ny]
in=1 in=1
=2 [[r-21]] < 1)
n€[Ng] n€[Ng]
in=1 in=1
2
T2 ()
n€[N] n€[N] n
in=1 in=1
>2 [[p-2 ] -1
TLE[Nd] TLE[Nd]
in=1 in=1

=2 [[r- ] rd-1
n€[Nq] n€[Nq]
in=1 in=1

ne[Ng] n€[Ng]
in=1 in=1
>2t [] » (4.48)
n€[Ny]
in=1

where t € (0,1) is such that ¢ < nrg[%( 2_1)p.

and (a) follows from the fact that

when B! and BZ" differ in only one element, their inner product is greatest. Now, by
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plugging (4.48) in (4.47)), we get

12 i i
‘ ® an _ ® BZ" . > 2tpN Z a2WNa=llilly) p2llilly

n€[N] ne[N] i€{0,1}Na
[Ii[l, #0

Ny—1
_ 2tpN Z ( > n Ndfn

=2tp™ [1 - (1 — )]

>2tpN [1—(1—¢)]

= 2p"e. (4.49)

By replacing (4.49)) in (4.45)) and (4.46), we get

/112 2t
-5 > 2y
P pN
_ 2te
= SlIGIE (4.50)
This means that the packing distance in this construction is 26 = —3=—||G||%.

tnt

Upper bounding mutual information: As stated in the problem formulation,
the observations y follow a Normal distribution when conditioned on X. Based on

convexity of KL-divergence [142], we have that [139, [143]

I(t"; y|X) = ZE [DKL(th (y|1X)|| Zth/ (y|X) )]

tGT t/GT

< 3 B [Dir(fpr Xl 01%0)] . (@5

tt'eT

where Dgr(P1||P2) is the KL-divergence between two distributions P; and P, and

fB(y|X) is the probability distribution of responses y given coefficients tensor B and
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predictor tensors X. For the KL-divergence. Since the conditional probability is Gaus-

sian, from Durrieu et al. [144], we have

E. D (fi(y X)) fr (yIX))

S AR
:Ex ZTﬂ<B —B,Xl>

=1

1 N T '
LE, [22 vec (Bt - B ) vee(X;) vee(X;) " vec (Bt - B’ )}
o

L [1 vec (E — E’)T 5, vec (Bt — Bt'>]

202

L 12
< s, HBt—Bt . 452
< ooz 1], B - B¢ (4.52)

It follows immediately from (4.52)) that we must derive an upper bound on the distance

between any two elements in the set Br:

/12 ,112
HEt_Bt — HBt_BO +EO_Bt H
F F

<|B'-B°|; +|B° - B}

(a)
< 4eNp||G*|%, (4.53)

where (a) follows from (4.44)). Plugging in this upper bound for HBt ~B" |%., we achieve

the following upper bound for the mutual information in (4.51)):

N 1
Ht5y1X) < 75 > B [Dice (fa (0101 e (1)
tt’eT
*12
< 2LNp||G 2||F HEIHQ&

(4.54)

g

which concludes the proof of Lemma ]
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Chapter 5

Momentum-based Accelerated Streaming PCA

5.1 Introduction

Principal component analysis (PCA) is a powerful tool with applications in machine
learning, signal processing, and statistics. The aim in PCA is to learn directions of high
variance (principal components) for a given dataset. This allows for representing the
data using only the components (features) with highest variance and therefore reduc-
ing dimensionality of data while explaining as much variance in the data as possible.
Reducing the dimensionality of data allows for more efficiently perform information
processing and learning tasks especially when dealing with high dimensional data.

To find the principal components of a data matrix, one needs to find the top eigen-
vectors of the covariance matrix of data. Let the data samples be realizations of a
random vector x generated from an unknown distribution P, with zero mean and co-
variance matrix 3. The PCA problem can be posed as the statistical optimization
problem

min ~Tr(WIEZwW). (5.1)
WeRIXEWTW=]

Since we often do not have access to P, and therefore the true covariance matrix 3, we
resort to solving the empirical PCA problem. That is, given N data samples x,, € RY,

n=1,---,N drawn from P,, we solve

1
i —— Tr(WTAW), 5.2
WeRdXI'?:lvr\lfTwzf N I ) (52)
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where A = % 25:1 X, X! is the sample covariance matrix.

To solve this problem, iterative methods such as power method and Lanczos [10] are
among the most popular methods. However, these methods need access to the sample
covariance matrix A at every iteration. This is not possible in streaming settings
where the algorithm observes data samples only one (or a few) at a time. Moreover,
even in non-streaming settings, this requirement incurs an O(d?N) to compute the
sample covariance matrix and an additional O(d?) memory for its storage, which can
be prohibitive for machine learning applications where we typically work with large and
high dimensional datasets.

To address these issues, streaming (stochastic) PCA algorithms such as Oja’s rule
[145], 146] and Krasulina’s algorithm [I47] have been proposed. These algorithms work
with cheap-to-compute estimates of the covariance matrix in each iteration. That is,
in the ¢-th iteration of these algorithms, an estimate A; of the empirical covariance
matrix is computed such that the algorithm does not need to access the entire data set
in each iteration. This estimate is often chosen to be A; = xtX;f where x; is the t-th
observed data sample. In addition to being suitable for streaming settings and lower
memory and computational cost compared to batch methods, these stochastic methods
allow taking advantage of sparsity in data samples to reduce computational cost even
further. In some applications such as natural language processing, computer vision,
and recommendation systems we sometimes deal with data samples {x;} and therefore
estimates {A;} that are sparse. However, this sparsity usually is not preserved in the
sample covariance matrix A = 3 Zi\i 1Ay

Our focus in this work is on Oja’s algorithm. Oja’s simple update rule
Wy =Wt i Awe we = wy/[will, (5.3)

where A; = x;x7 , is perhaps the most popular streaming PCA algorithm. Oja’s method
can be seen as projected stochastic gradient descent (SGD) applied to the PCA problem
(5.2). However, due to the nonconvexity of problem ([5.2)), the convergence guarantees

for SGD do not directly apply here. Nonetheless, the convergence of Oja’s method
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to a global minimum of problem [5.2] is established in the literature. More precisely,
the suboptimality error of Oja’s and many other streaming PCA methods can be de-
composed to a variance term (function of noise variance o) and a bias term (function
of initial error ep). The bias component of suboptimality error is lower bounded as
Q(eoe_mt) where A1 and )y are respectively the largest and second largest eigen-
value of the sample covariance matrix [148]. On the other hand, the noise component of
the error has a minimax lower bound Q((/\lfiiz)%) [149]. To the best of our knowledge,
the best convergence rate guarantees for streaming PCA are given by Jain et al. [150]
where the authors show that with probability greater than 3/4, the iterates in Oja’s
method reach O(ﬁ + t%) error after ¢ iterations.

Achieving such strong convergence results for the nonconvex PCA problem is
made possible perhaps due to the fact that this problem has a “nice” optimization
landscape with escapable saddle points and no nonoptimal local minima [I51HI53]. This
intuition encourages us to employ acceleration techniques that have been successfully
implemented in many classes of convex optimization problems. In this chapter, inspired
by recent works on accelerating stochastic gradient descent for certain classes of convex
problems [I54-157], we investigate whether a momentum-based acceleration method
called the Polyak’s heavy ball momentum method [14], [I58] can help Oja’s method
achieve the lower bounds in both noiseless case (bias term) and noisy case (variance
term).

We investigate different step size choices in the heavy ball accelerated Oja’s method
and propose a multi-stage scheme for choosing the step size. We prove the conver-
gence of this multi-stage algorithm and show that, with high probability, it approx-
imately (up to a log factor) achieves the O((Alfiiz)%) upper bound in the bias term
and O(eoe_mt) upper bound in the noise term. While the dependence of our
convergence result on dimensions d is not optimal and there is an extra log factor in
dependence on t, our results show that there could be benefit in applying momentum

acceleration to stochastic solvers in this structured nonconvex problem. This result is

also backed by our preliminary experimental results (see Figure .
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J_-r Oja's Method

% Our Algorithm

0 05 1 1.5 2 25 3 35 4 45 5
Iteration (number of samples) %10

Figure 5.1: Performance of our proposed method and standard Oja’s method in terms
T
- u1 Wi
of error (1 Tulwils

see improvement in the performance of our proposed heavy-ball momentum accelerated
method compared to the standard non-accelerated method.

) versus the number of iterations on a synthetic dataset. We can

Remark. In this chapter, we focus on solving the 1-PCA problem. That is, com-

puting the top eigenvector of a covariance matrix.

5.1.1 Relation to Prior Work

While earliest works on streaming PCA algorithms such as Oja’s method [145, 146] and
Krasulina’s method [147] date back to 1980s, in the recent years there has been a re-
newed interest in streaming PCA methods due to widespread application of PCA in
many machine learning and big data problems. Inspired by advances in obtaining
non-asymptotic convergence rates for stochastic optimization, some works provide fi-
nite sample convergence results for classic streaming PCA algorithms, especially Oja’s
method [I50} 159-162]. Many other works have focused on developing more efficient
variants of these streaming PCA algorithms [148, [163HI65]. Among these, Shamir
[160], Xu et al. [148], and Kim and Klabjan [164] propose using variance reduction
techniques to speed up the convergence. However, these algorithms are not suitable for

true streaming settings since they require many passes over the data and also require
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O(d?) memory compared to O(d) memory cost of stochastic PCA methods without
variance reduction. Moreover, Xu et al. [I48], and Kim and Klabjan [164] , similar to
our work, propose employing momentum-based acceleration to design stochastic PCA
algorithms.

While the efficacy of acceleration methods such as Polyak’s heavy ball method
[158, 166] and Nesterov’s accelerated gradient method [167] is well understood for de-
terministic (strongly) convex optimization problems, recently there has been a surge
in interest in analyzing accelerated stochastic algorithms due to their scalability and
their good performance in practice both in convex and nonconvex settings, especially
in deep learning [155, 168-170]. Notably, Aybat et al. [155], Can et al. [I70], and
Jain et al. [I54] study accelerated methods for strongly convex and certain classes of
convex problems, while some other works [I7IHI73] focus their attention to analyzing
accelerated stochastic methods for nonconvex problems under mild conditions . While
PCA is a nonconvex problem, the aforementioned results on nonconvex optimization
only provide rates for first order convergence (convergence to a stationary point of the
objective function) and not necessarily global convergence rates. In the 1-PCA problem
which is the focus of this chapter, we are interested in finding the top eigenvector of
the matrix which corresponds to global optima of Problem [5.2]

The idea of employing acceleration methods to speed up PCA algorithms has been
proposed by Xu et al. [148], and Kim and Klabjan [164]. The proposed algorithms in
these works however require working with large mini-batches or multiple passes over
the data, making them undesirable for streaming settings. In contrast, we propose a
heavy ball accelerated variant of Oja’s method with multistage scheme for choosing the
step size that is suitable for streaming settings since only requires access to a single
data point per iteration. The multistage scheme for step size is adopted from Aybat et
al. [I55], where they show that heavy ball accelerated SGD with a similar multistage
stepsize scheme achieves optimal convergence rate when applied to strongly convex,

smooth functions.
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5.2 Preliminaries and Problem Statement

5.2.1 Notation and Definitions

Throughout this write-up, scalars are represented by lower case letters: a, and vec-
tors are denoted by boldface lower case letters: a. Boldface upper case letters denote
matrices: A and tensors are represented by boldface underlined upper case letters A.

We denote by ||v]|, the £, norm of vector v (we abuse the terminology in case of
p = 0), while we use ||Al]2, |Al/F, and ||A||,, to denote the spectral, Frobenius, and
trace (nuclear) norms of matrix A, respectively.

We denote by A ® B € R™172XP1P2 the Kronecker product of matrices A € R™1*P1
and B € R™2%P2, We use ®51V:1 A, 2 A RAs® - ® Ay for the Kronecker product

of N matrices. We drop the range indicators when there is no ambiguity.

5.2.2 The stochastic PCA problem

In streaming PCA, we want to find the top eigenvalue of a matrix 3, given a sequence
of random samples A; of 3 which are given to us in an online fashion. Here, we assume
that the streaming algorithms have access to a stochastic oracle that provides (noisy

unbiased) i.i.d. estimates A; of a matrix 3 such that
EA]=%, |AJr<r, E[|A-3Z|F] =0> (5.4)

A special (and common) case of this setting is estimating the covariance matrix ¥ by
estimates A; = XtX? where x; is the random data sample presented to the algorithm
at time ¢.

Further, we assume that the largest eigenvalue of 3 is strictly greater than the

second largest eigenvalue, i.e., Ay > Ao > A3 > -+ Ay,



95

5.2.3 Baseline Stochastic PCA Algorithms

The oldest and most well-known stochastic PCA algorithms are Oja’s method [145]

146] and Krasulina’s method [147]. In Oja’s method, the update rule is
wi = ([+nAgwer,  we=wi/[[wil, (5.5)

which is sometimes written as

w! = Wil +nAywi_q
K |wi—1 + UtAtWt—1||’

wy = wi/|[will, (5.6)
On the other hand, the update rule in Krasulina’s algorithm is

Wi = Wi 1+ 1 (At —— 05— 1) wW1. (5.7)

In this work, we focus on Oja’s rule and its variants.

5.2.4 Momentum-based Acceleration of Gradient-based Optimization

Methods

The baseline algorithm for solving a minimization problem with continuously differen-

tiable objective function f is the gradient descent (GD) method with update rule
wi = w1 — iV f(Wi1), (5.8)

where 7 is the stepsize (also known as learning rate in the machine learning community).
The convergence rate of GD for convex functions with L-Lipschitz gradient is O(L/¢)
and when the function is also p-strongly convex, it is O(L/ulog(1/€)) [157].

To improve the convergence of GD, accelerated first-order methods combine gradient
information at the current and the past iterate, as well as the iterates themselves. Most
common acceleration methods are Polyak’s heavy ball momentum method [158, [166]
and Nesterov’s accelerated gradient method [167].

Polyak’s method involves adding a “heavy-ball momentum” term f(w;_; — w;_2).
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The update rule in the heavy ball accelerated GD is
wi=wi 1+ B(Wio1 — wi2) =V f(wi1), (5.9)

which sometimes is written in form of

vi=B'vie1 — Vf(wi_q)

Wi = Wi_1 + vy, (5.10)

where 3 = %’ On the other hand, Nesterov [167] proposed a slightly different momen-

tum method:

vi=p'vie1 — Vwf(wim1 +n8'vie1)

Wi = Wi_1 + NV, (5.11)
which can also be written as
wi = Wil + B(Wim1 — Wi_2) — NV (W1 + B(Wi1 — Wwi_2)). (5.12)

The heavy ball method has been shown to have O(y/L/ulog(1/€)) convergence rate
when the objective function f is twice continuously differentiable, strongly convex and
has Lipschitz continuous gradients, which is faster than both GD and Nesterov’s ac-
celerated gradient [I57) [174]. However, the convergence of the heavy balling method
is not as well-established when f is not necessarily twice differentiable [I74) [I75]. On
the other hand, Nesterov’s method has improved convergence rate for both classes of
convex and strongly convex objective functions with Lipschitz continuous gradients.

Especially, in the case of convex optimization problems with Lipschitz continuous gra-

dients, Nesterov’s method acheives the optimal rate of O(y/L/¢) [167, [174].
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5.3 Oja’s Rule with Heavy Ball Acceleration with Fixed Step Size

In this section we study the convergence of Oja’s update rule with fixed step size and
Polyak’s heavy ball (HB) acceleration in the stochastic (streaming) setting. Consider

the following variant of the Oja’s rule:

wi = (I+ 1Ay w1 — fwy_o, wi = w,/[[wi, (5.13)

where A; is the stochastic update at time ¢. We call this update rule the heavy ball
accelerated Oja’s Rule (HBOR), since the term —fSw;_o in the update works in similar
way to the heavy ball momentum term.

Define random matrices F; such that w; = Fywgy. Then can be rewritten as

a matrix recursion for ¢ > 1:

F, = (I+nA)F,_| — BF,,, Fo=1 F_ =0. (5.14)

We can write update rule (5.13)) in the compact form &, = M;&;_; where

I+nA; —p1
M, 2 ' , (5.15)
I 0
/
t , Wi . ' .
and & = and & = . Since w; = Fywp, one can write F; =
Wi-1 Wi
A Id
ZTM,;---M,Z, where Z £
04

Using the definition of F; we have an expression for the residual error from projecting
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the iterate on the top eigenvector:

(1, w))’ (uf Fywo)?
W [[Fewl?
Y, (' Few)?
YL (u] Fiw)?
o Zip(ufFiwo)?
T (ufFiwg)?

(5.16)

Thus, in order to find the convergence rate of the sequence generated by HBOR in
(5.13)), we first bound E Z?zz(u;prtwo)Q and use Markov’s inequality to obtain a
high-probability upper bound on the numerator. For the denominator, we bound
Var(ul Fywy) which yields a lower bound on |[uf F;wyg| (and consequently (uf Fy;wq)?)
using Chebyshev’s inequality.

To establish an error bound of HB-Oja’s rule with constant step size, we will first

introduce a series of lemmata that are essential in obtaining our results.

Lemma 17. Consider the update rule (5.13) and F; defined in (5.14). Assume that

lwol| = 1. Then,

02772t
(Errvier] R SR C L

|E(F, @ Fi] — E[F) @ E[F] || < p?(h)(exp |

where 0> = E [||A — At||2] , A1 1s the largest eigenvalue of matriz A, and the polynomial

sequence pi(x) is defined as
pi(x) = (14 nz)pi—1(x) — Bpi—2(x), pi1(x) =1+nz, po(zx)=1. (5.18)
Proof. We have F; = ZTM, - -- M, Z. Therefore,

E[F, @ Fi] = (Z® Z)"E[M; ® My]---E [M; ® M1] (Z® Z)
= (Z®Z)"EM, @ M, (Z @ Z). (5.19)
n(A:—A)

0 i ~
We have M; = M + . Define M; £ M — M,. Since E [Mt} — 0, we
0 0
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have

]E[Mt®Mt]t:]E[(M—l\?[t)®(M—Mt) '

= MaM+ D), (5.20)
where X £ E [1\7[,5 ® 1\7[,:}. It is clear that
S =E[(ZnA; - A)Z") @ (Zn(A, — A)ZT)] = *(ZR Z)EA(Z® Z)",

where 5 £ E[(A; — A) ® (A; — A)]. Now, we know from the binomial expansion of

matrices [148] that
n+1

(A +B) Z > A’leBAk

n=0yesrt!

where Sg 2 {(ky, -+ ,kj) € NV | ky +---+k; = i}. Applying this expansion to the right
hand side of ([5.20)) results in

MM + %) Z > M®M’“1H2(M®M)’”

n= Okesn+1 i=2
n+1
= (Mo M)’ +Z > MeMM ] =M e M)k
n= 1k€5m7+; =2

Since E[Fy] = E [Z"M,; --- M Z] = Z"M'Z and consequently E [F] ® E[Fy] = (Z ®
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Z) "M@ M) (Z® Z), it follows that

|E[F; @ Fy] — E[F] @ E[Fy] ||

t n+1
=Z2z)"Y Y I(MeM” [[EMeM)*| (ZeZ)]
n=1 k =2
t n+1
= || ZZ(Z ® Z)T (M ® M)kl H 772(Z ® Z) -XA - (Z ® Z)T(M ® M)kl (Z ® Z)H
n=1 k =2
t n+1
= 1YY ez MeM)(Zez)[] [nQEA(Z 22" Me M) (Z o Z)} I
n=1 k =2
n+1
= || ZZ [Fr,] @ E[Fr,)) [[ [""Za(E[Fr,] @ E [Fy,))] |
n=1 k 1=2
t n+1
<Y S NEFL]QEFL]) [ [°SaE[Fr] @ E[F])] |
n=1 k =2
t n+1
< Z IE [Fi,) @ E[Fr, ]2+ | [T 7*1Zall2 - |E [Fi,] @ E[F] |2
n=1jegn+! i=2
n+1
< Z I7°Sal™ Y IE[Fi] @E[Fg]ll2 [] IE[FL] @ E[Fr,] |2
n=1 kesp ! =2
t n+1
=S I=al” > TTIEFL] @ EFL] o (5.21)
n=1

kesptl i=1

Now, using the properties of the polynomial sequence p;(x) described by (5.18]) and the



101

fact that ||E [Fy,]ll2 = [[px, (A)ll2 = pr; (A1), we get

|E[F: @ Fy| — E[F] @ E[Fy] ||

n+1

<ZH7722AH” > ITIEFEI

keS?’H—l =1

n+1

—Zn2"||2 "> TIwkOw

keg"Jrl =1

(a) &
< ZWQ”HEAH” Z
n=1

2
n A
kesnt! ((1 + 77/\1)2 - 45)npn+zi:+11 kz( 1)

() 2n n ¢ 1
= pi (A1) >

pt 1 7;77 H All - ((1+77/\1)2_4/8)n
:p2()\1)zt: ! ( N >n

t S \e—n) \A+nA)? —45

—~

. pg(Al)([(l ﬁ;!i‘ﬂ B 1T - 1)

2 520w (exp | 7 Zalt 45} ~1).

(1+n\)% -

(d)

(5.22)

where (a) follows from Corollary 4] in the Appendix (Section , (b) follows from
‘Sn—i-l’ — t

(c) follows from the binomial theorem [148], and (d) follows from
t—n

14 2 < exp(z). Finally, since || Zal| = E [|A — A¢||?] = 02, we have

0_2 2
|E[F, @ Fy] - E[F] @ E[F] | <p?(n)(exp [(1 +77/\17)2t—45] -1).  (6:23)

O
The following lemma provides a high probability upper bound on the numerator of

the right hand side of inequality (5.16)), i.e., Zf:2(ul-TFtw0)2

Lemma 18. Consider the update rule (5.13) and F; defined in (5.14). Assume that
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|lwol| = 1. Then, with probability at least 1 — 6,

d

0.2 2
>l Fowo)? < 3 [V stOw) (0 [ 00— 5] = 1) + 4001 =l wol)|.
=2

(5.24)

Proof of Lemma[1§ To find an upper bound on the numerator Zf:2(uiTFtwo)2, we
use Markov’s inequality [45, [141]. To avoid complications of finding the exact value of

E [Zng(u;fFFtWOP], we resort to finding an upper bound on it. We have

d
E Z(u?Ftwo)Ql
zz? 2 d 2
= Z(E [(u;fFFtWO)Q] —-E [uiTFtwo] )+ ZE [uiTFtWO]
i=2 1=2
d d
< Z(E [(uiTFtWO)Q] —E [uiTFtWo]Q) + ZE [uiTF,gwo]2
i=1 1=2
d d
= Z(IE [(ulTFtWO) ® (u?Ftwo)] —E [uiTFtwo] ®E [uiTFtWo]) + Z]E [uz‘TFtWO]2
i=1 1=2
d d
= Z(UZ ® ui)T(E [Ft X Ft] —E [Ft] QRE [Ft])(W() (%9 W()) + Z E [u,iTFtW()] 2
i=1 =2
(@) || & d
SIS o) | IEF @ B - EFJ@EF]] - wo® wol + 3 (pr(h)ul wo)?
i=1 i=2
< 020 ot 1 2y ’ T \2
< VAR (e | s ) — ) 2) 3w
o2n2
© vV p2(\) (exp {(1 - m?);_ 45] —1) +pF(N2)(1 — [ufwol?) (5.25)

where (a) follows from Cauchy-Schwarz inequality, (b) follows from orthonormality of

u;’s as basis vector. Using Markov’s inequality, we have that with probability at least
1—9,

d

0.2 2
>l Fow)? < 5 [V st (o0 [ 55— 5] = 1)+ 4001 uf woP)
1=2

for any fixed 0 < § < 1. O



103

Next, the following lemma provides a high probability lower bound on the denomi-

nator of the right hand side of inequality (5.16)), i.e., (ul Fywy)?2.

Lemma 19. Consider the update rule (5.13) and ¥y defined in (5.14)). Assume that

|lwol| = 1. Then, with probability at least 1 — § we have

2

a3n?t ] 1

eXP | Aoy a3
(afFrwo)® 2 5} (0) |[uf wal —\/ [“”*;)2 | . (20

Proof of Lemma[19. We use Chebyshev’s inequality [45} 141}, [176] to find a lower bound
on the value of (ulF;wg)2. The variance of the denominator Var(u? Fywg) thus is

bounded as follows.

Var(ul Fywg) = E [(ulTFtWO)2] —(E [(u{Ftwo)])Q
=E [(u] F,wo) ® (u{ Fywo)| — E [(u] Frwo)] @ E [(u] Fywo)]
= (w @u) (E[F; @ Fy] — E[F;] @ E[F])(wo ® wo)

<llwm @w|-[[E[F; @ F] - E[F]@E[F]] - [[wo @ woll

< p2(\ )(ex [ o0t }—1) (5.27)
> Pl p (1+7])\1)2—4ﬁ . .
Using Chebyshev’s inequality we get
o2n2t
exp | it ,\n2—45] -1
P | [ul Fowg — ul'pi(A)wo| > pi(A1) \/ ( :I/g) <é.
Note that
u! pi(A) = ul pr(\)usul = pi(\)ul. (5.28)
Therefore, we have
o2n?t
exp [71+ AT ] -1
P | [uf Fiwo — pe(Ai)ui wol Zpt()\l)\/ )40 <. (5.29)

75 <



104

Thus,

o2n2
(A1) \/eXp [(ngiw] -1

P [ [uf Fiwo| < pi(A1)uf wol —p; 75 <46 (5.30)
and consequently
2n2¢ 2
exp [r—s) — 1
P | (W Fiwo)? < p2(\1) | [ufwo| — \/ (Ltn (15) g <. (5.31)
O]

2
Next, we investigate the term 2 5()‘2)
y2n (>\1)

error. The following lemma states the result.

that will appear in the upper bound on the

Lemma 20. Given the polynomial sequence {p;(x)} defined as

pi(z) = (1 +n2)pi—1(z) — Bpi—2(x), pi(z) =1+nz, po(z)=1,

and B = (1+nX2)%/4, we have

pi(A2) _ < ox
pi(A) T\ a2 V1+nh

b+l )2 p(—2t VA ) (5.32)

1+nA 14+nA1)2—(14nA2)2
where q & M+ = 047 Dy ()P (1 te) and A =X\ — Xg.
2 14+nA2

Proof of Lemma[20. Tt follows from Lemma that when y = 1 + nx is such that
y? # 43, we have

pe(z) =

1 <y+ 72_4/8>t+1_ (y_ y2_4ﬁ>t+l
9 )

y? —4p 2

and when y? = 43, we have

pe(x) = (t+1)(V/B)". (5.33)
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Plugging in our choice of 8 = (1 + nA2)?/4 results in

(<1+nm+\/<1+nA1>2—<1+nA2>2)t+1 _ (<1+nm—\/<1+nA1>2—<1+nA2>2)t+1
2 2

pe(A1) =
t V2 = (T 700)?
t+1 t+1
py =
— g (5‘34)
lu’1+ — H1_
and
pi2) = (E+ 1((1+0A2)/2)! = (¢ +1) ()" (5.35)
pe(N2) _ (pay — i )(t+ Dph
pi(M\) pitt — it
- t+ 1)
(1, —m) D=0 My M
Since p1, p1_ = (14 n2)%/4 = p3, we have % = lﬁ—i Define a = % We have
pe(A2) 1
pe(A1) St
t
Ha
=(t+1) —
Yoo @' "y e g
1
—(t+1
S Ty
1
= (t+1) (5.37)

at me:o a—2n"

Now, by showing that Zfl:o at=2" attains its minimum over a > 1 at a = 1, we show

that pe(X2) < 1 for all £. We have
pe(A1)

t

t
aé Z at—?n — Z(t _ 21’L)6Lt_2n_1
a
n=0

n=0

t/2] t

= Z (t —2n)a' =21 4 Z (t —2n)a' 2" 1 (5.38)
n=0

n=|t/2]+1
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It is clear that the first term has non-negative multiplier and exponent while the second
term has non-positive multiplier and exponent which make both terms increasing in a
for a > 1. Since % S _pat™? =0 for a = 1, we have % St padm > 1fora>1
which means > _;af™2" > ¢ 4+ 1 for all ¢ and a > 1. Therefore,
pe(A2) 1 t+1 B2

=(t+1 = < 1. 5.39
pe(A1) ( )at PR DU /‘1+) (5:39)

We further have

P2yt _ oo (|H2+
(E) - <2t1 g(‘“u‘))
. ) VB
= exp (Qtl g((1+n)\1)+ \/(1"’_77)‘1)2_45))
W, ) L+ 1Ay
= exp (2751 g((1 T e) + O — ) - VL aE - (1 +77>\2)2))

N\ —Xa) + I+ nA)2— (1 + nw))

< exp (—21& log(1 + e

@ (g1 = A0) + VA1) — (L4 ko)’
P 14+nAe

—2t

Il
@
e}
o]

(A1 = A2) + /(1 + A1) + (T+ 1)/ (L +nA\) — (1 + 77)\2)>

( 141k
B n(A1 — A2) + /(1 + 1 ) + (1 +nX2)v/n(A1 — A2)
=exp | —2t
14+ nAe
=exp | -2t L+ nday/n(As = A2) exp (—Qtn()\l — )\2))
L+ 1A 1+ 1A
VnA )
< A — 5.40
sow (-2 2305 (540

where A = A1 — \ is the eigengap of matrix A. Hence, we have

p; (M) t41 N2 Ji&
R0 = <zgo a—2n> eXp(‘Qtﬁ)- (5.41)

O

Now we are ready to provide an error bound on HBOR with constant step size.
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Theorem [9 states this result.

Theorem 9. Consider a PSD matriz A € R with eigenvalues 1 > Ay > -+ > N\g
and eigengap A := \i — Xo. Assume that estimates A; of matriz A satisfy the set
of assumptions in (5.4). Consider the estimates w; generated by the accelerated Oja’s

method with heavy-balling

wi = (I+nAy) w1 — fwy_g, wy =wy/||wi,

with B = (1 + nX2)?/4 and constant stepsize 0. Suppose that for some ¢ > 0 we have

T
no? < (2+W(A1+/\2))'?ﬁ(|ulWol_\ﬂ)2. Then, with probability at least 1 — 25, we have
7 \2
T+1 2
er £1— % < KinT + Kaeg (T;) 6_7\/ET, (5.42)
I ST o
_ Vd20? _ 1 )+ 42— (14n)2)? _
where Kl = WM, KQ = 30 a = R 5 and v o=
9_VA
V1tnia®

Proof of Theorem[§. We want a high probability upper bound on (5.16)) to get an upper

d

\2 2 T 2
bound on 1 — BL%)”  We saw in inequality (5.16)) that 1 — (uLwy)® - 3oimp(u; Fewo)”

[[will® [wil? = (uf Fewo)?

Now, we find a high probability upper bound on the numerator of the right hand side,
4, (uI'Fywg)?, and a high probability lower bound on the denominator, (u? Fywg)2.

We showed in Lemma (18| that with probability at least 1 — ¢,

d

o2n2
Z(uiTFtwo)2 < % [\/& p?()\l)(exp {(1 - n)\?)zt— 4B] _ 1) +p2(Xa)(1 = [ul'wo|?)] .
i=2

Furthermore, we showed in Lemma [19| that with probability not less than 1 — ¢,

2
0'27’]2t
eXp | qroaz—a5) — 1
(u Fiwo)® > p; (A1) | luf wo| — \/ [(1+M3)2 )
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It follows from these results, using a union bound, that with probability at least 1 — 24,

0.2 2
Syl Fowg? _ VAEOD (50 [rrmligs | — 1) +pR0) (1~ fuf wol?)

. (5.43)
ul’Fywy)? — 2 (
( 1+t 0) dp%()\l) [|u1Tw0| — \/(eXp [m} — 1)/5J
Plugging in 8 = (1 + n)\2)?/4, we get with probability at least 1 — 2,
2nt
Sl P VA (e [ ) -
g 2 - 2
(111 tWO) 5|:|u{wo‘ B \/exp [W] —1}2
N PO~ [T wol)
2 T o [ ek Hma] =112
6pt()‘1)[|u1 wo| — 5 ]
(5.44)
2 (2+n(A1+X2))A a’nt 202t
1f we bave so? < GG, then we bave e (ks ) — 1S Gt By

2 2 . o
and also exp (%) -1> m. Therefore, with probability at least

1- 26,
1 <u1,w,’;>2 < Vd202nt N
- wi2 — 52 2
1 — lulwal2 20\
LRI I R
o2nt 1
6 |[ufwol = /st

(24+n(A1+A2))-A-
T

(luf wo|—v2)*

Furthermore, if we have no? < for some ¢ > 0, then we have

2
2
T ont
_ . 5.46
Therefore, we have
o fwwh? Vw0 fwe) e
[will? = 82+ n(A + A2)) A oL p(M)

plugging the bound on Z g&fg in Lemma into (5.47)) results in the bound in the

statement of Theorem [0 O
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Next, we show that if we know the iteration budget ahead of time, we can choose a
fixed stepsize such that the HBOR algorithm obtains near optimal (up to polylog term)

decay in variance term (but non-optimal decay in bias term).

Corollary 2. Consider the setting of Theorem[9. Given a budget of T iterations, with

the choice of stepsize n = (1\”/1%2)2%1, we have the following error after T > % log \/%
iterations:
9vdo? log® T €o
< 4

TSN T s (5.48)

where p = —2—.
VAT

Proof. 1t follows from Theorem [9] that

et < KinT + KoeqT?e WL, (5.49)

It follows from 7' > %logﬁ that f/l%:; < 1. Furthermore, we have v < v2A.

Then, we have

log T
et<K1nT+K2e0T2 vlog
p*log?T 1
<K K T \/1.
=M 8, T

By setting p = p’/A1, we have

9vdo? log? T €o
eT S / .
2A20, T ouTP'—2

(5.50)

5.4 Multistage HB Accelerated PCA

We showed in the last section that accelerated PCA with O(k’;{#) step-size results in

log? T
T2

log T

an extra ( ) rate for the bias term and (=5~ ). In this section, we follow the method

proposed in Aybat et al. [I55] to break the optimization process into multiple stages
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in hope of improving the convergence rate of accelerated PCA. This method, which we
call Multistage heavy ball-accelerated Oja’s rule (MHBOR), consists of successive runs
of HBOR with (different) fixed stepsizes. Specifically, the estimates are generated by

the following rule.

W;fk = I+ nkAtk)Wtk—l — BrkwWi, —2, Wi, = W,’gk/HW,'gk |-
where 1 < t;, < T} with

1
k=1: nl:ﬁgia lelv
A1

1

k>1: e, = 1/2%, Tp = (14¢)2"T £ (14 ¢)2* _
/ (1+¢) ( )[%\fn

log(K22P)]. (5.51)

and B, = (1 +xA2)?/4 and ¢ > 0.

Remark. The learning rate and the number of iterations are inspired by Aybat
et al. [155]. The (1 + ¢)? term is intended to overcome the difficulty caused by the
(T +1)%2/ 3y a? term on the RHS of (5.42).

Before stating the convergence result of MHBOR, we present Lemma [21] that will

prove useful in establishing the convergence result. We know from Theorem [J that in

the k-th stage of MHBOR, we have
T+1 \2
elic“ < KT + KQQIS (Z:_{_) 677\/7716’ (552)

where e’é is the error in the beginning of the the k-th stage and e/ is the the error after

2
t iterations in the k-th stage. In Lemma we study how the term T*D” _ 160ks in

Z?:o a—2t
this scheme.
Lemma 21. Consider a PSD matriz A € R4 with etgenvalues 1 > Ay > --- > Mg
and eigengap A £ X\ — \o. Assume that estimates A; of matriz A satisfy the set

of assumptions in (5.4). Consider the estimates stepsize mp and epoch length Ty, as
= AL T _ 2
described in (5.51)). Suppose that we have fo? < @+ +22))- 21wy wol=v) for some

T
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(L+ne A1) +/ (L+nEA1) 2 —(1+1A2)?

v > 0. Define aj, = TN

. Then, we have

T,
—Tr—1 —92t
t=0 O

< 16T. (5.53)

Proof of Lemma[21]. In the multistage method, the values of 1, and consequently the

values of g, 1, and a, change at every stage. At stage k, the value we have

gk () + V@ meA1)2 — (14 mA2)?
M2,k 1+ A2
1+ /2% + \/ﬁA\/Q + 5 (A + Ag) /2
B 1+ fjAg /2% .

Qg

(5.54)

Let us find a lower bound on

1 g 204D

t
—2n __ k
E :ak = ;)
n=0

1—ak

Define 7 £ 22% for k > 1. We have

—2

1+aA /T2 + \/ﬁA\/Q + T’ig()\l + Xo)/T

- ( 1+f]/\2/72

-2

TA/T? + VB2 4+ (O + Na) [T
1+ 77)\2/T2

—
+

nA/7T2 + 20D )T -2
1+ 77/\2/7’2
3VIA/T \ 7
1+ 7Ay/72

v
S
+

(5.55)
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__\ -2
Note that for K > 1, the final bound can be improved to (1 + @) . Moreover,

—2Ty

— 2T,
1L+aX /72 + \/ﬁA\/Q + H (A1 + A2) /T

14 7qAy/72

— —2T},
PA/T? + VB2 + B (M + ha) /7
14 7qAy/72

(1 N nA/T2 + \/277A/7'> — 2k
2

=1+

1
A /72428 )\ 2Tk
(14050

a

<

—
N

1
1+ 7ATy /72 + /20AT), /7’

(5.56)

where (a) is due to Bernoulli’s inequality. Define u = \/#A. For K = 1 we have

T (T 41
- —2n __ 1- ay 7+
Z T T
n=0 1
1 — L
1+7 ATy ++/27 AT
— — -2
1-— (1 + 3\/7]A)
u? Ty +v2uT)
14Ty +V2uTy
- 1
1= e

B (u? + v2u) T1 (1 + 3u)?
B (14 u?Ty + V2uTy) (6u + 9u?)
T1(1 + 3u)?
-9 (1 + u?Ty + \/§UT1)
(1+ 3u)?
T 9(1+u?+v2u)
- (1 + 3u)?
T 41 +u)?

(5.57)

Vv

1
47

which is trivial since we know 221:0 afzn > 1. However, for K > 1 the bound is
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nontrivial:

72(Tk+1)
—2n __ 1— ag
ap = 1— a2
n=0 k
1

1- 14+7A(1+c)T/T7+20A(1+c)T
——\ —2
1— (1 + 27\/;7A>

’U,2T/T+\/§'U,T
(1 + C) 14+u2T /74 2uT

\Y

L= we
(1+4¢) (v?/7 + V2u) T(1 4 2u/7)?
(1+w?T /7 4+ V2uT) (du/T + 4u?/72)
(14 ¢)7T(1 4+ 2u/7)?
4 (1 +uTT + \/51[./_’)
. (A+or(d+u/7)?
- 4(1+u2/7+\/§u)

1
> LC)TQ (5.58)
4(1+u)
It follows immediately from this that
Tk (1 + C)TT
T,—1 —92n — (1+e)T
2onZo O 4(14u)?
< 4(1++/nA)*T
(@) _
< 167, (5.59)
where (a) follows from 77 < 1/);. O

Now, we are ready to state and prove the convergence rate of MHBOR. First,

Theorem [10] states the suboptimality error at the end of each stage.

Theorem 10. Consider a PSD matriz A € R4 with eigenvalues 1 > Ay > -+ > Ng
and eigengap A := A\ — Ao, Assume that estimates A; of matriz A satisfy the set
of assumptions in . Consider running the MHBOR algorithm with parameters
described in such that no? < (2+ﬁ(/\1+)‘2))'é'(|u?wo‘_\ﬂ)Q for some 1 > 0. Assume

that Then, with probability at least 1 — 2ké, the error at the end of the k-th stage,
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1k\2
fustl is

A
ef £1-2g

1
k
er,+1 = szeOE

2( S K1+ o), (5.60)

where K1 = \((AL Ky = &, v = V2A, and c is chosen sufficiently large such that
(1+¢)%162T? < e°.

Proof. We use induction to prove this theorem. For the first stage (base case), we have

el 1 < KTy + KaegTie Vil

< Ky(14 ¢)ifTy + KyeqTEe VL, (5.61)
Next, we study the following stages (induction step). Note that for & > 1, we have

ef 11 < KT, + Koe Te VT

1 7 T —
< 2TCK1(1 +co)nT + KQe]f 16272~ (1+¢) log(K227)

1 1 L
e+ ol + Q—elf(l + ¢)216%T?e~¢

IN

L. (1+c) 16272

1
K 1+ nT + —
( c) 2 e¢

2k

| /\

(5.62)

(14¢)2162T?
ec

For large enough ¢ such that <1, we have

1 1
eh . < oF — KT + 2—p (5.63)

If e%g ! S s K (1 + T + grtsy KaeoTEe VT we get

1
——— K1(1+ )iiT + — ———KyeoT2e VT

1
2p 9(k—2)p
ngoTle it

1
2p 9(k—2)
1
9(k—2+p)

1

41 < K1(1+c>nT+
- 1
—27K1(1+C)UT+ ST

(a) 1 =1 7_
< Q—kKl(l + )T + 2—kK1(1 +o)nT +

Ki(1+4 )il +

1
gy 2o i e VT

1 = 1
S FKI(:[—*—C)??T—F (k 1) K2€0T1€ 7\/7T1

1

< ST —— KyegT?e Wt (5.64)

1
Ki(1+ )T + S—Tp
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where inequality (a) follows from p > 2. Therefore, we showed inductively that at the

end of the k-th stage we have

- 2
k (uywr 1) 1 _ 2 /AT
ep 1 =1— < ——Ki(14o)fT + ———KoegTie VT (5.65)
T T S 26D -1

O

Finally, Theorem states an upper bound on the suboptimality error of MH-

BOR at any iteration t.

Theorem 11. Consider a PSD matriz A € R4 with etgenvalues 1 > Xy > -+ > Xg
and eigengap A := A1 — \o. Assume that estimates A; of matrix A satisfy the set of
assumptions in . Consider the estimates generated by the multi-stage accelerated
Oja’s method with heavy-balling (MHBOR)

W;fk = I+ nk‘Atk)Wtkfl — BrkwWi, —2, Wi, = Wik/HWQk I|.

where 1 < ty, < T}, with

1
k=1 771:7727) T1>]-a
A1
_ 1
k>1: me=1/2%%,  Tp=(14+c)2"T 21+ (;)2’“(%/77 log(K22P)].  (5.66)

and B = (1 + mpX2)?/4 and ¢ > 0. Further, suppose that for some ¢ > 0 we have

(24+7(A14+X2))-A- (Ju wo|—v/2)?
11

no? < . Then, after T iterations of the MHBOR algorithm,

with probability at least 1 — 2[logT'|d for some 6 > 0, we have

10(1 4 ¢)2K11/7[ % log(K52P)]?
1 fuy,wr)? < (1+ ¢)*K1/7[ 5 log(K22P)]

T-T
64(1 + ¢)?[ L= log(K-2P)]? i
i — 2\ 2 =/l
+ (T — T1)2 Ko (1 (ug, wo) ) TYe , (5.67)

where K1 = %, Ky = i, and v = V2A.

Proof of Theorem [I1] First, let us find an upper bound on the error el using the bound
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e; < Kint + KoepL E g found in inequality (5.47)). We have

1 1

. NGk

< Kimpm + <2(k 2)K 1(1+)nT + 5= ngoTle v 1>
1 1

< KTy + (2( )K 1(1+o)fT + S—Dp ——KyeoTie V\TT1>

K260T1 (& 7le>

1 = 1 = 1
S 27K177T+ (WK1(1+C)77T+ (k—2)p

IN

1 5
— K + )T + KoeqT2e Wit (5.68)

2(k 9(k—2)p

where (a) follows from Theorem Now, we need to the the corresponding indices k
and m such that w¥, corresponds to w;. Remember that T}, = (1 + ¢)2FT. Tt easily

follows that for t > T}

K+1
Ti4l 2 Z T =T+ (1 +c)252 - T

=t-T < (14252 —4T
1 1 (1+o)T
Tk Sk 1S o7
1 8(1+¢)T
< .
oK-1 — t—"T;

= (5.69)

Since p > 2, it follows from (5.68) that

1 5(1 _ 1 _
K+1 K, ( +C)77T+ KoegT2e VTt (5.70)

Cm = 5K 1 o(K—1)p

Let us set p = 2. Plugging (5.69)) into (5.65)) results in

kel o1 5(+0)

t=Tx = o(K-1) 4 22(K-1)
- 10K 7T?  64(1 + ¢)*T?
- t-1Ti (t - 1Ty )

e = e

K7 nT + KQQ[)TI e — Wit

KyeqT2e W, (5.71)
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where K| = (1+ ¢)2K; and T = S35, Ty. Therefore, for ¢ > Ty we have

) IOK{\/?;[% log(K,2P)]?

1- <u17 Wi S P Tl
64(1 + ¢)?[ L= log(K42P)]? ]
V1 O\ 12—y AT
T (t — T))? Ko (1 — (uy, wo) ) TYe Wil (5.72)

O]

In the following corollary of Theorem we show that our algorithm, up to a
logarithmic factor, achieves the error upper bounds Q(()\lfiiz)%) and Q(ege™VAi—Azt)

for the noise term and the bias term, respectively.

Corollary 3. Consider the setting of Theorem [I1 Suppose the computational budget
of T = oTy for some a > 2. Then with probability at least 1 — 2[log T, for ey =

1— <u1,wT>2 we have

+ Cyf log(K22P) 12 Kyege VAT, (5.73)

1
VA
where Ko = %

Remark. Note that the probability of the result in Theorem [11| holds with proba-
bility at least 1—2[logT"]d. In order to boost the probability to 1 —4, is to run O(logT)
copies of the algorithm, each with 1 — 2[logT"|d success probability and then output

the geometric median of the solutions, which can be done in nearly linear time [I77].

5.5 Conclusion and Future Work

In this chapter, we studied the problem of estimating the top eigenvector of the covari-
ance matrix of a multivariate random variable from i.i.d samples in a streaming setting.
A well-known and commonly used algorithm for solving this problem is called Oja’s
method which can be thought of as projected stochastic gradient descent (SGD). In-
spired by recent works on accelerating SGD for certain classes of convex problems [154}-

157], we investigated the effect of applying a momentum-based acceleration method
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called the heavy ball method (Polyak momentum) [I58], [166] to Oja’s method.We pro-
posed a novel accelerated variant of Oja’s rule, called MHBOR, that employs a multi-
stage scheme for choosing the step size. We showed near-optimal convergence of this
multi-stage accelerated algorithm in the true streaming scheme without the need for
large mini-batches or variance reduction schemes, a property that distinguishes our
algorithm and our analysis from the existing works on accelerating Oja’s method.

We prove the convergence of this multi-stage algorithm and show that it approxi-

2

%) upper bound in the bias term and

mately (up to a log factor) achieves the O(
O(ege™V )‘1*)‘”) upper bound in the noise term. When compared to the minimax lower

bounds and Q(ege VA1 ~22t) for the noise term and the bias term respec-

()
tively, it becomes clear that our bounds for MHBOR are optimal up to a logarithmic
factor (as well as a v/d factor in the noise term.)

While the dependence of our convergence result on dimensions d is not optimal
and there is an extra log factor in dependence on t, our results show that there could
be benefit in applying momentum acceleration to stochastic solvers in this structured
nonconvex problem.

In terms of future work, improving the analysis of the algorithm to potentially obtain
tighter convergence results is a possible direction. Moreover, Aybat et al. [I55] show
that acceleration can improve robustness to gradient noise power of gradient methods
in stochastic settings (quantified in terms of asymptotic expected suboptimality of
the iterates), at least for certain classes of strongly convex function. Inspired by this
result, studying the robustness of the the accelerated and non-accelerated stochastic
PCA algorithms is another interesting future direction. For stochastic algorithms, in
addition to convergence rate, the robustness is an important criteria when comparing

performances of different algorithms.
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Chapter 6

Appendix

6.1 The Rearrangement Procedure

To illustrate the procedure that rearranges a KS matrix into a rank-1 tensor, let us first
consider A = A; ® As. The elements of A can be rearranged to form A™ = ds o dy,
where d; = vec(A;) for ¢ = 1,2 [59]. Figure depicts this rearrangement for A.
Similarly, for A = A1 ® Ay ® A3, we can write D™ = dg o do o dy, where each frontal
sliceE] of the tensor D7 is a scaled copy of dsg o do. The rearrangement of A into A’ is
performed via a permutation matrix IT such that vec(A”) = ITvec(A). Given index [
of vec(A) and the corresponding mapped index I’ of vec(A™), our strategy for finding
the permutation matrix is to define I’ as a function of I. To this end, we first find
the corresponding row and column indices (7, j) of matrix A from the /th element of
vec(A). Then, we find the index of the element of interest on the Nth order rearranged
tensor A™, and finally, we find its location I’ on vec(A™). Note that the permutation
matrix needs to be computed only once in an offline manner, as it is only a function of
the dimensions of the factor matrices and not the values of elements of A.

We now describe the rearrangement procedure in detail, starting with the more
accessible case of KS matrices that are Kronecker product of N = 3 factor matrices and
then extending it to the general case. Throughout this section, we define an n-th order
“tile” to be a scaled copy of Ay_p,+1®-- @Ay for N > 0. A zeroth order tile is just an
element of a matrix. Moreover, we generalize the concept of slices of a 3rd-order tensor

to “hyper-slices”: an n-th order hyper-slice is a scaled copy of dyody—10---ody_pn+1

LA slice of a 3-dimensional tensor is a 2-dimensional section defined by fixing all but two of its
indices. For example, a frontal slice is defined by fixing the third index.
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Figure 6.1: Rearranging a Kronecker structured matrix (N = 2) into a rank-1 matrix.
6.1.1 Kronecker Product of 3 Matrices
In the case of 3rd-order tensors, we take the following steps:
i) Find index (4,7) in A that corresponds to the [-th element of vec(A).
ii) Find the corresponding index (7, ¢, s) on the third order tensor A”.
iii) Find the corresponding index I’ on vec(A™).
iv) Set II(I',1) = 1.

Let A =A; ® Ay ® Az, with A € R™*P and A; € R™*Pi for i € {1,2,3}. For the

o (2 -5

We can see from Figure[6.2] that the rearrangement procedure works in the following

first operation, we have

way. For each element indexed by (i,7) on matrix A, find the 2nd-order tile to which
it belongs. Let us index this 2nd-order tile by T5. Then, find the 1st-order tile (within
the 2nd-order tile indexed T%) on which it lies and index this tile by 77. Finally, index
the location of the element (zeroth-order tile) within this first-order tile by Tp. After

rearrangement, the location of this element on the rank-1 tensor is (7o, 71, 72).
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In order to find (7p,T7,T%) that corresponds to (i,7), we first find 75, then 77, and
then Ty. To find T5, we need to find the index of the 2nd-order tile on which the element

indexed by (i, ) lies:

-1 P —
T, = V J V J +1, (6.2)
p2ps3 mams3
——
S? S2

where 5]2 and SZ»2 are the number of the 2nd-order tiles on the left and above the tile
to which the element belongs, respectively. Now, we find the position of the element in

this 2nd-order tile:

p— 1
Z'Q—Z'—S?mgmg—i—\‘l ngmg,
mams
. 2 . ] —
J2=7J—Sjpep3s =] — LJ p2p3. (6.3)
p2p3
For the column index, 717, we have
jo — 1 io — 1
T = \:72 J mo + \‘ 2 J +1. (64)
b3 ms3
st st

The location of the element on the 1st-order tile is

. . 1 . Z'2_1
21222—Sim3212—{ ng,
ms3

. . . jo — 1
j1=1Jj2— Sip3 =jo — VQJP& (6.5)
p3
Therefore, Ty can be expressed as
To = (j1 — 1) m3 + 1. (6.6)

Finally, in the last step we find the corresponding index on vec(A”™) using the
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following rule.
" =(Ty — 1)mamapaps + (Ty — 1)maps + Tp. (6.7)

6.1.2 The General Case

We now extend our results to N-th order tensors. Vectorization and its adjoint opera-
tion are easy to compute for tensors of any order. We focus on rearranging elements of
A=A ®A,® - ® Ay to form the N-way rank-1 tensor A", where A, € R™n*Pn
for n € [N], A € R™*P and A™ € RMNPNXTN-1PN 1% XT1P1

We first formally state the rearrangement and then we explain it. Similar to the
case of N = 3 explained earlier, for each element of the KS matrix A indexed by (i, 7),
we first find the (IV — 1)th-order tile to which it belongs, then the (N — 2)th-order tile,
and so on. Let Ty_1,Tn_2,- -, Ty denote the indices of these tiles, respectively. Then,
after rearrangement, the element indexed (7, j) on KS matrix A becomes the element
indexed Ty, -+ ,Tn—_1 on the rearrangement tensor A™.

Now, let us find the indices of the tiles of KS matrix A to which the element (3, j)
belongs. In the following, we denote by (in,jn) the index of this element within its
nth-order tile. Note that since A is an Nth-order tile itself, we can use (iy, jy) instead
of (i,7) to refer to the index of the element on A for consistency of notation. For the

(in,jn)-th element of A we have

in—1 =1y —5; ILLy my.

jn—1=jn —S) Ty py,

where Ty_1 is the index of the (N — 1)-th order tile and (iy_1,jn—1) is the location of
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Figure 6.2: Example of rearranging a Kronecker structured matrix (N = 3) into a third
order rank-1 tensor.

the given element within this tile. Similarly, we have

| N— -1 IN— —1
TN—n _ ]NNn+1 My, + NNn+1 _{_1’
L, 1 P IS, g me

N-—n+1 N-—n+1
Sy S
. . n N
IN—n = IN—py1 — S, Tl g My,

JN-n = jN-nt1— S} T4 prs
for N > n > 1. Finally, we have
Ty = (j1 — L)mpy + 1.

It is now easy to see that the (iy,jn)-th element of A is the (Ty, T4, -+, Tn—1)-th
element of A”.

Intuitively, notice that N-th order KS matrix A is a tiling of m1 x p; KS tiles of order
N — 1. In rearranging A into A™, the elements of each of these (N — 1)-th order tiles
construct a (N — 1)-th order “hyper-slice”. On matrix A, these tiles consist of mg X py
tiles, each of which is a (IV — 2)th-order KS matrix, whose elements are rearranged to

a (N — 2)-th hyper-slice of A™, and so on. Hence, the idea is to use the correspondence
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between the nth-order tiles and nth-order hyper-slices: finding the index of the n-th
order tile of A on which (7, j) lies is equivalent to finding the index of the nth-order
hyper-slice of A™ to which it is translated. Note that each entry of a tensor in indexed
by an N-tuple and the index of an entry of a tensor on its nth hyper-slice is in fact its
nth element in the index tuple of this entry. Therefore, we first find the (N —1)-th order
KS tile of A on which the (i, 7) element lies (equivalent to finding the (N — 1)th-order
hyper-slice to which (7, j) is translated), and then find the location (ix_1,jy—1) of this
element on this tile. Next, the (N — 2)-th order KS tile in which (iy_1,jn—1) lies is

found as well as the location (iny_2,jn—2) of the element within this tile, and so on.

6.2 Properties of the Polynomial Sequence

Here, we analyze the polynomial sequence (5.18]) in the following lemma (Lemma

and its corollary (corollary .

Lemma 22. Given the polynomial sequence {p;(x)} defined as

pi(z) = (L +nz)p—1(z) — Bpr—2(w), pi(z) =1+nz, po(z)=1, (6.8)

if y # 48, we have

pe(z) =

1 <y+m> ) <y— M) 69)
. |

y2 — 48 2
and if y = 48,

pe(x) = (¢ + 1)(V/B)' (6.10)

where y =1+ nz.

Proof of Lemma 2. Consider the generation function of the sequence {p;(x)}, i.e.,
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G(z,2) =Y 2 ope(x)zt, z € C. It follows from update rule that

[e.9]

o x
S pri(@) = S (14 q)pr (@) - 8 pro(2)2H
t=1 t=1

G(x,2) —po — p1z = (1 +nx)2(G(x, 2) — po) — B22G(x, 2)

t=1

G(z,2)(1 — (1 +nx)z+ B2%) = po + (p1 — (1 + nx)po)2 (6.11)
Therefore, plugging in the values of py and p; results in
po + (p1 — (1 +nx)po)2 1
G — = 6.12
(2,2) 1—(1+nz)z+ 522 1—(1+nz)z+ B22 (6.12)
Let y £ 1 + nz. Then,
1 1
= (6.13)

G(y,z) = 1—yz+ 822 Blz—7r1)(z—12)

_ VEVYAE yhen

where 71 and 79 are the roots of 822 — yz + 1, i.e. we have T2 = 57
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r1 # ro we have

Since 112 =

1
C2) = B =)

! ( 11 >
CBlri—m) \re—2z ri—2%

_ 1 < 1 _ 1 >
© Blry —ra) \ro(1 —z/ra)  ri(1—2/r1)
aylor Expansion 1 > Zt Zt

R ﬁ(ﬁ—w)Z(t“_t“)

=0 \'2 "
1 > 2t 2t
~ Bylri — ) ; <T§+1 - T'i“)
1 > 2t 2t
- B(r1 —r2) tz:; <7’§+1 - riﬂ)
1 > 2t 2t
"B —2) ; <r§+1 B r§+1>

S () ()]
Sl )

yE/y2—48
283

2_4
, we have r{ —ryg = yﬁ d and riro = % = % Therefore,

when |z| < |ra|, G(z, z) is well defined, we have

pt(x)

. T1 1t T9 1t
_1"1—7“2 9 r—Tr2 \"
_.n t T t
T (118) . (r2)
t t
o [yt VY4B e [y VP48
r —7Tre 2 T —T9 2

Y+ VYR 48 (y+\/y2—4ﬁ>t_y—\/y2—746<y— y2—46>t

22— 4B 2 2/y% — 48 2

_ 1 <y+\/ﬁﬂ—74/3>m_ (y— y2—4ﬁ>t+1

V248 2 2



On the other hand, when = =, we have y = 2/ and r; = ry = —=. Thus,

VB
1
Gly,z) =
M ey

__r

(V1
Taylor expansmnz t + 1 \/>Z t (615)

t=0

When z < 1/v/B, G(z, z) is well-defined. Therefore, pt(%) =(t+1)(VB)". m

Corollary 4. Consider polynomial sequence {p;(z)} defined as in (6.8). Then we have

1
Hptk S p}(,lJrZK th (I‘) (6'16)
y2 _ 4[8)[{71 k=1

Proof of Corrolary[jl We know from that

It follows that

1 i1 1y dHL Gl
pi(l')pj(l’) = ﬂz(ﬁ — 7"2)2 (Ti—i_ - ’I“;_ )(T{ % )
1
. i+1 j+1 i1 j+1 i1 j+1 i+l j+1
~ B2 _T2)2(T§ gty =y =)
(a) 1 i1 g1 i+1 j+1 i+1_j+1 i+1,.7+1
L O T g g
1 142 itj2
~ B2(ry — 7“2)2(7411 e
(@)
_ (o
,B(rl . T2)pZ+J+1

1

\/ﬁpiﬂﬂ(fﬂ)

Therefore, we can easily use induction to prove the corollary. O

(6.17)
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