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ABSTRACT OF THE THESIS 

 

APPLICATION OF CONVOLUTIONAL NEURAL NETWORK FOR 

LEUKOCYTE QUANTIFICATION FROM A SMARTPHONE BASED 

MICROFLUIDIC BIOSENSOR 

 

By, HARSHITHA GOVINDARAJU 

 

Thesis Director: Dr. Umer Hassan 

 

 

Advancements in computer vision methodologies and machine learning in the medical 

domain have played a major role in diagnostics and clinical pathology. Cell 

quantification from whole blood can aid in detecting and managing infections, 

cardiovascular diseases and biomarker detection which in turn helps in understanding 

the immunological and genetic disorders, cancers, etc. Developing a point-of-care 

solution for this will accelerate the therapy timeline and increase the accessibility across 

the world. Our lab has previously developed a smartphone based microfluidic biosensor 

for capturing the microscopic images of various components of the blood cells. Using 

this design, in this study, a deep learning-based cell quantification from the captured 

images is investigated and the cell counts are predicted using a convolutional neural 

network architecture. The proposed methodology was evaluated on a dataset varying in 

numbers, clarity, smartphones, fluorophores and cell numbers. This model was then 

integrated into an Application Programming Interface (API) to predict the cell counts 

from an image using the trained model. Our results showed successful prediction of cell 
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counts from a smartphone captured image in cross-validation with R2 = 0.99 for N=33. 

This helps in eliminating the need for manual pre-processing of an image and 

morphological methods for cell counting which is a user-skill based approach. This 

proposed Deep Learning based cell quantification has shown agility and more 

automated process when compared to the benchmark techniques.  
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CHAPTER 1 

Introduction 

 

1.1 Cell imaging 

Cell quantification is an important aspect in diagnostics and clinical investigations. Cell 

counts especially aids in curating general pathology and clinical pathology. The 

complete blood count (CBC) and leukocyte differential count (LDC) are the most 

commonly requested and performed laboratory tests. The results can be used to detect 

disorders, infections, immune system diseases and nutritional status of the patient. 

Methodologies to count cells constantly work towards abridging the time of analysis 

and accuracy. With the evolution of microscopes, it helped researchers to count 

different components of blood from high resolution images. Cell counting process can 

be broadly classified into manual, semi-automated and fully automated process. Manual 

and semi-automated process results are variable to subjective assessments. It involves 

a highly trained laboratorian to manually count from the sample slides under the 

microscope. However, manual cell counting process can become tedious and error 

prone as it is subjected to the user's acuity like hemocytometer. Although in some cases, 

it is still established as the gold standard. Fully automated machines come with very 

little sample preparation complexity and with advancements in image processing and 

computer vision, it led to software that helped researchers count different components 

of blood by applying mathematical morphology without the manual “clicker”. Other 

popular cell counting methodologies like flow cytometer implements signal-based 

detection that involves using an external system for computation of the counts from the 

sample. The process here can be prone to technical as well as human errors. 
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With the rise of various improved and advanced imaging techniques, there is abundance 

in cell image data. The quality in these images can bring out the minute details in cell 

profiling and aid in drawing pathology results. For years now, computer research 

scientists have come out with powerful software that can help in quantification. But 

they are specific to quantifying only a particular component in a cell. Devices like Vi-

CELL BLU, Vi-CELL MetaFLEX and Multisizer 4e Particle Size Analyzer from 

Beckman Coulter are fully automated machines that aid in cell counting, sizing, 

viability analysis and cell culture monitoring systems. But these systems can only be 

employed in laboratory settings. The size of this machine is also one of the drawbacks 

when it comes to point of care applications. Their image processing softwares are 

specific to the device collecting the data. This limits the ability to employ it with other 

devices. Invitrogen™ Countess™ is another tool used in image cytometry. The image 

processing software used in this device is very specifically applicable only for that 

device. A software application can only perform tasks it is designed for a particular type 

of cell. So, there is a need for developing an adaptable solution like Artificial Intelligent 

systems, which can aid better in cell quantification. There is also an issue of memory 

storage when it comes to these devices. In other devices, it again varies with the markers 

or labels that are used to image the cell components for counting. There is also a huge 

gap in the amount of microscopic image data and utilization of these images to come 

up with powerful deep learning models to predict the cell quantification by learning the 

relevant features necessary for the task from the input data. Although learning based 

algorithms were introduced to the biomedical science field years ago, it is not until 

recently the graph has taken off in terms of implementation. This is a result of 

improvement in imaging techniques and high quantity of microscopic images. The deep 

learning implementation can be either specific or broad depending on the modelling 
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process which can be time and again improvised. It follows a simple concept that it 

learns from its predicted error difference. When the model has learnt to predict better, 

it can then be deployed. Using this aspect, we can make the model “learn” any task 

depending on the requirement. This again provides a broad application in image 

cytometry. But as we move towards improving the quality of images and cell analysis, 

taking the size of the imaging device into account itself has a key role towards 

advancements. 

 

1.2 Point of care testing 

Point of care testing solutions integrate biosensors, assays, microfluidic chips, 

bioanalytical platforms and lab-on-chip technologies to provide rapid diagnosis and aid 

in accelerating the prevention and treatment plans. As infectious diseases continue to 

attack global health with newer or re-emerging virulent, the need for testing kits that 

can be employed both in laboratory settings and at patient’s vicinity as a portable 

equipment is growing. Although the pharma industry is setting high standards in 

coming out with powerful drugs to combat these ailments, the gap between diagnosis 

and treatment plan still remains largely unaddressed. Mostly in developing countries 

with high population and limited resources, it is challenging to set up laboratories with 

skilled workers and meet the growing demand for disease diagnosis. Such scenarios are 

where we need to employ these diagnostic kits. This has led to the demand for coming 

up with faster and efficient POC devices.[1][2]  
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1.3 Smartphone based microfluidic biosensor 

As we understand how important time is for disease diagnosis, point-of-care testing in 

such scenarios has to be lightweight and easy to operate to employ it in a daily setting. 

Commonly used biosensors on the other hand are heavy, have a complex design setup 

and are expensive which limits their ability for point of care testing for the common. 

Lot of efforts have been made to slim down the microfluidic lab-on-chip device designs 

that can integrate biochemical sensors, microfluidics and micro-electronic mechanical 

systems (MEMS) [3][4][5]. But the data collected from these models would require an 

additional processing unit that can collect the data, have a separate memory for data 

storage, display the data and results, analyze and transfer the data to different mediums 

for further analysis. A smartphone on the other hand can provide a single hand solution 

to these challenges and due to this, a lot of microfluidic researcher’s focus has shifted 

towards integrating developing smartphone based analytical biosensors. [6]  

Smartphones intend to replace the traditional phones into miniature computers that have 

their own multicore processing unit with a variety of built-in sensors that makes it user 

friendly. In addition to this they provide large data storage capabilities, battery power, 

external ports for multi device connectivity, smart interfaces and internet connectivity. 

With time, the smartphone technology is only going to advance and hence extending 

its capabilities for analytical biosensing. This technology can be seen implemented as 

an electrochemical analyzer of Uric Acid from a whole blood sample with an enzymatic 

test strip. The results from these analyses can aid in characterizing many diseases 

related to gout, kidney and heart.[7]. Another research showed an ECG signal processor 

for monitoring heart diseases [8]. Implementation of smartphone in monitoring Urinary 

Tract Infections using colorimetric reaction pads. [9] Detecting microbial 

contamination in meat meant for consumption through a smartphone-based biosensor 
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[10], food evaluation [11] Smartphone for testing biomarkers from liquid biopsy [12], 

mobile health [13]. All these researches have two things in common- 1) Point of Care 

Testing and 2) Integration of Smartphone based biosensor.  

 

1.4 Artificial intelligence and smartphone 

With release versions of smartphone devices, there is constant development in 

improving the camera device and clarity of the images taken from smartphones. This 

acts as a valuable feature in using it as a biosensor for researchers. Further the 

smartphone can be embedded with additional sensors for application specific purposes 

[6]. Area of mobile data science has bloomed along with the number of smartphone 

users. With mobile applications having permissions to user information, it has allowed 

mobile application developers to come up with AI Powered Smart Applications that 

serve a lot of human activities on a day-to-day basis. AI based modeling on mobile 

applications allows smartphone apps to make predictions by understanding the user’s 

needs. This is done by learning the user's data and their usage patterns. This also 

enforces right suggestion of resources and hence personalizing the product for 

usage.[14] This intelligent technology when applied in the field of point of care testing 

can prove to be an effective system for early, smart detection and in turn help in 

accelerating the treatment plans. Open-sourced collection of workflows like 

TensorFlow aid in developing, training models using Python or JavaScript languages 

and deploy them on cloud, on-prem, web applications or device applications. This 

allows the researchers to also employ high-level Keras API to build the application 

specific to the Biomedical Task [15].  
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1.5 Current smartphone setup 

As we understand the potential of the smartphone being a biological sensor, a research 

shows a modular microscopic smartphone based fluorescent microscope for imaging 

and quantification of multiple fluorescent microparticles [16]. This device is designed 

for multiple fluorescent markers and offers multiple magnifications. The setup has the 

flexibility to work with any smartphone. This sensor also showed to image microfluidic 

chips along with sample on slides/cover clips.  

 

1.6 Statement of problem 

Although the device is designed to image and include large types of cells, this study is 

focused on the dataset from green fluorescent microbeads, red fluorescent microbeads 

and human leukocytes. In recent years, advancements in clinical biochemistry and 

integration of electronics, optics and data collections and processing has led to 

abundance of data. Utilizing this data to train a deep learning model, integrate this 

model into the POC device to further aid in the prediction of the disease could 

potentially advance disease diagnosis. This is the primary aim of this research- to apply 

CNN, a predefined deep learning model, to predict the cell counts from the Smartphone 

captured images of Leukocyte particles. This ultimately enables a user independent 

software that can perform powerful cell quantification.  

 

1.7 Specific aims  

1. Collection of datasets with different cell concentration, design of the setup, 

smartphone setup 

2. Creating the dataset for training. Labelling the images using ImageJ 
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3. Data augmentation by cropping, binary mask, blurring,  

4. CNN optimization with different neural networks, learning rate, batch size, 

epochs 

5. Evaluating of the results with test images 

6. Comparison of predicted cell counts against different ground truths 

7. Deploying the trained model into web applications 

8. Testing the web application with a new acquired image 

9. Investigating the AI integrated device and its implementation 

 

1.8 Organization of the thesis  

In chapter 2 we have highlighted the design and working of the modular smartphone 

based fluorescent microscope. In chapter 3 we discuss the data collection, preprocessing 

and labelling required for training the neural network. In chapter 4 we discuss the 

intuition behind the neural network and convolutional neural network. In chapter 5 we 

discuss the results obtained by training and testing the images acquired from 

smartphone based fluorescent microscope using the convolutional neural network. In 

chapter 6 we discuss a practical approach to this research. In chapter 7 we have 

summarized our findings and highlighted the future scope of this research.  
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CHAPTER 2 

Device Setup and Data Collection 

2.1 Device setup 

The device primarily consists of two units- top and bottom. The top portion consists of 

lens holder and slot for high pass filter. The lens holder has detachable lens which 

makes the device flexible to use with different magnification levels. Two lenses are 

used in this study. One with a focal length of 10mm and other with a focal length of 

15mm. The top portion acted as the platform for the smartphone for imaging. The top 

portion also consisted of 4 screws at each corner of the device which when rotated can 

aid in varying the image focus and setting the right imaging angle. The bottom portion 

consists of the cavity to place the microfluidic chip with the captured leukocytes or the 

imaging subject and slots for LED’s and band pass filter. A cover shield is placed on 

top of the chip and affixed to the bottom portion. This section of the device minimized 

the leakage of light reflecting from the interiors of the cavity. This device was designed 

to primarily image microparticles using fluorescence microscopy. Two main 

fluorophores were used in this study to label the microparticles. 

 

Figure 1: 3D CAD Model of the smartphone based fluorescent microscope [16]. 
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2.2 Imaging the green fluorescent microbeads 

The beads used in this study were of the size 8.3µm to mimic the size of the human 

leukocytes. Three blue LED’s are used to excite the fluorophores with a bandpass 

filter’s specification of wavelength of 470nm and a bandwidth of ~40nm that is placed 

in the bottom portion of the device. A long pass filter with a cut-off value of 500nm is 

also used while imaging the green fluorescent microbeads. For setting up the sample to 

image, 1X PBS buffer was used to produce different concentrations of the beads for 

imaging in turn producing dataset with varying cell count. Then 2µl sample was taken 

from each concentration to pour on the glass slide and place it in the imaging cavity of 

the device in the bottom portion. The lens specifications used in this study was focal 

length=15mm.  

 

2.3 Imaging the red fluorescent beads 

The mean diameter of the acquired red fluorescent beads were 10µm. In this case, green 

LED’s were used to excite the particles. When working with the red fluorophores, the 

device was configured to use a bandpass filter with 535nm center wavelength and a 

bandwidth of 50nm. Also, a long pass filter with a cutoff value of 593nm was used. For 

imaging, 1X PBS buffer was used to produce different concentrations of the beads for 

imaging in turn producing dataset with varying cell count. Then 2µl sample was taken 

from each concentration to pour on the glass slide and place it in the imaging cavity of 

the device in the bottom portion. The lens specifications used in this study was focal 

length=15mm. 
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2.4 Imaging leukocytes 

To understand the point of care application of the device and its functionality in 

understanding disease quantification from biological sample was key to this study. The 

red blood cells sample from peripheral human blood was lysed using RBC lysis buffer 

media from ThermoFisher. To image the isolated leukocytes using the device, they 

were required to be treated with green nuclear stain. For this process, a stock solution 

for the nuclear stain was prepared by adding 3µl of SYTO 16, (ThermoFisher Scientific, 

Catalogue Number: S7578), in 1 ml of 1X PBS. The two solutions were then mixed 

with a ratio of 1:1 in a 1.5ml Eppendorf tube and were incubated in dark for 15minutes. 

As it is key to create different cell count images for this study, this was achieved by 

using 1X PBS buffer to create different concentrations of fluorescent leukocyte samples 

for imaging. To image it using the device, 2µl sample was poured onto the glass slide 

and placed inside the imaging cavity of the bottom portion of the device. As the 

leukocytes were activated with green fluorescence, blue LED’s were used to excite the 

sample and then imaged by the desired Smartphone along with a long pass filter of 

cutoff value 500nm and lens with a focal length of 15mm. 

 

2.5 Dataset samples 

Magnification is an important aspect when imaging a sample required for pathological 

analysis. The current device system integrates this important part of microscopy by 

allowing the user to choose between multiple magnification settings [16]. This is 

achieved by simply changing the lenses in the lens holder section of the top portion. In 

some cases, the depth of the sample used to image using the device can cause focusing 

issues. The cells at the bottom layer of the sample can get out of focus and may lead to 

imaging issues. As cell counts are an important part in cell quantification process, it is 
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essential to make sure that all the cells are imaged without blurring. To justify this issue, 

the samples were spread out on the glass slide. Furthermore, the height of the 

microfluidic sample is normally 60µm and there is no major depth difference between 

the cells and hence known to not cause any focusing issues. And more importantly, the 

Z-stage design of the setup enables the user to image any out of focus particles.  

The dataset includes imaged samples from two devices- Nokia Lumia 1020 and 

Samsung Galaxy S9+. Both devices used in this study have different camera 

specifications and are on the far end of each other in terms of imaging clarity. This 

study includes dataset from each of the devices and observes the model’s performance.  

 

 

 

Figure 2 : Two models of smartphones employed for fluorescent image acquisition 

(A) Samsung Galaxy S9+ (B) Nokia Lumia 1020 [28]. 

 

The samples collected for green and red fluorescent microparticles, leukocytes from 

Samsung Galaxy S9+ are shown below in Figure 3.  

Samsung Galaxy S9+ Nokia Lumia 1020 

A 

A B 
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Figure 3: (A) Sample green microbeads image acquired from the smartphone based 

fluorescent microscope (B) Sample red microbeads image acquired from the 

smartphone based fluorescent microscope (C) Sample human leukocyte image 

acquired from the smartphone based fluorescent microscope (scale bar = 100μm).  

 

 

 

Green microbeads Red microbeads Human leukocytes 

B C 

A B 

C 
Green microbeads Human leukocytes 

A 
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Figure 4: Sample images of the whole microfluidic sample from (A) Green 

microbeads (B) Human Leukocyte (C) Red microbeads (sample bar=100µm) 

2.6 Device specifications 

Device Material 3D printed with Onyx, Markforged 

Dimensions 120mm(W) x 140mm(L) x 22.7mm(H) 

Lens 10mm, 15mm focal length 

Resolution 3.9µm for Nokia Lumia 1020, 6.2μm 

for Samsung galaxy S9+ [16] 

Filters Green Beads Red Beads Leukocytes 

Long pass with 

cutoff value 

attached to lens 

500nm 593nm 

 

500nm 

 

 

  

Red microbeads 

C 
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CHAPTER 3 

Preparing the dataset 

 

3.1 Introduction to ImageJ 

The images acquired from the smartphone devices are generally in JPG, PNG, JPEG 

formats. The image file size ranges from 25KB to 15MB. The resolution of the images 

ranges from 100pixels ~ 5000pixels. The image processing software used to annotate 

the data collected is ImageJ, Software version- 1.52q. It is java-based image processing 

software which is open sourced and in the public domain. The author is Wayne 

Rasband, National Institute of Mental Health, MD. Since this application supports 

different image formats, ability to work with different resolutions of images as it is 

compatible with over 150 different biological image formats as called Bio-Formats 

[17]. Due to open-source licensing, a large number of plugins are available which is 

useful for image pre-processing and annotation. It even has the flexibility for the user 

to create a program to automate the process of working with images. Hence, this trait 

becomes utilitarian when there are a large number of datasets to preprocess and 

annotate.  

 

From our aim, for cell quantification, it is important to get the cell counts from the 

captured image to understand the particle concentration in the sample. The workflow 

to get the cell count from image using ImageJ is as shown in Figure 5: 
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Figure 5: Overview of the ImageJ cell counting methodology. 

 

1. The image captured from the smartphone setup is loaded onto the ImageJ 

software.  

2. An 8-bit conversion of the image is done to linearly scale the image from min-

max to 0-255.  

3. Then the image undergoes the process of “thresholding” where it automatically 

sets a threshold value and converts the values above the set threshold to 1 and 

below the threshold to 0. Hence converting the image to a binary image.  

4. The binary image is then set for calculating the cell counts from the image by 

using “Analyze Particles”. This process works by scanning the image until it 

finds the edge of the cell/particle in the image. The wand tool outlines the edge. 

An inbuilt “Measure” command measures the outline until the scanning process 

reaches the end of the image. Depending on the selection type, the measure 

command calculates and displays area statistics, line lengths, point coordinates 
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and/or angles. In this case, since the cell/particles are the highlights of 

quantification, the area of the cell occupying the image is produced. The 

“Analyze Particles” command can also be configured to count by giving a preset 

value of area and circularity.  

5. After the selections are made and results of the image are obtained, we can 

observe two tables- Results and Summary. The results table contains the area of 

each cell and the summary table specifies the total cell/particle count in the 

image, total area occupied by the cells in the image, the average size of the 

cells/particles and the %area of the cells covering the whole image. This insight 

is helpful in annotating each cell image.  

6. From the “Area Distribution” graph in Figure 5, we observe that particles with 

pixel2 area= 1 are also counted as a cell. From the summary table, when we have 

the average size of the cell>> min pixel2 area of the cell, we can thus conclude 

that these particles are “noise” in the image and do not account for the cell count. 

We then understand this criterion and define a particular range of pixel2 areas to 

be considered as a cell/particle to count.  

7. After the setting the values in for “Analyze Particles” we obtain cell count from 

the image.  
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Figure 6: Correlation plot of cell concentration count and ImageJ count. 

 

3.2 Cropping 

With a high-resolution smartphone, the image captured ranges from 1000 px ~ 3000px. 

Each pixel is fed to each neuron. Feeding this to a neural network, it will have to work 

with around approx. 106 ~ 306 neurons in the first layer. Having an inadequately large 

number of neurons in training layers can cause overfitting. But learning every feature 

in the image is important for the cell counting regression task. Although the convolution 

process employed in this study can downsize this, it will still end up losing important 

features along the way. To address this bottleneck, in this study we have cropped the 

whole image to smaller images which is then rescaled to a standard size of 128X128. 

If an image of size 848X1134 is considered, it is cropped to 8 sections widthwise and 

11 sections height wise. This results in 88 smaller images with dimensions 106X103. 

These images are then rescaled to 128X128 using bicubic interpolation to feed the CNN 

architecture. This computer vison methodology acts as an advantage in data 

augmentation technique which is a method to increase the training set for better model 
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prediction. The Figure 6 below shows the example of the cropping pipeline 

implemented for this application.  

 

Figure 7: Cropped images after undergoing slicing process. 

 

3.3 Data augmentation 

The novel part of the study is adding binary cell image data along with actual image 

data in the training. This not only accounts in the process of data augmentation but also 

training the model with binary cell images. Advantages of including the cell mask is 

that when the model is set for predicting cell images with different fluorophores, the 

images can then be converted to a binary image for the prediction in the deployment 

stage. This result is discussed in Chapter 5.3.  
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3.4 Image degradations 

To observe the model’s performance on degraded images like blurring, noise and 

distortions as these effects can be expected in the practical setting. Image sensors of 

camera which are responsible for converting light and color spectrum into electrical 

signals that get coded into image data tends to have photon counting noise particularly 

in low light situations [18]. We modeled the gaussian noise with sigma=3 and included 

this dataset in cross validation process as shown in Figure 24-B. 

This study seeks to observe the model’s performance when these images are added to 

the training and testing how it would affect the performance of CNN. 
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CHAPTER 4 

Neural Network Architectures 

4.1 Artificial Neural Network 

The computation model of an artificial neural network was originally derived from a 

biological neuron and its functionality to perform complex tasks in an animal brain.[19] 

This primary idea has now given a pathway to many intelligent systems. Increase in the 

computational capability, high processing power and large quantity of open-source data 

has all contributed to ANN’s ability to outperform other Machine Learning techniques. 

It typically consists of an input layer of neurons, a couple of hidden layers and a final 

layer of neurons. 

 

Figure 8: Neurons and its connections in an Artificial Neural Network (ANN) 

architecture 

 

The features from the input are passed through the input neurons that is connected to a 

hidden layer through channels. These channels have a numerical value assigned to them 

called weights(W) and these weights get multiplied to the corresponding incoming 
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input features(X). Their sum is then sent to the neurons in the hidden layer. Each of the 

neurons in the hidden layer is associated with a term called bias which is then added to 

the input sum. This is then passed through the activation function which decides if a 

particular neuron is activated or not. And only the activated neuron transmits data to 

the next layer over the channels. In this way, the data is propagated across the network. 

The process till here is known as forward propagation. 

Y = ∑ 𝑊𝑖𝑋𝑖𝑖
1  + bias 

Z = Act(Y)  

 In the output layer, the neuron with the highest value gets fired and determines the 

output value. The values computed till this stage are probable or predicted. These 

predicted values are then compared with the actual output values and the error is 

computed. The error function decides how far away is the predicted value from the 

actual value. This information is then passed back to the network through the process 

known as backpropagation. The weights are now adjusted, and the loss is again 

measured. This process of forward propagation and backward propagation continues 

until the neurons are now able to predict closely to the actual output value. The weight 

update process can be explained by this formula [20]: 

      

 

 

 

 

They considerably have more diverse applications to a problem. Convolutional Neural 

Networks (CNN) in addition is a specialized architecture for computer vision tasks. 

They have similar functionality as ANN but with a most important layer called 

wi,j
(next step) 

= wi,j + η(yj – ŷj) xi 

wi,j is the connection weight between the ith input neuron and the jth output neuron 
Xi is the ith input value of the current training session 
Ŷj is the output of the jth output neuron for the current training session 
Yj iis the target output of the jth output neuron for the current training session 
η is the learning rate. 
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convolution layer. Convolution is a mathematical cross-correlation operation of two 

functions that slides one over the other after one is shifted and measures the integral of 

the product of the two. In this layer, it does not allow every pixel in the image to be 

connected to the first layer but every neuron in the subsequent layer is connected to the 

first layer. This architecture enables us to concentrate on the low-level features in the 

first layers and gather them to high level features in the subsequent layers. CNN also 

overcomes the bottleneck of implementing ANN for computer vision tasks. An image 

of 100X100 has 10,000 pixels and when fed into a first layer of artificial neural network 

with 1000 neurons, this limits its ability to capture all the right features/weights for 

activating and carrying the right information to the next layers in the architecture which 

results to a total of 10-100 million connections. Convolution operation can be done on 

2D images which is also advantageous over artificial neural networks that work with 

1D input where the images have to be flattened for computations.  

 

4.2 Convolutional Neural Network 

CNN is popularly used for image recognition, segmentation, classification, localization, 

detection and other natural language processing tasks. This has led to its use in diverse 

areas such as visual recognition tasks, smart surveillance, self-driving cars, robotics, 

sports and recreation, drones and in health and medicine. Some of the popular CNN 

architectures include AlexNet[21], VGGNet[22], GoogleLeNet [23], ResNet[24] and 

UNet [25]. These popular networks are now more advanced and have given rise to many 

other networks for different applications. In the medical imaging field, CNN is applied 

in the reconstruction pipelines of MR Imaging, radiotherapy, PET-MRI attenuation 

correction, radiomics, theragnostic [26][27]. It has also popularly been used for 

segmentation tasks in medical imaging [28] which has an essential role in diagnosis and 
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pre-surgery evaluations by extracting the region of interests (ROI). This has also played 

a key role in detecting anomalies from the medical images where the gold standard is 

set by expert radiologists [29]. From this we observe how popular and effective CNN 

is for computer vision task and therefore it was chosen for this study.  

 

Since cell counting is an important task in the field of disease prognosis, a lot of 

research in recent years has implemented CNN models with slight modifications w.r.t 

the task in hand. A CNNCS framework for cell detection and localization which 

introduces compressed based encoding along with the popular AlexNet architecture 

[30]. A U-CNN framework proposed for small object counting by the density map 

obtained from the model output [31]. Two variations of Fully Convolutional Regression 

Networks (FCRN) framework for microscopy cell counting [32].  

 

This research focuses on implementing a simple CNN model for Cell Counting task to 

further deploy this in an Application Programmable Interface (API). The main aim is 

to get optimum results with low computation/model complexity so that this system can 

be employed in a limited resource setting for Point of Care diagnostic applications.  

The two popular CNN architectures that were investigated for the study are depicted in 

the Figure 9 below: 

 

A 

 

A 

Architecture 1 
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Figure 9: Two architectures of CNN investigated in this study (A) Architecture 1 (B) 

Architecture 2. 

 

4.2.1 Convolution 

When our cell image was multiplied with a 3X3 filter (convolution kernel) for vertical 

line detection, we observe that the resulting images are highlighted in the areas that are 

most similar to the filter and in this case vertical white lines get enhanced while the rest 

is blurred as shown in Figure 10. Similarly, when the image was multiplied with a filter 

for horizontal line detection, we observe only the horizontal white lines enhanced and 

rest of the image is blurred out as shown in Figure 11. We see more prominent 

observations when vertical and horizontal Sobel filters are applied as shown in Figure 

12 and 13. 

B 

 

B 

Architecture 2 
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Figure 10:Input image convolved with vertical line detector filter. 

Figure 11: Input image convolved with horizontal line detector filter. 

Figure 12: Input image convolved with Sobel filter. 
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Figure 13: Input image convolved with Sobel filter. 

 

With every convolution layer, neurons use these weights (highlighted region of the 

image) after convolution and ignore everything else in their receptive field. In this way 

a feature map is produced by using a same filter for a layer of neurons. For one 

particular feature map, all the neurons share the same weights and bias values. 

Similarly, for different feature maps, the neurons will have their respective weights and 

bias values. So, in the convolution layer, the computations take place in such a way that 

first it applies multiple filters to its incoming input. Due to its architecture, it can now 

detect multiple features irrespective of where it is present in the input. Once the neural 

network learns a feature or pattern from the convolved image in a particular location, it 

can learn the same feature or patterns in any other location. In Figure 14, we can see 

how multiple features are mapped together, and this undergoes next processes in the 

CNN for further prediction computations. 
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Figure 14: Feature maps stacked together after convolution. 

 

4.2.2 Rectifier Linear Unit 

The activation function used in this study is the ReLU Activation Function. ReLU is 

known for its faster computations.  

 

Figure 15: ReLU function graph. 

 

This function reduces the non-linearity in the images. It basically sets all the negative 

values in the input to zero and every other positive value to as it is. Image input are 
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generally non-linear. After the feature maps are extracted during convolution process, 

there is a possibility of some negative values coming up in the computations. These 

values are made to zero. And sometimes when neurons are constantly set to zero or not 

activated for a long time, they become inactive and they are also known as dying ReLUs. 

For this problem, leaky ReLU is implemented as they are shown to outperform strict 

ReLU activation functions [33].  

 

4.2.3 Pooling 

The objective of pooling is to subsample the input image which reduces the dimension 

of the image. This reduces the network load and only important features are carried 

through the network. The number of parameters to train reduces thereby reducing the 

computational load and memory usage. This helps in avoiding the problem of over-

fitting where the model performs very well in prediction task with training set of data 

but fails to keep up when fed with testing set of data which usually happen when the 

model is too complex for the problem with many features to train.  

In this study, MaxPooling is used with a pooling kernel of 2X2. The pooling layer 

neurons have no weights. When this function is applied, the kernel computes over the 

image matrix and picks the highest value from the matrix it is striding over. And hence 

at the end of this operation, the dimensionality of the input matrix is reduced with only 

prominent features left to train from. 

 

4.2.4 Regularization 

Regularization is a technique to prevent the overfitting of data. Images are complex set 

of data with different channels. When they are fit into a neural network model with 
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millions of parameters, it tends to fit variety of complex input data that is fed to it. 

Although it performs well in training showing low loss, with testing dataset it may 

sometimes fails. To avoid this in convolution neural network, in this study we 

implement the technique of Dropout [34]. In this a neuron is dropped out temporarily 

along with its network connection randomly during training. This reduces inter 

dependency of every neuron to other neurons and the network eventually works better 

by avoiding the problem of overfitting.  

 

Figure 16: Preview of the Dropout mechanism. 

 

4.2.5 Flattening and Fully Connected Layer (FCN) 

After the feature maps are reduced, there are eventually flattened to a vector that is the 

input to the fully connected layer. The fully connected layer now combines all the 

features into attributes for better prediction. At this stage all the important features are 

condensed, and the model is set for the regression task.  
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4.2.6 Analysis metrics 

In order to test the model’s performance, the loss calculated using the Mean Square 

Error (MSE) regression loss function. It is calculated by the formula  
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CHAPTER 5 

Results 

 

To test the application of CNN on the smartphone acquired images, different kinds of 

datasets were divided into different stages of testing. 

 

5.1 Stage I: Standard testing 

CNN are known to down perform with low quality image data. To first test the 

performance, a set of 23 high quality images were chosen. Although ImageJ requires a 

lot of manual preprocessing and skill to extract the appropriate count from biomedical 

image, it is still powerful in labelling the cells. Hence in our study, we have used ImageJ 

count as the Ground Truth (GT) count for the supervised learning task.  

In this testing the green fluorescent images from Samsung Galaxy S9+ were considered. 

The training set also included mask images of the experimental image data for data 

augmentation purposes. 23 images were split into 17 training images and 6 testing 

images (approx. 74% - 26% split ratio) with varying cell counts from 3600~90. After 

slicing the training and testing images, there were 5032 images in the training set and 

1779 images in the testing set. The 5032 images in the training set were augmented 

with mask images totaling up to 10064 images in the training batch. In compilation, 

Adam compiler was used with learning rate=0.0001 initially as previous studies showed 

that these hyperparameters worked well with small object counting [32].  

The model was trained with monitored MSE, 10% validation dataset that was allotted 

from the training and batch size set to 16. The model was then used to predict the cell 

count from the test images and correlation plot was drawn to compare the GT count and 
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the predicted count. We can observe the plot in Figure 18 with an R2 value of 0.99 

which shows a good correlation.  

 

Figure 17: Training and validation plots at learning rate=0.0001. 

Figure 18: Correlation plot between the GT count from Image J and the predicted 

count from CNN model in figure 9A. 
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Figure 19: Bland Altman analysis of the GT count and predicted count from CNN. 

 

In this stage we also tested out the convolution model by changing the convolution 

filters to 64X128X256 as shown in Figure 9B. The correlation plots for the results are 

as shown below in Figure 20 with R2 value of 0.99. 

 

Figure 20: Correlation plot for ground truth count and prediction count for 

architecture in figure 9B.  
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We further studied to improve the model and observe the changes when 

hyperparameters like Learning Rate (LR) and Batch Size (BS) were tweaked. The graph 

of the MSE loss over the epochs are as shown below in Figure 21 for different learning 

rate parameters. 

  

 

 

 

 

 

 

 

 

Figure 21: Training and validation loss curves for different learning rate 

hyperparameters. 

 

We observe that for LR= 0.01, the model is over fitting, although the training loss is 

decreasing over epochs, the validation loss is increasing. For LR= 0.001 and 0.0001, 

the training and validation loss curve are within the acceptable bounds. For LR= 
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0.00001, we again see that the model is over fitting. The reason is that, in this case the 

LR is too small and it takes too long to converge at the global minimum.[35]  

After finding suitable LR for this application, we studied how the tweaking the batch 

size would affect the results. After testing with default batch size=16, we tested for 

BS=8 and BS 32 and the following observations were made in correlations plots 

depicted in Figure 22 and 23. 

 

Figure 22: The correlation plots for varying batch size=8 and 32 given the LR=0.001. 
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Figure 23: The correlation plots for varying batch size= 8 and 32 given the 

LR=0.0001. 

 

From the above correlation plots we observe that LR=0.0001 is able to make the model 

fit more accurately when compared to other rates. When BS=8, we have a better y 

intercept value for LR=0.0001 when compared to LR=0.001 and also is able to predict 

higher cell count ranges better. But a BS=32 for LR=0.001 is giving better predictions 

than BS=8. However, for BS=8, the computation time is longer and for high amount of 
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data, it takes longer time to train and can become a bottleneck in real time applications. 

If the model had to only be trained once before deployment and there is room for long 

computation time in a given application, then lower BS and low LR can be 

implemented. For dynamic training purposes and since our idea of application has to 

be implemented in real time, requiring low computation power to successfully predict 

cell count from the images was the priority and LR value of 0.0001 and BS of 16 was 

kept standard for further testing.  

 

5.2 Stage II: Cross validation 

Although the dataset considered for the testing was based on random selection and 

training set contained different levels of cell counts, cross validation was performed to 

validate the results and stability of the CNN model. With one test, we can only concur 

that the model was able to perform well only when it was trained on the dataset that 

was chosen. For the cross validation, we employed a method where we randomized the 

selection of train and test data and until all the sample images were placed in the test 

set at least once by the randomization algorithm, the validation process continued. In 

such case, there were cases in which the sample fell in the test set more than once and 

counts were predicted more than once. The average of the those predicted counts were 

considered for evaluation. In this particular study, a total of 11 randomization took place 

to ensure all the data fell in the test set at least once. As a result, 11 models were 

produced.  

In cross validation method, for dataset, we chose the images from the standard testing, 

binary mask of those images and images applied with gaussian blur for data 

augmentation purposes as shown in Figure 24.  Some of the images acquired from 



 

38 

 

Nokia Lumia were also considered to analyze the model’s behavior with low-quality 

images as shown in Figure 25.  

 

Figure 24: Images collected from Samsung S9+. (A) Regular image. (B) Image with 

Gaussian Blur, sigma=3. (C) Image applied with binary mask (scale bar = 100µm). 

 

 

 

Figure 25: Images collected from Nokia Lumia 1020. 

 

A total of 33 images were considered for the process and the analysis was repeated until 

all 33 images were in the test set at least once. The correlation plot in Figure 26 gives 

an R2 value of 0.99 and Figure 27 depicts the Bland Altman analysis. 
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Figure 26: Correlation plot of GT count and predicted count. 

 

Figure 27: Bland Altman Analysis for GT count and predicted count from cross 

validation. 
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5.3 Stage III: Red beads testing 

From the results we could concur that when the model was trained on particular kind 

of fluorescent images, it was able to predict the count from the same kind of fluorescent 

images. The aim is to standardize the device and implement AI pipeline and obtain 

particle quantification from the images captured by the smartphone. To test this, we 

made use of a trained model from the cross-validation result and used these weights to 

predict the cell count from red beads image after binary mask was applied to it. As the 

training set contained masked images from green fluorescent beads image, the cross-

correlation result for 7 test images was R2= 0.99. 

 

Figure 28: Correlation plot of GT count and prediction count from binary masked red 

beads images. 

5.4 Analysis of Results 

From the correlation plot, we have the R2 value of 0.99 for all the testing. By analyzing 

the errors bars of the cross-validation results and standard testing results (Lr=0.0001 
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One of the differences in standard testing and cross-validation testing is the number of 

datasets used. Cross validation in addition was implemented with blur images.  

Figure 29: Histogram plot of difference between ground truth and predicted count 

from standard testing results 

 

Figure 30: Histogram of the difference between ground truth and predicted count from 

cross-validation testing 

Histogram of difference between ground truth count and predicted count  
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The number of images used in standard testing is 23 images and the number of images 

used in cross-validation is 33 images along with gaussian blurred images of sigma=3. 

We observe from the cross-validation results that the prediction range is between -137 

to 423 which implies that for a particular test image the predicted count was 137 higher 

than the ground truth count and 423 lower than ground truth count. Also, from the 

correlation plots of red beads testing we see observe that there is approximately 5% 

overcounting. From dataset preparation, the images are sliced to feed the neural 

network along with the ground truth count. ImageJ calculates our ground truth by 

analyzing the particles based on thresholding. This rises a possibility of counting a 

particular cell twice if it was sliced into two images or present on the boundary of 

slicing. Thus, we propose to improve it by labeling the center coordinate of a cell in an 

image and obtaining the total count by the no of coordinates in the image. The 

possibility of a single coordinate getting sliced is low, this can ensure to overcome the 

over counted cell problem while slicing the image. Overall, we see an improvement in 

the accuracy when the datasets used for training was increased in cross validation 

compared to standard testing. Hence, by improving data augmentation techniques and 

adding more images to train the model, the prediction can be improved thus improving 

the accuracy.  
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CHAPTER 6 

Deployment of the Deep Learning Model into an Application Programming 

Interface 

 

The device key aspect is to see its performance in real time applications as a point of 

care diagnostic sensor. As discussed in Chapter 1, we saw how mobile phones are 

flexible to be integrated with advance APIs. To show a demonstration of this, we 

developed a Web based API that is deployed on the Google Cloud Platform (GCP).  

Flask is popular web application framework and is a lightweight Web Server Gateway 

Interface (WSGI). It depends on the Jinja template engine and Werkzeug WSGI toolkit. 

Since the deep learning computations were done using tools like TensorFlow, Keras 

and Python, hence Flask framework for deployment of the Keras model was most 

suited.  

HTML assisted with Cascading Style Sheets (CSS) were used to develop the front-end 

API.  

Link:  Cell Count App 

Figure 31: Preview of the web application. 

https://flrcellcount.nn.r.appspot.com/
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Since the deployment is made on a cloud-based platform and published to a larger 

audience, this can aid in monitoring the user data and uploads leading to a bigger 

medical data science project. The uploads that are new data can again be used in training 

the model to obtain better prediction as Deep Learning models work better when trained 

on a larger set of data. In this case, a progressive validation is done to monitor the 

model’s performance rather than using predefined set of training and testing images. 

This dynamic model has the potential to improve the field of point of care diagnostics 

with its user-friendly device and quantification methodology which is powered by AI.   
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CAPTER 7 

Conclusion and Future Scope 

 
We have presented a methodology for applying a convolutional neural network 

framework to predict the cell count from an image acquired from smartphone based 

fluorescent microscopy. This study makes use of the novel design and presents an 

Artificial Intelligence pipeline to integrate it with. We tested two different 

convolutional frameworks, and both provided satisfactory results in predicting the cell 

count from an image. To further improve the model, we worked by tweaking the 

dependent hyperparameters and found satisfactory range of values to work with for a 

better model’s performance.  

 

To complete the lifecycle of the AI implementation, the trained Keras model weights 

were deployed on an application programmable interface which was a web application 

running on google cloud platform. Further, the scope is to develop a dynamic pipeline 

in which new data used for prediction on the web applications can further be used to 

train and update the model. To implement it in a low resource setting, we aim to further 

develop a mobile application which can be installed in the smartphone device that 

captures the image and use the weights calculated during the training to evaluate the 

cell count from the acquired image. This has the added advantage to use the application 

without the web interface. This technology thus shows the potential of an AI integrated 

Point-of-Care diagnostic biosensor.  
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