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ABSTRACT

Hard Label Black Box Attack on Text Classification

By SACHIN SAXENA

Thesis Director:

Dr. Sunil Shende

Machine learning has been proven to be susceptible to carefully crafted samples, known as
adversarial examples. The generation of these adversarial examples helps to make the models
more robust and gives us an insight into the underlying decision-making of these models. Over the
years, researchers have successfully attacked image classifiers in both white and black-box settings.
How- ever, these methods are not directly applicable to texts as text data is discrete. In recent
years, research on crafting adversarial examples against textual applications has been on the rise.
In this thesis work, we present a novel approach for hard-label black-box attacks against Natural
Language Processing (NLP) classifiers, where no model information is disclosed, and an attacker
can only query the model to get the final decision of the classifier, without confidence scores of
the classes involved. Such an attack scenario applies to real-world black-box models being used

for security-sensitive applications such as sentiment analysis and toxic content detection.

The main contributions of the thesis work are as follows:

1. We propose a novel approach to formulate natural adversarial examples against text classifiers

in the hard label black-box setting.

2. We test our attack algorithm on three state-of-the-art classification models over two popular



text classification datasets.
3. We improve upon the grammatical correctness of the generated adversarial examples.

4. We also decrease the memory requirement for the attack when compared to published attack

systems involving word-level perturbations.
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Chapter 1

Machine Learning

1.1 Introduction

Artificial Intelligence is the ability of computers and computer-controlled devices to perform tasks
commonly linked with human intelligence. It consists of cognitive abilities like learning and problem-
solving. Machine Learning (ML) is a subset of Artificial Intelligence that enables computers to
perform specific tasks without giving explicit instructions. It consists of algorithms and statistical
models to enable the computer to automatically learn and improve from experience. ML algorithms
have helped computers to do a wide variety of tasks from spam filtering in our email inboxes, movie
recommendations on Netflix to self-driving cars.

Much of the development of machine learning has been in the past sixty years. In 1943, neu-
rophysiologist Warren McCulloch and mathematician Walter Pitts co-wrote a paper on how human
neurons might work. They illustrated the theory using electrical circuits, and therefore, the neu-
ral network was born. In the 1950s, computer scientists began using this idea in their work. In
1952, Arthur Samuel created a program that played checkers and was the first computer program
that could learn as it ran. The year 1958 saw the creation of one of the earliest artificial neural net-
works, perceptron, which was used for pattern and shape recognition. In 1959, Bernard Widrow and
Marcian Hoff of Stanford University built two neural networks which are the earliest examples of
real-life applications of machine learning. The first one was ADELINE which could detect binary
patterns. The second one was MADELINE which could remove echo from phone lines, and is still
in use today.

Machine learning algorithms can be broadly classified into four types based on the approach
used for learning: Supervised Learning, Unsupervised learning, Semi-supervised learning, and Re-

inforcement learning.



1.1.1 Supervised Learning

Supervised Learning uses a labeled dataset, set of inputs and outputs, to learn the underlying func-

tion. The tasks involved are mainly regression or classification.

» Regression techniques help predict, forecast, and develop the relation between quantitative

data.
* Whereas, Classification helps to categorize data into different groups or classes.

The main algorithms for supervised learning include Support Vector Machine (SVM), Linear Re-
gression, Logistic Regression, Neural Networks, Random Forest, Naive Bayes, and k-Nearest Neigh-
bor(KNN). A classical example of Supervised learning is spam filtering, which uses a dataset con-
sisting of emails labeled as spam/not spam and the ML algorithm learns to classify a given email as

spam/not spam.

1.1.2 Unsupervised Learning

In unsupervised learning, the Machine learning algorithms use unlabeled data and discover under-
lying patterns in the data on their own. The prime examples of unsupervised learning are Clustering

and Anomaly detection.

* Clustering involves the grouping of data points in a given population in such a way that the
points in the same group or cluster are more similar to each other than to points in another

cluster. Popular algorithms include k-means, hierarchical clustering, DBSCAN, etc.

* Anomaly detection is the identification of rare data points or observations in a given data set.
Although anomaly detection can also be done by supervised learning algorithms, it is difficult
to get labeled data of anomalous behavior; hence, unsupervised learning is much more widely

used for the purpose. For example, flagging unusual credit card transactions to prevent fraud.

1.1.3 Semi-Supervised Learning

Unsupervised Learning uses a combination of labeled and unlabeled data. It usually consists of a
very small amount of labeled data and a huge amount of unlabeled data. This conjunction of unla-

beled data with some labeled data can leads to considerable improvement in learning accuracy. It



is widely used for speech analysis, since labeling of speech data is a difficult task, semi-supervised
learning is widely used for the purpose. Other important applications include internet content clas-

sification and protein sequence classification.

1.1.4 Reinforcement Learning

Reinforcement learning aims to enable software agents to take actions in an environment to max-
imize cumulative reward. A bot playing a game to achieve high scores is a classical example of
reinforcement learning. The designer sets the reward policy but does not give any hints or sugges-
tions for how to solve the game. The model starts with totally random trials and consequently, learns

sophisticated tactics to maximize the reward.

1.2 Neural Network

Neural networks are a subset of machine learning and are inspired by the biological neural networks
which exist in the human brain. A human brain consists of a network of computing devices called
the neurons which communicate among themselves to perform computation tasks Artificial Neural
Networks (ANN) mimics this basic architecture by forming a directed graph where nodes denote
the neurons and the edges represent the links between them. One of the most fundamental types of

neural network architecture is the Feedforward Neural Network.

1.2.1 Feedforward Neural Networks

A Feedforward Neural Network can be represented as a directed acyclic graph G = (V, E'), where
vertices V represent the neurons and edges I are the links between them. They can be arranged in
the form of layers: Input, Hidden, and Output layers.

Given a layer [ named V/}, let there be n; nodes in the layer and V},,, represent the m!" node in I
layer, where m < n;. Each node in layer [ is connected to all the nodes in layer [ — 1 and layer [ 41,
except in the input layer and the output layer, where they are fully connected to only the (I 4 1)
and (I — 1) layer, respectively. Further, nodes in the same layer do not share any edges. A single

node or neuron is described in figure 1.1.

A node can be further represented by two mathematical operations: a weighted summation of
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Figure 1.1: A single Node (Neuron)

the inputs from the previous layer and an activation function f. An activation function is always a
non-linear function and helps the neural network to represent complex functions mapping input to

output.

1.2.2 Activation Functions

A neural network is expected to model complex functions and an activation function helps it achieve
this. It introduces non-linearity in the model without which a neural network is essentially just a

linear regression model. Activation functions have the following characteristics:

* Non-Linear: With the use of a non-linear activation function, a two-layer neural network can

be a universal function approximator [11].

* Monotone: When the activation function is monotonic, the error surface linked to a single

layer neural network is guaranteed to be convex, which is easier to optimize [44].

L]

Has a finite range

* Continuously differentiable

* Approximates identity near the origin

Commonly used activation functions are:
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Figure 1.2: Common Activation Functions

Sigmoid Function has a range of [0, 1] and is mostly used in the output of a binary classifi-
cation problem.

Az) =1/(1+e™)
Tan Hyperbolic (Tanh) function is mainly used in the hidden layers and has a range of [-1,1].

A(z) = (2 = 1)/(e* + 1)

Rectified Linear Unit (ReLU) is the simplest of the activation functions, yet widely used
due to its advantages. It is less computationally expensive than both Sigmoid and Tanh func-
tions because it involves simpler mathematical operations. Further, it solves the problem of
vanishing gradients during backpropagation, since the derivative of a ReLLU is either equal to

1 or 0, as compared to a value less than 1 for both, Sigmoid and Tanh activation functions.

0 ifz <0
Az) =

x  otherwise
Softmax function is a generalization of a sigmoid function to multiple dimensions and is often
used in the last layer of a neural network to normalize the output of a network to a probability
distribution over output classes that the network predicts. Softmax function applied to a layer

having j values rescales each of them as follows:

exp(x;)

> exp(z;)

Softmax(z;) =



1.2.3 Forward Propagation

Forward Propagation refers to the calculation and storage of values at all the nodes starting from the
input layer to the output layer. Let the input be X € RS, a hidden layer V' with 3 neurons and an
output with a single neuron. The weight matrix linked with layer [ is represented using W (), biases
are represented by b(!) and the activation function is A"). Our layer indexing starts from 0. So, the

computations in the first layer are as follows:
2 =wWX 40 Wl e RS x e R, p() € R
a®M = pM (M)
Computations in the second layer or the output layer happen as follows:
2@ = @M 4 @ @ ¢ R1X3 g1 ¢ R3X1 p2) ¢ RIX1
a® = h(2)(2(2))

The output of the model for one such forward propagation step is a?

1.2.4 Loss Function

A loss function measures the performance of the model. There are different loss functions for

classification and regression:

* Cross Entropy Loss

Cross Entropy loss measures the performance of the classification model. If the predicted
label or class probability is away from the actual label or class, cross entropy is higher and it
is lower when the predicted label probability is close to the actual class. Mathematically, the
cross entropy loss for a neural network designed for a multiclass classification task having C

classes can be written as follows
c
J(W,b) = y;log P,
j=1

where P; and y; represents the predicted and actual probability of the class j.



* Mean Squared Error (MSE)

Mean Squared Error is mostly used for regression tasks. Given m training examples, p; and
y; representing the predicted and actual target value for the i*" training example, the mean

squared error is as follows:

m

MSE = (1/m) x ¥ (pi — i)

i=1
1.2.5 Gradient Descent

Neural network training is an optimization task, where the aim is to find the optimized values of
weights W and biases b to minimize the loss function J. Gradient Descent is an optimization al-
gorithm used to minimize the loss function by iteratively moving in the direction of the steepest
descent. In a neural network, we use gradient descent to update the weights and biases. Mathemat-

ically, at any layer [, we update the weights and biases as follows:

WO Z o _ -
dw®

d.J

0 — 0 _

b =1b adb(l)

where « is the learning rate

1.2.6 Backpropagation Algorithm

Backpropagation is a method by which one is able to find the gradient of loss with respect to pa-
rameters in any layer [. For the single layer architecture shown in the earlier sections, we can find

the gradient of the loss with respect to the weights in layer 1 as follows:

dJ dJ  da?  dz®  daV gD
AV 4@ 2@ C da® gz  aqw®

1.3 Convolutional Neural Network

Convolutional neural network (CNN) form a class of deep neural networks that are mostly applied
for analyzing images. They have shown excellent performance in many computer vision, machine
learning, and pattern recognition problems. In the past few years, CNN architectures have found

applications in Natural Language processing tasks as well. CNN models have been shown to be
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Figure 1.3: The architecture of the original convolutional neural network, as introduced by LeCun

et al. (1998) [28]
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effective for NLP and have achieved excellent results in semantic parsing [45], sentence modeling
[23], search query retrieval [42], text classification [24] [46] and other traditional NLP tasks [9].
The architecture of the original convolutional neural network in Figure 1.3, as introduced by
LeCun et al. (1998) [28], alternates between convolutional layers including hyperbolic tangent non-
linearities and subsampling layers. Since the convolutional layers already include non-linearities,
a convolutional layer represents two layers: one for convolution and the other for applying a non-
linear activation function. The feature maps of the final sub-sampling layer are then fed into the
actual classifier consisting of an arbitrary number of fully connected layers. The output layer usually

uses softmax activation functions



1.3.1 Word-based Convolutional Neural Networks

Word-based CNN uses the word-level feature vectors to form the feature matrix and apply a series
of convolution and pooling operations leading to the fully connected layers. Consider a sentence
having n words and let z; € R” be the k dimensional feature vector of the i** word in the sentence.
Consider a feature matrix X € R™** in which word vectors are along the rows. Let X;.; 1 j refer to
the sub-matrix having rows {i,i + 1...i + j — 1}, representing vectors corresponding to the words
{i,i+1...i4 j — 1}, in sequence.

Consider a matrix f € Rk 1 < h < n, h € Z which we refer to as a filter. The ith

(1<% <n—h+1, ¢ € Z)convolution operation is then defined as follows:
ci=[f®Xsitn

Here f ® X,.;4n, represents elementwise multiplication and summation of the corresponding values

in the two matrices. We further add a bias term and non-linearity to the above value:
Ci=F(f® Xiipn+0b)

Here, F' can be any non-linear activation function like Tan Hyperbolic, ReLU etc. This filter is
applied to each possible window of words in the sentence, { X1.,, Xo.p41...Xn—n+1.} to oObtain a
feature map

C =[C1,Co...Cppst]

A max-over-time pooling operation is then applied to this value map, to capture the most important
feature:

C = maz{C}

Note that, the pooling operation inherently takes care of the varying word length sentences being
input to the architecture, as one filter value only outputs a single max-pooled value from the feature
map.

Although we demonstrated the convolution and pooling operation for one filter, we can apply
multiple such filters to build a more complex architecture. If h = 2, we are capturing the features
of the bi-grams (sequence of two adjacent words), by applying the filter and non-linearity to two

words at a time. Similarly, by using filter of size h = 3 we can capture tri-grams (sequence of three
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adjacent words) features. Finally, our output from the CNN layer will be a vector of length equal
to the number of filters used. For a sentence classification task, these outputs can be passed onto a

fully connected softmax layer, which can give the probability distribution over labels.

1.4 Sequence Models

1.4.1 Recurrent Neural Network

Recurrent Neural Networks are a type of supervised deep learning method used for time series and
sequence data. RNNs have achieved state of the art performance on important tasks that include ma-
chine translation [4], language modeling [32] and speech recognition [17]. The difference between
a simple feedforward neural network and RNN is that in the latter a neuron may pass its activation
to the other neurons in the same layer, in addition to forwarding it to the next layer. These activa-
tions are stored as the internal states of the network and help an RNN to hold long-term temporal
contextual information.

Although RNNs have been very useful for sequence data, they suffer from vanishing gradient
problem which prevent them from learning long-term dependencies. The problem of the vanishing
gradient was first discovered by Sepp Joseph Hochreiter back in 1991 [20]. RNNs have connections
between different neurons across time, so the error term at any later time node in the sequence
needs to be backpropagated through time to all the earlier neurons and the weight matrices need to
be updated during gradient descent. RNNs mostly use Tan Hyperbolic activation function at every
time step, the absolute value of the gradient of which always lies below 1. Hence, when the length
of a sequence is large, gradients tend to get diminished as they are backpropagated to earlier time
steps, leading to very slow learning at the earlier time steps during gradient descent. This means

that RNNs are unable to capture long-term dependencies.

1.4.2 Long Short Term Memory (LSTM)

The LSTM units are engineered in such a way that allows them to bypass the vanishing gradient
problem, thereby enabling them to learn long-term dependencies [21]. In an LSTM unit, the hidden
state is calculated by four layers which helps it to remember or forget specific information about the

preceding elements in the sequence.
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Chapter 2

Adversarial Attacks

Machine learning has shown superiority over humans for tasks like image recognition, speech recog-
nition, security-critical applications like a bot, malware, or spam detection. However. machine
learning has been proven to be susceptible to carefully crafted adversarial examples. In recent
years, research on the generation and development of defenses against such adversarial examples
has been on the rise. Attack algorithms have been formulated for image classification problems
by [6], [16].

A classic example of an adversarial attack is that of a self-driving car crashing into another
car because it ignores the stop sign. The stop sign is an adversarial example that an adversary
intentionally placed in the place of the original stop sign. Another example can be that of a spam

detector that fails to detect a spam email. The spam email is an example of an adversarial attack in

which the attacker has intentionally changed a few words or characters to deceive the spam detector.

“Yield Sign”

m
l' a

Input Perturbation

Figure 2.1: Adversarial 'STOP’ sign developed by Goodfellow et al. [16]. A well crafted noise is
added to the image in such a way that the machine learning algorithm misclassifies the perturbed

"STOP’ sign as *YIELD’ sign.

An Adversarial attack can be described as the addition of small perturbation or changes to an
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input instance that cause a machine learning model to make a false prediction. Further, the pertur-
bations made are such that they are imperceptible to humans. Given a classifier f which classifies
an initial example x as belonging to class y, an adversary intends to convert it into an adversarial

example (%) such that z(*%) = z 4§, f(2(@™)) £ y. Further,

d||p < €, where € gives an upper
limit to the perturbation as per a suitable distance metric L, distance.

The attacks can be broadly classified based on the amount of information available to the attacker
as either black box or white box attacks. White box attacks are those in which an attacker has full
information about the model’s architecture, model weights, and the training dataset. Black box
attacks refer to those attacks in which only the final output of the model is accessible to the attacker.
Black box attacks can be further classified into three types. The first type involves those attacks in
which the probability or confidence scores of the outputs are accessible to the attacker, referred to as
the ’score-based black-box attacks’. The second type of attack involves the case where information
of the training data is known to the attacker. The third attack type is the one in which only the final

classification result of the model is accessible.

2.1 White Box Attacks

White box attacks are those in which the attacker is assumed to have all the information about
the model, including architecture parameters. Examples of White Box attack techniques are Fast
Gradient Sign Method (FGSM) [16], DeepFool [33], Basic Iterative Method [27], Jacobian Saliency
Map Approach [38], Carlini and Wagner Attack [6]

* Fast Gradient Sign Method (FGSM) [16] uses the gradient of the underlying model to
generate adversarial examples against image classifiers. We add or subtract a small error € to
each pixel, depending on whether the sign of the gradient of the loss with respect to the pixel
is positive or negative. By adding errors in the direction of the gradient, we are intentionally
changing the image so that the classification fails or the image is misclassified to be belonging
to a wrong class. Given an input image x which is initially classified by the neural network
as belonging to class y, we convert it into an adversarial image x(**) using the following
equation:

x(adv) — ;1;—|—68gn(v$‘](97x’y)) (21)
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where V. J (6, z,y) is the gradient of the models loss function J with respect to the input
pixel vector x; y is the true label vector for x and 6 is the model parameter vector, sgn
function simply takes the sign of the gradient, positive(+1) or negative(-1). The step size of

adv)

the perturbation is e and is also the L., distance between z( and z.

Basic Iterative Method [27] involves application of FGSM iteratively with small step size.

Given an initial image ¢, the perturbations introduced in the i*" iteration are as follows:

adv)

561( = 20

) = Clip, (X, %) + o - sign(VeJ (6, 2, y))

where ¢ < N, N is the maximum number of iterations, Clip, simply clips the resulting image

to be within e ball of . In [27] cis setto 1 and N = min(e + 4,1.25 - €).

Jacobian Saliency Map Approach(JSMA) [38] is used to produce adversarial images for
targeted misclassification. Given an input image = belonging to a class y, the aim is to apply
minimal perturbation to x so that it gets misclassified by the model as belonging to the target
class t. We have an image classifier f : RP*® s RY, where D x F is the dimension of
the input image x (consider grayscale for simplicity) and C' be the number of classes. The
classifier function f maps an input image to an array of softmax probabilities. Let f(x).
denote the softmax probability of the ¢’ class mapped by the classifier function for an input
image x and x; denote the 74, pixel. A Jacobian matrix of a multi-variable real valued function
is the matrix formed by the first order partial derivatives. The saliency map function can be

defined as follows:

0 if 29 < 0ory,,, 2 > 0

ST (z4,¢) =

—%;i)“ : Zc/# % >0 otherwise

St (w4, c) measures how much pixel z; positively correlates with class ¢ and negatively cor-
relates with all the other classes ¢ # c¢. In all the other cases the saliency is set to 0. The
traditional approach uses this saliency map to increase a few high saliency pixels, which leads
to an increase in the softmax probability f(z):, where ¢ is the target class, t # y. The JSSMA

approach starts with a search domain consisting of all input pixels, and at each subsequent
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step, it finds the most salient pixel pairs (p, ¢) and perturbs both the pixels by +1, while also

removing the saturated pixel indices from the search domain.

Carlini and Wagner Attack [6] is an optimization based approach for producing adversarial
images. Given a classifier f mapping an image to one of the m classes, an initial image x
belonging to a class y and a distance metric. Given an original image x, the aim is to generate
an adversarial image = + 0, such that f(x + §) = ¢, while minimizing the distance of the
generated example x + 9 from the original image . The constraint being highly non-linear,
makes it difficult to solve the optimization problem. The authors propose a function I such
that F'(x 4 ¢) < 0, whenever f(z+ ) = t. Let the distance metric be represented by p norm,
L,. The authors in their original paper have proposed a variety of functions F' that can be
used:

Minimize: ||d||, +c¢- F(x 4+ 0), ¢ >0 (2.2)

such that, x + 4§ € [0, 1]" (2.3)

Gradient based attack on Malware classifier [25] uses a gradient based approach to attack
Malconv [40], which is a deep neural network trained on raw bytes of Portable Executable
(PE) files to discriminate between benign and malicious software. PE format is a file format
for executables, DLLs, object code used in 32-bit and 64-bit versions of the Windows operat-
ing system. An effective way of manipulating the PE files, while preserving their functional-
ity, is by injecting the bytes at the end of the file [3]. Given an initial binary byte sequence z,
the attack modifies at most ¢ padding bytes at the end of the file, thereby preserving the func-
tionality of the malware binary. Given a binary classifier that identifies a malware file, the aim
of the adversarial attack is to change the decision of the classifier value from 1 ("Malware”)
to 0 ("Not Malware”).

min f(z) (2.4)

such that d(z, z¢) < ¢ (2.5)
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where d(x, z¢) is the number of bytes altered in x( to get x. The input bytes are represented
by integer values from the set X = {1, 2, ...,255}. Padding bytes are then added to the input
to make the total number of bytes to be d. An embedding layer then maps each of these bytes
to a vector of length 8, thereby converting it into a matrix Z of the shape d x 8. This matrix is
then fed to a Convolution Neural Network (CNN) which then outputs a value between 0 and
1. A value close to 0 indicates the file is benign, whereas a value close to 1 indicates that the

file is malware.

The attack starts with a malware file which when passed through the Malconv CNN gives an
output close to 1, and aims to bring down this output probability to 0. For a padding byte x,
the (negative) gradient of the classifier f with respect to the embedded representation z;. Let
¢ represent the mapping of the input byte to its embedded representation z;. The negative
gradient is then calculated as w; = —V4(x;). A line along this negative gradient direction is
then defined as g;(r) = z;+7-n;, where n; is the normalized gradient direction. The padding
byte x; is then replaced with the byte m; which is closest from this line given its projection
on the line in the direction of the negative gradient. Thereby, each byte replacement decreases

f, thereby classifying it as benign.

A* search in Transformation graph using heuristics [26]: The white box adversarial at-
tacks in the discrete domain are generalized as a Ax graph search problem in the transforma-
tion graph. Ax is a graph traversal and path search algorithm. It uses a heuristic to plan ahead
at each step so a more optimal decision is made. The transformation graph is a weighted
directed graph, where each node represents a possible vector in the input space and each edge
is a transformation, the edge weight represents the transformation cost and its children nodes
are the transformed examples. The authors use Taylor’s expression and Holder’s inequality
to come up with a heuristic for the graph search. Let there be an initial input z € R™ to
which we do a perturbation § € R™ which puts the perturbed example, = + ¢, on the decision
boundary. Assuming that the decision boundary is # = 0, we end up with f(x + 0) = 0. The

first-order Taylor approximation of f(x + 0) at the point x is as follows:

flx+0)=f(x)+Vf-(r+§—x)
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0=f(x)+Vf-6

s i)

= U (2.6)
Ve f ()]

If the edge costs are induced by L, norm, then ¢ is the Holder’s conjugate of p given by

1,1 _

>t 7= 1.

Black Box Attacks

Black box attacks can be of the following three types:

* Score-Based attacks: Attackers can query the softmax layer output in addition to the final
classification result. The softmax layer tells the probability scores for different classes as

predicted by the deep learning model.

— Scores Feedback method developed by Guo et al. [18] uses the confidence scores as

feedback to craft a black-box adversarial attack on image classification. The algorithm
takes a random direction at every iteration, from a pre-specified set of orthogonal di-
rections in the input space. The pixel values are then either increased or decreased
in that direction, whichever leads to a decrease in the confidence score of the original
class. Consider a black box image classifier f and a given image x, such that f(z) =y
with predicted confidence Pr(y|x). The aim of the attack is to introduce perturbation
0, such that f(z + §) # y. The attack begins by constituting a set () of orthogonal
vectors in the input space. Next, a random direction ¢ € () is selected and a perturba-
tion is first added in direction q to the pixels of the input image x with a step size e. If
Py (ylx 4+ eq) > Py¢(y|x), then we rather subtract the € perturbation in direction g, else
we go ahead with perturbation added to our image z. This process is repeated until the
perturbed image is misclassified by the black box model or until the maximum number
of iterations 7' is reached. Further, it can be noted that the maximum perturbation intro-

duced after T iterations can be given by, |d|s = V/Te. So, the step size ¢ can be selected

to keep an upper bound on §. Also, selecting ¢ randomly from () with replacement is
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necessary to ensure that no two directions cancel each other and diminish progress or
amplify each other in subsequent steps and disproportionately increase the perturbation

J.

— GenAttack [1] uses a genetic algorithm based approach for gradient-free optimization
to generate adversarial images. The fitness function uses the output scores for different
classes, maximizing the log scores of the target class, and minimizing the log scores of

all other classes.

* Transfer based attack is the type of black-box attack meant for Deep Neural Networks when
there is a restriction on the number of queries that an attacker can make. The attackers try
to construct a substitute model f’ to mimic the original DNN model f and then attack f’
using white-box attack methods [37] [30]. An important requirement for such an attack is
the generation of a training dataset from the same population on which the original model f
was trained. These attacks are based on the observations made by Szegedy et al. [43], with
regard to the transferability between DNN architectures when trained on datasets from the

same population.

* Decision based attack or Hard Label Black Box attacks assume that only the final class
decision for a given input x is accessible to the attacker while the confidence scores are not

known.

— Evolutionary Algorithms based approach [10] was devised to attack Twitter bot clas-
sifiers which depend on user account information like the number of tweets, retweets,
and replies for its decision making. The authors use the DNA-like representation of the
lifetime of each of the Twitter accounts. In the DNA-like representation, the timeline of
a Twitter user is represented by encoding every tweet as T', retweet as A, and reply as
C'. The authors take the Longest Common Substring (LCS) of the DNA-like sequences
to measure the similarity between different users. Given a group of M users, the LCS
curve is generated by plotting the length of LCS for different number users ranging from
2 to M. The LCS curve is taken as the behavioral similarity among a group of users
and the Kullback Leiber(KL) divergence is used to quantify the similarity between the

curves.
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par In each iteration of the genetic algorithm, a group of spambot account DNAs was
evolved and the KL divergence between the LCS curves of legitimate accounts and
evolved spambots was minimized. Although, the evolved spambots after a set of itera-
tions have been shown to evade state-of-the-art classifiers the authors do not report the
average number of changes made to the spambot DNA in order to evade classification.
The average number of changes made to the Twitter account in order to evade the clas-
sifier is critical, as the attacker has to pay in order to add or delete tweets, retweets, or

replies.

Random Walk on the Boundary method devised by Brendel et al. [5] described a ran-
dom walk on the boundary approach to finding adversarial images. Consider an initial
image = which is labeled by an image classifier as belonging to class y. The algorithm
starts from an image x’ with a label y" such that ¢/ # y. A random walk is then per-
formed along the boundary between adversarial and non-adversarial region such that it
stays in the adversarial region and the distance from the original image is reduced after

each iteration.

Optimization based approach proposed by Cheng et al. [8] formulated the hard label
black box attack as an optimization problem and solved it using a zeroth-order opti-
mization technique known as Randomized Gradient Free Method [35]. Zeroth-order
optimization refers to the optimization techniques used in problems where we do not
have explicit access to the gradients. The loss function in this case, where only the fi-
nal decision is accessible to the attacker, is discontinuous with discrete outputs. Such
an optimization problem requires a combinatorial optimization technique but is compu-
tationally expensive because of the high dimensionality of the input. The problem is
solved by formulating the hard label black box attack in the following way:

Consider a black box model f : R — {1,2,...., M’} which classifies our image x(
as belonging to label yy and has a closed decision boundary around it. The aim of
the adversarial attack is to move out of this decision boundary along the shortest path.

A function g is defined which tells us the minimum Lo distance to cross the decision
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boundary in a given direction 6.

9(0) = min A 2.7)
A0
s.t. f (a:o + m) Z19 (2.8)

The optimization problem can then be defined as follows: Starting from our image x,
find the direction 8 along which we can cross the decision boundary with minimum path

length.

mein g(0) (2.9)

The given problem is solved using Randomized Gradient Free method (RGF). RGF is a
popular zeroth order optimization method proposed by [35]. It estimates the gradients

using the formula:

G 0048 —g0)
B

where w is a random Gaussian vector and 3 is a smoothing vector.
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Chapter 3

Adversarial Attacks on NLP

Introduction

Natural Language Processing (NLP) is a branch of Linguistics and Artificial Intelligence that deals

with processing and analyzing huge amounts of natural language data. NLP aims to match hu-

man intelligence in reading and understanding human languages. Such a kind of understanding

of human languages enables real-world applications like sentiment analysis, automatic text summa-

rization, topic extraction, named entity recognition, parts-of-speech tagging, stemming, relationship

extraction, and more. A brief description of each of these is as follows:

Sentiment Analysis helps to interpret and classify the emotions within text data. The classes
involved are primarily positive, negative, or neutral. It helps the businesses to understand
the emotions of a customer towards their products or services. Reviews or survey responses
are fed to the machine learning model which then classifies into different classes signifying

different emotions.

Textual Entailment (TE) aims at predicting whether, for a pair of sentences, the facts in the

first sentence necessarily imply the facts in the second.

Text Summarization refers to creating a short and accurate summary of a longer text. It
involves extracting the most information from a source. Automatic text summarization is
useful in a scenario where there is an abundance of data and a lack of manpower and time to

summarize important information or interpret the data.

Topic Extraction deals with extracting keywords and phrases in the text data. It is not con-

strained by a given list of topics or classes.

Named Entity Recognition seeks to classify and locate named entities in an unstructured
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text. The classes can be person names, locations, organizations, monetary values, percent-

ages, etc.

* Parts-of-speech tagging reads a text in a particular language and assigns part-of-speech tags

to each word (or other tokens), such as noun, word, adjective.

We shall mainly focus on the text classification tasks like sentiment analysis, spam detection,
topic modeling. Sentiment analysis is widely used in the online recommendation systems, where the
reviews and comments are classified into a set of categories that are useful while ranking products
or movies [31]. Text classification is also used in applications critical for online safety, like online
toxic content detection [36]. Such applications involve classifying the comments or reviews into

categories like irony, sarcasm, harassment, and abusive content.

3.2 Review of Adversarial attacks on NLP

In this section, we discuss a few prominent NLP attack frameworks.

1. TextBugger [29] is a framework for utility preserving adversarial attacks against text clas-
sification in both, white and black box settings. Utility preserving refers to the preservation
of the original meaning of a piece of text as inferred by human readers. In the black-box
scenario, the framework assumes that the attacker can query the text classifier to be attacked

and get the confidence scores of various classes.

* The attack algorithm for white box attack is as follows:

— Find important words: The authors use the Jacobian matrix to rank the words.
Jacobian matrix consists of partial derivatives of the confidence values for different
classes, as predicted by the classifier, with respect to different words in the text.
Consider a text classifier function F, and the input text has N words whose word
vectors are represented as © = {x,22,...,xn}. The output of F' is an array of
probabilities or confidence scores for different classes. Let there be k classes, so
F}(+) represents the confidence scores of the j* class. The Jacobian matrix can

then be defined as follows:

oF OF;
Jp(x) = 8:(;) = | ajgf?)]i=1,2,...,N;j:1,2,...,k
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The importance of 7*" word z; for a given class y is defined as follows:

OF,

IMP,, = 5
(]

— Perturb words in order of word importance: Once the words are assigned an
importance value for the target class, they can be perturbed on the character level
or the word level.

# Character level perturbations just change a few characters in a word. Since the
Deep Learning based Text Understanding (DLTU) systems use a fixed dictio-
nary of words, changing a few characters in a given word makes it an unknown
word for the DLTU system. Such perturbations preserve the original meaning

of a text [41].

* Word level perturbations replace a word with a synonym or semantically sim-
ilar word. Synonyms can be searched using word embeddings in a context-
aware word vector space. Context-aware word embedding means that syn-
onyms are closer in the vector space with a given distance metric (mostly cosine
distance). The pre-trained GloVe model [39] provides one such word embed-
ding technique, which can be used to get top k£ synonyms of a given word.

TextBugger introduces five types of perturbations and selects the one which results
in the maximum decrease in confidence of the original class. The five types of

perturbations are as follows:

+ Inserting a space in between the word changes the word by fragmenting it into

two separate words.

# Delete a random character in between the word, except the first and last char-

acter.

* Swap two random characters in the word, except the first and last character

* Replace a random character with a visually similar character. For e.g., "I’ with
’1°,70” with °0’.

* Replace a word with its k nearest neighbors using a word embedding from the

pre-trained GloVe model.
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The perturbations are done until the text is misclassified by the text classifier

or the maximum number of iterations is reached.

* The black box attack algorithm is as follows:
— Find important sentences:

x Segment the given text into sentences, S = {s1, 2, ..., Sm }

* Query the black box model by inputting each of these sentences individually.

# Filter out the sentences which have a different class then the original class y of
the entire piece of text.

* Sentence importance is then defined for each of the remaining sentences as
follows,

IMP;, = Fy(s;)

— Find word importance: For each of the sentences, we find the importance of the
words in those sentences by removing the word from the text and passing the text
through the text classifier to check the influence of the word on the classification
result. /. Given the original class of the text being y, the importance of word w; is

then given as follows:
IMPy; = Fy(z) = Fy(x\ {w;})
where Fy(.) is used to calculate the confidence score of class y for a given text.

— Word perturbation algorithm is the same as that for the white box attack frame-

work.

2. TextFooler [22] is a black box NLP attack framework. It attacks text classification and textual
entailment. The attack algorithm is as follows:
* Find word importance ranking,
IMP,; = Fy(x) — Fy(x\ {w;})
* Perturb the words in order of high importance scores. TextFooler uses only word-level

perturbations and more stringent selection criteria as compared to TextBugger. The

perturbation steps are as follows:
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— Get the synonyms using context-aware word embeddings [34].
— Remove the synonyms with different POS tags from that of the word to be replaced.

— Semantic Similarity between the adversarial text with synonym and the original text
to be within € limit. The authors use the Universal Sentence Encoding (USE) [7] to
encode sentences into high dimensional vectors and use the cosine similarity as a

measure of semantic similarity.

3.3 Hard Label Black-box attack

A Hard Label Black-box attack is the one in which only the final decision of the classifier is ac-
cessible by the attacker, with no access to the confidence scores of the various classes. In the
NLP domain, researchers have mainly formulated attacks in the white box setting [13] [29] with
complete knowledge of gradients or the black-box setting with confidence scores accessible to the
attacker [15] [29] [2] [22]. As per our knowledge, there has been no prior work done to formulate
adversarial attacks against NLP classifiers in the hard label black-box setting. Since the confidence
scores can easily be hidden to avoid simple attacks, hard-label black-box attacks constitute an im-
portant category of attacks relevant to real-world application. In the next chapter, we devise an

algorithm that attacks text classification in the hard label black-box setting.
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Chapter 4

TextDecepter

4.1 Proposed Methodology

In this chapter we propose TextDecepter, an algorithm that generates natural language adversaries
against text classification models in the hard-label black-box setting. The basic methodology of
TextDecepter is based on the premise that not all the sentences in a text convey the final opinion of
the text with the same rigor. When people are expressing their opinions, some sentences are simply
facts, which do not contribute to the final opinion, and other sentences contribute to the final opinion
in varying degrees. Hence, an algorithm is crafted to select the important sentences from a given
text. Then, the words are ranked within each sentence using their Part of Speech (POS) tags.
Subsequently, we replace the words with suitable synonyms in such a way that the following

utility-preserving properties are fulfilled:

1. Semantic similarity: The adversarial text should bear the same meaning as the source text.

2. Language fluency: Adversarial examples should look natural and grammatically correct.

The algorithm keeps replacing the words until the decision of the text classifier for the text

changes.

4.2 Attack Design

4.2.1 Problem Formulation

Given an input text space X and a set of n labels, Y = {Y7, Y5, ..., Y}, }, we have a text classification
model F' : X — Y which maps from the input space X to the set of labels Y. Let there be a text
x € X which is correctly predicted by the model to be belonging to the class y € Y, i.e., F(x) = y.

We also have a semantic similarity function Sim : X x X — [0, 1]. Then, a successful adversarial
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attack changes the text  to 2(@dv) " guch that
F(z%)) + F(x)

Sim(z, 2% > ¢

where € is the minimum similarity between original and adversarial text.

Consider a binary classification model with labels {Yp, Y1} which we want to attack. We are
given a text T € X having m sentences, S = {s1, s2, ..., S, }. The classification model correctly
predicts 7" to be belonging to class Yy, i.e., F'(T) = Y. We input each of the m sentences to F'
and get their individual labels. Let A and B form a partition of .S such that F'(a) = Yy, Va € A
and P (A) be the power set of A. Let A, be a set of r-combinations of A. We define another set

G ={BUc|ce P(A)}. Werefer to each of the elements in G as an "aggregate’.

4.2.2 Threat Model

Given a binary text classification model is meant to classify a given text as having a positive or neg-
ative sentiment, the attacker aims to evade the classifier by, say, making perturbations to a negative
sentiment text so that it is now classified by the model as positive. However, the perturbed text re-
mains negative for human observers. An example of such an attack is when a social media platform
employs a machine learning text classification model to filter out the negative sentiment posts made
by malicious users during the times of pandemic. The social media platform allows the users to post
texts any number of times and gives feedback about the text if it is negative or positive. Further, an
attacker may also want to perturb a positive sentiment text so that it is misclassified by the model as
negative. and removed from the platform. However, the text remains positive for human observers
and hence, the attacker can malign the reputation of the social media platform by accusing them of
political inclinations. We consider the attack in the black-box setting, where an attacker does not
have any information about the model weights or architecture and is allowed to query the model
with specific inputs and get the final decision of the classifier model as an output. Further, the class
confidence scores are not provided to the attacker in the output, making it a hard-label black-box
attack. Although NLP APIs provided by Google, AWS, and Azure provide the confidence scores

for the classes, in a real-world application setting, like toxic content detection on a social media
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platform, the confidence scores are not provided, thereby making it a hard label black-box setting.

Such an attack scenario also helps to gauge the model robustness.

4.2.3 Methodology

The proposed methodology for generating adversarial text has three main steps:

* Sentence Importance Ranking: We observe that when people convey opinions or emotions,
not all the sentences convey the same emotion. Some sentences are facts presented without
any emotion or sentiment. Other sentences can also be stratified based on varying levels of
intensity. This forms the basis of our sentence ranking algorithm which helps to prioritize
our attack on specific portions of the text in order of importance. We assume that different
sentences in the text contribute to the overall class decision to a varying level of intensity.
Each of the sentences can either support or oppose the final decision of the classifier and the
intensities which they do so are additive. Consider an example of sentiment analysis, where
the labels are positive and negative. The assumption of additivity of sentence class intensity,
also helps us to infer that sentences in set B when joined together to form a text, will belong
to class Y;. Hereby, we refer to the same as the class of set B or the classifier’s decision of

set B.

We define the importance of a sentence in set A by its ability to change the classifier’s decision
of set B from Y7 to Y{. If an individual sentence from set A when added to set B is able to
change the class of set B from Y] to Yp, then we consider the sentence to belong to level 1
importance. More generally, if a sentence from set A is able to change the classifier’s decision
of set B only when it is put together with some subset of A with at least k — 1 sentences, then
the sentence belongs to level k importance. The k — 1 other sentences in all such subsets also
belong to level k importance. Also, once the importance of a sentence is fixed at the k" level

we do not consider it in subsequent levels.

* Word importance ranking:

After finding the importance of sentences in step 1, we need to find the importance ranking

of the words to be attacked in these sentences. We observe that words with a certain Part of
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Algorithm 1: Sentence Importance Ranking

Input: Original Sentences set .S, ground truth label yy, classifier F'(.)
Output: Sentence Importance Ranking
SentsSentiment <— Find original labels of sentences in S';
OrigLabelSents <— Sentences with Label Yj ;
OtherLabelSents <— Sentences with Label # Y, ;
Let OrigLabelSents p represent set of all P sentence combinations from OrigLabelSent ;
P+ 1;
while OrigLabelSents do
TopSentlmpp < ¢ ;
for Comb in OrigLabelSentsp do
AGG + Add Comb to Other LabelSents and join it to form string ;
if F(AGG) =Y, then
Aggregates < Add AGG;
for sent in Comb do
SentImp[sent] < P ;

TopSentlmpp < Add sent

end

end
end
Delete sentences in TopSentImpp from OrigLabelSents ;
P+—P+1,
if P > Length(OrigLabelSents) then

Add remaining sentences in OrigLabelSents to TopSentImpp ;
end

end

return Sentlmp, Aggregates




29

Speech (POS) tags are more important than others. For example, for a sentiment classifica-
tion task, adjectives, verbs, adverbs are more important than nouns, pronouns, conjunctions,
or prepositions. Further, we consider adjectives more important than adverbs. Consider a
sentence, “The movie was very bad”. In this sentence, “bad” is the adjective and shapes the
sentiment of the sentence. The adverb “very” increases the intensity of the adjective, making

the predicted class confidence score increase further.

» Attack: We use the word-level perturbations in order of word importance obtained from
the previous step. We select synonyms to replace the original words using cosine distance
between word vectors. Further, to maintain the syntax of the language, only those synonyms
having the same POS tags as that of the original word are considered for further evaluation.

Experiments are done using both coarse and fine POS tag masks.

The details of each of these steps are as follows:

1. Synonym extraction: We use the counter-fitted word embedding [34] which obtained
state-of-the-art performance on SimLex-999 [19], a dataset designed to measure how

well different models judge the semantic similarity between words.

2. POS Checking: To maintain the syntax of the adversarial example, we filter out the
synonyms which have a different POS tag than the original word. We experiment with,

both, coarse and fine POS tagging.

We select a synonym to replace a word if its usage leads to one of the following:

1. Misclassification of the entire text.
2. Misclassification of the original labeled sentence to which the target word belongs.

3. Misclassification of the original label aggregate to which the target word belongs.

If multiple synonyms fulfill the rules, then the one which fulfills the rule of higher preference
is selected. If multiple synonyms fulfill the highest preference rule, then that synonym is selected
whose placement in the review is semantically nearest to the original review. We terminate the

algorithm once the text misclassifies, or when all the important words have been iterated over.
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Algorithm 2: TextDecepter

Input: Original text X, ground truth label Yy, classifier F(.), semantic similarity threshold e, cosine
similarity matrix
Output: Adversarial example X (¢4v)
Initialization: X (edv) « X ;
Segment X into sentences to get set S;
Sentlmp, Aggregates = GetSentencelmp(S);
WordPerturbSequence = GetWordImp (SentImp);
MISCLASSIFIED < False ;
for w; in WordPerturbSequence do
if MISCLASSIFIED then break;
CANDIDATES = GetSynonyms(w;);
CANDIDATES < POSFilter (CANDIDATES) ;
CANDIDATES <+ SEMANTICSIMFilter (CANDIDATES) ;
FINCANDIDATES < Sort CANDIDATES by semantic similarity ;
CHANGED <« False ;
for ¢, in FINCANDIDATES do
X' < Replace w; with ¢, in X (adv)
if F(X') # Y, then X (@) = X’; CHANGED < True; MISCLASSIFIED < True;
if NOT CHANGED then
SENT <— Get the sentence in which w; belongs s.t F'(SENT) =Y} ;
X' + Replace w; with ¢, in SENT;
if F(X') # Y, then X (29) = X’; CHANGED < True ;
end
if NOT CHANGED then
AGG < Get the aggregate in which w; belongs s.t. F(AGG) =Y} ;
X' < Replace w; with ¢ in AGG ;
if F(X') # Y, then X (*®) = X’; CHANGED < True;
end
end
end

return X (¢dv)
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The justification for the higher preference of sentence with respect to the aggregate to which it
belongs comes from the additivity assumption. Consider a sentence v € A, {v} € A;. Now, add
it to set B to form an aggregate, i.e., B U {v} € G. Assuming the additivity of class intensities
of sentences, it can be observed that when sentences in B U {v} are joined to form a piece of text,
it either belongs to class Y] or, in case, it belongs to class Y{, then the intensity of class Yj is
lesser when compared to v alone. In other words, an aggregate belonging to class Yy has a lesser
intensity of class Yy when compared with individual sentences belonging to class Yy which are part
of that aggregate. Hence, a synonym which is able to misclassify both the individual sentence and
the aggregate (both initially belonging to Yy) to which the individual sentence belongs would be

preferred over a synonym that misclassifies the aggregate alone.

4.3 Backtracking

Consider a directed acyclic graph, where a node represents a text and a directed edge between two
nodes means that the latter node text can be obtained by replacement of a word w in former node
text by its most semantically similar synonym w’, given that the synonym has the same POS tag
as the original word. Further, the weight of each edge is 1. Then, crafting an adversarial example
from a given piece of text can be formulated as a pathfinding problem as follows; find a path from
an initial node 7T to final node 7", such that F(T') = Yy and F(T") # Y;. The sentence and word
ranking algorithm decides the order of perturbation. Thereafter, we use the aggregates belonging
to the original class as heuristics to guide our graph search. The algorithm stops once the text
misclassifies. Although the heuristics help us in finding a path, they do not guarantee if it is the
shortest path. In the absence of confidence scores of classes, the problem of finding the shortest
path has an exponential search space. So, the algorithm just backtracks over all the replaced words

at the end and reset those replacements without which the perturbed text remains adversarial.

4.4 Time Complexity

Let there be n sentences in a text and m words in total.

1. Getting the class label of each of the individual sentences: O(n)
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2. Sentence Importance ranking: The algorithm takes all possible combinations of sentences
from the set of original labeled sentences and inserts each of them to the set of sentences that

do not have the original label. Hence, the time complexity of this step becomes O(2").
3. Word importance ranking:

(a) Sort the original labeled sentences in order of their importance ranking: O(n logn)

(b) Iterate over all the words in the sorted sentences and make the word perturb sequence:
O(m)
(c) Generation of cosine similarity matrix of words in the text with sixty-five thousand

words in the vocabulary: O(m)

4. Pick the top k synonyms for each of the candidate words that are to be perturbed. The cosine
similarity matrix consists of the similarity of each of the words in the text with all the words
in the vocabulary. We sort the similarity values for each word with all the other words in the

vocabulary. Hence, amounting to a total time complexity of O(m)

5. Attack: Replace each of the k& synonyms of a word in the original text, the original labeled ag-
gregates (obtained from sentence importance ranking step), and the original labeled sentences

to which they belong. Hence, the time complexity of this step becomes O(kmn).
6. Removal of insignificant perturbations: O(m)

Hence, the overall time complexity of the attack framework becomes O(2") + O(kmn)

4.5 Memory requirement

The generation of adversarial texts requires that we are able to get the synonyms for a particular
word during the attack phase. Hence, a cosine similarity matrix is kept in the RAM to quickly gen-
erate synonyms for a particular word. In our attack framework, we keep the cosine similarity of only
the words in the text that is being attacked, with all the sixty-five thousand words in the vocabulary.
It is an improvement over the memory requirement in the attack framework of TextFooler [22] which

keeps the cosine similarity matrix of all the sixty-five thousand words in the vocabulary, constituting
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a square matrix of size sixty-five thousand, consuming nearly 17 GB of RAM if single-precision

floating-point format is used.
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Chapter 5

Attack Evaluation

We evaluate our attack methodology by generating adversarial texts against text classification mod-

els meant for sentiment analysis task.

5.1 Datasets and Models

We study the effectiveness of our attack methodology on sentiment classification on IMDB and
Movie Review (MR) datasets. We target three models: word-based convolutional neural network
(WordCNN) [24], word-based long-short term memory (WordLSTM) [21], and Bidirectional En-
coder Representations from Transformers (BERT) [12]. We attack the pre-trained models open-
sourced by [22] and evaluate our attack algorithm on the same set of 1000 examples that the authors
had used in their work. We also run the attack algorithm against Google Cloud NLP API. The sum-
mary of the datasets used by [22] for training the models are in Table 5.1 and their original accuracy

are given in Table 5.2

Task Dataset | Train Test Avg Len
MR 9K 1K 20
Classification
IMDB 25K 25K 215

Table 5.1: Overview of the datasets used by [22] for training the models

5.2 Evaluation Metrics

1. Attack success rate: The difference between the original and after-attack accuracy of a text

classification model on a given dataset is called the attack success rate.
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wordCNN  wordLSTM BERT

MR 79.9 82.2 85.8
IMDB 89.7 91.2 922

Table 5.2: Original accuracy of the target models on standard test sets

2. Percentage of perturbed words: The average percentage of words replaced by their synonyms

gives us a metric to quantify the change or perturbation made to a given text.

3. Semantic similarity: Universal Sentence Encoder (USE) [7] is used to encode the original and
adversarial texts and semantic similarity is calculated by finding the cosine similarity between
the encodings. Since the main aim of the attack is to generate adversarial texts, we just control

the semantic similarity to be above a certain threshold.

4. Number of queries: The average number of queries made to the target model tells us the

efficiency of the attack model.

5.3 Results

5.3.1 Automatic Evaluation

We report our results of the hard label black-box attacks in terms of automatic evaluation on two text
classification tasks using coarse and fine POS masks. The main results are summarized in Tables
5.3 and 5.4. The attack algorithm is able to decrease the accuracy of all the major text classification
models with an attack success rate greater than 50%. The percentage of perturbed words is nearly
3% for all the models on the IMDB dataset and between 10-16% for all the models on the MR
dataset. In the IMDB dataset, which has an average word length of 215 words, our attack model is
able to conduct successful attacks by perturbing less than 7 words on average. That means that our
attack model can identify the important words in the text and make subtle manipulations to mislead
the classifiers. Overall, the algorithm can attack text classification models for sentiment analysis
regardless of text sequence length or target model accuracy. Further, our attack model requires the

least amount of information among all the comparative works [22] [29], both of which require the
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The attack model is also able to attack GCP NLP API and decrease its accuracy from 76.4% to

16.7% for the MR dataset. Further, it changes only 10.2% of the words in the text to generate the

adversary. The attack algorithm and the carefully crafted adversarial texts can be utilized for the

study of interpretability of the BERT model [14].

The query number is almost linear to the text length, with a ratio in (6,10) which is at par

with [22] and [29].

wordCNN wordLSTM BERT GCP NLP API

MR IMDB | MR IMDB | MR IMDB MR
Original Accuracy 78 89.4 80.7 90.3 90.4 88.3 76.4
After-attack accuracy 18.9 17.3 18.9 32.5 42.3 30.9 16.6
Attack Success rate 75.8 80.6 76.6 64.0 53.2 65.0 78.3
% Perturbed Words 12.1 3.1 12.2 2.8 15.6 2.1 11.8
Query number 133.2 1368.6 | 123.2 1918.1 | 189.5 1719.7 126.8
Average Text Length 20 215 20 215 20 215 20

Table 5.3: Automatic evaluation results on text classification datasets (using coarse POS mask)

wordCNN wordLSTM BERT GCP NLP API

MR IMDB | MR IMDB | MR IMDB MR
Original Accuracy 78 89.4 80.7 90.3 90.4 88.3 76.4
After-attack accuracy 20.7 18.9 21.2 34.4 45.9 333 16.6
Attack Success rate 73.5 78.9 73.7 61.9 49.2 62.3 78.3
% Perturbed Words 12.2 3.1 12.0 2.6 14.6 2.2 10.2
Query number 112.5 1230.0 | 107.0 1650.5 | 159.0 1507.4 109.6
Average Text Length 20 215 20 215 20 215 20

Table 5.4: Automatic evaluation results on text classification datasets (using fine POS mask)
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5.3.2 Benchmark Comparison

We compare our attack against state-of-the-art adversarial attack systems on the same target model
and dataset. For GCP NLP API, we compare our attack results against [29] and [15] on MR datasets.
With wordCNN and wordLSTM as the target models, the comparison is against [29], [2], [22]. The
results of the comparison are summarised in table 5.5 and 5.6. The lower attack success rates,
when compared to the other attack systems, can be attributed to the fact that unlike other published

systems, our attack system does not make use of confidence scores of the classes.

Attack System Attack Success Rate % Perturbed Words

Li et al [29] 86.7 6.9
Alzantot al [2] 97.0 14.7
Jin et al. [12] 99.7 10.0
Ours 64.0 24

Table 5.5: Comparison of our attack system against other published systems with wordLSTM as the

target model (Dataset: IMDB)

Attack System Original Accuracy Attack Success Rate % Perturbed Words

Gao et al. [15] 76.7 67.3 10
Li et al. [29] 76.7 86.9 3.8
Ours 76.4 78.1 10.2

Table 5.6: Comparison of our attack system against other published systems with Google Cloud

NLP API as the target model (Dataset: MR)

5.3.3 Human Evaluation

Following the practice of Jin et al. [22], we perform human evaluation by sampling 100 adversarial

examples from the MR dataset with the WordLSTM. We perform three experiments to verify the
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Fine POS filter Coarse POS filter

Original 4.5 4.5
Adversarial 4.3 3.9

Table 5.7: Grammaticality of original and adversarial examples for MR (BERT) ON 1-5 scale

quality of our adversarial examples. First, the human judges are asked to give the grammaticality
score of a shuffled mix of original and adversarial text on a scale of 1-5. As shown in Table 5.7, the
grammaticality of the adversarial texts generated using fine POS tag mask is closer to the original
texts when compared with the ones generated using coarser POS tag mask.

Secondly, the judges assign classification labels to a shuffled set of original and adversarial texts,
for both coarse and fine POS masks. The results show that the overall agreement between the labels
of the original and adversarial text for both the cases are quite high, 92% and 93% respectively. This
suggests that improving the grammaticality of the adversarial texts using a fine POS mask does not
contribute much to the overall meaning of the texts to humans.

Thirdly, the judges determine whether the adversarial texts retain the meaning of the original
text. The judges are given three options: 1 for similar, 0.5 for ambiguous, and O for dissimilar. The
average sentence similarity score is 0.88 when fine POS mask is used compared to 0.86 when a
coarse POS mask is used for synonym selection, suggesting a marginal improvement in sentence

similarity scores in the former.

5.4 Comparison of Fine and Coarse POS tag filter

Part of Speech (POS) tags can be of two types: Coarse-grained (Noun, Verb, Adjective, etc.) or Fine-
grained (Noun-proper-singular, noun-proper-plural, verb-past, verb-present, etc). TextDecepter uses
a POS mask to reject those synonyms which do not belong to the same POS as that of the original
word when they are placed in the text. Fine-grained POS mask helps to maintain the grammaticality
to a greater extent when compared to the Coarse-grained POS mask as demonstrated in 5.8. How-

ever, during the human evaluation, we observed that improving the grammaticality of the adversarial
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texts for sentiment classification dataset using fine POS does not contribute much to the overall un-

derstanding of the text for humans. We recommend using the appropriate POS mask depending on

the grammaticality requirement for the context in which adversarial texts are being generated.

Movie Review (Positive <+ Negative )

Original (Label: POS)
Attack (Label: NEG) using coarse POS tags

Attack (Label: NEG) using fine POS tags

she may not be real , but the laughs are
she may not be real , but the kidding
are

she may not be real , but the chuckles

are

Original (Label: NEG)

Attack (Label: POS) using coarse POS tags

Attack (Label: POS) using fine POS tags

falsehoods pile up , undermining the
movie ’s reality and stifling its creator
’s comic voice

falsehoods heaps up , jeopardizes the
movie ’s reality and stifle its creator ’s
comic voice

falsehoods heaps up , jeopardizing the
movie ’s reality and stifle its creator ’s

comic voice

Table 5.8: Qualitative comparison of adversarial attacks with coarse and fine POS tagging for syn-

onyn selection. Target Model is wordLSTM

5.5 Ablation study

The most critical step of our TextDecepter is the use of aggregates, which belong to the original

class, to select or reject synonyms for replacement during the attack phase. We conduct an ablation

study to showcase the importance of aggregates to our algorithm. To validate the effectiveness of

aggregates, we remove their usage while selecting or rejecting a synonym for replacement. Now a

synonym is selected for replacement only when its usage misclassifies the entire original text. The
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results for the BERT model are shown in table 5.9. After removing the usage of aggregates for
synonym selection, the after-attack accuracy increases by 32% for IMDB and 35% for MR dataset,
respectively. This suggests the importance of aggregates for selecting synonym for replacement,
the removal of which renders the attack ineffective. The aggregates generated in the sentence im-

portance ranking step enable the selection of synonyms which can take the original text towards

misclassification.
Orig Acc.  After-Attack accuracy % Perturbed words
w/ agg. w/o agg. w/ agg. w/o agg.
IMDB 88.3 30.9 63.2 2.1 0.6
MR 90.4 424 75 13.6 10.1

Table 5.9: Comparison of the after-attack accuracy of the BERT model with and without using

aggregates for synonym selection

Movie Review (Positive (POS) <+ Negative (NEG))

Original (Label: NEG) i firmly believe that a good video game movie is going to show
up soon i also believe that resident evil is not it

Attack (Label: POS i firmly feel that a good video game movie is going to show up
soon i also believe that resident evil is not it

Original (Label: POS) strange and beautiful film

Attack (Label: NEG) strange and resplendent film

Original (Label: POS) the lion king was a roaring success when it was released eight
years ago , but on imax it seems better, not just bigger

Attack (Label: NEG the lion king was a roaring aftainment when it was released eight

years ago , but on imax it franspires better , not just bigger

Table 5.10: Examples of original and adversarial sentences from MR (GCP NLP API)
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Movie Review (Positive (POS)<«+ Negative (NEG))

Original (Label: NEG)

Attack (Label: POS)

after the book i became very sad when i was watching the movie
. 1 am agree that sometimes a film should be different from the
original novel but in this case it was more than acceptable . some
examples: 1) why the ranks are different ( e.g. It . diestl instead
of sergeant etc.) 2 ) the final screen is very poor and makes diestl
as a soldier who feds up himself and wants to die . but it is not
true in 100 % . just read the book . he was a bull - dog in the last
seconds as well . he did not want to die by wrecking his gun and
walking simply towards to michael & noah . so this is some kind

of a happy end which does not fit at all for this movie .

after the book i became very bleak when i was watching the
movie . 1 am agree that sometimes a film should be different from
the original novel but in this case it was more than acceptable .
some examples:1 ) why the ranks are different ( e.g. 1t . diestl
instead of sergeant etc.) 2 ) the final screen is very flawed and
makes diestl as a soldier who feds up himself and wants to die .
but it is not true in 100 % . just read the book . he was a bull - dog
in the last seconds as well . he did not want to die by wrecking
his gun and walking simply towards to michael & noah . so this is

some kind of a happy end which does not fit at all for this movie .

Table 5.11: Examples of original and adversarial sentences from IMDB (BERT)
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Chapter 6

Discussion

TextDecepter crafts natural language adversaries against state-of-the-art text classification models
for sentiment analysis in the hard-label black-box setting. In this chapter, we discuss a few important

aspects of the attack algorithm:

6.1 Sentence Importance ranking

Sentence importance ranking is an important part of the attack algorithm as it locates those sentences
which cast the most significant effect on the prediction of the target model. This helps the algorithm

to reduce the number of perturbed words while crafting an adversarial example.

6.2 Aggregates

The original labeled aggregates generated during the sentence importance ranking step help the
attack algorithm to select or reject the synonyms during the attack phase. An aggregate is a text
which is smaller in length as compared to the original text and is classified by the target model to
be belonging to the original class. Aggregates help the attack algorithm to either select or reject
the synonyms during the attack phase. A word is replaced with a particular synonym only when
its usage misclassifies the original text or the aggregate. Hence, the usage of aggregates gives us

additional evidence before selecting or rejecting a synonym.

6.3 Error analysis

The adversarial samples generated using our attack framework are susceptible to error when named-
entities are there in the text. If a word is a part of a named entity, the attack might still end up

replacing it, as the current framework does not filter out such words. So, the sentence I watched
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the movie ’A beautiful mind’ ” might get changed to I watched the movie ’A resplendent mind’
. Although we can easily identify a named-entity in a grammatically correct text, real-world texts
often have multiple grammatical errors in them which makes the identification difficult. In future

work, it would be imperative to make a stricter criterion for replacement.

6.4 Generalization

The two fundamental natural language processing tasks are text classification and textual entail-
ment. In our work, we have conducted experiments on binary classification problems pertaining to
sentiment analysis. As a future line of work, it would be interesting to conduct the experiments on

multi-class classification and textual entailment tasks.
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Chapter 7

Conclusion

We propose a hard-label black-box attack strategy for text classification tasks. We also conduct
extensive experimentation on sentiment analysis datasets to validate our attack system. We also
conduct a human evaluation to validate the grammatical and semantic correctness of the generated
adversarial examples. The attack algorithm uses the assumption of additivity of class intensities
of sentences to craft adversarial examples and achieves an attack success rate of more than 50 %
against state-of-the-art text classification models. The adversarial examples generated can be uti-
lized to improve the existing text classification models for sentiment analysis by including them in
the training dataset. The attack algorithm can also be used to gauge the robustness of text classi-
fication models pertaining to sentiment analysis. We also improved upon the memory requirement
for the attack, as compared to the other comparative attack frameworks. As a future line of work, it
would be imperative to run the attack algorithm on multi-class classification and textual entailment

tasks to test the generalization capability of the proposed methodology.
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