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ABSTRACT OF THE DISSERTATION

Privacy or Utility?

How to Preserve Both in Outlier Analysis

By Hafiz Salman Asif
Dissertation Directors:

Dr. Jaideep Vaidya and Dr. Periklis A. Papakonstantinou

Data analysts use outlier analysis to discover non-conforming patterns in data to gen-
erate actionable insights. It is an incredibly useful approach, but like all data-driven
approaches, it raises privacy-related serious ethical and legal concerns when data is
about peoples’ information. Is it possible to accurately analyze data for outliers while
protecting the privacy of people whose data we analyze? In this dissertation, we explicate
methods to answer this question for the most practically relevant case, where outliers
are defined in a data-dependent way and current privacy methods such as differential
privacy fail to achieve practically meaningful utility.

To define what it means to protect privacy in outlier analysis, we conceptualize
sensitive privacy — it not only admits efficient algorithmic constructions but is also
amenable to analysis. We introduce novel constructions to develop sensitively private
mechanisms to accurately identify outliers, and to compile low-accuracy differentially
private mechanisms into high-accuracy sensitively private mechanisms. Furthermore,
to address the lack of a principled approach to private outlier analysis, we provide a
framework to help a data analyst identify the right problem-specification and a practical

solution for her application.
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Finally, we develop mechanisms — which guarantee privacy and practically mean-
ingful utility — to identify (53, r)-anomalies as well as covid-19 hotspots (an outlying
event). An extensive empirical evaluation of these private mechanisms over a range
of real-world datasets and use cases overwhelmingly supports the effectiveness of our

approach.
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CHAPTER 1

Introduction

Today, data and algorithms together are seamlessly curating our lives. They decide:
whether you should be tested for covid-19; what movies or products should be recom-
mended to you; if your tumor is malignant; or whether the recent transaction on your
account is fraudulent. However, when the data is related to peoples’ information, the
same algorithms raise serious ethical and legal concerns related to privacy [2, 3, 4, 5].
Consequently, privacy concerns and the new privacy legislation [4, 5] are increasingly
restricting our ability to analyze the data to solve the problems that data analysis made
tractable.

Can we lift these restrictions, i.e. accurately analyze data without hurting the privacy
of those who contribute their data? Here, we explicate methods and frameworks to

answer this question for outlier analysis.

1.1 Motivation

Outlier analysis is a fundamental data analysis task and is extremely useful in practice
with critical applications in medicine, finance, and national security. Yet it has only
been analyzed for a few specialized cases of data privacy, and our understanding of this
problem and its utility-privacy trade-off is limited. We call this problem of analyzing
data for outliers and protecting privacy of the data contributors as private outlier
analysis.

We use “private outlier analysis” as an umbrella term to refer to a class of problems
that analyze data for outliers — these are among the core problems in statistics, data

mining, and machine learning [6]. Data analysts use outlier analysis to discover complex



patterns in the data to generate actionable insights. We think of outliers as the non-
conforming patterns in the data, e.g. the image of a malignant tumor compared to that
of normal skin or a benign tumors.

The ability to identify outliers is an essential prerequisite to numerous applications
in various domains [7, 8, 9, 6, 10]. To treat cancer, we must tell if a tumor is malignant;
to counter email scams, we must filter spam; and to stop bank fraud, we must flag the
suspicious transactions — and the de facto approach to solve these problems is outlier
analysis.

However, outlier analysis like all data analyses is a double-edged sword. While it is
crucial to solve challenging problems [11, 12, 13], it creates a risk to our privacy. Here
is one way to think about the risk to your privacy when you share your data to be used
in a data analysis task. From the result of a data analysis, an attacker will infer your
identity and link it to your other anonymous data i.e. the data that does not contain
your personally identifiable information such as email, name, phone number etc. Thus,
the attacker will reidentify you and breach your privacy from data where the identity
was kept hidden.

It is a well-established fact that an attacker can infer the identities of people from
the analysis of their data, even if the data seems benign and does not contain any
personally identifiable information. For example, an attacker can identify people by
using quasi-identifiers (e.g. ZIP code, gender, and age) in anonymized data [14, 15],
carrying out an inference attack on data repositories [16], genome analysis [17, 18], or
their anonymous movie reviews [19]. Alarmingly, an attacker can even use a summary
statistic to infer if a particular person’s information was used to compute the statistic
[20, 21].

So, how can one safeguard privacy in outlier analysis? To answer this, we must
first define what we mean by “privacy” in data analysis. In this dissertation, we use an
algorithmic notion of privacy that has been widely adopted in academia and industry.
We say that an algorithm (for data analysis) protects the privacy of a person if, from
the output of the algorithm, no attacker can tell (statistically) whether that person’s

information was recorded in the input database.



This notion of privacy was first formulated as Differential privacy, and it protects
the privacy of all regardless of whether any particular person’s information is in the
database or not [22, 23]. Thus, it is an elegant solution to a difficult problem. A
differentially private algorithm works by introducing carefully calibrated randomness
to the true answers: either by using internal coin tosses to make decisions, or by adding
noise to the true answers.

Since differential privacy works work well for doing statistics and other aggregate
tasks [22, 23], it is natural to consider developing differentially private algorithms to
protect privacy in outlier analysis. However, it becomes clear that differentially private
algorithms are inherently unable to identify outliers records accurately [24, 25, 26, 27,
28].

The few variants of differential privacy [26, 27, 28] that are relevant for outlier
analysis are either limited in their application or are unable to deal with the most
practical case, when outliers are defined in a data-dependent fashion, for example, the
outlier models that label a record as outlier based on its dissimilarity from the other
records in the data.

Furthermore, the problem of private outlier analysis has only been studied for a
few specialized cases and is often tackled with some ad-hoc approaches. Thus, there is
no principled approach that analysts can use to attack this problem in practice. This
dissertation reduces the gaps in our understanding of private outlier analysis and its

various trade-offs and provides methods to solve this problem in practice.

1.2 Contributions

Below, we give a summary of the contributions of this dissertation.

o We conceptualize the notion of sensitive privacy to formalize what it means to
protect privacy in outlier analysis. Sensitively private mechanisms protect privacy
of most of the records, and simultaneously, achieve practically meaningful utility.
In particular, sensitive privacy is well-suited for outliers that are defined in a

data-dependent way. Our notion of privacy is not only computationally realizable



but is also amenable to analysis.

e We provide constructions to develop mechanisms to identify outliers, which prov-
ably guarantee sensitive privacy. These constructions are not tied to any specific
definition of outlier and can even be used to develop differentially private mech-

anisms.

« We also develop a compiler construction that can compile a (less accurate) differ-
entially private mechanism into a (more accurate) sensitively private mechanism

that relative to the differentially private mechanism errs exponentially small.

e We propose a privacy-oriented taxonomy for outlier queries, which we use to
develop a framework for private outlier analysis. This framework helps analysts
in choosing the correct problem-specification for private outlier analysis. For
instance, an analyst can use it to decide whether she should choose differential

privacy or sensitive privacy for her application.

e We instantiate our proposed construction to develop sensitively private mech-
anism for the widely used notion of (8, r)-anomaly. We use this mechanism to
establish the effectiveness of sensitive privacy through an extensive empirical eval-

uation over a diverse set of real-world data.

e Finally, we show how to design and develop a privacy-protecting crowdsens-
ing based system to track covid-19 (corona virus disease 2019) pandemic (e.g.
hotspots and outbreak, which are outlying events). We develop novel spatial and
temporal data partitioning mechanisms to achieve practically meaningful utility
(in tracking covid-19) while guaranteeing differential privacy for all the data con-
tributors. We use real-world data on covid-19 confirmed cases to show that our

approach is as effective as its non-private counterpart.

1.3 Organization

In Chapter 2, we review the state of art in data privacy relevant to outlier analysis,

present the necessary background for the concept of outliers. In this chapter, we also



present important definitions and notions. In Chapter 3, we present the novel notion of
sensitive privacy, its relationship with other relevant data privacy definitions, and some
important properties of sensitive privacy. In Chapter 4, we present our constructions to
achieve sensitive privacy; in this regards, we also give an impossibility result for n-step
lookahead mechanism. In Chapter 5, we give a privacy-oriented taxonomy for outlier
queries and an approach for analysts to tackle the problem of private outlier analysis.
In Chapter 6, we instantiate our construction (given in Chapter 4) to develop sensitively
private mechanism for (3, r)-anomaly, and present the results of its empirical evaluation.
In Chapter 7, we present how to design and develop a privacy-protecting crowdsensing
based system to track covid-19 pandemic. Finally, in Chapter 8, we present the future

directions for research and open problems in private outlier analysis.



CHAPTER 2

Private Outlier Analysis: Background and
Preliminaries

We use “private outlier analysis” as an umbrella term for a class of data analytics

problems where privacy is to be protected. Basically, the differences in the problems in

private outlier analyses arise due to the following three reasons:

(1)

(iii)

We need different outlier models, i.e. a description of what is an “outlier”, for
different problems. For example, the model best suited to identify fraudulent
transactions is inappropriate to detect an epidemic as they are two very different

problems.

There are subtle but crucial differences in what information we seek from an
outlier analysis. For instance, the analysts look for very different information
when they use outlier analysis to find all the outliers in the data compared to

when they aim to identify an outlying event, e.g. a pandemic.

What information we want to protect, i.e. the definition of privacy. If we change
what constitutes as “protection” for our particular application and setting, the
problem of private outlier analysis also changes — yes, even if we have fixed
the above two. For instance, depending upon the application and legislative
requirements [29, 4, 5], you may want to protect the information of all or only a

subgroup, each requiring a different treatment and solutions.

Thus, for a given private outlier analysis problem, an analyst has to choose the

right problem-specification: (i) an appropriate outlier model, (ii) a query, that is, what

information she seeks to obtain about the outlier(s), and (iii) the definition of privacy.
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In our analysis and discussion, we combine the first two choices (i.e. (i) and (ii)) as
the choice of an outlier query. Thus, in this context, the notion of outlier query and
the notion of privacy form the two fundamental constituents of the problem of private
outlier analysis.

Lastly and importantly, we note that privacy cannot be considered alone: every
private data analysis task must take both privacy and utility (e.g. accuracy) into
account. This is the case since we can always protect privacy by giving arbitrary answers
and making data analysis useless. Hence, characterizing the right balance between the
two (i.e. privacy and utility) is at the heart of private outlier analysis — explicating
this and showing how to achieve this balance in practice is the key contribution of this
dissertation.

In the following two sections, we review the important concepts and developments

related to outlier analysis and data privacy.

2.1 Outliers: the 1st Constituent of the Problem

Outlier analysis is among the core problems in statistics, data mining, and machine
learning [6, 30]. Intuitively, we think of outliers as the non-conforming patterns in the
data, e.g. an image of a malignant tumor compared to that of normal skin or a benign
tumor, and it either corresponds to a record, called outlier record, or an event, called
an outlying event. See Figure 2.1 for the examples of outlier records, wherein o1, 03 and
o3 are three outlier records, and Oy is a collection of outlier records.

We note that an event is a notion that depends on many records and is not associated
with a single record, e.g. an epidemic (which can be identified, for example, by using
peoples’ health and demographic information [31]). Here, we briefly review the notion of
an outlier and some of the models that we use in practice to analyze data for outliers. For
further details you may refer to the surveys and books on outlier analysis [6, 32, 10, 33].

In practice, outlier analysis is an effective approach to generate actionable insights
to solve numerous problems in various domains [6, 33]. The ability to identify outliers

is an essential prerequisite to numerous critical applications in medicine, finance, and
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Figure 2.1: An example of outliers in data. Points (i.e. records) shown in red are
outliers, and the ones in blue are non-outliers.

national security [7, 8, 9, 6, 10].

Outliers have been a subject of investigation for over 240 years [32], dating back to
Bernoulli who discussed them in the context of “discarding discordant observation” [34].
In the literature, depending upon the application domain, outliers as non-conforming
patterns have been referred to as discordant observations, exceptions, aberrations, sur-
prises, peculiarities, or anomalies [33]. However outlier and anomaly are the two most
popular terminologies used for this notion in computer science — and we adhere to
using only these two terminologies, i.e. outlier and anomaly.

There are many descriptions of outliers that try to spell out what constitutes “non-
conforming pattern” in a way that we can use to develop models to characterize outliers
and build algorithms to analyze the data for outliers. But the following two description,

one by Edgeworth and the other by Grubbs, are not only popular but also very useful.

(1887): Discordant observations may be defined as those which present the ap-
pearance of differing in respect of their law of frequency from other observations

with which they are combined [35].

(1969): An outlying observation, or outlier, is one that appears to deviate

markedly from the other members of the sample in which it occurs [36].
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(a) (b)
— ’ /"é.

outlier non-outlier”

X

X X

Figure 2.2: An example of data-dependent nature of outliers

Thus, at best, an outlier is a data specific concept. For example, see Figure 2.2,
wherein the record shown as an orange-colored point is an outlier in Figure 2.2(a) but
becomes a non-outlier with respect to the data in Figure 2.2(b).

To define what constitutes an outlier in practice is a challenging task. Because the
nature of the non-conforming pattern varies across applications, domains, and data
types. There is no single model that appropriately characterizes outliers in all envi-
ronments [6, 32, 10, 33]. Hence, due to the complexity, diversity, and specificity to
the context, the existing methods to analyze outliers solve a specific formulation of the
problem.

Most of the outlier models use a measure or a scoring function to characterize how
much a record (or an event) “deviates”, and thus, assign a degree of outlyingness to
each record. Now, given these scores, these models use a threshold to distinguish the
outliers from the rest of the records in the data (or non-outlying events). We can divide
these outlier models into two basic categories: non-parametric models and parametric
models.

The non-parametric methods use a scoring function over the set of records. Such
scoring functions are used to characterize the degree to which a record deviates from the
other records. The basic idea is to compute the score for each of the subsets obtained
by removing records from the given data. Now, the set of records whose removal results
in the maximum deviation in the score are considered to markedly deviate from the
others records in the database and are labeled as outliers [37, 38, 32, 10, 39]. These
models are among the most fundamental ones, and we will use this fundamental notion

of characterizing outliers to define sensitive privacy, a novel notion of privacy for outlier
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analysis (Chapter 3).

The popular parametric outlier models use a range of criteria to characterize out-
liers. For instance, many statistical approaches use the deviation of a record (i.e. data
point) from the population mean as the criterion to identify outliers — this is a well
accepted and prevalent definition of outlier [40]. (3, r)-anomaly, k-nearest neighbor and
clustering based outlier models use a distance based approach [41, 42, 43], local outlier
factor [44] uses a density based approach, and AVF-outlier model uses attribute value
frequency [45].

Once, we fix an outlier model suited for our analysis, depending upon what informa-
tion we seek, there are different type of outlier queries. However, the two most useful
queries in practice are: (1) outlier identification, for example a query that identifies if a
given record is an outlier or a non-outlier, and (2) outlier detection, which find all the
records in the data that are outliers. Once, we have finalized our outlier query, we can
choose from a variety of algorithms, provided in the literature, to computer the query;
for further details on this, see [6, 32, 10, 33].

The key takeaway here is that outliers are a data-dependent concept and the meth-
ods to identify them vary based on the nature of outliers, the context, and the data.
However the overall notion remains the same: outliers are the records that considerably
deviate from the pattern, distribution, or structure followed by a majority of the records

in the data.

2.2 Privacy: the 2nd Constituent of the Problem

In data analysis, what does it mean to “protect privacy”? “Privacy” refers to the
information disclosed about an individual via the results of data analysis — the lesser
the disclosure, the higher the privacy. The information disclosed by data analysis can
be used to infer the identities of individuals and breach their privacy. So, to protect
privacy, ideally one needs to eliminate the information disclosure about the individuals.

However, protecting privacy in a way that eliminates the information disclosure

about the individuals, that is, access to data does not enable one to learn anything about
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an individual that cannot not be learned without access, is impossible [46]. Hence, for
data analysis (where we do provide access to the data) to be useful, we will have to
disclose some information.

Differential privacy (DP) [46, 22] was the first notion that mathematically defines
privacy for data analysis to limit the information disclosure about the individuals —
and it has shaped the field of private data analysis. It relaxes the constraint of the
above privacy notion and explicitly specifies the information disclosure when a persons’
data is used in data analysis [46]. It guarantees that no attacker can use a differentially
private result (of data analysis) to find out with certainty if a particular person’s data
was used in the analysis. Thus, it affords “plausible deniability” to people, that is, any
person can claim that her data was not used in the data analysis even if her data was
used.

Differential privacy is an algorithmic definition of privacy, and it requires that the
probability for any output of a privacy-protecting mechanism (i.e. an algorithm that
takes a database as input) “should not change much” by adding or removing any one
record in the input database. Thus, to define DP, we consider every pair of databases x
and y that differ by one record (i.e. we can obtain y by adding or removing one record
from x and vice versa) and call them neighboring databases or simply neighbors. Then,
we say a mechanism M with domain D (the set of all databases) is e- differentially private
(DP) if for every pair of neighboring databases x and y and every set R C Range(M),
Pr[M(z) € R] < €€ Pr[M(y) € R] — we refer to this inequality on any pair of neighbors
(z,y) as the privacy constraint.

Therefore, in the context of differential privacy, “should not change much” means
the change in the probability is within a multiplicative factor of e*, where ¢ > 0 is
the privacy parameter. The smaller the value of value of e, the higher the privacy.
Typically, to achieve differential privacy, a mechanism probabilistically perturbs the
correct answer using noise (or randomness) from a carefully calibrated distribution(s).

Differential privacy works well for many classes of aggregate and statistical data
analysis tasks as long as we can give an appropriate DP mechanism. However, there

are various data analysis problems, e.g. outlier analysis, where it is inherently unable
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to assure practically meaningful privacy (i.e. reasonably large values of ) and utility
[47, 48, 49, 24, 25]. This has lead researchers to develop variants of differential privacy
to address important practical challenges in data analysis. Many of the variants of
differential privacy either generalize the notion of neighboring databases or redefine
what is meant by “the output should not change much” for neighboring databases (see
[50] for a survey for different generalizations and variants of differential privacy).

Below, we review some of the important variants of differential privacy and identify
and discuss the gaps in the context of private outlier analysis that still exist.

Pufferfish [48] and Blowfish [49] are two frameworks to give generalized versions
of differential privacy. Both of them provide a way to redefine neighboring databases
based on what secret (i.e. the kind of information disclosure) we want to protect. These
frameworks add to our theoretical understanding of private data analysis and are useful
for the applications where it is clear what secret we need to protect. However these
frameworks do not provide any method or direction to deal with outlier detection or
identification, especially, when the outliers are defined in a data-dependent fashion. We
solve this problem in Chapter 3 by conceptualizing and formally defining what secret
one must protect in outlier analysis.

Protected (differential) privacy [26], which was proposed for analyzing networks,
divides the set of all possible records into two categories: one is protected and the
other is not protected. It is possible to use protected privacy (instead of differential
privacy) to boost the accuracy for some outlier analysis. However, this is not possible
for all outlier analysis — especially, when outliers are defined in a data-dependent
way. This shortcoming of protected privacy is due to the fixed and data-independent
categorization of records into protected group and unprotected group, which is not
possible when outliers are defined in data-dependent way. This is a critical limitation
since without seeing the database it is not possible to say if a record is outlier or not,
and additionally, by changing (or adding/removing) records in the given data can also
affect the outlying status of a record as per the specification of the chosen outlier model.
Thus, the privacy guarantee cannot be quantified in the order specified in protected

privacy. This is one of the main problems that we tackle when defining sensitive privacy.
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One-sided (differential) privacy [27] uses a similar approach as in protected privacy.
Similar to protected privacy, it is useful for the cases where outliers are defined in data-
independent fashion as it also defines the records to be protected independent of the
database. Additionally, it further relaxes the definition by only considering a subset of
pair of neighbors who must satisfy the privacy constraint. This leaves one-sided privacy
open to attacks that can infer if a particular record — that was to be protected — is
present in the data or not, while sensitive privacy is immune to such an attack.

Another way to generalize differential privacy is to have different levels of privacy
(i.e. the value of €) for different records, which Personalized (differential) privacy adopts
[51]. Personalized privacy requires that the level of privacy be pre-specified for each
record. For example, when sharing their data, people can specify the level of privacy
they want. However, when the outliers are defined in a data-dependent fashion, and
we want to provide privacy as per the degree of outlyingness of each record (which
is required to make the analysis useful), this notion of privacy (for similar reasons
discussed above) is also not applicable.

As opposed to Personalized privacy, Tailored (differential) privacy quantifies a level
of privacy for each record as a function of the record and the database [29]. Thus
it allows one to tailor the privacy guarantee across all records. Outlier privacy, an
instantiation of tailored privacy, defines privacy in the presence of outliers, however,
the problem that [29] focuses on is orthogonal to ours as it aims to protect outliers
with higher privacy guarantee compared to rest of the records in the data. Below, we
discuss some limiting features of outlier privacy to highlight the problems it presents
in carrying out an accurate private outlier analysis.

Outlier privacy — wherein the definition of outlier is mechanism dependent —
affords a stronger privacy guarantee to outliers (depending upon their degree of out-
lyingness) compared to the other records in the data. The notion of outlier that [29]
uses is equivalent to that of (8 > 1,0)-anomaly for histogram-releasing mechanisms.
However, this notion of outlier is too simple to work in practice for many tasks. In
most practical cases the outlyingness of a record ¢ also depends upon other records in

the data that are different from ¢, and this nature of data-dependence must be taken
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into account. Furthermore, when we provide more privacy to outliers, the utility of the
outlier analysis degrades, even more than when we use plain differential privacy. Lastly,
the mechanisms introduced in [29] do not address the problem of identifying outliers in
the data. Thus, the applications of this work ([29]) are also limited. We propose the
notion of sensitive privacy to address the above mentioned shortcomings. Additionally,
we consider outlier models that are more general and develop constructions and a com-
piler to give mechanisms to identify outliers in the data — these constructions yield
mechanisms that preserve utility and protect privacy.

Finally, we look at anomaly-restricted (differential) privacy [28] that does take into
account the data-dependent nature of anomalies (i.e. outlier). However, it does so in
a rather restricted setting: in [28] the input databases are guaranteed to have only one
outlier, a structure not present in typically available databases, which is in addition
to other restrictions on the input database. Although it has some theoretical value,
anomaly-restricted privacy is inapplicable for most practical settings for outlier analysis.
Sensitive privacy does not make such restricting assumptions. Furthermore, it is easy
to interpret, amenable to analysis, and efficiently realizable in practice.

Although outlier analysis is a fundamental data analysis task with numerous ap-
plications in various domains, it has only been analyzed for a few specialized cases of
data privacy [31, 29, 52, 53, 28]. For instance, one can use differential privacy to find
the number of outliers in the data [52], to discover all the outliers in distributed data
(where different parties have different set of records of the data) [54, 54], or to find if
there is an epidemic outbreak [31]. However, to find an outlier in the data and identify
the targeted population in a network, we need to use variants of differential privacy
so that we can guarantee privacy without making the analysis futile [29, 53, 28]. In
Chapter 5, we provide a general framework for data analysts, which can be used to

carry out outlier analysis while preserving both privacy and accuracy.
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2.3 Preliminaries: Notations, Definitions, and Settings

2.3.1 Databases

We consider a database as a multiset of elements from an arbitrary finite set X, the
set of possible values of records. For instance, when a record consists of m attributes,
X = T[;~, As, where A; is the set of values of the tthattribute. We assume that each
record in any given database is associated with a distinct individual.

We represent a database x as a histogram in D = {y € N¥ : ||y|[; < oo}, where
D is the set of all possible databases, N = {0,1,2,...}, and || - ||; represents ¢; norm.
For any database x and ¢ € X, z; is the number of records in x that are identical to i,
i € x denotes a record i is present in a database x (i.e. x; > 1); i ¢ x denotes no record
of value i is present in the database (i.e. z; = 0). For any i € X, we use e’ to denote
the database consisting only of one record of value i, that is, eﬁ = 1 and for all j # i,

i
ej—O.

2.3.2 Outliers (i.e. Anomalies)

We represent a given outlier model (i.e. characterization of what makes a record an
outlier) as a predicate, F', that is, a function whose range is the set {0,1}. The domain
of the predicate is decided by the type of the outlier, that is, whether the outlier is a
record or an event. Hence, we consider the two different types of outliers: (1) outlier is
arecord (e.g. a transaction) and (2) outlier is an event (e.g. epidemic) but the database
consists of records (e.g. the health records). The main focus of this dissertation, except
for Chapter 7, is on the the first type of outliers (where the outlier is a record).

For (1), we represent the given outlier model by a predicate, F', over the domain
X xD,ie. F:XxD — {0,1}. Now, for any database x € D and record i € X,
F(i,z) = 1 if a record of value 7 is an outlier with respect to the database x, otherwise
F(i,z) = 0. We emphasize that for the predicate to be true, a record of value i need
not present in x, namely, F'(i,z) = 1 does n