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ABSTRACT OF THE DISSERTATION
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By Takuya Ito

Dissertation Director:

Dr. Michael W. Cole

The human brain is a flexible information processing system. Across a range of

simple and complex tasks, such as walking across the street to playing basket-

ball, the brain transforms sensory information from the environment into cor-

responding motor actions. This sensory input to motor output transformation

likely requires a sequence of complex neural computations implemented by brain

networks. Though decades of cognitive neuroscience have made great progress in

characterizing the functions of individual brain areas, less progress has been made

in understanding exactly how these brain regions work in concert to implement

the diverse cognitive computations underlying complex behaviors. In this thesis,

I provide an account of how the brain’s distributed functional networks imple-

ment neurocognitive functions and computations. First, I demonstrate how local

cognitive task activations can be computed from the activity of other brain areas

through distributed brain network connectivity patterns. This illustrates how

intrinsic functional connectivity enables the transfer of task-relevant activations

between brain regions. Second, I demonstrate how local cognitive information,

such as sensory stimulus activations in sensory cortices, is transformed into mo-

tor activations in motor cortex through a sequence of computations governed by

intrinsic functional connectivity during cognitive tasks in both humans and non-

human primates. This demonstrates that the intrinsic brain network organization

can provide insight into how the brain implements neurocognitive computations
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and transformations. Finally, I investigate the relationship between task activa-

tions and functional network connectivity from a dynamical systems perspective.

Specifically, I demonstrate that task-state activity quenches ongoing functional

correlations and variability, and that this quenching occurs due to a sigmoidal

transfer function that describes local mean-field neural activations. This suggests

that task-state functional network changes are meaningful, and reflect nonlinear

relationships between brain regions. This provides a way forward to improve cur-

rent models of neural computations and communication by leveraging nonlinear

models of neural dynamics. Together, the results presented in this thesis pro-

vide a novel understanding of how functional brain network organization shapes

cognitive computations.
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Chapter 1

Introduction

Portions of this section include excerpts (sometimes paraphrased) from

[Ito et al., 2020b].

Imagine it’s close to midnight, and you’re strolling down 14th street along

Union Square in New York City. Shops and restaurants are beginning to close

down. Pedestrians are trickling out of the streets, descending into the subway or

up into their apartments. Turning the corner, you hear rustling noises around

the trash bin. Your face squeezes with distaste, and without seeing anything,

you know: it’s a rat. Sure enough, moments later, the rat darts back into sewer,

dinner in mouth.

Several months later you’re walking back to your hotel room in Singapore

after a long day of meetings. Again, you hear a familiar rustle near the trash bin.

But something is different – you’re in Singapore. Instead of disgust, you pause,

wondering about the possibilities of the source of that sound. It couldn’t be a rat.

Unlike New York City, the hygiene of Singaporean streets is impeccable. Baffled,

you inspect the trash bin. You realize the sound was nothing, just tumbling leaves

swirling around the sides of an empty trash bin.

Despite the similarity of auditory stimuli in these two situations, you actively

respond differently. What matters here, rather than what you hear, is context.

The contextual knowledge about the cleanliness of Singapore and New York alter

how you respond to similar sensory information. How do context and sensory
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information interact to inform our actions? We integrate complex sensory and

contextual information in daily actions, from crossing the street to driving a car.

Nonetheless, though we may take for granted the ability to convert these complex

environmental signals into appropriate actions, exactly how our brains achieve

this information processing capability is not fully understood.

Scientists and philosophers have long speculated that the brain

implements input-output relationships like a computer [Turing, 1948,

Von Neumann and Kurzweil, 2012]. Despite this widespread acknowledge-

ment, the exact neural implementation of the diverse cognitive computations we

are capable of are not fully known. Here I refer to cognitive computations as the

computational (or formal) description of a cognitive process, such as performing

math, reading words, or perceiving colors. While there may be infinite formal

descriptions of a cognitive computation, a central aim of cognitive neuroscience is

to understand the principles by which the brain implements such computations.

In recent decades, advances in functional neuroimaging have enabled cogni-

tive brain mapping. In particular, imaging techniques such as functional magnetic

resonance imaging (fMRI) and electroencephalography have facilitated progress

in understanding how mental functions map onto brain areas. However, the

modern application of functional neuroimaging to understanding cognitive pro-

cesses has focused on brain mapping localization – the practice of identifying

what functions each brain structure performs. This approach primarily maps

function to structure by establishing relationships between external stimuli or

tasks onto the activity of neurons and cortical areas [Henson, 2005]. Some ex-

amples of this general strategy include analyzing event-related spike rate changes

in single- or multi-unit recordings [Wallis, 2018], general linear modeling with

fMRI [Poldrack et al., 2011], and event-related potentials with electroencephalog-

raphy [Luck, 2014]. This strategy has undoubtedly been tremendously useful

for characterizing the functions of spatially localized neurons and cortical areas
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[Genon et al., 2018]. However, while the approach of mapping function to struc-

ture in a piecemeal manner may provide a comprehensive cognitive cartography of

the brain, this approach would fall short of explaining how the brain actually im-

plements cognitive computations through the interaction among its components.

1.1 Cognition and its relation to brain network organiza-

tion

So how might one study how the brain implements cognitive computations us-

ing modern functional neuroimaging techniques? Theoretical work suggests that

the brain may implement cognitive computations from the interaction among

the brain’s components [Craver, 2007, Mill et al., 2017, Medaglia et al., 2015].

However, this requires a mechanistic understanding of the relationship between

the system’s components [Reid et al., 2019, Bassett and Sporns, 2017]. Fortu-

nately, efforts to understand the brain mechanistically are becoming more promi-

nent. Recent advances in network neuroscience are providing ever more de-

tailed descriptions of brain network architecture, facilitating a functional un-

derstanding of the brain by revealing the relations among its neural components

[Bassett and Sporns, 2017, Sporns et al., 2005]. Coined the “connectome”, recent

advances in data acquisition and analytic techniques have improved our under-

standing of the brain’s large-scale network organization [Sporns et al., 2005]. This

includes a large-scale structural description of physical connections between brain

regions [Hagmann et al., 2008, van den Heuvel and Sporns, 2011] and large-scale

functional network organization estimated through mapping statistical dependen-

cies of the living brain [Power et al., 2011, Yeo et al., 2011, Biswal et al., 1995].

However, while descriptions of brain network connectivity provide the foundations

from which function likely emerges, brain connectivity mapping alone would pro-

vide limited insights into the relations among neural entities. This is because
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brain network connectivity describes relations among neural entities without ref-

erence to the cognitive processes targeted by experimental task manipulations.

Nevertheless, the discovery of resting-state functional connectivity (FC; i.e.,

correlated brain activity between sets of brain areas) using modern neuroimaging

techniques [Biswal et al., 1995] has led to a wealth of important findings. For ex-

ample, by carefully mapping out the intrinsic FC structure of spontaneous brain

activity from hundreds of cortical areas, scientists have discovered that the brain

is organized into modular functional networks [Fox et al., 2005, Yeo et al., 2011,

Power et al., 2011]. These functional networks were also found to be related to

the large-scale structural network organization of the brain, as estimated with

diffusion weighted imaging [Honey et al., 2009, Deco et al., 2013a]. Moreover,

properties of brain networks have been shown to be associated with cognitive

ability and behavior [Cole et al., 2012, Schultz and Cole, 2016, Kong et al., 2019,

Finn et al., 2015]. While these findings provide important evidence that brain

network organization is important for cognitive processes, they offer limited mech-

anistic insight into how the brain implements cognitive computations.

However, several recent studies have revealed a closer mechanistic link

between network organization and cognitive functions [Saygin et al., 2012,

Saygin et al., 2016, Tavor et al., 2016, Cole et al., 2016a]. These studies illus-

trate the power of intrinsic network organization in predicting the task-evoked

activations thought to reflect cognitive processes [Wallis, 2018]. For example,

Saygin and colleagues demonstrated that anatomical connectivity precedes the

functional specialization in both the fusiform gyrus (for face selectivity) and vi-

sual word form area [Saygin et al., 2012, Saygin et al., 2016]. Building on those

findings, Tavor and colleagues revealed that resting-state fMRI can predict in-

dividualized cognitive task activations. And finally, we recently illustrated that
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“activity flow” between brain regions can predict regional task activation pat-

terns [Cole et al., 2016a]. Together, these findings suggest that distributed net-

work interactions can explain the emergence of the task activations associated

with cognitive processes.

1.2 Local functions and distributed computations

Neuroscientific studies have revealed both local functional specialization and dis-

tributed functional organization. From the localist perspective, Horace Barlow

championed the study of brain function at the level of single neurons, suggesting

that distributed function and “mass action” were misguided views of the brain

[Barlow, 1992]. In contrast, others such as Karl Lashley have advocated that the

“notion of decentralization or of cerebral function without absolute anatomical lo-

calization need not involve an abandonment of recognized physiological principles

or a denial of known facts of localization” [Lashley, 1931].

How might these two views of brain function be reconciled? Careful ob-

servations of connectivity and local function have led to a coherent hypoth-

esis that allows for both hypotheses to be true: That the functional local-

ization (of a neuron or cortical area) depends on its intrinsic connectivity

[Passingham et al., 2002, Jbabdi et al., 2013]. In neuroscience, grid and place

cell selectivity have been proposed to depend on their intrinsic connectivity

from entorhinal cortex [McNaughton et al., 2006, Hafting et al., 2005]. In the

visual system of a developing human infant, it has been shown that structural

connectivity precedes the functional localization of the visual word form area

[Saygin et al., 2012]. More generally, a recent review suggested that identifying a

neural unit’s connectivity fingerprint likely determined its function and therefore

its representational capacity [Mars et al., 2018], providing a basis for the concept

of connectivity-based receptive fields. These findings and hypotheses suggest that
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functional localization and specificity may naturally emerge through distributed

connectivity.

1.3 Connectionist architectures and cognitive computa-

tions

In the last two decades, modern cognitive neuroimaging has focused primar-

ily on either mapping brain network organization or mapping cognitive func-

tion to brain areas. How can these two approaches be merged? Originating

in the 1980s, connectionist (or neural network) theory has produced success-

ful models that can perform complex cognitive tasks [Rumelhart et al., 1986,

Cohen et al., 1990]. Loosely designed from the brain [McCulloch and Pitts, 1943,

Rosenblatt, 1958], connectionist models are a class of computational models

defined by a network of interconnected units that are optimized for a spe-

cific task [Rumelhart et al., 1986]. This includes recently developed deep neu-

ral networks that improve model performance by including additional neural

units with structured connectivity as ‘hidden’ layers between input and output

[Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014, Wen et al., 2018].

Interestingly, when these networks included biological constraints (e.g., number

of layers and number of units per layer to match the number of regions within

the ventral visual system), networks can exhibit similar neuronal responses and

selectivity (e.g., the emergence of face-selective units) to empirical neural data

[Wen et al., 2018, Yamins et al., 2014]. Thus, like the brain, these connectionist

networks also naturally exhibit functional specialization across different layers

and units, providing additional evidence that specialization can emerge through

distributed connectivity.

Other connectionist modeling studies have illustrated that very simple (or
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so-called “vanilla”) recurrent neural network models can perform many dif-

ferent complex cognitive tasks while exhibiting brain-like network dynamics

[Song et al., 2016, Mante et al., 2013]. Recurrent neural networks are connec-

tionist models where connections recurrently feedback on units, rather than be-

ing strictly feedforward [Yang and Wang, 2020]. One such study illustrated that

a single recurrent network could learn up to 20 different tasks, suggesting that

despite having a set of fixed connections, a single set of connections is capa-

ble of implementing a diversity of cognitive functions [Yang et al., 2019]. In

particular, Yang and colleagues found that a mixture of simple- and mixed-

selectivity naturally emerges among neural units by learning many different tasks.

(Simple and mixed-selectivity refer to the ability of a neural unit to be use-

ful (or responsive) during few or many different task components, respectively

[Fusi et al., 2016, Rigotti et al., 2013].) Importantly, the selectivity profiles of

these networks were entirely determined by task training and its connectivity

organization. Together, these findings suggest the importance of connectivity

architectures in guiding cognitive computations.

1.4 Searching for network computations in the brain

Both connectionist modeling and empirical connectivity-behavior studies support

the long-standing hypothesis that the brain’s network organization constrains its

functionality. This leads to a more targeted question: how much function (in

terms of both functional selectivity and task-evoked neural activity) can con-

nectivity patterns explain? One way to evaluate the relative contribution of

connectivity in determining the functionality of neural populations is to test

the plausibility of each with empirical data. We recently proposed the notion

of “activity flow modeling” with empirical data that tests the ability of esti-

mated intrinsic connectivity patterns in predicting task-evoked brain activations
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[Cole et al., 2016a]. The approach of activity flow was formulated in an effort to

model the propagation of neural activity (e.g., spike rates or fMRI signal ampli-

tudes in biological contexts) between neural entities using empirically estimated

connectivity. Though current approaches are limited in their causal and mech-

anistic inferences due to data and methodological limitations [Reid et al., 2019],

questions that address the relationship between functional network organization

and task-evoked activations can still be addressed.

Quantitatively, the activity flow approach involves simulating a single neu-

ral network computation (e.g., a forward iteration in a feedforward neural

network): ah = f(
∑

i∈I aiwhi), where a unit ah’s activity is a linear com-

bination of all other units’ activity (
∑

i∈I aiwhi) weighted by their connectiv-

ity (whi) to ah before passing through a transfer function f , such as a sig-

moid. Within the connectionism framework, this formalization is referred to as

a combination of the propagation and activation rules [Rumelhart et al., 1986].

Other names given to more specific instantiations of this algorithm (e.g.,

with a particular form of nonlinearity) include the McCulloch-Pitts neu-

ron [McCulloch and Pitts, 1943], the perceptron [Rosenblatt, 1958], the di-

visive normalization model of neural activity [Carandini and Heeger, 2012],

adaptive linear element [Widrow and Lehr, 1990], and spreading activation

[Collins and Loftus, 1975]. Critically, [Cole et al., 2016a] adapted this algorithm

for use with empirical data (e.g., fMRI activity and functional connectivity

estimates) to parameterize empirically derived models that make quantitative

predictions of the spread of estimated activity over brain network connections

[Cole et al., 2016a].

Previously, in neural network simulations we found that activity flow map-

ping was only effective in network architectures with strong inter-area coupling

(relative to recurrent/local) coupling [Cole et al., 2016a]. This is consistent with

previous findings, where large effects of inter-regional synaptic coupling (relative
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to local coupling) were important for predicting FC from structural connectivity

[Deco et al., 2013a]. Thus, we concluded that distributed connectivity plays a

substantial role in determining local activity. This is highly compatible with the

notion that each localized population has a ‘connectivity fingerprint’ that largely

determines its functionality [Passingham et al., 2002, Mars et al., 2018]. These

results are also in line with the observation that large-scale propagation of neural

activity in animal models tends to conform to large-scale anatomical connectivity

patterns [Kotter and Sommer, 2000, Honey et al., 2009].

These results demonstrate the feasibility of identifying network computations

in the brain by identifying estimated activity flow patterns in modern neuroimag-

ing data. By leveraging empirical estimates of intrinsic brain network connec-

tivity, we can begin to probe the contribution of these connections in producing

the task-related activity that reflect cognitive processes. The primary objective

of this thesis is to build on these previously established ideas to investigate how

network organization contributes to cognitive computation across a range of tasks

using modern functional imaging and electrophysiology techniques.

1.5 Overview of chapters

In this thesis, I combine functional network mapping with cognitive task ma-

nipulations to identify how cognitive information is transferred and transformed

within the brain [Ito et al., 2017, Ito et al., 2020b, Ito et al., 2020a]. Cognitive

brain mapping studies focus on investigating where in the brain information is

located. In contrast, network neuroscience studies describe the functional and

physical organization of brain networks. Inspired by connectionist theory where

connections determine the computations performed by neural network models
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during tasks, I combine cognitive brain mapping with functional network map-

ping to ask how brain networks compute cognitive information through their con-

nectivity patterns. This would provide insight into how cognitive computations

are supported (and constrained) by the network organization of the brain.

I present three scientific aims. Each aim is a self-contained research study

(with the exception of Aim 2, which contains two independent yet related studies).

In Aim 1 (Chapter 2), I investigate how cognitive information is trans-

ferred within the brain through intrinsic functional connectivity patterns

[Ito et al., 2017]. (In general, and unless otherwise clearly stated, “cognitive in-

formation” or “cognitive representations” refer to task-evoked activation patterns

that are decodable, such as with a linear classifier. In other words, task-relevant

information can be extracted from neural or fMRI activations.) In this study,

I show that decodable patterns of task-evoked activity in one brain region can

be projected (or transferred) to another brain region (while preserving decod-

able information). This projection (or information transfer) is estimated from

inter-region intrinsic FC estimates. This provides evidence for the hypothesis

that activity flow over resting-state functional connections transfers information

between brain regions.

Building on findings from Aim 1, in Aim 2, I address how information is

transformed within the brain during context-dependent tasks. Aim 2 contains

two self-contained studies (Chapter 3 and 4). In a context-dependent task, sen-

sory stimulus information is transformed into a motor response according to task

contexts. This typically involves a nonlinear mapping from stimulus to response.

How do stimulus representations in sensory cortices get transformed into appro-

priate motor signals in motor cortex? Thus, rather than asking where cognitive

information is in the brain (i.e., a traditional cognitive mapping approach), in Aim

2, I ask how cognitive information is used in the brain. We show that multi-step
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activity flow computations provide a potential mechanism for cognitive informa-

tion transformation. This involves identifying and mapping the conjunction of

both task context and sensory stimulus representations to generate the appropri-

ate motor signals.

Aim 2 comprises of Chapters 3 and 4, which are two separate yet conceptually

related studies. Chapter 3 uses a combination connectionist modeling and fMRI

data analysis. We show that we can predict stimulus-response transformations

in a 64-context cognitive control paradigm. Chapter 4 contains a shorter study

(currently in progress), and uses multi-unit neuronal spiking data from six cortical

sites during a context-dependent sensorimotor task [Siegel et al., 2015]. Thus, in

Chapter 4, I demonstrate that the network estimation and activity flow techniques

that were originally developed for fMRI data analysis extend to neural firing rate

data. Critically, we show that we can predict the firing rate patterns in frontal

eye fields (FEF) that correspond to behavioral outputs (saccades) using spiking

activity from other cortical areas.

Aims 1 and 2 (Chapters 2-4) focus on revealing the plausibility of using

empirically-estimated network connections to predict how cognitive information

is computed between brain regions. The network connectivity estimates are ob-

tained by measuring the statistical dependencies of spontaneous time series be-

tween brain regions (e.g., correlations and/or regression-based techniques). Pre-

vious work has shown that the statistical dependencies between brain regions

are generally preserved across intrinsic and task-evoked states [Cole et al., 2014a,

Krienen et al., 2014]. Despite this, there are small yet robust changes that occur

across rest and task states [Cole et al., 2014a, Gratton et al., 2016].

In Aim 3 (Chapter 5), I investigate the biophysical basis of these changes with

the goal of illuminating the precise mechanisms that govern statistical dependen-

cies between brain regions [Ito et al., 2020a]. This was achieved by linking fMRI

FC results with non-human primate noise correlation analyses (using multi-unit
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activity). Furthermore, I propose a dynamical systems approach to understand-

ing the biophysical basis of large-scale neural correlations. Though Chapter 5

does not directly address cognitive information transfer and transformation, the

characterization of the mechanisms that underlie shared neural dynamics (e.g.,

FC) facilitate understanding of how neural systems communicate during intrinsic

and task-evoked states. For example, I show evidence that neural populations

activate in a sigmoid-like fashion, suggesting that future models can take into ac-

count more detailed approaches to modeling ‘activity flow’ by taking into account

nonlinear relationships among brain regions (e.g., see [Cole et al., 2020]).

Collectively, this thesis provides evidence for how cognitive information is used

and communicated within the brain using cognitive neuroimaging techniques.
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Chapter 2

Cognitive task information is transferred

between brain regions via resting-state network

topology

This chapter has been published in Nature Communications [Ito et al., 2017]. The

contents have been reformatted for this thesis.

2.1 Abstract

Resting-state network connectivity has been associated with a variety of cog-

nitive abilities, yet it remains unclear how these connectivity properties might

contribute to the neurocognitive computations underlying these abilities. We de-

veloped a new approach – information transfer mapping – to test the hypothesis

that resting-state functional network topology describes the computational map-

pings between brain regions that carry cognitive task information. Here we report

that the transfer of diverse, task-rule information in distributed brain regions can

be predicted based on estimated activity flow through resting-state network con-

nections. Further, we find that these task-rule information transfers are coordi-

nated by global hub regions within cognitive control networks. Activity flow over

resting-state connections thus provides a large-scale network mechanism for cog-

nitive task information transfer and global information coordination in the human

brain, demonstrating the cognitive relevance of resting-state network topology.
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2.2 Introduction

The human brain is thought to be a distributed information-processing device, its

routes of information transfer constituting a core feature that determines its com-

putational architecture. Many studies have used correlations among resting-state

functional MRI (fMRI) time series to study functional connectivity (FC) in the

human brain [Raichle et al., 2001]. It remains unclear, however, if these resting-

state FC routes are related to the brain’s routes of cognitive information transfer.

Evidence that group and individual differences in resting-state FC correlate with

cognitive differences [Cole et al., 2011a, Shannon et al., 2011, Smith et al., 2015]

suggests that there is a systematic relationship between resting-state FC and cog-

nitive information processing. However, without linking FC to information trans-

fer, it remains unclear whether or how resting-state FC might mechanistically

contribute to neurocognitive computations. Additionally, while a number of stud-

ies have shown that task information representations are distributed throughout

the brain [Haxby et al., 2006, Muhle-Karbe et al., 2016, Poldrack et al., 2009,

Zhang et al., 2013], such studies have yet to reveal how these distributed repre-

sentations are coordinated, and how information in any one brain region is used

by other brain regions to produce cognitive computations [De-Wit et al., 2016].

Other studies investigating interdependence of brain regions during tasks (rather

than during rest) have typically emphasized statistical dependencies between re-

gional time series [Cole et al., 2013, Gratton et al., 2016, Sadaghiani et al., 2015],

rather than the mechanistic transfer of task-relevant information content (re-

flected in task activation patterns [Norman et al., 2006]) between those regions.

Thus, it remains unclear whether or how the network topology described by either

resting-state or task-evoked FC is relevant to the neurocognitive computations

underlying task performance.
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Here, we provide evidence for a network mechanism underlying the trans-

fer and coordination of distributed cognitive information during performance of

a variety of complex multi-rule tasks. Based on recent evidence that resting-

state FC describes the routes of task-evoked activity flow [Cole et al., 2016a]

(Figure 2.1a) – the movement of task activations between brain regions –

we hypothesized that resting-state network topology describes the mappings

underlying task information (task-evoked activation pattern) transfer between

brain regions. If true, this hypothesis implicates a network mechanism for an

information-preserving mapping across brain regions involving communication

channels [Shannon, 1948, De-Wit et al., 2016] described by resting-state network

topology. Identifying such a mechanism would provide an important new window

into the large-scale information processing architecture of the human brain.
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Figure 2.1: Measuring information transfer through activity flow mapping and cognitive task
information decoding. A) Computational principle of activity flow mapping [Cole et al., 2016a].
Activity in a held-out region is predicted by computing the linear weighted sum of all other
regions’ activity weighted by those regions’ resting-state FC estimates with the held-out re-
gion. (The held-out region’s activity is not included when computing the predicted activity
of that region, thus avoiding a circular prediction.) B) Region-to-region activity flow mapping
between vertices/voxels of isolated regions (“many-to-many” rather than “all-to-one” mapping
of regions). Mathematically, we predict the activation pattern in Region B by computing the
dot product of Region A’s activation pattern vector with the vertex-to-vertex resting-state
FC matrix between Region A and B. C) Information transfer mapping, which involves region-
to-region activity flow mapping and representational similarity analysis (information decod-
ing/classification) on held-out data. To test the transfer of task information from Region A
to Region B, we compare the predicted activation pattern of Region B (mapped using Region
A’s activation pattern) to the actual task activation pattern of Region B for all task conditions
using a spatial Spearman’s rank correlation. For every prediction, spatial correlations to the
task prototypes are computed and the information transfer estimate is measured by taking the
difference of the correctly matched spatial correlation to the average of the incorrectly matched
(mismatched) spatial correlations. Here we depict the approach for only two task conditions.

The current study focuses on fine-grained activation and FC topology, allow-

ing us to infer the role of resting-state FC in carrying task-related information

(represented by activation patterns [Norman et al., 2006, Poldrack et al., 2009,

Zhang et al., 2013, Muhle-Karbe et al., 2016]). This is, in turn, critical for testing
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a novel network mechanism in which resting-state FC topologies of cognitive con-

trol networks globally coordinate task-related information. Further, correspon-

dence between resting-state FC topology and information-representing activation

patterns would demonstrate the general mechanistic relevance of resting-state FC

for information processing in the human brain.

Recent evidence suggests that resting-state FC reflects the human

brain’s invariant global routing architecture [van den Heuvel et al., 2009,

Marrelec et al., 2016]. Supporting this, it has been demonstrated that most

of the functional network topology variance present during task performance

(80%) is already present during rest [Cole et al., 2014a, Krienen et al., 2014].

Thus, resting-state FC primarily reflects an intrinsic functional network ar-

chitecture that is present regardless of cognitive context, given that there

are only moderate changes to functional network organization across tasks

[Cole et al., 2014a, Krienen et al., 2014]. We built upon these findings to test

the hypothesis that intrinsic network topology describes the baseline network

state upon which distributed cognitive information processing occurs.

Our hypothesis required an approach to empirically derive the mapping be-

tween information representations of pairs of brain regions, similar to iden-

tifying the transformation weights between layers in a neural network model

[Yamins et al., 2014]. The approach developed here contrasts with two pre-

vious approaches that describe the coordination of task-relevant information

between brain regions. One of the previous approaches measures small

shifts in task-evoked FC according to task-relevant content [Cole et al., 2013,

Sadaghiani et al., 2015]. Another previous approach measures the correla-

tion of moment-to-moment fluctuations in information content between regions

[Coutanche and Thompson-Schill, 2013]. Critically, these prior approaches pri-

marily describe time-dependent statistical dependencies rather than suggest a

large-scale mechanism by which task representations are mapped between brain
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regions. Thus, neither of these earlier approaches were appropriate for character-

izing a network mechanism by which cognitive information is mapped between

regions. Nonetheless, these past approaches were important for demonstrating the

basic phenomenon of large-scale task information coordination, which we sought

to better understand via the recently developed activity flow mapping approach

[Cole et al., 2016a].

The hypothesis that fine-grained resting-state FC describes the representa-

tional mappings between brain regions during tasks is compatible with several

recent findings. First, resting-state FC topology was recently shown to be highly

structured and reproducible, forming clusters of networks consistent with known

functional systems [Power et al., 2011, Yeo et al., 2011, Gordon et al., 2014].

Second, as already mentioned, these resting-state networks are likely task-relevant

given recent demonstrations that the network architecture estimated by resting-

state FC is highly similar to FC architectures present during a variety of tasks

[Cole et al., 2014a, Krienen et al., 2014]. Third, in addition to reflecting large-

scale connectivity patterns, resting-state FC has been shown to reflect local topo-

logical mappings between retinotopic field maps in visual cortex, highlighting the

specificity with which resting-state FC conserves functionally tuned connections

[Heinzle et al., 2011, Haak et al., 2013]. Finally, resting-state FC has been shown

to systematically relate to task-evoked activations, allowing prediction of an in-

dividual’s task-evoked activations across a variety of tasks using that individual’s

resting-state FC [Cole et al., 2016a, Tavor et al., 2016]. This suggests a strong

role for resting-state FC in shaping task activations – a core feature of our hy-

pothesis that resting-state FC carries the fine-grained activation patterns that

represent task-relevant information.

Traditional brain information mapping approaches localize task-related brain

activity patterns. Because the experimenter is doing the information decoding, it

is unclear whether (or how) that information is used for downstream processing by
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other brain regions. Thus, such approaches embody an experimenter-as-receiver

framework, rather than a cortex-as-receiver framework, which estimates how brain

regions send/receive information to/from other regions [De-Wit et al., 2016]. The

proposed method – information transfer mapping – advances this perspective by

analogizing resting-state connections with information channels. This allowed

us to characterize whether distributed brain regions receive and decode task in-

formation from other brain regions via resting-state network connections, thus

ascribing an information-theoretic description to resting-state network topology.

Further, above-chance information transfers between two regions would indicate

that the cognitive information in those brain regions is likely supported by the in-

trinsic network connectivity between them. Thus, information transfer mapping

implicitly tests the cognitive relevance of resting-state FC topology.

Going beyond our general hypothesis, we additionally focus on the contri-

bution of particular features of resting-state network topology in contributing

to task-related information transfer. Recent studies have identified domain-

general flexible hub networks that exhibit widespread resting-state FC and

high activity during cognitive control tasks [Cole et al., 2010b, Cole et al., 2013,

Power et al., 2013]. The strong involvement of these cognitive control net-

works - the frontoparietal network (FPN, which likely implements task sets

[Power and Petersen, 2013]), cingulo-opercular network (CON, which likely im-

plements task set maintenance [Power and Petersen, 2013]), and dorsal atten-

tion network (DAN, which likely implements top-down attentional processes

[Corbetta and Shulman, 2002]) - in cognitively-demanding processes suggests a

role for flexibly transferring task information across regions and networks.

We sought to isolate cognitive representations that would likely involve cogni-

tive control networks by using a cognitive paradigm that involves multiple features

thought to be central to cognitive control. We used the Concrete Permuted Rule

Operations (C-PRO) [Cole et al., 2010a] paradigm (Figure 2.2), which permutes



21

rules in three different cognitive domains to produce dozens of unique task-sets.

We predicted that cognitive control networks would flexibly represent task-rule in-

formation and transfer that information to other regions through their widespread

intrinsic connections. The combination of experimental design and analytical

framework allowed us to isolate cognitive operations and relate them to the neu-

robiological processes underlying activity flow mapping, thus targeting cognitive

information transfer.

Figure 2.2: Concrete Permuted Rule Operations experimental paradigm. For a given task, sub-
jects were presented with an instruction set (i.e., a task-rule set), in which they were presented
with three rules each from a different rule domain (logic, sensory, and motor rule domains).
Subjects were then asked to apply the presented rule set to two consecutively presented stimu-
lus screens and respond accordingly. Auditory and visual stimuli were presented simultaneously
for each stimulus screen. The auditory waveforms are depicted visually but were not presented
visually to participants. A mini-block design was used, in which for a given set of instructions
three trials were presented consecutively. The inter-trial interval was set to a constant 1570ms
(2 TRs), with a jittered delay following the three trials prior to the subsequent task block (see
Methods for more details). Task blocks lasted 28.26 seconds (36 TRs) each.

We began by replicating previously established properties of cognitive

control networks, such as widespread resting-state FC [Cole et al., 2010b,

Power et al., 2011]. We then used this replication to motivate a computational

model that validates the effectiveness of the information transfer mapping proce-

dure for estimating the role of resting-state network topology in transferring task

information. Finally, we applied this framework to empirical fMRI data, allowing
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us to test our hypotheses that (1) resting-state FC describes channels of inter-

region/network task information transfer and (2) cognitive control networks play

a role in transferring task information to other regions based on their intrinsic

functional network properties. Our results show that the transfer of cognitive

information could be reliably predicted using resting-state network topology, and

cognitive control networks were especially involved in transferring information

across multiple cognitive rule domains. Based on these results and a series of

control analyses that confirmed that cognitive information transfer depends on

precise resting-state network topology, we conclude that cognitive information

used for task performance is transferred between brain regions via the functional

network topology already present during resting state.

2.3 Methods

2.3.1 Participants

35 human participants (17 females) were recruited from the Rutgers University-

Newark community and neighboring communities. We excluded three subjects,

leaving a total of 32 subjects for our analyses; two subjects were excluded due to

exiting the scanner early, and one subject was excluded due to excessive move-

ment. Excessive movement was defined as 3 standard deviations from the mean,

in terms of framewise displacement [Power et al., 2012]. All participants gave

informed consent according to the protocol approved by the Rutgers University

Institutional Review Board. The average age of the participants was 20, with an

age range of 18 to 29.
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2.3.2 Behavioral paradigm

We used the Concrete Permuted Rule Operations (C-PRO) paradigm (Figure 2.2),

which is a modified version of the original PRO paradigm introduced in Cole et

al., (2010) [Cole et al., 2010a]. Briefly, the C-PRO cognitive paradigm permutes

specific task rules from three different rule domains (logical decision, sensory

semantic, and motor response) to generate dozens of novel and unique task sets.

This creates a condition-rich dataset in the task configuration domain akin in some

ways to movies and other condition-rich datasets used to investigate visual and

auditory domains [Nishimoto et al., 2011, Huth et al., 2012, Simony et al., 2016].

The primary modification of the C-PRO paradigm from the PRO paradigm was

to use concrete, sensory (simultaneously presented visual and auditory) stimuli, as

opposed to the abstract, linguistic stimuli in the original paradigm. Visual stimuli

included either horizontal or vertical oriented bars with either blue or red coloring.

Simultaneously presented auditory stimuli included continuous (constant) or non-

continuous (non-constant, i.e., “beeping”) tones presented at high (3000Hz) or

low (300Hz) frequencies. Figure 2.2 demonstrates two example task-rule sets for

“Task 1” and “Task 64”. The paradigm was presented using E-Prime software

version 2.0.10.353 [Schneider et al., 2002].

Each rule domain (logic, sensory, and motor) consisted of four specific rules,

while each task set was a combination of one rule from each rule domain (Figure

2.2). A total of 64 unique task sets (4 logic rules x 4 sensory rules x 4 motor rules)

were possible, and each unique task set was presented twice for a total of 128 task

miniblocks. Identical task sets were not presented in consecutive blocks. Each

task miniblock included three trials, each consisting of two sequentially presented

instances of simultaneous audiovisual stimuli. A task block began with a 3925

ms instruction screen (5 TRs), followed by a jittered delay ranging from 1570 ms

to 6280 ms (2 – 8 TRs; randomly selected). Following the jittered delay, three

trials were presented for 2355 ms (3 TRs), each with an inter-trial interval of 1570
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ms (2 TRs). A second jittered delay followed the third trial, lasting 7850 ms to

12560 ms (10-16 TRs; randomly selected). A task block lasted a total of 28260

ms (36 TRs). Subjects were trained on four of the 64 task-rule sets for 30 minutes

prior to the fMRI session. The four practiced rule sets were selected such that

all 12 rules were equally practiced. There were 16 such groups of four task sets

possible, and the task sets chosen to be practiced were counterbalanced across

subjects. Subjects’ mean performance across all trials performed in the scanner

was 85% (median=86%) with a standard deviation of 8% (min=66%; max=96%).

All subjects performed statistically above chance (25%).

2.3.3 fMRI Acquisition

Data were collected at the Rutgers University Brain Imaging Center (RUBIC).

35 human participants (17 females) were recruited from the Rutgers University-

Newark community and neighboring communities. We excluded three subjects,

leaving a total of 32 subjects for our analyses; two subjects were excluded due to

exiting the scanner early, and one subject was excluded due to excessive move-

ment. Excessive movement was defined as 3 standard deviations from the mean,

in terms of framewise displacement [Power et al., 2012]. All participants gave

informed consent according to the protocol approved by the Rutgers University

Institutional Review Board. The average age of the participants was 20, with an

age range of 18 to 29. Whole-brain multiband echo-planar imaging (EPI) acquisi-

tions were collected with a 32-channel head coil on a 3T Siemens Trio MRI scanner

with TR=785 ms, TE=34.8 ms, flip angle=55◦, Bandwidth 1924/Hz/Px, in-plane

FoV read=208 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband accel-

eration factor of 8. Whole-brain high-resolution T1-weighted and T2-weighted

anatomical scans were also collected with 0.8 mm isotropic voxels. Spin echo field

maps were collected in both the anterior to posterior direction and the posterior
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to anterior direction in accordance with the Human Connectome Project prepro-

cessing pipeline [Glasser et al., 2013]. A resting-state scan was collected for 14

minutes (1070 TRs), prior to the task scans. Eight task scans were subsequently

collected, each spanning 7 minutes and 36 seconds (581 TRs). Each of the eight

task runs (in addition to all other MRI data) were collected consecutively with

short breaks in between (subjects did not leave the scanner).

2.3.4 fMRI Preprocessing

Imaging data were minimally preprocessed using the publicly available Human

Connectome Project minimal preprocessing pipeline version 3.5.0, which included

anatomical reconstruction and segmentation, EPI reconstruction, segmentation,

spatial normalization to standard template, intensity normalization, and motion

correction [Glasser et al., 2013]. All subsequent preprocessing steps and analyses

were conducted on CIFTI 64k grayordinate standard space for vertex-wise anal-

yses and parcellated time series for region-wise analyses using the Glasser et al.

(2016) [Glasser et al., 2016a] atlas (i.e., one time series for each of the 360 cor-

tical regions). We performed nuisance regression on the minimally preprocessed

resting-state data using 12 motion parameters (6 motion parameter estimates plus

their derivatives) and ventricle and white matter time series (extracted volumet-

rically), along with the first derivatives of those time series.

Task time series for task activation analyses were preprocessed in an identi-

cal manner to resting-state data. Task time series were additionally processed

as follows: A standard fMRI general linear model (GLM) was fit to task-evoked

activity convolved with the SPM canonical hemodynamic response function and

the same 16 nuisance regressors as above. Block-by-block activity beta estimates

were used for representational similarity analyses and information transfer map-

ping analyses. Task activity GLMs were performed at both the region-wise level
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and vertex-wise level for subsequent network-to-network and region-to-region in-

formation transfer mapping, respectively.

2.3.5 FC estimation

Given the success of FC estimation using multiple linear regression in our previous

study [Cole et al., 2016a], we employed multiple linear regression to estimate FC.

To estimate FC to a given node, we used standard linear regression to fit the

time series of all other nodes as predictors (i.e., regressors) of the target nodes.

Using ordinary least squares regression, we calculated whole-brain FC estimates

by obtaining the regression coefficients from the equation

−→xi = β0 +
N∑
j 6=i

βji
−→xj + ε (2.1)

for all regions xi. We define −→xi as the time series in region xi, β0 as the y-

intercept of the regression model, βji as the FC coefficient for the jth regres-

sor/region (which we use as the element in the jth row and the ith column in

the FC adjacency matrix), and ε as the residual error of the regression model.

N is the total number of regressors included in the model, which corresponds to

the number of all other regions. This provided an estimate of the contribution

of each source region in explaining unique variance in the target region’s time

series. This approach was used for region-to-region FC estimation, where the

time series for each parcel was averaged across a given parcel’s vertices prior to

FC calculation. For this model N=360, corresponding to the number of parcels

in the Glasser et al. 2016 atlas [Glasser et al., 2016a]. Multiple linear regression

FC is conceptually similar to partial correlation, but is actually semipartial cor-

relation, as the estimates retain information about scaling a source time series

(i.e., regressor time series) into the units of the to-be-predicted time series (i.e.,

predicted variable/target region).
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For vertex-to-vertex FC estimation, due to computational intractability (i.e.,

more source vertices/regressors than time points), we used principal components

regression with 500 principal components. This is the same form of regularized

regression used in a previous study [Cole et al., 2016a] for voxel-to-voxel FC esti-

mation. This approach involved reducing all source time series into 500 principal

components and using the components as regressors to the target vertex. To re-

duce the possibility of spatial autocorrelation when estimating vertex-to-vertex

FC, we excluded all vertices belonging to the same brain region/parcel as well as

any vertices within 10mm of the border of that parcel in the principal compo-

nents/regressors of the target vertex. (All vertices that fell within this criterion

were given FC values of 0, preventing any vertices close to the target region from

contaminating FC estimates.) Beta values obtained from the principal component

regressors were then transformed back into the original 64k vertex space.

2.3.6 Replication of network topological properties

We sought to replicate a key property of resting-state network topology using our

novel network assignments of the Glasser et al. (2016) parcels – high global con-

nectivity of cognitive control networks. We included only functional networks

which coincided with the seven most replicable functional networks found in

three previously published network atlases [Power et al., 2011, Yeo et al., 2011,

Gordon et al., 2014]: the frontoparietal network (FPN), the dorsal attention net-

work (DAN), the cingulo-opercular network (CON), the default mode network

(DMN), the visual network (VIS), the auditory network (AUD), and the somato-

motor network (SMN). We measured the average between-network global connec-

tivity (BGC) during resting-state FC, which was estimated using multiple linear

regression (Figure 2.3d). BGC connections were defined as all connections from
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the source region to target regions outside the source region’s network. Mathe-

matically, we defined each region’s BGC as

BGCi =

∑
j /∈CWij

Ntotal −NC

(2.2)

where BGCi corresponds to the BGC of region i in network C, j /∈ C cor-

responds to all regions not in network C, Wij corresponds to the FC estimate

between regions i and j, Ntotal corresponds to the total number of regions, and

NC corresponds to the total number of regions in network C. To compute the

average BGC for a network C, we averaged across all BGCi for i ∈ C. To sta-

tistically test whether the average BGC was different for a pair of networks, we

performed a cross-subject paired t-test for every pair of networks. We corrected

for multiple comparisons across pairs of networks using FWE permutation testing

[Nichols and Holmes, 2001].

2.3.7 Neural network model

To validate our information transfer estimation approach we constructed a sim-

ple dynamical neural network model with similar network topological properties

identified in our empirical fMRI data. We constructed a neural network with

250 regions, each of which were clustered into one of five network communities

(50 regions per community). Regions within the same community had a 35%

probability of connecting to another region (i.e., 35% connectivity density), and

regions not assigned to the same community were assigned a connectivity prob-

ability of 5% (i.e., 5% out-of-network connectivity density). We selected one

community to act as a “network hub”, and increased the out-of-network connec-

tivity density of those regions to 20% density. We then applied Gaussian weights

on top of the underlying structural connectivity to simulate mean-field synaptic

excitation between regions. These mean-field synaptic weights were set with a



29

mean of 1.0/
√
K with a standard deviation of 0.2/

√
K, where K is the number

of synaptic inputs into a region such that synaptic input scales proportionally

with the number of inputs. This approach was recently shown to be a plausible

rule in real-world neural systems based on in vitro estimation of between-neuron

synaptic-weight-setting rules [Barral and Reyes, 2016].

To simulate network-level firing rate dynamics, as similar to Stern et al.

(2014), region xi’s dynamics for i = 1, 2, ..., 250 obeyed the equation

dxi
dt
τi = −xi(t) + sφ(xi(t)) + g

( N∑
j 6=i

Wijφ(xj(t))
)

+ Ii(t) (2.3)

We define the transfer function φ as the hyperbolic tangent, xj the dynamics of

region j = 1, 2, ..., 250 for i 6= j, Ii(t) the input function (e.g., external spon-

taneous activity alone or both spontaneous activity and task stimulation) for

i ∈ [1, 250], W the underlying synaptic weight matrix, s the local coupling (i.e.,

recurrent) parameter, g the global coupling parameter, and τi the region’s time

constant. For simplicity, we set s = g = 1 and τi = 10ms, though we show in

a previous study [Cole et al., 2016a] that the activity flow mapping breaks down

for parameter regimes s >> g.

We first simulated spontaneous activity in our model by injecting Gaussian

noise (parameter Ii(t); mean of 0.0, standard deviation 1.0). Numerical simu-

lations were computed using a Runge-Kutta second order method with a time

step of dt = 10ms. We ran our simulation for 600 seconds (10 minutes). To

simulate resting-state fMRI, we then convolved our time series with the SPM

canonical hemodynamic response function and down sampled to a 1 second TR,

resulting in 600 time points. We then computed resting-state FC using multi-

ple linear regression. To replicate the empirical data, we computed the BGC of

the resting-state data (as in the empirical data; see equation 2) to validate that

widespread out-of-network connectivity was preserved from synaptic to FC. To



30

model task-evoked activity, we simulated four distinct task conditions by inject-

ing stimulation into four randomly selected but distinct sets of twelve regions

in the hub network. Stimulation to the hub network was chosen to mimic four

distinct top-down, cognitive control task rules. (See Supplemental Methods for

further details.) We simulated 30 subjects worth of data, and generated figures

using group t-tests and controlled for multiple comparisons using FWE-correction

permutation tests [Nichols and Holmes, 2001].

To perform network-to-network information transfer mapping in the model,

we used the task-evoked activity (estimated by standard GLM beta estimates),

and performed the information transfer mapping procedure between networks of

regions using the resting-state FC matrix obtained via multiple linear regression.

Network-to-network information transfer mapping is computationally identical to

region-to-region information transfer mapping, and is described below.

2.3.8 Computing information estimates for regions and

networks

To compute the baseline (i.e., unrelated to FC) information content at the region

level (Figure 2.5), we performed a within-subject, cross-validated multivariate

pattern analysis using representational similarity analysis for every Glasser et al.

(2016) parcel (using the vertex-level multivariate activation pattern within each

parcel). We estimated task-activation beta coefficients separately for each vertex

within a region, and separately for each miniblock. Note that each miniblock was

associated with a specific task-rule condition for each rule domain. Mathemati-

cally, we defined IEB, the information estimate of region B, as

IEB = MatchB −MismatchB (2.4)
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where MatchB and MismatchB correspond to the averaged Spearman rank cor-

relation for matched and mismatched conditions, respectively. Specifically, we

define MatchB and MismatchB as

MatchB =

∑K
k=1 scorr(Bk, Bmatch)

K
(2.5)

MismatchB =

∑K
k=1[

∑N
n=1(scorr(Bk, Bmismatchn)/N ]

K
(2.6)

where K corresponds to the total number of miniblocks (in this paradigm, 128

miniblocks), scorr corresponds to a Fisher z-transformed Spearman’s rank cor-

relation between two activation vectors, Bk is the activation pattern in region B

during block k, Bmatch is the task-rule condition prototype (obtained by averaging

across blocks of the same condition, holding out block k) of region B’s activa-

tion pattern for which block k’s condition matches the condition prototype, and

Bmismatchn as the task-rule condition prototypes for which block k’s condition does

not match. (In the present study N = 3, since each rule dimension has four task-

rule conditions, and for a given miniblock there’s one match and three mismatched

conditions.) To avoid circularity, we performed a leave-four-out cross-validation

scheme, holding out a miniblock of each task-rule. This ensured that miniblock

Bk was not included in constructing the condition prototype Bmatch and that con-

dition prototypes were each constructed using the same number of miniblocks.

Prior to running the representational similarity analysis, all blocks were spatially

demeaned to increase the likelihood that the representations we were identifying

was a multivariate regional pattern (rather than a change in region-level mean

activity). Use of Spearman’s rank correlation also reduced the likelihood that

the identified multivariate representation patterns were driven by mean activity

changes or a small number of outlier values.

Statistical significance was assessed by taking a one-sided group t-test against



32

0 for each region’s information estimate across subjects, since a greater than 0 dif-

ference of matches versus mismatches indicated significant representation of spe-

cific task rules. All p-values were corrected for multiple comparisons across the 360

parcels using FWE-correction with permutation tests [Nichols and Holmes, 2001],

and significance was assessed using an FWE-corrected threshold of p < 0.05.

(See Supplementary Methods for details on estimating network-level informa-

tion estimates for Supplementary Figure A.1b.)

2.3.9 Region-to-region information transfer mapping

We extended the original activity flow mapping procedure as defined in Cole et

al. (2016) [Cole et al., 2016a] (Figure 2.1a) to investigate transfer of task-related

information between pairs of brain regions using vertex-wise activation patterns

(i.e., region-to-region activity flow mapping; Figure 2.1b). This involved predict-

ing the activity of the vertices of a held-out target region based on the vertices

within a source region. Mathematically, we define region-to-region activity flow

mapping between regions A and B as

B̄k = Ak ·WRSFC (2.7)

where B̄k corresponds to the predicted activation pattern vector for the target

region B, Ak corresponds to region A’s activation pattern vector (i.e., the source

region), WRSFC corresponds to the vertex-to-vertex resting-state FC between re-

gions A and B, and the operator · refers to the dot product. This formulation

allowed us to map activation patterns in one region’s spatial dimension to the

spatial dimension of another region.

To test the extent that task representations are preserved in the region-to-

region multivariate predictions, we quantified how much information transfer
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occurred between the two regions. Briefly, information transfer mapping com-

prises three steps, illustrated in Figure 2.1c: (1) Region-to-region (or network-to-

network) activity flow mapping; (2) A cross-validated representational similarity

analysis between predicted activation patterns and actual, held-out activation

patterns; (3) Information classification/decoding by computing the difference be-

tween matched condition similarities and mismatched condition similarities. This

final step produces an information transfer estimate. Mathematically, our in-

formation transfer estimate was derived using the exact formulation (equations 5

and 6) as our information estimate formula, but we substituted the target region’s

actual activation pattern Bk for the target region’s predicted activation pattern

B̄k based on a connectivity-based transformation of source region A’s activation

pattern. (See Supplementary Methods materials for more details.) Information

transfer mapping was performed within subject between every pair of regions

in the Glasser et al. (2016) [Glasser et al., 2016a] atlas (360 regions in total).

Statistical tests were performed using a group one-sided t-test (t > 0) for every

pair-wise mapping. Our use of mismatched correlations as a baseline ensured that

any positive information transfer estimates was a result of a task-rule-specific rep-

resentation, rather than a task-general effect. Any information estimate that was

not significantly greater than 0 indicated that the predicted-to-actual similarity

was at chance (akin to chance decoding using classifiers). We tested for multi-

ple comparisons using permutation testing [Nichols and Holmes, 2001] for every

region-to-region mapping, and significance was assessed using FWE-corrected p-

values with p < 0.05. Note that to avoid circularity for region-to-region informa-

tion transfer mapping, any vertices in a source region that fell within a 10mm

radius of the to-be-predicted target region (e.g., an adjacent region) would not

contribute any activity flow to the to-be-predicted target region (see FC esti-

mation Methods section for details). (See Supplementary Methods for further

details.)
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2.3.10 Network-to-network information transfer mapping

Network-to-network information transfer mapping in both the computational

model (Figure 2.4e) and empirical data (Supplementary Figure A.1c-e) was per-

formed in the same computational framework as above, though instead of pre-

dicting region-level activation patterns using vertex-level activation patterns,

network-level activation patterns were predicted using region-level activations (av-

eraging across vertices within a given region). (See Supplementary Methods for

more details.)

2.3.11 Behavioral relevance of information transfers

To characterize the behavioral relevance of information transfers, we performed a

within-subject analysis to decode task performance using miniblock-by-miniblock

information transfer estimates. We first sought to ensure that baseline miniblock

information estimates could decode miniblock task performance within subjects

prior to the information transfer mapping procedure. To perform a given task,

knowledge of all three rule domains (i.e., logic, sensory, and motor rule domains)

is required. Thus, we constructed a decoding model with logistic regression,

training the model to decode the task performance of a given miniblock using the

information estimates of a given brain region across all three rule domains. The

model was tested using cross-validation in MATLAB using the glmfit function

(with the logit link function). Miniblocks with over 50% of trials performed

correctly were predicted as a 1, and 0 otherwise. However, to account for the

imbalanced training data (on average, subjects performed 85% of trials correctly),

we removed the intercept term β0 to center our predictions (as computed by a

logistic function) at 0.5 (see Supplementary Methods for further details).

We applied our decoding model to all regions within the FPN and CON across

subjects. For each region, we applied one-sided t-tests against chance (50%),
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and corrected for multiple comparisons using FWE-correction permutation tests

[Nichols and Holmes, 2001]. We identified a single FPN region in the LPFC (left

hemisphere region 80 in the Glasser et al. atlas; Supplementary Figure A.5) whose

baseline information estimates predicted miniblock task performance.

We subsequently tested whether information transfer estimates from the

LPFC region could predict task performance. We applied the decoding model

to information transfer estimates across all rule domains for all information

transfers from the LPFC region to all other FPN and CON regions. We per-

formed one-sided t-tests against chance (50%) for each information transfer,

and corrected for multiple comparisons using FWE-correction permutation tests

[Nichols and Holmes, 2001]. We identified a single information transfer from the

LPFC to the OFC (left hemisphere region 91; both FPN regions) that survived

multiple comparisons with an FWE-corrected p < 0.05. Surface visualizations

for Supplementary Figure A.5 were made using Connectome Workbench software

(version 1.2.3) [Glasser et al., 2016b].

2.3.12 Computational resources

Region-to-region information transfer mapping, vertex-to-vertex FC estimation,

task-rule information estimation, and model simulations were performed on the

Rutgers University-Newark supercomputer cluster (Newark Massive Memory Ma-

chine, NM3) using Python and MATLAB code.

2.3.13 Code and data availability

We have included code demos with accompanying tutorial data for both our

computational model and the empirical network-to-network information transfer

mapping. We have also provided a GitHub repository with both MATLAB and

Python code to run FWE-correction using permutation tests using the approach
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described in [Nichols and Holmes, 2001]. Lastly, we have published all master

scripts/jupyter notebooks used to generate results and figures in the manuscript.

All other data presented in this study are available upon request.

Demo code for the information transfer mapping procedure is publicly avail-

able here: https://github.com/ColeLab/informationtransfermapping

Code for the FWE-correction via permutation testing is available here: https:

//github.com/ColeLab/MultipleComparisonsPermutationTesting

2.4 Results

2.4.1 Network organization of cognitive control networks

We began by establishing a strong basis for testing subsequent hypotheses re-

garding information transfer via cognitive control networks. Given the recent

interest in reproducibility in neuroscience and other fields [Button et al., 2013,

Szucs and Ioannidis, 2016], we replicated the hub-like characteristic of cogni-

tive control networks [Cole et al., 2010b, Power et al., 2011, Power et al., 2013,

van den Heuvel and Sporns, 2013] before moving forward with analyses that build

on these previous findings.

Using a recently developed set of functionally defined cortical regions

[Glasser et al., 2016a] (Figure 2.3a), we tested whether cognitive control net-

works are global (connector) hubs. We quantified global hubs as having high

between-network global connectivity (BGC) (see Methods) estimated during

resting-state fMRI using FC estimated with multiple regression (Figure 2.3c).

Standard Pearson correlations (Figure 2.3b) were not used to compute BGC,

given that Pearson correlations likely inflate the overall number of connec-

tions. We constrained our analyses to seven networks (Figure 2.3a), identified

by being replicated across multiple previously published functional network at-

lases [Power et al., 2011, Yeo et al., 2011, Gordon et al., 2014]. We focused on
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BGC to reduce the bias toward larger mean connectivity (i.e., weighted de-

gree centrality, or global brain connectivity [Cole et al., 2010b]) for larger net-

works simply because they are larger [Power et al., 2011, Power et al., 2013].

We found that the top three networks with highest BGC estimated at rest

were the three cognitive control networks: FPN, CON, and DAN (Figure

2.3d; FPN greater than all non-cognitive control networks, with an averaged

t(31)=9.52; CON greater than all non-cognitive control networks, with an

averaged t(31)=12.33; DAN greater than all non-cognitive control networks,

with an averaged t(31)=11.56; all family-wise error (FWE) corrected p <

0.0001). These results replicated previous results suggesting cognitive control net-

works are global hubs [Power et al., 2011, Power et al., 2013, Cole et al., 2010b,

van den Heuvel and Sporns, 2013], strengthening the basis for our hypothesis

that cognitive control networks play a disproportionate role in shaping infor-

mation transfer between regions throughout the brain. We test this hypothesis

in a subsequent section, after establishing the validity of the newly-developed

information transfer mapping procedure.
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Figure 2.3: Large-scale network organization during rest. A) Using a recently released, multi-
modal parcellation of the human cerebral cortex [Glasser et al., 2016a], we assigned each region
to a functional network using the Generalized Louvain method for community detection with
resting-state fMRI data. We designated functional labels to seven networks that were replicated
with other network assignments [Power et al., 2011, Yeo et al., 2011, Gordon et al., 2014]. B)
Whole-brain resting-state FC matrix computed using Pearson correlation between regions in
panel A. Colors along the rows and columns denote network assignments from panel A. C)
Whole-brain resting-state FC matrix computed using multiple linear regression. For every
region’s time series, we fitted a multiple linear regression model using the time series of all
other regions as regressors of the target region. Multiple regression FC strongly reduced the
chance that a connection was indirect, since FC estimates are based on unique shared variance.
We used multiple regression FC for information transfer mapping, suggesting the estimated
information transfers were likely direct rather than indirect. D) Averaged BGC of resting-
state fMRI for each defined functional network. Cognitive control networks (underlined and in
bold) had higher average BGC estimates relative to non-cognitive control networks (i.e., DMN
and sensorimotor networks; FWE-corrected p<0.05). Error bars reflect across-subject standard
error.

2.4.2 Computational validation of information transfer

mapping

We previously established that whole-brain activation patterns can be predicted

based on activity flow over resting-state networks [Cole et al., 2016a]. However, it
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remains unclear whether one region’s cognitive information – coded as fine-grained

activation patterns – can by predicted based on activity flow over resting-state

FC. Such a demonstration would indicate that resting-state FC carries cognitive

task information between brain regions (and networks). We tested this possibility

by shifting from an “all-to-one” activity flow approach (i.e., predicting the activity

level of a single brain region using the activity flow from all other brain regions;

Figure 2.1a) to modeling activity flow between a pair of regions (i.e., using the

fine-grained activation pattern within one brain region to predict the fine-grained

activation pattern within another region; Figure 2.1b).

Testing our hypothesis required developing a new approach – information

transfer mapping – which quantifies the amount of information transferred be-

tween pairs of brain regions over resting-state FC (Figure 2.1b,c). Broadly, in-

formation transfer mapping tests the ability of resting-state FC topology (fine-

grained connectivity patterns) to describe the mappings between cognitive-task-

related activity patterns between pairs of brain regions. Specifically, each map-

ping (described by resting-state FC topology) must preserve the representational

space between two regions, such that task-evoked information is decodable after

the connectivity-based mapping. Beyond improving empirical understanding, this

approach may have important theoretical implications given that it bridges bio-

physical (intrinsic FC) and computational (transformations between information-

carrying activity patterns) properties into a convergent framework.

This approach (Figure 2.1c) predicts the activation pattern in a target region

based on a source region’s activation pattern. This predicted activation pat-

tern is then compared to the target region’s actual activation pattern during the

current task condition. The matched condition predicted-to-actual similarity is

then compared to the mismatched condition predicted-to-actual similarity, with

the difference in similarity quantifying the amount of task-specific information

present in the prediction. Since the prediction was based on estimated activity
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flow over resting-state FC patterns, this allowed us to infer the amount of task-

relevant information transferred via resting-state FC. Note that it was important

to compare the predicted with the actual activation pattern in the target re-

gion to ensure that our prediction preserved the same representational geometry

[Diedrichsen and Kriegeskorte, 2017] as the actual activation pattern.

We validated this approach using a simple abstract neural network model with

one hub network and four non-hub networks (see Methods; Figure 2.4a). This

network organization was the basis for simulating fMRI dynamics during rest

and task states, which allowed us to establish a “ground truth” to test the effi-

cacy of the information transfer mapping procedure. This validation-via-modeling

method was highly similar to the simple neural network model we previously used

to validate the original activity flow mapping approach [Cole et al., 2016a]. Using

Wilson-Cowan type firing rate dynamics [Stern et al., 2014, Cowan et al., 2016],

we simulated resting state and four distinct task states, simulated the transforma-

tion of the simulated neural signals to fMRI data (see Methods), and estimated

resting-state FC (Figure 2.4b) and task-evoked fMRI runs for each of the four

task conditions (Figure 2.4c). Note that we focused on network-to-network infor-

mation transfer for our model validation (see schematic in Supplementary Figure

A.1a), but later extended the approach to region-to-region information transfer.



41

Figure 2.4: Computational validation of network-to-network information transfer mapping. A)
Underlying synaptic weight matrix with four local networks and one hub network. We con-
structed an abstract neural network with a single hub network to see the relative effect of infor-
mation transfer from the hub network to downstream local networks, similar to the hypothesized
computational function of the cognitive control networks during task. B) Recovering large-scale
synaptic organization via multiple regression FC estimates on a simulated resting-state time
series. C) We simulated four ‘cognitive control tasks’ by stimulating four distinct ensembles
of regions within the hub network. D) Increased BGC estimated at rest reflects underlying
synaptic organization. Error bars represent across-subject standard error. E) Thresholded in-
formation transfer estimates between pairs of networks in a neural network model. Each row in
the matrix corresponds to a source network from which we mapped activation patterns to other
target networks using the information transfer mapping procedure (Figure 2.1c). Each column
in the matrix corresponds to a target network to which we compared the predicted-to-actual
activation patterns. FWE-corrected thresholded T-statistic map with p < 0.05.

We found that simulated resting-state FC accurately reflected high BGC for

the hub network (BGC statistically greater for the hub-network versus all other

networks; averaged t(29)=21.14; FWE-corrected p < 0.0001; Figure 2.4d). Fur-

ther, given the underlying synaptic connectivity structure (Figure 2.4a) and the

estimated intrinsic topology via resting-state FC (Figure 2.4b,d), we hypothe-

sized that information transfer to and from the hub network would reliably pre-

serve task-specific information. Using the information transfer mapping approach

(Figure 2.1c; see Methods), we quantified the amount of information transfer via
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activity flow between every pair of networks (Figure 2.4e). We found that informa-

tion transfers to/from the flexible hub network and non-hub networks preserved

task-specific representations (averaged information transfer estimate=0.13; aver-

aged t(29)=11.86; FWE-corrected p < 0.0001), while transfers between pairs of

non-hub networks did not preserve statistically significant representations (av-

eraged information transfer estimate=-0.0002; averaged t(29)=-0.02; averaged

FWE-corrected p = 0.91). We also found that these results were consistent with

simulations where both top-down (hub network) and bottom-up (local network)

stimulation occurred simultaneously (Supplementary Figure A.3; see Supplemen-

tary Methods). These results suggest that FC estimates obtained during sim-

ulated resting-state fMRI dynamics reflected underlying synaptic organization

enough to describe the task-information-carrying mappings that govern activity

flow between functional networks – a key assumption underlying our new ap-

proach.

These model simulations validated the plausibility of two hypotheses critical

to the proposed information transfer mechanism: (1) Resting-state FC estimates

characterize intrinsic FC (potentially reflecting aggregate synaptic connectivity)

effectively enough to reflect underlying communication channel capacities; (2)

Intrinsic FC describes the information-preserving mappings necessary to predict

task-relevant activation patterns transferred from one region or network to an-

other. Thus, these results validated the analytical basis of estimating information

transfer via activity flow, which is applied to network-to-network and region-to-

region information transfer mapping with empirical fMRI data below.
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2.4.3 Information transfer via resting-state network

topology

We next applied the information transfer mapping procedure to real fMRI

data, testing its ability to infer cognitive information transfer in the human

brain. To test the hypothesis that cognitive control networks might widely

distribute cognitive information via their resting-state network topology, we

used an experimental paradigm with several features central to cognitive con-

trol to engage cognitive control networks. First, we used novel tasks given

the need for control to specify behavior in such under-practiced scenarios

[Rabbitt, 1997, Cole et al., 2013]. Second, we used complex tasks given the

need to deploy additional cognitive control resources when working memory is

taxed [Miller and Buschman, 2015]. Finally, we used a variety of abstract rules

given that such rules are thought to be represented within cognitive control

networks [Cole et al., 2011b, Cole et al., 2015, Muhle-Karbe et al., 2016]. Using

many fully-counterbalanced rules also allowed us to test our hypotheses across

a variety of task conditions (while controlling for differences in sensory stimuli

during trials). These features converged in the Concrete Permuted Rule Opera-

tions paradigm (C-PRO; Figure 2.2). This paradigm was developed as part of this

study, and is a modified version of the PRO paradigm [Cole et al., 2010a]. We pre-

dicted that cognitive control networks would flexibly represent C-PRO rule infor-

mation and transfer that information to other regions through their widespread in-

trinsic connections. For simplicity, we began with large-scale network-to-network

information transfers. This involved quantifying information in large-scale func-

tional networks based on patterns of region-level task activations (Supplementary

Figure A.1; see Methods). In subsequent analyses we focused on region-to-region

information transfers (based on patterns of voxel/vertex-level task activations).

As a prerequisite to running the network-to-network information transfer tests,



44

we sought to first establish that task-rule information from the C-PRO paradigm

(Figure 2.2) was widely distributed across entire functional networks (Supple-

mentary Figure A.1b). Logic rule information was significantly decodable in 6

out of 7 of the functional networks (averaged information estimate of significant

effects=0.03; averaged significant t(31)=4.89; FWE-corrected p < 0.01), with

the somatomotor network (SMN) being the single network that did not con-

tain decodable logic rule information (information estimate=0.007; t(31)=1.22;

FWE-corrected p = 0.58). Sensory rule information was significantly decodable

in the FPN, DAN, CON, and visual network (VIS) (averaged information esti-

mate=0.03; averaged t(31)=5.14; FWE-corrected p < 0.001), and not decodable

in the default mode network (DMN), auditory network (AUD), and SMN (aver-

aged information estimate=0.003; averaged t(31)=0.83; averaged FWE-corrected

p > 0.11). Motor rule information was significantly decodable in the DAN, CON,

and SMN (averaged information estimate=0.08; averaged t(31)=7.26; FWE-

corrected p < 0.0001), and not decodable in the FPN, DMN, VIS, and AUD (aver-

aged information estimate=0.006; averaged t(31)=1.93; averaged FWE-corrected

p > 0.05). This allowed us to then evaluate whether significantly decodable rep-

resentations of information were transferred to other functional networks.

In the logic rule domain, we identified information transfers between the FPN,

CON, DMN, and AUD networks (Supplementary Figure A.1c; averaged informa-

tion transfer estimate=0.009; averaged t(31)=4.73; FWE-corrected p < 0.02). In

the sensory rule domain, we found information transfers between the DAN and

VIS in addition to the FPN, CON, and DMN (Supplementary Figure A.1d; aver-

aged information transfer estimate=0.006; averaged t(31)=4.01; FWE-corrected

p < 0.05). Lastly, in the motor rule domain, information transfers were between

the DAN, CON, and the SMN (Supplementary Figure A.1e; averaged informa-

tion transfer estimates=0.011; averaged t(31)=5.37; FWE-corrected p < 0.01).
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Further, to ensure that information transfers between pairs of networks was de-

pendent on the precise network-to-network FC topology, we performed permu-

tation testing, permuting FC patterns between pairs of networks (see Supple-

mentary Methods). Indeed, after statistical testing, we found that information

transfers were identical to our results with parametric statistical testing, sug-

gesting that the observed information transfers were dependent on the specific

resting-state network FC topology (Supplementary Figure A.4). These empirical

network-to-network information transfers, along with their dependence on specific

resting-state FC patterns, establish a role for resting-state network topology in

transferring cognitive task information.

We next focused on region-to-region mappings that, unlike the network-to-

network transfers, are based on fine-grained vertex-wise patterns. As a prerequi-

site to testing for information transfer between pairs of regions, we first needed to

establish whether regions contained decodable task-rule representations. Thus,

we first quantified the information content of each rule domain in the C-PRO

paradigm (logic, sensory and motor rule domains) for each of the 360 regions

using activation patterns (at the vertex level) with a cross-validated represen-

tational similarity analysis (see Methods). We found that logic rules were rel-

atively distributed, with highest-quality representations in frontal and parietal

cortices (averaged information estimate across significant effects=0.02; averaged

t(31)=5.24; FWE-corrected p < 0.05; Figure 2.5a). Sensory rule information was

also relatively distributed (averaged information estimate across significant ef-

fects=0.02; averaged t(31)=4.97; FWE-corrected p < 0.05; Figure 2.5b), though

the highest-quality representations were predominantly in visual areas. Lastly, we

found that motor rule representations were significantly more localized, with the

highest-quality representations in the somatomotor network (averaged informa-

tion estimate across significant effects=0.06; averaged t(31)=6.80; FWE-corrected
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p < 0.05; Figure 2.5c). The existence of distributed task-rule information in mul-

tiple cortical regions allowed us to next assess how task-rule-specific information

in one region might be transferred to other regions.

Figure 2.5: Information estimates of each region for each task-rule domain, prior to information
transfer mapping. All reported results were statistically significant at FWE-corrected p < 0.05.
A) Thresholded whole-brain logic rule information estimate map. A cross-validated represen-
tational similarity analysis (quantifying degree of information representation; see Methods) for
the logic rule domain was computed using vertices within every region. For each region, an aver-
age information estimate was computed for each subject, and a one-sided t-test was computed
against zero across subjects. B) Thresholded whole-brain sensory rule information estimate
map. As in the logic rule analysis, rule representations were highly distributed across the entire
cortex, though representations were especially prominent in visual areas. C) Thresholded whole-
brain motor rule information estimate map. Unlike the logic and sensory rule representations,
motor rule representations were more localized to the motor/tactile network.

We next performed region-to-region information transfer mapping (Figure

2.6). This approach utilized within-region vertex-level activation patterns along

with vertex-to-vertex resting-state FC between regions to predict information

content in each region (Figure 2.6a; also see Methods). We performed this proce-

dure for every pair of 360 regions, and visualized our results as a 360x360 matrix

for each rule domain (Figure 2.6b,d,f). However, given the difficulty in visually

interpreting information transfers between every pair of regions (due to sparse-

ness), we collapsed the region-to-region information transfer matrix by network

to better visualize statistically significant region-to-region information transfers

at the network level (Figure 2.6c,d,g; see Supplementary Figure A.2a-c for all 14

networks). In addition, to see the relative anatomical position of regions that

transferred information (i.e., source regions), we computed the percent of statis-

tically significant transfers from each cortical region for each rule domain, and
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plotted these percentages on the cortical surface (Figure 2.7a-c).

Figure 2.6: Information transfer mappings between all pairs of regions. All reported results
were statistically significant at p < 0.05 (FWE-corrected). (See Supplementary Figure A.6 for
results with an FDR-corrected p < 0.05 threshold.) A) Region-to-region information transfer
mapping used the vertex-level activation pattern within one brain region and the fine-grained
region-to-region resting-state FC topology to predict the vertex-level activation pattern in an-
other brain region. B) Logic rule region-to-region information transfer mapping. C) Average
number of statistically significant region-to-region transfers by network affiliations. To better
visualize and assess how region-to-region transfer mappings may have been influenced by under-
lying network organization, we computed the percent of statistically significant rule transfers for
every network-to-network configuration (i.e., the percentage of region-to-region transfers from
a network A to a network B). (Note that visualizations for the full 14 network partition can
be found in Supplementary Figure 2.2.) Cognitive control networks are underlined. Informa-
tion transfer of logic rule information was distributed across frontal and parietal cortices. D,E)
Statistically significant sensory rule region-to-region information transfers. Region-to-region
information transfers were substantially sparser for sensory rule mappings, but involved DAN
and VIS regions. F,G) Statistically significant motor rule region-to-region information transfers.
Motor rule mappings were noticeably more localized within the motor network. H) Statisti-
cally significant information transfers between regions grouped by network affiliation across rule
domains. Across the three rule domains (panels C, E, and G) we counted the number of rule
domains information was transferred between networks. I) We performed a similar analysis as in
panel H, but counted the number of rule domains a network contained a region that transferred
information (as a source region) across the three rule domains.



48

Figure 2.7: Percent of statistically significant information transfers from each cortical region. All
reported information transfers were statistically significant at p < 0.05 (FWE-corrected). (See
Supplementary Figure A.7 for results with an FDR-corrected p < 0.05 threshold.) A) Percent
of statistically significant information transfers from each region for the logic rule domain.
Percentages were computed by taking the number of significant transfers from each region,
and dividing it by the total number of possible transfers from that region (359 other regions).
Information transfers were relatively distributed, yet were predominantly from frontal parietal
cortices. B) Percent of statistically significant information transfers from each region for the
sensory rule domain. Information transfers were much sparser than in the logic rule domain.
Most transfers were from higher-order visual areas and the DAN. C) Percent of statistically
significant information transfers from each region for the motor rule domain. Transfers were
predominantly from the motor network.

Overall, region-to-region information transfers were detected (FWE-corrected

p < 0.05) for all three task rule domains, as described in detail be-

low. However, given the conservative nature of FWE correction, we also

provide region-to-region information transfer results for false discovery rate

[Genovese and Wasserman, 2002] (FDR) corrected p < 0.05 thresholds, which

potentially reduced false negatives but increased false positives (Supplementary

Figures A.6 & A.7). We found that with FDR correction, information transfers

between regions were significantly more distributed (particularly in the logic rule

domain). In both cases, these findings support the hypothesis that resting-state

FC topology describes the channels of information transfer across multiple func-

tional networks and across multiple task-content domains.

For logic rule mappings, while information transfers were highly distributed,

most statistically significant region-to-region information transfers predominantly

involved the FPN and other frontoparietal regions (averaged information trans-

fer estimate across significant effects=0.02; averaged t(31)=6.26; FWE-corrected

p < 0.05). In particular, regions within the FPN transferred information to other
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regions in the FPN, as well as regions in other domain-general networks (CON

and DMN) (Figure 2.6c). Further, source regions involved in the transfer of logic

rule information were left-lateralized for FWE-corrected p < 0.05 (Figure 2.7a),

although FDR-corrected p < 0.05 thresholds showed more distributed source re-

gions across bilateral frontal and parietal cortices (Supplementary Figure A.7a).

In both cases, these findings suggest that the FPN uses intrinsic FC topology to

distribute abstract (e.g., logic) rule information broadly for task set implementa-

tion and maintenance.

For sensory rule mappings, we found high specificity and sparseness of region-

to-region task information transfers (averaged information transfer estimate

across significant effects=0.01; averaged t(31)=6.15; FWE-corrected p < 0.05;

Figure 2.7b). Most notably, we found that sensory rule representations are pre-

dominantly transferred within and between the DAN and VIS networks, as well

as the FPN and CON (Figure 2.6d,e). Previous studies have implicated a promi-

nent role of the DAN and VIS in attentional processing of sensory information,

consistent with the observed information transfers [Corbetta and Shulman, 2002].

These findings suggest sensory rule information may be transferred between cog-

nitive control networks, with transfers between regions in the DAN and VIS im-

plementing these top-down information transfers.

Lastly, we found the most information transfer specificity for motor rule in-

formation (averaged information transfer estimate across significant effects=0.09;

averaged t(31)=7.38; FWE-corrected p < 0.05), consistent with the relatively

localized representations of motor rule information (Figure 2.5c). In particular,

transfer of motor rule information largely involved transfers from regions in the

SMN (Figure 2.7c), while between-network information transfer with the SMN

primarily involved the CON (Figure 2.6g).

We next characterized the rule-domain generality of information transfers be-

tween specific networks. We found that regions within the FPN transferred rule
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information to the CON across two out of the three rule domains (Figure 2.6h;

see Supplementary Figure A.2d for all 14 networks). In addition, using an FDR-

corrected threshold of p < 0.05, we found statistically significant information

transfers from FPN to CON for all three rule domains (Supplementary Figure

A.6d). This is consistent with theories suggesting the FPN coordinates with

CON to maintain and implement task sets [Power and Petersen, 2013].

We next tested for networks that consistently transferred information across

all rule domains, regardless of the target region’s network affiliation. We found

that regions in the FPN were consistently involved in transferring information

to other regions in two rule domains (Figure 2.6h). When using FDR to correct

for multiple comparisons, we found that the FPN, DAN, and DMN transferred

task information in all three rule domains (Supplementary Figure A.6e). We

next assessed whether a single region transferred information across multiple rule

domains. We found that no individual region consistently transferred task-rule

information across the rule domains with either FWE or FDR correction, which

suggests that unique sets of regions within each network were involved in transfer-

ring distinct types of cognitive information. This suggests that the regions within

the FPN (and the DAN and DMN for FDR-corrected p < 0.05 significance testing;

Supplementary Figure A.6e) collectively act as flexible hub networks to commu-

nicate task-rules in different cognitive domains. Thus, the FPN likely plays an

important role in task-rule transfers, regardless of cognitive domain.

These results uncover two key findings: (1) resting-state network topology

describes the mappings likely underlying information transfer across distributed

regions and functional networks, and (2) cognitive control networks likely play

especially important roles in transferring a wide-range of task-rule information

during complex cognitive tasks.
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2.4.4 Behavioral relevance of cognitive information trans-

fer

We next tested whether estimated information transfers are predictive of task per-

formance, demonstrating a likely role of information-pattern transfers in support-

ing task performance. Given that successful task performance required cognitive

encoding of all three rule types (i.e., logic, sensory, and motor rules), we hy-

pothesized that information transfer of all three rules were important to perform-

ing a task correctly. We therefore constructed a decoder using multiple logistic

regression that was trained on the miniblock-to-miniblock information transfer

estimates for all three rule types, and predicted the overall accuracy for held-

out miniblocks (i.e., predicted a 1 if greater than 50% of trials were performed

correctly within a miniblock, and 0 otherwise). Successful decoding of task perfor-

mance using information transfer between pairs of regions would suggest that task

performance depends in part on the successful transfer of task-rule information

between those regions.

We first sought to ensure that task-rule information coded in the activity

patterns used for information transfer mapping could predict behavioral perfor-

mance, as a prerequisite to performing the information transfer mapping proce-

dure. Given our findings that transfers between the FPN and CON were involved

in two out of the three rule domains and that the FPN and CON are known

to be involved in task-set maintenance [Dosenbach et al., 2006] we constrained

our search to regions within those two networks. We found that rule informa-

tion estimates (see Supplementary Methods) in a single FPN region in the lateral

prefrontal cortex (LPFC) could significantly decode task performance (decoding

accuracy=52.6%; t(31)=3.97; FWE-corrected p = 0.02).

We then used this region as a source region and decoded task performance us-

ing information transfer estimates (across all rule domains) for transfers to every
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other region in the FPN and CON. We found that information transfer estimates

from the LPFC region to an FPN region in the orbitofrontal cortex (OFC) could

decode miniblock task performance significantly above chance (decoding accu-

racy=53.2%; t(31)=4.76; FWE-corrected p = 0.003; Supplementary Figure A.5).

This result demonstrates that the transfer of cognitive task-rule information be-

tween the LPFC and OFC was significantly correlated with task performance.

However, while we account for the imbalance of correct and error trials in our

decoding model, given that the behavioral data contains significantly fewer incor-

rect versus correct miniblocks, we interpret these results cautiously. (On average,

85% of miniblocks were performed correctly.) It will be important for future work

to investigate the behavioral relevance of information transfers using a dataset

that contains more error trials, allowing for a more robust model fit to behavior.

Nonetheless, the combination of linking resting-state FC topology to information

transfers across multiple brain systems and multiple cognitive task domains as

well as trial-by-trial task performance strongly supports a role for resting-state

FC topology in cognitive information transfer and task information processing.

2.5 Discussion

Studies from neurophysiology, fMRI, and computational modeling emphasize the

distributed nature of information processing in the brain [Eliasmith et al., 2012,

Huth et al., 2012, Siegel et al., 2015]. However, fMRI studies often decode cog-

nitive information from brain regions [Haxby et al., 2006] without considering

how other brain regions might utilize that information [De-Wit et al., 2016].

In other words, current neuroscientific findings emphasize an experimenter-as-

receiver framework (i.e., the experimenter decoding information in a brain region)

rather than a cortex-as-receiver framework (i.e., brain regions decoding infor-

mation transferred from other brain regions) [De-Wit et al., 2016]. The current
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emphasis on the experimenter-as-receiver framework clashes with the traditional

understanding of information communication described by Shannon’s Informa-

tion Theory [Shannon, 1948], which provides a general theory of communica-

tion through the representation and transmission of information-bearing signals.

Thus, understanding how cortical regions receive information from other regions

bridges a crucial gap in understanding the nature of information processing in

the brain. In light of recent findings relating resting-state fMRI to task-evoked

cognitive activations [Cole et al., 2016a, Tavor et al., 2016], we hypothesized that

resting-state FC describes the channels over which information can be commu-

nicated between cortical regions. Results strongly supported this hypothesis,

suggesting that resting-state network topology describes the large-scale architec-

ture of information communication in the human brain and demonstrating the

relevance of resting-state network connectivity to cognitive information process-

ing.

We developed a novel procedure to quantify information transfer between

brain regions. The procedure requires an information-preserving mapping be-

tween a source region and a target region. In the neural network modeling

literature, analogous mappings are typically estimated through machine learn-

ing techniques to approximate synaptic weight transformations between lay-

ers of a neural network (e.g., an artificial neural network model using back-

propagation) [Yamins et al., 2014]. However, given that artificial neural net-

works are universal function estimators [Hartman et al., 1990] and would there-

fore fit any arbitrary mappings, we opted to take a more biologically princi-

pled approach that relied on FC estimation. Specifically, we used evidence

that patterns of spontaneous activity can be used to successfully estimate

the flow of task-related activity in both local and large-scale brain networks

[Smith et al., 2006, Cole et al., 2016a, Timme et al., 2016] to obtain biophysi-

cally plausible, data-driven mappings between brain regions using resting-state
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fMRI. Thus, information transfer mapping unifies both biophysical and compu-

tational mechanisms into a single information-theoretic framework.

We used a computational model to validate the plausibility of this ac-

count of large-scale information transfer, finding that despite the slow dynam-

ics of the blood-oxygen level dependent signal, resting-state FC with simu-

lated fMRI accurately reflects the large-scale channels of information trans-

fer. We then used empirical fMRI data to show that resting-state FC de-

scribes information-preserving mappings in cortex at two levels of organization:

brain regions and functional networks. In other words, the connectivity-based

mappings estimated via resting-state FC between a source and a target re-

gion preserved task information content (in the same representational geometry

[Haxby et al., 2014, Diedrichsen and Kriegeskorte, 2017]). Note that the organi-

zation of activity patterns was necessarily distinct between brain regions (given

their distinct sizes and shapes), such that accurately predicting activation pat-

terns in a target region based on activity in a source region reflected accurate

spatial transformation of information-carrying activity patterns between those

brain regions. These findings suggest that resting-state FC estimates likely re-

flect the actual large-scale mappings that are implemented in the brain during

task information transfer.

We used multiple regression (Figure 2.3c) rather than standard Pearson cor-

relations (Figure 2.3b) to estimate resting-state FC for information transfer map-

ping. This decision was based on recent evidence that activations are better

predicted when using multiple-regression FC as compared to Pearson-correlation

FC [Cole et al., 2016a]. Importantly, multiple-regression FC strongly reduces the

chance that estimated information transfers are indirect, since this method fits

all regions/vertices simultaneously to identify unique shared variance between

each pair of regions/vertices. Given that brain systems contain redundant neural

signals [Tononi et al., 1999], however, multiple-regression FC estimates may be
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overly conservative. It will therefore be important for future research to validate

appropriate regularization approaches to reduce the false negatives induced by

multiple-regression FC. We expect that such a validated regularization approach

would likely reveal that cognitive information transfers are even more widespread

throughout the brain than reported here.

The evidence that fine-grained resting-state FC describes the information-

preserving mappings between regions is important for advancing neuroscientific

theory in a number of ways. First, the present results provide an empirically-

validated theoretical account for how cognitive representations in different re-

gions are likely mechanistically related to one another. Second, these results

confirm the base assumption that decodable representations in a brain region

are utilized by other regions through a biologically-plausible construct – in-

formation transfer via fine-grained patterns of activity flow. Third, these re-

sults expand the functional relevance of decades of resting-state FC findings

[Biswal et al., 1995, Raichle, 2010], given that we demonstrated the ability to

use resting-state FC to describe cognitively-meaningful fine-grained relationships

between brain regions. Importantly, our modeling and empirical results showed

that the topological organization of the intrinsic connectivity architecture de-

scribed inter-region information-preserving mappings. Further supporting this

conclusion, we verified via permutation testing that fine-grained FC topology

(rather than, e.g., overall mean FC) was essential for the observed information

transfer results.

Previous studies have focused on the role of task-evoked FC in shifting

distributed task representations [Cole et al., 2013, Gratton et al., 2016]. We

recently built on such findings to develop a flexible hub account of dis-

tributed task set reconfiguration via cognitive control networks [Cole et al., 2013,
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Cole et al., 2014b]. The present results advance these findings by describing a net-

work mechanism involving resting-state FC topology (and cognitive control net-

work hubs) in transferring task representations throughout cortex. Importantly,

recent findings have demonstrated that task-evoked FC changes tend to be small

relative to resting-state FC topology [Cole et al., 2014a, Krienen et al., 2014].

This suggests that the resting-state FC topology investigated here likely carries

the bulk of the task-relevant information transfers, with task-evoked FC alter-

ations to this topology contributing only small (but likely important) changes to

this process.

The information transfer mapping approach involves estimating linear infor-

mation transfer. Critically, however, neural information processing is thought

to often depend on nonlinear transformations [Eliasmith, 2007], such as face-

selective neurons in the ventral visual stream responding to whole faces but not

facial components (e.g., eyes and ears) [Kanwisher et al., 1997, Tsao et al., 2006].

The present findings represent an important step toward understanding the net-

work mechanisms underlying information transformations between brain regions,

setting the stage for future research to identify the role of resting-state FC in

nonlinear information transformations. This would go beyond the information

transfer processes investigated here to better identify the role of resting-state FC

in neural computation (not just communication).

In summary, we combined information decoding of brain activity patterns

with resting-state FC to demonstrate how fine-grained intrinsic connectivity pat-

terns relate to cognitive information transfer. Further, by estimating information

transfer throughout cortex we found evidence that cognitive control networks

play important roles in global transfer of cognitive task information. We expect

that these findings will spur new investigations into the nature of distributed in-

formation processing throughout the brain, providing a deeper understanding of

these fine-grained information channels estimated at rest and their contribution
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to task-relevant information transfers.
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Chapter 3

Constructing neural network models from brain

data reveals representational transformations

underlying adaptive behavior

This chapter has been submitted for journal publication. The work is collabora-

tive work with Guangyu Robert Yang, Patryk Laurent, Douglas H. Schultz, and

Michael W. Cole

3.1 Abstract

The human ability to adaptively implement a wide variety of tasks is thought to

emerge from the dynamic transformation of cognitive information. We hypothe-

sized that these transformations are implemented via conjunctive representations

in conjunction hubs – brain regions that selectively integrate sensory, cognitive,

and motor representations. We used recent advances in mapping the represen-

tations of artificial neural networks to empirical brain data to construct a task-

performing neural network model from empirical fMRI data during a cognitive

control task. We verified the importance of conjunction hubs in cognitive compu-

tations by simulating neural activity flow over empirically-estimated neural net-

work models. These simulations produced above-chance task performance (motor

responses) by integrating sensory and task rule information in conjunction hubs.

These findings reveal the role of conjunction hubs in supporting flexible cognitive

computations, while demonstrating the feasibility of using empirically-estimated

neural network models to gain insight into cognitive computations in the human
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brain.

3.2 Introduction

The human brain exhibits remarkable cognitive flexibility. This cognitive flex-

ibility enables humans to perform a wide variety of cognitive tasks, rang-

ing from simple visual discrimination and motor control tasks, to highly

complex context-dependent tasks. Key to this cognitive flexibility is the

ability to use cognitive control, which involves goal-directed implementa-

tion of task rules to specify cognitive and motor responses to stimuli

[Cole et al., 2017, Miller and Cohen, 2001]. Previous studies have investigated

how task-relevant sensory, motor, and rule features are represented in the

brain, finding that sensory stimulus features are represented in sensory cortices

[Kanwisher, 2010, Nishimoto et al., 2011], motor action features are represented

in motor cortices [Yokoi and Diedrichsen, 2018], while task rules are represented

in prefrontal and other association cortices [Cole et al., 2015, Ito et al., 2017,

Miller and Cohen, 2001, Reverberi et al., 2012, Rigotti et al., 2013]. However,

exactly how and where in the brain different task representations mix to convert

incoming stimuli to motor responses remains unclear [Kikumoto and Mayr, 2020].

In contrast, artificial neural network models (ANNs) can provide computation-

ally rigorous accounts of how different task representations mix to implement

cognitive computations [Mante et al., 2013, Yang et al., 2019]. Inspired by the

formalization of ANNs, we constructed an empirically-estimated neural network

(ENN) model from task fMRI data to provide insight into the representational

transformations in the brain during a cognitive control task.

The flexible hub theory provides a network account of how large-scale cognitive

control networks implement flexible cognition by updating task rule representa-

tions [Cocuzza et al., 2020, Cole et al., 2013]. This theory was built upon the



60

guided activation theory – a seminal theory of the neural mechanisms underly-

ing cognitive control – which posits that successful performance of a cognitive

control task requires the selective mixing of task context with sensory stimulus

information [Miller and Cohen, 2001]. The selective mixing of task context and

sensory stimulus encoding activations would produce conjunctive (conditional as-

sociation) representations that implement task rules on sensory stimuli. These

conjunctive representations are thought to form through inter-area guided activa-

tions in “hidden units” located somewhere in association cortex, which we term

conjunction hubs (Figure 3.1a). The outputs of conjunction hubs then activate

motor representations to produce task-appropriate behavior. However, while the

theory of interacting rule-guided neural activations between different task repre-

sentations provides a framework to characterize representational transformations,

it is unknown how the brain actually implements these computations.
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Figure 3.1: Leveraging the guided activation theory to inspire ENN models of cognitive com-
putation during task-based fMRI. a) A modified version of the guided activation theory, high-
lighting a potential key role for conjunction hubs. The guided activation theory posited that
sensory cortices (left), which contain sensory stimulus-related representations, and prefrontal ar-
eas (top), which contain task context representations, integrate in association cortex to produce
conjunctive representations through patterns of guided activations. Conjunctive representa-
tions are then guided to motor areas to generate motor response signals for task behavior. b)
The guided activation theory can be instantiated more formally as a simple feedforward arti-
ficial neural network (ANN). This involves the task context and sensory stimuli representing
the input layer, the association units representing a hidden layer, and the behavioral (motor)
responses as the output layer. c) Testing the guided activation theory using task fMRI data col-
lected in humans during context-dependent tasks. Using quantitative methods, we empirically
test how different task representations (e.g., sensory stimuli and task context) form conjunc-
tive representations to produce motor response representations using activity flow mapping
[Cole et al., 2016a]. d) The guided activation theory can be empirically tested by projecting
multivariate task activations between brain areas by estimating inter-area FC weight mappings
obtained from resting-state fMRI data. Based on the activity flow principle, we estimated
inter-vertex mappings using regression (see Methods) on resting-state fMRI data. This ap-
proach identifies a projection that maps across distinct spatial units in empirical data, similar
to how inter-layer weights propagate activity across layers in a feedforward ANN.
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We recently developed a method – activity flow mapping – that provides a

framework for testing the guided activation theory with empirical brain data

[Cole et al., 2016a]. Activity flow mapping involves several steps. First, a net-

work model is derived from empirically-estimated connectivity weights. Second,

empirical task activations (e.g., activity patterns from sensory regions) are used as

inputs to simulate the activity flow (i.e., propagating activity) within the network.

Finally, the predictions generated by simulated activity flow are tested against

independent empirical brain data for model validation. Here we used activity flow

mapping to test whether putative conjunction hubs could implement the context-

dependent information transformations necessary to produce accurate behavioral

(motor) representations in a 64-task cognitive paradigm.

We sought a principled approach to identify brain areas that form

the conjunctive representations to produce flexible behavior. Recent stud-

ies have successfully used ANNs to probe the emergence of representa-

tional transformations in cognitive tasks [Mante et al., 2013, Song et al., 2016,

Yang et al., 2019]. Importantly, the representational geometry of ANNs have of-

ten converged with the geometry of neural representations [Bashivan et al., 2019,

Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014], reflecting the util-

ity of ANNs in investigating task representations in the brain. Inspired by these

previous studies, we constructed a simple feedforward ANN to investigate the rep-

resentational transformations during the same task paradigm. This enabled us to

characterize the representational transformations at each ANN layer that support

successful task performance. These ANN representations provided a blueprint to

search for analogous representations in empirical data: task context, sensory stim-

ulus, conjunctive, and behavioral (motor) representations. The identification of

these representations made it possible to empirically test the guided activation

theory with activity flow mapping: Behavioral representations (in motor cortices)

can be predicted through the formation of conjunctive representations through
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activity flow guided by task rule representations.

To summarize, we empirically tested the guided activation theory by con-

structing a task-performing ENN during a 64-task cognitive paradigm. This ENN

was constructed directly from fMRI data, and illustrated the importance of con-

junction hubs in facilitating representational transformations. This contrasts with

many possible alternative hypotheses, such as the possibility that representations

are transformed directly from task input areas (e.g., sensory systems) to motor

cortices, bypassing association areas. We first trained a simple feedforward ANN

to perform the 64-task paradigm to characterize the representational transforma-

tions required for successful task performance (Figure 3.1b). We next used the

representational geometry in each ANN layer to map representationally similar

brain areas in empirical data from subjects performing the same task. This al-

lowed us to identify representational “layers” in the ENN, analogous to layers in a

feedforward ANN. In contrast to ANNs, which use supervised learning to estimate

connectivity weights, we show that representations in ENNs can be transformed

via activity flow over functional connectivity (FC) weights estimated from resting-

state fMRI (Figure 3.1d). This resulted in a task-performing, ENN model that

transforms stimulus to response representations during a flexible cognitive control

task. Critically, the transformations implemented by the ENN were carried out

without classic optimization approaches such as gradient learning, demonstrat-

ing that the intrinsic architecture of the resting brain is suitable for implementing

representational transformations. Together, these findings illustrate the computa-

tional relevance of functional network organization in supporting flexible cognitive

computations in the human brain.
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3.3 Methods

3.3.1 Participants

Data were collected from 106 human participants across two different sessions (a

behavioral and an imaging session). Participants were recruited from the Rut-

gers University-Newark community and neighboring communities. Technical error

during MRI acquisition resulted in removing six participants from the study. Four

additional participants were removed from the study because they did not com-

plete the behavior-only session. fMRI analysis was performed on the remaining

96 participants (54 females). All participants gave informed consent according

to the protocol approved by the Rutgers University Institutional Review Board.

The average age of the participants that were included for analysis was 22.06,

with a standard deviation of 3.84. Additional details regarding this participant

cohort have been previously reported [Schultz et al., 2019].

3.3.2 C-PRO task paradigm

We used the Concrete Permuted Operations (C-PRO) paradigm (Figure 3.2a)

during fMRI acquisition, and used a computationally analogous task when train-

ing our ANN model. The details of this task are described below, and are adapted

from a previous study [Ito et al., 2017].

The C-PRO paradigm is a modified version of the original PRO paradigm

introduced in Cole et al., (2010) [Cole et al., 2010a]. Briefly, the C-PRO cognitive

paradigm permutes specific task rules from three different rule domains (logical

decision, sensory semantic, and motor response) to generate dozens of novel and

unique task contexts. This creates a context-rich dataset in the task configuration

domain akin in some ways to movies and other condition-rich datasets used to

investigate visual and auditory domains [Nishimoto et al., 2011]. The primary
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modification of the C-PRO paradigm from the PRO paradigm was to use concrete,

sensory (simultaneously presented visual and auditory) stimuli, as opposed to

the abstract, linguistic stimuli in the original paradigm. Visual stimuli included

either horizontally or vertically oriented bars with either blue or red coloring.

Simultaneously presented auditory stimuli included continuous (constant) or non-

continuous (non-constant, i.e., “beeping”) tones presented at high (3000Hz) or

low (300Hz) frequencies. Figure 3.2a demonstrates two example task-rule sets for

“Task 1” and “Task 64”. The paradigm was presented using E-Prime software

version 2.0.10.353 [Schneider et al., 2002].

Each rule domain (logic, sensory, and motor) consisted of four specific rules,

while each task context was a combination of one rule from each rule domain. A

total of 64 unique task contexts (4 logic rules x 4 sensory rules x 4 motor rules)

were possible, and each unique task set was presented twice for a total of 128 task

miniblocks. Identical task sets were not presented in consecutive blocks. Each

task miniblock included three trials, each consisting of two sequentially presented

instances of simultaneous audiovisual stimuli. A task block began with a 3925

ms instruction screen (5 TRs), followed by a jittered delay ranging from 1570 ms

to 6280 ms (2 - 8 TRs; randomly selected). Following the jittered delay, three

trials were presented for 2355 ms (3 TRs), each with an inter-trial interval of 1570

ms (2 TRs). A second jittered delay followed the third trial, lasting 7850 ms to

12560 ms (10-16 TRs; randomly selected). A task block lasted a total of 28260

ms (36 TRs). Subjects were trained on four of the 64 task contexts for 30 minutes

prior to the fMRI session. The four practiced rule sets were selected such that

all 12 rules were equally practiced. There were 16 such groups of four task sets

possible, and the task sets chosen to be practiced were counterbalanced across

subjects. Subjects’ mean performance across all trials performed in the scanner

was 84% (median=86%) with a standard deviation of 9% (min=51%; max=96%).

All subjects performed statistically above chance (25%).
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3.3.3 ANN construction

We trained a simple feedforward ANN with a single hidden layer on a computa-

tionally analogous form of the C-PRO task. This enabled us to directly compare

the representations of the ANN with the representations extracted from our em-

pirical data.

To model the task context input layer, we designated an input unit for each

task rule across all rule domains. Thus, we had 12 units in the task context layer.

A specific task context (or rule set) would selectively activate three of the 12

units; one logic rule, one sensory rule, and one motor rule. Input activations were

either 0 or 1, indicating an active or inactive state.

To model the stimulus input layer, we designated an input unit for a stimulus

pair for each sensory dimension. To isolate visual color stimulus pairings, we

designated input units for a red-red pairing, red-blue pairing, blue-red pairing,

and blue-blue pairing. (Note that each unit represented a stimulus pair because

the ANN had no temporal dynamics to present consecutive stimuli.) To isolate

visual orientation stimulus pairings, we designated inputs for a vertical-vertical,

vertical-horizontal, horizontal-vertical, and horizontal-horizontal stimulus pairing.

To isolate auditory pitch stimulus pairings, we designated input units for high-

high, high-low, low-high, and low-low frequency combinations. Finally, to isolate

auditory continuity stimulus pairings (i.e., whether an auditory tone was constant

or beeping), we designated input units for constant-constant, constant-beeping,

beeping-constant, and beeping-beeping. Altogether, across the four sensory do-

mains, we obtained 16 different sensory stimulus pair input units. For a given

trial, four units would be activated to simulate a sensory stimulus combination

(one unit per sensory domain). For example, a single trial might observe red-red

(color), vertical-horizontal (orientation), low-high (pitch), constant-beeping (con-

tinuity) stimulus combination. Thus, to simulate an entire trial including both

context and sensory stimuli, 7/28 possible input units would be activated.
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We constructed our ANN with 1280 hidden units. This choice was due

to recent counterintuitive evidence suggesting that the learning dynamics of

extremely high-dimensional ANNs (i.e., those with many network parameters

to tune) naturally protect against overfitting, supporting generalized solutions

[Advani and Saxe, 2017]. Moreover, we found that across many initializations,

the representational geometry identified in the ANN’s hidden layer was highly

replicable. Finally, our output layer contained four units, one for each motor

response (corresponding to left middle, left index, right middle, right index finger

presses).

The ANN transformed a 28-element input vector (representing a specific trial

instance) into a 4-element response vector, and obeyed the equation

Y = fs(XhiddenWout + b) (3.1)

where Y corresponds to the 4-element response vector, fs is a sigmoid function,

Wout corresponds to the connectivity weight matrix between the hidden and out-

put layer, b is a bias term, and Xhidden is the activity vector of the hidden layer.

Xhidden was obtained by the equation

Xhidden = fr((Xinput + I)Whidden + b) (3.2)

Where fr is a rectified linear function (ReLU), Whidden is the connectivity

weight from the input to hidden layer, Xinput corresponds to the input layer

activations that contain trial information, and I is a 28-element noise vector

sampled from a normal distribution with 0-mean and 1
n
-variance, where n refers

to the number of hidden units.
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3.3.4 ANN training

The ANN was trained by minimizing the mean squared error between the net-

work’s outputs and the correct target output. The mean squared error was com-

puted using a mini-batch approach, where each mini-batch comprised of 192 dis-

tinct trials. (Each of the 64 unique task contexts were presented three times (with

randomly sampled stimuli) in each mini-batch. Training was optimized using

Adam, a variant of stochastic gradient descent [Kingma and Ba, 2017]. We used

the default parameters in PyTorch (version 1.0.1), with a learning rate of 0.0001.

Training was stopped when the last 1000 mini-batches achieved over 99.5% av-

erage accuracy on the task. This performance was achieved after roughly 10,000

mini-batches (or 1,920,000 trials). Weights and biases were initialized with a uni-

form distribution U(−
√
k,
√
k), where k = 1

targets
, where ‘targets’ represents the

number of units in the next layer. Note that no cross-validation was performed

(nor was it necessary), since we were only interested in representational geometry

of the hidden layer. We also note that the representational geometry we observed

in the hidden layer was robust to different initializations and hyperparameter

choices.

3.3.5 ANN representational analysis

We extracted the representational geometry of the ANN’s hidden layer using rep-

resentational similarity analysis (RSA) [Kriegeskorte et al., 2008]. This was done

to understand how task rule and stimulus information was transformed in the

hidden layer. To extract the representational geometry of the hidden layer, we

systematically activated a single unit in the input layer (which corresponded to

either a task rule or sensory stimulus pair), and estimated the corresponding

hidden layer activations (using trained connectivity weights). This resulted in a
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total of 28 (12 task rules and 16 sensory stimuli combinations) activation pat-

terns. The representational similarity matrix (RSM) was obtained by computing

the Pearson’s correlation between the hidden layer activation patterns for all 28

conditions.

3.3.6 fMRI acquisition and preprocessing

The following fMRI acquisition details is taken from a previous study that used

the identical protocol (and a subset of the data) [Ito et al., 2017].

Data were collected at the Rutgers University Brain Imaging Center (RUBIC).

Whole-brain multiband echo-planar imaging (EPI) acquisitions were collected

with a 32-channel head coil on a 3T Siemens Trio MRI scanner with TR=785 ms,

TE=34.8 ms, flip angle=55◦, Bandwidth 1924/Hz/Px, in-plane FoV read=208

mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration factor of 8.

Whole-brain high-resolution T1-weighted and T2-weighted anatomical scans were

also collected with 0.8 mm isotropic voxels. Spin echo field maps were collected

in both the anterior to posterior direction and the posterior to anterior direc-

tion in accordance with the Human Connectome Project preprocessing pipeline

[Glasser et al., 2016b]. A resting-state scan was collected for 14 minutes (1070

TRs), prior to the task scans. Eight task scans were subsequently collected, each

spanning 7 minutes and 36 seconds (581 TRs). Each of the eight task runs (in

addition to all other MRI data) were collected consecutively with short breaks in

between (subjects did not leave the scanner).

3.3.7 fMRI acquisition and preprocessing

The following details are adapted from a previous study that used the same

preprocessing scheme on a different data set [Ito et al., 2020a].

Resting-state and task-state fMRI data were minimally preprocessed using
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the publicly available Human Connectome Project minimal preprocessing pipeline

version 3.5.0. This pipeline included anatomical reconstruction and segmentation,

EPI reconstruction, segmentation, spatial normalization to standard template, in-

tensity normalization, and motion correction. After minimal preprocessing, addi-

tional custom preprocessing was conducted on CIFTI 64k grayordinate standard

space for vertex-wise analyses using a surface based atlas [Glasser et al., 2016b].

This included removal of the first five frames of each run, de-meaning and de-

trending the time series, and performing nuisance regression on the minimally

preprocessed data [Ciric et al., 2017]. We removed motion parameters and phys-

iological noise during nuisance regression. This included six motion parameters,

their derivatives, and the quadratics of those parameters (24 motion regressors

in total). We applied aCompCor on the physiological time series extracted from

the white matter and ventricle voxels (5 components each extracted volumet-

rically) [Behzadi et al., 2007]. We additionally included the derivatives of each

component time series, and the quadratics of the original and derivative time se-

ries (40 physiological noise regressors in total). This combination of motion and

physiological noise regressors totaled 64 nuisance parameters, and is a variant of

previously benchmarked nuisance regression models [Ciric et al., 2017].

3.3.8 fMRI task activation estimation

We performed a standard task GLM analysis on fMRI task data to estimate task-

evoked activations from different conditions. Task GLMs were fit for each subject

separately, but using the fully concatenated task data set (concatenated across

8 runs). We obtained regressors for each task rule (during the encoding period),

each stimulus pair combination (during stimulus presentation), and each motor

response (during button presses). For task rules, we obtained 12 regressors that

were fit during the encoding period, which lasted 3925ms (5 TRs). For logic

rules, we obtained regressors for “both”, “not both”, “either”, and “neither”
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rules. For sensory rules, we obtained regressors for “red”, “vertical”, “high”, and

“constant” rules. For motor rules, we obtained regressors for “left middle”, “left

index”, “right middle”, and “right index” rules. Note that a given encoding period

contained overlapping regressors from each of the logic, sensory, and motor rule

domains. However, the regressors were not collinear since specific rule instances

were counterbalanced across all encoding blocks.

To obtain activations for sensory stimuli, we fit regressors for each stimu-

lus pair. For example, for the color dimensions of a stimulus, we fit separate

regressors for the presentation of red-red, red-blue, blue-red, and blue-blue stim-

ulus pairs. This was done (rather than fitting regressors for just red or blue)

due to the inability to temporally separate individual stimuli with fMRI’s low

sampling rate. Thus, there were 16 stimulus regressors (four conditions for each

stimulus dimension: color, orientation, pitch, continuity). Stimulus pairs were

presented after a delay period, and lasted 2355ms (3 TRs). Note that a given

stimulus presentation period contained overlapping regressors from four different

conditions, one from each stimulus dimension. However, the stimulus regressors

were not collinear since stimulus pairings were counterbalanced across all stimu-

lus presentation periods (e.g., red-red stimuli were not exclusively presented with

vertical-vertical stimuli).

Finally, to obtain activations for motor responses (or finger button presses),

we fit regressors for each motor response. There were four regressors for motor

responses, one for each finger (i.e., left middle, left index, right middle, right index

fingers). Responses overlapped with the stimulus period, so we fit regressors for

each button press during the 2355ms (3 TR) window during stimulus presenta-

tions. Note, however, that while response regressors overlapped with stimulus re-

gressors, response regressors were not collinear with stimulus presentations. This

is because a response is statistically independent from a stimulus pair, enabling

the extraction of meaningful response activation patterns. A strong validation



72

was that the finger representations could be reliably extracted according to the

appropriate topographic organization in somatomotor cortex (Figure 3.4c).

(For a schematic of how task GLMs were performed, see Supplementary Figure

B.3. For the task design matrix of an example subject, see Supplementary Figure

B.4.)

3.3.9 fMRI decoding: Identifying sensory stimulus repre-

sentations

Decoding analyses were performed to identify the brain areas that contained rel-

evant task context and sensory stimulus representations. To identify the brain

areas that contained relevant sensory stimulus representation, we performed four,

four-way decoding analyses on each stimulus dimension: color (vision), orien-

tation (vision), pitch (audition), constant (audition). For color stimulus infor-

mation, we decoded activation patterns where the stimulus pairs were red-red,

red-blue, blue-red, and blue-blue. For orientation stimulus information, we de-

coded activation patterns where the stimulus pairs were vertical-vertical, vertical-

horizontal, horizontal-vertical, horizontal-horizontal. For pitch stimulus informa-

tion, we decoded activation patterns where the stimulus pairs were high-high,

high-low, low-high, and low-low. Finally, for constant (beeping) stimulus infor-

mation, we decoded activation patterns where the stimulus pairs were constant-

constant, constant-beeping, beeping-constant, beeping-beeping.

Decoding analyses were performed using the vertices within each parcel as

decoding features. We limited decoding to visual network parcels for decod-

ing visual stimulus features, and auditory network parcels for decoding auditory

stimulus features. Visual parcels were defined as the VIS1 and VIS2 networks

in Ji et al. (2019) [Ji et al., 2019], and auditory networks as the AUD network.
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We performed a group-level decoding analysis, with a leave-8-subjects out cross-

validation scheme. The choice of leaving 8 (out of 96) subjects out was due to

recent studies suggesting that test sets should contain roughly 10% of the entire

data set to yield stable predictive estimates of the test-set [Varoquaux, 2018].

Moreover, of the 88 subjects that remained in the train set pool (for each cross-

validation fold), the training set was randomly sampled (with replacement, num-

ber of bootstrapped samples per fold = 88). We used a minimum-distance clas-

sifier (based on Pearson’s correlation score), where a test set sample would be

classified as the condition whose centroid is closest to in the multivariate activa-

tion pattern space [Mur et al., 2009]. P-values were calculated using a binomial

test. Statistical significance was assessed using a False Discovery Rate (FDR)

corrected threshold of p<0.05 across all 360 regions.

3.3.10 fMRI decoding: Identifying task rule representa-

tions

To identify the brain areas that contained task rule information, we performed a

12-way decoding analysis on the activation patterns for each of the 12 task rules.

We used the same decoding and cross-validation scheme as above (for identify-

ing sensory stimulus representations). However, we ran the decoding analyses

on all 360 parcels, given previous evidence that task rule information is widely

distributed across cortex [Ito et al., 2017]. P-values were calculated using a bino-

mial test. Statistical significance was assessed using an FDR-corrected threshold

of p<0.05 across all 360 regions.



74

3.3.11 fMRI activation analysis: Identifying motor re-

sponse activations

To identify the brain areas/vertices that contained motor response information,

we performed univariate analyses to identify the finger press activations in mo-

tor cortex. We performed two univariate activation contrasts, identifying index

and middle finger activations on each hand. For each hand, we performed a

two-sided group paired (by subject) t-test contrasting index versus middle finger

representations. We constrained our analyses to include only vertices in the so-

matomotor network. Statistical significance was assessed using an FDR-corrected

p<0.05 threshold, resulting in a set of vertices that were selective to button press

representations in motor cortex (see Figure 3.4c).

We subsequently performed a decoding analysis on these sets of vertices (see

Figure 3.7h). We decoded finger presses on each hand separately. Note that this

decoding analysis is circular, since we had already determined that the selected

vertices contained relevant information with regards to motor responses (via a

univariate t-test). However, this provided an important benchmark to evaluate

how well we could predict motor button responses using only context and stimulus

activations (described below) relative to cross-validation of motor button response

activations (i.e., a noise ceiling). Similar to the previous decoding analyses, we

performed a leave-8-out cross validation scheme using a minimum-distance classi-

fier, bootstrapping training samples for each fold. Moreover, because the decoding

analysis was limited to a single ROI (as opposed to across many parcels/ROIs),

we were able to compute confidence intervals (by bootstrapping cross-validation

folds) and run nonparametric permutation tests since it was computationally

tractable. We ran each cross-validation scheme 1000 times to generate confidence

intervals. Null distributions were computed by randomly permuting labels 1000

times. P-values were computed by comparing the null distribution against the
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mean of the bootstrapped accuracy values.

3.3.12 fMRI representational similarity analysis: Identi-

fying conjunction hubs

We compared the representational geometry of the ANN’s hidden layer to the

representational geometry of each brain parcel. This was possible because we

extracted the exact same set of activation patterns (e.g., activations for task

rules and sensory stimuli) in empirical data as our ANN model, enabling a direct

comparison of representations. The representational geometry was estimated as

the representational similarity matrix (RSM) of all task rules and sensory stimuli

conditions.

We first estimated the empirical RSMs for every brain parcel separately in

the Glasser et al. (2016) atlas. This was done by comparing the activation

patterns of each of the 28 task conditions using the vertices within each parcel

(12 task rule activations, 16 sensory stimulus activations). We then applied a

Fisher’s z-transform on both the empirical and ANN’s RSMs, and then estimated

the Spearman’s rank correlation between the Fisher’s z-transformed ANN and

empirical RSMs (using the upper triangle values only). This procedure was per-

formed on the RSM of every brain parcel, providing a similarity score between

each brain parcel’s and the ANN’s representational geometry. For our main anal-

ysis, we selected the top 10 parcels with highest similarity to the ANN’s hidden

layer. However, we also performed additional analyses using the top 20, 30, and

40 parcels.

3.3.13 Inter-layer FC weight estimation

We estimated the inter-layer resting-state FC to identify weights between re-

gions and layers in our empirical model. This was similar to a previously
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published approach which identified FC weights between pairs of brain regions

[Ito et al., 2017]. This involved identifying FC weight mappings between the task

rule input layer to the hidden layer, sensory stimulus input layer to the hidden

layer, and the hidden layer to the motor output layer. For each inter-layer FC

mapping, we estimated the vertex-to-vertex FC weights using principal compo-

nents linear regression. We used principal components regression because most

layers had more vertices (i.e., predictors) than samples in our resting-state data

(resting-state fMRI data contained 1065 TRs). For all inter-layer FC estimations,

we used principal components regression with 500 components. Specifically, inter-

layer weights were estimated by fitting principal components to the regression

equation

Y = β0 +
500∑
i

Xiβi + ε (3.3)

where Y corresponds to the t x n matrix with t time points and n vertices (i.e., the

target vertices to be predicted), β0 corresponds to a constant term, βi corresponds

to the 1 x n matrix reflecting the mapping from the component time series onto

the n target vertices, Xi corresponds to the t x 1 component time series for

component i, and ε corresponds to the error in the regression model. Note that

X corresponds to the t x 500 component matrix obtained from a PCA on the

resting-state data from the source layer. Also note that these loadings onto these

500 components are saved for later, when task activation patterns from a source

layer are projected onto a target layer. The loadings project the original vertex-

wise task activation patterns in the source layer onto a lower-dimensional space

enabling faster computations. A similar approach was used in a previous study

[Anzellotti et al., 2016]. FC weights were computed for each individual separately,

but then averaged across subjects to obtain a group inter-layer weight FC matrix.

Note that in some cases, it was possible for overlap between the source and
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target vertices. (For example, some hidden area vertices may have coincided with

the same vertices in the context layer.) In these cases, these overlapping vertices

were excluded in the set of predictors (i.e., removed from the source layer) in the

regression model.

3.3.14 Simulating sensorimotor transformations with

multi-step activity flow mapping

We generated predictions of motor responses (in motor cortex) by assessing the

correct motor response given a specific task context and sensory stimulus acti-

vation pattern (for additional details see Supplementary Figure B.1). For each

subject, we simulated 960 trials. This consisted of the 64 unique task contexts

paired with 15 randomly sampled stimulus combinations. For a trial, the task

context input activation pattern was obtained by extracting the activation vector

for the logic, sensory, and motor rule, and computing the mean rule vector (i.e.,

additive compositionality). The sensory stimulus input activation pattern was

obtained by extracting the relevant sensory stimulus activation pattern. (Note

that for a given trial, we only extracted the activation pattern for the sensory

feature of interest. For example, if the rule was “Red”, only color activation pat-

terns would be extracted, and all other stimulus activations would be set to 0.)

Thus, the context and sensory stimulus activation patterns could be defined as

Xcontext = (Rlogic +Rsensory +Rmotor)/3 (3.4)

Xstimulus = Xsensory (3.5)

where Xcontext corresponds to the input activation pattern for task context, Rlogic

corresponds to extracted logic rule activation pattern (e.g., “Both”, “Not Both”,
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“Either”, “Neither”) obtained from the task GLM, Rsensory corresponds to the

extracted sensory rule activation pattern from the task GLM, Rmotor corresponds

to the extracted motor rule activation pattern from the task GLM, and Xstimulus

corresponds to the extracted sensory stimulus activation pattern that is indicated

by the task context.

Xcontext and Xstimulus reflect the input activation patterns that were used to

predict motor response conditions. Importantly, these input activation patterns

were both spatially and representationally distinct from the motor response ac-

tivations (in motor cortex). They were representationally distinct because these

input activation patterns contained no information about the motor response re-

quired for a correct response. (In addition, we also used cross-validation to predict

the motor response of a held-out subject, described below).

We used the inter-layer FC weight maps to project Xcontext and Xstimulus onto

the hidden layer vertices. The projections (or predicted activation patterns on the

hidden layer) were then thresholded to remove any negative BOLD predictions.

This thresholding is equivalent to a rectified linear unit (ReLU), a commonly used

nonlinear function in artificial neural networks [Yang and Wang, 2020]. Thus, the

hidden layer was defined by

Xhidden = fr(XcontextWcontext2hidden +XstimulusWstimulus2hidden) (3.6)

where Xhidden corresponds to the predicted hidden layer activation pattern, fr

is a ReLU function (i.e., fr(x) = max(x, 0)), Wcontext2hidden corresponds to the

inter-layer resting-state FC weights between the context and hidden layer, and

Wstimulus2hidden corresponds to the inter-layer resting-state FC weights between

the stimulus and hidden layer. Note that all inter-layer FC weights (Wx) were

computed using a principal component regression with 500 components. This

requires that the vertex-wise activation space (e.g., Xcontext) be projected onto



79

component space such that we define

Wx = UŴpc (3.7)

where U corresponds to an m x 500 matrix which maps the source layer’s m

vertices into component space, and Ŵpc is a 500 x n matrix that maps the com-

ponents onto the target layer’s n vertices. (Note that Ŵpc corresponds to the

regression coefficients from equation 3.3, and that both U and Ŵpc are estimated

from resting-state data.) Thus, Wx is an m x n transformation from a source

layer’s spatial pattern to a target layer’s spatial pattern that is achieved through

principal component regression on resting-state fMRI.

Finally, we generated a predicted motor output response by computing

Xoutput = XhiddenWhidden2output (3.8)

where Xoutput corresponds to the predicted motor response (in motor cortex), and

Whidden2output corresponds to the inter-layer resting-state FC weights between the

hidden and output layer. The full model computation can thus be formalized as

Xoutput = fr(XcontextWcontext2hidden +XstimulusWstimulus2hidden)Whidden2output (3.9)

Xoutput only yields a predicted activation pattern for the motor cortex for a

given context and stimulus input activation pattern. To evaluate whether Xoutput

could successfully predict the correct motor response for a given trial, we con-

structed an ideal ‘task solver’ that would indicate the correct motor response on

a given trial (Supplementary Figure B.1). This solver would then be used to

extract the correct motor response activation pattern, and compare the predicted

motor cortex activation with the actual motor cortex activation pattern.



80

We simulated 960 trials per subject, randomly sampling context and stimulus

input activation patterns. Because we sampled across the 64 task contexts equally

(15 trials per context), the correct motor responses were equally balanced across

960 trials. Thus, of the 960 simulated trials for each subject, 240 trials yielded

a left middle, left index, right middle, and right index response each. Each of

these 240 predicted motor response patterns were subsequently averaged across

trials such that we only obtained 4 predicted motor response patterns for each

subject. Averaging was performed to remove any potential biases that a trial may

have (e.g., a task context with the ‘left middle’ motor rule might be more biased

towards a ‘left middle’ motor response).

3.3.15 Statistical and permutation testing of predicted

motor response activations

The simulated empirical model generated predicted activations of motor acti-

vations in motor cortex. However, the predictions would only be interesting if

they resembled actual motor response activations directly estimated during the

response period via task GLM. In other words, without a ground truth refer-

ence to the actual motor response activation pattern, the predicted activation

patterns would hold little meaning. The simulated empirical model generated

four predicted activation patterns corresponding to predicted motor responses

for each subject. We also had four actual activation patterns corresponding to

motor responses that were extracted from the motor response period using a

standard task GLM for each subject. To test whether the predicted activation

patterns actually conformed to the actual motor response activation patterns,

we trained a decoder on the predicted motor response activations and tested on

the actual motor response activations of held-out subjects. We used the same

cross-validation decoding scheme as before, with the exception that training was
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exclusively performed on predicted activation patterns of 88 subjects, while test-

ing was exclusively performed on the actual activation patterns of 8 held-out

subjects. Training a decoder on the predicted activations and decoding the ac-

tual activations made this analysis consistent with a prediction perspective – we

could test if, in the absence of any motor task activation information, the ENN

could predict actual motor response activation patterns that correspond to be-

havior. All other details (e.g., minimum-distance classifier, leave-8-subjects out

cross-validation) remained the same.

Statistical significance was assessed using permutation tests. We permuted

the labels of the predicted motor responses while testing on the actual motor

responses. Null distributions are visualized in gray (Figure 3.7h). Statistical

significance was assessed by comparing the mean of the bootstrapped predicted-

to-actual accuracy scores, and comparing them against a non-parametric p-value

that was estimated from the null distribution. Statistical significance was defined

by a p<0.05 threshold.

3.4 Results

3.4.1 Training an ANN to perform the C-PRO cognitive

task paradigm

The guided activation theory [Miller and Cohen, 2001] hypothesizes that sensory

stimulus and task context information integrate in association cortex to form con-

junctive (conditional association) representations (Figure 3.1a,c). We began by

developing an ANN that formalizes the guided activation theory (Figure 3.1b),

characterizing the computational properties of context-dependent sensorimotor

transformations. Due to its comprehensive assessment of rule-guided behavior

across 64 task contexts, we used the Concrete Permuted Rule Operations (C-

PRO) task paradigm (Figure 3.2a). Briefly, the C-PRO paradigm is a highly
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context-dependent cognitive control task, with 12 distinct rules that span three

rule domains (four rules per domain; logical gating, sensory gating, motor se-

lection). These rules were permuted within rule domains to generate 64 unique

task contexts, and up to 16384 unique trials possibilities (with various stimulus

pairings; see Methods). The ANN included an input, hidden, and output layer

(Figure 3.2b). The model was trained on all 64 C-PRO task contexts until the

model achieved 99.5% accuracy (see Methods).
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Figure 3.2: Training an ANN on a context-dependent task to identify representational transfor-
mations during cognitive computations. a) The Concrete Permuted Rule Operations (C-PRO)
task paradigm [Ito et al., 2017]. For a given trial, subjects were presented with a task rule set
(encoding), in which they were presented with three rules sampled from three different rule do-
mains (i.e., logical gating, sensory gating, and motor selection domains). After a delay period,
subjects applied the task rule set to two consecutively presented sensory stimuli (simultaneous
audio-visual stimuli) and responded accordingly with button presses (index and middle fingers
on either hand). We employed a miniblock design, in which for a given task rule set, three
trials were presented separated by an inter-trial interval (1570ms). See Methods for additional
details. b) We trained an ANN on the C-PRO paradigm. c) Training an ANN on the C-PRO
task paradigm enabled us to identify the representational transformations that occur during
a given trial, from stimulus to response. Transformations in representational content can be
observed by the changes to the representational geometry (indicated by the representational
similarity matrix) at each layer of the ANN [Kriegeskorte and Kievit, 2013]. Note that the di-
agonal matrices in the input and output layers serve to indicate that each feature (i.e., task rule,
stimulus feature, or motor responses) was decodable. The RSA on the hidden layer yielded a
28 x 28 matrix consisting of 12 task rules (spanning all three rule domains) and the 16 stimulus
pairings (spanning all sensory dimensions) (see Methods).
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We were specifically interested in identifying the conjunctive representations

that integrated stimulus and context information in the hidden layer, since

these are the critical representations for selecting the correct motor responses

[Kikumoto and Mayr, 2020]. To identify these conjunctive representations, we

performed a representational similarity analysis (RSA) on the hidden layer of

the ANN (Figure 3.2c) [Kriegeskorte et al., 2008]. The representational similar-

ity matrix (RSM) of the hidden layer consisted of 28 task features: 12 task rules

(which spanned the 3 rule domains), and 16 stimulus pairings (which spanned

each sensory dimension). The hidden layer’s RSM revealed the representational

geometry that the ANN learned to perform the task correctly. (Note that we

illustrated the RSMs at the input and output layers, though these RSMs merely

indicate that input task rules/stimuli and output responses were decodable.) The

analysis of the ANN at each layer provided a representational blueprint to identify

similar representations in human fMRI data during the same task.

3.4.2 Identifying brain areas containing task-relevant in-

formation

Using RSA to map the representational geometry of the ANN to the fMRI data,

we first identified the set of cortical areas that contained decodable sensory stimu-

lus representations (Figure 3.3a). Because our stimuli were multimodal (audiovi-

sual), this involved the identification of surface vertices that contained the relevant

visual (color and orientation) and auditory (pitch and continuity) dimensions.

We performed a four-way multivariate pattern analysis [Norman et al., 2006] (us-

ing a minimum-distance classifier [Mur et al., 2009]) to decode stimulus pairs for

each of the four stimulus dimensions (e.g., red-red vs. red-blue vs. blue-red vs.

blue-blue). Decoding analyses were performed within each brain parcel using the
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Glasser et al. atlas [Glasser et al., 2016a], using vertices within each parcel as de-

coding features. For all decoding analyses, statistical thresholding was performed

using a one-sided binomial test (greater than chance=25%), and corrected for

multiple comparisons using an FDR-corrected p<0.05 threshold. We collectively

defined the units in the ENN (i.e., vertices) that contained sensory stimulus in-

formation to be the set of all vertices within the parcels that contained decodable

stimulus information (Figure 3.3f; Supplementary Tables 1-4).

Figure 3.3: Identifying sensory stimulus input units (vertices) of the ENN using multivariate
pattern classification analysis. a) We identified the sensory stimulus representations in empirical
data using multivariate pattern decoding of stimulus activations. This corresponded to the
sensory input component of the guided activation theory. To decode visual features (i.e., color
and orientation stimulus features) we decoded the vertices within each parcel in the visual
network using a recent functional network atlas [Ji et al., 2019]. To decode auditory features
(i.e., pitch and continuity) we decoded the vertices within each parcel in the auditory network
(see Methods). b) Decoding of color features using task activation estimates (from a task GLM)
during the stimulus presentation period of the C-PRO task. Chance is 25%; cortical maps were
thresholded using an FDR-corrected threshold of p<0.05. c) 4-way decoding of orientation
features. d) 4-way decoding of auditory pitch features. e) 4-way decoding of auditory continuity
features. f) The ENN sensory units, which were derived from a mask of the vertices that could
successfully decode stimulus features.

Next, we performed a 12-way decoding analysis – isolated to the fMRI activa-

tion during the task instruction period – across all 12 task rules to identify the set

of vertices that contained task rule information. Our previous study illustrated

that rule representations are widely distributed across cortex [Ito et al., 2017],
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such that we tested for rule representations in every parcel in the Glasser et al.

atlas (360 total parcels [Glasser et al., 2016a]). We again found that task rule rep-

resentations were widely distributed across cortex (Figure 3.4b; FDR-corrected

p<0.05 threshold; Supplementary Table 6). The set of vertices that survived sta-

tistical thresholding were included as “task rule” input units in the ENN (Figure

3.1c).

Figure 3.4: Identifying ENN units (i.e., fMRI vertices) containing relevant task rule (encoding)
and motor response (behavior) representations. a) We identified the task rule inputs and motor
output representations in empirical data using MVPA and univariate task activation contrasts.
b) A 12-way decoding of each of the task rules (across the 3 rule domains) using task activations
(estimated from a task GLM) during the encoding period of the C-PRO task. We applied this
12-way decoding to every parcel, given that task rule representations have been previously
shown to be widely distributed across cortex [Ito et al., 2017]. Chance decoding was 8.33%;
statistical maps were thresholded using an FDR-corrected p<0.05 threshold. c) To identify
the motor/output representations, we performed a univariate contrast, contrasting the middle
versus index finger response activations for each hand separately. Finger response activations
were estimated during the response period, and univariate contrasts were performed on a vertex-
wise basis using all vertices within the somatomotor network [Ji et al., 2019]. Contrast maps
were statistically thresholded using an FDR-corrected p<0.05 threshold. The resulting finger
representations matched the placement of finger representations in the well-established somato-
motor homunculus in the human brain.

The C-PRO task paradigm required button presses (using index and middle

fingers on either hand) to indicate task responses. Thus, to isolate finger rep-

resentations in empirical neural data, we performed a univariate contrast of the

vertex-wise response-evoked activation estimates during index and middle finger

response windows (see Methods). For each hand, we performed a two-sided paired

t-test (paired across subjects) for middle versus index finger responses in the so-

matomotor network [Ji et al., 2019]. Contrast maps were corrected for multiple

comparisons (comparisons across vertices) using an FDR-corrected threshold of
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p<0.05 (Figure 3.4c). Vertices that survived statistical thresholding were then

selected for use as output units in the ENN (Figure 3.1c).

3.4.3 Identifying conjunction hubs

We next sought to identify conjunctive representations that could plausibly imple-

ment the transformation of inputs to outputs across the 64 task contexts (Figure

3.5a). Using the ANN trained on our experimental paradigm (C-PRO) (Figure

3.2c), we mapped the ANN’s hidden layer (Figure 3.5b) to empirical fMRI data

using RSA. The ANN’s hidden layer necessarily contains the conjunction of task

rule and sensory stimulus information, providing a blueprint to identify conjunc-

tion hubs – brain regions with analogous conjunctive representations in empirical

fMRI data.
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Figure 3.5: Identifying conjunction hubs: brain areas (vertices) that contain task-relevant con-
junctions of sensory stimulus and task rule information. a) The guided activation theory hy-
pothesized that there were a specific set of association (or hidden) areas that integrated sensory
stimulus and task context information to select appropriate motor response representations.
Computationally, this corresponded to the hidden layer in our ANN implementation (Figure
3.2b). b) We therefore used the representational similarity matrix (RSM) of the ANN’s hidden
layer as a blueprint to identify analogous conjunctive representations in empirical data. c) We
constructed RSMs for each brain parcel (using the vertices within each parcel as features). We
evaluated the correspondence between the representational geometry of the ANN’s hidden layer
and each brain parcel’s representational geometry. Correspondence was assessed by taking the
correlation of the upper triangle of the ANN and empirical RSMs. d) The representational
similarity of ANN hidden units and each brain parcel. e) We showed the top 10 regions with
highest similarity to the ANN hidden units. f) The full ENN architecture for the C-PRO task.
We identified the vertices that contained task-relevant rule, sensory stimulus, conjunctive, and
motor output representations.

To evaluate the similarity of the ANN’s hidden layer representational geometry

with each brain parcel, we computed the similarity (using Spearman’s correlation)

of the ANN’s RSM with the brain parcel’s RSM (Figure 3.5c). This resulted in

a cortical map, which showed the representational similarity between each brain

region and the ANN’s hidden layer (Figure 3.5d). For our primary analysis, we

selected the top 10 parcels with highest similarity to the ANN’s hidden layer

to represent the set of spatial units that contain conjunctive representations in

the ENN (Figure 3.5e). The conjunction hubs were most strongly represented

by the cingulo-opercular network, a network previously reported to be involved

in task set maintenance (Supplementary Figure B.2; Supplementary Table 5)
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[Power and Petersen, 2013]. However, we also performed ENN simulations using

the top 20, 30, and 40 regions with highest similarity to the ANN hidden layer

below.

3.4.4 Task-performing neural network simulations via em-

pirical connectivity

The previous sections provided the groundwork for constructing an ENN model

from empirical data. After estimating the connectivity weights between the sur-

face vertices between ENN layers using resting-state fMRI (see Methods), we

next sought to evaluate whether we could use this ENN to produce representa-

tional transformations sufficient for performing the C-PRO paradigm. This would

demonstrate that the empirical input representations and the estimated connec-

tivity patterns between ENN layers are sufficient to approximate the cognitive

computations involved in task performance.

The primary goal was to predict the motor response pattern (i.e., behavior)

yielding correct task performance. The only inputs to the model were a combina-

tion of activation patterns for a specific task context (rule combination) and sen-

sory stimulus pair sampled from empirical data (Figure 3.6a). The outputs of the

model were the predicted motor response activation pattern in motor cortex that

should correspond to the correct button press (Figure 3.6c). High correspondence

between the predicted and actual motor activation patterns would constitute an

empirical demonstration of representational transformation in the brain, where

task rule and sensory stimulus information is transformed into task-appropriate

behavioral activation patterns.
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Figure 3.6: Simulating context-dependent sensorimotor transformations with empirically-
estimated task activations and inter-unit functional connectivity estimates. We constructed the
ENN by identifying the vertices that contained task rule, sensory stimulus, and motor response
representations (via decoding) and by estimating the resting-state FC weights between them. a)
The input layer, consisting of vertices with decodable task rule information and sensory stimulus
representations. b) Through activity flow mapping, input representations were mapped onto
surface vertices in conjunction hubs. The activity flow-mapped vertices were passed through a
nonlinearity, which removed any negative values. This threshold was chosen given the difficulty
in interpreting predicted negative BOLD values. c) The predicted conjunctive representations
were then activity flow-mapped onto the motor output vertices, generating a predicted motor
activation pattern. d) These predicted motor activations were then tested against the actual
motor response activations of other subjects using a leave-8-subject out cross validation scheme.
A decoder was trained on the predicted motor response activations and tested on the actual
motor response activations of the held-out cohort (see Methods and Supplementary Figure B.1
1). e) An equation summarizing the ENN model’s computations.

Simulating activity flow in the ENN involved first extracting the task rule

activation patterns (inputs) for a randomly generated task context (see Methods

and Supplementary Figure B.1). Independently, we sampled sensory stimulus

activation patterns for each stimulus dimension (color, orientation, pitch, con-

tinuity) (Figure 3.3). Then, using activity flow mapping with resting-state FC

weights, we projected the activation patterns from the input vertices onto the

conjunction hub vertices (Figure 3.6b). The predicted conjunction hub activa-

tion pattern was then passed through a simple rectified linear function, which

removed any negative values (i.e., any values lower than resting-state baseline;
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see Methods). Thresholded values were then projected onto the output layer

vertices in motor cortex (Figure 3.6c), yielding a predicted response activation

pattern. The sequence of computations performed to generate a predicted mo-

tor activation pattern (Figure 3.6a-c) is encapsulated by the equation in Figure

3.6e. Thus, predicted motor activation patterns can be generated by randomly

sampling different task context and sensory stimuli combinations for each subject.

While the above procedure yielded a predicted activation pattern in the mo-

tor output layer, these predictions may not actually yield meaningful activation

patterns. Thus, we evaluated whether the predicted motor activation patterns

would accurately predict the actual motor response activation pattern extracted

(via GLM) during the response period. Activity flow simulations generated pre-

dicted motor responses for each subject (Supplementary Figure B.1). This yielded

four predicted motor response activations per subject, one for each behavioral re-

sponse. Importantly, the predicted motor response activations were generated

using only input task activations from the task encoding period and stimulus

presentation period (Figure 3.6a). Independently, each subject also had four cor-

responding real motor response activations, which were estimated from the task

GLM during the response period. Using a leave-8-subjects out cross-validation

scheme, we trained a decoder on the four predicted motor responses and decoded

the four actual motor responses (Figure 3.6c,d). Training a decoder on the pre-

dicted activations and decoding the actual activations (rather than vice versa)

made this analysis more in line with a prediction perspective – we could test if,

in the absence of any motor task activation information, the ENN could predict

actual motor response activation patterns that correspond to behavior.

We note that this decoding analysis is highly non-trivial, given that the pre-

dicted motor responses are independent from the test set (actual motor responses)

in three ways: 1) The predicted motor responses were generated from task rule

and stimulus activation patterns, which (due to temporal separation in the task
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paradigm and counterbalancing) were statistically independent from the motor

responses; 2) The motor response predictions were generated via activity flow

mapping, and thus from a spatially independent set of vertices (see Methods); 3)

The actual motor responses in the test set were sampled from independent sub-

jects. By simulating neural network computations from stimulus and task context

activations to predict motor response, we accurately decoded the correct finger

response on each hand separately: decoding accuracy of right hand responses

= 64.00%, non-parametric p=0.004; decoding accuracy of left hand responses =

79.81%, non-parametric p<0.001. These results demonstrate that task rule and

sensory stimulus representations can be transformed into motor output represen-

tations by simulating multi-step neural network computations using activity flow

mapping on empirical fMRI data.

3.4.5 The importance of the conjunctive representations

We next evaluated whether specific components of the ENN model were necessary

to produce accurate stimulus-response transformations. We first sought to eval-

uate the role of the conjunction hubs (hidden layer) in model performance. This

involved re-running the ENN with the conjunction hubs removed (Figure 3.7c),

which required resting-state FC weights to be re-estimated between the input

and motor output layer directly. We found that the removal of conjunction hubs

severely impaired task performance to chance accuracy (RH accuracy=49.05%,

p=0.54; LH accuracy=50.14%, p=0.46; Figure 3.7h,i). This illustrated the im-

portance of conjunction hub computations in producing the conjunctive represen-

tations required to perform context-dependent stimulus-response mappings.
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Figure 3.7: Systematic alteration of ENN model architecture verifies validity of “full S-R model”
results. a) We first benchmarked the motor response decoding accuracy for each hand separately
using a standard cross-validation scheme on motor activation patterns for each hand (tested
across subjects). This standard motor decoding was done independently of modeling sensori-
motor transformations. b) The full stimulus-response model, taking stimulus and context input
activations to predicting motor response patterns in motor cortex. c) The ENN model after
entirely removing the hidden layer. d) The ENN model, where we randomly sampled regions in
the hidden layer (conjunction hubs) 1000 times and estimated task performance. e) The ENN
model after removing the nonlinearity (ReLU) function in the hidden layer. f) The ENN model
after lesioning connections from the task context input activations. g) The ENN model, where
we shuffled the connectivity patterns from the stimulus and context layers 1000 times. h) Bench-
marking the performances of all model architectures. Accuracy distributions were obtained by
bootstrapping samples (leave-8-out cross-validation scheme and randomly sample within the
training set). Boxplot whiskers reflect the 95% confidence interval. Grey distributions indicate
the null distribution generated from permutation tests (permuting labels 1000 times). (*** =
p<0.001; ** = p<0.01; * = p<0.01) i) Summary statistics of model performances. Reported
accuracies are the mean of the bootstrapped samples.
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We next replaced conjunction hubs with randomly sampled parcels in em-

pirical data. This assessed the importance of using the ANN’s hidden layer

RSM to identify conjunction hubs (Figure 3.7d). We sampled random parcels

1000 times, recomputing the inter-layer vertex-wise FC each time. The distri-

bution of randomly selected conjunction hubs did not yield task performance

accuracies that were statistically different than chance for both hands (RH mean

accuracy=50.87%, p=0.47; LH mean accuracy 50.85%, p=0.44; Figure 3.7h,i).

However, the overall distribution had high variance, indicating that there may

be other sets of conjunction hubs that would yield above-chance (if not better)

task performance. However, compared to the conjunction hubs we identified by

matching empirical brain representations with ANN representations, we found

that the ANN-matched conjunction hubs performed better than 85.2% of all ran-

domly selected conjunction hubs for RH responses, and greater than 97.7% of all

randomly selected conjunction hubs for LH responses.

In addition, we evaluated whether the precise number of hidden regions was

critical to task performance. We ran the full S-R model, but instead of using only

the top 10 regions with highest similarity to the ANN’s hidden layer’s represen-

tations, we constructed ENN variants containing the top 20, 30, and 40 hidden

regions. We found that we were able to reproduce correct task performance us-

ing 20 hidden regions (RH accuracy=63.90%, p<0.001; LH accuracy=76.95%,

p<0.001). Using 30 hidden regions yielded reduced yet above-chance accuracies

for RH responses, but not for LH responses (RH accuracy=59.83%, p=0.024; LH

accuracy=43.54%, p=0.917). Inclusion of an additional 10 hidden regions (total-

ing 40 hidden regions) did not yield above-chance predictions of motor responses

for either hand. These results suggest that conjunction hubs were better identi-

fied the greater the similarity of a region’s representational geometry was to that

of the ANN’s hidden layer.
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3.4.6 The importance of nonlinearities when combining

rule and stimulus information

We next removed the thresholding of negative BOLD values (i.e., those lower

than resting baseline) in the hidden layer. This is equivalent to removing the

nonlinearity (ReLU) in an ANN (Figure 3.7e). We found that the removal of the

ReLU function significantly impaired model performance (RH accuracy=47.74%,

p=0.70; LH=47.90%, p=0.692; Figure 3.7h,i). This is likely due to the fact

that context-dependent sensorimotor transformations require a nonlinear map-

ping between stimulus-response pairs, as predicted by prior computational studies

[Cohen et al., 1990, Cohen et al., 2004].

3.4.7 Removing task context impairs task performance

We next sought to evaluate the importance of including task rule information in

model performance. To remove context information, we lesioned all connections

from the rule input layer to the hidden layer. This was achieved by setting all

resting-state FC connections from the context input layer to 0 (Figure 3.7f). We

ran the model on the exact same set of tasks, and found that as hypothesized,

model performance was at chance without task context information (RH accu-

racy=50.00%, p=0.44; LH=50.00%, p=0.47; Figure 3.7h,i). This illustrated that

the model implemented a representational transformation from task context and

sensory stimulus representations to the correct motor responses.
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3.4.8 The influence of specific functional network topog-

raphy

We next evaluated whether the empirically-estimated connectivity topography

was critical to successful task performance. This involved shuffling the connectiv-

ity weights within the context and stimulus input layers 1000 times (Figure 3.7g).

While we hypothesized that the specific resting-state FC topography would be

critical to task performance, we found that shuffling connectivity patterns yielded

a very high variance distribution of task performance (Figure 3.7h). While the

mean across all connectivity shuffles were approximately at chance for both hands

(RH mean accuracy=50.90%, p=0.45; LH mean accuracy=50.39%, p=0.48), we

found that there were some connectivity configurations that would significantly

improve task performance, and other connectivity configurations that would yield

significant below chance task performance. Notably, the FC topography that was

estimated from resting-state fMRI (the full S-R model, without shuffling; Figure

3.7b) performed greater than 85.3% of all connectivity reconfigurations in RH

responses, and greater than 97.7% of all connectivity reconfigurations for LH re-

sponses. This indicates that while there may exist better connectivity patterns

for task performance, the weights derived from resting-state fMRI were sufficient

to model correct task performance. We note that while the distribution of per-

formance accuracies when shuffling FC weights and randomly sampling hidden

layers are quite similar, these two permutation analyses control for fundamentally

distinct properties of the ENN: specificity of FC topography versus specificity of

conjunction hubs.

3.5 Discussion

Characterizing how different cognitive representations are transformed through-

out the brain would fill a critical gap in understanding how the brain implements
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cognitive computations [Brette, 2019, De-Wit et al., 2016, Ito et al., 2020b]. To

address this gap, we built a task-performing ENN from empirical data to charac-

terize representational transformations during a cognitive control task. First, we

performed representational similarity analysis on an ANN trained to perform an

analogous task. Second, we used the representations identified in ANNs to find

analogous representations in empirical data during the same task. Importantly,

this enabled us to characterize how rule encoding and stimulus representations

were selectively integrated to produce conjunctive representations. Finally, using

activity flow mapping, we found that incoming sensory and task rule representa-

tions were transformed via conjunction hubs to produce above-chance behavioral

predictions of outgoing motor responses. These findings suggest that flexible cog-

nitive control is implemented by guided activations, as originally suggested by

the guided activation theory.

The present results build on prior findings emphasizing the role of cog-

nitive control networks (CCNs) in highly flexible cognition [Cole et al., 2017,

Dosenbach et al., 2007, Power and Petersen, 2013, Waskom and Kiani, 2018].

The present results are largely consistent with previous accounts, showing that

the task rule layer and conjunction hubs are most strongly affiliated with CCNs

(e.g., cingulo-opercular and frontoparietal networks) (Supplementary Figure B.2)

[Dosenbach et al., 2007, Power and Petersen, 2013]. (However, we note that

other functional networks also represented task rules, though to a lesser ex-

tent.) Several studies of rapid instructed task learning found that CCNs rep-

resent rules compositionally in activity [Cole et al., 2015, Reverberi et al., 2012,

Waskom et al., 2014] and FC [Cocuzza et al., 2020, Cole et al., 2013] pat-

terns, which are considered essential for flexible reuse of task components

[Cole et al., 2013, Reverberi et al., 2012, Yang et al., 2019]. The present results

also demonstrate that the CCN and other networks use compositional rule repre-

sentations, since the ENN rule inputs contained three rules whose fMRI activity
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patterns were simply added compositionally to create the full task context. Criti-

cally, we found that these compositional codes were not enough to enable flexible

task performance – rather, conjunctive representations were required to inter-

act non-linearly with these compositional representations. Moreover, our results

showed that without conjunctive representations producing conditional interac-

tions (e.g., through conjunction hub lesioning), the task performance of the ENN

was substantially impaired. It will be important for future research to determine

the exact relationship between compositional and conjunctive representations in

implementing flexible cognitive programs.

The ENN characterized the representational transformations required to

transform task input activations to output activations (in motor cortex) directly

from data. Model parameters, such as unit identification and inter-unit con-

nectivity estimation, were estimated without optimizing for task performance.

This contrasts with mainstream machine learning techniques that iteratively train

ANNs that directly optimize for behavior [Song et al., 2016, Yamins et al., 2014,

Yang and Wang, 2020]. Our approach enabled the construction of functioning

ENNs with above-chance task performance without optimizing for behavior; in-

stead, we were able to derive parameters from empirical neural data alone. These

results suggest that the human brain’s intrinsic network architecture, as estimated

with human fMRI data, is informative regarding the design of task-performing

functioning models of cognitive computation.

We showed that the specific FC topography could predict inter-area trans-

formations. In contrast, shuffling these specific inter-area FC topographies

yielded ENNs with highly variable task performances, suggesting the compu-

tational utility of the empirically-estimated FC patterns. Previous work has il-

lustrated that the functional network architecture of the brain emerges from a

structural backbone [Deco et al., 2013a, Demirtaş et al., 2019, Wang et al., 2019,

Tschopp et al., 2018, Hagmann et al., 2008]. Building on this work, we recently
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proposed that the functional network architecture of the brain can be used to

build network coding models – models of brain function that describe informa-

tion encoding and decoding processes constrained by empirically-estimated con-

nectivity [Ito et al., 2020b]. Related proposals have also been suggested in the

electron microscopy connectomics literature, suggesting that structural wiring di-

agrams of the brain (e.g., in drosophila) can inform functional models of biological

systems (e.g., the drosophila’s visual system) [Litwin-Kumar and Turaga, 2019,

Tschopp et al., 2018]. Consistent with these proposals, our findings establish that

the intrinsic functional network architecture in humans provides a meaningful

foundation from which to implement cognitive computations.

Despite strong evidence that the estimated functional network model can per-

form tasks, there are several theoretical and methodological limitations. First,

though we perform numerous control analyses by either lesioning or altering the

ENN architecture (Figure 3.7), the space of alternative possible models that can

potentially achieve similar (if not better) task performances is large. For exam-

ple, here we assumed only a single hidden layer (one layer of ‘conjunction hubs’).

However, it is possible – if not probable – that such transformations actually

involve a large sequence of transformations, similar to how the ventral visual

stream transforms visual input into object codes, from V1 to inferior temporal

cortex [Khaligh-Razavi and Kriegeskorte, 2014, Yamins et al., 2014]. It is there-

fore likely that the identification of conjunction hubs is likely dependent on both

specific task demands and the targeted level of analysis (e.g., neuronal circuits

versus large-scale functional networks). Here we opted for the simplest possible

network model that involved conjunction hubs at the level of large-scale func-

tional networks. Starting from this simple model allowed us to reduce potential

extraneous assumptions and model complexity (such as modeling the extraction

of stimulus features from early visual areas) which likely would have been neces-

sary in more complex and detailed models. However, the current findings provide
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a strong foundation for future studies to unpack the mechanisms of finer-grained

computations important for adaptive behavior.

Another assumption in the ENN was that activations were guided by addi-

tive connectivity weights. Additive connectivity weights assume inter-area pre-

dicted activations are the sum of source activations weighted by connections. One

potential alternative (among others) would have been multiplicative guided ac-

tivations; weighted activations that are multiplied (rather than summed) from

incoming areas, which has been previously proposed as a potential alternative to

designing ANNs [Wu et al., 2016]. However, several recent studies have suggested

that inter-area activations are predicted via additive connectivity weights in

both human fMRI [Cole et al., 2016a, Ito et al., 2017], the primate visual system

[Bashivan et al., 2019], and the drosophila’s visual system [Tschopp et al., 2018].

Nevertheless, it will be important for future work to systematically test alterna-

tive network architectures and dynamics in producing functional ENN models.

Finally, another limitation is that we constructed an ENN model that did

not model realistic dynamics. Typical experimental paradigms include separate

intervals for encoding, delay, stimulus, and response periods, since cognitive pro-

cessing occurs over time. Here, we did not explicitly model temporal dynamics

based on the empirical data when simulating the ENN. (However, we note that

activation estimates for task encoding and trials were obtained from temporally

distinct intervals.) Nevertheless, though it is likely that temporal dynamics (with

recurrent feedback) likely play a role in shaping cognitive computations, we illus-

trate here that simple dynamics (i.e., rules + sensory inputs → conjunction hubs

→ motor outputs) involving the interplay of static activations are sufficient to

model representational transformations. It will be important for future studies

to construct task-performing brain models that can simulate temporal and recur-

rent dynamics constrained by empirical data, as this can provide a more detailed

computational account of the representational transformations that contribute to
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behavioral variability.

In conclusion we constructed an ENN model capable of performing adaptive

cognitive control tasks. This model provides strong evidence for the well-known

guided activation theory by providing a computational implementation of the

theory that is directly estimated from empirical data. We first identified the

relevant brain representations associated with different task features. We then

used an ANN to identify conjunction hubs that were critical to the selective

integration of task input information for motor response selection. Finally, by

estimating FC patterns from resting-state fMRI data, we parameterized a network

model to generate predictive stimulus-to-response transformations using activity

flow mapping. We expect that these findings will drive new investigations into

characterizing the neural implementation of cognitive computations, providing

dual insight into how the brain implements cognitive processes and how such

knowledge can inform the design of ANN architectures.
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Chapter 4

Modeling context-dependent sensorimotor

transformations in multi-unit spiking activity

This chapter is in progress, and is a collaborative project with Scott L. Brincat,

Markus Siegel, Earl K. Miller, and Michael W. Cole

4.1 Abstract

During flexible sensorimotor tasks, the brain transforms environmental and sen-

sory information into motor actions. While the brain areas responsible for repre-

senting sensory and motor information are well characterized, how sensory infor-

mation is converted to behavioral signals during context-dependent tasks is not

well known. In this chapter, we provide neurophysiological evidence for how sen-

sory and context information integrate to produce behavioral signals using multi-

site, multi-unit spiking activity obtained from non-human primates (NHP). By

measuring the functional connectivity (FC) between multi-units using task-free

spiking activity, we build a network model that describes how spiking activity in

different cortical areas map onto each other to predict trial-to-trial motor activ-

ity. This provides a network explanation at the level of multi-units of how task

representations are used, manipulated, and transformed in the brain to produce

behavior during task execution.
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4.2 Introduction

The brain extracts and transforms complex information into meaningful signals

important for behavior. Recent advances have begun to characterize the com-

putational and neural bases of these behaviorally relevant transformations. For

example, in visual object recognition, inputs from the visual field are relayed

through a sequence of computations from the retina, lateral geniculate nucleus,

and down through the ventral visual stream to incrementally transform visual

features into meaningful object representations in inferior temporal (IT) cortex

[Yamins et al., 2014, Castelo-Branco et al., 1998]. In the motor cortex, noise ro-

bust, “untangled” population motor signals facilitate easy read out of motor in-

tentions in downstream peripheral areas [Russo et al., 2018]. However, exactly

how high-level sensory information is converted to motor cortex signals through

intermediate computations during flexible, context-dependent tasks remains un-

clear.

Previous work has shown that during flexible behaviors, there is a transient

bottom-up sweep of information followed by top-down flow of sustained task in-

formation [Siegel et al., 2015]. However, that study focused on characterizing

the temporal dynamics of task information within each brain area, rather than

addressing exactly how information in one area was related to information in an-

other area. More specifically, understanding the temporal dynamics within each

region provides only a partial understanding regarding how sensory representa-

tions integrate with context representations to guide motor decisions. In this

chapter, we provide an empirically-derived network model that models sensori-

motor transformations to predict neural spiking activity directly related to task

behavior.

In Chapter 3, we demonstrated that an empirically-estimated neural network

(ENN) could be extracted from whole-brain human fMRI data. Importantly, this
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ENN modeled the integration of sensory and context representations using input

activations from sensory and context representing brain areas. This transforma-

tion was modeled and parameterized using voxel-to-voxel FC weights obtained

from resting-state data, demonstrating the computational relevance of intrinsic

FC in supporting representational transformations. However, that study relied

on extracted fMRI blood oxygenated level-dependent (BOLD) signals. While

the BOLD signal has been shown to be correlated with local field potentials and

spiking activity [Ma et al., 2016], it is still an indirect measure of neural activity.

In previous work, we illustrated that we could accurately predict the spread

of task-evoked activity using activity flow modeling over empirically-estimated

functional connections [Cole et al., 2016a, Ito et al., 2017]. Importantly, activity

flow modeling tests the relationship between intrinsic functional network organi-

zation and local task-evoked activations, assessing whether local activations can

be predicted from distributed network activity. Here we extend this notion of

activity flow from whole-brain fMRI modeling to multi-unit spiking activity, the

neural activity thought to be most mechanistically relevant to behavior. Using

an analogous approach to Chapter 3, we build an ENN model to predict neural

transformations using multi-site and multi-unit spiking activity. This addresses

whether the activity flow framework previously developed for fMRI can be used

to estimate spiking activity flow. We demonstrate that neural spiking activity in

a target unit can be predicted using spiking activity flow over inter-unit FC esti-

mates. Furthermore, we show that spiking activity flow predictions can accurately

model sensorimotor transformations during flexible sensorimotor tasks.
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Figure 4.1: Data, task paradigm, and methodological approach. a) Task paradigm. Two NHPs
were trained to perform a motion-color categorization task [Siegel et al., 2015]. Depending on
the task context (i.e.,, attend to color or motion), subjects were asked to categorize green/red
colors or up/down motion of dot stimuli. NHPs responded with a saccade to either the left/right
direction. b) Multi-unit spiking activity was extracted from six different cortical areas: V4, IT,
MT, LIP, PFC, and FEF. c) We predicted FEF spiking activity during the response period
using activity from other cortical areas during the task rule and stimulus periods. Note that
the response period was a non-overlapping interval that occurs after the rule and stimulus
intervals. Spiking activity flow was implemented by first estimating the FC between pairs of
multi-units, and then by calculating the matrix multiplication of the firing rate vector with the
inter-unit FC matrix (see Methods).

We report that during flexible behavior, behavioral signals in motor areas

can be predicted as a sequence of network computations that takes task rule and
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stimulus-related activity as inputs to an ENN. We used a previously published

data set that obtained multi-unit activity from six cortical areas during a motion-

color categorization task (visual area 4 (V4); medial temporal area (MT); inferior

temporal cortex (IT); lateral intraparietal cortex (LIP); prefrontal cortex (PFC);

frontal eye fields (FEF)) [Siegel et al., 2015]. By estimating inter-unit FC, we

construct a network model to estimate the spiking activity flow between task con-

text and stimulus-representing areas to motor output areas (FEF). These results

provide an explanation for how flexible sensorimotor transformations are imple-

mented through network-based computations, while also illustrating the viability

of translating network modeling approaches developed in the fMRI literature to

electrophysiology data.

4.3 Methods

4.3.1 Spiking data: Data collection

Details regarding the data set have been previously reported in [Siegel et al., 2015,

Brincat et al., 2018]. Additional details were reported in [Ito et al., 2020a]

(Chapter 5), and were reported as follows. Data was collected in vivo from two

(one female) behaving adult rhesus macaques (Macaca mulatta) across 55 sessions.

Data from six distinct cortical regions were recorded simultaneously from acutely

inserted electrodes. Cortical regions included: MT, V4, PIT, LIP, FEF, and

LPFC (Figure 5.1a). Multi-unit spikes from each region were sorted offline. For

each trial, spikes were sorted for a 5s period, beginning 2.5s prior to stimulus onset,

and until 3.5s after stimulus onset. Further details regarding electrophysiological

data collection can be found here: http://www.sciencemag.org/content/348/

6241/1352/suppl/DC1 and here: http://www.pnas.org/content/pnas/suppl/

2018/07/09/1717075115.DCSupplemental/pnas.1717075115.sapp.pdf

All statistical analyses in the article were performed on two monkeys.
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4.3.2 Baseline decoding

We first ran a baseline decoding to assess how much decodable information was

contained in each of the cortical areas (Figure 4.2). This involved decoding task

rule, sensory stimuli (color and motion features separately), and response activity

decoding. Decoding analyses were performed using the mean firing rates (aver-

aged across time, within trial) during a task condition from each unit. Decoding

was performed for each cortical area separately (using each unit as a decoding

feature), and was performed within session across trials. Some regions contained

more sessions than others, since not all six regions were recorded from for every

session.

For task rule decoding, we obtained the spike rate for every unit within a

cortical area. The mean spike rate was calculated as the average of spikes from

cue onset to offset, and a spike rate was obtained for every trial. (Note that the

cue interval occurs prior to the stimulus and response intervals.) Each trial was

labeled as either a cue associated with the “color” or “direction” rule. Note that

there were four cues in total, two corresponding to “color” and two corresponding

to “direction”. We used a stratified 10-fold cross-validation scheme, ensuring

that the number of labels were balanced across conditions within each training

fold. We used a linear decoder (logistic regression with an L2 regularization

parameter C = 1.0). For each session, we obtained an average decoding accuracy

(the average across all trial-wise predictions). Statistical significance was assessed

using a t-test (chance = 50%) using the averaged values from each session (p <

0.05). P-values were corrected for multiple comparisons (across cortical areas)

using False Discovery Rate [Genovese and Wasserman, 2002].

There were two sensory features of interest: color and direction. Thus, we

performed two, two-way classifications, decoding color (red versus green) and di-

rection (up versus down). The mean spike rate was calculated as the average of

spikes during the stimulus period interval for each trial. While sensory stimuli
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were sampled from a 2-dimensional space comprising of 7 distinct color/color co-

herence values and 7 distinct direction/direction coherence values, 6 of 7 coherence

values could be grouped as either red/green or up/down. (In each color/direction

domain, there existed an ambiguous stimulus; trials which contained ambiguous

stimuli were excluded from this classification.) Color and direction decoding were

both implemented using the same decoding scheme as above (stratified 10-fold

using a logistic decoder).

Motor response classifications decoded either left or right saccades. We com-

puted the response period spiking activity as the mean number of spikes from the

saccade onset to offset. Response period activity was temporally distinct from

both stimulus and rule period activity, since the response cue emerged after stim-

ulus offset. Trials were labeled as left or right movements based on behavior only,

and independent of task correctness. Response decoding was implemented using

the same decoding scheme as above.

As a control, we also assessed whether response information could be decoded

during the cue and stimulus interval (Figure 4.4). This involved assigning the

motor response label associated with a given trial to either cue or stimulus period

activity. We note that while cue period activity should contain no information

about the response period, it was conceivable that some response information was

formed during the stimulus period. Decoding analyses were implemented using

the same decoding schemes as above.

4.3.3 Inter-unit FC estimation

We estimated inter-unit FC to identify weights between units. This was similar

to Chapter 3, but using individual units rather than individual voxels. However,

unlike in the previous chapter, our NHP data set did not have a true resting

state. Thus, we used the mean spike rate during the inter-trial interval (ITI),
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which preceded the fixation that indicated trial onset. (The ITI was stimulus-

free.) FC was computed for each session separately, since recorded units were not

necessarily the same across sessions.

Inter-unit FC was estimated using cross-validated ridge regression (using

Python’s scikit-learn RidgeCV function). We included all ITIs within a session.

We estimated two sets of weights: 1) inter-unit FC for PFC, LIP, MT, V4, IT; 2)

inter-unit FC between units in PFC, LIP, MT, V4, IT to FEF (see Figure 4.3b).

Specifically, we estimated the weights for unit xi (where unit xi belongs in either

PFC, LIP, MT, V4, or IT), by fitting the linear model (via ridge regression)

xi = β0 +
∑

j∈PFC

βjxj +
∑
j∈LIP

βjxj +
∑
j∈V 4

βjxj +
∑
j∈MT

βjxj +
∑
j∈IT

βjxj + ε (4.1)

where i 6= j, but i ∈ {PFC,LIP, V 4,MT, IT}.

To identify FC weight mappings to the output area (FEF), we estimated the

weights for unit xi∈FEF by fitting the linear equation

xi∈FEF = β0+
∑

j∈PFC

βjxj+
∑
j∈LIP

βjxj+
∑
j∈V 4

βjxj+
∑
j∈MT

βjxj+
∑
j∈IT

βjxj+ε (4.2)

where xi corresponds to the mean ITI spiking activity across trials and βx cor-

responds to the estimated coefficients. This procedure was repeated for each

session, and R2 values were calculated for each session, too.

4.3.4 Spiking activity flow estimation

Our aim was to predict the FEF activity during the response interval (saccade)

using spiking activity from other cortical areas during the stimulus and task rule

intervals. Thus, we constructed an empirically-derived neural network (ENN) that

is conceptually similar to the model in Chapter 3. Broadly, this parameterizes a

functional neural network model that predicts the spike rate in output units (in
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FEF) using spike rate activity from input units (Figure 4.1c).

We used the trial-to-trial spike rates during the stimulus and task rule intervals

from input areas as inputs to our ENN. Input units were defined as all sorted units

within each region excluding FEF (i.e., PFC, LIP, MT, IT, V4). We excluded

FEF units to avoid the circularity of using a region’s units to predict itself.

We activity flow mapped spiking task rule and stimulus activations onto all

units in the input areas (Figure 4.3c). Conceptually, this can be thought of as a

recurrent computation, whereby both stimulus and rule activations are mapped

onto each other. More formally, however, this can be conceived as an unrolled

feedforward neural network, whereby stimulus and task rule activations simulta-

neously project onto a shared hidden layer, namely all units within PFC, LIP,

MT, IT, and V4 (Figure 4.3c). Mathematically, we define this mapping as

Xhidden1 = f(XstimulusβITI + XruleβITI) (4.3)

where Xhidden1 refers to the predicted integration of stimulus and task rule spik-

ing activity (i.e., the hidden layer in an unrolled recurrent computation), Xstimulus

refers to the spike rate during the stimulus interval for all input areas, Xrule refers

to the spike rate during the task rule interval for all input areas, and βITI cor-

responds to the inter-unit FC matrix estimated from ITI activity. f corresponds

to a rectified linear function, which thresholds any negative predictions as 0 (i.e.,

f(x) = max(x, 0)).

We subsequently performed the activity flow computation once more. How-

ever, we only use predicted activations (i.e., Xhidden1 as input). Conceptually,

this is similar to performing an additional recurrent computation. Formally, this

was calculated as

Xhidden2 = f(Xhidden1βITI) (4.4)
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Xhidden2, which contain predicted spike rates from input units, was then pro-

jected to FEF via another activity flow step. Thus, our final predicted FEF

spiking activity was obtained by calculating

XFEF = f(Xhidden2βITI,FEF) (4.5)

where XFEF is the predicted spiking activity of FEF, and βITI,FEF is the FC

estimates between input areas and FEF. Importantly, a unique XFEF was gener-

ated for every trial using the spike rate obtained for the task rule and stimulus

intervals associated with that trial.

We next assessed how accurately XFEF predicted spiking activity associated

with behavioral responses (i.e., saccades during the response period). We com-

pared our predicted FEF spiking activity with the actual FEF spiking activity

using a cross-validated decoding scheme. This scheme is conceptually similar with

the one employed in [Ito et al., 2017] (Figure 4.3c). Cross-validation was applied

across trials using a 10-fold scheme. We trained a linear decoder on the pre-

dicted FEF spiking activations, and classified the held-out trials (using the actual

response period activity). Training and testing on different trials ensured that

no spontaneous or trial-to-trial variance could explain the successful prediction

of FEF spiking activity. Thus, this cross-validation scheme ensured three forms

of statistical independence: 1) task condition independence (since task cue and

stimulus activity were used to predict response activity); 2) spatial independence,

since only PFC, LIP, MT, IT, and V4 activity was used to predict FEF; 3) tem-

poral independence, since distinct sets of trials were used to predict the spiking

activity of a held-out trial.

As above, we used a linear decoder that was trained using logistic regression.

Parameters are the same as in the above sections.
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4.4 Results

4.4.1 Baseline decoding of different task conditions

We first established a baseline of how much each cortical area contained infor-

mation for different task conditions. This involved decoding task rule conditions,

sensory stimulus features, and behavioral responses using spiking activity. Given

that our hypothesis was that the integration of task rule and sensory stimulus

activity could be transformed to predict response activity, it was critical that at

least one cortical area contained representations for each task condition.

We performed task rule, sensory stimuli, and behavioral response decod-

ing. Note that each task condition decoded from temporally adjacent yet non-

overlapping intervals during a trial (Figure 4.1b). For task rule decoding, we

classified spiking activity as either associated with the color rule or motion di-

rection rule. We classified the the task rule interval using the multi-unit spike

rates within a cortical region as features. We found that all six regions con-

tained significantly decodable activity related to task rule conditions (Figure

4.2c; PFC accuracy=59.46%, p=8.30e-12; FEF accuracy=59.54%, p=9.08e-11;

IT accuracy=74.62%, p=3.19e-9; LIP accuracy=63.63%, p=3.00e-12; MT accu-

racy=63.90%, p=8.30e-7; V4 accuracy=85.93%, p=4.58e-13). This is consistent

with previous work on this same data set, which showed that all cortical areas

contained some percentage of units that were responsive to task rule information

(using a task variance analysis rather than decoding analysis) [Siegel et al., 2015].
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Figure 4.2: Baseline decoding of stimulus, task rules, and response period activity in each
cortical area. We performed a decoding analysis using a linear decoder on trial-to-trial spiking
activity, using the spike rate of multi-units as decoding features. For each recording session,
we performed a decoding across trials on the spike rate of either the task rule, stimulus, or
response period. We decoded a) direction (up/down) of moving dots during the stimulus period,
b) color of the dots during the stimulus period, c) the rule (indicated by the cues), and d) the
behavioral response (saccade). Note that rules were indicated by four possible cue stimuli. Two
cues indicated the color categorization rule, and two cues indicated the direction categorization
rule. Boxes represent the interquartile range of the distribution, whiskers represent 95% of the
distribution, and the grey line represents the median. Each dot in the strip plot represents the
average accuracy for a recording session. Gray line indicates chance decoding. (* = p < 0.05,
** = p < 0.01, *** = p < 0.0001.)

Next, we sought to identify which cortical areas contained sensory stimu-

lus information. Since the task required the subjects to categorize either color

or direction features, this involved decoding two sensory stimuli features: color

(red versus green) and direction (upward or downward motion). We first de-

coded trial-to-trial motion information using the spiking activity during the
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stimulus interval. We found that all six areas could successfully decode direc-

tion information (Figure 4.2a; PFC accuracy=54.92%, p=6.20e-6; FEF accu-

racy=55.55%, p=1.63e-6; IT accuracy=54.03%, p=0.01; LIP accuracy=61.59%,

p=4.45e-10; MT accuracy=64.56%, p=0.0009; V4 accuracy=59.06%, p=0.0009).

We also found that 5/6 areas could successfully decode color information (Fig-

ure 4.2b; PFC accuracy=59.57%, p=1.26e-9; FEF accuracy=58.23%, p=1.95e-

6; IT accuracy=55.13%, p=0.01; LIP accuracy=61.38%, p=1.07e-11; MT ac-

curacy=52.26%, p=0.18; V4 accuracy=70.11%, p=1.09e-6). These findings are

also consistent with a previous analysis on the same data set, which showed

that stimulus information is widely distributed across these six cortical areas

[Siegel et al., 2015].

Finally we were interested in identifying which areas contained decodable re-

sponse information. While we primarily hypothesized that response informa-

tion would likely exist within FEF (given that the task required saccade re-

sponses), we nevertheless performed decoding analyses on all six cortical ar-

eas. Again, we found that all six cortical areas could reliably decode trial-

to-trial response information using spiking activity during the response inter-

val (PFC accuracy=91.46%, p=1.34e-39; FEF accuracy=92.60%, p=2.23e-39;

IT accuracy=64.90%, p=7.35e-10; LIP accuracy=89.07%, p=3.79e-36; MT ac-

curacy=72.62%, p=3.49e-9; V4 accuracy=73.15%, p=1.41e-11; Figure 4.2d). Al-

though all six cortical regions contained motor response information, as expected,

we found that FEF had the highest response decoding accuracy. The identifica-

tion of distributed representations laid the foundation to test how different task

representations interact to transform stimulus and rule representations into FEF

motor representations.
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4.4.2 Transforming task rule and stimulus activity into

FEF response period activity

We were able to decode task rule, stimulus, and response information using the

spiking activity of most cortical areas. However, how do these distinct pieces of

information interact during task performance to form the correct motor response

signals (i.e., eye movements)? Here we focus on addressing how motor response

information is computed across cortical areas through network computations.

Our previous work illustrated that different pieces of information in different

brain areas, like task rules and stimulus representations, can be integrated to form

response representations in motor cortex during tasks [Chapter 3]. Moreover,

these transformations can be implemented by measuring intrinsic FC mappings

between brain areas. Thus, to obtain weight mappings between sets of units,

we first estimated the inter-unit FC maps using spiking activity from inter-trial

intervals (ITI). We used ITI activity since there was no true ‘resting-state’ in the

current data set. Importantly, the ITI was stimulus-free in that it did not contain

any task-relevant information (Figure 4.3a). Thus, we believed that estimating

FC from the ITI would be useful in approximating the true intrinsic FC structure

between sets of units.

We computed the FC weights to a multi-unit using cross-validated ridge re-

gression (see Methods). We identified two sets of FC weights. We first identified

FC weights between all multi-units within input areas. Given that we found that

most areas contained decodable information about the task, we defined input ar-

eas as all cortical areas (multi-units) excluding FEF (Figure 4.3b). Specifically,

for a given unit in an input area, we estimated the cross-validated regression

weights of all other multi-units to that target unit using ITI activity. This pro-

vided a weight mapping that enabled us to predict the activity of a unit using the

spiking activity of all other units (excluding those in the FEF). Importantly, this
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FC mapping enabled us to integrate the spiking activity of task rule and sensory

stimulus activity by modeling activity flow between all input units (Figure 4.3c).

Activity flow modeling of stimulus and task rule activity is modeled as the sum

of weighted activity flow of spiking activity from both conditions onto each unit

in the input areas. We applied a rectified linear function f , that removes any

negative spike rate predictions, since those are biologically implausible.
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Figure 4.3: Constructing ENNs from spiking data to predict inter-area sensorimotor transfor-
mations. a) We extracted the spike rate from different intervals during task execution from six
cortical areas. b) We performed a cross-validated ridge regression between all units in PFC,
LIP, MT, IT, and V4 to estimate inter-unit FC. Separately, to identify the weights to the FEF,
we estimated the regression weights between PFC, LIP, MT, IT, and V4 to FEF. c) To predict
FEF response period activity associated with saccades, we used stimulus and task rule activity
from all recording areas excluding FEF. We modeled activity flow between PFC, LIP, MT,
IT, and V4, prior to modeling activity flow to FEF. The activity flow computation involves a
linear weighted sum of the spike rates of the source units weighted by their connectivity coef-
ficients, passed through a nonlinearity f . d) Summary of the FEF predictions from the ENN,
sorted by predicted-to-actual FEF decoding. We could successfully predict the actual FEF re-
sponse spike rates for 10/21 recording sessions, after correcting for multiple comparisons using
an FDR-corrected p<0.05 threshold. Interestingly, the predicted-to-actual decoding accuracies
were significantly correlated (r=0.56; p<0.01) with the R2 value of the FC regression fit. Gray
box plots represent a null distribution obtained from shuffling labels.
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We next estimated inter-unit FC weights between input areas and the FEF

(Figure 4.3b). This provided a simple linear model to transform neural spiking

activity from other areas into the spatial geometry of the FEF. Moreover, this

would enable us to predict whether or not the integration of task rule and stimulus

activity could accurately predict motor response patterns in the FEF.

Our objective was to accurately predict the response period activity of FEF us-

ing stimulus and task rule activity from units outside the FEF. Thus, we modeled

the spiking activity flow of stimulus activity and task-rule activity as recurrent

interactions among input units. We modeled two recurrent interactions, which

can be formalized as a feedforward neural network with two hidden layers (see

Figure 4.3c). Importantly, the weights between the two hidden layers are fixed,

and estimated empirically (via regression on ITI activity). To generate a pre-

dicted FEF response, we model spiking activity flow from the input areas onto

FEF using FC estimates.

We generated predicted spike rates for all FEF units on a trial-by-trial ba-

sis. To evaluate the validity of the activity flow model in predicting sensorimotor

transformation, we compared the predicted FEF spiking patterns to the actual

spiking patterns of FEF units. In line with a prediction perspective (and previ-

ous work [Chapter 3]), we trained a decoder on predicted FEF spiking patterns.

The decoder was trained using labels determined by the actual response of that

trial (Figure 4.3c). (Moreover, only correct trials were included in this decod-

ing scheme.) We then applied the decoder to classify the actual FEF response

patterns of held-out trials. In other words, we applied the decoder on trials in

which the decoder was not trained on (see Methods). This ensured that our de-

coding scheme was not circular in three ways: 1) FEF predictions were spatially

independent, since predictions were generated from all units outside the FEF; 2)

FEF predictions were condition independent, since while we predicted response

patterns, only task rule and stimulus interval activity was used for prediction; 3)
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the decoder was tested on different trials than it was trained on. We found that

of all 21 recording sessions included, we could accurately predict FEF response

activations for 10/21 sessions (average accuracy of significant sessions=66.29%,

FDR-corrected p < 0.05; Figure 4.3d). These results suggest that though some

recording session were unable to predict FEF response periods, we were able to

accurately model neural transformations to FEF to predict behavioral responses

in roughly half the recording sessions.

4.4.3 Successful inter-area predictions depend on robust

FC estimates

Roughly half recording session failed to predict FEF response spiking patterns.

Why could some recording sessions accurately predict neural transformations of

FEF responses, while others could not? Unlike whole-brain fMRI imaging, which

has access to the entire brain (albeit at limited spatial resolution), our electrophys-

iological recording had limited spatial coverage. Moreover, this spatial coverage

varied from recording session to session. Thus, we hypothesized that variable

prediction of FEF response patterns was due to the variability in sampling units

in input areas that were “functionally connected” to FEF units.

For each recording session, we calculated the cross-validated regression-based

FC values from input units to FEF units using ITI activity (Figure 4.3b). We

then calculated the average R2 of the model fit to all FEF units for each session.

This provided a metric that described how well FEF units were “functionally

connected” to the input units for each session. We then correlated across ses-

sions this mean R2 value with the predicted-to-actual decoding accuracy (Figure

4.3d). Consistent with our hypothesis, we found that the R2 of the FC was posi-

tively correlated with the predicted-to-actual decoding accuracies in FEF (r=0.56;

p<0.01). This demonstrated that the ability to accurately decode FEF responses
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was dependent on the ability to robustly estimate the FC between input and FEF

units during the ITI periods.

Thus, the current results demonstrated that our ability to accurately capture

network computations that describe flexible sensorimotor transformations was

limited by the ability to estimate useful FC between input units and FEF units.

4.4.4 Response information begins to form during the

stimulus interval

Our primary hypothesis was that the integration of task rule and stimulus in-

formation would accurately predict response information that emerges after the

stimulus interval. In our previous study [Chapter 3], we were able to statisti-

cally disentangle (i.e., orthogonalize) stimulus from motor response information

through a task GLM. However, in the present study, we focused on trial-to-trial

response estimates, given that the response interval was temporally independent

(occurred after) stimulus offset. However, it is conceivable that response infor-

mation begins to form during the stimulus interval, given that once the subject

receives both task rule and stimulus information, subjects can form a response

decision.

Thus, we assessed whether response information might have emerged during

the stimulus interval. However, as a control, we tested whether response informa-

tion might emerge during the task rule interval. (No response can be made with

only task rule information.) As expected, we found that none of the six cortical

areas contained decodable response information during the rule interval (Figure

4.4a).
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Figure 4.4: Evaluating whether response information existed during the task rule and stim-
ulus interval. Our objective was to predict response signals in FEF using only context and
stimulus information. Thus, as a baseline, we sought to evaluate whether it was possible to
decode response information during either the task rule or stimulus interval. a) We first trained
a decoder to classify response information in the task rule interval. Theoretically, response
information for a given trial should not exist during the task rule interval, since prior to the
stimulus presentation no correct decision can be made. We found that no cortical areas could
decode the response information during a trial using task rule activity. b) We next decoded
response information during stimulus interval. Theoretically, it may be possible to decode re-
sponse information during the stimulus interval since the subject has enough information (rule
and stimulus) to make an appropriate motor response decision. Indeed, we found that almost
all regions (except IT) could decode motor responses during stimulus interval. Boxes represent
the interquartile range of the distribution, whiskers represent 95% of the distribution, and the
grey line represents the median. Each dot in the strip plot represents the average accuracy for
a recording session. Gray line indicates chance decoding. (* = p < 0.05, ** = p < 0.01, *** =
p < 0.0001.)

Next, we evaluated whether we could decode response information during the

stimulus interval. Indeed, response information appeared to form during stimulus

period in all recording areas except for IT (Figure 4.4b; FEF accuracy=65.06%;

PFC accuracy=62.47%; LIP accuracy=66.81%; MT accuracy=53.46%; V4 accu-

racy=55.39%; FDR-corrected p < 0.05 except for IT). However, though response

information could be decoded during the stimulus period (while subjects were

required to fixate), response decoding accuracies were notably lower than during

the response period (Figure 4.2d). Nevertheless, this suggests that the response

predictions in FEF reported in the previous section may have been due to small

amounts of response information beginning to form during the stimulus period.

Given our initial hypothesis that we could predict sensorimotor transformations
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from input areas to FEF, future follow-up analyses will need to rule out the pos-

sibility that response information during the stimulus interval played a role in

generating FEF activity predictions that could decode behavioral responses.

4.5 Discussion

Cognitive information during tasks has been shown to be widely encoded in multi-

unit activity across cortex. Previous work on this same data set has reported

that following a bottom-up sweep of task information, task information flows

from frontoparietal to visual areas in a sustained manner [Siegel et al., 2015].

However, that studied focused on the temporal dynamics of task information in

each area, without asking how the brain communicates that information between

areas. Using previously developed methods for modeling inter-area activity flow

in fMRI data, we constructed ENN models that could account for the flow of

spiking activity between pairs of units during flexible behavior.

Using ITI activity, we estimated inter-unit FC mappings that we hypothesized

may reflect functional pathways for neural communication. Statistically, this

approach is conceptually similar to the estimation of intrinsic FC that is common

to the fMRI literature, though we replace voxel and/or parcel time series with

neural spike rate data. Importantly, constructing a functional network model

of inter-unit interaction enabled us to test whether a technique developed for

mapping task activations in fMRI data – activity flow mapping – could predict

multi-unit spiking activity during a flexible sensorimotor task. We had two main

findings: 1) That for some recording sessions, we could accurately predict FEF

response activity from other areas using empirically-estimated functional network

connectivity; 2) Successful prediction was dependent on the ability to record from

units that were “functionally connected” (as determined by the R2 fit of the FC

model) to downstream FEF units.
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The present results extend the concept of FC, which are common in the

fMRI literature, to neural spiking data. While the spiking literature has

developed a rich literature studying neural correlations (i.e., noise correla-

tions) [Aertsen et al., 1989, Cohen and Kohn, 2011, Pillow et al., 2008], few stud-

ies have investigated how units in one area are predictive of units in another area.

This is likely due to the technical difficulties in performing experiments that ob-

tain the widespread recordings in behaving animals. However, one recent study

was able to identify a communication subspace by which activity in V1 units could

predict activity in downstream V2 [Semedo et al., 2019]. However, this study was

limited to recordings in V1 and V2 during the presentation of simple visual stim-

uli. Using a previously published data set [Siegel et al., 2015], we were able to

extend these ideas to predict response activity in FEF by modeling the spiking

activity flow from units in five other cortical areas during a flexible sensorimotor

task.

Recent work in whole-brain fMRI imaging has shown a strong corre-

spondence between the FC estimated during task-free and task-evoked states

[Cole et al., 2014a, Krienen et al., 2014, Bolt et al., 2017]. Importantly, we re-

cently leveraged this strong correspondence between task-free and task-evoked

states to parameterize functional network models to estimate inter-area activity

flow [Cole et al., 2016a, Ito et al., 2017]. (The use of task-free states to parame-

terize network models was important to rule out the potential circularity of using

the same data for both network estimation and task activation prediction.) In the

present study, we found that network estimates of stimulus-free ITI activity can be

used to accurately model multi-unit spiking activity flow. This is consistent with

findings in fMRI studies, and suggests that there is likely a strong correspondence

between stimulus-free and stimulus-dependent functional network organization in

electrophysiological recordings. Additionally, in the subsequent chapter, we find

consistent changes across intrinsic and task-evoked states in both large-scale fMRI
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FC and mean-field spike count correlations, suggesting that despite differences in

the data acquisition techniques (e.g., BOLD versus multi-unit spikes), there likely

exist similarities in the underlying processes that govern neural interactions.

We assessed how well FC-based techniques could predict spiking activity flow

between sets of multi-units. However, one limitation is that neural spiking data

has limited spatial coverage, even with multi-unit recordings from six different ar-

eas. Despite having more direct neural recordings and higher signal-to-noise ratio,

this spatial undersampling contrasts with human fMRI data, which has whole-

brain spatial coverage. Whole-brain sampling increases the likelihood that we can

build better network connectivity estimates to a target region. This is because we

can include all other brain areas as potential predictors to a target region and op-

timize for target prediction using regression-based techniques [Cole et al., 2016a].

Despite this limitation, we still performed a statistically analogous analysis by

optimizing for prediction on FEF target units using all other input units as pre-

dictors and using cross-validated regularized regression. Interestingly, our results

showed that so long as we can sample from units that are informative with respect

to a target area (e.g., high R2 via linear regression to predict FEF activity), we

can accurately build functional network models that can predict spiking activity

in target units.

Our primary hypothesis was that the integration of stimulus and task rule ac-

tivity would successfully predict motor response spiking activity through activity

flow modeling. While the stimulus and task rule intervals preceded the response

interval and did not overlap, we found in follow-up analyses that response be-

havior began to form during the stimulus interval. This finding is also consistent

with previous accounts with the same data, which found that choice information

began to form as early as 100ms before response onset [Siegel et al., 2015]. This

indicates that the projection of stimulus information from input areas onto FEF

areas likely contains some response information. This suggests the possibility that
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our mapping of stimulus activity onto FEF units may not truly reflect the trans-

formation of cognitive information, but instead reflect only information transfer

[Ito et al., 2017]. However, previous work showed that response information only

formed 100ms prior to response onset, a small fraction of the stimulus interval

(lasting up to 3 seconds) [Siegel et al., 2015]. Nevertheless, future work will focus

on dissociating this possibility and removing any response related confounds in

stimulus period spike rates.

In conclusion, we modeled sensorimotor transformations during flexible be-

havior by applying the activity flow framework to multi-unit spiking data. Our

results demonstrate the feasibility of bridging theories and concepts used in hu-

man neuroscience onto animal neurophysiology studies, bridging two subfields in

neuroscience. We showed that network estimation techniques in fMRI, such as

multiple regression-based techniques, accurately predicted the spiking activity of

target multi-units during flexible sensorimotor processing. Thus, the present work

illustrates that we can begin to probe the network mechanisms of cognitive pro-

cesses in neural spiking data by combining network estimation techniques during

stimulus-free periods and task-based manipulations.
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Chapter 5

Task-evoked activity quenches neural

correlations and variability across cortical areas

This chapter has been published in PLOS Computational Biology

[Ito et al., 2020a]. The contents have been reformatted for this thesis.

5.1 Abstract

Many large-scale functional connectivity studies have emphasized the importance

of communication through increased inter-region correlations during task states.

In contrast, local circuit studies have demonstrated that task states primarily

reduce correlations among pairs of neurons, likely enhancing their information

coding by suppressing shared spontaneous activity. Here we sought to adjudicate

between these conflicting perspectives, assessing whether co-active brain regions

during task states tend to increase or decrease their correlations. We found that

variability and correlations primarily decrease across a variety of cortical regions

in two highly distinct data sets: non-human primate spiking data and human

functional magnetic resonance imaging data. Moreover, this observed variability

and correlation reduction was accompanied by an overall increase in dimension-

ality (reflecting less information redundancy) during task states, suggesting that

decreased correlations increased information coding capacity. We further found

in both spiking and neural mass computational models that task-evoked activity

increased the stability around a stable attractor, globally quenching neural vari-

ability and correlations. Together, our results provide an integrative mechanistic
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account that encompasses measures of large-scale neural activity, variability, and

correlations during resting and task states.

5.2 Introduction

Measures of neural correlations and variability are widely used in neuroscience to

characterize neural processes. During task states, neural variability has consis-

tently been shown to be reduced during tasks across human functional magnetic

resonance imaging (fMRI) [He, 2011, He, 2013, Fegen, 2012], local neural pop-

ulations [Churchland et al., 2010, Hennequin et al., 2018, Jacobs et al., 2018],

and both spiking [Litwin-Kumar and Doiron, 2012, Hennequin et al., 2018] and

mean-field rate models [Deco and Hugues, 2012, Ponce-alvarez et al., 2015]. De-

spite this convergence in the neural variability literature, there are disparities in

the use and interpretation of neural correlations. In the human fMRI literature,

neural correlations are often estimated by measuring the correlation of blood

oxygenated level-dependent (BOLD) signals and is commonly referred to as func-

tional connectivity (FC) [Biswal et al., 1995]. In the non-human primate (NHP)

spiking literature, neural correlations have been measured by computing the cor-

relation between the spike rate of two or more neurons and is commonly referred

to as the spike count correlation (or noise correlation) [Cohen and Kohn, 2011].

Yet despite the use of different terms, the target statistical inference behind these

two techniques is consistent: to characterize the interaction among neural units.

In the human fMRI literature, studies have identified large-scale func-

tional brain networks through clustering sets of correlated brain regions using

resting-state activity [Power et al., 2011, Yeo et al., 2011, Ji et al., 2019].

During task states, the FC structure has been demonstrated

to dynamically reconfigure [Cole et al., 2014a, Krienen et al., 2014,

Gonzalez-Castillo and Bandettini, 2017]. Though it has been suggested that
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correlation increases and decreases respectively facilitate and inhibit inter-region

communication [Tomasi et al., 2014, Gonzalez-Castillo and Bandettini, 2017],

the mechanistic bases of these FC changes remain unclear.

Studies in the local circuit literature using electrophysiological recordings

in animals have characterized the correlation structure between neuron spikes

across a range of task demands. These studies have found that the spike

count correlation (or noise correlation) between neuron spikes generally de-

creases during task states, particularly for neurons that are responsive to

the task [Cohen and Maunsell, 2009, Ecker et al., 2010, Ruff and Cohen, 2014,

Pinto et al., 2019]. Moreover, these empirical studies have been accompanied

by theoretical work, which has suggested that the reduction in noise corre-

lations may enhance information coding by suppressing shared spontaneous

activity and reducing neural noise [Aertsen et al., 1989, Averbeck et al., 2006,

Cohen and Kohn, 2011, da Silveira and Berry, 2014, Doiron et al., 2016]. Thus,

the theoretical framework behind noise correlations may also provide a solid foun-

dation from which to advance understanding of fMRI FC [Aertsen et al., 1989,

Averbeck et al., 2006, Cohen and Kohn, 2011, Doiron et al., 2016].

Here we sought to quantify the relationship between neural correlations (i.e.,

FC) in large-scale human imaging and (local circuit) animal neurophysiology

(spike count correlations). In particular, it is unclear whether observations at

the local circuit level would be consistent with observations made across large

cortical areas. To further complicate this issue, we recently found that task ac-

tivations can inflate task functional connectivity estimates in human fMRI data

[Cole et al., 2019], suggesting some previous neuroimaging studies may have er-

roneously reported correlation increases due to inaccurate removal of the mean-

evoked response. Importantly, the removal of the mean task-evoked response

is a standard procedure in the spiking literature, a critical step designed to
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dissociate signal correlations (task-to-neural associations) from noise correla-

tions (neural-to-neural associations) [Aertsen et al., 1989, Averbeck et al., 2006,

Cohen and Kohn, 2011]. (In the fMRI literature, signal correlations and noise cor-

relations are both statistically and conceptually analogous to task co-activations

and functional connectivity, respectively.) Thus, to accurately bridge the FC lit-

erature with the spike count correlation literature, it was necessary to analyze the

data in a statistically consistent way. This enabled us to adjudicate the differing

perspectives in the neural correlation literature while simultaneously confirming

and extending previous findings on task-state neural variability reduction.

We report multiple sources of empirical and theoretical evidence demonstrat-

ing that task-evoked activity quenches neural correlations and variability across

cortical areas. First, we characterize task-evoked neural variability and correla-

tions in empirical data using two highly distinct data sets: multi-site and mean-

field NHP spike rates and whole-brain human fMRI (Figure 5.1). This allowed

us to test whether there were consistent large-scale variability and correlation

changes during task states independent of data acquisition technique. Moreover,

this allowed us to take advantage of the more direct neural recording with NHP

electrophysiology along with the more comprehensive coverage of human fMRI

(in addition to testing for translation of findings to humans). Next, to provide a

mechanistic account capable of explaining our empirical findings, we used both

spiking and neural mass models to parsimoniously explain variability and cor-

relation suppression across mean-field cortical areas. This led to theoretical in-

sight using dynamical systems analysis, demonstrating that task-evoked activity

strengthens the system’s attractor dynamics around a stable fixed point in neural

mass models, quenching neural correlations and variability. The combination of

simultaneously recorded mean-field spike rate recordings from six cortical sites,

whole-brain fMRI obtained from seven different cognitive tasks, and dynamical

systems modeling and analysis provide a comprehensive account of task-related
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correlation and variability changes spanning species and data acquisition tech-

niques.

Figure 5.1: Testing the hypothesis that task-evoked neural variability and correlations are
quenched across cortical areas in NHP spiking and human fMRI data sets. We used two highly
distinct data sets to test the hypothesis that task-evoked activity globally quenches neural vari-
ability and correlations to suppress background spontaneous activity/noise. This contrasts with
the alternate hypothesis, namely that task-evoked activity increases variability and correlation
to facilitate inter-region communication. Importantly, the two data sets were analyzed in a sta-
tistically consistent manner, including the removal of the mean task-evoked response to isolate
neural-to-neural interactions. a,b) Using mean-field spike rate data collected simultaneously
from six different cortical areas [Siegel et al., 2015], we compared the spiking variability and
spike count correlations between task-state (i.e., following task cue onset) and rest-state spiking
activity. We defined rest state as the inter-trial interval (ITI) directly preceding the trial. This
was performed by estimating the mean-field spike rate by averaging across multi-units in each
cortical area, allowing us to target the activity of large neural populations. c,d) Using human
fMRI data obtained from the Human Connectome Project [Barch et al., 2013], we compared
the neural variability and correlations (i.e., FC) of the BOLD signal during task block intervals
to equivalent resting-state intervals. We used seven highly distinct cognitive tasks. Time series
and task timings are illustrative, and do not reflect actual data.
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5.3 Methods

5.3.1 Spiking data: Data collection

The behavioral paradigm for each monkey was a motion-color categorization task

(Figure 5.1b). Experimental methods for electrophysiology data collected for

NHP was previously reported in [Siegel et al., 2015] and [Brincat et al., 2018].

Data was collected in vivo from two (one female) behaving adult rhesus macaques

(Macaca mulatta) across 55 sessions. Data from six distinct cortical regions were

recorded simultaneously from acutely inserted electrodes. Cortical regions in-

cluded: MT, V4, PIT, LIP, FEF, and LPFC (Figure 5.1a). Spikes from each

region were sorted offline into isolated neurons. However, given our interest

in inter-region neural correlations across large scale neural systems, we pooled

spikes from each functional area into a single spike rate time series. For each

trial, spikes were sorted for a 5s period, beginning 2.5s prior to stimulus onset,

and until 3.5s after stimulus onset. Further details regarding electrophysiological

data collection can be found here: http://www.sciencemag.org/content/348/

6241/1352/suppl/DC1 and here: http://www.pnas.org/content/pnas/suppl/

2018/07/09/1717075115.DCSupplemental/pnas.1717075115.sapp.pdf

All statistical analyses in the main article (detailed below) were performed on

a single monkey. Independent replication was performed on the second monkey,

and is reported in Supplementary Figure C.1.

5.3.2 Spiking data: Task versus rest variability analysis

Neural variability analysis was analyzed using an analogous approach to both the

computational model and fMRI data. However, since we had no true ‘resting-

state’ activity for the monkey data set, we used the inter-trial interval (ITI; 0.5s

- 1s variable duration, see Figure 5.1b) as “resting-state activity”. We used the
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0.5s - 1s interval immediately preceding the trial’s fixation period to avoid any

reward/feedback signals from the previous trial. (Reward/feedback from the pre-

vious trial was provided more than 1.5s prior to the fixation period.) Spike counts

were calculated by taking a 50ms sliding window with 10ms increments, consis-

tent with previous studies [Churchland et al., 2010]. The mean-evoked response

across all trials for a given task rule (e.g., motion rule versus color rule) was cal-

culated and removed from each trial, as is common in the spike count literature

[Cohen and Kohn, 2011] and the fMRI literature [Cole et al., 2019]. (Statistically

this is equivalent to performing the task activation regression in the fMRI data,

described below.) The mean task-evoked response of the ITI period associated

with each task condition was also removed. This was to control for any artifacts

that might be induced due to removal of the mean-evoked response. Trials with

less than 500ms (or 50 time points) worth of spiking data for either the ITI and/or

task cue presentation were excluded. This was done to reduce variability of the

estimated spike count correlations, since correlations with few observations are

highly variable.

We computed the variance across 25 consecutive trials using the spike rate

from each cortical recording during either the ITI or the task cue period. This was

repeated for all trials for each subject. We used across-trial variance to calculate

variability rather than Fano factor [Churchland et al., 2010]. This choice was due

to the insight from our model illustrating that the mean-evoked activity and the

corresponding variance interact in a nonlinear manner, and that the Fano factor

is computed as the variance over the mean. Cross-trial variance was computed as

V ar =
x+n∑

trial=x

(rtrial − r̄)2

n− 1
(5.1)

Where n = 25 trials, rtrial reflected the spike rate of each trial, and r̄ the cross-

trial mean firing rate for the task condition (i.e., either the cross-trial mean firing
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rate during the color or motion task cue period).

The statistical difference in task versus rest neural variability was computed

by using a two-way, paired t-test across all bins of 25 consecutive trials. The

global neural variability change was computed by averaging the variance across all

recording areas for each bin. Statistics for the regional neural variability change

were corrected for multiple comparisons using an FDR-corrected threshold of

p < 0.05.

In addition, we computed the variance during the ITI and task cue period

within trial (across time points) (Supplementary Figure C.2). This analysis

demonstrated that moment-to-moment variability (rather than trial-to-trial vari-

ability) was also quenched from rest to task periods, suggesting that variability

quenching also occurs at faster timescales. The statistical difference in task versus

rest neural variability was computed by using a two-way, paired t-test (paired by

trial) across all trials for each monkey separately. The global neural variability

change was computed by averaging the variance across all recording areas for

each trial (Supplementary Figure C.2). Statistics for the regional neural vari-

ability change were corrected for multiple comparisons using an FDR-corrected

threshold of p < 0.05.

5.3.3 Spiking data: Task versus rest state correlation

analysis

Neural correlations for spiking data using the same preprocessing steps mentioned

above for spike rate variability analysis. Specifically, the mean-evoked response

across all trials for each task condition was removed from each trial. Spike count

correlations were then computed across trials, using groups of 25 trials as de-

scribed above (Figure 5.2e-f).

The difference in task versus rest neural correlations was calculated using a
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two-way, paired t-test (paired by each bin of 25 trials) for each subject separately

using Fisher’s z-transformed correlation values. The global neural correlation

change was computed by averaging the Fisher’s z-transformed correlation values

between all pairs of cortical regions, and comparing the averaged task versus rest

correlation for each bin (Figure 5.2d). Statistics for the pairwise neural correlation

change (Figure 5.2e-g) were corrected for multiple comparisons using an FDR-

corrected threshold of p < 0.05.

In addition, we computed the spike count correlation during the ITI and task

cue period separately within trial (across time points) (Supplementary Figure

C.2). This analysis demonstrated that moment-to-moment correlations (rather

than trial-to-trial correlations) were also quenched from rest to task periods, sug-

gesting that correlation quenching also occurs at faster timescales. The statistical

difference in task versus rest neural correlations was computed by using a two-

way, paired t-test (paired by trial) across all trials for each monkey separately.

The global neural correlation change was computed by averaging the correlation

across all pairs of recording areas for each trial (Supplementary Figure C.2).

5.3.4 fMRI: Data and paradigm

The present study was approved by the Rutgers University institutional review

board. Data were collected as part of the Washington University-Minnesota Con-

sortium of the Human Connectome Project (HCP) [Van Essen et al., 2013]. A

subset of data (n = 352) from the HCP 1200 release was used for empirical

analyses. Specific details and procedures of subject recruitment can be found in

[Van Essen et al., 2013]. The subset of 352 participants was selected based on:

quality control assessments (i.e., any participants with any quality control flags

were excluded, including 1) focal anatomical anomaly found in T1w and/or T2w

scans, 2) focal segmentation or surface errors, as output from the HCP structural

pipeline, 3) data collected during periods of known problems with the head coil,
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4) data in which some of the FIX-ICA components were manually reclassified;

low-motion participants (i.e., exclusion of participants that had any fMRI run

in which more than 50% of TRs had greater than 0.25mm framewise displace-

ment); removal according to family relations (unrelated participants were selected

only, and those with no genotype testing were excluded). A full list of the 352

participants used in this study will be included as part of the code release.

All participants were recruited from Washington University in St. Louis and

the surrounding area. We split the 352 subjects into two cohorts of 176 sub-

jects: an exploratory cohort (99 females) and a replication cohort (84 females).

The exploratory cohort had a mean age of 29 years of age (range=22-36 years of

age), and the replication cohort had a mean age of 28 years of age (range=22-

36 years of age). All subjects gave signed, informed consent in accordance with

the protocol approved by the Washington University institutional review board.

Whole-brain multiband echo-planar imaging acquisitions were collected on a 32-

channel head coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms,

flip angle=52◦, Bandwidth=2,290 Hz/Px, in-plane FOV=208x180 mm, 72 slices,

2.0 mm isotropic voxels, with a multiband acceleration factor of 8. Data for each

subject were collected over the span of two days. On the first day, anatomical

scans were collected (including T1-weighted and T2-weighted images acquired at

0.7 mm isotropic voxels) followed by two resting-state fMRI scans (each lasting

14.4 minutes), and ending with a task fMRI component. The second day con-

sisted with first collecting a diffusion imaging scan, followed by a second set of

two resting-state fMRI scans (each lasting 14.4 minutes), and again ending with

a task fMRI session. Each of the seven tasks was collected over two consecutive

fMRI runs. The seven tasks consisted of an emotion cognition task, a gambling

reward task, a language task, a motor task, a relational reasoning task, a social

cognition task, and a working memory task. Briefly, the emotion cognition task

required making valence judgements on negative (fearful and angry) and neutral
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faces. The gambling reward task consisted of a card guessing game, where sub-

jects were asked to guess the number on the card to win or lose money. The

language processing task consisted of interleaving a language condition, which

involved answering questions related to a story presented aurally, and a math

condition, which involved basic arithmetic questions presented aurally. The mo-

tor task involved asking subjects to either tap their left/right fingers, squeeze

their left/right toes, or move their tongue. The reasoning task involved asking

subjects to determine whether two sets of objects differed from each other in the

same dimension (e.g., shape or texture). The social cognition task was a theory of

mind task, where objects (squares, circles, triangles) interacted with each other in

a video clip, and subjects were subsequently asked whether the objects interacted

in a social manner. Lastly, the working memory task was a variant of the N-back

task.

Further details on the resting-state fMRI portion can be found in

[Smith et al., 2013], and additional details on the task fMRI components can be

found in [Barch et al., 2013]. All fMRI results reported in the main article reflect

results found with the first cohort of subjects. Independent replication of these

effects are reported in Supplementary Figure C.4 with the replication cohort.

5.3.5 fMRI: Preprocessing

Minimally preprocessed data for both resting-state and task fMRI were obtained

from the publicly available HCP data. Minimally preprocessed surface data was

then parcellated into 360 brain regions using the [Glasser et al., 2016a] atlas. We

performed additional standard preprocessing steps on the parcellated data for

resting-state fMRI and task state fMRI to conduct neural variability and FC

analyses. This included removing the first five frames of each run, de-meaning

and de-trending the time series, and performing nuisance regression on the mini-

mally preprocessed data [Ciric et al., 2017]. Nuisance regression removed motion
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parameters and physiological noise. Specifically, six primary motion parameters

were removed, along with their derivatives, and the quadratics of all regressors (24

motion regressors in total). Physiological noise was modeled using aCompCor on

time series extracted from the white matter and ventricles [Behzadi et al., 2007].

For aCompCor, the first 5 principal components from the white matter and ven-

tricles were extracted separately and included in the nuisance regression. In addi-

tion, we included the derivatives of each of those components, and the quadratics

of all physiological noise regressors (40 physiological noise regressors in total).

The nuisance regression model contained a total of 64 nuisance parameters. This

was a variant of previously benchmarked nuisance regression models reported in

[Ciric et al., 2017].

We excluded global signal regression (GSR), given that GSR artificially in-

duces negative correlations [Murphy et al., 2009, Power et al., 2014], which would

bias analyses of the difference of the magnitude of correlations between rest and

task. We included aCompCor as a preprocessing step here given that aCom-

pCor does not include the circularity of GSR (regressing out some global gray

matter signal of interest) while including some of the benefits of GSR (some ex-

tracted components are highly similar to the global signal) [Power et al., 2018].

This logic is similar to a recently-developed temporal-ICA-based artifact re-

moval procedure that seeks to remove global artifact without removing global

neural signals, which contains behaviorally relevant information such as vigi-

lance [Wong et al., 2013, Glasser et al., 2018]. We extended aCompCor to in-

clude the derivatives and quadratics of each of the component time series to

further reduce artifacts. Code to perform this regression is publicly available

online using python code (version 2.7.15) (https://github.com/ito-takuya/

fmriNuisanceRegression).

Task data for task FC analyses were additionally preprocessed using a stan-

dard general linear model (GLM) for fMRI analysis. For each task paradigm,
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we removed the mean evoked task-related activity for each task condition by

fitting the task timing (block design) for each condition using a finite impulse

response (FIR) model [Cole et al., 2019]. (There were 24 task conditions across

seven cognitive tasks.) We used an FIR model instead of a canonical hemody-

namic response function given recent evidence suggesting that the FIR model

reduces both false positives and false negatives in the identification of FC es-

timates [Cole et al., 2019]. This is due to the FIR model’s ability to flexi-

bly fit the mean task-evoked response across all blocks. Removing the mean-

evoked response of a task condition (i.e., main effect of task) is critical to iso-

late the spontaneous neural activity (and similarly the background connectivity

[Norman-Haignere et al., 2012]). Importantly, this procedure is standard when

performing in spike count correlations [Cohen and Kohn, 2011, Cole et al., 2019].

Analogous statistical preprocessing steps were critical when comparing neural cor-

relation measures across human fMRI data and NHP spiking data.

FIR modeled task blocks were modeled separately for task conditions within

each of the seven tasks. Thus, the mean task-evoked activation was differentially

accounted for according to each specific task condition. In particular, two condi-

tions were fit for the emotion cognition task, where coefficients were fit to either

the face condition or shape condition. For the gambling reward task, one condi-

tion was fit to trials with the punishment condition, and the other condition was

fit to trials with the reward condition. For the language task, one condition was

fit for the story condition, and the other condition was fit to the math condition.

For the motor task, six conditions were fit: (1) cue; (2) right hand trials; (3) left

hand trials; (4) right foot trials; (5) left foot trials; (6) tongue trials. For the

relational reasoning task, one condition was fit to trials when the sets of objects

were matched, and the other condition was fit to trials when the objects were not

matched. For the social cognition task, one condition was fit if the objects were

interacting socially (theory of mind), and the other condition was fit to trials
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where objects were moving randomly. Lastly, for the working memory task, 8

conditions were fit: (1) 2-back body trials; (2) 2-back face trials; (3) 2-back tool

trials; (4) 2-back place trials; (5) 0-back body trials; (6) 0-back face trials; (7)

0-back tool trials; (8) 0-back place trials. Since all tasks were block designs, each

time point for each block was modeled separately for each task condition (i.e.,

FIR model), with a lag extending up to 25 TRs after task block offset.

5.3.6 fMRI: Task state activation analysis

We performed a task GLM analysis on fMRI task data to evaluate the task-evoked

activity. The task timing for each of the 24 task conditions was convolved with

the SPM canonical hemodynamic response function to obtain task-evoked activity

estimates for each task condition separately [Friston et al., 1994]. FIR modeling

was not used when modeling task-evoked activity. Coefficients were obtained for

each parcel in the Glasser et al. (2016) cortical atlas for each of the 24 task

conditions.

5.3.7 fMRI: Task state versus resting-state variability

analysis

To compare task state versus resting-state variability, we regressed out the exact

same task design matrix used on task-state regression on resting-state data. This

was possible given that the number of timepoints of the combined resting-state

scans in the HCP data set exceeded the number of timepoints of the combined

task-state scans (4800 resting-state TRs > 3880 task-state TRs). This step was to

ensure that any spurious change induced through the removal of the mean task-

evoked response would also induce spurious changes in the resting-state data.

However, results were qualitatively identical without the regression of the task

design matrix on resting-state data.
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After task regression, we obtained the residual time series for both resting-

state and task state fMRI data. We then z-normalized each task run with zero-

mean and unit variance such that we could appropriately compare the neural

variability of task blocks across different runs. We emphasize that task activa-

tion regression (removal of the mean task-evoked response) was removed prior

to z-scoring the time series. Additionally, Supplementary Figure C.5 shows re-

sults without z-normalization, and the results are qualitatively identical.) This

enabled us to evaluate whether the variability during task blocks significantly de-

creased relative to inter-block intervals by evaluating the variance of task blocks

relative to 1. We then extracted the time series variance during task blocks, and

then averaged the variance across all task conditions to obtain our statistic of

task-evoked neural variability. To identify the resting-state neural variability, we

applied the same exact procedure to resting-state time series using the task-state

design matrix. A sanity check for our analysis was that the ‘intrinsic-state’ neu-

ral variability is close to 1 (given that the time series was normalized to have

unit variance), while the task-state neural variability is significantly less than 1

(Figure 5.3a). This ensured that variability measures were not biased by the

normalization step.

We compared the neural variability of the entire brain during task state peri-

ods versus resting-state periods. For each subject, we computed the variance dur-

ing task and resting state separately, and then averaged across all brain regions.

This resulted in two values per subject, representing task state and resting-state

variability. We then performed a two-way group paired t-test across subjects to

assess statistical significance (Figure 5.3a). We also computed the task state ver-

sus resting-state difference in neural variability for each brain region separately

(Figure 5.3b). We corrected for multiple comparisons using an FDR-corrected

threshold of p < 0.05 (Figure 5.3b,c). Cortical surface visualizations were con-

structed using Connectome Workbench (version 1.2.3) [Van Essen et al., 2013].
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5.3.8 fMRI: Task state versus resting-state correlation

analysis

We compared task-state versus resting-state FC (i.e., neural correlations), after

performing the exact same preprocessing steps as mentioned above. Results with-

out z-normalization (and using covariance rather than correlations) on the task

and rest residual time series are reported in Supplementary Figure C.5.

We computed the correlation between all pairs of brain regions for each task

condition during task block periods. We then averaged the Fisher’s z-transformed

correlation values across all task conditions to obtain a general task state FC

matrix (Figure 5.3e). We repeated the same procedure (i.e., using the same task-

timed blocks) on resting-state FC to obtain an equivalent resting-state FC matrix

for each subject (Figure 5.3d). We directly compared task-state FC to resting-

state FC by performing two-way group paired t-tests for every pair of brain regions

using the Fisher’s z-transformed correlation values. Statistical significance was

assessed using an FDR-corrected threshold of p < 0.05 (Figure 5.3f). To compare

the average global correlation during task state and resting state, we computed

the average correlation between all pairs of brain regions during task and resting-

state, performing a group paired t-test (Figure 5.3g). To compare the average

global connectivity profile of every brain region [Cole et al., 2010b], we computed

the average Fisher z-transformed correlation of a single region to all other brain

regions during task and rest and performed a two-way group paired t-test between

task and rest (Figure 5.3h,i). Statistical significance was assessed using an FDR-

corrected threshold of p < 0.05.
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5.3.9 fMRI: Task state versus resting-state variabil-

ity/correlation analysis without task regression

To compare task-state versus resting-state variability/correlations without re-

gressing out task effects using FIR [Cole et al., 2019], we calculated the vari-

ance/correlations for each time point across blocks. This approach is similar

to previous studies that measured variability changes after task/stimulus onset

[Churchland et al., 2010, He, 2013]. Importantly, because variance/correlations

explicitly account for the mean across a sample, and variance/correlations are

computed for each time point separately, this approach accurately accounts for

task-locked effects.

Statistics (i.e., variance/correlations) were calculated across blocks at each

time point, for each condition separately. To accurately compare task-state to

resting-state statistics, we computed cross-block statistics for rest data using the

same task block design (i.e., sham/control blocks). This controlled for the number

of task blocks and temporal spacing between blocks. We included the first 15 time

points following block onset for both the rest and task data. Thus, any task blocks

that contained fewer than 15 time points were excluded. This was performed for

all ROIs for every subject. Summary statistics were aggregated across ROIs, task

conditions and time points (within rest or task states) and visualized in Figure

5.4.

(For this analysis, we used minimally preprocessed data (from the HCP).

Additional nuisance regression was performed for both rest and task data as

described above, excluding task regression.)



143

5.3.10 Information-theoretic analysis

We evaluated the information-theoretic relevance of rest and task states by char-

acterizing the dimensionality of neural activity. To estimate the statistical dimen-

sionality of neural data, we used the ‘participation ratio’, as previously described

in [Litwin-Kumar et al., 2017]. We first obtain the covariance matrix W of activ-

ity for rest and task states separately. We then calculated

dimW =
(
∑m

i λi)
2∑m

i λ
2
i

(5.2)

Where dimW corresponds to the statistical dimensionality of W , and λi corre-

sponds to the eigenvalues of the covariance matrix W . Intuitively, this is related

to finding the number of components needed to explain variance greater than some

fixed threshold, with more needed components reflecting a higher dimensionality

of the data.

For human fMRI data, we estimated the task-state and resting-state dimen-

sionality by calculating the whole-brain covariance matrix for each state. For

task state this was done by estimating the covariance matrix using task block

periods. For resting state this was done by calculating the covariance matrix

across the equivalently lengthed resting-state periods (using the same data in the

FC analysis above). We applied equation 5.2 to the task-state and resting-state

covariance matrix for each subject. Finally, we applied a two-way, group paired

t-test comparing the dimensionality of task-state activity to resting-state activity

(Figure 5.5a). We replicated this finding in the replication cohort. In addition,

we performed this analysis for each fMRI task separately (Supplementary Figure

C.10).

For NHP spiking data, we estimated the task (task cue period) and rest (ITI)

dimensionality by calculating the covariance matrix between all pairs of popula-

tion recordings. We then applied equation 5.2 to task and rest periods for each
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covariance matrix. (Each covariance matrix was calculated using bins of 25 con-

secutive trials.) Finally, we applied a two-way group paired t-test (across bins)

comparing the dimensionality of task activity to rest activity (Figure 5.5b). We

replicated this effect in the held-out second monkey.

5.3.11 Spiking model: Estimating the transfer function of

a neural population with a balanced spiking model

Our goal was to evaluate the effects of evoked activity across large neural

populations, rather than within populations. Thus, we first estimated the

transfer function of a neural population using a previously established bal-

anced neural spiking model, with 4000 excitatory and 1000 inhibitory units

[Litwin-Kumar and Doiron, 2012]. All parameters are taken directly from

[Litwin-Kumar and Doiron, 2012] with the description paraphrased below. Units

within the network were modeled as leaky integrate-and-fire neurons whose mem-

brane voltages obeyed the equation

dV

dt
=

1

τ
(µ− V ) + Isyn (5.3)

where τ indicates the membrane time constant, µ is the bias term, and Isyn is the

synaptic input. When neurons reached Vth = 1 a spike was emitted, and voltages

were reset to Vre = 0 for an absolute refractory period of 5ms. τ was 15ms and

10ms for excitatory and inhibitory neurons, respectively. For excitatory neurons,

µ was randomly sampled from a uniform distribution between 1.1 and 1.2. For

inhibitory neurons, µ was randomly sampled from a uniform distribution between

1 and 1.05.

Synapses to a neuron were modeled as the sum of excitatory and inhibitory

synaptic trains xE and xI , respectively, and was calculated as the normalized

difference of exponentials describing the synaptic rise and decay times caused
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by each presynaptic event. This effectively captured the weighted effect of all

presynaptic neurons to a target neuron, and specifically obeyed the equations

Iy,syn = xE(t) + xI(t) (5.4)

xZ(t) =
xZ,decay − xZ,rise
τZ,decay − τZ,rise

, Z ∈ {E, I} (5.5)

where the synaptic rise and decay of xE and xI was modeled as the first order

differential equations

dxZ,decay
dt

=
∑
j

Jijsj −
xZ,decay
τZ,decay

(5.6)

dxZ,rise
dt

=
∑
j

Jijsj −
xZ,rise
τZ,rise

(5.7)

Jij refers to the synaptic weight from neuron j to i, sj indicates whether

neuron j emitted a spike. Synaptic rise times were the same for excitatory

and inhibitory neurons, with τE,rise = τI,rise = 1ms, while τE,decay = 3ms and

τI,decay = 2ms. Connection probabilities pxy from neurons in population y to x

were pEI = pIE = pII = 0.5, and on average, pEE = 0.2. However, if two neurons

were both excitatory and belonged to the same cluster, the connection strength

was multiplied by 1.9. (We employed only the homogenous clustered networks,

as described by [Litwin-Kumar and Doiron, 2012], with parameters JEE = 0.024,

JEI = −0.045, J IE = 0.014, and J II = −0.057. Excitatory stimulation was

performed by increasing µ to the first 400 excitatory neurons by 0.5 in 0.05 in-

crements. Inhibitory stimulation was performed by decreasing µ by 0.5 in 0.05

increments to 400 inhibitory neurons.

To estimate the population transfer function, we simulated 30 trials lasting 2s

each at each stimulation amplitude. Spike train statistics were estimated across
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trials in 50ms sliding windows with 10ms shifts. Only excitatory neurons were

included when calculating the population spike train statistics (i.e., mean and

variance at each stimulation amplitude).

Model code was originally adapted from [Litwin-Kumar and Doiron, 2012],

and was simulated with Julia (version 1.1.1).

5.3.12 Model: One-dimensional minimal network model

We use the simplest model to mathematically characterize the relationship be-

tween evoked activity and neural variability: a one-dimensional mean-field model.

We used Wilson-Cowan-type firing rate dynamics to simulate neural population

activity [Wilson and Cowan, 1972]. Specifically, our population’s activity obeyed

the equation

τi
dxi
dt

= −xi + f(wiixi + bi + si + I) (5.8)

where xi denotes the firing rate (or a measure of activity), τi = 0.1 denotes the

time constant, wii = 1 refers to the local coupling (auto-correlation), bi = −0.5

refers to the input threshold for optimal activity (or a bias term), si refers to

the evoked stimulation (si = 0 for intrinsic activity), I refers to the background

spontaneous activity sampled from a Gaussian distribution with mean 0 and

standard deviation 0.25, and f is a sigmoid input-output activation function,

which is defined as

f(x) =
1

1 + e−k∗x
(5.9)

where k = 1. Numerical simulations were computed using a Runge-Kutta sec-

ond order method with a time step of dt=10ms [Burden and Faires, 2001]. We

simulated neural population activity injecting a fixed input (boxcar input) with

amplitudes ranging from si ∈ [−5, 5] in 0.01 increments (Figure 5.7C). Neural

variability for each input strength was calculated using the standard deviation of
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the time series following the input onset and preceding input offset. Each trial

was run for 20 seconds. Figure 5.7a was generated using input amplitudes of

si ∈ {−3, 0, 3}.

To visualize the full dynamics of our single neural population, we visualized

the one-dimensional phase space (i.e., flow field on a line) [Strogatz, 1994]. In

particular, we calculated the flow field by plotting ẋ (i.e., dx
dt

) as a function of xi

(Equation 5.8). Notably, fixed point attractors (equilibrium states) are defined

where ẋ = 0 (Figure 5.7b).

5.3.13 Model: Two-dimensional minimal network model

To characterize the effects of evoked activity on neural correlations, we use a two-

dimensional neural population model. We extended the one-dimensional network

model to include two neural populations. The network dynamics obeyed the

equations

τ1
dx1
dt

= −x1 + f(w11x1 + w21x2 + b1 + s1 + I1) (5.10)

τ2
dx2
dt

= −x2 + f(w22x2 + w12x1 + b2 + s2 + I2) (5.11)

where x1 and x2 describe the activity of each population, and all other vari-

ables are a described above. Inter-regional coupling was set to be greater than

local coupling, given evidence from previous studies that global coupling is greater

than local coupling [Deco et al., 2013a, Cole et al., 2016a, Ito et al., 2017]. Spe-

cific network parameters for this network model were: w11 = w22 = w12 = w21 =

4, b1 = b2 = −3, τ1 = τ2 = 0.1. I1 and I2 were sampled from a Gaussian distribu-

tion with mean 0 and standard deviation 1. For this network model, we decreased

the slope of the sigmoid k = 0.5 to allow for a larger dynamic, linear response

range.

To quantify the relationship between evoked activity and neural correlations,
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we systematically simulated the network under different stimulation states (input

strengths). Using the same methods as above, we simulated network activity for

50 seconds. We injected fixed input into both neural populations with amplitudes

ranging from si ∈ [−5, 5] in 0.01 increments (Figure 5.8e). Notably, given that

the injected stimulation is uncorrelated (due to 0-variance in a fixed input), it is

non-trivial that the FC between two nodes would change in response to different

inputs. Neural correlations were calculated using a Pearson correlation of the two

time series following input onset and preceding input offset.

The use of a minimal model constrained our network to two dimensions. This

allowed us to leverage dynamical systems tools to visualize the flow field in the

two-dimensional phase plane. To identify the fixed point attractors, we first

calculated the nullclines for x1 and x2. Nullclines are defined as the values of

x1 and x2 such that ẋ2 = 0 and ẋ1 = 0, respectively. The fixed points lie at

the intersection of the nullclines. For our particular system of equations, the

nullclines of x1 and x2 were defined, respectively, as

x2 =
f−1(−x1)− w11x1 − b1 − s1

w21

(5.12)

x1 =
f−1(−x2)− w22x2 − b2 − s2

w12

(5.13)

where parameters are identical to those used in equations 5.10 and 5.11. However,

the background noise, parameter I, was removed when calculating the nullclines.

Fixed point attractors (equilibrium states) are defined where ẋ = 0 (Figure 5.8b).

The full flow field was obtained by applying the system of equations (equations

5.10 and 5.11) to every point in the phase space (e.g., all values of x1 and x2).
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5.3.14 Model: Evaluating fixed point attractor dynamics

and the characteristic time scale

Our models accurately demonstrated that evoked activity decreased the neural

variability and correlations from a stochastic dynamical network model. Since

our network model was governed by firing rate equations which provided us full

access to the system’s dynamics, we sought to link dynamical mechanisms (in

the absence of spontaneous activity) with changes in the descriptive statistics.

Such an analysis would provide us with a mechanistic understanding between

descriptive neural statistics used in empirical data analysis and the governing

neural dynamics.

To understand how attractor dynamics influenced simulated activity in a net-

work model, we characterized the dynamics around the network’s fixed point

attractor. Specifically, we performed a linear stability analysis around the fixed

point (i.e., the equilibrium level of activity the system is drawn to during a par-

ticular state or input, e.g., Figure 5.8b) in both the one-dimensional and two-

dimensional network models. In the one-dimensional case, this analysis is equiv-

alent to evaluating the first derivative of equation 5.8 at the fixed point (e.g.,

the slope of the line at the starred locations in Figure 5.7b). We then calculated

the characteristic time scale T at the fixed point x∗ (in one dimension) with the

equation

T =
1

|f ′(x∗)|
(5.14)

where f represents equation 5.8 [Strogatz, 1994]. The characteristic time scale

captures the speed with which the system approaches the fixed point attractor.

We calculated the characteristic time scale across the same range of evoked stimu-

lation strengths as in the neural variability analysis. Fixed points were computed

numerically by running the network model until it reached a steady state in the
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absence of noise/spontaneous activity.

The characteristic time scale is an established measure for one-dimensional

systems. However, we sought to extend the characteristic time scale beyond a

single dimension to evaluate shifting attractor dynamics in higher dimensions.

We first performed a linear stability analysis in two dimensions by evaluating the

Jacobian matrix for our two-dimensional system at the fixed point (x∗1, x
∗
2)

J(x∗1, x
∗
2) =

 df1
dx1

df1
dx2

df2
dx1

df2
dx2

 (5.15)

Where f1 and f2 refer to the equations governing neural populations 1 and 2

(equations 5.10 and 5.11, respectively). For our particular system of equations,

the Jacobian was calculated as

J(x∗1, x
∗
2) =

(−1 + f ′(w11x1 + w21x2 + b1 + s1))
1
τ1

(f ′(w11x1 + w21x2 + b1 + s1))
1
τ1

(f ′(w22x2 + w12x1 + b2 + s2))
1
τ2

(−1 + f ′(w22x2 + w12x1 + b2 + s2))
1
τ2


(5.16)

For each input strength (i.e., differing evoked states), we evaluated the Jacobian

at the fixed point attractor. We then calculated the two eigenvalues (denoted λ1

and λ2) and eigenvectors (denoted v1 and v2) of the Jacobian using an eigendecom-

position. To calculate the generalized characteristic time scale in two dimensions,

we first calculated the linear combination of the eigenvectors weighted by the real

eigenvalues, and computed the magnitude of the vector, such that

vsum(x, y) = re(λ1)v1 + re(λ2)v2 (5.17)

We the define the two dimensional characteristic time scale T as the reciprocal

of the magnitude of vsum(x, y), such that
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T =
1

|
√
x2 + y2|

(5.18)

We calculated T for a range of values s1, s2 ∈ [−5, 5] in 0.01 increments, and cor-

related T across all values of s1 and s2 with the corresponding neural correlations

[Strogatz, 1994].

5.3.15 Model: 300 unit firing rate model

To verify the findings observed in our minimal models would scale to larger net-

works, we included a 300 region mean-field firing rate model. We chose 300

regions given that most whole-brain human atlases contain 200-400 cortically

defined parcels [Power et al., 2011, Glasser et al., 2016a, Schaefer et al., 2018].

Our model followed the same equations as in our minimal model, though inter-

area weights were appropriately scaled relative regional self-coupling parameters.

Specifically, the network dynamics obeyed the equations

τi
dxi
dt

= −x1 + f(wiixi +
300∑
j 6=i

wjixj + bi + si + Ii) (5.19)

where xi describes the activity of each population, and all other variables are as

described above. Inter-regional coupling was set to be greater than local coupling

(2:1 ratio), given evidence from previous studies that global coupling is greater

than local coupling [Deco et al., 2013a, Cole et al., 2016a, Ito et al., 2017]. Spe-

cific parameters for this network model were specified such that: wii = 1, the mean

of the inter-region coupling parameters was
∑300

j 6=iwji = 2, bi = −2, τi = 0.1. Ii

was sampled from a Gaussian distribution with mean 0 and standard deviation

1. si = 0 during rest state and si = 1 during task state.

In total, we ran simulations for two classes of network models: a network with

random connections and a network with clustered communities (Supplementary

Figure C.11). For the random network, we randomly sampled connections with
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20% probability rate between all pairs of regions. For the clustered network model,

we generated 10 communities of 30 nodes each. Regions within the community

had a 20% probability rate for establishing a connection. Between-community

connections had a 3% probability rate for establishing a connection.

For each class of network (random or clustered), we weighted connections

with either positive weights only (i.e., only E connections) or both positive and

negative weights (i.e., both E and I connections. For the E-only network, weights

were sampled from a normal distribution with parameters µ = 1, σ = 0.2. For

the network with both E and I weights (80% E, 20% I), weights were sampled

from a normal distribution with parameters µ = 1, σ = 1.2.

Both the rest and task state simulation was run for 10 seconds each and

sampled at 100ms. For each group analysis (Supplementary Figure C.11), we

simulated 20 subjects worth of data. Model code was written in python 3.7.3.

5.3.16 Model: Simulating fMRI BOLD activity

We used the above model to simulate fMRI BOLD activity to demonstrate that

changes in neural variability and correlations would extend to fMRI BOLD dy-

namics (Supplementary Figures C.6-C.7). Neural activity generated from our

model simulations was transformed to fMRI BOLD activity using the Balloon-

Windkessel model, a nonlinear transformation from neural activity to the fMRI

BOLD signal [Buxton et al., 1998, Friston et al., 2003]. Notably, the transfor-

mation assumes a nonlinear transformation of the normalized deoxyhemoglobin

content, normalized blood inflow, resting oxygen extraction fraction, and the

normalized blood volume. All state equations and biophysical parameters were

taken directly from [Friston et al., 2003] (equations 4-5). The Balloon-Windkessel

model was implemented in Python (version 2.7.13), and the implementation code

has been made publicly available on GitHub (https://github.com/ito-takuya/

HemodynamicResponseModeling).



153

5.4 Results

We first show empirically that task-evoked activity suppresses neural correla-

tions and variability across large cortical areas in two highly distinct neural

data sets: NHP mean-field spiking and human fMRI data (Figure 5.1). This

confirmed previous findings showing quenched neural variability during task

states in both NHPs and humans [Churchland et al., 2010, He, 2011, He, 2013,

Hennequin et al., 2018], while going beyond those previous studies to report glob-

ally quenched inter-area task-state neural correlations. In particular, we focused

on neural variability and correlation changes across large cortical areas (mean-

field) in our electrophysiology data set (rather than between pairs of neurons)

given our focus on large-scale neural interactions, and to facilitate a compari-

son between different correlation approaches (FC in fMRI data and spike count

correlation in electrophysiology data). In addition to spatially downsampling

our NHP data to evaluate mean-field spike rates in each cortical area, we also

temporally downsampled our NHP data to investigate variability and correlation

changes across trials (on the order of hundreds of milliseconds), which appro-

priately matches the sampling rate of our fMRI data (720ms). Moreover, we

limited our inferences to neural interactions between cortical areas to simplify

the complexity of analyzing spike count correlations between pairs of local neu-

rons with different receptive fields [Ruff and Cohen, 2014, Ruff and Cohen, 2016].

Following our empirical results, we provide a mechanistic framework using com-

putational simulations and detailed dynamical systems analyses to explain the

quenching of neural variability and correlations during task-evoked states.
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5.4.1 Task onset reduces neural variability and correla-

tions across spiking populations in NHPs

We estimated the spiking variability and spike count correlations of cortical popu-

lations in NHPs following task cue onset (task periods) and during the inter-trial

intervals (ITI) (rest periods). We found that across trials, global spiking vari-

ability and spike count correlations (rsc) decreased during task as compared to

rest (exploratory subject, variance diff = -3.12, t(303)=-10.91, p < 10e − 22, rsc

diff = -0.04, t(303)=-5.20, p < 10e − 06; Figure 5.2c,d; replication subject, vari-

ance diff = -5.37, t(807)=-13.45, p < 10e − 35; rsc diff = -0.04; t(807)=-9.08,

p < 10e − 17; Supplementary Figure C.1). Variability reductions were also ob-

served using fano factor (rather than variance) at both the mean-field (averaged

across neurons; Supplementary Figure C.14) and for the majority of individual

neurons in each cortical area (Supplementary Figure C.12 and Supplementary Fig-

ure C.13). Correlated variability reductions were also observed using spike count

covariance (rather than correlations) (Figure 5.2h). In addition, we demonstrated

that variability and correlation decreased within trial (across time points within

a trial, after removing the mean task-evoked response), demonstrating that task

state quenching also occurs on a moment-to-moment basis, rather than only on a

slower trial-to-trial timescale (Supplementary Figure C.2). We also measured the

spiking variability for each cortical area separately, finding that 5/6 cortical ar-

eas reduced their spiking variability during task states in the exploratory subject

(all areas except for MT, FDR-corrected p < 0.05). In the replication subject,

all cortical areas, including MT, reduced their spiking variability (FDR-corrected

p < 0.0001). Similarly, we found that during task states, the spike count correla-

tion significantly decreased between a majority of cortical areas (FDR-corrected

p < 0.05; Figure 5.2d-g).
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Figure 5.2: Neural variability and correlations decrease during task states relative to rest in
spiking data. Results for the replication subject are reported in Supplementary Figure C.1. a)
We measured mean-field spike recordings from six different cortical areas during a motion-color
categorization task. b) We calculated the average spike rate across all recordings during the rest
period (ITI) and task period (task cue), across trials. Each data point reflects the firing rate
across 25 consecutive trials. c) We calculated the cross-trial spiking variance for each region
during task and rest states, and then averaged across all regions. Each data point reflects the
spiking variance across 25 consecutive trials. d) We calculated the average cross-trial neural
correlation for task and rest states between all pairs of recorded brain regions. (Spike rates
were averaged within each cortical area.) Each data point reflects the correlation across 25
consecutive trials. e-g) For each pair of brain regions, we visualize the correlation matrices be-
tween each recording site for the averaged rest period, task period, and the differences between
task versus rest state spike count correlations. h) We also observed no increases in covariance
(non-normalized correlation) [Siegel et al., 2012, Cole et al., 2016b, Duff et al., 2018]. For pan-
els e-h, plots were thresholded and tested for multiple comparisons using an FDR-corrected
p < 0.05 threshold. Boxplots indicate the interquartile range of the distribution, dotted black
line indicates the mean, grey line indicates the median, and the distribution is visualized using
a swarm plot. Scatter plot visualizations of b-d can be found in Supplementary Figure C.15

We did not identify any pairwise correlation and covariance increases in our

exploratory NHP (Figure 5.2g). However, in our replication NHP we found cor-

relation increases between visual and frontal areas (i.e., MT/IT and PFC/FEF)

(Supplementary Figure C.1). When analyzed with covariance (rather than corre-

lation), we found these covariance increases to be weak relative to the observed

covariance decreases. (Moreover, the baseline correlation strength between these

areas was very low during the ITI period.) Though these correlation increases

were only observed in 1 of 2 NHPs, they were generally consistent with our fMRI
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data (below), which showed that though there were few correlation increases, vari-

ability and correlations across cortex were dominated by decreases during task

states

To ensure that correlation and variability decreases were associated with in-

creases in the mean activity (rather than just the task period), we estimated the

mean spike rate across all regions during the task cue interval and the preceding

ITI. Indeed, we found that the mean spike rate during task states was significantly

greater than the mean spike rate during rest (exploratory subject, task vs rest

firing rate difference = 0.41 Hz, t(303)=5.77, p < 10e − 06, replication subject,

rate difference = 0.50Hz, t(807)=3.93, p < 10e−04). These findings suggest that

task states increase neural activity while quenching spiking variability and spike

count correlations across large cortical areas.

Importantly, to accurately dissociate first order statistical effects (mean) from

second order effects (variance and covariance/correlation), we removed the cross-

trial, mean-evoked response for each task condition. This essential step, which

removes the main effect of task, is standard procedure in the spike count (noise)

correlation literature [Aertsen et al., 1989]. This procedure isolated the underly-

ing spontaneous/background neural activity during task states, which was subse-

quently used to infer neural interaction through spike count correlation analysis

[Cohen and Kohn, 2011]. To ensure consistency between our spiking and fMRI

analysis, it was critical that we also carefully removed the mean-evoked response

associated with task blocks in our fMRI data (i.e., the main effect of task; see

Methods) [Cole et al., 2019]. To maintain additional consistency between task

and rest states in both data sets, we applied the same statistical procedure to our

rest data (for both spiking and fMRI data) to control for the possibility that our

findings were associated with artifacts related to this procedure (see Methods).

(However, we note that the “mean task effects” removed as a result from this step

during rest periods were negligible.)



157

5.4.2 Task-state variability is globally quenched across a

wide battery of tasks in human fMRI data

Consistent with the spiking literature, previous work in the fMRI literature has

demonstrated that increased activity associated with task-evoked states quenches

neural variability [Churchland et al., 2010, He, 2011, He, 2013]. We extended

those findings to evaluate variability quenching across seven additional cogni-

tive tasks in humans using data from the Human Connectome Project (HCP)

[Van Essen et al., 2013]. We calculated the variability (estimated using time se-

ries variance) during task blocks, averaged across tasks and across regions. Con-

sistent with previous reports, we found that the global variability during task

blocks was significantly lower than the variability during equivalent periods of

resting-state activity (exploratory cohort variance difference = -0.019, t(175)=-

23.89, p < 10e−56; replication cohort variance difference = -0.019, t(175)=-20.72,

p < 10e− 48; Figure 5.3a). These findings suggest that task states are associated

with task-evoked variability reductions.
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Figure 5.3: Variability and correlations decrease during task states in human fMRI data. Figures
for the replication cohort are in Supplementary Figure C.4. Figures for each task separately
are shown in Supplementary Figure C.8 and Supplementary Figure C.9. a) We first compared
the global variability during task and rest states, which is averaged across all brain regions, and
then b) computed the task- versus rest-state variability for each brain region. c) Scatter plot
depicting the variance of each parcel during task states (y-axis) and rest states (x-axis). Dotted
grey line denotes no change between rest and task states. d) We next compared the correlation
matrices for resting state blocks with (e) task state blocks, and (f) computed the task- versus
rest-state correlation matrix difference. g) We found that the average FC between all pairs of
brain regions is significantly reduced during task state. h) We found that the average correlation
for each brain region, decreased for each brain region during task state. i) Scatter plot depicting
the FC (correlation values) of each pair of parcels during task states (y-axis) and rest states
(x-axis). Dotted grey line denotes no change between rest and task states. For panels b-f,
and h, plots were tested for multiple comparisons using an FDR-corrected p < 0.05 threshold.
Boxplots indicate the interquartile range of the distribution, dotted black line indicates the
mean, grey line indicates the median, and the distribution is visualized using a swarm plot.

To better understand how global this phenomenon was, we plotted the change

in variability from rest to task for each brain region separately. We found that

almost all brain regions significantly reduced their variability from rest to task,
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suggesting that variability reduction occurs across most brain regions (cortical

maps are thresholded using an FDR-corrected threshold of p < 0.05; Figure 5.3).

This finding extends the work of a previous study in human fMRI data during

a finger tapping task [He, 2011, Ponce-alvarez et al., 2015], suggesting that task-

induced variability reduction is a general phenomenon consistent across most

cortical regions, and across a wide variety of cognitive tasks.

Lastly, we evaluated whether variability quenching occurred during task blocks

relative to inter-block intervals (rather than comparing task runs to resting-state

runs). Since we z-normalized each task run with unit variance, we could evaluate

the degree to which variability was quenched during task blocks relative to inter-

block intervals by computing the average variance during task blocks relative to 1.

(Note that z-normalization of the task time series was performed after removing

the mean task-evoked response via a task GLM, such that reduced variability

was not an artifact of preprocessing/z-normalizing the time series.) Indeed, we

found that the variance during task blocks was reduced relative to the inter-block

intervals (exploratory cohort variance - 1 = -0.019, t(175)=-36.58, p < 10e− 83;

replication cohort variance difference = -0.018, t(175)=-33.01, p < 10e−76). Our

findings demonstrate that task-evoked periods quench neural variability relative

to both resting-state activity and inter-block intervals.

5.4.3 Task-state FC is globally quenched across a wide

battery of tasks in human fMRI data

Despite multiple studies describing task-evoked FC changes [Cole et al., 2014a,

Krienen et al., 2014, Gonzalez-Castillo and Bandettini, 2017], the precise mecha-

nisms of how FC can change remain unclear. Our current findings illustrate that

mean-field spike count correlations decrease during task-evoked states, consistent

with previous literature that focused on local circuits [Churchland et al., 2010,
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Cohen and Kohn, 2011]. Consistent with the spiking literature’s perspective on

spike count correlations, and the theoretical evidence suggesting that the cor-

relation of ongoing spontaneous activity should be suppressed during task to

facilitate information coding [Averbeck et al., 2006], we hypothesized that FC

would also be globally reduced during task states. To ensure consistency in the

statistical analysis across spiking and fMRI data, we removed the mean task-

evoked response using a finite impulse response (FIR) model. This approach is

statistically equivalent to removing the cross-trial mean response of a task con-

dition, and is a critical step when calculating noise correlations in the spiking

literature [Cohen and Kohn, 2011]. This step characterizes the correlation of the

background spontaneous neural activity (i.e., background connectivity in fMRI),

dissociating task-to-neural interactions (main effect of task) from neural-to-neural

interactions (FC) [Norman-Haignere et al., 2012].

We first calculated the mean FC across all pairwise correlations across all corti-

cal regions for both task and rest states (Figure 5.3d-f). We found that during task

states, the global FC was significantly reduced relative to resting-state fMRI (ex-

ploratory cohort FC diff = -0.05, t(175)=-13.83, p < 10e− 29; replication cohort

FC diff = -0.046, t(175)=-14.00, p < 10e− 29; Figure 5.3g). Recent studies have

suggested that the use of correlation provides an ambiguous description of how

shared variability (relative to unshared variability) change between brain areas

[Cole et al., 2016b, Duff et al., 2018]. Thus, to generalize these results, we also

calculated FC using covariance rather than correlation, finding that covariance

also globally decreases (covariance diff = -192.96, t(351)=-27.30, p < 10e − 88;

Supplementary Figure C.5). Task-evoked global FC was also reduced in each of

the 7 HCP tasks separately (all tasks FDR-corrected p < 0.0001; Supplementary

Figure C.9). To identify exactly how global this phenomenon was, we plotted

the average task versus rest FC change for each brain region (Figure 5.3h,i). We

found that nearly all cortical regions significantly reduced their correlation with
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the rest of cortex during task states. To ensure that correlation differences be-

tween rest and task states were not associated with in-scanner head motion, we

calculated the average number of motion spikes during rest and task scans using a

relative root mean squared displacement threshold of 0.25mm [Ciric et al., 2017].

For both the exploratory and replication cohorts, we found no significant differ-

ences in the percentage of motion spikes between rest and task states (exploratory

set, average task=0.91% of frames, average rest=0.81% of frames, t(175)=1.08,

p = 0.28; replication set, average task=0.009% of frames, rest=0.008% of frames,

t(175)=1.53, p = 0.12).

While we primarily observed global decreases in FC, a small portion of con-

nections increased their FC during task states (exploratory cohort, 7.59% of all

connections; replication cohort, 9.07% of all connections; FDR-corrected p < 0.05)

(Figure 5.3i, Supplementary Figure C.4). However, FC increases were typically

limited to cross-network correlations between networks with different functions,

where baseline resting-state FC is already quite low (e.g., cingulo-opercular net-

work with the default mode network, or the frontoparietal network with the visual

network) (Figure 5.3d-f).

5.4.4 Task state variability and correlation is quenched in-

dependently of removing the mean task-evoked re-

sponse in fMRI data

The above fMRI results employ the use of FIR modeling to remove the mean task-

evoked response to compare task- and rest-state correlations/variability. Here we

sought to demonstrate that neural variability and correlations are quenched in

fMRI data in the absence of any task regression (e.g., FIR modeling). We used

an approach that has been previously used to demonstrate variability quenching

following task onset, by measuring the cross-trial variance at each time point
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[Churchland et al., 2010, He, 2013]. We employ the same general approach, mea-

suring the variance and correlation across blocks for each time point within the

block. Moreover, to obtain statistically comparable estimates of resting state

variability/correlations, we measured the cross-block variance/correlation during

sham blocks during resting state by applying the identical task block structure to

resting-state fMRI data. Critically, the removal of the mean task-evoked response

was excluded from preprocessing for this analysis, and the time series were not

z-normalized.

We found that cross-block variance for time points during task state were

significantly reduced relative to resting state (var diff = -1009.56, t(175)=-37.34;

p < 10e−84; Figure 5.4a,b). We also found consistent results for correlations, find-

ing that the cross-block correlation for time points during task state were signifi-

cantly reduced relative to resting state (r diff = -0.04, t(175)=-10.91, p < 10e−20;

Figure 5.4c,d). These results demonstrate that the quenching of correlations and

variability during task states are independent of any potential statistical arti-

facts that result from removing the mean task-evoked response using FIR task

regression.

5.4.5 Task-evoked activity is negatively correlated with

neural variability and correlations in human fMRI

data

We showed that task states widely reduced neural variability and correlations.

We sought to extend this work to directly demonstrate that decreases in neural

variability and correlations are associated with changes in task-evoked activity

levels. To provide evidence for this hypothesis, we computed the mean task-

evoked activity (averaging across all regions). We found that the global activity

was significantly greater than baseline across different task states (exploratory
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Figure 5.4: Task variability/correlations decrease independently of mean task activity removal
step in fMRI data. Instead of computing variance/correlations across time points within task
blocks (and removing mean task effects), variance/correlations can be calculated across task
blocks (for each time point within a block). This approach isolates ongoing neural activity that
is not task-locked, and has been used in both spiking and fMRI data [Churchland et al., 2010,
He, 2013]. a) To isolate ongoing spontaneous activity that is not time-locked to the task, we
estimated the variance at each time point across task blocks. The variance at each time point
was calculated for each ROI and task condition separately, but then averaged across ROIs
and task conditions. Note that to obtain an equivalent variance estimate during resting state,
we applied an identical block structure to rest data to accurately compare rest to task state
variability. Variability across block time points was averaged across brain regions and task
conditions. Error bars denote standard deviation across subjects. b) Variance across task block
time points was significantly reduced during task blocks relative to identical control blocks
during resting-state data. c) We performed a similar procedure for task functional connectivity
estimates, correlating across blocks for all pairs of brain regions. Correlations across block time
points were averaged for all pairs of brain regions and task conditions. d) Correlations during
task state blocks were significantly reduced relative to identical control blocks during resting
state. Boxplots indicate the interquartile range of the distribution, dotted black line indicates
the mean, grey line indicates the median, and the distribution is visualized using a swarm plot.
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cohort, t(175)=6.46, p < 10e−9; replication cohort, t(175)=12.63, p < 10e−25),

demonstrating that decreases in neural variability and FC were accompanied by

global increases in task-evoked activity.

Previous work has shown that regions that have strong task activations (i.e.,

the magnitude of the task-induced activation, positive or negative) tend to have

greater variability reductions [He, 2013]. (Task activation magnitudes reflect the

deflection of the BOLD activity relative to baseline, or the inter-block inter-

val.) We sought to replicate this effect in the current data set, while extending

those results to demonstrate that more task-active regions also tend to reduce

their FC during task states. We first correlated regional task-evoked activation

magnitude with task-evoked variability reduction (task variance minus rest vari-

ance) across regions at the group-level. We found that regions with greater task-

evoked activation magnitudes (averaged across tasks) exhibited greater variabil-

ity reductions during task states, confirming previous findings in a finger tapping

task (exploratory cohort rho=-0.32, p < 10e − 9; replication cohort rho=-0.49,

p < 10e − 22; Supplementary Figure C.3a,c) [He, 2013]. This negative relation-

ship was also observed in 6/7 of the HCP tasks when analyzed separately (FDR-

corrected p < 0.01; Supplementary Figure C.8). To link regional task activation

magnitudes with FC decreases, we tested for a correlation between regional task-

evoked activation magnitude and the average FC change during task states for

each region. Consistent with our hypothesis, we found that regions with greater

task-evoked activation magnitudes (averaged across tasks) reduced their average

FC more during task states (exploratory cohort rho=-0.25, p < 10e− 05; replica-

tion cohort rho=-0.20, p = 0.0002; Supplementary Figure C.3). When tasks were

analyzed separately, this negative correlation was observed in 4/7 of the HCP

tasks (FDR-corrected p < 0.05; Supplementary Figure C.9). Thus, brain areas

with higher levels of task-evoked activation magnitudes (i.e., changes in activity

relative to baseline) tend to reduce both their task-evoked variability and FC.
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5.4.6 The information-theoretic relevance of task state re-

duction of neural correlations

Results from our empirical data converged across imaging modalities and species,

illustrating that task states increased mean activity while reducing neural vari-

ability and correlations. However, the theoretical implication of a decreased

correlated task state remains unclear. Here we sought to better characterize

the information-theoretic implication of a global reduction in neural correla-

tions. In particular, consistent with previous large-scale computational mod-

els that have predicted increased dimensionality with stimulus-driven activity

[Abbott et al., 2011, Deco et al., 2014], we hypothesized that reductions in neu-

ral correlations increase the effective dimensionality across units by suppressing

background spontaneous activity/noise. While this increased dimensionality may

potentially supports more robust information representations, we acknowledge

that a change in neural dimensionality does not necessitate an improvement (or

change) in cognitive information representation [Averbeck et al., 2006], and that

future studies will need to evaluate the relationship between neural dimension-

ality and cognitive content. Further, we note that an increase in dimensionality

is not trivially implied by decreased global correlations. Because we found that

regional time series variance also decreases during task states, the neural data

dimensionality would increase only if inter-region covariance decreases more than

local regional variance (i.e., off-diagonal is reduced more than the diagonal of the

variance-covariance matrix).

We measured the dimensionality using the ’participation ratio’ of the neural

activity (for human fMRI and NHP spiking data) during rest and task states

(see Methods) [Abbott et al., 2011, Litwin-Kumar et al., 2017]. Consistent with

our hypothesis, we found that task states increased their overall dimensionality

relative to rest states (fMRI task versus rest, exploratory cohort difference =
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16.13, t(175) = 19.31, p < 10e− 44, replication cohort difference = 15.78, t(175)

= 21.66, p < 10e−50; NHP task versus rest, exploratory subject difference = 0.13,

t(303) = 5.77, p < 10e− 07, replication subject difference = 0.26, t(807) = 13.00,

p < 10e−34) (Figure 5.5). We also found that when analyzing each of the 7 HCP

tasks separately, dimensionality increased in all 7 tasks relative to resting state

(FDR-corrected p < 0.0001; Supplementary Figure C.10). The present results

suggest that task states are associated with a decrease in neural variability and

correlations, reflecting a suppression of shared and private spontaneous activity,

which increases the dimensionality of neural activity.

Figure 5.5: Dimensionality increases during task periods relative to resting-state activ-
ity. a) For each subject, we calculated the dimensionality using the participation ratio
[Abbott et al., 2011, Litwin-Kumar et al., 2017] during task and rest states and found that dur-
ing task states, dimensionality significantly increased. b) We calculated the dimensionality of
spiking activity across trials and found that during task states, dimensionality significantly
increased. These findings provide a potential information-theoretic interpretation of neural cor-
relation and variability reduction during task states. Boxplots indicate the interquartile range
of the distribution, dotted black line indicates the mean, grey line indicates the median, and
the distribution is visualized using a swarm plot.
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5.4.7 From neurons to neural masses: Modeling neural

dynamics of cortical areas

In the previous sections, we provided empirical evidence that task states reduce

mean-field inter-area correlations and variability in spike rate and fMRI data. In

this section, we construct a biologically plausible model that provides a parsimo-

nious explanation of correlation and variability reductions in mean field spiking

networks and cortical BOLD dynamics.

Neurophysiologically, functional brain areas are composed of local circuits

with balanced excitatory and inhibitory neural activity (Figure 5.6a). In pre-

vious work, local circuits have been demonstrated to have clustered excitatory

connections [Song et al., 2005], leading to slow dynamics and high variability in

spiking networks simulated in silico [Litwin-Kumar and Doiron, 2012]. Using this

previously established model, we systematically perturbed this balanced network

under a distribution of inputs (both excitatory and/or inhibitory inputs) to esti-

mate the excitatory output (i.e., mean-field transfer function) of a cortical popu-

lation. Though most long-range cortical connections are excitatory, we incorpo-

rated excitatory and inhibitory stimulation effects on a local population (Figure

5.6b). This is because long-range excitatory afferents may target local inhibitory

neurons, producing a net inhibitory effect. Under the presence of inputs, we

found that the population transfer function approximated a sigmoid activation

function (Figure 5.6b). We note that the upper bound on the sigmoid transfer

function (Figure 5.6d) is likely due to inhibitory feedback on excitatory activity

rather than the true saturating spiking regime in neurons. This is because exci-

tatory neurons in a local population typically do not reach a saturating spiking

regime even for strong visual stimuli [Priebe and Ferster, 2008], and instead reach

an upper bound due to strong inhibitory stabilization preventing runaway exci-

tation [Hennequin et al., 2018]. Importantly, simplifying the mean-field transfer
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function of a cortical area allowed us to focus our modeling efforts on simplified

networks across large cortical areas [Joglekar et al., 2018].

Figure 5.6: Inferring the mean-field transfer function of a neural population with a balanced
spiking model with clustered excitatory connectivity. a) Schematic illustration of the balanced
spiking model with clustered excitatory connections. Network architecture and parameters are
identical to those reported in [Litwin-Kumar and Doiron, 2012]. Red triangles indicate exci-
tatory cells, blue circles indicate inhibitory cells. b) The population spike rate (excitatory
cells only) subject to inhibitory regulation. We systematically stimulated a subset of the neu-
ral population and measured the corresponding mean excitatory spike rate. Spike rates were
normalized between 0 and 1. Excitatory stimulation was implemented by stimulating 400 ex-
citatory neurons, and inhibitory stimulation was implemented by stimulating 400 inhibitory
neurons. Spiking statistics were calculated across 30 trials, with each point in the scatter plot
indicating a different 50ms time bin. c) Population neural variability (excitatory cells only), as
a function of input stimulation. d) Based on panel b, we approximated the mean field neural
transfer function as a sigmoid. A sigmoid transfer function produces optimal input-output dy-
namics for a narrow range of inputs (gray). The same input distribution mean shifted by some
excitatory/inhibitory stimulation produces a quenched dynamic range.

In this balanced spiking network, any evoked stimulation, excitatory or in-

hibitory, would result in reduced variability (Figure 5.6c). Specifically, the mag-

nitude of stimulation was negatively correlated with spiking variability in the

balanced spiking model (rho = -0.92; p < 0.0001). While previous studies
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have suggested that the mean and variance of the spike rate may be indepen-

dent of each other, those studies focused on mean-matching the spike rate of

individual neurons within the same local population [Churchland et al., 2010,

Litwin-Kumar and Doiron, 2012]. However, in this study, we focus exclusively

on the mean-field level rather than individual neurons. We found a highly neg-

ative association between mean and variance under experimental perturbation,

suggesting that at the mean-field level, mean and variance cannot be mechanis-

tically dissociated. Based on these considerations, we hypothesized that during

periods in which global neural activity levels are elevated, such as task states,

both neural variability and correlations would be globally quenched.

5.4.8 Neural variability is quenched during task-evoked

states in a neural mass model

Here we rigorously ground the intuition that task-evoked activity reduces output

variability using neural mass modeling and dynamical systems theory. A recent

study provided evidence that an evoked stimulus drives neural populations in

sensory cortex around a stable fixed point attractor [Hennequin et al., 2018]. We

first extended these findings using a simplified neural mass model, which allows

for a comprehensive dynamical systems analysis that is mathematically difficult

in higher dimensions. Additionally, this enabled a simpler theoretical approach to

investigating changes in neural dynamics that are generalizable across mean-field

neural cortical areas (i.e., populations with sigmoidal transfer functions).

We first characterized the relationship between task-evoked and sponta-

neous activity in a large neural population using a single neural mass unit.

We simulated the neural population’s dynamics across a range of fixed in-

put strengths (Figure 5.7a), finding a nonlinear relationship between stimulus

strength and the observed variability of the neural population (Figure 5.7c).
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We found that variability was highest when there was no stimulation, while

variability decreased for any type of evoked stimulation (e.g., negative or pos-

itive input amplitudes). Despite the model’s simplicity, these findings are

consistent with our (and others’) empirical and model results demonstrating

that task states quench time series variability in both human and animal data

[Churchland et al., 2010, He, 2011, Hennequin et al., 2018]. We also generalized

the findings from our minimal (single region) model to large-scale firing rate mod-

els (with 300 regions), where we found variability decreases during task-evoked

states in both network models with random structural connections and clustered

structural connections (Supplementary Figure C.11). We demonstrated this for

network models with excitatory connections only, as well as networks with both

excitatory and inhibitory connections. However, due to the large number of pos-

sible network models when scaling to n-dimensions, we constrained our analyses

to only four network architectures, leaving a more complete analysis to future

studies.
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Figure 5.7: Task-evoked activity induces changes in neural variability and the underlying at-
tractor dynamics. Our minimal modeling approach directly links descriptive statistics (e.g.,
time series variability) with rigorous dynamical systems analysis (e.g., attractor dynamics). a)
During different evoked states (i.e., fixed inputs), there is a reduction in the observed time se-
ries variability (measured by variance across time). This is directly related to how input-output
responses change due to the changing slope in the sigmoid transfer function. b) We visualized
the phase space for each of the neural populations according to state by plotting the derivative
of X1 denoted by Ẋ1. For each state, we estimated the fixed point attractor (plotted as a
star), denoting the level of mean activity the system is drawn to given some fixed input (or
absence thereof). Arrows denote the direction/vector toward each fixed point, which specify
the characteristic time scale (i.e., the speed) the system approaches the fixed point. c) We
ran simulations across a range of stimulation amplitudes, calculating the variance across time
at each amplitude. d) We characterized the shifting attractor dynamics for each stimulus by
computing the characteristic time scale at the fixed point for each stimulation amplitude. The
characteristic time scale across all fixed points are nearly perfectly correlated with the neural
variability of the simulated time series across all fixed inputs (rank correlation = 0.9996).

We sought to leverage the model’s simplicity to characterize dynamical sys-

tems properties governing the observed neural variability. This would provide

rigorous evidence that shifting the underlying attractor dynamics alters the ob-

served neural signals. We first performed a state space analysis in one dimension

to identify the stable fixed point attractor (i.e., the equilibrium level of activity

the system is drawn to during a particular state) for the intrinsic and evoked

states (Figure 5.7b). The state space view enabled visualization of the system’s

full dynamics across different evoked states (Figure 5.7b). For example, dynamics
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around the fixed point attractor in the intrinsic baseline (rest) state appeared to

approach equilibrium slowly. This can be identified by observing the angle where

the curve intersects 0 on the y-axis (i.e., when ẋ = 0; Figure 5.7b). The angle

of this curve corresponds to the characteristic time scale, a dynamical property

characterizing the speed with which the system approaches the attractor (a higher

value reflects slower dynamics; see Methods) [Strogatz, 1994].

To quantify this more rigorously, we performed a linear stability analysis

around the fixed point attractor of the system across the same range of stim-

ulation amplitudes. For each input, we analytically calculated the characteristic

time scale at each fixed point. Again, we found a nonlinear relationship between

the amplitude of the stimulus and the characteristic time scale of the neural popu-

lation (Figure 5.7d), and found that the characteristic time scale explained nearly

100% of the variance (rho=0.9996) of the simulated stimulus-evoked variability

(Figure 5.7c). These results demonstrate that changes in observed neural variabil-

ity can be directly attributed to changes in the underlying attractor dynamics.

To ensure that the model explanation would generalize to data obtained

on a slower time scale (e.g., fMRI BOLD data), we transformed the simulated

neural activity into fMRI BOLD activity using the Balloon-Windkessel model

[Friston et al., 2003]. The Balloon-Windkessel is a nonlinear transformation of

neural activity to model the BOLD signal that takes into account the normalized

blood volume, blood inflow, resting oxygen extraction fraction, and the normal-

ized deoxyhemoglobin content. Consistent with previous accounts [He, 2013], we

found that the characteristic time scale around the fixed point attractor was still

strongly correlated with BOLD variability (rho=0.97; p < 0.0001; Supplementary

Figure C.6).
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5.4.9 Neural correlations are quenched during task states

in a network model

We generalized the dynamical systems analysis in one dimension to two dimen-

sions, allowing us to focus on correlations across cortical areas. We show illustra-

tions of the state space for intrinsic and task-evoked states (Figure 5.8b,d), as well

as the corresponding time series (Figure 5.8a,c) for our model. Induced negative

activity produced qualitatively similar results to the activated state (Figure 5.8d)

due to subthreshold levels of activity rather than saturating levels of activity.

The state space analysis (Figure 5.8b,d) allowed us to track the simultane-

ous evolution of the two neural masses, providing a geometric interpretation of

the system. We observed qualitatively that shifts in the attractor dynamics (i.e.,

changes to the flow field) due to stimulation were directly associated with changes

to the correlation between the two neural masses. Specifically, we observed that

intrinsic state dynamics supported slower, elongated trajectories along a diagonal

axis, consistent with correlated neural activity between the two masses (Figure

5.8b). This was due to a slower characteristic timescale near the fixed point

attractor, which corresponds mathematically to eigenvalues with smaller magni-

tudes. In contrast, during evoked states, the system approached the fixed point

attractor at a faster speed, quenching trajectories in state space that supported

correlated variability (Figure 5.8d). Thus, the visualization of the state space

demonstrated that changes in neural correlations were associated with changes to

the flow field around the fixed point attractor.

To more carefully test the relationship between state-dependent neural cor-

relations, we simulated our network model across a range of fixed input ampli-

tudes. Despite no changes to the network’s connectivity structure, we found that

neural correlations systematically changed (decreased) as a function of evoked

stimulation (Figure 5.8e). Further, using dynamical systems analysis, we found
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Figure 5.8: Task-evoked activity quenches neural correlations by altering the underlying at-
tractor dynamics. We used a two unit network model, the minimal model necessary to study
dynamic changes in neural correlations. a) At baseline, we observed slow, high amplitude fluc-
tuations and high neural correlations. b) To characterize the underlying attractor dynamics, we
visualized the two-dimensional state space, visualizing the flow field and the nullclines (blue and
red curves, where the rate of change is 0) for each unit. The intersection of the two nullclines
denote the fixed point attractor. We overlaid the simulated scatter plot (cyan dots) to illustrate
the correspondence between the attractor dynamics and simulation. c) We injected a fixed
input stimulation, shifting the network to an ‘evoked’ state, which caused a decrease in neural
variability and correlation. d) The external input transiently moved the fixed point, altering
the attractor dynamics and the corresponding scatter plot. e) We systematically injected a
range of fixed inputs into the network. We found that neural correlations were optimal with
no external stimulation, and decreased with any external stimulation. f) Across stimulation
strengths, we found that the generalized characteristic time scale (see Methods) near the fixed
point explained 98% of the neural correlation variance, providing a direct association between
the network’s attractor dynamics and observed neural correlations.
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that a generalization of the characteristic time scale in higher dimensions ac-

counted for changes in neural correlations (rho=0.99; p < 0.0001; Figure 5.8f).

In other words, we analytically determined that evoked stimulation shifted the

attractor dynamics, changing the neural correlations in a network model with

fixed synaptic connections. We found consistent results after transforming the

neural activity to fMRI BOLD activity using the Balloon-Windkessel model

[Friston et al., 2003], finding that changes to the characteristic time scale ac-

counted for changes in BOLD correlations (i.e., FC) (rho=0.97; p < 0.0001;

Supplementary Figure C.7). These results were reproduced using mutual in-

formation (rho=0.94; p < 0.0001), a nonlinear measure of statistical dependence

[MacKay, 2003], and non-parametric rank correlation (rho=0.99; p < 0.0001).

This suggests that the quenching of shared variance encompasses both paramet-

ric and non-parametric linear and nonlinear measures of statistical dependencies.

To ensure that our findings in simplified two node networks would scale to

large-scale network models, we simulated large-scale firing rate models (with 300

regions). We found correlation decreases during task-evoked states in both net-

work models with random structural connections and clustered structural connec-

tions (Supplementary Figure C.11), suggesting that the mechanisms we identified

in these minimal models likely scale to the larger networks. We demonstrated

this for network models with excitatory connections only, as well as networks

with both E and I connections.

5.5 Discussion

The present results suggest that task-evoked neural activity globally quenches

neural time series variability and correlations. We showed this in NHP spiking

and human fMRI data, illustrating the generality of the phenomena. This sup-

ports the hypothesis that during task states, decreases in neural variability and
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correlations suppress ongoing spontaneous activity, better supporting information

coding [Averbeck et al., 2006]. We subsequently provided a dynamical systems

model to demonstrate that evoked activity strengthened the system’s fixed point

attractor, quenching neural variability and correlations. This provided a mech-

anistic framework to interpret the empirical results. Importantly, the use of a

sigmoid transfer function to model mean-field cortical dynamics revealed a sim-

ple interpretation underlying neural variability and correlation suppression widely

applicable to many types of neural data. During task states, the slope of the

neural transfer function decreases, reducing the dynamic range of input-output

responses. This results in reduced overall output variability, as well as reduced

shared variability (e.g., correlations) from connected neural populations. The

collective empirical and theoretical results provide strong evidence that observed

neural variability and correlations are state-dependent, and these changes emerge

from the activity dynamics governed by the transfer functions of large neural

masses.

The relationship between neural correlations and neural communication (or

FC) is complex. For example, it appears that a decrease in the neural correlation

between a pair of brain regions does not simply imply a reduction in communi-

cation. In the spiking literature, this interpretation is attributed to a reduction

of shared spontaneous activity (or, neural noise). This is because the cross-trial

mean evoked response (i.e., “the signal” associated with the task or stimulus)

is removed prior to calculating the correlation, leaving only “neural noise” or

spontaneous, moment-to-moment activity [Cohen and Kohn, 2011]. Notably, this

“neural noise” can still be important, since some portion of it drives trial-by-trial

variability in cognition and behavior. In the fMRI literature, this is equiva-

lent to regressing out the cross-trial mean task-evoked activity associated with

the task/stimulus prior to calculating FC [Cole et al., 2019]. (This type of FC

is also referred to as “background connectivity” [Norman-Haignere et al., 2012])
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The primary reason for this is to target neural-to-neural correlations, rather than

task-to-neural associations.

Our theoretical and empirical results clarify the interpretation of correlation

changes from rest to task states in large-scale neural systems. Though em-

pirical studies in large-scale functional networks using fMRI have reported FC

increases during task states [Fiebach et al., 2006], we recently found that task-

evoked activity inappropriately inflates FC estimates if the mean-evoked activity

response is not properly accounted for [Cole et al., 2019]. Indeed, when properly

accounting for the mean-evoked response, we found that FC changes from rest

to task states were dominated by FC decreases (see Figure 5.3i). The correc-

tion of the mean-evoked response in our paradigm brought the empirical results

in line with our modeling results, suggesting a counterintuitive interpretation of

FC changes during tasks: task co-activation in the presence of neural correla-

tion quenching is consistent with task-related signal communication with back-

ground noise suppression. This can be understood from an information-theoretic

perspective: during task communication, ongoing spontaneous activity will be

suppressed (i.e., neural variability and correlations), increasing the fidelity of

the task signal (mean task-evoked response). Our results were consistent using

both correlation and covariance measures, suggesting that these decreases were

due to reductions in shared variance rather than changes in unshared variance

[Fegen, 2012, Siegel et al., 2012, Cole et al., 2016b, Duff et al., 2018]. Further-

more, the present results do not rely on regressing out the task; correlation and

variability quenching were also observed independent of this preprocessing step

(see Figure 5.4). This was achieved by isolating cross-trial variance, which is

similar to computing FC with a beta series correlation [Rissman et al., 2004].

Though we largely focused on FC decreases during task states in both data

sets, we identified a small number of correlations that increased during task
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state. Most of these correlation increases were primarily between regions be-

longing to different functional networks, such as frontal and visual areas, which

is consistent with previous literature [Cole et al., 2014a, Krienen et al., 2014,

Gonzalez-Castillo and Bandettini, 2017]. Some correlation increases have also

been reported in the NHP spiking literature, where spike count correlations

between units with similar task receptive fields tend to decrease, while spike

count correlations between units with dissimilar task receptive fields increase

[Ruff and Cohen, 2014]. This appears to be conceptually consistent with the

present findings, where we focus on mean-field correlation changes between func-

tionally distinct cortical areas (rather than between pairs of individual neurons).

Specifically, we found that regions in the same network tend to decrease their

correlations, while regions across functionally distinct areas/networks marginally

increase their correlations. In our fMRI data, we found marginal task-state corre-

lation increases between different networks, such as the frontoparietal and visual

networks (Figure 5.3f). Correlation increases were also observed in one of the

two NHPs between frontal (PFC and FEF) and visual (MT and IT) areas (Sup-

plementary Figure C.1). (However, we note we did not observe any correlation

increases in our exploratory NHP.) While these correlation increases appear to be

statistically reliable, the spontaneous (resting-state) correlations between these

areas were very low and the correlation increases marginal. Thus, it will be im-

portant for future investigations to directly evaluate the functional relevance of

these marginal correlation increases.

We propose that a sigmoid transfer function is an effective model of the

activation dynamics of large cortical areas. This was based on causally ma-

nipulating a locally balanced E-I circuit with clustered excitatory connectivity

[Litwin-Kumar and Doiron, 2012]. The sigmoid transfer function provides a sim-

plification of mean-field neural dynamics that captures excitatory dynamics sub-

ject to inhibitory regulation, where feedback inhibition is implicitly modeled by
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the saturation of the sigmoid function. (We note that the saturation of the sig-

moid function does not represent the saturating spiking regime, since spiking

saturation does not typically occur in vivo [Priebe and Ferster, 2008].) More-

over, the implementation of the sigmoid transfer function is consistent with prior

computational studies demonstrating that resting-state activity corresponds to

dynamic regimes with large amplitude, slow fluctuations [Deco et al., 2013b]. In

contrast, during task-evoked states, the output dynamics of the sigmoid trans-

fer function are reduced, which correspond to evoked states (e.g., cortical “Up”

or asynchronous states) that exhibit quenched variability [Renart et al., 2010,

Harris and Thiele, 2011]. The quenching of output variability can be explained

by different biological mechanisms, such as clustered excitatory connectivity

in local circuits, tightening of E-I balance due to inhibitory feedback, neural

adaptation, and/or irregular synaptic vesicle release [Deco and Hugues, 2012,

Litwin-Kumar and Doiron, 2012, Rosenbaum et al., 2012, Tetzlaff et al., 2012,

Doiron et al., 2016, Hennequin et al., 2018]. The manifestation of these biological

mechanisms can be summarized at the mean-field by the reduction of the response

variability due to the decreased slope in the sigmoid transfer function during

highly active or inactive states. Though other detailed spiking models have offered

biophysical mechanisms for inter-area spiking correlations [Huang et al., 2019],

we focused here on simplified dynamical systems explanations for correlation and

variability changes at the mean-field. It will be important for future work to

directly investigate how lower-level biophysical mechanisms map onto model de-

scriptions at the mean-field.

The present results may appear to contradict some reports that task engage-

ment increases (rather than decreases) overall neural communication. Yet there

are several key differences between those previous findings and the present results.

First, many of the previous results focused on communication through coherence,

which often involves frequency-specific coupling of neural signals [Fries, 2005].
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This involves the phase-alignment of neural activity on faster timescales, which

relates only indirectly to the slower correlation measures of spike rate activity

and metabolic demand focused on here [Kahn et al., 2013, Pesaran et al., 2018].

A second key difference between the present and most previous results is our em-

phasis on the absolute amount of correlation change from rest to task, rather than

changes in network organization. Previous studies have also acknowledged that

global signal regression, a common fMRI preprocessing step, shifts the baseline

of rest- and task-state correlations and artificially induces negative correlations

[Fox et al., 2009, Murphy et al., 2009]. This preprocessing step confounds the

comparison of the magnitude of correlation changes during independent rest- and

task-state fMRI. In the present study, we rigorously preprocessed our fMRI data

while ensuring to not remove the global signal. Along with the recent finding

that incorrect removal of the mean-evoked response can inflate FC estimates, we

suggest that rest to task correlation increases in previous fMRI studies should be

interpreted with care.

Despite converging results, there are several key differences in our two empiri-

cal data sets. First, the time scale of fMRI BOLD activity is much slower than the

NHP spiking activity. However, these differences were mitigated by measuring

spiking variability across trials, which is comparable to the time scale of fMRI’s

sampling rate (in the hundreds of milliseconds). (We note, however, that down-

sampling spike data does not make it statistically equivalent to fMRI data.) In

addition, our computational model results demonstrated that reductions in neu-

ral variability and correlations were preserved after nonlinearly transforming the

spike rate signal to the fMRI BOLD signal with the Balloon-Windkessel model

[Friston et al., 2003], suggesting that the observed signal changes are likely due

to the BOLD signal changes rather than MRI artifacts. Despite the computa-

tional model demonstrating that statistical properties of BOLD dynamics can be

directly caused by spiking dynamics (via the hemodynamic transformation), it is
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difficult to rule out other possible in vivo explanations in the present study. An-

other key difference in the data sets is the lack of a true resting-state data set in

our NHP data. However, to better compare these two data sets, we demonstrated

in the human fMRI data set that the task block periods showed reduced variabil-

ity relative to inter-block intervals, which is a more analogous comparison to the

NHP data set. Despite replication of results across species and task paradigms,

our conclusions are based on independently obtained data sets from two species

and across task designs. Thus, it will be important for future work to more thor-

oughly investigate the differences in variability and correlation quenching using

experimental designs that simultaneously record both BOLD signal and spiking

activity across multiple cortical areas.

In conclusion, we propose a mechanistic framework for interpreting changes in

neural variability and correlations by investigating the effects of task-state activity

on the underlying neural attractor dynamics. Using empirical data analysis across

two highly distinct neural data sets and theoretical modeling, we demonstrated

convergent evidence suggesting that task states quench neural variability and

correlations due to strengthening neural attractor dynamics across large-scale

neural systems. Our work extends previous research establishing similar attractor

mechanisms in sensory cortex [Hennequin et al., 2018] to characterize the role of

attractor dynamics across large-scale cortical areas. We expect these findings

to spur new investigations to better understand how we can interpret neural

variability and correlations during task states, providing a deeper understanding

of dynamic processes in the brain.
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Chapter 6

General Discussion

6.1 Overview and significance

Inspired by connectionist theory, this thesis combines network neuroscience with

traditional cognitive mapping techniques to characterize network computations

in empirical brain data. Typical network neuroscience approaches facilitate the

characterization of either the structural or functional connectomes, providing a

way to describe the brain’s components [Bassett and Sporns, 2017]. However,

these studies often investigate properties of network organization without relat-

ing them to the cognitive task activations associated with cognitive processes.

In contrast, traditional cognitive mapping approaches aim to characterize which

brain areas activate during different cognitive processes. Yet such studies often

fail to address exactly how these local brain activations emerge from a mechanis-

tic point of view. Connectionist theory provides a unique opportunity to bridge

task-related activations with network organization. This is because connectionist

theory addresses how distributed connectivity in a network can perform cognitive

computations by propagating activations within the network [Ito et al., 2020b].

Thus, by combining network and cognitive mapping with connectionist theory,

this thesis provides a framework to understand cognitive processes by simulating

task activation flow through empirically-estimated functional brain networks.

I presented three specific scientific aims that address how cognitive processes

reflected in task-evoked activations emerge from distributed network computa-

tions. In Aim 1 (Chapter 2) I focused on how distributed information reflected in
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highly decodable task activations across cortex were linked to each other through

resting-state network connectivity. Specifically, activity in a target brain region

could be predicted as the task-evoked activity mapped from a source region. This

“activity flow mapping” onto the target region could be described as a linear trans-

formation of its resting-state FC pattern with a source region’s activation. This

provided an explicit network computation (formalized by the inter-region, voxel-

to-voxel resting-state FC matrix) that describe inter-area activity flow pathways.

In Aim 2 (Chapters 3 and 4), I investigated how distributed information

during different task intervals (i.e., rule encoding, stimulus presentation, and

behavioral responses) were related to each other within the brain. In Chapter

3, using the same fMRI data set obtained in Chapter 2, we found that behav-

ioral response information during a cognitive control task could be predicted as

a nonlinear activity flow transformation from brain regions containing task rule

and sensory stimulus information. Critically, this activity flow mapping could be

estimated directly from resting-state FC data, suggesting an important role of

intrinsic FC in shaping cognitive computations.

In Chapter 4, we extended the concepts and activity flow techniques we tested

in fMRI data and applied them to neural spike recordings. We used a previous

published data set [Siegel et al., 2015] that obtained multi-unit spike recordings

from six cortical areas during a flexible sensorimotor task. Consistent with our re-

port in Chapter 3, we found that the spiking activity during the response (saccade)

period in the FEF could be predicted as a nonlinear spiking activity flow transfor-

mation from sensory and frontoparietal regions during the task rule and stimulus

intervals. Critically, we used stimulus-free spiking activity during ITIs to con-

struct network models of inter-unit FC to predict spiking activity. Though neural

interactions have long been studied using noise correlation analyses in the electro-

physiology literature [Cohen and Kohn, 2011], few electrophysiology studies have

applied the commonly used large-scale network estimation techniques in fMRI to
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predict spiking activity across cortical ares (however, see [Semedo et al., 2019]).

Thus, Aim 2 provided us with the unique opportunity to show that network-based

cognitive computations could be identified with both large-scale fMRI and multi-

unit spike recordings, bridging concepts and techniques across the human fMRI

and non-human animal electrophysiology literatures.

Finally, in Aim 3 (Chapter 5), I addressed the uses and interpretations of

neural correlations in humans and NHPs during intrinsic and task states. Even

though the signals measured in fMRI and electrophysiology data come from dif-

ferent sources, in Aims 1 and 2 we were able to construct functional network

models that could predict task-evoked activations by estimating inter-unit statis-

tical dependencies. Thus, Aim 3 focused on identifying the principles that govern

statistical relationships in neural data.

We began by observing that inter-area mean-field correlation changes were

consistently reduced during task states in both data modalities. (Mean-field refers

to the average activity of a large neural population.) We subsequently constructed

a dynamical systems model that could parsimoniously explain why correlations

were reduced during task-evoked states. In particular, in a network with fixed

synaptic connectivity, changes in correlated activity can be explained by nonlinear

(sigmoidal) activation functions of local neural populations. This suggested to

us that the incorporation of nonlinearities in network modeling (i.e., nonlinear

transfer functions at each unit) could 1) account for previously reported changes

in task-state FC dynamics and 2) improve future activity flow models for better

task activation predictions. Indeed, we have recently showed in a follow-up study

that accounting for state-dependent network changes (which implicitly accounts

for nonlinearities) can improve network models of activity flow [Cole et al., 2020].
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6.2 General limitations

Though this thesis aimed to provide an account of cognitive computations through

brain network computations, there are several key limitations.

6.2.1 Oversimplification of network computations

The first primary limitation is that the network computations that we estimated

in this thesis are likely oversimplified relative to their actual biological implemen-

tations. For example, we primarily use activity flow mapping to predict task acti-

vations. As presently construed, activity flow mapping takes the linear weighted

sum of source regions’ activations weighted by each functional connection to a

target area (or neuron). Though we show this approximation typically works well

in both fMRI and multi-unit data, this simplification ignores the complex bio-

logical implementations of synaptic efficacies between neurons, which are highly

heterogeneous and nonlinear. Our approach aims to use the simplest possible

network computations to approximate this complex process, providing opportu-

nity for future work to build more sophisticated and detailed models of network

computations.

6.2.2 Causal and mechanistic interpretability

In Aims 1 and 2, we simulated activity flow processes as if they were modeled

over actual connections. However, current FC estimation procedures are limited

in their causal and mechanistic interpretations. This is because current FC meth-

ods rely on statistical dependencies, such as correlation and or regression-based

techniques, rather than causal relations [Reid et al., 2019]. Moreover, these sta-

tistical dependencies do not account for directionality. Instead, the FC methods

employed in this thesis typically optimize for prediction of a brain region. This

is because we use linear regression-based methods (e.g., principal components
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and/or ridge regression), which optimizes for prediction on a target given a set

of inputs. (Linear regression minimizes the mean-squared error of the target

variable.) Though it will be important for future models to use more causally-

validated methods [Sanchez-Romero and Cole, 2020, Friston et al., 2003], the ap-

proaches used in this thesis are still capable of addressing questions that relate

intrinsic functional network organization with cognitive task activations.

Another important limitation is that much of the work presented in this

thesis used the fMRI BOLD signal, which is only indirectly related to the

neural activity thought to underlie behavior. However, recent studies have il-

lustrated a strong correspondence between BOLD activity and neural activity

[Ma et al., 2016, Lake et al., 2020]. And even though BOLD activity likely does

not cause behavior, BOLD activity reflects the neural activity that in turn likely

causes behavior. Importantly, in Aims 2 and 3, we showed that the methods and

approaches that we employed on fMRI data were validated using neural spiking

data. This correspondence suggests that mechanistic inferences made with fMRI

data may also generalize to inferences made on electrophysiology data.

We primarily focus on macro- and mesoscale network computations asso-

ciated with cognitive processes. Previous theoretical frameworks have sug-

gested that this level of organization may be appropriate for characterizing

higher level cognition [Craver, 2007, Craver and Bechtel, 2007]. Nevertheless, it

is worth noting that there are likely other levels of organization that can pro-

duce similarly mechanistic accounts of cognitive processes. For example, some

mechanistic theories suggest that balanced amplification of signals from lower-

to-higher order areas is critical for conscious perception [Joglekar et al., 2018,

Deco and Kringelbach, 2017], and that this “balanced amplification” is governed

by slight changes in excitatory-inhibitory balance [Murphy and Miller, 2009,

Ahmadian and Miller, 2019]. Thus, though the current thesis focused mostly

on network-level computations of cognitive manipulations, there are many other
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possible mechanisms at different levels of organization that remain to be explored.

6.3 Potential future directions

This thesis laid the groundwork for future investigations into the role of network

computations in cognitive processes. Below are several potential future directions

that follow from the results presented here.

6.3.1 What are the computational properties of network

transformations?

We used empirically-estimated FC patterns to predict information transfer and

transformation. But what were the mathematical and computational properties

of these mappings? For example, did some network mappings project from a

high-dimensional input space to a low-dimensional output space (or vice-versa)?

Did some network mappings preserve aspects of representational invariance (e.g.,

translation invariance) that are commonly found in some deep neural networks

[Richards et al., 2019, Yamins et al., 2014]? Thus, it will be interesting to evalu-

ate the mathematical properties of network-based transformations, as they would

shed light on exactly how the brain implements information transformation during

cognitive tasks.

6.3.2 What is the role of local processes?

A central concept to connectionist modeling is that a target unit’s activity can

be predicted as a function of propagating activity from other units. This takes

an extreme view that neural computations are purely distributed, and that local

intrinsic properties, such as operating timescales or the shape of input-output

transfer functions, play a minimal role in shaping computations. However, most
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models of large-scale neural resting-state dynamics suggest the existence of hier-

archical heterogeneity [Wang et al., 2019, Demirtaş et al., 2019]. Indeed, though

not included in this thesis, we showed in a follow-up study that different regions

across the cortical hierarchy were more easily predicted by distributed activity

flow modeling (in fMRI data) than other regions [Ito et al., 2020c]. Specifically,

we found that unimodal brain regions were harder to predict that transmodal

(association) regions via activity flow modeling. We inferred from this that uni-

modal regions may process information more locally, since their task activations

were not as well predicted by network connectivity. However, exactly how this

can be accurately modeled and accounted for remains an open question. Thus,

it will be important for future studies to better account for local intrinsic prop-

erties and cortical heterogeneity to produce more accurate models of distributed

network computations.

6.3.3 Applications to artificial intelligence design?

Our findings in Aim 2 have the potential to inform the machine learning and arti-

ficial intelligence fields. Chapters 3 and 4 provided evidence that task-performing,

connectionist models can be directly parameterized from empirical data. This pro-

vides a proof-of-principle that network principles identified in neuroscience could

potentially inform AI architectures. For example, we provided evidence that

the intrinsic functional network organization could be leveraged to parameter-

ize a connectionist model of sensorimotor transformations during flexible behav-

ior. Thus, what principles and characteristics of the brain’s network organization

could inform connectionist architectures and optimization principles? Could op-

timizing for specific network properties, such as hub-related properties (e.g., rich-

club or modular organization) provide more efficient learning principles for ANNs

than techniques that exclusively focus on optimizing task performance? Thus,

investigating the role of brain network organization could potentially inform and
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constrain ANN models to produce more efficient and generalizable models.

6.3.4 Application of network modeling to other data

modalities

Recent technological advances have increased the ability to invasively

record thousands of neurons from many different areas simultaneously

[Steinmetz et al., 2018]. Related advances have enabled imaging of the entire

dorsal cortex using wide-field calcium imaging [Pinto et al., 2019]. Chapter 4

of this thesis only began to scratch the surface of how network-based methods

developed in fMRI (e.g., activity flow mapping) can translate to other types of

neural recordings. Thus, as data acquisition methods such as wide-field calcium

imaging and neuropixel technology become more available, whole-brain network

modeling techniques that were previously reserved for fMRI data provide a unique

opportunity to bridge human and non-human neuroscience literatures.

6.4 Conclusion

In conclusion, this thesis aimed to leverage both traditional cognitive brain map-

ping with network neuroscience to address how intrinsic network organization

produce task-related cognitive activations. In Aim 1 (Chapter 2), I showed that

cognitive task information in a target brain region could be predicted using FC

patterns from a source region. In Aim 2 (Chapters 3 and 4), I demonstrated that

cognitive information transformation during flexible behavior can be predicted

as a nonlinear transformation of sensory stimulus to motor behavior activations

using empirically estimated inter-unit FC weights. This showed that functional

network organization formed the functional backbone from which cognitive com-

putations can emerge. Finally, in Aim 3 (Chapter 5), I demonstrated that a local

nonlinear activation function (sigmoid) could account for network changes from
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spontaneous to task-evoked states, suggesting that accounting for nonlinear rela-

tionships among neural units may provide a way forward in improving network

models of cognitive processes. Together, the work presented in this thesis pro-

vides a framework for understanding cognitive processes in empirical brain data

in terms of connectionist principles.
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Appendix – Chapter 2

A.1 Supplementary Figures
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Figure A.1: Supplementary Figure 1. Task information persist in functional networks and are
transferred between networks via network-to-network information transfer mapping. All re-
ported results were statistically significant p < 0.05 (FWE-corrected). A) Network-to-network
information transfer mapping uses the network-level activation pattern (using the mean activa-
tions of brain regions) and the region-to-region resting-state FC topology to predict the network-
level activation pattern of another functional network. B) Information estimates of task-rule
information across three rule domains prior to performing information transfer mapping. The
seven networks contain statistically significant decodable representations of at least one rule
domain using a cross-validated representational similarity analysis approach. In particular, the
SMN contains the highest information estimate for motor task rules. In addition, most net-
works contain logic rule information, suggesting that abstract rule representations were highly
distributed across cortical networks. C) Network-to-network information transfer mapping of
logic rules. As in Figure 2.6, functional networks along the rows indicate the activation patterns
that were projected to the networks indicated along the columns. Colors indicate the T-statistic
from a one-sided t-test against 0. The transfer of logic rule information was distributed among
other domain-general networks, such as the CON and DMN. D) Network-to-network informa-
tion transfer mapping of the sensory rules. Sensory rule information is transferred between the
FPN and other domain-general networks (DMN, CON), as well as from VIS and the DAN.
E) Network-to-network information transfer of motor rules. Information transfer mapping of
motor rule representations occurs between the DAN and SMN, CON and SMN.
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Figure A.2: Supplementary Figure 2. Information transfer mappings between all pairs of regions
for all defined functional networks. All reported results were statistically significant at p < 0.05
(FWE-corrected). Here, we show a superset of the summary results shown in Figure 2.6b,d,f,
including significant information transfer results for all 14 functional networks. While results
for all regions (belonging to all 14 functional networks) are shown in panels Figure 2.6a,c,e,
functional networks that were not well-defined by previous network partitions were not included
in Figure 2.6b,d,f. Note that the 7 functional networks not included in Figure 2.6 are the seven
smallest networks, each consisting of fewer than 20 parcels. A) Percent of significant region-to-
region information transfers for all 14 network definitions for the logic rule domain. B) Percent
of significant region-to-region information transfers for all 14 network affiliations for the sensory
rule domain. C) Percent of significant region-to-region information transfers for all 14 network
affiliations for the motor rule domain. D) Significant information transfers between regions
for all 14 network affiliation across rule domains, derived in the same way as data in Figure
2.6g. Despite including all functional networks, we found that transfers between the FPN and
the CON were still the only transfers between a pair of networks that consistently transferred
information across two rule domains. E) We assessed whether a network was consistently
involved in sending task rule information (as a source region) across each rule domain. We
found that regions in the FPN consistently transferred information across two rule domains. F)
Network assignments and color definitions for all 14 functional networks. Here, we attribute
functional names for all 14 networks. Color schemes are consistent with colorings shown on the
anatomical surface in Figure 2.3a



215

Figure A.3: Supplementary Figure 3. Computational validation of information transfer mapping
with different task stimulation patterns and decoding approaches. We simulated an additional
35 subjects to test whether information transfer mapping would be consistent across different
task stimulation patterns and decoding approaches. A) We performed the same analysis as
depicted in Figure 2.4, where we simulated cognitive control task rules by stimulating regions in
the hub network for four distinct task-rule conditions. We depict the uncorrected information
transfer estimates for every network-to-network configuration using the information transfer
mapping procedure described in Figure 2.1c. B) Thresholded map of panel Supplementary Fig-
ure 2.3a. For every network-to-network information transfer mapping, we performed an across
subject, one-sided t-test against 0. Statistical significance is assessed using FWE-corrected p-
values of p < 0.05. C) We simulated a task that combined both top down stimulation (e.g.,
mimicking task-rule encoding) and bottom up stimulation in local networks (e.g., mimicking
stimuli presentations). This task also included four distinct task conditions, where each con-
dition stimulated a subset of regions in the hub network along with a subset of regions in a
local network simultaneously. Each task condition stimulated a subset of regions in a different
local network. D) Thresholded map of panel C, using FWE-corrected p-values of p < 0.05.
While the pattern of information transfer was largely the same, information transfer of both
top down and bottom up stimulation was more disperse than top down stimulation only. E-H)
We performed the group analyses on the same exact data (see Supplementary materials) as Sup-
plementary Figures A.3a-d but instead of using an RSA approach (i.e., predicted-to-similarity
analysis; Figure 2.1c), we used SVMs (training on predicted activation patterns and testing on
held-out actual activation patterns). Note that panel F has qualitatively identical results as
in our computational validation results (Figure 2.4e) using representational similarity analysis.
For panels F and H, statistical significance was assessed using one-sided t-tests against chance
(25% chance) for a four-way task condition classification. Thresholds were applied using an
FWE-corrected p < 0.05. All panels show the raw effect sizes.
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Figure A.4: Supplementary Figure 4. Network-to-network information transfer mapping de-
pends on precise FC topology between pairs of networks. All reported results were statistically
significant at p < 0.05 (FWE-corrected). To ensure that information transfer mapping between
networks depended on the precise FC topology between pairs of networks, we generated a null
distribution of information transfers by permuting the inter-region FC patterns between pairs
of networks prior to performing the network-to-network information transfer procedure. For
each network-to-network information transfer mapping, 1000 FC permutations were conducted.
Significant results demonstrate that the information transfer depended on the precise network-
to-network FC topology. This analysis demonstrates that the results obtained using parametric
statistical testing (Supplementary Figure A.1) depend on the precise inter-region FC patterns
between pairs of networks, as results from the parametric and non-parametric tests are virtu-
ally identical. Color maps represent the group averaged information transfer estimate, since no
t-statistic is available in the null distribution.
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Figure A.5: Supplementary Figure 5. The behavioral relevance of cognitive task information
transfer. We found that task-rule information transfer between two FPN regions could decode
miniblock task performance significantly above chance. We constructed a decoding model using
multiple logistic regression to decode task performance in a held-out miniblock by fitting to the
logic, sensory, and motor information transfer estimates across miniblocks. When transformed
into the OFC region’s spatial dimensions, task-rule information in the LPFC region could predict
a miniblock’s task performance significantly above chance, suggesting that the transfer of task-
rule information between these regions is relevant for task performance.
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Figure A.6: Supplementary Figure 6. Information transfer mappings between all pairs of regions
using an FDR-corrected threshold for all defined functional networks. Due to the conservative
nature of FWE correction for multiple comparisons correction, we also report the same results
from Figure 2.6 and Supplementary Figure A.2 using an FDR-corrected p-value of p < 0.05.
Using FDR-correction, we found that statistically significant task-rule information transfers
were much more distributed than with FWE-correction, particularly with logic rule transfers.
A) Percent of significant region-to-region information transfers for all 14 network definitions for
the logic rule domain. B) Percent of significant region-to-region information transfers for all
14 network affiliations for the sensory rule domain. C) Percent of significant region-to-region
information transfers for all 14 network affiliations for the motor rule domain. D) Significant
information transfers between regions for all 14 network affiliation across rule domains, derived
in the same way as data in Figure 2.6G. E) We assessed whether a network was consistently
involved in sending task rule information (as a source region) across the three rule domains. We
find that with an FDR-corrected threshold of p < 0.05, the FPN, DAN, and DMN all contain
regions that transfer information across all three rule domains. F) Network assignments and
color definitions for all 14 functional networks. Here, we attribute functional names for all
14 networks. Color schemes are consistent with colorings shown on the anatomical surface in
Figure 2.3A.
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Figure A.7: Supplementary Figure 7. Percent of significant information transfers from each
cortical region using an FDR-corrected threshold. Due to the conservative nature of FWE
correction for multiple comparisons correction, we also report results from Figure 2.7 using
an FDR-corrected threshold of p < 0.05. A) Percent of statistically significant information
transfers from each region for the logic rule domain. Percentages were computed by taking the
number of significant transfers from each region, and dividing it by the total number of possible
transfers from that region (359 other regions). B) Percent of statistically significant information
transfers from each region for the sensory rule domain. C) Percent of statistically significant
information transfers from each region for the motor rule domain.
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A.2 Supplementary Methods

We provide Supplementary Methods for several of our Methods subsections below.

For completeness, we have included redundant text for the Methods subsections

that contain additional information. However, subsections for which there is no

additional information (e.g., the “Participants” subsection) are not included in

the Supplementary Methods.

A.2.1 Behavioral paradigm

We used the Concrete Permuted Rule Operations (C-PRO) paradigm (Figure

2.2), which is a modified version of the original PRO paradigm introduced in

[Cole et al., 2010a]. Briefly, the C-PRO cognitive paradigm permutes specific

task rules from three different rule domains (logical decision, sensory semantic,

and motor response) to generate dozens of novel and unique task sets. This

creates a condition-rich dataset in the task configuration domain akin in some

ways to movies and other condition-rich datasets used to investigate visual and

auditory domain [Huth et al., 2016, Nishimoto et al., 2011, Simony et al., 2016].

The primary modification of the C-PRO paradigm from the PRO paradigm was

to use concrete, sensory (simultaneously presented visual and auditory) stimuli, as

opposed to the abstract, linguistic stimuli in the original paradigm. Visual stimuli

included either horizontal or vertical oriented bars with either blue or red coloring.

Simultaneously presented auditory stimuli included continuous (constant) or non-

continuous (non-constant, i.e., “beeping”) tones beeps presented at high (3000Hz)

or low (300Hz) frequencies. Figure 2.2 demonstrates two example task-rule sets

for “Task 1” and “Task 64”. The paradigm was presented using E-Prime software

version 2.0.10.353 [Schneider et al., 2002].

Each rule domain (logic, sensory, and motor) consisted of four specific rules,

while each task set was a combination of one rule from each rule domain (Figure
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2.2). The sensory rules specified the audiovisual features to attend to (e.g., “is it

vertical?” for visual decisions, or “is it high-pitch?” for auditory decisions). The

logic rules specified how to respond based on the pair of stimuli presentations (e.g.,

“if both are vertical” or “if either are vertical”). Finally, the motor rules specified

which button to press, which depended on the answer to the logic rule. For “true”

outcomes, subjects were asked to respond with the motor rule presented in the

task-rule set; for “false” outcomes, subjects were asked to respond with the other

finger on the same hand.

A total of 64 unique task sets (4 logic rules x 4 sensory rules x 4 motor rules)

were possible, and each unique task set was presented twice for a total of 128 task

miniblocks. Identical task sets were not presented in consecutive blocks. Each

task miniblock included three trials, each consisting of two sequentially presented

instances of simultaneous audiovisual stimuli. A task block began with a 3925ms

instruction screen (5 TRs), followed by a jittered delay ranging from 1570ms to

6280ms (2 – 8 TRs; randomly selected). Following the jittered delay, three trials

were presented for 2355ms (3 TRs), each with an inter-trial interval of 1570ms (2

TRs). A second jittered delay followed the third trial, lasting 7850ms to 12560ms

(10-16 TRs; randomly selected). A task block lasted a total of 28260ms (36 TRs).

Subjects were trained on four of the 64 task-rule sets for 30 minutes prior to the

fMRI session. The four practiced rule sets were selected such that all 12 rules

were equally practiced. There were 16 such groups of four task sets possible,

and the task sets chosen to be practiced were counterbalanced across subjects.

Subjects’ mean performance across all trials performed in the scanner was 85%

(median=86%) with a standard deviation of 8% (min=66%; max=96%). All

subjects performed statistically above chance (25%).
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A.2.2 Network assignment of Glasser et al. (2016) parcels

Partitioning of the parcels (regions) into networks was based on the procedure

used in Cole et al. (2014; see Supplemental Information). Specifically, we used

the Louvain locally-greedy algorithm [Blondel et al., 2008, Jutla et al., 2011] for

community detection. Data from the publically available Washington University-

Minnesota Human Connectome Project “HCP100” dataset were used (N=100).

Similar preprocessing procedures as used for the primary dataset were applied

to the HCP100 dataset. Specifically, in addition to minimal preprocessing

[Glasser et al., 2013], we ran a GLM nuisance regression using white matter, ven-

tricles, and motion regressors (and their first derivatives). Global signal regres-

sion, motion scrubbing, and temporal filtering were not used. For each subject, all

four resting state runs were concatenated and FC was estimated using standard

Pearson correlations. The FC matrices were averaged across subjects to generate

a group-mean resting-state FC matrix. We searched over two free parameters

to find a community partition for the group-mean resting-state FC matrix. The

first parameter was the density threshold, whereby weak connections (based on

the absolute value of FC strengths) were removed prior to running the community

detection algorithm. The second parameter was the structural resolution param-

eter, which can be used to tune the number of communities identified in the FC

matrix. The parameter search was conducted across combinations of these two

parameters (density of 40% to 100% in increments of 5%, and resolution of 0.8

to 3 in increments of 0.05), with two criteria: 1) there should be a peak of par-

tition similarity (z-score of the Rand coefficient) [Traud et al., 2011] among ad-

jacent locations in this two-dimensional parameter space, and 2) there should be

distinct communities corresponding to visual, auditory, dorsal attention, default-

mode, and motor/tactile systems (given decades of neuroscience research demon-

strating their existence). Approximate locations of these systems were based on
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standard neuroscientific knowledge of these systems (given their strong establish-

ment in the literature), in addition to their identification using resting-state FC

in previous reports [Power et al., 2011, Gordon et al., 2014, Yeo et al., 2011]. A

five-community partition had the highest nearest-neighbor similarity in parame-

ter space, but this did not separate out the auditory system. The next-highest

nearest-neighbor similarity peak (density = 100%, resolution = 1.2) with distinct

communities corresponding to auditory, visual, dorsal attention, default-mode,

and motor/tactile systems was a 14-community partition. This partition was then

visualized using Connectome Workbench software (Figure 2.3a). Labels were as-

signed to the seven most replicated networks identified using resting-state FC

[Power et al., 2011, Gordon et al., 2014, Yeo et al., 2011]. Colors were assigned

to networks based on the colors used by Power et al. (2011).

A.2.3 Neural network model

To validate our information transfer estimation approach we constructed a sim-

ple dynamical neural network model with similar network topological properties

identified in our empirical fMRI data. We constructed a neural network with 250

regions, each of which were clustered into one of five network communities (50

regions per community). Regions within the same community had a 35% proba-

bility of connecting to another region (i.e., 35% connectivity density), and regions

not assigned to the same community were assigned a connectivity probability of

5% (i.e., 5% out-of-network connectivity density). We selected one community

to act as a “network hub”, and increased the out-of-network connectivity density

of those regions to 20% density. We then applied Gaussian weights on top of

the underlying structural connectivity to simulate mean-field synaptic excitation

between regions. These mean-field synaptic weights were set with a mean of 1√
K

with a standard deviation of 0.2√
K

, where K is the number of synaptic inputs into a

region such that synaptic input scales proportionally with the number of inputs.
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This approach was recently shown to be a plausible rule in real-world neural sys-

tems based on in vitro estimation of between-neuron synaptic-weight-setting rules

[Barral and Reyes, 2016].

To simulate network-level firing rate dynamics, as similar to Stern et al.

(2014), region xi’s dynamics for i = 1, 2, ..., 250 obeyed the equation

dxi
dt
τi = −xi(t) + sφ(xi(t)) + g

( N∑
j 6=i

Wijφ(xj(t))
)

+ Ii(t) (A.1)

We define the transfer function φ as the hyperbolic tangent, xj the dynamics of

region j = 1, 2, ..., 250 for i 6= j, Ii(t) the input function (e.g., external spon-

taneous activity alone or both spontaneous activity and task stimulation) for

i ∈ [1, 250], W the underlying synaptic weight matrix, s the local coupling (i.e.,

recurrent) parameter, g the global coupling parameter, and τi the region’s time

constant. For simplicity, we set s = g = 1 and τi = 10ms, though we show in

a previous study [Cole et al., 2016a] that the activity flow mapping breaks down

for parameter regimes s >> g.

We first simulated spontaneous activity in our model by injecting Gaussian

noise (parameter Ii(t); mean of 0.0, standard deviation 1.0). Numerical simu-

lations were computed using a Runge-Kutta second order method with a time

step of dt = 10ms. We ran our simulation for 600 seconds (10 minutes). To

simulate resting-state fMRI, we then convolved our time series with the SPM

canonical hemodynamic response function and down sampled to a 1 second TR,

resulting in 600 time points. We then computed resting-state FC using multi-

ple linear regression. To replicate the empirical data, we computed the BGC of

the resting-state data (as in the empirical data; see equation 2) to validate that

widespread out-of-network connectivity was preserved from synaptic to FC.

To model task-evoked activity, we simulated four distinct task conditions by

injecting stimulation into four randomly selected but distinct sets of twelve regions
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in the hub network. Stimulation to the hub network was chosen to mimic four

distinct top-down, cognitive control task rules. Task stimulation coincided with

spontaneous activity (e.g., for time points t during a task, I(t) = spontaneous

activity at t + 0.5 constant task stimulation). We ran each task for 20 blocks,

where each block lasted for 100 seconds. Each block contained five trials, each

lasting for five seconds with an inter-trial interval of 15 seconds. In total, each

task condition contained 100 task trials, with 500 seconds per task total. We then

convolved these task time series with the SPM canonical hemodynamic response

function and down sampled to 1-second TRs, as in the resting-state simulation.

We simulated 30 subjects worth of data, and generated figures using group t-tests

and controlled for multiple comparisons using FWE-correction permutation tests

[Nichols and Holmes, 2001].

We validated the usefulness of the model for characterizing hub-related dy-

namics by testing whether estimated resting-state FC preserved the hub network’s

higher out-of-network intrinsic FC (specified by its underlying synaptic connec-

tivity) by computing each network’s BGC. BGC was computed in the same way

as in the empirical data (see equation 2) for each of the network model’s com-

munities. For each of the five networks, we compared the BGC between each

network using a cross-subject t-test. We corrected for multiple comparisons using

FWE permutation tests [Nichols and Holmes, 2001] and significance was assessed

with an FWE-corrected p < 0.05 threshold.

To perform network-to-network information transfer mapping in the model,

we used the task-evoked activity (estimated by standard GLM beta estimates),

and performed the information transfer mapping procedure between networks of

regions using the resting-state FC matrix obtained via multiple linear regression.

Network-to-network information transfer mapping is computationally identical

to region-to-region information transfer mapping, and is described below. The
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information transfer mapping matrix (Figure 2.4e) was obtained using an FWE-

corrected threshold of p < 0.05.

We primarily focused on stimulating the hub network to mimic top-down pro-

cesses, since our empirical results focused on task-rule manipulations irrespective

of stimuli presentations and motor responses. However, to demonstrate the gen-

erality with which information transfer can occur, we performed an additional

set of simulations that focused on demonstrating that information transfer oc-

curs with simultaneous top-down (hub network) and bottom-up (local network)

stimulation. Using the same parameters as in the original simulation, we first

replicated the same results as in Figure 2.4e with hub network stimulation only

(i.e., top-down control). To simulate top-down and bottom-up activation we sim-

ulated four task conditions by injecting activity into four sets of regions. For

each task condition, we simultaneously injected two sets of 12 regions; one set of

12 regions in the hub network (mimicking top-down activity), and one set of 12

regions in a local network (mimicking bottom-up activity). Each task condition

stimulated a set of regions belonging to a different local network and a distinct set

of regions in the hub network. Aside from task stimulation, all other model and

simulation parameters were kept the same from the simulation result in Figure

2.4.

Our results were highly similar to the previous results, demonstrating that

in both the top-down-only task and the simultaneous top-down and bottom-up

task, information transfers between the hub and local networks were the strongest

(Supplementary Figure A.3a,c). However, statistical testing demonstrated that

some local-network-to-local-network information transfers were significant (after

correcting for multiple comparisons; Supplementary Figure A.3d,h). We believe

these effects are likely due to the existence of random (albeit sparse) connections

between local networks. We also show that the predicted-to-actual similarity

analysis portion of the information transfer procedure (described below) can be
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substituted with support vector machine (SVM) classification (Supplementary

Figure A.3e-h; see below for details).

A.2.4 Computing baseline information estimates for re-

gions and networks

To compute the baseline (i.e., unrelated to FC) information content at the

region level (Figure 2.5), we performed a within-subject, cross-validated mul-

tivariate pattern analysis using representational similarity analysis for every

[Glasser et al., 2016a] parcel (using the vertex-level multivariate activation pat-

tern within each parcel). We estimated task-activation beta coefficients separately

for each vertex within a region, and separately for each miniblock. Note that each

miniblock was associated with a specific task-rule condition for each rule domain.

Mathematically, we defined IEB, the information estimate of region B, as

IEB = MatchB −MismatchB (A.2)

where MatchB and MismatchB correspond to the averaged Spearman rank cor-

relation for matched and mismatched conditions, respectively. Specifically, we

define MatchB and MismatchB as

MatchB =

∑K
k=1 scorr(Bk, Bmatch)

K
(A.3)

MismatchB =

∑K
k=1[

∑N
n=1(scorr(Bk, Bmismatchn)/N ]

K
(A.4)

where K corresponds to the total number of miniblocks (in this paradigm, 128

miniblocks), scorr corresponds to a Fisher z-transformed Spearman’s rank cor-

relation between two activation vectors, Bk is the activation pattern in region B

during block k, Bmatch is the task-rule condition prototype (obtained by averaging
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across blocks of the same condition, holding out block k) of region B’s activa-

tion pattern for which block k’s condition matches the condition prototype, and

Bmismatchn as the task-rule condition prototypes for which block k’s condition does

not match. (In the present study N = 3, since each rule dimension has four task-

rule conditions, and for a given miniblock there’s one match and three mismatched

conditions.) To avoid circularity, we performed a leave-four-out cross-validation

scheme, holding out a miniblock of each task-rule. This ensured that miniblock

Bk was not included in constructing the condition prototype Bmatch and that con-

dition prototypes were each constructed using the same number of miniblocks.

Prior to running the representational similarity analysis, all blocks were spatially

demeaned to increase the likelihood that the representations we were identifying

was a multivariate regional pattern (rather than a change in region-level mean

activity). Use of Spearman’s rank correlation also reduced the likelihood that

the identified multivariate representation patterns were driven by mean activity

changes or a small number of outlier values.

Statistical significance was assessed by taking a one-sided group t-test against

0 for each region’s information estimate across subjects, since a greater than 0

difference of matches versus mismatches indicated significant representation of

specific task rules. All p-values were corrected for multiple comparisons across

the 360 parcels using FWE-correction with permutation tests15, and significance

was assessed using an FWE-corrected threshold of p < 0.05.

For network-level information estimates (Supplementary Figure A.1b), the

same cross-validated representational similarity analysis procedure was conducted

for the seven functional networks separately across the three rule domains, using

region-level representations within each of the networks. Region-level beta esti-

mates were obtained for every block by fitting the same GLM model as described

above to every region separately. All p-values were FWE-corrected for multiple

comparisons across seven networks with permutation tests15, and significance was
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assessed using an FWE-corrected p < 0.05.

A.2.5 Region-to-region information transfer mapping

We extended the original activity flow mapping procedure as defined in

[Cole et al., 2016a] (Figure 2.1a) to investigate transfer of task-related informa-

tion between pairs of brain regions using vertex-wise activation patterns (i.e.,

region-to-region activity flow mapping; Figure 2.1b). This involved predicting the

activity of the vertices of a held-out target region based on the vertices within a

source region. Mathematically, we define region-to-region activity flow mapping

between regions A and B as

B̄k = Ak ·WRSFC (A.5)

where B̄k corresponds to the predicted activation pattern vector for the target

region B, Ak corresponds to region A’s activation pattern vector (i.e., the source

region), WRSFC corresponds to the vertex-to-vertex resting-state FC between re-

gions A and B, and the operator · refers to the dot product. This formulation

allowed us to map activation patterns in one region’s spatial dimension to the

spatial dimension of another region.

To test the extent that task representations are preserved in the region-to-

region multivariate predictions, we quantified how much information transfer

occurred between the two regions. Briefly, information transfer mapping com-

prises three steps, illustrated in Figure 2.1c: (1) Region-to-region (or network-to-

network) activity flow mapping; (2) A cross-validated representational similarity

analysis between predicted activation patterns and actual, held-out activation

patterns; (3) Information classification/decoding by computing the difference be-

tween matched condition similarities and mismatched condition similarities. This

final step produces an information transfer estimate.
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Mathematically, our information transfer estimate was derived using almost

the exact formulation as our information estimate formula. Specifically, we de-

fined information transfer between regions A and B, or ITEAB, as

ITEAB = MatchB −MismatchB (A.6)

whereMatchAB andMismatchAB correspond to the averaged Spearman rank cor-

relation for matched and mismatched conditions using the source region A, respec-

tively. Similarly to equations A.3 and A.4, we define MatchAB and MismatchAB

as

MatchAB =

∑K
k=1 scorr(B̄k, Bmatch)

K
(A.7)

MismatchAB =

∑K
k=1[

∑N
n=1(scorr(B̄k, Bmismatchn)/N ]

K
(A.8)

where K corresponds to the total number of miniblocks, scorr corresponds to a

Fisher z-transformed Spearman’s rank correlation between two vectors, B̄k as the

predicted activation pattern in the target region B (using region A’s activation

pattern) for block k, Bmatch as the condition prototype (obtained by averaging

across blocks of the same condition, holding out block k) of the target region B’s

actual activation pattern for which block k’s condition matches, and Bmismatchn

as the condition prototypes for which block k’s condition does not match. (In the

present study N=3, since each rule dimension has four task-rule conditions.) As

with the previously defined information estimate, we performed a leave-four-out

cross-validation scheme, holding out a miniblock of each task-rule. This ensured

that the actual activation pattern Bk of the predicted miniblock B̄k was not in-

cluded in constructing the condition prototype Bmatch. Prior to running the repre-

sentational similarity analysis, all blocks were spatially demeaned to increase the

likelihood that the representation we were identifying was a multivariate regional

pattern (rather than a change in region-level mean activity). This formulation
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allowed us to quantify how much “information transfe” occurred between two

regions by comparing the predicted activation pattern in the target region to the

actual activation pattern in the

We also demonstrate that the predicted-to-actual similarity analysis in our

information transfer mapping procedure can be substituted with an SVM de-

coding scheme. Specifically, we show in our computational model that we could

train a linear classifier on the target region’s predicted activation patterns that

could decode the actual, activation patterns in that target region (Supplemen-

tary Figures A.3e,f). We used the same leave-four-out cross-validation scheme as

above to obtain these results, and we find that the information transfer mapping

results with SVM decodings (Supplementary Figure A.3f) are identical to using

representational similarity analysis (Figure 2.4e).

Note that information decoding was performed on the cortical surface, us-

ing vertices rather than voxels. This vertex-wise approach has been shown to

provide better multivariate classifications than voxel-wise information decoding

[Oosterhof et al., 2011], likely because surface analyses better reflect the under-

lying cortical anatomy.

Information transfer mapping was performed within subject between every

pair of regions in the [Glasser et al., 2016a] atlas (360 regions in total). The

results of this approach between all region pairs were then visualized via a 360-

by-360 matrix (a total of 129,240 region-to-region mappings), where the regions

along rows (source regions) indicated the activation patterns used to map onto a

target region’s activation pattern, which was indicated along the columns (Figures

2.6b,d,f). Statistical tests were performed using a group one-sided t-test (t > 0)

for every pair-wise mapping. A one-sided t-test was appropriate here given that

our hypotheses were implicitly one-sided, since any significant deviation above 0

indicated a significantly higher matched versus mismatched correlation between

predicted-to-actual activation patterns (i.e., the information transfer estimate).
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Our use of mismatched correlations as a baseline ensured that any positive in-

formation transfer estimates was a result of a task-rule-specific representation,

rather than a task-general effect. Any information estimate that was not sig-

nificantly greater than 0 indicated that the predicted-to-actual similarity was at

chance (akin to chance decoding using classifiers). We tested for multiple compar-

isons using permutation testing [Nichols and Holmes, 2001] for every region-to-

region mapping, and significance was assessed using FWE-corrected p-values with

p < 0.05. Note that to avoid circularity for region-to-region information transfer

mapping, any vertices in a source region that fell within a 10mm radius of the

to-be-predicted target region (e.g., an adjacent region) would not contribute any

activity flow to the to-be-predicted target region (see FC estimation Methods

section for details).

Given the visual sparsity of the region-to-region information transfer mapping

visualization, we opted to down sample our matrix to provide a simpler visualiza-

tion to assess how pairs of regions transfer information between and within func-

tional networks (Figures 2.6c,e,g). Thus, we computed the percent of statistically

significant transfers for every pair of networks. This allowed us to better visually

assess how region-to-region information transfer mappings may have been influ-

enced by underlying network organization. To compute the percent of statistically

significant transfers, we counted the number of significant transfers between every

pair of networks and divided that by the total number of possible transfers within

that network-to-network configuration. To characterize the generality with which

information transfer mappings occurred between specific network configurations,

we computed the number of rule domains in which each network configuration

contained at least one region-to-region transfer (Figure 2.6h). In other words, we

took the matrices in Figures 2.6c,e,g and binarized them with a 1 if a cell had

a greater than 0 percentage of transfers, and a 0 otherwise. We then summed

these matrices element-wise to obtain the number of rule domains each network
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configuration had a successful information transfer in. To assess the number of

rule domains each network contained at least one successful source region, we

took the percent of significant transfers from each network to any other region in

the brain (a 7-element array) and then binarized the array for each rule domain.

We then summed across the three arrays (one for each rule domain) to obtain the

number of rule domains each network had at least one successful source region

used for information transfer (Figure 2.6i).

Lastly, to visualize the anatomical locations of the source regions for informa-

tion transfer, we computed the percent of significant transfers from each cortical

region for each rule domain (Figure 2.7). Percentages were obtained by taking

the number of successful transfers from a region, and dividing it by total number

of possible transfers (i.e., 359 other regions). We then plotted each of these per-

centages on the cortical surface using Connectome Workbench software (version

1.2.3) for each rule domain [Glasser et al., 2016b].

A.2.6 Network-to-network information transfer mapping

Network-to-network information transfer mapping in both the computational

model (Figure 2.4e) and empirical data (Supplementary Figures A.1c,d,e) was

performed in the same computational framework as above, though instead of

predicting region-level activation patterns using vertex-level activation patterns,

network-level activation patterns were predicted using region-level activations (av-

eraging across vertices within a given region). In other words, when predicting a

target network B’s region-level activation pattern, we computed the dot product

between a source network A’s region-level activity vector and the region-to-region

resting-state FC matrix between regions in network A and B. We then submitted

our 128 task block predictions for network B to our information transfer mapping

procedure, as described above. This was repeated for every pair of the seven func-

tional networks defined by our community-detection algorithm, resulting in 7-by-7
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network-to-network mappings which were visualized as a 7x7 matrix (Supplemen-

tary Figures A.1c,d,e). We tested for multiple comparisons using FWE-correction

for every network-to-network mapping within a rule domain, and significance was

assessed using the FWE-corrected p-values of p < 0.05.

A.2.7 Permutation testing of FC topology

We hypothesized that the precise topology of resting-state FC described the base-

line architecture of information processing during task states. Thus, to ensure

that our information transfer mapping procedure depended on resting-state FC

topology, we performed permutation testing, shuffling the network-to-network

FC topology prior to performing information transfer mapping. Due to compu-

tational cost, we limited this control analysis to network-to-network information

transfer mapping.

For each subject, we permuted the network-to-network resting-state FC prior

to applying the information transfer mapping procedure for every pair of net-

works. More specifically, each network’s connectivity was permuted within-

network, such that no FC values from one network was ever moved to another

network. This helped ensure that the permutations only altered the network-

to-network FC topology, such that (for example) the overall mean level of FC

between the networks was never altered across the permutations. To correct

for multiple comparisons, a single permutation cycle involved permuting the FC

topology for every pair of networks, for all subjects. We then performed a group

t-test for every pair of network-to-network information transfers, extracting the

maximal t-statistic across all network-to-network comparisons. We ran 1000 of

these permutation cycles, obtaining the maximal t-statistic for each permutation.

This formed a null distribution of the maxima across the family of tests (i.e.,

all possible network-to-network information transfers), thus controlling for FWE

[Nichols and Holmes, 2001]. Using our permutation distribution, we computed
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FWE-corrected p-values with a one-tailed test, i.e., p = P (X > ite), where ite

corresponds to the true information transfer estimate, and X as the null distri-

bution of maximal t-statistics. Statistical significance was then assessed using a

FWE-corrected threshold of p < 0.05.

A.2.8 Behavioral relevance of information transfers

To characterize the behavioral relevance of information transfers, we performed a

within-subject analysis to decode task performance using miniblock-by-miniblock

information transfer estimates. We first sought to ensure that baseline miniblock

information estimates could decode miniblock task performance within subjects

prior to the information transfer mapping procedure. We defined miniblock in-

formation estimates as

IEXk
= matchXk

−mismatchXk
(A.9)

where IEXk
corresponds to the information estimate of rule domain X during

miniblock k, matchXk
corresponds to the matched task-rule condition similarity of

rule domain X during miniblock k, and mismatchXk
corresponds to the averaged

rank correlation of miniblock k’s activation pattern to the mismatched task-rule

conditions.

To perform a given task, knowledge of all three rule domains (i.e., logic, sen-

sory, and motor rule domains) is required. Thus, we constructed a decoding model

with logistic regression, training the model to decode the task performance of a

given miniblock using the information estimates of a given brain region across

all three rule domains. The model was tested using cross-validation in MATLAB

using the glmfit function (with the logit link function), and was formulated as

−→y accuracy = f(β0 + β1XL + β2XS + β3XM) (A.10)
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where −→y accuracy corresponds to the vector containing task accuracy for all

miniblocks, XL, XS, XM correspond to the regressors for logic, sensory, and

motor information estimates, respectively, β0 corresponds to the training bias

(which accounts for the imbalance of the correct:error trial ratio), and β1, β2,

β3 correspond to the estimated model coefficients for the logic, sensory, and mo-

tor information estimates, respectively. The link function f corresponds to the

sigmoid function, defined as

f(x) =
1

1 + e−x
(A.11)

Miniblocks with over 50% of trials performed correctly were characterized as

1, and 0 otherwise.

To test our model, we used cross-validation to predict the binarized accuracy of

held-out data. However, to account for the imbalanced training data (on average,

subjects performed 85% of trials correctly), we removed the intercept term β0 to

center our predictions (as computed by a sigmoid function) at 0.5. Thus, our

predictions on held-out data were computed as probabilities by the equation

g(xL, xS, xM) = f(β1XL + β2XS + β3XM) (A.12)

where g ∈ (0, 1) and accuracies were predicted/classified by the equation

Gdecoder(g(x)) =

 1 g(x) > 0.5

0 g(x) < 0.5
(A.13)

where Gdecoder generates predictions for miniblocks with greater than 50% task

performance as 1, and 0 otherwise.

Given that region-to-region information transfers consistently occurred be-

tween regions in the FPN and CON across all three rule domains (Figure 2.6h),

we constrained our search to those networks. We applied our decoding model to
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all regions within the FPN and CON across subjects. For each region, we applied

one-sided t-tests against chance (50%), and corrected for multiple comparisons us-

ing FWE-correction permutation tests [Nichols and Holmes, 2001]. We identified

a single FPN region in the LPFC (LH region 80 in the Glasser et al. atlas; Sup-

plementary Figure A.5) whose baseline information estimates predicted miniblock

task performance.

We subsequently tested whether information transfer estimates from the

LPFC region could predict task performance. We applied the decoding model

to information transfer estimates across all rule domains (instead of baseline in-

formation estimates) for all information transfers from the LPFC region to all

other FPN and CON regions. (We used the LPFC region here as the “source”

region, obtaining decoding accuracies from that region to all other FPN/CON

regions.) We performed one-sided t-tests against chance (50%) for each infor-

mation transfer, and corrected for multiple comparisons using FWE-correction

permutation tests [Nichols and Holmes, 2001]. We identified a single information

transfer from the LPFC to the OFC (LH region 91; both FPN regions) that

survived multiple corrections with an FWE-corrected p < 0.05. Surface visual-

izations for Supplementary Figure A.5 were made using Connectome Workbench

software (version 1.2.3) [Glasser et al., 2016b].
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Appendix B

Appendix – Chapter 3

B.1 Supplementary Figures

Figure B.1: Flow chart describing neural network simulations with empirical data via activity
flow mapping. We generate a subject’s predicted motor response activations using only task
rule and sensory stimulus activation patterns as inputs. We then test these predictions against
the actual motor response activations of held-out subjects.
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Figure B.2: Network affiliations of conjunction hubs and the task rule input layer using a
previously defined multimodal atlas and network partition [Glasser et al., 2016a, Ji et al., 2019].
a) The network affiliations of the 10 conjunction hub brain areas. b) Network affiliations of the
228 brain regions that contained decodable task rule information.
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Figure B.3: Example of task GLM approach to obtain task activation estimates. a) An example
miniblock containing one encoding block (task rule set) and three trials. Note that while
stimulus presentation and response periods overlap, they are not collinear. b) The regressors for
the relevant task conditions in the example miniblock. We obtain regressors (estimated across
all 128 miniblocks) for all task rule, sensory stimuli, and motor response conditions. Altogether
there are 32 different task conditions (12 task rules, 16 sensory stimuli pairs, and four motor
response periods). Note that task rule regressors (logic, sensory, and motor rule examples)
appear collinear in this example, but that across all 128 miniblocks task rule conditions are
properly counterbalanced to avoid collinearity. Regressors shown here are illustrated without
convolution with SPM’s canonical HRF.
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Figure B.4: A task GLM design matrix for an example subject.
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Appendix C

Appendix – Chapter 5

This chapter contains the supplementary materials for [Ito et al., 2020a]

C.1 Supplementary Figures

Figure C.1: Supplementary Figure 1. Replication analysis for the excluded NHP subject. This
figure is organized identically to Fig 5.2, but using data from a replication subject. We find
nearly identical patterns between the exploratory and replication subjects, with the exception
that we did not replicate any correlation increases. a) Mean-field spike recordings from six dif-
ferent cortical regions fed into our analyses. b) As in our empirical fMRI data set, we calculated
the global variability across task and rest states (estimated using the standard deviation across
trials). c) We then calculated the global neural correlation (i.e., the spike count correlation
across trials) for task and rest states between all pairs of recorded brain regions. (Spike rates
were averaged within each cortical area.) d-f) For each pair of brain regions, we visualized the
correlation matrices between each recording site for the averaged rest, task, and the differences
between task versus rest state spike count correlations. For panels d-f, plots were thresholded
and tested for multiple comparisons using an FDR-corrected p < 0.05 threshold. Boxplots indi-
cate the interquartile range of the distribution, dotted black line indicates the mean, grey line
indicates the median, and the distribution is visualized using a swarm plot.
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Figure C.2: Supplementary Figure 2. Neural correlations and variability are quenched within
trials from rest to task intervals. We analyzed the variability across time points (within trial)
during ITIs and task cue periods to evaluate whether correlation and variability quenching also
occurred on a moment-to-moment basis (i.e., faster timescale). Task cue intervals and ITIs
were matched to have equivalent time points on a trial-by-trial basis. a1,a2) Global variability
across the two states (estimated using the variance across time points) between task and rest
state windows. b1,b2) We then calculated the global spike count correlation between the exact
same task cue intervals with equivalent rest intervals between all pairs of recorded brain regions.
(Spike rates were averaged within each cortical area.) c1,c2) We also calculated the global firing
rate (averaged across all recording areas) during the task interval and rest interval. d1-f1,d2-
f2) For each pair of brain regions, we visualize the spike count correlation matrices between
each recording site for the averaged rest, task, and the differences between task versus rest
state spike count correlation. For panels d-f, plots were thresholded and tested for multiple
comparisons using an FDR-corrected p¡0.05 threshold. Boxplots indicate the interquartile range
of the distribution, dotted black line indicates the mean, grey line indicates the median, and
the distribution is visualized using a strip plot.
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Figure C.3: Supplementary Figure 3. Task-evoked activity is negatively correlated with variabil-
ity and correlations across regions in fMRI data. a) We replicated a previous result [He, 2013],
demonstrating that regions that activated more during tasks tend to decrease their BOLD
variability more during task states. b) We extended those results to evaluate the relationship
between task-evoked activity and FC across regions. We found that regions that activated more
during tasks tend to decrease their global functional FC accordingly during task states. Scatter
plots reflect each parcel in the Glasser atlas [Glasser et al., 2016a], and are colored according
to network affiliation [Ji et al., 2019]. Best fit lines were estimated using linear regression, but
correlations were calculated using a non-parametric rank correlation. c,d) Replication of panels
a,b, respectively using the replication cohort of subjects. Statistics were calculated using the
same steps as in [He, 2013]. To calculate the averaged regional task activation, we first per-
formed a group t-test for each task against 0, took the absolute value of the t-statistic, and then
averaged across tasks. To calculate the averaged regional FC and SD, we performed a group
t-test against 0 for each region. We then correlated these values across regions to measure the
relationship between activity and FC, and activity and SD.



245

Figure C.4: Supplementary Figure 4. Replication data set: Variability and correlations decrease
during task states in human fMRI data. We successfully replicated results from Fig 5.3 using
our held-out cohort of 176 subjects. a) We first compared the global variability during task and
rest states, which is averaged across all brain regions, and then b) computed the task- versus
rest-state variability for each brain region. c) Scatter plot depicting the variance of each parcel
during task states (y-axis) and rest states (x-axis). Dotted grey line denotes no change between
rest and task states. d) We next compared the correlation matrices for resting state blocks with
(e) task state blocks, and (f) computed the task- versus rest-state correlation matrix difference.
g) We found that the average FC between all pairs of brain regions is significantly reduced
during task state. h) We found that the average correlation for each brain region, decreased
for each brain region during task state. i) Scatter plot depicting the FC (correlation values) of
each pair of parcels during task states (y-axis) and rest states (x-axis). Dotted grey line denotes
no change between rest and task states. For panels b-f, and h, plots were tested for multiple
comparisons using an FDR-corrected p < 0.05 threshold. Boxplots indicate the interquartile
range of the distribution, dotted black line indicates the mean, grey line indicates the median,
and the distribution is visualized using a swarm plot.
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Figure C.5: Supplementary Figure 5. Non-normalized data using variance and covariance, using
the full set of 352 subjects. Variance and covariance decreased during task states in human fMRI
data. We successfully replicated results from Fig 5.3 using, but without z-normalizing the time
series (and using covariance instead of correlation). The combination of reduced correlations
(Fig 5.3) and covariance measures suggested that shared signal dynamics is reduced from task
to rest [Duff et al., 2018, Cole et al., 2016b, Siegel et al., 2012]. a) We first compared the global
variability during task and rest states, which is averaged across all brain regions, and then b)
computed the task- versus rest-state variability for each brain region. c) Scatter plot depicting
the variance of each parcel during task states (y-axis) and rest states (x-axis). Dotted grey line
denotes no change between rest and task states. d) We next compared the covariance matrices
for resting state blocks with (e) task state blocks, and (f) computed the task- versus rest-state
covariance matrix difference. g) We found that the average covariance between all pairs of brain
regions is significantly reduced during task state. h) We found that the average covariance for
each brain region, decreased for each brain region during task state. i) Scatter plot depicting the
FC (covariance values) of each pair of parcels during task states (y-axis) and rest states (x-axis).
Dotted grey line denotes no change between rest and task states. For panels b-f, and h, plots
were tested for multiple comparisons using an FDR-corrected p < 0.05 threshold. Boxplots
indicate the interquartile range of the distribution, dotted black line indicates the mean, grey
line indicates the median, and the distribution is visualized using a swarm plot.
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Figure C.6: Supplementary Figure 6. Task-state neural variability reduction is preserved in the
BOLD signal in the neural mass model. a) We simulated the neural mass model under the same
three stimulus conditions (de-activated, baseline, and activated states) as in Fig 5.7a. b) We
subsequently applied the Balloon-Windkessel transformation to the simulated neural activity, a
nonlinear transformation from neural activity to the fMRI BOLD signal [Friston et al., 2003].
Notably, the transformation assumes a nonlinear transformation of the normalized deoxyhe-
moglobin content, normalized blood inflow, resting oxygen extraction fraction, and the nor-
malized blood volume. All BOLD signals were de-meaned such that it is possible to visually
compare the time series variance of each stimulus condition. c) We simulated BOLD activity
under a range of stimulus conditions and calculated the standard deviation of each time series.
d) We calculated the rank correlation of the standard deviation of the BOLD signal across
stimulus conditions with the characteristic time scale at each condition.
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Figure C.7: Supplementary Figure 7. Task-state neural correlation reduction is preserved in the
BOLD signal in the two-unit neural mass model. a-b) Using the simulated the neural mass data
in Fig 5.8, we applied the Balloon-Windkessel transform to convert our neural data into BOLD
data [Friston et al., 2003]. c) We simulated BOLD activity under a range of stimulus conditions
and calculated the neural correlation between the two units of each. d) We calculated the rank
correlation of the neural correlation of the BOLD signal across stimulus conditions with the
characteristic time scale at each condition.
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Figure C.8: Supplementary Figure 8. fMRI variability reduction analysis for each of the 7 HCP
tasks separately. a) This panel is identical to the analysis performed in Fig 5.3a, except that it
was performed on each HCP task separately. Global variability, averaged across all regions, was
reduced for 4/7 of the HCP tasks. Global variability was not reduced for the Emotion and Motor
tasks, though task-evoked activity was correlated with task-evoked variability reduction across
space (see next panel). b) This panel is identical to the analysis performed in Supplementary
Figure C.3, except that the spatial correlation was performed on each HCP task separately
(and is visualized as a bar plot rather than a scatter plot). Regional task-evoked variability
was significantly negatively correlated with the magnitude of task-evoked activation (absolute
value) for 6/7 of the HCP tasks. All analyses (in panels a and b) were corrected for multiple
comparisons using FDR correction. (*** = FDR-corrected p < 0.0001; ** = FDR-corrected
p < 0.01; * = FDR-corrected p < 0.05). Boxplots indicate the interquartile range of the
distribution, dotted black line indicates the mean, and the distribution is visualized using a
swarm plot.
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Figure C.9: Supplementary Figure 9. Task versus rest fcMRI analysis for each of the 7 HCP
tasks separately. a) This panel is identical to the analysis performed in Fig 5.3G, except that
it was performed on each HCP task separately. Whole-brain FC, averaged across all pairs of
regions, was reduced for 7/7 of the HCP tasks. b) This panel is identical to the analysis per-
formed in Supplementary Figure C.3, except that the spatial correlation was performed on each
HCP task separately (and is visualized as a bar plot). Regional task-evoked FC was signifi-
cantly negatively correlated with the magnitude of task-evoked activation (absolute value) for
4/7 of the HCP tasks. All analyses (in panels A and B) were corrected for multiple compar-
isons using FDR correction. (*** = FDR-corrected p < 0.0001; ** = FDR-corrected p < 0.01;
* = FDR-corrected p < 0.05). c) Task- versus rest-state FC analysis for each of the 7 HCP
tasks separately. (This figure is identical to Fig 5.3f, except that the statistics were performed
on each task separately.) Though whole-brain FC differences from task to rest are different
for each task, there are mostly FC decreases during task state relative to rest state. Boxplots
indicate the interquartile range of the distribution, dotted black line indicates the mean, and
the distribution is visualized using a swarm plot.
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Figure C.10: Supplementary Figure 10. Task versus rest dimensionality comparison for each
of the 7 HCP tasks separately. a) This panel is identical to the analysis performed in Fig
5.5a, except that it was performed on each HCP task separately. Whole-brain dimensionality
increased from rest to task states for each of the 7 HCP tasks. Boxplots indicate the interquartile
range of the distribution, dotted black line indicates the mean, and the distribution is visualized
using a swarm plot. (*** = FDR-corrected p < 0.0001; ** = FDR-corrected p < 0.01; * =
FDR-corrected p < 0.05)
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Figure C.11: Supplementary Figure 11. Variability and correlations are quenched in large-
scale network models (300 regions) with both random and clustered structural connections.
For each structural connectivity matrix, we randomly sampled synaptic weights from a normal
distribution with either 100% E connections (given evidence that most long-range connections
are excitatory, µ = 1.0, σ = 0.2 [Joglekar et al., 2018]), or 80% E and 20% I connections
(µ = 1.0, σ = 1.2). For each network model (4 in total), we simulated 20 subjects for 10 seconds
each (100ms sampling rate). For simplicity, during the task state, all units were stimulated
with a fixed input. a) Random structural connectivity matrix (20% connectivity density) for
an example subject. b) The average across all pairwise correlations during the rest and task
states for the network model with 80% E and 20% I connections. The rest state exhibits higher
correlations than the task state. c) The variability (variance across time) averaged across
brain regions during the rest and task states for the network model with 80% E and 20% I
connections. The rest state exhibits higher variability than the task state. d) The task minus
rest FC matrix (correlation difference) between all 300 regions. Correlations decreased from rest
to task states. e-g) The same analyses as b-d, but using only excitatory connections only. h)
Clustered structural connectivity matrix (10 communities, 20% within-community density, 3%
out-of-community density). i-k) The same analyses as b-d, but using the clustered connectivity
matrix with 80% E and 20% I connections. l-n) The same analyses as b-d, but using the clustered
connectivity matrix with 100% E connections. Boxplots indicate the interquartile range of the
distribution, dotted black line indicates the mean, and the distribution is visualized using a
swarm plot. Plots d, g, k, n, were corrected for multiple comparisons and thresholded using an
FDR-corrected p < 0.05.
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Figure C.12: Supplementary Figure 12. Rest (ITI) to task state (task cue) changes in fano factor
analyzed for each neuron individually across the six cortical areas for the exploratory subject.
(This is not a mean-field analysis.) a) The distribution of fano factor across all neurons in
FEF (from all recording sessions) for the rest (ITI) and task state (cue) periods. b) For each
individual neuron in FEF, we calculated the change in fano factor from the rest to task state
period. c,d) Same as a, b, but for PFC. e,f) Same as a, b, but for LIP. g,h) Same as a, b, but
for IT. i,j) Same as a, b, but for MT. k,l) Same as a, b, but for V4.

Figure C.13: Supplementary Figure 13. Rest (ITI) to task state (task cue) changes in fano factor
analyzed for each neuron individually across the six cortical areas for the replication subject.
(This is not a mean-field analysis.) a) The distribution of fano factor across all neurons in
FEF (from all recording sessions) for the rest (ITI) and task state (cue) periods. b) For each
individual neuron in FEF, we calculated the change in fano factor from the rest to task state
period. c,d) Same as a, b, but for PFC. e,f) Same as a, b, but for LIP. g,h) Same as a, b, but
for IT. i,j) Same as a, b, but for MT. k,l) Same as a, b, but for V4.



254

Figure C.14: Supplementary Figure 14. The average fano factor change from rest (ITI) to task
(cue) periods for both the exploratory and replication NHP subjects. a) Exploratory subject.
b) Replication subject.

Figure C.15: Supplementary Figure 15. Scatter plot representations of averaged neural statistics
(firing rate, variability, correlations, dimensionality) during rest and task state periods. All data
are identical to those reported in Figures 5.2b-d, Figure 5.5b, and Supplementary Figures C.1b-
d, but are visualized as a scatter plot. In each scatter plot, every point reflects the statistic
(mean, variance, correlations, dimensionality) estimated across a bin of 25 contiguous trials.
(Rest periods were defined as the ITI preceding the task cue onset.) Statistics were averaged
across all recording sites, and included all recording sessions. a) The firing rate (averaged
across six cortical areas) for task (y-axis) and rest (x-axis) states. b) The variance (averaged
across six cortical areas) for task (y-axis) and rest (x-axis) states. c) Correlations (averaged
across all pairwise correlations) for task (y-axis) and rest (x-axis) states. d) Dimensionality
(i.e., participation ratio) of all six cortical areas during task (y-axis) and rest (x-axis) states.
e-h) The same as a-d, but for the replication subject.


