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 In the field of BioMEMS, pneumatic actuation has been a common feature 

in the production of “Lab-On-A-Chip” (LOC) devices due to their cheap 

production costs and well-established fabrication protocols, however, are limited 

by a lack of precise control and component sizes. Electrostatic actuators in turn 

offer a low power consumption and highly controllable alternative for LOC 

devices, however, the protocol to create these components is not as well 

established. Computational modeling can act as a powerful design tool allowing 

us to explore a large range of design permutations and allow us to analyze the 

results. The device that will be modeled is a novel Parylene-C and gold 

composite micromembrane that is planned to be utilized as an all-in-one 

electrostatic actuator for mixing, fluid control, and cell manipulation. Comsol 

Multiphysics is the finite element modeling program that was utilized to model the 
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geometry of the device and simulate the physics environment. We recommend 

developing an adaptive mesh due to the varying size scale between the 

membrane length and thickness. We used theoretical equations under uniform 

load to initially validate our computational model before moving towards an 

analytical model derived for nonuniform loads to better match the electrostatic 

force. Data from the fabricated device was used for further validation and we 

were able to develop a correctional factor based on eigenfrequency comparisons 

between the model and the device to better improve our results. 
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Symbols and Terminology 

P = Pressure in Out of Plane Direction 

V = Voltage Applied to Membrane 

Vp = Pull-in Voltage  

𝙫 = Poisson’s Ratio 

ρ = Density 

E = Young’s Modulus 

d = Gap Distance 

k = Stiffness Coefficient 

ε = Vacuum Permittivity 

γ = Plate Deflection 

D = Flexural Rigidity 

α = Plate Deflection Constants 

σ = Stress 

ϵ = Strain 

Bn = Modal Plate Eigenfrequency Constants 

t = Plate Thickness 

R = Plate Radius/Plate Half Sidelength 

L = Plate Diameter/Plate Sidelength 
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1. Introduction 

 

1.1. MEMS Actuators and the State of the Art  

The field of microelectromechanical systems (MEMS) refers to the 

collection of techniques and processes used for developing microscale 

devices that integrate both electrical and mechanical components [1]. 

Microfabrication of MEMS structures often follows the process of 

photolithography, material deposition, and etching, forming the features of 

the device in a stepwise layer-by-layer fashion. Photolithography is the 

process of using semi-opaque masks to transfer device designs onto an 

initial substrate such as photoresist on a wafer chip. Material can be 

deposited by methods such as chemical vapor deposition (CVD) or physical 

sputtering, which builds upon the previous layers. Material can be removed 

using either dry etching techniques like Reactive-ion etching (RIE) which 

utilizes chemically reactive plasma or wet etching which uses liquid 

chemicals. While MEMS is most prolific for its application in the Integrated 

Circuits (IC) industry, it has also seen growing use within the biomedical 

field catalyzing the development of BioMEMS technology. Microscale 

sensors, optics, and actuators, as well as integrated components for 

computing, communication, and control have opened the way for novel 

techniques and platforms in medicine [2]. An example we will be highlighting 

are micro total analysis systems (μTAS), also known as “Lab-On-A-Chip” 

(LOC) devices.  
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Being able to analyze small volume sizes was a large initial reason 

for developing μTAS technology as the microstructure configuration can 

reduce the needed reagent volume and analysis time for each operation, as 

well as potentially increase sensitivity [3]. As the technology continued to 

mature, μTAS has evolved to perform multiple laboratory functions from 

sample handling, preparation, and analysis on a single chip [4]. Currently, a 

large interest has been placed into μTAS for the ability to run multiple 

experiments in parallel to one another and achieve high throughput.  

Multiple components of varying functions are needed within μTAS to fulfill 

the multiplex operations necessary to complete a complete sample 

introduction to product analysis process. This work will be focusing on the 

design of a MEMS actuator for μTAS and other applications. 

 

1.2. Motivation in Investigation  

 Pneumatic actuation is a common standard for MEMS actuation due 

to the relative ease of fabrication and well-established production protocols, 

resulting in low cost and robust components. Pneumatic actuation however 

also lacks the precise control needed for rigorous experimental 

reproducibility and requires off-chip pneumatic connections resulting in high 

power consumption. Chip space is limited by these off-chip connections and 

this reduces the integration capabilities of pneumatic actuators. Electrostatic 

actuation provides several advantages such as a relatively high force 

generation, low power consumption, and fast response time [5]. 
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Electrostatic actuators will also have higher control relative to pneumatics. 

Furthermore, the methods of fabricating electrostatic components are 

similar to IC, allowing for more streamlined integration into the chip and 

should allow the device to become more compact.  

This work will focus on developing a computational model for a novel 

micromachined Parylene-MEMS electroactive membrane design that will 

serve as a potential all-in-one actuation mechanism for biomedical 

applications. This electrostatic membrane has the potential to be utilized in 

a variety of roles within biomedicine as a micromixer, a particle manipulator, 

a fluid control mechanism, or as a strain applicator on adherent cells. The 

membrane design will be a gold electrode laminated with parylene C. 

Parylene C was chosen as a coating material as it can be conformally 

deposited and it is both a biocompatible and chemically inert polymer 

making it suitable to come into direct contact with cells or other biological 

matter [6]. Parylene C is also optically transparent allowing us to see the 

electrode underneath the coating and flexible enough that it should be able 

to handle the deformation due to the membrane deflecting.  

The membrane will be fabricated using a combination of bulk 

micromachining and surface micromachining. Parylene C will be deposited 

using chemical vapor deposition and the gold will be placed using physical 

vapor deposition. The laminate structure of the membrane will be composed 

of a thin gold film acting as our electrode sandwiched between two equal-

sized layers of parylene C. The membrane will be suspended over another 
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parylene C coated substrate and clamped on all sides. Reactive ion etching 

was used to create etch holes and expose parts of the membrane surface. 

These etch holes allow for the sacrificial layer of photoresist to be removed 

using XeF2 dry etching and act as air vents when the membrane is 

deflecting. A more in-depth look at the fabrication process can be seen in 

Figure 1.1. 

 

 

 

 

 

Figure 1.1. The fabrication steps of the micromembrane with an attached 
microfluidic channel. The initial substrate was a silicon wafer. The 
photoresist was used as a base material to transfer our mask features 
before applying the gold and parylene C layers. SU-8 was used to form the 
microchannel. Diagram was provided by Fernando Rebolledo. 
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1.3. Purpose of Investigation  

All in all, the purpose of our computational model is to act as a design 

tool to be used in conjunction with the development process of the 

membrane. The process of developing a MEMS device can be costly both in 

terms of time and materials. As a result, there are multiple benefits to having 

a computational model for device development. First, a computational 

model can relieve this burden by giving a prediction on how a given design 

will operate and even behaviors that may not be immediately apparent to 

the designers. By having a model to look at, designers can make a more 

informed judgment call on whether a design is worth pursuing or potential 

design faults without the needing to step into a cleanroom. Second, as 

multiple designs can be parametrically tested, be used to optimize 

parameters of the device for the designers’ purpose. This allows time to be 

saved as the model can test multiple device designs at once whereas with 

fabricating multiple devices there would need to be the alterations of 

protocols for each device, as well as the material costs.  

To fulfill the requirements of being a design tool, this model needs to 

accomplish 3 goals. The first goal is that the model has to be able to 

simulate the deflection of the electrostatic membrane under voltage load so 

that we can understand the operational range of the device. As we will 

further discuss in later chapters, the operational range is important for 

device functionality as applying too little voltage will cause the device to not 

operate and applying too much voltage can cause the membrane to short 
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circuit and collapse. For this model, we will need to validate our results with 

both theoretical results as well as real-world experimental data to ensure 

that our model is able to accurately capture the features of our membrane 

design. The second goal of our model is to be able to import mask designs 

into the computational model. This would allow us to test multiple device 

designs without the need to remake the model for each new mask pattern. 

The final goal is to be able to quantify our results so we can analyze the 

values of deflection and other parameters of interest. In the end, our model 

should be able to simulate multiple designs accurately in a time-effective 

manner. 
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2. Models of Analysis 

 

2.1. Introduction 

Before we can begin to simulate the design of our device, it is 

important to review our knowledge of the problem state, as well as any 

assumptions we make in the process of developing our model. Our 

fabrication process will result in two distinct domains for our electrostatically 

driven micromembrane, a top composite layer and a bottom ground layer, 

both of which are separated by a gap of air. The bottom layer will not be 

deflecting as it is both the ground and the overall substrate for our 

membrane array. The top layer is a composite membrane which will be 

voltage driven to deflect towards our ground. In many ways, this setup is 

similar to the classic parallel plate capacitor on a spring albeit, with one 

major difference, the top membrane is clamped at all of its sides. This is an 

important distinction as the classic parallel plate moves with total uniformity 

with the entire plate moving towards the ground plate. Adding the clamped 

boundary condition results in an uneven degree of deflection with the center 

of the membrane deflecting the furthest and the rate of deflection 

decreasing as you travel from the center to the clamped edges of the 

membrane. However, before we should discuss why this is such an 

important distinction, it would be wise to focus on the capacitor example as 

it will become an important basis for our models. 
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Figure 2.1. A classical parallel plate example where a voltage difference in 
the plate results in the movement of the top plate towards the fixed bottom 
plate. The spring force in turn opposes this deflection due to Hooke’s law.  
 
 

Electrostatic actuators typically generate an electrostatic (Maxwell) 

force that acts on a deformable structure such as a membrane in our design 

that is countered by a spring force with the stiffness determined by the 

material properties and dimensions of the device. A very common and 

simple example of this behavior can be found in the classical parallel plate 

where an applied voltage drives one plate to deflect towards the opposite 

and fixed plate, only to be opposed in force by an attached spring as can be 

seen in Figure 2.1. Equation 1 highlights this environment within the low 

voltage regime, as when voltage is low the spring force is able to equally 

match with the electrostatic force resulting in a null net force on the plate. 

 

𝛴𝐹 =  −
1

2

𝜀𝐴

(𝑑−𝑥)2 𝑉2  +  𝑘𝑥 =  0         (1) 
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The force on the capacitor plate is dependent on the surface area (A) of the 

plate, the voltage (V) being applied, the initial gap distance (d), the 

displacement (x) of the plates, the permittivity of free space (ε), and the 

stiffness coefficient (k). As we can notice in this equation, the spring force is 

a linear term while the electrostatic force is quadratic, with the electric force 

approaching infinity as the plates near contact. There is a certain point 

where equilibrium is no longer sustainable the electrostatic force 

overwhelms the spring force, and this occurs when deflection is at one-third 

the initial gap distance [7]. The voltage where the electrostatic force is 

greater than restoring spring force is referred to as the pull-in voltage, Vp, 

which is essential to find the operational voltage range of a device. Applying 

voltage past this point results in extremely greater deflection rates and will 

swiftly cause the plate and ground to collapse into each other and 

potentially become permanently stuck. 

A model able to calculate the pull-in voltage provides an important 

tool in designing electrostatic microactuators. Although theoretically, we 

could just increase the initial gap distance to increase our operational 

voltage range if we find that the range is too small, it would be better to 

know ahead of time if our range is too low rather than readjusting a design 

after the fact. Therefore, by being able to develop approximate models to 

predict the pull-in voltage of our designs, it could save time and resources in 

the development stage.  



10 

 
 

Returning back to our device design, while Equation 1 outlines a 

clear relationship between electrostatic and spring forces, it cannot be 

directly used to determine the pull-in voltage of our micromembrane setup 

as it does not account for the nonlinear application of load on the clamped 

membrane and the changes in stiffness due to the deformation. The edges 

of our membranes will experience no deflection and the greatest deflection 

will occur in the center of the membrane. Nonetheless, it is a start that we 

can adjust to take these other factors to account. 

In addition to the nonlinearity added by our design, we also have to 

note the composite nature of our deflecting membrane. We use a sandwich 

composition where our deflecting gold electrode is laminated between equal 

thickness coatings of parylene C. There is additional complexity added as 

we also have to determine the mechanical properties of the micromembrane 

as opposed to being able to simply pull material properties as we would for 

a single well-defined material.  

The micromembranes will either be square or circular in shape as 

seen in Figure 2.2, with these two shapes becoming two of the experimental 

conditions for our simulations. Initially, the plates will be completely 

continuous for the purpose of easing the initial validation process, however, 

the end goal is to also include the features from our mask designs for the 

devices into the simulation. 
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Figure 2.2. (A) is an example of a circular membrane and (B) is an example 
of a square configuration. 
 
 

2.2. Theoretical Analysis 

2.2.1. Theoretical Analysis- Uniform Load 

 Similar to beams in engineering, plates are fundamental structures 

vital for many applications within the field. Understanding plate deflection is 

vital to our purposes as it is the moving portion of the microactuator and 

defines the actuation range of the device. Classical Kirchhoff–Love plate 

theory is an extension of beam theory with assumptions that straight lines 

normal to the mid-plane remain both normal and straight after deformation 

and that the thickness of the structure does not change [8]. Furthermore, we 

are under the assumption that our membrane design is a thin plate as it has 

a thickness to width ratio of <0.1 [9]. These assumptions allow for the 

derivation of the maximum deflection of plates with a uniform load or 

pressure which occurs at the geometric center of the membrane. We see 
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this in Equations 2 and 3 for fully clamped square and circular plates 

respectively [10].  

 

γmax = 
𝛼𝑞𝑊4

𝐸𝑡3                  (2) 

γmax = 
𝑞𝑅4

64𝐷
          (3) 

 

Where q is the uniform load per area, W is the width of the plate, R is 

the radius of the plate, E is the young’s modulus of the plate, and t is the 

plate thickness. The constant α is an empirically obtained constant that is 

derived from the flexural rigidity of the membrane, with α being 0.0138 for 

square plates with a Poisson ratio of 0.3 [10]. As the Poisson ratio of our 

membrane is approximately 0.4 due to being mainly composed of parylene 

C, the α we will use for our model will be modified with a correction factor of 

(1-.4^2)/(1-.3^2) or 0.923. D represents the flexural rigidity of the plate which 

can be defined as the resistance of the structure against bending and can 

be found using Equation 4. The units for D, the flexural rigidity of plates, is 

Pa∙m3  or N∙m which is one dimension of length less than for the flexural 

rigidity of beams which has units of Pa∙m4 or N∙m2.  

 

D = 
𝐸𝑡3

12(1−𝑣2)
          (4) 
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While these equations provide us with analytical solutions for simple 

plate setups under uniform load, more complex configurations tend to 

require numerical solutions when an exact solution is difficult to discover [9]. 

This is the case with our MEMS membrane as it is under both a nonlinear 

electrostatic load and nonuniform deflection. This nonuniformity is a 

significant issue as it results in a change in geometry of our membrane as 

we apply voltage, creating an alteration from our initial problem state that 

needs to be accounted for as the change in geometry can result in a change 

in membrane stiffness and subsequently a change in expected deflection.  

Before we can push towards tackling this issue, it is important to be 

able to validate your process step by step along the way and this can be 

done by breaking down our model into smaller, more manageable goals that 

lead towards our final experimental design. For us, this meant being first 

able to ensure that our model is valid under simple uniform loads such as 

pressure for both square and circular clamped plates, before moving 

forward to increasing levels of complexity with our electrostatic simulations. 

To be able to both calculate, as well as analyze additional data for 

future comparisons, we utilized Matlab 2019b which is a matrix-based 

computing environment and program. Our membranes are composed of 

layers of parylene C, gold, and parylene C suspended over the ground 

electrode as can be seen in Figure 2.3. 
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Figure 2.3. A simplified model showing the composite nature of our top 
membrane hanging over our bottom substrate. 

  

Both gold and parylene C are isotropic materials that are layered on 

top of each other to form a composite laminate. For composite isotropic 

materials, it has been well established that there is an upper and a lower 

boundary in terms of Young’s modulus [11]. For a two-phase isotropic 

composite made of materials A and B, the upper or “Voight” limit can be 

described as the sum of the volume fraction of both materials multiplied by 

their respective Young’s modulus, where the sum of both ɸA and ɸB is equal 

to 1. This can be observed in Equation 5 where E is the Young’s modulus of 

the material and ɸ is the volume fraction of the material within the 

composite. 

 

EUpper = EAɸA + EBɸB       (5) 
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The lower or “Reuss” limit can be described for materials A and B, as 

the product between their Young’s moduli divided by the sum of the Young’s 

moduli of both materials multiplied by the volume fraction of the other 

material as seen in Equation 6. 

 

ELower = 
𝐸𝐴𝐸𝐵

𝐸𝐴ɸ𝐵 + 𝐸𝐵ɸ𝐴
          (6) 

 

Using Matlab 2019b, we can easily calculate and store these 

parameters so that they can be recalled for future calculations. We first have 

to define the geometry of our plates in Matlab by setting our desired 

dimensions of the plates and gap, as well as the material properties of the 

materials used. For our experimentation, gold and parylene C were the most 

common materials utilized, however, other materials such as silicon or 

copper were simulated for some early tests. These material parameters are 

then fed back into our prior Equations 5 and 6, providing us with an effective 

Young’s modulus for the plate which can be used to calculate the flexural 

rigidity. Using the effective parameters of the multi-phase plate, allows us to 

solve for Equations 3 or 4 depending on whether we are solving for a 

clamped square or circular plate respectively once we have given the 

desired pressure P.  

When the Poisson ratios of the two materials are close to one 

another, the effective Young’s modulus should be the same as the “Voight” 
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limit [11]. Given then that the Poisson ratios of gold and parylene C are 0.4 

and 0.415 respectively, we are going to assume the “Voight” limit for our 

models. 

 

 
Figure 2.4. Multiple solutions of a 1500x1500 µm2 square membrane under 
a uniform load of 50 Pa. This graph shows how altering the thickness of 
parylene C will affect the deflection experienced by the membrane, with 
higher thickness leading to lower amounts of deflection.  
 
 

 This process can be done iteratively through the use of loops in the 

Matlab program to parametrically solve the maximum center deflection for 

multiple plate dimension sizes at the same time, as can be observed in 

Figure 2.4. These results can then be compared to data taken from finite 

element simulations such as from Comsol Multiphysics or Ansys, where we 
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can compare the data by using error calculations to see how closely the 

results from these programs correspond to one another. 

 
2.2.2. Theoretical Analysis- Eigenfrequency 

In addition to observing deflection, we also looked into eigenfrequency 

analysis. Eigenfrequencies or natural frequencies are the mechanical 

resonance frequencies where a system tends to vibrate at, with each 

eigenfrequency having a corresponding shape, also known as an 

eigenmode or resonance modes. Eigenfrequency analysis is important for 

the design as it allows us to understand at what frequencies the device will 

resonate, which can be helpful to understand excitations that will cause the 

device to vibrate which can generate unwanted noise or additional stress on 

the device [12]. In addition, we can utilize the eigenfrequencies to help 

validate the model as the equations for eigenfrequencies for thin plates are 

known as seen in Equation 7 and we can compare the results from the 

analytical equation to the eigenfrequency analysis in finite element 

programs to see if the device configuration matches [13].  

 

𝑓𝑛 =  
𝐵𝑛√(𝐸𝑡2)/(𝜌(2𝑅)4(1−𝑣2))

2𝜋
                 (7) 

 

Where Bn is the modal plate eigenfrequency constant that depends on the 

eigenmode and plate configuration, E is the Young’s modulus, ρ is the plate 
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density, t is the plate thickness, R is the plate radius/half sidelength, v is the 

Poisson ratio of the plate.  

 

Bn Square Plate Circular Plate 

B1 10.40 11.84 

B2 21.21 24.61 

B3 31.29 40.41 

B4 38.04 46.14 

Table 2.1. Table of modal constants for eigenfrequency harmonics for 
clamped plates. 
 

 
 

2.2.3. Theoretical Analysis- Electrostatic Load 

As we have mentioned, there is currently no analytical solution for 

determining membrane deflection due to electrostatic loads. Much of the 

difficulty in this is due to the fact that both the load and the deformation of 

the plate are non-linear. Typically, the use of a parallel plate capacitor 

attached to a spring is used to approximate micro-membrane actuators 

models as it allows for non-linear loading with uniform deflection across the 

entire membrane and this can be seen in Figure 2.5. 
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Figure 2.5. A diagram of a parallel capacitor with a spring representing the 
restoring force of the model.  
 

 
 

 While this provides a decent approximation of the pull-in voltage, it 

does not account for the change in spring stiffness due to deformation, nor 

the nonlinearity in deformation resulting in varying rates of deflection 

dependent upon membrane position. Using Equations 1, 2, and 3, we 

attempt to provide a closer approximation of the center deflection for our 

micro membrane. As both equations 2 and 3 solve for the deflection under 

fully clamped conditions, we solve for q so we can derive an approximate 

stiffness coefficient k that we can plug back into Equation 1. For  

Equation 1 we can assume the sum of forces to be equal to 0 to represent 

the restoring force matching the electrostatic force. For a real device, this 

assumption of a zero-sum force is valid only before pull-in voltage is 
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reached. We obtained a general equation form seen in Equation 8a that 

represents the function of deflection for the membrane depending on its 

current deflection and voltage. The constant c depends on whether the 

membrane is square (cs) or circular (cc ) in shape as seen in Equations 8b 

and 8c respectively. 

 

f(x) = 𝑥3  −  𝒂𝑥2  +  𝑏𝑥 −  𝑐 = 0    (8a) 

cs = 
2ɛ𝑜𝑉2𝑊𝐿4

𝐸ℎ3                             (8b) 

cc = 
𝜋ɛ𝑜𝑅4𝑉23((1/𝑣)2−1)

32𝜋𝐸(1/𝑣)2ℎ3     (8c) 

 

For the general equation form, the variable x represents the deflection of the 

membrane, the constant “a” is the double the initial gap distance, and the 

constant “b” is the initial gap distance squared. By using the clamped plate 

deflection equations, we aim to better capture the conditions of the plate 

compared to the parallel plate model. Given however that Equations 2 and 3 

assume a uniform load, there is bound to be a degree of error in our 

assumptions, but we believe that it should provide us with a closer 

approximation overall. We utilize Matlab in order to solve for the roots of our 

general equation form and the voltage where no true solution for deflection 

can be found will be the pull-in voltage.  
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2.3. Finite Element Analysis 

2.3.1. Finite Element Analysis- Uniform Load 

Once again, we must draw the comparison between analytical and 

numerical methodology when it comes to solving models. Analytical 

methods rely on framing a problem in a well-defined format, such as an 

exact algorithm, allowing for exact solutions to be found [14]. Numerical 

methods in contrast find approximate solutions within a defined margin of 

error. This is often performed by taking an initial guess at the solution and 

iteratively building upon the prior approximation until a set step number or 

error.  

To better illustrate the difference between both methodologies, we 

can look at an example of finding the solution to f(x) = 𝑥2 = 16if x > 0. For 

an analytical solution, we can take the square root of both sides to see that 

x = 4. For a numerical solution we can take an initial guess of x = 2 to see 

f(2) = 4, we can then take another guess of x = 5 to get f(5) = 25. Since both 

estimates provide a range where the true solution lies, we would want a 

procedure that obtains a new estimate between our two values while also 

reducing the error margin. The bisection method is a common and simple 

technique numerical where a new guess is made at the midpoint of the two 

prior estimates (in this case x = 3.5, f(x) = 12.25). This new estimate can be 

used again by the bisection method to obtain another approximation with 

each iteration ideally reaching closer to the true solution if it exists. Keep in 

mind in this case, the true solution is both known and easily solved, which 
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can obfuscate the value of going through the process of using numerical 

solutions. 

While having access to an exact solution is useful, there are several 

caveats associated with analytical solutions that make it not ideal for several 

problem types. At times an exact solution is not available either because an 

analytical method of solving for the problem has not yet been derived or the 

exact solution would require too much time to compute in comparison to a 

close approximate. Analytical solutions provide solutions for idealized 

conditions, but this is not often the case practically for real-life applications. 

Both nonlinear equations and most cases of partial differential equations 

(PDEs) are difficult to solve using analytical methods, often requiring them 

to be discretized in some form and solved numerically [15]. For space and 

time-dependent problems, PDEs are used to represent many of the laws of 

physics which in turn generally cannot be solved using analytical solutions 

[16]. To simulate our device design, which will also be nonlinear under the 

electrostatic load conditions, we would need to utilize a numerical analysis.  

Finite element modeling (FEM) is a method of numerical analysis 

where complex geometry is divided into smaller subsections that can be 

analyzed locally and brought together to form a global exploration of the 

model. There are several advantages to developing a simulation model 

within a FEM program such as being able to examine local effects in the 

simulation, faster computational times due to the discretization, 

simultaneous calculation and visual representation of the geometry, and the 
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ability to run multiple parameters for testing [17]. Another benefit of using a 

FEM program to simulate devices is that both models and mask designs of 

MEMS-based actuators can be imported from CAD programs with little need 

for alterations. For this experimentation we will be mainly making use of 

COMSOL 5.3a, a multiphysics finite element analysis program that allows 

for internal modeling of geometries, meshing, both simultaneous calculation 

and visual representation of results, and the exportation of data. Ansys 

2020, another multiphysics simulation program, was also utilized to help 

validate our initial results for the device models under uniform pressure 

load. As Ansys 2020 lacks an electrostatics physics suite it was unsuitable 

for later testing or development of the device simulations under electrostatic 

conditions. Matlab also had capabilities in finite element analysis using the 

PDE toolbox available to the program and was considered for the model, 

however, it proved to be less intuitive and required more manual input than 

specialized FEM programs which is why it was inevitably not used for this 

specific application. The reason why we are interested in testing both 

pressure and voltage loading despite our device design being intended for 

electrostatic deflection is for the purpose of validating our work as we build 

up the model. The pressure load models are geometrically equivalent to 

their electrostatic counterparts and differ just in loading conditions. This 

provides the advantage in that the simpler pressure model has analytical 

solutions that we can compare to as seen in equations 3 and 4 for center 

point deflection for square and circular fully clamped plates, as well as, 
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provides a basis to easily transition our work to the next stage by changing 

the pressure load for a voltage-driven load. For our research, we developed 

a general procedure for developing FEM models that tends to remain 

consistent for FEM analysis programs, which we have displayed as a 

flowchart diagram in Figure 2.6. 

 
Figure 2.6. Flowchart of the FEM model design process. 

 

To begin any model, we need to set our underlying assumption and initial 

conditions. We have two model types that we are interested in exploring 
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under both uniform pressure and nonlinear electrostatic load, the square 

membrane design, and the circular membrane design as seen in Figure 

2.7.a. and Figure 2.7.b. 

 

 

 

 

 
Figure 2.7.a. A quarter model of the Square Membrane that is surrounded 
by an air volume. 
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Figure 2.7.a. A quarter model of the Circle Membrane that is surrounded by 
an air volume. 

 

We are mainly interested in seeing what effect voltage or pressure 

has on the center point deflection of the membrane as a parameter to test 

validation, this is because the center point would be the first point of contact 

if the two plates were to collapse into each other. We are not too concerned 

with regards to the time points of when the deflection occurs as deflection 

should occur very quickly after the voltage is applied. As such, we can 
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approach the problem from a stationary perspective instead of a time-

dependent frame. For each model type we run, we need to decide which 

physics we are choosing to test during the simulation, and this can be done 

either by selecting physics modules within FEM programs such as Comsol 

or Ansys, or manually inserting equations into the program of interest. It is 

also at this point we can set the initial conditions of the environment which 

can include the initial loading parameters of voltage or pressure.  

Our next step would be to define the geometry of our model. While 

not necessary for calculating deformations under uniform loads, the volume 

is taken up by air in the gap and surrounding space need to be taken into 

account for boundary conditions with electrostatic conditions and create an 

area to set as the ground in our system. As such, to aid in the future 

transition of the model for voltage loads, gap and surrounding air are 

included in the geometry modeling. For both Ansys 2020 and Comsol 5.3a, 

our geometry uses either a square or circle as the initial geometry to 

represent the membrane shape and this pattern is extruded in steps to 

represent the separate material layers of the device as observed in Figure 

2.8.  
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Figure 2.8. Layer creation using extrusion model operation in Comsol 5.3a 
with each distance defining where a new border between layers for the 
geometry.  
 

One of the advantages of finite element analysis is the ability to use 

symmetries in order to reduce our model size and computation times while 

obtaining the same end results. We only need to generate a quarter of our 

device geometry and utilize mirroring tools present in both Ansys and 

Comsol. This saves time when running simulations especially when multiple 

parameters are being tested simultaneously, however, the caveat is that the 

design must be symmetric. 

 



29 

 
 

 
Figure 2.9. A quarter model of the geometry can be used to simulate a 
whole model using mirroring operations if the model is symmetric. In the 
quarter model, the planes used for reflection are highlighter in gold and the 
resulting mirrored geometries are highlighted in red.  
 

Mask designs would most likely require the use of a whole geometry 

model instead as many designs we have under consideration are not 

geometrically symmetrical. Our own testing as well as past results of other 

Comsol models showed that the mirrored geometry can supply equivalent 

results to the whole model. 
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Figure 2.10. Example of a mask design that can be imported into Comsol 
5.3a to overlay on top of our model geometry. 
 

For the square membrane dimensions, the physical device has been 

planned with dimensions of 1500 microns square length and width, a 

thickness of 3000 angstroms of gold, 5.5 micron thickness of parylene C, 

and a gap distance of 6 microns. The circular membrane designs have been 

proposed with a radius of 700 microns, a thickness of 3000 angstroms of 

gold, 5.5 micron thickness of parylene C, and a gap distance of 6 microns. 

These dimensions will be used as the initial dimensions of the geometry so 

that the FEM programs can provide us with a visual representation of our 
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model, the actual dimensions of the devices will be represented with the 

parameterizable variables seen in Table 2.2. 

 

Parameter Description Units 

R Radius or Square Length Microns 

TAU Thickness of the Gold Layer Angstroms 

TPC Total Thickness of the Parylene 
Layers 

Microns 

Gap Distance between the Upper 
Membrane and the Ground Electrode 

Microns 

Table 2.2. The parameters utilized in defining the geometry of the model. 
 

These variables can be utilized with the parametric sweep function in 

Comsol 5.3a to set a range of values for each testing parameter and solve 

the problem for each combination. This would allow us to test multiple 

device designs at once without the need to make geometry alterations 

between each device.  

In Comsol 5.3a, material properties can be assigned to our geometry 

by defining specific volume domains. For this, we utilized both explicit 

selections that allowed us to directly select a section of the model, as well 

as, by using box selections which allow us to define space selections using 

the internal coordinate systems. An advantage of using box selections is 

that they can be parametrized and remain resistant to errors due to changes 

in the model dimensions. In Ansys 2020, only explicit selections of geometry 

domains and surfaces were available. The materials we used for the model 
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are gold, parylene C, and air, the material properties of which are displayed 

in Table 2.2. It was found that the position the gold layer is situated in 

relation to the parylene C layers can alter the effective Young’s modulus of 

the membrane and these values can be observed to vary within the upper 

“Voight” and lower “Reuss” limit. Since an underlying assumption we laid out 

is that the effective Young’s modulus is at the upper “Voight” limit, we can 

also overwrite the gold and parylene C properties with a Composite material 

designation which utilizes Equation 5 to create a material which generates 

an effective Young’s modulus using the gold and parylene C volume 

fractions of the model geometry. This is to simplify the initial process of 

validating our model and we can in the future update our procedure to 

account for the variations in the effective Young’s modulus for composite 

membranes. 

 

Material Density (ρ) Young’s 
Modulus (E) 

Poisson 
Ratio (v) 

Gold 19300 kg/m3 70x109 Pa 0.415 

Parylene C 1289 kg/m3 4.758x109 Pa 0.4 

Composite 1289 ∗ 𝑇𝑃𝐶 +  19300 ∗ 𝑇𝐴𝑈

𝑇𝑃𝐶 +  𝑇𝐴𝑈
 

EAUɸAU + 

EPCɸPC 

0.4 

 

Table 2.2. Material Properties table for solid components of the membrane 
design. A Poisson ratio of 0.4 was used for the composite as the parylene C 
dominates the volume fraction of the membrane. 
 

Forming the mesh is vital for finite element operations as the mesh 

designates the subdivisions of the geometry connected by node points used 
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for finite element analysis. How we define our mesh plays a critical role in 

the ability of the model to calculate the solution in terms of both accuracy 

and computation time, so it is important to understand how various variables 

of the mesh can affect the outcome of our solution and how we can optimize 

the mesh. Mesh density refers to the number of subdivisions/elements 

present in a given simulation volume, with higher mesh densities having 

corresponding higher numbers of elements. With higher mesh densities 

solutions will have higher accuracy, but with increased elements comes at 

the added cost of longer computational times. As such we cannot simply 

view higher element counts in meshes as being strictly beneficial, balance 

between runtime and error needs to be considered. One of the advantages 

of COMSOL 5.3a is the ability to generate anisotropic meshes through the 

use of selection and distribution nodes, allowing us to alter mesh sizes and 

quality. We can then optimize our mesh formation to increase our mesh 

density in areas of expected high deflection and lowering mesh density in 

areas of low gradients, achieving good results with lower computational 

times. Areas that we can expect with high gradients such as the membrane 

(gold and parylene C domain selections) should have higher mesh densities 

in comparison to areas we expect fewer deformations (air domain 

selections). Mesh quality is also important as the type of meshing operation 

used can affect performance. The free 3D meshing can be performed using 

triangular elements for nearly every 3D structure even with complex or 

irregular surfaces, however, the quality of the elements generated can 
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range from good to poor [18]. Mapped meshes can generate high-quality 

surface meshes which can be turned into a 3D mesh by sweeping it along a 

connected volume [19]. The main issue with this technique for meshing 

occurs when dealing with irregular surfaces or if there is not a clear pathway 

for the surface mesh.  

 

 

 

 

 
Figure 2.11. An example of a meshing operation performed on a 3D 
geometry. The structure is a quarter slice of a circular membrane design 
with a surrounding air domain. The mapped quadrilateral mesh was used to 
generate a surface mesh which was then correspondingly swept along the 
other domains to mesh the entire structure. The mesh size chosen in this 
operation was finer domains within the circular membrane region, while the 
mesh size was set to normal in the surrounding domains. Magnification 
highlights that more divisions (n = 5) are present in the middle membrane 
domain in comparison to the divisions (n=3) in the two surrounding air 
domains.    
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After the mesh is satisfied, the penultimate step before calculating 

the solution is to apply the physics and constraints onto the geometry. For 

the purely pressure loaded models, we only need to rely on the solid 

mechanics module in COMSOL 5.3a and the structural mechanics module 

in ANSYS 2020. In COMSOL 5.3a, we define the gold and parylene C 

domains as linear elastic materials, which are materials that obey Hooke’s 

law and where the relationship between stress and strain is linear as seen in 

Equation 9, where σ is the stress, E is the Young’s modulus, and ϵ is the 

strain.  

 

σ = Eϵ        (9) 

 

The non-solid portions of the geometry which are the air domains in the gap 

region and surrounding volumes of the membrane are defined in the Moving 

Mesh, which defines the non-solid portion of the geometry that deforms in 

response to the actuation of the solid membrane. Furthermore, if the mirror 

function was used when we made a quarter section of the model, it also has 

to be applied within the solid mechanics and Moving Mesh modules as well 

so that the solution takes the model's symmetry into account. The fixed 

constraint, which sets displacement and deformation gradients to 0, is 

applied to the outer side surfaces of both membrane types to make them 

both fully clamped. The pressure load is applied using a surface load on the 

top surface of the membrane and we apply a parameterized value of P so 
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that we can alter the loading to see how it affects the deformation of the 

membrane. The variable P is set to the final pressure that we are looking for 

and the solution ramps up from a negligibly small pressure, as Comsol 

cannot accept 0 Pa as valid input for an applied load onto a surface, so 

0.001 Pa is used instead, using the range function in Comsol 5.3a. The 

same geometry was also modeled within Ansys with the same parameters 

as the Comsol model in order to validate the numerical model. We were 

able to observe that a matching deflection was found between both the 

Comsol and Ansys models under the same conditions as shown in Figure 

2.12.a. and 2.12.b. These results provide us with greater confidence in the 

Comsol model as we continue with this specific program for further 

simulations. 

 

 
Figure 2.12.a.  A square membrane model in COMSOL 5.3a with a side 
length of 1.5 mm under an applied pressure load of 50.05 Pa across the 
entire membrane. The center deflection was 2.3 microns. 
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Figure 2.12.b.  A square membrane model in Ansys with a side length of 
1.5 mm under an applied pressure load of 50.05 Pa across the entire 
membrane. The center deflection was 2.283 microns. 
 

As stated previously, one of the advantages of finite element 

modeling is the ability to parametrize and test multiple factors at the same 

time without model alteration. By applying a parametric sweep to our 

simulation study, we can solve for multiple geometry and mesh 

configurations. For both our pressure loaded and electrostatic driven 

membranes, the parameters we will alter for the geometry will be the 

thickness of the parylene C and the side-length/radius of the membrane. In 

our fabrication process, we can increase or decrease the thickness of 

parylene C by changing the deposition time for the polymer onto the device 

substrate, while the membrane side-length/radius can be changed with the 

mask design.  
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For the pressure loaded models, we performed two stationary 

studies, deflection under pressure with varying parylene C thickness, 

deflection under pressure with varying side length/radius, as well as a 

separate eigenfrequency analysis. The studies were chosen to be stationary 

or time independent as we only care about the load needed to deflect the 

membranes as the deflection should occur near instantly. Exceptions to this 

would be due to fabrication errors, such as photoresist not being removed 

from the device or liquid still being present on the chip which can result in 

surface tension interfering with device operation. For each plate we used a 

standard dimension of R = 750 µm, d = 6 µm, tAu = 0.3 µm, and tpc = 5.5 µm. 

The parametric thickness of the parylene C for all models was tested at 

0.5tpc, tpc, and 1.5tpc values. The parametric radius/half sidelength for all 

models was tested at 0.75R, R, and 1.25R values. These standard values 

were chosen as they are set by the measurements of the device design and 

with most variations in the current fabrication process tending to hover 

around these parameter ranges. 

For finite element modeling, there is often an assumption of 

geometric linearity such that the solution doesn’t update with model 

deformation as many times changes are quite small and are not worth the 

added computational complexity and solution time [20]. The analytical 

equations used for calculating the expected deflections for plates under 

uniform loads don’t take into account the deformation due to deflection, 

which is appropriate for linear deflection patterns. This cannot be held true 
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for our electrostatic loads as the electrostatic force quadratically increases 

with the deflection due to the distance between the charge plate and ground 

decreasing, with geometric nonlinearity needing to be accounted for. To 

further bridge and understand the gap between our linear model we can 

apply geometrically nonlinearity to our uniform load models. Given that the 

deformation should theoretically increase the stiffness of the device, we 

should expect to see a greater reduction in deflection in models of higher 

deflection. 

 

2.3.2. Finite Element Analysis- Eigenfrequency 

Eigenfrequency analysis can be performed using Comsol 5.3a using 

the eigenfrequency study step and providing parameters so that Comsol 

understands how many eigenfrequencies it is looking for and what 

frequency to begin with. For both our square and rectangular models, we 

searched for the first four non-repeating eigenfrequencies and we utilized 

whole models as eigenmode confirmations can often be nonsymmetric. We 

will export our results and compare against our analytical equations for 

eigenfrequency utilizing Matlab. 
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2.3.3. Finite Element Analysis- Electrostatic Load 

When applying the electrostatic load onto our models, we enter the 

realm of multiphysics where we need to account for the interaction between 

the electrical and solid mechanics of our membrane. In addition to the Solid 

Mechanics physics module in Comsol we previously used in our pressure 

loaded models, we also now need to apply the Electrostatics physics 

module and activate the Electromechanical Forces Multiphysics that 

couples our two physics modules together. For our electrostatic model, we 

will define the composite membrane as the terminal where the voltage is 

applied and the surface of the chip/bottom of the model as the ground. This 

makes the initial volume of air between the ground and the membrane the 

initial gap distance between our electrode and ground. Furthermore, when 

solving for our membrane deflection under the application of voltage as 

mentioned prior, we need to account for geometric nonlinearity within the 

model. This is due to the nonlinearity of the load applied as well as the 

resulting deformation on the model membrane. Applying geometric 

nonlinearity allows for the solution to update its conditions to take into 

account the deformation of the membrane as the voltage is applied. This is 

vital as the disparity in deflection across the membrane results in a 

corresponding disparity of electrostatic force applied due to the distance 

between the terminal and ground domains. If we were unable to account for 

the change in distance between the membrane and the ground, we would 

be failing to capture a vital characteristic of our problem state. 
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Similarly, to how we solved parametrically for our uniform load 

models, we will also solve parametrically for our electrostatic loads. We will 

vary our geometric conditions exactly the same as in our prior model with 

parylene C thickness ranging from 2.75 µm, 5.5 µm, and 8.25 µm, as well 

as membrane diameter/side length ranging from 1125 µm, 1500 µm, and 

1875 µm for both the circular and square membranes. The standard 

parameters of our membrane are that parylene C thickness is 5.5 µm, 

diameter/sidelength is 1500 µm, the initial gap is 6 µm, and the gold 

thickness is 0.3 µm. Our applied load will now be a voltage that is applied at 

our terminal domain, ramping up from zero voltage to a voltage value set 

higher than the expected voltage from our analytical model. This is done so 

we can compare the behavior of the membrane model at an expected value 

and see how it matches with the analytical predictions. The voltage range is 

set slightly higher in order to account for potential discrepancies. In addition, 

since the solver tends to fail to find a solution for deflection past the pull-in 

voltage due to the exponential deformation rate, setting the voltage slightly 

higher will not add to the computational time assuming that our analytical 

voltage estimation is not too far off from the calculated pull-in voltage of the 

model. 
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3.  Results and Discussion 

 

3.1. Validation Comparisons 

When validating our ability to match the analytical solutions of the 

membrane deflection under uniform loads, we were able to closely match 

our analytical model to our results from Comsol. For both of our square and 

circular membranes, the discrepancy between the final deflection of our 

membrane models was under 5% between the numerical and analytical 

results.  

 

Parameters Error (Square) Error (Circle) 

R = 750 µm, TPC = 2.75 µm 1.61% 4.86% 

R = 750 µm, TPC = 5.5 µm 1.49% 3.20% 

R = 750 µm, TPC = 8.25 µm 1.38% 2.81% 

R = 562.5 µm, TPC = 5.5 µm 1.41% 2.82% 

R = 750 µm, TPC = 5.5 µm 1.49% 3.20% 

R = 937.5 µm, TPC = 5.5 µm 1.55% 3.62% 

Table 3.1. Error percentages between analytical and Comsol final values of 
deflection under a uniform load of 50 Pa. 
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Parameters (Geometric Nonlinearity) Error (Square) Error (Circle) 

R = 750 µm, TPC = 2.75 µm 13.47% 15.57% 

R = 750 µm, TPC = 5.5 µm 5.21% 5.80% 

R = 750 µm, TPC = 8.25 µm 1.74% 2.81% 

R = 562.5 µm, TPC = 5.5 µm 2.03% 3.18% 

R = 750 µm, TPC = 5.5 µm 6.83% 6.51% 

R = 937.5 µm, TPC = 5.5 µm 21.08% 17.34% 

Table 3.2. Error percentages between analytical and Comsol final values of 
deflection under a uniform load of 50 Pa. Geometric nonlinearity was 
applied increasing the difference between final values.  
 
 

When geometrical nonlinearity is applied to our solution, we saw an 

increase of error for both the square and circular membrane models from 

the values of the analytical model. This is expected as the analytical model 

doesn’t take into account the change in stiffness as the membrane deforms, 

therefore, when geometrically nonlinearity updates the solution to take this 

effect into account there should be a difference as there is a change in 

assumptions in the model. Since geometric nonlinearity mainly accounts for 

the large deflection regime, we see the greatest increases in the 

discrepancy between the final analytical and Comsol values where 

deflection was higher at the given load. This can be observed at lower 

values of parylene C thickness or higher membrane sidelengths/diameters 

as this would result in a decrease of membrane stiffness and 

correspondingly higher values of deflection under load. This can be 

observed in Figure 3.1, where geometric nonlinearity has a more 

pronounced effect on the deflection curve with larger membrane 
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sidelengths. Overall, for uniform loads, our Comsol results were found to 

correspond closely with the analytical models from Roark’s equations under 

standard assumptions and provided us with the confidence to validate our 

model at this stage. 

Figure 3.1. It can be observed in A that when deflection is low, there is little 
difference between the Comsol results with geometric nonlinearity on or off. 
In B however, it can be observed that there is a stiffening effect that occurs 
when deflection becomes greater, resulting in the added nonlinearity and 
lower deflection once geometric nonlinearity is applied. 

 

For our eigenfrequency results, we calculated the first four non-

repeating resonant frequencies for both membrane shapes under fully 

clamped conditions. The frequencies calculated using the analytical model 

and the resonant frequencies found in Comsol were found to be closely 

matching. 
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Circular Membrane Eigenfrequency 

Harmonic (n) Analytical (Hz) Comsol (Hz) 

1 10143 10329 

2 21082 21562 

3 34617 35380 

4 39526 40572 

Table 3.3. Comparison table of calculated eigenfrequencies for the circular 
membrane 

  

 
Figure 3.2. The first four non-repeating eigenmodes of the circular 
membrane.  
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Square Membrane Eigenfrequency 

Harmonic (n) Analytical (Hz) COMSOL (Hz) 

1 8909 8436 

2 18170 17277 

3 26805 25453 

4 32587 31232 

Table 3.4. Comparison table of calculated eigenfrequencies for the square 
membrane 

 

 
Figure 3.3. The first four non-repeating eigenmodes of the square 
membrane.  
 
 

These eigenfrequency results in conjunction with the confirmation 

with analytical deflection models for us validated the solid mechanics portion 

of the model that we were able to proceed with the electrostatic loads. 
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For our electrostatic results, we used comparisons to our analytical model, 

in addition to, some measurements taken from fabricated devices. For our 

electrostatic models, we tested 5 different permutations for both of our 

electrostatic membranes using out two parameters that we tested for 

parametrically within Comsol: the diameter/sidelength of the membrane (L) 

and the thickness of the parylene C coating layers (TPC). As a reminder, 

the general parameters of the model have a gap of 6 µm, a gold thickness 

of 0.3 µm, an L of 1500 µm, and TPC of 5.5 µm as it matches several of the 

dimensions of membranes being fabricated and tested.  

The main reason why we only chose to alter one parameter at a time 

when choosing the model permutation was to avoid confounding results due 

to multiple variables. Furthermore, we chose the parameter values in the 

permutations because we estimated that it would present a significant 

difference in behavior for the deflection curve.  

 

Permutation Parameters 

1 TPC = 2.75 µm , L = 1500 µm  

2 TPC = 5.5 µm , L = 1500 µm 

3 TPC = 8.25 µm , L = 1500 µm 

4 TPC = 5.5 µm , L = 1125 µm 

5 TPC = 5.5 µm , L = 1875 µm 

Table 3.5. Varied parameters for each permutation, keeping the standard 
gap distance and gold thickness for each model. 
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Figure 3.4. Final deflections of the Square and Circular membrane 
respectively with standard parameter sizes. A: V = 20 V, B: V = 19 V 



49 

 
 

When comparing our results to our analytical electrostatic model for 

the validation, we need to compare both the curve of the deflection over 

voltage, as well as take note of the final pull-in voltage for each model. As 

Comsol is a finite element modeling program, the results we obtain from 

Comsol are discrete data sets. In order to find the pull-in voltage for each 

model, we need to find the exact voltage when deflection is a third of the 

initial gap distance. While we could use a small step size to find this exact 

voltage, it would require an exorbitant amount of calculation time. Instead, 

we took our datasets into Matlab and utilized the Curve Fitting Toolbox in 

order to generate polynomial curves that fit to the data points we found. The 

curves we generated we made using 9th-order polynomials as these 

appeared to best match the data set. With the fitted polynomial curve, we 

can then find the exact voltage when deflection is at pull-in using the fzero 

function within Matlab, finding the root of the polynomial curve minus one 

third the initial gap distance. For the analytical model, we are considering 

the final real solution the model can find to be the pull-in voltage as beyond 

that value the electrostatic forces should theoretically overwhelm the 

stiffness of the membrane. The code for these calculations and plots can be 

found within the Appendix. 
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Figure 3.5.a. Square Permutation 1 
 

 
Figure 3.5.b. Square Permutation 2 
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Figure 3.5.c. Square Permutation 3 

 
Figure 3.5.d. Square Permutation 4 
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Figure 3.5.e. Square Permutation 5 
 

For our square membrane data, we noticed that all curves we 

generated from our Comsol results tended to underestimate the needed 

voltage to deflect in comparison to our analytical model. These 

underapproximations are most noticeable when the stiffness of the 

membrane tends to be larger such as with smaller sidelengths (L) or greater 

Parylene C thickness (TPC) which could be attributed to greater geometric 

nonlinearity. The pull-in voltage for permutations 1, 2, and 5 for the square 

membrane had less than 1 V of difference between the analytical and 

Comsol values for pull-in voltage. Permutations 3 and 4 had a difference of 

5 V and 10 V respectively.   
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Figure 3.6.a. Circle Permutation 1 

 
Figure 3.6.b. Circle Permutation 2 
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Figure 3.6.c. Circle Permutation 3 

 
Figure 3.6.d. Circle Permutation 4 
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Figure 3.6.e. Circle Permutation 5 

 
For our circle membrane models, we noticed that our Comsol results 

instead overestimated the voltage compared to the analytical model we 

created in all permutations tested. The analytical values for pull-in voltage 

range consistently from 70% to 80% of the Comsol values. Overall, the 

discrepancy between our two circle models appears to be more consistent 

than our square models, although the square models do appear to more 

closely match our analytical models within several permutations. Given that 

the analytical models are approximations made by combining the 

electrostatic vs stiffness force balance equation with the clamped plate 

deflection equations, we expected at least some level of discrepancy 

between our analytical and numerical models.  
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The natural frequency of an oscillator can also be found using both 

its stiffness and the mass as observed in Equation 10 [21]. Stiffness in our 

analytical model is approximated and currently is the biggest potential 

source for discrepancy between our models. However, since we can already 

calculate the eigenfrequency of our membranes using Equation 7, we can 

compare the natural frequency of the approximated stiffness of the 

membranes to the first harmonic of the eigenfrequency values and attempt 

to make a correction factor for the stiffness in our analytical model. In the 

derivation of Equation 8a and 8b, we needed to approximate stiffness and 

found the respective formulas for the stiffness of the square and circular 

membranes in Equations 10a and 10b. 

 

𝑓𝑛  =  
1

2𝜋
√

𝑘

𝑚
         (10) 

𝑘𝑠  =  
𝐸𝑡3

4𝑊3            (10a) 

𝑘𝑐  =  
16𝜋𝐸(1/𝑣)2ℎ3

𝑅2(3((1/𝑣)2−1))
          (10b) 
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Membrane 
Conditions: 

Eigenfrequency 
Difference: (fs/f1) 

Correction Factor 
Applied to c: (fs/f1)2 

Square Perm. 1 5322/4678 1.2944 

Square Perm. 2 10136/8909 1.2944 

Square Perm. 3 14955/13144 1.2944 

Square Perm. 4  20807/15838 1.7258 

Square Perm. 5 5802/5702 1.0355 

Circle Perm. 1 3914/5326 0.5401 

Circle Perm. 2 7454/10143 0.5401 

Circle Perm. 3 10998/14964 0.5401 

Circle Perm. 4 13252/18031 0.5401 

Circle Perm. 5 4771/ 6491 0.5401 

Table 3.5. 1st Harmonic difference and Correction Factor table for each 
membrane condition type.  
 

The first harmonic f1 is the value we are comparing our stiffness-

based natural frequency against to see if we are over or underestimating 

our theoretical stiffness. As the natural harmonic takes the square root of 

stiffness, we need to square our eigenfrequency difference in order to have 

the correct change in stiffness. Furthermore, as stiffness is a denominator 

value in our c constant for the general equation of our electrostatic model, 

we will need to take the inverse of (f1/fs)2 to find the correct coefficient to 

apply to our constant. It is also relevant to note that our stiffness corrections 

correspond to the over and underestimation of voltage of the square and 

circular membranes respectively with our theoretical square stiffness 

receiving a reduction and the circular theoretical stiffness increasing. As 
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well, it is interesting to note that the circular membranes received the same 

correction factor despite permutation choice while the square correction 

factors are more varied, which more aligns to the respective variability of the 

curves in the original comparisons. We noticed an immediate effect when 

the correction factors were applied to our analytical model.  

 

 

 

 

 

 

 

 
Figure 3.7.a. Square Permutation 1 with Correction Factor: 1.2944 
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Figure 3.7.b. Square Permutation 2 with Correction Factor: 1.2944 
 

 
Figure 3.7.c. Square Permutation 3 with Correction Factor: 1.2944 
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Figure 3.7.d. Square Permutation 4 with Correction Factor: 1.7258 

 
Figure 3.7.e. Square Permutation 5 with Correction Factor: 1.0355 
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Figure 3.8.a. Circle Permutation 1 with Correction Factor: 0.5401 

Figure 3.8.b. Circle Permutation 2 with Correction Factor: 0.5401 
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Figure 3.8.c. Circle Permutation 3 with Correction Factor: 0.5401 
 

 
Figure 3.8.d. Circle Permutation 3 with Correction Factor: 0.5401 
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Figure 3.8.e. Circle Permutation 5 with Correction Factor: 0.5401 
 
 

With the addition of the correction factors, we can observe that within 

the low deflection domain, there is a closer correspondence between our 

analytical and Comsol results in all permutations of our models. We can 

look at the voltage difference between our analytical model and the Comsol 

pull-in voltage and see how the discrepancy between the two is altered with 

the addition of the correction factor. In this comparison we are assuming 

that the ideal difference should be 0 and that the closer the magnitude of the 

difference is to 0 the better. 
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Model Type  
and 

Permutation 

Absolute Voltage 
Difference 
(Original) 

Absolute Voltage 
Difference 
(Correction 

Factor) 

Voltage 
Change 

Square Perm. 1 0.0888 V  1.1388 V +1.05 

Square Perm. 2   1.0637 V 1.2863 V +0.2226 

Square Perm. 3 4.8405 V 0.9155 V -3.925 

Square Perm. 4 9.8853 V 0.3853 V -9.5 

Square Perm. 5 0.2203 V 0.3953 V +0.175 

Circle Perm. 1 3.1830 V 0.7580 V -2.425 

Circle Perm. 2 5.6470 V 0.1720 V -5.475 

Circle Perm. 3 5.9904 V 3.1096 V -2.8808 

Circle Perm. 4 7.0725 V 2.6525 V -4.42 

Circle Perm. 5 3.1723 V 0.3277 V -2.8446 

Table 3.6. Table comparing the pull-in voltage of the Comsol model to the 
final voltage of the analytical model. Permutations where improvement was 
seen are highlighted with green text while, areas we saw a greater 
magnitude of difference in voltage are highlighted in red text.  
 

Overall, we saw a general improvement in the discrepancy between 

the analytical and Comsol models and a marginal increase in voltage  

difference in areas that had low discrepancy prior to the addition of a 

correction factor. We saw a large improvement in the square membrane in 

permutations with high theoretical stiffness such as permutations 3 and 4. 

Furthermore, we saw improvement across the board for the circular 

membranes. While these results are promising, it is important to note that 

the eigenfrequency-based correction factor is not a catch all solution in 
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explaining the discrepancies between our models. In fact, we can notice in 

Circular Permutations 3 and 4 there may be an overcorrection in stiffness 

with the analytical over predicting voltage in comparison to the Comsol 

results, even though our pull-in voltages have become closer together. The 

main takeaway from the correction factor is that it is a technique we can 

consider especially as we investigate comparisons with fabricated devices. 

As we look into fabricated devices to further validate our models, 

there are certain limitations and considerations that need to be 

acknowledged when looking at our physical dataset. First, is the limited 

sample size we currently have available to compare with. As the modeling 

process began development early on into the initial development of the 

fabricated device itself, there is a limited amount of available functioning 

devices due to the short timeframe. Secondly, is the method in which we 

determined and recorded the pull-in voltage for our devices. Last, is the 

consideration of the parylene layer thickness in the gap, where we must 

include the thickness of both the parylene C layer coating of our bottom 

electrode and the parylene C layer under the top electrode in our overall 

gap distance. Our prior models only really accounted for the initial air gap as 

our gold and parylene C domains are treated as a composite domain within 

our Comsol model. As such, it does not take into account the additional 

distance between our gold electrode to the ground electrode due to the 

bottom layer of parylene C in the composite top membrane. Furthermore, 

the ground electrode coating of parylene C was not included in the original 
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Comsol modeling as it did not structurally impact the model and in effect 

only serves to add further displacement between our electrodes. Both of 

these considerations are relatively easy to account for as we can simply 

increase our air gap in our Comsol models to take in the additional gap 

distance. We can then obtain an overall gap as can be seen in Figure 3.9. 

The main concern with this approach is the potential discrepancy of when 

the membrane contacts, however, given that we are both mainly interested 

in pull-in voltage and also have an air gap where at pull-in there is still a 

significant distance before the membranes should contact each other. 

 

 
Figure 3.9. Overall gap range. Top electrode is a composite of gold and 
equal layers parylene C.  Bottom electrode is ground coated in parylene C. 
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 To measure the pull-in voltage for our fabricated devices we applied 

a low voltage to the electrode (typically at 10 V) and steadily increased in 

voltage (1 V at a time) until we noticed a distinctive interference pattern 

appear on the bottom of the membrane. This pattern can be highlighted in 

Figure 3.10.a and Figure 3.10.b. where iridescent rings form in the bottom 

electrode of the device. 

 

 
Figure 3.10.a. A fabricated membrane with etched release holes, a low 
initial voltage is applied to the membrane. The membranes were video 
recorded through a microscope using a phone camera and frames from the 
footage were used to capture images. 
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Figure 3.10.b. Iridescent rings begin to form once a high enough 
voltage/deflection occurs for the top membrane.  

 

For our fabricated devices, small patterns of etch holes were made in 

the top membrane in order to help release the device from the bottom 

substrate during the fabrication process and promote under-etching. While 

adding an etched pattern to the membrane would reasonably lead to the 

conclusion that there would be an alteration to the deflection curves due to 

the change in structure, we instead expect minimal variation from an 

unetched plate of the same dimensions and composition. This is because it 

has been found for MEMS structures that due to fringing field effects at the 

etch hole edges, it results in electrostatic-force behavior nearly identical to 

the unetched structure [22]. As such we would expect little variation due to 
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the etch holes from our current model, something we will later further 

validate by adding the etch holes in our Comsol models and comparing the 

results.  

Pull-in voltage was recorded at the voltage at where iridescent rings 

would form within the membrane structure. It has been reported that the 

formation of interference rings would occur for parylene C microvalves when 

the parylene layers were in close proximity [23]. As such, we assume that 

the formation of iridescent rings in our structure allude to the close proximity 

of our parylene C coating to the bottom parylene C layer of our top 

membrane, indicating that sufficient deflection has occurred to reach or 

exceed the pull-in voltage. Given the current inability to quantitatively 

measure deflection in real time, there is a high likelihood that relying on ring 

formation to determine the moment for plate pull-in will result in an 

overestimation. This is something we need to keep into mind as we 

compare our recorded results to our models. We had three device 

permutations to test and record, each with the same sidelength dimensions 

but varying parylene thicknesses. The variation in parylene thickness in turn 

also results in a variation in gap distance as the gap overall is the sum of 

the bottom coating (1 µm ) and air gap (6 µm ) which are constant, as well 

as,  half of the top membrane’s parylene C thickness (2.5 - 3 µm ) due its 

parylene-gold-parylene sandwich composition. For each permutation, the 

pull-in voltage was averaged across each recorded sample set. 
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Fabricated Devices Values 

L TAU TPC Gap Sample # Mean VPull-

in 

1300 µm  0.3 µm  5 µm  9.5 µm  12 51.91 V 

1300 µm  0.3 µm  5.5 µm  9.75 µm  13 68 V 

1300 µm  0.3 µm  6 µm  10 µm  12 88.75 V 

Table 3.7. Sidelength (L) and gold thickness (TAU) remained consistent 
across all three fabricated device types. Parylene C thickness (TPC) and 
subsequently gap distance varied. The sample number refers to the amount 
of membranes that were applied voltage and recorded. 
 

For each permutation, we ran our analytical model both with and 

without the applied correction factor, as well as the corresponding Comsol 

model for each as can be observed in Figures 3.11.a, b, and c.  

 

 
Figure 3.11.a. Fabricated Device Comparison Permutation 1 
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Figure 3.11.b. Fabricated Device Comparison Permutation 2 

 
Figure 3.11.c. Fabricated Device Comparison Permutation 3 
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When comparing our analytical and Comsol models to our recorded 

pull-in voltages from our fabricated devices, we noticed that there was a 

consistent pattern where our models would underestimate the voltage 

compared to our device observations.  

 

Pull-in Voltage Comparisons 

Permutation Analytical 
Pull-in 

Voltage 

Analytical 
Pull-in 

Voltage 
(Correction 

Factor) 

Comsol 
Pull-in 

Voltage 

Mean 
Observed 
Voltage 

1 48.3 V  39.325 V  40.5331 V  51.91 V 

2 56.55 V 46.1 V 50.6291 V 68 V 

3 65.5 V 53.54 V 53.567 V 88.75 V 

Table 3.8. applying the correction factor to our analytical model appears to 
reduce the voltage discrepancy between our analytical model and Comsol 
results in all three permutations. Major discrepancy is still noted between 
our models and the recorded values. 
 

While we have stated prior that our recorded voltages are likely to be 

overestimations due to the methodology of determining pull-in voltage, we 

cannot just assume that this is the only cause for discrepancy. Another 

factor we need to take into account is the precision of our device 

dimensions. Both membrane thickness and sidelength are impactful 

variables to the deflection curves, yet they are vastly different in terms of 

sensitivity to variation due to the differing in length scale between the two 

parameters. For example, a change by 1 µm to the sidelength of the 

membrane would be unlikely to affect the deflection curve of the membrane, 
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but as we saw, a change of 1 µm to the thickness of the parylene C layers 

can greatly impact the pull-in voltage of the membrane. Although the 

production process and recipes have remained consistent for our device 

permutations, the fabrication protocol is still relatively new and hasn’t had 

the opportunity to validate itself at the moment. This means that there is an 

uncertainty that the thickness we chose for our design is the same thickness 

that is actually found in our fabricated devices, which can throw off our 

expectations for results. Furthermore, the air gap is another parameter that 

isn’t fully verified for our devices. We designed our device with a gap of 6-7 

µm, however, given our observations, the gap distance is most likely larger. 

This is relevant as the greater the gap distance, the more voltage is required 

to reach pull-in and if our air gap is greater than the 6 µm that the device 

was designed for then we should see higher pull-in voltages for our devices 

than anticipated. To remedy this issue, we are planning to utilize either laser 

optical coherence tomography (OCT) or an atomic force microscope (AFM) 

to characterize our membrane substrate. With confirmation of our 

production results, we can both adjust our model and our recipe to better 

match. Furthermore, using these characterization devices, we can confirm 

the deflection of our membrane at our supposed pull-in values to see if the 

membrane truly is at one-third the initial gap distance. Another potential 

factor to take into account is the material properties of our model. In 

Comsol, we defined our top membrane domains using user-defined material 

with properties based on the volume fractions of the gold and Parylene C 
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domains. The material properties we set for the composite domain may not 

fully capture the structural properties of the composite membrane. We aim 

to account for this by running stiffness tests on our fabricated devices to 

confirm the material properties.  

As we mentioned previously, one of our main goals with this project 

is to act as a design tool for device development and one of the key features 

of reaching this goal is the ability to apply mask designs to our models. This 

is a feature that sets the numerical modeling apart from the analytical 

modeling as we can import our CAD mask designs. We could most likely 

account for this in the analytical model by developing a correction factor to 

account for the etched membrane designs, but this would be highly 

inefficient in the long run as a new derivation would be needed for each 

design.  

The first mask designed we validated is the small hole etched pattern 

on our tested fabricated devices. For our initial validation of the Comsol 

models under electrostatic load, we utilized the unpatterned geometry as it 

was found in the literature that the small etch holes of the fabricated devices 

we tested should have a near identical deflection curve as an unetched 

geometry. We decided that this design pattern would be best to validate as 

it is a simple pattern to incorporate into our current models, the symmetric 

pattern means there is no issue in using a quarter model. Furthermore, we 

know what our expected results should look like for the model as we have 

the unetched model results. 
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Figure 3.12. Comsol model with etched pattern design, the etched portions 
of the membrane are defined as air. 
 

When looking at comparing the results of our unetched and etched 

Comsol models, an important consideration is the position of the etch 

portions of our membrane. For our etch pattern, one of the patterned holes 

is located on the center of the membrane, the area where the highest 

amount of deflection occurs. We should therefore expect that the deflection 

calculated to be slightly lower than our previous Comsol results as instead 

of measuring deflection at the exact center of the membrane, the deflection 

is instead measured at the perimeter of the center hole of our pattern. This 

can be observed in Figures 3.13.a, 3.13.b, and 3.13.c where we can 

observe a pull-in voltage decrease of 2-3 V for each patterned model. These 

results fall in line with our expectations as we see that both the deflection 

curves are nearly identical and that there are slight decreases in voltage for 

the patterned models.  
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Figure 3.13.a. Pattern Comparison Permutation 1 
 

 
Figure 3.13.b. Pattern Comparison Permutation 2 
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Figure 3.13.c. Pattern Comparison Permutation 3 
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4. Conclusions and Future Considerations 

 

In conclusion, we can highlight several successes, in addition to, a 

couple of shortcomings with the current version of the computational model. 

We were able to validate completely for the uniform loads with the analytical 

Equations 2 and 3, showing that we were successful in capturing the 

mechanical/structural behavior of the micromembrane. For the electrostatic 

load validation, we observed a noticeable discrepancy between our 

analytical model and our Comsol model. We suspected that it was caused 

due to the stiffness approximation we made in our analytical model and our 

suspicions were reaffirmed through the use of our eigenfrequency based 

stiffness correction factor. We saw that results between our analytical model 

and Comsol model came into closer congruence when the correction factor 

was applied. Giving us both further confidence and a fix in regards model 

discrepancy. Our shortcomings came in the form of the discrepancy 

between our experimental data results and our Comsol calculations. We 

saw a notice underestimation of the pull-in voltage for all cases of our 

Comsol model in comparison to the experimental results. Due to the low 

sample size of the experimental data and the limited ability to confirm the 

deflection of the fabricated membranes, it is difficult to ascertain whether 

this discrepancy is due to an issue with the model or an issue with the 

measurement recording, or even a combination of multiple factors. We have 

reason to believe that our current method of recording to pull-in voltage is 
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an overestimate, as the iridescent ring formation we note to show we have 

reached pull-in occurs when the parylene C membranes are close in 

proximity. It is not unreasonable that the proximity of the plates would be 

past pull-in voltage, and this is an issue we need to account for in the future. 

This would require the use of either laser optical coherence tomography 

(OCT) or an atomic force microscope (AFM) to characterize the surface and 

quantify the deflection as voltage is applied. We may also need to perform a 

stiffness test and see if we can match experimental stiffness results to our 

Comsol models.  

Parametrically testing our model geometry proved to be a time 

efficient means of testing multiple parameters and allowed us to see the 

trends in deflection as one parameter is altered. We were also successful in 

importing a mask pattern onto our geometric model and we observed that 

deflection for the pattern we choose wasn’t significantly altered which 

matches our expectations from the literature. Overall, the current Comsol 

model shows a promising capability to simulate our device designs, which 

can be further improved through refinement of our experimental analysis. 
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5. Appendix 

5.1. Analytical Model for Both Rectangular and Circular Membranes 
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