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ABSTRACT OF THE THESIS 

An ideal compensator model of speech perception 

By STEN KRISTIAN KNUTSEN 

Thesis Director: 

Dave Kleinschmidt 

 One of the key issues in speech perception is how listeners are able to accurately 

categorize linguistic units (e.g., phonemes) from acoustic cues that contain variation due 

to multiple overlapping layers of information (Liberman et al., 1967). Over the years, 

researchers have developed various compensation procedures (e.g., vowel formant 

normalization) that strive to overcome this variation and increase classification accuracy. 

Although computationally efficient and widely used, these compensation procedures fall 

short conceptually as i) they are not necessarily computational models of compensation/

perception/cognition and ii) they do not allow inferences regarding classification to 

interact dynamically with inferences regarding compensation.  In this work we outline a 

bayesian computational framework for speech perception and compensation, the ideal 

compensator. Because our listener model infers how to compensate based on a speaker’s 

generative model while also simultaneously inferring linguistic category, we believe our 

approach is novel as it both increases classification accuracy and addresses the 

conceptual issues ignored by previous compensation models and procedures.
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Introduction	
One of the key issues in speech perception is how listeners are able to accurately infer or 

categorize discrete linguistic units (e.g. phonemes, syllables, words) from an acoustic 

signal. Categorization of linguistic units is computationally challenging because 

individual acoustic cues (e.g. voice onset time, segmental duration) are the product of 

multiple causes, both linguistic (e.g. which phoneme is intended by the talker) and non-

linguistic (e.g., who is doing the speaking). As such, each cue contains multiple 

overlapping layers of information that have been distributed across the utterance by the 

talker (Liberman et al., 1967). 

 From a listener’s perspective, much of the information encoded in a cue may be 

relevant to the perceptual task at hand. For instance, English vowel segment duration 

provides information about a vowel’s tenseness or laxness and thus information useful in 

the task of determining vowel identity (Hillenbrand et al., 1995). However, acoustic cues 

are also jam-packed with information that could be useful in other perceptual tasks. For 

example, besides providing information about tenseness/laxness, vowel segment duration 

also provides information about: the number of syllables in the word that contains the 

vowel (Lehiste, 1972); how many times a word has been mentioned in discourse 

(e.g. second mention reduction; Fowler & Housum, 1987); type of speech the talker was 

using (e.g. plain speech or listener-directed speech; Picheny, Durlach, & Braida, 1986); 

the sex and regional origin of the talker (Hillenbrand et al., 1995; Jacewicz, Fox, & 

Salmons, 2007); talker ethnicity (Holt, Jacewicz, & Fox, 2015); the age of the talker (e.g., 

adult or child speech; Kim & Stoel-Gammon, 2010); whether the segment is from a 
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function (grammatical) word (Umeda, 1975); word frequency (Wright, 1979); the 

contextual predictability of the word (Bell et al., 2002); speaking rate (Kessinger & 

Blumstein, 1998) which varies considerably across talkers (Tsao & Weismer, 1997) and 

within talkers’ utterances (Crystal & House, 1990); whether the word is a noun or verb 

(Sorensen, Cooper, & Paccia, 1978); distal prosody and lexical competition (Brown et al., 

2011); whether a segment lies near a phrase boundary (Turk & Shattuck-Hufnagel, 2007); 

prosodic prominence (Aylett & Turk 2004; Turk, 2010); the syntactic structure of a 

sentence (Beach, 1991; Stromswold et al., 2002). 

 Unfortunately, the fact that acoustic speech cues are saturated with all sorts of 

information about all sorts of causes means that a considerable amount of variability is 

introduced into the acoustic signal. Because of this variability, information relevant to the 

current task is obscured or becomes “smudged” by information relevant to other tasks 

and contexts, making accurate speech perception difficult. The goal of this work is to 

describe a computational model of how a listener’s speech perception system might 

compensate  for the variability inherent to information-rich cues while simultaneously 1

inferring linguistic categories as intended by the talker. 

Of	cues	and	compensation	

Since we are trying to describe a computational model of speech perception, it is natural 

to approach the problem from the standpoint of a listener attempting some perceptual 

 Throughout this paper we will use the terms compensate and compensation to broadly 1

describe any process, procedure or framework used to overcome the lack of invariance 
inherent to the acoustic speech signal (cf. McMurray & Jongman, 2011)
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task. From this listener perspective, a cue is any observed variable that might contain 

information relevant to the linguistic task at hand. For instance, if the linguistic task at 

hand is determining what vowel is being produced by a talker at this very moment, cues 

to the vowel’s identity might include segmental duration and f1/f2 formant frequencies 

(Hillenbrand, Clark, & Houde, 2000; Delattre et al.,1952). However, which cues are used 

and how they are used by listeners depends entirely on the linguistic task at hand. A cue 

to some linguistic category in one task might also be a cue to a completely different 

linguistic category in another task. 

 For example, in the context of determining what vowel is being said by a talker, 

segmental duration is a cue to vowel tenseness or laxness in English: shorter durations 

correlate with lax vowels like /ɪ/ in bit, and longer durations with tense vowels like /i/ in 

beat (Hillenbrand et al., 1995). However, in the context of determining which word-final 

stop consonant is being said, segmental duration of the preceding vowel is a cue to 

whether that consonant is voiced or voiceless (Raphael, 1972; Hogan & Rozsypal,1980). 

On average, vowels preceding voiced stop consonants (e.g., the alveolar stop /d/ in bid) 

tend to be longer than vowels preceding voiceless ones (e.g., the alveolar stop /t/ in bit). 

In sum, given the task of inferring what vowel is being said, vowel duration is a cue to 

vowel tenseness/laxness, and in the context of determining the word-final stop, vowel 

duration is a cue to voicedness. 

 From a listener’s perspective, this task or context-dependent nature of cues gives 

rise to a perceptual puzzle. For instance, suppose the listener’s task at hand is to 
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determine whether they are hearing the English word beat or bid based on vowel segment 

duration alone.  On the one hand, the word beat has a tense vowel (/i/) that correlates 2

with longer-than-average duration followed by a voiceless stop consonant (/t/) that 

correlates with shorter-than-average vowel duration. On the other hand, the word bid has 

a lax vowel (/ɪ/) that correlates with shorter-than-average duration, followed by a voiced 

stop (/d/) that correlates with longer-than-average vowel segment duration (cf. 

Mermelstein, 1978). As such, it’s possible that these opposing influences on duration 

could cancel each other out, resulting in similar vowel segment durations for beat and bid 

(see illustration Figure 1). From a listener’s perspective the key question is: Is the 

duration of this vowel segment the result of a tense vowel and voiceless consonant, or a 

lax vowel and voiced consonant? 

 To answer this question, the listener needs to somehow estimate what part of the 

vowel’s duration provides information regarding the lax/tenseness of the vowel and what 

part provides information regarding the voicedness of the following word-final stop 

consonant. Moreover, the listener must be able to do this both in the context of 

identifying the vowel and in the context of determining the voicedness of the final stop. 

At a computational level, a listener must be able to somehow classify linguistic category 

(or, more broadly, make inferences relevant to the task at hand) while also compensating 

for the influence of hidden variables that are not relevant to the perceptual task at hand. 

 This and the following examples are greatly simplified for clarity. For English listeners, 2

F1/F2 formant frequencies are the primary cue to vowel identity in English words, while 
duration plays a secondary role (Ainsworth, 1972; Delattre et al., 1952; Hillenbrand, 
Clark, & Houde, 2000). However, non-English speakers may rely entirely on duration as 
a cue to vowel identity when listening to English words (Kondaurova & Francis, 2008)
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However, the answer of how listeners accomplish this remains an open question. In this 

work we will describe a fully bayesian computational framework for listener 

compensation and classification - the ideal compensator - that will hopefully shed some 

light on this question. 

 Before we flesh out the details of this model framework, though, let’s first briefly 

consider a common yet coarse-grained perspective on acoustic cues, how this perspective 

has given credence to a certain “style” of compensation model, and some of the 

conceptual drawbacks inherent to such models. 

 

Figure 1. Illustration of vowel segment duration. Is the duration of this vowel segment the 
result of a tense vowel and voiceless consonant, or a lax vowel and voiced consonant? 

Breadcrumbs,	red	herrings	and	pipelines	-	oh	my!	

 Many different approaches to compensation have been advanced in the speech 

perception literature. Much of the work focuses on vowel normalization (e.g., Lobanov, 

1971; Syrdal & Gopal, 1986; Miller, 1989) though there has also been research on 

normalization of consonants such as fricatives (Strand & Johnson, 1996; Toda, 2007). 
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The procedures outlined in these studies have themselves been the focus of study over the 

past several decades (Disner, 1980; Adank, Smits, & Hout, 2004; Clopper, 2009; 

Fabricius, Watt, & Johnson, 2009; Flynn & Foulkes, 2011). As effective as these 

compensation procedures are, they are all implicitly predicated on an approach to 

acoustic cues that, in an era of bayesian cognitive modeling, seems to be underspecified. 

We have dubbed this approach the breadcrumb and red herring approach to cues. 

 In short, this perspective regards cues as containing a mixture of breadcrumbs and 

red herrings: information relevant to the perceptual task at hand is like a trail of 

informative breadcrumbs, while all irrelevant information is like a confusing jumble of 

red herrings that have been scattered about. 

 We can illustrate this breadcrumb/red herring approach further using the above 

bit/bid/beat/bead example. In the context of a listener trying to figure out which vowel is 

being said, vowel duration is like a breadcrumb in that it is part of a probabilistic trail of 

evidence left by the talker that contains information about the identity of the vowel itself 

(e.g., tense vowels like /i/ tend to have longer durations, on average). However, in this 

same context (which vowel is being spoken at present), vowel duration also behaves like 

a jumble of red herrings strewn across our path in that it contains information irrelevant 

to the task at hand. In this case, it contains information about the upcoming stop 

consonant’s voicedness (e.g., voiceless consonants tend to be preceded by vowels with 

shorter durations, on average). This information, while vital in determining stop 

consonant voicedness, introduces variation to the tense/lax category distributions encoded 
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in the cue. This additional variation makes accurately inferring the correct linguistic 

category of the vowel more difficult, and can possibly lead the listener astray as they 

attempt to track the talker’s linguistic intent. Thus, before a listener can infer the 

linguistic intent of the talker, they must “sweep away” or remove all red herrings from 

the path, leaving only the relevant breadcrumb trail to successful speech perception. This 

breadcrumb/red herring approach to cues has logically given rise to compensation 

procedures such as the ones mentioned above, which we will call information pipeline 

approaches to compensation. 

 Broadly speaking, pipeline approaches to compensation begin with raw cue 

values provided by the talker. Since these values contain unwanted variation due to 

causes that are irrelevant to the given perceptual task (red herrings), they are advanced 

down the pipeline to a preprocessing or compensation stage. In this compensation stage 

of the pipeline, the raw cue values are mathematically transformed by some 

compensation procedure, reducing variance due to irrelevant causes in the target cue 

category distributions. These compensated cue values then flow further down the 

information pipeline to a classifier where the linguistic intent of the speaker is finally 

inferred via an informative trail of “pure” breadcrumbs. 

 As straightforward and effective as pipeline approaches to compensation have 

proven themselves, there are several conceptual sticking points to pipeline procedures 

that bear our consideration. 
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 The first aspect in which pipeline approaches to compensation fall short 

conceptually is in that they are not necessarily computational models of compensation/

perception. Regarding vowel normalization procedures, Adank, Smits, & Hout (2004) 

observed that although vowel-intrinsic procedures did strive to model human vowel 

perception, vowel-extrinsic procedures focused mostly on increasing classifier accuracy 

for automated speech recognition. Even when procedures do attempt to model human 

cognitive processes, the scope of such models is often limited to low-level, peripheral 

auditory systems which assume an ‘intermediate’ or pre-processing stage before category 

inferences are made (e.g, Syrdal & Gopal, 1986). 

 From the perspective of a researcher interested in cognitive models of 

compensation, pipeline models may very well describe compensation in terms of what we 

would expect to see in a compensated or normalized data set (if indeed human listeners 

do use compensation in speech perception). However, pipeline models do not at all 

address the probabilistic processes that generated speaker data in the first place. This 

means the question of why compensated data should look one way or another remains 

unanswered. 

 Another reason to have conceptual reservations about pipeline approaches is that 

by their staged nature they prohibit inferences regarding classification to interact 

dynamically with inferences regarding compensation. This means the listener is not 

allowed to sustain any uncertainty as to what portion of the cue constitutes “signal” and 

what portion constitutes “noise.” However, as was illustrated by the bit/bid/beat/bead 
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example, phonemes that surround a target phoneme influence perceptual cues in such a 

way that inferences regarding the category of the target phoneme may be affected by 

inferences regarding the category of the adjacent phonemes (Sawusch & Pisoni 1974; 

Whalen, 1989). Such bidirectional, phonemic influences hint at a dynamic and 

probabilistic relationship between compensation and classification, something that has 

been little explored in compensation literature (cf. McMurray & Jongman, 2011). 

 Having now briefly considered the breadcrumb/red herring perspective on cues, 

existing pipeline-style compensation procedures, and the conceptual pitfalls inherited 

from both of these, let’s now turn our attention to our proposed ideal compensator model 

framework. This framework is founded on principles established by ideal listener models 

of speech perception (Clayards et al., 2008). In short, such models seek to optimally infer 

linguistic categories given an acoustic cue. The following section introduces the ideal 

listener model and a perspective on acoustic cues that stands distinctly apart from the 

breadcrumb/red herring approach. 

Our	base:	the	ideal	listener	

In contrast to pipeline-style compensation procedures, ideal listener models start with the 

assumption that the acoustic cues we use to interpret speech are inherently ambiguous 

and thus only partially informative. Since we are provided with only imperfect, 

probabilistic information regarding the linguistic categories encoded by an acoustic cue, 

it is important to first acknowledge that speech perception is a problem of statistically 

optimal inference under uncertainty. We can formalize this sort of inference in a bayesian 
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computational framework that integrates over all information available to a listener in a 

statistically optimal way. 

 The goal of the ideal listener model is to optimally infer the linguistic intent of the 

speaker or choose the message most likely intended by the speaker. This requires 

comparing multiple hypotheses about the speaker’s intent and deciding which is most 

probable. Fortunately, Bayes rule provides us with means of deciding which hypothesis is 

most probable in a manner that is both precise and penetrable. We will now illustrate this 

with a highly simplified and idealized example. 

 Assume that our listener is using vowel duration as the sole cue to whether a 

word-final, English alveolar stop is either voiced (/d/) or voiceless (/t/) as in bid or bit. 

Given an observed vowel segment duration, the listener’s goal is to determine how likely 

it is that the word-final alveolar stop is voiceless, or the probability that  (where 

 is the consonant voicedness category variable). In terms of bayesian statistics, this 

means the listener needs to find the posterior probability . This 

can be found using Bayes rule: 

(1) 

 

Applying Bayes rule reveals several other crucial pieces of statistical information needed 

to calculate the posterior. First, the listener model must know the likelihood function, i.e., 

, or the probability of a durational token given that it was the 

C = /t /

C

p(C = /t / ∣ durat ion)

p(C = /t / ∣ durat ion) = p(durat ion ∣ C = /t / )p(C = /t / )
p(durat ion ∣ C = /d / )p(C = /d / ) + p(durat ion ∣ C = /t / )p(C = /t / )

p(durat ion ∣ C = /t / )
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talker’s intent to produce a /t/. Likelihood functions for both /d/ and /t/ categories are 

represented by the illustrated probability density functions in Figure 2, Model A, top. 

Second, the listener model must know the prior probability of the hypothesis that the 

category of the consonant is voiced, i.e., . By multiplying the prior by 

likelihood in the numerator in (1), we update the listener’s prior beliefs regarding 

consonant voicedness. Lastly, the posterior probability that the talker is saying /t/ is 

captured by dividing the combined posterior and likelihood for /t/ by the sum of all of the 

possible hypotheses (the denominator in (1)). This effectively normalizes our updated 

prior by the marginal likelihood, ensuring that all possible posterior probabilities, i.e., 

 and , add up to one. These normalized 

posterior values are reflected in the classification function for the /t/-/d/ voicing 

distinction (Figure 2, Model A, bottom). 

p(C = /t / )

p(C = /d / ∣ durat ion) p(C = /t / ∣ durat ion)
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Figure 2: Illustrations of idealized /t/-/d/ category distributions for vowel segment 
durations. Model A top illustrates listener likelihood distributions for /t/-/d/ categories; 
bottom shows the listener’s posterior classification function for Model A. Model B top 
shows “real-world” likelihood distributions in order to illustrate the “mismatch” between 
listener assumptions about likelihood functions and the “actual” functions in the real 
world; bottom shows classification function for Model B (solid line) in comparison to 
Model A (dashed line). Durational units are for illustrative purposes only. 

 As discussed above, the likelihood function is critical to obtaining optimal 

classification of linguistic categories. From a listener’s perspective, the likelihood 

function makes predictions about what cue values (in this case, vowel segment duration) 

are likely to occur given the linguistic category intended by the talker (in this case, stop 

consonant voicing). However, these likelihood functions are subjective and may not 

perfectly represent the actual cue distributions in the real world. For example, a listener 



13

may assume the likelihood distribution for /t/ (Figure 2, Model A) is the ideal likelihood 

function for that category. But suppose the actual likelihood distribution for /t/ in the 

“real world” is shifted to the right (see Figure 2, Model B, top). The mismatched 

likelihood distribution subsequently shifts the final classification function to the right, 

shifting the /t/-/d/ category boundary. The effect of this shift is that cue values that were 

previously ambiguous are now more a bit more likely to predict /t/ as the category. 

Conversely, if our listener selects the likelihood distributions in Model B in a situation 

where the actual likelihood distributions are those in Model A, cue values that often 

predicted the /t/ category would predict voicedness at chance levels (an ambiguous 

alveolar stop). Such mismatches in likelihood distributions lead to less accurate 

classification and poor overall comprehension. 

 Mismatches can also occur when sources of information or causal variables are 

not included in the listener model. For instance, perhaps the “shifted” /t/ distribution in 

the “real world” Model B (illustrated in Figure 2) is due to some other cause (linguistic or 

not) that has simply not been factored into the listener model. How might a listener model 

incorporate other talker and linguistic information in such a way that classification 

mismatches are less likely to occur? 

Compensation	as	model	selection	based	on	“<ixed”	context	

In the above ideal listener example, we demonstrated how an ideal listener model can 

interpret acoustic cues despite the fact that these cues are inherently ambiguous and only 

partially informative. We also demonstrated that despite being charged with the 
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simplified task of determining the voicedness of a single, word-final consonant from 

vowel duration, mismatches between a listener’s likelihood function and the actual real-

world likelihood distributions can negatively impact perception. 

 In this next example, our listener’s goal is still to determine whether a talker 

intended on producing a voiced or voiceless alveolar stop (/d/ or /t/, respectively) based 

on vowel segment duration. However, following from the bit/beat/bid/bead example, we 

want to infer the final stop’s voicedness conditioned on context, i.e., whether the 

preceding vowel is tense (/i/) or lax (/ɪ/). 

 In terms of bayesian statistics, the listener needs to find the posterior probability 

of the target consonant’s voicedness, not only conditioned on the observed duration, but 

also on , or the vowel tenseness category variable. We can spell this out formally as 

. Applying Bayes rule we arrive at: 

(2) 

 

where  is the likelihood. Since our likelihood is now conditioned on 

two categorical variables having two levels each, there are now a total of four possible 

hypotheses: 

(3) 

 as in bit 

 as in bid 

 as in beat 

V

p(C ∣ durat ion , V )

p(C ∣ durat ion , V ) ∝ p(durat ion ∣ C, V )p(C )

p(durat ion ∣ C, V )

i )  p(durat ion ∣ C = /t /, V = /I / )

ii )  p(durat ion ∣ C = /d /, V = /I / )

iii )  p(durat ion ∣ C = /t /, V = /i / )
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 as in bead 

The key question we now want to ask is: How might the listener model use contextual 

knowledge (about vowel tenseness/laxness) in determining the voicedness of the 

consonant? 

 For a moment, let’s assume that the vowel preceding the consonant is tense (i.e., 

). In this context, the model sheds all likelihoods where  leaving only 

 (Figure 3, top). This is reflected in the posterior 

 (Figure 3, bottom) where the optimal /t/-/d/ classification 

function falls to the right of the 50 unit durational midpoint. As such, the range of cue 

values that correlate with a high posterior probability of /t/ is larger than the range of cue 

values that correlate with a low posterior probability of /t/ (or a high probability of /d/). 

This means that when operating in a “fixed” /i/ context, the listener will more often favor 

a /t/ (voiceless) interpretation of the alveolar stop. 

iv)  p(durat ion ∣ C = /d /, V = /i / )

V = /i / V = /I /

p(durat ion ∣ C, V = /i / )

p(C ∣ durat ion , V = /i / )
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Figure 3: The top panel illustration shows likelihood functions for when . Shaded/
dashed lines show likelihood functions if . The bottom panel shows both the 
classification function when  and  (shaded/dashed line). 

V = /i /
V = /I /

V = /i / V = /I /
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Now let’s assume the listener knows , or that the vowel preceding the consonant 

is lax. In this context, all likelihood functions where  are dropped, leaving only 

. This is reflected in the posterior  

(Figure 4, bottom) where the optimal /t/-/d/ classification function falls to the left of the 

50 unit durational midpoint. As such, the range of cue values that correlate with a high 

posterior probability of /t/ is smaller than the range of cue values that correlate with a low 

posterior probability of /t/ (or a high probability of /d/). This means that when operating 

in a “fixed” /ɪ/ context, the listener will more often favor a /d/ (voiced) interpretation of 

the alveolar stop. 

V = /I /

V = /i /

p(durat ion ∣ C, V = /I / ) p(C ∣ durat ion , V = /I / )
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Figure 4: The top panel illustration shows likelihood functions for when . 
Shaded/dashed lines show likelihood functions if . The bottom panel shows both 
the classification function when  and  (shaded/dashed line). 

V = /I /
V = /i /

V = /I / V = /i /
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 Let’s now circle back to the question of how the listener model uses contextual 

knowledge in determining the voicedness of the consonant. We now see that in an /i/ 

context, the model selects only the hypotheses compatible with  (Figure 3, top) 

and in the /ɪ/ context, the model selects only the hypotheses compatible with  

(Figure 4, top). This carries through to the posterior classification function which is 

optimal given contextual information about  (Figures 3 and 4, bottom). Thus the model 

effectively compensates for the influence of  “for free” by selecting the optimal 

classification function for  given the context: in the /i/ context, the classification 

function compensates by favoring a /t/ interpretation of the word-final alveolar stop; and 

in the /ɪ/ context, the classification function compensates by favoring a /d/ interpretation 

of the word-final alveolar stop. As a result of compensation for vowel tenseness, we 

encounter fewer “mismatches” between model-estimated and real-world likelihood 

values, increasing the model’s classification accuracy. 

 The sort of compensation we have described thus far is analogous to the pipeline 

approaches to compensation discussed earlier. These approaches also assume listeners 

know the specific context – tense /i/ or lax /ɪ/ – in which the alveolar stop was produced. 

 In this example we used contextual knowledge to compensate for vowel 

tenseness/laxness while classifying consonant voicedness simply by handing the model 

the preceding context (whether  or ) and “selecting” the correct posterior 

function: 

i) If we know the vowel is /i/, then  

V = /i /

V = /I /

V

V

C

V = /i / V = /I /

p(C ∣ durat ion , V = /i / )
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ii) If we know the vowel is /I/, then  

 So in either case, when the true context is provided, the model necessarily selects 

the optimal likelihood functions for that context. From these likelihoods, the model 

derives the posterior classification function for the /t/-/d/ voicing distinction while 

compensating for vowel tenseness. 

 However, real-life listeners are never simply handed complete information about 

vowel tenseness. There is no speech perception oracle who taps the listener on the 

shoulder and whispers “the preceding vowel is tense” so that the listener discards all /t/-/

d/ likelihood functions where . Instead, listener inferences are likely to be based 

on partial, uncertain and incomplete beliefs about the talker’s message. So how might a 

listener compensate for the influence of  while classifying  when they are uncertain 

whether the vowel is tense or lax? 

Compensation and marginalization 

As in our fixed context model, our listener’s goal is still to determine whether a talker 

intended on producing a /t/ or /d/. This means the listener again needs to find the optimal 

posterior function for stop consonant voicedness given segmental duration. However, in 

order to incorporate uncertain information about the influence of vowel tenseness into the 

model, our inferential starting point must be  or the joint probability 

distribution over all variables. Applying Bayes rule we find the joint posterior over all 

model variables: 

p(C ∣ durat ion , V = /I / )

V = /I /

V C

p(C, V, durat ion)
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(4) 

 

 Furthermore, we model the listener’s uncertain beliefs about  via 

marginalization or summing over the possible values of  to determine the marginal 

contribution of . By calculating the marginal posterior – or summing over variables that 

are not the target of classification, in this case  – we are effectively averaging together 

the all model hypotheses, weighted by the listeners degree of belief regarding the true 

identity of . Mathematically, this can be expressed as: 

(5) 

 

Figure 5 illustrates how uncertain listener beliefs about  influence the marginal posterior 

and thus the posterior classification function for  for five different values of . 

The different values for  in Figure 5 correlate to the listener’s degree of belief 

regarding vowel tenseness. In this case, when  is high, the listener is more 

confident the vowel is tense and so leans toward an /i/ interpretation; when  is 

low, the listener is less certain the vowel is tense and so leans toward a lax /ɪ/ 

interpretation. 

 Now let’s consider the two extremes of listener belief regarding : when 

 and when . Note that when , the 

posterior function (Figure 5 bottom) is exactly the same as the posterior function in the 

fixed context model,  favoring a /d/ interpretation of the final 

p(C, V ∣ durat ion) ∝ p(durat ion ∣ C, V )p(C )p(V )

V

V

C

V

V

p(C ∣ durat ion) = p(C, V = /i / ∣ durat ion) + p(C, V = /I / ∣ durat ion)

V

C p(V = /i / )

p(V = /i / )

p(V = /i / )

p(V = /i / )

p(V = /i / )

p(V = /i / ) = 0 p(V = /i / ) = 1.0 p(V = /i / ) = 0

p(C ∣ durat ion , V = /I / )
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stop consonant (Figure 4, bottom). This is because the listener’s degree of belief 

regarding  is zero and thus the only interpretation of the vowel can be /ɪ/. In 

contrast, when , the posterior function is exactly the same as the 

posterior function in the fixed model  favoring a /t/ 

interpretation of the final stop consonant (Figure 3, bottom). This is because the listener’s 

degree of belief regarding  is  and thus the only interpretation of the vowel 

can be /i/. So setting  is equivalent to the fixed /ɪ/ context in the previous 

model and  is equivalent to the fixed /i/ context. 

 However, similarities between this “uncertain” model and the previous “fixed” 

model end when  lies between 0 and 1.0. Let’s first focus on when 

, comparing this to the posterior function for  (Figure 

5, bottom). 

 At first glance, the function for  is quite similar to 

 (Figure 5, bottom). However, when , we notice that 

the range of cue values that would indicate a prototypical /t/ interpretation in the 

 model (roughly between 25 and 50 durational units) now corresponds 

to posteriors that favor the /t/ interpretation less. In other words, what was once a region 

of cue values that would deliver a strong voiceless interpretation of the consonant is now 

a region of uncertainty where the listener now must “hedge their bets” regarding 

consonant voicedness. This is why when we visually follow the classification function for 

 from left to right, it seems to “droop” between the two model extremes 

p(V = /i / )

p(V = /i / ) = 1.0

p(C ∣ durat ion , V = /i / )

p(V = /i / ) 1.0

p(V = /i / ) = 0

p(V = /i / ) = 1.0

p(V = /i / )

p(V = /i / ) = 0.8 p(V = /i / ) = 1.0

p(V = /i / ) = 0.8

p(V = /i / ) = 1.0 p(V = /i / ) = 0.8

p(V = /i / ) = 1.0

p(V = /i / ) = 0.8
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of  and  – right where we would expect uncertainty 

regarding vowel tenseness to affect our consonant voicedness classification. 

 So when the model is just a bit less certain about the tenseness of the vowel – the 

 condition – the model is also slightly less confident in the 

voicelessness of the consonant. If we were to instead select a model where 

 when the true value is  our listener would be 

“overconfident” about the voicelessness of the alveolar stop. Yes, when 

, the model does still favor a /t/ interpretation of the consonant as does 

the model where , but to a degree commensurate with listener beliefs 

about the tenseness of the preceding vowel. 

 In sum, when we use marginalization to calculate the optimal posterior 

classification function for consonant voicedness given uncertain listener beliefs about 

vowel tenseness, it can be said that the listener model compensates for the influence of  

while simultaneously classifying the voicedness category . 

p(V = /i / ) = 0 p(V = /i / ) = 1.0

p(V = /i / ) = 0.8

p(V = /i / ) = 1.0 p(V = /i / ) = 0.8

p(V = /i / ) = 0.8

p(V = /i / ) = 1.0

V

C
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Figure 5: The top panel illustration shows likelihood functions for all combinations of 
consonant voicedness and vowel tenseness. The bottom panel illustrates posterior 
functions for multiple values of V (vowel tenseness). 
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Full	model	and	implementation	
Thus far, we have sketched the foundation of our ideal compensator model on the beat/

bit/bid/bead example introduced at the outset. However, the model we have outlined thus 

far will easily generalize to any speech perception task where multiple non-/linguistic 

causes negatively impact the classification/categorization of an observed variable. To 

fully flesh out and implement our ideal compensator model, we now turn to a different 

speech perception task that also benefits greatly from compensation. 

Background	

Previous research has shown that listeners are sensitive to subtle variations in segmental 

duration and that they adjust inferences regarding syntactic structure when duration is 

manipulated. In Beach (1991) listeners demonstrated the ability to use duration in an 

early part of a temporarily ambiguous sentence to predict upcoming sentence structure. 

The researchers constructed stimuli sentence pairs with identical beginnings that are 

resolved as either a direct object (DO) sentence or a sentence complement (SC) 

construction. For example, a stimuli sentence starting with David’s second wife claimed. . 

. could be resolved as the DO sentence . . .the entire family estate including the yacht or 

the SC construction . . . .[that] the entire family estate was rightfully hers. Knowing that 

matrix verb stems in SC constructions feature durations that are longer than verb stem 

durations in DO constructions, the researchers electronically manipulated verb duration 

in the sentence onset to have longer or shorter duration. The sentences were then 

truncated before the disambiguating direct object or sentence complement structures, and 

presented to participants. Listeners were able to use durational patterns to identify 
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upcoming syntactic structure even without complete sentence information, classifying 

sentences as a direct object constructions at above-chance levels. 

 Stromswold et al. (2002) also explored how listeners might infer the syntactic 

outcome of a temporarily ambiguous sentence before explicit morphosyntactic cues 

(e.g. verbal inflection) are provided. However, rather than using direct object and 

sentence complement sentence constructions for stimuli, the researchers constructed 

active and passive sentence pairs with identical sentence onsets. For example, a stimuli 

sentence starting with The girl was push. . .  could be resolved as the active sentence -ing 

the boy or the passive -ed by the boy. Using a 2AFC task in a visual world paradigm, 

listeners were asked to listen to the spoken stimuli sentence and identify which of two 

pictures on the screen best described the action being performed in the audio. An eye-

tracking device captured listener eye movements. Eye-tracking data revealed that adult 

listeners started to determine the syntactic voice of a sentence at or before the verb stem 

in active sentences. 

 In a follow-up gating study, spoken active/passive sentences similar to the 

example above were truncated before the disambiguating verbal inflection (e.g., The girl 

was push. . .). Listeners were able to identify the correct syntactic outcome of the 

truncated stimuli with 83% accuracy, and a post-hoc analysis of verb stem duration 

revealed that passive verb stems were significantly longer than active ones (Stromswold, 

Kharkwal, and Sorkin, under review). 
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 The data we used to evaluate our model were drawn from the set of spoken active/

passive sentences recorded for another follow-up study to Stromswold et al. (2002) (Lai, 

2015; see Appendix A for complete set of stimuli sentences used). Each of the eight, 

monolingual adult native American English speakers recorded for the study said 28 

active/passive sentence pairs. All sentences follow either the form “The NP1 was VERB 

STEM -ing the NP2” or “The NP1 was VERB STEM -ed by the NP2.” All sentence 

NPs are semantically reversible and appeared in both agent and patient positions in both 

active and passive syntactic forms. All sentences were initially segmented at the 

phonemic level using the Penn Phonetics Lab Forced Aligner (Yuan & Liberman, 2008). 

Boundaries for verb stem vowel segments were further adjusted by hand using Praat 

software (Boersma & Weenick, 2020) according the methods outlined in Francis, Ciocca 

and Yu (2003). Following segmentation, all 439 duration values were log transformed. 

 After segmenting the stimuli sentences, we focused on the verb stem vowel 

segment as it was the only segment to show a significant difference between active and 

passive distribution means. Visually inspecting the active/passive distributions for the 

verb stem vowel (see Figure 6) we see that despite finding a difference in means, there is 

a substantial amount of overlap in the active and passive distributions. 
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Figure 6: Active/passive distributions for verb stem vowel segment, all talkers and 
sentences. Note duration is in log scale. 

 The reason for this overlap is that active and passive categories are represented by 

distributions that contain variance due to multiple underlying causes. For our model 

implementation, we are focusing on just two such sources of variation: variation due to 

talker differences (talker) and category of the phoneme being uttered (phoneme). Thus, 

although means for passive/active distributions may be fixed, increasing variance in the 

distributions due to the influence of talker variation and phoneme category means an 

increase in overlap between distributions. In turn, such an overlap in distributions 

negatively impacts the accuracy with which verb stem vowel segment tokens are 

classified as active or passive. In fact, it seems unlikely that a listener would have much 
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success in trying to classify a sentence as active or passive using the distributions 

pictured in figure 2.  3

The ideal compensator 

Our ideal compensator framework is founded on the assumption that our listener 

possesses a generative model of the talker they are listening to. The term generative 

model refers to a listener’s knowledge of the processes with which a speaker generated 

the utterance heard. In this model implementation, we will be focusing on how the 

duration of a verb stem vowel segment is generated by the talker. 

 For example, if a talker wants to produce a duration for the verb stem vowel from 

the verb kiss in the sentence The sheep was kissed by the pig, they must choose the 

appropriate categories given the sentence they are trying to produce. In this instance, the 

talker is producing a segment where syntax is passive, and the phoneme is set to /IH/. 

This category information regarding syntax and phoneme is statistically encoded in 

segment durations produced by the talker. 

 Also encoded in this segment is indexical or talker information. This is non-

linguistic information specific to the current talker, and could be anything from speaking 

style to regional dialect. In the end, a duration that reflects all of the above influences is 

selected and produced by the talker. 

 Note that inference of syntactic voice may or may not be a direct one. It is possible that 3

a listener may actually be inferring whether the verb is monosyllabic and therefore 
passive (e.g. “kicked”) or polysyllabic and therefore active (e.g. “kicking”; cf. Rehrig, 
2017)
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 It is important to note that the listener does not have complete or direct knowledge 

of the talker’s generative model, but only uncertain beliefs about the model. They do not 

have any direct access to the category selections the talker has made. Speech sounds 

change depending on context and so the listener must allow some uncertainty regarding 

the statistical properties underlying speech sound categories. In fact, a successful listener 

must be open to integrating new observations with prior expectations so that the inferred 

generative model keeps pace with the changing statistics that have been encountered. 

Thus the listener infers the underlying statistical properties of an observed variable (in 

this case, duration) as opposed to inferring a single, fixed value. 

 Given an observed duration and the causal variables highlighted above – 

 and  – we can formally specify the generative model of a 

talker in the language of bayesian statistics as: 

(6) 

 

Since the generative model includes multiple underlying causes, listener inferences 

regarding a single, target cause (i.e., syntax) relevant to the perceptual task at hand (i.e., 

classifying active/passive) given a particular durational token cannot occur in an 

inferential vacuum; they must also account for all other causes (i.e., phoneme, talker). So 

that the listener might infer the targeted underlying causes (or classify active/passive 

syntax) we invert the generative model and use Bayes rule: 

(7) 

talker, phoneme synta x

p(synta x, talker, phoneme, durat ion) = p(durat ion ∣ talker, phoneme, synta x) · p(talker) · p(phoneme) · p(synta x)
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The left-hand side of (7) formally expresses the posterior probability of a segment being 

active or passive conditioned on listener knowledge of durations, phonemes and talkers. 

This posterior is proportional to the likelihood of a duration given syntax, phoneme and 

talker, multiplied by the prior for syntax (i.e., the prior probability of a sentence being 

active or passive). 

 Note that while the listener has no knowledge of whether a given duration has 

been drawn from an active or passive sentence, they do know who the talker is and what 

phoneme they are producing. However, knowing who is talking and what phoneme that 

talker has spoken does not mean the listener can be absolutely certain of what effect or 

influence that particular combination of talker/phoneme has on the observed duration. As 

mentioned earlier, listeners do not have complete or direct knowledge of a talker’s 

generative model, but only uncertain beliefs about the model. As such, we want to 

explicitly represent this uncertainty about the current generative model in our 

formalization. More specifically, we want to capture the model’s uncertainty about the 

relationship between talkers, phonemes, syntax and the observed stimuli. Thus we need 

to take into account the parameters of the model, , or the mean and variance of 

the likelihood for each combination of speaker, phoneme and syntax. Formally, this can 

be expressed as: 

(8) 

 

p(synta x ∣ durat ion , phoneme, talker) ∝ p(durat ion ∣ synta x, phoneme, talker) · p(synta x)

params

p(params, synta x ∣ durat ion , phoneme, talker) ∝ p(durat ion ∣ params, synta x, phoneme, talker) · p(params) · p(synta x)
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Our inverted generative model now allows us to infer the underlying syntactic target 

cause and the statistical relationship between each combination of causes and the 

observed duration. 

 However, the addition of  to the model raises two additional issues. First, 

if we considered the myriad of variables and categories that are brought to bear on 

segmental duration in everyday speech, the number of possible combinations our listener 

would need to consider would become intractable. In fact, the combinations would scale 

multiplicatively with every additional factor introduced. As far as this particular model is 

concerned, capturing the statistical relationship between every combination talker, 

phoneme, and active and passive voicing is not untractable since the variables and 

categories have been artificially constrained by our dataset labels. With 8 talkers, 7 

phonemes and 2 syntactic voices we would expect to estimate means and variances for 

112 likelihood distributions. 

 This brings us to the second issue we need to address concerning the addition of 

 to our model: the limitations of a relatively small dataset. Even at only 112 

combinations of talker, phoneme and voice, our statistical “pie” has to be “sliced” so 

many ways that with only 439 data points, there is simply not enough data to provide 

reasonable estimates of all likelihood means and variances. Thus it is reasonable to make 

some additional assumptions regarding how our model  are structured. 

Model parameters and their arrangement 

params

params

params
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As was outlined in previous sections, compensation/classification is successful only when 

we compute or select likelihood functions that are specific to and fully reflect the 

particular set of causes that have given rise to the observed stimuli. In this case, we want 

to compute the likelihood function 

 for all relevant categories (active/

passive syntax) and combinations of causes (phoneme and talker). However, as described 

in the previous section, we must do so in a way that recognizes the limitations of 

inferring model parameters from a relatively small dataset and in a way that addresses the 

explosion of causal factor combinations inherent to such a model. 

 So instead of calculating likelihoods for every combination of causes “from 

scratch”, we use a factorization approach to describe and additively combine our model 

parameters. In this approach, compensated active/passive likelihood distributions are 

constructed by summing the mean values of individual factors. This simplification treats 

the influence of each additional cause as independent of the others, but allows the model 

to consider more causes given a fixed amount of data. In the end, the composed 

likelihoods for each combination of causes assume a normal distribution and are uniquely 

defined by a mean and variance. 

 There are two chief components in our factorization. First, the model parameter 

mu governs the distance between the active/passive category means of , centering 

active/passive distributions around zero. For clarity’s sake, we will refer to mean active/

passive durations defined by mu as a syntactic base duration to be shared across all 

p(durat ion ∣ params, synta x, phoneme, talker)

synta x
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talkers. Second, the model parameter offset captures the statistical relationship 

between individual talkers and the phonemes that each of these talkers produce. We can 

refer to durations defined by the offset parameter as talker-phoneme offsets.  With 4

these two model parameters now defined, we can now compose likelihood distributions 

over all model variables by summing the inferred base and offset durations. 

 How these model parameters are leveraged during model testing and training in 

our model implementation also bears mention. We implemented the ideal compensator 

model in Stan statistical software with the rstan interface (Stan Development Team, 

2020; see Appendix B for Stan model code) and our dataset of 439 active/passive verb 

stem vowel segment tokens. For the training talkers, active and passive  labels for 

all durational tokens were made available to the model in order to fix the syntactic 

“polarity” of the grand, bimodal active/passive distribution. For testing talkers,  

and  category labels are known while active/passive  labels remain 

unknown. The fully implemented model jointly and simultaneously infers model base and 

offset parameters, classifying active/passive syntax while compensating for talker and 

phoneme. 

Model	variants	and	comparisons	

For the sake of comparison, we implemented two additional models in Stan: a non-

compensated pipeline-style version of the model that only infers syntactic voice; and a 

synta x

talker

phoneme synta x

 The labels offset and base highlight the fact that there are two separate parameter 4

components that are additively combined in the model. The labels offset and base 
themselves are completely arbitrary.
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pipeline-style compensation version of our model. In the pipeline model, verb stem vowel 

segment tokens are first centered by talker and phoneme and then fed into the Stan 

implementation for classification (without inferred compensation). We also carried out 

four types of model comparison to evaluate the ideal compensator model: 

Mean classifier accuracy. For a simple and direct comparison and evaluation of the 

models’ performance we use mean accuracy. To determine classification accuracy, we 

thresholded posteriors for each model at  and calculate mean accuracy using a 

winner-takes-all approach. 

 We fully expect that both ideal compensator and pipeline models will see an 

improvement in classification accuracy over the non-compensated model variant. 

However, we have no reason to expect that the ideal compensator model will necessarily 

outperform the pipeline model, as this was never the goal of the model in the first place. 

Again, the ideal compensator model addresses conceptual issues that arise from pipeline 

models, not performance issues. 

Model posteriors. The output of all three Stan model implementations are sampled 

posterior values. Paralleling our expectations for mean accuracy, we also anticipate that 

ideal compensator and pipeline models will see an increase in mean posterior probability 

of the true category over the non-compensated model. Again, the ideal model does not 

need to outperform the pipeline model in this respect. 

Variance reduction. One of the main goals of pipeline compensation schemes is to 

reduce variance in the relevant category distributions of the dataset to increase classifier 

p = 0.5
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accuracy. So as far as pipeline models are concerned, we can evaluate their effectiveness 

by comparing compensated data distributions with non-compensated or “raw” data 

distributions. Comparing pipeline and non-compensated distributions alone, we expect to 

see a decrease in category distribution variance. 

 However, this comparison is only possible – or relevant, even – due to the 

inherent nature of pipeline models. As discussed earlier, pipeline models assume that raw 

cue values contain unwanted variation that must be removed before classification. Thus 

they invoke a preprocessing stage where some sort of compensation scheme is employed 

(e.g., centering). Once this preprocessing stage is complete, the compensated data can be 

evaluated as to whether there has been a reduction of variance in category distributions in 

comparison the raw, unprocessed values. 

 In contrast, the ideal compensator model does not have a separate, preprocessing 

stage for compensation. This is because, as outlined earlier, the model dynamically and 

simultaneously infers linguistic category and how to compensate for talker and phoneme. 

Both conceptually and implementationally speaking, there is nowhere we can “stop” the 

model to locate a set of preprocessed “compensated” data points. Doing so would be akin 

to stopping an elevator between floors: there is nothing of particular value in accessing a 

“half floor” and stopping midfloor simply brings the model implementation to a crashing 

halt. 

 However, we can reconstruct a set of compensated data points post hoc using 

sampled offsets and the original raw data points. We can then make a side-by-side 
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comparison of category distributions to evaluate whether the reduction in variance is 

qualitatively similar between the two models. We can also use this reconstruction to 

visualize the degree of correlation between compensated token values from each model. 

Ideal offsets and pipeline point estimates. In the preprocessing stage of the pipeline 

model, all data points are centered by speaker and phoneme. Centering is accomplished 

by grouping the dataset by speaker and phoneme, and subtracting mean durations for 

speaker-phoneme pairs from the individual tokens. 

 The correlate of these point estimates in our ideal compensator model are our 

offset parameter distributions. Comparing point estimates with offset distributions, 

we expect to see the pipeline point estimates fall on or around where we would expect to 

find the distribution means for the respective offset speaker-phoneme combination. 

Results	
Offsets and centered durations. In our model, the offset parameter estimates the 

influence of each phoneme by talker. Figure 7 shows density plots of offset samples 

generated by the Stan implementation. For clarity’s sake, we have plotted the offset 

distributions for the verb stem vowel by phoneme for talker 205 only. 

 In our ideal compensator model the sampled offset for a given talker/phoneme 

combination is combined with the observed durational token for the corresponding talker/

phoneme. The variance we see in these offset sample distributions represents listener 

uncertainty regarding the amount of influence talker and phoneme have on the observed 

durations. 
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 In contrast, the vertical dashed lines represent the corresponding non-bayesian 

point estimate of the offset calculated by finding the mean log duration by talker and 

phoneme. These point estimates are the exact amounts that were subtracted from 

corresponding talker/phoneme durations during the preprocessing (centering) stage of the 

pipeline-style model. 

 Visually, we can see that the point estimates for each talker/phoneme combination 

roughly correlate with the means for each offset distribution. However, we can also see 

that for certain phonemes (namely /ɑ/,/æ/, /eɪ/ and /ʊ/) point estimates fall noticeably to 

the left or right of the inferred distribution means. This disparity is due to the fact that 

there are fewer data points for these particular phonemes, as is illustrated in Figure 8. 

Also in Figure 8, we see scatterplots visually demonstrating the correlation between mean 

compensated durations over all samples from the ideal compensator model, and centered 

token durations from the pipeline preprocessing (centering) stage. 
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Figure 7: Density plots of sampled offsets for talker 205, verb stem vowel. Each pane 
shows the distribution of offsets for one of the 7 verb stem vowel segments. Red dashed 
lines represent the corresponding “pipeline” point estimate for talker/phoneme offset. 
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Figure 8: Correlations between ideal compensator and pipeline centered durations by 
phoneme for talker 205. Red data points are active, blue are passive. 

Verb stem vowel density plots. Figure 9 shows a triptych of verb stem vowel duration 

density plots: the leftmost panel shows active/passive distributions of raw, non-

compensated durations; the center panel shows our reconstruction of compensated data 

distributions from the ideal compensator model; the rightmost panel shows distributions 

obtained after centering (non-bayesian compensations). Visually inspecting Figure 9 we 

see that both ideal compensator and pipeline-style compensation reduce variance in 

active/passive distributions in comparison to non-compensated token distributions. 
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Figure 9. Density plots of verb stem vowel durations by syntactic voice (active/passive), 
all talkers and sentences. Left: raw durations. Center: ideal compensator reconstructed 
durations. Right: ‘pipeline’ centered data. 

Token posteriors. The following three beeswarm plots (figures 10a, 10b, and 10c) show 

token posteriors for both non-compensated and ideal compensator implementations. All 

token posterior values reflect the posterior probability of the actual or true structure. The 

advantage of this sort of visualization is that it allows us to visually contrast the behavior 

of our ideal compensator model posteriors with individual posteriors from the non-

compensated model. 

 In Figure 10a we see that while the non-compensated posteriors tend to cluster 

around the dashed line at  (active/passive syntax is completely ambiguous), the 

ideal compensator model posteriors seem to shift and spread themselves well above the 

 mark. This difference between ideal compensator and non-compensated 

posteriors is summarized in the mean posterior probabilities for each group, represented 

p = 0.5

p = 0.5
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by red dots and error bars. The mean posterior probability for the non-compensated 

implementation is . 

 In terms of listener belief (i.e., how strongly does the listener believe a given 

token has been drawn from and active or passive sentence) this non-compensated mean is 

just slightly higher than , or chance levels for active/passive. In contrast, the 

mean posterior probability for the ideal compensator implementation is . This is just 

slightly less than the  mean posterior probability for the pipeline-style model (not 

visualized for clarity’s sake). As we will see in a moment, this increase in the overall 

degree of listener belief translates into a higher mean accuracy score in classification over 

the non-compensated model variant. 

0.552

p = 0.5

0.602

0.619
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Figure 10a. Posterior values for all talkers and sentences, non-compensated and ideal 
compensator models. Right side (ideal compensator): each blue dot represents the mean 
token posterior over all posterior samples. The red dot represents the mean posterior over 
all tokens and samples, and error bars indicate the 95% credible interval over all samples. 
Left side (non-compensated): each blue dot represents a token posterior, the red dot the 
mean posterior over all tokens, and error bars indicate standard error. 
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 The beeswarm plots in Figure 10b again show token posteriors from non-

compensated and ideal compensator implementations. However, we can now see the 

“behavior” of individual tokens where we have compensated for talker and phoneme. 

 Visually, we can see that while some posteriors moved below the  

threshold (negative change in probability indicated by red dots/lines), many more 

posteriors either changed very little (indicated by white dots/lines) or increased in 

probability (positive change indicated by blue dots/lines). In the end, 290 of 439 

posteriors increased in probability under our ideal compensator implementation (293 

posteriors increased under the pipeline model, not shown). The maximum increase in 

probability was  and the maximum decrease was . 

p = 0.5

0.473 0.420
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Figure 10b. Posterior values for all talkers and sentences, non-compensated and ideal 
compensator models. Each dot represents a token posterior. Lines between corresponding 
non-/ideally compensated posterior pairs show the trajectory of posterior movement. Red 
lines/dots indicate decreased probability between non-/compensated posteriors; blue 
lines/dots indicate increased probability.The degree of change in posterior probability is 
represented by the slope of the line and the darkness of the color. Steeper slopes and 
darker colors indicate greater change in probability. 

  

 In order to determine classification accuracy of each model variant, we 

thresholded our posteriors at  and calculated mean accuracy using a winner-takes-

all approach. We found that mean accuracy for the non-compensated model was  

p = 0.5

61%
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while mean accuracy for the ideal compensator model was , an increase of . 

Mean accuracy for the pipeline-style model (not shown) was . 

 Figure 10c visually illustrates how our ideal compensator implementation affected 

individual posterior tokens with respect to overall classification accuracy. By and large, 

compensation did not affect the classification accuracy of most tokens (332, yellow dots). 

However, there were more than three times as many tokens that improved overall 

accuracy (81, green dots) than negatively impacted it (26, red dots). 

73.6% 12.6%

75.2%
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Figure 10c. Posterior values for all talkers and sentences, non-compensated and ideal 
compensator models. Token posteriors are coded according to whether they increased 
(green) decreased (red) or had no effect on classifier accuracy (yellow). 

Discussion	
In this work we have outlined a new computational framework for speech perception and 

compensation, the ideal compensator. As with previous models of compensation, one of 

the primary goals of this model is to overcome the variability inherent to acoustic speech 

cues in order to accurately infer the linguistic category intended by the speaker. 
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 In contrast to most compensation procedures, however, this model does not adopt 

a pipeline approach to compensation. This is because instead of starting from the 

perspective that acoustic cues contain a jumble of informative breadcrumbs and 

misleading red herrings, we start with the assumption that cues are inherently ambiguous 

and thus only partially informative. As such, speech perception is a matter of inference 

under uncertainty and the goal of our listener model is to optimally infer the linguistic 

intent of the speaker based on the observed cue. Because our listener model actually 

infers how to compensate based on a speaker’s generative model while also 

simultaneously inferring linguistic category, we believe our approach is novel when 

compared to other compensation models and procedures. 

 While the aim of developing this new computational model of compensation was 

to address conceptual issues in pipeline-style models and not performance issues, the 

ideal compensator model did indeed perform quite well in our model comparison. With a 

mean accuracy of 73.6%, our model increased classifier accuracy by 12.6% over the non-

compensated model, just short of the 75.2% accuracy score achieved by the pipeline-style 

model. 

 In future work, we would also like to see how well our model results predict 

behavioral data. To do so, we intend on collecting behavioral data based on the exact 

same active/passive sentence pairs used in our model implementation and comparing 

these behavioral results with model results. While we would expect similar overall mean 

behavioral and model accuracy results in such a comparison, it would be interesting to 
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see whether model accuracy results could predict behavioral results by the sentence as 

well. 

 Although we feel that our model provides a better conceptual framework for 

compensation than pipeline models, from a practical standpoint there is a small “cost” to 

the researcher associated with implementing fully bayesian compensation. In comparison 

with the relatively simple mathematical procedures associated with pipeline-style 

compensation schemes, (such as the centering procedure we used in our pipeline 

comparison model) implementing a fully bayesian compensation model in an existing 

software framework (such as Stan) requires quite a bit more work both in terms of model 

refactoring and programming effort. So while a fully bayesian implementation allows us 

to execute a conceptually rigorous computational model, the relative simplicity and ease 

of computation that is part and parcel for pipeline-style procedures may remain an 

attractive choice for areas of research where the conceptual stakes surrounding 

compensation are low. However, as advanced software programs like Stan continue to 

become more powerful, accessible, flexible and computationally efficient, we are likely 

to see more researchers embrace computational models of perception that are both 

conceptually complete and implementationally expedient. 
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Appendix	A	
List of recorded sentences. 

28 Active Sentences: 
The bear was licking the dog. 
The bear was punching the dog. 
The cat was pushing the mouse. 
The cat was touching the rhino. 
The cow was poking the zebra. 
The dog was licking the bear. 
The dog was punching the bear. 
The duck was washing the rabbit. 
The elephant was kicking the kangaroo.  
The fox was combing the lion. 
The frog was shoving the monkey. 
The frog was trapping the monkey. 
The hippo was chasing the turtle. 
The kangaroo was kicking the elephant.  
The lion was combing the fox. 
The monkey was pinching the rabbit.  
The monkey was shoving the frog. 
The monkey was trapping the frog. 
The mouse was pushing the cat. 
The pig was kissing the sheep. 
The pig was scrubbing the sheep. 
The rabbit was pinching the monkey.  
The rabbit was washing the duck. 
The rhino was touching the cat. 
The sheep was kissing the pig. 
The sheep was scrubbing the pig. 
The turtle was chasing the hippo. 
The zebra was poking the cow.  

28 Passive Sentences: 
The bear was licked by the dog. 
The bear was punched by the dog. 
The cat was pushed by the mouse. 
The cat was touched by the rhino. 
The cow was poked by the zebra. 
The dog was licked by the bear. 
The dog was punched by the bear. 
The duck was washed by the rabbit. 
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The elephant was kicked by the kangaroo.  
The fox was combed by the lion. 
The frog was shoved by the monkey. 
The frog was trapped by the monkey. 
The hippo was chased by the turtle. 
The kangaroo was kicked by the elephant.  
The lion was combed by the fox. 
The monkey was pinched by the rabbit.  
The monkey was shoved by the frog. 
The monkey was trapped by the frog. 
The mouse was pushed by the cat. 
The pig was kissed by the sheep. 
The pig was scrubbed by the sheep. 
The rabbit was pinched by the monkey.  
The rabbit was washed by the duck. 
The rhino was touched by the cat. 
The sheep was kissed by the pig. 
The sheep was scrubbed by the pig. 
The turtle was chased by the hippo. 
The zebra was poked by the cow. 

Appendix	B	
Stan code for ideal compensator model. 

data {  
  int n; 

  int n_voice; 
  int n_syl_label; 
  int n_participant_num; 
   
  int voice[n]; 
  int syl_label[n]; 
  int participant_num[n]; 
  int istest[n]; 
  real duration[n]; 
   
} 

parameters { 

  real anti_mu_raw[n_participant_num]; 
  real anti_mu_mu; 
  real<lower=0> anti_mu_sigma; 
  real<lower=0> sigma[n_voice]; 
  real offset[n_participant_num, n_syl_label]; 
  real offset_mean; 
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  real<lower=0> offset_scale; 

}  

transformed parameters { 

  real mu[n_voice, n_participant_num]; 
  real duration_shifted[n]; 
   
  for(j in 1:n_participant_num){ 
    real anti_mu; 
    anti_mu = anti_mu_mu + anti_mu_sigma * anti_mu_raw[j]; 
    mu[1,j] = anti_mu; 
    mu[2,j] = -anti_mu; 
  } 
   
  
  for (i in 1:n) { 
    duration_shifted[i] = duration[i] + offset[participant_num[i], 
syl_label[i]]; 
  } 
} 

model { 
   
  anti_mu_mu ~ normal(0,1); 
  anti_mu_sigma ~ cauchy(0, 1); 
  sigma ~ cauchy(0, 1); 
    

  for(j in 1:n_participant_num){ 
    anti_mu_raw[j] ~ std_normal(); 
  } 

   
  offset_mean ~ normal(0,1); 
  offset_scale ~ cauchy(0,1); 
   
  for (i in 1:n_participant_num) { 
    for (j in 1:n_syl_label) { 
      offset[i,j] ~ normal(offset_mean, offset_scale); 
    } 
  } 
  
  for (i in 1:n) { 
    if (istest[i]) {  
      real l_lhoods[n_voice]; 
      for (j in 1:n_voice){ 
        l_lhoods[j] = normal_lpdf(duration_shifted[i] | 
mu[j,participant_num[i]], sigma[j]) + log(0.5); 
      } 
      target += log_sum_exp(l_lhoods); 
    }else{ 
      duration_shifted[i] ~ normal(mu[voice[i], participant_num[i]], 
sigma[voice[i]]); 
    } 
  } 
} 
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generated quantities{ 

  real log_lh[sum(istest), n_voice];  
  int k; 
  k = 1; 

  for (i in 1:n){ 
    if(istest[i]){ 
      for (j in 1:n_voice){ 
        log_lh[k,j] = normal_lpdf(duration_shifted[i] | 
mu[j,participant_num[i]], sigma[j]); 
      } 
      k=k+1; 
    } 
  } 
} 

// end Stan code  
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