Staff View
A numerical study of steady state cooling in a raised floor data center with a ceiling plenum return

Descriptive

TitleInfo
Title
A numerical study of steady state cooling in a raised floor data center with a ceiling plenum return
Name (type = personal)
NamePart (type = family)
Levinson
NamePart (type = given)
Jamie D.
DisplayForm
Jamie D. Levinson
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Jaluria
NamePart (type = given)
Yogesh
DisplayForm
Yogesh Jaluria
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Shan
NamePart (type = given)
Jerry
DisplayForm
Jerry Shan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Guo
NamePart (type = given)
Zhixiong
DisplayForm
Zhixiong Guo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
co-chair
Name (type = personal)
NamePart (type = family)
Lin
NamePart (type = given)
Hao
DisplayForm
Hao Lin
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
co-chair
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD graduate
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2021
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
In this study, the ability of a cooling system to remove heat from a data center is investigated. The governing equations with given boundary conditions are solved numerically using ANSYS Fluent 2020R1 which was validated via comparison with the benchmark problem of natural convection in a square cavity. The number of fans present in each server, the hot aisle width, the ceiling height, and the use of hot aisle containment was varied in order to determine their influence on how well the data center was cooled. The server racks are modeled as porous media and the temperatures at key location are used to determine various thermal metrics which allows for an investigation of the changes at both the room and rack level.
Subject (authority = LCSH)
Topic
Data processing service centers -- Cooling
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11316
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (ix, 48 pages) : illustrations
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-byam-k629
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Levinson
GivenName
Jamie
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-12-03 21:22:40
AssociatedEntity
Name
Jamie Levinson
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Microsoft 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-14T15:37:42
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-14T15:37:42
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024