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ABSTRACT OF THE DISSERTATION

Advances in Relationship Clustering and Outlier Detection

by Chang Liu

Dessertation Director: Rong Chen

Abstract: Generalized linear models (GLMs) are very popular to solve response mod-

eling problems. But GLM users often encounter the problem of over-dispersion if there

exists unobserved heterogeneity within the data. The first topic of my dissertation mainly

addresses this problem by introducing a clustering method: HSA (Heterogenous Sample

Auto-grouping) method, to reveal the hidden structure and account for the unobserved het-

erogeneity for GLMs. Furthermore, we developed a modeling framework of applying HSA

to recover the decision boundary controlled by some structural variable in GLMs. My sec-

ond dissertation topic is about deriving a directed neighborhood-based approach for local

outlier detection. With the prevalence of local outlier detection techniques like local out-

lier factor (LOF), local outlier detection draws more and more attention. Many outlier

detection methods based on this concept give us an outlying score representing how likely

the corresponding data object to be an outlier. But the interpretation of the score is not

consistent across different data sets. In order to resolve this problem, we propose a local

outlier detection approach: LoCO (Local COnnectivity) method. It has stable performance

in some challenging scenarios compared with existing local outlier detection techniques.

An outline of the subsequent chapter content is given as follow:

Chapter 2 introduces a novel clustering method: HSA method. We formulate the prob-
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lem with a convex objective function. Since solving the optimization function is not trivial

due to the nonlinear loss and many penalty terms, we introduce IOSA (Iterative Operator-

splitting for Samples Algorithm) to solve the problem. The convergence of the algorithm is

theoretically proved. As to the theoretical analysis, we analyzed the minimax lower bound

and prediction upper bound of this type of problems. In the end, we also provide numerical

examples to validate the model performance. We apply HSA method onto a tourism data

and a bank marketing data as well. The resulting groups are reasonably justified.

In Chapter 3, we introduce another application of HSA. HSA can be used to uncover

the hidden structure within a data set. In many applications, the hidden structure of the

data is actually determined by some structural variable which controls the general structure

of the model instead of affecting the model as a standard covariate. We propose a three-

stage modeling procedure: SD-HSA (Structural variable Driven-HSA) to solve such type

of problems. At the first stage, we narrow down the structural variable candidates pool.

Then we apply HSA incorporating structural variables information at the second stage.

Finally, we select out the best model using model selection criteria like AIC or BIC. We

also provide numerical and real data examples to explore the performance of the modeling

framework.

Chapter 4 introduces a local outlier detection method: LoCO method. It quantifies the

degree of outlyingness of each data subject by constructing a local asymmetric network

(LAN). LoCO score is easy to interpret, and more robust to density changes compared with

current existing local outlier detection methods like local outlier factor (LOF). Furthermore,

we calculate the “p-value” of each data based on LoCO scores using conformal prediction

technique. We compare the performance of LoCO method and LOF through series of

simulation examples. We also apply the new method in real data in the end.
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CHAPTER 1

INTRODUCTION

Data mining has become very popular for many years. Its goal is to extract information

from any data source. From the problem itself, data mining can be classified into two

areas: supervised learning and unsupervised learning. Supervised learning, which mainly

includes regression or classification problems, uses information from a training data set

including target values or class labels to find the prediction or classification rule to apply on

to the test data set. Unsupervised learning, which includes clustering methods, in particular,

is used in multivariate statistics to uncover latent groups suspected in the data or to discover

groups of homogeneous observations. The aim thus is often defined as partitioning the data

set such that the groups are as dissimilar as possible and that the observations within the

same group are as similar as possible. The groups composing the partition are also referred

to as clusters.

Clustering analysis and outlier detection are two important and related topics. They

have widespread applications in both scientific and industrial fields. Under the fast devel-

opment of computing resources, more complex and advanced techniques become possible

to extract useful information from big data sets. Clustering analysis can be used for dif-

ferent purposes. First, it can be employed as an exploratory tool to detect structures in

multivariate data sets and achieve a more parsimonious representation. Second, it can be

used as prototypes quantisation and data compression. Third, latent group structures can

be revealed to discover unobserved heterogeneity. Clustering is often referred to as an ex-

ploratory data analysis problem which aims at revealing interesting and useful grouping or

formulation of the observations or features. However, specifying what is interesting or use-

ful in a formal way is challenging. Hennig (2015) argues that the definition of true clusters

depends on the context and the clustering aim. Thus, there may not exist a unique clustering
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criterion or solution given the data, but different clustering aims imply different solutions

and analysis should in general be aware of the ambiguity inherent in cluster analysis.

Since HSA is conducted under generalized linear model’s framework, it can be viewed

as a model-based clustering problem. Clustering under a model-based framework is both

challenging and attractive. It is challenging because we need to cluster with both response

variable and predictors. By properly clustering the observations into various groups, we

could identify hidden structures or latent variables. In this way, one can fit separate models

within each cluster or add additional features into the model to improve the performance.

Finite mixture model (Frühwirth-Schnatter 2006a) is a very popular statistical modeling

technique to handle heterogeneity issues. It relies on strong distributional assumptions,

and would often require a complicated model selection. Our first research topic focuses

on studying the response driven/assisted clustering under the generalized linear model’s

framework. It is formulated as an optimization problem. Thus, it does not have very strong

distributional assumption compared with finite mixture models.

The occurrence of outliers can increase the difficulty of clustering analysis. A data

set may contain a few anomalies that do not comply with the majority behavior or model

of data. These extreme observations are often referred to as outliers. Outlier detection

has always been an important problem ever since human starts to analyze data, and at-

tracted an increasing attention in the machine learning, data mining and statistics literature.

Practically it is a pervasive phenomenon in applications from credit cards, insurance or

health care, intrusion detection for cyber-security, fault detection in safety critical systems,

to military surveillance. Many methods have been proposed to detect outliers. Roughly

speaking, they can be divided into three categories, neighborhood-based, subspace-based

and ensemble-based methods. The neighborhood-based outlier detection methods mainly

exploit the neighborhood information of a given data subject to determine whether it is far

from its neighbors, or whether its density is small or not. The subspace-based detection

methods identify anomalies by sifting through different features subsets in an ordered way.
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The class of ensemble-based method combines the outputs of several detection algorithms

or base detectors into a unified output by using integrated strategies. For this topic, we

mainly study a local outlier detection problem which has drawn more and more attention

recently. The existing techniques include the density-based approaches: local outlier factor

(LOF) and its variations (Breunig et al. (2000), Tang et al. (2002), Lazarevic and Kumar

(2005), Kriegel et al. (2009a), Kriegel et al. (2011)). These methods quantify the degree

of outlying for each observation by calculating an outlying score. But the resulting score

will have inconsistent interpretation across different data sets. Thus, our second research

topic focuses on developing a directed neighborhood-based outlier detection method for

local outlier detection.

The next section gives the motivation for the two research topics.

1.1 Motivation

1.1.1 Motivation for HSA

Data in the real world is not always perfect. Real-life data might follow a complex mixture

distribution that cannot be realized to a simple one. Clustering is then useful to identify

different subsets each of which may follow a distinct distribution. We can put the problem

in a non-Gaussian setting due to the possible discreteness and over-dispersion of the data.

For example, GLMs are widely used in statistical modeling, but the variability within the

data may make a single GLM assumption unrealistic. In order to address this heterogeneity

issue, we propose a method to auto-group the given samples into different groups within

each standard GLM fits.

Notably the sample heterogeneity is quite common in real practice. It could be caused

by missing covariates. For example, assuming we are fitting a linear regression for a given

data set, and the true model contains both feature A (xA) and a binary indicator feature B
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(xB) along with their interaction term (xA and xB):

� = �AxA + �BxB + �ABxAxB + �,

where � ⇠ N (0,� 2
) is an error term following normal distribution. If we are only provided

with feature A when fitting the model. A model based on xA only will not fit the data well.

More concretely, due to the existence of the interaction term, the corresponding coefficient

with respect to xA becomes �A + �ABxB. As a result, as xB varies, the coefficient of xA

also varies accordingly. Thus, the changing pattern will be reflected from the value of both

the response variable � and relevant features X = (xA,xB). On the other hand, if we can

include sample clustering into the parameter estimation based on both � and X , it could be

used to describe the data with some prediction accuracy and one can even to recover B by

identifying the sample groups.

Clustering analysis is an unsupervised learning method that constitutes a cornerstone

of data analysis. It is not a recent invention, and there are different clustering methods.

Generally, clustering algorithms can be categorized into hierarchical clustering methods,

partitioning clustering methods, density-based clustering methods, grid-based clustering

methods, and model-based clustering methods. All these methods have their own charac-

teristics and can handle different types of clustering structure. Compared with those clus-

tering methods, our auto-grouped estimation method: HSA (Heterogeneous Sample Auto-

grouping) has its own advantages: (i). It is a clustering algorithm designed for predicting

the response variable. Most clustering algorithms do not include the response variable. For

example: k-means clustering or agglomerative clustering deal with a feature matrix only

regardless of the response. Of course, clustering based on both response variable and rel-

evant features brings nontrivial challenges. HSA is applicable to any data fitted by GLMs,

which has a wide range of applications and potentiality. Clustering for dis-continuous

data is usually more difficult compared with that for Gaussian numeric data. But in our
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framework, any distribution is permitted. In this dissertation, we mainly use the most two

common models: linear regression and logistic regression models to illustrate the idea and

performance of our method. (ii). The predictive infrastructure assists in the computation

and algorithm design for the proposed method. It owns unique solution. Thus, we will not

suffer from problems of different initialization values leading to different clustering results,

which are common for some partition-based clustering methods like k-means method. Fur-

thermore, a lot of clustering methods have the difficulty of have to interpret and justify

the obtained clusters, This problem might be alleviated when using our method. We can

use the prediction accuracy to make judgement of the number of clusters and cluster sizes.

All of these advantages make the HSA attractive. We will introduce the HSA in detail in

chapter 2.

On the other hand, when we study HSA, we realize that one of the biggest challenges

is that the model performance is closely related to the quality of some meta-parameters to

control the weights in weighted l2 penalty. But as we will show in Chapter 2, choosing q

proper weight is difficult in general. Thus, we are motivated to think of another scenario

of which the weight choosing process could take advantages. This results in the Structural

variable Driven-HSA (SD-HSA) framework. The goal of the whole framework is to char-

acterize different GLMs within a given data using a pre-chosen structural variable. This

framework improves HSA from an unsupervised data exploration tool to a well-defined

system for building a better model with the help of structural variables. As a result, we

can incorporate more potentiality into HSA. In summary, SD-HSA framework assumes

there exists some structural variable controlling the group structure. The structural variable

would benefit the weight choosing process in this scenario. Once we get the estimated state

labels for each data subject from HSA, we can build separate models based on the decision

region of the structural variable. In this way, structural variables endow more power into

the HSA.

SD-HSA modeling framework is powerful in the sense that it could be used to recover
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linear and nonlinear decision boundaries flexibly based on the grouping results. It will give

us more choices to construct generalized linear models. However, it is still a challenging

problem, especially in practice, one often does not know the true structural variable. Thus,

we propose a modeling framework from narrowing down structural variable candidates to

building separate models using the the grouping structure obtained from the HSA. Chapter

3 will introduce the overall framework of the structural variable driven HSA process.

1.1.2 Motivation for Developing Local Connectivity Outlier

As the increasing need for efficient and effective analysis methods to make use of the

information contained implicitly in the data, we not only need to find patterns applicable

to a considerable portion of objects in a data set, but also want to find the exceptional

cases in some scenarios. As a result, detecting exceptional cases gradually becomes an

independent research area: outlier detection. Outlier detection has plenty of applications

including detective criminal activities of various kinds (e.g. online payment fraud), rare

events, deviation from the majority. Thus, finding such exceptions or outliers is another

important topic that is worth to study about.

Outliers originally existed as the by-product of clustering algorithms. From the view-

point of a clustering algorithm, outliers are objects not located in clusters of the data set. In

every cluster each data is authorized with a degree of the membership (Behera, Ghosh, and

Mishra 2012). The outlier is naturally detected in the clustering process. Various clustering

approaches are used for the outlier detection (Angiulli and Fassetti 2007). These methods

mainly focus on detecting global outliers. A few studies have also been conducted on out-

lier detection for large data sets (e.g. Knorr and Ng (1999), Arning, Agrawal, and Raghavan

(1996), Knorr and Ng (1997), Knorr and Ng (1997)). While a more detailed discussion on

these studies will be given in the next section, it suffices to point out here that most of

these studies treat the outlier classification as a binary classification problem. Namely, ei-

ther an object in the data set is an outlier or not. However, with the rapid development of
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information technology, the structure of data sources is becoming more and more complex.

Thus, it becomes more and more meaningful to assign to each object a degree of being an

outlier. For example, we can assign a risk score of potential fraud activities. On the other

hand, due to the instability of data collection and transmission technology, etc., the data sets

obtained are often incomplete in terms of time and space. In this scenario, we only care

about the outlier detection in a local scope. The data point is considered as an outlier if its

value significantly deviated from the rest of the data points in the same context. The cor-

responding outliers obtained would be local or contextual outliers. Currently existing local

outlier detection method like LOF (Local Outlier Factor) (Breunig et al. 2000) has some

drawbacks. LOF generate an outlying score through the ratio of the average neighborhood

densities and the density of the target data point. As we will show later (in Chapter 4), the

quotient value is hard to interpret sometimes, data sets with changing densities might result

in unreasonable scores. Our second research topic proposes a directed neighborhood-based

approach that detects local outliers with with better properties than LOF.

Specifically, we introduce a new method for finding outliers in multi-dimensional data

set. We introduce a LoCO (Local COnnectivity) score for each object in the data set,

indicating its degree of outlyingness. The outlier factor is local in the sense that only a

restricted neighborhood of each object is being considered. To the best of our knowledge,

one of the most popular local outlier detection methods is LOF. Thus, we made series of

simulation examples to compare the performance of our newly propose method and LOF.

LoCO scores will be more robust to unexpected density changes within a data set, namely,

when the densities vary, the corresponding LoCO score is more reasonable. Furthermore,

we developed a conformal outlying score based on the LoCO score. It determines a p-value

for each observation, and it measures the extent to which a classification label (degree of

outlyingness) is consistent with other observations in the data. We will introduce the detail

of the LoCO score in Chapter 4.
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1.2 Literature Review

1.2.1 Literature on Clustering Methods

HSA is a clustering method. Before diving into the details about the model in the next

chapter, we first give a review about some popular clustering methods:

• Hierarchical clustering creates a hierarchical decomposition of the objects. They

are either agglomerative (bottom-up) or division (top-down). Different hierarchi-

cal methods are distinguished by the criterion for determining which two clusters to

merge or split at each level. Agglomerative algorithms start with each object being

a separate cluster itself, and then successively merge groups according to a distance

measure like Euclidean distance etc.. Division algorithms follow the opposite strat-

egy. They start with one group of all data subjects, and successively split groups

into smaller ones until each object falls into one cluster, or as desired. The principle

is Lance and Williams (1967) demonstrated that many agglomerative hierarchical

methods are variations of a common recurrence formula (Cormack (1971), Everitt

et al. (2011), GROVE (1984), Milligan (1979)). Some important articles include

the introduction of Ward Jr (1963) minimum variance method and Johnson (1967)’s

discussion of the complete and single link methods. D’Andrade (1978) introduced

a routine based on the nonparametric U statistic. Ding and He (2002) introduced

the merging and splitting process in hierarchical clustering method. They provide a

comprehensive analysis of selection methods and propose several new methods that

determine how to best select the next cluster for split or merge operation on cluster.

CURE (Clustering Using REpresentatives) (Guha, Rastogi, and Shim 1998) is an ag-

glomerative hierarchical clustering algorithm that creates a balance between centroid

and all point approaches. It used a combination of random sampling and partitioning.

BIRCH (Balanced Iterative Reducing and Clustering using Hierachies) (Zhang, Ra-

makrishnan, and Livny 1996) is an agglomerative hierarchical clustering algorithm
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and especially suitable for very large databases. ROCK (RObust Clustering using

linKs) (Guha, Rastogi, and Shim 1998) is a robust agglomerative hierarchical clus-

tering algorithm based on the notion of links. It is also appropriate for handling large

data sets. Linkage algorithms (Karypis, Han, and Kumar 1999) are agglomerative

hierarchical methods that consider merging of clusters based on distance between

clusters. There exist three linkage algorithms: Single-link (S-link), Average-link

(Ave-link) and Complete link (Com-link). The quality of a pure hierarchical clus-

tering method suffers from its inability to perform adjustment, once a merge or split

decision has been executed. It will not be changed afterward. This merge or split

might lead to somewhat misleading clusters if not well chosen at some step.

• A partitional clustering algorithm constructs partitions of the data. It assigns a set

of data points into different clusters by using iterative processes based on a prede-

fined criterion function. As a result, such algorithms has very high complexity. They

are known as nonhierarchical clustering procedure because only a single data parti-

tion is produced (Anderberg (1973), Sneath (1977), Späth (1980)). The techniques

range in complexity from Hartigan (1975)’s very simple leader algorithms to rather

intricate iterative reallocation methods (Ball and Hall (1965), Friedman and Rubin

(1967), and Wolfe (1970)). Some popular partitional clustering techniques include

k-means clustering, fuzzy clustering and colored FCM. k-means clustering was first

developed by MacQueen (1967). In k-means clustering, clusters are formed using

Euclidean distance, and k classes are created to minimize the error function (Kutbay,

Ural, and Hardalaç 2015). Fuzzy theory is firstly developed by Zadeh (1965) for

defining adjustable degrees of memberships. Fuzzy theory creates intermediate sets

rather than classical sets. In classical set, each data obbject is assigned into only one

cluster. In contrast, data in fuzzy clusters can be represented in multiple clusters. This

multiset assgnment can blong to all the clusters with a certain degree of membership

(Bezdek 1973). This one object in multiset representation can be useful for sharply
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separated cluster boundaries. The fuzzy C-Mean algorithm (FCM) is frequently used

because of its ease of operation and reliability in many applications (Abdulshahed et

al. (2015), Ji et al. (2014), Qiu et al. (2013), Kannan et al. (2012)). Colored image

fuzzy C-Mean (C-FCM) involves color-based clustering using fuzzy sets. This 3D

method is firstly given by Kutbay and Hardalaç (2017) as Robust Colored Image

FCM (RCI-FCM). In partition clustering, determination of cluster size is important.

This selection differs from data sets to data set. If data sets include more features

to classify in a cluster, more clusters will be needed. But unfortunately, this cluster

number is not known for many clustering problems. Generally experience give the

cluster number. Estimation of the cluster number is one of the major problems for

validation.

• Another type of popular clustering method is density based clustering method. Clus-

ters may be treated as dense regions in the data space, where clusters are separated

by a sparse region containing “relative few” data. Given this assumption, a cluster

can either be of “regular” or “arbitrary” shape. The notion behind density based

clustering is to detect clusters of non-spherical or arbitrary shapes. Some of the

common density based clustering techniques are DBSCAN, OPTICS, VDBSCAN,

DBCLASD, ST-DBSCAN and DENCLUE (Shah, Bhensdadia, and Ganatra (2012),

Parimala, Lopez, and Senthilkumar (2011)). DBSCAN is short for density-based

spatial clustering of applications with noise. It is one of the earliest density based

clustering methods. Its key idea is that for any data point to belong to a cluster, there

must be at least a given number of data points within a specified radius, namely, the

density of the neighborhood around the data point should exceed a given threshold. A

disadvantage of DBSCAN is that it struggles with data sets which contain clusters of

varying densities (Ertöz, Steinbach, and Kumar 2003). VDBSCAN algorithm (varied

density based spatial clustering of applications with noise) can detect clusters with

varied density. Also, the method automatically selects several values of the input pa-
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rameter Eps for different densities. Even, the parameter k is automatically generated

based on the characteristics of the data set (Chowdhury, Mollah, and Rahman 2010).

There are other variations of the DBSCAN algorithm. Detailed information about

them can be found in Parimala, Lopez, and Senthilkumar (2011). OPTICS (order

points to identify the clustering structure) algorithm is an indirect method. Namely,

it does not explicitly produce a data set clustering. Instead, it outputs a cluster order-

ing. Objects in a denser cluster are listed closer to each other in the cluster ordering.

• Grid based clustering methods mainly focus on spatial data. It is aimed to quantize

the data set into a number of cells and then work with data subjects belonging to these

cells. As a result, they do not relocate points, but rather build several hierarchical lev-

els of groups of objects. As a result, they are closer to hierarchical algorithms. But the

merging in conducted on grids, and consequently clusters, does not depend on a dis-

tance measure. It is decided by a predefined parameter instead. The main advantage

of grid based method is its fast processing time which depends on number of cells

in each dimension in quantized space. Some popular grid based clustering methods

include CLIQUE (CLustering in QUEst) (Agrawal et al. 1998), STING (STatistical

INformation Grid) (Wang, Yang, and Muntz, n.d.), MAFIA (Merging of Adaptive

Intervals Approach to Spatial Data Mining) (Goil, Nagesh, and Choudhary 1999),

Wave Cluster (Sheikholeslami, Chatterjee, and Zhang 1998) and O-CLUSTER (Or-

thogonal partitioning CLUSTERing) (Milenova and Campos 2002).

• Model based clustering is another type of clustering method. traditional clustering

methods like k-means clustering are based on the definition of similarities or dissim-

ilarities between observations and groups of observations. These type of algorithms

all belong to heuristic clustering. Model based clustering (mixture model) is different

from heuristic clustering methods. It can help in the application of cluster analysis

by requiring the analyst to formulate the probabilistic model which is used to fit the
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data thus making the aims and the cluster shapes aimed for more explicit than what is

generally the case if heuristic clustering methods are used. Mixture models for clus-

tering is discussed in McLachlan and Peel (2004) and Frühwirth-Schnatter (2006b).

In addition, several review articles on model-based clustering are available including

Stahl and Sallis (2012) and McNicholas (2016).

Comparing to those clusterings methods in literatures, HSA has its own characteristics.

First of all, HSA method has a similar flavor with partitional clustering methods like k-

means clustering. Because it also partition the data set into different sub-groups based

on the similarity between each data objects. On the other hand, it is not the same with

traditional heuristic clustering method. Traditional heuristic clustering methods are not

formulated under a model framework. Thus, they usually do not have a response variable

(y). They only make clusters based on the similarities within some covariates (features)

of interest (X ). As a result, its overall framework is simpler compared with the HSA.

Furthermore, HSA method also endows some flavor from model based clustering method.

The overall clustering problem is built under a concrete model framework. But compared

with finite mixture models, HSA is free from distributional assumptions. We do not need

to care two much about specifying the prior distribution under the probabilistic assumption

compared with finite mixture model. In contrast, HSA is a relational based clustering

algorithm. It is more flexible to use in real practice when specifying distributions for each

feature within the data is infeasible.

1.2.2 Literature on Outlier Detection Methods

Local connectivity method is a local outlier detection technique. We will also review some

popular outlier detection techniques based on the following three categories:

• Neighborhood-based detection: the basic idea is to identify outliers by virtue of the

neighborhood information. Given a data object, the anomaly score is defined as

the average distance (KNN (Ramaswamy, Rastogi, and Shim 2000)) or weighted
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distance (KNNW (Angiulli and Pizzuti 2002)) to its k nearest neighbors. Another

strategy is to take the local outlier factor (LOF (Breunig et al. 2000)) as the mea-

surement of anomaly degree, in which the anomaly score was measured relative to

its neighborhood. Based on LOF and LoOP (Kriegel et al. 2009a) provided for each

data object an oulier probability as score, which is easily interpretable and can be

compared over one data set. In ODIN (Oulier Detection using Indegree Numbers)

(Hautamaki, Karkkainen, and Franti 2004), an object is defined as an outlier if it par-

ticipates in at most T neighborhoods in kNN graph, where T is a control parameter.

• Subspace-based detection: Anomalies often exhibit unusual behaviors in one or

more local or low-dimensional subspaces. The low-dimensional abnormal behaviors

would be masked by full dimensional analysis (Aggarwal 2017). Zimek, Schubert,

and Kriegel (2012) noted that for a data object in a high dimensional space, only a

subset of relevant features offers valuable information, while the rest are irrelevant

to the task. On the contrary, the existence of the irrelevant features might impede

the separability of the anomaly detection model. As a result, subspace learning is a

popular techniques to handle high-dimensional problems. Theses methods have two

types of representations: the sparse subspace methods (Zhang et al. (2009), Dutta,

Banerjee, and Reddy (2015), Zhang et al. (2014), Aggarwal and Philip (2005)) and

relevant subspace methods (Kriegel et al. (2009b), Zhang et al. (2016), Muller et

al. (2008), Müller, Schiffer, and Seidl (2010), Müller, Schiffer, and Seidl (2011)).

• Ensemble-based method: Ensemble learning is quite popular in machine learning

(Zimek, Campello, and Sander (2014), Aggarwal and Sathe (2015)). It has a rela-

tively better performance than other related techniques in many cases. Thus, ensem-

ble learning is also frequently used for anomaly detection. The FB (Feature bagging)

detection method (Lazarevic and Kumar 2005) is an outlier detection method fre-

quently used in large, high dimensional data sets. It combines results from multiple
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outlier detection algorithms that are applied using different set of features. Every out-

lier detection algorithm uses a small subset of features that randomly selected from

the original feature set. Thus, each outlier detector identifies different outliers, and

assigns to all data records outlier scores that corresponding to their probability of be-

ing outliers. The outlier scores computed by individual outlier detection algorithms

are then combined to find better quality outliers. aims to detect anomalies using a

scoring system that randomly selects subspaces. However, this results in irrelevant

dimensions due to random subspace selection. There are several anomaly detection

methods that consider both feature bagging and subsampling (Zimek et al. 2013).

However, the variance of objects are difficult to obtain using feature bagging, and the

final results tend to be sensitive to the size of subsampled data.

In summary, different types of outlier detection methods are proposed to handle differ-

ent problems. How to formulate an outlier detection problem depends on the nature of the

input data, types of outliers (global or local) and data labels. All of the outlier detection

methods described above have their own advantages and disadvantages. Specifically, one

of the neighborhood-based method: LOF is quite popular because of its convenience to use.

But when there exist density changes within the data, LOF can not handle the problem quite

well. In order to resolve it, we propose a directed neighborhood-based approach: LoCO to

properly account for the neighborhood information of each data subject in the data set.
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CHAPTER 2

HSA: CLUSTERING FOR GENERALIZED LINEAR MODELS

2.1 Introduction

The motivation of HSA (Heterogeneous Sample Auto-grouping) method derives from the

demand to study a mixture model with a response (possibly discreet) available. By properly

quantifying the pairwise similarities between each sample pair, our HSA method partitions

a data set into a small number of groups to account for sample heterogeneity. Give a data

set of n samples associated with a responseÄ = (�1, . . . ,�n)T 2 Rn and p features of interest

X = (x1, . . . ,xn)T 2 Rn⇥p , we assume

�i | xi ⇠ GLM(�
[Ii ]), 1  i  n (2.1)

where Ii 2 {1, . . . , � } and �
[Ii ] is a coefficient vector for the Ii-th model on the i-th sample.

We can interpret Ii as � sub-populations assumed over the whole data. Each sub-population

follows a GLM with however a possibly different set of parameters. The true label of Ii is

the hidden structure that we want to recover. We will develop an efficient algorithm called

IOSA (Iterative Operator-splitting for Samples Algorithm) to estimate Ii based on the given

data. Since HSA obtains the grouping structure by solving an optimization problem with

respect to a data dependent coefficient matrix, it treats the grouping and estimation problem

as a whole.

There are many potential applications of HSA. In some areas, the aim is to find groups

of observations with similar regression coefficients. For example, sales or marketing data

collected on all customers may not have the right label to differentiate different groups of

customers. We can use our model to separate the consumers base on, say price elasticities,

to develop an optimal pricing policy for a market segment.
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In some other areas of application like biology or medicine, we can use HSA to find out

hidden confounders. For example, in a cross-sectional study to examine the relationship

between a disease and other features of interest at a single point, there might exist missing

or unobserved confounders that interact with the collected observed features to affect the

response. As a result, the hidden confounder leads to dramatically different coefficients

vector which cannot be uniform over all samples. Our method enables us to separate the

data into different group under which we fit multiple GLMs and estimate the coefficients

correspondingly to make a better prediction for the response.

The idea of HSA could also be used in community detection with some minor adjust-

ments to its objective function. Identifying network communities can be viewed as the

problem of clustering a set of nodes into communities, where a node can sometimes belong

to multiple communities. Because all the nodes in each community share some common

properties or attributes, and because they have many relationships among themselves, one

could use such information to perform the clustering task. The first source is the data about

the objects and their attributes. For example, the users’ social network profiles, or authors’

publication histories may tell us how to group. The second source of data comes from

the edges connections between the objects like users from friendship, authors collaborate.

Since the objective function of HSA is constructed by two parts: an overall loss and a reg-

ularization to enforce equi-sparsity, we can use the first data source to determine the loss

function, and use the second data source to enforce the grouping stucture. In this way, we

combine the network and attribute information into a single model, and they will jointly

determine the group patterns.

HSA is related to convex clustering. Convex clustering ensures a unique global mini-

mizer compared with other popular clustering methods like k-means or hierarchical clus-

tering. Lindsten, Ohlsson, and Ljung (2011) and Hocking et al. (2011) formulated the clus-

tering task as a convex optimization problem. Lindsten, Ohlsson, and Ljung (2011) consid-

ered several lp norm penalty while Hocking et al. (2011) considered l1, l2 and l1 penalties.
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Chi and Lange (2013) introduced two algorithmic frameworks to solve the convex clus-

tering problem. Chen et al. (2015a) compared it with traditional hierarchical clustering.

Similar to our model’s setting, She (2010) also used a weighted l2 penalty to enforce clus-

tering. She 2009 grouped the predictors for generalized linear models using non-convex

penalties including discrete l0 and l0 + l2 type penalties. The newly proposed model ap-

plies convex relaxation under the generalized linear model’s framework, and enables us to

identify the hidden structure within the data and make the response modeling concurrently.

Finite-mixture models are also very popular to handle heterogeneity within the data.

There is a large body of literature on finite mixture of regressions see, e.g. Frühwirth-

Schnatter (2006a), in which each component distribution of a finite mixture is linked to a

separate regression. An analyst can employ a (finite) mixture of many regressions model

if heterogeneity is suspected in the relationship between covariates and the response vari-

able. But there are too many possibilities of the latent subpopulations and may result in

difficulties in model selection. More importantly, the methods based on the mixture model

assumption require knowing the grouping information beforehand, as well as some para-

metric model assumptions, which might be unrealistic to obtain in lots of applications.

Compared to the aforementioned models in the literatures, HSA has its own character-

istics and advantages. First of all, it gives a novel cluster generalized linear model that has

a convex optimization formulation and admits simple and stable iterative algorithms guar-

anteed to converge to unique global minimizer. In this way, it is both flexible and easily

to implement. Second, traditional clustering methods often suffer from choosing a proper

number of clusters. The proposed method will generate a solution path from which we can

often easily to visually recognize the right number of groups. Third, our algorithm is scal-

able and potentially apply to large-scale data. When computing resources are limited (for

example, without GPU enabled environment), a model-based stratified sampling process

can be used to reduce the computation burden further. In our experience, meaningful and

robust grouping patterns can be generated effectively on several real data applications.



18

The rest of the chapter is organized as follow. We first specify the model assumptions

along with its weighed regularizer. Then we will introduce the computational algorithms to

solve the optimization problem. Next, we will make some non-asymptotic analysis on the

minimax lower bound and upper error bound. In the end, simulation and real data examples

will be provided.

2.2 Model Specification

2.2.1 Notations and Definitions

We summarize the notations and the definition of norms used in this chapter. Matrices are

represented as boldface uppercase letters. Vectors are written as boldface lower case letters.

The lp norm of any vector v 2 Rn is defined as kv kp = (
Õn

i=1 |�i |
p
)

1
p (0  p 

1
2 ). The

Frobenius norm of any matrix M = {mij} 2 Rn⇥r is defined as

kM kF =

vut r’
j=1

n’
i=1

m2
ij . (2.2)

The lp norm for M is defined as

kM kp = sup
x,0

kMx kp

kx kp
. (2.3)

For p, q � 1, the Lp,q norm is defined as

kM kp,q =

✓ r’
j=1

� n’
i=1

|mij |
p � qp ◆ 1

q

. (2.4)

Specifically, the L2,1 norm is

kM k2,1 = max
1in

vut r’
j=1

m2
ij . (2.5)



19

Denote kM k2,C to be the unique number of rows in M . Furthermore, we define the l2 inner

product between two vectors with the same shape as

hv1,v2i2 = v
T
1v2. (2.6)

For any matrix N = {nij} 2 Rn⇥r with the same shape as M , the Frobenius inner product

between the two matrices is defined as

hM,N iF =

r’
j=1

n’
i=1

mijnij . (2.7)

2.2.2 The Statistical Model

Given a data set of n observations and p features denoted by D = {(xi ,�i)} (|D| = n,xi 2

Rp,�i 2 R), a standard GLM response variable Yi = �i is assumed as follows,

f (�i | xi) / exp(�i�i � � (�i)), �i = xi� , (2.8)

where f (�i | xi) is the density given xi , � 2 Rp is a coefficient vector to be estimated.

Equation (2.8) gives an example in the exponential family. Let the conditional mean µi =

E(Yi | xi). Assuming

�(µi) = �i = xi�, (2.9)

where the link function �(·) specifies the relationship between the linear combination �i .

Some commonly used link functions include logit, log link, etc.. We also denote � 0(·) as

the derivative of the cumulant function � (·) in equation (2.8). The standard notation of

GLM likelihood function often uses b(·), but to avoid confusion, � (·) is used thereafter.

The goal of HSA is to partition data D into � (1 < � < n) different groups such that

the observations in the same group share approximately the same GLM parameter. Denote
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the sample-dependent design matrix as X i = (0, . . . ,xi , . . . , 0) where only the i-th row is

non-zero and equals xi . Assigning an independent coefficient �i 2 Rp
(i = 1, . . . ,n) to

each sample, equation (2.9) is replaced by:

�(µi) = x
T
i �i = hX i ,BiF . (2.10)

Let Ii 2 {1, . . . , � } be the membership variable where 1  �  n. Denote the concatenated

coefficient matrix constructed by all coefficient vectors �is as B = (�1, . . . , �n)
T
2 Rn⇥p .

The �is have only � distinct choices. Let �⇤

j denote the coefficient vector for group j (1 

j  � ), then the group status of the i-th sample is determined by

�i = �
⇤

j if Ii = j .

As a result, we will estimate the group status of each sample by estimating the coefficient

matrix B through an optimization problem. Next, we will specify the objective function to

solve B.

2.2.3 Regularization

Since each sample has its own coefficient vector �i , the systematic component defined in

equation (2.8) should be � = (�1, . . . ,�n)T 2 Rn with �i = x
T
i �i . Denote the response

variable as Ä 2 Rn and design matrix as X = (x1, . . . ,xn)T 2 Rn⇥p . The objective function

of HSA is

f (B | Ä,X ) := l(B | Ä,X ) + P(B)

= � hÄ,�i2 + h1,� (�)i2 + P(B), s .t . �i = hX i ,BiF ,
(2.11)

where l(B | Ä,X ) is the GLM likelihood function defined in equation (2.8), P(B) is a

regularization term to enforce the equi-sparsity in B such that B will only have � unique

rows. The general form of P(·) is P(B) =
Õ

1i<jn P(�i �� j ; �ij). The over-parametrization
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form makes the regularization term P(·) play a crucial role. Fortunately, the subpopulation

assumption means that B possesses a great deal parsimony, namely, the number of distinct

rows in B is small. In order to enforce the equi-sparsity, we choose a weighted group l1

form penalty:

P(B) =
’

1i<jn
P(�i � � j ; �ij) = �

’
1i<jn

wij k�i � � j k2, (2.12)

where �ij = �wij is a data dependent weight to further improve the grouping pattern. Here

wij is the weight to adjust the strength of the penalty on each difference term k�i �� j k, and

� is an overall regularization parameter. The penalty term improves the interpretability of

the coefficient estimation. Similar to the rationale of LASSO (Tibshirani 2011) for variable

selection, the pairwise penalty is able to make some rows in B exactly equal to each other. It

is also worthy to note that the data dependent weight {wij}(1i<jn) is indispensable based

on the theoretical analysis in She (2009). A plain penalty �k�i � � j k2 would be weak

and not effective in capturing the hidden structure. The weighted l1 form or a non-convex

sparsity-inducing penalty is more helpful.

With the help of the regularization term, we can generate a solution path of B by varying

�. Figure 2.1 shows an example of the solution path generated using the Tourism Data we

would analyze later. X -axis stands for the total number of groups within the data. We

choose 5 groups in total. Each group contains samples which lead to minor splits later.

2.2.4 Weighting Schemes

Since the choice of the weight {wij}(1i<jn) is crucial to our model, in this section, we will

introduce different weighting schemes.

Intuitively, if sample i and sample j are likely to belong to the same group, then the

weight valuewij should be sufficiently large to force k�i � � j k2 = 0. On the contrary, if the

grouping status between two samples is largely unknown, wij should not be overly large.
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Figure 2.1: Example of a Solution Path.



23

The dilemma here is that we may never know the true grouping status beforehand. Thus,

the basic idea is to get an initial estimation of �i (1  i  n), and this pilot estimate is

denoted by B0 = (�10, . . . , �n0). Then we can use B0’s row-wise similarity to formulate the

weight. Based on this idea, we propose two different weighting schemes:

1. Nearest Neighborhood Method: When � is small and wij = 1 (1  i < j  n)

in equation (3.6), the solution B would contain lots of distinct rows. It can naturally be

used as a pilot estimation of B. Furthermore, inspired by some past works (Chi and Lange

(2013), Chen et al. (2015a)) on convex clustering, we use an empirical formula

wij =

8>>>><
>>>>:

10e��d
2
i j , �0i(�0j) is within the k nearest neighbors of �0j(�0i),

e��d
2
i j , otherwise

(2.13)

where dij = k�0i � �0j k2 (1  i < j  n). However, we realized that dij may contain

some extremely large or small values in practice which could be too strong to be used in

weight construction. Thus, we truncate extremely small dijs (smaller than its 10% quantile)

to be exactly its 10% quantile, and extremely large dijs (larger than its 90% quantile) to

its 90% quantile. Here, � is a scale parameter to control the cohesive strength, and � = 0

corresponds to wij = 1. We set different thresholds (1 and 10) based on the neighborhood

condition between �0i and �0j . For tuning convenience, we scale the weight {wij}1i<jn

to the sum of 1 in the end.

2. Bayesian Method: Although the first method is convenient, it is not always stable.

Since we get B0 from a plain weight which does not have very strong grouping power, the

resulting structure of B0 might be misleading. As a result. We propose the second weight-

ing scheme based on Bayesian inference to get B0. The whole process has three steps:

Step one: Fit a standard GLM using the whole data set. We generally recommend standard-

izing each predictor to ensure all variables are on the same scale. The estimated coefficients

from the GLM is �̂ with standard deviation as �̂� .
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Step two: For each sample (xi ,�i) (i = 1, . . . ,n), we can get an independent posterior

estimation of �i from GLM. The likelihood for a single observation is in equation (2.8).

Bayesian analysis requires specifying prior distribution f (�i). Based on the GLM from

step one, it is natural to assume the prior distribution follow �i ⇠ Normal(�̂ , c�̂� ). c is

positive constant, and we usually set it larger than 1 to allow more flexibility to its posterior

estimation. The posterior distribution of �i satisfies:

f (�i | �i ,xi) / f (�i)f (�i | x i), (2.14)

where f (�i | xi) is obtained from equation (2.8). We can draw this posterior distribution

through Markov Chain Monte Carlo (MCMC) using Rstan (https://mc-stan.org/

docs/2_21/stan-users-guide/index.html). We estimate �i as its posterior

mean. Since the estimation of intercepts is meaningless (because they are all estimated

based on the same value 1), we drop it and denote the rest as �̂i0. In this way, posterior

estimations from each sample form a matrix B0 = (�̂10, . . . , �̂n0)
T . Intuitively, samples

having similar posterior estimations should be more likely to belong to the same group.

Step three: Use B0 to generate wijs in two ways.

(2a). Principle Component Ranking In some cases, the direction with the most variation

within B0 also contains critical group information. Thus, we can select the first principle

component of B0 and use it to rank. Denote the first principle component as z1 2 Rn. Then

we can get the rank order of z1 as r 1 = (r1 . . . , rn)T 2 Rn. The weight can be formulated as

wij =
1

|ri � rj |k
, 1  i < j  n, (2.15)

where k > 0 controls the cohesive strength. We can tune k or set a default value (like 2 or

3) in practice. We rescale {wij}1i<jn to the sum of 1 in the end.

(2b). Relative Ranking. Assigning rank is easy for 1-dimensional arrays. But not for

multi-dimensional arrays. Using the first principle component might lose some useful

https://mc-stan.org/docs/2_21/stan-users-guide/index.html
https://mc-stan.org/docs/2_21/stan-users-guide/index.html
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information as well. Thus, we propose a ranking method that can be directly used on

multi-dimensional arrays. Given B0, for any �i0 and � j0 (1  i < j  n), consider set

S1 = {k�i0 � �l0k2 | k , i, 1  k  n} and set S2 = {k� j0 � �l0k2 | k , j, 1  k  n}. Let

r ⇤ij be the rank order of k�i0 � � j0k2 in S1, r ⇤ji be the rank order of k�i0 � � j0k2 in S2. Then

we denote

rij =
r ⇤ij + r

⇤

ji

2

as the rank of kb0i � b0j k2 among all pairwise differences related to �0i and �0j . Let

wij =
1
rkij
, (2.16)

where k > 0 also controls the cohesive strength as in equation (2.15). We rescale {wij}1i<jn

to the sum of 1 in the end.

2.3 IOSA: Algorithm Formulation

It is easy to verify that f (B | Ä,X ) in equation (3.5) is convex, but solving the optimization

problem is still nontrivial because of the non-linear objective function and many pairwise

difference terms in the penalty. Our algorithm starts with a so-called “linearization” of

f (B | Ä,X ). Then by solving a simpler optimization problem using operator splitting

method at each step, we will get a set of iterates that converges to a global minimizer of

the optimization problem (3.5). We also employ a momentum-based acceleration scheme

(Beck and Teboulle 2009) to speed the convergence. The whole algorithm is names as

IOSA (Iterative Operator-splitting for Samples Algorithm) and is summarized as below:
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Algorithm 1 IOSA

Initialize B[0] = B
[1], �0 = 1.

for k = 1, 2, 3, . . . do

� [k] = (

p
(� [k�1])4 + 4(� [k])2 � (� [k])2)/2

B
[k]
acc = B

[k] + � [k](1/� [k�1]
� 1)(B[k]

� B
[k�1]

)

Z
[k] = B

[k]
acc �� (B[k]

acc)/� where� (·) is defined in equation (2.18)

Solve the inner optimization problem:

B
[k+1] = arg min

B

1
2 kZ

[k]
� Bk

2
F + �̃wij

’
1i<jn

k�i � � j k2,

where �̃ is a known parameter to be specified later.

We use the following relative error as the stopping criteria.

kB
[k+1]

� B
[k]
k1

kB
[k]
k1

< �,

where � > 0 is a small positive value, say 1e � 3. Alternatively, we can also calculate the

duality gap as the stopping criteria. A derivation of the duality gap is given in Appendix

A.2.

In the next section, we will show the details of the algorithm design

2.3.1 Linearization

First, we introduce a surrogate function. Denote X i to be a matrix of zeros except for the

i-th row to be xTi . Given any matrix B
�
2 Rn⇥p , the surrogate function of B at B� is defined

as

G(B,B�
) =l(B�

) +
⌦ n’
i=1

{� 0(hX i ,B
�
iF ) � �i}X i ,B � B

�
↵
F

+
�

2 kB � B
�
k

2
F + P(B).

(2.17)
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Here � > 0 is the inverse step size which can be chosen later. Denote

� (B) :=
n’
i=1

{� 0(hX i ,BiF ) � �i}X i

. We have the matrix representation,

� (B) = diag{[� 0(�) �Ä]}X .

Now, given any initial point B[0]
2 Rn⇥p , a sequential of B is iteratively determined by

B
[k+1] = arg min

B

G(B,B[k]
), k = 0, 1, . . . .

Theorem 2.3.1 shows that B[k] will converge to the solution of the minimization problem

(3.5). The proof of the theorem can be found in Appendix A.1.

Theorem 2.3.1. Let A =
Õn

i=1�ec(X i)�ec(X i)
T . As long as � � kAk2/4, for all k � 0,

f (B[k+1]
)  G(B[k+1],B[k]

)  G(B[k],B[k]
)  f (B[k]

).

i.e., the function values are non-increasing, and thus are convergent. Furthermore, when

� > kAk
2
2/4, the sequence of iterates B[k] converges.

Remark 1. The inequalities might be strengthened to prove the convergence of iterates.

For example:

G(B[k],B[k]
) �G(B[k+1],B[k]

) �
�

2 kB
[k+1]

� B
[k]
k

2
F .

Remark 2. In our scenario, we actually have

kAk2 = kX k
2
2,1 = max

1in
kxi k

2
2 .
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After linearization, the problem boils down to solving

min
B2Rn⇥p

1
2
��B[k]

�

Õn
i=1{�

0
(hX i ,B

[k]
iF ) � �i}X i

�
� B

��2
F +

1
�
P(B).

Let Z = B
[k]

� � (B[k]
)/� and �̃ = �

� . We can solve the optimization problem (3.5) by

iteratively solving the following quadratic optimization problem:

min
B

1
2 kZ � Bk

2
F + �̃

’
1i<jn

wi,j k�i � � j k2. (2.18)

Remark 3. The previous algorithm is a first-order one, using only the gradient information

to update the iterates. A Newton or Quasi-Newton algorithm can be derived instead, such

as minFunc: unconstrained differentiable multivariate optimization in Matlab. (Appendix

A.3 provides a derivation based on it). In comparison, our algorithm is more scalable in

higher dimensions, although in lower dimensions it may converge slower.

In the next section, we will introduce three different algorithms to solve the inner optimiza-

tion problem in equation (2.18).

2.3.2 Operator Splitting for the �-optimizer

We introduce three different algorithms to solve (2.18). We first define some matrices to

prepare for the algorithm derivation.

We introduce a pairwise difference matrix T = (t1, . . . , t l ) = {ti,j} 2 Rl⇥n where

l = n(n�1)
2

T :=

©≠≠≠≠≠≠≠≠
´

1 �1 0 . . . 0

1 0 �1 . . . 0
...
...
...
. . .

...

0 0 0 1 �1

™ÆÆÆÆÆÆÆÆ
l̈⇥n

. (2.19)

T does not have full rank and rank(T ) = n�1. We introduce an index one-on-one mapping
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F from the set of indexes S3 := {1 . . . , l} to S4 = {(i, j) | 1  i < j  n}:

F (i) = (i1, i1), s .t . ti,i1 = 1, ti,i2 = �1.

In this way, the weight value wijs (1  i < j  n) could be expressed as a vector of length

l . Namely

w = (wF (1), . . . ,wF (l))
T
2 Rl . (2.20)

Then we can define diagonal matrices � 2 Rl⇥l and �̃ 2 Rl̃⇥l̃ where l̃ := l + 1

� = �̃ · diag(w), �̃ = �̃ · diag(0,w). (2.21)

We obtain the SVD ofT from She (2010) and letT = U 0D0V
T
0 , where U 0, D0, V 0 are

U 0 =
⇣
u21

1
p
n
TV 1

⌘
l⇥n
, u21 =

1
p

3

⇣
0 · · · 0 1 �1 1

⌘T
l⇥1
,

V 1 =

r
2
n

⇣
cos ( (2i�1)j�

2n )

⌘
n⇥(n�1)

, D0 = diag
⇣
0

p
n · · ·

p
n
⌘
n⇥n
,

V 0 =
⇣

1
p
n
1n⇥1 V 1

⌘
n⇥n
.

Here U 0 and V 0 satisfy

U
T
0U 0 = I , V

T
0V 0 = V 0V

T
0 = I .
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Sometimes, we want to add a row of 1s toT to get a full column rank T̃ 2 Rl̃⇥n

T̃ =

©≠≠≠≠≠≠≠≠≠≠≠≠
´

1 1 1 1 1

1 �1 0 . . . 0

1 0 �1 . . . 0
...
...
...
. . .

...

0 0 0 1 �1

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨l̃⇥n

. (2.22)

Denote the SVD of T̃ as T̃ = UDV
T . Let

H := VD
�1
U

T , C̃ := T̃B. (2.23)

We have

HT̃ = I , B = HC̃ . (2.24)

The SVD ofT is

U =
©≠≠
´
1 1

0 1
p
n
TV 1

™ÆÆ
¨l̃⇥n

and

D = diag(
p
n, . . . ,

p
n)n⇥n, V = V 0

satisfying

U
T
U = I , V

T
V = VVT = I . (2.25)

We will use these matrix notation to introduce three algorithms to solve equation (2.18).

2.3.3 Algorithm One: ADMM

ADMM (Alternating Direction Method of Multipliers) (Boyd, Parikh, and Chu 2011) is

a popular algorithm to solve convex optimization problems. Its basic idea is to break the
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problem into smaller pieces by introducing an ancillary operator, denote asC := TB 2 Rl⇥p .

Since the linearized problem in equation (2.18) is convex but not strongly convex, we can

add an augmented term to make it strongly convex and get an equivalent problem

min
B,C

1
2 kZ � Bk

2
F + k�Ck2,1 +

�

2 kTB �Ck
2
F , s .t . TB = C,

where the l2,1-norm, �, T are defined in equation (2.4), (2.19), (2.21), and � > 0. The

Lagrangian is

L� (B,C, �) =
1
2 kZ � Bk

2
F + k�Ck2,1 +

�

2 kTB �Ck
2
F + h�,TB �CiF ,

where � = (�1, . . . ,� l )
T
2 Rl⇥p is the Lagrangian multiplier. Since jointly minimizing B

and C is difficult, we minimize B and C separately. This yields

B
[k+1] = arg min

B

L� (B,C
[k], �[k]), (2.26)

C
[k+1] = arg min

C

L� (B
[k+1],C, �[k]), (2.27)

�[k+1] = �[k] + � (TB[k+1]
�C

[k+1]
). (2.28)

To solve equation (2.26), we can take the partial derivative of L� (·,C, �) with respect to B

and set it to 0. We have

(I + �TT
T )B = Z + �TT

(C �
1
�
�T ).

It’s easy to verify thatTTT = nI � n11T , using Sherman-Morrison formula (Chavez 2006),

we can get (I + �TTT
)
�1 = 1

1+n� [I + �11T ]. Thus,

B =
1

1 + n� (I + �11T )[Z + �TT
(C �

1
�
T
T
)].
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On the other hand, Solving equation (2.27) is equivalent to solving

arg min
C

1
2 [kC � (TB �

1
�
�)k2

F +
1
�
k�C k2,1].

The above equation for C = (c1, . . . ,cl )
T is separable for each row. Thus we can get ci by

the proximal mapping and get

ci = prox� k·k2(t iB �
1
�
� i), i = 1, . . . , l ,

where �l = �̃wl/� .

In the summary, we can get the following algorithm:

Algorithm 2 ADMM

Initialize �[0] and C
[0]

for k = 1, 2, 3, . . . do

for j = 1, . . . ,n do

p j = z j +
Õ

i:i1=j(�c
[k�1]
i +�

[k�1]
i ) �

Õ
i:i2=j(�c

[k�1]
i +�

[k�1]
i )

B
[k] = 1

1+n� P
T + n�

1+n� Z̄ , P = (p1, . . . ,pn)
T , Z̄ = 1

nZ
T1n1Tn

for i = 1, . . . , l do

c
[k]
i = prox�l (�

[k]
i1 � �

[k]
i2 � ��1

�
[k�1]
i ), �i = �̃wi/�

�[k]l = �[k�1]
l + � (c[k]l � �

[k]
i1 + �

[k]
i2 )

The stopping criteria is formed based on the primal and dual residuals given by Boyd

as below: 8>>>><
>>>>:
p
[k+1]
i = �

[k+1]
i1 � �

[k+1]
Iis

� c
[k+1]
i , i = 1, . . . ,n,

d
[k+1]
i = �� (

Õ
j1=i(c

[k+1]
l � c

[k]
l ) �

Õ
j2=i(c

[k+1]
l � c

[k]
l )),

(2.29)

We stop the algorithm until kp[k+1]
i � d

[k+1]
i k2 is small enough.
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2.3.4 Algorithm Two: AMA

AMA (Alternating Minimization Algorithm) is proposed by Tseng (1991) to solve convex

optimization problems with two-block separable linear constraints and objectives. Com-

pared with ADMM which augments B and C together, it only augments the term which is

not strongly convex. It borrows strength from proximal gradient method (Parikh and Boyd

2014) and gets rid of the complete augmentation in ADMM.

The linearized problem in equation (2.18) is equivalent to

min
B,C

1
2 kZ � Bk

2
F + k�C k2,1, s .t . TB = C . (2.30)

The Lagrangian is

L(B,C, �) =
1
2 kZ � Bk

2
F + k�Ck2,1 + h�,TB �CiF , (2.31)

where � = (�1, . . . ,� l )
T
2 Rl⇥p is the Lagrangian multiplier. To minimize the Lagrangian

w.r.t. B and C, we first take the partial derivative of L(·,C, �) with respect to B and get

B = Z �T
T �.

Substituting it into equation (2.31), we get the dual problem

max
�

D(�) =
1
2 kZ � (Z �T

T �)k2
F � (k� · k2,1)

⇤
(�) + h�,T (TT � � Z )iF ,

where (k� · k2,1)
⇤
(�) = sup

C
hC, �iF � k�Ck2,1 is the Fenchel conjugate of k� · k2,1. Since

the problem is convex with equality constraint, strong duality holds true. The dual problem



34

is equivalent to

max
�

D(�) =
1
2 kZ k

2
F � kT

T � � Z k
2
F/2 � (k� · k2,1)

⇤
(�)

, min
�

kT
T � � Z k

2
F/2 + (k� · k2,1)

⇤
(�). (2.32)

We can use proximal gradient method to solve equation (2.32). Let f (�) := kT
T � �Z k

2
F/2.

Assume rf is Lipschitz continuous with constant L, then proximal gradient update will

converge with first order rate when � 2 (0, 1
L ]. As a result, we can get the following update

of �:

�[k+1] = prox� k�·k⇤2,1(�
[k]

� � (TTT �[k] �TZ )), � 2 (0, 1
L
], k = 0, 1, . . . .

Chi and Lange (2013) pointed out that empirically � < 2
n often works when there are fewer

than 1000 data points. The Fenchel conjugate of k�̃ · k2,1 can be obtained row-wisely.

It is easy to prove that for any vector z, function h(x) := kx k2’s Fenchel conjugate is

h⇤(x) = �B(x). i.e., the delta function within the unit ball B = {x : kx k⇤2  1} where k · k
⇤

2

is the dual norm. Since the proximal mapping of the delta function of a closed convex set is

equivalent to projection (P(·)) onto the set, we finally get the Fenchel conjugate of k� · k2,1

to be

prox� k�·k⇤2,1(�) = (prox��Ci (� i))
l
i=1 = (P�Ci

(� i))
l
i=1

where Bi = {� i : k� i k
⇤
 �̃wi}. The identity ��Bi = �Bi holds because �Bi only takes value

0 and 1.

Note that we actually do not need to update C explicitly, and it’s easy to verify that

updating C is equivalent to minimizing the augmented Lagrangian

minC
1
2 kZ � Bk

2
F + k�Ck2,1 + h�,TB �CiF +

�

2 kTB �Ck
2
F .
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In the summary, we can get the following algorithm:

Algorithm 3 AMA
procedure

Initialize �[0]

for k = 1, 2, 3, . . . do

for j = 1, . . . ,n do

�[k]
j =

Õ
i:i1=j �

[k�1]
i �

Õ
i:i2=j �

[k�1]
i .

for i = 1, . . . , l do

h
[k]
i = zi1 � zi2 + �

[k]
i1

� �[k]
i2

�
[k]
i = PBi (�

[k�1]
i � �h[k]

i ), where Bi = {� i : k� i k2  �̃wi}

Furthermore, this algorithm can be accelerated through Nesterov’s acceleration (Beck

and Teboulle 2009). The accelerated version is as bellow:

Algorithm 4 Accelerated AMA

Initialize �[�1], � [0] = 1

for k = 0, 1, 2, . . . do

for j = 1, . . . ,n do

�[k]
j =

Õ
i:i1=j �

[k�1]
i �

Õ
i:i2=j �

[k�1]
i .

for i = 1, . . . , l do

h
[k]
i = zi1 � zi2 + �

[k]
i1

� �[k]
i2

�̃
[k]
i = PBi (�

[k�1]
i � �h[k]

i ), where Bi = {� i : k� i k2  �̃wi}.

Let � [k] := (1 +
p

1 + 4(� [k�1])2)/2

�
[k+1]
i = �̃k

i +
� [k�1]

� [k ] [�̃
[k]
i � �̃

[k�1]
i ]
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We can use duality gap as the stopping criteria. Define

P(B[k]
) =

1
2 kZ � B

[k]
k

2
F + k�TB[k]

k2,1,

D(�[k]) = �
1
2 kT

T �[k]k2
F/2 �

l’
i=1

�
k� i k2�̃wi

� h�[k],TZ iF .

We will stop if |P(B[k]
) � D(�[k])|  � with a pre-specified small � > 0.

2.3.5 Algorithm Three: Dykstra Projection

The previous two algorithms are both based B and C. For the third algorithm, we intro-

duce the Dykstra’s prpjection algorithm (Combettes and Pesquet 2011). We re-formulate

equation (2.18) in terms of C̃ defined in equation (2.23). Since T̃ in equation (2.22) is

complemented fromT , we call this algorithm as complemented minimization algorithm.

Similar as before, using H defined in equation (2.23) and combining equation (2.24),

we can define a surrogate function of C̃ at C̃⇤

G(C̃, C̃
⇤
) =l(C⇤

) + h

n’
i=1

{� 0(hHT
X i , C̃

⇤
iF ) � �i}H

T
X i , C̃ � C̃

⇤
iF

+
�

2 kC̃ � C̃
⇤
k

2
F + P(C̃),

where P(C̃) := k�̃C̃ k2,1. Denote

� (C̃) =
n’
i=1

{� 0(hHT
X i , C̃

⇤
iF ) � �i}H

T
X i

= H
Tdiag{[� 0(�) �Ä]}X

As a result, given C̃
[k] at step k , we can update C̃[k+1] through

C̃
[k+1]

= arg min
C̃

G(C̃, C̃
[k]
).
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Let Ã =
Õn

i=1�ec(H
T
X i)�ec(H

T
X i)

T . Using the similar proof in Theorem 2.3.1, we can

get that if � �
kH̃ k2

4 , we have:

f (C̃
[k+1]

)  G(C̃
[k+1]
, C̃

[k]
)  G(C̃

[k+1]
, C̃

[k+1]
)  f (C̃

[k]
).

As a result, the problem boils down to solving

min
C̃

1
2 kC̃

[k]
�

Õn
i=1{�

0
(hH

T
X i , C̃

[k]
) � �i}H

T
X i

�
� C̃k

2
F +

1
�
P(C̃)

Let Z̃ = C̃[k]
�� (C̃

[k]
)/�, �̃ = �

� . From equation (2.24) and (2.25), we have

THC̃ = C̃ , UU
T
C̃ = C̃ , U ?U

T
?C̃ = 0 , U

T
?C̃ = 0 , C̃ = U�, 8� 2 Rn⇥p,

where U ? is the orthogonal complement of U . The linearized problem is

min
C̃

1
2 kZ̃ � C̃k

2
F + k�̃Ck2,1, s .t . C̃ = U�, 8� 2 Rn⇥p .

It is equivalent to the following optimization problem

min
C

1
2 kZ̃ � C̃k

2
F + P1(C̃) + P2(C̃), (2.33)

where

P1(C̃) = k�̃C̃k2,1,

P2(C̃) = �(C̃ = U�, 8�) =

8>>>><
>>>>:

0 C̃ = U�,

1 o.w ..

We treat C̃ in P1(C̃) and P2(C̃) as two different variables C̃1 = C̃, C̃2 = C̃. The dual problem
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for equation (2.33) with dual variables � 2 Rl̃⇥p , � 2 Rl̃⇥p introduced for C̃1, C̃2 is

min
�,�

1
2 kZ̃ � � � �k2

F + P
⇤

1(�) + P
⇤

2(�). (2.34)

Since equation (2.33) is strongly convex, strong duality holds true. We can solve the primal

problem through updating primal and dual iteratively. The final algorithm is summarized

as below

Algorithm 5 Dykstra’s prpjection algorithm

Initialize �[0] = �[0] = 0, and C̃
[0]
= Z̃

for k = 0, 1, 2, . . . do

C̃
[k+1]
1 = proxP1(C̃

[k]
k + �[k]),

where proxP1(A) = {proxP1(ai)}
l̃
i=1 = {(1 �

�̃wl
kai k2

)+ai}
l̃
i=1 for any matrix A =

(a1, . . . ,am)T 2 Rm⇥r

�[k+1] = �[k] + C̃
[k]
2 � C̃

[k+1]
1

C̃
[k+1]
2 = proxP2(C̃

[k+1]
1 + �[k]

)

where proxP2(C̃) = UU
T
C̃

�[k+1] = �[k] + C̃
[k+1]
1 � C̃

[k+1]
2

Stop until kC̃[k+1]
2 � C̃

[k+1]
1 k1 is small enough

2.4 Theoretical Properties

2.4.1 Minimax Lower Bound

In this section, we will show that the minimax lower bound for HSA method is of the order

[�p + n log � ]/K where K can be set as kX k2,1. We summarize it in the following results.

Theorem 2.4.1. Let

B
⇤
2 S(� ) = {B 2 Rn⇥p : kBk2,C  � }
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where n � � � 2, Then there exists positive constant C such that

inf
B̂

sup
B
⇤
2S(� )

EkB̂ � B
⇤
k

2
F

[�p + n log � ]/kX k2
2,1

� C > 0, (2.35)

where X = (x1, . . . ,xn)T is the predictor matrix, B̂ is any estimator and C is a universal

constant.

Therefore, when xi
i .i .d .
⇠ N (0,� 2�), kX k

2
2,1 is of the order � 2p on average. If we assume

a numerical setup with � 2 : O(1), then kX k
2
2,1 is of the order O(p). In a balanced grouping

case, it gives n
� rows for each group. Denote �

⇤ = ((�
⇤

I1)
T , . . . , (�⇤

I � )
T
), �̂ = (�̂

T
I1, . . . , �̂

T
I � ).

Then

kB̂ � B
⇤
k

2
F =

n

�
k�̂ � �

⇤
k

2
2 .

As a result, the actual rate should be

[�p + n log � ]
�

np
= O(

� 2

n
+

� log �

p
).

It indicates when n >> � 2, p >> � log � , we will have a small error. So large p is a blessing

to HSA method in additional to the large sample size. Appendix A.4 gives the detailed

proof of Theorem 2.4.1.

2.4.2 Prediction Upper Bound

In this section, we will show that the prediction error bound for an l0-type penalty problem

is of the order p + (n + 1)(n �
n
� ⇤ ) where � ⇤ is the group number of the true model. We will

use the logistic regression with Bernoulli distribution as out setup.
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Given X 2 R
n⇥p , � = (�1, . . . ,�n)T with �i = x

T
i �i , let

X̄ =

©≠≠≠≠≠≠≠≠
´

x
T
1 0 . . . 0

0 x
T
2 . . . 0

...
...
. . .

...

0 0 . . . x
T
n

™ÆÆÆÆÆÆÆÆ
¨

= dia�(xTi )

and the vectorization of B as �̄ = (�1, . . . , �n)
T
2 R

np⇥1. Assume that

l0(�) = l0(X̄ �̄ | Ä) = �hÄ,�i2 + h1,� (�)i2 = log P
X̄ �̄

(Ä), (2.36)

where � (�) = (� (�1), . . . ,� (�n))T and � (�i) = log(1 + exp�i) for any i = 1, . . . ,n. The loss

corresponds to the Bernoulli distribution with cumulant function � (·).

Our tool to tackle the loss function is the generalized Bregman defined for any given

differentiable�

�� (� , �) := � (� ) �� (�) � hr� (�),� � �i2. (2.37)

If � is also strictly convex, �� (� , �) becomes the standard Bregman divergence D� (� , �),

but our analysis does not require this for l0(·). When � (�) = k� k
2
2/2, �� (� , �) = k� �

� k
2
2/2, abbreviated as D2(� , �).

Consider the l0 penalty: P(�̄) =
Õ

1i<jn 1k� i�� j k
, 0. We have the following theorem

Theorem 2.4.2. Let �0 =
p+n
n . Assume the following regularity condition holds: 9µ > 0,

k � 0 such that

�l0(X̄ �̄1, X̄ �̄2) + K�
2
0P(�̄1) + K�

2
0P(�̄2) � µD2(X̄ �̄2, X̄ �̄1) (2.38)

for all �̄1, �̄2 2 R
np⇥1. Let � = A(

p
K _

1
p
µ )�0 with A to be a sufficiently large constant, Let
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�̂ be the optimal solution to

min l0(X̄ �̄) +
�2

2
’

1i<jn
1k� i�� j k

, 0. (2.39)

Then

E[kX̄ ˆ̄
� � X̄ �̄

⇤
k

2
2]  C ·

Kµ _ 1
µ2 [p +

p + n

n
P(�̂

⇤

)]

= C ·
Kµ _ 1
µ2 [p + (p + n)(n �

n

� ⇤
)]

(2.40)

where �̄⇤
, � ⇤ are the coefficient vector and group number of the true model,C is a universal

constant.

The proof of the theorem can be found in Appendix A.5. Note that the regularity

condition holds for linear regression with K = 0 and µ = 1. For other penalties, we

can obtain a similar error bound. But we will not illustrate in detail here. Specifically,

according to the theorem, when � ⇤ = 1, the upper bound error rate is of the level p, which

equals to the number of free parameters in the model. The rate of the upper bound matches

the minimax lower bound up to a multiplicity constant in the imbalanced grouping case,

and the error rate is larger in the balanced grouping case. This results indicates that the

uniform � might generate relatively large error in some cases. Thus, it motivates us to

use the data dependent weight wij to further reduce the error. Numerical results we will

show later also indiates the effectiveness of properly constructed weights on the grouping

structure.

2.5 Simulation Experiments

In this section, we will conduct series of experiments to test the performance of HSA

method.
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2.5.1 Running Time Comparisons

We first compare the running time of the three algorithms proposed in Section 2.3.2. As-

sume the total sample size is n, and half of the samples come from one of two logistic

regressions described below:

lo�it(pi) = log pi
1 � pi

=

8>>>><
>>>>:
�0.5 � 0.1x1i + 0.4x2i Ii = 1,

0.2 + 0.5x1i � 0.1x2i Ii = 2,
(2.41)

where Ii is the true state of sample i. The average sample variance (
Õn

i=1
pi (1�pi )

n ) of the data

is around 0.1. The 3D-scatter plot of Ä v.s. X is shown in Figure 2.2.

We choose different sample sizes n = 50, 100, 150 to make comparisons. We use the

principle component induced ranking introduced in Section 2.2.4 to formulate the weight

w , and compared the running time of three algorithms when the solution of equation (3.5)

converge to 2 groups. In order to make a fair comparison. We use the loss function value

of Dykstra’s projection algorithm as a reference, and stop the other two when their loss

function values become lower than it. We repeat the experiments for 50 times. Figure 2.3

shows the comparison results of 50 repeated experiments. The x-axis stands for the sample

size, and the y-axis stands for the quantile value of the running time in unit of second.

Three plots correspond to ADMM, AMA and Dykstra’s projection algorithm from left to

right correspondingly. It can seen that ADMM runs fastest among the three, and Dykstra’s

projection algorithm is the slowest. The reason is because Dykstra’s projection algorithm

needs to have the same initialization value at each iteration in the inner loop, while the

other two could have arbitrary initialized values. In this way, we can use the last updated

value as the current initialization in the inner loop as a warm start. It makes the other two

algorithms much faster than Dykstra’s projection algorithm. As a result, we will use AMA

for the rest experiments in the thesis.
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3D Scatter Plot
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Figure 2.2: Running Time Comparison - 3D Scatter Plot of Ä v.s. X .
The response variable is binary with each category containing samples from both groups. In another
word, it has overlaps within each binary response value. The average sample variance is around 0.1.
It is not trivial to separate them.

Figure 2.3: Running Time Comparison - Time Comparison Results.
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2.5.2 Weighting Scheme Comparison under Different Noise Levels

Since we proposed two types of weighting schemes in Section 2.2.4, we will compare the

performance of them through numerical examples. We first consider a two-state linear

regression with sample size n = 150.

�i =

8>>>><
>>>>:
�0.5 � 0.1x1i + 0.4x2i + �i Ii = 1,

0.2 + 0.5x1i � 0.1x2i + �i Ii = 2.
(2.42)

where �i ⇠ N (0,� 2
) (i = 1, . . . ,n). We chose multiple � values to see whether the noise

level will affect the performance or not. The total sample size is 150 with two equal size

groups. The 3D-scatter plot of � v.s. X at � = 0.3 is shown in Figure 2.4.

We conduct HSA using nearest neighborhood method and Bayesian method corre-

spondingly to equation (3.4). We use rand index (Rand 1971a) to measure the similarity

between the grouping results and the true label. Rand index ranges from 0 to 1, with 0

indicating that the two data clusterings do not agree on any pair of points and 1 indicat-

ing that the data clusterings are exactly the same. Figure 2.5 shows the rand index of the

grouping results under different noise levels under 50 repeated experiments. It can be seen

that Bayesian method outperforms nearest neighborhood method in this case, and the per-

formance will not vary a lot as noise level increases from 0.01 to 0.3. That is a good sign

indicating our method is relatively robust to the noise levels within the data.

2.5.3 Linear Regression and Logistic Regression Examples

Linear Regression: We first consider the linear regression example described in equation

(3.4) with � = 0.3. We use Bayesian method and get the principle component ranking

described in Section 2.2.4. We set k = 2.5 in equation (2.15), and get the grouping re-

sults at different sample sizes (n = 50, 100, 150, 200). We also calculate the rand index

of the “ideal” condition. Namely, calculate the distance of each sample to the hyper-plane
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Figure 2.4: Weighting Scheme Comparison - 3D Scatter Plot of � v.s. X .
Two groups are marked with green triangular dots and blue dots. It can be seen that the two groups
have a lot of overlaps, and it is not trivial to separate them.
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Figure 2.5: Weighting Scheme Comparison - Rand Indices for Different Weighting
Schemes.
Bayesian method has much better performance in this setting. When the noise level increases, the
performance does not get affect seriously. It indicates that HSA method is relatively robust to noisy
data.
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Figure 2.6: Linear Regression - Rand Indices under Different Sample Sizes.
It can be seen that the quantile value of the HSA method almost stay beneath the 25% quantile value
of the ideal cases. As the sample size increases, the variance of the rand indices gets smaller.

determined by the true model of the two groups:

dj =
|x

T
i � j � � |

k� j k2
, j = 1, 2.

Then use the group with smaller distance as the “ideal” label for this sample. Figure 2.6

shows the rand index of HSA results and “ideal” label under 50 repeated experiments. It

can be seen that the median values of the HSA rand index stay around 0.8, which is smaller

than the “idea” results. As sample size increases, variance of rand indices gets smaller. It

indicates that large sample size is potentially beneficial to HSA method.
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Logistic Regression: We next consider the logistic regression example described in equa-

tion (2.41). Similarly, we use Bayesian method and get the principle component ranking

described in Section 2.2.4. We set k = 3 in equation 2.15, and get grouping results at

different sample sizes (n = 50, 100, 150, 200). We also calculate the group label generated

from the “ideal” condition. Namely, calculate the log-likelihood value of each observation

using the true coefficients of group 1 and group 2:

lo�likej(xi ,�i , �
⇤

j ) = ��i · x
T
i � j + � (x

T
i � j), j = 1, 2.

Then use the smaller one as its group. Figure 2.7 shows the rand index of HSA and “idea”

label under 50 repeated experiments. It can be seen that the overall performance of the

logistic regression is worse than linear regression because of the stochastic random noise

within the Bernoulli distribution. HSA’s rand index is a little lower than the “ideal” case.

On the other hand, as sample size increases, the variance of the rand index gets smaller. It

also indicates that large sample size might be beneficial to the clustering performance.

In summary, we successfully capture the hidden structure within a data in both linear

regression and logistic regression examples using HSA. The performance of linear regres-

sion is better than logistic regression as expected. In the next section, we will apply HSA

method to real data.

2.6 Real Data Examples

This section illustrate two real data applications of HSA method.

2.6.1 Tourism Data

The first application focus on n = 180 monthly data concerning tourists overnights (X data

in millions) and attendance at museums and monuments (� data in millions) in Italy over

the 15-year period spanning from January 1996 to December 2010. The data have been
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Figure 2.7: Logistic Regression - Rand Indices under Different Sample Sizes.
The overall rand indices of logistic regression is smaller than linear regression. But the rand indices
of HSA is comparable with the “idea” case now. It indicates that clustering for logistic regression is
more difficult than clustering linear regression due to the stochastic randomness within the Bernoulli
distribution. As the sample size increases, the variance of the rand indices gets smaller.
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analyzed by Cellini and Cuccia (2013) and Ingrassia, Minotti, and Punzo (2014) and are

available at http://docenti.unict.it/punzo/Data.htm. Scatter plot of Ä v.s. X in Figure 2.9

shows some heterogeneity condition which indicates some hidden group-structure. Thus,

we will use HSA with respect to linear regression to explore this data.

Since it is a simple linear regression, instead of using Bayesian method to get a posterior

estimation of the coefficient matrix, we can directly use [X ,Ä] to generate the ranking

distance using equation (3.9). We set k = 3, and perform HSA on scaled Ä and X without

the intercept. Figure 2.8 shows the histogram of grouping results up to 5 different groups.

The x-axis stands for different months. It can be seen that the grouping structure align with

months information quite well. The five groups mainly correspond to the following month:

Group 1: January, February, November and December;

Group 2: March and October;

Group 3: April and May;

Group 4: June and September;

Group 5: July and August.

The scatter plot of grouping results in Figure 2.9 give us a straightforward visualization

of the pattern changing process while the number of groups changes. From these two

figures, it can be seen that we successfully find out the hidden structure within the data

corresponding to the month information.

2.6.2 Bank Marketing Data

The second data is related with direct marketing campaigns of a Portuguese banking in-

stitution. The goal is to predict if the client will subscribe a term deposit (�). The data

has been analyzed by Moro, Cortez, and Rita (2014), and can be accessed through UCI

machine learning repository (http://archive.ics.uci.edu/ml/datasets

/Bank+Marketing). We use the smallest data set: bank.csv with sample size n = 4521. The

data included 20 attributes, but the analysis we present below only concerns the following
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Histogram of the Grouping Results

Figure 2.8: Tourism Data - Monthly Histogram.
When � = 2, 3, 4, 5, the grouping results align with the unknown variable: month information quite
well.
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Scatter Plot of the Grouping Results

Figure 2.9: Tourism Data - Clustered Scatter Plot.
This figure contains the grouping results with � = 2, 3, 4, 5. It can be seen that as group number
increases, samples which deviates from the other will gradually split out, and formulate a new group.
Some grouping mis-match might happen during this process because B keeps changing slightly. In
the end, the five groups confirm with our intuition.
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Table 2.1: Coefficients of the Original Logistic Regression

Estimates Std. Error P value
(Intercept) 0.057348 0.027161 0.034791

age 0.001131 0.000465 0.015062
education 0.022385 0.006181 0.000296

housing -0.061664 0.009726. 2.52e-10

subset of variables:

Age: age of the client;

Education: 0: “unknown”, 1: “primary”, 2: “secondary”, 3: “tertiary”;

Housing: 1: “yes”, 0: “other (no or unknown)”.

We consider a Logistic regression with response variable Ä versus three predictors

above. Coefficients estimation of the model is summarized in Table 2.1.

We can use HSA method to see whether there exists hidden structure within the data.

Sometimes, due to the limited computational power, it is not feasible to conduct HSA

HSAon the whole data set together without GPU enabled computing environment. As a

result, we introduce a model-based stratified sampling method to divide the whole data

set into different sub-blocks, then conduct HSA process on each sub-block to get the final

group pattern. We will justify the effectiveness and robustness of the result at the same

time.

The whole idea of model-based stratified sampling can be summarized into a diagram

shown in Figure 2.10.

1. Divid the whole data set into K different parts with similar data structure. Since the

response variable is binary, we perform k-means clustering to each binary value, and

split the clustered data into K equal parts correspondingly. The process is shown in

the left penal in the diagram.

2. Combine the equal parts from different clusters into one sub-block. As a result, we

can get K different sub-blocks in total as shown in the middle part in Figure 2.10.
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Figure 2.10: Model-based Stratified Sampling - Diagram.

We perform HSA process on each sub-block, and get the state estimates from each

block. In this way, samples from the same state would be more similar to each other

in one sub-block.

3. Once getting the states estimates for each sub-block, we can draw samples from each

state of each block. In order to construct a mapping which we would use later, the

sub-sampling process should be performed based on a clustering procedure for each

state in a block. For example, we can divide the samples from one state of a sub-block

into k clusters, and draw 1 sample from each clusters. Then we get k subsample from

this state. In this way, we can map the state of these k subsamples to other samples

in this state naturally. Finally, we combine all subsamples from different sub-blocks

into a smaller data set. This data set could be very representative to the overall data

structure. As a result, we can make HSA on the it and map the resulted label to the

whole data according to their sub-sampling source. In this way, all samples would

get a label from conducting HSA on the final small data.
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Table 2.2: Coefficients of Two Separated Logistic Regression.

Estimates Std. Error P value

1st Group

(Intercept) �0.0498972 0.0168647 0.00313
age 0.0003781 0.0002909 0.19373

education 0.0197711 0.0039407 5.73e � 07
housing 0.8742960 0.0098088 < 2e � 16

2nd
Group

(Intercept) 0.9444135 0.0119306 < 2e � 16
age 0.0001651 0.0001879 0.379600

education 0.0084764 0.0024500 0.000549
housing �0.9626009 0.0056923 < 2e � 16

Using the procedure above, we chose K = 20 in our data, and got 20 different sub-

blocks in step 2. The total number of groups is set as 2 and 3 respectively. In order to

testify the robustness of the grouping results in terms of the sub-sampling procedure. We

chose 10 different random seeds and calculated the rand index between different grouping

results. Figure 2.11 shows the rand index with different number of groups. It can be seen

that almost all values are higher then 0.9. This indicates that our sub-sampling method gen-

erate consistent results from different random seeds. Thus, the robustness of the proposed

method is good.

Once we get the estimated states with two groups and three groups, we fit two and three

separate Logistic regressions based on their labels. Table 2.2 shows the modeling results

for two groups. It can be seen that in these two models, both of the age features are not

significant, and the coefficients for the housing features have opposite signs. It might stands

for two different types of people who manage their money with totally different habits.

As for the modes with three groups, we also fit three separate models based on the

estimated states. Table 2.3 shows results of three groups. It can be seen that the age

features are significant for two models, and one of the three groups has opposite sign for

the housing and education feature compared with the other two groups.

In summary, from these two real data examples, we can see that HSA method can help
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Table 2.3: Coefficients of Three Separated Logistic Regression

Estimates Std. Error P value

1st Group

(Intercept) 1.000e + 00 5.108e � 17 < 2e � 16
age �5.238e � 20 7.520e � 19 0.944

education �8.577e � 18 1.257e � 17 0.495
housing �1.000e + 00 2.515e � 17 < 2e � 16

1st Group

(Intercept) 1.000e + 00 1.859e � 16 < 2e � 16
age �7.821e � 18 3.165e � 18 0.0138

education �9.952e � 17 5.200e � 17 0.0562
housing �1.000e + 00 1.024e � 16 < 2e � 16

3rd
Group

(Intercept) 5.469e � 17 5.522e � 18 < 2e � 16
age �8.764e � 19 9.518e � 20 < 2e � 16

education 1.586e � 18 1.295e � 18 0.221
housing 1.000e + 00 3.273e � 18 < 2e � 16

us identify some hidden structures within the data. But when the data involves complex

information, or the data doesn’t contain comprehensive information with respect to what

we need, the hidden structure might not be easily seen as what we showed in the Tourism

data. For example, in the Bank Marketing data, we cannot directly attribute the grouping

pattern into some current available features. But fitting separate models according to the

grouping labels obviously convey different information from each group, and that is an

important sign of hidden structures. As a result, HSA method illuminates us to improve the

original model by fitting separate models or adding additional features.

2.7 Conclusion

This chapter has proposed a relational based clustering model: HSA, to identify the latent

variable or hidden structures within the data under generalized linear models. A convex

optimization problem is formulated, and we proposed different algorithms to solve it. We

select out the best algorithm based on the running time of simulation examples, and validate

the performance of the model through numerical examples under different settings. We
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provide two real data examples. For the Italy tourism data, we successfully cluster out the

subgroup aligning well with an additional feature: month, which is not included when we

fit the model. For the second data, since the sample size is relatively large, we propose

a model-based stratified sampling method to simultaneously conduct HSA on different

sections of the data. The resulting clusters are robust to the stratified sampling. The data is

clustered into two groups and three groups respectively, and the corresponding results are

quite interesting and illuminating.

One potential drawback of HSA method is that the quality of the clustering suffers from

its inability to perform adjustment, once the pairwise weight value is settled, the clustering

pattern will not be changed afterward. It makes the weight choosing process extremely

crucial to the overall performance of the model. This might lead to somewhat misleading

clusters if the pairwise weight value is not properly chosen. In order to alleviate the strong

dependency of the overall performance on the weighting schemes, we can try to use non-

convex penalty terms (She 2012) to iteratively adjust the clustering patterns in the future.

In summary, through the simulation and real data examples, we can see the potentiality

and effectiveness of HSA. But it is also worthy to note that the quality of the weighting

scheme hugely affect the performance of model. Thus, in the next chapter, we will in-

troduce a modeling framework based on HSA method. When there exists some structural

variable that exclusively determines the state of each observation, HSA method will work

better. The framework will utilize the power of structural variables to improve the model

performance.
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Rand Index between Different Experiments
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(a) Rand Index with Two Groups.
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(b) Rand Index with Three Groups.

Figure 2.11: Rand Index between Different Random Seeds.
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CHAPTER 3

HSA ENHANCED WITH STRUCTURAL VARIABLES

3.1 Introduction

When we analyze the relationship between a target variable and relevant features, we might

find out their relationship cannot be easily described by a simple distribution potentially

because of lots of reasons like missing latent variables or heterogeneity issues, etc.. As a

result, we need clustering algorithms like HSA to split the data set into sub-populations

to make the structure simple and clear. In many cases, such difficulty is because of the

existence of structural variables that control the general structure of the model, instead of

affecting the model as a standard covariate. Common examples of models based on this

rationale would be a threshold or varying coefficient models in regression or functional

coefficient models in time series. The variable that controls the change of coefficient is the

structural variable. One typical example is the threshold AR (TAR) (Tong and Lim 2009)

model, in which different AR models are assumed based on the regime that a threshold

variable is in. Threshold variable driven switching AR models (TD-SAR) is a variation

of TAR model. It was first proposed by Wu and Chen (2007), it combines the strong in-

formation provided by the observable threshold variable and potential randomness in the

switching mechanism together. It takes advantages of both switching autoregressive (SAR)

(Tong and Lim 2009) model and TAR model. In some more complicated cases, the hid-

den structure may not be easily captured by a simple threshold variable with some single

regime structure. Instead, we need more advanced and more complex settings to extract de-

cision boundaries or regions from the structural variable, and the structural variable could

be in multi-dimensional space with non-linear decision boundaries. Thus, we need a pow-

erful tool to identify the proper structural variable and recover the decision boundary. In
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this chapter, we introduce a novel modeling framework: Structural variable Driven-HSA

(SD-HSA), to accomplish this. SD-HSA framework assumes there exists some structural

variable controlling the group structure. Once we get the estimated state labels for each

data subject from HSA, we can build separate models based on the decision region of the

structural variable.

Aside from the motivation of introducing the structural variable to characterize the rela-

tionship between the target response and predictors, we also found out that a proper struc-

tural variable could possibly enhance HSA method as well. Since HSA method specifies

an objective function with a pairwise weight penalty, how to choose the weighting scheme

is crucial to the grouping performance. We note that when the grouping is based on some

structural variable, the information of the structural variable can be potentially very helpful

by allowing the weight depend on the structural variable. This framework improves HSA

method from an unsupervised data exploration tool to a well-defined system for building

a better model with the help of structural variables. As a result, we can incorporate more

potentiality into HSA.

We can use an example to help us understand the logic under SD-HSA. Assuming we

want to predict stock prices from different companies using historical data. We could fit an

autoregressive (AR) model on the stock prices. But we realize that some other features like

each company’s Fama-French factors might also affect the stock price. To be more specific,

companies with different scales would be endowed with a different set of parameters for

the AR models corresponding to their Fama-French factors. Thus, Fama-French is the

structural variable in this case. We can use HSA method based on the structural variable

to estimate the stock price of different companies. By constructing different models based

on decision region generated by the structural variable, we can fit separate AR models and

predict stock prices correspondingly.

In summary, we introduce a model framework to characterize the relationship between

the response variable and relevant features under GLM’s setting with some pre-chosen
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structural variable. The framework mainly contains three stages. At the first stage, we

narrow down the potential candidates of structural variables from a large size to a relatively

small size to reduce the computational cost. At the second state, we use HSA to get the state

estimation of each sample. The weight formulation incorporates the information obtained

from the structural variable candidates. At the last stage, we choose the best model along

with the respective structural variable by model selection criteria like AIC or BIC values. At

last, we can recover the decision boundary based on the estimated states using classification

methods like support vector machine, logistic regression, etc..

The rest of the chapter is organized as follow. We first specify the K-state GLM model,

then introduce the modeling framework, SD-HSA, to obtain the model. We also provide

simulation examples to testify the performance of the modeling framework. Finally, we

apply our method on real data examples and compared with the results obtained from the

method introduced in Wu and Chen (2007).

3.2 Model Specification: � -state GLM

Give a data set of n samples with response Ä = (�1, . . . ,�n)T 2 Rn and features of interest

X = (x1, . . . ,xn)T 2 Rn⇥p , the � -state GLM model has the following form:

�i | xi ⇠ GLM(�
[Ii ]), 1  i  n (3.1)

where Ii 2 {1, . . . , � } is the state variable for the i-th observation, and �
[Ii ] is the corre-

sponding coefficient vector. Assume there are � sub-populations within the data. Each pop-

ulation follows an independent GLM with a different set of parameters. The true label of

Ii is determined by a pre-chosen m-dimensional structural variable zi = (z1i , . . . , zmi)
T
(i =

1, . . . ,n), and the vector space of the structural variable is divided into � different regions:
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R1, . . . , R � . As a result, the true state of the i-th sample is determined by

Ii = j, if zi 2 Rj . (3.2)

We can estimate the state of each sample using HSA with the help of the structural variable

zi , denote as Îi . Once the state estimate is obtained, we can recover the decision boundary of

z by treating the state estimate Îi as labels, zi as predictors to make classification. Different

algorithms like logistic regression, support vector machine, etc. can be adopted based on

preferences of practitioner. Then we can naturally get a decision region formed by the

structural variable, and fit separate models based on it.

3.3 SD-HSA: a Three-stage Modeling Framework

In order to obtain the � -state GLM, we construct a modeling framework involving three

stages.

Stage one: narrowing down structural variable candidate pool

It is always a difficult task to determine appropriate structural variables for practitioners in

practice. To find the structural variable, a commonly used method is to traverse all com-

binations of the possible structural variables, fit all the corresponding models, and find the

best one according to model selection criteria such as Bayesian Information Criterion (BIC)

or out-sample prediction performance. But when researchers begin to consider linear com-

bination of several variables as the structural variable, the traditional exhaustive method is

not sophisticated enough and might result in too much additional computation cost. Thus,

we propose two approaches to narrow down the number of potential structural variables to

quickly filter out promising structural variable candidates. Through the narrowing down

process, we can quickly search among a large size of candidate variables, and make further

analysis only on a much smaller number of structural variable candidates.

Stage two: HSA process
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Once the number of structural variable candidates is reduced, we can use HSA method on

each of them to make state estimates. The loss function of HSA method is constructed

by two parts: the first part is the component-wise log-likelihood function of the GLM, the

second part is a regularization term to enforce equi-sparsity. A weighted group l1 penalty is

used here. Specifically, the data dependent weight is determined by the structural variables

based on some pre-defined ranking similarity.

Stage three: model selection and recovering the decision boundary

Once we get the state labels for each sample based on different structural variables, we can

select the best model based on model selection criterions like AIC or BIC values. Then

based on the estimated states selected from the best model, we can recover the decision

boundary for the structural variable using classification methods like logistic regression,

SVM etc.

In the next three sections, we will illustrate in more detail about the three stages.

3.3.1 Stage One: Narrowing Down Candidates of Structural Variables

In order to narrow down the possible structural variable candidates, we need to filter out

promising variables which are more likely to be aligned with the coefficient structure within

the data. For HSA method, since each sample is assigned with an independent coefficient

vector �i (i = 1, . . . .n), we can get a pilot estimate for �i for each sample, denote as �i0. If

the pilot estimation is reasonable, it should be helpful for us to filter out the ideal structural

variable candidates by modeling the pilot estimation and structural variables together.

Intuitively, when two samples actually belong to the same group, their pilot estimation

�i0s should also be close to each other. As a result, we can use the similarity between �i0s

to select out the structural variables which align better with their pilot estimations.

For notation simplicity, we stack �i0s together into a matrix B0 = (�01, �02, . . . , �0n)
T
2

Rn⇥p . We can estimate B0 using two approaches. The first approach is easy to conduct, but

the performance is not very stable, especially in some difficult scenarios in which different
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groups have overlaps. Thus, we propose the second method based on Bayesian analysis. It

generates more trustworthy estimates in those difficult scenarios. We summarize the two

methods as below:

Pilot estimation methods

Pilot estimation (i): initial HSA method

As we will show later, for HSA method, we get the parameter estimation matrix B through

minimizing

B
⇤ = arg min

B

l(B | Ä,X ) +
’

1i<jn
P(�i � � j ; �ij), (3.3)

where l(B | Ä,X ) is the negative log-likelihood function of the corresponding GLMs, and

P(�i � � j ; �ij) is the regularization term to enforce equi-sparsity. �ij = �wij is a regulariza-

tion parameter to control the coalescence of the parameter estimation for each observation.

When � is small, we can get a coefficient matrix B having lots of distinct rows. Thus, we

choose a small uniform �ij (� is small andwij = 1). Let the corresponding solution of equa-

tion (3.3) to be the pilot estimation B0. This estimation is simple to obtain, and can reflect

the structure of the data to some extent. Since this method is in a sense equivalent to fitting

an independent model on each observation with a minor regularization, it can be imagined

that the uncertainty of the resulting coefficient vector for each sample is relatively high. On

the other hand, theoretical results in Chapter 2 show that uniform � will generate solution

with relatively large error rate in some cases. Thus, it might not be accurate enough to be

our pilot estimate.

Pilot estimation (ii): Bayesian method

Since the observed value is actually a reflection of the true mechanism within the data, we

can use Bayesian method to get the pilot estimation matrix B0. The whole process contains

two steps:

Step one: Fit a standard GLM on the data. We generally recommend standardizing each
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predictor to ensure all variables are on the same scale. The estimated coefficients from the

GLM is denoted as �̂ with standard deviation �̂� .

Step two: For each sample (xi ,�i) (i = 1, . . . ,n), we can get an independent posterior es-

timation of �i from GLM. The exponential likelihood function of �i given xi is described

in equation (2.8). Bayesian analysis requires specifying prior distribution f (�i). Based

on the GLM from step one, it is natural to assume the prior distribution of �i follow

�i ⇠ Normal(�̂, c�̂� ) where c is positive constant, and we usually set it larger than 1 to

allow more flexibility to its posterior estimation. The posterior distribution of �i satisfies:

f (�i | �i ,xi) / f (�i)f (�i | xi), (3.4)

where f (�i | xi) is the GLM likelihood function. We can draw this posterior distribu-

tion through Markov Chain Monte Carlo (MCMC) using Rstan (https://mc-stan.

org/docs/2_21/stan-users-guide/index.html), and estimate �i as the cor-

responding posterior mean. Since the estimation of the intercept is meaningless (because

they are all estimated based on the same value 1), we drop it and denote the rest as

�̂0i (i = 1, . . . ,n). In this way, posterior estimations from each sample form a matrix

B0 = (�̂01, . . . , �̂0n)
T . In this way, we obtain the pilot estimation matrix B0 properly ac-

counting for the information contained in the data.

Once we get the pilot estimation matrix B0, we can conduct the narrowing down process in

two ways:

Narrowing down methods

Narrowing down (i). Clustering based narrowing down process

Figure 3.1 shows the diagram of the clustering based narrowing down process. Based on

the pilot estimations �i0s, we can use k-means clustering to get an pilot state estimate for

each sample, denote it as Îi0 (i = 1, . . . ,n). Then we apply classification methods like sup-

port vector machine (SVM) or other appropriate methods with response as Îi0 and structural

https://mc-stan.org/docs/2_21/stan-users-guide/index.html
https://mc-stan.org/docs/2_21/stan-users-guide/index.html
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Figure 3.1: Diagram of Clustering Based Narrowing Down Process.

variable as predictors. If the structural variable candidate is proper, the resulted label gen-

erated from the classification method, denote as Ĩi0, should be similar to the original pilot

estimate: Îi0. We quantify the similarity using f1-score ore NMI normalized mutual infor-

mation (NMI) value (Strehl and Ghosh 2002) between Îi0 and Ĩi0. The higher the score,

the better the two labels align with each other. Thus, we can select the structural variables

with high f1-scores or NMI values to filter out the promising structural variables from the

candidate pool.

Narrowing down (ii). Regression based narrowing down process

In some cases, even the candidate pool is properly specified, we still cannot get meaningful

results using the first method. The reason behind it is mainly because of the loss of informa-

tion when performing k-means clustering on matrix B0. In some cases, if B0 does not have

a strong clustered pattern, the resulting label will be highly imbalanced with majority of

samples having the same label. It makes the further comparison infeasible. Since in method

(i), our comparison is completely based on the binary label, it will not be effective in some

cases. Instead, we can directly use the pilot estimation matrix to make comparisons. To

be more specific, we can either use B0 or get the first principle component PC1 from B0.

After standardizing the structural variable, we regress B0 or PC1 on each structural variable.

Then the model constructed by structural variables with small sum of squares errors (SSEs)

would be the promising structural variable candidates. Figure 3.2 shows the diagram of the

regression based narrowing down process.

Once we narrow down the structural variable candidates to a relatively small size, we
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Figure 3.2: Diagram of Regression Based Narrowing Down Process.

can move to the second stage: performing HSA method using the filtered structural variable

candidates.

3.3.2 Stage Two: Structural Variable Driven HSA Method

In this stage, we will use HSA method with the help from selected structural variables.

The detailed formulation of HSA has been introduced in Chapter 2. We will describe

briefly about the corresponding optimization problem, and focus more about the weighting

schemes enhanced with the structural variable.

Given a data set with n samples, we want to characterize the relationship between the

target variable Ä 2 Rn and p features X = [x1, . . . ,xn]T 2 Rn⇥p using generalized linear

models. Let � = [�i] 2 Rn
(i = 1, 2, . . . ,n) be the systematic component defined as

�i = x
T
i �i . The loss function of HSA method is:

f (B | Ä,X ) := l(B | Ä,X ) + P(B)

= � hÄ,�i2 + h1,� (�)i2 + P(B), s .t . �i = hX i ,BiF ,
(3.5)

where l(B | Ä,X ) is the GLM likelihood function, P(B) is a regularization term to enforce

equi-sparsity. P(B) has the following form

P(B) = �
’

1i<jn
wij k�i � � j k2, (3.6)
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wherewij is the sample dependent weight to control the grouping pattern, and � is an overall

regularization parameter. In the previous chapter, we introduce two weighting schemes to

generate wij . Now we have structural variables, we can use them to enhance our weighting

scheme. To be more specific, we will define a weighting scheme based on the closeness

between structural variable pairs.

Since each observation is assigned with a set of independent coefficient, the grouping

status of each sample is determined by the closeness of their coefficients. On the other

hand, the value of Bs is hugely affected by the pairwise weights wijs in the penalty term.

As a result, choosing a proper weight is crucial to the success of HSA method. Under

the assumption of � -state GLM, the m-dimensional structural variable Z = (z1, . . . ,zn)T 2

Rn⇥m in equation (3.2) directly reflects the closeness between each sample. It indicates that

for any sample (xi ,�i) and sample (x j ,�j) with 1  i < j  n, if their structural variable zi

and z j are close to each other, then these two samples are more likely to belong to the same

group.

Since HSA method has some similarity with convex clustering method in Chen et

al. (2015b), we explored their weighting schemes. They proposed a sparse weighting

scheme, and the sparsity can expedite the convergence of their algorithm. But it is wor-

thy to note that our weighting scheme cannot be sparse. The main reason is that their

method does not involve nested iterations, and the setting is much simpler. On the contrary,

the sparsity will make the nested loop converge very slow because of the weak power to

enforce rows of B to coalesce. The penalty term would become “sticky”, and method will

become very sensitive to the regularization parameter �. Thus, we would not use sparse

weight in our method. Instead, we will seek a proper closeness or distance measure to

quantify the similarity.

Denote the closeness/distance measure as rijs. Then the weight wij should be inversely

proportional to it. Since the absolute difference between each sample’s structural variable

often varies at different scales, it will lead to misleading results sometimes. For example,
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Figure 3.3 shows a two dimensional structural variable constructed by Z = {z1,z2}. The

decision boundary is a circle and is marked using dotted line. It can be seen that although

point A and point B are very close, they belong to different groups. If we use their actual

distance, their distance would be quite small, resulting a large weight which will be even

larger than ones obtained from (A,C) or (A,D). But A, C and D essentially belong to the

same group. As a result, the actual distance leads to some extremely large weight such that

it will force the corresponding coefficient vector to be exactly the same. In this way, the

grouping status for this pair of samples will be completely determined by their weight.

z1

z 2

A B

C

D

Figure 3.3: Scatter Plot of z.

Instead of the actual distance, we consider to assign a rank distance to each sample pair.

For a one-dimensional structural variable z 2 Rn, assigning rank is easy. We can get the

rank order of z from small to large as r = (r1, . . . , rn)T . Then the weight can be formulated
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as

w̃ij =
1

|ri � rj |k
(3.7)

where k is a positive constant to control the strength of difference between each row pair.

We can either tune k or set a default value in practice. In the end, we rescale all {w̃ij}1i<jn

to the sum of 1 to get the final weight wij .

When the structural variable has more than one dimension, assigning a meaningful rank

is not so trivial anymore. Consider anm-dimension structural variables Z = (z1, . . . ,zn)T 2

Rn⇥m
(m > 1), for any zi and z j (1  i < j  n), define two distance sets: S1 = {kzi �

zl k2 | l = 1, . . . ,n, l , i} and S2 = {kz j � zl k2 | l = 1, . . . ,n, l , j}. Let r ⇤ij be the rank of

kzi � z j k2 in the S1, r ⇤ji be the rank of kz j � zi k2 in the S2. Then we define

rij =
r ⇤ij + r

⇤

ji

2 (3.8)

as the rank of kzi � z j k2 among all distances related to zi and zj . Let

w̃ij =
1
rkij
, (3.9)

where k > 0 is the power to control the strength of difference between each row. The larger

k is, the intenser the difference of wij gets. We can either tune k or set a default value like

2 in practice as well. In the end, we rescale {w̃ij}1i<jn to the sum of 1 to get the final

weight wij .

The ranking distance properly incorporates the information from the structural variable

into HSA method. Once we get the state estimate from this stage, we can select out the

best model in the next stage. We will talk about how to quantify the quality of the state

estimates in the next section.
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3.3.3 State Three: Model Selection and Recovering the Decision Boundary

After conducting HSA using different structural variables, we get different state estimates

from those structural variables. We need to select out the best one among all candidates.

AIC (Akaike 1998) and BIC (Bhat and Kumar 2010) are both model assessment and

selection criteria which are applicable in settings where the fitting is carried out by max-

imization of the likelihood. Although they are motivated in quite a different way, their

forms have a lot of similarities except for the fact that BIC tends to penalize complex mod-

els more heavily, giving preference to simpler models in selection. The generic form of

AIC and BIC are

AIC = �
2
n
· loglik + 2 ·

d

n

BIC = �2 · loglik + (logn) · d,

where “loglik” is the maximum log-likelihood value, d is the number of parameters in the

model. For a k-state linear regression model, we get

AIC(�,� 2
) = �

2
n

n’
i=1

log(Ci) + 2 ·
d

n
(3.10)

BIC(�,� 2
) = �2

n’
i=1

log(Ci) + d log(n), (3.11)

where

Ci =
1

p
2��̂

exp(� (�i �X i �̂
(Îi )

)
2

2�̂ 2 ).

Here �̂ is the maximum likelihood estimation (MLE) based on all samples in the data, and

�̂
(Îi ) is the corresponding MLE using HSA estimated state Îi 2 {1, . . . , � }. d is the number

of parameters in the model. We can select out the best model with smaller AIC or BIC

values.
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Once we get the state estimates of each sample, we can use them to recover the decision

boundary with respect to the selected structural variable. There are lots of classification

algorithms we can use, like logistic regression, support vector machine, etc.. We can choose

an appropriate method based on real needs and obtain the final decision boundary of the

structural variable. For example, if the estimated states are binary (Îi 2 {1, 2}), we can use

linear support vector machine (linear SVM) to construct linear decision boundary using the

value pair (Îi ,zi). The corresponding optimization problem is:

max
� ,�0,k� k2=1

M,

s.t. (2Îi � 3)(zTi � + �0) � M, i = 1, . . . ,n.

The corresponding decision boundary would be {z |z
T
� + �0 = 0}. Similarly, we can also

use other classification methods to recover the decision boundary in real practice.

3.4 Simulation Experiments

In this section, we conduct a series of simulation experiments to explore the performance

of SD-HSA modeling framework. Both linear regression and logistic regression will be

used to test the framework.

Example 1:

We first consider a 2-state linear regression with sample size n = 150.

�i =

8>>>><
>>>>:
�0.5 � 0.1x1i + 0.4x2i + �i Ii = 1,

0.2 + 0.5x1i � 0.1x2i + �i Ii = 2.

where �i ⇠ N (0, 0.32
) (i = 1, . . . ,n). The 3D-scatter plot of � v.s. X is shown in Figure 3.4.

Assume the true structural variable space has a linear boundary as shown in Figure 3.5.

The horizontal distances d between the two groups are set as 0, 0.1 and 0.2 respectively.
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Figure 3.4: Example 1 - 3D Scatter Plot of � v.s. X .
Two groups are marked with green triangular dots and blue dots. It can be seen that these two groups
have a lot of overlaps within the 3-D space.
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Figure 3.5: Example 1 - Scatter Plots of Structural Variables.
As d increases, the two groups plotted in different colors are more separable.

With smaller d , these two groups will be more difficult to separate. We repeat each setting

for 50 times.

For the structural variable candidate pool, we collect all possible combinations of z1,

z2, z2
1, z2

2, z1z2, which results in 31 structural variables in total.

At the first stage, in order to get the pilot estimation of �i (i = 1, . . . ,n), we use the

“initial HSA method” described in Section 3.3.1. Then we apply the clustering based nar-

rowing down process on 31 structural variables to calculate the F1-score. We selected out

the top 3 candidates from the 31 variables. Table 3.1 shows the percentage of experiments

among the 50 experiments which successfully included (z1, z2) within the top 3 selected

candidates based on their F1-scores. All of the success rates from different ds are quite

high. This indicates that the narrowing down process is effective.

Success Rates
d d = 0 d = 0.2 d = 0.2

Percentage 94% 100% 96%

Table 3.1: Example 1 - Success Rates of Top 3 Selected Candidates.

Next, we use HSA method to get the state estimates using the top 3 selected structural

variables. For each experiment, we also selected out the best model using BIC values.

Same as Chapter 2, we use the rand index (Rand 1971b) to measure the performance of

HSA method. Figure 3.6 shows the rand indices between the grouping results and the true
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Figure 3.6: Example 1 - Rand Indices of the top 3 Structural Variables.

state of each sample. The grouping results were generated from top 3 structural variables

and the best one selected using BIC values correspondingly. It can be seen that as distance

between the two groups gets larger, the rand indices also get higher, and the BIC selected

model consistently has the highest rand index among all of them. Thus, we successfully

auto-grouped the data in this example, and selected out the best model using BIC values.

We also plot the decision boundary under three different distances corresponding to

their median rand indices. Figure 3.7 shows the results. It can be seen that as d gets larger,

the decision boundary separates the two groups better. This also confirms with out intuition.

Example 2:

We consider a logistic regression model. Consider a 2-state logistic regression with sample
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Figure 3.7: Example 1 - Decision Boundary of the Structural Variable Space.

size n = 150.

lo�it(pi) = log pi
1 � pi

=

8>>>><
>>>>:
�0.5 � 0.1x1i + 0.4x2i Ii = 1,

0.2 + 0.5x1i � 0.1x2i Ii = 2.

The 3D-scatter plot of � v.s. X is shown in Figure 3.8. Similar as before, we also assume

that the structural candidate pool is constructed with all possible combinations of z1, z2,

z2
1, z2

2, z1z2, which results in 31 different structural variables as shown in table ??. The

true decision boundary is shown in Figure 3.9. The horizontal distances d between the

group drawn in blue and green are set as 0, 0.2 and 0.4 respectively. We also repeat the

experiment for 50 times under the each scenario.

At the first stage, we use the “Bayesian method” in Section 3.3.1 to get the pilot estima-

tion �i , and narrow down the potential candidate structural variables using the clustering

based method. Table 3.2 shows the percentage of experiments among the 50 experiments

which has been successfully included (z1, z2) within the top 3 selected candidates based

on their F1-scores. The success rate is a little bit lower than the cases in example 1, but

still quite high overall. This indicates that although grouping for logistic regression seems

more difficult than linear regression because of the binary response variable giving limited

information to use, we still use out method to effectively narrow down potential structural

variables.
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Figure 3.8: 3D-scatter Plot of Ä v.s. X .
Ä is binary, and there exist samples of both groups within each category of Ä. In another word, the
two groups are overlapped with each other. The average sample variance is around 0.1.
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Figure 3.9: Example 2 - Scatter Plots of Structural Variables.

Success Rates
d d = 0 d = 0.2 d = 0.4

Percentage 88% 88% 94%

Table 3.2: Example 2 - Success Rates of Top 3 Selected Candidates.

Same as before, We adopt HSA method using the top 3 selected structural variables.

For each experiment, we also selected out the best model using BIC values and calculated

the corresponding rand index. Figure 3.10 shows the rand indices for the top 3 structural

variables and the best one selected using BIC values. We can get similar conclusion as

in example 1. The models selected using BIC values also have the smallest variance in

terms of rand indices. Finally, we plotted the decision boundary under the three different

distances corresponding to their median rand indices. Figure 3.11 shows the results. It can

be seen that as d gets larger, the decision boundary separates the two groups better.

Example 3:

We consider a linear regression with a circular structural decision boundary. The two-

state linear regression has the same form as in equation (3.4). Assume the true structural

variable space has a circular boundary with different distances as shown in Figure 3.12.

The distances d between the two groups are set as 0, 0.1 and 0.2 respectively. We repeat

the experiment for 50 times under the each scenario.

At the first stage, we used the “initial HSA method” to get pilot estimates �i0 and narrow

down the potential candidate structural variables through clustering based method. Table
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Figure 3.10: Example 2 - Rand Indices of the Top 3 Structural Variables.

Figure 3.11: Example 2 - Decision Boundary of the Structural Variable Space
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Figure 3.12: Example 3 - Scatter Plots of Structural Variables.
The two groups are more separable as d gets larger.

3.3 shows the percentage of experiments among the 50 experiments which successfully

included (z2
1, z

2
2) within the top 3 selected candidates based on their F1-scores. It can be

seen that the success rates are also very high overall.

Success Rates
d d = 0 d = 0.1 d = 0.2

Percentage 82% 90% 92%

Table 3.3: Example 3 - Success Rates of Top 3 Selected Candidates

Next, we conducted HSA process using the top 3 selected structural variables. Same

as before, we also selected out the best model using BIC values and calculated the corre-

sponding rand index. Figure 3.13 shows the rand indices for the top 3 structural variables

and the best one selected using BIC values. We also got similar conclusions as previous

examples.

Finally, we plotted the decision boundary under the three different distances corre-

sponding to their median rand indices. Figure 3.14 shows the results. It can be seen that

the decision boundaries are recovered quite well for the three cases.

3.5 Real Data Examples

In this section, we use SD-GLM to analyze U.S. economic indicators: nonfarm payroll

numbers and the unemployment rate. The data can be found from Bureau of Labor Statis-
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Figure 3.13: Example 3 - Rand Indices of the Top 3 Structural Variables.

Figure 3.14: Example 3 - Decision Boundary of the Structural Variable Space
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tics (www.bls.gov). The two data sets have been analyzed in Wu and Chen (2007). We will

make comparison with the model obtained from their analysis. The first series ranges from

January, 1939 to March, 2004, the second from January, 1948 to March, 2004. Both are

seasonally adjusted.

3.5.1 U.S. Nonfarm Payroll Numbers

We make the similar pre-processing procedure to the series as in Wu and Chen (2007). We

transform the original monthly data to quarterly difference

Qt =
P3(t�1) + P3(t�2) + P3(t�3)

3 , and Yt =
Qt �Qt�1

5, 000 (3.12)

for t = 1, . . . , 260. Here Pt is the monthly payroll number, Qt represents the quarterly

average, and Yt represents the quarterly difference. We let the unit of Yt be 5, 000.

An AR(2) model can be fitted with Yt = �0 + �1Yt�1 + �2Yt�2 + �t . The MLE estimates

are �̂0 = 0.2233, �̂1 = 1.0054 and �̂2 = �0.3100. The total series length is T = 250. It can

be verified that the estimated model is stationary.

We can build an 2-state AR(2) model on Yt . Given some structural variable defined on

a m-dimensional space zt = (z1, . . . ,zm)T 2 Rm⇥1, a 2-state AR(2) model can be defined

as below:

Yt =

8>>>><
>>>>:
�(1)

0 + �
(1)
1 Yt�1 + �

(1)
2 Yt�2 + �1 It = 1,

�(2)
0 + �

(2)
1 Yt�1 + �

(2)
2 Yt�2 + �2 It = 2,

(3.13)

It = k, if zt 2 Rk (k = 1, 2) (3.14)

where Rk is the decision region determined by the structural variable. The model in each

state is equivalent to a linear regression with predictors Yt�1 and Yt�2.

Using the same setting in Wu and Chen (2007), assuming the structural variable candi-

date pool is constructed by series up to eight lag variable and its squares. We consider linear
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combination up to three variables in the candidate pool. It results in totally 696 possible

candidates. We first get the pilot estimation �i0 (i = 1, . . . , 250) using Bayesian method

described in Section 3.3.1. It formulates the pilot estimation matrix B0 (with the intercept

removed). Then we get the first principle component p1. We treat it as our response vari-

able (Ä), and all the potential structural variable candidates as different features (X s) and

fit different linear regressions. Then we found out the ones with smaller residual of sum of

squares. We choose the top 4, 52, 52 among one, two, three-variable combinations within

the candidate pool, and narrow down the total candidates from 696 to 108 variables in total.

Next, we conduct HSA process on the selected 108 variables. The model with smallest

BIC is derived from the structural variable Yt�2. As a result, we use Yt�2 as our best struc-

tural variable and recover the decision boundary using linearSVM in Python Scikit-learn

package. The left penal of Figure 3.15 shows the final estimated states for Yt . It can be

seen that samples in the group in green dots seems to be consecutive and very close to

each other. It might correspond to the period when the quarterly difference does not vary

a lot. The right penal of Figure 3.15 show the decision boundary constructed by Yt�2. The

decision boundary cuts the series nearly in the middle.

We also compared our model with the best model from Wu and Chen (2007). Given the

state estimates Ît (t = 1, . . . ,T ) of each sample, we divide the data into 2 groups. For each

group, we can get its MLE (�̂(Ît )) and calculate the sum of the square of errors (SSE). The

hardSSE of the data is defined as the sum of SSE of the two groups. Namely

Hard SSE:
T’
t=p

(Yt �Ät�1�̂
(Ît ))

2 (3.15)

where p = 2 in our data. Table 3.4 provides the hard SSE values of the best structural

variable shown in Wu and Chen (2007) and the best model in our method. It can be seen

that our model has a smaller hardSSE value.

In summary, the final two-state AR(2) model has the following form. The decision
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(a) State Estimates for Yt .
The green triangular dots and red dots stand for
two different groups.

(b) Decision Boundary for Yt�2.
The decision boundary degenerates to a threshold
in this case.

Figure 3.15: Results of Nonfarm Data.
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Table 3.4: Model comparison for U.S. Nonfarm Payroll Data.

Model Threshold/Structural Var. Hard SSE
TD-SAR(2) (Yt�2, Y 2

t�3) 81.82
SD-HSA (Yt�2) 80.4806

boundary is constructed by Yt�2. The two-state AR(2) model is

Yt =

8>>>><
>>>>:
�0.0104 + 0.0980Yt�1 � 0.0792Yt�2 + �1 It = 1,

0.0237 + 0.0896Yt�1 � 0.0174Yt�2 + �2 It = 2,

R1 = {Yt�2 |Yt�2  0.0491},

R2 = {Yt�2 |Yt�2 > 0.0491}.

3.5.2 U.S. Unemployment Rate

We obtain the quarterly differences on the U.S. unemployment rate data (as with the non-

farm payroll series). The total length of the series is 214. We also use SD-HSA to get

a 2-state AR(2) with different structural variables. The structural variable candidate pool

includes one-variable and two-variable combinations from lag 1 to lag 8 of the observed

series and their squares. This results in 136 candidates in total.

At the first stage of narrowing down the potential structural variables, we use the re-

gression based narrowing down process similar as in the previous example. We select out

the top 36 structural variables from the candidate pool and use them to conduct HSA pro-

cess. Based on 36 different estimated states from structural variable, we select the one with

the smallest BIC value, and the corresponding structural variable is (Yt�8,Y 2
t�6). The left

penal of Figure 3.16 shows the final estimated states for Yt . It can be seen that samples in

the group in green dots mainly correspond to the upper change points. The right penal of

Figure 3.16 show the decision boundary constructed by (Yt�8,Y 2
t�6) using linear SVM.

Table 3.5 shows the performance comparison of the best two models using our model in
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(a) State Estimates for Yt .
The green triangular dots and red dots stand for
two different groups.

(b) Decision Boundary for (Yt�8, Yt�6).
The decision boundary is quadratic with respect
to Yt�6.

Figure 3.16: Results of Unemployment Data.
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two-variable combination in terms of the values of HardSSE. The values are smaller than

the best model selected from Wu and Chen (2007).

Table 3.5: Model Comparison for U.S. Unemployment Rate Data.

Model Threshold/Structural Var. Hard SSE
TD-SAR(2) (Yt�1, Yt�2) 16.84
SD-HSA (Yt�8, Y 2

t�6) 15.9966

The final 2-state AR(2) model has the following form. The structural variable is Z =

(Ät�8,Ä
2
t�6). The two-state AR(2) model is

Yt =

8>>>><
>>>>:
�0.0322 + 0.5403Yt�1 � 0.1255Yt�2 + �1 It = 1,

0.0906 + 1.0313Yt�1 + 0.1190Yt�2 + �2 It = 2,

R1 = {(Yt�8,Y
2
t�6)|(Yt�8 + 0.5475Y 2

t�6 + 0.1478 > 0},

R2 = {(Yt�8,Y
2
t�6)|(Yt�8 + 0.5475Y 2

t�6 + 0.1478  0}.

3.6 Conclusion

In this chapter, we propose a three-stage modeling framework based on HSA method. The

SD-HSA framework enhanced the performance of the HSA by incorporating the informa-

tion of structural variables into HSA weighting scheme. We narrow down the potential

candidates of structural variables to reduce the computational cost at the first stage. At

the second stage, we conduct HSA method within a smaller number of structural variable

candidates to get the state estimates of each sample. At last, we choose the best model and

structural variable by model selection criteria like AIC or BIC values. In the end, we can

recover the decision boundary based on the estimated states using classification methods.

Through the simulation examples, we can see that the overall performance of HSA

method improved a lot compared with similar settings without any structural variables, and
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we successfully recovered some non-linear decision boundaries of the structural variable

as well. In summary, the framework provides us with more potentiality of applications

for HSA method. We also apply the modeling framework to the U.S. nonfarm and unem-

ployment data, and compare the performance with the TD-SAR proposed in Wu and Chen

(2007) in terms of hard SSE values. We get smaller hard SSE values for both two cases.

In summary, Chapter 2 and Chapter 3 mainly talk about two different application sce-

narios for HSA method. When there is no structural variable, we can use HSA method

to explore the hidden heterogeneity. When structural variables exist, we can use SD-HSA

modeling framework to recover the decision boundary determined by the structural vari-

able. In this way, we can build better model with the help of HSA.
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CHAPTER 4

LOCO (LOCAL CONNECTIVITY) SCORE: AN INTERPRETABLE METHOD

FOR DETECTING LOCAL OUTLIERS

4.1 Introduction

Outlier detection is considered as a critical task in many real applications, such as fraud

detection, healthcare monitoring and industrial damage detection, etc.. Detecting outliers

from a pattern is a popular problem. Generally, outlier can be defined as an observation

that deviates a lot from other observations as to arouse suspicion that it was generated by a

different mechanism (Breunig et al. 2000). The outliers originally existed as the by-product

of many clustering algorithms. Thus, it is mainly based on the entire data set, and the early

outlier detection methods obtained a set of global outliers. However, with the rapid devel-

opment of information technology, the structure of data sources is becoming more and more

complex. Sometimes, due to the instability of data collection and transmission technology,

etc., the data sets obtained are often incomplete in terms of time and space. In this sce-

nario, we only care about the change of things in a local scope. The corresponding outliers

obtained would be local outliers. In some other cases, a data point is considered as a con-

textual outlier if its value significantly deviates from the rest of the data points in the same

context. For example, in the anomaly detection of vessels in maritime transportation sys-

tem, trajectories of different vessels might overlap with each other. We would hardly find

any global outliers from a bunch of overlapped trajectories, but some vessels might have

abnormal behavior like hanging around in a small region or extreme high speed compared

with their neighborhood vessels. Thus, we also need local outlier detection techniques in

this scenario. In this chapter, we propose a local outlier detection method: LoCO (local

COnnectivity) score. It is a directed neighborhood-based approach using similarity scores
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of each individual’s directed neighborhood information. This method is easy to interpret,

and can also be used to calculate a “p-value” using conformal prediction techniques (Xie

and Zheng 2020b) to judge each data subject’s outlyingness conveniently.

Outlier detection problems have been extensively studied. In general, existing meth-

ods can be grouped as follows: (1) clustering based approach (Guha et al. (2003), Cao et

al. (2006)). The main goal of such systems is to build clusters. Points that are far away from

cluster centroid are declared as outliers. As a result, this techniques find the global outlier.

(2) depth based approach (Tukey (1977), Ruts and Rousseeuw (1996), Johnson, Kwok,

and Ng (1998)). This type of outlier detection searches for outliers at the border of the

data space but independent of statistical distributions. Outliers are subjects on outer layers.

(3). Distance based approach (Knorr and Ng (1997), Knox and Ng (1998), Knorr and Ng

(1999), Ramaswamy, Rastogi, and Shim (2000), Fan et al. (2006), Ghoting, Parthasarathy,

and Otey (2008)). Distance based techniques are not able to detect geterogeneous densisties

in data and outliers in heterogeneous densities. (4). Density-based approaches: LOF and its

variations (Breunig et al. (2000), Tang et al. (2002), Lazarevic and Kumar (2005), Kriegel

et al. (2009a), Kriegel et al. (2011)). LOF quantifies the degree of outlying of a data subject

to be the ratio of its density and the average density of its neighboring subjects. However,

this method is not very sensitive to the difference of the density distribution of the subject’s

neighborhood, and its resulting quotient-values are hard to interpret. As a result. there is

no clear threshold to tell us when a point is an outlier. In one data set, a value of 1.3 might

already be an outlier. In another data set and parametrization with strong local fluctuations,

a value of 2 could still be an inlier. Some variations of LOF include local outlier probability

(LoOP) (Kriegel et al. 2009a). It interprets and unifies outlier scores (Kriegel et al. 2011)

which uses local statistics or statistical scaling with a resulting values scaled to a value

range of [0, 1]. Some other methods include feature bagging (Lazarevic and Kumar 2005)

that runs LOF on multiple projections and combines the results to improve detection quan-

tities in high dimensions. Those variations of LOF origin from a similar idea with LOF
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and improve it from different aspects. Different from them, our newly proposed method

aims to quantify the degree of outlyingness based on a directed neighborhood network. We

will show it not only has good statistical interpretation, but also performs better in some

challenging scenarios for LOF.

Since we compare our method’s performance with the LOF method, it is necessary to

illustrate an example to show a case which LOF could not handle well. We first look at

a data set with samples shown in Figure 4.1. We calculate the LOF score of each subject

when k = 3, and represent them as each circle’s radius in Figure 4.1a. It can be seen that

subject A and subject B have LOF values 1.67 and 1.44 respectively. But it is obvious that

B looks more isolated than A. So subject B should have a larger outlying score intuitively.

This counter-intuitive result is mainly caused by the density changes within the data. LOF

cannot properly handle the data set with density changes mainly because of the fact that

it only considers each data subject’s neighborhood points independently. But the neigh-

borhood points could not proper reflect the true context of the data subject with changing

densities. This motivate us to consider a directed-neighborhood network and calculate sim-

ilarities based on it. Simulation examples have shown that this method is more robust to

density changes.

The rest of the chapter is organized as follows. we first introduce LoCO score and its

auxiliary notations. Then we analyze some properties of LoCO score. Furthermore, we

calculate the “p-value” of each data subject by incorporating LoCO scores into conformal

prediction’s framework. At last, we provide numerical and real data examples to explore

the performance of the proposed method.

4.2 LoCO Score

4.2.1 Notations and Definitions

Suppose we have a dataset D with n subjects s1, . . . , sn. The pairwise distance based on

some distance or similarity measure between si and s j is denoted as dij (1  i , j  n). We
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(a) LOF score. (b) LoCO score.

Figure 4.1: Outlying Scores at k = 3.
Point B looks absolutely more isolated compared with point A. But because of the density changes,
when k = 3, LOF generates a higher score for point A. Instead, the outlying score given by LoCO
is more reasonable.

introduce the following definitions:

Definition (k-distance of si)

Given any positive integer k , the k-distance of an subject si , denoted as k � dist(si), is

defined as the distance di,j between si and s j 2 D such that

1. for at least k subjects s j 0 2 D\{si} it holds that di,j 0  di,j and

2. for at most k � 1 subjects s j 0 2 D\{si} it holds that di,j 0 < di,j .

Definition (k-neighborhood set of si) All points s j 0 2 D satisfying di,j 0  k � dist(si)

construct the k-nearest neighborhood set of si . Namely, Nk(si) := {sj 2 D\{si} | di,j 

k � dist(si)}.

Definition (k-connectivity set of si) Given positive integer k , the connectivity set of sub-

ject si , denote as Ck(si), is the set constructed by subjects s j 0 2 D such that si 2 Nk(s j 0).

It is worthy to note that for any data subject si 2 D and positive integer k , Nk(si) will

not be empty. But it is possible for Ck(si) to be empty. If Ck(si) = ;, it indicates that si

is a very isolated point such that no point treats it as its neighborhood. Thus, the degree
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of outlyingness of si could be very high. On the other hand, as k increases, the difference

between the neighborhood set and connectivity set for each data subject will be lessened

gradually. As a result, the choice of k will also affect the magnitude of difference between

the neighborhood set and connectivity set.

Definition (Popularity score of si) For any subject si 2 D, the popularity score of si is

defined as

Pop(si) := |Ck(si)
—

Nk(si)|

|Nk(si)|
. (4.1)

It quantifies the proportion of subjects among the neighborhood of si that are both in its

connectivity set and neighborhood set. The higher the score, the better the neighborhood

set of si reflecting the true structure of its connectivity set. If we treat the data subjects

in the neighborhood set of each individual to be the friend it recognizes, then for a data

subject with large popularity score, it means that most of people it recognizes as “friends”

also recognize it as their friends. Thus, this subject is “popular”.

For a fixed k , a local asymmetric network (LAN) of degrees k is constructed with the k-

neighborhood set and k-connectivity set of each individual. The outward and inward edges

of subject si is defined as

O(si) = {dij | s j 2 Nk(si)}, J(si) = {dij | s j 2 Ck(si)}. (4.2)

Figure 4.2 shows two examples of such a network (with k = 3). Note that in Figure 4.2a,

subject s1 and s2 have one inward edge each, while other subjects have more. In addition,

the outward edges of s1 and s2 are much longer than the inward edges. For Figure 4.2b,

subject s1 to s4 have more inward edges than the rest, and the inward edges are also much

larger than the outward edges. From the examples it is seen that such a LAN can be used

to detect the outliers. If we treat the directed edges in LAN as recognized “friends” (as in

social network), then the outliers in the left figure recognize friends who do not recognize



94

them as friends, and the small clusters in right figure are “popular” people who do not

recognize the people who recognize them as friends. Such a construction is different from

previous density based approach like LOF. While s1 and s2 in the left figure have small data

depth, the small clusters in the right figure are in the center of the data set and are much

more difficult to detect.

(a) Example one of LAN.

S1

S2

S3

S4

(b) Example two of LAN.

Figure 4.2: LAN examples.

The set of inward and outward edges have the following property:

Proposition 4.2.1. For subject si 2 D (i = 1, . . . ,n), its inward edges set is composed of

two non-overlapped sets, i.e. J(si) = Õ(si)
–

J̃ (si) where Õ(si) ⇢ O(si), J̃ (si) satisfies

8d 2 J̃ (si), d > d⇤, where d⇤ = maxdi j O(si).

This indicates that any subject’s inward edges are either equal to some edges in its

neighborhood set, or larger than any edges in its neighborhood set.

4.2.2 Preliminary

Before we introducing the formal definition of LoCO score, we first present some intuitive

understanding about the idea. For each subject in si 2 D (i = 1, . . . ,n) and a specified

neighborhood value k, we can calculate the empirical cumulative distribution functions

of its inward and outward edges. Denote them as F (k)in (d) and F (k)out (d) respectively. It is
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naturally to quantify the outlyingness of si by comparing the difference between these

two empirical distributions. A classical test to do this is Kolmogorov-Smirnov (KS) test

(Massey Jr (1951), Dimitrova, Kaishev, and Tan (2017)). It is a nonparametric test of the

equality of continuous or discontinuous one-dimensional probability distributions. The test

statistic is

Tk(si) = sup
d

|F (k)in (d) � F (k)out (d)|, (4.3)

which is the maximum of these two empirical difference. Intuitively, if Fin and Fout come

from the same distributions for each sample, then the corresponding score would be close

to 0. Similarly, if the two distributions are quite different, then the resulting score would

be close to 1. This would be a natural way to quantify the degree of outlyingness at the

first glimpse. The resulting score actually has an upper bound. We summarize it in the

following theorem:

Theorem 4.2.2. Let si be any subject from the data D. Denote |Õ(si)| = m̃(i)
k , |J̃ (si)| =

q̃(i)k . Then,

(i). Ifm(i)
k � q(i)k , Tk(si)  1 �

m̃(i)
k

m(i)
k

;

(ii). Ifm(i)
k < q(i)k , Tk(si)  1 �

m̃(i)
k

q(i)k
.

The proof of the theorem can be found in Appendix A.5. It can be seen that the upper

bound is constrained by the total number of elements that are both contained in O(si) and

J(si). As a result, given a data subject si , if there are lots of common subjects in its

connectivity and neighborhood sets, the corresponding Tk(si) will be bounded by a smaller

value. Thus, it would be less possible for this point to be an outlier.

Although the whole idea seems straightforward, when we run simulation examples

based on this idea, it will give us some counter-intuitive results in some scenarios. The

main reason behind this is because it is not easy to quantify the inward and outward edges

differences across different data subjects consistently. Thus, base on this idea, we came
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up with the local connectivity score which can properly quantify the difference. We will

introduce the LoCO score in the next section.

4.2.3 LoCO Score

Assuming for a normal data subject, the length of its inward and outward edges generated

from the connectivity and neighborhood set follows the same distribution. Based on the

definitions and notations we introduced above, we define the LoCO score for subject si as:

Ok(si) =

8>>>><
>>>>:

Õ
s j 2Nk (si )\Ck (si )

Pop(s j )Õ
s j 2Nk (si )

–
Ck (si )

Pop(s j )
if Ck(si) , ;,

1 + den(si) Ck(si) = ;.

(4.4)

Here, den(si) is defined as

den(si) =
1��Nk(si)

��
’

s j2Nk (si )

dij/C (4.5)

where C is a pre-chosen large constant. We add the den(si) to differentiate subjects with

empty connectivity set. As a result, the outlying score will range in [0, 1] when Ck(si) , ;,

and otherwise larger than 1.

LoCO score can be interpreted as the weighted proportion of subjects which only be-

long to si’s neighborhood set, but not belong to its connectivity set. Furthermore, if those

points which only belong to the neighborhood set are popular, it makes the overall score

larger. It confirms with our intuition that if popular neighborhood points of a subject are not

contained in the corresponding connectivity set, then the respective subject should be more

likely to be isolated, thus having a higher outlying score. If we treat si’s neighborhood as

its friend, it indicates although si treat some “popular” person (subject with larger scores)

as its friends, they don’t recognized si as “friend” sadly. Overall, this quantity tells us how

similar the subject’s neighborhood set and connectivity set are. As we can imagine, the

larger the value, the more isolated si becomes.
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On the other hand, we can interpret this score as a similarity quantity between two

empirical distributions. Under the assumption that a normal data subject has similar neigh-

borhood and connectivity set, for any subject s j , we can estimate the empirical distribution

of its inward edges’ length as

P(x = d) =
Pop(s j 0)Õ

s j2Nk (si )
–

Ck (si )
Pop(s j)

, s.t. dij 0 = d, (4.6)

where d 2 O(si)
—

J(si). But the truth is that only values in J(si) are generated from

the true distribution of inward edge length. Thus, we get another empirical distribution by

suppressing all distances not belong to the inward edges to zero. Namely,

P⇤
(x = d) =

8>>>><
>>>>:
P(x = d), if d 2 J(si),

0, otherwise
(4.7)

where d 2 O(si)
—

J(si). Obviously, the values above cannot sum to 1. Since the observed

connectivity set should be representative to the corresponding length distribution, we can

assume other length values with non-zero probability should be larger than those include

in J(si), and all of these lengths’ probability sum to 1.

Once we get two version of estimated empirical distribution of the inward edge length,

denote as P(x) and P⇤
(x), the LoCO score can actually be interpreted as the KolmogorovS-

mirnov test statistic (Dimitrova, Kaishev, and Tan 2017) between these two empirical dis-

tribubtions.

Due to the fact that LoCO score accounts for the directed relationship between the in-

ward and outward edges for each individual, the resulting outlying score will automatically

reflect the effect of density changes. Back to the example shown in Figure 4.1, when k = 3,

subject A’s connectivity outlying score is 0.429, which is much lower compared with sub-

ject B with connectivity outlying score 2.003. As a result, LoCO score can correctly reflect

the density changes within the data based on the neighborhood points it considers (k). We
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will illustrate its stableness in terms of performance through numerical examples later.

4.2.4 Maximum Outlying Score

A lot of local outlier detection methods like LOF will suffer from sensitivity of choosing

neighborhood values k . For example, for local outlier factor, when k changes, the quotient

values between the local density of the target point and its neighbors will both vary. So it is

almost impossible to give a consistent threshold to claim one point to be an outlier. On the

contrary, for connectivity outlying score, when the outlying score is large, the correspond-

ing subject would always be an outlier consistently regardless of any specific scenarios or

ks. On the other hand, it is easy to see that the LoCO score for one subject will have a

decreasing trend as k increases overall. As a result, it will not be necessary to choose very

large k in terms of detecting “local” outliers. Given those facts, we can define a maximum

outlying score for each subject within a pre-specified neighborhood range.

Definition (Maximum outlying score within [k1,k2])

Given a dataset D with n subjects s1, . . . , sn, for any k 2 [k1,k2], we can calculate the

corresponding LoCO score for each k in this range. Then the maximum outlying score

within [k1,k2] is defined as

O⇤
(si) = max

k2[k1,k2]
Ok(si), (4.8)

where Ok(si) is LoCO score defined in equation (4.4).

We choose the neighborhood values ks within a pre-specified range mainly for two rea-

sons. First of all, looping through all possible ks would be computationally expensive and

unnecessary. Because when k is too large, the difference between each subject’s directed

networks is weakened. The resulting outlying score will decrease in general. On the other

hand, if k is too small, then lots of points will seem to be an outlier within its neighborhood.

As a result, we need to choose k neither too big, nor too small. For example, for a dataset
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with 200 samples, choosing k from 5 to 20 might be enough.

Maximum outlying score is derived from LoCO score based on its based on its con-

sistent outlyingness property so that we can clearly judge whether the score is large or not

without worrying about varying settings. It is motivated from the purpose of not specifying

a unique neighborhood values. In the next section, we introduce “p-value” induced by the

LoCO score. It will have clearer statistical interpretation, and it can also be generalized

using the same idea in this section to reduce the demand to specify the neighborhood value

k .

4.3 Outlier Detection with Confidence: a “p-value” for LoCO Score

The LoCO score can be incorporated into the framework of conformal prediction. Con-

formal prediction is a prediction framework with theoretically guaranteed confidence level.

Is is developed based on a state-of-art non-parametric predictive inference tool in machine

learning and statistics, known as conformal prediction (Vovk, Gammerman, and Shafer

2005, Lei et al. 2018, Barber et al. 2019b, Barber et al. 2019a, Vovk, Gammerman, and

Shafer 2005, Xie and Zheng 2020a). Specifically, given a data set with IID samples

D = {si 2 Rp
| i = 1, . . . ,n}, a new sample sn+1 is considered to be an outlier if it

is not drawn independently from the same distribution. Our goal is to judge whether this

new sample is an outlier or not.

Denote the dataset including the newly added sample as D
⇤ = D

–
{sn+1}. Assume

sn+1 is drawn independently from the same distribution within the data. Namely, si ⇠

F (i = 1, . . . ,n + 1). Define conformal matrix constructed by the conformal score of si

w.r.t. s j as Ri,j = O (�j)
(si) (1  i , j  n + 1) where O (�j)

(si) is the outlying score of si for

some k within D/{si , s j}.

Note that for Rn+1,i = D(�i)
(sn+1), it is defined as the outlying score of sn+1 within

Di,n+1 = D
⇤
/{sn+1, si}. Thus, it is actually a map from sn+1 � Di,n+1 to R. Similarly,

Ri,n+1 = O (�(n+1))
(si) constructs a map from si � Di,n+1 to R. Under the assumption that
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sn+1 is drawn independently from the same distribution within the data, there exists distri-

butional symmetry between si and sn+1. It naturally induces the distributional symmetry of

Rn+1,i and Ri,n+1. Namely, we have Ri,n+1 ⇠ Rn+1,i .

For each sn+1, we define the conformal score

V (sn+1) =
1
n

n’
i=1

1{Rn+1,i  Ri,n+1} (4.9)

which relates to the degree of “conformity” of score values Rn+1,i among scores of Ri,n+1.

Specifically, if V (sn+1) ⇡
1
2 , then Rn+1,i is around the middle of the original pool of LoCO

score Ri,n+1(i = 1, . . . ,n). When V (sn+1) ⇡ 0, Rn+1,i is at the extreme end of the LoCO

score Ri,n+1 and thus “least conformal”. This leads the following definition of the conformal

region

C� = {x : V (x) � � }. (4.10)

The following theorem states that, under the IID assumption, C� defined in (4.10) is

guaranteed a level 1 � � for a “ordinary” sn+1. This can be viewed as a variant version of

Jackknife-plus predictive interval proposed by Barber et al. 2019a.

Theorem 4.3.1. Suppose {si}
n
i=1, sn+1

i .i .d .
⇠ F . Then we have P(sn+1 2 C� ) � 1 � � .

Theorem 4.3.1 is proved in Appendix A.7 for a finite n with a conservatively guaranteed

converge rate of 1 � � . We treat C� as an approximate level-(1 � �) confidence interval.

Inspired by equation (4.9), we can treatV (sn+1) as the p-value against the null hypothe-

sis: sn+1 is not a local outlier. The smaller the p-value, the stronger the evidence of rejecting

the null hypothesis.

Motivated by the maximum outlying score defined in Section 4.2.4, we can also define

minimum conformal score based on the “p-value” defined in equation (4.9). Calculating

the conformal score might be slower than LoCO score. As a result, we may choose which
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Figure 4.3: Example one (scenario one): scatterplot.
There exist two clusters in the plot, and the densities of the two clusters are quite unbalanced.

to use based on our specific needs in real practice.

Up to now, we have introduced the LoCO score based on LAN formulated by each

subject’s neighborhood. Then we derived two variants of the LoCO score: maximum out-

lying score and conformal outlying score to improve it from different aspects. In the next

section, we will conduct series of experiments to illustrate the performance of the proposed

methods.

4.4 Simulation Examples

Example one: scenario one

In this example, we explore a dataset with 182 points. Figure 4.3 shows the scatter plot

of the data with 7 outliers marked in red. There are two clusters of points in the data

marked in black with different densities generated from uniform distribution. We repeat

the experiments for 100 times and calculate the corresponding outlying scores respectively.
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We first compare the performance of the three methods with different neighborhood

values: LoCO score, conformal outlying score and LOF. Figure 4.4a shows the AUC of

different methods with neighborhood values k from 5 to 20. It can be seen that the LoCO

score in blue and conformal outlying score in green have very similar performance, and

their AUC values increase to 1 as k increases to 8. It means that they will perfect detect

all outliers as k increases. For LOF, the [25%, 75%] quantile range is very large, and

has a decreasing trend within this range. Thus, our method has better and more stable

performance in this scenario.

Furthermore, we calculate the maximum outlying score within the range [8, 20] for

all of the 100 experiments. The resulting AUC among the 100 experiments has median

value 1 and standard deviation 0.00046. This indicates that the maximum outlying score

perfectly identified the outlier for most of the times. Figure 4.4b shows the resulting scores

corresponding to the median AUC values, and the radius of the red circle stands for the

score. The outlier in green corresponds to the top 7 biggest circles perfectly.

(a) AUC of different methods. (b) Maximum outlying score within [8, 20].

Figure 4.4: Example one (scenario one): results.

On the other hand, we can calculate the minimum conformal score based on the confor-
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Figure 4.5: Example one (scenario two): scatterplot.
We doubled the sample size for the two clusters compared with scenario one.

mal outlying score within the range [8, 20]. The corresponding median AUC and standard

deviation are 1 and 0.0010. The results are quite similar to maximum outlying score.

Example one: scenario two

In the second scenario, we double the sample size of the two clusters. The scatter plot of

the data is shown in Figure 4.5. We also repeat the experiments for 100 times.

Figure 4.6a shows the results of the three methods. It can be seen that same as before,

the AUC values from LoCO scores and conformal outlying scores are quite similar, and

AUC for local outlier factor is not vary stable compared with the other two methods. But

since the sample size was doubled from the first scenario, the density of the two clusters

are larger. Thus, LOF also has a small range of k having AUC values to be exactly 1. But

overall, our proposed methods are still more stable in this scenario.

Figure 4.6b shows the resulting maximum outlying score. The median and standard

deviation of the AUC values among the total 100 experiments is 1 and 0.00038. Thus, for

most of the experiments, maximum outlying score will also identify the outliers perfectly.
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(a) AUC of different methods. (b) Maximum outlying score within [8, 20].

Figure 4.6: Example one (scenario two): results.

We also calculate the minimum conformal score. The median AUC is also 1 with

standard deviation 0.0006, slightly larger than maximum outlying score.

Example one: scenario three

In the third scenario, we make the density within the two clusters almost equal. The scatter

plot of the data is shown in Figure 4.7. We also repeat the experiments for 100 times.

Figure 4.8a shows the results of the three methods. It can be seen that all of the three

methods perform very well in this scenario. The main reason is because there is no serious

cluster density change within the data.

Figure 4.8b shows the resulting maximum outlying score. The median and standard

deviation of the AUC values among the total 100 experiments is 1 and 0.00018. We also

calculate the minimum conformal score. Same as before, the median AUC value is 1, and

the standard deviation is 0.0004 which is also slightly larger than maximum outlying score.
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Figure 4.7: Example one (scenario three): scatterplot.
We make the two clusters to have almost equal densities in this scenario.

4.4.1 Example Two: Outliers in the Center of a Circle

In this example, we consider a data with outliers within a circle. The total sample size is

504. Since these outliers are close to the centroid of the data, it would be difficult for depth

based outlier detection techniques to detect them. The scatter plot of the data is shown in

Figure 4.9. We also repeat the experiments for 100 times.

Figure 4.10a shows the results of the three methods. It can be seen that the AUC values

from LoCO scores and conformal outlying scores are still quite similar, and AUC for local

outlier factor will decrease quickly as k increases.

Figure 4.10b shows the resulting maximum outlying score. The median and standard

deviation of the AUC values among the total 100 experiments is 1 and 0.00078. Thus, for

most of the experiments, maximum outlying score will also identify the outliers perfectly.

We also calculate the minimum conformal score. The median AUC value is 1 with standard

deviation 0.0010.
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(a) AUC of different methods.
(b) Maximum outlying score within [8, 20].

Figure 4.8: Example one (scenario three): results.

4.5 Real Data Examples

4.5.1 AIS Vessel Data

The Automatic Identification System (AIS) is an automated, autonomous tracking system

which is extensively used in the maritime world for the exchange of navigational infor-

mation between AIS-equipped terminals. Vessel Traffic Services (VTS) ashore use AIS to

identify, locate and monitor vessels. The Panama Canal uses the AIS as well to provide

information about rain along the canal as well as wind in the locks. Thus, it provides us

with large amount of data for analysis. We will use the proposed method to detect abnormal

maritime traffic events using the AIS data.

The features under study are:

- Maritime Mobile Service Identity (MMSI): a unique identification number;

- Longitude and Latitude: vessel’s location at the recorded time stamp;

- Vessel type: two/four digits code indicating vessels type. For example: 1004 for cargo,

1001 for fishing etc.
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Figure 4.9: Example two: scatterplot.
We draw a ring with sparse density around the outer margin. Four outliers are located in the center.

The data is available at https://marinecadastre.gov/ais/. Due to the fact

that each vessel will send signals about every one or two minutes while in route. The data

we are dealing with is massive. For example, US coast and waterway related information

accounts for 32 GB of AIS data each day. As a result, the trajectory of different vessels

within a certain area could be messy if the duration is long. For example, Figure 4.11a

plots cargos’ trajectory within a small box around Newark port in Zone 18 between June

2017 to December 2017 (Six months). We can see that the vessels’ trajectories spread over

the whole box.

Since lots of suspicious and illegal behaviors could happen around vessels entering the

US maritime limits boundaries and heading to some sea port, we will consider inbound

vessels heading to Newark within the half year between June 2017 to December 2017 and

restrict the trajectory within a geometric box containing Newark. We only consider the

vessel trajectory (longitude and latitude) information for now. Figure 4.11b shows the

inbound trajectories within this period. There are 630 valid vessels in total within this

https://marinecadastre.gov/ais/
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(a) AUC of different methods. (b) Maximum outlying score within [8, 20].

Figure 4.10: Example two: results.

period.

We use dynamic time warping (DTW) distance (Sakoe and Chiba 1978) to measure

the similarity between different trajectories. Since we do not want to specify a unique k

here, we just use the maximum outlying score introduced in Section 4.2.4 to measure the

outlyingness of each sample. We calculate the maximum outlying score from k = 15 to k =

55 at the interval of 5 (k = 15, 20, . . . , 55). There are 42 vessels with maximum outlying

score larger than 1 in total. We plotted the vessel trajectories with top 21 LoCO scores in

Figure 4.12. The red line stands for each vessel’s trajectory, and the colored dashed lines

around the red line stand for the top 60 nearest neighborhood vessels trajectories of the

current vessel. It can be seen that all of the vessels seem to behave differently compared

with their neighborhood vessels trajectories. Some of the abnormal behavior only happens

within a small part in the trajectory. For example, Vessel 266, 228 and 169 seem to have

some twisted behavior only in a local region. On the contrary, some other vessels will

deviate from the normal pattern within its neighbors severely. For example, Vessel 162 or

Vessel 121. This indicates that our method can detect different types of abnormal behaviors

for the vessel data.
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(a) Vessel trajectory. (b) Inbound vessel trajectories to Newark.

Figure 4.11: Vessel trajectories.

4.5.2 Email Network Data

We analyze an email data from a large European research institution. We have anonymized

information about all incoming and outgoing email between members of the research in-

stitution. The e-mails only represent communication between institution members (the

core), and the dataset does not contain incoming messages from or outgoing messages to

the rest of the world. We analyze the “data email-Eu-core-temporal-Dep1” data containing

309 nodes (users) along 75 consecutive weeks (more than 1 year). The data can be obtained

from http://snap.stanford.edu/data/email-Eu-core-temporal.html.

It contains the following features

- SRC: id of the source node (a user), ranging from 1 to 309;

- TGT: id of the target node (a user), ranging from 1 to 309;

- TS: timestamp (in seconds), starting from 0.

We will analyze the weekly behavior of the 309 nodes using our proposed method.

Since the accurate date information of this data is unknown. We manually cut the data

into 75 pieces with each piece containing 7 consecutive days events. Each piece is treated

as a “week”. For each week, we construct a counting matrix At = {aij} 2 R309⇥309
(t =

1 . . . , 75), aij stands for the total number of counts of sending and receiving emails between

http://snap.stanford.edu/data/email-Eu-core-temporal.html
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Figure 4.12: Top 21 abnormal vessels.
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user i and user j (1  i , j  309). We will explore the weekly counting matrices and find

out the abnormal weeks using the proposed methods.

In order to calculate the outlying score, we need similarity measure between the count-

ing matrix of each week. For any symmetric matrix A1 = {a(1)ij }, A2 = {a(2)ij } 2 Rn⇥n with

n 2 N+, We introduce 3 distance measure of matrices.

Definition (correlation matrix distance) Herdin et al. 2005 introduced a correlation ma-

trix distance as below

d = 1 �
tr (A1 ·A2)

kA1kF · kA2kF
,

where k · kF denote the Frobenius norm. It is equivalent to one minus cosine similarity

between these two matrices.

Definition (Frobenius norm distance) The Frobenius norm distance between A1 and A2

is defined as

d = kA1 �A2kF .

Definition (L0 norm distance) Generalized from the L0 vector norm, the L0 norm distance

between A1 and A2 is defined as the total number of non-zeros cells in A1 �A2.

We calculated the minimum conformal scores using the three distance measures within

the range [8, 20]. For correlation matrix distance. There are 6 weeks with minimum confor-

mal score smaller than 0.05. Figure 4.13a shows the corresponding scores for each week.

It can be seen that the abnormal weeks concentrate on weeks within 25 � 30 and 60 � 70.

Figure 4.13b shows the network constructed by the corresponding distances. the network

has some clustered patterns, and some early weeks forms a cluster on the lower right of the

plot. The node in color stands for the detected abnormal points. Each node connects with

its 8-nearest neighborhood nodes. It can be seen that all these outliers are very isolated

with empty connectivity sets.

For the Frobenius norm distance, we also calculate the conformal outlying score within

[8, 20]. There are 5 weeks will scores smaller than 0.05. Figure 4.14a shows the cor-
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(b) Network for correlation matrix distance

Figure 4.13: Correlation matrix distance: results.

responding scores for each week. It can be seen that the abnormal weeks differs a little

from the previous one, and it mainly concentrates on the mid-period and late-period of the

whole range. Figure 4.14b shows the network constructed by the corresponding weeks.

It has some different clustered pattern, with early, middle and late phase forming three

different clusters. The detected outliers are very isolated with empty connectivity sets.

For the L0-norm distance, there are 11 weeks with minimum conformal score smaller

than 0.05. All of these weeks stay at the late-phase of the whole period. Figure 4.15b

shows the network constructed by the corresponding weeks. It can be seen that the shape

of this network differs a lot from the previous two measurements. It has a clear center, and

all the rest of the subjects choose the subjects in the center as their neighborhood. Thus, it

forms a “flower” shape cluster. It indicates that there exist some weeks (corresponding to

the subjects in the center) which have very similar pattern to the rest of the weeks.

In summary, from the email data, we can see the capability of using the connectivity

outlying score to detect abnormal behaviors within network data. Since the information of

the data is limited and we do not have the exact date information, we cannot directly justify
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(b) Network for Frobenius norm distance.

Figure 4.14: Frobenius norm distance: results.

the reasonability of our detected subject in terms of the periodical effect. But we can still

get some meaningful information from the network patterns we get from different distance

metrics.

4.6 Conclusion

In this chapter, we have proposed a directed neighborhood-based local outlier detection

method. The newly proposed local outlier detection method: LoCO method properly quan-

tifies the degree of outlyingness of each subject in a data set through constructing the local

asymmetric network (LAN). It is quite similar to LOF in terms of the output. But LOF

tends to be hard to interpret in some cases. For example, an outlying score greater than 1

might not be an outlier in one data set, but it could have already been an outlier in another

data set. Thus, the corresponding outlying scores are not quite consistent to different data

set. In contrast to LOF, LoCO generate the outlying score based on the assigned popularity

score of each subject, and it also consider the network effect within the neighborhood of

each data subject. As a result, the corresponding score is more consistent and interpretable.
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(b) Network for L0-norm distance.

Figure 4.15: L0-norm distance: results.

On the other hand, LOF will suffer when there exist clusters of points with varying den-

sities. Since LoCO score relies on the network effect between each individuals, it will be

more robust to the density changes as well. We perform a series of simulation examples to

verify this statement.

We showed that LoCO has better performance in terms of AUC values in some sce-

narios which are difficult for LOF. The corresponding score are also easier to interpret.

Furthermore, when we apply the proposed method into different simulation settings, it can

be seen that the AUC values are quite robust to the changing of neighborhood values of

k . We also developed a “p-value” based on the LoCO method, and it has better statistical

interpretation.

We apply the proposed method onto two real data sets: the vessel data and email data.

The detected abnormal trajectories are reasonable for the vessel data. For email data, we

study the weekly email sending and receiving behavior through three different metrics.

Different outliers are identified from them. There exist some seasonality patterns within

the selected weeks.
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CHAPTER 5

APPENDICES

A.1 Proof of Theorem 2.3.1

Proof. The proof will have some minor differences based on different distribution functions

in GLM. We use Binomial distribution for logistic regression as an example. We begin with

proving the first inequality. Equivalently, we need to prove

G(B,B⇤
) � f (B | Ä,X ) �

� � kH k2/4
2 kB � B

⇤
k

2
F . (5.1)

In order to prove the above equation, firstly we need to prove

h

’
� 00(hX i ,BiF )hX i ,�iFX i ,�iF 

1
4 kH k2k�k

2
F . (5.2)

holds for any � 2 Rn⇥p . For Binomial distribution, since � (x) = log(1 + ex ), we have

� 0(x) = 1 �
1

1 + ex ,

� 00(x) =
1

(1 + ex )2
· ex =

1
1
ex + e

x + 2


1
4 .

As a result, the LHS of equation (5.2) satisfies:

LHS 
1
4 hhX i ,�iFX i ,�iF .

Also, for each sample i, we have

hX i ,�iF =h�ec(X i),�ec(�)i2

=�ec(X i)
t�ec(�),
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which leads to

hhX i ,�iFX i ,�iF =h�ec(X i)
t�ec(�)�ec(X i)

t�ec(�)

=�ec(�)t�ec(X i)�ec(X i)
t�ec(�).

Summing all terms together with respect to i from 1 to n, we get

n’
i=1

hhX i ,�iFX i ,�iF = �ec(�)
t
H�ec(�).

Since H is symmetric, denote the eigenvalues of H as �1 � �2 � . . . � �np . Then we

should have

�ec(�)tH�ec(�)  �1k�ec(�)k
2
2 = kH k2k�k

2
F .

As a result, equation (5.2) holds true.

Next, we will prove (5.1). Taking the difference between equation (2.17) and equation

(3.5), we have

G(B,B⇤
) � f (B)

=l(B⇤
) � l(B) + h

n’
i=1

{� 0(hX i ,B
⇤
iF ) � �i}X i ,B � B

⇤
iF +

1
2 kB � B

⇤
k

2
F .

(5.3)

Taking Taylor expansion on � (hX ,BiF ) at B = B
⇤, we have

� (hX i ,BiF ) = � (hX i ,B
⇤
iF ) + @� (hX i ,B

⇤
iF )

!B�B
⇤

+
1
2!@

2� (hX i ,B
⇤
iF )

!B�B
⇤

+O(kB � B
⇤
k

3
F ).

(5.4)

Since

8>>>><
>>>>:
@� (hX i ,B

⇤
iF )

!B�B
⇤

= hd0(hX i ,B
⇤
iF )X i ,B � B

⇤
iF

@2� (hX i ,B
⇤
iF )

!B�B
⇤

= h� 00(hX i ,B
⇤
iF )hX i ,B � B

⇤
iFX i ,B � B

⇤
iF .

(5.5)
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Substituting equation (5.5) into equation (5.4), we get

� (hX i ,BiF ) � � (hX i ,B
⇤
iF ) =h�

0
(hX i ,B

⇤
iF )X i ,B � B

⇤
iF +

1
2 h�

00
(hX i ,B

⇤
iF )hX i ,B � B

⇤
iFX i ,

B � B
⇤
iF +O(kB � B

⇤
k

3
F ).

Combing the above equation with equation (5.2) and (5.3), we get

G(B,B⇤
) � f (B)

= �
1
2

n’
i=1

⌦
� 00(hX i ,B

⇤
iF )hX i ,B � B

⇤
iFX i ,B � B

⇤
↵
F +

�

2 kB � B
⇤
k

2
F

� �
1
2
kH k2

4 kB � B
⇤
k

2
F +

�

2 kB � B
⇤
k

2
F

�
� �

kH k2
4

2 kB � B
⇤
k

2
F

leads to (5.1). The first equality in Theorem 2.3.1 holds true. The second inequality is a

direct conclusion by definition of B[k+1], and the last inequality is simply the construction

of G. ⇤

A.2 Duality Gap

We derive the dual problem of equation (3.5) in this section, and use logistic regression as

an example to calculate the duality gap.

Using the notation of �̃ and T̃ in equation (2.21), (2.22), we have

f (B | Ä,X ) = l(B | Ä,X ) + k�̃TBk2,1. (5.6)

For Logistic regression, we have � (�i) = log (1 + e�i ) in equation (3.5). Let l(�) :=

hÄ,�i2 + h1,� (�)i2 and P(C̃) := k�̃C̃k2,1. Using equation (2.24), the optimization problem
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in equation (??) is equivalent to

min
C̃

l(�) + P(C̃), �i = hX i ,HC̃iF . (5.7)

The Lagrangian is

L(� , C̃) =l(�) + P(C̃) +
n’
i=1

�i(�i � hX i ,HC̃iF )

=l(�) + h� ,�i2 + P(C̃) � h

n’
i=1

�iH
T
X i , C̃iF .

� = (�1, . . . ,�n) 2 Rn⇥1 is the dual variable. Since the equation is convex with equality

constraints, strong duality holds true. The dual problem is

max
�

min
C̃

L(C̃,�,� ) = max
�

�l⇤(� ) � P⇤
(

n’
i=1

�iH
T
X i) (5.8)

where l⇤(·) and P⇤
(·) are the Fenchel conjugate (Bauschke and Combettes 2011) of function

l(·) and P(·). By definition of the conjugate function, for each i = 1, . . . ,n,

l⇤(�i) = sup
�i

(�i�i � l(�i))

=(�i � �i) log �i � �i
1 � (�i � �i)

+ log (1 � (�i � �i)), 0  �i � �i  1.

The supreme value of �i is attained at �i = �i + 1
1+e��i . As a result, we have

l⇤(� ) =
n’
i=1

{(�i � �i) log �i � �i
1 � (�i � �i)

+ log (1 � (�i � �i))}, 0  �i � �i  1.
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The conjugate function of P(C) is

P⇤
(�) = sup

C̃

[h�, C̃iF � �k�̃C̃ k2,1]

=

l̃’
i=1

sup
Si

[hc̃i ,�ii2 � �wi kc̃i k2]

=

l̃’
i=1

�Si (�l ) Si = {z : kzk2  �wi}

where�i , c̃i is the i-th row of �, C̃, and �S(·) is the indicator function in set S. As a result,

the dual problem is equivalent to

max
�

n’
i=1

(�i � �i) log �i � �i
1 � (�i � �i)

+ log (1 � (�i � �i)), s .t . k�i k2  �wi

where � =
Õn

i=1 �iH
T
X i = H

Tdiag(� )X . Denote

Prime: f (C̃) = l(�) + P(C̃);

Dual: D(Ä,� ) = max
�

n’
i=1

(�i � �i) log �i � �i
1 � (�i � �i)

+ log (1 � (�i � �i)).

The duality gap between the primal problem and the dual problem should be | f (C̃) �

D(Ä,� )|. As the algorithm converges, the duality gap should decrease to 0.

A.3 Algorithm Developed Directly from Equation (3.5)

ADMM (Boyd, Parikh, and Chu 2011; Gabay and Mercier 1975; Glowinski and Marroco

1975) is an operator splitting method motivated from a variant of the augmented Lagrangian

method (Hestenes 1969; Wright and Nocedal 1999; Rockafellar 1973). It adds a quadratic

augmented term to the original Lagrangian to make it strongly convex. We can use it to



120

solve equation 3.5 directly. We introduce C = TB, then equation 3.5 is equivalent to

min
B

l(B |Ä,X ) + P(C), s .t . TB = C .

We add an augmented term with � > 0 to the loss function and get

min
B,C

l(B |Ä,X ) + P(C) +
�

2 kTB �Ck
2
F , s .t . TB = C .

The Lagrangian is

L� (B |Ä,X ) = l(B |Ä,X ) + P(C) +
�

2 kTB �Ck
2
F + h�,TB �Ci.

ADMM iteratively update B and C separately. Given C
[k] and �[k] at step k ,

B
[k+1] = arg min

B

L� (B,C
[k], �[k])

= arg min
B

�hÄ,�i + h1,b(�)i + �

2 kTB �C
[k] +

1
�
�[k]k2

F .

This is a un-constrained convex optimization problem. Thus it can be solved using the Mat-

lab package MinFunc. On the other hand, once we get newly updated B and �, UpdatingC

is equivalent to

C = arg min
C

1
2 kC � (TB �

1
�
�)k2

F +
1
�
k�Ck2,2.

The above equation forC is separable for each row, and each row ofC can be solved by the

proximal mapping. To be more specific, for C = (c1, . . . ,cl )
T , l = n(n�1)

2 , we have

ci = prox�i k·k2(t iB �
1
�
� i), i = 1, . . . , l ,
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where t i , � i is the ith row ofT and � respectively, and �i = �xwi/� . Finally, we update the

dual variable � according to the dual update:

�k+1 = �k + � (TB �C). (5.9)

In summary, the algorithm can be described as below

Algorithm 6 Algorithm to solve equation (3.5)

Initialize �[0] and C
[0]

for k = 0, 1, 2 . . . do

B
[k+1] = arg minB �hÄ,�i + h1,b(�)i + �

2 kTB �C
[k] + 1

� �
[k]
k

2
F .

for i = 1, . . . l do

c
[k+1]
l = prox�l (b

[k+1]
i1 � b

[k+1]
i2 � ��1

�
[k]
i ), where �i = �wi/� .

�
[k+1]
l = �

[k�1]
i + � (c[k]i � b

[k+1]
i1 + b

[k+1]
i2 ).

A.4 Proof of Theorem 2.4.1

We first introduce some notations to prove the theorem. Let Vj(n,d) denote the volume of

a Hamming ball of radius d  � in {0, 1, . . . , � � 1}. i.e.,

V� (n,d) =
bdc’
i=0

✓
n

i

◆
(b � 1)i .

Given � � 2, x 2 [0, 1], define the � -ary entropy function

h � (x) = x log� (� � 1) � x log� x � (1 � x) log� (1 � x),

and h(x) is the Shannon entropy function. The following result is well known, see, e.g.

Van Lint and Geer (2012).
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Lemma 5.0.1. Let � � 2, d 2 [0,n(1 � 1/� )], and � ,d 2 Z. Then

V� (n,d)  �h � (� )n, V� (n,d) �

✓
n

d

◆
(� � 1)d � �h � (� )n exp(�c logn � c0),

where � = d/n, and c, c0 are positive constants.

The next lemma is essentially the Gilbert-Varshamov bound for � -ary codes, adapted

for our purposes.

Lemma 5.0.2. Let � = {a = (a1, . . . ,an)T ,aj 2 A}, where A is a set with cardinality

|A| = � , (2  �  n). Then there exists a subset {a0, . . . ,aM } ⇢ � such that a0
2 A

n is

arbitrarily chosen, and

logM � log(�n/V� (n, dde � 1) � 1) � c1n log � ,

�(aj ,ak) � c2n, 80  j < k  M,

where �(a,a0) =
Õn

i=1 1aj,aj 0 and c1, c2 are universal positive constants.

Proof. Let d = c2n. Given any a 2 �, the number of elements in {b 2 �: �(b,a)  l} =:

B � (a; l) is no more than
Õl

i=0
�n
i

�
(� � 1)i which is just V� (n, l).

Consider the following procedure to partition �. Let a0
2 A

n be arbitrarily chosen

and �0 = �. Given a
t
2 �t (t � 0), construct Lt = {a 2 B � (a

t ; dde � 1)} \ �t and

�t+1 = �t
\ Lt , and choose an arbitrary a

t+1
2 �t+1. Repeat the process until �M+1 = ;.

Then Lt (0  t  M) form a partition of �, and so

(M + 1)V� (n, dde � 1) � �n,

By Lemma 5.0.1, for d/n  1 � 1/� or c2  1 � 1/�

M + 1 � � (1�h � (c2))n .
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It is not difficult to show that with a small enough c2, � (1�h � (c2))n � 1 + �c1n holds for all

n � � � 2 and some constant c1 > 0. The conclusion follows. ⇤

The next lemma characterizes the relationship between Kullback-Leibler divergence

(Kullback and Leibler 1951) and generalized Bregman divergence.

Lemma 5.0.3. For P
X̄ �̄

defined above, the Kullback-Leibler (K-L) divergence of P
X̄ �̄1

from

P
X̄ �̄2

satisfies

KL(P
X̄ �̄1

kP
X̄ �̄2

) = �l0(X̄ �̄1, X̄ �̄2) 
1
4 kX̄ k

2
2 k�̄1 � �2k

2
2/2. (5.10)

Furthermore, we have kX̄ k2 = kX k2,1.

Proof. According to the definition of K-L divergence, we get

KL(P
X̄ �̄1

kP
X̄ �̄2

)

=

π
P
X̄ �̄1

(Ä)[log (P
X̄ �̄1

(Ä) � log (P
X̄ �̄2

(Ä)]dÄ

=

π
P
X̄ �̄1

(Ä)[hÄ,�2 � �1i + h1,� (�2) � � (�1)i]dÄ

=h1,� (�2) � � (�1)i2 � hEPX̄ �̄1
{Y },�2 � �1i2

=h1,� (�2) � � (�1)i2 � hrl0(�1),�2 � �1i

=�l0(�2,�1).

(5.11)

Thus, the first inequality in (5.10) holds true. On the other hand

�l0(�2,�1) = l0(�2) � l0(�1) � hrl0(�1),�2 � �1i. (5.12)

The Taylor expansion of l0(�) at � = �1 is

l0(�) = l0(�1) + rl0(�1)(� � �1) +
1
2 (� � �1)

T
r

2l0(�1)(� � �1) + o(k� � �1k
2
2),
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where

8>>>><
>>>>:
rl0(�) = �Ä

T + � 0(�)T ,

r
2l0(�) = dia�(� 00(�))

Since � 00(�i)  1
4 (1  i  n), let � = �2 and ignoring the higher order term when �2 ! �1,

we obtain

l0(�2) � l0(�1) � rl0(�1)(�2 � �1) 
1
4 k�2 � �1k

2
2/2 

1
4 kX̄ k

2
2 k�̄2 � �̄1k

2
2/2. (5.13)

Combining equation (5.12) and equation (5.13), the inequality in equation (5.10) holds.

Furthermore, kX̄ k2 =

q
�max (X̄

T
X̄ ), namely, the 2 norm of X̄ is the largest eigenvalue

of X̄T
X̄ . Since X̄T

X̄ = dia�(xixTi ), and the largest eigenvalue of x ixTi is xTi x i . Thus,

�max (X̄
T
X̄ ) = max

1in
(x

T
i xi) = kX k2,1.

The conclusion follows. ⇤

To Prove the theorem, we consider the following two cases:

Case (i). n log � � p � :

Let b, � be integers satisfying

Vb(p, � ) =
�’
j=0

✓
p

j

◆
(b � 1)j � � ,b � 2, 1  �  � .

Thus we can make

C = {c1, . . . ,c � : c j 2 Rp, cj,k 2 {0, 1, . . . ,b � 1}, kc j k0  � , 81  j  � }
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with |C| = � and 0 2 C. Next, construct

B
1
(� ) := {B = (�1, . . . , �n)

T : � j satisfies � j = 0 or
� j

�R
2 C for any 1  j  n},

where � > 0 is a small constant to be chosen later, and R =
p

log �
K . We can set K = 1

4 kX̄ k
2
2

Clearly, B1
(� ) ⇢ S(� ).

Define the (vectorized) Hamming distance by

�(B1,B2) =
n’
j=1

1B1[j,:],B2[j,:],

where Bi[j, :] is the j-th row of matrix Bi (i = 1, 2). From Lemma 5.0.2, there exists a

subset B10
(� ) ⇢ B

1
(� ) such that 0 2 B

10
(� ) and

log(
��B10

(� )
�� � 1) � log

�
�n/(V� (n, dde � 1) � 1)

�
� c1n log � and

d = �(B1,B2) � c2n,8B1,B2 2 B
10,B1 , B2

for some universal constants c1, c2 > 0. Hence

kB1 � B2k
2
F � � 2R2�(B1,B2) · 1 � c2�

2R2n = c2�
2n log �

K
, (5.14)

for any B1, B2 2 B
10, B1 , B2 where c2 is a positive constant.

On the other hand, using Lemma 5.0.3, we have

KL(P
X̄ �̄1

kP
X̄ �̄2) 

1
4 kX̄ k

2
2 kB1 � B2k

2
F/2.
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Thus, for any B 2 B
10

KL(P
X̄0kPX̄ �̄

)


1
4 kX̄ k

2
2 kBk

2
F/2 

1
4 kX̄ k

2
2�

2R2�(0,B)/2 
1
8 kX̄ k

2
2�

2R2n =
1
2�

2n log � .
(5.15)

Therefore,
1

|B10 | � 1
’

B2B10\{0}
KL(P

X̄0kPX̄ �̄
)  � 2n log �

2 (5.16)

Now, combining (5.14) and (5.16) and choosing a sufficiently small value for � , we can

apply Theorem 2.7 of Tsybakov (2008) to get the lower bound of (n � � ) log �/K .

Case (ii). n log � < p � :

Consider a signal subclass

B
2
(� ) = {B = [bjk] : bjk = 0 or �R if 1  j  � � 1, 1  k  P and bjk = 0otherwise},

where R =
q

1
K with K = 1

4 kX̄ k
2
2 and � > 0 is a small constant to be chosen later. Clearly,

|B
2
(� )| = 2p � , B2

(� ) ⇢ S(� ). In this case, we let �(B1,B2) = k�̄1 � �̄2k0 be the Hamming

distance. By Lemma 5.0.2 and �p � 2, there exists a subset B20
(� ) ⇢ B

2
(� ) such that

0 2 B
20,

log(|B20
(� )| � 1) � c1�p

and

�(B1,B2) � c2�p,8B1,B2 2 B
20,B1 , B2

for some universal constants c1, c2 > 0.

kB1 � B2k
2
2 � � 2R2�(B1,B2) �

c1� 2�p

K
= 4c1�

2 �p

kX̄ k2
2

(5.17)
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Furthermore, for any B 2 B
20
(� ), using Lemma 5.0.3 again, we have

KL(P
X̄0kPX̄ �̄

)  f rac14kX̄ k
2
2�

2 1
K
�(0,B)/2 = 1

8 kX̄ k
2
2�

2�p =
1
2�

2�p. (5.18)

The afterwards treatment follows the same lines as in case (i) and the details are omitted.

The above two cases concludes the minimax lower bound rate of [�p + n log � ]/K with

K can be chosen as kX k2,1. This is a conservative bound. In fact, it can be smaller because

�is are subject to equi-sparsity constraints. But it suffices for our purpose.

A.5 Proof of Theorem 2.4.2

In order to prove Theorem 2.4.2, we first introduce two lemmas. The first lemma introduce

the lower and upper bound of the penalty.

Lemma 5.0.4. Let the group size of each group be�i (1  i  � ). Then P(�̄) =
Õ

1i<i 0� �i�i 0.

Then the upper bound of P(�̄) is of the order n2

2 (1 �
1
� ), and the lower bound fo P(�̄) is of

the order 1
2 (� � 1)(2n � � ).

Proof. We first explore the upper bound. Denote f � (n) =
Õ

1i<i 0� �i�i 0. We want to prove

that f � (n) obtains its maximum when

�i =

8>>>><
>>>>:
b
n
� c if 2n

� < b
n
� c + d

n
� e,

d
n
� e otherwise.

for 1  i  � � 1 and �� = n � (� � 1)�i . Specifically, when � | n, we have �i =
n
� for

1  i  � . When � � 2, its trivial to verify the statement holds. Assuming for given � , the

assumption is true as well, then for j + 1, we have

f �+1
(n) =

’
1i<i 0�

�i�i 0 + ��+1

�’
i=1

�i . (5.19)
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Using the assumption, the first term in the above equation obtains its maximum when �1 =

. . . = �� = x where x 2 N+. Thus, we get

8>>>><
>>>>:
f �+1

(n) =
��
2
�
x2 + ��+1 · �x ,

�x + ��+1 = n.

(5.20)

As a result,

f �+1
(n) =

✓
�

2

◆
x2 + (n � �x)�x = �

� 2 + �

2 (x �
n

� + 1 ) +
�n2

2(� + 1) . (5.21)

x obtains its maximum at x = n
�+1 if n | � + 1, or the closest integer to n

�+1 if n - � + 1.

Thus, using mathematical induction, the statement hold true for any � � 2. The maximum

of f � (n) obtains at �i =
p
� on average. The corresponding value is n2

2
��1
� ⇠

n2

2 .

For the lower bound, it is easy to verify that

f � (n) =f ��1
(n � �� ) + (n � �� )��

= · · ·

=(n � �� )�� + . . . + (n � �� � · · · � �1)�1

=n2
� [�� (�� + · · · + �1) + · · · + �

2
1].

(5.22)

Let Si =
Õi

j=1 �j , then �i = Si � Si�1 satisfying S1 < S2 < . . . < S � = n. Thus, we have

f � (n) = n2
�
Õ�

j=1 Sj�j . Denote H � (S1, . . . , S � ) = S2
1 +

Õ�
j=1 Sj�j . Since

�’
j=1

Sj�j = S2
1 + . . . + S � (S � � S ��1) = S2

1 +
�’

j=2
Sj(Sj � Sj�1),

we want to prove H � (S1, . . . , S � ) obtains its maximum when Sj = j (1  j  � � 1) given S � .

When � = 2,

H2(S1, S2) = S2
1 + S2(S2 � S1) = S2

1 + n
2
� nS1,
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the statement hold naturally. When � > 2, assume the statement holds, then for H �+1(S1,

. . . , S �+1), we get

H �+1(S1, . . . , S �+1) = H � (S1, . . . , S � ) + S �+1(S �+1 � S � ).

Given any S � = S⇤ � � , according to the assumption, the first term in the above equation

obtains its maximum when Sj = j (1  j  � � 1), and for the second term, it is decreasing

as S � increases. Thus, we want S � as small as possible. Namely, S � = � . As a result, the

statement also holds for � + 1. Using mathematical induction, the statement holds for all

� � 2. We obtain the maximum of H � (S1, . . . , S � ), which is also the minimum of f � (n)

at �j = 1 (1  j  � � 1) and �� = n � (� � 1). The corresponding value of f � (o) is

1
2 (� � 1)(2n � � ), which concludes the lemma. ⇤

Next, we introduce the notion of noise. For the loss function l0(�) defined in equation

(2.36), we define the effective noise associated with the statistical truth (�
⇤ = X̄ �̄

⇤
) by

� = �rl0(�
⇤
). (5.23)

Under some regularity condition to permit the exchange of the gradient and expectation,

having a zero mean noise implies the expected loss vanishes at the statistical truth. In

our case, the noise is � = Y � E(Y ). We assume � to be a sub-Gaussian random vector

with mean zero and scale bounded by � . Lemma 5.0.5 shows that the noise satisfies the

following relationship:

Lemma 5.0.5.

E[h� , X̄ ˆ̄
� � X̄ �̄

⇤
i] 

✓
2
a
+

2
a0

◆
kX̄

ˆ̄
� � X̄ �̄

⇤
k

2

2 + bL� 2
(P( ˆ̄�) + P(�̄⇤

)) + ca0� 2 (5.24)

for any a, b, a0 > 0, 4b > a, where c, L are universal constants.

The detailed proof of the lemma could be found in She and Zhang (2020).
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Since ˆ̄
� is the optimal solution of (2.39), we have

l0(X̄
ˆ̄
�) +

�2

2 P( ˆ̄�)  l0(X̄ �̄
⇤
) +

�2

2 P(�̄
⇤
). (5.25)

Combing the definition of Bregman divergence in equation (2.37), we get

�l0(�̂,�
⇤
) +

�2

2 P( ˆ̄�)  �2

2 P(�̄
⇤
) + h� , �̂ � �

⇤
i.

Taking expectation on both sides and combining Lemma 5.0.5, we get

E[�l0(�̂,�
⇤
)] +

�2

2 P( ˆ̄�)


�2

2 P(�̄
⇤
) + E{h� , �̂ � �

⇤
i}


�2

2 P(�̄
⇤
) + E

⇢✓
2
a
+

2
a0

◆
kX̄

ˆ̄
� � X̄ �̄

⇤
k2

2

�
+ bL� 2

(P( ˆ̄�) + P(�̄)) + ca0� 2.

(5.26)

Specifically, we can choose a = a0 = 8
µ , b = 3

u . Then using the restricted condition in

inequation (2.38), we get

E


µ

2D2(X̄
ˆ̄
� , X̄ �̄

⇤
)

�
� K�2

0P(
ˆ̄
�) +

�2

2 P( ˆ̄�) � 3L� 2

u
P( ˆ̄�)  K�2

2P(�̄
⇤
)+

�2

2 P(�̄
⇤
) +

3L� 2

u
P(�̄

⇤
) + ca0� 2.

(5.27)

Adding Rp on both sides of the inequation where R = 3A2

4 (K _
1
µ ). Since we can choose

sufficiently large A such that

8>>>><
>>>>:

�2

2 � K�2
0 +

3L� 2

µ =
A2

2 (K _
1
µ )�

2
0 � K�2

0 �
3L� 2

µ � 0,

c� 2

8µ �
3A2

4

✓
k _

1
µ

◆
 0.

Thus, we have

(
�2

2 � K�2
0 �

3L� 2

µ
)P( ˆ̄�) � 0.
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Inequation (5.27) becomes

E


µ

2D2(X̄
ˆ̄
�, X̄ �̄

⇤
)

�


✓
K�2

0 +
�2

2 +
3L� 2

µ

◆
P(�̄

⇤
) + Rp + (ca0� 2

� Rp). (5.28)

Similarly, we have

K�2
0 +

�2

2 +
3L� 2

µ


3A2

2 (K _
1
µ
)�2

0.

Substituting it into inequation (5.28) and using Lemma 5.0.4, we get

E


µ

2D2(X̄
ˆ̄
�, X̄ �̄

⇤
)

�


3A2

2

✓
K _

1
µ

◆
[P(�̄

⇤
) +

p

2 ].

Thus, we have

E


D2(X̄

ˆ̄
�, X̄ �̄

⇤
)

�
 C

✓
Kµ _ 1
µ2

◆
[P(�̄

⇤
) + p]

 C

✓
Kµ _ 1
µ2

◆
[p + (p + n)(n �

n

� ⇤
)].

(5.29)

A.6 Proof of Theorem 4.2.2

Proof. From the definition of Tk(si), we have

Tk(si)  max
0j<n⇤i

|F (i)k (dj) � F̃ (i)k (dj)|.

As a result, we only need to find the upper bound of

F := max
0j<n⇤i

|F (i)k (dj) � F̃ (i)k (dj)|.

Denote �1 =
1

m(i)
k

, �2 =
1
q(i)k

. According to the definition of CDF, F can be expressed as a

function of x1,x2 2 N+:

F = f (x1,x2) = x1�1 � x2�2.
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We analyze f (x1,x2) based on the following conditions:

(i). n(i)k � q(i)k and J̃ (si) = ;:

In this case, �1  �2, J(si) = Õ(si) ⇢ O(si). We first prove | f (x1,x2)| attains its maxi-

mum when x2 reaches to its minimum or maximum.

Since J(si) ⇢ O(si), we have x1 � x2 naturally. On the other hand, we get

f (x1,x2) =
x1
m(i)
k

+ x2
q(i)k
= x1(�1 � �2) + �2(x1 � x2). (5.30)

Here the first term is negative, and the second term is positive. We consider the following

conditions:

(1a). x1
x2

�
m(i)
k

q(i)k
: we have f (x1,x2) � 0. From equation (5.30), smaller x2 makes the positive

term larger. Thus, f (x1,x2) gets larger, and so does | f (x1,x2)|.

(1b). x1
x2
<

m(i)
k
q : we have f (x1,x2) < 0. Larger x2 makes the positive term smaller. Thus,

f (x1,x2) gets smaller, and | f (x1,x2)| gets larger. Thus, the maximum value of | f (x1,x2)|

will be reached at either the minimum or the maximum of x2. This naturally leads us to

calculate the upper bound of F under the following two cases:

(1c). x2 = 0: the maximum of x1 would be obtained at x1 = m(i)
k � q(i)k . Figure 5.1a

illustrate this scenario. The blue and red line stand for F (i)k (dj) and F̃ (i)k (dj) respectively. F

attains the maximum when all values in J(si) comes from the large values in O(si) so that

we can take the difference (the height of the green area) as right as possible. In this case,

F  (m(i)
k � q(i)k )�1 = 1 �

q(i)k
m(i)
k

.

(1d). x2 = q(i)k : the smallest x1 is x1 = q(i)k . Figure 5.1b shows the maximum difference

under this scenario. F attains its maximum when all values in J(si) comes from the small

values inx O(si) so that we can take the difference (the height of the green area) as left as

possible. In this case, F  q(�2 � �1) = 1 �
q(i)k
m(i)
k

.

The above analysis indicates that F will not exceed 1 �
q(i)k
m(i)
k

in both cases.

(ii). m(i)
k � q(i)k and J̃ (si) , ;:
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d1 d2 d3 d4 d5

(a) Scenario (1c).

d1 d2 d3 d4 d5

(b) Scenario (1d).

Figure 5.1: Upper Bound for Different Scenarios.

In this case, we can divide the problem into two sub-problems:

(2a). d  maxdi jO(si): all distance points come from O(si). Our previous statement still

holds: | f (x1,x2)| attains its maximum at x2’s extreme value. The only difference with case

(i) is x2 cannot be q(i)k any more because of the fact that J̃ (si) , ;. There are q̃(i)k points in

O(si) contained in J(si). When x2 = 0, it is still possible to take x1 =m
(i)
k � m̃(i)

k

such that F = 1 �
m̃(i)
k

m(i)
k

.

(2b). d > maxdi jO(si): the empirical distribution of O(si) will not change and always equal

to 1. Thus, the upper bound of F is obtained when x1 is small. Namely, x2 = ñ
(i)
k ·�2 =

ñ(i)k
q(i)k

.

Figure 5.2a shows that the upper bound case would be 1 �
ñ(i)k
q(i)k

.

The above two cases indicate that F would not exceed 1� m̃(i)
k

q(i)k
. Sincem(i)

k > q(i)k . Thus,

condition (i) in Theorem 4.2.2 holds true.

(iii). m(i)
k < q(i)k :

It would be impossible that J̃ (si) = ; in this scenario. We can analyze F in two cases:

(3a). d > maxdi jO(si): it is similar with case (2b). F attains its maximum when x2 is small,

which is 1 �
m̃(i)
k

q(i)k
.

(3b). d  maxdi jO(si): since �1 > �2 and x1 � x2 in this case. The two terms in
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equation (5.30) would both be positive. On the other hand, when x1 increase 1, x2 would

also increase 1 at most. Thus, increasing x1 will always make f (x1,x2) larger. Thus, the

maximum empirical difference is attained at x1’s maximum. The scenario is illustrated in

Figure 5.2b. Thus, we get the maximum of F to be 1 �
ñ(i)k
q(i)k

.

d1 d2 d3 d4 d5 d6 d7

(a) Scenario (2b).

d1 d2 d3 d4 d5 d6

(b) Scenario (3b).

Figure 5.2: Upper Bound for Different Scenarios.

Combining the two cases together, we have F = 1 �
ñ(i)k
q(i)k

, which leads to the conclusion

in Theorem 4.2.2 (ii). ⇤

A.7 Proof of Theorem 4.3.1

Proof. Due to the IID assumption of the data and distributional symmetry of Rn+1,i and

Ri,n+1 (j = 1, . . . ,n), we have

E{1{Õi 2Bj 1{Ri j �Rji }��n }}
} = E{1{Õn

i=1 1{Rn+1,i �Ri,n+1 }��n }}
} (5.31)
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where Bj = {i : si 2 D
⇤, i , j}. By definition of V (sn+1)

P(sn+1 2 {x : V (x) � � })

=E1{Õn
i=1 1{Rn+1,i �Ri,n+1 }��n }}

=
1
n

n’
j=1

E1{Õi 2Bj 1{Rj,i �Ri, j }��n }}
=

1
n
E{Nn},

(5.32)

where Nn =
Õn

j=1 E1{Õi 2Bj 1{Rj,i �Ri, j ��n }}
= 1

nE{Nn} is the size of the set J = {j0|
Õ

i2Bj 0

1{R j 0,i�Ri, j 0}��n}.

Consider for 8j < J , it satisfies

�n >
’
i2Bj

1{R j,i�Ri, j } =
’

i2Bj
—

J

1{R j,i�Ri, j } +
’

i2Bj\J

1{R j,i�Ri, j }

=
’

i2Bj\J

1{R j,i�Ri, j } .
(5.33)

Summing over all j < J , which has n � Nn numbers, we have

�n(n � Nn) >
’
j<J

’
i2Bj\J

1{R ji�Ri j } =
’

j<J ,i<J ,i,j

1{R ji�Ri j }

=
(n � Nn)(n � Nn � 1)

2 .

(5.34)

Solving the above inequality, we get a lower bound on Nn � (1�2�)n. By equation (5.32),

it follows that P(sn+1 2 {x : V (x) � � }) = 1
nE{Nn} � 1 � 2� . ⇤
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