Staff View
Thermocapillary and electrohydrodynamic manipulation of soft material in thin film and laminate device

Descriptive

TitleInfo
Title
Thermocapillary and electrohydrodynamic manipulation of soft material in thin film and laminate device
Name (type = personal)
NamePart (type = family)
Ma
NamePart (type = given)
Tianxing
DisplayForm
Tianxing Ma
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Singer
NamePart (type = given)
Jonathan P
DisplayForm
Jonathan P Singer
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Shan
NamePart (type = given)
Jerry W
DisplayForm
Jerry W Shan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Guo
NamePart (type = given)
Zhixiong
DisplayForm
Zhixiong Guo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Birnie
NamePart (type = given)
Dunbar P
DisplayForm
Dunbar P Birnie
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
With thin film materials applied more ubiquitously to industrial applications, the demand for scalable low-cost thin film devices has surged. Generally, a tradeoff between device cost, efficiency, and speed has to be made during the manufacturing processes. As a result, challenges exist in exploring new mechanisms that enable the scalable fabrication and examination of thin film devices.

Among the non-cleanroom thin film manufacturing techniques, such as inkjet printing, gravure printing, and screen printing, most processes involve the manipulation of soft material in their liquid state. Due to the small scale of the material, capillary forces play an important role. The ability to control the capillary force using external fields is thus vital for these processes. With progress made on laser and electronic techniques, thermal and electrical methods to manipulate materials are on a higher technical readiness level. Specifically, this dissertation looks into applying extreme thermal and electrical field and the induced thermocapillary stress and electrocapillary stress to manipulate the flow of soft material in and out of plane for the synthesis, measurement of nanomaterials, and the design of scalable laminate device. Three aspects are investigated by this dissertation. (1) Focused laser spike (FLaSk) dewetting of gold thin film on glass substrate: Parametric study of overlapping laser scans on gold nanofilm deposited on glass/fused quartz is conducted to unveil the influence of numerical aperture, laser power, and substrate effect. Through FLaSk dewetting of a gold thin film on a meltable substrate, densely packed nanoparticle arrays are manufactured in and out of the plane via laser induced localized physical vapor deposition. (2) FLaSk thermocapillary dewetting based thin film rheology for soft material films that uses an optical microscope to characterize the thin film’s flow behavior under thermocapillary stress: FLaSk Thermocapillary dewetted hole radius is used as a metrics for studying the soft material nano film’s rheological properties. By designing a multilayer heating substrate, a top material-independent thermal field is established and calibrated by melting of crystal material. Dot-exposure type FLaSk dewetting on nanofilms with different material composition and thickness is conducted. The nonlinear radii size evolution is captured by a stretched exponential function and the decay time is used for probing the film’s viscosity. Extracted viscosities on different films demonstrate how FLaSk thermocapillary dewetting can be used for probing rheological properties of thin films. (3) Switchable electrohydrodynamic (EHD) capillary bridge oscillator: The behavior of microliter sized opposing sessile droplets in ~ kV/mm electric field in a parallel plate capacitor is investigated. Based on whether the droplets could be actuated into a stable capillary bridge in electric field that is unstable without the electric field, the motions are characterized into multiple phases. The mechanism is explained by free energy analysis and experimental testing of fluids with various physical properties in different electric field and gap size. The study has enabled using electrocapillary phenomena to control the morphology change of microliter-sized droplets in a simple configuration suitable for the design of a thin sheet device compatible with mass fabrication. Finite element method simulations are conducted in a combination of experimental results for the understanding of the physics. Progress made in each aspect of this dissertation could serve as the stepstone for the development of scalable ways of applying thermocapillary stress and electrocapillary effect for the rapid fabrication/characterization of low-cost thin-film devices.
Subject (authority = local)
Topic
Dewetting
Subject (authority = local)
Topic
Soft material
Subject (authority = local)
Topic
Thermocapillary
Subject (authority = LCSH)
Topic
Electrohydrodynamics
Subject (authority = LCSH)
Topic
Fluid mechanics
Subject (authority = LCSH)
Topic
Marangoni effect
Subject (authority = LCSH)
Topic
Thin films
Subject (authority = LCSH)
Topic
Thin film devices
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11380
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxi, 136 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-bgc9-e923
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Ma
GivenName
Tianxing
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-12-23 15:18:44
AssociatedEntity
Name
Tianxing Ma
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2022-01-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 31st, 2022.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Microsoft 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-04T15:02:30
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-01-04T15:02:30
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024