
SPARSE AND LOW-RANK REPRESENTATION-BASED
METHODS FOR MULTIMODAL CLUSTERING AND

RECOGNITION

BY MAHDI ABAVISANI

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dr. Vishal M. Patel

and approved by

New Brunswick, New Jersey

January, 2021



ABSTRACT OF THE DISSERTATION

Sparse and Low-rank Representation-based Methods for
Multimodal Clustering and Recognition

by Mahdi Abavisani

Dissertation Director: Dr. Vishal M. Patel

Recent advances in technology have provided massive amounts of complex high-dimensional

and multimodal data for computer vision and machine learning applications. This thesis uses

sparse and low-rank representation-based techniques to introduce several approaches for lever-

aging the complementary information from multimodal and high-dimensional data in clustering

and recognition tasks. We start with a focus on subspace clustering algorithms. We extend the

popular sparse and low-rank based subspace clustering methods to multimodal subspace clus-

tering algorithms that can integrate multiple high-dimensional modalities and represent them

in low-dimensional joint subspaces. We then use convolutional neural networks (CNNs) to

improve our proposed multimodal subspace clustering methods and develop deep multimodal

subspace clustering networks. Furthermore, we design a framework for incorporating data

augmentation techniques in subspace clustering networks. In the second part of the thesis,

we focus on developing multimodal classification approaches. We start with introducing deep

sparse representation-based classification (DSRC) and extending it to its multimodal version.

Then, we propose novel approaches for two real-world applications with high-dimensional and

multimodal data. In particular, first, we introduce a method to leverage the knowledge of mul-

tiple video streams in dynamic hand gesture recognition tasks and embed the knowledge in

every single unimodal network. As a result, we improve the accuracy of unimodal networks

ii



at the test time while they remain to perform in real-time. Our second applied approach is a

fusion method for combining the information in social media posts’ texts and images. Both

texts and images are considered high-dimensional data, and in the case of social media posts,

they can sometimes be uninformative or even misleading. We presented a method that is able

to filter uninformative parts of text-image pairs and leverage their complementary information

to detect crisis events in social media posts. Finally, we discuss some possible future research

directions.
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Chapter 1

Introduction

Many practical applications in machine learning, computer vision, and signal processing re-

quire one to process very high-dimensional and multimodal data. Training on huge amounts

of complementary data is usually considered beneficial to machine learning systems. How-

ever, high-dimensional data sources often come with irrelevant or noisy dimensions that could

confuse algorithms in practice. This thesis addresses approaches that can efficiently learn and

summarize the complementary information from high-dimensional and multimodal data and

produce more robust systems.

High-dimensional data often lie in low-dimensional subspaces. For instance, facial images

with variation in illumination [16], handwritten digits [17] and trajectories of a rigidly moving

object in a video [18] are examples where low-dimensional subspaces can represent the high-

dimensional data. Subspace clustering algorithms essentially use this fact to find clusters in

different subspaces within a dataset [19]. In other words, in a subspace clustering task, given

the data from a union of subspaces, the objective is to find the number of subspaces, their di-

mensions, the segmentation of the data and a basis for each subspace [19]. This problem has

numerous applications in including motion segmentation [20], unsupervised image segmenta-

tion [21], image representation and compression [22] and face clustering [23].

Various methods have been developed for subspace clustering in the literature. These meth-

ods can be categorized into four main groups - algebraic methods [24, 25], iterative meth-

ods [26, 27], statistical methods [28, 29, 30], and the methods based on spectral clustering

[31, 32, 33, 34, 35]. In particular, sparse and low-rank representation-based subspace cluster-

ing methods [36, 37, 38, 39] have gained a lot of interest in recent years.

In the case where the data consists of multiple modalities or views, multimodal subspace
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clustering methods can be employed to simultaneously cluster the data in the individual modal-

ities according to their subspaces [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

In multimodal learning problems, the idea is to use the complementary information pro-

vided by the different modalities to enhance the performance. In this thesis, we propose several

methods to integrate the complementary information of multimodal data to perform efficient

multimodal recognitions.

In the first part of the thesis, we use sparse and low-rank representations to develop multi-

modal methods for the task of subspace clustering. This includes several novel approaches

based on linear, kernalized and deep neural net-based subspace clustering. In addition, in

Chapter 5, we propose a method for using data augmentation in deep subspace clustering.

Augmented data can in a sense be viewed as new modalities (or views) and lead to producing a

more robust subspace clustering.

In the second part of the thesis, we focus on multimodal learning in the classification task.

Chapter 6 extends the popular sparse representation classification (SRC) algorithm to a deep

CNNs-based version. We use our deep SRC (DSRC) algorithm to develop a novel multimodal

classification system in Chapter 7.

In final two chapters of this thesis, we deploy multimodal learning in two real world ap-

plications. Chapter 8 and 9 present novel multimodal classification methods for dynamic hand

gesture recognition and event detection in social media.

Key contributions of this thesis can be summarized as follows:

• We present several linear and non-linear multimodal sparse and low-rank subspace clus-

tering methods[49]:

MSSC, a multimodal extension to the SSC [36] algorithm.

MLRR, a multimodal extension to the LRR [37] algorithm.

MLRSSC, a multimodal extension to the LRSSC [50] algorithm.

KMSSC, KMLRR and KLRSSC algorithms, the kernelized versions of MSSC, MLRR

and LRSSC algorithms which are able to deal with non-linear data.

The optimization problem of the proposed linear and kernalized multimodal sub-

space clustering algorithms are solved using the ADMM method.
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• We introduce a deep learning-based multimodal subspace clustering framework in which

the self-expressiveness property is encoded in the latent space by using a fully connected

layer [51].

Novel encoder network architectures corresponding to late, early and intermediate

fusion are proposed for fusing multimodal data in the task of multimodal subspace clus-

tering.

An affinity fusion-based network architecture is proposed in which the self-expressive

layer is enforced to have the same weights across latent representations of all the modal-

ities.

• We introduce a framework for incorporation of data augmentation techniques in deep

subspace clustering algorithms [52, 53].

We use temporal ensembling to smooth the process of finding the subspace mem-

berships for the randomly augmented data points.

We propose a simple yet effective unsupervised search algorithm to automatically

find the most effective augmentation policies.

• We present a transductive deep learning-based formulation for the sparse representation-

based classification (SRC) method [54].

• We extend our deep sparse representation-based classification (DSRC) method to its mul-

timodal version [55].

In this work, we also introduce a new classification rule by ensembling the sparse

codes classification rule with the predictions of a set of discriminator neural net heads.

• We present an efficient approach for leveraging the knowledge from multiple modali-

ties in training unimodal 3D convolutional neural networks (3D-CNNs) for the task of

dynamic hand gesture recognition [56, 57].

We introduce a ”spatiotemporal semantic alignment” loss (SSA) to align the content

of the features from different modalities.
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In addition, we regularize this loss with our proposed ”focal regularization parame-

ter” to avoid negative knowledge transfer.

• We present a new multimodal fusion method that leverages images and texts in social

media to detect crisis events [58, 59].

We introduce a cross-attention module that can filter uninformative and misleading

components from weak modalities on a sample by sample basis.

In addition, we employ a multimodal graph-based approach to stochastically tran-

sition between embeddings of different multimodal pairs during training to regularize

the learning process better and deal with limited training data constructing new matched

pairs from different samples.

The following is an overview of chapters in this thesis:

Chapter 2 reviews related works in subspace clustering and sparse representation-based

classification.

Chapters 3, 4 and 5 address the subspace clustering task.

In Chapter 3, we extend the conventional Sparse Subspace Clustering (SSC) [36], Low-

rank Representation-based (LRR) [37] subspace clustering and Low-Rank Sparse Subspace

Clustering (LRSSC) [50] methods for multimodal data. In our formulation, we exploit the self

expressiveness property [36] of each sample in its respective modality and enforce a common

coefficient matrix across the modalities. As a result, we are able to exploit the correlations

as well as coupling among different modalities. Furthermore, we kernelize the proposed al-

gorithms to handle nonlinearity in the data samples. Furthermore, the proposed optimization

problems are solved using the Alternating Direction Method of Multipliers (ADMM), [60].

In Chapter 4, motivated by recent advances in deep multimodal learning, we propose a

novel approach to the problem of multimodal subspace clustering. We present a CNN-based

autoencoder approach in which a fully-connected layer is introduced between the encoder and

the decoder, which mimics the self-expressiveness property that has been widely used in vari-

ous subspace clustering algorithms. The self-expressive layer is responsible for enforcing the

self-expressiveness property and acquiring an affinity matrix corresponding to the data points.

The decoder reconstructs the original input data from the latent features. We investigate three
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different spatial fusion techniques based on late, early, and intermediate fusion to encode the

multimodal data into a latent space. These fusion techniques are motivated by the deep multi-

modal learning methods in supervised learning tasks [61, 62], which provide the representation

of modalities across spatial positions. In addition to the spatial fusion methods, we propose

an affinity fusion-based network in which the self-expressive layer corresponding to different

modalities is enforced to be the same. For both spatial and affinity fusion-based methods, we

formulate an end-to-end training objective loss.

In Chapter 5, we provide a framework for using data augmentations in the training of deep

subspace clustering networks. Data augmentation techniques are based on the fact that slight

changes in the percept do not change the brain cognition. In classification, neural networks use

this fact by applying transformations to the inputs to learn to predict the same label. However,

in deep subspace clustering (DSC), the ground-truth labels are not available, and as a result,

one cannot easily use data augmentation techniques. In this chapter, we propose a technique

to exploit the benefits of data augmentation in DSC algorithms. We learn representations that

have consistent subspaces for slightly transformed inputs. In particular, we introduce a tempo-

ral ensembling component to DSC algorithms’ objective function to enable the DSC networks

to maintain consistent subspaces for random transformations in the input data. Besides, we

provide a simple yet effective unsupervised procedure to find efficient data augmentation poli-

cies. An augmentation policy is defined as an image processing transformation with a certain

magnitude and probability of being applied to each image in each epoch. We search through

the policies in a search space of the most common augmentation policies to find the best pol-

icy such that the DSC network yields the highest mean Silhouette coefficient in its clustering

results on a target dataset. Our method achieves state-of-the-art performance on four standard

subspace clustering datasets.

Chapters 6, 7, 8, and 9 address the classification task.

In Chapter 6, we present a transductive deep learning-based formulation for the sparse

representation-based classification (SRC) method. The proposed network consists of a convo-

lutional autoencoder along with a fully-connected layer. The role of the autoencoder network

is to learn robust deep features for classification. On the other hand, the fully-connected layer,

which is placed in between the encoder and the decoder networks, is responsible for finding
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the sparse representation. The estimated sparse codes are then used for classification. Var-

ious experiments on three different datasets show that the proposed network leads to sparse

representations that give better classification results than state-of-the-art SRC methods.

In Chapter 7, we present a deep sparse representation based fusion method for classifying

multimodal signals. Our proposed model consists of multimodal encoders and decoders with a

shared fully-connected layer. The multimodal encoders learn separate latent space features for

each modality. The latent space features are trained to be discriminative and suitable for sparse

representation. The shared fully-connected layer serves as a common sparse coefficient matrix

that can simultaneously reconstruct all the latent space features from different modalities. We

employ discriminator heads to make the latent features discriminative. The reconstructed latent

space features are then fed to the multimodal decoders to reconstruct the multimodal signals.

We introduce a new classification rule by using the sparse coefficient matrix along with the

predictions of the discriminator heads. Experimental results on various multimodal datasets

show the effectiveness of our method.

In Chapter 8, we present an efficient approach for leveraging the knowledge from multiple

modalities in training unimodal 3D convolutional neural networks (3D-CNNs) for the task of

dynamic hand gesture recognition. Instead of explicitly combining multimodal information,

which is commonplace in many state-of-the-art methods, we propose a different framework

in which we embed the knowledge of multiple modalities in individual networks so that each

unimodal network can achieve improved performance. In particular, we dedicate separate net-

works per available modality and enforce them to collaborate and learn to develop networks

with common semantics and better representations. We introduce a ”spatiotemporal semantic

alignment” loss (SSA) to align the features’ content from different networks. In addition, we

regularize this loss with our proposed ”focal regularization parameter” to avoid negative knowl-

edge transfer. Experimental results show that our framework improves the test time recognition

accuracy of unimodal networks and provides state-of-the-art performance on various dynamic

hand gesture recognition datasets.

In Chapter 9, we exploit multimodal learning in detecting crisis-related events in social

media. Recent developments in image classification and natural language processing, coupled

with the rapid growth in social media usage, have enabled fundamental advances in detecting
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breaking events around the world in real-time. Emergency response is one such area that stands

to gain from these advances. By processing billions of texts and images a minute, events can be

automatically detected to enable emergency response workers to better assess rapidly evolving

situations and deploy resources accordingly. To date, most event detection techniques in this

area have focused on image-only or text-only approaches, limiting detection performance and

impacting the quality of information delivered to crisis response teams. This chapter presents

a new multimodal fusion method that leverages both images and texts as input. In particular,

we introduce a cross-attention module that can filter uninformative and misleading components

from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-

based approach to stochastically transition between embeddings of different multimodal pairs

during training to better regularize the learning process as well as dealing with limited training

data by constructing new matched pairs from different samples. We show that our method

outperforms the unimodal approaches and strong multimodal baselines by a large margin on

three crisis-related tasks.

In Chapter 10, we provide an overview of our future work that includes a) Methods for

subspace clustering of heterogeneous data, b) Using adversarial generative networks to deal

with subspace clustering of heterogeneous data, c) generalizing our proposed methods to other

multimodal problems such as sarcasm detection in social media posts.
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Chapter 2

Background and Related Works

1. Sparse and Low-rank Subspace Clustering

1..1 Overview

Let X = [x1, · · · ,xN ] ∈ R
D×N be a collection of N signals {xi ∈ R

D}Ni=1 drawn from a union

of n linear subspaces S1 ∪ S2 ∪ · · · ∪ Sn. Given X, the task of subspace clustering is to find

sub-matrices X` ∈ R
D×N` that lie in S` with N1 + N2 + · · · + Nn = N .

Due to their simplicity, theoretical correctness, and empirical success, subspace clustering

methods that are based on self-expressiveness property are very popular [63]. Self-expressiveness

property can be stated as

X = XC s.t diag(C) = 0, (2.1)

where C ∈ RN×N is the coefficient matrix. There may exist many coefficient matrices that

satisfy the condition in (5.1). Among those, subspace preserving solutions are especially of

interest to self-expressiveness based subspace clustering methods. Subspace preserving prop-

erty states that if an element in C is non-zero, the two data points in X that correspond to this

coefficient are in the same subspace.

Self-expressiveness based methods combine these two properties and solve a problem of

the form:

min
C
LS.E.(C,X) + λ1LS.P.(C), (2.2)

where λ1 is a regularization constant,LS.E. andLS.P. impose the self-expressiveness and subspace-

preserving properties, respectively. Most of the linear methods use LS.E.(C,X) = ‖X −XC‖2F .

However, for LS.P.(C), different methods use various regularizations, including `1-norm, `2-

norm and nuclear norm [36, 63, 37].
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In recent years, deep neural network-based extensions were introduced to self-expressiveness

based models [64, 4, 65, 66]. For these methods, xis do not need to be drawn from a union of

linear subspaces. Instead, they use autoencoder networks to map the data points to a latent

space where data points lie into a union of linear subspaces and exploit the self-expressiveness

and subspace-preserving properties in the latent space. Let Z ∈ Rd×N be the latent space fea-

tures developed by the encoder in the autoencoders. Deep subspace clustering networks solve

a problem of the form:

min
Θ
LS.E.(C,Z) + λ1LS.P.(C) + λ2LRec.(X, X̂), (2.3)

where λ1 and λ2 are regularization constants, Θ is the union of trainable parameters, X̂ is

the reconstruction of X and the output of the decoder, and LRec.(X, X̂) = ‖X − X̂‖2F is the

reconstruction loss in training the autoencoder. Once a proper C is found from (5.2) or (5.3),

spectral clustering methods [67] are applied to the affinity matrix W = |C| + |C|T to obtain the

segmentation of the data X.

In the following, we review some the most popular sparse and low-rank subspace clustering

methods including SSC [36], LRR [37], LRSC [38] and DSC [4].

1..2 Sparse Subspace Clustering

The SSC algorithm [36], which exploits the fact that noiseless data in a union of subspaces are

self-expressive, i.e. each data point can be expressed as a sparse linear combination of other

data points. Hence, SSC aims to find a sparse matrix C ∈ RN×N by solving the following

optimization problem

min ‖C‖1 s.t. X = XC, diag(C) = 0 (2.4)

where ‖C‖1 =
∑

i, j |Ci, j | is the `1-norm of C. In the case when the data is contaminated by

noise and outliers, one can model the data as X = XC +N + E, where N is arbitrary noise and

E is a sparse matrix containing outliers. In this case, the following problem can be solved to

estimate the sparse coefficient matrix C

min
C,E

λ

2
‖X −XC − E‖2F + ‖C‖1 + λe‖E‖1

s.t. diag(C) = 0, (2.5)
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where λ and λe are positive regulation parameters [68].

1..3 Low-Rank Representation-based Subspace Clustering

The LRR algorithm [37] for subspace clustering is very similar to the SSC algorithm except

that a low-rank representation is found instead of a sparse representation. In particular, in the

presence of noisy and occluded data, the following optimization problem is solved

min
C,E

λ

2
‖X −XC − E‖2F + ‖C‖∗ + λe‖E‖2,1, (2.6)

where ‖C‖∗ is the nuclear-norm of C which is defined as the sum of its singular values, ‖E‖2,1 =∑
j

√∑
i(Ei, j)

2 is the `2,1-norm of E and λ and λe are two positive regularization parameters.

1..4 Low-Rank Sparse Subspace Clustering

The representation matrix C can be simultaneously sparse and low-rank. Thus, LRSSC seeks

to find a sparse and low-rank matrix C by solving the following optimization problem

min
C,E

λ

2
‖X −XC − E‖2F + ‖C‖1 (2.7)

+ λr ‖C‖∗ + λe‖E‖1 s.t. diag(C) = 0

where λ,λr and λe are positive regularization parameters [50].

In SSC, LRR and LRSSC, once C is estimated, spectral clustering methods [69] are applied

on the affinity matrix W = |C| + |C|T to obtain the segmentation of the data X.

1..5 Deep Subspace Clustering

The deep subspace clustering network (DSC) [4] explores the self-expressiveness property by

embedding the data into a latent space using an encoder-decoder type network. Figure 4.2 gives

an overview of the DSC method for unimodal subspace clustering. The method optimizes an

objective similar to that of (4.1) but the matrix C is approximated using a trainable dense layer

embedded within the network. Let us denote the parameters of the self-expressive layer as

Θs. Note that these parameters are essentially the elements of C in (4.1). The following loss
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function is used to train the network

min
Θ̃
‖Θs ‖p +

λ1
2
‖ZΘe − ZΘeΘs ‖

2
F +

λ2
2
‖X − X̂Θ̃‖,

s.t. diag(Θs) = 0, (2.8)

where ZΘe denotes the output of the encoder, and X̂Θ̃ is the reconstructed signal at the output

of the decoder. Here, the network parameters Θ̃ consist of encoder parameters Θe, decoder

parametersΘd and self-expressive layer parametersΘs. Here, λ1 and λ2 are two regularization

parameters.

2. Sparse Representation-based Classification

In sparse representation-based classification (SRC), given a set of labeled training samples, the

goal is to classify an unseen set of test samples. Suppose that we collect all the vectorized

training samples with the label i in the matrix Xi
train ∈ R

d0×ni , where d0 is the dimension

of each sample and ni is the number of samples in class i, then the training matrix can be

constructed as

Xtrain = [X
1
train,X

2
train, · · · ,X

K
train] ∈ R

d0×n (2.9)

where n1 + n2 + · · · + nK = n and we have a total of K classes.

In SRC, it is assumed that an observed sample xtest ∈ R
d0 can be well approximated by

a linear combination of the samples in Xi
train if xtest is from class i. Thus, it is possible to

predict the class of a given unlabeled data by finding a set of samples in the training set that can

better approximate xtest . Mathematically, these samples can be found by solving the following

optimization problem

min
α
‖α‖0 s.t. xtest = Xtrainα, (2.10)

where ‖α‖0 counts the number of non-zero elements in α. The minimization problem (7.1)

finds a sparse solution for the linear system. However, since the optimization problem (7.1) is

an NP-hard problem, in practice, a sparsity constraint is enforced by the `1-norm of α which is a

convex relaxation of the above problem [70, 71]. Thus, in practice the following minimization

problem is solved to obtain the sparse codes

min
α
‖xtest −Xtrainα‖

2
2 + λ0‖α‖1, (2.11)
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where λ0 is a positive regularization parameter. Once α is found, one can estimate the class

label of xtest as follows

class(xtest ) = argmin
k
‖xtest −Xtrainδk(α)‖

2
2, (2.12)

where δk(·) is the characteristic function that selects the coefficients associated with the class i.



Part I

Subspace Clustering Tasks

13
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Chapter 3

Linear and Non-linear Multimodal Subspace Clustering

1. Introduction

In many practical computer vision and image processing applications one has to process very

high-dimensional data. In practice, these high-dimensional data can be represented by a low-

dimensional subspace. For instance, face images under all possible illumination conditions,

handwritten digits with different variations and trajectories of a rigidly moving object in a

video can all be represented by low-dimensional subspaces [16, 17, 18]. One can view the

collection of data from different classes as samples from a union of low-dimensional subspaces.

In subspace clustering, the objective is to find the number of subspaces, their dimensions, the

segmentation of the data and a basis for each subspace [19].

Various methods have been developed for subspace clustering in the literature. These meth-

ods can be categorized into four main groups - algebraic methods [24, 25], iterative meth-

ods [26, 27], statistical methods [28, 29, 30], and the methods based on spectral clustering

[31, 32, 33, 34, 35]. In particular, sparse and low-rank representation-based subspace cluster-

ing methods [36, 37, 38, 39] have gained a lot of interest in recent years.

Some of the multimodal spectral clustering and segmentation methods developed in recent

years include [40, 41, 42, 43, 72, 45, 46, 47, 48]. Note that some of these algorithms use

dimensionality reduction methods such as Canonical Correlation Analysis (CCA) to project

the multiview data onto a low-dimensional subspace for clustering [41, 47]. Also, some of

these techniques are specifically designed for two views and can not be easily generalized to

multiple views [72, 48].

Various multiview sparse and low-rank representation-based subspace clustering methods

have also been proposed in the literature. In particular, a multiview subspace clustering method,
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Figure 3.1: An overview of the proposed multimodal sparse and low-rank subspace clustering
framework.

called Low-rank Tensor constrained Multiview Subspace Clustering (LT-MSC) was recently

proposed in [73]. In the LT-MSC method, all the subspace representations are integrated into a

low-rank tensor, which captures the high order correlations underlying multiview data. In [74],

a diversity-induced multiview subspace clustering was proposed in which the Hilbert Schmidt

independence criterion was utilized to explore the complementarity of multiview representa-

tions. Recently, [75] proposed a Constrained Multi-view Video Face Clustering (CMVFC)

framework in which pairwise constraints are employed in both sparse subspace representation

and spectral clustering procedures for multimodal face clustering. A collaborative image seg-

mentation framework, called Multi-task Low-rank Affinity Pursuit (MLAP) was proposed in

[40]. In this method, the sparsity-consistent low-rank affinities from the joint decompositions

of multiple feature matrices into pairs of sparse and low-rank matrices are exploited for seg-

mentation.

Various supervised and unsupervised tasks and applications can get a boost in their per-

formance by exploiting multimodal learning. This includes medical applications [76, 77, 78,

79, 80], visual recognition applications [81, 82, 83, 84, 85, 86] , computer security [87, 88],

network managements [89, 90], and natural language processing tasks [91, 92, 93, 94, 95, 96].
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In this chapter, we extend the Sparse Subspace Clustering (SSC) [36], Low-rank Representation-

based (LRR) [37] subspace clustering and Low-Rank Sparse Subspace Clustering (LRSSC)

[50] methods for multimodal data. In our formulation, we exploit the self expressiveness prop-

erty [36] of each sample in its respective modality and enforce the common representation

across the modalities. As a result, we are able to exploit the correlations as well as coupling

among different modalities. Furthermore, we kernelize the proposed algorithms to handle non-

linearity in the data samples. The proposed optimization problems are solved using the Alter-

nating Direction Method of Multipliers (ADMM) [60]. Figure 6.1 presents an overview of our

multimodal subspace clustering framework.

This chapter is organized as follows.

Details of the proposed multimodal subspace clustering algorithms are given in Section 3..

Nonlinear extension of the proposed algorithms are presented in Section 3.. Experimental

results are presented in Section 3., and finally, Section 5. concludes the chapter with a brief

summary.

2. Multimodal Sparse and Low-Rank Representation-based Subspace Cluster-

ing

As discussed earlier, classical subspace clustering methods are specifically designed for uni-

modal data. These methods can not be easily extended to the case where we have heterogeneous

data. Hence, in what follows, we present a multimodal extension of the sparse and low-rank

subspace clustering algorithms. Given N paired data samples {(y1
i ,y

2
i , · · · ,y

M
i )}

N
i=1 from M

different modalities, define the corresponding data matrices as {Ym = [ym
1 ,y

m
2 , · · · ,y

m
N ] ∈

RDm×N }Mm=1, respectively. We assume the M paired sets of sample points are drawn from a

union of n linear subspaces in {RDm }Mm=1, respectively.

Given {Ym}Mm=1, the task of multimodal subspace clustering is to simultaneously cluster the

signals in distinct modalities according to their subspaces. In our formulation, we exploit the

self expressiveness property of each sample in its respective modality, and enforce the common

representation across the modalities.
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In the case of data contaminated by noise and outliers, the data can be written as

{Ym = YmCm +Nm + Em}Mm=1, (3.1)

where {Cm}Mm=1, {N
m}Mm=1 and {Em}Mm=1 are the corresponding sparse coefficient matrix, noise

and error terms, respectively. Essentially based on this model, [73] proposed to integrate the

subspace representations {Cm}Mm=1 using a low-rank tensor model, while [74] used a diversity

induced framework to combine the representation coefficients from different modalities. Simi-

larly, [40] proposed `2,1 regularization on the concatenated subspace representations to enforce

the affinities to have the consistent magnitudes. Finally, [75] proposed to minimize the dis-

tances between the normalized affinity matrices that are obtained by subspace clustering from

each modality.

The key difference among the proposed method and the above mentioned methods is that

in our method, the subspace representations of different modalities are enforced to be the same

while in some of the previous methods, the subspace representations of different modalities

are different, but somehow combined by enforcing some type of regularization (i.e. tensor,

`2,1, diversity links, etc.) on the representations. By extracting the common sparse and/or

low-rank representation structure of data across different modalities, we are able to exploit the

correlations and coupling among different modalities. As a results, we can obtain a more robust

subspace sparse and/or low-rank representations. In particular, we model the data as follows

{Ym = YmC +Nm + Em}Mm=1, (3.2)

where common subspace representation C is enforced among all modalities. Our model is

motivated by [97] and [98, 99] in which common sparse representation is enforced for image

super-resolution and multimodal biometrics recognition, respectively.

If the errors are sparse, then one can find C and E = {Em}Mm=1 by solving the following

optimization problem

min
C,E
J(C,E) +

λ

2

M∑
m=1

‖Ym −YmC − Em‖2F

s.t. diag(C) = 0. (3.3)

Depending on the choice of J , we get different algorithms for multimodal subspace clustering.

For instance, if J(C,E) = ‖C‖1 + λe‖E‖1,we get multimodal SSC (MSSC), and the resulting
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optimization problem becomes

min
C,E
‖C‖1 + λe‖E‖1 +

λ

2

M∑
m=1

‖Ym −YmC − Em‖2F (3.4)

s.t. diag(C) = 0. (3.5)

When J(C,E) = ‖C‖∗+λe‖E‖1,we get multimodal LRR (MLRR). Note that in the case of

MLRR, the term diag(C) = 0 in (3.3) is not required. Hence, we get the following optimization

problem

min
C,E
‖C‖∗ + λe‖E‖1 +

λ

2

M∑
m=1

‖Ym −YmC − Em‖2F . (3.6)

Finally, when J(C,E) = ‖C‖1+λr ‖C‖∗+λe‖E‖1, we get multimodal LRSSC (MLRSSC).

In some cases, especially when the data is noisy, the term diag(C) = 0 may make the resulting

representation matrix C not very low-rank. As a result, enforcing rank minimization along with

the sparsity constraint with diag(C) = 0 in MLRSSC may not be that meaningful. Hence, we

slightly modify the formulation in (3.3) for MLRSSC as follows

min
C,E

λ

2

M∑
m=1

‖Ym −YmA − Em‖2F + ‖A‖1

+ λr ‖C‖∗ + λe‖E‖1 s.t. A = C − diag(C). (3.7)

Note that in our formulation, E is just a compact representation for {Em}Mm=1. As will become

apparent later, we solve each Em separately since their dimensions may be different due to

the different dimensionality of features in each modality (See Figure 6.1). Another interesting

point to note here is that when M = 1, the proposed multimodal algorithms reduce to their

unimodal counterparts.

Similar to the unimodal subspace clustering algorithms, once C is estimated, spectral clus-

tering methods can be applied on the affinity matrix W = |C|+ |C|T to obtain the simultaneous

segmentation of the data {Ym}Mm=1. Different steps of the proposed multimodal subspace clus-

tering algorithms are summarized in Algorithm 1.

2..1 Optimization

We present an approach based on the ADMM method [60] for solving the proposed multimodal

subspace clustering problems. Due to the similarity of MSSC, MLRR and MLRSSC problems,
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Algorithm 1 MSSC, MLRR, and MLRSSC Algorithms.

1: procedure MULTIMODAL SUBSPACE CLUSTERING({Ym}Mm=1,
λe, λ, λr,‘Algorithm’)

2: if Algorithm = MSSC then . Obtaining C
3: Find C by solving (3.4).
4: else if Algorithm = MLRR then
5: Find C by solving (3.6).
6: else if Algorithm = MLRSSC then
7: Find C by solving (3.7).
8: end if
9: Normalize the columns of C as ci ←

ci
‖ci ‖∞

.
10: Form a similarity graph with N nodes and set the weights on the edges between the

nodes by W = |C| + |CT |.
11: Apply spectral clustering to the similarity graph.
12: end procedure
13: Output: Segmented multimodal data.

we only provide details on the optimization of the MSSC problem.

By introducing the auxiliary variables U, and Z, the MSSC problem (3.4) can be reformu-

lated as

arg min
C,E,U,Z

λ

2

M∑
m=1

‖Ym −YmC − Em‖2F + ‖Z‖1 + λe‖U‖1

s.t. C = Z,E = U, diag(C) = 0. (3.8)

Let fαC ,αE (C,E,Z,U;AE,AC) be the augmented Lagrangian function defined as

arg min
C,E,U,Z

λn
2

M∑
m=1

‖Ym −YmC − Em‖2F

+ ‖Z‖1 +
αC
2
‖C − (Z − diag(Z))‖2F (3.9)

+ 〈AC,C − (Z − diag(Z))〉

+ λe

M∑
m=1

‖Um‖1 +
αE
2

M∑
m=1

‖Em −Um‖2F

+

M∑
m=1

〈AE
m,Em −Um〉,

where AC and AE are the multipliers of the constrains, αC and αE are positive parameters

and 〈A,B〉 denotes trace(ATB). The resulting problem can be solved using the Augmented

Lagrangian Method (ALM) [100] by keeping multipliers fixed, and updating C,E,Z,U, and
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then updating multipliers AC and AE while keeping the other terms fixed. This process is

repeated until convergence is reached (‖Ck+1 − Ck ‖
F
2 < ε).

Update step for C

Fixing Ek,Zk , and Uk , Ck+1 can be obtained by minimizing fαC ,αE with respect to C. There-

fore, Ck+1 is updated by solving the following linear system of equations(
M∑
m=1

λnYmTYm + αCI

)
Ck+1 =(

M∑
m=1

λnYmT
(Ym − Em)

)
+ αC (Zk + diag(Zk)) −AC ,k, (3.10)

where I is an N × N identity matrix. When N is not very large, one can simply apply matrix

inversion to update Ck+1 from (3.10). For large values of N , iterative methods can be used to

solve (3.10) [101, 102, 103].

Update step for E

As different modalities can have features with different dimensions, Ems are updated separately

by minimizing fαC ,αE with respect to Em as follows

Em
k+1 = (1 + αE )

−1
(
Ym −YmCk+1 + αEUm

k −Am
E ,k

)
,

where Am
E ,k

is the kth update of the ith modality’s multiplier.

Update step for Z

The variable Z can be updated as follows

Zk+1 = J − diag(J),

where

J
∆
= S 2

αC

(
Ck+1 +

2AC ,k

αC

)
,

Sη (ν) = (|ν | − η)+ + sgn(ν),

(.)+ =


(|ν | − η), |ν | − η ≥ 0

0, Otherwise.
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Update step for U

The update step for U takes the following form

Um
k+1 = S λe

αE

(
Em
k+1 + α

−1
E Am

E ,k,
)
,

where Sη is the shrinkage-thresholding operator defined in the previous step.

Update steps for AE and AC

Finally, the multipliers are updated by gradient ascent with step sizes of αC and αE as follows

AC ,k+1 = AC ,k + αC(Ck+1 − Zk+1)

Am
E ,k+1 = Am

E ,k + αE (E
m
k+1 −Um

k+1).

Note that all the update steps are repeated until convergence is reached (‖Ck+1−Ck ‖
F
2 < ε).

2..2 Computational Complexity

The computational complexity is an important factor in practical deployment of machine learn-

ing and computer vision algorithms. While some methods focus on optimizing low-level imple-

mentation of algorithms on hardware devices [104], it is less costly to design computationally

efficient algorithms. In this section we analyze the computational complexity of the proposed

multimodal subspace clustering algorithms. We denote the number of available data points in

each modality as N , the dimension of multimodal features as {Dm}Mm=1 with Dt =
∑M

m=1 Dm,

and the number of subspaces as n. We also assume that the needed number of iterations to reach

the convergence in solving the problems (3.4), (3.6) and (3.7) are t1, and spectral clustering

algorithm at the final step of the Algorithm 1 needs t2 iterations.

In general, matrix multiplication of an P×N matrix with an N×N matrix has the complexity

of O
(
PN2

)
, and matrix addition of two P × N matrices has the complexity of O (PN). In

addition, both singular value decomposition (SVD) and matrix inversion of an N × N matrix

has the complexity of O
(
N3

)
.

The first step of the MSSC algorithm involves updating C, which requires a matrix inver-

sion, matrix multiplications and addiction operations. However, among the operations for up-

dating C, the matrix inversion with the complexity of O
(
N3

)
, and the multiplications with the
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Gram matrices with the computational complexities of {O
(
DiN2

)
}Mm=1 can be calculated in ad-

vance, and can be used directly in the iterations.Therefore, assuming that the inverse matrix and

the Gram matrices are available, updating C has the dominant complexity of O
(
N3 + DtN2

)
in

each iteration. In the next step, updating each Em has the dominant complexity of O
(
DiN2

)
.

Updating Z has the complexity of O
(
N2

)
as it requires a matrix addition and thresholding

each element for computing J. Similarly, update step for U requires O (DtN) computations.

Afterward, updating multipliers AC , and AE have the complexities of O
(
N2

)
and O (DtN),

respectively. Therefore, as the coefficient matrix is obtained after t1 iterations, updating steps

are iterated t1 times, which results in the overall complexity of O
(
t1(DtN2 + N3)

)
. Finally, the

spectral clustering step has the computational complexity of O (t2nN). Therefore, the overall

computational complexity of the MSSC algorithm including the inversion task at the beginning

of the algorithm is O
(
N3 + t1(DtN2 + N3) + t2nN

)
.

The computations in the MLRR and the MLRSSC algorithms are very similar to the MSSC

algorithm, except that they have an additional step of the SVD where they calculate Z. However,

their dominant complexities are in the same order as with the MSSC algorithm.

3. Non-Linear Multimodal Subspace Clustering

While the linear multimodal subspace clustering models (3.4), (3.6) and (3.7) are good approx-

imations, in practice many datasets are better modeled by non-linear manifolds. One approach

to dealing with nonlinear manifolds is to use kernel methods. Kernel-based sparse represen-

tations have been exploited before in the context of sparse coding [105], dictionary learning

[106], compressed sensing [107], and subspace clustering [108, 39]. It has been shown that

the non-linear mapping using the kernel trick can group the data with the same distribution and

make them linearly separable. In this section, we present nonlinear extensions of the proposed

multimodal subspace clustering algorithms using the kernel trick.

Let Φ : RD → H be the mapping from the input space to the reproducing kernel Hilbert

space H . The kernel function κ : RD × RD → R is defined as the inner product κ(xi,xj) =

〈Φ(xi),Φ(xj)〉. Then, the kernel extension of (3.3) without the sparse noise term E can be
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formulated as

min
C
J(C) +

λ

2

M∑
m=1

‖Φ(Ym) − Φ(Ym)C‖2F

s.t. diag(C) = 0, (3.11)

where Φ(Ym) = [Φ(ym
1 ),Φ(y

m
2 ), · · · ,Φ(y

m
N )]. This problem can be rewritten as

min
C

λ

2

M∑
m=1

Tr(KYmYm − 2KYmYmC + CTKYmYmC) (3.12)

+ J(C) s.t. diag(C) = 0,

where [KYmYm ]k ,l = [〈Φ(Y
m),Φ(Ym)〉]k ,l = κ(ym

k
,ym

l
), and Tr(.) denotes trace operation.

Similar to the linear multimodal subspace clustering methods, we apply the ADMM method to

efficiently solve the problem for kernel multimodal sparse and low-rank subspace clustering.

We denote the nonlinear versions of MSSC, MLRR and MLRSSC as KMSSC, KMLRR and

KMLRSSC, respectively.

4. Experimental Results

We evaluate the performance of our multimodal subspace clustering algorithms on five publicly

available face datasets. We compare the performance of our method with several state-of-the-

art subspace clustering methods such as SSC [36], LRR [34], and LRSC [35] by concatenat-

ing features from different modalities and then feeding them into these unimodal algorithms.

We denote these methods as SSC-C, LRR-C and LRSC-C. In addition, we compare the per-

formance of our method with three recently introduced state-of-the-art multimodal subspace

clustering algorithms - MLAP [40], CMVFC [75], and LT-MSC [73]. Cross validation is used

for parameter selection in all the experiments. Note that the MLAP algorithm requires all the

modalities to have the same dimension. Therefore, the dimensions of different modalities are

reduced to a common dimension (i.e. the smallest dimension among all modalities) using prin-

cipal component analysis (PCA). For the experiments with the kernel multimodal subspace

clustering algorithms such as KMSSC, KMLRR and KMLRSSC, we use the Gaussian ker-

nel κ(x,y) = exp(−σ‖x − y‖2), where σ is the parameter of the kernel function. Subspace
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Figure 3.2: Face masks used to crop out different facial components.

Experiment Used Features SSC-C [36] LRR-C [34] LRSC-C [35] MLAP [40] CMVFC [75] LT-MSC [73] C-RP LRR
1 - Yale B Facial Components Pixels 22.07 21.45 26.73 26.94 35.31 20.71 24.79
2 - AR Facial Components Pixels 22.36 49.14 47.35 54.53 38.64 44.07 55.08
3 - Fusion of Features Multiple features 25.14 20.13 25.45 23.63 34.61 18.76 22.69
4 - UMD-AA01 Alexnet “fc7” 24.49 46.35 39.35 34.69 27.73 30.62 36.73
5 - VIS NIR Pixels 37.37 55.74 54.79 58.59 38.13 50.50 58.41

C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC
6 - Yale B Facial Components Pixels 29.54 18.73 19.02 18.52 12.67 15.78 13.47
7 - AR Facial Components Pixels 33.07 17.35 38.43 17.52 10.58 32.78 16.85
8 - Fusion of Features Multiple features 30.82 23.36 18.61 18.83 23.25 17.20 18.43
9 - UMD-AA01 Alexnet “fc7” 23.12 22.45 32.56 27.11 22.16 26.23 27.89
10 - VIS NIR Pixels 38.89 36.16 52.52 34.34 30.30 46.97 30.30

Table 3.1: Multimodal subspace clustering performance of different methods.

clustering error is used to measure the performance of different algorithms. It is defined as

subspace clustering error =
# of misclassified points

total # of points
× 100.

4..1 Face Clustering using Facial Components

In the first set of experiments, we use the Extended Yale B [109], and AR face [110] datasets.

We extracted four weak modalities from the face images: left and right periocular, mouth

and nose regions. This was done by applying rectangular masks as shown in Figure 3.2, and

cropping out the respective regions. These facial components, along with the whole face, were

taken as different modalities for testing our multimodal subspace clustering methods. Simple

pixel intensity values were used as features for all of them.

Subspace clustering of the Extended Yale B dataset

The Extended Yale B dataset [109] consists of 192 × 168 size images of 38 individuals. The

dataset contains 64 frontal images of each subject under varying illumination conditions. The
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Left Eye Right Eye Nose Mouth Face
SSC [36] 33.91 30.49 54.74 43.48 23.76
LRR [34] 26.28 27.39 56.46 31.81 22.52
LRSC [35] 29.62 25.86 51.93 32.30 23.96

Table 3.2: Clustering errors on the individual facial components of the Extended Yale B dataset.

performance of SSC, LRR and LRSC on the individual facial components is summarized in

Table 3.2. It can be seen from this table that among all five modalities, face gives the best

performance. This is not surprising as the other modalities such as mouth, nose and eyes are

considered as weak modalities, and they are not as stable as faces [111]. Overall LRR and

LRSC methods seem to perform better than SSC on this dataset using individual modalities.

The first and sixth rows of Table 3.1 summarize the results obtained by different multimodal

subspace cluttering methods on the Extended Yale B dataset. Once the data from different

modalities are concatenated, the dimension of the resulting multimodal vector is very large. We

reduce its dimension by using a random projection matrix. We denote the resulting methods as

C-RP LRR and C-RP SSC. It can be seen from this table that our proposed multimodal methods

perform significantly better than MLAP, CMVFC, and LT-MSC. Furthermore, it is interesting

to see that the fusion results of our multimodal methods are much better than the ones obtained

using single modalities. This can be clearly seen by comparing Table 3.2 with the first and sixth

rows of Table 3.1. This experiment clearly shows the significance of our common sparse and

low-rank representation-based methods for subspace clustering. Also, KMSSC, KMLRR and

KMLRSSC further improve the performance over MSSC, MLRR and MLRSSC, respectively.

In Figure 3.3, we show the recovered common representations corresponding to the MSSC,

MLRR and MLRSSC methods. Only the images from the first four subjects are used in this ex-

periment for better visualization. As can be seen from this figure, that the recovered coefficient

matrices have block diagonal structures. In particular, the coefficient matrix corresponding to

the MSSC algorithm (shown in Figure 3.3 (a)) is very sparse. On the other hand, the coeffi-

cient matrix corresponding to the MLRR algorithm (shown in Figure 3.3 (b)) has many nonzero

coefficients that are grouped together in a given block, which essentially corresponds to low-

rankness of the common coefficient matrix. Since the MLRSSC algorithm provides a trade-off



26

C1 C2 C3 C4

C1

C2

C3

C4

(a)
C1 C2 C3 C4

C1

C2

C3

C4

(b)
C1 C2 C3 C4

C1

C2

C3

C4

(c)

Figure 3.3: Common coefficient matrices corresponding to different multimodal subspace clus-
tering methods. Only the images from the first four subjects are used in this experiment for
better visualization. Ci denotes coefficients of all the samples belonging to the cluster i. (a)
The coefficient matrix corresponding to the MSSC algorithm. (b) The coefficient matrix cor-
responding to the MLRR algorithm. (c) The coefficient matrix corresponding to the MLRSSC
algorithm.

between sparsity and low-rank structure of the coefficient matrix, it has more non-zero coeffi-

cients that are grouped together than the matrix corresponding to the MSSC algorithm. This

can be clearly seen by comparing Figure 3.3(a) with Figure 3.3(c).

Subspace clustering of the AR face dataset

The AR face dataset [110] consists of faces from 116 individuals with varying illumination,

expression and occlusion conditions, captured in two sessions. In this experiment, we choose

14 images per person from the publicly available cropped dataset1. These images correspond

to different illumination and expression variations. The performance of unimodal methods on

individual components is summarized in Table 3.3. It is interesting to see that the performance

of different methods using individual components is much worse than using the entire face.

This is mainly due to the fact that the AR dataset contains faces with various expressions. As a

result, the weak modalities do not work well on this dataset.

The second and seventh rows of Table 3.1 summarize the results obtained by different mul-

timodal subspace clustering methods on the AR face dataset. Although the facial components

in the AR face dataset provide poor results individually, their fusion significantly enhances the

performance of different subspace clustering methods. The KMSSC algorithm produces the

1Available at http://www2.ece.ohio-state.edu/˜aleix/ARdatabase.html

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
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Left Eye Right Eye Nose Mouth Face
SSC [36] 43.92 37.50 72.78 68.07 19.64
LRR [34] 54.42 52.36 61.79 61.21 43.77
LRSC [35] 62.43 62.93 64.36 65.57 40.57

Table 3.3: Clustering errors on the individual facial components of the AR database.

Pixels LBP Gabor HOG PCA
SSC [36] 23.76 41.58 33.66 27.76 24.71
LRR [34] 22.52 27.31 20.66 19.05 18.81
LRSC [35] 23.96 33.74 36.13 33.20 20.79

Table 3.4: Results on the Yale B dataset: clustering errors using different facial features.

best results on this dataset. Again this experiment shows the significance of our multimodal

fusion method for subspace clustering. It is also interesting to note that MLRSSC algorithm

provides a close performance to MSSC, but its nonlinear counterpart KMLRSSC cannot reach

the performance of KMSSC. This can mainly happen because of sparse error subtraction in

proposed linear methods that can significantly help satisfying low-rank constraints such as in

MLRSSC.

4..2 Face Clustering using Different Features

We extract different features from the face images of the Extended Yale B dataset and use them

as different modalities. We extract the local binary pattern (LBP), Gabor, histogram of oriented

gradients (HOG) and PCA features. Similar experiments have been conducted in [73] and [75]

for face clustering.

Table 3.4 compares the performance of different subspace clustering methods on the indi-

vidual features. For comparison, results corresponding to pixels are also copied from Table 3.2.

This table clearly shows that extracting discriminative and robust features first and then apply-

ing subspace clustering algorithms can provide better performance over just using pixel values

as features.

The results obtained by different multimodal subspace clustering methods are summarized
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(a) Session one.

(b) Session two.

(c) Session three.

Figure 3.4: Sample images from different sessions in the UMD-AA01 datasets. Each session
has been considered as a modality in this chapter.

in the third and eighth rows of Table 3.1. We observe that almost all methods perform much

better when discriminative features are used as different modalities. Furthermore, when dif-

ferent features are fused using our method, their performance is significantly enhanced. Also,

nonlinear kernel methods improve the performance over their linear counterparts.

Mobile Phone Facial Images Clustering

The UMD-AA01 dataset [112] is collected on mobile devices for the original purpose of ac-

tive authentication, but as it contains various ambient conditions, we use it for multimodal

experiments in this chapter. This dataset contains facial images of 50 users over 3 sessions

corresponding to different illumination conditions. In each session more than 750 images have

been taken from each face. We randomly selected seven samples per person in each session

and used them in the experiments. We used the normalization method introduced in [113], then

extracted deep features corresponding to the “fc7” layer from the Alexnet convolutional neural

network [114]. Figure 3.4 shows some sample images from this dataset.

Table 3.5 reports the performance of various unimodal subspace clustering methods on the
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Session 1 Session 2 Session 3
SSC [36] 37.32 46.36 40.82
LRR [34] 41.98 47.52 48.10
LRSC [35] 44.31 48.98 44.60

Table 3.5: Clustering errors on the individual sessions of the UMD-AA01 dataset.

(a) (b) (c) (d)

Figure 3.5: Sample images from the LDHF dataset at different standoffs (a) 1m, (b) 60m, (c)
100m and (d) 150m. Visible and near-infrared images are shown in the first and the second
row, respectively.

UMD-AA01 dataset. The performance of multimodal methods is also shown in the fourth and

ninth rows of Table 3.1. As can be seen from this table the use of multimodal data can improve

the subspace clustering performance over their unimodal counterparts.

4..3 Visible and Infrared Face Images Clustering

In this set of experiments, we use visible and infrared faces as different modalities. Long

Distance Heterogeneous Face Database (LDHF) database [115] consists of visible and near-

infrared face images of 100 individuals (70 males and 30 females). The face images were

captured in both daytime and nighttime at different standoffs (e.g., 1m, 60m 100m, and150m)

resulting in four VIS-NIR pairs per subject. Sample image pairs from this dataset are shown in

Figure 3.5. In this experiment, the face area is cropped and resized to a fixed size of 100 × 100

pixels. We simply use the pixel intensities as features.

Results corresponding to different unimodal subspace clustering methods are reported in

Table 3.6. It can be seen from the table that generally visible images provide better performance
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Visible Near-infrared
SSC [36] 42.17 49.49
LRR [34] 57.45 61.44
LRSC [35] 58.83 60.85

Table 3.6: Results on VIS-NIR: clustering errors using visible and near infrared images.

in terms of clustering error. In addition, this table shows that LRR has a poor performance on

this dataset. This can be explained by the fact that in this dataset, we are dealing with too many

number of subjects with a few samples from each subject. It has been observed that increasing

the number of subjects makes subspace clustering difficult [36].

The fifth and tenth rows of the Table 3.1 provide clustering errors of multimodal sub-

space clustering methods on the VIS-NIR dataset. We can observe that the proposed MSSC,

MLRSSC, and their kernel extensions provide the best results. An interesting observation from

the Table 3.1 is that the LT-MSC method, which is a linear low-rank representation-based

method, has a slightly better performance on the VIS-NIR dataset compared to the MLRR

method. Similar trend is also observed on the other datasets as well. However, it should be

noted that the LT-MSC needs m more parameters to select for balancing the representations

from the m modalities. While this is not the case in our MLRR method. It is interesting to

note that the MLRR and KMLRR algorithms do provide significant improvements over the

unimodal LRR method and the other low-rank representation-based methods.

The fact that low-rank representation-based methods in this experiment are showing weaker

performances compared to the sparsity-based methods can be explained by the fact that there

are a large number of subjects and low number of samples per subject in VIS-NIR dataset.

Figure 3.6 shows the first 12 largest singular values corresponding to one subject’s data in the

Extended Yale B, AR, session one in UMD-AA01 and VIS datasets. It is clear from this figure

that samples in all four datasets do lie in a lower dimensional subspaces since the singular

values drop quickly. In particular, each subject in the Extended Yale B dataset, AR dataset,

UMD-AA01 dataset and VIS dataset, correspond to a subspace of dimension 9, 4, 4 and 3,

respectively. However, considering the number of samples in each cluster one can see VIS

dataset cannot show a low-rank structure as much as other datasets can show.
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Figure 3.6: First largest singular values of samples corresponding to the first person in Yale B,
AR, session one in UMD-AA01 and VIS datasets.

4..4 Impact of illumination variation

In this section, we compare the effect of illumination variations on the performance of different

multimodal subspace clustering methods. We split the Yale B dataset according to different

illumination variations. We choose one of the images per subject as a reference image, and

the other images will be divided into four subsets according to the light angle difference from

the reference. Figure 3.7 shows the variation within different subsets. We apply the same

rectangular masks shown in Figure 3.2 for extracting the facial components.

Table 3.7 compares the performances of various methods on the different subsets. As ex-

pected, as illumination variations become intense, the performance of different methods drop

significantly. It is interesting to see that the nonlinear methods show less dependency on the

amount of variations in the sample sets. This is because kernel methods can find non-linear

relations between the samples, while linear methods cannot easily deal with these variations.

4..5 Runtime comparisons

In order to compare the computational complexity of different multimodal subspace clustering

methods, we measure the running time of different algorithms. Since all the compared and
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(a) Subset 1. (b) Subset 2.

(c) Subset 3. (c) Subset 4.

Figure 3.7: Illumination variation within the selected subsets in the Yale B dataset.

SSC-C [36] LRR-C [34] LRSC-C [35] MLAP [40] CMVFC [75] LT-MSC [73] C-RP LRR
1 - Subset 1 19.55 36.27 21.80 21.99 12.40 25.43 23.30
2 - Subset 2 37.97 46.99 25.94 24.24 18.47 34.98 28.57
3 - Subset 3 39.47 70.11 61.27 56.39 33.64 52.31 60.52
4 - Subset 4 43.23 74.06 66.72 60.33 34.39 56.52 65.03

C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC
5 - Subset 1 18.23 9.58 21.42 8.76 8.22 18.98 6.39
6 - Subset 2 34.86 16.35 23.49 16.13 13.27 22.34 14.47
7 - Subset 3 36.53 28.57 48.49 27.43 24.97 25.43 23.49
8 - Subset 4 45.48 33.83 54.50 32.71 31.22 36.27 31.07

Table 3.7: Multimodal subspace clustering performance of different methods vs illumination
variation in the data points of the Yale B face dataset.

proposed methods are iterative algorithms, many factors such as step size of gradient descent,

maximum number of iterations and choice of regulation parameters can affect their running

time. Thus, we report the running time of the experiments on a specific dataset. In particular,

we measure the runtime of the methods on the UMD-AA01 dataset with the same settings that

resulted in the reported clustering errors in the fourth and ninth rows of Table 3.1. For the

methods with publicly available software packages, we use their published codes. Regarding

the nonlinear methods and random projection methods, calculations of finding Gram matrices

and extracting the projected features are also included in the reported runtimes. Besides, each

experiment is conducted 10 times, and the average runtime is reported. All the simulations

were done in Matlab on an Intel R© Xeon(R) 16-core machine with 3.0 GHz CPU and 32 GB

RAM, running Linux Ubuntu 14.04. Table 3.8 compares the runtime time of different methods.
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Method: SSC-C [36] LRR-C [34] LRSC-C [35] MLAP [40] CMVFC [75] LT-MSC [73] C-RP LRR
Time (Seconds) 45.05 3.85 0.29 20.49 167.42 1.18 1.72
Method: C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC
Time (Seconds) 36.01 16.26 1.63 2.30 3.73 23.20 2.66

Table 3.8: Runtime of different multimodal subspace clustering algorithms on the UMD-AA01
dataset.
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Figure 3.8: Objective function of proposed algorithms versus iterations. (a) Convergence plot
of the MSSC algorithm. (b) Convergence plot of the KMSSC algorithm.

As can be seen from this table, the proposed methods are computationally efficient compared

to some of the other subspace clustering methods.

4..6 Convergence

To empirically show the convergence of our method, in Figure 3.8 (a) and (b), we show the

objective function vs iteration plots of the ADMM method for solving the MSSC and KMSSC

problems, respectively with the experiments on the AR dataset. As can be seen from this

figure, the proposed algorithms do converge in a few iterations. Experiments have shown that

the MLRR, KMLRR, MLRSSC and KMLRSSC algorithms also converge in a few iterations.

5. Conclusion

We introduced multimodal extensions of the classical SSC, LRR and LRSSC methods for sub-

space clustering. The proposed optimization algorithms are efficiently solved using the ADMM
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method. Furthermore, using the kernel trick, we made the proposed multimodal subspace clus-

tering methods nonlinear. Extensive experiments on face clustering using publicly available

datasets showed that the proposed methods can perform better than many state-of-the-art mul-

timodal subspace clustering methods.
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Chapter 4

Deep Multimodal Subspace Clustering

1. Introduction

Many practical applications in image processing, computer vision, and speech processing re-

quire one to process very high-dimensional data. However, these data often lie in a low-

dimensional subspace. For instance, facial images with variation in illumination [16], hand-

written digits [17] and trajectories of a rigidly moving object in a video [18] are examples

where the high-dimensional data can be represented by low-dimensional subspaces. Subspace

clustering algorithms essentially use this fact to find clusters in different subspaces within a

dataset [19]. In other words, in a subspace clustering task, given the data from a union of sub-

spaces, the objective is to find the number of subspaces, their dimensions, the segmentation of

the data and a basis for each subspace [19]. This problem has numerous applications in includ-

ing motion segmentation [20], unsupervised image segmentation [21], image representation

and compression [22] and face clustering [23].

Various subspace clustering methods have been proposed in the literature [31, 32, 33, 34,

35, 116, 117, 4, 118, 119]. In particular, methods based on sparse and low-rank representa-

tion have gained a lot of attraction in recent years [36, 37, 116, 117, 39, 108, 38, 73]. These

methods exploit the fact that noiseless data in a union of subspaces are self-expressive, i.e.

each data point can be expressed as a sparse linear combination of other data points. The self-

expressiveness property was also recently investigated in [4] to develop a deep convolutional

neural network (CNN) for subspace clustering. This deep learning-based method was shown to

significantly outperform the state-of-the-art subspace clustering methods.

In the case where the data consists of multiple modalities or views, multimodal subspace
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clustering methods can be employed to simultaneously cluster the data in the individual modal-

ities according to their subspaces [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Some of the multi-

modal subspace clustering methods make use of the kernel trick to map the data onto a high-

dimensional feature space to achieve better clustering [49].

Motivated by the recent advances in deep subspace clustering [4] as well as multimodal

data processing using CNNs [120, 121, 122, 84, 85, 86, 91, 92, 95], in this chapter, we propose

a different approach to the problem of multimodal subspace clustering. We present a novel

CNN-based autoencoder approach in which a fully-connected layer is introduced between the

encoder and the decoder which mimics the self-expressiveness property that has been widely

used in various subspace clustering algorithms.

Figure 4.1 gives an overview of the proposed deep multimodal subspace clustering frame-

work. The self-expressive layer is responsible for enforcing the self-expressiveness property

and acquiring an affinity matrix corresponding to the data points. The decoder reconstructs

the original input data from the latent features. The network uses the distance between the

decoder’s reconstruction and the original input in its training.

For encoding the multimodal data into a latent space, we investigate three different spatial

fusion techniques based on late, early and intermediate fusion. These fusion techniques are

motivated by the deep multimodal learning methods in supervised learning tasks [61, 62], that

provide the representation of modalities across spatial positions. In addition to the spatial

fusion methods, we propose an affinity fusion-based network in which the self-expressive layer

corresponding to different modalities is enforced to be the same. For both spatial and the

affinity fusion-based methods, we formulate an end-to-end training objective loss.

Key contributions of our work are as follows:

• Deep learning-based multimodal subspace clustering framework is proposed in which

the self-expressiveness property is encoded in the latent space by using a fully connected

layer.

• Novel encoder network architectures corresponding to late, early and intermediate fusion

are proposed for fusing multimodal data.

• An affinity fusion-based network architecture is proposed in which the self-expressive
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Figure 4.1: An overview of the proposed deep multimodal subspace clustering framework.
Note that the network consists of three blocks: a multimodal encoder, a self-expressive layer,
and a multimodal decoder. The weights in the self-expressive layer, Θs, are used to construct
the affinity matrix. We present several models for the multimodal encoder.

layer is enforced to have the same weights across latent representations of all the modal-

ities.

To the best of our knowledge, this is the first attempt that proposes to use deep learning for

multimodal subspace clustering. Furthermore, the proposed method obtains the state-of-the-art

results on various multimodal subspace clustering datasets. Code is available at: https://

github.com/mahdiabavisani/Deep-multimodal-subspace-clustering-networks.

This chapter is organized as follows. Related works on subspace clustering and multimodal

learning are presented in Section 2.. The proposed spatial fusion-based and affinity fusion-

based multimodal subspace clustering methods are presented in Section 3. and 4., respectively.

Experimental results are presented in Section 5., and finally, Section 6. concludes the chapter

with a brief summary.

2. Related Work

In this section, we review some related works on subspace clustering and multimodal learning.

https://github.com/mahdiabavisani/Deep-multimodal-subspace-clustering-networks
https://github.com/mahdiabavisani/Deep-multimodal-subspace-clustering-networks
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2..1 Sparse and Low-rank Representation-based Subspace Clustering

Let X = [x1, · · · ,xN ] ∈ R
D×N be a collection of N signals {xi ∈ R

D}Ni=1 drawn from a union of

n linear subspacesS1∪S2∪· · ·∪Sn of dimensions {d`}n`=1 inRD . Given X, the task of subspace

clustering is to find sub-matrices X` ∈ R
D×N` that lie in S` with N1 + N2 + · · · + Nn = N . The

sparse subspace clustering (SSC) [36] and low-rank representations-based subspace clustering

(LRR) [37] algorithms exploit the fact that noiseless data in a union of subspaces are self-

expressive. In other words, it is assumed that each data point can be represented as a linear

combination of other data points. Hence, these algorithms aim to find the sparse or low-rank

matrix C by solving the following optimization problem

min
C
‖C‖p +

λ

2
‖X −XC‖2F, (4.1)

where ‖.‖p is the `1-norm in the case of SSC [36] and the nuclear norm in the case of LRR

[37]. Here, λ is a regularization parameter. In addition, to prevent the trivial solution C = I,

an additional constraint of diag(C) = 0 is added to the above optimization problem in the case

of SSC. Once C is found, spectral clustering methods [67] are applied on the affinity matrix

W = |C| + |C|T to obtain the segmentation of the data X.

Non-linear versions of the SSC and LRR algorithms have also been proposed in the litera-

ture [39, 108].

2..2 Deep Subspace Clustering

The deep subspace clustering network (DSC) [4] explores the self-expressiveness property by

embedding the data into a latent space using an encoder-decoder type network. Figure 4.2 gives

an overview of the DSC method for unimodal subsapce clustering. The method optimizes an

objective similar to that of (4.1) but the matrix C is approximated using a trainable dense layer

embedded within the network. Let us denote the parameters of the self-expressive layer as

Θs. Note that these parameters are essentially the elements of C in (4.1). The following loss

function is used to train the network

min
Θ̃
‖Θs ‖p +

λ1
2
‖ZΘe − ZΘeΘs ‖

2
F +

λ2
2
‖X − X̂Θ̃‖,

s.t. diag(Θs) = 0, (4.2)
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Figure 4.2: An overview of the DSC framework proposed in [4] for unimodal subspace clus-
tering.

where ZΘe denotes the output of the encoder, and X̂Θ̃ is the reconstructed signal at the output

of the decoder. Here, the network parameters Θ̃ consist of encoder parameters Θe, decoder

parametersΘd and self-expressive layer parametersΘs. Here, λ1 and λ2 are two regularization

parameters.

2..3 Multimodal Subspace Clustering

A number of multimodal and multiview subspace clustering approaches have been developed

in recent years. Bickel et al. introduced an Expectation Maximization (EM) and agglomera-

tive multiview clustering methods in [46]. White et al. [45] provided a convex reformulation

of multiview subspace learning that as opposed to local formulations enables global learning.

Some algorithms use dimensionality reduction methods such as Canonical Correlation Analysis

(CCA) to project the multiview data onto a low-dimensional subspace for clustering [41, 47].

Some other multimodal methods are specifically designed for two views and can not be easily

generalized to multiple views [72, 48]. Kumar et al. [42] proposed a co-regularization method

that enforces the clusterings to be aligned in different views. Zhao et al. [43] use output of

clustering in one view to learn discriminant subspaces in another view. A multiview subspace

clustering method, called Low-rank Tensor constrained Multiview Subspace Clustering (LT-

MSC) was recently proposed in [73]. In the LT-MSC method, all the subspace representations

are integrated into a low-rank tensor, which captures the high order correlations underlying mul-

tiview data. In [74], a diversity-induced multiview subspace clustering was proposed in which
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Figure 4.3: Different network architectures corresponding to (a) early fusion, (b) intermediate
fusion, and (c) late fusion. Note that in all the spatial fusion-based networks (a)-(c), the overall
structure for the self-expressive layer and the multimodal decoder remain the same. (d) Net-
work architecture corresponding to affinity fusion. In this case, the encoder and decoder are
trained separately for each modality, but are forced to have the same self-expressive layer.

the Hilbert Schmidt independence criterion was utilized to explore the complementarity of mul-

tiview representations. Recently, [75] proposed a constrained multi-view video face clustering

(CMVFC) framework in which pairwise constraints are employed in both sparse subspace rep-

resentation and spectral clustering procedures for multimodal face clustering. A collaborative

image segmentation framework, called Multi-task Low-rank Affinity Pursuit (MLAP) was pro-

posed in [40]. In this method, the sparsity-consistent low-rank affinities from the joint decom-

positions of multiple feature matrices into pairs of sparse and low-rank matrices are exploited

for segmentation.

2..4 Deep Multimodal Learning

In multimodal learning problems, the idea is to use the complementary information provided by

the different modalities to enhance the recognition performance.Supervised deep multimodal



41

DP S0 S1 S2 Visible z = f (DP,S0,S1,S2,Vi)
Spatial Fusion ResultInput Modalities

Spatial Fusion

f (x1, x2, x3, x4, x5)

Figure 4.4: In spatial fusion methods each location of the fusion is related to the input values at
the same location. In this especial case, the facial components (i.e. eyes, nose and mouth) are
aligned across all the modalities (i.e. DP, S0, S1, S2, Visible).

learning was first introduced in [120], [121], and has gained a lot of attention in recent years [96,

81, 84].

Keila et al. [61] investigated deep multimodal classification of large-scaled datasets. They,

compared a number of multimodal fusion methods in terms of accuracy and computational

efficiency, and provided analysis regarding the interpretability of multimodal classification

models. Feichtenhofer et al. [62] proposed a convolutional fusion method for two stream 3D

networks. They explored multiple fusion functions within deep architectures and studied the

importance of learning the correspondences between spatial and temporal feature maps. Var-

ious deep supervised multimodal fusion approaches have also been proposed in the literature

for different applications including medical image analysis applications [78, 79, 123] visual

recognition [85, 84] and visual question answering [96, 91]. We refer readers to [122] for more

detailed survey of various deep supervised multimodal fusion methods.

While most of the deep multimodal approaches have reported improvements in the su-

pervised tasks, to the best of our knowledge, there is no deep multimodal learning method

specifically designed for unsupervised subspace clustering.

Various supervised and unsupervised tasks and applications can get a boost in their perfor-

mance by exploiting multimodal learning. This includes medical applications [76, 77, 78, 79,

124, 80], visual recognition applications [81, 82, 83, 84, 85, 86] , computer security [125, 88,

126], network managements [127], and natural language processing tasks [91, 92, 93, 94, 95,
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96].

3. Spatial Fusion-based Deep Multimodal Subspace Clustering

In this section, we present details of the proposed spatial fusion-based networks for unsuper-

vised subspace clustering. Spatial fusion methods find a joint representation that contains

complementary information from different modalities. The joint representation has a spatial

correspondence to every modality. Figure 4.4 shows a visual example of spatial fusion where

five different modalities (DP, S0, S1, S2, Visible) are combined to produce a fused result Y .

The spatial fusion methods are especially popular in supervised multimodal learning applica-

tions [61, 62]. We investigate applying these fusion techniques to our problem of deep subspace

clustering.

An essential component of such methods is the fusion function that merges the information

from multiple input representations and returns a fused output. In the case of deep networks,

flexibility in the choice of fusion network leads to different models. In what follows, we inves-

tigate several network designs and spatial fusion functions for multimodal subspace clustering.

Then, we formulate an end-to-end training objective for the proposed networks.

3..1 Fusion Structures

We build our deep multimodal subspace clustering networks based on the architecture proposed

in [4] for unimodal subspace clustering. Our framework consists of three main components:

an encoder, a fully connected self-expressive layer, and a decoder. We propose to achieve the

spatial fusion using an encoder and the fused representation is then fed to a self-expressive layer

which essentially exploits the self-expressiveness property of the joint representation. The joint

representation resulting from the output of the self-expressive layer is then fed to a multimodal

decoder that reconstructs the different modalities from the joint latent representation.

For the case of M input modalities, the decoder consists of M branches, each reconstructing

one of the modalities. The encoders on the other hand, can be designed such that they achieve

early, late or intermediate fusion. Early fusion refers to the integration of multimodal data in

the stage of feature level before feeding them to the network. Late fusion, on the other hand,
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involves the integration of multimodal data in the last stage of the network. The flexibility of

deep networks also offers the third type of fusion known as the intermediate fusion, where the

feature maps from the intermediate layers of a network are combined to achieve better joint

representation. Figures 4.3 (a), (b) and (c) give an overview of deep multimodal subspace clus-

tering networks with different spatial fusion structures. Note that the multimodal decoder’s

structure remains the same in all three cases. It is worth mentioning that in the case of interme-

diate fusion, it is a common practice to aggregate the weak or correlated modalities at earlier

stages and combine the remaining strong modalities at the in-depth stages [122].

3..2 Fusion Functions

Assume for a particular data point, xi, there are M feature maps corresponding to the represen-

tation of different modalities. A fusion function f : {x1, x2. · · · , xM } → z fuses the M feature

maps and produces an output z. For simplicity we assume that all the input feature maps have

the same dimension of RH×W×din
, and the output has the dimension of RH×W×dout

. In fact,

deep network structures offer the design option for having feature maps with the same dimen-

sions. We use zi, j ,k and xm
i, j ,k

to denote the value in the spatial position (i, j, k) in the output

and the mth input feature map, respectively. Various fusion functions can be used to combine

the input feature maps. Below, we investigate a few.

Sum fusion z = sum(x1, x2. · · · , xM )

computes the sum of the feature maps at the same special positions as follows

zi, j ,k =
M∑
m=1

xmi, j ,k . (4.3)

Maxpooling function z = max(x1, x2. · · · , xM )

returns the maximum value of the corresponding location in the input feature maps as follows

zi, j ,k = Max{x1i, j ,k, x
2
i, j ,k . · · · , x

M
i, j ,k}. (4.4)
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Concatenation function z = cat(x1, x2. · · · , xM )

constructs the output by concatenating the input feature maps as follows

z = [x1, x2. · · · , xM ], (4.5)

where each input has the dimensionRH×W×din and the output has the dimensionRH×W×(din×M).

Note that these fusion functions are denoted as “Fusion” in blue boxes in Figure 4.3 (a)-(c).

3..3 End-to-End Training Objective

Given N paired data samples {x1
i ,x

2
i , · · · ,x

M
i }

N
i=1 from M different modalities, define the cor-

responding data matrices as Xm = [xm
1 ,x

m
s , · · · ,x

m
N ], m ∈ {1, · · · ,M}. Regardless of the

network structure and the fusion function of choice, let ΘM .e denote the parameters of the

multimodal encoder. Similarly, let Θs be the self-expressive layer parameters and ΘM .d be

the multimodal decoder parameters. Then the proposed spatial fusion models can be trained

end-to-end using the following loss function

min
Θ
‖Θs ‖p +

λ1
2
‖ZΘM .e − ZΘM .eΘs ‖

2
F +

λ2
2

M∑
m=1

‖Xm − X̂m
Θ ‖

s.t diag(Θs) = 0, (4.6)

where Θ denotes all the training network parameters including ΘM .e, Θs and ΘM .d. The joint

representation is denoted by ZΘM .e , and X̂m
Θ

is the reconstruction of Xm. Here, λ1 and λ2 are

two regularization parameters, and ‖ · ‖p can be either `1 or `2 norm.

4. Affinity Fusion-based Deep Multimodal Subspace Clustering

In this section, we propose a new method for fusing the affinities across the data modalities to

achieve better clustering. Spatial fusion methods require the samples from different modalities

to be aligned (see Figure 4.4) to achieve better clustering. In contrast, the proposed affinity

fusion approach combines the similarities from the self-expressive layer to obtain a joint repre-

sentation of the multimodal data. This is done by enforcing the network to have a joint affinity

matrix. This avoids the issue of having aligned data or increasing the dimensionality of the

fused output (i.e. concatenation). The motivation for enforcing a shared affinity matrix is that
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Figure 4.5: An example of affinity fusion. Affinities corresponding to different modalities are
combined to have only a single shared affinity. This method does not relay on spatial relation
across different modalities. Instead, it aggregates the similarities among data points across
different modalities and returns a shared affinity.

similar (dissimilar) data in one modality should be similar (dissimilar) in the other modalities

as well. Figure 4.5 shows an example of the proposed affinity fusion method by forcing the

modalities to share the same affinity matrix.

In the DSC framework [4], the affinity matrix is calculated from the self-expressive layer

weights as follows

W = |ΘT
s | + |Θ

T
s |,

where Θs corresponds to the self-expressive layer weights learned by an end-to-end training

strategy [4]. Thus a shared Θs results in a common W across the modalities. We enforce

the modalities to share a common Θs while having different encoders, decoders and the latent

representations.

4..1 Network Structure

For an M modality problem, we propose to stack M parallel DSC networks, where they share a

common self-expressive layer. In this model, per each modality one encoder-decoder network

is trained. In contrast to the spatial fusion models that only have one joint latent representation,

this model results in M distinct latent representations corresponding to M different modalities.

The latent representations are connected together by sharing the self-expressive layer. The

optimal self-expressive layer should be able to jointly exploit the self-expressiveness property
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Algorithm 2 Spatial and affinity fusion algorithms

1: procedure DMSC({Xm}Mm=1, λ1, λ2,‘mode’)
2: if mode = Spatial fusion then
3: Train the networks using the loss (4.6).
4: else if mode = Affinity fusion then
5: Train the networks using the loss (4.7).
6: end if
7: Extract Θs from the trained networks.
8: Normalize the columns of Θs as θsi ←

θsi

‖θsi ‖∞
.

9: Form a similarity graph with N nodes and set the weights on the edges by W = |Θs | +

|ΘT
s |.

10: Apply spectral clustering to the similarity graph.
11: end procedure
12: Output: Segmented multimodal data.

across all the M modalities. Figure 4.3(d) gives an overview of the proposed affinity fusion-

based network architecture.

4..2 End-to-End Training

We propose to find the shared self-expressive layer weights by training the network with the

following loss

min
Θ
‖Θs ‖p +

λ1
2

M∑
m=1

‖Zm
Θm

e
− Zm

Θm
e
Θs ‖

2
F

+
λ2
2

M∑
m=1

‖Xm − X̂m
Θm ‖ s.t. diag(Θs) = 0, (4.7)

where Θs is the common self-expressive layer weighs. Here, λ1 and λ2 are regularization

parameters. Zm
Θm

e
and X̂m

Θm are respectively the latent space representation and the reconstructed

decoder’s output corresponding to Xm. Θm denotes the network parameters corresponding to

the mth modality and Θ indicates to all the trainable parameters. Minimizing (4.7) encourages

the networks to learn the latent representations that share the same affinity matrix.

Algorithm 2 summarizes the proposed spatial fusion and affinity fusion-based subspace

clustering methods.
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Experiment Dataset # ofmodalities # of samplesper modality
Digits MNIST [5], USPS [6] 2 2000
Heterogeneous Faces ARL [7] 5 2160
Facial components Extended Yale-B [8] 5 2432

Table 4.1: Details of the multimodal datasets that are used in the experiments. Note that as
opposed to supervised methods, we do not split datasets to training and testing sets in a deep
subspace clustering task.

5. Experimental Results

We evaluate the proposed deep multimodal subspace clustering methods on several real-world

multimodal datasets. The following datasets are used in our experiments.

• Multiview digit clustering using the MNIST [5] and the USPS [6] handwritten digits

datasets. Here, we view an image from the individual datasets as two views of the same

digit. These datasets are considered to be spatially related but not aligned. Since the

number of parameters in the self-expressive layer of a deep subspace clustering network

scales quadratically with the size of the data, we randomly select 200 samples per digit

to keep the networks to a tractable size.

• Heterogeneous face clustering using the ARL Polarimetric face dataset [7]. The ARL

dataset contains five spatially well-aligned modalities (Visible, DP, S0, S1, S2).

• Face clustering based on the facial regions using the Extended Yale B dataset [8]. We

extract facial components (i.e. eyes, nose, mouth) from the images and view them as soft

biometrics and use them along with the entire face for clustering. Here, the modalities

do not share any direct spatial correspondence.

Figure 8.5 (a), (b), and (c) show sample images from the digits, ARL and Extended Yale-B

datasets, respectively. Table 4.1 gives an overview of their details. Note that as opposed to su-

pervised methods, we do not split datasets into training and testing sets for subspace clustering.

Similar to [4], the parameters of the deep subspace clustering networks are trained using the

entire dataset.

To investigate ability and limitations of different versions of the proposed fusion methods,
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Structure
Function

Max-pooling Additive Concatenation

Early fusion × × Early-concat.
Intermediate fusion Interm.-mpool. Interm.-additive Interm.-concat.
Late fusion Late-mpool. Late-additive Late-concat.

Table 4.2: Spatial fusion variations that are used in the experiments.

we evaluate the affinity fusion method along with a wide range of plausible spatial fusion meth-

ods based on different structure designs and fusion functions. For the early fusion structure,

we consider the concatenation fusion function1. As for the intermediate and late fusion struc-

tures, we consider all the three presented fusion functions which results in six distinct models.

Table 4.2 presents the structural variations we have used for the presented spatial fusion meth-

ods and the name we assign to them when reporting their performances. Besides, we compare

our methods against the following state-of-the-art multimodal subspace clustering baselines:

CMVFC [75], TM-MSC [73], MSSC [49], MLRR [49], KMSSC [49], and KMLRR [49].

Also, to explore the contribution of leveraging information from multiple modalities into

the performance of subspace clustering task, we report the performance of subspace clustering

methods on the single modalities as well. In particular, we report the classical SSC [36] and

LRR [37] performances on the individual modalities along with the recently proposed DSC

method [4]. Furthermore, we train an encoder-decoder similar to the network in [4] but without

the self-expressive layer, and extract the latent space representations. These deep features are

then fed to the SSC algorithm for clustering. We call this method “AE+SSC”. This baseline

will show the significance of using an end-to-end deep learning method for subspace clustering.

In our tables, we use boldface letters to denote the top performing method and specify the cor-

responding modalities or datasets in the rows, and subspace clustering methods on the columns.

Structures: We perform all the experiments on different datasets using the same protocol and

network architectures to ensure fair and meaningful comparisons (including the networks for

the single modality experiments). All the encoders have four convolutional layers, and decoders

1Note that applying max-pooling and additive functions in pixel level features might result in information loss.
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Figure 4.6: Sample images from (a) MNIST [5], and USPS [6] digits datasets, (b) ARL po-
larimetric face dataset [7], and (c) Faces and facial components from the Extended Yale B
dataset [8]. In our experiments, samples from all the modalities are resized to 32 × 32, and
rescaled to have pixel values between 0 and 255.

DSC[4] AE+SSC SSC[36] LRR[37]

MNIST
ACC 92.05 70.1 67.5 67.4
NMI 87.07 80.94 71.64 66.51
ARI 84.60 62.33 57.03 58.33

USPS
ACC 72.15 69.9 37.5 44.35
NMI 74.73 80.98 36.61 35.18
ARI 65.47 62.41 28.40 32.11

Table 4.3: The performance of single modality subspace clustering methods on Digits. Exper-
iments are evaluated by average ACC, NMI and ARI over 5 runs. We use boldface for the top
performer. Columns specify the single modality subspace clustering method, and rows specify
the modality (MNIST or USPS) and criteria.

are stacked three deconvolution layers mimicking the inverse task of the encoder.

For the spatial fusion experiments, in the case of early fusion, we apply the fusion functions

on the pixel intensities, and the rest of the network is similar to that of the single modality deep

subspace clustering network. Conducted experiments for the intermediate fusion use a prior

knowledge on the importance of the modalities. They integrate weak modalities in the second

hidden layer, and then, the combination of them in the third layer. Finally, the fusion of all the

weak modalities is combined with the strong modality (for example the visible domain in the

ARL dataset) in the fourth layer. In the case of late fusion, all the modalities are fused in the

fourth layer of the encoder.

As discussed earlier, in the affinity fusion method there exists an encoder-decoder and a la-

tent space per number of available modalities. For example, in the case of the ARL dataset with
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5 modalities, we have 5 distinct encoders and decoders connected with a shared self-expressive

layer. For each modality in the experiments with the shared affinity, we use similar encoder-

decoders as in the case of the DSC network [4] with unimodal experiments.

Training details: We implemented our method in Python-2 with Tensorflow-1.4 [128]. We

use the adaptive momentum-based gradient descent method (ADAM) [129] to minimize our

loss functions, and apply a learning rate of 10−3.

The input images of all the modalities are resized to 32 × 32, and rescaled to have pixel

values between 0 and 255. In our experiments, the Frobenius norm (i.e. p = 2) is used in

the loss functions (4.2), (4.6) and (4.7) while training the networks. Similar to [4], for all the

methods that have self-expressive layer, we start training on the specified objective functions

in each model after a stage of pre-training on the dataset without the self-expressive layer. In

particular, for all the proposed deep multimodal subspace clustering methods, and the unimodal

DSC networks in the experiments with individual modalities, we pre-train the encoder-decoders

for 20k epochs with the following objective

min
Θ̂

M∑
m=1

‖Xm − X̂m

Θ̂
‖2F,

where Θ̂ indicates the union of parameters in the encoder and decoder networks. Note that for

the unimodal experiments, M = 1.

We use a batch size of 100 for the pretraining stage of all the experiments. However, once

we start training the self-expressive layer, the method requires all the data points to be fed as a

batch. Thus, in the experiments with digits, ARL faces and Yale-B facial components the batch

sizes are 2000, 2160 and 2432, respectively.

We set the regularization parameters as λ1 = 1 and λ2 = 1×10
K
10−3, where K is the number

of subjects in the dataset. This experimental rule has been found to be efficient in [4] as well. A

sensibility analysis over the range [10−4,104] in Section 5..5, shows that if λ1 and λ2 are kept

around the same scale as our selections, the performance of the proposed method is not much

sensitive to these parameters for a set of wide ranges.

Evaluation metrics: We compare the performance of different methods using the clustering
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accuracy rate (ACC), normalized mutual information (NMI) [130], and Adjusted Rand Index

(ARI) [131] metrics.

In external validation of clustering methods where ground truth labels are available, a cor-

rect clustering is usually referred as assigning objects belonging to the same category in the

ground truth to the same cluster, and objects belonging to different categories to different clus-

ters. With that, ACC is defined as the number of data points correctly clustered divided by the

total number of data points. The ARI metric, in addition to penalizing the misclustered data

points, penalizes putting two objects with the same label in different clusters, and is adjusted

such that a random clustering will score close to 0. The NMI captures the mutual information

between the correct labels and the predicted labels, and is normalized between the range [0,1].

5..1 Handwritten Digits

In the first set of experiments, we use the 10 classes (i.e. digits) from the MNIST and the

USPS datasets. Figure 8.5 (a) shows example images from these datasets. For the experiments

with digits, we randomly sample 200 images per class from their training sets to reduce the

computations and adjust the imbalance in the tests.

We randomly bundle the same class samples across the two datasets and assume they

present two modalities (views) of a digit. One can see from Figure 8.5 (a), that the needed

receptive field for recognizing the digits in the MNIST and the USPS datasets is relatively

large. Based on this logic, in the experiments with digits, we use large kernels in the encoders.

Note that some structures including the late fusion methods in Table 4.2 and the affinity

fusion method have more than one branches in some of their layers.

Table 4.3 shows the performance of deep subspace clustering per individual digits. This

table reveals that the MNIST dataset is easier than the USPS dataset for the subspace clustering

task. This observance coincides with the performance of other methods reported in [132].

Note that while the DSC method in Table 4.3 shows the-state-of-the-art performance on

both datasets, a successful multimodal method should enhance the performance by leverag-

ing the information across the two modalities. Table 4.4 compares the performance of the

multimodal methods in terms of both clustering error rates and NMI. We observe that most

of the multimodal methods can successfully integrate the complementary information of the
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CMVFC[75] TM-MSC[73] MSSC[49] MLRR[49] KMSSC[49] KMLRR[49] Early-concat.

Digits
ACC 47.6 80.65 81.65 80.6 84.4 86.85 92.2
NMI 73.56 83.44 85.33 84.13 89.45 80.34 88.53
ARI 38.12 75.67 77.36 76.53 79.61 82.76 84.60

ARL
ACC 96.58 96.64 97.78 97.5 97.97 97.74 98.24
NMI 98.39 98.35 99.58 99.57 99.51 99.58 99.27
ARI 94.85 95.85 96.40 95.79 96.09 95.88 97.21

Extended Yale-B
ACC 66.84 63.12 80.3 67.62 87.65 82.45 65.55
NMI 72.03 67.06 82.78 73.36 81.50 85.43 78.82
ARI 40.00 38.37 50.18 40.85 63.83 59.71 41.95

Interm.-concat. Interm-addition Interm.-mpool. Late-concat. Late-addition Late-mpool Affinity fusion

Digits
ACC N/A N/A N/A 91.15 95.15 91.45 95.15
NMI N/A N/A N/A 84.28 91.35 89.32 92.09
ARI N/A N/A N/A 85.46 89.72 87.74 90.22

ARL
ACC 97.79 96.21 94.99 98.22 96.68 95.77 98.34
NMI 99.59 98.95 98.19 99.31 99.23 98.92 99.36
ARI 95.85 94.64 92.93 97.02 96.24 94.77 97.51

Extended Yale-B
ACC 94.88 97.65 7.76 92.45 67.41 7.06 99.22
NMI 93.90 96.88 9.31 92.53 66.95 6.39 98.89
ARI 88.19 94.96 0.73 82.91 33.37 00.48 98.38

• N/A indicates that the corresponding method is not applicable to this experiment.

Table 4.4: The performance of multimodal subspace clustering methods. Each experiment
is evaluated by average ACC, NMI and ARI over 5 runs. We use boldface for the top per-
former. Columns of this table show the multimodal subspace clustering method, and the rows
list datasets and clustering metrics.

datasets in the subspace clustering task and provide a better performance in comparison to their

unimodal counterpart. However, the proposed deep multimodal subspace clustering methods

perform significantly better than the classical multimodal subspace clustering methods. In par-

ticular, the affinity fusion and late-addition methods can segment the digits with an error rate

of only 4.85%, and an NMI metric of above 90%.

5..2 ARL Heterogeneous Face Dataset

To test our methods on clustering datasets with a large number of subjects, we use the ARL

dataset [7] which consists of facial images from 60 unique individuals in different spectrums

and from different distances. This dataset has facial images in the visible domain as well as four

different polarimetric thermal domains. Each subject has several well-aligned facial images per

each modality. Sample images from this dataset are shown in Figure 8.5 (b).

Table 4.5 compares the performance of subspace clustering methods on individual modal-

ities in the ARL dataset. As expected, the visible modality shows better performance among

the different spectrums. As the samples are well-aligned in this dataset, we see that most of

the subspace clustering methods work well across all the modalities. In particular, the LRR
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DSC[4] AE+SSC SSC[36] LRR[37]

Visible
ACC 92.54 89.87 81.86 91.07
NMI 97.03 96.25 94.56 97.16
ARI 92.54 88.08 72.32 89.94

DP
ACC 91.81 89.08 63.2 89.4
NMI 97.60 97.17 83.59 95.71
ARI 91.69 87.48 47.98 85.47

S0
ACC 62.64 55.38 21.58 57.23
NMI 84.20 77.62 47.83 80.44
ARI 49.23 41.60 11.63 36.56

S1
ACC 91.72 86.21 54.68 86.12
NMI 97.09 96.55 78.60 95.13
ARI 89.55 86.16 42.69 85.62

S2
ACC 89.68 89.26 57.92 85.88
NMI 97.63 97.38 82.77 94.73
ARI 89.34 88.05 43.38 84.05

Table 4.5: The performance of single modality subspace clustering methods on ARL dataset.
Experiments are evaluated by average ACC, NMI and ARI over 5 runs. We use boldface for
the top performer. Columns specify the single modality subspace clustering method, and rows
specify the modalities and criteria.

method which takes the advantage of aligned data points, provides comparable results to the

DSC method.

Since the ARL dataset has multiple modalities, beside the early and late fusion structures,

we also use an intermediate structure when designing the multimodal encoders. Hence, in this

experiment, we add the following intermediate spatial fusion structure to the multimodal meth-

ods. Assuming the visible domain is the main modality, we integrate S0, S1 and S2 modalities

in the second layer and combine their fused output with the DP samples in the third layer.

Finally, we fuse the result with the visible domain at the last layer of the encoders.

The performances of deep multimodal subspace clustering methods are compared in Ta-

ble 4.4. We observe that most of the methods are able to leverage the complementary infor-

mation of the different spectrums and provide a more accurate clustering in comparison to the

unimodal performances. In particular, the affinity fusion method has the best performance,

and late-concat and early-concat methods provide comparable results. This experiment clearly

shows that our proposed methods can perform well even with a large number of subjects in the
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Figure 4.7: Facial components are extracted by applying a fixed mask on the faces in the
Extended Yale B dataset [8].
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Figure 4.8: Visualization of the affinity matrices for first four subjects in the Extended Yale-B
dataset calculated from the self-expressive layer weight matrices in (a) unimodal clustering on
faces using DSC. (b) The late-mpool method. (c) The late-concat method. (d) The affinity
fusion method. Note that (b) shows a failure case of the spatial fusion methods.

dataset.

5..3 Facial Components

The Extended Yale B dataset [8] consists of 64 frontal images of 38 individuals under vary-

ing illumination conditions. This dataset is popular in subspace clustering studies [4, 37, 36].

We crop the facial components (i.e. eyes, nose and mouth), and view them as weak modali-

ties. In the biometrics literature, they are viewed as soft biometrics [111]. To crop the facial

components, we apply a fixed face mask as shown in Figure 4.7 on all the facial images. The

extracted facial regions are resized to 32 × 32 images. This experiment is especially important

as the modalities do not share the spatial correspondence. For example, spatial locations in the
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DSC[4] AE+SSC SSC[36] LRR[37]

Face
ACC 96.82 72.93 72.78 63.34
NMI 94.82 79.10 79.17 70.08
ARI 91.31 43.94 42.90 37.38

Right-eye
ACC 87.62 83.34 66.84 65.35
NMI 89.19 86.99 73.62 69.33
ARI 75.05 61.90 39.66 38.37

Left-eye
ACC 80.94 72.24 63.02 63.08
NMI 79.58 76.48 69.08 70.13
ARI 50.17 42.94 33.12 34.07

Nose
ACC 67.53 51.61 41.51 39.9
NMI 75.23 61.64 50.78 48.73
ARI 40.82 22.96 16.67 15.13

Mouth
ACC 76.86 67.42 56.07 62.92
NMI 76.42 72.91 64.11 67.28
ARI 43.90 40.52 25.71 33.02

Table 4.6: The performance of single modality subspace clustering methods on Extended Yale
B dataset. Experiments are evaluated by average ACC, NMI and ARI over 5 runs. We use bold-
face for the top performer. Columns specify the single modality subspace clustering method,
and rows specify the facia components and criteria.

mouth modality cannot be projected on the spatial positions in the nose modality. Sample im-

ages from this dataset are shown in Figure 8.5 (c). The setting in this experiment can examine

the proposed methods under the condition of spatially unrelated modalities.

The performance of subspace clustering methods on the individual facial components is

summarized in Table 4.6. We observe that the nose and the mouth modalities fail to provide

good clustering results. On the other hand, DSC and AE+SSC perform well on the eye and the

entire face modalities.

Since the mouth, nose, and eyes are considered as weak modalities, in the design of the

intermediate spatial fusion we combine the two eyes, and the mouth and the nose separately in

the second layer of the encoders, and fuse the result of their combinations in the third layer.

Finally, we fuse the combined features with the face features in the fourth layer.

The performance of various multimodal subspace clustering methods are tabulated in Ta-

ble 4.4. It is worth highlighting several interesting observations from the results. As can be

seen, the max-pooling fusion function in the late-mpool and interm-mpool methods fails to
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segment the data points. That is because this fusion function at each spatial position returns the

maximum of the activation values at the same spatial position between its input feature maps.

Since the modalities do not share any spatial correspondence in this experiment, this function

does not provide good performance. In addition, even though additive and concatenate fusion

functions have provided good results in some cases, because of a similar reason their perfor-

mances are highly related to the structure choices. For example, the additive function provides

better performance with the intermediate fusion structure, while the concatenation works better

with the late fusion structure choice. However, the affinity fusion provides the state-of-the-art

clustering performance of below 1% error rate and the NMI metric of 98.89%. This is mainly

due to the fact that this method does not rely on the spatial correspondence among the modali-

ties.

Figure 4.8 compares the affinity matrices of the first four subjects in the Extended Yale-B

datasets. The affinity matrices are calculated from the self-expressive layer weights of their

corresponding trained networks. The depicted affinity matrices in these figures are the result of

a permutation being applied on the matrix so that data points of the same clusters are alongside

each other. With this arrangement, a perfect affinity matrix should be block diagonal.

Figure 4.8 (a) shows the affinity matrix corresponding to the DSC method for clustering

faces. Figure 4.8 (b) shows this matrix for the multimodal subspace clustering with the late-

mpool method. Note that this method fails to cluster the data, and as can be seen, its affinity

matrix is not block-diagonal. Figure 4.8 (c) and Figure 4.8 (d) show the affinity matrices of the

late-concat and affinity fusion methods, respectively. We observe that both methods provide a

solid block diagonal affinity matrices.

5..4 Convergence study

To empirically show the convergence of our proposed method, in Figure 4.9, we show the

objective function of the affinity fusion method and its clustering metrics vs iteration plot for

solving (4.7). The reported values in Figure 4.9 are normalized between zero and one. As can

be seen from the figure, our algorithm converges in a few iterations.
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Figure 4.9: The affinity fusion method’s loss function and the clustering metrics over different
training epochs in the Yale B facial components experiment. The reported values in this figure
are normalized between zero and one. This figure shows the convergence of our objective
function.

5..5 Regularization parameters

In this section, we analyze the sensibility of the proposed method to the regularization parame-

ters λ1 and λ2 in the loss function (4.7). Figure 4.10 shows the influence of these regularization

parameters on the performance of the affinity fusion method on the Extended Yale-B dataset.

In Figure 4.10 (a), we fix λ2 = 1 and report the metrics with various λ1s over the range of

[10−4,104]. Similarly, in Figure 4.10 (b), we fix λ1 = 1 and this time change λ2 in the similar

range to analyze the influence of λ2 on the performance of the method. As can be seen from

the figure, in a wide range of values, the final performance of the method is not sensitive to the

choice of parameters. The experimental setting suggested in [4] also performed well in all the

experiments.

5..6 Performance with respect to different norms on the self-expressive layer

In this section, we compare the performance of the proposed affinity fusion method by changing

the p-norm on the self-expressive layer in the optimization problem (4.7). Table 4.7 reports the

clustering metrics for the experiments with p = 0.3, p = 1, p = 1.5 and p = 2. As can be
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Figure 4.10: The affinity fusion method’s performance through different parameter selections
for λ1 and λ2.

seen from this table, while experiments with p = 1, p = 1.5 and p = 1 have comparable

performances, applying the p-norm with p = 0.3 does not provide sufficient result. It is worth

mentioning that in our experiments with different norms with 0.3 < p < 1 the method showed

instability, and for p < 0.3 the minimization of (4.7) did not converge. The reason is that the

norms with p < 1 are non-convex, and one might need additional regularizations to keep the

optimization tractable.

6. Conclusion

We presented novel deep multimodal subspace clustering networks for clustering multimodal

data. In particular, we presented two fusion techniques of spatial fusion and affinity fusion. We
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Metric
‖ · ‖p p < 0.3 p = 0.3 p = 1 p = 1.5 p = 2

PUR × 09.32 99.13 99.17 99.22
NMI × 18.64 98.78 98.84 98.89
ARI × 02.38 98.20 98.29 98.38

Table 4.7: Analysis of different regularization norms on the self-expressive layer. Our experi-
ments with p < 0 did not converged. The results are 5-fold average. We use boldface for the
top performer.

observed that spatial fusion methods in a deep multimodal subspace clustering task relay on

spatial correspondences among the modalities. On the other hand, the proposed affinity fusion

that finds a shared affinity across all the modalities provides the state-of-the-art results in all the

conducted experiments. This method clusters the images in the Extended Yale-B dataset with

an error rate of 0.78% and normalized mutual information of 98.89%.
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Chapter 5

Deep Subspace Clustering with Data Augmentation

1. Introduction

Recent advances in technology have provided massive amounts of complex high-dimensional

data for computer vision and machine learning applications. High-dimensionality has adverse

effects, including confusion of algorithms with irrelevant dimensions and curse of dimension-

ality as well as increased computation time and memory [19, 133]. This motivates us to explore

techniques for representing high-dimensional data in lower dimensions. In many practical ap-

plications such as face images under various illumination conditions [16] and hand-written

digits [17], high-dimensional data can be represented by union of low-dimensional subspaces.

The subspace clustering problem aims at finding these subspaces. In particular, the objective of

subspace clustering is to find the number of subspaces, their basis and dimensions, and assign

data to these subspaces [19].

Conventional subspace clustering algorithms assume that data lie in linear subspaces [36,

34, 35, 39, 134]. In practice, however, many datasets are better modeled by non-linear mani-

folds. To deal with this issue, many works have incorporated projections and kernel tricks to

express non-linearity [108, 107, 39, 135, 136, 137]. Recently, deep subspace clustering (DSC)

methods [64, 4, 65, 66, 51] have been proposed which essentially learn unsupervised nonlinear

mappings by projecting data into a latent space in which data lie in linear subspaces. Deep

subspace clustering networks have shown promising performances on various datasets.

Deep learning techniques are prone to overfitting. Data augmentation is often presented as

a type of regularization to mitigate this issue [138, 139]. While data augmentation for deep

learning-based methods have proven to be beneficial, the current framework of DSC networks

is unable to take the full advantage of data augmentation. In this work, we modify the DSC

framework and propose a model that can incorporate data augmentation into DSC.
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An important difference between data augmentation in subspace clustering and data aug-

mentation in supervised tasks is the fact that as opposed to supervised tasks, we do not have

ground-truth labels for the existing samples in the subspace clustering algorithms. Correspond-

ing to the fact that objects remain the same even if we slightly transform them, in supervised

deep learning models, transformations of an existing sample are trained to be predicted with a

consistent label similar to the ground-truth label of the original sample. How can one convey

such property in an unsupervised subspace clustering task, where the data does not have the

ground-truth labels?

A DSC model should favor functions that give consistent outputs for similar data points

with a slight difference in their percept. To achieve this, we optimize a consistency loss that

is based on temporal ensembling. We input plausible transformations of existing samples into

the model and require the autoencoders of the model to map the transformations to consistent

subspaces similar to the subspace of the original data.

Efficient augmentation policies improve the performance of the deep networks. However,

not all the image transformations construct efficient augmentation policies. Efficient augmen-

tation policies can be different from a dataset to another [140, 141, 141]. In supervised appli-

cations, the validation set is often used to manually search among transformations such as rota-

tion, horizontal flip, or translation by a few pixels to find efficient augmentations. Manual aug-

mentation needs prior knowledge and expertise, and it can only search among a handful of pre-

defined trials. Some methods automate this search for classification networks [140, 142, 143].

However, these methods are only designed for the classification task and cannot be applied to

the task of subspace clustering. This is because we do not have a validation or training set in

subspace clustering. We overcome this issue by providing a simple yet effective method for

finding efficient augmentation policies using a greedy search and use mean Silhouette scores

to evaluate the effect of different augmentation policies on the performance of our proposed

model.
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2. Related Work

Clustering Methods with Augmentation. A recent method proposes a technique for deep

embedded clustering algorithms with augmentations [144, 145]. In the pre-training stage they

use augmentations in training autoencoders, and in the fine-tuning stage they encourage the

augmented data to have the same centroid as their corresponding data. To the best of our

knowledge, we are the first to propose an augmentation framework for deep subspace cluster-

ing algorithms.

Self-supervision with Consistency Loss. The idea of learning consistent features for different

transformations of unlabeled data has been used in a number of works largely in the semi-

supervised and self-supervised learning literature [146, 147, 148, 149, 150, 151].

Self-expressiveness Models in Subspace Clustering. Let X = [x1, · · · ,xN ] ∈ R
D×N be a

collection of N signals {xi ∈ R
D}Ni=1 drawn from a union of n linear subspacesS1∪S2∪· · ·∪Sn.

Given X, the task of subspace clustering is to find sub-matrices X` ∈ R
D×N` that lie in S` with

N1 + N2 + · · · + Nn = N .

Due to their simplicity, theoretical correctness, and empirical success, subspace clustering

methods that are based on self-expressiveness property are very popular [63]. Self-expressiveness

property can be stated as

X = XC s.t diag(C) = 0, (5.1)

where C ∈ RN×N is the coefficient matrix. There may exist many coefficient matrices that

satisfy the condition in (5.1). Among those, subspace preserving solutions are especially of

interest to self-expressiveness based subspace clustering methods. Subspace preserving prop-

erty states that if an element in C is non-zero, the two data points in X that correspond to this

coefficient are in the same subspace.

Self-expressiveness based methods combine these two properties and solve a problem of

the form:

min
C
LS.E.(C,X) + λ1LS.P.(C), (5.2)

where λ1 is a regularization constant,LS.E. andLS.P. impose the self-expressiveness and subspace-

preserving properties, respectively. Most of the linear methods use LS.E.(C,X) = ‖X −XC‖2F .
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However, for LS.P.(C), different methods use various regularizations, including `1-norm, `2-

norm and nuclear norm [36, 63, 37].

In recent years, deep neural network-based extensions were introduced to self-expressiveness

based models [64, 4, 65, 66]. For these methods, xis do not need to be drawn from a union of

linear subspaces. Instead, they use autoencoder networks to map the data points to a latent

space where data points lie into a union of linear subspaces and exploit the self-expressiveness

and subspace-preserving properties in the latent space. Let Z ∈ Rd×N be the latent space fea-

tures developed by the encoder in the autoencoders. Deep subspace clustering networks solve

a problem of the form:

min
Θ
LS.E.(C,Z) + λ1LS.P.(C) + λ2LRec.(X, X̂), (5.3)

where λ1 and λ2 are regularization constants, Θ is the union of trainable parameters, X̂ is

the reconstruction of X and the output of the decoder, and LRec.(X, X̂) = ‖X − X̂‖2F is the

reconstruction loss in training the autoencoder. Once a proper C is found from (5.2) or (5.3),

spectral clustering methods [67] are applied to the affinity matrix W = |C| + |C|T to obtain the

segmentation of the data X.

3. Deep Subspace Clustering Networks with Data Augmentation

The human brain considers an object to remain the same, even if the percept changes slightly.

Correspondingly, when data augmentation is used in supervised deep learning models, transfor-

mations of existing samples are trained to predict consistent labels similar to the ground-truth

label of original samples. Conveying the same insight, we argue that a DSC model should

favor functions that give consistent outputs for similar data points. We approach this property

by keeping the estimated subspace membership of data points consistent when an augmenta-

tion policy is applied to them. During the training process, we smooth the predictions for the

subspace memberships via temporal ensembling of estimated affinity matrices from previous

iterations.

Let Xt = [xt
1, · · · ,x

t
N ] ∈ R

D×N be the transformed version of N existing data points X =

[x1, · · · ,xN ] ∈ R
D×N at the iteration t. Xt is the observation at time t when an augmentation

policy is applied to the existing data points X.
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Figure 5.1: An overview of the proposed deep subspace clustering networks with data augmen-
tation. The existing data points xi and xj are transformed into xti and xtj in each iteration by an
augmentation policy. However, the autoencoder learns to keep their latent space features within
consistent subspaces.

Our model can be applied to a variety of DSC networks. In this section, we consider a gen-

eral form that consists of an encoder that takes Xt as an input and generates latent space features

Zt . The latent space features are reconstructed by a self-expressive layer with parameters Ct .

That is, ZtCt is fed to the decoder to develop X̂t , which is a reconstruction of Xt . Figure 5.1

shows an overview of this model. Note that such a model includes a fully-connected layer that

connects all the samples in the mini-batch (the self-expressive layer). Thus, the number of data

points and their orders cannot be changed during the training. We keep a placeholder with N

fields that correspond to the existing samples and feed Xt to this placeholder at every training

step t. The permutation of samples in Xt remains the same.

As mentioned, we aim for an autoencoder that preserves the subspace membership of

slightly transformed inputs. Let Ct be the coefficient matrix that is constructed at the t-th

iteration of a subspace clustering algorithm. In addition, let Q̂ be an existing estimation of sub-

space membership matrix, whose rows are one-hot vectors denoting the subspace memberships

assigned to different samples. The multiplication of Q̂T and |Ct | gives a matrix whose (i, j)th

element shows the contribution of the samples assigned to the i-th subspace in reconstructing

the j-th sample. For a perfect subspace-preserving coefficient matrix, Q̂T |Ct | has only one

non-zero element in each row.

For each sample j, the maximum value in the j-th row of Q̂T |Ct | can point to a new estimate

for its subspace membership. Therefore, a prediction of subspace membership matrix at the

iteration t can be calculated as follows

Qt = Softmax(Q̂T |Ct |), (5.4)

where Softmax(·) corresponds to the softmax function on the rows of its input. We refer to Qt
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as temporal subspace membership matrix.

The temporal subspace membership matrix Qt estimates the subspace memberships for the

current observation Xt . Note that because of the randomly augmented inputs, the coefficient

matrix Ct can undergo sudden changes in different time frames. While it is fine to have different

coefficient matrices for slight transformations of data, we are interested in maintaining persis-

tent subspace membership matrices Qt . Thus, we propose a subspace membership consistency

loss.

We keep an exponential moving average (EMA) of Cts, the coefficient matrices, to provide

a smooth temporal ensemble for the coefficient matrix. Thus, in addition to the temporal sub-

space membership matrix in (5.4), in each training iteration, we can calculate another member-

ship matrix corresponding to the temporal ensemble of coefficient matrices in prior iterations.

We refer to this membership matrix as Qt
Ens..

Let Ct−1
EMA be the EMA of coefficient matrices until the iteration t − 1, and Ct be the calcu-

lated update for the coefficient matrix at the iteration t. The EMA of the coefficient matrix at

the iteration t can be updated as follows

Ct
EMA = αCt−1

EMA + (1 − α)C
t, (5.5)

where 0 < α < 1 is the smoothing factor. Using Ct
EMA we can calculate Qt

Ens. as

Qt
Ens. = Softmax(Q̂T |Ct

EMA |), (5.6)

where Q̂ is the same prior membership matrix as in (5.4).

Note that Qt
Ens. provides more consistent subspace membership predictions as compared

to Qt . To encourage the autoencoders to favor functions that preserve the subspace member-

ships even for differently transformed observations Xt , we propose the subspace membership

consistency loss as follows:

LCons.(Q
t
Ens.,Q

t ) = CE(Qt
Ens.,Q

t ), (5.7)

where CE(·) denotes the cross-entropy function. LCons. penalizes the temporal changes to the

subspace memberships if they are inconsistent with the temporal ensemble of subspace mem-

berships Qt
Ens..
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Full Objective. We train the networks iteratively with two steps of subspace clustering and

subspace membership consistency in each iteration. In the subspace clustering step, the loss

function of the subspace clustering algorithm of choice (5.3) is optimized, and in the subspace

membership consistency step, (5.7) is optimized. That is at each iteration t, we train the netwrok

with the following algorithm.
Step 1: minΘ(LS.E.(C

t,Zt ) + λ1LS.P.(C
t ) + λ2LRec.(X

t, X̂t)),

Step 2: minΘ(LCons.(Q
t
Ens.,Q

t )),
(5.8)

where Θ is the union of trainable parameters in the networks.

4. Finding Efficient Augmentations

In the previous section, we denoted Xt as a stochastic transition of X which is the result of

applying an augmentation policy. The choice of augmentation policy plays an important role

in the performance of the network. We formulate the problem of finding the best augmentation

policy as a discrete search problem.

Our method consists of three components: A score, a search algorithm and a search space

with ns possible configurations. The search algorithm samples a data augmentation policy Si,

which has information about what image processing operation to use, the probability of using

the operation in each iteration, and the magnitude of the operation. The policy Si will be used

to train a child deep subspace clustering network with a fixed architecture. The trained child

network will return a score that specifies the effect of applying the policy Si to the input data

on the performance of deep subspace clustering task. Finally, all the tested policies {Si}
ns
1 will

be sorted based on the returned scores.

In the following, we describe the score , the search algorithm and the search space in detail.

Score. In our framework, the score is a metric that evaluates the performance of the DSC on

a certain given input. Note that the ground-truth labels are unknown at this stage. Therefore,

we need to use a validation technique that does not use the ground-truth labels. Any internal

validation of clustering methods [152, 153, 154] , including mean Silhouette coefficient [152]

or the Davies-Bouldin index (DBI) [153] can serve as the score metric in our search. We use

mean Silhouette coefficient in this chapter.
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Search Space. In our search space, a sample policy Si consists of ` sequential sub-policies with

each sub-policy using an image operation. Additionally, each operation is also associated with

two hyper-parameters: 1) the probability of applying the operation, and 2) the magnitude of the

operation. We discretize the range of probability and magnitude values into np and nm discrete

values, respectively (with uniform spacing). This way, we can use a discrete search algorithm to

find them. For no operations, this constructs a search space with the size of ns = (no×np×nm)` .

Search Algorithm. The size of search space ns, can grow exponentially. A brute-force search

might be impractical. To make the searching process feasible, we use a greedy search []. First,

we begin searching in the reduced search space where each sample policy has only one sub-

policy (` = 1). In the reduced search space, we find the best probability and magnitude for each

image operation. Note that np and nm can also be decreased as much as necessary to keep the

search tractable.

Once we find the best augmentation operations for the first sub-policy, we search for the

second sub-policy (` = 2). For each found sub-policy in the first stage, we search for the best

combination of image operations and their probabilities and magnitudes.

This process continues until we reach ` = `max, the maximum number of sub-policies. At

this point, we sort all the potentially good policies that are found until this point, and select the

best b augmentation policies among them.

5. Experimental Results

We evaluate our method against state-of-the-art subspace clustering algorithms on three stan-

dard datasets. We first use the algorithm described in section 4. to find the best augmentation

policies for each dataset. Then, we use the found augmentation policies in the ablation study

as well as in comparisons with state-of-the-art subspace clustering algorithms.

We use the following datasets in our experiments:

Extended Yale-B dataset [8] contains 2432 facial images of 38 individuals from 9 poses and

under 64 illuminations settings.

ORL dataset [11] includes 400 facial images from 40 individuals. This corresponds to only 10

samples per subject.
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(a) (b) (c)

Figure 5.2: Sample images from different used datasets. (a) Extended Yale-B dataset [8]. (b)
COIL dataset [9, 10] . (c) ORL dataset [11].

COIL-100 [9] and COIL-20 [10] datasets are respectively consisted from images of 100 and 20

objects placed on a motorized turnable. Per each object, 72 images are taken at pose intervals

of 5 degrees that covers a 360 degrees range. Following most of the prior studies, in our

experiments, we use grayscale images of these datasets.

Figure 8.5 (a), (b), and (c) show sample images from the Extended Yale-B, ORL and COIL

datasets, respectively. Note that in the subspace clustering tasks, the datasets are not split into

training and testing sets. Instead, all the existing samples are used in both the learning stage

and the performance evaluation stage.

Experimental Setups. While our method can be applied to many DSC algorithms, unless

otherwise stated, due to its promising performance, we adopt the MLRDSC networks [66]

and apply our method to its networks. We call the result MLRDSC with Data Augmentation

(MLRDSC-DA). The objective function of MLRDSC can be also written in the format of (5.3).

The self-expressiveness and subspace-preserving loss terms in MLRDSC are

LS.E.(C,Z) =
L∑
l=1

‖Zl − Zl(G +Dl)‖
2
F and LS.P.(C) = ‖Q

T |G|‖1 + λ3

L∑
l=1

‖Dl ‖
2
F, (5.9)

where L is the number of layers in the autoencoder, Zl is the features at the l-th layer, and C =

G + 1
L

∑L
l=1 Dl. The coefficient matrix in this model is calculated by the consistency matrix G

and distinctive matrices {Dl}
L
l=1. The distinctive matrices enforce subspace-preserving across

different layers, and G captures the shared information between the layers.

In the training of MLRDSC-DA, we first pre-train the networks by performing the ML-

RDSC algorithm. Then, we continue training MLRDSC-DA for a few additional iterations
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until convergence with (5.8) as
Step 1: minΘ

∑L
l=1 ‖Z

t
l
− Zt

l
(Gt +Dt

l
)‖2F + λ1‖Q

tT |Gt |‖1

+λ3
∑L

l=1 ‖D
t
l
‖2F + λ2‖X

t − X̂t‖2F,

Step 2: minΘ CE(Qt
Ens.,Q

t ),

(5.10)

where we shape the temporal coefficient matrix as Ct = Gt + 1
L

∑L
l=1 Dt

l
, and Qt

Ens. and Qt are

calculated from (5.6) and (5.4), respectively.

We use the same training settings as described in [66]. This includes the same architecture

for networks and values for the hyper-parameters λ1, λ2, λ3 in different experiments as well as

the initial values of a zero matrix for the membership matrix Q̂, and matrices with all the ele-

ments equal to 0.0001 for the coefficient matrices G0 and D0
l
s at the iteration t = 0. We update

Q̂ every 50 iterations by substituting the subspace membership estimations with the result of

subspace clustering performed on the current Ct . We set the EMA decay to α = 0.999 in all

the experiments (selected by cross-validation and mean silhouette coefficient as the evaluation

metric). We implemented our method with PyTorch. We use the adaptive momentum-based

gradient descent method (ADAM) [129] with a learning rate of 10−3 to minimize the loss func-

tions. Similar to other DSC methods, we input the whole dataset as a batch. In all the conducted

experiments, we report 5-fold averages.

5..1 Best Augmentation Policies Found on the Datasets

We perform the search algorithm in Section 4. on different datasets to find the best augmen-

tation policies for each dataset. To reduce the computations, we search in the search space

of augmentation policies with the maximum number of sub-policies `max = 2 (i.e. up to two

sub-policies can be combined to construct a policy), and set the probability to p = 0.1 and the

magnitude to m = 0.3 × r where r = (max−min) is the magnitude range that image opera-

tions accept. The image operation search space is the following set: {FlipLR, ShearX, FlipUD,

SearY, Posterize, Rotate, Invert, Brightness, Equalize, Solarize, Contrast, TranslateY, Transla-

teX, AutoContrust, Sharpness, Cutout} that is also used in [140]. This results in a search space

of ns = 162. We selected the values for magnitude and probability of augmentation polices

by searching in the full search space of augmentation policies for the first two subjects in the

Extended Yale B dataset.
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Figure 5.3: Different image transformations on a sample from the Extended Yale B dataset.

Table 5.1: Augmentation policies that yield the highest mean Silhouette coefficient in the sub-
space clustering results on different datasets.

Dataset Augmentation Policy 1 Augmentation Policy 2

Extended Yale B (Op =‘ShearY’, m=0.3r , p=0.1)
(Op =‘TranslateY’, m=0.3r , p=0.1)
+ (Op =‘Contrast’, m=0.3r , p=0.1)

COIL-20 & COIL-100
(Op =‘Posterize’, m=0.3r , p=0.1) (Op =‘FlipLR’, p=0.1)

+ (Op =‘Sharpness’, m=0.3r , p=0.1) + (Op =‘Contrast’, m=0.3r , p=0.1)

ORL
(Op =‘ShearX’, m=0.3r , p=0.1) (Op =‘FlipLR’, p=0.1)

+ (Op =‘Sharpness’, m=0.3r , p=0.1) + (Op =‘ShearX’, m=0.3r , p=0.1)

Figure 5.3 shows the different augmentation policies applied to a sample drawn from the

Extended Yale B dataset. The details of these image operations are described in Table 1 in the

supplementary materials.

For each candidate augmentation policy, we train our MLRDSC-DA model, perform sub-

space clustering, and return the mean Silhouette coefficient [152] as the clustering performance.

We use the mean Silhouette coefficients to sort the augmentation policies(including policies

with ` < `max sub-policies) and select the top two performing augmentation policies in each

dataset. That is b = 2.

Table 5.1 shows the found augmentation policies that yield to the highest Silhouette coef-

ficients in the subspace clustering results on different datasets. In our experiments, COIL-20

and COIL-100 resulted in similar policies. Unless otherwise stated, in all the experiments, we

apply these augmentation policies to the inputs of our MLRDSC-DA algorithm.

5..2 Ablation Study and Analysis of The Model

To understand the effects of some of our model choices, we explore some ablations of our

model on the Extended Yale B dataset. In particular, we test our model on two different deep

subspace clustering methods, DSC [4] and MLRDSC [66], and in four settings where 1) the
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Table 5.2: Ablation study of our method in terms of clustering error (%) on Extended Yale B.
Top performers are bolded.

Backbone
Augmentations × Augmentations X Augmentations × Augmentations X

Consistency Loss × Consistency Loss × Consistency Loss X Consistency Loss X
DSC 2.67 3.10 2.56 1.92
MLRDSC 1.36 2.84 0.95 0.82

consistency loss exists or 2) is ablated; 3) the optimal augmentations policies are applied to the

inputs or 4) the data is fed without any augmentations.

If we remove both augmentations and the consistency loss, our networks, based on their

backbones, turn to either DSC or MLRDSC networks. In the versions that data augmentation

is applicable, the augmentations in Table 5.1 are used. Further analysis on the evaluation of the

found augmentation policies is provided in section 5..4.

We report the performances in Table 8.7. As can be seen, the top performer is our full model

with augmentations and the consistency loss applied to the MLRDSC method. MLRDSC-based

methods, in general, outperform DSC-based methods. Consistency loss slightly improves the

performance even without data augmentation. This is the result of temporal ensembling.

As can be seen in the second column of this table, applying the found augmentations to

the input of DSC and MLRDSC networks without further modification (i.e., not adding the

consistency loss) not only does not improve the results, but it slightly degrades the performance.

These results clearly show both the importance of the consistency loss and the benefit of using

data augmentations when it is combined with the consistency loss.

5..3 Comparison with State-of-The-Art Subspace Clustering Methods

In this section, we evaluate our method against the state of the art subspace clustering methods.

We apply the found augmentation policies in Table 5.1 to the data on Extended Yale B, ORL,

COIL-20 and COIL-100 datasets and feed them to our MLRDSC-DA method.

The rows in Table 5.4 report the clustering error rates of different subspace clustering al-

gorithms. As the table reveals, deep subspace clustering methods, including DSC, ADSC,
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Table 5.3: Clustering error (%) of different methods on Extended Yale B, ORL, COIL20, and
COIL100 datasets. Top performers are bolded.

dataset LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSC DASC S2ConvSCN MLRDSC MLRDSC-DA

[34] [155] [33] [4] [108] [117] [119] [119] [4] [65] [64] [66] Ours

E.Yale B 34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 1.44 1.52 1.36 0.82

ORL 33.50 32.50 29.50 26.75 34.25 37.05 27.25 26.25 14.00 11.75 10.50 11.25 10.25

COIL20 30.21 31.25 14.83 22.08 24.65 29.86 14.86 14.79 5.42 3.61 2.14 2.08 1.79

COIL100 53.18 50.67 44.90 43.93 47.18 67.29 38.13 38.88 30.96 − 26.67 23.28 20.67

Table 5.4: Clustering error (%) on Extended Yale B with different augmentation policies ap-
plied to the inputs of MLRDSC-DA.

Augmentation
Policies:

Random
LR Flips Cut-out

Common
aug. policies

AutoAug
for ImageNet

AutoAug
for SVHN

Policies found
from Algorithm 1 (ours)

Extended YaleB 1.32 2.88 2.96 5.96 11.31 0.82

S2ConvSCN, and ML-RDSC, in general, outperform the conventional subspace clustering ap-

proaches. This observation suggests that deep networks can better model the non-linear rela-

tionships between the samples. However, among them, our model outperforms all the bench-

marks. Note that our model and MLRDSC share similar architectures and have the same num-

ber of parameters. The only difference is that our method takes advantage of training on the

augmented set of data. This observation clearly shows the benefits of incorporating data aug-

mentation in the task of deep subspace clustering.

5..4 Comparison with Common Augmentation Policies and Transferred Aug-

mentation Policies

Existing automated learning algorithms for finding proper augmentations or even manual searches

do not apply to the subspace clustering task. The current algorithms are mostly designed for

supervised tasks and require the ground-truth targets to compare the performances, whereas,

in the subspace clustering task, the ground-truth labels are not available. However, one may

apply the supervised augmentation searches to a source dataset with available labels and use

the found augmentation policies on a target dataset for the task of subspace clustering.

To compare such an approach with the described method in Section 4., we adopt the aug-

mentation policies that AutoAug [140] finds on the classification task for SVHN [12] and Ima-

geNet [156] datasets, and directly apply the found policies to the input of our MLRDSC-DA.
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We furthermore compare the performances to the results of applying the following augmen-

tation policies to the input: random left-right flips (Flip-LR), Cut-out [157, 158] and common

augmentations picked by practitioners (Common aug. policies). For “Common aug. policies”,

we use the combination of most common augmentations, including zero paddings, cropping,

random-flips, and cutout.

Note that all the experiments in this section share the same architecture and training proce-

dure as MLRDSC-DA. They are only different in the augmentation policies that are applied to

their input.

As can be seen in Table 5.4, the augmentation policies that are found with [140] on SVHN

and ImageNet, perform poorly. This is because they are deemed good policies for the classifi-

cation task on those datasets and may not work as efficiently on the subspace clustering task.

The reason that Random Flips provides a relatively good performance is that the objects in the

dataset are symmetric. The augmentations that are found with our suggested approach provide

the best results.

6. Conclusion

We introduced a framework to incorporate data augmentation techniques in Deep Subspace

Clustering algorithms. The underlying assumption in subspace clustering tasks is that data

points with the same label lie into the same subspace. Based on this assumption, we argued

that slight transformations of a data point should not alter the subspace into which the data

point lies. To address this property, we proposed the subspace consistency loss to keep the data

points within consistent subspaces when slight random transformations are applied to the input

data. Employing the mean Silhouette coefficient metric, we furthermore, provided a simple yet

effective unsupervised algorithm to find the best augmentation policies for each target dataset.

Our experiments showed that applying good data augmentations improves the performance oft

subspace clustering algorithms.
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7. Broader Impact

Since our method improves subspace clustering, it advances learning from unannotated data.

Improving the learning process and providing more accurate similarity matrices for unanno-

tated data can positively impact accountability, transparency and explainability of AI methods.

However, if not controlled, providing the opportunity to learn from big unannotated datasets

could increase the concerns about violating the privacy of individuals.
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Chapter 6

Deep Sparse Representation-based Classification

1. Introduction

Sparse coding has become widely recognized as a powerful tool in signal processing and ma-

chine learning with various applications in computer vision and pattern recognition [159, 160,

36]. Sparse representation-based classification (SRC) as an application of sparse coding was

first proposed in [159], and was shown to provide robust performance on various face recogni-

tion datasets. Since then, SRC has been used in numerous applications [161, 162, 163, 164]. In

SRC, an unlabeled sample is represented as a sparse linear combination of the labeled training

samples. This representation is obtained by solving a sparsity-promoting optimization prob-

lem. Once the representation is found, the label is assigned to the test sample based on the

minimum reconstruction error rule [159].

The SRC method is based on finding a linear representation of the data. However, lin-

ear representations are almost always inadequate for representing non-linear structures of the

data which arise in many practical applications. To deal with this issue, some works have ex-

ploited the kernel trick to develop non-linear extensions of the SRC-based methods [165, 166,

167, 168, 169, 105, 170, 107, 171, 172, 39]. Kernel SRC methods require the use of a pre-

determined kernel function such as polynomial or Gaussian. Selection of the kernel function

and its parameters is an important issue in training when kernel SRC methods are used for

classification.

In this chapter, we propose a deep neural network-based framework that finds an explicit

nonlinear mapping of data, while simultaneously obtaining sparse codes that can be used for

classification. Learning nonlinear mappings with neural networks has been shown to produce

remarkable improvements in subspace clustering tasks [4, 51]. We introduce a transductive

model, which accepts a set of training and test samples, learns a mapping that is suitable for
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Ẑ
te

s
t
Ẑ
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Y1 = Y1C1 + E1 + N1

Y2 = Y2C2 + E2 + N2

Y3 = Y3C3 + E3 + N3

Y4 = Y4C4 + E4 + N4

Y5 = Y5C5 + E5 + N5

C1 ⇡ C2 ⇡ C3 ⇡ C4 ⇡ C5

Zm
⇥m

e

Zm
⇥m

e
⇥s

Z⇥e

Z⇥e
C

X
X̂⇥

{G(x1), G(x2), · · · , G(xNX )}

G(·)

{y1, y2, · · · , yNY }

{F (y1), F (y2), · · · , F (yNY )}

F (·)

1

Let G be our encoder, F be our decoder, M be our mean distribution network, and D
be a large discriminator.
X 2 Rd⇥N is fed to G, and a latent representation g(xi) comes out of the encoder. It
directly fed to decoder for reconstruction loss. However, we also feed g(xi) to D and
have D(g(xi)) with is a N dimensional vector specifying that basically recognizes i
(the index of xi). The N dimensional D(g(xi)) is fed to M returning a k dimensional
vector of membership.
Ztest Ztrain Ẑtest Ẑtrain
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Figure 6.1: An overview of the proposed deep SRC network. The trainable parameters of
sparse coding layer are depicted with solid blue lines. Note that Ztrain = Ẑtrain, and Ztest ≈

Ẑtest = ZtrainA.

sparse representation, and recovers the corresponding sparse codes. Our model consists of an

encoder that is responsible for learning the mapping, a sparse coding layer which mimics the

task of constructing the mapped test samples by a combination of the mapped training samples,

and a decoder that is used for training the networks.

1..1 Sparse representation-based classification

In SRC, given a set of labeled training samples, the goal is to classify an unseen set of test

samples. Suppose that we collect all the vectorized training samples with the label i in the

matrix Xi
train ∈ R

d0×ni , where d0 is the dimension of each sample and ni is the number of

samples in class i, then the training matrix can be constructed as

Xtrain = [X
1
train,X

2
train, · · · ,X

K
train] ∈ R

d0×n (6.1)

where n1 + n2 + · · · + nK = n and we have a total of K classes.

In SRC, it is assumed that an observed sample xtest ∈ R
d0 can be well approximated by

a linear combination of the samples in Xi
train if xtest is from class i. Thus, it is possible to

predict the class of a given unlabeled data by finding a set of samples in the training set that can

better approximate xtest . Mathematically, these samples can be found by solving the following

optimization problem

min
α
‖α‖0 s.t. xtest = Xtrainα, (6.2)

where ‖α‖0 counts the number of non-zero elements in α. The minimization problem (7.1)

finds a sparse solution for the linear system. However, since the optimization problem (7.1) is
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an NP-hard problem, in practice, a sparsity constraint is enforced by the `1-norm of α which is a

convex relaxation of the above problem [70, 71]. Thus, in practice the following minimization

problem is solved to obtain the sparse codes

min
α
‖xtest −Xtrainα‖

2
2 + λ0‖α‖1, (6.3)

where λ0 is a positive regularization parameter. Once α is found, one can estimate the class

label of xtest as follows

class(xtest ) = argmin
k
‖xtest −Xtrainδk(α)‖

2
2, (6.4)

where δk(·) is the characteristic function that selects the coefficients associated with the class i.

2. Deep sparse representation-based classification network

We develop a transductive classification model based on sparse representations. In a trans-

ductive model, as opposed to inductive models, both training and test sets are observed, and

the learning process pursues reasoning from the specific training samples to a specific set of

test cases [173]. We build our method based on convolutional autoencoders. In particular,

our network contains an encoder, a sparse coding layer, and a decoder. The encoder receives

both the training and test sets as raw data inputs and extracts abstract features from them. The

sparse coding layer recovers the test cases by a sparse linear combination of the training sam-

ples, and concatenates them along with the training features which are then fed to the decoder.

The decoder maps both the training embeddings and the recovered test embeddings back to the

original representation of the data. Figure 6.1 gives an overview of the proposed deep SRC

(DSRC) framework.

Sparse representation: Let Xtrain ∈ R
d0×n and, Xtest ∈ R

d0×m be the given vectorized

training and testing data, respectively. We feed X = [Xtrain,Xtest ] to the encoder, where it

develops the corresponding embedding features Z = [Ztrain,Ztest ] ∈ R
dz×(m+n). The mini-

mization problem (7.2) for a single test observation can be re-written for a matrix of testing

embedding features as

min
A
‖Ztest − ZtrainA‖2F + λ0‖A‖1, (6.5)
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where A ∈ Rn×m is the coefficient matrix that contains the sparse codes in its columns, and

λ0 is a positive regularization parameter. Note that the first penalty term in equation (7.7) is

equivalent to the penalty term used for a fully-connected neural network layer with the input of

Ztrain, the output of Ztest and trainable parameters of A. As a result, considering the sparsity

constraint, one can model the optimization problem (7.7) in a neural network framework with

a fully-connected layer with sparse parameters which have no non-linearity activation or bias

nodes. We use such a model inside our sparse coding layer to find the sparse codes for the

observed test set.

The sparse coding layer is located between the encoder and decoder networks. Its task for

Ztrain is to pass them to the decoder, and for the test features Ztest it will pass their recon-

structions that are found from (7.7), as ZtrainA, to the decoder. Thus, assuming that Ẑtrain and

Ẑtest are the outputs of the sparse coding layer for training and testing features, we have

Ẑtrain = ZtrainIn, Ẑtest = ZtrainA, (6.6)

where In ∈ R
n×n is the identity matrix. Therefore, if the decoder’s input is Ẑ = [Ẑtrain, Ẑtest ],

from (7.8) we can calculate Ẑ as Ẑ = ZΘsc, where

Θsc =


In A

0n×m 0m

 . (6.7)

In equation (7.9), 0n×m ∈ R
n×m and 0m ∈ R

m×m are zero matrices. One can write an end-to-end

training objective that includes sparse coding and training of the encoder-decoder as follows

min
Θ
‖Z − ZΘsc ‖

2
F + λ0‖Θsc ‖1 + λ1‖X − X̂‖2F, (6.8)

where Θ is the union of all the trainable parameters including encoder and decoder’s parame-

ters and A. Here, X̂ = [X̂train, X̂test ] is the output of the decoder (i.e. reconstructions), and λ0

and λ1 are positive regularization parameters. Note that the optimization problem (7.10) simul-

taneously finds sparse codes A and a set of desirable embedding features Z that are especially

suitable for providing efficient sparse codes.

Classification: Once the sparse coefficient matrix A is found, it can be used for associating

the class labels to the test samples. For each test sample xi
test in Xtest , its embedding features
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Algorithm 3 Deep sparse representation-based classification
1: procedure DSRC(Xtrain,Xtest, λ0, λ1).
2: Construct X = [Xtrain,Xtest ].
3: Find A via Θ by solving the optimization problem (7.10).
4: Classify the test samples using (6.9) .
5: end procedure

(a) USPS [6]

(b) SVHN [12]

(c) UMDAA-01 [13]

Figure 6.2: Sample images from (a) USPS [6], (b) SVHN [12], and (c) UMDAA-01 [13].

zitest , and the corresponding sparse code column αi in A are used to estimate the class labels

as follows

class(xi
test ) = argmin

k
‖zitest − Ztrainδk(α

i)‖22 . (6.9)

The proposed DSRC method is summarized in Algorithm 3.

3. Experimental results

In this section, we evaluate our method against state-of-the-art SRC methods. The USPS

handwritten digits dataset [6], the street view house numbers (SVHN) dataset [12], and the

UMDAA-01 face recognition dataset [13] are used in our experiments. Figure 8.5 (a), (b), and

(c) show sample images from these datasets. Since the number of parameters in the sparse

coding layer scales with the multiplication of training and testing sizes, we randomly select a

smaller subset of the used datasets and perform all the experiments on the selected subset. In

all the experiments, the input images are resized to 32 × 32.

We compare our method with the standard SRC method [159], Kernel SRC (KSRC) [169],

SRC on features extracted from an autoencoder with similar architecture to our network (AE-

SRC), and SRC on features extracted from the state-of-the-art pre-trained networks. In our ex-

periment with the pre-trained networks, the networks are pre-trained on the Imagenet dataset [174].

For this purpose, we use the following four popular network architectures: VGG-19[175],
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Figure 6.3: Visualization of the sparse coding matrix (A) in the experiment with the USPS
dataset. Note that for better visualization the absolute value of the transposed A (i.e. |AT |) is
shown.

Inception-V3 [176], Resnet-50 [177] and Densenet-169 [178]. We feed these networks with

our datasets, extract the features corresponding to the last layer before classification, and pass

them to the classical SRC algorithm. Note these networks accept 224 × 224 inputs. Thus, as a

preprocessing step, we resample the input images to 224 × 224 images before feeding them to

the pre-trained networks.

We compare different methods in terms of their five-fold averaged classification accuracy.

In all the experiments, unless otherwise stated, we randomly split the datasets into sets of

training and testing samples, where 20% of the samples are used for testing, and 80% of the

samples are used as the training set.

Network structure: The encoder network of our model consists of stacked four convolutional

layers, and the decoder has three fractionally-strided convolution layers (also known as decon-

volution layers). Each plugged in convolution or fractionally-strided convolution is coupled

with a ReLu nonlinearity as well, but does not have a batch-norm layer. Table 6.1 gives the

details of the network, including the kernel sizes and the number of filters.

Training details: We implemented our method with Tensorflow-1.4 [128]. We use the adap-

tive momentum-based gradient descent method (ADAM) [129] to minimize the loss function,

and apply a learning rate of 10−3. Before we start training on our objective function, in each

experiment, we pre-train our encoder and decoder on the dataset without the sparse coding

layer. In particular, we pre-train the encoder-decoder for 20k epochs with the objective of
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Table 6.1: Details of our networks. Note that the number of parameters in the sparse coding
layer rely on the size of dataset including the n training and m test samples.

Layer Input Output Kernel
(stride,
pad)

Encoder

Conv 1 X Conv 1 1 × 5 × 5 × 10 (2,1)
Conv 2 Conv 1 Conv 2 1 × 3 × 3 × 20 (2,1)
Conv 3 Conv 2 Conv 3 1 × 3 × 3 × 30 (1,0)
Conv 4 Conv 3 Z 1 × 3 × 3 × 30 (1,0)

Sparse coding layer Θsc Z Ẑ m × n Parameters -

Decoder
deconv 1 Ẑ deconv 1 1 × 3 × 3 × 30 (1,0)
deconv 2 deconv 1 deconv 2 1 × 3 × 3 × 20 (2,1)
deconv 3 deconv 2 X̂ 1 × 5 × 5 × 10 (2,1)

Dataset SRC KSRC AE-SRC VGG19-SRC InceptionV3-SRC Resnet50-SRC Denesnet169-SRC DSRC (ours)
USPS 87.78 91.34 88.65 91.27 93.51 95.75 95.26 96.25
SVHN 15.71 27.42 18.69 52.86 41.14 47.88 37.65 67.75
UMDAA-01 79.00 81.37 86.70 82.68 86.15 91.84 86.35 93.39

Table 6.2: Sparse representation-based classification accuracy of different methods.

minΘ̂ ‖X − X̂‖2F, where Θ̂ indicates the union of parameters in the encoder and decoder net-

works. We use a batch size of 100 for this stage. However, in the actual stage of training, we

feed all the samples including the training and testing samples as a single large batch. We set

the regularization parameters as λ0 = 1 and λ1 = 8 in all the experiments.

3..1 USPS digits

The first set of experiments is conducted on the USPS handwritten digits dataset [6]. This

dataset contains 7291 training and 2007 test grayscale images of ten digits (0-9). Figure 8.5

(a), shows example images from this dataset. We perform the experiments on a subset with

a total size of 2000 samples. In particular, we randomly select 160 and 40 samples per digit

from the training and testing sets, respectively. The first row of Table 6.2 shows the perfor-

mance of various SRC methods. As can be observed from this table, the proposed method

performs significantly better than the other methods including the classical and deep learning-

based methods.

Figure 6.3 shows the coefficient matrix A, extracted from Θsc , the matrix of the network

trained for this experiment. For better visualization, we show the absolute value of the trans-

posed A (i.e. |AT |). Thus, each row of the matrix in Figure 6.3 corresponds to the sparse

codes for one of the test samples. Similarly, columns in this figure are coefficients related to
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DSRC DSC-SRC DSRC0.5 DSRC1.5 DSRC2

USPS 96.25 78.25 N/C 95.75 96.25

Table 6.3: The classification accuracy corresponding to the ablation study. N/C refers to the
cases where the learning process did not converge.

the training samples. This matrix is sparse and shows a block diagram pattern, where most of

the non-zero coefficients for each test sample are those that correspond to the training samples

with the same class as the observed test sample.

Analysis of the network: To understand the effects of some of our model choices, we compare

the performance of our DSRC method with variations of it by changing the regularization

norm on Θsc in the loss function (7.10). We replace the term ‖Θsc ‖1 in (7.10) by ‖Θsc ‖p,

where p = 0.5,1.5 and 2, and report their performances by DSRC0.5, DSRC1.5 and DSRC2,

respectively.

In addition, if we do not follow the specific structure described in equation (7.9), and instead

have a fully connected layer with (m + n)2 parameters which receives Z and reconstructs Ẑ, the

architecture of the network will be similar to the deep subspace clustering networks (DSC)

proposed in [4] for the task of subspace clustering. As an ablation study, we use this method

to extract sparse codes and then apply the same classification rule as in (6.9) to estimate class

labels for the test set. We call this method DSC-SRC.

Table 8.7 reveals that while the regularization norm on the coefficient matrix is selected

between `1 and `2, it does not have much effect on the performance of the classification task.

However, in our experiments, we observed that for norms smaller than 1, the problem is not

stable and often does not converges. In addition, DSC-SRC cannot provide a desirable perfor-

mance. Note that the fully-connected layer in this method (counterpart to our sparse coding

layer) does not limit the testing features to be reconstructed with only the training features. As

a result, it is possible that testing features shape an isolated group that does not have a strong

connection to the training features. This makes it more difficult to estimate a label for the test

samples.



84

3..2 Street view house numbers

The SVHN dataset [12] contains 630,420 color images of real-world house numbers collected

from Google Street View images. This dataset has three splits as the training set with 73,257

images, the testing set with 26,032 images and an extra set containing 531,131 additional sam-

ples. In this experiment, similar to our experiments on MNIST, we randomly select 160 images

per digit from the training split and 40 per digit from the test split. This dataset is much more

challenging than MNIST. This is in part due to the large variations of data. Furthermore, many

samples in this dataset contain multiple digits in an image. The task is to classify the center

digit.

The second row in Table 6.2 compares the performance of different SRC methods. This

table demonstrates the advantage of our method. While the classification task is much more

challenging on SVHN than MNIST, the gap between the performance of our method and the

second best performance is even more. The next best performing method is VGG19-SRC which

performs 14.86% behind the accuracy of our method.

3..3 UMD mobile faces

The UMD mobile face dataset (UMDAA-01) [13] contains 750 front-facing camera videos

of 50 users captured while using a smartphone. This dataset has been collected over three

different sessions. This dataset was originally collected for the active authentication task, but

since its frames include challenging facial image instances with various illumination and pose

conditions it has also been used for other tasks [179, 137]. In this experiment, we randomly

select 50 facial images per subjects from the data in Session 1. Figure 8.5 shows some sample

images from this dataset.

The performance of various SRC methods on the UMDAA-01 dataset are tabulated in the

third row of Table 6.2. As can be seen, our proposed DSRC method similar to the experiments

with SVHN provides remarkable improvements as compared to the other SRC methods. This

clearly shows that more challenging datasets are better represented by our method. This is

because our method not only efficiently finds the sparse codes, but also it seeks for a represen-

tation of data (the output of the encoder) that is especially suitable for sparse representation.
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Figure 6.4: Effect of the number of training samples on the performance of different classifi-
cation networks. The figure shows five-fold averaged classification accuracies of the methods
trained on varying number of training samples in the UMDAA-01 dataset.

Comparison to state-of-the-art classification networks: While deep neural networks per-

form very well when they are trained on large datasets, in the case of limited number of labeled

training samples, they often tend to overfit to the training samples. The objective of this exper-

iment is to analyze the performance of our approach in such circumstances. We compare our

method to the following classification networks: VGG-19[175], Inception-V3 [176], Resnet-

50 [177] and Densenet-169 [178]. We first pre-train the networks on the Imagenet dataset [174],

and then fine-tune them on the available training samples in UMDAA-01.

Figure 6.4 shows the performance of the classification networks on four different versions

of UMDAA-01 dataset with varying number of training samples. The four versions are created

by randomly splitting the dataset into sets of training and testing samples that respectively

contain 20%, 40%, 60% and 80% of the total number of samples as training samples and use

the rest of samples as the testing set. As the figure suggests, accuracy improves by increasing

the number of training samples in all the cases. However, the results show better performances

for DSRC even when less training data is available.

4. Conclusion

We presented an autoencoder-based sparse coding network for SRC. In particular, we intro-

duced a sparse coding layer that is located between the conventional encoder and decoder net-

works. This layer recovers sparse codes of embedding features that are received from the

encoder. The spare codes are later used to estimate the class labels of testing samples. We dis-

cussed a framework that allows an end-to-end training. Various experiments on three different
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image classification datasets showed that the proposed network leads to sparse representations

that give better classification results than state-of-the-art SRC methods.
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Chapter 7

Deep Multimodal Sparse Representation-based Classification

1. Introduction

Sparse representation is an established technique in signal and image processing with vari-

ous applications [159, 160, 36, 164]. Among the many applications, Sparse Representation

Classification (SRC) methods exploit the discriminative nature of sparse codes and provide

robust classification models less sensitive to non-constant variability, outliers, and small data

sets [159, 162, 180, 181]. The SRC method uses a sparsity-promoting optimization problem to

represent an unlabeled test sample as a sparse linear combination of labeled training samples.

This representation is then used in assigning a label to the test sample based on the minimum re-

construction error rule [159]. Various SRC-based methods have been proposed in the literature.

These methods include linear models in various applications [162, 180], kernel trick-based non-

linear models [169, 105, 170], and a recent deep neural network-based SRC method (DSRC)

that finds an explicit nonlinear mapping for data, while simultaneously obtaining sparse codes

that can be used for classification. Due to the efficiency of sparse coding-based algorithms,

many works focus on designing specialized hardware to support sparse data [182].

Many real-world phenomena involve multiple modalities. Learning from multimodal sources

offers the opportunity to gain an in-depth understanding of the phenomena by integrating the

complementary information provided in different modalities [122, 120]. In multimodal learn-

ing, the model receives the data from multiple modalities and learns to fuse them. The infor-

mation from different modalities can be fused at feature level (i.e., early fusion), decision level

(i.e., late fusion), or intermediately [122, 120, 51].

In this chapter, we propose a multimodal deep SRC-based method. We enforce the dif-

ferent modalities to interact through the sparse coefficients of their latent space features. Our

deep networks learn the latent space features of different modalities through an autoencoder
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framework. Our framework encourages different modalities to learn latent features that are dis-

criminative, suitable for sparse coding, and lie in mutual subspaces. The latent space features

for the test samples are reconstructed by a linear combination of training samples with a sparse

coefficient matrix that is shared among all the modalities.

Sharing the coefficient matrix among all the modalities pushes the test sample to interact

with the training samples of all the modalities simultaneously. Therefore a more reliable coeffi-

cient matrix, which is calculated by the complementary information from different modalities,

is constructed. Since the labels for the training samples are available, we use extra supervision

based on labels to develop discriminative latent features. This extra supervision is employed

by discriminator heads that are connected to latent space features of different modalities and

are trained by a classification loss. At the test time, we combine the prediction of discriminator

heads with the minimum reconstruction error rule, and introduce a new classification rule to

assign labels to the test samples.

2. Related Work

Sparse Representation-based Classification:

In the SRC task, we are given a set of labeled training samples, and the goal is to classify

an unseen set of testing samples. Suppose that we collect all the vectorized training samples in

the matrix Xtrain ∈ R
d0×n, where d0 is the dimensional size of each sample, and n is the number

of training samples.

SRC is based on the assumption that an observed sample xtest ∈ R
d0 can be well approx-

imated by a linear combination of samples in Xtrain that share the same class label as xtest.

Therefore, one can predict class label of a given unseen data such as xtest by finding the set of

few samples in the training set that can better approximate xtest. These samples can be picked

out by solving the following optimization problem.

min
α
‖α‖0 s.t. xtest = Xtrainα. (7.1)

where ‖α‖0 counts the number of non-zero elements in α. In practice, the `0 norm is replaced

by the `1 norm [70, 71]. Thus, in the case of noisy obseervations, the SRC solves the following
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sparsity-promoting problem

min
α
‖xtest −Xtrainα‖

2
F + λ0‖α‖1 (7.2)

where λ0 is a positive regularization parameter.

The solution, α, is used in the minimum reconstruction rule to estimate the class label of

xtest as follows

class(xtest) = argmin
k
‖xtest −XtrainΓk(α)‖

2
F (7.3)

where Γk(·) is the matrix indicator function defined by setting all the rows but those correspond-

ing to the ith class equal to zero.

Linear Multimodal Sparse Representation-based Classification: A number of multimodal

extensions for the linear SRC problem have been proposed in the literature [162, 183, 184, 185,

186, 187]. Among those, the methods proposed in [162, 185, 187] are the closest to our model.

They impose joint sparsities within and across different modalities. This way, the correlations

and coupling the information among modalities are simultaneously taken into account.

Assume the given multimodal data is observed in M modalities, each with n training sam-

ples. For each modality m = 1,2, · · · ,M , let’s denote Xm
train ∈ Rdm×n as the dictionary of

training samples in m-th modality where dm is the feature dimension of data in m-th modality.

Similarly, the representation of a multimodal test sample in the m-th modality can be repre-

sented as xm
test ∈ R

dm .

The SRC model can be applied to the individual modalities. In other words, xm
test can be

reconstructed by a linear combination of a few atoms in the dictionary Xm
train. Thus, we have

xm
test = Xm

trainα
m +Nm, (7.4)

where αm ∈ Rn is a sparse coefficient vector, and Nm ∈ Rdm×n is the noise matrix. The joint

sparsity model argues that αm has the same sparsity pattern across the different modalities for

m = 1,2, · · · ,M . In other words, the matrix A = [α1, · · · ,αM ] formed by concatenating the

coefficient vectors of an observation across different modalities has the same non-zero rows

in its different columns. The matrix A can be found by the following `1/`q-regularized least
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Figure 7.1: An overview of the proposed deep multimodal sparse representation-based clas-
sification network in a two-modality task. Features of different modalities are fed to their
corresponding encoder, where a discriminative criterion is enforced to develop discriminative
latent features that are especially suitable for jointly sparse representation. The latent features
of different modalities are reconstructed by optimal joint sparse codes and are fed to decoders
to reconstruct the raw modality features. The optimal joint sparse codes, along with the predic-
tions of discriminator heads are exploited to predict the class labels of test samples.

square problem

A = argmin
A

1

2

M∑
m=1

‖xm
test −Xm

trainα
m‖2F + λ0‖A‖1,q . (7.5)

where q > 1. Here, ‖A‖1,q is a norm defined as ‖A‖1,q =
∑n

k=1 ‖γ
j ‖q, where γ j’s are the rows

in A.

Once A is found, similar to problem (7.3), one can predict the class label of the test obser-

vation by solving the following problem

min
k
‖xm

test −Xm
trainΓk(α

m)‖2F (7.6)

3. Deep Multimodal Sparse Representation-based Classification Networks

Joint sparse representation-based classification methods [162, 185, 187] are able to extend the

SRC model to a model that incorporates multiple modalities while keeping the benefits of

sparse representation such as being less sensitive to outliers, and small data sets. However,

they still rely on the assumption that the data points across different modalities show linear

similarities within samples of the same class. This provides a strong motivation to incorporate

deep neural networks to capture complex underlying structures of data across different modali-

ties. We bridge multimodal SRC models and deep neural networks by proposing a transductive

multimodal classification model based on deep sparse representation. A transductive model

is a model in which both training and test sets are observed, and the learning process pursues
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reasoning from the specific training samples to a specific set of test cases [173].

We use stacked multimodal autoencoders to exploit the nonlinear relations between the data

points. In particular, we have a set of encoder and decoder per each available modality. The

encoders and decoders are trained together to find latent space features that are discriminative,

lie into a union of linear subspaces, and are constructed with the integrated information from

all the available modalities.

To meet these properties, the autoencoder in each modality is trained according to both the

training labels and the underlying structures of data in other modalities. The autoencoders of

different modalities interact with each other by invoking the same linear relation between data

points of different modalities in the training process. The same linear relation is imposed by

sharing the same sparse codes in a sparsity-promoting reconstruction loss. As will be described

in detail, the sparse codes can be modeled with a fully-connected layer in the deep neural

networks framework. Figure 7.1 shows an overview of our framework.

Thus, the training objective of our model can be divided into reconstruction criteria and

discriminative criterion.

Reconstruction Criteria: Reconstruction criteria itself consists of the reconstruction criterion

in sparse coding and the reconstruction constraint for autoencoders.

Let {Xm
train}

M
m=1 and {Xm

test}
M
m=1 be the given set of training and test samples across the dif-

ferent modalities. We concatenate the training and test samples of each modality and construct

the input matrices. The input matrix of m-th modality is denoted by Xm ∈ Rdm×n, and is con-

structed by the concatenation of Xm
train ∈ R

dm×ntrain and Xm
test ∈ R

dm×ntest , which are respectively

the available training and testing samples in the m-th modality.

We feed Xm to its corresponding encoder and develop the embedding features Zm. The ma-

trix Zm consists of two types of embedding features. Those that are associated with the training

samples and those that are corresponded to the testing samples. We respectively indicate to

them with Zm
train and Zm

test.

The SRC problem can be employed in the embedding feature space of each individual
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modality. However, if we couple information among different modalities, richer representa-

tions can be learned. We propose to tie the embedding features of different modalities by en-

forcing them to share the same sparse code solutions in the SRC problem across the embedding

space of all the different modalities. This way, the complementary information across differ-

ent modalities are integrated without imposing an extra burden on the networks for explicitly

learning to represent a joint representation.

Thus, we propose to find common sparse codes by solving the following optimization prob-

lem

Ac = argmin
Ac

1

2

M∑
m=1

‖Zm
test − Zm

trainAc ‖
2
F + λ0‖Ac ‖1, (7.7)

where Ac is the common sparse coding matrix. This matrix can be modeled by parameters of

a set of M fully-connected layers with shared parameters. Note that the reconstruction term

‖Zm
test − Zm

trainAc ‖
2
F in the m-th modality is equivalent to the penalty term of a fully-connected

layer with the input Zm
train, the output Zm

test and the parameters Ac. We use this in the implemen-

tation of our model and refer to the fully-connected layer as joint sparse coding layer.

The joint sparse coding layer is located between encoder and decoder of different modal-

ities. This layer performs an identical task across all the modalities. It passes the training

features to the corresponding decoder, and uses the parameters Ac to reconstruct the testing

features, and passes the reconstructions to the decoders.

Assuming that Ẑm
train and Ẑm

test are respectively outputs of the common sparse coding layer

for the training set and testing set in the m-th modality, we have

Ẑm
train = IntrainZ

m
train, Ẑm

test = Zm
trainAc, (7.8)

where Intrain ∈ R
ntrain×ntrain is the identity matrix. Therefore, if for the mth decoder the input is

Ẑm = [Ẑm
train, Ẑ

m
test], from (7.8) we can calculate Ẑm as Ẑm = ZmΘsc, where

Θsc =


Intrain Ac

0ntrain×ntest 0test

 , (7.9)

where 0ntrain×ntest ∈ R
ntrain×ntest and 0test ∈ R

m×m are zero matrices.

Combining the criteria in sparse coding and training of the encoder-decoders, one can write
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the reconstruction objective as

Lrec =

M∑
m=1

‖Zm − ZmΘsc ‖
2
F + λ0‖Θsc ‖1 +

M∑
m=1

λ1‖X
m − X̂m‖2F (7.10)

Discriminative Criterion: We aim to train encoders by which the embeddings of different

classes are best discriminated against. This property can be enforced on the encoders by incor-

porating labels for the training set. We plug discriminator heads to the output of encoders and

train them to discriminate embedding features of different classes. Let Y represent the labels

of the training samples; we define the discriminative criterion as follows

Lcls =

M∑
m=1

CE
(
Dm(Z

m
train),Y

)
(7.11)

where Dm denotes the discriminator head that is dedicated to classifying the embedding fea-

tures of m-th modality and CE(·, ·) is the cross-entropy loss. We let the error of these dis-

criminators be backpropagated to the encoders so that the encoders learn to produce separable

embedding features.

Lcls =

M∑
m=1

‖Zm − ZmΘsc ‖
2
F + λ0‖Θsc ‖1 +

M∑
m=1

λ1‖X
m − X̂m‖2F (7.12)

The discriminative criterion aims to train encoders that produce separable embedding fea-

tures.

Full Objective: Combining the reconstruction and the discriminative criteria, our full objective

function for training our networks is as follows:

L = Lrec + βLcls, (7.13)

where β > 0 is a regularization parameter. Note that with our formulation, it is possible to

train the networks in an end-to-end manner, and yet find the optimal sparse codes and encoder-

decoder parameters, simultaneously.

Classification Rule: Once the networks are trained and the common sparse coding matrix Ac

is found, we can use them for associating class labels to the test samples. Each test sample

comes with m modalities as {xm
test}

M
m=1. They have the corresponding embedding features as
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SVHN

USPS

MNIST

Session 1

Session 2

Session 3

[…] Combine almonds, walnut, sugar and cinnamon together. To make 
sugar syrup, combine 1 cup sugar and 1 cup water by adding cinnamon 
and lemon. Let it boil and simmer for 10 minutes.Keep it aside. Brush a 
12 x 10 inch baking tray with butter.  Lay the phyllo sheets and spread 
the melted butter on first sheet and then almond mixture.[…]

[…] Mix the yeast, water, and sugar in a mixer bowl fitted with a dough 
hook. Let stand until foamy, about 5 minutes. Add the salt, lemon zest, 
nutmeg, egg, milk, and 1 1/2 cups flour; mix on medium speed until 
combined. Add the butter; mix until incorporated. Add 1 3/4 cups flour, 
and mix until the dough comes together. Turn the dough onto a lightly 
floured surface. Knead in the remaining  […]

Image Text

(c) UMPC-Food101(b) UMD-AA01(a)

Figure 7.2: Samples from different modalities of datasets used in our experiments. (a) Digits
from MNIST, SVHN and USPS. (b) Face images from different Sessions of UMDAA-01. (c)
Food images and their recipe from UMPC-food101.

SRC-C J-SRC score-fusion feature-fusion DMSRC (ours)
Unimodal SRC Unimodal DSRC

M1 M2 M3 M1 M2 M3
Digits 91.87 92.34 18.25 18.13 96.25 11.98 88.13 92.25 62.75 94.25 95.37
Faces 83.45 84.76 14.37 15.17 94.13 78.32 77.21 75.83 91.21 90.56 89.12
Foods∗ 63.42 65.12 90.62 87.31 92.75 55.18 49.81 n/a 91.16 76.66 n/a
∗ All the methods for food-101 dataset use deep features extracted from DenseNet and BERT (for images and texts, respectively).

Table 7.1: Classification accuracy of different methods. M1 is SVHN in digits, Session1 in
Faces and Images in Foods. M2 is USPS in digits, Session2 in Faces and texts in Foods. M3 is
MNIST in digits, Session3 in Faces.

{zmtest}
M
m=1, and the corresponding sparse code column as α in the common sparse code matrix

Ac. We can estimate the label of the sample by

class({xm
test}

M
m=1) = argmin

k

M∑
m=1

‖zmtest − Zm
trainΓk(α)‖

2
F (7.14)

with Γk(·) similar to the equation (7.3).

In addition to the solution of (7.14), in our model, the discriminator heads in our framework

can provide extra class label predictions for the test samples. Thus, we determine the final label

estimates by ensembling the predictions of discriminator heads and the solution of (7.14). This

is done by averaging the normalized scores.

4. Experimental results

We evaluate our method on three multimodal datasets for digit classification, face recogni-

tion, and food categorization. We evaluate our method against state-of-the-art unimodal SRC

methods, multimodal SRC methods, and the commonplace fusion methods. In particular, we

compare against SRC [159] and DSRC [?] as unimodal baselines. For multimodal SRCs, we

compare against Joint Sparse representation (J-SRC) [162] as well as the classical SRC per-

formed on the concatenation of individual modalities denoted as SRC-C. Finally, in the last
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category of our baselines, we compare against the late feature fusion (feature-fusion), and

score-fusion methods. Feature-fusion and score-fusion are of the most effective approaches

in deep multimodal learning [122, 120].

We use the following datasets in our experiments:

Digits: We combine SVHN [12], USPS [6] and MNIST [5] digits datasets to assemble a mul-

tiview digit dataset. Here, we view images from the individual datasets as different views of

the same digit. Since the number of parameters in the sparse coding layer of our model scales

quadratically with the size of the data, we randomly select 200 samples per digit to keep the

networks to a tractable size. In total, we have 2000 multiview digits.

Faces: We view different Sessions of the UMD mobile faces dataset (UMDAA-01) [13] as

different modalities. We randomly select 50 facial images per subject from each Session.

UMPC Food-101 [188]: The dataset contains images of 101 different foods along with recipes

found from the web for these datasets. We keep the first 10 classes and randomly select 200

samples per class in our experiments. For text normalization, we remove double spaces, lower

case all characters, and remove any character other than the English alphabets.

Figure 8.5 (a), (b), and (c) show samples from the digits, UMDAA-01 and UMPC Food-101

datasets, respectively. We use 60% of the samples in each dataset as the training set, and the

remaining 20% as the testing set.

Training details: We implemented our method with Tensorflow-1.4. We use the adaptive

momentum-based gradient descent method (ADAM) [129] to minimize our loss functions, and

apply a learning rate of 10−3. Before we start training on our objective function, in each exper-

iment, we pre-train our encoder and decoder on the dataset without the sparse coding layer. We

set the regularization parameters as λ0 = 1, λ1 = 8 and β = 1000 in all the experiments.

4..1 Digits and Faces

For Digits and Faces datasets, we adopt the same architecture as described in [?]. That is us-

ing stacked autoencoders of four convolutional layers for the encoder and three deconvolution

layers for the decoder per each modality. The first two rows in Table 7.1 compare the perfor-

mance of our method against unimodal and multimodal classifiers on digits and faces datasets.



96

In the first row of Table 7.1, M1, M2, and M3 refer to SVHN, MNIST, and USPS datasets,

respectively. In the second row, M1, M2 and M3 respectively refer to Session 1, Session 2 and

Session 3 of UMDAA-01.

We observe multimodal SRC-based methods outperform the unimodal methods. This clar-

ifies the benefits of integrating multiple modalities. However, score-fusion and feature fusion

perform poorly here since the networks are shallow and are trained from scratch. Our DM-

SRC provides the best performance in both the datasets by using both the benefits of deep

multimodal learning and the robustness of SRC-based methods.

4..2 Deep Networks with State-of-the-art Architectures

In this experiment, we evaluate our method against state-of-the-art deep neural networks. We

adopt DenseNet [178] and BERT [189] networks that are of the most efficient deep architectures

for processing images and texts, respectively. We use Wikipedia pre-trained BERT and pre-train

DenseNet on Imagenet.

For both the networks, we add a fully-connected layer with 100 hidden nodes before the

final classifier layer to provide a low-dimensional in-depth feature space in which the experi-

ments of SRC-based methods are conducted. This layer is fine-tuned by the training samples

of our UMPC-Food101 subset. Score-fusion and feature-fusion methods also use the same

architecture.

For unimodal DSRC and our method, we use two fully-connected layers with 40 hidden

state nodes as encoder and decoder.

In Table 7.1, we refer to the image modality as M1 and denote the text modality as M2.

The results of Table 7.1 are interesting to compare with unimodal accuracies of 90.12% for

DenseNet in the image modality, and 72.33% for BERT in the text modality. As Table 7.1

reveals, score-fusion and feature-fusion methods perform quite well, and on contrast, linear

SRC-based method does not show a strong performance. It shows that although the in-depth

features provide discriminative features, the learned features are not suitable for a linear sparse

representation. DSRC and our MDSRC, on the other hand, can successfully map the features

to a latent space in which the benefits of SRC-based methods can be exploited. Our MDSRC,

outperforms all the baselines.
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5. Conclusion

We presented a deep sparse representation-based fusion method for classifying multimodal sig-

nals. We use autoencoders to develop features that may be different across different modalities

but share the same sparse codes in sparse representation classification problems that are applied

to separate modalities. The training objective for encoders consists of reconstruction criteria

and discriminative criterion. We proposed a classification rule that uses sparse codes as well as

the prediction of classification heads in different modalities to determine an accurate estimate

for classifying the test samples.
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Chapter 8

Improving the Performance of Unimodal Dynamic Hand-Gesture
Recognition with Multimodal Training

1. Introduction

Recent advances in computer vision and pattern recognition have made hand gesture recogni-

tion an accessible and important interaction tool for different types of applications including

human-computer interaction [190], sign language recognition [191], and gaming and virtual

reality control [192]. In particular, recent developments in deep 3-D convolutional neural net-

works (3D-CNNs) with video sequences have significantly improved the performance of dy-

namic hand gesture recognition [193, 194, 3].

Most state-of-the-art hand gesture recognition methods exploit multiple sensors such as vis-

ible RGB cameras, depth camera or compute an extra modality like optical flow to improve their

performances [195, 196, 197, 198]. Multimodal recognition systems offer significant improve-

ments to the accuracy of hand gesture recognition [199]. A multimodal recognition system is

trained with multiple streams of data and classifies the multimodal observations during test-

ing [122] (Figure 8.1 (a)). On the other hand, a unimodal recognition system is trained and

tested using only a single modality data (Figure 8.1 (b)). This chapter introduces a third type of

framework which leverages the knowledge from multimodal data during training and improves

the performance of a unimodal system during testing. Figure 8.1 (c) gives an overview of the

proposed framework.

The proposed approach uses separate 3D-CNNs per each stream of modality for primarily

training them to recognize the dynamic hand gestures based on their input modality streams.

The streams of modalities that are available in dynamic hand gesture recognition systems are of-

ten spatially and temporally aligned. For instance, the RGB and depth maps captured with mo-

tion sensing devices and the optical flow calculated from the RGB streams are usually aligned.
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Multimodal 
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Unimodal 
 Learning

Unimodal 
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Multimodal 
 Learning

Unimodal 
Testing

(a) Multimodal recognition

(b) Unimodal recognition

(c) Multimodal-training /unimodal-testing procedure (proposed).

Figure 8.1: Training and testing schemes of different types of recognition systems. (a) The
system is trained and tested with multiple modalities. (b) The system is trained and tested with
a single modality. (c) The system leverages the benefits of multimodal training but can be ran
as a unimodal system during testing.

Hence, we encourage the individual modality networks to derive a common understanding for

the spatiotemporal contents of different modalities. We do this by sharing their knowledge

throughout the learning process by minimizing the introduced spatiotemporal semantic align-

ment (SSA) loss.

We further improve the learning process by regularizing the SSA loss with an adaptive

regularization parameter. We call this regularization parameter, the focal regularization param-

eter. This parameter prevents the transfer of negative knowledge. In other words, it makes

sure that the knowledge is transferred from more accurate modality networks to less accurate

networks and not the other way. Once the networks are trained, during inference, each network

has learned to recognize the hand gestures from its dedicated modality, but also has gained

the knowledge transferred from the other modalities that assists in providing the better perfor-

mance.
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In summary, this chapter makes the following contributions. First, we propose a new frame-

work for single modality networks in dynamic hand gesture recognition task to learn from mul-

tiple modalities. This framework results in a Multimodal Training / Unimodal Testing (MTUT)

scheme. Second, we introduce the SSA loss to share the knowledge of single modality net-

works. Third, we develop the focal regularization parameter for avoiding negative transfer. In

our experiments, we show that learning with our method improves the test time performance of

unimodal networks.

2. Related Work

Dynamic Hand Gesture Recognition: Dynamic hand-gesture recognition methods can be

categorized on the basis of the video analysis approaches they use. Many hand-gesture meth-

ods have been developed based on extracting handcrafted features [200, 201, 202, 1]. These

methods often derive properties such as appearance, motion cues or body-skeleton to perform

gesture classification. Recent advances in action recognition methods and the introduction of

various large video datasets have made it possible to efficiently classify unprocessed streams of

visual data with spatiotemporal deep neural network architectures [15, 203, 204].

Various 3D-CNN-based hand gesture recognition methods have been introduced in the liter-

ature. A 3D-CNN-based method was introduced in [194] that integrates normalized depth and

image gradient values to recognize dynamic hand gestures. In [199], a 3D-CNN was proposed

that fuses streams of data from multiple sensors including short-range radar, color and depth

sensors for recognition. A real-time method is proposed in [3] that simultaneously detects

and classifies gestures in videos. Camgoz et al. [205] suggested a user-independent system

based on the spatiotemporal encoding of 3D-CNNs. Miao et al. proposed ResC3D [198], a

3D-CNN architecture that combines multimodal data and exploits an attention model. Fur-

thermore, some CNN-based models also use recurrent architectures to capture the temporal

information [196, 2, 206, 207].

The main focus of this chapter is to improve the performance of hand gesture recognition

methods that are built upon 3D-CNNs. As will be described later, we assume that our networks

have 4-D feature maps that contain positional, temporal and channel dimensions.
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Figure 8.2: An example of the RGB and optical flow streams from the NVGesture Dataset [3].
As can be seen, while for the stationary frames RGB provides better representation, optical
flow provides better representation for the dynamic frames.

Transfer Learning: In transfer learning, first, an agent is independently trained on a source

task, then another agent uses the knowledge of the source agent by repurposing the learned

features or transferring them to improve its learning on a target task [208, 209]. This technique

has been shown to be successful in many different types of applications [210, 211, 212, 213,

214, 215]. While our method is closely related to transfer learning, our learning agents (i.e.

modality networks) are trained simultaneously, and the transfer occurs both ways among the

networks. Thus, it is better categorized as a multi-task learning framework [216, 217], where

each network has three tasks of providing the knowledge to the other networks, receiving the

knowledge from them, and finally classifying based on their dedicated input streams.

Multimodal Fusion: In multimodal fusion, the model explicitly receives the data from mul-

tiple modalities and learns to fuse them [120, 49, 218]. The fusion can be achieved at feature

level (i.e. early fusion), decision level (i.e. late fusion) or intermediately [122, 51]. Once the

model is trained, during testing, it receives the data from multiple modalities for classifica-

tion [122, 120]. While our method is related to multimodal fusion, it is not a fusion method.

We do not explicitly fuse the representations from different modalities. Instead, we improve

the representation learning of our individual modality networks by leveraging the knowledge

from different modalities. During inference, we do not necessarily need multiple modalities

but rather each individual modality network works independently to classify data.

3. Proposed Method

In our proposed model, per each modality, one 3D-CNN is trained. Assuming that the stream of

data is available in M modalities, we have M classifier networks with similar architectures that
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classify based on their corresponding input. During training, while each network is primarily

trained with the data from its corresponding modality, we aim to improve the learning process

by transferring the knowledge among the networks of different modalities. The transferred

knowledge works as an extra supervision in addition to the class labels.

We share the knowledge of networks by aligning the semantics of the deep representations

they provide for the inputs. We do this by selecting an in-depth layer in the networks and

enforcing them to share a common correlation across the in-depth layers of all the modality

networks. This is done by minimizing the distance between their correlation matrices in the

training stage. In addition, we regularize this loss by an adaptive parameter which ensures that

the loss is serving as a one-way gate that only transfers the knowledge from more accurate

modality networks to those with less accuracy, and not the other way.

3..1 Spatiotemporal Semantic Alignment

In an ideal case, all the M classifier modality networks of our model should have the same un-

derstanding for an input video. Even though they are coming in different modalities, their inputs

are representing the same phenomena. In addition, since we assume that different modalities of

the input videos are aligned over the time and spatial positions, in an ideal case the networks are

expected to have the same understanding and share semantics for spatial positions and frames

of the input videos across the different modalities. However, in practice, some spatiotempo-

ral features may be better captured in one modality as compared to some other modalities. For

instance, in the stream of visible RGB and optical flow frames shown in Figure 8.2, it can be ob-

served that for static frames the RGB modality provides better information, while for dynamic

frames optical flow has less noisy information. This results in different semantic understanding

across the individual modality networks.

Thus, it is desirable to design a collaborative framework that encourages the networks to

learn a common understanding across different modalities for the same input scene. This way,

if in a training iteration one of the networks cannot learn a proper representation for a certain

region or time in its feature maps, it can use the knowledge from the other networks to improve

its representations. An iterative occurrence of this event during the training process leads the

networks to develop better representations in a collaborative manner.
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Let Fm,Fn ∈ R
W×H×T×C be the in-depth feature maps of two networks corresponding to

the mth modality and nth modality, where W,H,T and C denote width, heights, the number

of frames and channels of the feature maps, respectively. An in-depth feature map should

contain high-level content representations (semantics) [219]. The element fmi, j ,t ∈ R
C in Fm

represents the content for a certain block of time and spatial position. It is reasonable to expect

the network m to develop correlated elements in Fm for spatiotemporal blocks with similar

contents and semantics in the input. Thus, in an ideal case, the correlated elements in Fm

should have correlated counterpart elements in Fn.

The correlations between all the elements of Fm is expressed by its correlation matrix de-

fined as follows

corr(Fm) = F̂mF̂T
m ∈ R

d×d, (8.1)

where F̂m ∈ R
d×C contains the normalized elements of Fm in its rows, and d = WHT is the

number of elements in Fm. The element fmi, j ,t is normalized as f̂mi, j ,t = f̃mi, j ,t/‖ f̃
m
i, j ,t ‖ where

‖ f̃mi, j ,t ‖ is the magnitude of f̃mi, j ,t , and f̃mi, j ,t is calculated by f̂mi, j ,t =
fmi , j ,t−µi , j ,t

σi , j ,t
, where µi, j ,t and

σi, j ,t are respectively the sample mean and variance of the element. We encourage the networks

of the mth and the nth modalities to share a common correlation matrix for the feature maps of

Fm and Fn so that they can have similar understanding for the input video while being free to

have different styles. We do this by minimizing their spatiotemporal semantic alignment loss

defined as

`m,n
SSA
= ρm,n‖corr(Fm) − corr(Fn)‖

2
F, (8.2)

where ρm,n is an adaptive regularization parameter defined in Section 3..2.

The spatiotemporal semantic alignment loss is closely related to the covariance matrix

alignment of the source and target feature maps in domain adaptation methods [220, 221].

In addition, in some style transfer methods, the Gram matrices of feature maps are aligned

[222, 219]. Aligning the Gram matrices, as opposed to our approach, discards the positional

information and aligns the styles. In contrast, our method aligns the positional and temporal

information and discards the style.
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Figure 8.3: The value of focal regularization parameter (ρm,n) when β = 2 for different values
of classification losses, `m

cls
and `n

cls
. Proportional to the classification performances of net-

works m and n, this parameter scales the SSA loss to focus on transferring positive knowledge.

3..2 Avoiding Negative Transfer

As discussed earlier, some modalities may provide weak features as compared to the others. In

addition, even the strong modalities may sometimes have corrupted or hard examples in their

training set. In these cases, aligning the spatiotemporal semantics of the representations from

the other networks to the semantics of a week network may lead to a decrease in the perfor-

mance. In such a case, a negative transfer has occurred. It is desirable to develop a method that

produces positive knowledge transfer between the networks while avoiding negative transfer.

Such a method in our framework should enforce the networks to only mimic the semantics of

more accurate networks in learning the representations for their hard examples. To address this

issue, we regularize our SSA loss with an adaptive regularization parameter termed as focal

regularization parameter. This parameter is denoted as ρm,n in equation (8.2).

In order to measure the performance of the network modalities, we can use their classifi-

cation loss values. Assume `m
cls

and `n
cls

are the classification losses of the networks m and n

that respectively correspond to the mth and nth modalities. In addition, let ∆` = `m
cls
− `n

cls
be

their difference. A positive ∆` indicates that network n works better than network m. Hence, in

training the network m, for large positive values of ∆`, we want large values for ρm,n to enforce

the network to mimic the representations of the network n. As ∆` → 0+, network n becomes
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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3.2. Avoiding negative transfer

As discussed, some modalities provide weak features as
compared to the others. In addition to that, even the strong
modalities may sometimes have corrupted or difficult to rec-
ognize samples within their training set.

In these cases, aligning the spatiotemporal semantics of
the representations from the other networks to the seman-
tics of the week representation may lead to a decrease in
their performance. In such a case a negative transfer has oc-
curred. It is desirable to produce a method that produces
positive knowledge transfer between the networks while
avoiding negative transfer. Such a method in our framework
enforces weaker representations to mimic the semantics of
richer representations. Thus, we regularize our spatiotem-
poral semantics alignment loss with an adaptive regulariza-
tion parameter. This parameter gets larger values for the
weaker samples to push them to mimic the stronger repre-
sentations from the other modalities, and takes small values
or zero for strong representations to preserve them as they
are. We call our adaptive regularization parameter focal reg-
ularization parameter and define it as

⇢m,n = ↵S(e
`m
cls�`n

cls
� � 1) (3)

where ↵ and � are two positive parameters, and S(·) is the
thresholding function at zero. `m

cls and `n
cls are the loss val-

ues corresponding to the classification loss of mth and nth
networks.

The focal regularization parameter ⇢m,n is used as the
regularization when aligning the correlation matrix of Fm

in mth modality network to the correlation matrix of Fn in
nth modality network.

3.3. Full objective of the modality networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls +

MX

n=1

`m,n
SSA (4)

Not that for n = m, ⇢m,n = 0 and thus `m,n
SSA = 0.

Figure 2 shows an overview of how the representations
for nth modality affect on learning representation in mth
modality. Since ⇢m,n is differentiable, the training can be
done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. In the inference
stage, each network performs separately. Thus, once the
networks are trains, can use only one modality network to
acquire faster inference or fuse the prediction of the M net-
works to gain accuracy.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.

2

Figure 2. An overview of embedding knowledge from the network
corresponding to nth modality in the training of the network for
mth modality.

4. Experimental results

In order to show the strength of our proposed mode, we
pick hand gesture classification because of multi-modality
dataset in this domain. We try to show that SSA works well
for RGB, depth and Optical Flow as three main modalites
wildly used in computer vision. Ww picked VIVA hand
gesture as small and difficult dataset and EgoGesture dataset
as modern large scale for RGB and Depth. For third dataset
we use ..... For each of this experiments, We train I3D [2]
with default parameters reported on original implementa-
tion initiated with a model trained on Imagenet dataset.
We trained two modalites networks separately and averaged
their predictions at test time for fusion results. For train-
ing with proposed method (SSA) we trained one fifth of
iterations on original setting training both modality at the
same time (with alpha and beta equal to ...) AS we expected
I3D outperforms current best result on these dataset, and we
show that applying SSA to I3D we can outperform original
I3D as well as all reported results on these datasets.

4.1. VIVA Hand Gesture Dataset

VIVA hand gesture [10] is a hand gesture dataset de-
signed for study natural human activity under dif?cult set-
tings such as cluttered background, volatile illumination,
and frequent occlusion. The dataset was captured using a
Kinect device under real-world driving settings including
19 hand gesture classes, with 8 subjects. All results are re-
ported by averaging classification accuracy over an 8-fold
cross-subject cross validation. Since it includes only 885
video samples under difficult settings, nobody report result
better than 77.5%. We train I3D [2] for RGB and depth
for 10,000 iterations on 8-fold cross validation. For training
with proposed method (SSA) we trained another 2,000 iter-
ations training RGB and Depth at the same time. The result
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Figure 3. The value of focal regularization parameter (⇢m,n) when
� = 2 for different values of classification losses, `m

cls and `n
cls.

Proportional to the classification performances of networks m and
n, this parameter scales the SSA loss to focus on transferring pos-
itive knowledge.

examples in their training set. In these cases, aligning the
spatiotemporal semantics of the representations from the
other networks to the semantics of a week network may lead
to a decrease in the performance. In such a case, a negative
transfer has occurred. It is desirable to develop a method
that produces positive knowledge transfer between the net-
works while avoiding negative transfer. Such a method in
our framework should enforce the networks to only mimic
the semantics of more accurate networks in learning the rep-
resentations for their hard examples. To address this issue,
we regularize our SSA loss with an adaptive regularization
parameter termed as focal regularization parameter. This
parameter is denoted as ⇢m,n in equation (2).

In order to measure the performance of the network
modalities, we can use their classification loss values. As-
sume `m

cls and `n
cls are the classification losses of the net-

works m and n that respectively correspond to the mth and
nth modalities. In addition, let �` = `m

cls � `n
cls be their

difference. A positive �` indicates that network n works
better than network m. Hence, in training the network m,
for large positive values of �`, we want large values for
⇢m,n to enforce the network to mimic the representations of
the network n. As �` ! 0+, network n becomes less an
assist. Hence, we aim to have smaller ⇢m,ns to focus more
on the classification task. Finally, negative �` indicates that
the network n does not have better representations than the
network m, and therefore ⇢m,n should be zero to avoid the
negative transfer. To address these properties, we define the
focal regularization parameter as follows

⇢m,n = S(e��` � 1) =

⇢
e��` � 1 �` > 0

0 �`  0
(3)

where � is a positive focusing parameter, and S(·) is the
thresholding function at zero.

Figure 3 visualizes values of ⇢m,n for various `n
clss and

`m
cls 2 [0, 2], when � = 2. As can be seen, the parameter

is dynamically scaled, where the scaling factor decays to
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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3.2. Avoiding negative transfer

As discussed, some modalities provide weak features as
compared to the others. In addition to that, even the strong
modalities may sometimes have corrupted or difficult to rec-
ognize samples within their training set.

In these cases, aligning the spatiotemporal semantics of
the representations from the other networks to the seman-
tics of the week representation may lead to a decrease in
their performance. In such a case a negative transfer has oc-
curred. It is desirable to produce a method that produces
positive knowledge transfer between the networks while
avoiding negative transfer. Such a method in our framework
enforces weaker representations to mimic the semantics of
richer representations. Thus, we regularize our spatiotem-
poral semantics alignment loss with an adaptive regulariza-
tion parameter. This parameter gets larger values for the
weaker samples to push them to mimic the stronger repre-
sentations from the other modalities, and takes small values
or zero for strong representations to preserve them as they
are. We call our adaptive regularization parameter focal reg-
ularization parameter and define it as

⇢m,n = �S(e
�m
cls��n

cls
� � 1) (3)

where � and � are two positive parameters, and S(·) is the
thresholding function at zero. `m

cls and `n
cls are the loss val-

ues corresponding to the classification loss of mth and nth
networks.

The focal regularization parameter ⇢m,n is used as the
regularization when aligning the correlation matrix of Fm

in mth modality network to the correlation matrix of Fn in
nth modality network.

3.3. Full objective of the modality networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls +

MX

n=1

`m,n
SSA (4)

Not that for n = m, ⇢m,n = 0 and thus `m,n
SSA = 0.

Figure 2 shows an overview of how the representations
for nth modality affect on learning representation in mth
modality. Since ⇢m,n is differentiable, the training can be
done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. In the inference
stage, each network performs separately. Thus, once the
networks are trains, can use only one modality network to
acquire faster inference or fuse the prediction of the M net-
works to gain accuracy.

Network m

M
od

al
ity

 m

Network n

M
od

al
ity

 n

…
T

W
H

LetGbeourencoder,Fbeourdecoder,Mbeourmeandistributionnetwork,andD

bealargediscriminator.

X2Rd⇥N isfedtoG,andalatentrepresentationg(x i)comesoutoftheencoder.It

directlyfedtodecoderforreconstructionloss.However,wealsofeedg(x i)toDand

haveD(g(x i))withisaNdimensionalvectorspecifyingthatbasicallyrecognizesi

(theindexofx i).TheNdimensionalD(g(x i))isfedtoMreturningakdimensional

vectorofmembership.

2RD⇥N
Y1 =Y1 C1 +E1 +N1

Y2 =Y2 C2 +E2 +N2

Y3 =Y3 C3 +E3 +N3

Y4 =Y4 C4 +E4 +N4

Y5 =Y5 C5 +E5 +N5

C1 �C2 �C3 �C4 �C5

Zm �m e
Zm �m e� s

Z � e
Z � eC X ˆ X � {G(x 1),G(x 2),···,G(x N X)}

G(·) {y 1,y 2,···,y N Y}
{F(y 1),F(y 2),···,F(y N Y)}

F(·)

1
C Channels

…
T

W
H

LetGbeourencoder,Fbeourdecoder,Mbeourmeandistributionnetwork,andD

bealargediscriminator.

X2Rd⇥N isfedtoG,andalatentrepresentationg(x i)comesoutoftheencoder.It

directlyfedtodecoderforreconstructionloss.However,wealsofeedg(x i)toDand

haveD(g(x i))withisaNdimensionalvectorspecifyingthatbasicallyrecognizesi

(theindexofx i).TheNdimensionalD(g(x i))isfedtoMreturningakdimensional

vectorofmembership.

2RD⇥N
Y1 =Y1 C1 +E1 +N1

Y2 =Y2 C2 +E2 +N2

Y3 =Y3 C3 +E3 +N3

Y4 =Y4 C4 +E4 +N4

Y5 =Y5 C5 +E5 +N5

C1 �C2 �C3 �C4 �C5

Zm �m e
Zm �m e� s

Z � e
Z � eC X ˆ X � {G(x 1),G(x 2),···,G(x N X)}

G(·) {y 1,y 2,···,y N Y}
{F(y 1),F(y 2),···,F(y N Y)}

F(·)

1
C Channels

Spatiotemporal 
Semantic Alignment 

Loss 

Classification 
Loss 

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#****

CVPR
#****

CVPR 2018 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Time

R
G

B
O

pt
ic

al
  

Fl
ow

Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.

2

Figure 2. An overview of embedding knowledge from the network
corresponding to nth modality in the training of the network for
mth modality.

4. Experimental results

In order to show the strength of our proposed mode, we
pick hand gesture classification because of multi-modality
dataset in this domain. We try to show that SSA works well
for RGB, depth and Optical Flow as three main modalites
wildly used in computer vision. Ww picked VIVA hand
gesture as small and difficult dataset and EgoGesture dataset
as modern large scale for RGB and Depth. For third dataset
we use ..... For each of this experiments, We train I3D [2]
with default parameters reported on original implementa-
tion initiated with a model trained on Imagenet dataset.
We trained two modalites networks separately and averaged
their predictions at test time for fusion results. For train-
ing with proposed method (SSA) we trained one fifth of
iterations on original setting training both modality at the
same time (with alpha and beta equal to ...) AS we expected
I3D outperforms current best result on these dataset, and we
show that applying SSA to I3D we can outperform original
I3D as well as all reported results on these datasets.

4.1. VIVA Hand Gesture Dataset

VIVA hand gesture [10] is a hand gesture dataset de-
signed for study natural human activity under dif?cult set-
tings such as cluttered background, volatile illumination,
and frequent occlusion. The dataset was captured using a
Kinect device under real-world driving settings including
19 hand gesture classes, with 8 subjects. All results are re-
ported by averaging classification accuracy over an 8-fold
cross-subject cross validation. Since it includes only 885
video samples under difficult settings, nobody report result
better than 77.5%. We train I3D [2] for RGB and depth
for 10,000 iterations on 8-fold cross validation. For training
with proposed method (SSA) we trained another 2,000 iter-
ations training RGB and Depth at the same time. The result

3
Figure 4. Training network m with the knowledge of network n.
Training network m, is primarily done with respect to its classifier
loss (`m

cls), but comparing with `n
cls, ⇢m,n determines if involving

the SSA loss is necessary, and if yes, it regularizes this loss with re-
spect to the difference between the performances of two networks.
Note that in the test time, both networks perform independently.

zero as confidence in the classification performance of the
current network modality increases (measured using �`).
This scaling factor can automatically down-weight the con-
tribution of the shared knowledge if the performance of the
modality network n is degraded (measured by `n

cls).
The focal regularization parameter ⇢m,n is used as the

regularization factor when aligning the correlation matrix
of Fm in mth modality network to the correlation matrix of
Fn in nth modality network.

3.3. Full Objective of the Modality Networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls + �

MX

n=1

`m,n
SSA (4)

where � is a positive regularization parameter. Note that for
n = m, ⇢m,n = 0 and thus `m,n

SSA = 0.
Figure 4 shows an overview of how the representations

for the nth modality affects on learning the representation in
the mth modality. Since ⇢m,n is differentiable, the training
can be done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. During testing,
each network performs separately. Thus, once the networks
are trained, one can use an individual modality network to
acquire efficient recognition. However, it is worth men-
tioning that with our framework, applying a decision level
modality fusion in the test stage is also possible. In fact,
our experiments show that the proposed method not only
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Figure 3. The value of focal regularization parameter (⇢m,n) when
� = 2 for different values of classification losses, `m

cls and `n
cls.

Proportional to the classification performances of networks m and
n, this parameter scales the SSA loss to focus on transferring pos-
itive knowledge.

examples in their training set. In these cases, aligning the
spatiotemporal semantics of the representations from the
other networks to the semantics of a week network may lead
to a decrease in the performance. In such a case, a negative
transfer has occurred. It is desirable to develop a method
that produces positive knowledge transfer between the net-
works while avoiding negative transfer. Such a method in
our framework should enforce the networks to only mimic
the semantics of more accurate networks in learning the rep-
resentations for their hard examples. To address this issue,
we regularize our SSA loss with an adaptive regularization
parameter termed as focal regularization parameter. This
parameter is denoted as ⇢m,n in equation (2).

In order to measure the performance of the network
modalities, we can use their classification loss values. As-
sume `m

cls and `n
cls are the classification losses of the net-

works m and n that respectively correspond to the mth and
nth modalities. In addition, let �` = `m

cls � `n
cls be their

difference. A positive �` indicates that network n works
better than network m. Hence, in training the network m,
for large positive values of �`, we want large values for
⇢m,n to enforce the network to mimic the representations of
the network n. As �` ! 0+, network n becomes less an
assist. Hence, we aim to have smaller ⇢m,ns to focus more
on the classification task. Finally, negative �` indicates that
the network n does not have better representations than the
network m, and therefore ⇢m,n should be zero to avoid the
negative transfer. To address these properties, we define the
focal regularization parameter as follows

⇢m,n = S(e��` � 1) =

⇢
e��` � 1 �` > 0

0 �`  0
(3)

where � is a positive focusing parameter, and S(·) is the
thresholding function at zero.

Figure 3 visualizes values of ⇢m,n for various `n
clss and

`m
cls 2 [0, 2], when � = 2. As can be seen, the parameter

is dynamically scaled, where the scaling factor decays to
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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3.2. Avoiding negative transfer

As discussed, some modalities provide weak features as
compared to the others. In addition to that, even the strong
modalities may sometimes have corrupted or difficult to rec-
ognize samples within their training set.

In these cases, aligning the spatiotemporal semantics of
the representations from the other networks to the seman-
tics of the week representation may lead to a decrease in
their performance. In such a case a negative transfer has oc-
curred. It is desirable to produce a method that produces
positive knowledge transfer between the networks while
avoiding negative transfer. Such a method in our framework
enforces weaker representations to mimic the semantics of
richer representations. Thus, we regularize our spatiotem-
poral semantics alignment loss with an adaptive regulariza-
tion parameter. This parameter gets larger values for the
weaker samples to push them to mimic the stronger repre-
sentations from the other modalities, and takes small values
or zero for strong representations to preserve them as they
are. We call our adaptive regularization parameter focal reg-
ularization parameter and define it as

⇢m,n = �S(e
�m
cls��n

cls
� � 1) (3)

where � and � are two positive parameters, and S(·) is the
thresholding function at zero. `m

cls and `n
cls are the loss val-

ues corresponding to the classification loss of mth and nth
networks.

The focal regularization parameter ⇢m,n is used as the
regularization when aligning the correlation matrix of Fm

in mth modality network to the correlation matrix of Fn in
nth modality network.

3.3. Full objective of the modality networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls +

MX

n=1

`m,n
SSA (4)

Not that for n = m, ⇢m,n = 0 and thus `m,n
SSA = 0.

Figure 2 shows an overview of how the representations
for nth modality affect on learning representation in mth
modality. Since ⇢m,n is differentiable, the training can be
done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. In the inference
stage, each network performs separately. Thus, once the
networks are trains, can use only one modality network to
acquire faster inference or fuse the prediction of the M net-
works to gain accuracy.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.

2

Figure 2. An overview of embedding knowledge from the network
corresponding to nth modality in the training of the network for
mth modality.

4. Experimental results

In order to show the strength of our proposed mode, we
pick hand gesture classification because of multi-modality
dataset in this domain. We try to show that SSA works well
for RGB, depth and Optical Flow as three main modalites
wildly used in computer vision. Ww picked VIVA hand
gesture as small and difficult dataset and EgoGesture dataset
as modern large scale for RGB and Depth. For third dataset
we use ..... For each of this experiments, We train I3D [2]
with default parameters reported on original implementa-
tion initiated with a model trained on Imagenet dataset.
We trained two modalites networks separately and averaged
their predictions at test time for fusion results. For train-
ing with proposed method (SSA) we trained one fifth of
iterations on original setting training both modality at the
same time (with alpha and beta equal to ...) AS we expected
I3D outperforms current best result on these dataset, and we
show that applying SSA to I3D we can outperform original
I3D as well as all reported results on these datasets.

4.1. VIVA Hand Gesture Dataset

VIVA hand gesture [10] is a hand gesture dataset de-
signed for study natural human activity under dif?cult set-
tings such as cluttered background, volatile illumination,
and frequent occlusion. The dataset was captured using a
Kinect device under real-world driving settings including
19 hand gesture classes, with 8 subjects. All results are re-
ported by averaging classification accuracy over an 8-fold
cross-subject cross validation. Since it includes only 885
video samples under difficult settings, nobody report result
better than 77.5%. We train I3D [2] for RGB and depth
for 10,000 iterations on 8-fold cross validation. For training
with proposed method (SSA) we trained another 2,000 iter-
ations training RGB and Depth at the same time. The result

3
Figure 4. Training network m with the knowledge of network n.
Training network m, is primarily done with respect to its classifier
loss (`m

cls), but comparing with `n
cls, ⇢m,n determines if involving

the SSA loss is necessary, and if yes, it regularizes this loss with re-
spect to the difference between the performances of two networks.
Note that in the test time, both networks perform independently.

zero as confidence in the classification performance of the
current network modality increases (measured using �`).
This scaling factor can automatically down-weight the con-
tribution of the shared knowledge if the performance of the
modality network n is degraded (measured by `n

cls).
The focal regularization parameter ⇢m,n is used as the

regularization factor when aligning the correlation matrix
of Fm in mth modality network to the correlation matrix of
Fn in nth modality network.

3.3. Full Objective of the Modality Networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls + �

MX

n=1

`m,n
SSA (4)

where � is a positive regularization parameter. Note that for
n = m, ⇢m,n = 0 and thus `m,n

SSA = 0.
Figure 4 shows an overview of how the representations

for the nth modality affects on learning the representation in
the mth modality. Since ⇢m,n is differentiable, the training
can be done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. During testing,
each network performs separately. Thus, once the networks
are trained, one can use an individual modality network to
acquire efficient recognition. However, it is worth men-
tioning that with our framework, applying a decision level
modality fusion in the test stage is also possible. In fact,
our experiments show that the proposed method not only
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Figure 3. The value of focal regularization parameter (⇢m,n) when
� = 2 for different values of classification losses, `m

cls and `n
cls.

Proportional to the classification performances of networks m and
n, this parameter scales the SSA loss to focus on transferring pos-
itive knowledge.

examples in their training set. In these cases, aligning the
spatiotemporal semantics of the representations from the
other networks to the semantics of a week network may lead
to a decrease in the performance. In such a case, a negative
transfer has occurred. It is desirable to develop a method
that produces positive knowledge transfer between the net-
works while avoiding negative transfer. Such a method in
our framework should enforce the networks to only mimic
the semantics of more accurate networks in learning the rep-
resentations for their hard examples. To address this issue,
we regularize our SSA loss with an adaptive regularization
parameter termed as focal regularization parameter. This
parameter is denoted as ⇢m,n in equation (2).

In order to measure the performance of the network
modalities, we can use their classification loss values. As-
sume `m

cls and `n
cls are the classification losses of the net-

works m and n that respectively correspond to the mth and
nth modalities. In addition, let �` = `m

cls � `n
cls be their

difference. A positive �` indicates that network n works
better than network m. Hence, in training the network m,
for large positive values of �`, we want large values for
⇢m,n to enforce the network to mimic the representations of
the network n. As �` ! 0+, network n becomes less an
assist. Hence, we aim to have smaller ⇢m,ns to focus more
on the classification task. Finally, negative �` indicates that
the network n does not have better representations than the
network m, and therefore ⇢m,n should be zero to avoid the
negative transfer. To address these properties, we define the
focal regularization parameter as follows

⇢m,n = S(e��` � 1) =

⇢
e��` � 1 �` > 0

0 �`  0
(3)

where � is a positive focusing parameter, and S(·) is the
thresholding function at zero.

Figure 3 visualizes values of ⇢m,n for various `n
clss and

`m
cls 2 [0, 2], when � = 2. As can be seen, the parameter

is dynamically scaled, where the scaling factor decays to
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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3.2. Avoiding negative transfer

As discussed, some modalities provide weak features as
compared to the others. In addition to that, even the strong
modalities may sometimes have corrupted or difficult to rec-
ognize samples within their training set.

In these cases, aligning the spatiotemporal semantics of
the representations from the other networks to the seman-
tics of the week representation may lead to a decrease in
their performance. In such a case a negative transfer has oc-
curred. It is desirable to produce a method that produces
positive knowledge transfer between the networks while
avoiding negative transfer. Such a method in our framework
enforces weaker representations to mimic the semantics of
richer representations. Thus, we regularize our spatiotem-
poral semantics alignment loss with an adaptive regulariza-
tion parameter. This parameter gets larger values for the
weaker samples to push them to mimic the stronger repre-
sentations from the other modalities, and takes small values
or zero for strong representations to preserve them as they
are. We call our adaptive regularization parameter focal reg-
ularization parameter and define it as

⇢m,n = �S(e
�m
cls��n

cls
� � 1) (3)

where � and � are two positive parameters, and S(·) is the
thresholding function at zero. `m

cls and `n
cls are the loss val-

ues corresponding to the classification loss of mth and nth
networks.

The focal regularization parameter ⇢m,n is used as the
regularization when aligning the correlation matrix of Fm

in mth modality network to the correlation matrix of Fn in
nth modality network.

3.3. Full objective of the modality networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls +

MX

n=1

`m,n
SSA (4)

Not that for n = m, ⇢m,n = 0 and thus `m,n
SSA = 0.

Figure 2 shows an overview of how the representations
for nth modality affect on learning representation in mth
modality. Since ⇢m,n is differentiable, the training can be
done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. In the inference
stage, each network performs separately. Thus, once the
networks are trains, can use only one modality network to
acquire faster inference or fuse the prediction of the M net-
works to gain accuracy.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.
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Figure 1. An example of RGB and optical flow streams from NVIDIA Dynamic Hand Gesture Dataset [9]. As can be seen, while for
stationary frames RGB provides better representation, optical flow provides better representations for dynamic frames.

aim to improve the learning by transferring knowledge be-
tween the networks of different modalities.

We share the knowledge of networks with aligning the
semantics of the deep representations they provide for in-
puts. We do this by selecting an in-depth layer in the net-
works and enforcing them to share a common correlation
matrix across the in-depth layer of all the modality net-
works. This is done by minimizing the distance between
their correlation matrices in the training stage. In addition,
we regularize this loss by an adaptive parameter which au-
tomatically encourages the networks with weak representa-
tions to use the knowledge of stronger representation in the
other networks, and lets the networks with strong represen-
tations to preserve them.

3.1. Spatiotemporal semantic alignment

In an ideal case, all the M classifier networks of our
model should have the same understanding for an input
video. Even though they are coming in different modali-
ties, their inputs are representing the same phenomena. In
addition, since we assume that different modalities of the
input videos are aligned over the time and spatial positions,
in an ideal case the networks are expected to have the same
understanding and share semantics for each pixel and frame
of the input videos across different modalities. However, in
practice, some spatiotemporal features may be better cap-
tured in one modality as compared to some other modalities.
This results in different semantic understandings across the
modality networks.

Thus, it is desirable to encourage the networks to learn
a common understanding across different modalities for the
same input. This way, if one of the networks cannot learn a
proper representation for a certain region or frame in its fea-
ture maps, it can use the knowledge from the other networks
to improve its representations.

Let Fm,Fn 2 RW⇥H⇥T⇥C be counterpart in-depth fea-
ture maps of two networks corresponding to the mth modal-
ity and nth modality, where W, H, T and C denote width,

heights, number of frames and channels of the feature maps,
respectively. An in-depth feature map is supposed to con-
tain high-level content representations [5]. The element
fm
i,j,t 2 RC in Fm represents the content for a certain block

of time and spatial position. For spatiotemporal blocks with
similar contents in the input, the network develops corre-
lated elements in Fm. Thus, in an ideal case, correlated el-
ements in Fm should have correlated counterpart elements
in Fn.

The correlations between all the elements of Fm is ex-
pressed by its correlation matrix defined as

corr(Fm) =
1

d2
F̂mF̂T

m 2 Rd⇥d (1)

where F̂m 2 Rd⇥C contains the standardized elements of
Fm in its rows, and d = WHT is the number of elements
in Fm. The element fm

i,j,t is standardized as f̂m
i,j,t =

fm
i,j,t�µ

� ,
where µ and � are respectively the mean and variance of the
elements in Fm.

We encourage the networks of mth and nth modalities to
share a common correlation matrix for the feature maps of
Fm and Fn so that they can have similar understanding for
the input video while being free to have different styles. We
do so by minimizing their spatiotemporal semantic align-
ment loss defined as

`m,n
SSA = ⇢m,nkCorr(Fm) � Corr(Fn)k2

F (2)

where ⇢m,n is an adaptive regularization parameter defined
in 3.2.

The spatiotemporal semantic alignment loss is closely
related to the covariance matrix alignments of the source
and target feature maps in domain adaptation methods [13,
12]. In addition, in some style transfer methods, the Gram
matrices of feature maps are aligned [4, 5]. Aligning the
Gram matrices, as opposed to our approach, discards the
positional information and aligns the styles. Our method
aligns the positional information and discards the style.

2

Figure 2. An overview of embedding knowledge from the network
corresponding to nth modality in the training of the network for
mth modality.

4. Experimental results

In order to show the strength of our proposed mode, we
pick hand gesture classification because of multi-modality
dataset in this domain. We try to show that SSA works well
for RGB, depth and Optical Flow as three main modalites
wildly used in computer vision. Ww picked VIVA hand
gesture as small and difficult dataset and EgoGesture dataset
as modern large scale for RGB and Depth. For third dataset
we use ..... For each of this experiments, We train I3D [2]
with default parameters reported on original implementa-
tion initiated with a model trained on Imagenet dataset.
We trained two modalites networks separately and averaged
their predictions at test time for fusion results. For train-
ing with proposed method (SSA) we trained one fifth of
iterations on original setting training both modality at the
same time (with alpha and beta equal to ...) AS we expected
I3D outperforms current best result on these dataset, and we
show that applying SSA to I3D we can outperform original
I3D as well as all reported results on these datasets.

4.1. VIVA Hand Gesture Dataset

VIVA hand gesture [10] is a hand gesture dataset de-
signed for study natural human activity under dif?cult set-
tings such as cluttered background, volatile illumination,
and frequent occlusion. The dataset was captured using a
Kinect device under real-world driving settings including
19 hand gesture classes, with 8 subjects. All results are re-
ported by averaging classification accuracy over an 8-fold
cross-subject cross validation. Since it includes only 885
video samples under difficult settings, nobody report result
better than 77.5%. We train I3D [2] for RGB and depth
for 10,000 iterations on 8-fold cross validation. For training
with proposed method (SSA) we trained another 2,000 iter-
ations training RGB and Depth at the same time. The result

3
Figure 4. Training network m with the knowledge of network n.
Training network m, is primarily done with respect to its classifier
loss (`m

cls), but comparing with `n
cls, ⇢m,n determines if involving

the SSA loss is necessary, and if yes, it regularizes this loss with re-
spect to the difference between the performances of two networks.
Note that in the test time, both networks perform independently.

zero as confidence in the classification performance of the
current network modality increases (measured using �`).
This scaling factor can automatically down-weight the con-
tribution of the shared knowledge if the performance of the
modality network n is degraded (measured by `n

cls).
The focal regularization parameter ⇢m,n is used as the

regularization factor when aligning the correlation matrix
of Fm in mth modality network to the correlation matrix of
Fn in nth modality network.

3.3. Full Objective of the Modality Networks

Combining the aforementioned objectives, our full ob-
jective for training the network corresponding to the mth
modality in an M -modality task is as follows

`m = `m
cls + �

MX

n=1

`m,n
SSA (4)

where � is a positive regularization parameter. Note that for
n = m, ⇢m,n = 0 and thus `m,n

SSA = 0.
Figure 4 shows an overview of how the representations

for the nth modality affects on learning the representation in
the mth modality. Since ⇢m,n is differentiable, the training
can be done in an end-to-end manner.

Our model encourages the networks to improve their rep-
resentation learning in the training stage. During testing,
each network performs separately. Thus, once the networks
are trained, one can use an individual modality network to
acquire efficient recognition. However, it is worth men-
tioning that with our framework, applying a decision level
modality fusion in the test stage is also possible. In fact,
our experiments show that the proposed method not only

4
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Figure 8.4: Training network m with the knowledge of network n. Training network m, is
primarily done with respect to its classifier loss (`m

cls
), but comparing with `n

cls
, ρm,n determines

if involving the SSA loss is necessary, and if yes, it regularizes this loss with respect to the
difference between the performances of two networks. Note that in the test time, both networks
perform independently.

less an assist. Hence, we aim to have smaller ρm,ns to focus more on the classification task.

Finally, negative ∆` indicates that the network n does not have better representations than the

network m, and therefore ρm,n should be zero to avoid the negative transfer. To address these

properties, we define the focal regularization parameter as follows

ρm,n = S(eβ∆` − 1) =


eβ∆` − 1 ∆` > 0

0 ∆` ≤ 0
(8.3)

where β is a positive focusing parameter, and S(·) is the thresholding function at zero.

Figure 8.3 visualizes values of ρm,n for various `n
cls

s and `m
cls
∈ [0,2], when β = 2. As can

be seen, the parameter is dynamically scaled, where the scaling factor decays to zero as con-

fidence in the classification performance of the current network modality increases (measured

using ∆`). This scaling factor can automatically down-weight the contribution of the shared

knowledge if the performance of the modality network n is degraded (measured by `n
cls

).

The focal regularization parameter ρm,n is used as the regularization factor when aligning

the correlation matrix of Fm in mth modality network to the correlation matrix of Fn in nth

modality network.
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Figure 8.5: Sample sequences from different modalities of used datasets. (a) VIVA hand ges-
ture dataset [1]. (b) NVGesture dataset [3]. (c) EgoGesture [2, 14]. As can be seen, the
modalities in VIVA and EgoGesture datasets are well-aligned, while the depth map is not quite
aligned with RGB and Optical flow maps in NVGesture.

3..3 Full Objective of the Modality Networks

Combining the aforementioned objectives, our full objective for training the network corre-

sponding to the mth modality in an M-modality task is as follows

`m = `mcls + λ

M∑
n=1

`m,n
SSA

(8.4)

where λ is a positive regularization parameter. Note that for n = m, ρm,n = 0 and thus `m,n
SSA
= 0.

Figure 8.4 shows an overview of how the representations for the nth modality affects on

learning the representation in the mth modality. Since ρm,n is differentiable, the training can be

done in an end-to-end manner.

Our model encourages the networks to improve their representation learning in the training

stage. During testing, each network performs separately. Thus, once the networks are trained,

one can use an individual modality network to acquire efficient recognition. However, it is

worth mentioning that with our framework, applying a decision level modality fusion in the

test stage is also possible. In fact, our experiments show that the proposed method not only im-

proves the performance of unimodal networks, but it can also improve the fusion performance.

4. Experimental Results

In this section, we evaluate our method against state-of-the-art dynamic hand gesture methods.

We conduct our experiments on three publicly available multimodal dynamic hand gesture

datasets. The following datasets are used in our experiments.



107

• VIVA hand gestures dataset [1] is a multimodal dynamic hand gesture dataset specifi-

cally designed with difficult settings of cluttered background, volatile illumination, and

frequent occlusion for studying natural human activities in real-world driving settings.

This dataset was captured using a Microsoft Kinect device, and contains 885 visible

RGB and depth video sequences (RGB-D) of 19 hand gesture classes, collected from 8

subjects.

• EgoGesture dataset [2, 14] is a large multimodal hand gesture dataset collected for the

task of egocentric gesture recognition. This dataset contains 24,161 hand gesture clips

of 83 classes of gestures, performed by 50 subjects. Videos in this dataset include both

static and dynamic gestures captured with an Intel RealSense SR300 device in RGB-D

modalities across multiple indoor and outdoor scenes.

• NVGestures dataset [3] has been captured with multiple sensors and from multiple view-

points for studying human-computer interfaces. It contains 1532 dynamic hand gestures

recorded from 20 subjects inside a car simulator with artificial lighting conditions. This

dataset includes 25 classes of hand gestures. The gestures were recorded with SoftKinetic

DS325 device as the RGB-D sensor and DUO-3D for the infrared streams. In addition,

the optical flow and infrared disparity map modalities can be calculated from the RGB

and infrared streams, respectively. We use RGB, depth and optical flow modalities in

our experiments. Note that IR streams in this dataset do not share the same view with

RGB, depth and optical flow modalities. The optical flow is calculated using the method

presented in [223].

Figure 8.5 (a), (b), and (c) show sample frames from the different modalities of these

datasets that are used in our experiments. Note that the RGB and depth modalities are well-

aligned in the VIVA and EgoGesture datasets, but are not completely aligned in the NVGestures

dataset.

For all the datasets, we compare our method against two state-of-the-art action recognition

networks, I3D [15] and C3D [203], as well as state-of-the-art dynamic hand gesture recognition

methods that were reported on the used datasets. In the tables, we report the results of our

method as “Multimodal Training Unimodal Testing” (MTUT).
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Implementation Details: In the design of our method, we adopt the architecture of I3D net-

work as the backbone network of our modality networks, and employ its suggested implemen-

tation details [15]. This network is an inflated version of Inception-V1 [224], which contains

several 3D convolutional layers followed with 3D max-pooling layers and inflated Inception-

V1 submodules. The detailed architecture can be found in [15]. We select the output of the

last inflated Inception submodule, “Mixed 5c”, as the in-depth feature map in our modality

networks for applying the SSA loss (8.2). In all the experiments λ is set to 50 × 10−3, and

β = 2. The threshold function in the focal regularization parameter is implemented by a ReLu

layer. For all the experiments with our method and I3D benchmarks, unless otherwise stated,

we start with the publicly available ImageNet [174] + Kinetics [225] pre-trained networks.

We set the momentum to 0.9, and optimize the objective function with the standard SGD

optimizer. We start with the base learning rate of 10−2 with a 10× reduction when the loss is

saturated. We use a batch size of 6 containing 64-frames snippets in the training stage. The

models were implemented in Tensor-Flow 1.9 [128]. For our method, we start with a stage of

pretraining with only applying the classification losses on the modality networks for 60 epochs,

and then continue training with the SSA loss for another 15 epochs.

We employ the following spacial and temporal data augmentations during the training stage.

For special augmentation, videos are resized to have the smaller video size of 256 pixels, and

then randomly cropped with a 224 × 224 patch. In addition, the resulting video is randomly

but consistently flipped horizontally. For temporal augmentation, 64 consecutive frames are

picked randomly from the videos. Shorter videos are randomly padded with zero frames on

both sides to obtain 64 frames. During testing, we use 224×224 center crops, apply the models

convolutionally over the full video, and average predictions.

Note that we follow the above mentioned implementation details identically for the exper-

iments with both the I3D method [15], and our method. The only difference between the I3D

method and our MTUT is in their learning objective. In our case, it consists of the introduced

constraints as well.
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Testing modality
Method RGB Depth
HOG+HOG2 [1] 52.3 58.6
CNN:LRN [194] 57.0 65.0
C3D [203] 71.26 68.32
I3D [15] 78.25 74.46
MTUT (ours) 81.33 81.31

Table 8.1: 8-fold cross-subject average accuracies of different hand gesture methods on the
VIVA hand gesture dataset [1]. The top performer is denoted by boldface.

4..1 VIVA Hand Gestures Dataset

In this set of experiments, we compare our method on the VIVA dataset against a hand-crafted

approach (HOG+HOG2 [1]), a recurrent CNN-based method (CNN:LRN [194]), a C3D [203]

model which were pre-trained on Sports-1M dataset [212] as well as the I3D method that cur-

rently holds the best results in action recognition [15]. All the results are reported by averaging

the classification accuracies over 8-fold cross-subject cross-validation.

Table 8.1 shows the performance of the dynamic hand gesture methods tested on the visi-

ble and depth modalities of the VIVA dataset. As can be seen from this table, the I3D network

performs significantly better than HOG+HOG2 and CNN:LRN. This is in part due to the knowl-

edge that I3D contains from its pretraining on ImageNet and Kinematic datasets. Nonetheless,

we observe that our method that shares the same architecture and settings with the I3D net-

works and only differs in the learning procedure has significantly improved the I3D method by

a 3.08% boost in the performance of RGB’s network and 6.85% improvement on the perfor-

mance of the depth’s network. This experiment shows that our method is able to integrate the

complementary information between two different modalities to learn efficient representations

that can improve their individual performances.

4..2 EgoGesture Dataset

We assess the performance of our method along with various hand gesture recognition meth-

ods published on the large-scale hand gesture dataset, EgoGesture [2]. Table 8.2 compares

unimodal test accuracies of different hand gesture methods. VGG16 [175] is a frame-based
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Testing modality
Method RGB Depth
VGG16 [175] 62.5 62.3
VGG16 + LSTM [92] 74.7 77.7
C3D [203] 86.4 88.1
C3D+LSTM+RSTTM [2] 89.3 90.6
I3D [15] 90.33 89.47
MTUT (ours) 92.48 91.96

Table 8.2: Accuracies of different hand gesture methods on the EgoGesture dataset [2]. The
top performer is denoted by boldface.
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Figure 8.6: Visualization of the feature maps corresponding to the layer “Mixed 5c” in dif-
ferent networks for a sample input from EgoGesture dataset. These figures show the sequence
of average feature maps (over 1024 channels) in (a) the RGB and depth networks trained with
the I3D method. (b) the RGB and depth networks trained with our method. Intensity displays
the magnitude.

recognition method, and VGG16+LSTM [92] combines this method with a recurrent architec-

ture to leverage the temporal information as well. As can be seen, the 3D-CNN-based methods,

C3D, C3D+LSTM+RSTMM [2], and I3D, outperform the VGG16-based methods. However,

among the 3D-CNN-based methods, our method outperforms the top performers in the RGB

domain by 2.15% and in the Depth domain by 1.09%.

In Figure 8.6, we visualize a set of feature maps from the RGB and depth networks trained

with the I3D and our method. We feed a given input from the EgoGesture dataset to different

networks and calculate the average of feature maps over the channels in the layer “Mixed 5c”.

We display the resulting sequence in four 7 × 7 blocks. Here the temporal dimension is four

and the spatial content is 7 × 7. Layer “Mixed 5c” is the layer in the I3D architecture in

which we apply the SSA loss to. We observe that the networks trained with our model have

learned to detect similar structures for the given input (Figure 8.6 (a)). On the other hand, the
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Figure 8.7: The confusion matrices obtained by comparing the grand-truth labels and the pre-
dicted labels from the RGB network trained on the NVGesture dataset by (a) I3D [15] model,
and (b) our model. Best seen on the computer, in color and zoomed in.

networks trained with the I3D model are not bounded to develop similar structures. Thus, even

though the input of the two modalities represent the same content, the feature maps may detect

different structures (Figure 8.6 (b)).

4..3 NVGesture Dataset

In order to test our method on tasks with more than two modalities, in this section, we re-

port the classification results on the RGB, depth and optical flow modalities of the NVGesture

dataset [3]. The RGB and optical flow modalities are well-aligned in this dataset, however, the

depth map includes a larger field of view (see Figure 8.5 (b)).

Table 8.3 tabulates the results of our method in comparison with the recent state-of-the-art

methods: HOG+HOG2, improved dense trajectories (iDT) [226], R3DCNN [3], two-stream

CNNs [204], and C3D as well as human labeling accuracy. The iDT [226] method is often

recognized as the best performing hand-crafted method [227]. However, we observe that similar

to the previous experiments the 3D-CNN-based methods outperform the other hand gesture

recognition methods, and among them, our method provides the top performance in all the

modalities. This table confirms that our method can improve the unimodal test performance

by leveraging the knowledge from multiple modalities in the training stage. This is despite the
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Testing modality
Method RGB Depth Opt. Flow
HOG+HOG2 [1] 24.5 36.3 -
Two Stream CNNs [204] 54.6 - 68.0
C3D [203] 69.3 78.8 -
iDT [226] 59.1 - 76.8
R3DCNN [3] 74.1 80.3 77.8
I3D [15] 78.42 82.28 83.19
MTUT (ours) 81.33 84.85 83.40
Human labeling accuracy: 88.4

Table 8.3: Accuracies of different unimodal hand gesture methods on the NVGesture
dataset [3]. The top performer is denoted by boldface.

fact that the depth map in this dataset is not completely aligned with the RGB and optical flow

maps.

Figure 8.7 evaluates the coherence between the predicted labels and ground-truths in our

method and compares it with I3D for the RGB modality of the NVGesture dataset. This coher-

ence is calculated by their confusion matrices. We observe that our method has less confusion

between the input classes and provides generally a more diagonalized confusion matrix. This

improvement is better observed in the first six classes.

4..4 Effect of Unimodal Improvements on Multimodal Fusion

As previously discussed, our method is designed for embedding knowledge from multiple

modalities in unimodal networks for improving their unimodal test performance. In this sec-

tion, we examine if the enhanced unimodal networks trained by our approach can also improve

the accuracy of a decision level fusion that is calculated from the average of unimodal predic-

tions. The decision level fusion of different modality streams is currently the most common

fusion technique in the top performer dynamic action recognition methods [15, 203, 204].

In Table 8.4 and Table 8.5 we compare the multimodal-fusion versions of our method

(MTUTF) to state-of-the-art multimodal hand gesture recognition systems tested on the VIVA

hand gesture and EgoGesture datasets, respectively. As can be seen, our method shows the top

multimodal fusion performance on both datasets. These tables show that if multiple modalities
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Method Fused modalities Accuracy
HOG+HOG2 [1] RGB+Depth 64.5
CNN:LRN [194] RGB+Depth 74.4
CNN:LRN:HRN [194] RGB+Depth 77.5
C3D [203] RGB+Depth 77.4
I3D [15] RGB+Depth 83.10
MTUTF (ours) RGB+Depth 86.08

Table 8.4: Accuracies of different multimodal fusion-based hand gesture methods on the VIVA
dataset [1]. The top performer is denoted by boldface.

Method Fused modalities Accuracy
VGG16 [175] RGB+Depth 66.5
VGG16 + LSTM [92] RGB+Depth 81.4
C3D [203] RGB+Depth 89.7
C3D+LSTM+RSTTM [2] RGB+Depth 92.2
I3D [15] RGB+Depth 92.78
MTUTF (ours) RGB+Depth 93.87

Table 8.5: Accuracies of different multimodal fusion hand gesture methods on the EgoGesture
dataset [3]. The top performer is denoted by boldface.

are available at the test time, the improved performance of unimodal networks gained by train-

ing with our model can also result in an improved multimodal fusion performance in the test

time.

Similarity, in Table 8.6 we report the multimodal fusion results on the NVGesture dataset.

Note that since this dataset includes three modalities, based on the modalities we include in

the training stage, we report multiple versions of our method. We report the version of our

method that includes all three modalities in the training stage as MTUTF
all, and the versions

that only involve (RGB+Depth) and (RGB+Optical-Flow) in their training as MTUTF
RGB-D and

MTUTF
RGB-OF, respectively. While all versions of our method outperform the other multimodal

fusion methods in Table 8.6, the performances of MTUTF
RGB-D and MTUTF

all in the fusion of

RGB+Depth is worth highlighting. MTUTF
all in this experiment has also been trained on the

absent modality, the optical flow, while MTUTF
RGB-D has been only trained on the RGB and

Depth modalities. We observe that MTUTF
all has successfully integrated the knowledge of the

absent modality and provided a better performance at the test time.
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Method Fused modalities Accuracy
HOG+HOG2 RGB+Depth 36.9
I3D [15] RGB+Depth 83.82
MTUTF

RGB-D (ours) RGB+Depth 85.48
MTUTF

all (ours) RGB+Depth 86.10
Two Stream CNNs [204] RGB+Opt. flow 65.6
iDT [226] RGB+Opt. flow 73.4
I3D [15] RGB+Opt. flow 84.43
MTUTF

RGB-OF (ours) RGB+Opt. flow 85.48
MTUTF

all (ours) RGB+Opt. flow 85.48
R3DCNN [3] RGB+Depth+Opt. flow 83.8
I3D [15] RGB+Depth+Opt. flow 85.68
MTUTF

all (ours) RGB+Depth+Opt. flow 86.93
Human labeling accuracy: 88.4

Table 8.6: Accuracies of different multimodal fusion hand gesture methods on the NVGesture
dataset [2]. The top performer is denoted by boldface.

4..5 Analysis of the Network

To understand the effects of some of our model choices, we explore the performance of some

variations of our model on the VIVA dataset. In particular, we compare our method with and

without the focal regularization parameter and the SSA loss. Beside our I3D-based method,

we analyze these variations on a different backbone network, C3D [203] as well. C3D is

another recently proposed activity recognition architecture. We name this method MTUTC3D.

Besides, we use C3D+SSA and I3D+SSA to refer to versions of our method with C3D and I3D

backbones that contain a variation of the SSA loss that does not have the focal regularization

parameter. For MTUTC3D and C3D+SSA, we apply the SSA loss on feature maps of the last

maxpooling layer (“MaxPool3d 5” ).

To provide a fair comparison setting, we train these networks from scratch on the VIVA

dataset, and report their performances in Table 8.7. As can be seen, the top performer is our

I3D-based network with both SSA and focal regularization parameter. Several interesting ob-

servations can be made from the results in Table 8.7. As the table reveals, the I3D-based meth-

ods generally perform better than the C3D-based methods. This coincides with the previous

reports [15]. In addition, C3D+SSA and I3D+SSA methods in the case of RGB networks show

improvements and in the case of depth modality have comparable results as compared to their
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Testing modality
Method RGB Depth
C3D 53.05 55.65
C3D+SSA 53.73 54.52
MTUTC3D 56.56 58.71
I3D 65.72 67.30
I3D+SSA 65.83 66.96
MTUT 68.43 71.26

Table 8.7: Comparison of variations of MTUT with C3D and I3D backbones trained from
scratch.

base networks C3D and I3D, respectively. However, the top performers in both modalities are

the full version of our method applied on these base networks. This clearly shows the impor-

tance of our focal regularization parameter in avoiding negative transfer when transferring the

knowledge between the modalities. Note that C3D, I3D and MTUT are trained from scratch in

this experiment, while in the Table 8.1 we reported their performance on the networks trained

with pre-trained weights.

5. Conclusion

We presented a new framework to leverage the knowledge of multiple modalities when training

unimodal networks that can independently work at the test time inference with improved accu-

racy. Our model trains separate 3D-CNNs per available modalities, and shares their knowledge

by the introduced spatiotemporal semantic alignment loss. We also regularized this loss with

a focal regularization parameter that ensures that only positive knowledge is transferred be-

tween the modality networks, and negative transfer is avoided. Our experiments confirmed that

our method can provide remarkable improvements to the unimodal networks at the test time.

We also showed that the enhanced unimodal networks that are trained with our method can

contribute to an improved multimodal fusion performance at test time as well.

The incorporation of our method for multimodal learning in other applications is a topic of

further research.
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Chapter 9

Multimodal Categorization of Crisis Events in Social Media

1. Introduction

Each second, billions of images and texts that capture a wide range of events happening around

us are uploaded to social media platforms from all over the world. At the same time, the

fields of Computer Vision (CV) and Natural Language Processing (NLP) are rapidly advancing

[228, 229, 230] and are being deployed at scale. With large-scale visual recognition and textual

understanding available as fundamental tools, it is now possible to identify and classify events

across the world in real-time. This is possible, to some extent, in images and text separately, and

in limited cases, using a combination. A major difficulty in crisis events,1 in particular, is that

as events surface and evolve, users post fragmented, sometimes conflicting information in the

form of image-text pairs. This makes the automatic identification of notable events significantly

more challenging.

Unfortunately, in the middle of a crisis, the information that is valuable for first responders

and the general public often comes in the form of image-text pairs. So while traditional CV

and NLP methods that treat visual and textual information separately can help, a big gap exists

in current approaches. Despite the general consensus on the importance of using AI for Social

Good [231, 232, 233], the power of social media, and a long history of interdisciplinary research

on humanitarian crisis efforts, there has been very little work on automatically detecting crisis

events jointly using visual and textual information.

Prior approaches that tackle the detection of crisis events have focused on either image-only

or text-only approaches. As shown in Figure 9.1, however, an image alone can be ambiguous

in terms of its urgency whereas the text alone may lack details.

1An event that is going (or is expected) to lead to an unstable and dangerous situation affecting an individual,
group, community, or whole society (from Wikipedia); typically requiring an emergency response.
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Figure 9.1: A crisis-related image-text pair from social media

To address these issues, we propose a framework to detect crisis events using a combination

of image and text information. In particular, we present an approach to automatically label

images, text, and image-text pairs based on the following criteria/tasks: 1) Informativeness:

whether the social media post is useful for providing humanitarian aid in an emergency event,

2) Event Classification: identifying the type of emergency (in Figure 9.2, we show some of

the categories that different image-text pairs belong to in our event classification task), and 3)

Severity: rating how severe the emergency is based on the damage indicated in the image and

text. Our framework consists of several steps in which, given an image-text pair, we create a

feature map for the image, generate word embeddings for the text, and propose a cross-attention

mechanism to fuse information from the two modalities. It differs from previous multimodal

classification in how it deals with fusing that information.

In short, we present a novel, multimodal framework for classification of multimodal data

in the crisis domain. This approach, ”Cross Attention”, avoids transferring negative knowledge

between modalities and makes use of stochastic shared embeddings to mitigate overfitting in

small data as well as dealing with training data with inconsistent labels for different modalities.

Our model outperforms strong unimodal and multimodal baselines by up to 3 F-score points

across three crisis tasks.
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Figure 9.2: Samples from Task 2; Event Classification with Texts and Images.

2. Related Work

AI for Emergency Response: Recent years have seen an explosion in the use of Artificial

Intelligence for Social Good [231, 232, 233]. Social media has proven to be one of most

relevant and diverse resources and testbeds, whether it be for identifying risky mental states of

users [234, 235, 236], recognizing emergent health hazards [237], filtering for and detecting

natural disasters [238, 239, 240], or surfacing violence and aggression in social media [241].

Most prior work on detecting crisis events in social media has focused on text signals. For

instance, Kumar et al. [242] propose a real-time tweet-tracking system to help first responders

gain situational awareness once a disaster happens. Shekhar et al. [243] introduce a crisis

analysis system to estimate the damage level of properties and the distress level of victims. At

a large scale, filtering (e.g., by anomaly or burst detection), identifying (e.g., by clustering),

and categorizing (e.g., by classifying) disaster-related texts on social media have been the foci

of multiple research groups [244, 245, 246], achieving accuracy levels topping at 0.75 on small

annotated datasets collected from Twitter.

Disaster detection in images has been an active front, whether it be user-generated content

or satellite images (for a detailed survey, refer to Said et al. [238]). For instance, Ahmad et
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al. [247] introduce a pipeline method to effectively link remote sensor data with social media

to better assess damage and obtain detailed information about a disaster. Li et al. [248] use

convolutional neural networks and visualization methods to locate and quantify damage in a

disaster images. Nalluru et al. [249] combine semantic textual and image features to classify

the relevancy of social media posts in emergency situations.

Our framework focuses on combining images and text, yielding performance improvements

on three disaster classification tasks.

Deep Multimodal Learning: In deep multimodal learning, neural networks are used to

integrate the complementary information from multiple representations (modalities) of the

same phenomena [250, 120, 251, 252]. In many applications, including image captioning

[253, 254], visual question answering [91, 255], and text-image matching [256, 257, 258],

combining image and text signals is of interest. Thus many recent works study image-text

fusion [259, 260, 261, 262].

Existing multimodal learning frameworks applied to the crisis domain are relatively lim-

ited. Lan et al. [263] combine early fusion and late fusion methods to incorporate their advan-

tages, Ilyas [264] introduce a disaster classification system based on naive-bayes classifiers and

support vector machines. Kelly et al. [265] introduce a system for real-time extraction of in-

formation from text and image content in Twitter messages with exploiting the spatio-temporal

metadata for filtering, visualizing, and monitoring flooding events. Mouzannar et al. [266] pro-

pose a multimodal deep learning framework to identify damage related information on social

media posts with texts, images, and video.

In the application of crisis tweets categorization, one modality may contain uninformative

or even misleading information. The attention module in our model passes information based

on the confidence in the usefulness of different modalities. The more confident modality blocks

weak or misleading features from the other modality through their cross-attention link. The

partially blocked results of both modalities are later judged by a self-attention layer to decide

which information should be passed to the next layer. While our attention module is closely

related to co-attention and self-attention mechanisms [267, 268, 269, 255, 270, 254], unlike
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Figure 9.3: Illustration of Our Framework. Embedding features are extracted from images and
texts by DenseNet and BERT networks, respectively, and are integrated by the cross-attention
module. In the training process, the embeddings of different samples are stochastically transi-
tioned between each other to provide a robust regularization.

them, it does not need the input features to be homogeneous. In contrast, self-attention and co-

attention layers can be sensitive to heterogeneous inputs. The details of the model are described

in the next section.

3. Methodology

The architecture we propose is designed for classification problems that takes as input image-

text pairs such as user generated tweets in social media, as illustrated in Figure 9.3, where the

DenseNet and BERT graphs are from [178] and [230]. Our methodology consists of 4 parts:

the first two parts extract feature maps from the image and extract embeddings from the text,

respectively; the third part comprises our cross-attention approach to fuse projected image and

text embeddings; and the fourth part uses Stochastic Shared Embeddings (SSE) [271] as our

regularization technique to prevent over-fitting and deal with training data with inconsistent

labels for image and text pairs.

We describe each module in the sub-sections that follow.
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3..1 Image Model for Feature Map Extraction:

We extract feature maps from images using Convolutional Neural Networks (CNNs). In our

model we select DenseNet [178], which reduces module sizes and increases connections be-

tween layers to address parameter redundancy and improve accuracy (other approaches, such

as EfficientNet [272] could also be used, but DenseNet is efficient and commonly used for this

task).

For each image vi, we therefore have:

fi = DenseNet(vi), (9.1)

where vi is the input image, fi ∈ RD f is the vectorized form of a deep feature map in the

DenseNet with dimension D f = W ×H ×C, where W,H,C are the feature map’s height, width

and number of channels respectively.

3..2 Text Model for Embedding Extraction:

Full-network pre-training [273, 230] has led to a series of breakthroughs in language repre-

sentation learning. Specifically, deep-bidirectional Transformer models such as BERT [230]

and its variants [274, 275] have achieved state-of-the-art results on various natural language

processing tasks by leveraging close and next-sentence prediction tasks as weakly-supervised

pre-training. Therefore, we use BERT as our core model for extracting embeddings from text

(variants such as XLNET [274] and ALBERT [275] could also be used). We use the BERT

model pre-trained on Wiki and Books data[276] on crisis-related tweets ti’s. For each text

input ti, we have

ei = BERT(ti), (9.2)

where ti is a sequence of word-piece tokens and ei ∈ R756 is the sentence embedding. Similar

to the BERT paper [230], we take the embedding associated with [CLS] to represent the whole

sentence.

In the next subsection we detail how DenseNet and BERT are fused.



122

3..3 Cross-attention module for avoiding negative knowledge in fusion:

After we obtain the image feature map fi (DenseNet) and the sentence embedding ei (BERT),

we use a new cross-attention mechanism to fuse the information they represent. In many text-

vision tasks, the input pair can contain noise. In particular, in classification of tweets, one

modality may contain non-informative or even misleading information. In such a case, negative

information transfer can occur. Our model can mitigate the effects of one modality over another

on a case by case basis.

To address this issue, in our cross-attention module, we use a combination of cross-attention

layers and a self-attention layer. In this module, each modality can block the features of the

other modality based on its confidence in the usefulness of its input. This happens with the

cross-attention layer. The result of partially blocked features from both modalities is later fed

to a self-attention layer to decide which information should be passed to the next layer.

The self-attention layer exploits a fully-connected layer to project the image feature map

into a fixed dimensionality K (we use K = 100), and similarly project the sentence embedding

so that:

f̃i = F(WT
v fi + bv),

ẽi = F(WT
e ei + be), (9.3)

where F represents an activation function such as ReLU (used in our experiments) and both f̃i

and ẽi are of dimension K = 100.

In the case of misleading information in one modality, without an attention mechanism

(such as co-attention [259]), the resulting f̃i and ẽi cannot be easily combined without hurting

performance. Here, we propose a new attention mechanism called cross-attention (Figure 9.3),

which differs from standard co-attention mechanisms: the attention mask αvi for the image is

completely dependent on the text embedding ei, while the attention mask αei for the text is

completely dependent on the image embedding fi. Mathematically, this can be expressed as

follows:

αvi = σ(W
′
v
T fi + b′v),

αei = σ(W
′
e
T ei + b′e), (9.4)
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where σ is the Sigmoid function. Co-attention, in contrast, can be expressed as follows:

αvi = σ(W
′
v
T
[ fi |ei] + b′v),

αei = σ(W
′
e
T
[ fi |ei] + b′e), (9.5)

where | means concatenation.

After we have the attention masks αvi , αei for image and text respectively, we can aug-

ment the projected image and text embeddings f̃i, ẽi with αvi · f̃i and αei · ẽi before performing

concatenation or adding. In our experiments, we use concatenation but obtained similar perfor-

mance using addition.

The last step of this module takes the concatenated embedding which jointly represents the

image and text tuple in and feeds into the two-layer fully-connected networks. We add self-

attention in the fully-connected networks and use the standard softmax cross-entropy loss for

the classification.

In Section 4., we show that the combination of cross-attention layers and the self-attention

layer on their concatenation works better than co-attention and self-attention mechanisms for

the tasks we address in this chapter.

3..4 SSE for Better Regularization

Due to unforeseeable and unpredictable nature of disasters, and also because they require fast

processing and reaction, one often has to deal with limited annotations for user-generated con-

tent during crises. Using regularization techniques to mitigate this issue becomes especially

important. In this section, we extend Stochastic Shared Embeddings (SSE) technique [271] to

its multimodal version for taking the full advantage from the annotated data by 1) generating

new artificial multimodal pairs. 2) also including the annotated data with inconsistent labels

for text and image in the training process.

SSE-Graph [271], a variation of SSE, is a data-driven approach for regularizing embedding

layers which uses a knowledge graph to stochastically make transitions between embeddings of

different samples during the stochastic gradient descent (SGD). That means, during the training,

based on a knowledge graph, there is a chance that embeddings of different samples being

swapped. We use the text and image labels to construct knowledge graphs that can be used
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to create stochastic multimodal training samples with consistent labels for both the image and

text.

We treat feature maps of images as embeddings and use class labels to construct knowledge

graphs. The feature maps of two images are connected by an edge in the graph, if and only

if they belong to the same class (e.g. they are both labeled “affected individuals”). We follow

the same procedure for text embeddings and construct a knowledge graph for text embeddings

as well. Finally, we connect the nodes associated with the knowledge graph of image feature

maps with an edge to nodes in text’s knowledge graph if and only if they belong to the same

class.

Let Φv and Φt be sets of parameters. We define the transition probability p(iv, jv |Φv) as

probability of transition from iv to jv, where iv and jv are nodes in the image knowledge graph

that correspond to image features fi and fj . Similarly, we define p(it, k t |Φt ) as probability of

transition from it to k t (nodes corresponding to text embeddings ei and ek , respectively).

Taking image feature maps as an example, if iv is connected to jv but not connected to

lv in the knowledge graph, one simple and effective way to generate more multimodal pairs

is to use a random walk (with random restart and self-loops) on the knowledge graph. Since

we are more interested in transitions within embeddings of consistent labels, in each transition

probability, we set the ratio of p(iv, jv |Φv) and p(iv, lv |Φv) to be a constant greater than 1. In

more formal notation, we have

iv ∼ jv, iv � lv −→ p(iv, jv |Φv)/p(iv, lv |Φv) = ρv, (9.6)

where ρv is a tuning parameter and ρv > 1 , and ∼ and � denote connected and not connected

nodes in the knowledge graph. We also have:

p(iv, iv |Φ) = 1 − pv0, (9.7)

where pv0 is called the SSE probability for image features.

We similarly define ρt and pt0 in Φt = {ρt, pt0} for text embeddings. Note that ρt is defined

with respect to the image features’ label. That is

iv ∼ j t, iv � lt −→ p(it, j t |Φt )/p(it, lt |Φt ) = ρt . (9.8)



125

Both Φv and Φt parameters sets are treated as tuning hyper-parameters in experiments and

can be tuned fairly easily. With Eq. (9.8), Eq. (9.7) and
∑

kv p( jv, kv |Φv),
∑

k t p( j t, k t |Φt ) = 1,

we can derive transition probabilities between any two sets of feature maps in images and texts

to fill out the transition probability table.

With the right parameter selection, each multimodal pair in the training can be transitioned

to many more multimodal pairs that are highly likely to have consistent labels for the image

and text pairs which can mitigate both the issues of limited number of training samples and

inconsistency in the annotations of image-text pairs.

4. Experimental Setup

The image-text classification problem we consider can be formulated as follows: we have as

input (v1, t1), . . . , (vi, ti), . . . , (vn, tn), where n is the number of training tuples and the i-th tuple

consists of both image vi and text ti. The respective labels for vi and ti’s are also given in

training data. Our goal is to predict the correct label for any unseen (v, t) pair. To simplify the

evaluation, we assume there is only one correct label associated with the unseen (v, t) pairs.

As a result, this chapter targets a multi-class classification problem instead of a multi-label

problem.

4..1 Dataset

There are very few crisis datasets, and to the best of our knowledge there is only one multimodal

crisis dataset, CrisisMMD [277]. It consists of annotated image-tweet pairs where images and

tweets are independently labeled as described below. We use this dataset for our experiments.

The dataset was collected using event-specific keywords and hashtags during seven natural dis-

asters in 2017: Hurricane Irma, Hurricane Harvey, Hurricane Maria, the Mexico earthquake,

California wildfires, Iraq-Iran earthquakes, and Sri Lanka floods. The corpus is comprised of

three types of manual annotations:

Task 1: Informative vs. Not Informative: whether a given tweet text or image is useful for

humanitarian aid purposes, defined as providing assistance to people in need.



126

Task 2: Humanitarian Categories: given an image, or tweet, or both, categorize it into one of

the five following categories:

• Infrastructure and utility damage

• Vehicle damage

• Rescue, volunteering, or donation efforts

• Affected individuals (injury, dead, missing, found, etc.)

• Other relevant information

Note that we merge the data that are labeled as injured or dead people and missing or found

people in the CrisisMMD with those that are labeled as affected individuals and view all of

them as one class of data.

Task 3: Damage Severity: assess the severity of damage reported in a tweet image and classify

it into Severe, Mild, and Little/None.

It is important to note that while the annotations for the last task are only on images. Our

experiments reveal that using tweet texts along with the images can boost performance. In

addition, our method is the first one to perform all three tasks on this dataset (text-only, image-

only, combined).

4..2 Settings

Images and text from tweets in this dataset were annotated independently. Thus, in many cases,

images and text in the same pairs may not share the same labels for either Task 1 or Task 2

(labels for Task 3 were only created by annotating the images). Given the different evaluation

conditions, we carry out three evaluation settings for the sake of being comprehensive in our

model assessment but also to establish best practices for the community: Setting A: we exclude

the image-text pairs with differing labels for image and text; Setting B: we include the image-

text pairs with different labels in the training set but keep the test set the same as in A.
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Table 9.1: Number of samples in different splits of our settings.

Setting # of Training samples # of Dev samples # of Test samples
Setting A

Task1: 7876 553 2821
Task2: 1352 540 1467
Task3: 2590 340 358

Setting B
Task1: 12680 553 2821
Task2: 5433 540 1467

Setting C
Experiment 1: 174 - 217
Experiment 2: 4037 - 217
Experiment 3: 4761 - 217

Table 9.2: Setting A: Informativeness Task, Humanitarian Categorization Task and Damage
Severity Task Evaluations.

Informativeness Task Humanitarian Categorization Task Damage Severity Task

Model Acc Macro F1 Weighted F1 Acc Macro F1 Weighted F1 Acc Macro F1 Weighted F1

DenseNet [178] 81.57 79.12 81.22 83.44 60.45 86.96 62.85 52.34 66.10
BERT [230] 84.90 81.19 83.30 86.09 66.83 87.83 68.16 45.04 61.09

Compact Bilinear Pooling[255] 88.12 86.18 87.61 89.30 67.18 90.33 66.48 61.03 70.58
Compact Bilinear Gated Pooling [61] 88.76 87.50 88.80 85.34 65.95 89.42 68.72 51.46 65.34

MMBT [278] 82.48 81.27 82.15 85.82 64.78 88.66 65.36 52.12 69.34

Score Fusion 88.16 83.46 85.26 86.98 54.01 88.96 71.23 53.48 66.26
Feature Fusion 87.56 85.20 86.55 89.17 67.28 91.40 67.60 40.62 56.47

Attention Variant 1 (Ours) 89.29 85.68 87.04 88.41 64.60 90.71 71.51 55.41 69.71
Attention Variant 2 (Ours) 88.34 86.12 87.42 89.23 67.63 91.56 63.13 58.03 69.39
Attention Variant 3 (Ours) 88.20 86.22 87.47 87.18 64.67 90.24 68.99 57.42 69.16

SSE-Cross-BERT-DenseNet (Ours) 89.33 88.09 89.35 91.14 68.41 91.82 72.65 59.76 70.41

In addition, we introduce Setting C to mimic a realistic crisis tweet classification task where

we only train on events that have transpired before the event(s) in the test set.

Table 9.1 shows the number of samples in each set for different setting and tasks.

Setting A: In this setting our train and test data is sampled from tweets in which the text and

image pairs have the same label. That is:

C(vi) = C(ti), (9.9)

where C(x) denotes the class of data point x. This results in a small, yet potentially more reli-

able training set. We mix the data from all seven crisis events and split the data into training,

dev and test sets.

Setting B: We relax the assumption in Equation 9.9 and allow in training:

C(vi) , C(ti), (9.10)
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As the training set of this setting contains samples with inconsistent labels for image and

text, multimodal fusion methods such as late feature fusion cannot deal with the training data.

Our method, on the other hand, with the use of the proposed multimodal SSE, can transition

the training instance with in consistent labels to a new training pair with consistent labels. We

do this by manually setting pt0 = 1 for the training cases with inconsistent image-text labels

(i.e. all the text samples are transitioned). Since unimodal models only receive one of the

modalities, it is also possible to train them separately on images and texts and use an average

of their prediction in the testing stage (also known as score level fusion).

However, we maintain the assumption of Eq. (9.9) for the test data. This helps to directly

compare the two settings with the same test samples. In fact, in practice, the data is most valu-

able when the class labels match for both image and text. The rationale is that detecting an

event is more valuable to crisis managers than the categorization of different parts of that event.

Our dev and test sets for this setting are similar to the previous setting. However, the training

set contains a larger number of samples where their image-text pairs are not necessarily labeled

as the same class.

Setting C: This setting is closest to the real-world scenario where we analyze the new event of

a crisis with a model trained on previous crisis events. First, we require the training and test

sets to be from crisis events of a different nature (i.e., wildfire vs. flood). Second, we maintain

the temporal component and only train on events that have happened before the tweets of the

testing set. Since collecting annotated data on an urgent ongoing-event is not possible, and

also because an event of crisis may do not have a similar annotated event in the past, these two

restrictions often simulate a real-world scenario. For the experiments of this setting, there is no

dev set. Instead, we use a random portion of the training data to tune the hyper-parameters.

We test on the tweets that are related to the California Wildfire (Oct 10 - 27, 2017), and

train on the following three sets:

1. Sri Lanka Floods tweets (May 31- Jul. 3, 2017)

2. Sri Lanka Floods, and Hurricane Harvey and Hurricane Irma tweets (May 31- Sept. 21 ,

2017)

3. Sri Lanka Floods, Hurricanes Harvey and Irma and Mexico Earthquakes (May 31 - Oct.
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5, 2017).

Similar to setting B, for the test set (i.e. California Wildfire) we only consider the samples

with consistent labels for image and text, but for the training sets, we use all the available

samples.

4..3 Baselines

We compare our method against several state-of-the-art methods for text and/or image classifi-

cation. There are a number of categories of baseline methods we compare against. In the first

category, we compare to DenseNet and BERT, which are of the most comonnly used unimodal

classification networks for images and texts respectively. We use Wikipedia pre-trained BERT

and pre-trained DenseNet on ImageNet [156], and fine-tune them on the training sets.

The second category of baseline methods include several recently proposed multimodal

fusion methods for classification:

• Compact Bilinear Pooling [255]: multimodal compact bilinear pooling is a fusion tech-

nique first used in visual question answering task but can be easily modified to perform

standard classification task.

• Compact Bilinear Gated Pooling [61]: this fusion method is an adaptation of the com-

pact bilinear pooling method where an extra attention gate is added on top the compact

bilinear pooling module.

• MMBT [278]: recently proposed supervised multimodal bitransformers model for clas-

sifying images and text.

The third category is the score level Score Fusion and late feature fusion Feature Fusion

of DenseNet and BERT networks. Score level fusion is one of the most common fusion tech-

niques. It averages the predictions of separate networks trained on the different modalities.

Feature Fusion is one of the most effective methods for integrating two modalities [122]. It

concatenates deep layers from modality networks to predict a shared output. We also provide

three variations of our attention modules and report their performance: The first variant is to re-

place cross-attention of Eq. (9.4) with co-attention of Eq. (9.5); the second variant is to remove

self-attention; the third variant is to change the cross-attention with self-attention modules.
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We compare our model, SSE-Cross-BERT-DenseNet, to the baseline models above.

4..4 Evaluation Metrics

We evaluate the models in this chapter using classification accuracy,2 Macro F1-score and

weighted F1-score. Note that while in the event of a crisis, the number of samples from different

categories often significantly varies, it is important to detect all of them. F1-score and weighted

F1-score take both false positives and false negatives into account, and therefore, along with

accuracy as an intuitive measure, are proper evaluation metrics for our datasets.

4..5 Training Details

We use pre-trained DenseNet and BERT as our image and text backbone networks, and fine-

tune them separately on text-only and image-only training samples. The details of their im-

plementations can be found in [178] and [230], respectively. We do not freeze the pre-trained

weights and train all the layers for both the backbone networks.

We use the standard SGD optimizer. We start with the base learning rate of 2 × 10−3

with a 10× reduction when the dev loss is saturated. We use a batch size of 32. The models

were implemented in Keras and Tensorflow-1.4 [128]. In all the applicable experiments, we

select hyper-parameters with cross-validation on the accuracy of dev set. For the experiments

in Setting 3 that we do not have an evaluation set, we tune hyper-parameters on 15% of the

training samples. We select ρv, ρt and pv0, p
t
0 respectively in the range of ρv, ρt ∈ [10,20000]

and pv0, p
t
0 ∈ [0,1].

We employ the following data augmentations on the images during the training stage. Im-

ages are resized such that the smallest side is 228 pixels, and then randomly cropped with a

224 × 224 patch. In addition, we produce more images by randomly flipping the resulting

image horizontally.

For tweet normalization, we remove double spaces and lower case all characters. In addi-

tion, we replace any hyperlink in the tweet with the sentinel word “link”.

2In the settings that our experiments are defined classification accuracy is equivalent to Micro F1-score.
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Table 9.3: Setting B: Informativeness Task and Humanitarian Categorization Task Evaluations

Informativeness Task Humanitarian Categorization Task

Model Accuracy Macro F1 Weighted F1 Accuracy Macro F1 Weighted F1

DenseNet [178] 83.36 80.95 82.95 82.89 66.68 83.13
BERT [230] 86.26 84.44 86.01 87.73 83.72 87.57
Score Fusion 87.03 85.19 86.90 91.41 83.26 91.36

SSE-Cross-BERT-DenseNet (Ours) 90.05 88.88 89.90 93.46 84.16 93.35

Best from Table 9.2 89.33 88.09 89.35 91.48 67.87 91.34

Table 9.4: Comparing our proposed method with baselines for Humanitarian Categorization
Task in Setting 3. We fix the last occurred crisis namely ‘California wildfires’ as test data and
vary the training data which is specified in the columns.

Sri Lanka Floods Sri Lanka Floods + Hurricanes Harvey & Irma Sri Lanka Floods + Hurricanes Harvey & Irma + Mexico earthquake

Model Accuracy Macro F1 Weighted F1 Accuracy Macro F1 Weighted F1 Accuracy Macro F1 Weighted F1

DenseNet [178] 55.71 35.77 56.85 70.32 52.23 68.55 70.32 44.80 68.79
BERT [230] 31.96 20.90 27.21 73.97 53.90 73.51 74.43 56.98 74.21
Score Fusion 56.62 36.77 57.96 81.74 56.54 81.03 81.28 55.90 80.54

SSE-Cross-BERT-DenseNet (Ours) 62.56 39.82 62.08 84.02 63.12 83.55 86.30 65.55 85.93

5. Experimental Results

5..1 Setting A: Excluding The Training Pairs with Inconsistent Labels

As shown in Table 9.2, our proposed framework, SSE-Cross-BERT-DenseNet, easily outper-

forms the standalone DenseNet and BERT models. Compared with baseline methods Compact

Bilinear Pooling [255], Compact Bilinear Gated Pooling [61], and MMBT [278], our proposed

cross-attention fusion method does enjoy an edge over previous known fusion methods, includ-

ing the standard score fusion and feature fusion. This edge holds true across Settings A, B

and C. In section 5..4, we conduct an ablation study to investigate which components (SSE,

cross-attention, and self-attention) have the most impact on model performance.

One important observation we find across the three tasks is that despite the fact that accuracy

percentages are reasonably good for simple feature fusion method, the macro F1 scores improve

much more once we add attention mechanisms.

5..2 Setting B: Including The Training Pairs with Inconsistent Labels

In this setting, we investigate whether our models can perform better if we can make use of

more labelled data for un-matched images and texts. Note that this involves training on noisier

data than the prior setting. In Table 9.3, our proposed framework SSE-Cross-BERT-DenseNet
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Table 9.5: Ablation Study of our proposed method for Humanitarian Categorization Task in
Setting A.

Test Set

Model Accuracy Macro F1 Weighted F1

SSE-Cross-BERT-DenseNet (Ours) 91.14 68.41 91.82

− Self-Attention 89.23 56.50 87.70
− Cross-Attention 88.48 56.38 87.10

− Cross-Attention + Co-Attention 88.41 64.60 90.71
− Cross-Attention + Self-Attention 86.30 58.33 85.27

− Dropout 83.37 54.83 82.46
− SSE 88.41 64.60 90.71

− SSE + Shuffling Within Class 88.68 62.91 88.33
− SSE +Mix-up [279] 89.16 54.63 87.37

beats the best results from Setting A for both the Informativeness Task (89.90 to 89.35 Weighted

F1) and the Humanitarian Categorization Task (93.35 to 91.34). The gap between our method

versus standalone BERT and DenseNet also widens. Note that the test sets are the same for

setting A and setting B while only the training data differs.

5..3 Setting C: Temporal

This setting is designed to resemble a realistic scenario where the available data is (1) only

from the past (i.e. the train / test sets are split in the order they occurred in the real world).

(2) train and test sets are not from the same crisis. We find that our proposed model consis-

tently performs better than standalone image and text models (see Table 9.4). Additionally,

performance increases for all models, including ours, with the inclusion of more crisis data to

train on. This emphasizes the importance of collecting and labelling more crisis data even if

there is no guarantee that the crises we collected data from will be similar to a future one. In

the experiments, training crises contain floods, hurricanes and earthquakes but the test crisis is

fixed at wildfires.

5..4 Ablation Study

In our ablation study, we examine each component of the model in Figure 9.3: namely self-

attention on concatenated embedding, cross-attention on fusing image feature map & sentence

embedding, dropout and SSE regularization. All the experiments in this section are conducted

in Setting A. First, we find self-attention plays an important role on the final performance,
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accuracy drops to 89.23 from 91.14 if self-attention is removed. Second, the choice of cross-

attention over co-attention and self-attention is well justified: we see the accuracy performance

drops to around 88 by replacing the cross-attention. Third, dropout regularization [280] plays

an important role in regularizing the hidden units: if we remove dropout completely, perfor-

mance suffers a large drop from 91.14 to 83.37. Fourthly, we justify the usage of SSE [271]

over the choice of Mixup [279] or within-class shuffling data augmentation. SSE performs

better than mixup in terms of accuracy 91.14% versus 89.16%, and even much better in terms

of F1 scores, 68.41 versus 54.63 for macro F1 score and 91.82 versus 87.37 for weighted F1

score.

6. Conclusions and Future Work

In this chapter, we presented a novel multimodal framework for fusing image and textual in-

puts. We introduced a new cross attention module that can filter not-informative or misleading

information from modalities and only fuse the useful information. We also presented a multi-

modal version of Stochastic Shared Embeddings (SSE) to regularize the training process and

deal with limited training data. We evaluate this approach on three crisis tasks involving social

media posts with images and text captions. We show that our approach not only outperforms

image-only and text-only approaches which have been the mainstay in the field, but also other

multimodal combination approaches.

For future work we plan to test how our approach generalizes to other multimodal problems

such as sarcasm detection in social media posts [281, 282], as well as experiment with different

image and text feature extractors. Given that the CrisisMMD corpus is the only dataset available

for this task and it is limited in size, we also aim to construct a larger set, which is a major effort.
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Chapter 10

Conclusion and Future Work

1. Conclusion

In this thesis, we focused on approaches for learning from massive high-dimensional and

multimodal data. We mentioned that high-dimensional data often confuse algorithms with

irrelevant dimensions, noises, and the curse of dimensionality. We aimed to develop multi-

modal algorithms that can leverage the complementary information from multimodal and high-

dimensional data.

We started off focusing on subspace clustering algorithms that are widely popular for repre-

senting high-dimensional data in low dimension feature spaces. In Chapter 3, we extended the

popular sparse and low-rank based subspace clustering methods to multimodal subspace clus-

tering algorithms that can integrate multiple high-dimensional modalities and represent them

in low-dimensional common subspaces. Then, in Chapter 4, we used CNNs to improve our

proposed multimodal subspace clustering methods and developed deep multimodal subspace

clustering networks. In Chapter 5, we showed that these subspace clustering networks could

benefit from data augmentation techniques. We introduced a framework to incorporate data

augmentation techniques in subspace clustering networks.

In the second part of the thesis, we employed the findings of Chapters 3,4, and 5 and devel-

oped several multimodal classification approaches. Chapter 6 borrowed the idea of deep sub-

space clustering networks and applied it to the task of sparse representation-based classification

(SRC). We showed that when the training data is limited and the data is very high-dimensional,

deep sparse representation-based classification (DSRC) performs better than state-of-the-art

neural network architectures. Chapter 7 extended our DSRC to its multimodal version.

Chapter 8 and Chapter 9 focused on two real-world applications of high-dimensional
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multimodal data. Chapter 8 argued using multiple video streams such as calculating optical-

flow as a new modality in dynamic hand gesture recognition challenges the state-of-the-art

methods in performing in real-time. Thus, we introduced a novel method to train unimodal

networks with knowledge from multimodal inputs. The unimodal networks that are trained

with our method leveraged the knowledge of multiple modalities and performed in real-time

at the test time. Chapter 9 introduced a fusion method for combining the information in texts

and images of social media posts. Both texts and images are considered high-dimensional data,

and in the case of social media posts, they can sometimes be uninformative or even misleading.

The method that we presented in Chapter 9 is able to prevent the negative knowledge from the

inputs to be fused in the joint representation that is learned from the text-image pairs.

2. Future Work

2..1 Subspace Clustering of Heterogeneous Data

In a multimodal learning task, it is assumed that the multiple modalities (presentations) are

bundled together. Thus, for example in a two modality task, per each presentation, there is a

paired representation in the other modality. However, if paired representations are not available

across different modalities we face a new task. In this case, we are given a collection of data

from multiple modalities (domains), and we aim to segment the heterogeneous data based on

their class labels.

In many applications, one has to deal with heterogeneous 1 data. For example, when clus-

tering digits, one may have to process both computer generated as well as handwritten digits.

Similarly, when clustering face images collected in the wild, one may have to cluster images of

the same individual collected using different cameras and possibly under different resolution

and lighting conditions. Clustering of heterogeneous data is difficult because it is not mean-

ingful to directly compare the heterogeneous samples with different distributions which may

span different feature spaces. In recent years, various domain adaptation methods have been

developed to deal with the distributional changes that occur after learning a classifier for super-

vised and semi-supervised learning [283]. However, these methods have not been developed

1Data with different sizes or different natures.
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for clustering heterogeneous data that lie in a union of low-dimensional subspaces.

Hence, we propose domain adaptive versions of the sparse and low-rank subspace clustering

methods. Figure 10.1 gives an overview of the proposed method. Given data from K different

domains, we simultaneously learn the projections and find the sparse or low-rank representation

in the projected common subspace. Once the projection matrices and the sparse or low-rank

coefficient matrix is found, it can be used for subspace clustering.

2..2 Adversarial Domain Adaptive Subspace Clustering

In biometrics recognition, one is often faced with a challenge of matching biometric samples

that are collected under different environmental conditions. For example, in face recognition

one may have to match a well-lit face image with an image that is acquired in a poor illumina-

tion condition. Another issue that what we often face in biometrics recognition is the problem

of cross-sensor matching, where the test samples are verified using data enrolled with a dif-

ferent sensor. As new sensors are being developed for acquiring the biometric samples and

existing ones are being upgraded, this becomes an important issue. Regardless of the cause of

the domain shift, any distributional change (i.e. environmental, cross-sensor change, resolution

etc.) that occurs after learning a classifier can degrade its performance at test time. Various

domain adaptation techniques have been developed in the literature to mitigate this degradation
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[283].

The domain adaptation problem can be defined in many different ways including semi-

supervised domain adaptation [284, 285, 286, 287] and unsupervised domain adaptation [288,

289, 290, 291, 292]. In semi-supervised domain adaptation, both source and target domains are

assumed to have partial labels. In contrast, in unsupervised domain adaptation, only the source

domain is assumed to have partial labels and the target domain is assumed to be completely

unlabeled. Another important domain adaptation problem that is often encountered in practice

but is not widely studied in the literature is the problem of domain adaptive clustering, where

no label information is assumed to be known [136]. This is particularly a difficult problem

because we have no side information such as labels to group the samples from the same class

from different domains in a single cluster.

Thus, we propose a new method for domain adaptive subspace clustering in which we use

adversarial networks to approximate the mapping functions that map the source data into the

target domain and the target data into the source domain. Using these mapping functions, we

map the available data to their counter domains and obtain a paired representation of the data

corresponding to different domains. Once the paired representation of the data is obtained, we

exploit their self expressiveness property and employ multimodal sparse and low-rank subspace

clustering methods [49] to cluster the paired representations with respect to their subspaces.

Figure 10.2 gives an overview of the proposed adversarial domain adaptive (ADA) subspace

clustering framework.
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2..3 Sarcasm Detection and Other Multimodal Applications in Social Media Posts

Chapters 8 and 9 of this thesis focused on developing approaches for two use cases of multi-

modal learning in real-world applications. Dynamic hand gesture recognition and categoriza-

tion of crisis events. One possible direction for future work is focusing on the deployment of

the proposed methods in other multimodal applications. Sarcasm detection in social media is

one of these applications [281, 282]. Often the sarcasm in a post can only be detected by the

contradiction or the especial semantic relation between the image and the textual input. This

pattern motivates us to invest in designing special fusion techniques that can understand and

compare the relations of contents across different modalities. A combination of the proposed

methods in chapters 8 and 9 can be useful for this application. The semantic alignment loss

in chapter 8 can be a metric for comparing the information across different modalities. The

cross-attention module in chapter 9 can learn to use these relations for detecting sarcasm.

One other possible path is to approach this problem with graph neural networks. Graph

neural networks can extract the relations between different entities. One use graph neural net-

works to combine information from an external knowledge graph with the input pairs from

social media to provide more
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