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The increased demand on energy resources worldwide, along with the expectations of

future depletion of fossil fuels: coal, oil, and gas, have encouraged considering the

renewable energy as an alternative to traditional resources. Renewable resources in-

cluding wind, solar, hydro, biomass, and geothermal are naturally abundant and can

be harnessed to meet the energy demand without exacerbating the environmental con-

tamination.

During the last few decades, wind energy has become one of the fastest growing

and most promising renewable energy resources, due to their availability and minimal

impact on the environment. As variable-speed wind turbine generators (WTGs) became

advent, they gained increasing popularity due to their ability to work efficiently over

wide ranges of wind speeds. The double fed induction generators (DFIGs) are widely

used in variable-speed wind energy systems, since they consume less reactive power,

inflict less mechanical stress on turbines, and allow decoupled control of the active and

reactive power. This dissertation focuses on model reduction and optimal control of

variable-speed wind turbines with DFIG systems.

To reduce the complexity of the power system model when a large number of WTGs
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is integrated to the power grid, and to obtain a simplified model that adequately simu-

lates such systems, the methods of balancing transformation and singular perturbations

were utilized to reduce the order of a DFIG-based wind turbine model. We show that

the order of the considered wind turbine model can be reduced from eight to six via the

balancing transformation. Further reduction via the aforementioned method results in

a significant increase in the error bound. In contrast, the method of singular pertur-

bations shows that the order of the model can be further reduced to four, or even to

two, and still provide very good approximations to the system model, in terms of its

transient step response. Moreover, we show that the reduction in model order achieved

via singular perturbations is superior from the optimal performance point of view to

that achieved via balancing when the linear-quadratic near-optimal controllers are con-

sidered, and when the wind turbulence and a large-signal disturbance are applied to

the system.

The state-space model of wind farms of different sizes, under different wind speed

conditions, was also studied in this thesis. Model order reduction methods: balanced

truncation, balanced residualization, cross Gramians, and singular perturbation were

applied to the one-mass model to obtain simplified equivalents to wind farms of differ-

ent sizes. This helps in reducing the computational complexity when controlling such

systems. Examining the controllability and observability of the system, in both the

vector and diagonal forms of the input control matrix, showed a considerable loss of

controllability and observability in the case of the latter form.

The main obstacles that are associated with wind energy conversion systems are

their intermittent behavior and dependence on the geographical location and weather

conditions. Such randomness and uncertainty introduce nonlinearities when modeling

the system dynamics. Therefore, designing optimal and robust controllers are crucial

to deal with all the nonlinearities and uncertainties associated with wind energy sys-

tems. Based on time scale decomposition, an optimal controller for a DFIG-based wind

turbine was designed by decomposing the algebraic Riccati equation (ARE) of the sin-

gularly perturbed wind turbine system into two reduced-order AREs that correspond

to the slow and fast time scales. In addition, we derive a mathematical expression to
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obtain the optimal regulator gains with respect to the optimal pure-slow and pure-fast,

reduced-order Kalman filters and linear quadratic Gaussian (LQG) controllers. Using

this method allows the design of the linear controllers for the slow and fast subsys-

tems independently, thus, achieving complete separation and parallelism in the design

process. This solves the corresponding numerical ill-conditioning problem, and reduces

the complexity that arises when the number of wind turbines integrated to the power

system increases. The reduced-order systems were compared to the original full-order

system to validate the performance of the proposed method when a wind turbulence

and a large-signal disturbance are applied to the system. In addition, we showed that

the similarity transformation does not preserve the performance index value in the case

of Kalman filter and the corresponding LQG controller.

Studying the wind turbine with DFIG system as a high order singularly perturbed

system led to the introduction of a new recursive algorithm for solving the algebraic

Sylvester equation that defines the cross Gramian of singularly perturbed linear systems.

The cross Gramian matrix provides aggregate information about the controllability and

observability of a linear system. The solution was obtained in terms of reduced-order

algebraic Sylvester equations that correspond to the slow and fast subsystems of the

singularly perturbed system. The rate of convergence of the proposed algorithm is

O(ε), where ε is a small singular perturbation parameter that indicates the separation

of slow and fast state variables. Several real physical system examples were solved to

demonstrate the efficiency of the proposed algorithm.
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Chapter 1

Introduction

Harnessing wind energy, one of the most efficient forms of renewable energy, has expo-

nentially increased in the last few decades. The significant improvement in wind tur-

bine technology, low cost of operation and maintenance in comparison to other forms

of renewable energy, and its negligible effect on the environment are the main rea-

sons behind its dramatic growth. According to the annual Wind Technologies Market

Report in 2018, the average hub height and the average rotor diameter of the newly

installed turbines in the United States has increased by 57% and 141%, respectively

since 1998–1999 [1]. Higher towers and larger rotors help maximize the captured en-

ergy leading to very efficient power generation. Furthermore, the cost of wind energy

has dramatically decreased, making wind energy a true competitor of the lowest-cost

sources of electricity nowadays [1, 2].

According to the axis of rotation, industrial wind turbines fall into two main types:

vertical-axis wind turbines (VAWTs) and horizontal-axis wind turbines (HAWTs). A

VAWT rotates around a vertical axis, its rotation does not depend on the wind direction,

and needs only low wind speed to start. Therefore, the main components, such as the

gearbox and the generator can be built near to the ground, which facilitates maintenance

and service. A HAWT, in comparison, rotates around a horizontal axis and has many

blades fixed on the top of a tall tower. Since wind is stronger on higher elevations,

the higher the tower, the more the captured energy, resulting in very efficient power

generation [3].

Figure 1.1 shows the main components of the HAWT. These are the blades, nacelle

(including the other components inside, such as the gearbox, breaker, and generators),

and tower. The rotating blades are connected to the shaft of an electric generator
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Figure 1.1: Horizontal axis wind turbine components

to produce electricity. The blades are attached firmly to the shaft and shaped like

airfoils. The nacelle contains the drive train components: the rotor shaft, gearbox,

breaks, and electric generator. The rotor shaft is attached to the blades and rotates at

a relatively low speed; therefore the gearbox is used to increase the speed of rotation to

the speed required by the generator to generate electricity. A rotation speed of 15 to 20

revolution per minute (rpm) could be increased to between 1800 and 2000 (rpm) by the

gearbox. However, the gearbox is one of the most vulnerable parts of the turbine and its

breakdown causes a major fault and reduces the reliability of the system. It contributes

along with the generator to the most frequent downtime of the wind turbine [1,4]. The

gearbox can be eliminated through the use of a direct-drive system which has fewer

components and it is more reliable, easily maintained and able to generate power at

much lower speeds [4–6].
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The early models of wind turbines were all based on fixed-speed wind turbine gen-

erators (WTGs), which are connected directly to the utility grid [5–7]. In this type of

generators, extracting the maximum energy can only be achieved at a specific speed

of rotation that occurs at a certain wind speed. The efficiency of such a generator

deteriorates as the wind speed moves further away from that set point. As variable-

speed WTGs became advent, they gained increasing popularity due to their ability to

work efficiently over wide ranges of wind speeds. Two types of variable-speed electric

generators are commonly used nowadays: the double-fed induction generator (DFIG)

and permanent-magnet synchronous generator (PMSG). Variable-speed generators are

connected to the utility grid through power electronic converters. When the wind speed

increases a pitch drive can be used to turn the blades away from the wind direction.

Sometimes, when the wind becomes too strong a mechanical break should be used to

completely turn off the turbine in order to protect the blades from damage. As the

extracted wind energy is highly related to the wind speed, fluctuations of the latter

lead to significant power fluctuations. Therefore, when the wind speed is too high,

pitch drive control moves the blades to the best angle that reduces power fluctuations

and maximizes wind energy capturing. Moreover, the nacelle usually rotates about its

vertical axis with an angle called the yaw angle. Yaw control moves the nacelle such

that the blades will always face the coming wind.

The tower is a tall structure that carries and supports the turbine components. The

size of the tower depends on the size of the turbine. Moreover, the higher the tower,

the more wind energy that will be captured by the turbine, since the wind is usually

stronger at higher elevations.

Wind energy conversion systems (WECS) exhibit highly nonlinear behavior, as both

the generated power and aerodynamic torque are nonlinear functions of the wind speed

and rotational speed of the rotor. To control such complicated systems, optimal control

theory has been utilized with different objective functions, design constraints, and al-

gorithms. For WECS, the main objective functions aim to maximize energy extraction,

minimize the cost of energy and fatigue damage, maintain the stability and robustness

of the system, and reject the disturbance. For this purpose, a linearized model of the
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WECS is obtained around the optimal operating points, and suitable linear controllers

are utilized according to the control objective [8]. One major drawback of linear control

methods is that they require prior knowledge of all parameters and measurements of

the system, which are sometimes unavailable. Therefore, measurement devices and/or

dynamic estimators may be used to estimate these parameters. Furthermore, having

mechanical and electrical components, wind turbines are known to operate in at least

two time scales: the slow time scale, in which mechanical state variables evolve; and

the fast time scale, in which electrical and electronic state variables evolve.

1.1 Wind Turbines Operating Regions

Based on wind speed, variable-speed wind turbines can operate within one of four

possible regions, shown in Figure 1.2. In the first region (region I), there is no power

generated, since wind speed is too low to turn on the turbine and generate energy. The

minimum wind speed required to generate power is called cut-in speed and it is typically

above 4 [m/s]. In region II, the generated electrical power increases as the wind speed

rises above the cut-in speed until the power reaches its maximum value generated by

the wind turbine that is called the rated power. In this region, the control objective is

to maximize the extracted power by keeping the pitch angle constant while controlling

the generator torque. This can be achieved by the torque–speed lookup table of the

generator or the optimal relationship between generator’s speed and torque; that is

known as maximum power point tracking (MPPT) of the power coefficient function.

The main objectives of the controller design in region III are to regulate the gen-

erated power such that it does not exceed the rated output power of the WECS and

to reduce fatigue load damages. For this purpose, blade pitch angle control can be

used when wind speed goes above the rated speed in order to limit the rotational speed

and/or the generated power to their rated values. The generator torque is kept con-

stant in this case. Pitch control can be achieved collectively or individually through

adjusting the angles of the blades. In collective pitch control (CPC), the blades are set

simultaneously to the same angle, whereas, in the individual pitch control (IPC), the

blades are set to different angles.
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Figure 1.2: Operation regions of wind turbines

At very high wind speed (region IV), turbines are usually shut down at what is

called the cut-off wind speed using a breaking system. It is not safe to turn on the

wind turbines beyond the cut-off speed, since that might expose their electrical and

mechanical parts to sever damages.

1.2 Research Objectives

In this thesis, we address three problems that are related to the control of WECS. First,

we consider the problem of reducing the complexity of the power system model when a

large number of WTGs is integrated to the power grid, with the objective of obtaining

a simplified model that adequately simulates such systems. To address this problem, a

small-signal and time-scale analyses-based investigation of the dynamic performance of

WECS with DFIG connected to the utility grid was conducted. Furthermore, the order

reduction methods that are based on balancing, i.e., balanced truncation and balanced

residualization, and singular perturbations theory were compared based on their tran-

sient responses and linear-quadratic near-optimal control performance criteria. In order

to enhance the modeling and control of wind farms when a large number of WTGs is

integrated to the power grid, and to develop the corresponding simplified equivalent

models, the controllability and observability of the WECS, over different forms of the

input control matrix, are investigated through the application of the aforementioned
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order reduction methods.

The second problem we consider here involves the design of an optimal controller

for a DFIG-based WECS by decomposing the algebraic Riccati equation (ARE) of the

singularly perturbed wind turbine system into two reduced-order AREs corresponding

to the slow and fast time scales. This allows the design of independent linear controllers

for the slow and fast subsystems, and avoids the corresponding ill-conditioning problem

associated with singularly perturbed systems.

Inspired by the use of cross Gramians in reducing the order of wind farms of different

sizes and the time-scale analysis of the singularly perturbed WECS system, the third

objective constitutes in the development of a new recursive algorithm that solves the

algebraic Sylvester equation, which defines the cross Gramian of singularly perturbed

linear systems, while avoiding the ill-conditioning problem.

1.3 Thesis Structure and Contributions

This thesis is organized in the following manner.

In Chapter 1, a succinct overview of the main parts of the wind turbine and its

operating regions were presented. The objectives, structure, and contributions of this

thesis are also introduced.

Chapter 2 presents a theoretical background of the dynamics and modeling of

the wind turbine and DFIG. The chapter further reviews the model order reduction

methods based on balancing (balanced truncation and residualization) and singular

perturbation theory. The state-space model of the wind turbine with DFIG connected

to the utility grid presented in [9–11] is reduced using the aforementioned methods. The

performances of the obtained reduced order systems are compared on the basis of their

transient responses and linear-quadratic near-optimal control criteria. Simulation and

comparisons were also conducted when wind turbulence and large-signal disturbance

are applied to the system.

The main finding of this chapter is the advantage that the singular perturbation

method has over the balancing methods, in terms of the accuracy in approximating
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the dynamics of the considered system. The order of the considered wind turbine

model is reduced from eight to six via the balancing transformation. Further reduction

results in a significant jump in the error bound. In contrast, the method of singular

perturbation shows that an order reduction to four, or even two, can still provide very

good approximation to the system model. These results were published in [12].

In Chapter 3, the order reduction methods constituting in the balanced truncation,

balanced residualization, and cross Gramian are applied to the state-space representa-

tions of wind farms consisting of different numbers of identical and non-identical one-

mass wind turbines. The reduced order systems are compared to the original system

based on step responses, maximum absolute, and mean errors.

Examining the controllability and observability of the system, in both the vector and

diagonal forms of the input control matrix, showed a considerable loss of controllability

and observability in the case of the latter form.

Chapter 4 utilizes the method of singular perturbation to design LQR, Kalman

filter, and LQG optimal controllers in two independent time scales for a fifth-order

single-cage DFIG wind turbine. The algebraic Riccati equation (ARE) of the singu-

larly perturbed wind turbine system is decomposed into two reduced-order AREs, which

correspond to the slow and fast time scales. The reduced-order systems are compared

to the original full-order system to validate the performance of the proposed method

when wind turbulence and large-signal disturbance are applied to the system. Using

this method allows designing linear controllers for the slow and fast subsystems inde-

pendently, thus, achieving complete separation and parallelism in the design process.

The advantages of such an approach include the alleviation of stiffness difficulties and

reduction of computational complexities and dimensionality burdens resulting from the

increased penetration of wind turbines to the power grid.

A mathematical expression is derived to obtain the optimal regulator gains with

respect to the optimal pure-slow and pure-fast, reduced-order Kalman filters and lin-

ear quadratic Gaussian (LQG) controllers. In addition, we show that the similarity

transformation does not preserve the performance index value in the case of Kalman

filter and the corresponding LQG controller. The results of this chapter were published
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in [13]

In Chapter 5, a new recursive algorithm for solving the ill-defined algebraic Sylvester

equation that defines the cross Gramian of singularly perturbed linear systems is de-

veloped. The solution is obtained in terms of the well-defined reduced-order alge-

braic Sylvester equations corresponding to the slow and fast subsystems of a singularly

perturbed system. Several examples are solved to demonstrate the efficiency of the

proposed algorithm. The algorithm was shown to be very accurate with a rate of

convergence of O(ε). Furthermore, it can be directly applied to singularly perturbed

systems in the explicit standard forms. If the considered system is in the implicit form,

a similarity transformation is necessary to convert it into its explicit form before the

utilization of the proposed algorithm. The results of this chapter were published in [14].

Chapter 6, summarizes the conclusions of our research and discusses the future

work.
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Chapter 2

Order Reduction via the Methods of System Balancing

and Singular Perturbations

2.1 Introduction

Due to the increasing penetration of wind energy systems to the existing power sys-

tems, it has become necessary to reduce the complexity of the power system models,

when large numbers of WTGs are integrated to the power grids, towards obtaining

simplified models that adequately simulates such integrated systems. The goal of any

order reduction method is obtaining a model with a lower order than the original one,

while accurately representing the dynamic characteristics of the system. Rather than

following a systematic approach for obtaining a low order model, studies have com-

monly neglected the transient stator dynamics [15]. For example, a DFIG model of a

fifth-order was reduced to the third-order [16–18]. A simplified one-mass model was

used in [19] with an algorithm that detects the stator voltage sequence components

that bring the fault ride-through capability to the wind turbine connected to the grid.

Using aggregation methods to reduce the order of wind farms, studies have followed two

distinct approaches. The first approach applies to farms with identical WTGs and con-

stitutes an aggregation of all WTGs into a single equivalent machine, with the size and

rated and reactive powers re-scaled to incorporate the underlying multiplicity [20, 21].

The second approach aggregates each group of identical WTGs into an individual, re-

scaled equivalent machine [22]. On the other hand, methods based on control theory

use linearized state-space models for WTGs. To reduce the model order down to the

most relevant modes, [23] uses selective modal analysis. Similar reduction was achieved

in [24, 25] through the balance truncation (BT) method. Time-scale and singular per-

turbation analyses were used in [26–28] to reduce the order of the WECS model by
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neglecting the fast modes of the system assuming that the fast states are stable and

settle to steady-state values. The same techniques were used in [29–31] to reduce the

order of the model and break it into slow and fast components, which are then sep-

arately controlled. Alternatively, [32] reduced the complexity of the DFIG model by

evaluating the effect of the damping torque, contributed by the different dynamic com-

ponents of DFIG, on the stability margin and the damping performance of the system.

A hybrid approach, combining dominant pole-based modal analysis (DPMA) and BT

with aggregation methods, was used in [33] to obtain an equivalent wind farm model.

There are few studies that compare different order reduction methods for wind

turbine models. In this chapter, the order reduction methods of balanced truncation,

balanced residualization, and singular perturbations are applied to a model of a wind

turbine with DFIG that is connected to the utility grid. The linearized eighth-order

state-space model presented in [9–11] is used here. The performance of the different

model order reduction methods are compared on the basis of their transient responses

and their linear-quadratic near-optimal control performance criteria.

The rest of the chapter is organized as follows. In Section 2.2, the wind turbine

dynamics will be reviewed. Modeling and control of the DFIG is presented in Section

2.3 along with the state-space model of the considered WECS. Section 2.4 provides a

theoretical background for the model order reduction using balancing methods: bal-

anced truncation and residualization. In Section 2.5, the model of the wind turbine

with DFIG connected to the utility grid is reduced using the aforementioned methods.

In Section 2.6, the near-optimal controllers for the balanced truncation and residualiza-

tion methods are derived and calculated. The singular perturbations method is used to

reduce the wind turbine model in Section 2.7. Near-optimal control using lower-order

slow subsystems is derived and the corresponding calculations are presented in Section

2.8. The performances of the reduced models of the considered WTG with DFIG are

tested for wind turbulence and gust in Section 2.9 and for voltage sag in Section 2.10.

The chapter is concluded in Section 2.11.
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2.2 Wind Turbine Dynamics

Wind turbines convert the wind kinetic energy into mechanical energy that rotates the

turbine blades. The mechanical energy is then converted into electrical energy by an

electrical generator. The mechanical output power that is harvested from the wind is

proportional to the third power of wind speed and can be expressed as [5]

Pm =
1

2
ρπR2v3Cp(λ, β) (2.1)

where ρ is the air density in [Kg/m3], R is the radius of the turbine in [m], v is the

wind speed [m/s], Cp(λ, β) is the power coefficient of the wind turbine that describes

the efficiency of power extraction. Cp is a nonlinear function that depends on the blade

pitch angle β and the tip speed ratio λ, which is given by

λ =
Rωr
v

(2.2)

where ωr is the rotor angular velocity. Cp is a measure for power performance of the

wind turbine. Using the turbine characteristics, the latter can be approximated as:

Cp(λ, β) = C1(
C2

λi
− C3β − C4)e

−C5
λi + C6λ (2.3)

where λi can be calculated approximately as follows

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
(2.4)

The coefficients Ci, i = 1, 2, . . . , 6, depend on the turbine design characteristics and

are given in Appendix A.1. The maximum mechanical power Popt collected by the wind

turbine is

Popt = ρπR5Cp−optω
3
opt/2λopt = koptω

3
opt (2.5)

which requires maintaining λ at its optimum value λopt and the pitch angle at β = 0.

Figure 2.1 shows a typical wind turbine characteristics with the optimal power



12

extraction Popt. As the wind speed varies, the controller plays the role of ensuring that

the wind turbine follows the optimal power curve in Figure 2.1.(a).

In this chapter, the one-mass derive train model is considered since the derive train

acts as a single equivalent mass with nearly equal participation of all inertias [15].

The total inertia constant Ht is the sum of the turbine rotor and generator inertia

constants. The dynamic equation of this model can be expressed by the following

differential equation

2Ht
dωr
dt

= Tm − Te (2.6)

where Tm is the mechanical torque and Te is the electromechanical torques. The gen-

erator torque-speed characteristic is shown in Figure 2.1(b).

Figure 2.1: Maximum power extraction characteristic for wind turbines. (a) Optimal
power-speed characteristics (b) Torque-speed characteristics

2.3 Modeling and Control of DFIG-based Wind Turbine

The variable speed wind turbine with double fed induction generator (DFIG) has gained

wide spread attention in the last decade, due to the low cost of installation, ability to

control its active and reactive power independently, low consumption of reactive power,

and it inflicting less mechanical stress on turbines. The DFIG represents a wound rotor

induction generator consisting of three phase rotor and stator windings, which are both

connected to the utility grid, hence the term ”double fed”. It is connected from the
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stator side directly to the utility grid, while the rotor side is interfaced to the utility via

a back-to-back voltage source converter. The converter consists of grid-side converters

(GSCs) and rotor-side converters (RSCs) placed back-to-back with a DC-link capacitor

in between. A crowbar circuit is also used to protect the converter and the generator at

high voltage situations by limiting the high current in the rotor circuit [34–36]. Figure

2.2 shows a typical configuration of a DFIG used with wind turbine energy systems.

Figure 2.2: A typical configuration for a DFIG-based wind turbine.

In order to simplify the mathematical model analysis of the DFIG, the three-phase

stator and rotor quantities (voltages, currents, and flux linkages) are placed in direct (d)

and quadrature (q) axes to obtain two-phase dq quantities using the direct-quadrature-

zero transformation (dq0). More details about the dq0 transformation can be found in

Appendix B.1 [15].

The dynamic performance and small signal stability analysis of DFIG-based WECS

have been investigated by many researchers [11, 35, 37–39]. In this section, we study

the linearized state-space model of the DFIG-based WECS presented in [9–11], which

was developed by considering the following assumptions:

• All equations of the induction generator are derived in the synchronous reference

frame using the direct-quadrature (d-q) transformation.
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• The d-axis is assumed to be 90◦ lagging the q-axis.

• The stator current is assumed to be negative when flowing toward the machine.

The dq synchronous reference frame equations of the stator flux and rotor may be

written as [9, 10].

ψds = Lsids + Lmidr

ψqs = Lsiqs + Lmiqr

ψdr = Lridr + Lmids

ψqr = Lriqr + Lmiqs

(2.7)

where Ls, Lr, and Lm are stator, rotor, and self magnetizing reactances, respectively.

Ls and Lr are defined by the following equations

Ls = Lls + Lm

Lr = Llr + Lm

(2.8)

Furthermore, the reactances can be written in terms of inductances as follows [40]

Xss = ωs(Lls +
3

2
Lm) (2.9)

Xrr = ωr(Llr +
3

2
Lm) (2.10)

Xm =
3

2
ωsLm (2.11)

where Xss, Xrr, and Xm are stator, rotor, and self magnetizing reactances, respectively.

The equivalent circuit for one phase of the DFIG generator can be drawn as in Figure

2.3

The stator and rotor voltage equations in d-q synchronous reference frame are given,
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Figure 2.3: DFIG equivalent circuit

respectively by

vds
vqs

 = −Rs

ids
iqs

+ ωs

−ψqs
ψds

+
1

ωb

d

dt

ψds
ψqs

 (2.12)

vdr
vqr

 = Rr

idr
iqr

+ sωs

−ψqr
ψdr

+
1

ωb

d

dt

ψdr
ψqr

 (2.13)

where the subscripts s and r denote the stator and rotor quantities while subscripts q

and d denote the components aligned with the q-axis and d-axis reference frames, re-

spectively. In (2.12)-(2.13), Rs and Rr are the stator and rotor resistances, respectively,

and ωs and ωb are synchronous and base angular frequencies, respectively. s is defined

as the slip of the generator and given by s = (ωs − ωr)/ωs. The electromechanical

torque is given in terms of state variables as follows

Te = Lm(idriqs − iqrids) (2.14)

The electromagnetic torque should be adjusted dynamically to follow wind speed

variations and derive the rotor speed of the WTG, so that the system can reach the

required operating reference point and extract maximum power from the wind [41].

It is a common practice in stability transient studies of power systems to neglect the

stator transients for the fifth-order model of induction generator, as it is much faster



16

than those of other components [16, 18]. Furthermore, the stator resistance can also

be neglected since it is assumed to have a small value (Rs ≈ 0) [15, 40]. In the q-axis,

rotor current iqr,ref is calculated using reference torque values generated by the wind

turbine characteristic for maximum power extraction (Figure 2.1(b)) and given by

iqr,ref =
ωsXss

Xmvqs
Tsp (2.15)

where Tsp is the optimal torque set point provided from the torque-speed characteristic

for maximum power extraction [10], and iqr,ref is the reference current in the q-axis.

Modeling and control of DFIG-based wind systems are complicated compared to

other induction generators. A dominating feature of these systems is having a set

of poorly damped eigenvalues with a corresponding natural frequency near the line

frequency. Furthermore, the DFIG-based WTG system is sensitive to any grid distur-

bances, which may lead to system instability at certain operating conditions [39]. The

conventional vector control (VC) [42–44] has been widely used in controlling the DFIG-

based WECS. Current mode vector control referred to as the PV dq control [5,10,11,44],

is adopted in this chapter. This technique enables the independent control of the decou-

pled active and reactive powers by decomposing the rotor current into two orthogonal

components: one, along the d-axis, for regulating the terminal voltage or power factor

(PF); whereas the other, along the q-axes, for regulating the torque. For optimal con-

trol, proportional and integral (PI) controllers, with parameters accordingly tuned, are

commonly used. Such tuning puts these controllers at a disadvantage, though, as it is

dependent on the parameters of the system, such as the stator and rotor resistances,

inductances, and mutual inductances, in addition to requiring the stability of the sys-

tem to be sustained even during transient states [45]. Figure 2.4 shows a block diagram

of torque control scheme. The complete control scheme was presented in [5, 10,11].

The error signal produced by the difference in the rotor current iqr from iqr,ref is

processed by the PI compensator to produce the rotor voltage v́qr.

v́qr = x1 +Kp1(iqr,ref − iqr) (2.16)
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Figure 2.4: PVdq DFIG speed control strategy.

Note that, the compensation term in this control scheme is given by the second and

third terms of (2.16). On the other hand, the terminal voltage or power factor control

is achieved using the rotor-side converter. The required d−axis rotor voltage vdr is

obtained through the output of a PI controller and a compensation term which is

derived from equation of the rotor voltage in the d-axis. Figure 2.5 shows a block

diagram of the terminal voltage control scheme [5,10,11]

Figure 2.5: PVdq DFIG terminal voltage or power factor control strategy.

In order to simplify the model of the system and to design suitable linear controllers,

a linearization process is performed. The behavior of nonlinear system is approximated

in the vicinity of its equilibrium points. Small signal analysis can be performed by

linearizing the swing mechanical equation (2.6) and the DFIG equations (2.12)-(2.13).

The utility grid is considered, here, an infinite bus, which is represented by a volt-

age source with constant voltage and frequency. Considering that DFIG is interfaced

with the infinite bus through a transmission line, the stator voltage equations can be
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rewritten as

vds = vq∞ −XT iqs +RT ids (2.17)

vqs = vd∞ +XT ids +RT iqs (2.18)

where vq∞ and vd∞ are the infinite bus voltages in the q and d reference frames, and

XT = Xtr +Xe, RT = Re +Rs

To obtain the complete linearized DFIG model, the state variables and the inputs

of the control loops in Figure 2.4 and Figure 2.5 are integrated to the DFIG model and

linearized at the operating points. The linearized state space system is given as follows

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(2.19)

The state variables and the control inputs are defined by [11]

ẋ =
[
ids iqs idr iqr ωr x2 x1 x3

]T
(2.20)

u =
[
idr iqr vs vsref Tsp

]T
(2.21)

The outputs are the rotor currents in the d-axis and q-axis,

y =
[
idr iqr

]T
, (2.22)

The system matrices A, B, and C of the wind turbine with DFIG connected to the

utility grid are calculated as described in Appendix A.3. All system parameters, DFIG

parameters, and operating points used in the linearization procedure can be found in

Appendices A.1-A.2. The linearized system and matrices A, B, and C evaluated at the
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system’s operating points are given by

A =



−25.17 5717 −89.73 −5241 −212.5 1617 0 80.85

−5711 −27.88 5242 −89.73 1646 0 1617 0

−24.38 5222.5 −91.82 −5050 −217.4 1655 0 82.74

−5517 −27.16 5050 −91.82 1726 0 1655 0

0.2072 −0.1225 −0.1937 −0.01976 0 0 0 0

0.4377 0.07021 −10 0 0 0 0 10

0.6349 0.1018 0 −10 9.171 0 0 0

−1.211 0.1943 0 0 0 0 0 0



B =



−1658 0 1617 0 0

0 −1658 0 1617 0

−1617 0 1655 0 0

0 −1617 0 1655 0

0 0 0 0 0.1429

−10 0 −67.47 70 0

0 −10 −8.256 0 10.24

0 0 −7 7 0



,

C =

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

 , D =

0 0 0 0 0

0 0 0 0 0


In the follow-up of this section we will study the DFIG linearized model using the

methods of system balancing and singular perturbations.
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2.4 Model Order Reduction via System Balancing Methods

Consider the state space realization of an nth-order linear time invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(2.23)

where x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p.

A, B, C and D are constant matrices of appropriate dimensions. The open loop

transfer function of the system is given by

G(s) = C(sI −A)−1B +D (2.24)

Balancing order reduction is done under the following assumption [46].

Assumption 2.1 The considered system is controllable, observable, and asymptotically

stable.

The linear time-invariant system is asymptotically stable if all eigenvalues of the system

matrix are strictly in the left half of the complex plane, that is, <{eig(A)} < 0. The con-

trollability and observability Gramians are used to measure the degree of controllability

and observability of the system. They are defined respectively as

WC =

∫ ∞
0

eAtBBT eA
T t dt, WO =

∫ ∞
0

eA
T tCTCeAt dt (2.25)

The system is considered to be controllable (observable) if the corresponding Gramian

matrix is nonsingular. The integrals (2.25) can be evaluated by solving the correspond-

ing Lyapunov algebraic equations, which are respectively given by

AWC +WCA
T = −BBT (2.26)

ATWO +WOA = −CTC (2.27)
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Since the system matrix A is Hurwitz (asymptotically stable), the Gramians are pos-

itive semidefinite (symmetric) matrices and therefore the eigenvalues of the Gramians

matrices are all real and non-negative [47].

It is well known from the Kalman canonical decomposition that state variables that

are either uncontrollable or unobservable (their controllability/observability measures

are zeros and the corresponding Gramian matrices are singular) can be completely elim-

inated from the system dynamics since they do not affect the system transfer function,

and hence they have no impact on the system input-output behavior. This implies a

reduced-order model of a full-order model. The balancing order reduction is an exten-

sion of the Kalman canonical decomposition in the case when all system state variables

are both controllable and observable, but some of them are weakly controllable and

weakly observable corresponding to small eigenvalues of the controllability and observ-

ability Gramians. There are several order reduction techniques. The two most popular

ones will be reviewed in the rest of this section. Important features of the system

balancing order reduction techniques are that the reduced-order models obtained are

asymptotically stable, controllable, and observable, and that they can be used for ac-

curate and efficient full-order system controller design techniques [48].

The state space variables x(t) that are associated with small eigenvalues of the

Gramians matrices are less controllable and less observable than those associated with

larger ones. Therefore, these state variables can be eliminated from the system model

without much effect on the system dynamics. This elimination can be achieved using

the balanced transformation technique [48]. System balancing is done via the use of a

similarity transformation matrix T that transforms the coordinates of the original sys-

tem into balanced coordinates, such that the controllability and observability Gramians

are identical and diagonal, that is, the transformation

xb = T−1x(t), det(T ) 6= 0 (2.28)
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produces a new linear system

ẋb(t) = Abxb(t) +Bbu(t), xb(0) = T−1x(0) = T−1x0

yb(t) = Cbxb(t) +Dbu(t)

Ab =TAT−1, Bb = TB, Cb = CT−1, Db = D

(2.29)

with

WCb = WOb = Σ = diag{σ1, σ2, . . . , σn} (2.30)

σ1 ≥ σ2 ≥, . . . ,≥ σn

where σi, i = 1, 2, . . . , n are known as the Hankel Singular Values (HSVs) of the

system, obtained by taking the positive square root of the eigenvalues of the product

of the controllability and observability Gramians matrices [48], that is

σi =
√
λi(WCWO) (2.31)

The magnitudes of the HSVs are ordered in descending order with the first Hankel

singular value called the “Hankel norm”. The Hankel norm of the system represented

by G(s) is defined by

‖G(s)‖H = σ1 = σmax =
√
λmax(WCWO) (2.32)

These HSVs can be used to indicate the amount of energy in each state in the

original system. The HSVs with larger magnitudes refer to the states that have more

energy and are more controllable and observable in the original system. The balanced

controllability and observability Gramians are the unique solutions of the following

algebraic Lyapunov equations

AbWCb +WCbA
T
b +BbB

T
b = 0,

ATbWOb +WObAb + CTb Cb = 0

WCb = WOb = Σ

(2.33)



23

The balanced system can be partitioned as following

Ab =

A1 A2

A3 A4

 , Bb =

B1

B2

 , Cb =
[
C1 C2

]
, Db = D

Σ =

Σ1 0

0 Σ2


Σ1 = diag{σ1, σ2, . . . , σr}, Σ2 = diag{σr+1, σr+2, . . . , σn}

(2.34)

2.4.1 Model Order Reduction via Balanced Truncation

Based on this partitioning, the reduced-order system obtained via truncation is defined

by

ẋ1(t) = A1x1(t) +B1u(t)

y(t) = C1x1(t) +Du(t)

(2.35)

with the corresponding reduced-order transfer function

Gr(s) = C1(sI −A1)
−1B1 +D (2.36)

It has been shown in [49] that

‖G(s)−Gr(s)‖ ≤ σ2r+1, σ
2
r+2, . . . , σ

2
n (2.37)

The reduced-order system can be simply obtained by eliminating the part of the system

associated with the small HSVs and retaining the remaining part of the system, which

is associated with the larger HSVs.

2.4.2 Model Order Reduction via Balanced Residualization

Reducing the system order using the balanced truncation method gives a very good

approximation for the original system at high frequencies. The negligible values of



24

the impulse response error for the original and approximated system show just that.

However, the approximation will be less accurate at low and medium frequencies, due

to the DC gain difference between the original system and the reduced order truncated

system. Comparing step responses of the original and the reduced-order system, a

relatively large error can be observed. In [48], the balanced residualization technique

was proposed to overtake this problem. To explain this technique, consider the following

balanced linear system

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t)

ẋ2(t) = A3x1(t) +A4x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t) +Du(t)

(2.38)

where A1 ∈ <r×r, A4 ∈ <(n−r)×(n−r) with the remaining matrices having appropriate

dimensions relative to the original system dimensions. It is assumed that the Hankel

singular values of this balanced system satisfy σr � σr+1. A quasi steady state system

can be defined by setting the derivative of x2(t) state variable to zero as follows

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t)

0 = A3x1(t) +A4x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t) +Du(t)

(2.39)

Note that, the matrix A4 is assumed to be invertible [49]. Eliminating x2(t) from

the second equation in (2.39), the residualized, reduced-order system is obtained as [50]

ẋr(t) = Arxr(t) +Bru(t)

y(t) = Crxr(t) +Dru(t)

Ar =A1 −A2A
−1
4 A3, Br = B1 −A2A

−1
4 B2

Cr =C1 − C2A
−1
4 A3, Dr = D − C2A

−1
4 B2

(2.40)

The residualized reduced-order system preserves the DC gain of the original system.
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It also provides a good approximation to the frequency spectrum at low and medium fre-

quencies. However, this method provides less accurate approximation to the frequency

spectrum at high frequencies [51], [50]. In contrast to that, the reduced-order system

obtained through the balanced truncation method provides a good approximation at

high frequencies on the expense of a mismatched DC gain.

2.5 Wind Turbine Model Order Reduction using Balancing Methods

The balanced truncation method requires first to balance the system. The Hankel

singular values are then calculated and presented in the following table.

HSVs 20.8363 19.9418 14.3674 12.6774 12.0217 11.3983 0.9975 0.4742

Table 2.1: HSVs for wind turbine with DFIG system

It can be observed that the first six HSVs are much larger than the last two HSVs,

hence, the system can be reduced to the sixth-order (r = 6) since

‖ G(s)−G6(s) ‖≤ σ27 + σ28 = (0.9976)2 + (0.4742)2 = 1.220

produces a small error. Otherwise, according to the error formula a reduction to order

five or less will produce huge errors. For example, for r = 5, we have

‖ G(s)−G5(s) ‖≤ σ26 + σ27 + σ28 = (11.4146)2 + (0.9976)2 + (0.4742)2 = 131.51

For r = 4, 3, 2, this error becomes considerably bigger.

The step responses of the reduced truncation, residualization, and original systems

are shown in Figure 2.6 for the rotor current output in the d-axis idr only, when r = 6.

The step response behavior for the rotor current output in the q-axis iqr is similar. It

can be observed from Figure 2.6 that reducing the system order using balanced trun-

cation method gives a good approximation for the original system at high frequencies.

However, using the balanced residualization method shows better approximation to the

original system at low and medium frequencies and preserve the DC gain.
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Reducing the system to a second-order, r = 2, the step response error increases

considerably comparing to the sixth-order system case. The step responses of the

original and second-order reduced systems are shown in Figure 2.7.

It can be concluded from this section that the balancing transformation order re-

duction method allows the considered system model of order eighth to be reduced only

to order six.

Figure 2.6: Step response of the sixth-order wind turbine with DFIG system

Figure 2.7: Step response of the second-order wind turbine with DFIG system



27

2.6 Near-optimal Control using the Reduced Order Truncated and

Residualized Models

Consider the original system in the balanced coordinates defined by (2.29) and (2.39).

The corresponding truncated system is given in (2.35) and the residualized system by

(2.40). In the following, we use these reduced-order models to derive the near-optimal

controllers for (2.34) obtained by minimizing a quadratic performance criterion defined

by

Jb =
1

2

∫ ∞
0

[
xTb (t)CTb Cbxb(t) + uT (t)Ru(t)

]
dt =

1

2

∫ ∞
0

{x1(t)
x2(t)

T CT1 C1 CT1 C2

CT2 C1 CT2 C2


x1(t)
x2(t)

+ uT (t)Ru(t)

}
dt

(2.41)

where CTb Cb ≥ 0 and R > 0 are the penalty matrices. We assume that the matrix

D appearing in the system output is zero, that is, D = 0, so that in the performance

criterion (2.41), we practically optimize the term yT (t)y(t), in addition to the “square”

of the control signal.

2.6.1 Truncated Model Based Near-optimal Control

In this case, since the matrix C2 is neglected in the truncated model (2.35), the quadratic

performance criterion (2.41) changes into

Jtrunc =
1

2

∫ ∞
0

[
xT1 (t)CT1 C1x1(t) + uT (t)Ru(t)

]
dt (2.42)

Minimizing (2.42) along the trajectories of the truncated system (2.35), that is

ẋ1(t) = A1x1(t) +B1u(t)

y(t) = C1x1(t)

(2.43)
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leads to the well-known optimal solution for the truncated system given by

uopttrunc(t) = −R−1BT
1 Ptruncx1(t) = −F opttruncx1(t) (2.44)

where Ptrunc satisfies the algebraic Riccati equation for the truncated system corre-

sponding to the optimization problem defined by (2.42)-(2.43)

A1Ptrunc + PtruncA
T
1 + CT1 C1 − PtruncB1R

−1BT
1 Ptrunc = 0 (2.45)

Using (2.44), we construct the near-optimal full-state feedback control for the original

full-order system (with D = 0) in the balanced coordinates

ẋb(t) = Abxb(t) +Bbub(t) (2.46)

as follows

usubopttrunc (t) = −F opttruncx1(t) = −
[
F opttrunc 0

]x1(t)
x2(t)

 = −Ftruncxb(t) (2.47)

using this near-optimal control (2.44) in (2.46), produces

ẋb(t) = (A−BFtrunc)xb(t) (2.48)

J truncb =
1

2

∫ ∞
0

xTb (t)(CTb Cb + F TtruncRFtrunc)xb(t)dt (2.49)

It can be shown that integral (2.49), evaluated along trajectories of (2.48), is given by

J truncb =
1

2
xTb (0)V trunc

b xb(0), xb(0) = T−1x(0) = T−1x0 (2.50)

where Vb satisfies the following algebraic Lyapunov equation

(Ab −BbFtrunc)V trunc
b + V trunc

b (Ab −BbFtrunc)T + CTb Cb − F TtruncRFtrunc = 0 (2.51)
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2.6.2 Residualized Model Based Near-optimal Control

Eliminating x2(t) from the quadratic performance criterion (2.41) using the second

formula in (2.39), coming from the residualization idea, that is

x2(t) = −A−14 (A3x1(t) +B2u(t)) (2.52)

the quadratic performance criterion becomes

Jresb =
1

2

∫ ∞
0

[xTr (t)CTr Crxr(t) + 2uT (t)CTr Drxr(t) + uT (t)Rru(t)]dt (2.53)

where Rr = R+DT
r Dr and with Cr, Dr are defined in (2.40). The residualized system

is given as

ẋr(t) = Arxr(t) +Bru(t) (2.54)

Minimization of (2.53) subject to (2.54) leads to the following optimal control

uoptres(t) = −R−1r (CTr Dr +BT
r Pres)xr(t) = −Fresxr(t) (2.55)

where Pres satisfies the following algebraic equation, obtained through the linear-

quadratic optimization when the quadratic performance criterion contains a cross-

product term [52]

(Ar −BrR−1r CTr Dr)Pres+Pres(Ar −BrR−1r CTr Dr)
T + CTr (I −DrR

−1
r DT

r )Cr

− PresBrR−1r BT
r Pres = 0

(2.56)

The near-optimal control for obtained via balancing residualization, to be implemented

to the original full-order system in the balanced coordinates can be now constructed as

usuboptres (t) = −F optresx1(t) = −
[
F optres 0

]x1(t)
x2(t)

 = −Fresxb(t) (2.57)
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Using this near-optimal control (2.55) in (2.46), produces

ẋb(t) = (A−BFres)xb(t) (2.58)

Jresb =
1

2

∫ ∞
0

xTb (t)(CTb Cb + F TresRFres)xb(t)dt (2.59)

It can be shown that integral (2.59), evaluated along trajectories of (2.58), is given by

Jresb =
1

2
xTb (0)V res

b xb(0) (2.60)

where V res
b satisfies the following algebraic Lyapunov equation

(Ab −BbFres)TV res
b + V res

b (Ab −BbFres) + CTb Cb + F TresRFres = 0 (2.61)

Note that the similarity transformation does not change the value of the optimal

performance criterion [53], so that its optimal value in the original coordinates is equal

to the optimal value in the balance coordinates, that is Jopt = Joptb . We compared

Joptb , Jresb , J truncb . The truncated and residualized systems are of the order six, r = 6.

The results are presented in Table 2.2.

Performance Criterion Near-optimal/Optimal Value

Jresb 2.0456

J truncb 1.8697

Joptb 0.7390

Table 2.2: Near-optimal and optimal values of the performance criterion for balancing
techniques

It can be seen from Table 2.2, that both the truncation and balancing residualization

methods produce large errors (> 100%) when the optimal linear-quadratic controller is

considered. Moreover, those errors were obtained when the original system model of

order eighth is reduced only to order six. It will be seen in the follow-up of this chapter

that the singular perturbation method order reduction produces much better results
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than the corresponding balancing order reduction techniques when the system order is

reduced to six and even to four.

2.7 Wind Turbine Model Order Reduction using Singular Perturba-

tion Method

Wind turbines with DFIG can be studied as singularly perturbed systems (two-time

scale systems), since they contain mechanical and electrical elements that operate in

different timescales, with mechanical variables in general being slow and electrical vari-

ables in general being fast. This can be observed by finding the eigenvalues of matrix

A and checking whether they are located in two or several disjoint groups (clusters)

which is caused by the presence of a small singular perturbation parameter denoted by

ε.

The exact decoupling of the slow and fast subsystems can be obtained by employing

the Chang transformation [54]. A standard singularly perturbed linear time invariant

system in state-space form is represented by

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t)

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t) ⇔ ẋSP (t) = ASPxSP (t) +BSPu(t), x(0) = x0

y(t) = C1x1(t) + C2x2(t) +Du(t) ⇔ y(t) = CSPxSP (t) +DSPu(t)

(2.62)

where ε is a small singular perturbation parameter. Here, x1(t) and x2(t) can be

considered as the slow and fast state space variables of the system, respectively [48].

The slow and fast subsystems can be approximately decoupled using another method.

For sufficiently small ε, setting ε = 0 in the second equation of (2.62) produces the ap-

proximate reduced-order slow subsystem given
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ẋ1sappr(t) = A0x1sappr(t) +B0u(t)

yappr(t) = C0x1sappr(t) +D0u(t)

A0 = A1−A2A
−1
4 A3, B0 = B1 −A2A

−1
4 B2

C0 = C1−C2A
−1
4 A3, D0 = D − C2A

−1
4 B2

(2.63)

The following assumption is commonly imposed for singularly perturbed linear systems

[55].

Assumption 2.2 Matrix A4 is invertible.

The considered DFIG turbine system is not in the explicit standard singular pertur-

bation form (2.62) in which the derivatives of some of the states are multiplied by a

small positive singular perturbation parameter ε. The eigenvalues of this system can

be calculated as

λi =



−85.3933± 530.1511i

−20.4084± 184.6632i

−11.8777± 51.0489i

−0.1514

−1.1916


, (2.64)

Their locations in the s-plane are shown in Figure 2.8. The three cases are considered

here, depending on the dimension of the system order reduction: Case 1: when the

system is reduced to order two; Case 2: when the system is reduced to order four; and

Case 3: when the system is reduced to order six.

In all these three cases, the rows of matrix A need to be rearranged such that the

corresponding sub-matrix A4 is nonsingular and the system is in the explicit standard

singular perturbation form (2.62). As described in [56], such systems can be obtained

via the use of the Schur transformation. Algebraically [57], for any given square matrix

there exists a unitary similarity transformation known as the Schur’s form, , where

ASchur = UTAU, UT = U−1 (2.65)
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Figure 2.8: Locations of eigenvalues of the wind turbine DFIG system

where the left-hand side constitutes an upper quasi-triangular matrix, such that the real

eigenvalues reside on the main diagonal while pairs of complex conjugate eigenvalues

constitute 2x2 blocks on the diagonal. MATLAB’s implementation of the Schur’s form

sorts the eigenvalues in a decreasing order, i.e., with the magnitudes of the real parts

from the largest to the smallest. When employing U as a similarity transformation for

the DFIG system, we also get

BSchur = UTB, CSchur = CU (2.66)

To get the singularly perturbed form consistent with (2.62), the order of the eigenvalues

needs to be reversed, i.e., the following permutation matrix need to be employed
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P =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



(2.67)

The singularly perturbed form (2.62) is now achieved by using the following similarity

transformation

ASP = P TAP, BSP = P TB, CSP = CP, (2.68)

For the considered DFIG system model, DSP = D = 0.

The original system initial conditions, mapped into the new coordinates are given

by

xSP (0) = P TUTx(0) = P TUTx0 (2.69)

The singularly perturbed matrices defined in (2.68) and the initial conditions (2.69) are

given by

ASP =

−0.1514 0 0 0 0 0 0 0

0.2915 −1.192 0 0 0 0 0 0

20.439 1.612 −11.878 −51.168 0 0 0 0

−53.174 8.308 50.93 −11.878 0 0 0 0

−39.962 −3.679 −59.826 −100.76 −20.408 −179.13 0 0

−1.406 −3.195 −97.568 59.172 190.37 −20.408 0 0

1195.5 234.29 −672.89 −7933.3 −5499 −5251.9 −85.393 534.54

−2039 2.065 7863.1 −239.84 −5627.7 5258.2 −525.8 −85.393


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BSP =



−0.0311 0.0906 0.1432 −0.0251 −0.00068

1.213 0.1005 1.0621 −1.4192 0.2104

12.356 2.3046 −20.782 4.443 −8.329

−2.003 11.927 −73.393 18.304 −1.4643

23.757 −25.504 31.864 −44.994 −3.177

−27.177 −24.969 8.6312 −21.95 4.8073

2128.1 −912.39 −2126.4 911.74 0.1259

912.36 2128.1 −910.69 −2126.9 0.04145



CSP =

−0.0004 0.0021 −0.374 −0.175 0.239 −0.524 −0.647 −0.279

−0.0006 0.0035 0.142 −0.368 −0.543 −0.226 0.279 −0.647


xSP =

[
0.9813 0.8988 −1.0125 0.7402 −0.7957 0.1002 −0.727 −1.8667

]T
It will be seen that all the three cases considered produce very good results. To the

contrary, the balancing method order reduction produced satisfactory results only for

the system reduced to order six.

Case 1 : Since the absolute real parts of the first two eigenvalues are much smaller

than those of the last six, the system exhibits two-time scales and a reasonable ap-

proximation is supposed to be obtained if the system is reduced into the second-order

slow mode subsystem. The singular perturbation parameter is chosen to be the ratio

of the real parts of the fastest slow eigenvalue to the slowest fast one and is equal

to ε1 = 1.1915/11.8777 = 0.1003. Then, the approximation method defined in (2.63)

is applied to decouple the original system into the slow subsystem with eigenvalues:

−0.1514 and −1.1915. The step responses of the original system and the second-order

slow mode approximate singularly perturbed subsystems, presented in Figure 2.9, show

that the latter provides a very good approximation to the actual response of the original

system.
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Figure 2.9: Step responses of the original and the second-order approximate slow
mode singularly perturbed WT-DFIG system

Case 2 : In order to get a better approximation, the original system is decomposed

into fourth-order slow and fourth fast subsystems. The small singular perturbation

parameter is chosen to be ε2 = −11.8777/ − 20.4804 = 0.5820. The step responses of

the original system and the fourth-order approximate slow mode subsystem are shown

in Figure 2.10.

Figure 2.10: Step responses of the original and fourth-order approximate slow mode
singularly perturbed WT-DFIG systems

Case 3 : The system can also be approximated into a sixth-order slow subsystem,

as suggested by the balancing methods. The singular perturbation parameter is chosen
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to be the ratio of the fastest slow eigenvalue to the slowest fast one and is equal to

ε3 = 20.4804/85.3933 = 0.2390. The step responses of the original system and the

sixth-order approximate slow mode singularly perturbed subsystem are shown in Figure

2.11. It shows a better approximation compared to the second and fourth-order slow

mode subsystems in Cases 1 and 2.

Figure 2.11: Step response of the original and sixth-order approximate slow mode
singularly perturbed WT-DFIG systems

It follows from this section that the singular perturbation method allows system

model order reduction even to order two, which is a surprising result due to the fact

that the balancing order reduction method allows system model order reduction only to

order six. In general, these two system model order reduction techniques produce con-

sistent results, but in the case of the considered DFIG system, the singular perturbation

method is definitely superior.

2.8 Near-optimal Control using Lower Order Slow Subsystems

In addition to the comparison done with respect to the system responses, in the case

of the system order reduction via the method of singular perturbations, these three

cases are compared from the optimality point of view for the linear-quadratic optimal

controller.

In the case of the approximate slow subsystem (2.63) the derivations are similar to
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derivations presented for the residualized model based near-optimal control. Setting

ε = 0 in the second equation in (2.62), x2(t) is obtained as

x2(t) = −A−14 (A3x1(t) +B2u(t)) (2.70)

Eliminating x2(t) from the original singularly perturbed system (2.62) and the quadratic

performance criterion (2.41) produces

JSP =
1

2

∫ ∞
0

[
xT1sappr(t)C

T
0 C0x1sappr(t)+2xT1sappr(t)C

T
0 D0u(t)+uT (t)R0u(t)

]
dt (2.71)

where R0 = R+DT
0D0and with C0,D0 defined in (2.63). The approximate slow system

is given in (2.72) as

ẋ1appr(t) = A0x1appr(t) +B0u(t) (2.72)

Minimization of (2.71) subject to (2.72) leads to the following optimal control

uoptappr(t) = −R−10 (CT0 D0 +BT
0 Pappr)x1appr(t) = −Fapprx1appr(t) (2.73)

wherePappr satisfies the algebraic equation obtained through the linear-quadratic opti-

mization when the quadratic performance criterion contains a cross-product term [52].

(A0 −B0R
−1
0 CT0 D0)Pappr+Pappr(A0 −B0R

−1
0 CT0 D0)

T + CT0 (I −D0R
−1
0 DT

0 )C0

− PapprB0R
−1
0 BT

0 Pappr = 0

(2.74)

The near-optimal control to be implemented to the original full-order can be now con-

structed as

usuboptappr (t) = −F optapprx1(t) = −
[
F optappr 0

]x1(t)
x2(t)

 = −FapprxSP (t) (2.75)
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Using this near-optimal control in (2.73) and the performance criterion, produces

ẋSP (t) = (ASP −BSPFappr)xSP (t) (2.76)

JSP =

∫ ∞
0

[
xTSP (t)CTCxSP (t) + uT (t)Ru(t)

]
dt

=
1

2

∫ ∞
0

xTSP (t)
[
CTC + F TapprRFappr

]
xSP (t)dt

(2.77)

It can be shown that integral (2.77), evaluated along trajectories of (2.76), is given by

JapprSP =
1

2
xTSP (0)V appr

SP xSP (0) (2.78)

where V appr
SP satisfies the following algebraic Lyapunov equation

(ASP−BSPFappr)V appr
SP +V appr

SP (ASP−BSPFappr)T+CTSPCSP+F TapprRFappr = 0 (2.79)

For the considered wind turbine model, the results are presented in Table 2.3 for

the cases when the singularly perturbed system is reduced to order two, four, and six.

r Jr

2 4.3303

4 1.3066

6 0.7493

8 0.7390

Table 2.3: Comparison of the optimal and reduced-order near-optimal performance
criteria

It can be seen from this Table 2.3 and system response figures presented in this

section, that the system model order reduction to r = 4 produces excellent results both

from the system response and optimality points of view, which indicates superiority

of the singular perturbation approach over the balancing approach for the considered

DFIG system.
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2.9 Wind Speed Variations

The performances of the reduced models of the considered WTG with DFIG are also

tested for wind turbulences and gust. In this chapter, the wind turbulences and gust

shown in Figure 2.12 are considered. The total variation in wind speed was modelled

after the normal turbulence model (NTM) [58], for an average of 9m/s, with the addition

of a wind gust (modelled as a hamming-shaped dip in wind speed) of width 30s. We

divided the total variance suggested by the NTM into turbulence and gust variations

with the proportions of 1/3 and 2/3, respectively.

Figure 2.12: Wind turbulences and wind gust

The responses of the reduced balanced truncation and residualization and singular

perturbation models to wind turbulences and gust were compared to that of the full-

order system in Figures 2.13, 2.14, and 2.15, respectively for the second, fourth, and

sixth orders.

The mean and maximum absolute errors, with respect to the full-order system,

were also calculated and given in Tables 2.4 and 2.5, respectively, to compare the per-

formances of the reduced models. Both mean and maximum absolute error values show

the superiority of the singular perturbation reduced model over the balanced trunca-

tion and residualization reduced models. It should be pointed out that by employing
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the appropriate filters, the noise appearing in Figures 2.13, 2.14, and 2.15 could be

removed.

Figure 2.13: Response of the original and second-order reduced models to wind
turbulences

Figure 2.14: Response of the original and fourth-order reduced models to wind
turbulences
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Figure 2.15: Response of the original and sixth-order reduced models to wind
turbulences

r Balanced Balanced Singular

Truncation Residualization Perturbation

2 −3.2165× 10−1 1.4950× 10−3 −1.4784× 10−4

4 −8.4731× 10−2 1.5982× 10−3 −2.3263× 10−5

6 −2.7915× 10−1 1.6708× 10−3 4.5829× 10−5

Table 2.4: Mean error considering wind turbulences and wind gust

r Balanced Balanced Singular

Truncation Residualization Perturbation

2 1.1936 1.629 1.3152

4 0.8489 3.3711 0.45793

6 0.82205 0.83902 0.60111

Table 2.5: Maximum absolute error considering wind turbulences and wind gust
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2.10 Voltage Sag

To study the dynamic performance of the different reduced order models, a large-signal

disturbance voltage sag is also considered in this chapter. A voltage drop of 50% is

applied to the original and reduce models for 1 sec. The responses of the reduced

balanced truncation and residualization and singular perturbation models to voltage

sag were compared to that of the full-order system in Figure 2.16, Figure 2.17, and

Figure 2.18 , respectively for the second, fourth, and sixth orders.

The mean and maximum absolute errors, with respect to the full-order system,

were also calculated and given in Tables 2.6 and 2.7, respectively, to compare the per-

formances of the reduced models. Again, the mean and maximum absolute error values

show the advantage the singular perturbation reduced model has over the balanced

truncation and residualization reduced models.

Figure 2.16: Response of the original and second-order reduced models to voltage sag
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Figure 2.17: Response of the original and fourth-order reduced models to voltage sag

Figure 2.18: Response of the original and sixth-order reduced models to voltage sag
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r Balanced Balanced Singular

Truncation Residualization Perturbation

2 5.4951 1.3952× 10−1 −6.4284× 10−3

4 3.945 1.4344× 10−1 −1.9616× 10−3

6 −9.8912× 10−1 1.4246× 10−1 −1.2117× 10−4

Table 2.6: Mean error considering voltage sag

r Balanced Balanced Singular

Truncation Residualization Perturbation

2 11.092 7.0802 10.14

4 9.2731 10.04 4.0685

6 1.1399 1.694 1.1448

Table 2.7: Maximum absolute error considering voltage sag

2.11 Conclusion

In this chapter, an eighth-order wind turbine system with the DFIG connected to the

utility grid is investigated. Two methods were used to obtain the reduced-order model

of the wind turbine system and to design the corresponding linear-quadratic near-

optimal controllers: the methods of system balancing (including balanced truncation

and balanced residualization) and singular perturbations. The original and reduced

systems were compared through their step responses as well as from the optimality point

of view. Simulation and comparisons were also performed when wind turbulence and a

large-signal disturbance are applied to the system. The results presented clearly indicate

that the method of singular perturbations is superior to that of system balancing for

this particular DFIG system.
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Chapter 3

Wind Farm Order Reduction via Balancing and Cross

Gramians Methods

3.1 Introduction

The power generated by a wind turbine depends, in general, on the wind speed and the

size of the turbine itself. It ranges, in a modern wind turbine, from hundreds of watts

to several megawatts. Therefore, a large number of identical or different wind turbine

generators (WTGs) are usually placed in one location to generate a large amount of

electrical power. Such a setting is called a wind farm. Wind turbines are usually

distributed uniformly in rows more than three times the lengths of their blades apart

from each other and with more than five times the lengths of the blades between the

rows. This is usually done for an aesthetic purpose and to increase visual perspicacity

especially if the wind farm is built in birds’ migration paths. There are many common

trends available in modeling wind farms, such as the detailed modeling method and

the equivalent modeling method. In the detailed method [59, 60], each wind turbine

in the farm is represented with its complete dynamic equations. As the number of

wind turbines increases, the order of the farm’s mathematical model increases too,

leading to more complexity and longer simulation times. Assuming that equating the

wind speed experienced by identical wind turbines has low impact on accuracy, several

studies [21, 61–63] showed that a wind farm with a large number of identical wind

turbines can be approximated by an equivalent model containing only a single turbine.

The size, rated, and reactive powers of the equivalent model are equal to the sum of

sizes, total rated, and total reactive powers of these wind turbines, respectively.

Alternatively, reduction methods based on control theory can be utilized to obtain

reduced order models of wind farms. In balanced truncation [24], the controllability
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and observability Gramians are obtained by solving the algebraic Lyapunov equations.

The balanced realization of the original system is truncated after that to obtain the

reduced-order system. For further reduction in complexity and simulation time, the

cross Gramian method can also be used for wind farm order reduction [64, 65]. In this

method only one Sylvester equation needs to be solved to obtain the cross Gramian

which carries information about the controllability and observability. Truncation is

applied after that to obtain the reduced-order system without the need for balancing.

For WECS, studying controllability and observability has a major impact on the

efficiency of the control system since it provides important information about the dy-

namic behavior of the WECS and the relation between the states, control inputs, and

outputs. Controllability refers to the ability to control and move the system from

any initial state to any desired final state using the appropriate input within finite

time. Observability on the other hand, is the ability to estimate the complete dynamic

behavior of the states of the system using only the output information [66]. In con-

trol theory, the full rank test for the controllability and observability matrices gives

a precise answer to whether or not a given system is controllable and/or observable,

respectively. Rather than giving a binary answer to the question about controllability

and observability of the system, measuring the degree of controllability (DOC) and the

degree of observability (DOO) provides further quantitative information about ”how

controllable/observable” the system is [67]. The relationship between DOC and MPPT

efficiency of the wind turbine is studied in [68] for the one-mass and two-mass models.

It is observed that the variation of DOC versus the structural parameters of the wind

turbine is in accordance with that of MPPT efficiency, therefore higher MPPT effi-

ciency can be achieved with the increase of DOC. Furthermore, reducing rotor inertia

and optimum tip-speed ratio increase the DOC measure of the WECS [68, 69]. The

influence of model parameters on the controllability of DFIG-based WECS is further

investigated in [70], where it is shown that a high ratio of DFIG leakage reactance to

its resistance results in uncontrollable slow resonant modes.

In this chapter, the Hankel singular values are adopted as measures of the controlla-

bility and observability of the wind farm system. The value of each HSV has a physical
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meaning related to the energy content in the corresponding state of the system. The

higher the values of the HSV the larger the DOC and the DOO.

The rest of this chapter is organized as follows. Section 3.2 presents the state-space

representation of a linearized wind farm model. In Section 3.3, the balanced truncation

and balanced residualization methods are used to reduce the order of wind farm models

of different sizes, and the DOC and DOO of the reduced systems are calculated. Section

3.4 provides a theoretical background about the cross Gramian and its application to

the order reduction of the wind farm model. Section 3.5 concludes the chapter.

3.2 State-space Representation of a Wind Farm

Wind turbines are nonlinear systems, for the power generated by a wind turbine is

proportional to the third power of wind speed. In order to simplify the model of

the system and to design suitable linear controllers, a linearization process is usually

performed. The behavior of a nonlinear system is approximated in the vicinity of its

equilibrium points. Therefore, this approximation may not be valid for large deviations

from these nominal points. In this section, the linearization process for the farm of

one-mass wind turbines with DFIG presented in [24] is considered. Assuming that the

wind turbine is operating under the maximum power point tracking conditions, the

mechanical power collected from the wind is given by [5]:

Pm =
1

2
ρπR2v3Cp(λ, β) (3.1)

the mechanical and electromechanical torques, per unit, can be expressed as follows [24]

Tm =
Kpv

3

ωr
(3.2)

Te = Kpω
2
r (3.3)

where v is the wind speed per unit and ωr is the angular speed of the rotor per unit.

The scaling factor kp depends on the turbine characteristics and indicates the maximum
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output power of the turbine at the base wind speed. It is given by

kp =
ρπR2v3Cp(λopt, βopt)v

3

2Pbase
(3.4)

Recalling the nonlinear swing equation (2.6), in which the turbine rotor and gener-

ator are considered as one-mass, the linearization process can be performed for small

deviations in the wind and rotor speeds, v∆ and ωr∆, respectively, from the initial

values, i.e. v = v0 + v∆, ω = ω0 + ω∆. By substituting (3.2) and (3.3) in (2.6), we

get [24]

2Ht
dω∆
dt

=
3Kpv

2
0

ω0
v∆ − (

−Kpv
3
0

ω2
0

+ 2Kpω0)ω∆ (3.5)

Equation (3.5) can be rewritten to describe the state space representation of the wind

turbine as follows [24]

dω∆
dt

=
3Kpv

2
0

2Htω0
v∆ −

1

2Ht
(
−Kpv

3
0

ω2
0

+ 2Kpω0)ω∆ (3.6)

P∆ = 3Kpω
2
0ω∆ (3.7)

where the input is the wind speed deviation while the output is the electrical power

deviation. The general linearized state-space model is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(3.8)

where A,B,C, and D represent the system state, input, output, and feed forward

matrices, respectively. The state-space equations for a wind farm containing N wind

turbine generators are

[ω̇∆](n×1) = [A]n×n · [ω∆]n×1 + [B]n×n · [V ∆]n×1 (3.9)

P F∆ = [C]1×n · [ω∆]n×1 (3.10)

where PF∆ is the output power of the wind farm and v∆ is the wind velocities vector.
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Elements in matrices A, B and C are calculated as follows [24]

ai,i = − 1

2Hti

(
−Kpiv

3
0i

w2
0i

+ 2Kpiw0i), ai,j = 0

bi,i = (
Kpiv

3
0i

2Htiw
2
0i

), bi,j = 0

c1,i = 3Kpjw
2
0j

(3.11)

where i, j = 1, 2, ...n and i 6= j. For linearization and simulation purposes, we assume

wind turbines to be working at a base wind speed equal to 12[m/s], and producing an

output power of 0.73 per unit (pu). Furthermore, we assume that v0 = 1 pu, ω0 = 1

pu and Kp = 0.73.

3.3 Wind Farm Model Reduction via Balanced Truncation and Bal-

anced Residualization Methods

It can be observed from (3.11) that when the inertia H has identical elements then

A ∈ <n×n and B ∈ <n×n reduce into diagonal matrices with identical elements on

their diagonal, whereas C ∈ <1×n assumes the shape of a row vector with identical

values. In this study, the matrix B will be represented in two different forms. In

the first form, B ∈ <n×n is a diagonal matrix calculated using (3.11). In the second

form, B will be a column vector with elements equal to those of the diagonal of the

corresponding B ∈ <n×n matrix. Using these two forms allows us to compare the

degree of controllability and observability for each system form. Using the second form

of B the system matrices are given by

A =



a 0 · · · 0

0 a · · · 0

...
...

. . .
...

0 · · · · · · a


, B =



b

b

...

b


, C =

[
c c · · · c

]
(3.12)
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Using equation (2.24), the transfer function in this case is given by

G(s) =
[
c c · · · c

]


s− a 0 · · · 0

0 s− a · · · 0

...
...

. . .
...

0 · · · · · · s− a



−1 

b

b

...

b


(3.13)

G(s) =
[

c
s−a

c
s−a · · · c

s−a

]


b

b

...

b


(3.14)

G(s) =
c

s− a
+

c

s− a
+ · · ·+ c

s− a
(3.15)

For n terms (n wind turbines), the system transfer function is

G(s) = n · cb

s− a
(3.16)

To compare this result with that of the balanced truncation method, the algebraic

Lyapunov equations (2.26) and (2.27) are used to calculate the controllability and ob-

servability Gramian matrices, respectively

WC =



−b2
2a

−b2
2a · · · −b2

2a

−b2
2a

−b2
2a · · · −b2

2a
...

...
. . .

...

−b2
2a · · · · · · −b2

2a


, WO =



−c2
2a

−c2
2a · · · −c2

2a

−c2
2a

−c2
2a · · · −c2

2a
...

...
. . .

...

−c2
2a · · · · · · −c2

2a


(3.17)

The product of the Gramian matrices for this case is

WCWO =



b2c2

2a2
b2c2

2a2
· · · b2c2

2a2

b2c2

2a2
b2c2

2a2
· · · b2c2

2a2

...
...

. . .
...

b2c2

2a2
· · · · · · b2c2

2a2


(3.18)
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It is easy to see that WCWO has rank one, with a single non-zero eigenvalue, leading

to the one dominant Hankel Singular value, that is

σ1 =
bc

a
, σ2 = · · · = σn = 0 (3.19)

This means that the system can be reduced to a first-order system.

In this chapter, MATLAB simulation was performed on wind farms containing dif-

ferent numbers of identical wind turbines. Wind farms containing 50, 100, 200, and 300

turbines are considered in this study. Using the balancing method, regardless of the

number of turbines in the farm, all the HSVs, other than the first one, were found to be

zero. Table 3.1 shows the first five HSVs over different wind farm sizes. These results

prove that any wind farm with identical wind turbines can be reduced to a first-order

system when the wind speed is assumed equal for all the turbines in that farm.

Number of Turbines in the Farm

HSVs 50 100 200 300

1 54.7500 109.5000 219.0000 328.5000

2 5.4706× 10−15 1.0941× 10−14 2.1882× 10−14 3.2823× 10−14

3 5.4706× 10−15 1.0941× 10−14 2.1882× 10−14 3.2823× 10−14

4 5.4706× 10−15 1.0941× 10−14 2.1882× 10−14 3.2823× 10−14

5 5.4706× 10−15 1.0941× 10−14 2.1882× 10−14 3.2823× 10−14

Table 3.1: First five HSVs for wind farms with different numbers of identical SISO
wind turbines

In general, wind speed is not the same for all wind turbines in a farm, especially for

the turbines placed in different rows within the same farm, or those placed long distances

apart from each other. The system matrices are calculated in the same manner using

(3.11). In this case, the matrix B is a column vector with different elements, and the

system transfer function is calculated as

G(s) =
[

c
s−a

c
s−a · · · c

s−a

]


b1

b2
...

bn


(3.20)
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G(s) =
c

s− a
[b1 + b2 + · · ·+ bn] (3.21)

This system is still a first-order system.

Another way to represent matrix B is by putting it in a diagonal form, with non-

identical elements.

A =



a 0 · · · 0

0 a · · · 0

...
...

. . .
...

0 · · · · · · a


, B =



b1 0 · · · 0

0 b2 · · · 0

...
...

. . .
...

0 · · · · · · bn


, C =

[
c c · · · c

]
(3.22)

The simulation results were similar to the previous case in that only the first HSV

in each wind farm is non-zero. Table 3.2 shows the first five HSVs over different wind

farms consisting of 50, 100, 200, and 300 identical wind turbines. Matrix B ∈ <n×n

has the corresponding appropriate size in each case. Comparing the HSVs in Table 3.1

with the corresponding HSVs in Table 3.2, it can be seen that the system is still very

well approximated by a first-order system, but it is significantly less controllable and

observable when the input matrix B is in the diagonal form. The controllability and

observability, in terms of the first HSV, were approximately down by 85% (form 54.75

to 7.7428) for N = 50, and 94% (from 328.5 to 18.9659) for N = 300.

Number of Turbines in the Farm

HSVs 50 100 200 300

1 7.7428 10.9500 15.4856 18.9659

2 7.6588× 10−16 1.0886× 10−15 1.5434× 10−15 1.8919× 10−15

3 7.6588× 10−16 1.0886× 10−15 1.5434× 10−15 1.8919× 10−15

4 7.6588× 10−16 1.0886× 10−15 1.5434× 10−15 1.8919× 10−15

5 7.6588× 10−16 1.0886× 10−15 1.5434× 10−15 1.8919× 10−15

Table 3.2: First five HSVs for wind farms with different numbers of identical MIMO
wind turbines

The accuracy of the reduced-order system can be measured by comparing its step

response to that of the original system. The maximum absolute and mean errors in the
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step response are calculated for both the balanced truncation and balanced residual-

ization methods. Note that the mean error (e) is given by

e =

∑n
i=1 ei
n

(3.23)

where ei is the error at instant ti. The maximum absolute and mean errors were zero

regardless of the size of the wind farm, which consolidates our conclusion that any wind

farm with identical wind turbines can be reduced to a first-order system when the wind

speed is assumed equal over all the turbines in that farm.

Choosing different values for the inertia in (3.11) means that the wind farm may

contain different turbines. The corresponding system would have the following matrices

if the matrix B is put in the vector form

A =



a1 0 · · · 0

0 a2 · · · 0

...
...

. . .
...

0 · · · · · · an


, B =



b1

b2
...

bn


, C =

[
c c · · · c

]
(3.24)

A MATLAB simulation was performed on wind farms containing 50, 100, 200, and

300 different wind turbines, with inertias distributed uniformly between 3[s] and 5[s]

[24]. Using the balancing method, the first five HSVs are shown in Table 3.3. The first

two HSVs of each wind farm are the most dominant. Hence, the system can be reduced

to a second-order system.

Number of Turbines in the Farm

HSVs 50 100 200 300

1 54.4651 108.8727 217.9701 326.8562

2 0.2835 0.6246 1.0252 1.6360

3 0.0012 0.0026 0.0045 0.0076

4 5.998× 10−6 1.0588× 10−5 1.8815× 10−5 3.0016× 10−5

5 2.071× 10−8 4.2423× 10−8 6.6234× 10−8 1.2725× 10−7

Table 3.3: First five HSVs for wind farms with different numbers of non-identical,
uniformly distributed SISO wind turbines

Table 3.4 lists the HSVs when putting the matrix B into the diagonal form. For
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each wind farm, the system can still be reduced to a second-order system, since the

first two HSVs are the most dominated. Again, comparing the HSVs in Table 3.3 to

the corresponding HSVs in Table 3.4, we can deduce that the system is less controllable

and less observable when the matrix B is in the diagonal form. Furthermore, the

approximation by the first-order system is not as accurate as in the previous case, since

the second and third HSVs now have increased to 0.5572 and 0.0371, respectively.

Number of Turbines in the Farm

HSVs 50 100 200 300

1 7.7226 10.9185 15.4491 18.9184

2 0.5572 0.8270 1.0595 1.338

3 0.0371 0.0534 0.0709 0.0914

4 0.0025 0.0034 0.0045 0.0057

5 0.0001 0.0002 0.0002 0.0003

Table 3.4: First five HSVs for wind farms with different numbers of non-identical,
uniformly distributed MIMO wind turbines

In the third simulation scenario, the inertia values are generated randomly such that

they are clustered around 3[s], 5[s], and 7[s]. Matrices A, B, and C, are then calculated

using (3.11). Wind farms consisting of 60, 120, 240, and 300 turbines are considered,

first when matrix B is in the column vector form, and second when matrix B is in the

diagonal form.

For the matrix B in the column vector form, the simulation results are shown

in Table 3.5. The first three HSVs were more significant than the remaining HSVs.

Therefore, the system can be reduced to a third-order system. When the matrix B is

put in the diagonal form, the simulation results for the first five HSVs are as shown

in Table 3.6. The first three HSVs were also the most significant HSVs, therefore, the

system was also reduced to the third-order. However, comparing these results with the

corresponding HSVs in Table 3.6, it can be concluded that the system is still far less

controllable and observable when matrix B is in the diagonal form.
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Number of Turbines in the Farm

HSVs 60 120 240 300

1 63.8425 127.7102 255.1476 318.7120

2 1.8305 3.6360 7.5357 9.6359

3 0.0266 0.0531 0.1155 0.1506

4 0.0002 0.0004 0.0009 0.0013

5 3.645× 10−6 9.028× 10−6 1.572× 10−5 2.792× 10−5

Table 3.5: First five HSVs for wind farms with different numbers of non-identical,
normally distributed SISO wind turbines

Number of Turbines in the Farm

HSVs 60 120 240 300

1 8.3610 11.8255 16.7148 18.6812

2 1.4157 1.9953 2.8725 3.2482

3 0.1707 0.2413 0.3557 0.4061

4 0.0173 0.0232 0.0329 0.0382

5 0.0019 0.0031 0.0041 0.0055

Table 3.6: First five HSVs for wind farms with different numbers of non-identical,
normally distributed MIMO wind turbines

3.4 Model Order Reduction via Cross Gramian

In general, model order reduction via balancing methods (truncation and residualiza-

tion) is relatively expensive computationally. Calculating the controllability and ob-

servability Gramians using Lyapunov equations (2.26) and (2.27), followed by balancing

and HSV calculation requires computational cost and storage of O(n3) and O(n2), re-

spectively. An alternative approach that requires calculation of only one single matrix

called the cross Gramian matrix, is proposed in [71]. In this section, model order

reduction is achieved using what is called the cross Gramian matrix, which contains

information about both controllability and observability and corresponds to a solution

of the Sylvester equation.

Cross Gramian was first defined in 1981 by Fernando [71] for single input single

output (SISO) linear dynamic systems given by

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t)

(3.25)
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where x(t) ∈ <n, are state variables, u(t) ∈ <m are control inputs, and y(t) ∈ <p

are measured outputs. Assuming that the system in (3.25) is asymptotically stable,

controllable observable, and square, i.e., the number of inputs equals the number of

outputs m = p, the cross Gramian matrix is defined by

WX =

∫ ∞
0

eAtBCeAt dt (3.26)

and represented by the solution to the algebraic Sylvester equation

AWX +WXA = BC (3.27)

In this context, the Sylvester algebraic equation (3.27) has a unique solution if and only

if A and −A have distinct eigenvalues [72]. The definition in (3.26) was extended in

[73], [74] and [75] to include Multi-Input Multi-Output (MIMO) systems. Furthermore,

for MIMO symmetric systems, the relation between controllability and observability,

on one hand, and the cross Gramian on the other hand, is given by [76]

W 2
X = WCWO (3.28)

from which the Hankel singular values of system (3.25) are given by the magnitude of

the eigenvalues of the cross Gramian

σi = |λ(WX)| =
√
λ(WCWO) (3.29)

For model order reduction, the cross Gramian matrix obtained as a solution for

Sylvester equation (3.27) is decomposed using the singular value decomposition (SVD)

and then partitioned without any need for balancing as follows

WX = UΣV T =
[
U1 U2

]Σ1 0

0 Σ2

V T
1

V T
2

 (3.30)

where U, V ∈ <n×n, Σ1 = diag{σ1, σ2, . . . , σr}, Σ2 = diag{σr+1, σ2, . . . , σn}. Here,
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the order of the reduced model r can be chosen based on the following threshold criteria

n∑
k=r+1

σk ≤ ε (3.31)

By taking the projection in the U1 subspace direction [77], the reduced order system

can be defined as

ẋc(t) = Acxc(t) +Bcu(t)

yc(t) = Ccxc(t)

(3.32)

where Ac = UT1 AU1, Bc = UT1 B, Cc = CU1, xc0 = UT1 xc0

3.4.1 Wind Farm Model Reduction via the Cross Grammian

In this section, the cross Gramian is used to investigate model order reduction for the

system (3.11). A MATLAB simulation for wind farms containing different numbers

of identical wind turbines was performed. Wind farms containing 50, 100, 200, and

300 turbines are considered again in this section. Using the cross Gramian truncation

method, with a threshold value of 0.01 (see equation (3.31)), we got first-order reduced

system models for the wind farms of different sizes. These results agree with those we

got using the balanced truncation and residualization methods, showing that any wind

farm with identical wind turbines can be reduced to a first-order system when the wind

speed is assumed to be equal over all the turbines in that farm.

To compare the accuracy of the reduced-order system to that of the original full-

order system, the maximum absolute and mean errors in the step responses of the sys-

tems reduced using balanced truncation, balanced residualization, and cross Gramian

methods are calculated. The results are shown in Tables 3.7 and 3.8, respectively.

The maximum absolute and mean error values show that a first-order approximation

to the original system is accurate. Comparing these results to those of the balanced

truncation and balanced residualization methods, where the maximum absolute and

mean errors were zero for all wind farm sizes, we conclude that the balancing method

is slightly more accurate when reducing wind farms that comprise identical turbines
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Number of Turbines in the Farm

Reduction Method 50 100 200 300

Balanced Truncation 0 0 0 0

Residulization 6.31× 10−30 4.74× 10−29 1.81× 10−27 1.12× 10−27

Cross Gramian 2.56× 10−13 1.023× 10−12 2.44× 10−12 2.96× 10−12

Table 3.7: Maximum absolute errors in the step responses of the order-reduced wind
farms comprising different numbers of identical SISO WTs

Number of Turbines in the Farm

Reduction Method 50 100 200 300

Balanced Truncation 0 0 0 0

Residulization 3.22× 10−32 2.42× 10−31 9.23× 10−30 5.69× 10−30

Cross Gramian −6.17× 10−14 3.10× 10−13 1.08× 10−13 8.89× 10−13

Table 3.8: Mean errors in the step responses of the order-reduced wind farms
comprising different numbers of identical SISO WTs

into first-order systems. Choosing a different threshold value would reduce the system

into an order higher than one, with smaller maximum absolute and mean errors. The

step responses of the original and reduced-order systems for each of the aforementioned

reduction methods are shown in Figure 3.1.

Figure 3.1: Step responses of the reduced order system models of a wind farm
comprising 300 identical WTs

Wind farms containing wind turbines with different inertia are also studied using

the cross Gramian method. Wind farms containing 50, 100, 200, and 300 different
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wind turbines are considered here. The inertia values of these turbines were uniformly

distributed between 3[s] and 5[s]. Using MATLAB simulation, the system is successfully

reduced to a second-order system for a threshold value of 0.01 (see equation (3.31)). To

compare the accuracy of the reduced-order system to the original full-order system, the

maximum absolute and mean errors in the step responses, for each of the aforementioned

methods, are calculated. The results are shown in Tables 3.9–3.10. It can be observed

that the maximum absolute and mean error values are relatively small. However, error

values increase as the wind farm size increases, since the precision of reducing the farm

size to second-order decreases.

Number of Turbines in the Farm

Reduction Method 50 100 200 300

Balanced Truncation 5.307× 10−4 0.00121 0.0023 0.0035

Residulization 0.002 0.0047 0.0091 0.0138

Cross Gramian 0.00502 0.011 0.0218 2.003× 10−5

Table 3.9: Maximum absolute errors in the step responses of reduced wind farms
comprising different numbers of non-identical uniformly distributed SISO WTs

Number of Turbines in the Farm

Reduction Method 50 100 200 300

Balanced Truncation 1.27× 10−4 2.9× 10−4 5.6× 10−4 8.54× 10−4

Residulization −9.17× 10−6 −4.1× 10−5 −4.7× 10−5 −7.62× 10−5

Cross Gramian 0.0007 0.0015 0.0032 −6.36× 10−6

Table 3.10: Mean errors in the step responses of reduced wind farms comprising
different numbers of non-identical uniformly distributed SISO WTs

Furthermore, the step responses of the original and reduced-order systems for each

of the aforementioned reduction methods are shown in Figure 3.2.

Wind turbines with inertias distributed normally around 3[s], 5[s] and 7[s] are also

investigated here, using the cross Gramian method. Wind farms containing 60, 120,

240, and 300 different wind turbines are considered. MATLAB simulation shows that

these systems can be reduced into the third-order using a threshold equal to 0.01 (see

equation (3.31)). The maximum absolute and mean errors of the step responses are

calculated to test the accuracy of this reduction, as shown in Tables 3.11–3.12. Despite

the increase in error values with the increase in the size of the wind farm, the low values
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of the maximum absolute and mean errors show that a third-order model provides a

reasonable approximation to the original system. The step responses of the original and

reduced-order systems for each of the aforementioned reduction methods are plotted in

Figure 3.3.

Figure 3.2: Step responses of reduced-order system models for a wind farm comprising
300 non-identical uniformly distributed WTs

Number of Turbines in the Farm

Reduction Method 60 120 240 300

Balanced Truncation 2.166× 10−4 1.871× 10−4 6.581× 10−4 0.0012

Residulization 7.193× 10−4 6.297× 10−4 0.0022 0.0024

Cross Gramian 4.543× 10−3 0.0028 0.0113 0.0180

Table 3.11: Maximum absolute errors in the step responses of reduced wind farms
comprising different numbers of non-identical normally distributed WTs

Number of Turbines in the Farm

Reduction Method 60 120 240 300

Balanced Truncation 2.62× 10−5 3.31× 10−5 1.23× 10−4 −4.43× 10−6

Residulization 1.42× 10−5 −7.22× 10−6 −6.34× 10−6 7.56× 10−5

Cross Gramian 9.91× 10−4 3.73× 10−4 0.0018 0.0047

Table 3.12: Mean errors in the step responses of reduced wind farms comprising
different numbers of non-identical normally distributed WTs
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Figure 3.3: Step responses of reduced-order system models for a wind farm comprising
300 non-identical normally distributed WTs

3.5 Conclusions

In this chapter, we discussed the reduced models of wind farms of different sizes using

the balancing techniques and the cross Gramian method. The cross Gramian trun-

cation method behaves in a similar manner to the balanced truncation method, i.e.,

the error has relatively higher values at the low and mid frequencies and relatively

low values at high frequencies. The order of the reduced system depends, significantly,

on the selected threshold value. However, the system produced by the cross Gramian

truncation method seems to be less accurate than the corresponding reduced system

obtained using the balancing techniques. Nevertheless, the cross Gramian method re-

duces the computational complexity by calculating only one Gramian without the need

for balancing. Furthermore, examining the degree of controllability and observability of

the system, in both the vector and diagonal forms of the control input matrix, showed

a considerable loss of controllability and observability in the case of the latter form.
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Chapter 4

Optimal Control of Wind Turbine Systems via Time-Scale

Decomposition

4.1 Introduction

Wind turbines, having mechanical and electrical components, are known to operate in

at least two time-scales: the slow time scale, in which mechanical state variables evolve,

and the fast time scale, in which electrical and electronic state variables evolve. The

result is the ”stiff” numerical problem that occurs naturally in power systems due to the

presence of ”parasitic” parameters, such as small time constants, masses, resistances,

inductances, capacitances, moments of inertia, etc. Singular perturbation methods

eliminate the stiffness problem and decouple the mathematical model of the original

system into slow and fast reduced-order subsystems. A reduced-order system can be

obtained by ignoring the fast subsystem and compensating for its effect by introducing

a ”boundary layer” correction to the slow subsystem towards a better approximation

of the original system. Various methods have been proposed [54,78] to obtain the exact

slow and fast subsystems. The Chang transformation [79] has been widely used to get

the exact pure-slow and pure-fast subsystems, even when the perturbation parameter

ε is not very small. Moreover, a number of recursive algorithms [14, 80, 81] have been

developed to avoid the problems involving ill-conditioned systems and to obtain an

approximate solution to the ARE, which can be decomposed after that into slow and

fast parts.

The main obstacles associated with the renewable resources are their intermittent

behavior and their dependence on the geographical location and weather conditions.

Such randomness and uncertainty introduce nonlinearities when modeling the system

dynamics. Therefore, designing optimal and robust controllers is crucial to dealing
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with all the nonlinearities and uncertainties associated with energy systems. Different

control strategies that have been applied to WECS are reviewed in [82–84].

The most vital steps in optimal control problems are defining the objective func-

tion, which specifies a relationship between the state and control variables, and finding

a control law that optimizes this function subject to the given constraints. Multi-

objective optimization problems deal with more than one objective function simultane-

ously. Maximizing the extracted energy while minimizing the cost of production and

fatigue damage is the most common setup in the literature involving multi-objective

optimization problems of energy systems.

Optimal control of the WECS, based on time scale analysis, has been studied by

many researchers [29–31,85–87]. LQR and LQG controllers were designed in [85,87] for

deterministic and stochastic wind energy systems with permanent magnet synchronous

generators using time-scale analysis. Independent linear optimal controllers were de-

signed for the slow and fast subsystems of a DFIG-based wind turbine in [13, 31] by

decomposing the algebraic Riccati equation of the singularly perturbed wind turbine

system into two reduced-order AREs, corresponding to the slow and fast time scales.

In [86], a WECS with Gaussian noise is decoupled into lower-order slow and fast sub-

systems. Then, slow and fast Kalman filters are designed separately to estimate the

states along with their corresponding slow and fast model predictive controllers.

In this chapter, the method of singular perturbation will be used to design LQR,

Kalman filter, and LQG optimal controllers in two independent time scales for a fifth-

order, single-cage DFIG wind turbine. Here, the ARE of the singularly perturbed wind

turbine system is decomposed into two reduced-order AREs that correspond to the slow

and fast time scales. Using this method allows designing linear controllers for the slow

and fast subsystems independently, thus, achieving complete separation and parallelism

in the design process. The advantages of such an approach are alleviating the stiffness

difficulties and reducing the computational complexities and dimensionality burdens

resulting from the increased penetration of wind turbines to the power grid.

The rest of this chapter is organized as follows. The next section reviews the exact

decomposition method of the ARE of the singularly perturbed system. The optimal
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performance-invariance of the LQR under the similarity transformation is considered

in Section 4.2.1. In Section 4.2.2, the slow and fast decomposition of the optimal

performance criteria is provided. The Kalman filtering time scale analysis is reviewed

in Section 4.3. The effect of the similarity transformation on the optimal performance

of Kalman filter is derived in Section 4.3.1. In Section 4.4, optimal LQG control is

discussed. The performance index of the LQG under the similarity transformation and

LQG slow and fast optimal performance criteria are derived in Section 4.4.1 and 4.4.2,

respectively. The state-space model of the fifth-order, single-cage DFIG wind turbine

and the corresponding simulation results are presented in Section 4.5. The chapter is

concluded in Section 4.6.

4.2 Exact Decomposition of the Algebraic Riccati Equation

Consider the linear singularly perturbed control system

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t),

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t),

(4.1)

where xi(t) ∈ <n, i = 1, 2, u(t) ∈ <m are the state variables and control variables, re-

spectively. ε is a small positive singular perturbation parameter that indicates system

separation into slow and fast time scales. We assume that the singularly perturbed sys-

tem (4.1) has the standard singular perturbation form [54]. Hence, the fast subsystem

matrix A4 is nonsingular, which is a standard assumption in the singular perturbation

theory [54]. The corresponding linear-quadratic optimal control problem of (4.1) is

defined by

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t), x1(0) = x10

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t), x2(0) = x20

(4.2)
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where the control vector u ∈ <m, has to be chosen such that the following performance

criterion, J , is minimized

min
u
J = min

u

1

2

∫ ∞
0

{x1(t)
x2(t)

T Q
x1(t)
x2(t)

+ uT (t)Ru(t)

}
dt (4.3)

where R > 0 and Q ≥ 0 are the weighting matrices. The optimizing performance

criterion (4.3) of the closed-loop optimal control problem, subject to the singularly

perturbed system differential equation (4.2), has the solution

u(t) = −R−1BTPrx(t) = −F1x1 − F2x2 (4.4)

where Pr is the positive semidefinite solution of the regulator algebraic Riccati equation

given by [88]

0 = PrA+ATPr +Q− PrZPr, (4.5)

with

A =

 A1 A2

1
εA3

1
εA4

 , Q =

Q1 Q2

QT2 Q3

 (4.6)

B =

 B1

1
εB2

 , Pr =

 P1r εP2r

εP T2r εP3r

 , Z = B1R
−1BT

2 ,

The optimal regulator gains F1 and F2 are given by

F1 = R−1(BT
1 P1r +BT

2 P
T
2r),

F2 = R−1(εBT
1 P2r +BT

2 P3r).

(4.7)

The solution of the algebraic Riccati equation (4.5) will be found in term of so-

lutions of the reduced-order, pure slow and pure fast algebraic Riccati equation. For

this purpose, a nonsingualr transformation T [55, 89] is applied for the state-costate

equations such that they become completely decoupled as independent slow and fast
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subsystems in the form

ζ̇s(t) = (a1 + a2Prs)ζs(t)

εζ̇f (t) = (b1 + b2Prf )ζf (t)

(4.8)

where Prs and Prf are the unique solutions of the exact pure-slow and exact pure-fast

completely decoupled algebraic regulator Riccati equations

0 = Prsa1 − a4Prs − a3 + Prsa2Prs

0 = Prfb1 − b4Prf − b3 + Prfb2Prf

(4.9)

Matrices ai, bi, i = 1, 2, 3, 4, can be found in [55,89]. The nonsingular transformation T

is given by

T = (Π1 +Π2Pr) (4.10)

The slow and fast subsystems in the new coordinate are related by

ζs(t)
ζf (t)

 = T

x1(t)
x2(t)

 (4.11)

Even more, the global solution Pr can be obtained from the reduced-order exact pure-

slow and pure-fast algebraic Riccati equations, that is

Prsf =

(
Ω3 +Ω4

Prs 0

0 Prf

)(Ω1 +Ω2

Prs 0

0 Prf

)−1 (4.12)

Known matrices Ωi, i = 1, 2, 3, 4, and Π1, Π2 are given in terms of solutions of the

Chang decoupling equations [55,89].

4.2.1 Optimal Performance Invariance to Similarity Transformation

It has been shown in [53] that similarity transformation preserves the optimal perfor-

mance criteria for the linear quadratic regulator LQR, such that its optimal values in

the two coordinate systems are equivalent. This results can be derived briefly as follows
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The similarity transformation for the linear quadratic optimal control problem can

be derived as fellows

ẋ = Ax+Bu, ,

x(0) = x0,

J = 1
2

∫∞
0

(
xTQx+ uTRu

)
dt

Jopt = 1
2x0Px0

ATP + PA+Q− PBR−1BTP = 0


x̄ = Tx−−−−→



˙̄x = Āx̄+ B̄u,

x̄0 = Tx0,

J̄ = 1
2

∫∞
0

(
x̄T Q̄x̄+ uTRu

)
dt

J̄opt = 1
2 x̄0P̄ x̄0

ĀP̄ + P̄ Ā+ Q̄− P̄ B̄R−1B̄T P̄ = 0

Derivations:

˙̄x = T ẋ = TAx+ TBu = TAT−1x̄+ TBu, (4.13)

Ā = TAT−1, B̄ = TB, Q̄ = T−TQT, (4.14)

ĀP̄ + P̄ Ā+ Q̄− P̄ B̄R−1B̄T P̄ = 0 (4.15)

T−TATT T P̄ + P̄ TAT−1 + Q̄− P̄ TBR−1BTT T P̄ = 0 (4.16)

Multiplying by T T from the left and by T from the right we get

ATT T P̄ T + T T P̄ TA+ T T Q̄T − T T P̄ TBR−1BTT T P̄P = 0 (4.17)

define P = T T P̄ T , P̄ = T−TPT−1, then

ATP + PA+Q− PBR−1BTP = 0 (4.18)

J̄opt =
1

2
x̄0P̄ x̄0 =

1

2
xT0 T

TT−TPT−1Tx0 =
1

2
xT0 Px0 (4.19)

J̄opt = Jopt (4.20)
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4.2.2 Slow and Fast Decomposition of the Optimal Performance Cri-

teria

In this section, we calculate the minimized optimal performance Jopt for the slow and

fast subsystems of the LQR problem. As stated in the previous section, using the

nonsingular transformation defined in (4.10) does not change the value of the optimal

performance. Therefore, by adding the slow and fast performance indices, we get the

total optimal performance Jopt obtained in the original coordinates. The quadratic

performance criterion to be minimized, calculated in the new coordinates, is given by

J =
1

2

∫ ∞
0

{
xTQx+ uTRu

}
dt =

1

2

∫ ∞
0

{
xT (t)(Q+ PSP )x(t)

}
dt (4.21)

x(t) = (Π1 +Π2P )−1

η1(t)
ζ1(t)

 = T−1

η1(t)
ζ1(t)

 (4.22)

J =
1

2

∫ ∞
0

η1(t)
ζ1(t)

T−1(Q+ PSP )T

η1(t)
ζ1(t)

 dt
=

1

2

∫ ∞
0

η1(t)
ζ1(t)

Q1 Q2

QT2 Q3

η1(t)
ζ1(t)

 dt
(4.23)

ζ̇1(t) = (a1 + a2Ps)ζ1(t)

εζ̇2(t) = (b1 + b2Pf )ζ2(t)

(4.24)

J =
1

2

η1(0)

ζ1(0)

T V
η1(0)

ζ1(0)

 , ATV + V A+ θ = 0 (4.25)

J =
1

2

[
ηT1 (0) ζT1 (0)

] v1 εv2

εvT2 εv3

η1(0)

ζ1(0)

 (4.26)
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J =
1

2
[ηT1 (0)v1 + εζT1 (0)vT2

... εηT1 (0)v2 + εζT1 (0)v3]

η1(0)

ζ1(0)

 (4.27)

J =
1

2
ηT1 (0)v1η1(0) +

1

2
εζT1 (0)vT2 η1(0) +

1

2
εηT1 (0)v2ζ1(0) +

1

2
εζT1 (0)v3ζ1(0) (4.28)

J =
1

2
ηT1 (0)v1η1(0)︸ ︷︷ ︸

Js−opt

+ εηT1 (0)v2ζ1(0)︸ ︷︷ ︸
Jsf−opt

+
1

2
εζT1 (0)v3ζ1(0)︸ ︷︷ ︸

Jf−opt

(4.29)

Jopt = Js−opt + Jsf−opt + Jf−opt (4.30)

Js−opt =
1

2
ηT1 (0)v1η1(0) =

1

2
tr{v1η1(0)ηT1 (0)} (4.31)

Jf−opt =
ε

2
ζT1 (0)v3ζ1(0) =

ε

2
tr{v3ζ1(0)ζT1 (0)} (4.32)

Jsf−opt = εηT1 (0)v2ζ1(0) = εtr{v2ζ1(0)ηT1 (0)} (4.33)

Formula (4.29) constitutes an exact decomposition for the optimal performance criterion

into slow and fast components. It can be concluded from (4.29) that the contribution

the slow subsystem makes to the performance criterion is O(1), whereas that the fast

subsystem makes is only O(ε). Note also that Jsf−opt can be negative since v2 is

generally not a square matrix, and in the case it is, it would still be indefinite.

4.3 Kalman Filtering Time Scale Analysis

In this section, an optimal Kalman filter is designed towards estimating the state vari-

ables of the wind energy systems with DFIG. Using the duality property between the

optimal filter and regulator, the same decomposition method presented in previous sec-

tion can be applied here so that the optimal Kalman filter is completely decoupled into

the pure-slow and pure-fast local filters both driven by the system measurements [88].

Consider the linear continuous-time invariant singularly perturbed stochastic system

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t) +G1w1(t), E{x1(0)} = x10

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t) +G2w1(t), E{x2(0)} = x20

y(t) = C1x1(t) + C2x2(t) + w2(t)

(4.34)
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with the performance criterion

J = lim
tf→∞

1

tf

{∫ t

0

[
zT (t)z(t) + uT (t)Ru(t)

]
dt

}
, R > 0 (4.35)

where x1(t) ∈ <n1 , and x2(t) ∈ <n2 , are slow and fast state variables, respectively.

u(t) ∈ <m is the control input, y(t) ∈ <p are system measurements. w1(t) ∈ <r and

w2(t) ∈ <p are zero-mean stationary, white Gaussian noise stochastic process with

intensities W1 > 0 and W2 > 0, respectively. z(t) ∈ <s, is the controlled system output

given by

z(t) = D1x1(t) +D2x2(t) (4.36)

All matrices are of appropriate dimensions and assumed to be constant. The optimal

control law for (4.34) with the performance criterion (4.35) is given by

uopt(t) = −F1x̂1(t)− F2x̂2(t) (4.37)

where x̂1(t) and x̂2(t) are the optimal estimates of the state vectors x1(t) and x1(t)

obtained from the Kalman filter

˙̂x1(t) = A1x̂1(t) +A2x̂2(t) +B1u(t) +K1v(t)

ε ˙̂x2(t) = A3x̂1(t) +A4x̂2(t) +B2u(t) +K2v(t)

v(t) = y(t)− C1x̂1(t)− C2x̂2(t)

(4.38)

The optimal global Kalman filter (4.38) can be put in the form in which the filter is

driven by the system measurements and optimal control inputs, that is

˙̂x1(t) = (A1 −K1C1)x̂1(t) + (A2 −K1C2)x̂2(t) +B1u(t) +K1y(t)

ε ˙̂x2(t) = (A3 −K2C1)x̂1(t) + (A4 −K2C2)x̂2(t) +B2u(t) +K2y(t)

(4.39)
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where the optimal filter gains K1 and K2 are obtained from

K1 = (P1FC
T
1 + P2FC

T
2 )W−12

K2 = (εP T2FC
T
1 + P3FC

T
2 )W−12

(4.40)

matrices P1F , P2F and P3F define the positive semidefinite stabilizing solution of the

filter algebraic Riccati equation

APF + PFA
T − PFSPF +GW1G

T = 0 (4.41)

where

A =

 A1 A2

1
εA3

1
εA3

 , G =

 G1

1
εG2

 , S = CTW−12 C, PF =

P1F P2F

P T2F
1
εP3F


(4.42)

Using duality, the following matrices have to be formed (see [55,89])

T1F =

 AT1 −CT1 W
−1
2 C1

−G1W1G
T
1 −A1

 , T2F =

 AT3 −CT1 W
−1
2 C2

−G1W1G
T
2 −A2

 ,
T3F =

 AT2 −CT2 W
−1
2 C1

−G2W1G
T
1 −A3

 , T4F =

 AT4 −CT2 W
−1
2 C2

−G2W1G
T
2 −A4

 ,
(4.43)

The partitions and scaling have to be used here, xT (t) = [xT1 (t) εxT2 (t)] and pT (t) =

[pT1 (t) pT2 (t)]. Since matrices T1F , T2F , T3F , and T4F correspond to the system matri-

ces of a singularly perturbed linear system, the slow-fast decomposition is achieved by

using the Chang decoupling equations

T4FM − T3F − εM(T1F − T2FM) = 0

−N(T4F + εMT2F ) + T2F + ε(T1F − T2FM)N = 0

(4.44)
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Using the following permutation matrices,

E1F =



In1 0 0 0

0 0 In1 0

0 1
ε In2 0 0

0 0 0 In2


, E2F =



In1 0 0 0

0 0 In1 0

0 In2 0 0

0 0 0 In2


(4.45)

we can define

ΠF =

Π1F Π2F

Π3F Π4F

 = ET2F

I2n1 − εNM −εN

M I2n2

E1F (4.46)

Then, the desired transformation is given by

T2 = (Π1F +Π2FPF ) (4.47)

where PF is the solution of the ARE (4.41). M and N are the solution of the Chang

decoupling algebraic equations (4.44). The transformation T2 is applied to the filter

variables as η̂s(t)
η̂f (t)

 = T−T
2

x̂1(t)
x̂2(t)

 (4.48)

4.3.1 Kalman Filter Under Similarity Transformation

To determine the gain of Kalman filter in the new coordinates under a similarity trans-

formation, the same strategy used in Section 4.2.1 is applied here

ẋ(t) = Ax(t) +Gw1(t), x(0) = x0

y(t) = Cx(t) + w2(t)

(4.49)

˙̂x = (A−KC)x̂+Ky, K = PFC
TW2, E{x̂(0)} = x0 (4.50)

APF + PFA
T +GW1G

T − PFCW−12 CTPF = 0 (4.51)
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˙̄x(t) = Āx̄(t) + Ḡw1(t), x(0) = x0

y(t) = C̄x̄(t) + w2(t),

(4.52)

Ḡ = TG, C̄ = CT−1, in the new coordinates K̄ = P̄F C̄
TW2 and

ĀP̄F + P̄F Ā
T + ḠW1Ḡ

T − P̄F C̄TW−12 C̄P̄F = 0 (4.53)

TAT−1P̄F + P̄FT
−TATT T + TGW1G

TT T − P̄FT−TCTW−12 CT−1P̄F = 0 (4.54)

Multiplying by T−1 from the left and by T−T from the right we get

AT−1P̄FT
−T+T−1P̄FT

−TAT+GW1G
T−T−1P̄FT−TCTW−12 CT−1P̄FT

−T = 0 (4.55)

K̄ = TPFT
TT−TCTW2 = TPFC

TW2 = TK (4.56)

where PF = T−1P̄FT
−T , P̄ = TPFT

T

4.4 Optimal Linear-Quadratic Gaussian Control

In order to obtain the solution of the linear-quadratic Gaussian LQG control problem

of a singularly perturbed DFIG wind turbine system, it is necessary to obtain gain

matrices of the the optimal LQR and Kalman filters. In this section, the results of

Sections 4.2 and 4.3 are utilized by solving the pure-slow and pure-fast, reduced-order

AREs and by implementing the pure-slow and pure-fast, reduced-order Kalman filters.

Using the separation principle for linear stochastic control, an optimal LQG controller

can be designed for slow and fast subsystems independently, thus, achieving complete

separation and parallelism in the design process. The structure of a LQG controller

with a decoupled slow and fast subsystems of the LQR and Kalman filter is shown

in Figure 4.1. The decoupled pure-slow and pure-fast local Kalman filters driven by
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system measurements and system control inputs are given by

˙̂ηs(t) = (a1F + a2FPsF )T η̂s(t) +Bsu(t) +Ksy(t)

ε ˙̂ηf (t) = (b1F + b2FPfF )T η̂f (t) +Bfu(t) +Kfy(t)

(4.57)

where PsF and PfF are the solutions of the following AREs

0 = PsFa1F − a4FPsF − a3F + PsFa2FPsF

0 = PfF b1F − b4FPfF − b3F + PfF b2FPfF

(4.58)

The pure-slow and pure-fast filter gains, Ks, Kf are defined by

 Ks

1
εKf

 = T−T
2

 K1

1
εK2

 (4.59)

and the remaining matrices are given by

a1F a2F

a3F a4F

 = (T1F − T2FM),

b1F b2F

b3F b4F

 = (T4F + εMT2F ) (4.60)

In addition, the pure-slow and pure-fast system input matrices are

 Bs

1
εBf

 = T−T
2

 B1

1
εB2

 (4.61)

The feedback control in the new coordinates is given

uopt(t) = −Fx̂(t) = −FT−T
2

η̂s(t)
η̂f (t)

 = −
[
Fs Ff

]η̂s(t)
η̂f (t)

 (4.62)

where Fs and Ff are obtained from

[
Fs Ff

]
= FT2

T = R−1BTP (Π1F +Π2FPF )T (4.63)
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Figure 4.1: Slow-fast LQG controller structure for DFIG wind turbine system.

4.4.1 LQG under Similarity Transformation

The optimal performance index Jopt of the LQG follows from the known formula

Jopt = tr
{
PKW2K

T + PFD
TD
}

= tr
{
PGW1G

T + PFF
TRF

} (4.64)

Under the similarity transformation, the performance criteria can be derived as follows.

Starting with the second line of (4.64)

J̄opt = tr
{
P̄ ḠW1Ḡ

T + P̄F F̄
TRF̄

}
(4.65)

J̄opt = tr
{
T−TPT−1TGW1G

TT T + TPFT
TT−TF TRFT−1

}
(4.66)

where PF = T−1P̄FT
−T , P̄ = TPFT

T , F = F̄ T

J̄opt = tr
{
T−T (PGW1G

T )T T + T (PFF
TRF )T−1

}
6= Jopt (4.67)
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Similarly, for the first line in (4.64), we have

Jopt = tr
{
PKW2K

T + PFD
TD
}

(4.68)

where DTD = Q, K̄ = TK

J̄opt = tr
{
P̄ K̄W2K̄

T + P̄F Q̄
}

(4.69)

J̄opt = tr
{
T−TPT−1TKW2K

TT T + TPFT
TT−TQT−1

}
(4.70)

J̄opt = tr
{
T−T (PKW2K

T )T T + T (PFQ)T−1
}
6= Jopt (4.71)

Hence, the similarity transformation does not preserve the optimal performance LQG

criteria value.

4.4.2 LQG Slow Fast Optimal Performance Criteria

Based on the method proposed in [55], the optimal performance index for the slow and

fast subsystems of the LQG controller can be obtained separately as follows

Jopt = tr
{
PKW2K

T + PFD
TD
}

(4.72)

where DTD = Q; Q =

Q1 Q2

QT2 Q3



P =

 P1 εP2

εP T2 εP3

 , K =

 K1

1
εK2

 , PF =

P1F P2F

P T2F
1
εP3F

 (4.73)

Jopt = tr
{ P1 εP2

εP T2 εP3

 K1

1
εK2

W2

[
KT

1
1
εK

T
2

]
+

P1F P2F

P T2F
1
εP3F

Q1 Q2

QT2 Q3

}
(4.74)
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=tr
{ P1 εP2

εP T2 εP3

 K1w2K
T
1

1
εK1w2K

T
2

1
εK2w2K

T
1

1
ε

2
K2w2K

T
2

+

P1FQ1 + εP2FQ
T
2 εP1FQ2 + εP2FQ3

P T2FQ1 + P3FQ
T
2 P T2FQ2 + P3FQ3


(4.75)

=tr
{ P1K1W2K

T
1 + P2K2W2K

T
1

1
εP1K1W2K

T
2 + 1

εP2K2W2K
T
2

εP T2 K1W2K
T
1 + P3K2W2K

T
1 P T2 K1W2K

T
2 + 1

εP3K2W2K
T
2

+

P1FQ1 + εP2FQ
T
2 εP1FQ2 + εP2FQ3

P T2FQ1 + P3FQ
T
2 P T2FQ2 + P3FQ3

}
(4.76)

=tr
{
P1K1W2K

T
1 + P2K2W2K

T
1 + P1FQ1 + εP2FQ

T
2

}
+

tr
{
P T2 K1W2K

T
2 +

1

ε
P3K2W2K

T
2 + εP T2FQ2 + P3FQ3

} (4.77)

= tr
{
P1K1W2K

T
1 + 2P2K2W2K

T
1 + P1FQ1 + 2εP2FQ

T
2 + +εP3FQ3 +

1

ε
P3K2W2K

T
2

}
(4.78)

Jopt = tr
{
P1K1W2K

T
1 + P1FQ1

}
︸ ︷︷ ︸

Js−opt

+ 2tr
{
P2K2W2K

T
1 + εP2FQ

T
2

}
︸ ︷︷ ︸

Jsf−opt

+
1

ε
tr
{
P3K2W2K

T
2 + εP3FQ3

}
︸ ︷︷ ︸

Jf−opt

(4.79)

Js−opt = tr
{
P1K1W2K

T
1 + P1FQ1

}
(4.80)

Jf−opt =
1

ε
tr
{
P3K2W2K

T
2 + εP3FQ3

}
(4.81)

Jsf−opt = 2tr
{
P2K2W2K

T
1 + εP2FQ

T
2

}
(4.82)
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The formula for the optimal performance criterion (4.79) exactly decomposes the op-

timal performance criteria of the LQG controller into slow and fast components and

it shows that in the optimal LQG, the performance criteria is dominated by the fast

subsystem.

4.5 Simulation Results

In this chapter, the current model of a single-cage DFIG wind turbine reported in [9,10]

is considered. Recall the swing equation (2.6) for the one-mass derive train model

explained in Chapter 2. For a simplified mathematical model, all equations of the

induction generator are derived using the direct-quadrature (d-q) transformation. The

stator and rotor voltage equations in d-q synchronous reference frame are given in (2.12)

and (2.13), respectively. The following assumptions were imposed:

• The stator current is assumed to be negative when flowing toward the machine.

• The q-axis is 90◦ ahead of the d -axis with respect to the direction of rotation.

The general linearized state-space current model is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(4.83)

where A,B,C, and D represent the system state, input, output, and feed forward

matrices, respectively. The state-space variables, inputs and outputs of the fifth-order

single cage DFIG wind turbine can be described by the following vectors

ẋ =
[
ids iqs idr iqr

]T
u =

[
vds vqs vdr vqr

]
, y =

[
idr iqr

]
,

(4.84)

where the state variables x are the rotor and stator currents, the control signals u are

the input voltages and the outputs of the system y are the rotor currents in the d-axis

and q-axis, respectively. In terms of state variables, the electromechanical torque can
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be formulated as

Te = Lm(idriqs − iqrids) (4.85)

using (2.6) and (4.85) we get

ω̇m =
Tm
2Ht

+
Lm
2Ht

(iqrids − idriqs) (4.86)

The state-space model of the fifth-order single cage DFIG wind turbine is obtained by

integrating equations (4.84)-(4.86). The new state variables, control signal and outputs

are given as follows

ẋ =
[
ids iqs idr iqr ωm

]T
u =

[
vds vqs vdr vqr Tm

]
, y =

[
idr iqr

]
,

(4.87)

The linearized system, control and output matrices A, B, and C, evaluated at the

system’s operating points, are characterized by [9, 10,90]

A =KG ·



−RsLr α1ωs −RrLm −βrωs a15

−α1ωs −RsLr −βrωs −RrLm a25

−RsLm βsωs −RrLs −α2ωs a35

−βsωs −RsLm α2ωs −RrLs a45

Kwiqr −Kwidr −Kwiqs Kwids 0


,

B = KG ·



−Lr 0 Lm 0 0

0 −Lr 0 Lm 0

−Lm 0 Ls 0 0

0 −Lm 0 Ls 0

0 0 0 0 1
2Ht


,

C =

0 0 1 0 0

0 0 0 1 0

 , D =

0 0 0 0 0

0 0 0 0 0



(4.88)

where α1 = LsLr−sL2
m, α2 = L2

m−sLsLr, βs = LmLs(1−s) , βr = LmLr(1−s), σ =

1 − L2
m/LrLs, KG = ωb(LsLrσ)−1, Kw = Lm(2HtKG)−1, a15 = Lm(Lmiqs − Lriqr),
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a25 = Lm(−Lmids + Lridr), a35 = Ls(Lmiqs − Lriqr), a45 = Ls(−Lmids + Lridr).

Appendices A.1-A.2 lists the parameters of the system and the DFIG, in addition

to the operating points employed in the linearization procedure.

4.5.1 Slow-Fast Decomposition of the WT with DFIG System

Using the wind turbine state-space matrices defined in (4.88), the linearized system,

control, and output matrices A, B, and C of the considered fifth-order WT-DFIG, eval-

uated at the system’s operating points (see Appendices A.2- A.1 for the corresponding

values), are given as

A =



0.0260 −17.4194 0.0285 16.824 0.538

17.419 0.026 −16.824 0.028 −5.308

0.0253 −16.794 0.029 16.2094 0.551

16.795 0.0253 −16.209 0.029 −5.432

0.207 −0.129 −0.197 −0.014 0


,

B =



5.320 0 −5.189 0 0

0 5.320 0 −5.189 0

5.189 0 −5.311 0 0

0 5.189 0 −5.311 0

0 0 0 0 −0.187


,

C =

0 0 1 0 0

0 0 0 1 0

 , D =

0 0 0 0 0

0 0 0 0 0


This DFIG system model is not expressed in the explicit standard singular per-

turbation form given in (4.1), where it can be noticed that ε, a small positive singular

perturbation parameter, multiplies the derivatives of some states. Therefore, rearrange-

ment for the rows of matrix A is necessary to ensure the nonsingularity of sub-matrix

A4 and that the system conforms to the explicit standard singular perturbation form

(4.1). As described in Section 2.7, such can be established through the use of the Schur

transformation. Furthermore, for the singularly perturbed form to conform to (4.1),
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the order of the eigenvalues needs to be reversed, i.e., the following permutation matrix

need to be employed

P =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0


(4.89)

The singularly perturbed form (4.1) can be established through the relations in (2.68),

and using the wind turbine state space matrices defined in (4.88), the system matrices

A, B, and C are given by

ASP =



0.860 0 0 0 0

0.252 0.050 0 0 0

−1.390 −1.007 −0.839 0 0

14.552 −30.084 −8.485 0.019 −0.606

−29.236 −10.565 −12.575 1.674 0.019


,

BSP =



−0.144 −0.143 0.064 0.290 −0.063

−0.093 −0.044 0.253 0.117 −0.032

0.433 −0.021 −0.432 0.089 0.173

0.778 −7.39 −0.777 7.378 −0.0003

7.377 0.777 −7.368 −0.776 −0.0118


,

CSP =

 0.305 −0.649 0.039 0.071 0.691

−0.607 −0.299 −0.273 −0.680 0.072


Furthermore, using the relation in (2.69), the initial conditions of the original system,

mapped into the new coordinates, are calculated as

xsp(0) =
[
27.8963 12.4845 −84.7021 −120.1073 165.7279

]T
(4.90)

The closed-loop eigenvalues of the original system are shown in Table 4.1. Since
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all eigenvalues are in the left half plane, this indicates that the system is asymptot-

ically stable. Furthermore, the system has two time-scales (three slow and two fast

eigenvalues).

Original System Eigenvalues

-7.4441 + 0.5867i

-7.4441 - 0.5867i

-0.3806 + 0.6293i

-0.3806 - 0.6293i

-0.2411

Table 4.1: Eigenvalues of the considered WT with DFIG system

The singular perturbation parameter can be calculated as the ratio between the

real part of the fastest slow eigenvalue and the real part of the slowest fast eigenvalue.

Here, this ratio is equal to (ε = 0.05). The slow and fast subsystems can be obtained

using the criteria explained in Section 4.2. Using wind turbine system matrices (4.88),

the controllability of the original system has been tested using MATLAB. A full rank

controllability matrix was obtained (rank= 5), which guarantees the controllability of

the original system. The partitioned matrices A1−A4, B1−B2, Z, and Pr were obtained

as in (4.6), where A4 is nonsingular. Matrices (ai, bi, i = 1, 2, 3, 4), Π1 and Π2 were

calculated as in [55, 89]. The nonsingular transformation T is then formulated using

(4.10). Additionally, the Newton recursive algorithm was used to obtain the solutions

Ps and Pf of the AREs (4.9)). The solution Prsf of the ARE was reconstructed again

using the obtained slow and fast solutions, Ps and Pf , respectively, as in (4.12). The

obtained Prsf is found to be identical to Pr, with the accuracy of EPr = 7.4247∗10−13,

where EPr is the norm of the absolute maximum error between Pr and Prsf . Finally,

the slow and fast subsystems were obtained as in (4.8). The corresponding eigenvalues

of the slow and fast subsystems are shown in Table 4.2. Notice that, the eigenvalues

in Table 4.2 are equal to those in Table 4.1, which indicates that the method proposed

in Section 4.2 successfully decomposed the original system into pure-slow and pure-fast
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subsystems.

Slow Subsystem Fast Subsystem

-0.3806 + 0.6293i -7.4441 + 0.5867i

-0.3806 - 0.6293i -7.4441 - 0.5867i

-0.2411

Table 4.2: Eigenvalues of the slow and fast decomposed subsystems.

4.5.2 Optimal LQR Design for the WT with DFIG System

In order to obtain the optimal gain that minimizes the performance criteria in (4.3),

equation (4.5) should be solved. The weighting matrices R and Q of appropriate di-

mensions are chosen as follows:

R = I5, Q = CTSPCSP (4.91)

The solution of the ARE (4.5) gives the matrix Pr, from which the optimal LQR

controller gain Kr for the full-order original system can be obtained as

Kr = R−1BTPr =



−2.5026 0.7102 −0.7276 0.1007 0.5132

0.0660 2.2973 1.1863 −0.5426 0.0176

0.4879 3.2873 0.7781 −0.1288 −0.4588

3.6358 −0.4617 0.0295 0.4194 −0.0303

−0.6583 −0.2721 0.5250 −0.0094 −0.0456


(4.92)

with the optimal control input uopt given by (4.4). The optimal performance index Jopt

for the full-order WT with DFIG system is calculated as

Jopt =
1

2
xTsp(0)Prxsp(0) = 1.9799 (4.93)
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where xsp(0) is the initial condition of the full-order WT with DFIG system given by

(2.69) and calculated as

xsp(0) =
[
27.8963 12.4845 −84.7021 −120.1073 165.7279

]T
(4.94)

In this section, an optimal LQR is designed for the slow and for the fast subsystems,

independently. Having obtained the slow and fast solutions Ps and Pf , respectively,

from their corresponding AREs (4.12), the optimal LQR controller gain for the slow

subsystem can be obtained, as follows

Ksr = R−1s BT
s Ps =



−1.5209 −4.3229 2.6228

−8.6553 −2.7713 −2.5414

−0.4911 8.3930 −2.5882

12.5216 4.7245 3.7339

−0.6138 −0.2921 0.5316


(4.95)

where Rs is the weighting positive definite matrix for the slow subsystem, chosen as an

identity matrix, i.e., Rs = I5. The optimal performance index for the slow subsystem

Js−opt can be calculated using (4.31), derived in Section 4.2.2

Js−opt = 1.9122 (4.96)

Similarly, the optimal LQR controller gain for the fast subsystem can be obtained

as follows

Kfr = R−1f BT
f Pf =

0.1453 −0.4403 −0.1477 0.4209 0.0096

0.4693 0.0565 −0.4558 −0.0606 −0.0029

T (4.97)

where Rf is the weighting positive definite matrix for the fast subsystem, chosen as an

identity matrix, i.e., Rf = I5. The optimal performance index for the fast subsystem
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Jf−opt can be calculated using (4.32), derived in Section 4.2.2

Jf−opt = 0.0785 (4.98)

Moreover, the slow-fast term of the optimal performance index is calculated using (4.33),

and is equal to Jsf−opt = −0.0108. Adding up all three values of Js−opt, Jf−opt, and

Jsf−opt, we get

Jtotal = Js−opt + Jsf−opt + Jf−opt = 1.9799 (4.99)

which is equal to the exact value of the optimal performance index Jopt of the full-order

WT with DFIG system obtained in (4.93).

4.5.3 Optimal Kalman Filter Design for the WT with DFIG System

Based on the duality property exhibited by the linear-quadratic optimal filters, on one

hand, and the regulators, on the other, the exact decomposition of the singularly per-

turbed ARE, presented in Section 4.2, is applied here to design an optimal Kalman filter

to estimate the state variables of the slow and fast subsystems of the WT with DFIG.

The design takes into account that the slow and fast filters are completely decoupled

and that both of them are driven by the system measurements, as demonstrated in Sec-

tion 4.3. After calculating the matrices in (4.43)-(4.46), the similarity transformation

T2 can be obtained using (4.47). Using the wind turbine system matrices (4.88), with

the weighting matrices chosen as R = I5, Q = CTSPCSP , and the white noise intensity

(spectral density) matrices chosen as W1 = I5, W2 = I2, the completely decoupled

Kalman filters are obtained with pure-slow and pure-fast optimal filter gains Ks and

Kf given by

Ks


0.0292 −0.0395

0.0165 −0.0344

−0.0285 0.1238

 , Kf

0.0067 −0.0255

0.0262 0.0028

 (4.100)
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4.5.4 Optimal Linear-Quadratic Gaussian Design for the WT with

DFIG System

In this section, a reduced-order optimal LQG controller is applied to the DFIG wind

turbine, by combining the closed-loop regulator with the Kalman filter. The inputs to

the closed-loop system are the noise of the WT system w1(t) and the measurements

noise w2(t). All the controllers were implemented using MATLAB/Simulink. Figure

4.2 shows the original and estimated slow and fast states of the considered system, and

the performance of the Kalman filter.

In Section 4.4.1 we showed that the similarity transformation does not preserve the

value of the optimal performance criteria for the LQG controller. Therefore, the values

of the optimal performance indices for the decomposed slow and fast subsystems do not

add up to the same exact value of the optimal performance index before decomposition.

The optimal performance index for the full-order LQG controller can be calculated using

(4.64) as follows

Jopt = 37.3785 (4.101)

Using the derivation in Section 4.4.2, the optimal performance index for the slow sub-

system Js−opt can be calculated using (4.80) as

Js−opt = 10.0060 (4.102)

whereas, the optimal performance index for the fast subsystem Jf−opt can be calculated

using (4.81)

Jf−opt = 22.3614 (4.103)
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(a) First slow state (b) Second slow state

(c) Third slow state (d) First fast state

(e) Second fast state

Figure 4.2: The original and reduced-order estimated states of the WT-DFIG

Moreover, the slow-fast term of the optimal performance index is calculated using

(4.82), and is equal to Jsf−opt = −10.0845. Adding up all three values of Js−opt, Jf−opt,

and Jsf−opt, we get

Jtotal = Js−opt + Jsf−opt + Jf−opt = 22.2829 (4.104)

Since, in the case of the LQG problem, the optimal performance at steady state

is averaged over an infinite length of time, the initial conditions do not affect the

optimal performance value. The original system output, i.e., before filtering, and the
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estimated output of the LQG controller of the DFIG WT system after filtering are

shown in Figures 4.3 and 4.4 for the rotor current output in the d -axis idr and q-axis

iqr, respectively. It can be observed from Figures 4.3 and 4.4 that the effect of the input

white Gaussian noise is reduced successfully by the LQG regulator and its Kalman filter

implementation.

(a) Before filtering. (b) After filtering.

Figure 4.3: Original and reduced-order rotor current output idr of the LQG-controlled
DFIG WT system

(a) Before filtering. (b) After filtering.

Figure 4.4: Original and reduced-order rotor current output iqr of the LQG-controlled
DFIG WT system

4.5.5 Wind Speed Variations

Here, we test the performances of the slow and fast subsystems of the reduced-order

DFIG WT under the effects of wind turbulences and gust. The considered wind turbu-

lence and gust are shown in Figure 4.5. In order to model the total variation in wind

speed, the normal turbulence model (NTM) [23] was evaluated at an average of 9 m/s.
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A wind gust, shaped as a hamming dip, of width 30 s was added. The total variance,

as suggested by the aforementioned NTM, was broken between the turbulence and gust

with the ratios of 1/3 and 2/3, respectively. The output responses of the rotor current

in d-axis idr and q-axis iqr of the original and reduced-order of the considered DFIG

WT system to wind turbulence and gust are shown in Figures 4.6, and 4.7. These

figures show the robustness of the designed LQG controller to wind speed variations.

Figure 4.5: Wind turbulence and wind gust.

(a) Before filtering. (b) After filtering.

Figure 4.6: Output responses of the rotor current idr of the original and reduced-order
system for wind turbulence and gust
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(a) Before filtering. (b) After filtering.

Figure 4.7: Output responses of the rotor current iqr of the full- and reduced-order
system for wind turbulence and gust.

4.5.6 Voltage Sag

For the evaluation of the dynamic performance of the models reduced into different

orders, we study the effect of a large-signal disturbance voltage sag as well. We apply

a voltage drop of 50% lasting for 1 sec to both the full- and reduced-order models. The

output responses of the rotor current in d-axis, idr, and q-axis, iqr, of the original and

reduced-order DFIG WT system are shown in Figures 4.8 and 4.9, respectively, which

show the robustness of the designed LQG controller.

(a) Before filtering. (b) After filtering.

Figure 4.8: Output responses of the rotor current idr of the original and reduced-order
system for voltage sag
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(a) Before filtering. (b) After filtering.

Figure 4.9: Output responses of the rotor current iqr of the original and reduced-order
system for voltage sag.

4.6 Conclusions

Optimal control techniques are applied to the DFIG wind turbine by decomposing the

algebraic Riccati equation of the singularly perturbed wind turbine system into two

reduced-order algebraic Riccati equations that correspond to the slow and fast time

scales. The optimal regulator gains, with respect to the optimal pure-slow and pure-fast,

reduced-order Kalman filters, and LQG controllers, are obtained. This decomposition

allows the design of linear controllers for the slow and fast subsystems independently,

thus, achieving the complete and exact separation of the linear-quadratic stochastic

regulator problem. The Kalman filter was able to accurately track the state space states

of the wind turbine system. The response of the reduced-order system was compared

to that of the full-order system for the purpose of validating the performance of the

proposed method. The effect of the applied white Gaussian noise is reduced successfully

by the LQG regulator and its Kalman filter implementation. Moreover, the designed

LQG controller showed good performance and robustness when wind turbulence and a

large-signal disturbance are applied to the system. Additionally, we showed that the

similarity transformation does not preserve the performance index value in the case of

the Kalman filter and the corresponding LQG controller.



93

Chapter 5

Recursive Reduced-Order Algorithm for Singularly

Perturbed Cross Gramian Algebraic Sylvester Equation

5.1 Introduction

Singularly perturbed systems span multiple time scales, corresponding to fast and slow

state-space variables. For a system with two time scales, the slow time scale is related to

the eigenvalues close to the imaginary axis and represent the slow state-space variables

(slow modes) of the system, while the fast time scale is related to those eigenvalues

far from the imaginary axis and represent the fast state-space variables (fast modes)

of the system. Many algorithms exist in the literature for solving diverse problems

related to the analysis and control of singularly perturbed linear systems. Fixed point

recursive numerical methods were first proposed in [91] and used in [55, 92] to solve

the closed and open loop optimal control problems. These methods led thereafter

to the Hamiltonian approach, which solves the linear-quadratic optimal control and

filtering problems by decomposing their algebraic Riccati equations into pure-slow and

pure-fast reduced-order algebraic Riccati equations [89]. The exact decomposition into

pure-slow and pure-fast subsystems led to the use of parallel algorithms [80,93], which

also provided the solutions to the algebraic Riccati equation of the linear-quadratic

optimal control problem. Moreover, some iterative methods were used to solve this

problem (see for example [94] and the references therein). Most of the previous studies

considered solving the algebraic Reccati equation, as it represents the most important

equation of the optimal control and filtering problems.

Sylvester equation has numerous applications in many areas including mathematics,

control and system theory, model reduction, signal and image processing. The general
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form of the continuous time algebraic Sylvester equation is given by

AX −XD = C (5.1)

where A ∈ <n×n, D ∈ <m×m , and C ∈ <n×m are given matrices. A unique solution

X ∈ <n×m of (5.1) exists if and only if A and D matrices have disjoint eigenvalues.

An important special case of the algebraic Sylvester equation is the algebraic Lyapunov

equation, which plays an important role in control theory, and is given by

AX +XAT = −BBT (5.2)

where A ∈ <n×n, B ∈ <n×m , and X ∈ <n×n. A systematic approach for solving the

Sylvester matrix equation is by using Bartels–Stewart [95] and the Hessenberg-Schur

methods [96], which use the Hessenberg or Schur form to transform the matrices of the

original system to the triangular form that can then be solved directly using backward

substitution. These methods are efficient for small and medium-scale systems. To

reduce the computational time and complexity when dealing with large-scale systems,

several iterative algorithms have been proposed for solving the Sylvester equation; see

for example [97–101].

In this chapter, we propose a new reduced-order recursive algorithm, which provides

a solution for a class of Sylvester equation given by

AWX +WXA = BC (5.3)

where B ∈ <n×m, C ∈ <m×n , and the cross Gramian WX ∈ <m×n is the solution to

the algebraic Sylvester equation (5.3), and is defined by

WX =

∫ ∞
0

eAtBCeAt dt (5.4)

The system under investigation in this chapter must be asymptotically stable, con-

trollable, observable, and square, i.e., the number of inputs equals the number of outputs
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m = p. The test for controllability and observability of the system is usually performed

separately using the controllability and observability Gramians. In many applications,

lowering the computational complexity, as a result of the system order-reduction, is

desirable. Model order-reduction retains only those state-space variables that are both

strongly controllable and strongly observable. This requires investigating the behavior

of the state-space variables, and balancing the controllability and observability Grami-

ans, such that they are diagonal and identical. It has been shown in [46] that studying

the system controllability and observability, separately, can be misleading; a method

that directly assesses the combination of the two properties is preferred. Therefore,

the cross Gramian matrix was defined in [71] as an alternative approach to the ex-

isting controllability and observability Gramian matrices. Unlike the controllability

and observability Gramians, the cross Gramian contains information about both the

controllability and observability of the system.

In this chapter, a new recursive algorithm is proposed to solve the algebraic Sylvester

equation, of linear singularly perturbed systems, whose solution defines the cross Gramian

matrix. The algorithm is obtained in terms of the reduced-order algebraic Sylvester

equations corresponding to the slow and fast subsystems. The solutions of the full-

order algebraic Sylvester equations, for finding the cross Gramian matrix, was consid-

ered in [102,103].

The remainder of this chapter is organized as follows. The proposed recursive algo-

rithm is described in Section 5.2. In Section 5.3, several case studies are considered to

demonstrate the performance of the proposed algorithm. Then, the conclusions follow

in Section 5.4.

5.2 A Recursive Algorithm for Finding Cross Gramians for Singularly

Perturbed Linear Systems

The singularly perturbed structure can be obtained by partitioning the state space

system
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ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(5.5)

where x(t) ∈ <n, are state variables, u(t) ∈ <m are control inputs, and y(t) ∈ <p are

measured outputs, as follows [54,80]

A =

A1 A2

A4
ε

A3
ε

 , B =

B1

B2
ε

 , C =
[
C1 C2

]
(5.6)

where ε is a small positive singular perturbation parameter. A, B, and C are constant

matrices of appropriate dimensions. Based on the singular perturbation theory [54,80],

a singularly perturbed linear system in the explicit state variable standard form is given

by

dx1(t)

dt
= A1x1(t) +A2x2(t) +B1u(t)

ε
dx2(t)

dt
= A3x1(t) +A4x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t) +Du(t)

(5.7)

where x1(t) ∈ <n1 are the slow state variables, and x2(t) ∈ <n2 are the fast state

variables, n1 + n2 = n. Assuming that A4 is nonsingular, the eigenvalues of matrix A

consists of two disjoint groups: one corresponds to the slow subsystem λs(A) and the

other corresponds to the fast subsystem λf (A). If the two subsystems have a mixture

of slow and fast eigenvalues, then a technique has to be applied to convert the system

into its standard singularly perturbed form defined in (5.7). We will give examples on

this case in Sections 5.3.2 and 5.3.3.

The nature of the cross Gramian matrix WX defined in the algebraic Silvester’s

equation

AWX +WXA = BC (5.8)
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corresponding to the system singularly perturbed form defined in (5.7) is

WX =

W1 εW2

W3 W4

 (5.9)

Using (5.6) and (5.9) in (5.8), we get the partitioned form of the Sylvester equation as

follows

A1W1 +A2W3 +W1A1 +W2A3 +B1C1 = 0

εA1W2 +A2W4 +W1A2 +W2A4 +B1C2 = 0

A3W1 +A4W3 + εW3A1 +W4A3 +B2C1 = 0

εA3W2 +A4W4 + εW3A2 +W4A4 +B2C2 = 0

(5.10)

Setting ε = 0, we get the following approximate equations

A1W
(0)
1 +A2W

(0)
3 +W

(0)
1 A1 +W

(0)
2 A3 +B1C1 = 0

A2W
(0)
4 +W

(0)
1 A2 +W

(0)
2 A4 +B1C2 = 0

A3W
(0)
1 +A4W

(0)
3 +W

(0)
4 A3 +B2C1 = 0

A4W
(0)
4 +W

(0)
4 A4 +B2C2 = 0

(5.11)

The solution of equations (5.11) is given in terms of the following reduced-order

algebraic Sylvester equations corresponding to the slow and fast subsystems

A4W
(0)
4 +W

(0)
4 A4 +B2C2 = 0

A0W
(0)
1 +W

(0)
1 A0 +G0 = 0

(5.12)

In addition we have from (5.11)

W
(0)
2 = −(B1C2 +A2W

(0)
4 +W

(0)
1 A2)A

−1
4

W
(0)
3 = −A−14 (B2C1 +A3W

(0)
1 +W

(0)
4 A3)

(5.13)

where

A0 = A1 −A2A
−1
4 A3 (5.14)



98

G0 = −A2A
−1
4 (B2C1 +W

(0)
4 A3)− (A2W

(0)
4 +B1C2)A

−1
4 A3 +B1C1 (5.15)

To find a unique solution of (5.12), we impose the following assumption.

Assumption 5.1 Matrices A0 and A4 are asymptotically stable.

In consequence, unique solutions of (5.12)–(5.13) exist. Defining the approximation

error as

W1 = W
(0)
1 + εE1,

W2 = W
(0)
2 + εE2,

W3 = W
(0)
3 + εE3,

W4 = W
(0)
4 + εE4,

(5.16)

subtracting (5.11) from (5.10), we get the following error equations, after some algebra,

A4E4 + E4A4 = −A3(W
(0)
2 + εE2)− (W

(0)
3 + εE3)A2

A3E1 +A4E3 + E4A3 = −(W
(0)
3 + εE3)A1,

A2E4 + E1A2 + E2A4 = −A1(W
(0)
2 + εE2),

A1E1 +A2E3 + E1A1 + E2A3 = 0.

(5.17)

From the first equation in (5.17), we can observe that the unknown errors E2 and

E3 are multiplied by a small parameter ε. Similar situation is in the second and the

third equations of (5.17). Therefore, we propose the following algorithm for solving the

error equations (5.17).

Start with E
(0)
2 = 0 and E

(0)
3 = 0 and recursively evaluate
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A4E
(i+1)
4 + E

(i+1)
4 A4 = −A3(W

(0)
2 + εE

(i)
2 )− (W

(0)
3 + εE

(i)
3 )A2,

A0E
(i+1)
1 + E

(i+1)
1 A0 = A2A

−1
4 (W

(0)
3 + εE

(i)
3 )A1 +A1(W

(0)
2 + εE

(i)
2 )A−14 A3

+A2A
−1
4 E

(i+1)
4 A3 +A2E

(i+1)
4 A−14 A3,

E
(i+1)
2 = −(A1(W

(0)
2 + εE

(i)
2 ) +A2E

(i+1)
4 + E

(i+1)
1 A2)A

−1
4 ,

E
(i+1)
3 = −A−14 ((W

(0)
3 + εE

(i)
3 )A1 +A3E

(i+1)
1 + E

(i+1)
4 A3).

(5.18)

for i = 0, 1, 2, . . .

The steps of the proposed algorithm are summarized in Algorithm 1

Algorithm 1: The proposed recursive algorithm

Input: A,B,C
Output: E1, E2, E3, E4

1: Find the cross-Gramian matrix WX using (5.8)
2: Define the matrix partitions (5.6) and (5.9)

3: Initialize W
(0)
1 , W

(0)
2 , W

(0)
3 , and W

(0)
4 using (5.12)–(5.15)

4: Initialize E
(0)
2 = 0 and E

(0)
3 = 0

5: Initialize E
(0)
1 and E

(0)
4 using (5.17)

6: Set i = 0
7: while |WX −W (i)

X | > O(ε) do

8: Update E
(i+1)
1 , E

(i+1)
2 , E

(i+1)
3 , and E

(i+1)
4 using (5.18)

9: Update W
(i+1)
1 , W

(i+1)
2 , W

(i+1)
3 , and W

(i+1)
4 using (5.16)

10: Update W
(i+1)
X =

[
W

(i+1)
1 εW

(i+1)
2

W
(i+1)
3 W

(i+1)
4

]
11: i = i+ 1
12: end while

Theorem 5.1 Assuming that matrices A0 and A4 are asymptotically stable, algorithm

(5.18) converges to the exact solution of (5.17) with a rate of convergence O(ε), that is

‖E(i+1)
j − E(i)

j ‖ = O(ε)

‖E(i)
j − Ej‖ = O(εi)

(5.19)

for j = 1, 2, 3, 4; and i = 0, 1, 2, . . .
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Therefore, the exact solution WX can be obtained with an accuracy of O(εi) after

performing i iterations on the proposed algorithm (5.18) as

W
(i)
j = Wj + εE

(i)
j , (5.20)

for j = 1, 2, 3, 4; and i = 0, 1, 2, . . .

Proof 5.1 For i = 0, we have from (5.18)

A4E
(1)
4 + E

(1)
4 A4 = −A3W

(0)
2 −W (0)

3 A2,

A0E
(1)
1 + E

(1)
1 A0 = A2A

−1
4 W

(0)
3 A1 +A1W

(0)
2 A−14 A3

+A2A
−1
4 E

(1)
4 A3 +A2E

(1)
4 A−14 A3

E
(1)
2 = −(A1W

(0)
2 +A2E

(1)
4 + E

(1)
1 A2)A

−1
4 ,

E
(1)
3 = −A−14 (W

(0)
3 A1 +A3E

(1)
1 + E

(1)
4 A3).

(5.21)

Equations (5.21) are O(ε) approximates of (5.17). Subtracting these equations from

the corresponding equations in (5.17), we have

A4(E4 − E(1)
4 ) + (E4 − E(1)

4 )A4 = O(ε),

A0(E1 − E(1)
1 ) + (E1 − E(1)

1 )A0 = O(ε),

A2(E4 − E(1)
4 ) + (E1 − E(1)

1 )A2 + (E2 − E(1)
2 )A4 = O(ε),

A3(E1 − E(1)
1 ) +A4(E3 − E(1)

3 )A2 + (E4 − E(1)
4 )A3 = O(ε),

(5.22)

which implies

‖E4 − E(1)
4 ‖ = O(ε),

‖E1 − E(1)
1 ‖ = O(ε),

‖E2 − E(1)
2 ‖ = O(ε),

‖E3 − E(1)
3 ‖ = O(ε),

(5.23)
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For i = 1, we have

A4E
(2)
4 + E

(2)
4 A4 = −A3(W

(0)
2 + εE

(1)
2 )− (W

(0)
3 + εE

(1)
3 )A2,

A0E
(2)
1 + E

(2)
1 A0 = A2A

−1
4 (W

(0)
3 + εE

(1)
3 )A1 +A1(W

(0)
2 + εE

(1)
2 )A−14 A3

+A2A
−1
4 E

(2)
4 A3 +A2E

(2)
4 A−14 A3

E
(2)
2 = −(A1(W

(0)
2 + εE

(1)
2 ) +A2E

(2)
4 + E

(2)
1 A2)A

−1
4 ,

E
(2)
3 = −A−14 ((W

(0)
3 + εE

(1)
3 )A1 +A3E

(2)
1 + E

(2)
4 A3),

(5.24)

subtracting (5.24) from (5.17) and using (5.19), we get

A4(E4 − E(2)
4 ) + (E4 − E(2)

4 )A4 = O(ε2),

A0(E1 − E(2)
1 ) + (E1 − E(2)

1 )A0 = O(ε2),

A2(E4 − E(2)
4 ) + (E1 − E(2)

1 )A2 + (E2 − E(2)
2 )A4 = O(ε2),

A3(E1 − E(2)
1 ) +A4(E3 − E(2)

3 )A2 + (E4 − E(2)
4 )A3 = O(ε2),

(5.25)

which by Assumption 5.1 implies

‖E4 − E(2)
4 ‖ = O(ε2),

‖E1 − E(2)
1 ‖ = O(ε2),

‖E2 − E(2)
2 ‖ = O(ε2),

‖E3 − E(2)
3 ‖ = O(ε2),

(5.26)

continuing the same procedure, we come to

A4(E4 − E(i+1)
4 ) + (E4 − E(i+1)

4 )A4 = O(εi+1),

A0(E1 − E(i+1)
1 ) + (E1 − E(i+1)

1 )A0 = O(εi+1),

A2(E4 − E(i+1)
4 ) + (E1 − E(i+1)

1 )A2 + (E2 − E(i+1)
2 )A4 = O(εi+1),

A3(E1 − E(i+1)
1 ) +A4(E3 − E(i+1)

3 )A2 + (E4 − E(i+1)
4 )A3 = O(εi+1),

(5.27)
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which implies the results stated in Theorem 5.1, that is

‖Ej − E(i+1)
j ‖ = O(ε(i+1))

‖E(i+1)
j − E(i)

j ‖ = O(εi)

(5.28)

The proof is complete. �

5.3 Case Studies

Three case studies are considered to demonstrate the proposed algorithm; (a) a fourth-

order aircraft example whose mathematical model is in the explicit singularly perturbed

form defined in (5.7), in which with accuracy of O(ε) the slow eigenvalues are all con-

tained in the approximate slow subsystem represented by A0 and all fast eigenvalues

are contained in the approximate fast subsystem represented by A4; (b) a fifth-order

chemical plant model given in implicit singularly perturbed form (it has two slow and

three fast eigenvalues, but the state variables have to be reordered to achieve explicit

singularly perturbed form defined in (5.7); (c) a tenth-order hydrogen gas reformer used

to provide hydrogen to a fuel cell from hydrogen rich fuels (natural gas, methanol).

5.3.1 L-1011 Aircraft

Here, we consider the lateral axis equations of the rigid body model of L-1011 air-

craft at cruise condition [104]. The state variables are the bank angle, roll rate,

yaw rate, and sideslip angle, which are respectively represented in the state vector

x(t) = [x1 x2 x3 x4]
T . The input vector consists of two variables: the rudder de-

flection δr and the aileron deflection δa, and is given as u(t) = [δr δa]
T . The system

matrices are given as
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A =



0 1 0 0

0 −1.89 0.39 −5.55

0 −0.034 −2.98 2.43

0.034 −0.0011 −0.99 −0.21



B =



0 0

0.36 −1.6

−0.95 −0.032

0.03 0


, C =

1 0 0 0

0 1 0 0


(5.29)

The eigenvalues of the matrix A are: −0.1016,−1.4811±0.6292i, and −2.0162. The

system is asymptotically stable (all eigenvalues are in the left half plane), controllable,

and observable. Moreover, there is only one slow mode with eigenvalue −0.0899, and

three fast modes with eigenvalues: −1.4891 ± 0.7686i and −2.1017. The perturbation

parameter is ε = 0.07, which is the ratio between the fastest slow eigenvalue and

the slowest fast eigenvalue. Solving the algebraic Sylvester equation (5.8), the cross

Gramian matrix can be obtained as follows

WX =



−3.77168467243 −0.43134179103 −0.14313989569 0.20967036557

−2.25320146563 −0.62940797540 0.00048741612 0.06408641105

−4.60285451131 −0.27809983914 −0.01060057667 −0.03861451004

12.68652326564 1.332572206696 −0.02122054103 0.00250243909


Using the proposed algorithm, the initial cross Gramian matrix W (0) is obtained as

W (0) =



−3.98315817315 −0.41906814039 −0.14908955443 0.202330975578

−2.25882783809 −0.42418654922 −0.00284907928 0.001553980682

−4.46229986109 −0.21443252362 0.00235249833 0.000836843461

12.32553354098 0.883962065453 −0.00586646018 −0.00419856136


Comparing the exact solution WX to the first-order approximate solution of the
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Number of Iteration i ‖WX −W (i)
X ‖2

2 7.50332862598× 10−4

3 2.61112541747× 10−5

4 9.08506250553× 10−7

5 3.16109799914× 10−8

6 1.09991811058× 10−9

7 3.83066885862× 10−11

8 1.36887465822× 10−12

9 9.59811872673× 10−14

10 6.47440768237× 10−14

Table 5.1: Error norm values for each iteration for L-1011 aircraft system

cross Gramian matrix by calculating the error norm, we get

‖WX −W (0)‖2 = 0.624920763816596

Then, the cross Gramian matrix is calculated using the proposed recursive algo-

rithm. The error norm at each iteration is shown in Table 5.1. By taking the error

norm, it can be seen that the algorithm converges rapidly to the exact solution.

5.3.2 Chemical Plant

In this section, the linearized chemical plant considered in [105] is chosen to demonstrate

the behavior of the proposed algorithm when the linear singularly perturbed system is

not in the explicit standard form (5.7). The system matrices are given as follows
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A =



−0.1094 0.0628 0 0 0

1.306 −2.136 0.9807 0 0

0 1.595 −3.149 1.547 0

0 0.0355 2.632 −4.257 1.855

0 0.0027 0 0.1636 −0.1625



B =



0 0

0.0638 0

0.0838 −0.1396

0.1004 −0.206

0.0063 −0.0128


, C =

1 0 0 0 0

0 0 0 0 1



(5.30)

The eigenvalues of matrix A are −5.9822,−2.8408,−0.8954,−0.0141, and −0.0774,

which indicates that this system has two slow modes (eigenvalues). The small singular

perturbation parameter ε is chosen as the ratio of the fastest slow eigenvalue to the

slowest fast eigenvalue, and equals to ε = 0.0141/0.8954 = 0.086. Introducing the

following permutation matrix that exchanges the second row of matrix A, with its fifth

row, that is

P =



1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0


the explicit singularly perturbed form of the system matrices can be obtained as follows

ASP = PAP,

BSP = PB, CSP = CP

(5.31)
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Note P = P−1. Thereby, they are calculated as

A =



−0.1094 0 0 0 0.0628

0 −0.1625 0 0.1636 0.0027

0 0 −3.149 1.547 1.5950

0 1.8550 2.632 −4.257 0.0355

1.3060 0 0.9807 0 −2.1320



B =



0 0

0.0638 −0.0128

0.0838 −0.1396

0.1004 −0.206

0.0638 0


, C =

1 0 0 0 0

0 1 0 0 0



(5.32)

Matrices ASP and A have the same eigenvalues and the same number of slow and

fast modes. However, the slow and fast eigenvalues are now correctly separated into two

disjoint groups. The slow mode has the eigenvalues −0.0788 and −0.0160, and the fast

mode has the fast eigenvalues −5.9521,−0.7933, and −2.7925. Solving the algebraic

Sylvester equation (5.8), the cross Gramian matrix can be obtained as follows

WX =



−0.07530866 −0.11561658 −0.00985227 −0.00806596 −0.00985946

−0.23194836 −0.49463876 −0.03897379 −0.03313413 −0.03676743

−0.07341430 −0.42776115 −0.02785663 −0.02552098 −0.02384797

−0.12954567 −0.52436133 −0.03510447 −0.03163354 −0.03102749

−0.05734203 −0.26232141 −0.01916962 −0.01692499 −0.01682689


Calculating the initial cross Gramian matrix W (0) using the proposed algorithm,

and comparing the result to the exact solution of the cross Gramian, using the error
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Number of Iteration i ‖WX −W (i)
X ‖2

2 6.549205248602× 10−3

4 3.305462486403× 10−4

6 1.644553914568× 10−5

8 7.961048437784× 10−7

10 3.79165870750× 10−8

12 1.79073797457× 10−9

14 8.42125015994× 10−11

16 3.94485224503× 10−12

18 1.78105453794× 10−13

20 1.74637224575× 10−14

Table 5.2: Error norm values for each iteration for the chemical plant

norm, we get the following results

W (0) =



−0.07894318 −0.13640657 −0.01124158 −0.00932742 −0.0110635

−0.25878609 −0.56732132 −0.04537161 −0.03829073 −0.04292241

−0.05767992 −0.50330195 0 0 0

−0.12521917 −0.60940965 0 0 0

−0.04496552 −0.31507279 0 0 0


‖WX −W (0)‖2 = 0.160161520985517

The cross Gramian matrix is then calculated using the proposed recursive algo-

rithm. The error norm for each iteration is shown in Table 5.2, from which it can be

observed that, the proposed algorithm converges to the exact solution according to the

convergence result stated in the presented theorem.

5.3.3 Natural Gas Hydrogen Reformer

In this section, we investigate the behavior of the proposed algorithm in case of higher

order singularly perturbed systems. The linearized 10th-order mathematical model of

the gas hydrogen reformer introduced and studied in [106,107] is chosen.
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The system matrices are given as follows [106]

A =

−0.074 0 0 0 0 0 −3.53 1.075 0 0

0 −1.47 −25.3 0 0 0 0 0 2.56 13.91

0 0 −156 0 0 0 0 0 0 33.59

0 0 0 −124.5 212.6 0 112.69 112.7 0 0

0 0 0 0 −3.33 0 0 0 0 0

0 0 0 0 0 −32.43 32.30 32.30 0 0

0 0 0 0 0 331.8 −344 −341 0 9.90

0 0 0 221.97 0 0 −253.2 −254.9 0 32.53

0 0 2.035 0 0 0 1.830 1.214 −0.36 −3.30

0.018 0 8.164 0 0 0 5.6 5.39 0 −13.61



B =

0 0 0 0 0.12 0 0 0 0 0

0 0 0 0 0 0 0.1834 0 0 0

T ,

C =

1 0 0 0 0 0 0 0 0 0

0 0.994 −0.088 0 0 0 0 0 0 0


(5.33)

The eigenvalues of the system matrix A are as follows: −660.68, −157.9, −89.137,

−12.175, −3.33, −2.77 ± 0.547i, −1.468, −0.358, −0.0861. All real parts of those

eigenvalues lie in the left part of the complex plane; hence, the system is asymptoti-

cally stable. Moreover, the system has multiple time scales (slow and fast) since there

are three eigenvalues located very close to the imaginary axis while the other seven

eigenvalues are located far from that axis. The perturbation parameter ε is chosen

as the ratio of the fastest slow eigenvalue to the slowest fast eigenvalue, and equals

ε = 0.52 = 1.468/2.77.

What are supposed to be slow mode eigenvalues, obtained via (5.14), −1.468,
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−0.0838, −128.4495 and what are supposed to be the fast mode eigenvalues ((eigen-

values of A4) −0.358, −660.68, −89.144, −13.954, −2.829 ± 0.886, and −3.333) do

not display the slow-fast time scale separation. Similarly to the chemical plant exam-

ple in the previous section, we can notice that the slow and fast eigenvalues are not

well separated into two disjoint groups. However, since the gas reformer system is of

higher order, it will be a little cumbersome to come up with a permutation matrix

that would convert the system into its explicit singularly perturbed form. Therefore,

the algorithm presented in [108], [54], and used by [107] to study the slow and fast

dynamics of the gas reformer system, is also considered here to convert the system

from an implicit singularly perturbed form to the explicit singularly perturbed form.

The algorithm in [108] and [54] is based on introducing a similarity transformation T

that transform the general linear system in implicit singularly perturbed form into the

explicit singularly perturbed form defined in (5.7). The similarity transformation T is

given by [107]

T =



4.8557 2.1797 −0.3535 1.7829 113.74 −52.659 −5.1468 1 0 0

0 0 0 0 0 0 0 0 1 0

−0.3794 0.7980 −0.0771 0 0 5.2667 0.5148 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1


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The new transformed system matrices are defined as

ASP = TAT−1

BSP = TB

CSP = CT−1

(5.34)

thereby, they are calculated as

ASP =

−0.319 5.576 −3.138 −0.353 0.568 36.31 −0.26 −0.05 5.516 3.138

0 −0.358 0 2.035 0 0 0 1.83 1.214 −3.30

−0.087 2.041 −1.232 −0.125 0.154 9.85 1.925 0.190 −0.319 1.231

0 0 0 −124.5 0 0 0 0 0 33.59

0 0 0 0 −124.5 212.63 0 112.69 112.69 0

0 0 0 0 0 −3.33 0 0 0 0

0 0 0 0 0 0 −32.43 32.30 32.30 0

0 0 0 221.97 0 0 331.8 −344 −341 9.904

0 0 2.035 0 221.97 0 0 −253.2 −254.9 32.53

0.019 0 8.164 0 −0.006 −0.363 0.213 5.625 5.396 −13.61



BSP =

13.6488 0 0 0 0 0.12 0 0 0 0

−9.6577 0 0.9659 0 0 0 0.1834 0 0 0

T ,

CSP =

0.169 0 −0.464 0.024 −0.302 −19.30 11.38 1.11 −0.169 0.463

0.080 0 1.03 0.019 −0.143 −9.124 −1.183 −0.115 −0.08 −1.026


(5.35)

The matrices ASP and A have the same eigenvalues, since they are preserved under

the similarity transformation. The slow mode eigenvalues are: -1.468, -0.08552, and -

0.358 obtained as (λ(As)+O(ε)), while the fast mode eigenvalues are: -660.682, -157.89,

89.137, -12.174, −2.7697 ± 0.60087, and -3.333 obtained as (λ(Af ) + O(ε)). They are
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Number of Iteration i ‖WX −W (i)
X ‖2

2 56.67074786107

5 13.26046318575

10 0.38648979991

12 50.9580379513× 10−2

15 5.949048480951× 10−3

20 6.505261253303× 10−4

23 6.630466299301× 10−5

25 7.912793405030× 10−6

30 7.210694103862× 10−7

35 3.050169378906× 10−8

40 8.638446874677× 10−10

Table 5.3: Error norm values for each iteration for the gas reformer system

clearly separated now into two disjoint groups.

Using our proposed algorithm to calculate the initial cross Gramian matrix W (0)

and compare the result to the exact solution of the algebraic Sylvester equation, we get

the error norm as

‖WX −W (0)‖2 = 53.489147248362102

The cross Gramian matrix is then calculated using the proposed recursive algorithm.

The error norm for each iteration is shown in Table 5.3.

5.4 Conclusions

The algorithm was developed to solve the algebraic Sylvester equation whose solution

defines the cross Gramian of singularly perturbed linear systems. The algorithm is

very efficient, defined in terms of reduced-order sub-problems corresponding to slow

and fast subsystems, and converges rapidly to the required solution. The efficacy of

the algorithm is demonstrated on three real physical examples. The algorithm can

be directly applied to singularly perturbed systems in the explicit standard forms. A

similarity transformation needs to be applied to singularly perturbed systems in implicit

forms to convert them into their explicit forms, before the proposed algorithm can be

applied to this class of systems.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, a DFIG-wind energy conversion system connected to the utility

grid, as well as wind farms of different sizes were investigated for model order reduction

and optimal control.

In Chapter 2, the balanced truncation and residualization and the singular pertur-

bation methods were utilized to reduce the order of an eighth-order DFIG-based wind

energy conversion system connected to the utility grid. In general, these two model

order reduction techniques produce consistent results. However, in the case of the con-

sidered DFIG system, the reduction in model order achieved via singular perturbations

outperformed the reduction achieved via the balancing methods in terms of both the

transient step response and the linear-quadratic near-optimal control performance. The

singular perturbation method allows the reduction of the system model order even to

an order of two while the balancing method only allows the system model order to be

reduced to the sixth order. Further order reduction using the balancing method would

result in a significant increase in the error bound.

In Chapter 3, model order reduction, based on the balancing and cross Gramian

methods, was considered for the state-space model of wind farms of different sizes. The

cross Gramian method reduces the computational complexity by calculating only one

Gramian without the need for balancing and shows comparable results to the balanced

truncation methods. The order of the reduced system depends, significantly, on the

selected threshold value. Furthermore, comparing the degree of controllability and

observability of the system, in both the vector and diagonal forms of the control input

matrix, showed a considerable loss of controllability and observability in the case of the
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latter form.

In Chapter 4, based on time scale analysis, LQR, Kalman filter, and LQG con-

trollers were designed for a fifth-order, single-cage DFIG wind turbine. The algebraic

Riccati equation of the singularly perturbed wind turbine system was decomposed into

two reduced-order AREs that correspond to the slow and fast time scales. These AREs

were successfully solved using the Newton recursive algorithm. The obtained solutions

are used to design an optimal LQR controller for the slow and fast subsystems, in-

dependently. Using the duality between the optimal filters and regulators, the same

technique was applied to the full order Kalman filter to obtain two independent, reduced

order, slow and fast Kalman filters which were able to accurately track the state-space

states of the wind turbine system. The reduced-order LQG controller was obtained

by combining the corresponding regulator and Kalman filter. The effect of the applied

white Gaussian noise is reduced successfully by the LQG regulator and its Kalman filter

implementation. Furthermore, the designed LQG controller showed good performance

and robustness when a wind turbulence and a large-signal disturbance affect the system.

In Chapter 5, a new reduced-order recursive algorithm was developed to solve a class

of Sylvester equation given by AWX + WXA = BC, whose solution WX defines the

cross Gramian of singularly perturbed linear systems. The system under investigation

must be asymptotically stable, controllable, observable, and square. The algorithm is

defined in terms of the reduced-order sub-problems corresponding to the slow and fast

subsystems. The rate of convergence of the proposed algorithm is O(ε), where ε is a

small singular perturbation parameter that indicates the separation of the slow and fast

state variables. The algorithm can be directly applied to singularly perturbed systems

in the explicit standard form. A similarity transformation needs to be applied to the

singularly perturbed systems in implicit forms to convert them into their explicit form

before the proposed algorithm can be applied to this class of systems.
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6.2 Future Work

A number of possible directions for further developing the work presented in this dis-

sertation can be pursued. The following directions may be considered for future work:

• Due to complexity of wind power electric energy production, variability of operat-

ing conditions, intermittency of wind power, disturbances, and integration of wind

turbines into the power grid, it is important that the research work presented in

this dissertation that focused mostly on modeling and controls, be expanded to

a system integration level and include other researchers and practitioners of the

smart power grid community. The problems of wind turbines integration with

transmissions lines, grouping within different areas of wind farms, coordination

of the control with supervision systems, integration with other distributed energy

resources, such as energy storage systems, and microgrids, would provide variety

of topics for future multidisciplinary research.

• Verify the analytical results obtained in Chapter 2 using different wind turbine

generator setups. For example, a two-mass model of WECS with different wind

speeds, load levels, and power grid models can be investigated and compared

using the the considered order reduction methods.

• In Chapter 3, a general setup of the following two linear systems, differing in the

forms of their input matrices

ẋ(t) = Ax(t) +

B1

B2

u(t) and ẋ(t) = Ax(t) +

B1 0

0 B2

u(t)

u(t)

 (6.1)

can be studied analytically in more detail. The controllability Gramians of these

systems can be compared in terms of their input matrix representation; earlier,

we concluded that representing the input matrix in the diagonal form causes a

controllability loss of the system.

• For the optimal linear controllers designed in Chapter 4, evolutionary optimization

algorithms may be used in constructing the optimal weighting matrices R and Q.
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Nonlinear controllers can also be designed to eliminate the need for linearization

and to improve the dynamic response of the considered wind turbine system

during grid disturbances.

• A major hindrance associated with the cross Gramian-based solution is that this

technique is applicable to square systems only. The proposed algorithm in Chapter

5 may be extended to include the non-square systems.

• The presented algorithms are suitable to be implemented as the modern reinforce-

ment learning algorithms, since the reinforcement learning methods for dynamic

systems are in fact approximate optimal control (approximate dynamic program-

ming) methods.
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Appendix A

A.1 Wind Turbine with DFIG Energy System Parameters

C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, C6 = 0.0068,

vp = 690V, Tsp = 0.8064, v = 9m/s, Cp = 0.48, Pnom = 2MVA,

Ht = 3.5, kopt = 0.56, ωs = 1, Fb = 50, ωb = 2πFb, VSC = 16MVA,

Sb = 2, VA = 16, Ze = Sb
V A = 0.125,

Xls = 0.09241, Xlr = 0.09955, Xm = 3.95279, Xtr = 0.05, XR = 10,

Rr = 0.00549, Rs = 0.00488,

Xss = Xls +Xm = 4.0452,

Xrr = Xlr +Xm = 4.0452,

XT = Xe +Xtr = 0.1744,

Re = Ze√
1+X2

R

= 0.0124,

Xe = ReXR = 0.1244, ,

RT = Rs +Re = 0.0173

A.2 Wind Turbine with DFIG Energy System Operating Points

ids0 = −0.035, iqs0 = 0.343, idr0 = 0.217, iqr0 = 0.367

vds0 = −0.06, vqs0 = 0.998, vdr0 = −0.025, vqr0 = 0.206,

vs0 = 0.9998, ωr0 = 0.8, s0 = 0.2
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A.3 Wind Turbine with DFIG Energy System Matrices

a11 =
Wb

(XrrXss −X2
m)
{(−RTXrr +

Kp2

Vs0Ws
)(RTVds0 +XTVqs0)},

a12 =
Wb

(XrrXss −X2
m)
{(XrrXss − s0X2

m)Ws +XTXrr+

(Kp2/Vs0Ws)(RTVqs0 −XTVds0)},

a13 =
Wb

(XrrXss −X2
m)
{−Xm(Rr +Kp2)},

a14 =
Wb

(XrrXss −X2
m)
{(−XmXrr + s0XmXrr)Ws},

a15 =
Wb

(XrrXss −X2
m)
{(Xmiqs0 −Xrriqr0)Xm},

a16 =
WbXm

(XrrXss −X2
m)
, a17 = 0, a18 =

WbXmKp2

(XrrXss −X2
m)
,

a21 =
Wb

(XrrXss −X2
m)
{(−XrrXss + s0X

2
m)Ws −XTXrr

+ (Kp1KoptXssWsW
2
r0/V

3
s0)(RTVds0 +XTVqs0)},

a22 =
Wb

(XrrXss −X2
m)
{(−RTXrr + (Kp1KoptXssWsW

2
r0/V

3
s0)(RTVqs0 −XTVds0)},

a23 = −a14, a24 =
Wb

(XrrXss −X2
m)
{−Xm(Rr +Kp1)},

a25 =
Wb

(XrrXss −X2
m)
{(−Xmids0 +Xrridr0)Xm}, a26 = 0, a27 = a16, a28 = 0,

a31 =
Wb

(XrrXss −X2
m)
{−RTXm + (Kp1Xss/(XmVs0Ws))(RTVds0 +XTVqs0)}

a32 =
Wb

(XrrXss −X2
m)
{(XmXss − s0XmXss)Ws +XTXrr

+ (Kp2Xss/(XmVs0Ws))(RTVqs0 −XTVds0)},

a33 =
Wb

(XrrXss −X2
m)
{−Xss(Rr +Kp2),

a34 =
Wb

(XrrXss −X2
m)
{(−X2

m + s0XssXrr)Ws},

a35 =
Wb

(XrrXss −X2
m)
{(Xmiqs0 −Xrriqr0)Xss},

a36 =
WbXss

(XrrXss −X2
m)
, a37 = 0,
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a38 =
Wb

(XrrXss −X2
m)
{XssKp2},

a41 =
Wb

(XrrXss −X2
m)
{(−XmXss + s0XmXss)Ws −XTXrr

+ (Kp1KoptX
2
ssWsWr02/(V 3

s0Xm))(RTVds0 +XTVqs0)},

a42 =
Wb

(XrrXss −X2
m)
{−RTXm + (Kp1KoptX

2
ssWsW

2
r0/(V

3
s0Xm))(RTVqs0 −XTVds0)},

a43 =
Wb

(XrrXss −X2
m)
{(X2

m − s0XssXrr)Ws},

a44 =
Wb

(XrrXss −X2
m)
{−Xss(Rr +Kp1)},

a45 =
Wb

(XrrXss −X2
m)
{(−Xmids0 +Xrridr0)Xss + 2(Kp1Xss/Xm)},

a46 = 0 a47 = a36, a48 = 0,

a51 = Xmiqr0/(2Htot), a52 = −Xmidr0/(2Htot), a53 = −Xmiqs0/(2Htot),

a54 = Xmids0/(2Htot), a55 = 0, a56 = 0, a57 = 0, a58 = 0,

a61 = (Ki2/(Vs0WsXm))(RTVds0 +XTVqs0),

a62 = (Ki2/(Vs0WsXm)) ∗ (RTVds0 −XTVds0),

a63 = −Ki2, a64 = 0 a65 = 0, a66 = 0, a67 = 0, a68 = Ki2,

a71 = (Ki1KoptXssWsW
2
r0/(V

3
s0Xm))(RTVds0 +XTVqs0),

a72 = (Ki1KoptXssWsW
2
r0/(V

3
s0Xm))(RTVqs0 −XTVds0),

a73 = 0, a74 = −Ki1, a75 = 2Ki1KoptXssWsWr0/(XmVs0),

a76 = 0, a77 = 0, a78 = 0,

a81 = (−Kp3/Vs0)(RTVds0 +XTVqs0),

a82 = (Kp3/Vs0)(RTVqs0 −XTVds0), a83 = 0,

a84 = 0, a85 = 0, a86 = 0, a87 = 0, a88 = 0,
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b61 = −Ki2, b62 = 0, b63 = −Ki2Kp3 +
Ki2

WsXm
, b64 = Ki2Kp3, b65 = 0,

b71 = 0, b72 = −Ki1, b73 = −Ki1XssTsp

WsXmV 2
s0

,

b74 = 0, b75 =
Ki1Xss

WsXmVs0
,

b81 = 0 b82 = 0 b83 = −Kp3 b84 = Kp3 b85 = 0,

E =
1

ωb



−Xss 0 Xm 0 0

0 −Xss 0 Xm 0

−Xm 0 Xrr 0 0

0 −Xm 0 Xrr 0

0 0 0 0 2Htotωb


,

Bconv =


b61 b62 b63 b64 b65

b71 b72 b73 b74 b75

b81 b82 b83 b84 b85

 , B =

 E−1
Bconv


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Appendix B

B.1 Direct Quadrature Zero Transformation

In order to simplify the mathematical model analysis, and to eliminate the effect of time-

varying inductances, the three-phase stator and rotor quantities (voltages, currents, and

flux linkages) are transformed into a single rotating reference frame dq0 using the direct-

quadrature-zero transformation (DQZ). The DQZ transformation is the product of the

Clarke and Park transformation matrices. The Clarke transformation matrix is given

by

TClarke =

√
2

3
·


1 −1

2 −1
2

0 −
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 (B.1)

The Park transformation matrix is given by

TPark =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 (B.2)

where θ is an arbitrary rotation angle. Together, the Clarke and Park transforms form

the DQZ transform:

TPC = TPark · TClarke (B.3)

Let xabc = [xa, xb, xc]
T and xdq0 = [xd, xq, x0]

T , then, in matrix notation, we have

xdq0 = TPCxabc =

√
2

3
·


cosθ cos(θ − 2π

3 ) cos(θ + 2π
3 )

−sinθ −sin(θ − 2π
3 ) −sin(θ + 2π

3 )

1√
2

1√
2

1√
2



xa

xb

xc

 (B.4)
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where the subscripts d, q, and 0 represent the direct, quadrature, and zero components.

The angle θ, here, is the reference angle or reference phase and is typically chosen as

ωst where ωs is the frequency of the infinite bus or is fixed to the rotor angle of one of

the synchronous machines [109]. TPC is an orthogonal transformation matrix. Thus,

the inverse transform is

xabc = T−1PCxdq0 =

√
2

3


cosθ −sinθ 1√

2

cos(θ − 2π
3 ) −sin(θ − 2π

3 ) 1√
2

cos(θ + 2π
3 ) −sin(θ + 2π

3 ) 1√
2



xd

xq

x0

 (B.5)

The stator and rotor voltages of the DFIG, respectively, in the three phase frame

are given by 
vas(t)

vbs(t)

vcs(t)

 = Rs


ias(t)

ibs(t)

ics(t)

+
d

dt


ψas(t)

ψbs(t)

ψcs(t)



var(t)

vbr(t)

vcr(t)

 = Rr


iar(t)

ibr(t)

icr(t)

+
d

dt


ψar(t)

ψbr(t)

ψcr(t)



(B.6)

where subscripts a, b, and c stand for the three phase quantities in the abc-frame, while

subscripts s and r stand for the stator and rotor, respectively. v, i, ψ,Rs, and Rr are the

voltages, currents, flux linkages, and stator and rotor winding resistances, respectively.
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The flux linkages are related to the currents as follows


ψas(t)

ψbs(t)

ψcs(t)

 = Ls


ias(t)

ibs(t)

ics(t)

+ Lm


iar(t)

ibr(t)

icr(t)



ψar(t)

ψbr(t)

ψcr(t)

 = Lr


iar(t)

ibr(t)

icr(t)

+ LTm


ias(t)

ibs(t)

ics(t)



(B.7)

The inductance matrices are defined by

Ls =


Lls + Lm −1

2Lm −1
2Lm

−1
2Lm Lls + Lm −1

2Lm

−1
2Lm −1

2Lm Lls + Lm

 (B.8)

Lr =


Llr + Lm −1

2Lm −1
2Lm

−1
2Lm Llr + Lm −1

2Lm

−1
2Lm −1

2Lm Llr + Lm

 (B.9)

Lm = L̂m


cos(θr) cos(θr + 2π

3 ) cos(θr − 2π
3 )

cos(θr − 2π
3 ) cos(θr) cos(θr + 2π

3 )

cos(θr + 2π
3 ) cos(θr − 2π

3 ) cos(θr)

 (B.10)

where subscripts l and m stand for the leakage and magnetizing inductances, respec-

tively. L̂m is the maximum mutual inductance between the stator and the rotor. θr(t)

is the electrical rotor speed.

Applying (B.4) to the DFIG equations (B.6) and (B.7) in the abc-frame gives the

DFIG model in the dq-frame. The stator and rotor voltage and flux dynamic equations
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in the dq synchronous reference frame are given, respectively, by [5,15,40].

vds
vqs

 = Rs

ids
iqs

+ ωs

−ψqs
ψds

+
d

dt

ψds
ψqs



vdr
vqr

 = Rr

idr
iqr

+ sωs

−ψqr
ψdr

+
d

dt

ψdr
ψqr


(B.11)

ψds
ψqs

 =

Lls + 3
2Lm 0

0 Lls + 3
2Lm

ids
iqs

+

3
2Lm 0

0 3
2Lm

idr
iqr



ψdr
ψqr

 =

Llr + 3
2Lm 0

0 Llr + 3
2Lm

idr
iqr

+

3
2Lm 0

0 3
2Lm

ids
iqs


(B.12)

where the subscripts s and r denote the stator and rotor quantities, whereas subscripts q

and d denote the components aligned with the q-axis and d-axis reference frames, respec-

tively. In (B.11), ωs and ωr are the synchronous stator and rotor angular frequencies,

respectively. s is defined as the slip of the generator, and is given by s = (ωs − ωr)/ωs.

B.2 Per Unit System

In order to simplify the calculations when dealing with different quantities in the power

systems, such as the different voltage levels separated by multiple transformers, the per

unit system can be used to obtain the normalized values of all quantities. The per unit

quantity is defined by the ratio between the original value and the base value

per unit value =
original value

base value
(B.13)

The power and the voltage are usually chosen as the base quantities, and all other base

quantities are derived after that by the laws of electrical circuits. The base power Sbase
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is chosen considering the rated power of the generator. For the base voltage Vbase, the

nominal voltage is considered, with the low and high voltage sides of the transformers

being related to each other through the appropriate turn ratio [110]. Similarly, the

synchronous speed is chosen as the base values, with the different base speeds on the

low and high speed sides of the gearboxes being related to each other through the

gearbox ratio. More details on the chosen and deduced base quantities for the DFIG

generator can be found in [110].
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[84] E. J. N. Menezes, A. M. Araújo, and N. S. B. da Silva, “A review on wind turbine
control and its associated methods,” Journal of cleaner production, vol. 174, pp.
945–953, 2018.

[85] H. M. Nguyen and D. S. Naidu, “Time scale analysis and control of wind energy
conversion systems,” in 2012 5th International Symposium on Resilient Control
Systems. IEEE, 2012, pp. 149–154.

[86] Y. Zhang, H. Nguyen, D. S. Naidu, Y. Zou, and C. Cai, “Time scale analysis
and synthesis for model predictive control,” in Proceedings of the WSEAS-NAUN
4th International Conference on Circuits, Systems, Control, Signals (CSCS’13),
2013, pp. 27–32.

[87] S. Jaison, D. S. Naidu, and D. Zydek, “Time scale analysis and synthesis of deter-
ministic and stochastic wind energy conversion systems,” WSEAS Transactions
on Systems and Control, vol. 9, no. 1, pp. 189–198, 2014.

[88] Z. Gajic and M. T. Lim, “A new filtering method for linear singularly perturbed
systems,” IEEE Transactions on Automatic Control, vol. 39, no. 9, pp. 1952–1955,
1994.

[89] W. C. Su, Z. Gajic, and X. M. Shen, “The exact slow-fast decomposition of the
algebraic ricatti equation of singularly perturbed systems,” IEEE Transactions
on Automatic Control, vol. 37, no. 9, pp. 1456–1459, 1992.

[90] M. L. Shanoob, K. Iqbal, and A. Al-Maliki, “Wind turbine transient response
and fault ride-through improvements with optimal control,” International Trans-
actions on Electrical Energy Systems, vol. 27, no. 11, p. e2412, 2017.

[91] Z. Gajic, Multimodel Control and Estimation of Linear Stochastic Systems, 1984.

[92] T. Grodt and Z. Gajic, “The recursive reduced-order numerical solution of the
singularly perturbed matrix differential riccati equation,” IEEE transactions on
automatic control, vol. 33, no. 8, pp. 751–754, 1988.

[93] I. Borno and Z. Gajic, “Parallel algorithms for optimal control of weakly coupled
and singularly perturbed jump linear systems,” Automatica, vol. 31, no. 7, pp.
985–988, 1995.

[94] H. Mukaidani, H. Xu, and K. Mizukami, “New iterative algorithm for algebraic
riccati equation related to h-infinity control problem of singularly perturbed sys-
tems,” IEEE transactions on automatic control, vol. 46, no. 10, pp. 1659–1666,
2001.

[95] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation ax+ xb= c
[f4],” Communications of the ACM, vol. 15, no. 9, pp. 820–826, 1972.

[96] G. Golub, S. Nash, and C. Van Loan, “A hessenberg-schur method for the problem
ax+ xb= c,” IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 909–
913, 1979.



132

[97] D. Y. Hu and L. Reichel, “Krylov-subspace methods for the sylvester equation,”
Linear Algebra and its Applications, vol. 172, pp. 283–313, 1992.

[98] F. Ding and T. Chen, “Iterative least-squares solutions of coupled sylvester matrix
equations,” Systems & Control Letters, vol. 54, no. 2, pp. 95–107, 2005.

[99] X. Wang, L. Dai, and D. Liao, “A modified gradient based algorithm for solving
sylvester equations,” Applied Mathematics and Computation, vol. 218, no. 9, pp.
5620–5628, 2012.

[100] Z.-Z. Bai, “On hermitian and skew-hermitian splitting iteration methods for con-
tinuous sylvester equations,” Journal of Computational Mathematics, pp. 185–
198, 2011.

[101] Y.-F. Ke and C.-F. Ma, “A preconditioned nested splitting conjugate gradient
iterative method for the large sparse generalized sylvester equation,” Computers
& Mathematics with Applications, vol. 68, no. 10, pp. 1409–1420, 2014.

[102] V. Sreeram, “Recursive technique for computation of grammians,” in IEE
Proceedings-D, vol. 140, no. 3, 1993, pp. 160–166.

[103] K. Wan and V. Sreeram, “Solution of the bilinear matrix equation using åström-
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