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dissertation Director: Prof. Ilker Hacihaliloglu

Orthopedic surgeries have been a prominent procedure in treating interminable pain

and disabilities, due to musculoskeletal diseases, e.g. osteoarthritis, spinal conditions,

osteoporosis, and low-energy fractures. Imaging has been an integral component of sur-

gical and non-surgical orthopedic procedures such as total knee replacement (TKR), in-

tramedullary nail locking for femoral shaft fractures, and pedicle screw insertion for spinal

fusion surgery. Current practice during these procedures relies on intra-procedure 2D fluo-

roscopy as the main imaging modality for localization and visualization of bones, fractures,

implants, and surgical tool positions. However, with such projection imaging, surgeons and

clinicians typically face considerable difficulties in accurately localizing bone fragments in

3D space and assessing the adequacy and accuracy of the procedure. This problem has been

overcome with 3D fluoroscopy units, however, they are twice as expensive and not widely

available as standard 2D units. Additionally, fluoroscopy involves significant ionizing ra-

diation exposure, which should be kept at minimal in order to avoid potential long-term

complications. In order to overcome some of these limitations and provide a safe alterna-

tive, 2D/3D ultrasound (US) has emerged as a safe alternative while remaining relatively

cheap and widely available. US image data, however, is typically characterized by high

levels of speckle noise, reverberation, anisotropy and signal dropout which introduce sig-
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nificant difficulties during interpretation of captured data. Limited field-of-view and being

a user dependent imaging modality cause additional difficulties during data collection since

a single-degree deviation angle by the operator can reduce the signal strength by 50%. In

order to overcome these difficulties automatic bone segmentation and registration methods

have been developed.

The goal of this research is to develop robust, accurate, real-time and automatic image

segmentation and localization methods for bone structures in US guided interventional or-

thopedic procedures. A multimodal convolutional neural network(CNN)-based technique

is developed for segmenting bone surfaces from in vivo US scans, in which fusion of fea-

ture maps and multimodal images are incorporated to abate sensitivity to variations that are

caused by imaging artifacts and low intensity bone boundaries. A block-based CNN for

segmentation of bone surfaces from in vivo US scans is also proposed. We utilize fusion of

feature maps and employ multi-modal images to abate sensitivity to variations caused by

imaging artifacts and low intensity bone boundaries. We also propose a conditional Gen-

erative Adversarial Network (cGAN)-based method for accurate real-time segmentation of

bone shadow regions from in vivo US scans. Finally, a novel GAN architecture designed to

perform accurate, robust and real-time segmentation of bone shadow images from in vivo

US data, is proposed. We show how the segmented bone shadow regions can be used as

an additional proxy to improve bone surface segmentation results of a multi-feature guided

CNN architecture. Extensive validation studies were performed to address the engineering

challenges found in real clinical situations. Validating the proposed methods with clinical

studies will in turn help in the future design, development, and evaluation of a 3D US based

CAOS system which could improve performance by providing better assessment and place-

ment and results in reduction of operations time. This can decrease the cost and improve

efficiency by replacing fluoroscopy at key points in the diagnosis and treatment.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Motivation and Problem Statement

Orthopedic surgeries have been a prominent procedure in treating interminable pain and

disabilities, due to musculoskeletal diseases, e.g. osteoarthritis, spinal conditions, osteo-

porosis, and low-energy fractures. In 1990, the World Health Organization reported 1.7

million hip fractures, for example, and projected the figure to increase to 6 million by 2050

[1]. Osteoporosis and related fracture treatments costs were estimated at $19.1 billion in

2004. Moreover, spine related injuries for the years 2002-2004 were estimated at $193.9

billion [1, 2]. Surgical interventions may include osteotomy, fracture fixation, or place-

ment of an implant device [3]. The need for high precision in the mentioned procedures is

evidently required in order to minimize the intra- and post-operative complications. Imag-

ing has been an integral component of any orthopedic surgery. Intra-operative fluoroscopy

and preoperative computed tomography are the most common imaging modalities in such

surgeries. Despite their high-quality display of bone structures, fluoroscopy, and computed

tomography (CT)-guided orthopedic surgery present difficulties during intra-operative nav-

igation. 2D fluoroscopy is limited to projection imaging necessitating the collection of

multiple scans from different directions. 3D fluoroscopy units overcome the drawbacks of

the 2D counterpart, however, they are not cost-effective and currently are not widely avail-

able. CT-guided procedures still require the use of intra-operative 2D fluoroscopy. More-

over, both of these modalities operate with ionizing radiation which causes severe safety

concerns to both surgical team and the patient. In order to provide a solution to the radia-

tion exposure and improve the navigation accuracy, ultrasound (US) has been proposed by

various research groups as an alternative to 2D fluoroscopy, as it provides real-time, non-
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radiation based 2D/3D imaging. US current limitations include low signal-to-noise ratio

(SNR), imaging artifacts, limited field of view and being a user operated imaging modality.

all of these factors have hindered the widespread use of US in CAOS procedures.

The goal of this research is to develop robust, accurate, real-time and automatic image

segmentation and localization methods for bone structures in ultrasound (US)-guided in-

terventional procedures. A correct segmentation of bone structures is crucial in US-guided

orthopedic procedures. In clinical practice, the quantification of these structures is gen-

erally performed by manual tracing, which is a time consuming and introduces inter- and

intra-user variability errors. Hence, reliable, rapid, accurate, and automatic or semiauto-

matic methods of bone segmentation are required.

The focus of this work is to develop automatic segmentation techniques that are robust

and accurate for ultrasound (US) guided minimally invasive surgeries. This research is

intended to advance the larger goal of developing a novel US based computer assisted or-

thopaedic surgery (CAOS) system for minimally invasive bone reduction procedures. Such

a system will ultimately address a variety of problems with the planning and execution of

orthopaedic surgery procedures. Specifically we have investigated the potential and feasi-

bility in using deep learning-based methods for real-time segmentation of bone surfaces.

The goals of this research include the following:

• Developing new and robust deep learning-based methods that can allow automatic

and real-time extraction of bone surfaces and surgical tools from two dimensional

(2D) US scans with sufficient accuracy.

• Introducing multimodal convolutional neural network(CNN)-based technique for seg-

menting bone surfaces from in vivo US scans, in which fusion of feature maps and

multimodal images are incorporated to abate sensitivity to variations that are caused

by imaging artifacts and low intensity bone boundaries.

• Developing a block-based CNN for segmentation of bone surfaces from in vivo US
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scans. The novelty of our proposed design is that it utilizes fusion of feature maps

and employs multi-modal images to abate sensitivity to variations caused by imaging

artifacts and low intensity bone boundaries.

• Developing a conditional Generative Adversarial Network (cGAN)-based method for

accurate real-time segmentation of bone shadow regions from in vivo US scans. A

novel GAN architecture designed to perform accurate, robust and real-time segmen-

tation of bone shadow images from in vivo US data, is proposed. We show how the

segmented bone shadow regions can be used as an additional proxy to improve bone

surface segmentation results of a multi-feature guided (CNN) architecture.

• Developing a GAN-based computational method in order to produce synthetic B-

mode bone US images and to generate their corresponding segmented bone surfaces

which can be used as labels. Our model utilized self-projection and self-attention

blocks in its architecture and attempts to provide a solution to two of the medical

data main problems: scarcity of data size, due to a lack of standardized data, and

patients’ privacy concerns. We show how such an approach can improve bone surface

segmentation accuracy using synthesized B-mode bone US images generated by this

model when tested using a segmentation CNN.

1.2 Basics of Ultrasound Imaging

Ultrasound waves are non-audible sound waves that can be described as pressure waves

of mechanical energy that is transmitted through a medium by vibration of molecules [4].

Sound is characterized by its frequency in hertz (Hz), wavelength in millimeters (mm) and

amplitude in decibels (dB). Sound is a longitudinal wave. Air molecules are concentrated

at the peak and there is refraction in the trough. As for most vibrations, there is a frequency

of compression and rarefaction. Audible signal has a frequency of less than 20kHz. Ultra-

sound has a greater frequency than this and in medical applications, the frequency varies
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from 1 MHz to 15MHz. The time for a sound wave to complete a continuous cycle is the

time period; the measurement length is the microseconds. Wavelength is the amount of

space on which the cycle takes place; it is directly proportional to the time from the start to

the end of the process. Frequency relates to the quantity of repeated cycles per second mea-

sured in hertz (Hz). Acoustic speed is the rate at which the sound wave travels through the

channel. It is equivalent to the frequency period of the wavelengths. Speed c is calculated

by the stiffness and density of medium as:

c =
√
K/ρ (1.1)

where ρ is the density is the density of the medium and K is the adiabatic elastic bulk

modulus. The stiffness is the resilience of the component to pressure. The rate of propaga-

tion increases with increasing in stiffness and a decline in density. The ultrasonic probe is a

very critical sensor that produces acoustic signals and also senses the returned signals. The

efficiency and image quality of the ultrasonic scanner are greatly influenced by the charac-

teristics and configuration of the probe (piezoelectric material, matching layer and acoustic

lens). The transducer is a major component of the ultrasound system. The transducer probe

produces a pressure wave and generates an echo. It is the mouth and ears of the ultrasound

system. The transducer probe creates and captures waves of sound using a principle called

the piezoelectric (pressure) effect. There are either one more than two quartz crystals in the

sample or piezoelectric crystals. If electrical field is applied to such crystal, they quickly

change structure.

Ultrasound is demonstrated by a variety of properties as it moves through the tissue on

of which is reflection. Wave is reflected on boundary surfaces among tissue with various

wave propagation property (such as fat , muscle, and blood). The level of reflection depends

on the degree of variance. The leftover ultrasound energy will either infiltrate further or be

absorbed by the tissue. Usually, the ultrasound wave strikes a variety of different reflector

surfaces. The amplitudes of ultrasonic reflections rely on the standard acoustic impedance
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Z of the neighboring tissues. The characteristic impedance of a tissue is equivalent to the

result of its density, ρ, and velocity of propagation:

Z = cρ (1.2)

Soft tissue has an average speed of 1540 ms-1. Reflection can be called either specular

or diffuse. Specular reflection happens as sound waves meet large smooth objects, such as

bones, which result in sound waves being reflected back in a relatively uniform direction.

The cells in most soft tissue establish a more complex pattern in reflection on the transducer.

Echo production is critically responsible for the presence of an acoustic impedance differ-

ence between the two classes of tissues. Acoustic impedance is the function of the tissues

and is described as the product of a volume of the tissues and the speed at which the sound

waves spread through the surface. If two tissues forms have same acoustic impedance, no

resonance will be generated, as no waves of sounds will be reflected.

Non-specular reflections arise where the boundary is small than one wavelength of the

ultrasound beams. The reflecting beam produced is called an Echo. Diffuse reflection is

the dispersion of light that happens as it is reflected off the surface. Unlike the specular

reflection, which is measured on the basis of the surface angle, the diffuse reflection is

determined on the basis of the surface structure itself. For example, a rough surface ab-

sorbs light at several angles, depending on its bumps, pivots, and grain. Although a very

smooth surface, owing to the molecular structure of the material, creates a distorted re-

flection at certain angles. Most acoustic radiation is absorbed and converted into heat as

the sound waves travel through the skin. Instead of low frequency waves, high frequency

sound waves are consumed. Variable frequency sound waves have a higher resolution than

low-frequency sound waves, which is done at the disadvantage of reduced penetration. The

inability to sufficiently penetrate the tissues of high-frequency sound waves results imme-

diately in increased amplification and acoustic energy transfer as heat. The absorbance rate

which occurs in the medium itself is also a factor in which some of the materials are more



6

diminishing than others. The total attenuation by a certain channel shall be calculated by

the decibel coefficient per cm per MHz. Refraction happens as sound waves travel at vary-

ing transmission speeds from one origin to the next. This shift in speed leads to refraction

or a shift in the direction of the main wave of sound. It is a change in the direction of a beam

of Ultrasound at a boundary between two media. Refraction thus results in a weakening of

the signal propagated. The traditional settings for the ultrasound instrumentation measure

the return waves as if they were moving in a straight line. This results in a loss of image

clarity as the refraction increases. The relationship between the velocity properties of the

various tissues also affects the direction of the refraction. If the propagating sound wave is

quicker in the first tissue due to less tissue impedance, the refraction would be more per-

pendicular. If the impedance is lower in the second tissue, resulting in higher sound wave

propagation, the refraction happens away from the initial direction. Figure 1.1 depicts this

an example of sound wave propagation in tissue, where incident, reflected and transmitted

waves are indicated [5].

1.3 Deep Learning-Based Segmentation for Medical Images

Artificial neural networks are machine learning techniques that attempt to simulate and

mimic the biological nervous system’s mechanism of learning. The general objective is to

implement and train mathematical models to produce specific desired outcomes. The idea is

that machines may learn to perform tasks from experience provided in the form of training

data. A neural network computes a function of the input data by propagating the computed

values from the input neurons to the output neurons and using the weights as intermedi-

ate parameters. More specifically, learning occurs by changing the weights connecting the

neurons [6]. Machine learning is a sub-field of artificial intelligence, under which learn-

ing methods can be divided into three main categories: supervised learning, unsupervised

learning and reinforcement learning. Generally, machine learning models are utilized for

supervised learning, in which the computer is given a set of labelled data and tasked with
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Figure 1.1: An example of sound wave propagation in tissue. Incident, reflected and trans-
mitted waves are respectively indicated as blue, orange and gray arrows.
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generating correct labels previously unseen data. In other words, supervised learning ad-

justs network parameters by a direct comparison between the actual network output and the

desired output. Supervised learning is a closed-loop feedback system, where the error is

the feedback signal. The error measure, which shows the difference between the network

output and the output from the training samples, is used to guide the learning process. The

error measure is usually defined by the mean squared error (MSE). In contrast to supervised

learning, unsupervised learning does not require labeled data. Instead, it aims to recognize

patterns in the data. Therefore, unsupervised learning involves no target values. It tries

to associate information from the inputs with an intrinsic reduction of data dimensionality.

Unsupervised learning is solely based on the correlations among the input data, and is used

to find the significant patterns or features in the input data without the help of a teacher.

Unsupervised learning is particularly suitable for biological learning in that it does not rely

on a teacher and it uses intuitive primitives like neural competition and cooperation cite .

A common example of unsupervised learning is clustering algorithms, which take a large

set of data points and find groups within them. Reinforcement learning is similar to how a

human learns from a trial and error experiment. It first decides on a certain action and then

observes data to determine its effect. Over time, the model learns the best way to react. The

use of machine learning has been increasing rapidly in the medical imaging field, including

computer-aided detection, automated diagnosis and analysis. In 1995, Vapnik proposed a

support vector machine [7] which became one of the most popular classifier at the time, i.e.

the widespread use of SVM classifiers and clustering algorithms such as k-nearest neighbor

(k-NN). These learning models are based on handcrafted features, i.e. manually extracted

features from raw data or features extracted by other models. Also that year, random forests

were propsed by Ho et al. [8].

The term deep learning was introduced by Hinton et al. in 2007 [9]. Deep learning

has been an occurring major trend in health-related research areas, in the past decade, from

medical informatics and bioinformatics, to sensing and medical imaging, if the increasing
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number of publications is any indication [10]. In medical imaging, CNN-based approaches,

in particular, have proven to be robust and adept in computer-aided segmentation, detection,

and shape analysis [10, 11]. Pixel-level labeling in semantic segmentation was addressed

by Long et al. [12] in the Fully Convolutional Network (FCN) design, which enabled

the network to learn appropriate feature representations, e.g. pixel labeling. However,

the FCN [12] suffers from limitations in labeling resolution due to its fixed-size receptive

field and an overly simple deconvolution procedure, which Noh et al. in [13] have ame-

liorated by introducing an extension, composed of deconvolutions and unpooling layers, to

the original network. A similar encoder-decoder network architecture was introduced by

Badrinarayanan et al. [14] in which the encoder network is identical to [15]. However, the

decoder upsamples low-resolution input feature maps using pooling indices, computed in

the max-pooling step of the corresponding encoder, to perform non-linear upsampling. The

encoder is typically a classification network consisting of convolutional layers that maps

the input to a low resolution representation. The decoder, on the other hand, maps the low

resolution feature maps to upsampled segmentation outputs.

Based also on FCN [12], Ronneberger et al. [16] developed a CNN that has been

adapted towards segmentation of touching cells in microscopy. In this u-shaped encoder-

decoder network architecture, more feature channels were added to allow the network to

propagate context information to higher resolution layers. Furthermore, this network uti-

lized a tiling strategy, that extrapolated the context information of the border pixels by

mirroring the input image. In Addition, the problem of insufficient dataset size was ad-

dressed by utilizing data augmentation, i.e. by applying elastic deformation to the dataset,

mimicking realistic deformation in cells. While, the architecture proposed in [16] has sat-

isfactory performance results on various biomedical imaging tasks, it has two drawbacks;

namely, its inability to fuse extracted feature maps, and its incapability to utilize multiple

imaging modalities, which abates the segmentation accuracy.

Hazirbas et al. [17] investigated the fusion of feature maps using two different architec-
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tural designs, namely sparse and dense. It was shown that utilizing depth information, for

example, in addition to the appearance information, would improve the semantic segmen-

tation performance. Furthermore, the work done by Valada et al. [18] proposed a semantic

segmentation architecture based on a fusion technique that qualifies the learning of features

from multiple imaging modalities. The end-to-end semantic segmentation architecture in

[18] consists of experts that map imaging modalities to output segmentations, a Convoluted

Mixture of Deep Experts (CMoDE), and a fusion layer that further learns corresponding

fused kernels. One advantage of using multimodal images is that it is minimally sensitive

to variations caused by noise and other external conditions. The Mixture of Experts (MoE)

model, was originally introduced by Hinton et al. [19], where the input is mapped to the

output by experts, over which a probability distribution is produced by a gating network

to reduce the computational cost of multiple experts. The aforementioned experimental

techniques were considered in our proposed design.

1.4 Basics of Convolutional Neural Networks

Convolutional neural networks (CNNs) were first introduced in 1980 by Fukushima’s Neocog-

nitron work [20], in which the receptive field of a convolutional unit with a given weight

vector is shifted step by step across a two-dimensional array of input values. Neocogni-

tron is similar to the architecture of supervised, feedforward deep learners with alternating

convolutional and downsampling layers. However, a more practical revival of CNNs oc-

curred by AlexNet [21] in the ImageNet competition in 2012. Much of its success might be

attributed to the dropout training technique and the use of GPUs, ReLU function, and the

unique techniques for generating more training examples by deforming the existing ones

[22]. It is well known that a deeper network may better approximate the target function

with increased nonlinearity and obtain better feature representations. However, with in-

creased network complexity, training becomes more difficult and many issues might occur,

e.g. overfitting (according to the bias–variance trade-off), vanishing gradient, and compu-
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tational load. Deep CNNs provide a solution to these difficulties. A typical CNN consists

of the following layers.

Convolutional layers: A convolutional layer detects local conjunctions of features

from the previous layer. Neurons in a convolutional layer are organized in feature maps,

within which each neuron is connected to local patches in the feature maps of the previous

layer through a set of weights called a filter bank. Such a neighborhood is the neuron’s

receptive field in the previous layer. A convolution layer is composed of several convolu-

tion kernels, which are used to compute different feature maps. The convolution operation

involves sliding a small filter (kernel) of size K ×K × nc over the input W ×H × nc cor-

responding to activations from the previous layer. The depth nc of the kernel corresponds

to the depth of the input. At each receptive field, the pixel values in the input are multi-

plied with pixel values in the filter in an element-wise manner and summed. This process

makes the filter becomes a feature identifier and results in the learning of object features.

Weights are learned during the training process and shared for computation in each layer.

The stride, S, represents the increments by which the filter is moved. Stride length denotes

the gap between two subsequent filter application locations, which reduces the size of the

output tensor. For example, consider an input with size 32× 32× 3 and a 5× 5 filter would

result in 75 weights in addition to the bias parameter [23]. Zero padding of dimension P

might be applied to help capture features along the edges during convolution. This results

in reducing the width and height of the output. The output’s width Wo and height Ho are

given by:

Wo =
W −K + 2P

S
+ 1, Ho =

H −K + 2P

S
+ 1 (1.3)

Notice that the output’s depth corresponds to the number of filters used, i.e. size Wo ×

Ho × nc.

Activation layers: A post-processing layer applied right after the convolution layer

is referred to as an activation layer. Convolutional layers’ tensors are fed through non-
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linear activation functions which facilitate learning of complex mappings between inputs

and outputs. The most common activation function is rectified linear unit (ReLU) which

computes the function f(x) = max(x, 0). One of the advantages of ReLU is that it ac-

celerates the convergence of learning algorithms (e.g. stochastic gradient descent). Other

non-linearities have been used before, e.g. the sigmoid function: f(x) = 1
1+exp(−x) and the

f(x) = tanh(x) function. Leaky ReLU [24] and exponential linear unit (ELU) have also

demonstrated an improved performances in some tasks.

Pooling layers: A pooling (or sub-sampling) layer often are utilized after a convolution

layer. Pooling’s role is to downsample the output of a convolution layer along spatial

dimensions (height and width). For instance, a 2 × 2 pooling operation applied upon 12

feature maps will result in an output tensor with a 16 × 16 × 2 size. The role of the

pooling is to reduce the number of parameters learned by the network. Additionally, it

will contribute in overfitting reduction and improve the accuracy of the network. Some of

the most common pooling techniques include max pooling and average pooling. In a max

pooling scenario, a feature map for each pooled area is replaced by a single maximum value

amongst the others inside the pooled area. In an average pooling case, a feature map for

each pooled area is replaced by a single value, which is the average of all values inside the

pooled area. For an input volume W ×H × nc, the output volume’s width Wo and height

Ho are given by:

Wo =
W −K
S

+ 1, Ho =
H −K
S

+ 1 (1.4)

Fully connected layers: A fully connected layer (also referred to as dense layer) is

a final layer that all activations in the previous layer are connected to its neurons. Its

output is usually the class score where the number of neurons is the same as the number

of classes. One or more fully connected layers can be used in a CNN. The output of every

fully connected layer is an N × 1 vector.
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Figure 1.2: A typical three-phases CAOS workflow: Preoperative assessment, intraopera-
tive execution, and postoperative evaluation.

1.5 Computer-Assisted Orthopaedic Surgery

A wide range of computer-based technologies that aim to improve orthopaedic surgical pro-

cedures is commonly referred to as computer-assisted orthopaedic surgery (CAOS). Many

advancements in the fields of medical imaging and spatial tracking have contributed in

improving the accuracy of navigation during an orthopaedic surgery. CAOS-based proce-

dures are not identical and their framework may consist of different components due to the

availability of medical devices and the application at hand. The three phases of a CAOS

system are preoperative planning, intra-operative execution, and post-operative evaluation.

Typically, a US-based CAOS workflow would be as described in Figure 1.2.

As can be seen in Figure 1.2, imaging as a modality is present in all three phases.

Theses modalities are 2D plain X-ray, computed tomography (CT), magnetic resonance

imaging (MRI), and 2D/3D fluoroscopy [5]. The most commonly used imaging modality

is 2D fluoroscopy for intraoperative visualization and guidance. The more expensive 3D

fluoroscopy imaging modality has also been used for various CAOS procedures for intra-

operative guidance. Although it showed improved surgical outcome compared to its 2D
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counterpart, its high cost has hindered its use. Moreover, the ionizing radiation exposure

from fluoroscopy and CT modalities remains a major concern for the safety of patients and

the surgical team. When a patient is admitted because of a fractured pelvic injury, a CT

scan is the conventional protocol to follow. As [25] details in his work, the CT scan is taken

to assess the fracture preoperatively and it will serve as a valuable reference model which

could aid the surgical procedure. This allows the quantitative surgical plan, including the

desired reduction of bone fragments and the ideal screw insertion locations. A challenge

arises when the surgical team tries to transform the preoperative model into an intraopera-

tive reference (US-based) as it requires direct knowledge of the patient’s anatomy [26, 27,

25]. For an intraoperative phase in a CAOS procedure, it is essential to be able to precisely

locate the patient’s bone structures, i.e. bone segmentation. This way one can perform

image registration to align intraoperative image to the preopertaive one. If a US-to-CT reg-

istration is achieved, one can visualize the bone structure of the patient in real-time fashion.

There are many medical benefits to such a process including: (1) improving the surgical

team’s ability to accurately decide where to insert the surgical tools (e.g. screw placement),

(2) reducing the ionizing radiation, and (3) improving the postoperative procedure.

1.6 Challenges in Ultrasound Bone Segmentation

While ultrasound (US), as an imaging modality, provides a low cost, safe ionizing radiation-

free alternative to conventional fluoroscopy in CAOS surgeries, it suffers from major dis-

advantages in its current technology state. US has a low SNR ratio which makes scans of

bone structures appear as soft tissues, i.e. muscles. In addition, an abundance of speckle

presence degrades the quality of the US image and differentiating anatomical boundaries

more challenging [28]. Some US scanners are typically operated by two individuals and

the fact that the probe is manually-operated introduces changes in orientation with respect

to the bone surface. This changing orientation can alter the appearance significantly [29].

As an active research are, many have investigated segmentation of bone structures for dif-
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ferent applications. Thomas et al. [30] studied bone segmentation for the task of aiding

fetal femur length calculation. Hacihaliloglu et al. [31] developed Phase Symmetry (PS)

US bone segmentation as a precursor for US-CT registration [32]. In their work and sing

Log-Gabor filters over multiple scales and orientations, phase symmetric regions were ex-

tracted in 2D and 3D. A more optimized automated method was also introduced by [33,

34] achieving a mean surface fit error of 0.62 mm when tested on clinical data [25]. Jain

et al. and Foroughi et al. [35, 36, 37, 29, 38, 39] have demonstrated how to improve bone

segmentation by utilizing shadow regions in a US bone scan. Foroughi et al. and Haci-

haliloglu et al. [36, 40] have used dynamic programming methods to improve intensity

and phase-based bone segmentation by minimizing disconnected surfaces. Deep learning-

based methods have also been put to the task of bone segmentation from US bone images.

Salehi et al. [41] proposed a U-net [16] based segmentation method of bone surfaces from

US data, in which recall and precision rates were reported at 0.87. Similarly, Baka et al.

[42] proposed another U-net based segmentation method of bone surfaces from US data in

which the recall rate was 0.94 and the precision rate was reported at 0.88. Villa et al. [43]

proposed a fully convolutional network (FCN) [12] based segmentation method of bone

surfaces from US data, in which the recall rate was 0.62 and the precision rate was reported

at 0.64. However, in these studies, bone surface localization accuracy was not investigated

and low-quality bone surfaces were excluded from the validation and testing procedures.

In addition, none of these models were designed specifically for the task of bone segmen-

tation. As can be expected, networks whose architectures were designed to extract features

from US data could improve the accuracy of the desired outcome.
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CHAPTER 2

BONE SURFACE SEGMENTATION FROM ULTRASOUND USING

MULTIMODAL CNN

In this chapter, we present our development of a multimodal convolutional neural network

(CNN)-based technique for segmenting bone surfaces from in vivo US scans. The pro-

posed design utilizes fusion of feature maps and multimodal images to abate sensitivity to

variations that are caused by imaging artifacts and low intensity bone boundaries. In par-

ticular, our multimodal inputs consist of B-mode US images and their corresponding local

phase filtered counterparts. Various fusion operations were investigated for our proposed

network using different fusion architectures. Both quantitative and qualitative evaluations

were performed on our designs in order to demonstrate statistically significant performance

compared to others’ state-of-the-art networks. Promising results, which showed accurate

and robust segmentation of bone surfaces, were observed and further validations would be

required prior to utilizing the proposed methods clinically.

2.1 Introduction

The annual rate of different bone-related musculoskeletal disorders (MSDs) has signifi-

cantly increased during the past decades [2]. This includes chronic low back pain, spinal

fracture, cervical spinal stenosis, spinal osteoarthritis, and other MSDs conditions. These

conditions would cause pain and affect body functionality and could require spinal surgery

such as spinal fusion, Laminectomy, Foraminotomy, Discectomy, etc. Additionally, spine

related injuries for the years 2002-2004 were estimated at $193.9 billion [1].

The use of medical imaging in the preoperative, perioperative and postoperative periods

during the surgical procedure is essential to determine the surgical procedure and treatment

progress. Imaging is one of the most important components of any computer assisted ortho-
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pedic surgery (CAOS) system. The standard intra-operative imaging modality in CAOS is

2D/3D fluoroscopy. Both of these modalities operate with ionizing radiation which causes

important safety concerns to both surgical team and the patient. A safe intra-operative

imaging alternative, ultrasound (US) has been incorporated into various CAOS systems.

US provides real-time, non-radiation based 2D/3D imaging. However, low signal-to-noise

ratio (SNR) and imaging artifacts have hindered the widespread use of US in CAOS proce-

dures. In order to provide a solution to these difficulties, focus has been given to develop

automated US bone segmentation and enhancement methods that are robust and computa-

tionally inexpensive for US guided CAOS procedures.

Machine learning methods have been recently proposed for the segmentation of bone

surfaces from US data. Ozdemir et al. [44] investigated the use of a supervised learning

framework that combines the physical constraints of US into a graphical model for segmen-

tation. Although low quality bone surfaces were excluded from the validation and testing

procedure, in [42], a network architecture based on U-net of [16] was investigated for seg-

menting vertebra bone surfaces. Reported precision and recall rates were 0.88 and 0.94,

respectively. Also based on [16], a deep learning network architecture was developed by

[41] for segmentation of bone surfaces from US data. Although localization accuracy was

not reported, the recall and precision rates for the proposed method were 0.87. In [43], an

algorithm based on fully convolutional networks (FCN) was proposed for automatic local-

ization of the bone interface in US images and the results were compared against those of

confidence in phase symmetry (CPS).

2.2 Methods

2.2.1 Data Acquisition

A total of 261 B- mode US images, from twelve healthy subjects, were collected using

Sonix-Touch US machine (Analogic Corporation, Peabody, MA, USA), after obtaining the

institutional review board (IRB) approval. Depth settings and image resolutions varied
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between 3-8 cm, and 0.12-0.19 mm, respectively. Data augmentation (by means of image

rotation) was performed on this dataset to obtain 1,044 B-mode US images in total. All

bone surfaces were manually segmented by an expert ultrasonographer.

2.2.2 Local phase image features

A local phase image is a combination of, in this case, three different image filters which

gives an enhanced and robust view of a desired 2D/3D ultrasound (US) data. It is based

on the use of a gradient energy tensor (GET) and is modified to be a new feature enhance-

ment technique. In this specific scenario, it allows us to enhance bone features from 2D/3D

US data. The local phase image feature extraction is based on the computation of three

different phase image features [45]. The combination of three different image phase fea-

tures provides a more compact and robust enhancement. Next we explain how these three

features are extracted and combined.

Hacihaliloglu et al. [46], proposed a tensor-based phase feature descriptor called local

phase tensor image feature (LPT (x, y)). LPT (x, y) is obtained from B-mode US image,

US(x, y), using even (Teven) and odd filter responses (Todd) which represent the symmetric

and asymmetric features found in US(x, y). Teven and Todd filters are constructed using a

gradient energy tensor (GET) filter [46]. The final LPT (x, y) image is obtained as follows

[46]:

LPT (x, y) =
√
T 2
even + T 2

odd × cos(ϕ). (2.1)

Here φ represents instantaneous phase obtained from the symmetric and asymmetric

feature responses, respectively [46]. LPT (x, y) provides a general enhancement indepen-

dent of the specific feature type present in the acquired US(x, y) scans. This presents a

more robust enhancement of complex shaped bone surfaces, such as the spine [46]. How-

ever, soft tissue interfaces close to the bone surface which have similar intensity values

are also enhanced during this process. To suppress the enhancement of these soft tis-
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Figure 2.1: (a)-left: US(x, y) image of in vivo femur bone. (a)-right: LwPA(x, y) image.
(b)-left:LPT (x, y) image. (b)-right: LPE(x, y) image. (c)-left: LP (x, y) image.
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sue interfaces and obtain a more compact bone representation, monogenic image filtering

was applied to LPT (x, y) image. This results in the extraction of two more local phase

image features: local phase energy, LPE(x, y), and local weighted mean phase angle,

LwPA(x, y). These two image phase features are obtained by combining the bandpass

filtered LPT (x, y) image, denoted as LPTB(x, y), with Riesz filtered components (repre-

sented by h1 and h2) resulting in the extraction of monogenic signal image, USM(x, y), as

follows [45]:

USM(x, y) = [USM1, USM2, USM3]

= [LPTB(x, y), LPTB(x, y) ∗ h1, LPTB(x, y) ∗ h2].
(2.2)

By accumulating the local energy of the image along multiple filter responses, the

LPE(x, y) image encodes the underlying shape of the bone boundary. Averaging the phase

sum of the response vectors over many scales generates the LPE(x, y) image as follows:

LPE(x, y) =
∑
sc

|USM1| −
√
US2

M2 + US2
M3. (2.3)

Here, sc corresponds to the number of filter scales. The LwPA(x, y) image can be

found as follows:

LwPA(x, y) = arctan(

∑
sc USM1√∑

sc US
2
M1 +

∑
sc US

2
M2

). (2.4)

The LwPA(x, y) image preserves all the structural details of the LPT (x, y) image,

i.e. soft tissue interfaces and bone surfaces. Investigating the extracted local phase images

(LPT (x, y), LPE(x, y), LwPA(x, y)) in Figure 2.1 we can see that the bone surfaces

have accurate localization in all the extracted phase images. However, the soft tissue in-

terfaces do not have similar localization accuracy (they appear in different local regions in

the image). Using this investigation the final local phase bone image, LP (x, y), is obtained

by multiplying the three phase feature images as: LP (x, y) = LPT (x, y)× LPE(x, y)×



21

Figure 2.2: Flowchart summarizing the process to obtain an LP (x, y) image from US(x, y)
image.

LwPA(x, y). These mathematical operations are pictorially depicted in Figure 2.2.

Figure 2.1 shows all the extracted three local phase image features and the finalLP (x, y)

image. Investigating Figure 2.1 we can see that the final LP (x, y) has compact representa-

tion of the bone surface with reduces soft tissue artifacts. The extracted local phase image,

LP (x, y), and the B-mode US image, US(x, y), are used during the proposed CNN-based

bone segmentation methods which is explained in the next section.

2.2.3 Fusion in Deep Learning

Fusion, as a tool for machine learning tasks, i.e. classification and segmentation, has been

thoroughly examined by many including [47, 48, 49, 50]. Liu et al. in [48] inquired on sev-

eral fusion models, i.e. early, halfway, and late fusion, based on a vanilla ConvNet to fuse

feature maps from color and thermal input images. They introduce a 1 × 1 convolutional

layer after their concatenation layer as a fusion operation. In early fusion, the concatenation

of the feature maps from different branches at low-levels captures visual features, such as
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corners and line segments. Similarly, the halfway fusion employs the aforementioned fu-

sion operation after several convolutional layers to capture more semantic meanings while

retaining some final visual details. In late fusion, concatenation occurs at the fully con-

nected stage in order to execute high-level feature fusion. Liu et al. report that halfway fu-

sion achieves the best synergy for their pedestrian detection application. Guo et al. in [47]

evaluated medical image segmentation using the aforementioned fusion schemes to fuse

multi-modal images, i.e. MRI, CT, and PET, to detect the presence of soft tissue sarcoma.

They report that early halfway fusion has shown similarly good performance. However,

the decision-level late fusion model performs the worst among all fusion schemes in their

study.

Feichtenhofer et al. in [50] addressed the importance of spatial correspondence in chan-

nels when performing fusion in multi-stream networks. To demonstrate how the channels

correspondence may vary when fusion is performed, Feichtenhofer et al. [50] list five ways

of spatial fusion operations, as shown in Table 2.1. A fusion function f that fuses any two

feature maps, xa ∈ RH×W×D and xb ∈ RH×W×D′ can be defined as f : xa, xb → y, where

y is the output map, where y ∈ RH×W×D′′ .

Channel numbering in both sum and max fusions is arbitrarily assigned. Filters of each

network may be optimized when the channel correspondence is properly employed. As can

be concluded from Table 2.1, concatenation fusion does not define any correspondence as

it stacks feature maps at the same spatial locations across the feature channels. In practice,

subsequent layers define the correspondence by learning suitable filters that weight the

layers. Convolution fusion is performed through a similar operation as the concatenation

one, except that the stacked feature maps are convolved with a bank of filters and biases

[50]. These four operations of fusion were considered in designing our model. Due to its

high dimensionality, bilinear fusion was not considered. Based on the performances of the

remaining four operations on a preliminary experiment, concatenation fusion was selected

since it performed the best. Throughout our network designs, the used fusion operation is
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Table 2.1: Spatial Fusion Operations

Type Equation Dimension

Sum ysumi,j,d = xai,j,d + xbi,j,d ysum ∈ RH×W×D

Max ymax
i,j,d = max{xai,j,d, xbi,j,d} ymax ∈ RH×W×D

Concat yconci,j,2d = xai,j,d, yconci,j,2d−1 = xbi,j,d yconc ∈ RH×W×2D

Conv yconv = yconc ∗ f + b yconv ∈ RH×W×D′

Bilinear ybilin =
∑H

i=1

∑W
j=1 xa>

i,j xb
i,j ybilin ∈ RD2

concatenation fusion.

2.2.4 Multimodal Fusion-Based CNN Architecture

We developed our proposed CNN architecture based on the common contractive-expansive

design. First, we resize the input B-mode US image US(x, y) and its complementary local

phase filtered image LP (x, y) based on [51] and [45] to a standardized 256× 256 size. we

considered three stages of fusion in our proposed designs; early, mid, and late fusions as

depicted in Figures 2.3 through 2.5. Our early-fusion model, depicted in Figure 2.3, fuses

the input B-mode US image, US(x, y), and the local phase filtered image, LP (x, y), at the

pixel level. The fused image is then processed through a single network. In Figure 2.4, a

feature level fusion model was implemented in which mid-level features from both primary

and secondary networks are fused together. A 1×1 convolution is performed on the output

of the fused layer. Finally, in Figure 2.5, a classifier level model was implemented in

which high-level features from each network are concatenated. Again, a 1× 1 convolution

is performed on the output of the fused layer to generate the final segmented probability

distribution. The performance of the proposed designs were compared against each other

and the networks proposed by [16] and [17]. Prior to quantitative and qualitative validation,

images were resized to their original size. Inspired by the network designs in [18] and
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Table 2.2: Proposed CNN Layers Specifications

Layer Input Output Layer Input Output

Input 256× 256× 1 256× 256× 1 Filter 256× 256× 1 256× 256× 1

Conv1 256× 256× 1 256× 256× 32 Conv2 128× 128× 32 128× 128× 64

Max1 256× 256× 32 128× 128× 32 Max2 128× 128× 64 64× 64× 64

Conv3 64× 64× 64 64× 64× 64 Conv4 32× 32× 64 32× 32× 128

Max3 64× 64× 64 32× 32× 64 Max4 32× 32× 128 16× 16× 128

Up1 16× 16× 256 32× 32× 256 Up2 32× 32× 256 64× 64× 256

Conv6 32× 32× 256 32× 32× 256 Conv7 64× 64× 256 64× 64× 256

Conc1 32× 32× 384 32× 32× 384 Conc2 64× 64× 320 64× 64× 320

Up3 64× 64× 256 128× 128× 256 Up4 128× 128× 128 256× 256× 128

Conv8 128× 128× 256 128× 128× 128 Conv9 256× 256× 128 256× 256× 64

Conc3 128× 128× 192 128× 128× 192 Conc4 256× 256× 96 256× 256× 96

[17], in our proposed design, each input image would connect to an independent primary

network, and a secondary network, as depicted in Figure 2.5. In each network, the input

image is convolved in the encoder by convolutional layers with 3× 3 filters (same padding

convolutions) each followed by a rectified linear unit (ReLU) and a 2 × 2 maxpooling.

Whereas in the decoder path, transposed-convolutions of same kernel size and paddings

are applied and upsampled. The encoder maps the input image into a low-dimension latent

space, and the decoder maps the latent representation into the original space. The proposed

network layers specifications are tabulated in Table 2.2. In the primary network, the input

image is a B-mode US image US(x,y), while in the secondary network, the input is a local

phase filtered image LP(x,y) that proceeds through the aforementioned convolutional, and

max pooling layers. Feature maps extracted from both networks are fused in a late fusion

stage. This classifier level model was implemented in which high-level features from each

network are concatenated. A 3×3 convolution with sigmoid activation is performed on the

output of the fused layer to generate the final segmented probability distribution [17].
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Figure 2.3: An overview of the early-fusion CNN architecture. Input B-mode US image,
US(x, y), is concatenated with the local phase filtered image, LP (x, y), at the pixel level,
and the result is processed through the network.

Figure 2.4: An overview of the mid-fusion CNN architecture. Input B-mode US image,
US(x, y), is processed through the primary encoder (bottom), while the local phase filtered
image, LP (x, y), is processed through the secondary encoder (top). Feature maps from
both encoders are fused in a mid fusion stage, and processed through the decoder.
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Figure 2.5: An overview of the Late-fusion CNN architecture. Input B-mode US image,
US(x, y), is processed through the primary network (bottom), while the local phase filtered
image, LP (x, y), is processed through the secondary network (top). Feature maps from
both networks are fused in a late fusion stage.

2.2.5 Training and Testing

The performance of our proposed design was compared against the network proposed in

[16] with its depth increased to a scale close to our proposed design. Our proposed design

and U-net were trained using a training set of 912 B-Mode US images and their correspond-

ing local phase filtered images. The remaining 132 B-mode US images were reserved for

testing the performance of the networks. During the random split of the dataset, same scans

were not used for both training and testing. This process was repeated five times, with each

training and testing data randomized from our dataset. Both networks were trained to min-

imize the following cross-entropy loss function:

L(X,Y ) = − 1

n

n∑
i=1

y(i)lna(x(i)) + (1− y(i))ln(1− a(x(i))) (2.5)

whereX = {x(1), ..., x(n)} denotes the training input images set, and Y = {y(1), ..., y(n)}
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denotes their corresponding mask labels set. Here, we employ a ReLU activation function

to restrict a(x) between (0, x).

Based on [52], [40], [53] and [54], five error metrics were calculated in our testing set;

namely, F-score, Rand error, Hamming Loss, as well as the IoU and average bone surface

localization error. To measure how similar any two segmentation regions in an image with

k pixels, P1 and P2 we denote the number of pixels in the same class, and the number of the

pixels in the remaining class as x, and y respectively. Therefore, the Rand error, Re, could

be calculated using the Rand index, Ri, as:

Re = 1−Ri =
x+ y(

k
2

) (2.6)

In order to evaluate the accuracy of our segmentation, the pixel error between the man-

ual segmentation and the B-mode US images is calculated by taking the squared Euclidean

distance. Moreover, boundary labeling could be compared in the field of digital topology

using the warping error [24]. This metric is used to measure the topological differences be-

tween structures. In particular, it can be used as a cost function in boundary detection since

it tolerates disagreements over boundary location and penalizes topological disagreements.

For a reference labeling L, we can find the warping error between L and some candidate

labeling T as:

D(T ||L) = min
L
||T − L||2 (2.7)

It is important to note that while the warping error can penalize different topological

errors, the Rand error penalizes only connectivity errors. For instance, in some medical

imaging applications, the warping error does not penalize boundary location shifts. There-

fore, the Rand error takes into account shifts in boundary locations. This is due to the fact

that the warping error weights a topological error by the number of pixels involved in the

error itself, while the Rand error weights a split or merger by the number of pixels in the
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objects associated with the errors [53]. The bone localization error is calculated as the av-

erage Euclidean distance (AED) error between the automatically segmented bone surfaces

and the manual expert segmentation.

2.3 Results

In this section, we discuss our results of the experiments that were carried out using the

Keras framework and Tensorflow as backend with an Intel Xeon CPU at 3.00GHz and an

Nvidia Titan-X GPU with 8GB of memory. On average, our networks converge in about 6

hours during the training process. We first demonstrate the performance of state-of-the-art

network on our data set. We then show the results of our designs with different stages of

fusion applied on our bone data. Furthermore, a comparison of error metrics calculated for

four additional bone surfaces is included alongside its segmentation results.

2.3.1 Bone Segmentation Qualitative Results

Qualitative results of our late-fusion network design as well as the network in [16] are

shown in Figure 2.6 (b) and (c), where the red pixels indicate high prediction scores while

blue pixels indicate low prediction scores for the segmentation. The prediction outcome

when only B-mode US images were used in training, as the case in Figure 2.6 (b) for

U-net, had lower probability distribution compared to ours. The inadequate segmentation

performance may be attributed to the nature of the US images used in the testing process.

Figure 2.6 (c) shows an improved prediction outcome when both B-mode US and Local-

phase filtered images are used to train our proposed network. In addition, bone localization

results against expert manual localization, are presented in Figure 2.6 (d) and (e). Inves-

tigating the localization results we can infer that the output of U-net, trained only using

B-mode data, had large gaps from the expert localization and missing bone boundaries.

Qualitatively, our late-fusion design achieved better performance for this dataset.
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Figure 2.6: (a) Two US B-mode images of in vivo spinal bones, and their corresponding
segmentation outputs from the following network architectures: (b) Ronneberger et al. [16]
trained with B-mode US images only, (c) Ronneberger et al. [16] trained with B-mode US
images and Local-phase filtered images, and (d) our proposed design trained with both
B-mode US and Local-phase filtered images. Bone localization in (red) to manual expert
localization (green) obtained from (e) no-fusion Ronneberger et al. [16], (f) early-fusion
Ronneberger et al. and from (g) our late-fusion design.

Table 2.3: Bone Error Metrics

Method IoU% F-Score Rand Hamming AED (mm)

Ronneberger [16] US B-mode only 0.803022 0.866023 0.662321 0.196977 2.9653

Ronneberger [16] US B-mode & LP 0.851270 0.936892 0.750253 0.062402 0.9372

Ours US B-mode & LP 0.969489 0.977450 0.448840 0.030511 0.1097

2.3.2 Bone Segmentation Quantitative Results

The aforementioned error metrics were calculated for both networks, and the results are

tabulated in Table 2.3. As can be seen from Table 2.3, the average numerical error calcu-

lations show that that the late-fusion design had lower errors, and the highest average IoU

and F-scores. A paired t-test, at a %5 significance level, between our designed network and

the network proposed in [16] achieved p-values less than 0.05 indicating that the improve-

ments of our method are statistically significant. U-net achieved overall AED error of 2.96

mm while our design achieved 0.1097 mm.
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2.3.3 Accuracy Localization Study

To further validate our results, we have trained our proposed models and tested them on

four more bone structures. AED error measurements obtained for the Radius (85 cases),

Femur (16 cases), Knee (10 cases), Tibia (4 cases), bone surfaces are shown in Figure 2.7.

The overall AED for our late-fusion design is 0.1255 with a standard deviation of 0.006.

This represents a significant improvement compared to the other networks.

2.3.4 Fusion Comparison Study

Results for four additional bone surfaces of our early, mid, and late-fusion network designs

were compared against state-of-the-art networks as shown in Figure 2.8, where the red

pixels indicate high prediction scores while blue pixels indicate low prediction scores for

the segmentation. The prediction outcome of the network in [16] displayed in Figure 2.8

(b) had the lowest probability distribution amongst all others. The inadequate segmentation

performance may be attributed to the nature of the US images used in testing process. For

low quality US scans, where the bone surface has a low intensity profile and high intensity

soft tissue interfaces appearing above the bone surface, the performance of the network

proposed in [16] decreases. The importance of collecting high quality US data and its

affect on the segmentation outcome was also discussed previously in [42] who proposed

a similar network architecture for segmenting vertebra bone surfaces from US data. The

segmentation results of the network in [17] and mid-fusion network in Figure 2.8 (c) and

(d) respectively, are comparable. However, the network in [17] had a higher probability

distribution than the mid-fusion network. This is because in the network proposed in [17],

the fusion performed at the feature level is considered a slow fusion in which multiple

feature maps are fused throughout the encoder. In contrast, fusion occurs only once at the

last layer of the encoder in the mid-fusion design. On the other hand, as shown in Figure 2.8

(g), early fusion outperforms the network in [17] since the fusion happens at the pixel

level in which the fused image would possess enhanced bone surfaces while the soft tissue
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Figure 2.7: Accuracy Localization of Four Bone Types

interfaces remain unaltered. We also show the results of our single network when no fusion

is performed; once when the network is trained with B-mode US images only, and once

when the network is trained with local-phase filtered images only, as depicted in Figure 2.8

(e) and (f) respectively. Our late-fusion design outperformed all of the aforementioned

models. Qualitatively, the late-fusion prediction results in Figure 2.8 (e) has no artifacts,

no false prediction, and no fragmented segmentation.

For each network, a 5-fold cross validation was performed, with each training (300

images) and testing (115 images) data randomized from our dataset. The aforementioned

error metrics were calculated for each of the networks, and the results are tabulated in

Table 2.4. As can be seen in Table 2.4, the average numerical error calculations show that

that the late-fusion design had the lowest errors in both warping and rand, and the highest

average IoU and F-scores.

Qualitative results about the final segmented surfaces for the additional four bone struc-

tures and comparison against the gold standard segmentation (manual expert segmentation)

are provided in Figure 2.9. As can be concluded, the segmentation accuracy is visibly im-

proved when the local phase filtered feature maps are fused with those of the B-mode US

images. As can be seen in Figure 2.9 (a), the segmentation results of the network in [16]

suffered from false segmentation in some instances and fragmented segmentation in all
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Figure 2.8: (a) Two US B-mode images of in vivo radial bones, and their corresponding
segmentation outputs from the following network architectures: (b) Ronneberger et al.
[16], (c) Hazirbas et al. [17], and our proposed design with (d) mid-fusion, (e) no-fusion;
B-mode US images only (f) no-fusion; Local-phase filtered images only (g) early-fusion
and (h) late-fusion.

instances. While the segmentation outcomes of the network in [17] and the mid-fusion

network, as shown in Figure 2.9 (b) and (c) respectively, were intact, they suffered poor

localization. However, the mid-fusion network had slightly better localization as the warp-

ing error indicates. On the other hand, the late-fusion network had the higher localization

accuracy compared to the other networks.

2.4 Discussion and Future Work

In this study, a multimodal CNN architecture was proposed for B-mode US bone segmen-

tation. Our network incorporated local phase images in conjunction with B-mode US data.

Quantitative and qualitative validation were performed against state-of-the-art U-net [16].

It was demonstrated that incorporating local phase bone image features improves the per-

formance of the segmentation task. Particularly, it was observed that the late fusion of

spatial-phase features resulted in higher bone segmentation probability outcomes. Our fu-

ture work will involve further validations prior to utilizing the proposed methods clinically.

In addition, improving the computational cost of local phase feature extraction would be

essential.
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Figure 2.9: Bone localization obtained from the proposed method (red) to manual seg-
mentation (green). The four network architectures: (a) Ronneberger et al. [16] trained
with B-mode US images only, (b) Ronneberger et al. [16] trained with local-phase filtered
images only, (c) Hazirbas et al. [17], (d) our mid-fusion design, and (e) our late-fusion
design.
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Table 2.4: Error Metrics by Bone Structure Type

Method Dataset IoU% Pixel% F-Score Warping Rand AED

Ronneberger et al. [16] Radius 45.757 69.827 0.627 0.0012175 0.40765 2.180425

Hazirbas et al. [17] Radius 47.972 69.567 0.648 0.0001300 0.06890 0.265775

Mid Fusion Radius 49.417 67.565 0.661 0.0002000 0.04865 0.454550

No Fusion-BM Radius 51.378 66.349 0.678 0.0001760 0.04987 0.228760

No Fusion-LP Radius 54.286 69.153 0.703 0.0001480 0.04379 0.218640

Early Fusion Radius 66.369 51.954 0.795 0.0000156 0.02854 0.167855

Late Fusion Radius 75.452 37.565 0.860 0.0000100 0.01395 0.122900

Ronneberger et al. [16] Femur 48.367 66.020 0.652 0.0005638 0.32435 1.301475

Hazirbas et al. [17] Femur 55.115 59.967 0.710 0.0002160 0.00045 0.163875

Mid Fusion Femur 59.580 57.130 0.746 0.0001030 0.02385 0.229050

No Fusion-BM Femur 60.873 59.836 0.756 0.0001020 0.01765 0.148760

No Fusion-LP Femur 61.965 59.263 0.765 0.0001013 0.01277 0.147655

Early Fusion Femur 69.479 59.925 0.824 0.0001014 0.00215 0.139450

Late Fusion Femur 84.565 29.562 0.916 0.0000110 0.00015 0.128175

Ronneberger et al. [16] Knee 51.247 62.480 0.677 0.0000218 0.01537 0.903375

Hazirbas et al. [17] Knee 55.495 59.692 0.713 0.0000160 0.00187 0.197400

Mid Fusion Knee 59.145 55.290 0.743 0.0000140 0.00057 0.169470

No Fusion-BM Knee 63.767 50.657 0.778 0.0000140 0.00058 0.156390

No Fusion-LP Knee 64.876 49.767 0.786 0.0000130 0.00049 0.155970

Early Fusion Knee 70.168 36.981 0.822 0.0000035 0.00039 0.142789

Late Fusion Knee 87.695 27.160 0.934 0.0000001 0.00037 0.132350

Ronneberger et al. [16] Tibia 42.795 78.842 0.599 0.0011102 0.30112 0.393600

Hazirbas et al. [17] Tibia 54.580 61.132 0.706 0.0009560 0.00570 0.435925

Mid Fusion Tibia 44.895 74.072 0.619 0.0008612 0.07694 0.165350

No Fusion-BM Tibia 57.782 65.539 0.732 0.0002879 0.06883 0.129768

No Fusion-LP Tibia 59.767 63.824 0.748 0.0002198 0.05862 0.121876

Early Fusion Tibia 66.148 52.764 0.794 0.0000463 0.02784 0.118921

Late Fusion Tibia 89.735 25.222 0.945 0.0000103 0.00240 0.118575
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CHAPTER 3

AUTOMATIC SEGMENTATION OF BONE SURFACES FROM ULTRASOUND

USING A FILTER LAYER GUIDED CNN

In this chapter, we present our development of a block-based CNN for segmentation of

bone surfaces from in vivo US scans. The novelty of our proposed design is that it also

utilizes fusion of feature maps and employs multi-modal images to abate sensitivity to

variations caused by imaging artifacts and low intensity bone boundaries. B-mode US im-

ages, and their corresponding local phase phase filtered images are used as multi-modal

inputs for the proposed fusion network. Different fusion architectures are investigated for

fusing the B-mode US image and the local phase features. The proposed methods was

quantitatively and qualitatively evaluated on 546 in vivo scans by scanning 14 healthy sub-

jects. We achieved an average F-score above 95% with an average bone surface localization

error of 0.2 mm. The reported results are statistically significant compared to state-of-the-

art. An improvement to the aforementioned multimodal CNN architecture in Chapter 2,

using convolutional blocks instead of convolutional layers in our CNN, in this chapter we

demonstrate how projection blocks can be utilized to allow semantic information to be

more efficiently passed forward in the network while progressively increasing feature map

sizes. In addition, we show how these computationally less expensive projection blocks can

allow us to have more comprehensive feature maps. The overall result is a deeper vanishing

gradient-free filter layer guided CNN architecture.

3.1 Introduction

Orthopedic procedures have been a prominent solution in treating interminable pain and

disabilities, due to musculoskeletal diseases, e.g. osteoarthritis, spinal conditions, osteo-

porosis, and trauma injuries. In 1990, the World Health Organization reported 1.7 million
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hip fractures and projected the figure to increase to 6 million by 2050 [1]. Osteoporosis and

related fracture treatments costs were estimated at $19.1 billion in 2004. Moreover, spine

related injuries for the years 2002-2004 were estimated at $193.9 billion [1, 2]. Surgical

interventions may include osteotomy, fracture fixation, or placement of an implant device

[3]. The need for high precision in the mentioned procedures is evidently required in or-

der to minimize the intra- and post-operative complications. Computer assisted orthopedic

surgery (CAOS) systems enable higher precision by providing surgeons, intra-operatively,

real-time feedback for guidance during the procedure. Imaging is one of the most impor-

tant components of any CAOS system. The standard intra-operative imaging modality in

CAOS is 2D/3D fluoroscopy. Navigation during surgery is difficult using 2D fluoroscopy

imaging due to limited 3D information available in 2D scans. 3D fluoroscopy systems

provide a solution to this problem, however, they are twice as expensive and currently are

not as widely employed as their 2D alternative. Most importantly both of these modalities

operate with ionizing radiation which causes important safety concerns to both surgical

team and the patient. In order to provide a safe intra-operative imaging alternative, ul-

trasound (US) has been incorporated into various CAOS systems. US provides real-time,

non-radiation based 2D/3D imaging. However, low signal-to-noise ratio (SNR), imaging

artifacts, limited field of view and being a user operated imaging modality have hindered

the widespread use of US in CAOS procedures. Furthermore, the beamwidth in elevation

direction strongly influences the bone surface response profile making the bone boundaries

appear several mm in thickness [55]. In order to provide a solution to these difficulties,

focus has been given to develop automated US bone segmentation and enhancement meth-

ods. Accurate segmentation is also very important if guidance is performed using the US

data only. During procedures, such as epidural anesthesia, the guidance is achieved using

the anatomical landmarks extracted from the US data.

Segmentation methods, based on image intensity and phase information, were proposed

by various groups [55]. Intensity-based approaches are: (1) not robust to typical imaging
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artifacts, and (2) affected by intensity variations which can be a result of changing the US

machine acquisition settings or scanning patients with different body mass index (BMI).

In order to provide an intensity invariant alternative, methods based on image local phase

information have been proposed [55]. Although local phase methods provide more robust

outcomes for enhancing the bone surfaces from the US data, compared to image intensity,

it requires a post processing step for the segmentation of the bone surfaces [55, 56, 38].

Recently, machine learning methods have also been proposed for the segmentation of

bone surfaces from US data. Ozdemir et al. [44] investigated the use of a supervised

learning framework that combines the physical constraints of US into a graphical model

for segmentation. They utilized the statistical, textural, intensity, and local phase image

features. The reported bone surface localization accuracy was 0.59 mm with a computa-

tion time of 2 minutes making this method suboptimal for intra-operative use due to high

computational cost. In [57], Random forest was used for classification of US bone data.

The reported recall and precision rates were 0.82 and 0.84 respectively with a maximum

computation time of 0.6 seconds per slice. Bone surface localization accuracy was not

reported. In [41], the authors modify a deep learning network architecture, termed U-net

and proposed in [16], for segmentation of bone surfaces from US data. Localization ac-

curacy was not reported, however, the recall and precision rates for the proposed method

were 0.87. In [42], a similar architecture based on U-net was investigated for segmenting

vertebra bone surfaces. Reported precision and recall rates were 0.88 and 0.94, respec-

tively. Bone surface localization accuracy was not investigated. Low quality bone surfaces

were excluded from the validation and testing procedure. In [58], U-net was utilized in the

development of a classification network that simultaneously perform bone segmentation

with a concatenated input. The success of the deep learning methods is dependent on: (1)

number of scans used for training, (2) anatomical variations (such as type of bone surfaces)

present in the training data, (3) quality of the collected US data. High quality bone US

data is usually defined as a high intensity bone response profile, corresponding to the bone
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surface, followed by shadow region.

In this study, we propose a Convolutional Neural Network (CNN)-based approach for

automated bone segmentation. Based on [45], [16], [18] and [40], we introduce a new

CNN design that can perform accurate segmentation of bone structures in US images. We

show that the performance of the CNN segmentation methods improves if the training is

performed on data that incorporates local phase image features in addition to the intensity

features of the B-mode US data. This novel approach attempts to alleviate the shortcomings

of unimodal designs, and their susceptibility to noise and other imaging artifacts. Validation

is performed on 546 in vivo scans obtained from 14 healthy subjects by scanning various

bone surfaces. We also include quantitative and qualitative evaluation results on data sets

obtained from a different US imaging platform which was not used during the training of

the proposed method. Obtained results are also compared against U-net [16] trained using

(1) B-mode US data only, and (2) B-mode and local phase image features.

3.2 Methods

3.2.1 Data acquisition

After obtaining the institutional review board (IRB) approval, a total of 415 B-mode US im-

ages (categorized into four groups of bone structures: radius, femur, knee, and tibia) from

twelve healthy subjects, were collected using Sonix-Touch US machine (Analogic Corpo-

ration, Peabody, MA, USA). Depth settings and image resolutions varied between 3-8 cm,

and 0.12-0.19 mm, respectively. In addition, a second dataset of 131 images were obtained

using a handheld wireless ultrasound probe (Clarius C3, Clarius Mobile Health Corpora-

tion, BC, Canada) from two volunteers. This dataset was considered for validation/testing

purposes. All the bone surfaces were manually segmented by an expert ultrasonographer.
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3.3 Network architecture

Our proposed CNN architecture is based on the common contractive-expansive design,

as depicted in Figures 3.1 through 3.3. The encoder maps the input image into a low-

dimensional latent space, and the decoder maps the latent representation into the original

space. We first resize the input B-mode US image US(x, y) and its complementary local

phase filtered image LP (x, y) to a standardized 256 × 256 size. After network operations

the images were resized to their original size before quantitative and qualitative validation.

In our proposed design, each input image would connect to an independent primary net-

work and a secondary network. In each network, the input image is processed through

convolutional blocks, with each block consisting of several convolutional layers. Utilized

in our design are four distinct blocks (colored in blue, yellow, green, and orange) that are

depicted and labeled in the legend of each network design at the bottom of (Figures 3.1

through 3.3). The networks in our design incorporated skip connection and projection

blocks similar to [59]. In each of the four convolutional blocks, d1 and d2 indicate the

depth of each convolutional layer, while s indicates stride. Within the network design, the

specific depths of each convolutional block are specified. A skip connection block consists

of 1× 1 convolutions before, and after a 3× 3 convolution, reducing and restoring channel

dimensions, respectively. Each convolution is followed by batch normalization and recti-

fied linear unit (ReLU) activation. The output of the skip connection block is obtained by

concatenating its input with the aforementioned convolutions. Our projection blocks con-

sist of a similar structure to the skip connections, with the difference being the output is the

result of concatenating the aforementioned convolutions with the projected input through a

1×1 convolution. We employ projection blocks as a means of maxpooling when a stride of

2 convolution is used. On the other hand, transposed-convolution blocks were implemented

in the decoder path of each network. The design of the transposed convolution blocks are

similar to the aforementioned skip and projection blocks with all convolution operations
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replaced by transposed-convolutions. We also use a stride of 2 transposed convolutions

to upsample the feature maps. In the primary network, the input image is a B-mode US

image US(x, y), while in the secondary network, the input is a local phase filtered im-

age, LP (x, y), that proceeds through the aforementioned blocks. Feature maps extracted

from both networks are fused (Figures 3.1 through 3.3) in a fusion layer at various stages

depending on the model. Specifically, we investigate early, mid and late fusion network

models. Our early-fusion model, depicted in Figure 3.1, fuses the input B-mode US image,

US(x, y), and the local phase filtered image, LP (x, y), at the pixel level. The fused image

is then processed through a single network. In Figure 3.2, a feature level fusion model was

implemented in which mid-level features from both primary and secondary networks are

fused together. Finally, in Figure 3.3, a classifier level model was implemented in which

high-level features from each network are concatenated. A 3× 3 convolution with sigmoid

activation is performed on the output of the fused layer to generate the final segmented

probability distribution. Throughout our network designs, concatenation fusion is used as

the fusion operation [50]. Concatenation fusion does not define any correspondence as it

stacks feature maps at the same spatial locations across the feature channels. However,

subsequent layers define the correspondence by learning suitable filters that weight the

layers.

3.3.1 Training and testing

The performance of the proposed designs were compared against each other and the net-

works proposed in [16], termed U-net, and [17]. The depths of both networks in [16] and

[17] were increased to a scale close to our proposed designs. In order to further validate

the effectiveness of our design, we trained the U-net network proposed in [16] using: (1)

Bmode-US image features only, (2) Local phase image features only, and (3) both B-mode

US and local phase image features. Our proposed designs and the two networks in [16]

and [17] were trained using a training set of 300 B-Mode US images (out of the 415 im-
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Figure 3.1: An overview of the early-fusion CNN architecture. Input B-mode US image,
US(x, y), is concatenated with the local phase filtered image, LP (x, y), at the pixel level,
and the result is processed through the network.

Figure 3.2: An overview of the mid-fusion CNN architecture. Input B-mode US image,
US(x, y), is processed through the primary encoder (bottom), while the local phase filtered
image, LP (x, y), is processed through the secondary encoder (top). Feature maps from
both encoders are fused in a mid fusion stage, and processed through the decoder.
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Figure 3.3: An overview of the Late-fusion CNN architecture. Input B-mode US image,
US(x, y), is processed through the primary network (bottom), while the local phase filtered
image, LP (x, y), is processed through the secondary network (top). Feature maps from
both networks are fused in a late fusion stage.

ages obtained from Sonix-Touch US machine) and their corresponding local phase filtered

images. The remaining 115 B-mode US images were reserved for testing the performance

of the networks. During the random split of the SonixTouch dataset, same patient scans

were not used for both training and testing. We repeated this process five times, with each

training and testing data randomized from our datasets. In addition, we reserved another

set of data for testing and validation only. This dataset consisted of 131 US scans from two

different volunteers obtained using the Clarius C3 probe. The two volunteers were not part

of the scanning process performed using the SonixTouch machine. Our proposed network

designs were trained to minimize the cross-entropy loss. All networks were trained to 100

epochs and the best performing model was selected for each network. Based on [45, 54,

53, 52], five error metrics were calculated in our testing set; namely, F-score, Rand error,

Hamming Loss, as well as the IoU and average bone surface localization error. To measure

how similar any two segmentation regions in an image, the Rand error, which takes into

account shifts in boundary locations, was calculated as Re = 1−Ri, where Ri is the Rand
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index. Bone localization was achieved by thresholding the estimated probability segmen-

tation map and using the center pixels along each US scanline as a single bone surface.

The bone localization error is calculated as the average Euclidean distance (AED) error

between the automatically segmented bone surfaces and the manual expert segmentation.

The evaluation metrics were computed on the estimated probability maps, with grayscale

colormaps, and compared to our manual segmentations.

3.4 Results and Discussion

Experiments were carried out using the Keras framework and Tensorflow as backend with

an Intel Xeon CPU at 3.00GHz and an Nvidia Titan-X GPU with 8GB of memory. On

average, our networks converge in about 6 hours during the training process. Testing was

performed in real-time and on average it took 52 ms to test an image.

3.4.1 Quantitative results

The aforementioned error metrics were calculated for each of the networks, and the results

are tabulated in Table 4.2. As can be seen from Table 4.2, the average numerical error

calculations show that that the late-fusion design had the lowest errors, and the highest

average IoU and F-scores. A paired t-test, at a %5 significance level, between our de-

signed networks and the networks proposed in [16], [17] achieved p-values less than 0.05

indicating that the improvements of our method are statistically significant. The AED re-

sults increased for all the networks analyzed when using the data obtained from the Clarius

imaging platform. This is an expected results since this data was obtained from an imaging

platform which was not part of the training process. However, incorporating local phase

image features increases the success of the network proposed in [16].

The overall AED error for our late-fusion design is 0.1482 mm (standard deviation

(SD) 0.028 mm). U-net network [16] using B-mode, local phase, and combine (B-mode

and local phase features) achieved overall AED errors of 2.296 mm (SD 0.038 mm), 1.0319
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Table 3.1: Error Metrics

Method IoU% F-Score Rand Hamming AED (mm)

Dataset I - Sonix-Touch US machine

Ronneberger [16] B-mode US (BM) only 0.864986 0.912431 0.705538 0.135013 2.4344

Ronneberger [16] Local Phase (LP) only 0.870279 0.915084 0.654647 0.129720 1.0443

Ronneberger [16] BM & LP Early Fusion 0.914163 0.944772 0.626641 0.085836 0.6375

Ronneberger [16] BM & LP Mid Fusion 0.928410 0.952721 0.655679 0.071590 0.4927

Ronneberger [16] BM & LP Late Fusion 0.948090 0.964523 0.626641 0.051913 0.2864

Hazirbas [17] 0.894572 0.931847 0.657970 0.105427 0.8582

Ours Early Fusion 0.972125 0.978072 0.448373 0.027874 0.1087

Ours Mid Fusion 0.957193 0.969739 0.484314 0.042806 0.1183

Ours Late Fusion 0.972865 0.978388 0.439368 0.027134 0.1071

Dataset II - Clarius C3 US probe

Ronneberger [16] B-mode (BM) US only 0.820128 0.878605 0.647348 0.179871 2.1576

Ronneberger [16] Local-Phase (LP) only 0.869984 0.950463 0.746484 0.179871 1.0195

Ronneberger [16] BM & LP Early Fusion 0.904848 0.944324 0.760781 0.095151 0.7463

Ronneberger [16] BM & LP Mid Fusion 0.932476 0.956250 0.656760 0.067523 0.4682

Ronneberger [16] BM & LP Late Fusion 0.948085 0.964500 0.624421 0.051914 0.3755

Hazirbas [17] 0.842741 0.901746 0.670910 0.157258 0.8642

Ours Early Fusion 0.968001 0.976297 0.487246 0.031998 0.2186

Ours Mid Fusion 0.958058 0.969953 0.485360 0.041941 0.2579

Ours Late Fusion 0.970965 0.977650 0.453752 0.029034 0.1893

mm (SD 0.059 mm), 0.7060 mm (SD 0.05 mm) respectively. The network proposd in [17]

achieved overall AED error of 0.8612 mm (SD 0.0834 mm). Again a paired t-test, at a %5

significance level, between our proposed late fusion network and other network achieved

p-values less than 0.05 for overall AED errors.

3.4.2 Qualitative results

Qualitative results of our early, mid, and late-fusion network designs as well as the networks

in [16] and [17] are shown in Figure 3.4, where the red pixels indicate high prediction

scores while blue pixels indicate low prediction scores for the segmentation. The prediction

outcome when only B-mode US images were used in training, as the case in Figure 3.4
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Figure 3.4: First column in vivo US B-mode images of distal radius (top), and femur
(bottom). Image are obtained from the Clarius platform. Network segmentation results
obtained using: Ronneberger et al. [16] trained with (a) B-mode US images only (U-net),
(b) local phase filtered images only (U-LP), (c) B-mode US and local phase filtered images
using early-fusion (Unet-early), (d) B-mode US and local phase filtered images using mid-
fusion (Unet-mid),(e) B-mode US and local phase filtered images using late-fusion (Unet-
late). (f) Hazirbas et al. [17] trained with both B-mode US and Local-phase filtered images
(Fusenet). Our proposed designs (g) early-fusion, (h) mid-fusion, and (i) late-fusion.
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Figure 3.5: Bone localization obtained from the proposed method (red) to manual expert lo-
calization (green). (a) In vivo B-mode US image of distal radius (top) and femur (bottom).
(b) Ronneberger et al. [16] trained with B-mode US images only, (c) Ronneberger et al.
[16] trained with local phase filtered images only, (d) Ronneberger et al. [16] trained with
B-mode US and local phase filtered images,(e) Hazirbas et al. [17], and (f) our late-fusion
design.
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(b) for [16], had the lowest probability distribution amongst all others. The inadequate

segmentation performance may be attributed to the nature of the US images used in the

testing process. For low quality US scans, where the bone surface has a low intensity profile

and high intensity soft tissue interfaces appearing above the bone surface, the performance

of the network proposed in [16] declines. The importance of collecting high quality US

data and its affect on the segmentation outcome was also discussed previously in [42] who

proposed a similar network architecture for segmenting vertebra bone surfaces from US

data. Figure 3.4 (d) shows an improved prediction outcome when both B-mode US and

Local-phase filtered images are used to train the U-net architecture proposed in [16]. The

network in [17] had a lower probability distribution than our proposed fusion networks.

This is because in the network proposed in [17], the fusion performed at the feature level is

considered a slow fusion in which multiple feature maps are fused throughout the encoder.

As shown in Figure 3.4 (f), early fusion outperforms the network in [17] since the fusion

happens at the pixel level in which the fused image would possess enhanced bone surfaces

while the soft tissue interfaces remain unaltered. Investigating Figure 3.4 (first and third

rows) we can also see that all the networks perform better when the testing data is from the

same imaging platform where the training data is obtained. However, when using test data

obtained from an imaging platform which the networks have not seen during training the

performance decreases. However, we can still infer that our network designs, compared

to U-net [16] and [17], perform better resulting with segmentation outcomes with high

probability.

Bone localization results, against expert manual localization, are presented in Fig-

ure 3.5. The specific B-mode US data presented in this figure (Fig. 3.5-a) show low quality

bone scans. Investigating the localization results we can infer that U-net [16] trained only

using B-mode data achieves the worst performance: large gap from the expert localization,

missing bone boundaries, false positive bone localizations. Although the performance in-

creases when the same network is trained together with B-mode and local phase features



48

(Fig. 3.5-d) false and true positive localization is still visible. Qualitatively our late-fusion

design achieves the best performance for this dataset.

3.5 Discussion and Conclusions

In this study, three CNN architectures, for the task of bone segmentation from US data,

were proposed. Our networks incorporate local phase images in conjunction with B-mode

US data. We have investigated how to combine information from local phase images and

B-mode US data by analyzing different fusion strategies. Our results demonstrate that

for the task of bone segmentation fusing B-mode US and local phase features at a later

stage outperforms early and mid fusion, specifically for the dataset obtained from Clarius

C3 US probe. Since local phase image features enhance the bone surface response in the

US data, the B-mode US data and local phase image features are less correlated in the

low level features. The proposed late level fusion network models the correlations and

interactions between high level features of each modality, outperforming the other fusion

networks. A similar investigation can also be observed with the U-net network late fusion

design [16] (Table.1). We also show that incorporating local phase bone image features,

using three different stages of fusion, improves the performance of state-of-the-art U-net

network [16]. Conducted quantitative studies show significant improvement of our network

with late fusion over state-of-the-art CNN methods [16].

In our network architecture we use convolutional/projection blocks. Our projection

blocks allow semantic information to be more efficiently passed forward in the network

while progressively increasing feature map sizes, compared to simple convolutions which

is used in the U-net design [16]. The projection blocks allow us to have more comprehen-

sive feature maps. This is one of the reasons why our fusion networks outperform fusion

networks of U-net design [16].

One of the drawbacks of the proposed work is the computational time required for

the extraction of local phase image features. This takes on average 1 second (MATLAB
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implementation) which needs to be improved for real-time CAOS procedures where US

is used as an intra-operative imaging modality. Furthermore, during this work the expert

manual segmentation was performed by a single expert user. The effect of intra- and inter-

user expert bone segmentation on the segmentation results is also crucial. Our future work

will involve (1) extensive clinical validation of the proposed method, (2) improving the

computational cost of local phase feature extraction, (3) inter- and intra-user variability

analysis for expert bone segmentation, and (4) extension of our network architecture to

process volumetric US data [33].
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CHAPTER 4

BONE SHADOW SEGMENTATION FROM ULTRASOUND DATA FOR

ORTHOPEDIC SURGERY USING GAN

In this chapter, we present a computational method, based on a novel generative adversar-

ial network (GAN) architecture, to segment bone shadow images from in vivo US scans

in real-time. We also show how these segmented shadow images can be incorporated, as

a proxy, to a multi-feature guided convolutional neural network (CNN) architecture for

real-time and accurate bone surface segmentation. Quantitative and qualitative evalua-

tion studies are performed on 1235 scans collected from 27 subjects using two different

US machines. Finally we provide qualitative and quantitative comparison results against

state-of-the-art GANs. We have obtained mean dice coefficient (± standard deviation) of

% 93 (± 0.02) for bone shadow segmentation, showing that the method is in close range

with manual expert annotation. Statistical significant improvements against state-of-the-art

GAN methods (paired t-test p ¡ 0:05) is also obtained. Using the segmented bone shadow

features average bone localization accuracy of 0.11mm (± 0.16) was achieved. Reported

accurate and robust results make the proposed method promising for various orthopedic

procedures. Although we did not investigate in this work, the segmented bone shadow

images could also be used as an additional feature to improve accuracy of US-based regis-

tration methods. Further extensive validations are required in order to fully understand the

clinical utility of the proposed method.

4.1 Introduction

Imaging has been an integral component of various surgical and non-surgical orthopedic

procedures such as total knee replacement (TKR), intramedullary nail locking for femoral

shaft fractures, pedicle screw insertion for spinal fusion surgery, lumbar neuraxial anesthe-
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sia, and epidural analgesia [3]. Current practice during these procedures relies on intra-

procedure 2D fluoroscopy as the main imaging modality for localization and visualization

of bones, fractures, implants, and surgical tool positions. However, with such projection

imaging, surgeons and clinicians typically face considerable difficulties in accurately local-

izing bone fragments in 3D space and assessing the adequacy and accuracy of the proce-

dure. This problem has been overcome with 3D fluoroscopy units, however, they are twice

as expensive and not widely available as standard 2D units. Finally, fluoroscopy involves

significant radiation exposure [3]. The limits to exposure to ionizing radiation should be

kept at minimal in order to avoid potential long-term complications. In order to overcome

some of these limitations and provide a safe alternative, 2D/3D US has emerged as a safe al-

ternative while remaining relatively cheap and widely available [55]. US image data, how-

ever, is typically characterized by high levels of speckle noise, reverberation, anisotropy

and signal dropout which introduce significant difficulties during interpretation of captured

data. Limited field-of-view and being a user dependent imaging modality causes additional

difficulties during data collection since a single-degree deviation angle by the operator can

reduce the signal strength by 50% [55]. In order to overcome these difficulties automatic

bone segmentation [55] and registration [60] methods have been developed. Most recently,

methods based on deep learning have achieved successful results for segmenting bone sur-

faces [61, 42, 43, 58]. However, these methods require large amounts of training data and

accuracy decreases if the quality of the testing data is low or if testing data comes from a

different vendor machine. In the context of bone imaging using US, high quality data rep-

resents high intensity bone surface followed by a low intensity region referred to as shadow

region. Difficulties in acquiring high quality US images is an ongoing limitation of current

US guided orthopedic procedures.

Acoustic shadows occur at the interfaces where there is a high impedance difference

such as air-tissue, tissue-bone, and tissue-lesion. Bone shadow information can aid in the

interpretation of the collected data and has been incorporated as an additional feature to
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Figure 4.1: Top row: From left to right in vivo B-mode US image of distal radius, femur,
knee, and spine respectively. Yellow arrows point to high intensity bone features. Red
arrows point to the problematic low intensity bone features due to misalignment of the
transducer or complex shape of the anatomy. Green arrow quads show the shadow region.
Bottom row:Manually segmented gold standard shadow images corresponding to B-mode
data shown in the top row. In all the images blue color coded region is the shadow region
and red color coded region is the soft tissue interface.

improve the segmentation of bone surfaces from US data [62, 63, 55, 58]. Real-time feed-

back of bone shadow information can also be used to guide the clinician to a standardized

diagnostic viewing plane with minimal artifacts. Finally, shadow information can also be

used as an additional feature for registering CT, MRI or statistical shape models (SSM)

to US data [60]. However, poor transducer contact or wrong orientation of the transducer

with respect to the imaged anatomy can lead to poor shadow appearance and resulting in

misinterpretation of anatomy and failure of the computational method using the shadow

feature (Fig. 4.1). Therefore, the enhancement of shadow regions has been investigated

and practical solutions have been offered.

Several groups have proposed computational methods to improve the appearance of

shadow regions from US data. Karamalis et. al. [37] have proposed a random-walk ge-

ometric technique, based on image intensity, that models the propagation path of an US

signal along the scanline. The generated images were termed confidence map (CM) im-
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ages. Shadow regions were extracted from the CM images by intensity thresholding. This

approach was later extended for processing radio-frequency US data [64]. In [65], shadow

images of the brain were extracted by entropy analysis along the scanline. Pixels with low

entropy would be selected to form the shadow image[65]. The method was later incorpo-

rated into a spinous process segmentation framework [62]. In [66], statistics of B-mode

and radio frequency (RF) US data were investigated and used for shadow detection. Mean

dice similarity coefficient (DSC) of 0.90 and 0.87 were obtained for the RF and B-mode

algorithms. Processing time was not reported. Although promising results in these ear-

lier works were achieved, intensity-based approaches are not robust to typical imaging

artifacts and affected by intensity variations. Changing the US machine acquisition set-

tings, sub-optimal orientation of the transducer concerning the imaged anatomy, imaging

complex shape anatomy (such as spine), or scanning patients with different body mass in-

dex results in the collection of low quality US data (Fig. 4.1) and decrease the success of

intensity-based approaches. RF-based shadow detection overcomes some of the difficulties

of intensity approaches, however, they require special hardware, or software, to access RF

signal domain which is not available in most clinical US machines. In order to provide

an intensity invariant alternative, methods based on local phase image information have

been proposed for the enhancement of bone shadow region [55]. The method proposed in

[55] uses local phase image features as an input to a L1 norm-based contextual regulariza-

tion method which emphasizes uncertainty in the shadow regions. Quantitative analysis,

performed on a manually selected region of interest (ROI) achieved a mean DSC of 0.88.

The mean computation time was 9.3 seconds making the method not suitable for real-time

applications. In [67] a weakly supervised method for acoustic confidence estimation for

shadow regions from fetal US data was proposed. In particular, a shadow-seg module to

extract generalized shadow features for a large range of shadow types in fetal US images

under limited weak manual annotations was presented. Both a classification and a segmen-

tation networks with attention layer mechanism were used. The reported average DSC,
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Recall, and Precision were 0.71, 0.72, 0.73 respectively.

In this paper, we propose a conditional GAN(cGAN)-based method for accurate real-

time segmentation of bone shadow regions from in vivo US scans. Our specific contri-

butions include: (1) A novel GAN architecture designed to perform accurate, robust and

real-time segmentation of bone shadow images from in vivo US data. (2) We show how

the segmented bone shadow regions can be used as an additional proxy to improve bone

surface segmentation results of a multi-feature guided (CNN) architecture [61]. The sig-

nificance of using shadow features-based segmentation is that they can be generated in real

time as opposed to local phase image-based methods [61] which takes around one second.

(3) We evaluate the proposed method on extensive in vivo data obtained from 27 volunteers

using two different US imaging systems. We provide quantitative evaluation results against

state-of-the-art GAN architectures.

4.2 Methods

4.2.1 Data acquisition

Upon obtaining the approval of the institutional review board (IRB), two imaging devices

were used to collect data from 27 healthy subjects. Depth settings and image resolutions

varied between 3-8 cm, and 0.12-0.19 mm, respectively:

1. Sonix-Touch US machine (Analogic Corporation, Peabody, MA, USA) with a 2D

C5-2/60 curvilinear probe and L14-5 linear probe. Using this device we have col-

lected 1000 scans from 23 subjects.

2. Clarius C3 hand-held wireless ultrasound probe (Clarius Mobile Health Corporation,

BC, Canada). Using this device we have collected 235 scans from 4 subjects.

All the collected scans were scaled to a standardized size of 256× 256. The bone surfaces

were manually segmented by an expert ultrasonographer. Gold standard bone shadow im-

ages were constructed automatically by investigating the intensity values from the manually
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segmented bone surfaces in the scanline direction. Region below the manually segmented

bone surface is identified as shadow region. In total, we had 1235 B-mode US images

categorized into four groups of bone structures: radius, femur, spine and tibia. We have

performed 5-fold cross validation on the Sonix-Touch data. No scans from one patient ap-

peared in more than one-fold. Training of the network architectures was performed using

the Sonix-Touch data only. All the data, 235 scans in total, obtained from the Clarius C3

probe were used as test data.

4.2.2 Network architecture

Our architecture is based on the common GAN layout consisting of two co-existing neural

networks; a generator G that attempts to generate synthetic samples and a discriminator

D that tries to discriminate between generated synthetic samples and real ones [68]. In

this work, we adopt the conditional aspect presented by [69] with our generator G and

discriminator D both incorporating additional information into account. Our proposed

cGAN-based bone shadow segmentation and bone surface segmentation network architec-

ture is shown in Figure 4.2. The training of our proposed cGAN architecture follows the

typical optimization problem [69] such that the discriminator D is trying to maximize and

the generator G is trying to minimize the following objective G:

G = argmin
G

max
D

EBM,GS [logD(BM,GS)]

+ EBM,z [log (1−D(BM,G (BM, z)))] + λEBM,GS,z [‖GS −G (BM, z)‖1]

in whichGS represents gold standard shadow images, z represents Gaussian noise in initial

training but was applied as dropout on some layers in the convolution blocks, BS repre-

sents the segmented bone shadow image, GS represents the gold standard bone shadow

image, and BM represents the B-mode US image. Different from a traditional GAN archi-

tecture, our actual generator G model was conditioned on the in vivo B-mode US image,
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BM , and is additionally tasked to generate BS images that are as close as possible to the

GS images with the introduction of the L1-distance term as shown in the equation above.

Our generator architecture is based on the common contractive-expansive design where the

encoder maps the input image into a low-dimensional latent space, and the decoder maps

the latent representation into the original space. It is trained to generate bone shadow, BS,

images. However, unlike [69] where the generator was based on [16], we employ a differ-

ent structure for the generator. Similar to [61], the input is processed through convolutional

blocks, with each block consisting of several convolutional layers. We incorporated skip

connection and projection blocks similar to [59]. Our skip connection blocks, denoted as

S, consist of a 1 × 1 convolution, a 3 × 3 convolution, and another 1 × 1 convolution

with each convolution operation followed by batch normalization and leaky rectified linear

unit (Leaky ReLU) activation. This process reduces and restores channel dimensions. In

our design Leaky ReLU was used in the encoder and decoder. In [70], it has been shown

that the Leaky ReLU achieves lower training and test errors compared to ReLU. Further-

more, Leaky ReLU attempts to overcome the ’dying ReLU (vanishing gradient)’ problem

by maintaining a small slope in the negative portion while training the piecewise constant

gradient, making the network converge faster during training. This informed our choice of

Leaky ReLU. A concatenated input and the aforementioned convolutions produce the out-

put. As for our projection blocks, denoted as P , we add a 1×1 convolution to the projected

input, and the rest is similar to the skip connection blocks. In the decoder, we replace all

convolution operations by transposed-convolutions. We also use a stride of 2 transposed

convolutions to upsample the feature maps. Therefore, these skip and projection blocks

with transposed-convolutions are denoted as S ′and P ′ respectively. Additionally, one dif-

ference in the decoder is that the batch normalization is followed by a dropout layer with a

dropout rate of 50%. The architecture of the generator can be summarized as:

• encoder: S32 S32 P32 - S64 S64 P64 - S128 S128 P128 - S256 S256 P256 -

S512 S512 P512
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Figure 4.2: Our proposed conditional GAN in which the discriminator learns to classify
between real (gold standard shadow images, GS) and fake (generated bone shadow images,
BS).

• decoder: S ′512 S ′512 P ′512 - S ′256 S ′256 P ′256 - S ′128 S ′128 P ′128 - S ′64 S ′64

P ′64 - S ′32 S ′32 P ′32

In our discriminator model a two-input N ×N PatchGAN-like discriminator [69] was

used to essentially classify N × N patches of the input image as real or synthetic. Like

the aforementioned generator, our discriminator architecture consists of five convolutional

blocks, where a final convolution is applied to the last layer to map the 1-dimensional output

before applying a Sigmoid function. Each batch normalization was followed by 0.2-slope

Leaky ReLU. An Adam solver with a 0.0002 learning rate was used and the structure of

the discriminator can be expressed as follows:

• discriminator: S32 S32 P32 - S64 S64 P64 - S128 S128 P128 - S256 S256 P256

- S512 S512 P512

While our proposed cGAN architecture was used to segment bone shadow regions BS,

our bone surface segmentation network with its dual input proposed in [61] was used in

our model to localize bone structures. The B-mode US image BM , and the segmented

bone shadow image BS were used as input to our multi-feature CNN architecture. Feature

maps extracted from both images are fused in a fusion layer at early (pixel level), mid

(feature level) and late (classifier level) stages. Concatenation fusion was used as the fusion
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Figure 4.3: An overview of our proposed cGAN architecture with its (a) generator’s en-
coder consisting of ten skip connection blocks (blue), in addition to five projection blocks
(yellow) and (b) generator’s decoder consisting of ten transposed skip connection blocks
(orange), in addition to five transposed projection blocks (green). Depths of each convo-
lutional layer are indicated in each block by d1 and d2. (c) Our proposed patchGAN-like
discriminator.

operation [61], which does not define any correspondence as it stacks feature maps at the

same spatial locations across the feature channels.The multi-feature CNN architecture was

trained separately from our proposed cGAN architecture using cross-entropy loss.

4.2.3 Quantitative evaluation

Bone shadow segmentation: The performance of our proposed design was compared

against state-of-the-art GAN networks proposed in [71] and [69]. The depths of the net-

works were increased to a scale close to our proposed design. The bone shadow regions

were also segmented, from the test data, using the local phase image-based bone shadow
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enhancement method proposed in [45]. In order to show the effectiveness of discriminator

network we have obtained bone shadow segmentation results by only training our proposed

generator network. Finally, to show the improvements achieved using a cGAN architecture

over a traditional CNN architecture we trained the U-net network, proposed in [16], using

B-mode US image features and gold standard bone shadow images. Based on [45, 54, 53,

52], four error metrics were calculated in our testing set: Dice, Rand error, Hamming Loss,

as well as the intersection over union (IoU). The evaluation metrics are computed on the

estimated probability maps, with grayscale color maps, and compared to the gold standard

bone shadow images.

Bone surface segmentation: Bone shadow images segmented using our proposed de-

sign, [71] and [69], were used as an additional feature to our multi-feature CNN architecture

[61] for bone surface segmentation. Our method utilizes fusion of feature maps obtained

from B-mode US data and bone shadow images. During the evaluation studies we investi-

gate different fusion architectures: early, mid and late fusion [61]. We also investigate bone

surface segmentation results if gold standard bone shadow images are used as an additional

feature. The bone segmentation networks were trained to minimize the cross-entropy loss.

We have used Adam Optimizer with batch size of 8 and a learning rate of 0.0002 for 36,000

iterations. In addition to the previously error metrics explained in this section, we also eval-

uate the average Euclidean distance (AED) error for the task of bone segmentation. AED

was calculated between the automatically segmented bone surfaces and the manual expert

segmentation [61].

4.3 Results

Our experiments were conducted using the Keras framework and Tensorflow as backend

with an Intel Xeon CPU at 3.00GHz and an Nvidia Titan-X GPU with 8GB of memory.

Our network converged in about 8 hours during the training process. Testing on average
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took 54 milliseconds in total for bone shadow and bone surface segmentation.

4.3.1 Quantitative results

Bone shadow segmentation: Table 4.1 shows the performance difference of bone shadow

segmentation methods investigated. Overall our method outperforms previous state-of-

the-art GAN architectures and the local phase-based bone shadow enhancement method

[45]. The local phase image based method proposed in [45] achieved the lowest DSC

value (0.28). However, we would like to mention that in the original work of [45] a ROI,

covering a bone interface spanning the full width of the image, was selected during quan-

titative evaluation. During our analysis we did not select a ROI and rather used the full

B-mode US image. Our generator network, without the discriminator, achieved average

dice value or 0.67. While adding the discriminator resulted in 39% improvement in Dice

value. Our proposed cGAN architecture achieves 8% and 3% improvement, in DSC value,

over the state-of-the-art GAN architectures proposed in [71], [69] respectively. A paired

t-test, for IoU, DSC and AED results at a %5 significance level, between our proposed

network and the networks in [71], [69] achieved p-values less than 0.05 indicating that the

improvements of our method are statistically significant. The improvement over the U-net

architecture [16] was 46% for DSC value. We have also observed that our generator net-

work, without discriminator, outperforms U-net [16] by 6% in Dice value.

Bone surface segmentation: Quantitative results for bone surface segmentation are pre-

sented in Table 4.2. The average numerical error calculations show that that the late-fusion

design had the lowest errors, and the highest average IoU and Dice (Table 4.2). A paired

t-test, for IoU, DSC and AED results at a %5 significance level, between our proposed net-

work and the networks in [71], [69] achieved p-values less than 0.05 indicating that the im-

provements of our method are statistically significant. There was no statistical significance

when using gold standard bone shadow images and the bone shadow images generated us-

ing the proposed design for late fusion design. When using local phase image features as
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an additional feature for our multi-feature CNN architecture [61] the AED error was 0.30

mm compared to 0.11 mm when using the generated bone shadow images.

Table 4.1: Bone Shadow Segmentation Error Metrics

Method IoU% Dice Rand Hamming

Dataset I - Sonix-Touch US machine

LP-based transmission maps [45] 0.2350 0.2186 0.9993 0.8722

Ronneberger et. al. [16] 0.5242 0.6504 0.9897 0.5649

Generator network only 0.5927 0.6839 0.9867 0.4019

Radford et. al. [71] 0.8015 0.8972 0.6371 0.1951

Isola et. al. [69] 0.8628 0.9404 0.6364 0.1501

Ours 0.9277 0.9603 0.4841 0.0873

Dataset II - Clarius C3 US probe

LP-based transmission maps [45] 0.2670 0.2802 0.9983 0.8722

Ronneberger et. al. [16] 0.4726 0.6374 0.9857 0.5272

Generator network only 0.5157 0.6755 0.9831 0.4848

Radford et. al. [71] 0.7965 0.8620 0.6685 0.2034

Isola et. al. [69] 0.8424 0.9015 0.6730 0.1575

Ours 0.9023 0.9354 0.5990 0.0976

4.3.2 Qualitative results

Qualitative results of our proposed model are shown in Figure 4.4. We demonstrate five

examples of in vivo US B-mode images bone types, namely: femur, tibia, radius, knee,

and spine, where red pixels indicate high prediction scores while blue pixels indicate low

prediction scores for the prediction. Gold standard bone shadow images obtained by an

expert are displayed followed by generated bone shadow results obtained using the con-

volutional network presented by Ronneberger et al. [16] and generative networks in [71],

[69] and our proposed model, as shown in Figure 4.4 (d) through (g). In Figure 4.4-(c),

we demonstrate shadow results obtained using local phase-based ultrasound transmission
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Figure 4.4: Qualitative results for bone shadow segmentation. (a) In vivo B-mode US
images of femur, tibia, radius, knee, and spine. (b) Gold standard bone shadow images.
(c) Bone shadow results obtained using local phase-based ultrasound transmission maps
method presented in [45]. (d) Bone shadow results obtained using Ronneberger et al. [16]
(e) Bone shadow results obtained using Radford et al. [71] (f) Bone shadow results obtained
using Isola et al. [69]. (g) Bone shadow results obtained using our proposed cGAN.
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maps method presented in [45]. Investigating the qualitative results we can conclude that

our proposed method segments bone shadow images with minimal artifacts.

In Figure 4.5, early, mid, and late-fusion bone surface localization results are shown.

During this qualitative evaluation we have used bone shadow images generated from our

proposed cGAN architecture, together with the B-mode US data, as an input to fusion

networks designed using U-net architecture [16] and our previously proposed architecture

[61]. The results in Figure 4.5-(a) through (c) presented inadequate segmentation perfor-

mance which may be attributed to the nature of the US images used in the testing process.

For low quality US scans, where the bone surface has a low intensity profile and high

intensity soft tissue interfaces appearing above the bone surface, the performance of the

network proposed in [16] declines. This demonstrates the advantage of using skip and pro-

jections convolutional blocks instead of convolutional layers. Overall late fusion operation

outperforms early and mid level fusion.

4.4 Discussion and Conclusions

A method, based on a novel GAN, for real-time and accurate segmentation of bone shadow

regions from in vivo US scans was proposed. Our model has two main networks: (1) a

cGAN to generate bone shadow images and (2) a segmentation network that will take the

generated bone shadow data in conjunction with B-mode US data for localization of bone

surfaces. Our integral component of building the generator and discriminator was the skip

and projection blocks. To the best of our knowledge, this was not previously investigated

in the community. We also would like to mention that this is the first work proposing a

novel cGAN architecture for the task of bone shadow segmentation. The projection blocks

allow semantic information to be more efficiently passed forward in the network while

progressively increasing feature map sizes, compared to simple convolutions which is used

in many designs including in [16]. By implementing these projection blocks, we allow

to have more comprehensive feature maps that improve the bone shadow generation. We
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Figure 4.5: Bone segmentation results. Bone surfaces segmented using automated methods
are shown as red color coding while manual expert segmentation surfaces are shown in
green color coding. B-mode in vivo images and their bone shadow images counterparts
(generated using our proposed model) were fused at an early, mid, and late stage [61]. (a)
Ronneberger et al. [16] (early), (b) Ronneberger et al. [16] (mid), (c) Ronneberger et al.
[16] (late), (d) our design in [61] (early), (e) our design in [61] (mid), and (f) our design in
[61] (late)
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have also extended the depth of the discriminator used in the state-of-the-art [69]. This

is one of the reasons why our cGAN outperformed other state-of-the-art networks on this

testing data set. Based on these results, we can conclude that having a cGAN with prior

information can significantly improves the results for the task at hand. In this study we

have also shown the importance of adverserial training. The success of well trained CNN

architectures is effected if the architecture is deployed on test data coming from different

centers, vendors, or changing acquisition parameters. For US data, even when the machine

is from the same vendor the image acquisition settings can be adjusted from one scanning

procedure to the next. BMI of the patient, orientation of the transducer with respect to

the imaged anatomy will also change the appearance of the collected data drastically. We

have shown that GAN are more robust to these conditions. We have also investigated how to

combine information from bone shadow and B-mode US data by analyzing different fusion

strategies. Our results demonstrate that for the task of bone segmentation fusing B-mode

US and bone shadow features at a later stage outperforms early and mid fusion, specifically

for the dataset obtained from Clarius C3 US probe. One of the advantages of the proposed

work is that bone shadow features are obtained instantaneously making the computational

time required suitable for real-time applications. Our future work will involve (1) extensive

clinical validation of the proposed GAN-based method on data obtained from subjects who

have differing pathology in their bone such as fracture or bone deformity such as scoliosis.

We will also extend our network architecture to process volumetric US data [33].
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Table 4.2: Bone Segmentation Error Metrics. BM: B-mode US image, BS: bone shadow
image, LP: local phase image, GS: gold standard image

Method IoU% Dice Rand Hamming AED (mm)

Dataset I - Sonix-Touch US machine

Radford et. al. [71] BM & BS Early Fusion 0.8511 0.9368 0.7507 0.1003 0.5863

Radford et. al. [71] BM & BS Mid Fusion 0.8735 0.9166 0.6201 0.1297 0.3972

Radford et. al. [71] BM & BS Late Fusion 0.8834 0.9223 0.5961 0.1165 0.3258

Isola et. al. [69] BM & BS Early Fusion 0.8877 0.9248 0.5847 0.1122 0.3105

Isola et. al. [69] BM & BS Mid Fusion 0.8958 0.9294 0.5646 0.1041 0.2976

Isola et. al. [69] BM & BS Late Fusion 0.9076 0.9368 0.5430 0.0923 0.1776

Ours BM & LP Late Fusion 0.8892 0.9354 0.8290 0.1107 0.3059

Ours BM & GS Late Fusion 0.9779 0.9826 0.3062 0.0220 0.1059

Ours BM & BS Early Fusion 0.9670 0.9746 0.5775 0.0329 0.1164

Ours BM & BS Mid Fusion 0.9694 0.9770 0.4668 0.0305 0.1089

Ours BM & BS Late Fusion 0.9803 0.9833 0.3644 0.0196 0.1032

Dataset II - Clarius C3 US probe

Radford et. al. [71] BM & BS Early Fusion 0.8388 0.8995 0.6782 0.1611 0.8542

Radford et. al. [71] BM & BS Mid Fusion 0.8513 0.9369 0.7512 0.1001 0.6753

Radford et. al. [71] BM & BS Late Fusion 0.8731 0.9356 0.7474 0.1029 0.4227

Isola et. al. [69] BM & BS Early Fusion 0.8655 0.9361 0.7496 0.1019 0.3814

Isola et. al. [69] BM & BS Mid Fusion 0.8986 0.9409 0.8105 0.1013 0.2669

Isola et. al. [69] BM & BS Late Fusion 0.9146 0.9442 0.5543 0.0853 0.1973

Ours BM & LP Late Fusion 0.8730 0.9250 0.8390 0.1269 0.4215

Ours BM & GS Late Fusion 0.9695 0.9781 0.4353 0.0304 0.1106

Ours BM & BS Early Fusion 0.9315 0.9555 0.5347 0.0684 0.1655

Ours BM & BS Mid Fusion 0.9526 0.9692 0.5081 0.0473 0.1306

Ours BM & BS Late Fusion 0.9625 0.9752 0.4908 0.0374 0.1129
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CHAPTER 5

GAN-BASED REALISTIC BONE ULTRASOUND IMAGE AND LABEL

SYNTHESIS FOR IMPROVED SEGMENTATION

In this chapter, we propose a computational method, based on a novel generative adversarial

network (GAN) architecture, to (1) produce synthetic B-mode US images and (2) their

corresponding segmented bone surface masks in real-time. We show how a duality concept

can be implemented for such tasks. Armed by two convolutional blocks, referred to as

self-projection and self-attention blocks, our proposed GAN model synthesizes realistic B-

mode bone US image and segmented bone masks. Quantitative and qualitative evaluation

studies are performed on 1235 scans collected from 27 subjects using two different US

machines to show comparison results of our model against state-of-the-art GANs for the

task of bone surface segmentation using U-net.

5.1 Introduction

Segmentation of bone surfaces from intra-operative US data is an important step for US-

guided CAOS procedures. Due to the success of deep learning methods in medical image

analysis, recent research has focused on the use of convolutional neural networks (CNNs)

for accurate, robust, and real-time segmentation of bone surfaces [61, 43]. However,

scarcity of data size, due to a lack of standardized data and patient privacy concerns, is

a major challenge in applying deep learning methods in the medical imaging field. This is

specifically a challenge due to the fact that US is not a standard imaging modality in CAOS

and US-guided CAOS procedures are not common. Another limiting factor is the manual

data collection procedure: sub-optimal orientation of the US transducer with respect to the

imaged bone anatomy will result in the acquisition of low quality bone scans [33].

Increasing the size of existing datasets through data augmentation in order to improve
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models’ performance is extensively investigated by various researchers [72]. Earlier work

has focused on the introduction of hand crafted image transformations such as random rota-

tions, translations, nonlinear deformations. However, such augmentation methods are lim-

ited in their ability to mimic real variations and are highly sensitive to the parameter choice

[73]. While transfer learning methods [74], that first train on large datasets then fine-tune

on smaller datasets achieve state-of-the-art results on natural image datasets, these meth-

ods often do not suit medical image data and offer relatively little benefit to performance

[74]. This is especially very problematic for bone US data since its very limited com-

pared to larger medical data such as chest X-ray images. This gap in performance is due

to the difference between medical images’ features and natural images’ features. Further-

more, medical images are often 3D, and there is no streamlined way to transfer 2D feature

knowledge into 3D feature knowledge. One approach to overcome this problem is by using

unsupervised feature extractors that have only been trained on medical images, however,

this requires the target network architecture to be similar to the feature extractors’ source

architecture, which is uncommon. Image generation methods have recently become a pop-

ular solution for the challenge of creating large amounts of training data for deep learning

[75]. Generative Adversarial Networks (GANs) have been used in diverse contexts such

as unsupervised representation learning [71], image-to-image translation [69] and unsuper-

vised domain adaptation of multi-modal medical imaging data [76]. This groundwork of

successful research demonstrates GANs’ potential for augmenting small datasets of medi-

cal images.

In this work, we propose a computational method, based on a GAN architecture specif-

ically designed to (1) produce synthetic B-mode bone US images and (2) generate their

corresponding segmented bone surfaces which can be used as labels. Based on [77] and

[78], we show that a duality concept can be adopted for such tasks when implemented by

two convolutional blocks, referred to as self-projection and self-attention blocks. We have

conducted quantitative and qualitative evaluation studies on 1235 scans collected from 27
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subjects using two different US machines. Furthermore, we show comparison results of

our model against state-of-the-art GANs presented in [71] and [69] for the task of generat-

ing B-mode bone US images. We also evaluate bone surface segmentation accuracy using

synthesized B-mode bone US images generated by the networks investigated when tested

on Ronneberger’s et. al. [16] U-net architecture. Our work is the first report for generat-

ing simultaneous B-mode bone US data and corresponding segmentation labels which we

believe to be a novel contribution in the field of US-guided CAOS.

5.2 Proposed Method

5.2.1 Network Architecture

Our architecture is based on the common GAN layout utilizing two co-existing neural net-

works; a generatorG that generate synthetic samples and a discriminatorD which attempts

to discriminate between these generated synthetic samples and real ones [68]. The genera-

tor network transforms some pure random noise vectors z (typically a Gaussian) sampled

from a prior distribution pz(z) into new samples such that x = G(z). The generated im-

age xg is expected to resemble the real images xr. On the other hand, the discriminator

D has both: (1) real samples with distribution pr(x) as well as (2) generated samples with

distribution pg(x) and its output ys = D(x). The gradient information is back-propagated

from the discriminator to the generator and hence, the generator optimizes its parameters to

generate better images. Gradient-based methods have been proposed to train such a GAN

as saddle point optimization problem. However, an imbalance between the training of the

generator and the discriminator might occur if the Jensen–Shannon (JS) divergence was

used [79] and the discriminator will more likely be too strong, which makes the generator

weakly-trained. Moreover, the problem of mode collapse would arise when the distribution

pg(x) learned by the generator was based on limited modes of the real samples distribu-

tion pr(x). This results in weak and limited generations of images. The training of our

proposed GAN follows the typical optimization problem such that the discriminator D is
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trying to maximize and the generator G is trying to minimize the following objective func-

tion L(D,G):

min
G

max
D
L(D,G) = E

xr∼pr(x)
[logD(x, y)] + E

z∼pz(z)
[log(1−D(x, z))] ;

In our generator architecture design the encoder maps the input image into a low-

dimensional latent space, and the decoder maps the latent representation into the origi-

nal space. It is trained to generate both US images and their corresponding segmentation

images. We adopt the duality concept presented by [77] with our generator G and discrim-

inator D both incorporating dual information into account. Therefore, our proposed GAN

architecture generates segmentation masks/label in addition to the synthesized B-mode US

images. This is achieved by modifying the GAN architecture to use two-channel images.

In vivo real B-mode US data was assigned to the first channel and expert bone segmen-

tation was assigned to the second channel. Based on [59] and [78], we also employ a

self-projection and self-attention blocks into the GAN model as shown in Figure 5.1. Our

input is processed through convolutional blocks, with each block consisting of several con-

volutional layers. Our projection blocks, denoted as P , we add a 1 × 1 convolution to the

projected input that is fed-forward through a 1 × 1 convolution, a 3 × 3 convolution, and

another 1×1 convolution with each convolution operation followed by batch normalization

and rectified linear unit (ReLU) activation. We also use a stride of 2 convolutions to upsam-

ple the feature maps. On the other hand, our self-attention block, denoted as A, consists

of a 1 × 1 convolution (followed by by batch normalization and Leaky ReLU activation)

that is (1) multiplied by a transposed 1× 1 convoluted replica resulting in an attention map

and (2) multiplied by the attention map to generate self-attention feature maps. The self-

attention approach helps modeling wider range image regions. With self-attention features,

the generator can associate fine details at every location and associate them with similar

portions of the image. In addition, the discriminator can now enforce complicated geomet-

ric constraints relative to the overall image [78]. The architecture of the generator can be
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summarized as:

• encoder: A32 P32 - A64 P64 - A128 P128 - A256 P256 - A512 P512

• decoder: A512 P512 - A256 P256 - A128 P128 - A64 P64 - A32 P32

In our discriminator model a two-input N ×N PatchGAN-like discriminator [69] was

used to classify N × N patches of the input image as real or synthetic. Our discriminator

architecture consists of five convolutional blocks, with a final convolution is applied to

the last layer to map the 1-dimensional output before applying a Sigmoid function. Batch

normalization operations were followed by 0.2-slope leaky ReLU. An Adam solver with

a 0.0002 learning rate was used and the structure of the discriminator can be expressed as

follows:

• discriminator: A32 P32 - A64 P64 - A128 P128 - A256 P256 - A512 P512

5.3 Experimental Results

5.3.1 Data Acquisition

To conduct our experiments that particularly target the problem of data limitation in the US-

guided CAOS field, we have collected 1235 in vivo B-mode US images categorized into

four groups of bone structures: radius, femur, spine and tibia. Data were collected upon

obtaining the approval of the institutional review board (IRB). Depth settings and image

resolutions varied between 3-8 cm, and 0.12-0.19 mm, respectively. All the collected scans

were scaled to a standardized size of 256 × 256 and manually segmented by an expert

ultrasonographer. Two imaging devices were used to collect data:

1. Sonix-Touch US machine (Analogic Corporation, Peabody, MA, USA) with a 2D

C5-2/60 curvilinear probe and L14-5 linear probe. Using this device we have col-

lected 1000 scans from 23 subjects. 400 scans from the Sonix touch, using random



72

Figure 5.1: Top: An overview of our proposed GAN architecture with its self-projection
and attention blocks based generator and patchGAN-like discriminator. Bottom: Our pro-
posed (a) projection blocks in which a 1× 1 convolution is concatenated with fed-forward
input through a 1 × 1 convolution, a 3 × 3 convolution, and another 1 × 1 convolution
with each convolution operation followed by batch normalization and ReLU activation, as
presented in [61], and (b) our self-attention blocks in which a 1×1 convolution (with batch
normalization and Leaky ReLU activation) is multiplied by a transposed 1× 1 convoluted
replica resulting in an attention map that is then multiplied by the input to the block to
generate self-attention feature maps.
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split, were used for training the GANS, 300 scans were used for training the U-net,

and 300 scans were used for testing. We repeated this process 3 times and during

random split same patient data was not included in the training and testing data.

2. Clarius C3 hand-held wireless ultrasound probe (Clarius Mobile Health Corporation,

BC, Canada). Using this device we have collected 235 scans from 4 subjects. All

Clarius data was used for testing.

We conducted our experiments using the Keras framework and Tensorflow as backend

with an Intel Xeon CPU at 3.00GHz and an Nvidia Titan-X GPU with 8GB of memory.

Our GAN converged in about 2 hours during the training process. Testing on average took

35 milliseconds. For our experiments, the proposed network and those presented in [71]

and [69] were implemented as per the recommendations by their respective authors. For

consistency, we used an Adam solver with learning rate of 0.0002, an exponential decay

rate for the first and second moment estimates of β1 = 0.5 and β2 = 0.999, with a mini-

batch SGD for all models considered.

5.3.2 Quantitative Results

Quantitative evaluation of our proposed GAN architecture was performed against three

methods [71, 69, 80]. In order to show that the synthesized US images are useful for

improving the performance of a supervised segmentation network we use the well known

U-net architecture described in [16]. We would like to mention that the U-net architecture

used in this work is not the main contribution of this work, since the synthesized images

can be used in conjunction with other CNN-based network architectures [61, 43]. If a

GAN architecture captures the target distribution correctly it should generate a new set of

training images (synthesized images) that should be indistinguishable from the in vivo real

B-mode US data. Therefore, a U-net trained on either of these datasets, assuming they

have the same size, should produce similar results. To evaluate this we have performed
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the following studies: (1) train U-net using limited in vivo real B-mode US data and test

using in vivo real B-mode US data, (2) train U-net using limited in vivo real B-mode US

data together with synthesized B-mode US data and test using in vivo real B-mode US

data, (3) train U-net using synthesized B-mode US data and test U-net using in vivo real

B-mode US data, (4) train U-net using real in vivo B-mode US data and test U-net using

synthesized B-mode US data. Bone segmentation results are evaluated by calculating Dice,

Rand error (Rand), the structural similarity index (SSIM), Hamming Loss, intersection over

union (IoU) and average Euclidean distance (AED) [61].

Table 5.1 shows the performance of bone surface segmentation when U-net [16] is

trained on various combinations of in vivo real B-mode US data and synthesized B-mode

US data. We observe that adding synthesized images to the real in vivo B-mode US images

improves the accuracy over the corresponding real-only counterpart. Overall our method

outperforms previous state-of-the-art GAN architectures. In particular, it achieves 7%/7%

and 5%/4% improvement for both data sets (Sonix/Clarius), in IoU value, over the GAN

architectures proposed in [71], [69] respectively. A paired t-test, for IoU, Dice and AED

results at a %5 significance level, between our proposed network and the networks in [71],

[69] achieved p-values less than 0.05 indicating that the improvements of our method are

statistically significant. Quantitative results presented in Tables 5.2-5.3 show that our pro-

posed GAN architecture captures the target distribution better compared to the methods in

[71, 69] achieving improved results for IoU, Dice, Rand and AED evaluation metrics. Re-

sults in Table 5.2 were obtained when U-net [16] was trained using 600 synthetic B-mode

US data generated using the proposed and two other architectures [71, 69]. Testing was

performed using 300 in vivo real B-mode US data obtained from Sonix Touch and 235

in vivo real B-mode US data obtained from Clarius probe. In Table 5.3 results were ob-

tained when U-net [16] was trained using 535 in vivo real B-mode US data obtained from

SonixTouch and Clarius probe. Testing was performed using 600 synthetic B-mode US

data generated using the proposed method and two other GAN architectures [71, 69].
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5.3.3 Qualitative Results

Qualitative results of our proposed GAN model are shown in Figure 5.2. In each row of

Figure 5.2, we demonstrate one example of in vivo real B-mode US image (four examples

in total). Columns are labeled alphabetically where we show in (a)-right: real in vivo B-

mode US images and in (a)-left: their corresponding bone surface segmentations obtained

by an expert. Figure 5.2 columns (b) through (d) demonstrate synthetic B-mode US images

(right) and their corresponding synthetic bone surface segmentations as generated by [71],

[69] and our proposed model, respectively. Investigating the results we can infer that our

proposed method results in fewer artifacts compared to the state-of-the-art [71, 69].

5.4 Discussion and Conclusion

In this paper, a novel GAN model for real-time and accurate B-mode bone US image gen-

eration is proposed. Our model has been implemented using two main components: (1)

a generator that produces synthesized B-mode US as well as bone surface images and (2)

a PatchGAN-like discriminator [69] that was used to classify N × N patches of the input

images as real or synthetic. We have employed two integral components of building the

generator and discriminator: a self-projection and self-attention blocks. With self-attention

features the generator can associate fine details at every location and associate them with

similar portions of the image. The main benefit of our self-attention blocks is that they

leverage complementary features in distant portions of the image rather than local regions

of fixed shape especially for images with complex structural patterns, e. g. US B-mode

images. The relationship between near and far pixels is learned, which allows the model

to focus on separated structurally relevant features. Since the task is to replicate the rela-

tionship between the US B-mode and segmentation images, our model’s ability to span a

larger region in the image to create features gives it an advantage over the classic GAN

model, which is limited by its filter size. In a classic GAN model, the relationship be-
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Figure 5.2: Four examples of B-mode US images and their corresponding bone segmen-
tation mask images. (a)-right: real in vivo B-mode US images and in (a)-left: their corre-
sponding bone surface segmentations mask as obtained by an expert. Columns (b) through
(d) demonstrate synthetic B-mode US images (right) and their corresponding synthetic
bone surface segmentations as generated by [71], [69] and our proposed model.
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tween the segment and US features is likely to be diluted across local features, while in a

self-attention model the relationship is preserved by these larger feature regions. Addition-

ally, the self-attention discriminator used checks for consistency in features in distant areas,

which enforces accurate reproduction of geometric patterns in the B-mode US images and

leads to higher-quality augmented data. On the other hand, self-projection blocks allow

semantic information to be more efficiently passed forward in the network while progres-

sively increasing feature map sizes, compared to simple convolutions. They allow us to

have more comprehensive feature maps. Furthermore, self-projection blocks are also con-

volutional blocks, and therefore are computationally less expensive to train and infer on.

To the best of our knowledge, this was not previously investigated for generating B-mode

bone US images. Based on the quantitative results presented, we can conclude that having a

self-attention mechanism can significantly improve the results for the image synthesis task

at hand. Our future work will involve more extensive clinical validation of the proposed

GAN model.
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Table 5.1: Quantitative results for bone surface segmentation using U-net [16]. Testing
was done using 300 in vivo real B-mode US data obtained from Sonix Touch for Dataset
I. For Dataset II testing was performed using all the 235 scans collected from Clarius C3
US probe. Notation note: number of in vivo real B-mode US images/number of synthetic
B-mode US images used for training- GAN method used.

Method IoU% Dice Rand SSIM Hamming AED

Dataset I - Sonix-Touch US

300/000 - N/A 0.7703 0.8642 0.9264 0.1106 0.2280 0.9386

300/300 - Radford et. al. [71] 0.8391 0.9036 0.8522 0.3588 0.1608 0.8146

300/300 - Isola et. al. [69] 0.8516 0.9117 0.8477 0.5401 0.1483 0.5687

300/300 - Ours 0.8977 0.9400 0.7899 0.7038 0.1022 0.2985

300/600 - Radford et. al. [71] 0.8621 0.9183 0.7084 0.5540 0.3826 0.1378

300/600 - Arjovsky et. al. [80] 0.8827 0.9255 0.6876 0.6038 0.1244 0.3220

300/600 - Isola et. al. [69] 0.8943 0.9395 0.6657 0.7021 0.1035 0.2896

300/600 - Ours 0.9309 0.9580 0.6125 0.7586 0.0690 0.1596

Dataset II - Clarius C3 US

300/000 - N/A 0.7594 0.8564 0.9350 0.1086 0.2405 0.7821

300/300 - Radford et. al. [71] 0.8128 0.8869 0.8678 0.2750 0.1871 0.7536

300/300 - Isola et. al. [69] 0.8322 0.9126 0.8463 0.3483 0.1593 0.8211

300/300 - Ours 0.8753 0.9193 0.8381 0.5861 0.1278 0.1970

300/600 - Radford et. al. [71] 0.8458 0.9128 0.8483 0.4822 0.1486 0.6217

300/600 - Arjovsky et. al. [80] 0.8531 0.9196 0.8104 0.5480 0.1311 0.4853

300/600 - Isola et. al. [69] 0.8646 0.9214 0.7903 0.5728 0.1275 0.3482

300/600 - Ours 0.9225 0.9536 0.7636 0.7408 0.0774 0.1583
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Table 5.2: Quantitative results for bone surface segmentation. Results were obtained when
U-net [16] was trained using 600 synthetic B-mode US data generated using the proposed
method and [71, 69]. Testing was performed using 300 in vivo real B-mode US data (Sonix
Touch) and 235 in vivo real B-mode US data (Clarius probe). Notation note: method used-
blocks type.

Method IoU% Dice Rand Hamming AED

Radford et. al. [71] 0.8471 0.9158 0.8483 0.1783 0.7133

Isola et. al. [69] 0.8625 0.9115 0.8284 0.1183 0.4540

Ours-none 0.6952 0.8068 0.9845 0.1967 0.9347

Ours-self-projection only 0.8356 0.9023 0.8615 0.1883 0.8053

Ours-self-attention only 0.8502 0.9104 0.8816 0.1668 0.5063

Ours-self-projection & self-attention 0.9054 0.9766 0.8169 0.1208 0.1852

Table 5.3: Quantitative results for bone surface segmentation. Results were obtained when
U-net [16] was trained using 535 in vivo real B-mode US data obtained from Sonix Touch
and Clarius probe. Testing was performed using 600 synthetic B-mode US data generated
using the proposed method and two other GAN architectures [71, 69]. Notation note:
number of synthetic B-mode images used for testing - method used.

Method IoU% Dice Rand Hamming AED

600-B-mode-Radford et. al. [71] 0.8726 0.9158 0.8464 0.1405 0.4610

600-B-mode-Isola et. al. [69] 0.8933 0.9304 0.7629 0.1108 0.2814

600-B-mode-Ours 0.9357 0.9640 0.7195 0.0496 0.1952
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this work, we have developed robust deep learning-based methods that can allow auto-

matic and real-time extraction of bone surfaces in CAOS surgeries. The main contributions

and the recommended future work of this thesis can be summarized as follows:

• Our multimodal CNN approach utilized fusion of feature maps and multimodal im-

ages to abate sensitivity to variations that are caused by imaging artifacts and low

intensity bone boundaries. Our multimodal inputs consisted of B-mode US images

and their corresponding local phase filtered counterparts. Fusion operations were

investigated for our proposed network using different fusion architectures.

• We improved the multimodal CNN architecture using convolutional blocks (convo-

lutional/projection) instead of convolutional layers. Our projection blocks allow (1)

semantic information to be more efficiently passed forward in the network while

progressively increasing feature map sizes, and (2) they also allow us to have more

comprehensive feature maps.

• We have investigated how to combine information from local phase images and B-

mode US data by analyzing different fusion strategies. Our results demonstrated that

for the task of bone segmentation fusing B-mode US and local phase features at a

later stage outperforms early and mid fusion, specifically for the dataset obtained

from Clarius C3 US probe.

• Local phase image features enhanced the bone surface response in the US data, and

therefore the B-mode US data and local phase image features were less correlated



81

in the low level features. The proposed late level fusion network modeled the corre-

lations and interactions between high level features of each modality which outper-

formed the other fusion networks. A similar investigation was observed with a U-net

network late fusion design.

• Our filter layer guided CNN method was quantitatively and qualitatively evaluated on

546 in vivo scans by scanning 14 healthy subjects. We achieved an average F-score

above 95% with an average bone surface localization error of 0.2 mm. The reported

results are statistically significant compared to state-of-the-art.

• One of the drawbacks of the proposed work is the computational time required for

the extraction of local phase image features. This takes on average 1 second (MAT-

LAB implementation) which needs to be improved for real-time CAOS procedures

where US is used as an intra-operative imaging modality. During this work the expert

manual segmentation was performed by a single expert user. The effect of intra- and

inter-user expert bone segmentation on the segmentation results is also crucial.

• Based on a novel GAN architecture, we presented a computational method to seg-

ment bone shadow images from in vivo US scans in real-time. We showed how these

segmented shadow images can be incorporated, as a proxy, to a multi-feature guided

CNN architecture for real-time and accurate bone surface segmentation. Quantita-

tive and qualitative evaluation studies are performed on 1235 scans collected from

27 subjects using two different US machines.

• We provided qualitative and quantitative comparison results against state-of-the-art

GANs. We have obtained mean dice coefficient (± standard deviation) of 93% (±

0.02) for bone shadow segmentation, showing that the method was in close range

with manual expert annotation. Statistical significant improvements against state-of-

the-art GAN methods (paired t-test p ¡ 0:05) was also obtained. One of the advan-

tages of the proposed work is that bone shadow features are obtained instantaneously
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making the computational time required suitable for real-time applications.

• We have also proposes a GAN-based computational method to (1) produce synthetic

B-mode US images and (2) their corresponding segmented bone surface masks in

real-time. We showed how a duality concept can be implemented for such tasks.

Armed by two convolutional blocks, referred to as self-projection and self-attention

blocks, our proposed GAN model synthesized realistic B-mode bone US image and

segmented bone masks. Quantitative and qualitative evaluation studies were per-

formed on 1235 scans collected from 27 subjects using two different US machines to

show comparison results of our model against state-of-the-art GANs for the task of

bone surface segmentation using U-net [16].

• With self-attention features the generator can associate fine details at every location

and associate them with similar portions of the image. The main benefit of our self-

attention blocks is that they leverage complementary features in distant portions of

the image rather than local regions of fixed shape especially for images with complex

structural patterns, e. g. US B-mode images. The relationship between near and far

pixels is learned, which allows the model to focus on separated structurally relevant

features. Since the task is to replicate the relationship between the US B-mode and

segmentation images, our model’s ability to span a larger region in the image to create

features gives it an advantage over the classic GAN model, which is limited by its

filter size. In a classic GAN model, the relationship between the segment and US

features is likely to be diluted across local features, while in a self-attention model

the relationship is preserved by these larger feature regions.

6.2 Future Work

While this research work, which detailed robust, accurate, real-time and automatic im-

age segmentation and localization methods for bone structures in US-guided interventional
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procedures, achieved its targeted and intended results, some further improvements could

be implemented to the proposed methods. Along with recommended clinical validation

studies, the following list summarizes the suggested future direction of work:

• For our filter layer guided CNN design future work will involve extensive clinical

validation of the proposed method. In particular, this deep learning-based approach

could be used as a disease assessment tool with proper clinical validation on US scans

collected from patients who are scheduled for orthopedic procedures. As a starting

point, one can investigate the accuracy of this model when trained to segment frac-

tured bone regions. In addition, an extension of our network architecture to process

volumetric US data. [33].

• More work can be done to reduce the computational time required for the extraction

of local phase image features, which takes 1 second on average (MATLAB imple-

mentation). For real-time CAOS procedures where US is used as an intra-operative

imaging modality, one can explore the possibility of generating local phase images

by utilizing the GAN-based approach presented in Chapter 5. The model in Chap-

ter 5 could be trained to generate synthetic US images and their corresponding LP

images. Once validated, this solution can resolve the LP images computational time

problem.

• The method discussed in Chapter 5 can also be investigated to generate synthesized

computed tomography (CT) looking data from US images. Amongst many applica-

tions, this can be used as input to a US-CT registration method detailed in [81].
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