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ABSTRACT OF THE DISSERTATION 

Sex Differences and Consequences of Peripheral Blood Leukocytosis after Spinal Cord 

Injury in Fischer 344 Rats 

By CARLOS ARMANDO AYALA 

 

Dissertation Director: 

Wise Young 

Four times as many men as women have chronic spinal cord injury (SCI), suggesting that 

women have less severe SCI than men.  The mechanism of this large sex gap is not 

known.  SCI changes peripheral blood leukocyte counts, causing acute neutrophilia 

chronic lymphopenia after injury.  Neutrophils infiltrate the injured spinal cord.  We 

compared peripheral blood leukocyte responses in male and female Fischer F344 rats.  

Males had greater blood neutrophilia than females during the first days after SCI.  We 

also measured myeloperoxidase (MPO) by Western Blot injured spinal cords.  

Surprisingly, MPO did not differ between male and female rats, despite greater peripheral 

neutrophilia in males.  We assessed effects of blood leukocyte responses on locomotor 

recovery.  We treated male and female rats with the chemotherapeutic agent 

cyclophosphamide (CYP) 2 days before SCI to reduce acute blood neutrophilia and 

evaluated locomotor recovery and neuronal and myelin sparing in the spinal cords at 6 

weeks after injury.  CYP prevented increases in blood neutrophil counts after SCI.  
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However, blood neutrophil counts did not correlate with tissue damage or behavioral 

recovery.  Male rats recovered walking earlier than female rats regardless of blood 

neutrophilia.  Differences in recovery were transient and not significant 3 to 6 weeks after 

SCI.  Quantitative analyses of the rat spinal cords showed that standardized contusion 

injury caused similar tissue loss, myelin sparing and neuron survival in both sexes.  

However, male spinal cords were bigger in age matched 100-day-old F344 rats.  

Preventing acute blood neutrophil responses did not change walking recovery or tissue 

damage in either sex.  These findings argue strongly against the hypothesis that acute 

neutrophilia is responsible for sex differences in recovery after SCI.  We conclude that 

acute blood leukocytosis do not affect recovery or tissue damage after spinal cord injury 

in F344 rats. 
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Chapter 1.  Introduction and Literature Review 

1.1  Sex Bias in Animal Research   

Four times as many men than women live with chronic spinal cord injury (SCI) [1-5].  In 

contrast, animal studies that only include one sex dominate the SCI literature with a 

significant preference for female rodents.  Beery and Zucker [6] found the neuroscience 

field in 2009 had the most studies with one sex in all biological science fields.  The 

National Institutes of Health (NIH) recommends that animal research include both sexes 

[7] because males and females respond differently to many pathologies including brain 

and spinal cord trauma [8, 9], stroke [10], shock [11-17], sepsis [13] and autoimmune 

disease [18-20].  Sex differences [10] in recovery occur in these pathologies and some 

evidence suggests the mechanism may be immune-related [21-23].  

1.2  Sex Differences after SCI in Humans 

Historically, men were more prone to SCI than women.  However, contemporary trends 

in spinal cord trauma indicate that SCI is no longer primarily a young man’s condition 

resulting from war and high-risk behaviors [24, 25].  According to Chiu, et al. [26], the 

man to woman ratio of incidence for SCI ranges from 1.73:1 to 4.3:1 in developed 

countries, with China reporting the lowest male-female ratio of 1.73:1, the United States 

3.8:1, and developing countries Pakistan and Bangladesh reported the highest ratio of 

about 7.5:1.   
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Motor vehicle accidents and falls are major causes of spinal cord trauma [1, 27-30].  

Cervical level injuries are the most common [27, 30], classified as complete or 

incomplete and rarely transecting injuries [3, 28, 31].  In some countries, women are 

more likely to suffer SCI from motor vehicle accidents than men [32, 33].  The number of 

injuries from falls in elderly women is also rising [28, 31].  In underdeveloped countries, 

Pott’s disease (tuberculosis of the spine) causes more cases of SCI in women than men 

[34].  Increasing numbers of spinal-injured women has shifted clinical focus away from 

psychosocial perspectives [35, 36] to analyses of clinical outcomes in both sexes [37-40].   

Comparison of outcomes after SCI in both sexes led to findings that spinal-injured men 

fare worse than spinal-injured women in several respects.  First, morbidity and mortality 

are greater in men than in women after traumatic than non-traumatic SCI [41-

44].  Second, more men die acutely [25, 45] and women have a longer life-expectancy 

than men after SCI [25].  Third, more men had complications by the start of 

rehabilitation, even though spinal-injured women tend to have more comorbidities [32, 

46, 47].  Lastly, chronic rehabilitation outcomes favor women compared to men [31, 42, 

44, 48-50] 

The American Spine Injury Association (ASIA) Impairment Scale (AIS) measures injury 

severity and rehabilitation [51].  Sex differences in ASIA and AIS outcome measures 

have been known for decades [52].  For example, Scivolette, et al. [47, 53] reported that 

spinal-injured men achieve better AIS scores than women early during rehabilitation.  

Likewise, in a cohort of 14 thousand patients, Sipski, et al. [50] found that men with 

complete SCI recovered better than women, but that long-term recovery favors women 
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with incomplete SCI.  Women reach higher motor index scores, improve their AIS 

classification more often and achieve higher functional independence scores than men at 

1 year after SCI [50].  Fisher, et al., [54] reported that women have better motor recovery 

at 2 years after complete SCI.  Nevertheless, some studies reported no differences in 

recovery between spinal cord injured men and women [31, 55, 56].  Findings of sex 

differences in recovery and rising numbers of spinal cord injured women should motivate 

researchers to do experiments in both sexes.  

1.3  Sex Differences in Animal SCI Research 

Animal models [57, 58] provide an opportunity to study the effects of therapies after 

spinal cord trauma in males and females.  Standardized contusion injuries cause clinically 

relevant examples of motion recovery and tissue sparing [59].  Paradoxically, even 

though sex differences in incidence and rehabilitation after SCI have been known for 

decades, experiments with rodents that only include one sex dominate the SCI literature 

with a significant preference for females [26].  Investigators typically exclude male 

rodents because bladder care of males after SCI is considered more difficult [60].   

Several researchers [61-65] reported that female rodents spare more spinal cord tissue 

and have better long-term recovery than males after contusion injuries, others found that 

males recover earlier [66] and have better long-term hind-limb function [67] while others 

[68-71] found no sex differences.  The mechanism for sex differences in recovery after 

SCI in animal models was first thought to relate to spinal cord size and sex hormones 

[65].  Hsu [65] and Young et al., [57] reported that spinal cord length or weight did not 

differ significantly in age-matched F344 and Long-Evans Hooded rats, 
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respectively.  Injury severity parameters, like spinal cord contusion velocity [72] and 24-

hour lesion volume [73], are also similar in both sexes.  Since spinal cord sizes and lesion 

volumes are similar, like in brain injury [74], there may be sexually dimorphic 

mechanisms that affect injury spinal cord tissue repair [75].   

Reports of sex differences in recovery after SCI in humans and rodents led to 

experiments with sex hormones [76].  Sex hormones have a significant effect on immune 

responses after infection and trauma [14].  Elkabes and Nicot [76, 77] reviewed 

preclinical literature and reported a strong indication that estrogen or progesterone 

agonists and testosterone antagonists improve recovery after SCI.  Sex hormone therapy 

reduced apoptosis [78], autophagy and inflammation [79].  However, it is not well 

understood why female rats recovered better than males regardless of ovariectomies [64] 

and orchiectomies [63].  Despite testing the effect of sex hormones, most of these studies 

still focused on only one sex, typically female.  SCI sex hormone therapy in humans is 

not widely used due to limited clinical success, because feminizing male patients is 

controversial and experimental animal evidence has been primarily in females, which 

does not represent the human patient population.     

1.4  Sex Differences in Immune Responses after CNS Trauma 

The effects of biological sex in immune responses have gained notoriety because 

inflammatory responses are sexually dimorphic and influence tissue repair, response to 

infections and autoimmunity [14].  Gene expression differs between males and females in 

the immune system [80-82].  Y-chromosome [83, 84] and over-expression of X-
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chromosome [85, 86] genes cause critical sex differences in immune cell function 

thought to manifest in injury models.   

Sex differences after CNS injury are not unique to spinal cord trauma.  Several rodent 

[87-92] and human [23] studies reported that brain infarcts are larger in males than 

females.  Autoimmune disease in the brain is also more prominent in women, with 2-4 

times higher incidence than in men around the world [93, 94].  Sex differences in infarct 

size [88] and autoimmune responses correlate with more intense cellular immune activity 

[95].   

Immune cells, like myeloid-derived neutrophils, monocytes and microglia, infiltrate 

within hours after spinal cord or brain injuries.  More myeloid-cells infiltrate injured 

brain tissue in males than females, correlating with worse functional recovery and less 

tissue sparing [89].  Sex differences after brain injury are thought to occur from increased 

myeloid cell activity that phagocytose myelin debris and injured cells [92].  As 

neutrophils, monocytes and microglia respond to tissue during the first days after injury, 

these cells secrete a storm of enzymes, pro and anti-inflammatory cytokines thought to 

propagate tissue damage and glial cell apoptosis [89].   

Little is known about the effect of sex on immune responses after SCI.  Far more 

researchers have investigated the cause for sex differences after brain injury than spinal 

cord trauma.  Standardized brain injury rodent models and attention to include both sexes 

in research led to important discoveries under investigation to improve recovery after 
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brain trauma and stroke in both sexes [74].  The same must happen for the spinal cord 

research.   

1.5  History of SCI animal research 

Most human spinal cord injuries are contusions and very rarely transections [26].  In the 

early nineteen hundreds, Reginald Allen [96] standardized a weight drop contusion model 

in dogs and Armando Ferraro [97] did so in rabbits.  Other injury models include spinal 

cord compression [98] and transection [99].  Rodents, particularly rats, are most widely 

used for standardized contusion SCI studies.  Wrathall, et al., [100], Kwo, et al. [101], 

Gruner, et al. [72] and Cao, et al. [102] developed calibrated mechanical weight drop 

devices to contuse rodent spinal cords.  Our laboratory developed the Multicenter Animal 

Spinal Cord Injury Study (MASCIS) impactor to contuse T9-T10 laminectomy exposed 

rat spinal cords with a 10g rod [72].  MASCIS graded contusions produce consistent 

spinal cord lesions [73, 101].   

1.6  The Immune Response after SCI 

1.6.1  Immediate tissue response to injury 

Pioneer SCI researchers Bailey Pearce [103], Alfred Allen [96] and Armando Ferraro 

[97] described that contusion injury causes acute hemorrhage in gray matter and nerve 

cell damage.  Contusion injury rapidly indents the spinal cord [57] and preferentially 

damages large myelinated axons [104].  The indentation translates to longitudinal 

movements of the spinal cord.  At contusion velocities exceeding 0.5 meters / second, 

blood vessels and axons break, red blood cells and platelets accumulate on endothelium 

of capillaries and form thrombi that worsens ischemia.  Post-contusion hypoxic 
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conditions and necrosis increase extracellular calcium and ionic shifts [105, 106], 

adenosine triphosphate (ATP) depletion and lactate acidosis [107, 108], that propagate 

hypoxic cell damage.  

Dying neurons, glia and oligodendrocytes [205][217, 218] in the injured spinal cord 

release pro-inflammatory interleukin (IL)1b [109], IL-8 [110], TNF-alpha [111-113], 

prostaglandins [114, 115], leukotrienes [116] and many other inflammatory 

proteins.  Cell death propagates of lipid peroxidation in the hypoxic tissue environment 

[117].  Physical trauma and inflammation make the spinal-cord-blood-barrier leaky [118-

122], and stimulate recruitment of immune cells [123-125] like resident microglia-

derived-macrophages (MDMs) [126-128], blood monocyte-derived macrophages 

(BMDM) [127], blood neutrophils [125] and lymphocytes [129].  Immune cells first enter 

injured spinal cord during the initial central hemorrhagic necrosis [130] and then during 

the delayed apoptosis phases in white matter undergoing Wallerian degeneration weeks 

and months after injury [130-132].  Progressive tissue damage after the initial spinal cord 

injury, sometimes called “primary injury”, is collectively called secondary injury [133, 

134].  Sex differences in inflammation and immune cell activity at the injured spinal cord 

may contribute to better tissue recovery in males compared to females.     

1.6.2  Myeloid Cell Responses after SCI 

1.6.2.1  Microglia Activation 

Microglia are the first neural tissue responders to spinal cord trauma [135].  Microglia 

responses are necessary for brain and spinal cord repair [136].  Receptors on microglial 

processes detect damage associated molecular patterns (DAMPs) [137], ionic imbalance 
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[138], extracellular adenosine triphosphate [139] and inflammatory cytokines [140].  

Detection of these acute injury signals activate microglia [141] to proliferate [142], 

secrete proinflammatory cytokines and to become ameboid macrophages [143].  

Microglia functions after SCI have been extensively investigated [144].   

1.6.2.2  Blood and Tissue Neutrophilia after SCI 

Although most studies of inflammation at the injured spinal cord were done with female 

animals, it is clear that injured spinal cord cells and activated resident glia secrete large 

numbers of inflammatory signals [112, 113].  Immune responses after SCI are both local 

and systemic, leading to acute blood neutrophilia, an abnormally high neutrophil count, 

in mice [145], rats [146] and humans [147].  Injured spinal cord cells secrete potent 

neutrophil-chemotactic cytokines IL-8 [110, 148, 149], prostaglandins and leukotriene B4 

[150, 151] that demarginate neutrophils from the bone marrow and peripheral reservoirs 

[152] into the blood stream.  Neutrophil chemotactic signals seem to be stronger in males 

than females [153, 154].   

Neutrophils are the first leukocytes to invade the injured spinal cord in response to 

inflammatory signals [110, 150], a leaky spinal cord-blood barrier and increased cell 

adhesion molecules on endothelial cells [155].  Depending on the type and severity of 

injury, neutrophils may appear adjacent to venules and capillaries as early as 4 hours and 

phagocytize necrotic neurons in hemorrhagic areas [110, 150, 156-158].  Neutrophils 

have a short half-life of several hours [159] and have been reported to persist for weeks 

after SCI [125, 126, 160].  Peak neutrophil infiltration in injured spinal cord lasts for a 

few days and coincides with a proinflammatory environment [161, 162].  Nieto-
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Sampedro et al., [160], reported that males and females had similar numbers of 

neutrophils in the injured spinal cord at 15 days after injury.  It is not known if blood 

neutrophil responses are sexually dimorphic during peak neutrophil activity within hours 

and days after SCI.   

Once in the injury site, neutrophils phagocytize dying neurons and release granule 

contents like myeloperoxidase (MPO) [156, 163, 164], metalloproteinases [165-167] and 

other proteases considered both neurotoxic and helpful for tissue remodeling [110, 120].  

Short-lived migrated neutrophils undergo apoptosis and recruit phagocytic monocyte-

derived macrophages [168] that respond to “eat me” [168-170] signals in a process called 

efferocytosis [171, 172].  It was classically believed that blood neutrophils were bad for 

CNS injury [110, 113, 173].  However, recent evidence suggests that neutrophils may be 

more friends than foes for nervous system tissue repair [174].  Depleting only blood 

neutrophils with Ly6G antibody prevents normal recovery after SCI [175].  Although 

neutrophils are phagocytic in nature, neutrophils are key determinants of angiogenesis, 

secreting significant VEGF and other growth factors to help revascularize the injured 

spinal cord [176].   

1.6.2.3  Recruitment of Monocyte-Derived Blood Macrophages after SCI 

Spinal cord trauma triggers the spleen, the biggest monocyte reservoir, to release large 

numbers of monocytes into circulation [177].  Along with responding to neutrophil-

derived chemotactic signals [168-170], blood monocytes use C-C Motif Chemokine 

Receptor 2 (CCR2) [178] and C-X-C Motif Chemokine Receptor (CXCR1) cell-adhesion 

dependent mechanisms [179] to enter the injured spinal cord [180].  Peak infiltration by 
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blood-monocyte-derived-macrophages (BMDM) after SCI differs among species [69, 

126, 127].  BMDM mostly gather in the spinal cord mainly within one week after injury 

and continue to infiltrate into the spinal cord for months thereafter [69, 126, 127].  

BMDMs spread centrifugally and longitudinally through the injury site [181] and initially 

far outnumber resident microglial-derived-macrophages (MDM) at the injury epicenter 

[182, 183].  Myelin phagocytosis converts and maintains BMDMs as proinflammatory 

M1 “foamy macrophages” [182-184].  Myelin ingestion reduces the ability of M1 

BMDM to digest and process apoptotic neutrophils [183, 185].  In contrast, myelin 

phagocytosis turns MDM into trophic M2 phenotype.  Over several days, MDMs 

surround and have been described to “herd” blood macrophages to the injury epicenter, 

restricting them to the injured tissue while proliferating astrocytes repair the surrounding 

cord [183].  A second late wave of bone-marrow derived M2 macrophages that enters the 

central nervous system through the choroid plexus has been hypothesized to reduce 

Wallerian degeneration [186].   

1.6.2.4  Are neutrophils and monocytes good or bad for SCI? 

Several studies showed that depletion of both blood neutrophils and monocytes with 

clodronates [187, 188] improved spinal cord tissue repair.  Reduced cell adhesion 

molecule expression prevented leukocyte migration [163, 175, 189-194] after SCI, 

lowered proinflammatory cytokines and improved spinal cord tissue repair.  Depletion of 

blood leukocytes with nitrogen mustards in rodents [164, 195, 196] and cats benefited 

spinal cord neuroregeneration [197, 198].  However, depleting only blood neutrophils 

with antibodies has recently been found to worsen recovery after SCI [175, 199].   
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Katoh et al., [200] showed that spinal cord injured patients with less leukocytosis had 

better neurological outcomes.  From a clinical point of view, testing the effect of acute 

blood leukocyte responses provides a potential therapeutic target.  However, depletion of 

blood immune cells is dangerous, even for healthy adults.  A more acceptable clinical 

approach would be to dampen peripheral immune responses instead of depleting blood 

leukocytes.  Doing so would answer two important questions.  First, is acute blood 

leukocytosis harmful for SCI?  Second, is dampening immune responses after SCI 

harmful or beneficial? 

1.6.2.5  Sex Differences in Myeloid Cell Responses Affect CNS injury 

General trauma causes more intense blood myeloid cell responses in males than females 

[145, 200-202].  More intense myeloid cell activity after brain injury correlates with 

worse recovery [87-92].  Doran, et al. [90] and Banerjee, et al. [88] reported that females 

get smaller brain infarcts and less myeloid blood cell infiltrate.  Villapol, et al. [89, 92] 

and others reported more activated microglia in male than female mice after brain 

ischemia.  Although immune responses are more intense after contusion injury in brain 

than spinal cord, similar immune pathways get activated in both injuries [162].   

Sex differences in cells involved in tissue repair, like neutrophils and monocytes, could 

account for previously reported sex differences in spinal cord gray and white matter 

sparing [52].  Since sex differences in myeloid cell activity affect brain tissue repair and 

females tend to spare more injured spinal cord tissue [61], it is reasonable to hypothesize 

that dampening blood myeloid cell responses would assimilate recovery in both sexes 

after SCI.  
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1.7  Effects of SCI on Adaptive Immunity 

B and T lymphocytes play key roles in long-lasting immunity.  Lymphocytes are part of 

the “adaptive” immune system and can have long half-lives [203, 204].  Adaptive 

immunity creates long-lasting protection against pathogens and tolerance of self-

proteins.  B and T cells detect self or foreign antigens and work in conjunction with 

antigen-presenting cells to produce antibodies that bind and label pathogens or infected 

cells for phagocytosis [205].  SCI leads to decreased B and T cells in the blood and at 

lymph nodes [206].  Targeted killing of circulating lymphocytes with anti-CD20 antibody 

[207] and gene knock-out animal models with dysfunctional adaptive immune responses 

[208, 209] have positive effects on recovery after SCI, even though lymphocyte function 

in spinal cord repair is not understood.   

B and T lymphocyte function has gained attention in SCI research for several 

reasons.  First, spinal cord injured patients have more respiratory [210] and cutaneous 

infections [211, 212] and have a higher death-risk from recurrent pneumonia [213-

217].  Second, B and T cells infiltrate the injured spinal cord in rodents [129] and humans 

[126] but their function in the injured tissue is not clear.  Third, people and animals 

produce significant higher quantities of autoantibodies after SCI [218].  B and T cells 

may detect neural injured tissue fragments as foreign antigens and cause autoimmunity.   

Because SCI patients have higher rates of infection, several investigators [219-221] 

believe that SCI causes an immune deficiency syndrome (SCI-IDs).  However, the reason 

why SCI increases auto-antibody production but reduces ability to fight infections 
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remains puzzling.  Sex differences in adaptive immunity after spinal cord trauma may 

affect long-term host-defense mechanisms and autoimmunity [222, 223].   

T cells express cluster differentiation (CD) 3 protein on their surface that serves as co-

receptor for CD4 and CD8 to recognize new foreign antigens, those that previously 

attacked the host, self-peptides for self-recognition, or self-peptides that cause 

autoimmune attacks.  T cell precursors originate in the bone marrow, differentiate in the 

thymus [224] into antigen-specific naïve cytotoxic T cells, naïve Helper T cells or 

regulatory T cells [225] and circulate to lymphatic organs where they await interaction 

with major glycoprotein histocompatibility complexes (MHC) on antigen-presenting cells 

(APCs).   

Bone marrow lymphopoietic cells produce B cell precursors.  B cell precursors rearrange 

their genes in a process called somatic recombination to express unique cell membrane 

bound immunoglobulins that recognize a specific antigen [226].  B cells recognize 

antigens by themselves [227], endocytose it, process it and present it on an MHC-II 

surface protein [228], or recognize antigens displayed on APCs and form an 

immunological “synapse” [229] with T cells that respond to the same antigen.  B cells 

that have recognized antigen or formed an immunological synapse will expand clonally 

into plasmablasts [230].  Some plasmablasts remain in lymphatic organs and secrete 

short-term IgM antibodies and others will become memory B cells [231].  Eventually, 

plasmablasts will mature into plasma cells as they undergo class switching through 

somatic hypermutation [230] to produce high affinity IgG antibodies that protect against 
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repeated infections.  Plasma cells migrate to the bone marrow, spleen, and lymphatic 

tissues for long-term surveillance against their respective antigen [232]. 

1.8  Immunosuppressive Treatment for SCI 

Therapies that modify peripheral immune responses have been of interest for several 

decades because SCI causes acute blood and tissue neutrophilia, then migration and 

differentiation of blood macrophages followed by lymphocyte infiltration into the injury 

site [125, 127].  These blood leukocytes participate in injury repair and subsequent 

responses to infections.  Depleting the number of blood leukocytes, a form of 

immunosuppression, has yielded mixed results to understand the role of peripheral blood 

leukocytes in spinal cord tissue repair.   

Cancer drugs, like cyclophosphamide (CYP), cause dose-dependent apoptosis of 

circulating blood leukocytes [233] and a transient rebound of bone-marrow 

hematopoiesis afterward [234].  Researchers have used other non-specific 

immunosuppressants methotrexate [235, 236] and cyclosporine-A [237, 238] to improve 

functional recovery.  Methylprednisolone, widely used to treat SCI, is frequently given to 

dampen systemic inflammation.  Bracken and colleagues [239] found that one 

methylprednisolone intravenous bolus dose, given within 8 hours after SCI, can improve 

recovery.  However, no convincing evidence indicates that pretreatment with 

methylprednisolone before spinal cord injury is similarly beneficial as chemotherapeutic 

drugs at depleting circulating leukocytes [134].   
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A single dose of CYP given two days before injury prevents acute blood neutrophilia, 

reduces MPO activity at the injury site and improves locomotor recovery [240, 

241].  Feringa, et al. [197] reported that CYP improved spinal cord regeneration after 

spinal cord transection.  Since a single dose of CYP has a transient effect, this drug can 

target acute blood leukocytosis (neutrophilia) after SCI [200].  Understanding the role of 

acute peripheral blood neutrophilia after SCI is important because it is treatable with 

several inexpensive FDA approved drugs.  Unfortunately, previous studies that 

suppressed immune responses were mainly in females and we do not know if 

immunosuppressive therapy after SCI affects males and females differently.   

1.9  Thesis Objectives 

In this thesis, I studied the effect of acute peripheral blood leukocytosis in male and 

female F344 rats after moderate spinal cord contusion at the T9-T10 thoracic 

level.  Undergraduate students helped collect the data.  First, we developed and validated 

an inexpensive manual method to count total leukocytes per µl of blood.  Second, we 

compared peripheral blood neutrophil, monocyte and lymphocyte responses, as well as 

spinal cord neutrophilia, in male and female spinal cord injured F344 rats.  Experiments 

showed that males had more pronounced blood neutrophilia and monocyte responses than 

females after SCI but sex differences in neutrophilia did not occur at the injury site.  

Third, we found that more intense blood neutrophilia in males did not worsen locomotor 

or tissue sparing compared to females by six weeks after injury.  Lastly, 

immunosuppressive therapy with one CYP dose, given 2 days before injury, prevented 

acute blood neutrophilia in both sexes but more effectively in females than males.  
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Unexpectedly, preventing acute blood neutrophilia did not worsen nor improve recovery 

after SCI in either sex.  Overall, results in this thesis demonstrate that an inexpensive 

method to count blood leukocytes, combined with flow cytometry, can be used to study 

blood leukocyte responses after SCI in rodents.  Importantly, more intense blood 

neutrophil responses in males did not worsen recovery compared to females.  In fact, 

blood neutrophilia may be inconsequential, because preventing blood neutrophil 

responses after SCI did not worsen tissue sparing nor locomotor recovery in neither male 

nor female F344 rats.  

  



 

 

17 

Chapter 2.  Methodology 

2.1  Blood Collection 

2.1.1  Jugular Vein Catheterization 

2.1.1.1  Catheter Preparation 

Catheters were prepared by linking 2.5 cm long silicon tubing [0.63 outer diameter (OD) 

x 0.76 internal diameter (ID) mm, (SIL065, Braintree Scientific)] with 15 cm of 

polyethylene (PE) tube [0.97 OD x 0.53 ID, (BD Biosciences, 427516)].  The PE tube 

was wedged 5 mm into the silicon tip with micro forceps to form a tight seal between 

both segments. The silicon tip was beveled, catheters were checked for patency with 

distilled water then sterilized in 70% ethanol overnight.  

2.1.1.2  Catheterization 

The right jugular vein (RJV) was catheterized before laminectomy [242].  F344 rats were 

anaesthetized with 5% isoflurane then maintained at 2.5% flow rate.  The rats’ neck and 

intrascapular area were shaved, scrubbed twice with betadine and 3 times with 70% 

ethanol. Catheter placement required two skin incisions: one 5 mm at the intrascapular 

area and a 1.5 cm incision mid-neck above the right sternocleidomastoid muscle to 

expose the carotid triangle. A stainless-steel trocar was used to guide the catheter under 

the neck skin towards the intrascapular incision.  A clove-hitch knot with a silk suture 

occluded RJV blood flow below the external jugular vein.  A v-shaped incision with 

microscissors at the RJV opened a flap to insert the catheter 2 cm towards the right 

atrium, then the catheter was secured to the RJV with two silk half-hitch knots at each 

side of the cannula.  After testing for patency, catheters were filled with 10 IU 
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heparinized saline solution to prevent intra-tube thrombosis and endothelization then 

sealed with bone wax, and the neck incision was closed with micro-wound clips.  The 

first 50 µl of blood collected from catheters was discarded to prevent dilution with 

heparin saline.  Blood collected from RJV catheters was stored in 

ethylenediaminetetraacetic acid (EDTA) coated tubes (Thermofisher, 22-689-03) then 

rats received 200 µl subcutaneous saline to replace lost fluid volume.   

2.1.2  Cranial Vena Cava Venipuncture 

Cranial vena cava (CVC) venipuncture technique [243], with some modifications, was 

used to collect blood for experiments in Chapter 5.  Rats were anaesthetized with 5% 

isoflurane then maintained at 2.5% flow rate.  Rats’ necks were shaved, then scrubbed 

twice with betadine and 3 times with 70% ethanol.  Using one hand, the rat’s right and 

left arms were pulled towards the back with the thumb and middle finger, respectively 

then the index finger knuckle extended the rat’s neck (Figure 1A).  This position was 

maintained to insert a 30g needle (305128, BD Biosciences) bevel down towards the 

bulge that connects the jugular vein and CVC (Figure 1B), then the needle was held in 

place as drops of blood entered the syringe reservoir (Figure 1C).  The syringe plunger 

was slowly pulled with the hand holding the syringe to collect 100 µl of blood.  Blood 

collected with CVC venipunctures was stored in EDTA coated tubes.  After blood 

collection, light pressure with a sterile gauze contained hemorrhage at the venipuncture 

site then rats received 100 µl subcutaneous saline to replace lost fluid volume.  
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2.2  Spinal cord injury 

2.2.1  Laminectomy 

Rats were anaesthetized with 5% isoflurane and maintained at 2.5% flow rate, their backs 

were shaved, then scrubbed twice with betadine and 3 times with 70% ethanol.  The T10 

spinous process was localized by counting from the 13th to the 10th rib, then a 5-cm mid-

dorsal cutaneous incision was made to expose the T7 to T11 vertebral levels.  A bilateral 

0.5 cm incision adjacent to T9-T10 and blunt dissection of paravertebral muscles exposed 

spinous processes and vertebral laminae.  Without tearing the dura or ligamentum 

flavum, the T10 and T9 spinous processes and vertebral laminae were removed with 

micro rongeurs to make a laminectomy 6x3 mm in length and width, respectively.  A 

sterile gauze pad was used to stop hemorrhage throughout the surgery.   

2.2.2  Spinal Cord Contusion 

Male and female 100 ± 3-day-old F344 rats were spinal cord injured at T11 with a 

MASCIS impactor Model 1, as previously described [114].  Rat spinal cords were 

contused by dropping a 10 g,  2.1-mm diameter rod from a 12.5 mm height onto the T11 

spinal cord level, centered at the laminectomy site at T9 and T10 vertebral level.  After 

placing a sponge under the rat’s belly, the T8 and T11 spinous processes were secured 

with clamps and the impactor rod was centered to the laminectomy.  The contusion 

height was calibrated by lowering the impactor rod to the spinal cord until the impactor’s 

LED light and alarm indicated that the tip touched the spinal cord.  The impactor rod was 

set to drop 12.5 mm then released to contuse the spinal cord.  Rats that had impacts with 

>5% error in contusion velocity and height were excluded and replaced.  Immediately 
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after contusion, the impactor rod was secured to prevent re-injury, rats were unclamped 

then returned to the surgical table.  A small piece of subcutaneous fat was placed over the 

spinal cord contusion site, the paravertebral muscles and subcutaneous fascia adjacent to 

the laminectomy were sutured, and the wound was closed with stainless steel clips.   

Shortly after surgery and on the first day after, the rats received one 5 ml or 10 ml of 

subcutaneous saline injection for females and males respectively, followed by 25 mg / kg 

Cefazolin (a broad-spectrum antibiotic).  Injured rats were housed in sterile cages with 

fresh bedding and maintained on a heating pad overnight after surgery.  Our animal care 

supervisor, Sean O’Leary, monitored the injured rats for autophagy, infections and 

expressed urine in the rats twice daily for 48 hours and then once daily until rats had 

empty bladders in the morning, indicating that they were able to urinate.   

2.3  Quantification and Differentiation of Blood Leukocytes 

2.3.1  Linear Smears 

2.3.1.1  Linear Smear Blood Sample Preparation 

390 µl of 10 µM Hoechst 33342 (Thermofisher, 62249) in 0.9% saline (Braun, S8004-

5264)  were added to an eppendorf tube and weighed on an analytical scale.  10 µl of 

blood were slowly pipetted with a 10-20 µl micropipette tip and added to the eppendorf 

tube.  After rinsing the pipet tip 3 times with the diluent to wash all blood from the 

pipette tip, each sample was re-weighed to ensure blood samples were 10µg ± 0.1µg.  

Sample preparation was repeated until the blood weight criteria was met.  The diluted 

blood was vortexed for 2 seconds and incubated at 37° in the dark for 30 minutes, then 

mixed gently half-way through the incubation period.  
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2.3.1.2  Linear Smear Slide Preparation 

A linear smear template (Figure 2A) was placed under a positively charged microscope 

slide (Thermofisher, 22-037-246).  A 10-20 µl micropipette tip was used to uptake 5 µl of 

well-mixed blood dilution, then the 5 µl were slowly released at a 45°- 60° angle onto the 

microscope slide to trace the entire linear smear template (Figure 2A).  After air-drying 

for 10 minutes, linear smears were cover-slipped with organic non-aqueous mounting 

medium (Baxter, Protexx) and dried overnight at room-temperature protected from light.  

2.3.1.3  Quantification of total leukocytes under the microscope 

Linear smear preparations clearly distinguish brightly Hoechst-stained nucleated 

leukocytes from a sea of enucleate erythrocytes (Figure 2D).  To count blood leukocytes, 

the proximal end of the linear smear was located with visible light, leukocytes were seen 

with an ultra violet (UV) epifluorescence lamp (Zeiss, Axiophot) and counted down the 

linear smear path.  Blood leukocyte counts in linear smears represent a 1:8 dilution of 

leukocytes per µl of blood.  Linear smear blood leukocyte counts multiplied by 8 equal 

the total number of leukocytes per µl blood.  

2.3.2  Blood Smears 

2.3.2.1  Blood Smear Preparation 

5 µl of blood were placed on a microscope slide.  Another clean slide was used to spread 

the blood drop at a ~30° angle (Figure 3A) to form a feather-like blood smear, (Figure 

3B).  After air-drying, blood smears were dipped into Wright stain (Sigma, SW-16) in a 

coplin jar for 20 seconds, then transferred to deionized water for 2.5 minutes, then 

quickly rinsed with 1 ml of deionized water to remove excess dye debris.  Air-dried blood 
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smears were cover-slipped with non-aqueous histology mounting medium (Baxter, 

Protexx). 

2.3.2.2  Differentiation of Leukocytes in Blood Smears 

Blood leukocytes were identified at 63x magnification with a bright-field light 

microscope (Zeiss, Axiophot) as nucleated cells compared to enucleate 

erythrocytes.  Wright stain colors leukocyte nuclei shades of blueish purple and 

enucleated erythrocytes pink.  300 blood leukocytes were defined as neutrophils, 

monocytes, lymphocytes and other granulocytes according to hematological criteria.  

Monocytes and macrophages were the largest leukocytes, with irregular rod-shaped 

nuclei, white vacuoles and lilac blue cytoplasm (Figure 3C).  Lymphocytes were the 

smallest leukocytes with scant cytoplasm and large dark purple round or oval nuclei 

(Figure 3D).  Neutrophils were larger than lymphocytes, had polysegmented nuclei and 

poly-chromatic granules (Figure 3E).  Blood eosinophils, mast cells and basophils make 

up about 2% of the circulating blood leukocyte pool, have irregular shaped nuclei and 

prominent monochrome granules.  Undergraduate Student Noelle Messina helped to 

count blood neutrophils, monocytes and lymphocytes from blood smears.   

2.3.3  Flow Cytometry 

2.3.3.1  Sample Preparation for Flow Cytometry 

Erythrocytes in 50 µl of whole blood were lysed with 500 µl of ammonium chloride 

(Thermofisher, 00-4333-57) for 2.5 minutes at room temperature, then washed twice with 

1mL of 2% Fetal Bovine Serum in Phosphate Buffer Saline (FBS-PBS) at 300g, 4°C and 

for 5 minutes (wash buffer).  Blood leukocytes were incubated with mouse monoclonal 
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pre-conjugated antibodies and respective isotype controls.  We used 1:200 anti-CD45-

Vioblue (BD Biosciences, 561587), a pan-leukocyte antibody, to tell apart leukocytes 

from erythrocytes and platelets.  CD45+ leukocyte subpopulations were identified with 

1:100 anti-CD11b-Flourescein isothiocyanate (FITC) (BD Biosciences, 554982) that 

labels myeloid-derived cells,  1:50 anti-RP-1-Phycoerythrin (PE) (BD Biosciences, 

550002) for rat neutrophils [244], and 1:200 anti-CD3-Allophycocyanin (APC) (BD 

Biosciences, 557030) and 1:100 anti-CD45R-FITC (BD Biosciences, 554880), that 

distinguish T and B cells, respectively.  All samples incubated in the dark for 30 minutes 

at 4°C, were washed twice with buffer then reconstituted to 100 µl.  Dead cells were 

excluded with 1:100 propidium iodide, incubated for 1 minute, immediately before signal 

capture.    

2.3.3.2  Flow Cytometric Differentiation of Blood Leukocytes 

Leukocytes were differentiated with a MACSQuant flow cytometer (Miltenyi).  An UV 

detection trigger excluded all non-CD45-VioBlue+ erythrocyte debris and platelets.  We 

determined optimal gating with isotype controls: IgG1-VioBlue-FITC (BD Biosciences, 

561504), IgG2a-FITC (BD Biosciences, 556652), IgM-APC (BD Biosciences, 550883) 

and IgG2a-PE (BD Biosciences 553497).  For experiments in Chapter 4, CD45-VioBlue+ 

leukocytes were gated according to isotype controls to quantify the percent of CD11b+ 

myeloid cells, RP1+ neutrophils, CD3+ T cells and CD45R+ B cells.   

 



 

 

24 

For Chapters 5 and 6, CD11b+ blood myeloid cells were further differentiated into 

neutrophils and monocytes based on scatter signals as previously shown by Stirling et al., 

[128].  Cells scatter light forward and sideways as they pass through interrogating lasers 

in flow cytometers.  Optical detectors convert scattered light into electrical 

signals.  Forward scatter is light diffracted around the cell and relates to cell 

size.  Intracellular components reflect and refract light to cause side scatter.  Neutrophils 

have large cytoplasmic granules and polymorphic nuclei while monocytes have fine 

cytoplasmic granules and one bilobed nuclei [245, 246].  Large granules and polymorphic 

nuclei cause high side scatter signals in neutrophils compared to monocytes (Figure 

4).  We defined high side scatter CD45+CD11b+ SSC(hi) myeloid cells as neutrophils and 

low side scatter CD45+CD11b+ SSC(lo) myeloid cells as monocytes. 

2.4  Quantification of SCI Recovery 

2.4.1  Assessment of locomotor function after SCI  

Sean O’Leary and I graded bilateral hindlimb motor function after SCI with the open 

field Basso-Beattie-Bresnahan (BBB) locomotor scale [247].  Rats were placed one at the 

time to acclimate in a circular open field for 5 minutes, then hindlimb function was 

scored for 4 minutes.  Animals with no detectable hindlimb movement received a zero 

score.  Hind-limb function was assessed at 2 days after injury and weekly thereafter for 6 

weeks.  1 male and 1 female rat with BBB scores above 2 at 2 days after SCI were 

excluded from the analysis.  
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2.4.2  Neuron and Myelin Immunohistochemistry 

2.4.2.1  Spinal Cord Microtome Sectioning 

Sean O’Leary euthanized 36 F344 rats by anesthetizing (45-65 mg/kg pentobarbital) and 

perfusing the rats with 0.9% saline and then 4% paraformaldehyde at 6 weeks after 

SCI.  I dissected the spinal cords in 30 mm segments centered at the injury site, post-

fixed in 4% paraformaldehyde overnight and then stored the spinal cords in 30% sucrose 

at 4°C.  Spinal cords were sent to Neuroscience Associates (NA) for sectioning and 

staining (Knoxville, Tennessee, USA).  Spinal cords were incubated overnight in 20% 

glycerol and 2% dimethyl sulfoxide to prevent freeze-artifacts and embedded in a gelatin 

matrix block.  This block was flash frozen with chilled 2-methylbutane, mounted to an 

AO 860 sliding microtome freezing stage, and sectioned to 40 µm in thickness on the 

transverse plane.  All sequential sections were collected in separate cup containers.  All 

containers contained antigen preserve solution (50% PBS pH7.0, 50% ethylene glycol, 

1% polyvinyl pyrrolidine).  Tissue section sets contained one spinal cord slice spaced 1-

mm apart.   

2.4.2.2  Immunohistochemistry 

NA did immunohistochemistry on free floating sections.  Tissue sections were treated 

with hydrogen peroxide and blocked for non-specific binding with serum from the 

antibody host.  Separate tissue section sets were immunostained simultaneously with 

either chicken anti-myelin Basic Protein (MBP) antibody at 1:250,000 (Encor, CPCA-

MBP) or rabbit anti-NeuN at 1:50,000 (Abcam, Ab104225) overnight at room 

temperature.  Primary antibody was removed, tissue sections were washed with Tris 
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buffered saline (TBS) with Triton X-100, rinsed with TBS then incubated with 

biotinylated secondary antibodies for one hour at room temperature.  Antigen detection 

was visualized by incubating tissue sections with avidin-biotin-HRP complex (Vector, 

PK-6100), rinses, then treatment with diaminobenzidine tetrahydrochloride and hydrogen 

peroxide to create a visible reaction.  The sections were then mounted on gelatin-coated 

glass slides to air-dry, cleared with xylene and cover-slipped with anti-fade mounting 

medium.   

2.4.2.3  Immunohistochemistry and Quantification 

All slides were scanned in monochrome at 100x magnification with each slide containing 

one transverse section from all samples.  We used ImageJ to measure the spinal cord total 

cross-sectional and myelinated area in intact and injured spinal cord segments.  To 

measure cross-sectional area (gross tissue sparing), ImageJ’s edge detection tool outlined 

the spinal cord border and measured the area inside the spinal cord in mm2.  To measure 

myelin sparing, we applied a threshold to detected MBP signal without background noise, 

then ImageJ measured the area of MBP signal per tissue section in mm2.  To count 

neurons, I wrote a macros for ImageJ that used edge detection to outline the spinal cord, 

remove background noise, then signal from each NeuN+ nuclei was condensed to one 

signal maxima.  This strategy permitted the quantification of each individual NeuN+ 

neuron nuclei present in a 40 µm section.  For each spinal cord, the tissue section with the 

smallest spared area was designated as the injury epicenter (Figure 5).   

2.5  MPO Protein Quantification by Western Blot 

2.5.1  Tissue Lysis and Protein Quantification 
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At three days after contusion, rats were anaesthetized with 5% isoflurane and decapitated 

to harvest the injured spinal cords (M: n=8, F: n=8).  The spinal cord was frozen with 

crushed dry-ice, then the injury epicenter (5 mm) was frozen at -80°C.  Samples were 

thawed and shredded with a Dounce homogenizer (10 passes) in 300 µl of chilled 1x 

radioimmunoprecipitation assay (RIPA) buffer (Sigma, 20-188) with protease inhibitor 

(Sigma, 11836153001), then agitated for 2 hours at 4°C.  Supernatants were collected 

after samples were centrifuged at 10,000g for 10 minutes at 4° C.  We used a Pierce 

bicinchoninic assay (BCA) protein assay kit (Thermo Scientific, 23227) and a microplate 

reader (Thermo Scientific) to determine calorimetrically the protein concentration in each 

sample.  BCA working reagent (WR) was prepared from 1-part Reagent B and 50 parts 

reagent A and bovine serum albumin (BSA)was serially diluted from 2 mg / ml as protein 

standard.  20 µl of sample or standard and 200µl WR were added to each well in a 96 

well-plate, the plate was sealed with an adhesive cover and placed on shaker for 30 

seconds.  Samples then incubated for 30 minutes at 37 °C, cooled for 5 minutes, and 

calorimetric signal was detected with a microplate reader at 570 nm.  Protein 

concentration in each injured spinal cord sample was determined in comparison to the 

standard curve.   Undergraduate students Shambhavi Metgud and Morgan Fishman 

helped with Western Blot experiments.   

2.5.2  Gel Electrophoresis 

To prepare the sample for gel electrophoresis, we pipetted 5µl of NuPage antioxidant 

(Thermo Scientific, NP0005), 25µl of NuPage lithium dodecyl sulfate sample buffer 

(Thermo Scientific, NP0007), 100 µg of protein solute into an eppendorf tube and 
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standardized to 100 µl of solution with protease free deionized water.  Samples were 

heated at 95 °C for 10 minutes and then chilled on ice.  We placed a 10-well NuPage 

acrylamide 4-12% Bis-Tris gels (Thermo Scientific, NP04120BOX) in an electrophoresis 

tank with 4°C 1x sodium dodecyl sulfate running buffer (Thermo Scientific, NP0002).  1-

well received 5 µl of protein ladder (Bio-Rad, 1610373) and 40 µg of protein per sample 

were loaded on the other wells.  Gel electrophoresis separated proteins by size at 200V in 

20 minutes.  Gels were placed on an iBlot polyvinylidene difluoride transfer stack 

(Thermo Scientific, IB401031) to blot proteins with an iBlot2 system (Invitrogen) for 7 

minutes at 20V and 1.3A current. 

2.5.3  Myeloperoxidase Immunochemistry 

All incubations and wash steps for Western Blot experiments took place on a shaker at 10 

RPM.  Blots incubated at room temperature (RT) for 2 hours with 5% skim milk 

dissolved in TBS (SM-TBS) to block non-specific protein binding sites.  Blots then 

incubated overnight at 4℃ with 1 µg / mL polyclonal rabbit anti-myeloperoxidase 

(Abcam, ab45977) in SM-TBS.  We washed the blots 3 times for 5 minutes at RT with 

0.1% Tween 20 (Sigma, P9416) in TBS (TBS-T).  Blots then incubated with 1:5000 

Horse Radish Peroxidase (HRP) donkey anti-rabbit polyclonal secondary antibody 

(Abcam, 16284) in SM-TBS for 1 hour at RT, then were washed 3 times for 5 minutes at 

RT with TBS-T. 

2.5.4  Signal Acquisition 

We mixed 1 ml of Pierce ECL Western Blotting Substrate Kit Reagent 1 and Reagent 2 

(substrate) (Thermo Scientific, 32106), added the mix to the blots and incubated for 2 
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minutes.   We used an Odyssey Fc imaging system (LI-COR) to capture an MPO protein 

band (84kDa) after a 2-minute exposure.  

2.5.4  Blot Stripping 

Blots rested in a container with Restore Western Blot Stripping Buffer (Thermo 

Scientific, 21059) for 10 minutes at RT then were washed 3 times for 5 minutes with 

TBS-T at RT.   

2.5.5  Loading control 

After stripping, non-specific protein binding sites were blocked again for 2 hours with 

SM-TBS at RT.  Blots incubated for 2 hours at RT with 1:5000 mouse monoclonal anti-

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Abcam, 8245).  Blots were 

washed 3 times with TBS-T for 5 minutes and incubated at RT with 1:5000 HRP goat 

anti-mouse IgG H&L (Abcam, Ab6789) in 5% skim milk in TBS for 1 hour.  Blots were 

then washed 3 times with TBS-T for 5 minutes and signal for GAPDH was acquired with 

the Odyssey Fc imaging system (LI-COR) for 20 seconds.  

2.5.6  MPO Quantification and Statistical Analysis 

We exported images from the LI-COR Odyssey Fc imaging system, opened them with 

ImageJ, quantified the signal for each MPO and GAPDH band with the “Gels” ImageJ 

macros, calculated the ratio of MPO / GAPDH for each sample, and compared male and 

female samples with an ANOVA in SPSS.   

2.6  Cyclophosphamide Treatment 
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I tested the safety of 80, 40, 20 mg / kg  of cyclophosphamide (CYP) (Sigma, C7397-1G) 

dissolved in 1 ml of diH2O (distilled water) after SCI.  Male and female rats received one 

subcutaneous CYP dose at 48 hours before SCI (3 groups, Female: n=1, Male: n=1, per 

group).  Sean O’Leary and I monitored skin turgor, eye rheum build-up and cage-

rummaging by each rat after dosing to assess dehydration, suffering and physical activity, 

respectively.  Further experiments utilized one 25 mg / kg  CYP dose or distilled water 

vehicle (VEH) treatment.   

2.7  Statistical Analysis 

Statistical analyses were carried out with SPSS version 25.0 and with Statview version 

2.0.  Graphs were made with OmniGraffle.  We used one-way repeated measures 

ANOVA to determine if blood leukocyte counts changed significantly over 14 days after 

SCI in males and females.  Scheffé’s’ post hoc tests identified from when to when blood 

leukocyte counts differed after SCI.  2-factor repeated-measures ANOVA (Time*Sex) 

tested if biological sex had a significant effect on blood leukocyte responses after SCI.  2-

factor repeated-measures ANOVA (Time*Treatment) tested if CYP or VEH treated 

groups had a significantly different blood leukocyte responses after SCI in either males or 

females.  Pairwise comparisons with unpaired T-tests revealed at which time-points sex 

differences in blood leukocyte counts were most pronounced.   

We used a 2-factor repeated-measures ANOVA that tested for biological sex differences 

in spinal cord area (Tissue-Sparing*Sex), myelinated tissue area (Myelin-sparing*Sex) 

and neuron counts (Neuron-survival*Sex).  Since we found sex differences in blood 

neutrophilia and sex differences in response to therapies are well known, we restricted 
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our analysis of the effect of CYP treatment to each gender.  A 2-factor repeated-

measures ANOVA (BBB*Treatment) assessed if CYP-treatment had a significant effect in 

locomotor recovery over 6 weeks after injury in males or females.  Scheffé’s post hoc 

tests identified when BBB scores differed most significantly between CYP and VEH 

treated groups.  Similarly, 2-factor repeated-measures ANOVA (Tissue*Treatment) 

assessed if CYP-treatment had a significant effect on tissue sparing and neuronal 

survival.   

We analyzed both, the extent of tissue damage and the size of spinal cords.  We used 

pairwise comparisons with unpaired T-tests to compare the volume of spared spinal cord 

tissue and myelin content between males and females at the injury site.  Unpaired T-tests 

were also used to test the hypothesis that the volume in intact spinal cord segments did 

not differ between males and females.  The analyses yielded F values for the ratio of 

variance between sample means to variance within samples. p values are the likelihood 

that the null hypothesis is correct (E.g. no effect of SCI, sex or treatment on leukocyte 

counts over time).  Effect sizes (η2 ) or (ηp2) represent the proportion of variance 

contributed by the dependent variable.  The null hypothesis was rejected at p ≤ 0.05 and 

Scheffé’s post hoc method identified when blood leukocyte counts differed after SCI and 

by how much.  Blood leukocyte counts are shown as mean ± standard error of the mean 

per µl of blood. 
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Chapter 3:  Blood Leukocyte Counts with a Linear Smear 

3.1  Introduction 

Clinical grade hematology analyzers are the gold standard for counting human blood 

leukocytes [248].  Veterinary hematology analyzers [249] and flow cytometers are used 

to count leukocytes in other species.  However, access to hematological analyzers may be 

cost prohibitive or not feasible.  A reliable and inexpensive manual method to count total 

white blood cells (WBCs, leukocytes) per µL of blood would be helpful.   

The standard manual method of counting blood leukocytes uses a hemocytometer.  A 

known blood volume is diluted with a stromatolyser agent to lyse cell membranes and a 

dye to label nuclei, like acetic acid and methylene blue, respectively [250].  Lysed blood 

cells are placed on a hemocytometer with a coverslip, labeled nuclei are counted and 

expressed in cells per box in the grid.  Unfortunately, hemocytometer leukocyte counts 

are unreliable [251, 252] for several reasons.  First, cell membrane lysis leads to 

fragments and cell settling may vary among samples [253, 254] and lead to miscounts of 

leukocyte nuclei.  Second, blood must be diluted at least 1:20 for hemocytometer counts 

and low numbers of countable leukocytes causes high inter-sample variability 

[250].  Neutrophils may also be miscounted after membrane lysis because thin chromatin 

strings hold together their lobed polymorphic nuclei [255, 256].   

 

We invented and tested the “linear smear” to serve as a manual method to count blood 

leukocytes.  The linear smear uses inexpensive materials and rivals hematological 
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analyzers to count the number of white blood cells per microliter of blood.  10µl of blood 

sample are mixed in normal saline and Hoechst stain, then this blood dilution is traced on 

a microscope slide in a thin linear smear pattern.  After airdrying, leukocytes on the linear 

smear path are easily seen under 100x magnification with a UV fluorescent filter.  Blood 

leukocytes in linear smears are not lysed and stand out in contrast to a sea of enucleate 

red blood cells.  Total blood leukocyte counts are a helpful addition to multicolor flow 

cytometry or blood smears that give results as percentage ratios.  Absolute counts of 

blood neutrophil, monocyte and lymphocyte subtypes would be more helpful while 

studying pathologies that trigger abrupt changes in blood leukocytes, like spinal cord 

injury.  

3.2  Linear smear protocol 

The linear smear method requires the following steps.  First, pipette 390 µl of 0.9% 

saline, containing 10 µM Hoechst 33342 and 5 µM EDTA into an eppendorf 

tube.  Second, slowly pipette 10 µl of anticoagulated blood into the bottom of the tube, 

rinse the micropipette tip in untouched diluent to remove any remaining viscous blood, 

and weigh the tube before and after adding the blood to confirm that the blood weight is 

10 ± 0.1 milligrams.  Third, draw or print a S-shaped template with three connected 35-

mm lines spaced 5 mm apart on paper and place the template under a positively charged 

glass microscope slide (Figure 2A).  Fourth, vortex the sample for 2 seconds, incubate at 

37°C for 30 minutes and aspirate 5 µl of the sample with a 2-20µl micropipette tip.   

Importantly, dispense the sample slowly at a ~45° angle following linear smear template 

(Figure 2A) to completion without touching the pipette tip touching the microscope slide 
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surface.  Lastly, air-dry the linear smears, protected from light for 10 minutes, and 

coverslip with non-aqueous mounting medium (Protexx, Baxter).  Properly dispensed 

linear smears should be ~1 mm in diameter (Figure 2C) and fit within a 100x 

magnification diameter field of view (Figure 2D).     

Use a microscope with UV detection and100x magnification to count the total number of 

blood leukocytes in a linear smear.  First, identify the proximal linear smear end with 

bright field illumination, then switch to the UV filter.  Next, count fluorescent cells down 

the linear smear track (Fig. 3D).  Hoechst 33342 permeates cell membranes, attaches to 

adenine rich nucleic acids in leukocyte nuclei to distinguish them from anucleate 

erythrocytes.  Fluorescent leukocytes in linear smears stand out from a semi-confluent 

erythrocyte track (Fig. 3D).  To calculate the total number of leukocytes per µl of blood 

from linear smears, multiply leukocyte counts by 8 to account for a 1:8 dilution factor. 

3.3  Linear Smear validation 

Leukocyte counts in linear smears were compared with veterinary hematological 

analyzers and a Cellometer (Auto-2000, Nexcelom).  Rat blood leukocyte counts in linear 

smears correlated closely with a Sysmex XT 2000iV hematological analyzer (N=9, R= 

0.94, Figure 2E).  Mouse blood leukocytes correlated well with a Heska Element 5HT 

hematological analyzer (N=12, R= 0.97, Figure 2F).  Rat leukocyte counts also matched 

those from a Cellometer (N=19, R= 0.95, Figure 2G).  Leukocyte counts in different 

linear smears from one sample had a low coefficient of variability (N=8, CV= 

1.43%).  Likewise, repeated leukocyte counts from the same linear smear were consistent 
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(N=4, CV= 0.575%, Fig. 1H).  These results indicate that leukocyte counts from linear 

smears are reliable and comparable to automated instruments. 

3.4  Discussion 

Linear smears have several advantages over automated hematological analyzers and 

hemocytometers.  First, linear smears need inexpensive reagents and no automated 

instruments.  Second, this method can be used to count blood leukocytes in 10 µl of 

blood from different mammalian species without species-specific instrument calibration 

[257].  Third, leukocyte counts in linear smears rely on a quality control step that ensures 

accurate blood volume for each sample.  Accurate pipetting skills and calibrated 

equipment are key to the inexpensive quantification of blood leukocytes with this 

protocol.  Fourth, sample slides may be cover-slipped, counted manually or digitally 

scanned before long-term storage.  A disadvantage of the linear smear is that, although it 

provides absolutely blood leukocyte counts per µl of blood, it cannot be used differentiate 

leukocyte sub-populations.   

Total blood leukocyte counts from linear smears are a helpful addition to pre-established 

flow cytometry work-flows [258].  Blood leukocyte subpopulations are detected with 

antigen-specific antibodies.  Since blood samples for flow cytometry are typically 

reconstituted during erythrocyte lysis steps, the percentage of each leukocyte 

subpopulation is commonly reported.  Absolute numbers of neutrophils, monocytes or 

lymphocyte subpopulations per µl or mL of blood can be calculated after multiplying to 

the total number of blood leukocytes counted in linear smears.  Absolute leukocyte 

subpopulation counts are more useful to track cellular changes in leukocytosis, 
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leukopenia and immunosuppression [259].  We hope the linear smear will be used as an 

inexpensive, reliable and accessible method for laboratories around the world to count the 

total number of blood leukocytes from 10 µl of blood.   
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Chapter 4.  Sex Differences in Blood Neutrophilia after SCI 

4.1  Introduction 

SCI was classically considered a young man’s condition resulting from war and high-risk 

behavior.  Today, more women than ever live with paraplegia and tetraplegia world-wide 

[32].  For unknown reasons, females tend to recover better than males after SCI in 

humans and rodent animal models [52].  Paradoxically, although more spinal cord injured 

patients are men and the female sex may be advantageous for recovery, animal studies 

that only include one sex dominate the SCI literature with a significant preference for 

female rodents [75].  Including animals of both sexes in SCI research will improve the 

quality of experimental findings and their clinical translation.   

The National Institutes of Health (NIH) recommends that animal studies include males 

and females [7] because sex differences are prominent in immune responses [80, 82, 260] 

and recovery after brain injury [8-10, 23], shock [11-17], infection [261]  and 

autoimmune disease [18-20].  Standardized spinal cord injury rodent models [57-59] 

provide an opportunity to study the causes for biological sex differences in functional 

recovery and tissue sparing.  

Spinal cord contusion, the most clinically relevant spinal cord injury model, produces 

strong inflammatory responses both at the lesion site and in peripheral blood.  Shearing 

forces from contusion injuries kill cells, break capillary endothelial and glial cell 

networks [262, 263], leading to significant lipid peroxidation products from broken 

membranes [117].  After SCI, dying neurons, glia and oligodendrocytes release a storm 

of proinflammatory signals like interleukin (IL)1b [109], IL-8 [110], TNF alpha [111-
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113], prostaglandins [114, 115] and leukotrienes[116].  Both, immediate injury and 

subsequent proinflammatory signals make the spinal-cord-blood-barrier leaky [118-122], 

and stimulate recruitment of immune cells [123-125].   

Immune blood cells: myeloid-derived blood neutrophils and monocytes and, lymphocyte-

derived T-cells and B-cells infiltrate injured spinal cord tissue [125, 127].  Myeloid-

derived blood neutrophils, monocytes and microglia are the first responder immune cells 

to arrive at injured spinal cord tissue.   Blood neutrophilia, an abnormally high blood 

neutrophil count, occurs within hours after injury, in mice [145], rats [146] and humans 

[147].  SCI-induced blood neutrophilia correlates with neutrophil invasion and a 

proinflammatory environment at the injured spinal cord.  Blood neutrophilia is also 

thought to damage peripheral organs and upregulate inflammatory cytokines in the liver 

[264, 265].   

During peak neutrophil activity after SCI, the spleen [177] releases significant numbers 

of bone-marrow-derived-monocytes that have high expression of cell adhesion proteins 

[155].  These peripheral blood monocytes differentiate into pro and anti-inflammatory 

macrophages that infiltrate the injured spinal cord during first during the first days after 

injury and then for weeks thereafter.  Peripheral blood myeloid cells, the neutrophils and 

blood-macrophages, help repair injured nervous tissue but their proinflammatory and 

phagocytic nature may lead bystander tissue damage during the first days after SCI [266].   

Although the spleen releases many blood monocyte-derived macrophages destined for the 

injury site, other lymphatic cells do not have the same fate.  Several groups have shown 
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that SCI in rodents leads to severe reduction in the number of splenic and circulating 

lymphocytes.  Dysregulated adrenergic activity after SCI floods lymphatic organs with 

stress hormones that induce lymphocyte apoptosis [128, 145].  Paradoxically, although 

SCI leads to significant increases in circulating auto-antibodies [222], SCI patients are 

more prone to lethal infections from what some consider an “SCI-induced immune 

deficiency syndrome” [267].   

Although blood leukocyte responses after SCI are well known, these experiments 

included only one sex and were mainly done with females.  Studying immune responses 

after SCI in both sexes is relevant because more intense blood myeloid cell responses in 

males correlate with worsened recovery and more tissue damage than in females after 

brain trauma [90, 268].  Sex differences in immunity also affect responses to infections 

[82] and predisposition to auto-immunity [69, 71], both clinically relevant for SCI.  

In this study, we counted the absolute number of blood leukocytes for two weeks with 

linear smears and flow cytometry for two weeks after SCI in male and female age-

matched F344 rats.   We found sex differences in acute blood neutrophilia and 

monocytosis within the first week after injury.  SCI also caused long-term blood B-cell 

lymphopenia, but no significant changes in T cell numbers, in both sexes.  Since blood 

neutrophils and monocytes actively infiltrate the spinal cord within hours and days after 

injury, sex differences in myeloid cell responses may affect acute inflammation, injury 

resolution and outcomes after SCI.    

4.2  Results 
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4.2.1  SCI Leads to Chronic Leukopenia 

Blood leukocyte (White Blood Cell, WBC) counts [128, 145] decline after SCI in female 

mice.  We compared the number of WBCs per µl of blood counted with linear smears 

before and at 1, 3, 7 and 14 days after T9 spinal cord contusion in male (n = 6) and 

female (n = 7)  F344 rats.  Leukopenia, abnormally low WBC counts, occurred in males 

and females after SCI (Figure 6, Table 1).  We used Repeated Measures ANOVA to test if 

the number of WBCs changed over 14 days after SCI (Time).  WBC counts changed 

significantly after SCI in males (F(4,24) = 10.64,  p < 0.001,  η2 = 0.64, Table 2:A1) and 

females (F(4,24) = 10.43,  p < 0.001,  η2 = 0.63, Table 2:A2).  Post hoc tests with Scheffé’s 

method showed that compared to before injury, WBC counts fluctuated insignificantly 

over 7 days in both sexes, then blood leukopenia occurred by day 14 after injury in males 

(M,  0d vs 14d,  p = 0.001) and females (F, 0d vs 14d,  p = 0.001).  2-factor-repeated 

measures ANOVA assessed the significance of being male or female (Sex: between-

subjects factor) on the sequence of changes in WBCs over 14 days (Time: within-subjects 

factor) after SCI.  The pattern of blood leukopenia was similar in males and females over 

14 days after SCI (F(4,48) = 0.22,  p = 0.93,  p = 0.93,  ηp2 = 0.02, Table 2:A3).  The same 

statistical analysis was performed for all other blood leukocytes in this chapter.   

4.2.2  Sex Differences in Blood Myeloid Cell Responses after SCI 

Biological sex has a significant effect on the number of CD11b+ blood myeloid cell 

counts over time after SCI (Figure 7, Table 3).  The number of blood CD11b+ cells 

changed significantly over 14 days after SCI in males (F(4,24) = 6.05,  p = 0.002,  η2 = 0.5, 

Table 4:A5) but less so in females (F(4,24) = 3.81,  p = 0.02,  η2 = 0.39, Table 4:A6).  
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Compared to pre-injury, post hoc tests with Scheffé’s’ method indicated that blood 

CD11b+ counts in males increased at 1 day [Males (M), 0d vs 1d,  p = 0.09] and peaked 

at 3 days after injury (M, 0d vs 3d,  p = 0.004).  In contrast, blood myeloid cell counts in 

females peaked at 1 day after SCI [Female (F), 0d vs 1d,  p = 0.03].  2-factor repeated 

measures ANOVA indicated that biological sex affects blood myeloid cell responses after 

SCI (F(4,48) = 11.89,  p = 0.005,  ηp2 = 0.5, Table 4:A7).  Pairwise comparisons revealed 

that males had significantly more blood myeloid cells than females at day 1 (3247 ± 581 

vs 2299 ± 588,  t(12) = 3.04,  p = 0.01,  d = 1.62) and day 3 after SCI (4150 ± 2118 vs 

2032 ± 583,  t(12) = 2.55,  p = 0.03, d = 1.36).   

4.2.3  Sex Differences in RP1+ Blood Neutrophilia 

Previous studies with either male [145, 200, 201] or female [269] mice showed that SCI 

causes transient acute blood neutrophilia (Figure 8, Table 5).  We report that blood 

neutrophil responses differed between males and females after SCI in F344 rats.  Blood 

neutrophils changed significantly over 14 days after SCI in males (F(4,24) = 7.0,  p = 

0.001,  η2 = 0.54,  Table 6:A9) but less so in females (F(4,24) = 3.81,  p = 0.02,  η2 = 0.39,  

Table 6:A10).  Males had higher blood neutrophil counts within 24 hours after injury and 

peak blood neutrophilia occurred at 3 days post-injury (M, 0d vs 1d,  p = 0.09;  0d vs 3d, 

p = 0.004).  In contrast, blood neutrophilia in females was transient and peaked at 1 day 

after SCI (F,  0d vs 1d,  p = 0.04).  Blood neutrophil counts returned near pre-injury 

levels at 7 and 3 days after injury in males and females, respectively.  Sex had an effect 

on blood neutrophil responses over Time after SCI (F(4,48) = 2.34,  p = 0.07,  ηp2 = 0.16,  

Table 6:A11).  Pairwise comparisons revealed that males had more blood neutrophils 
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than females at 1 day after injury (1808 ± 640 vs 1341 ± 509 neutrophils/µl,  t(12) = 1.51,  

p = 0.16,  d = 0.81).  Blood neutrophilia peaked at 3 days after SCI in males but not in 

females and blood neutrophil counts were two-times higher in males (2185 ± 1234 vs 

1051 ± 366 neutrophils/µl,  t(12) = 2.33,  p = 0.04, d = 1.25).   

4.2.4  Sex Differences in Acute Blood Monocyte Responses after SCI 

Previous studies with either male [145, 200, 201] or female [269] mice showed that blood 

monocyte counts increase after SCI (Figure 9, Table 7).  We report slight sex differences 

in blood monocyte responses after SCI.  The number of blood monocytes changed 

significantly over 14 days after injury in females (F(4,24) = 3.0,  p = 0.04,  η2 = 0.33,  

Table 8:A14) but less so in males (F(4,24) = 2.6,  p = 0.062,  η2 = 0.3, Table 8:A13).  

Blood monocyte counts in females increased gradually from before to 14 days after SCI 

(F,  0d vs 14d,  p = 0.04).  In contrast, blood monocyte counts in males fluctuated during 

the first and second weeks after injury but these changes did not reach statistical 

significance.  Blood monocyte responses in both sexes were somewhat different over 14 

days after SCI (F(4,48) = 1.64,  p = 0.18,  ηp2 = 0.56,  Table 8:A15).  Males had twice as 

many blood monocytes than females at 3 days after injury (1965 ± 1102 vs 947 ± 287 

monocytes/µl,  t(12) = 2.37,  p = 0.04,  d = 1.26) but similar counts at all other time-points.  

4.2.5  SCI Causes B cell Lymphopenia 

SCI causes abnormally low B-cell counts in the blood (B-cell lymphopenia) in female 

mice [270, 271].  Our experiments indicate that SCI in F344 rats leads to B-cell 

lymphopenia in males and females (Figure 10A, Table 9).  SCI caused significant 

changes over 14 days on the number of blood B-cell in males (F(4,24) = 10.87,  p < 0.001,  
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η2 = 0.64,  Table 10:A17) and females (F(4,24) = 3.19,  p = 0.03,  η2 = 0.35,  Table 

10:A18).  Blood B-cell counts decreased significantly within 1 day after injury (M, 0d vs 

1d,  p < 0.001), B-cell lymphopenia persisted thereafter and was most severe at 14 days 

post-injury (M, 0d vs 14d,  p < 0.001).  Similarly, SCI in females reduced the number of 

blood B-cells within 1 day after SCI and lymphopenia persisted at 14 days after injury (F, 

0d vs 14d, p = 0.05).  Acute and prolonged B-cell lymphopenia occurred in both sexes 

over time after SCI (F(4,48) = 0.92,  p = 0.46,  ηp2 = 0.07,  Table 10:A19).   

4.2.6  SCI had no significant effect on T cell counts. 

SCI causes T-cell lymphopenia in female mice [270, 271].  However, our data suggests 

this phenomenon does not occur in F344 rats (Figure 11, Table 12).  SCI had a mild 

effect on the number of blood T-cell over 14 days in males (F(4,20) = 2.86,  p = 0.05,  η2 = 

0.32,  Table 12:A21) but not in females (F(4,24) = 1.31,  p = 0.30,  η2 = 0.18,  Table 

12:A22).  Blood T-cell counts in spinal-cord-injured males increased insignificantly over 

7 days then returned near pre-injury levels by 14 days.  In contrast, blood T-cell counts in 

females fluctuated for the first 7 days after injury then decreased insignificantly below 

pre-injury levels by 14 days.  SCI caused similar changes in blood T-cell counts over 14 

days in both sexes (F(4,48) = 0.74,  p = 0.57,  η2 = 0.058,  Table 12:A24).  Our data 

suggests that significant SCI-induced T cell lymphopenia does not occur in F344 rats.   
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4.3  Discussion: 

4.3.1  Sex Differences in Blood Neutrophilia after SCI  

Experiments in this study compared peripheral blood leukocyte responses after a 

moderate spinal cord contusion with a MASCIS impactor [114] in male and female F344 

rats.  As previously shown, independently in males [145, 200, 201] and females [269], 

blood neutrophilia and increased monocyte counts occur during the first week after spinal 

cord trauma.  Our experiments showed significant sex differences in acute blood myeloid 

cell responses after spinal cord contusion.  The number of blood CD11b+ myeloid cells, 

RP1+ neutrophils and blood smear monocytes peaked 1 day after injury in females but 

continued to increase for 3 days in males.  The magnitude of sex differences in blood 

leukocyte responses after SCI was similar for CD11b+ myeloid cells and RP1+ 

neutrophils, indicating that neutrophils contribute most to sex differences in blood 

myelocytosis (abnormally higher counts of blood myeloid cells).  The most significant 

sex difference in blood neutrophilia occurred at 3 days after injury, when blood 

neutrophil counts were two times higher in males than females.  

Blood neutrophils [157] are the first blood leukocytes to reach the injured spinal cord.  

Although the role of blood neutrophils in spinal cord repair remains controversial, blood 

neutrophilia after SCI is classically thought to worsen recovery [164, 200].  Blood 

neutrophils secrete significant amounts of proinflammatory cytokines at the injured spinal 

cord and in peripheral organs [264, 272].  Sex differences in blood neutrophilia after SCI 

may lead more neutrophils at the injury site and cause sex differences in inflammation.  
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Sex differences in inflammation after SCI may contribute to differences in recovery 

between males and females.    

4.3.2  Sex Differences in Blood Neutrophilia after other Injury Models  

Sex differences in blood neutrophil responses are not exclusive to SCI.  As we showed 

after SCI in rats, blood neutrophilia is also more pronounced in males than females after 

diffuse brain injury in mice [273].  Likewise, several studies [145, 200-202] reported that 

blood neutrophilia is more prominent in male than female rodents after infection and 

peripheral organ ischemia.   

Injured tissue releases neutrophil-chemotactic factors.  Higher blood concentrations of 

neutrophil-chemotactic factors IL-8, CXCL1 and CXCL5/6 in males cause sex 

differences in blood neutrophilia.  Men produce more IL-8 than women after endotoxin 

challenges [154, 274, 275].  Crockett, et al. [276] reported that males produce more 

CXCL1 after hepatic ischemia.  Likewise, male mice and rats have higher CXCL5/6 

expression after renal ischemic-reperfusion [153].   

Enhanced granulopoiesis and neutrophil survival in males may contribute to prolonged 

blood neutrophilia after SCI.  SCI increases bone-marrow granulopoiesis and prolongs 

neutrophil half-lives in male mice [145].  Tanaka, et al. [277] found that Granulocyte 

Colony Stimulating Factor (G-CSF) stimulates bone marrow granulopoiesis more 

potently in male than female mice.  Aoyama, et al. [12] reported more bone-marrow 

granulopoiesis and prolonged activated neutrophil half-lives in males compared to 

females after systemic endotoxic inflammation.  Overall, male-specific increased 
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neutrophil-chemotactic signals that demarginate neutrophils from bone marrow and 

peripheral reservoirs, enhanced granulopoiesis and prolonged neutrophil half-life across 

different inflammatory models suggest that blood neutrophilia is a sex-specific trait that 

also occurs after SCI.   

4.3.3  Sex Differences in Blood Monocytosis after SCI  

SCI leads to higher blood monocyte counts in mice [145], rats [269] and humans [201, 

278].  Blood-monocyte derived macrophages (BMDM) infiltrate the injured spinal cord 

in two waves, first M1 proinflammatory BMDM enter within days after injury [183] then 

M2 pro-repair BMDM surround areas of Wallerian degeneration [279].  We report that 

spinal cord injured male rats had more blood monocytes than females with the most 

significant differences occurring at 3 days after injury.  Neutrophils produce monocyte 

chemotactic factors like cathepsin G, azurocidin and pro-inflammatory cytokines that 

recruit monocytes to the bloodstream and injured tissues [280].  Since neutrophils are the 

first leukocytes to respond to injury, higher blood monocyte counts may be a direct result 

of more intense blood neutrophilia in males compared to females.     

Sex differences in blood monocyte counts before and after injury may relate to physical 

differences in monocyte reservoirs.  The spleen is the largest monocyte reservoir in the 

body [281].   Male spleens are larger than female spleen in humans [282], macaques 

[206], rats [283], mice [284], guinea pigs [285] and birds [286].  Spleens in male F344 

rats, used in our experiments, are twice as large as in females [283].  Compared to 

mechanisms that maintain blood neutrophilia [152, 287], blood monocytosis after SCI 

occurs when lymphoid monocyte reservoirs contract to release monocytes into circulation 
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[281].  Findings by Blomster, et al. [177] indicate that the spleen contributes the largest 

proportion of blood monocytes that infiltrate injured spinal cords.  Sex differences in 

spleen monocyte numbers may be the reason why splenectomy reduces brain infarct 

volume in male but not female mice [288].  It is not known if splenectomy affects 

recovery after SCI differently in males and females. 

Sex differences in blood monocyte responses after SCI may affect outcomes.  Compared 

to women, men have more pronounced blood monocyte proinflammatory responses 

[289].  In brain injured mice, males have more activated tissue macrophages, higher 

concentrations of proinflammatory proteins and worse recovery than females [92].  

Although, Walker et al., [71] and Luchetti et al., [69] did not find significant sex 

differences in macrophage activation after SCI, future studies should distinguish BMDM 

and MDM infiltration after SCI in both sexes.    

Injured spinal cord tissue macrophages come from resident microglia and BMDM.  

However, distinction between BMDM and MDM, without chimeric animal models [183], 

is an unresolved challenge [290].  Further advances in macrophage phenotype 

differentiation will improve the ability to compare macrophage differentiation in both 

sexes after SCI.   

4.3.4  No Sex Differences in Lymphopenia after SCI  

The number of B-cells in circulation is tightly regulated.  Nascent naïve B cells leave the 

bone marrow and circulate the blood until they identify target antigens and migrate to 

lymphatic organs [291].  Previous studies with either males or females demonstrated that 
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blood lymphopenia occurs within 24 hours after spinal cord injury [145, 270, 271, 292, 

293].  We report that acute blood B-cell lymphopenia after SCI occurs in both male and 

female F344 rats.  Our data is consistent with other studies that have reported reduced B-

cell percentages after SCI in Sprague Dawley rats [146] and humans [220].  Male F344 

rats in our study started with more blood B cells than females before injury.  However, 

sex differences disappeared 24 hours after SCI when blood B cell counts plummeted and 

stayed low thereafter.   

The causes for SCI-induced acute B cell lymphopenia are not clear.  Some evidence [145, 

294, 295] suggests that SCI reduces B cell hematopoiesis in the bone marrow.  However, 

reduced B cell hematopoiesis [291] is unlikely to account for the rapid decline in blood B 

cells that we and others [270, 271, 292, 293] observed after SCI.  Pruss et al., [270] 

showed that, regardless of injury level, SCI reduces the number of immature pre-B-cells 

and causes a 5-fold increase in naive B cells in the bone marrow.  Pruss et al., [270] 

concluded that acute B cell blood lymphopenia occurs when large numbers of naive B 

cells migrate from the blood to the bone marrow in an LFA-dependent mechanism after 

SCI.   

Dysregulated autonomic function is thought to cause chronic B cell lymphopenia after 

SCI.  Pruss et al., [270] and several others [270, 271, 292] reported that spinal cord 

transection in female mice disinhibits adrenal gland function and leads to excess 

catecholamine secretion in lymphatic organs.  Excess catecholamines correlate with 

shrinking of lymphatic organs [270] and increased B-cell apoptosis [271, 292] during 

chronic recovery from spinal cord trauma in rodents.   
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Findings of lymphopenia after SCI in mice have fueled speculation that dysfunctional 

adaptive immunity causes a higher incidence of infections in spinal cord injured patients 

[267].  However, B cell blood lymphopenia does not occur after SCI in humans.  In fact, 

SCI patients tend to get high auto-antibody titers [223, 296, 297] over time, indicating 

that B cell differentiation into plasma cells and antibody synthesis remains functional.   

Little progress has been made to understand how SCI affects B-cell differentiation into 

antibody-secreting plasma cells.  Mature B cells that differentiate to plasma cells lose 

common identification antigens CD19 and CD45R [298].  It is possible that SCI causes a 

significant increase in differentiation of mature B-cells to plasma cells.  B cell apoptosis 

in lymphatic organs, an LFA-dependent B-cell transmigration and retention in the bone-

marrow and increased B-cell differentiation into plasma cells may account for the acute 

and chronic decline in blood B-cells after spinal cord trauma.   

In contrast to acute B-cell lymphopenia, the number of T cells in the blood did not 

change significantly over 2 weeks after SCI in males or females.  Other researchers [128, 

146, 299] reported a rapid decline of T cells in the blood after spinal cord transection in 

mice.  In contrast, spinal-cord-injured F344 rats of both sexes had an acute but non-

significant increase of blood T cell counts at 3 days after injury.  Conflicting findings 

between our study and others may be due to several reasons.  First, T cell responses to 

SCI may differ between animal species and injury models [300].  Second, we quantified 

the absolute number of T-cells from whole blood rather than percent ratios.  Third, we 

did not differentiate the number of CD4+, CD8+ or Treg T cell subpopulations.  Some 

researchers have shown that SCI significantly changes some subpopulations of T-cells 



 

 

50 

and not others [225, 301].  Species specific T-cell responses and skewed changes within 

T cell subpopulations may account for the lack of chronological differences in blood T 

cell counts in a well-defined spinal cord contusion model [114].   
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Chapter 5.  Sex Differences in Recovery and Blood Neutrophilia 
after Spinal Cord Injury 

5.1  Introduction 

Over the past century, many groups have reported a remarkable effect of biological sex 

on spinal cord injury outcomes [52].  Women, female mice and rats recover better long-

term function than males after SCI, although some studies did not find significant 

differences.  Some studies showed that women  [49] and female rodents of different 

species [62], including in F344 rats [61], spare more spinal cord tissue and have higher 

BBB locomotor scores than males.  Others found that males recover earlier [31, 71] and 

have better long-term hind-limb function, while some found no differences.   

The causes for sex differences in recovery after spinal cord trauma are not yet fully 

understood.  Young et al., [57] and Hsu et al., [65] showed that spinal cord weights and 

lengths did not differ significantly in age-matched Long-hooded Evans and F344 rats, 

respectively.  Several authors [57, 65, 71] also did not find sex differences in spinal cord 

contusion parameters like impact velocity or compression rate.  Since spinal cord sizes 

and injury severities are thought to be similar for age-matched males and females, longer 

acting mechanisms in tissue repair may cause sex differences in recovery after SCI.   

More injured spinal cord tissue tends to survive in spinal cord injured females than male 

rodents [61-63].  This phenomenon suggests that tissue repair may differ according to 

biological sex.  We previously reported that blood myeloid cell responses differed 

between males and females after SCI in F344 rats (Chapter 4).  Dramatic sex differences 

in acute blood neutrophilia are particularly important after SCI because blood neutrophils 
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infiltrate spinal cord tissue within hours after injury [127], phagocytize dying neurons 

[156] and secrete proteases and reactive oxygen species thought to harm neuron survival 

[302].  Intense tissue inflammation and neutrophils undergoing apoptosis recruit blood 

macrophages that phagocytize dying cells and myelin debris, and secrete inflammatory 

cytokines to help injury repair [280].  More pronounced acute immune responses in males 

worsen tissue repair after traumatic brain injury compared to females [88].  Whether sex 

differences in acute immune responses affect recovery after SCI is not well understood.  

Findings reported in this and the next chapter were part of the same large experiment 

evaluating the role of acute blood leukocytosis after SCI.  This chapter focuses on the 

effect of sex differences in blood neutrophilia after contusion injury in age-matched F344 

rats.  As showed previously (Chapter 4), spinal cord injured males had more intense and 

prolonged blood neutrophilia than females.  However, experiments evaluating injury site 

neutrophilia, locomotor recovery and tissue sparing in both sexes revealed unexpected 

findings.  First, neutrophil infiltration at the injury site was similar for both sexes despite 

significant differences in blood neutrophilia.  Second, spinal cord injured males 

recovered hind-limb function earlier than females but long-term recovery was similar in 

both sexes.  Third, sex differences in blood myeloid cell responses also did not harm nor 

improved tissue loss, myelin sparing and neuronal survival at 6 weeks after injury.  

Lastly, spinal cord sizes were bigger in males than females, both at the injury site and 

intact segments.  Overall, experiments in this chapter revealed that more intense blood 

myeloid cell responses did not worsen nor improve recovery in males compared to 

females after SCI.   
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5.2  Results 

5.2.1  Blood Neutrophil Responses after SCI 

Table 13 describes experimental design and antibodies used for this study.  We counted 

CD11b neutrophils per µl of blood before and at 1, 3, 7 and 14 days after SCI (Figure 12, 

Table 14).  Repeated-measures ANOVA indicated that blood neutrophil counts changed 

significantly over 14 days after SCI in males (F(4,28)= 7.34,  p < 0.001,  η2  = 0.51, Table 

15:B1) but less so in females (F(4,36)= 4.68,  p = 0.004,  η2 = 0.28, Table 15:B2).  Spinal 

cord injured males had a significant increase in blood neutrophils within 24 hours and 

peak blood neutrophilia occurred at 3 days post-injury (M, 0d vs 1d,  p = 0.040 and vs 3d,  

p = 0.0019, Scheffé’s test).  In contrast, blood neutrophil counts in females fluctuated, 

increasing at 1 day after SCI (F, 0d vs 1d,  p = 0.027, Scheffé's test), then decreased by 3 

days but neutrophilia returned at 7 days after injury (F, 0d vs 7d,  p = 0.015, Scheffé’s 

test).  The number of blood neutrophils returned gradually near pre-injury levels from 7 

to 14 days after SCI in both sexes.   

Blood neutrophil responses differed between males and females after SCI (F(4,64) = 2.64,  

p = 0.04,  ηp2 = 0.14,  Table 15:B3).  Males tended to have more blood neutrophils than 

females at 1 day after injury and significant sex differences in blood neutrophilia 

occurred at 3 days after SCI, when blood neutrophil counts were two-times higher in 

males than females (2185 ± 1234 vs  1051 ± 366 neutrophils/µl,  t(16) = 2.33,  p = 0.04, d 

= 1.25, post hoc unpaired T-test).   
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5.2.2  Blood Monocyte Responses after SCI 

We counted CD11b monocytes per µl of blood before and at 1, 3, 7 and 14 days after SCI 

(Figure 13, Table 16).  Compared to before injury, blood monocyte counts fluctuated for 

the first week after injury then decreased significantly by 14 days in males (F(4,28)= 5.17,  

p = 0.002,  ηp2 = 0.36, Table 17:B4) and females (F(1,36)= 4.83,  p = 0.004,  ηp2 = 0.41, 

Table 17:B5).  There were no significant sex differences in blood monocyte responses 

over 14 days after SCI (F(4,64)= 0.64,  p = 0.64,  ηp2 = 0.04, Table 17:B7).  However, 

males had on average, more blood monocytes than females before and after SCI (F(1,16)= 

22.71,  p < 0.001,  ηp2 = 0.59, Table 17:B8).  Post-hoc pairwise comparisons with 

unpaired T-tests showed that males had more blood monocytes before and 1, 3, and 7 

days after SCI (p < 0.05).   

5.2.3  No sex differences in neutrophil infiltration at the injured spinal cord 

Large numbers of blood neutrophils infiltrate the spinal cord during the first days after 

injury [164].  Since male rats had twice as many blood neutrophils than females during 

the first 3 days after SCI (Section 4.2.3), we hypothesized that more neutrophils infiltrate 

the injured spinal cords in males than females at this time.  Myeloperoxidase (MPO) is an 

enzyme highly expressed in neutrophils [303] and commonly used to quantify neutrophil 

infiltration after spinal cord trauma [157, 193, 304].  We estimated neutrophil infiltration 

by Western Blot immunochemical detection of MPO compared to Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) at 3 days after injury in spinal cord lysates from 

male (N = 8) and female (N = 8) F344 rats.  The MPO / GAPDH signal ratio represented 

neutrophil infiltration and was 0.11 ±  0.05 and 0.10 ± 0.07 for males and females, 
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respectively (Figure 14A & B).  ANOVA indicated that sex differences did not occur for 

neutrophil spinal cord infiltration at 3 days after injury (p = 0.72,  η2 = 0.01) 

5.2.4  Sex differences in locomotor recovery after SCI  

We assessed walking recovery with the BBB locomotor scale at day 2, then weekly for 6 

weeks after SCI (Figure 15, Table 18).  2-factor-repeated-measures ANOVA indicated 

that the improvement of BBB scores was significantly different between males and 

females over 6 weeks after SCI (F(6,96)= 13.07,  p < 0.001,  ηp2 = 0.45, Table 19:B10).  

Pairwise comparisons with unpaired T-tests showed that BBB scores improved better in 

males than females at 1 week after injury (8.38 ± 2.87 vs 1.80 ± 2.62,  t(16) = 5.07,  p < 

0.001,  d = 2.39), and this trend continued at week 2 (11.75 ± 1.83 vs 10.40 ± 0.70,  t(16) = 

2.15,  p = 0.05,  d = 0.97), week 3 (12.13 ± 1.64 vs 11.0 ± 0.67,  t(16) = 1.98,  p = 0.06,  d 

= 0.90) and week 4 (13.88 ± 1.88 vs 12.1 ± 0.99,  t(16) = 2.14,  p = 0.02,  d = 1.78).  

Although BBB scores remained higher in males than females at weeks 5 and 6, 

differences were not statistically significant.   

5.2.5  Sex differences in volume and myelin sparing at the injury site    

After the last BBB score at 6 weeks post-injury, we euthanized and perfused the rats, 

sectioned the injured spinal cords at 1 mm intervals, then quantified the area of tissue 

damage, myelin sparing and number of surviving neurons in sequential tissue sections.  

12.5 mm contusions led to a distinct injury epicenter with least area of spared tissue for 

each spinal cord and bilateral ~5mm tissue damage in both male and female F344 rats.  

We used a 2-factor-repeated measures-ANOVA to assess for significant sex differences 

over the length of the injury for tissue and myelin sparing, and neuron survival.  
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Contusion injury caused similar gross tissue damage in both males and females (F(9,134) = 

0.18,  p = 0.99,  ηp2 = 0.01, Figure 16, Table 20:B12).  There were also no sex differences 

in myelin loss at 6 weeks after SCI (F(9,134) = 0.25,  p = 0.99,  ηp2 = 0.02, Figure 17, Table 

21:B14).  Lastly, males and females had similar numbers of surviving neurons at the 

injury site (F(9,135) = 0.71,  p = 0.7,  ηp2 = 0.05, Figure 18, Table 22:B16).   

Next, we transformed the area of spinal cord tissue and myelin throughout the injury site 

into an injury volume.  The volume of spinal cord at the injury site was larger in males 

than females at 6 weeks after SCI (28.01 ± 2.46 mm3 vs 25.57 ± 0.98 mm3,  t(16) = 2.86,  p 

= 0.012,  d = 1.3, Table 23).  The volume of myelin in the injured spinal cord site was 

also larger in males than females (12.03 ± 1.42 mm3 vs 10.11 ± 0.58 mm3,  t(16) = 3.88,  p 

= 0.002,  d = 1.77,  Table 24).  We then added the number of surviving neurons in 10 

sequential sections epicentered at the injury site.  In contrast to tissue sparing, there we 

no significant sex differences in the number of surviving neurons throughout the injury 

site (Table 25).  

5.2.5  Sex differences in volume and myelin sparing in intact spinal cords 

We quantified the volume of 4 intact spinal cord segments 1 mm cranial to the injury site 

border.  Unpaired samples T-Tests indicated that intact spinal cord segments were larger 

in males than females at the cranial (14.37 ± 0.46 vs 13.76 ± 0.53 mm3,  t(16) = 2.46,  p = 

0.027,  d = 1.23, Table 23) and caudal directions (17.21 ± 0.64 vs 16.55 ± 0.64,  t(16) = 

2.09,  p = 0.05,  d = 1.03, Table 23) from the injury site.    
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Lastly, we quantified the myelin volume of 4 intact spinal cord segments 1 mm cranial to 

the injury edge.  Compared to females, males had more myelin volume in intact spinal 

cord segments at the cranial (7.69 ± 0.38 vs 6.95 ± 0.28,  t(16)= 4.63  p < 0.001,  d = 2.07, 

unpaired T-test, Table 24) and caudal (8.08 ± 0.39 vs 7.45 ± 0.22,  t(16) = 4.26,  p < 0.001,  

d = 2.0,  unpaired T-test, Table 24) directions distal from the injury site.   

5.3  Discussion 

5.3.1  Sex differences in blood myelocytosis do not affect chronic SCI recovery  

5.3.1.1  Blood neutrophilia does not reduce recovery after SCI in males 

Causes for sex differences in recovery after SCI are not well understood.  As first 

described in Chapter 4, these subsequent experiments indicated that sex differences in 

blood neutrophilia and monocyte responses are repeatable phenomena.  Blood myeloid 

cells help repair injured nervous tissue but it is not fully understood if their inflammatory 

products and phagocytic nature cause bystander tissue damage [266, 305].  Our findings 

of sex differences in blood myeloid responses are of particular interest for this spinal cord 

contusion model.   

Datto et al., [61] and Hsu [65] previously reported that female, compared to male F344 

rats, recover better motor function and spare more spinal cord tissue after contusion 

injury.  Further studies by Hsu [65], however, showed no sex differences in spinal cord 

sizes and injury severity, suggesting that a process beyond the initial injury may cause 

sex differences in tissue sparing after SCI.  We hypothesized that sex differences in blood 

myeloid cell responses would contribute to the sexual dimorphism in locomotor recovery 

and tissue sparing after SCI.    
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To our surprise, our experiments revealed that more pronounced blood neutrophilia in 

males did not negatively affect recovery after SCI.  In fact, males recovered earlier hind-

limb function than females after thoracic contusion injury but long-term recovery (6 

weeks) was similar in both sexes.  Males and females also had similar loss of gross spinal 

cord tissue, myelin sparing and neuronal survival.  These findings suggest that significant 

sex differences in blood neutrophilia do not negatively affect tissue repair even though 

neutrophils degranulate proteolytic and peroxidase enzymes thought to be harmful for 

spinal cord repair [156, 302].   

Sex differences in blood neutrophilia did not affect SCI recovery because males and 

females had similar neutrophil content at the injury site.  Most SCI studies have estimated 

tissue neutrophil infiltration by measuring myeloperoxidase (MPO) activity [157, 191].  

MPO is an enzyme abundant in preformed neutrophil granules  that catalyze formation of 

reactive oxygen species [306, 307].   Studies with mainly female rodents have shown that 

MPO activity declines steeply beyond 24 hours after SCI [157, 192, 308, 309] even 

though neutrophils are seen in tissue sections for weeks after injury [126, 310].  Since 

males had double the number of blood neutrophils than females at 3 days after injury, we 

expected to find sex differences in blood neutrophilia quantified as MPO present at the 

injury site.  To our surprise, injured spinal cords in both sexes had similar amounts of 

MPO, suggesting similar neutrophil migration to the injury site at three days after injury 

despite significant sex differences in blood neutrophilia.   
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5.3.1.2   Higher monocyte counts in blood are not associated with more myelin loss after 
SCI  

Monocyte-derived blood macrophages have both beneficial and harmful effects on spinal 

cord tissue repair [266].  Neutrophils [152] undergo apoptosis from 24-48 hours after 

tissue infiltration and, along with pro-inflammatory cytokines, secrete strong blood 

monocyte chemotactic factors [311] azurocidin [312], MCP-1, MIP-a and MIP-3a [313] 

from preformed granules.  Early infiltrated blood monocytes at the injured spinal cord 

differentiate into M1 macrophages that phagocytose most myelin debris, secrete 

proinflammatory cytokines [142] and clear necrotic tissue [178, 183].  A second delayed 

wave of blood M2 macrophages at 2 weeks after SCI is thought to contribute 

neurotrophic factors that reduce Wallerian degeneration [186, 314].  Glial cells surround 

early infiltrated M1 blood macrophages and "herd" them to the injury epicenter to prevent 

further spread of secondary injury [181, 183].   

Since males had more blood monocytes, especially during the first days after injury, we 

expected that males would lose more myelin than females.  However, myelin sparing was 

similar in both sexes, suggesting that higher numbers of blood monocytes do not correlate 

with more myelin loss.  In fact, males had more myelin volume than females at the injury 

site and in adjacent intact tissue segments.  Myelin content at the injury site directly 

correlates with locomotor improvement [59].  Earlier stepping in males in our study may 

have occurred because male injured spinal cords had more surviving myelinated tracts.   

Males tend to have more blood monocytes than females in rodents and these monocytes 

come mainly from the spleen [288].  A weakness of our study is that we did not compare 
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blood monocyte infiltration at the injury site in males and females.  However, Walker et 

al., [71] and Luchetti et al., [69] both reported that macrophage infiltration at injured 

spinal cord is similar in both sexes during the first days after injury.  Since we also did 

not see sex differences in myelin sparing, we hypothesize that higher numbers of blood 

monocytes do not correlate with more blood macrophage infiltration at the injury site. 

Our results and those of others [69, 71], differ from findings in brain trauma models, in 

which sex differences in blood myeloid cell responses affect tissue repair [288].  After 

brain injury, more myeloid cells infiltrate injured brain tissue in male than female mice 

and, correlates with more pro-inflammatory proteins and tissue damage [92, 315].  

Although brain and spinal cord injury share tissue repair mechanisms, blood-brain-barrier 

damage and inflammatory responses are more severe after brain than spinal cord 

contusions [162, 316].  Sex differences in peripheral myeloid cell responses may be less 

consequential after spinal cord injury.   

5.3.2  Importance of methodology used to quantify tissue sparing after SCI 

Sex differences in tissue sparing after spinal cord trauma may be subtle and more 

discernable with more severe injuries [64].  The methods used to compare tissue sparing 

in males and females after moderate SCI must be sensitive and accurate to identify small 

differences.  Since damage from spinal cord contusion spreads over several millimeters, 

transverse sequential sections that span the width and length of the injury site are better-

suited to quantify spinal cord tissue damage and myelin sparing than sections only at the 

injury epicenter.   
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Histological stains, like hematoxylin & eosin (H&E), Erichrome C and Cresyl Violet are 

widely used in SCI research to quantify tissue sparing.  Swartz et al.,  [64] reported that 

sex differences in overall tissue sparing after SCI in rats depended on the loss of gray 

matter after Erichrome C staining.  Datto et al., [61]  and Hauben et a., [63] used H&E to 

show that females preserved more white and gray matter at the injury epicenter.  Areas of 

stained surviving gray and white matter are typically outlined by the researcher on each 

tissue section.  Although histological stains are less expensive, the quantification process 

is less accurate because areas of surviving gray and white matter are selected by the 

researcher on each tissue section and subjectivity in this process may introduce variability 

[317, 318].   

Our finding that F344 males recover earlier hind-limb function without significant long-

term sex differences in recovery differ from previous similar experiments by others [61, 

65].  Datto et al. [61] reported that female F344 rats had better functional recovery and 

had more spared white and gray matter at the injured site.  Hsu [65] observed that some 

cohorts of female F344 rats recover better than males but not others.  Differences in 

results between our F344 study and Datto et al. [61] may be due to differences in the 

application of the injury model [114] and differences in methodology to compare spinal 

cord tissue sparing [319].  We contused rat spinal cords at the junction of T9-T10, as 

opposed to T8-T9 by Datto et al., [61].  As recommended by the MASCIS contusion 

model [57], we used only rats that had BBB scores of 2 or less at 2 days after injury and 

less than 5% error of expected contusion height, impact velocity and compression 

rate.  These inclusion criteria ensured that all animals had similar severity injuries [57].   
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We also quantified tissue sparing from transverse serial sections 1 mm apart spanning 10 

mm that covered the entire injury site, as opposed to sagittal sections at the injury 

epicenter [61].  Our strategy permitted us to compare sequential changes in tissue sparing 

throughout the lesion cavity and showed to clear sex differences in tissue volume at the 

injury site and adjacent intact segments.   Injured spinal cord volumes in these 

experiments were approximately ~ 5-10 % bigger in male than female 100-day-old F344 

rats in our study while Datto et al., reported that males had ~ 25% less spinal cord tissue 

volume than females at the injury epicenter. 

Despite significant sex differences in blood neutrophilia and monocytes, we found no sex 

differences in neither neuron loss, the amount of gross tissue damage nor myelin sparing.  

In fact, the amount of injured tissue was almost identical in both sexes, supporting a good 

application of the contusion model for this study.  To our knowledge, we are the first to 

use antigen specific immunohistochemistry combined with automated morphometry to 

assess the effect of biological sex on myelin sparing (myelin basic protein) and neuron 

survival (NeuN+) in transverse spinal cord tissue sections after a standardized contusion 

injury.  Our study exemplifies that using antigen-specific immunohistochemistry, 

sequential transverse spinal cord sections and automated volumetric analysis will lead to 

less variability and improve the ability to compare tissue sparing after SCI in both sexes 

[318]. 

5.3.3  Sex differences in spinal cord sizes 

Standardized contusion models recommend to match young male and female rodents by 

age to prevent differences in spinal cord sizes from affecting outcomes [57].  Young et 
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al., [57] studied hundreds of rats and found that 77-day-old Long-Hooded Evans rats had 

similar spinal cord weights at the T9-T10 segments.  Hsu [65] reported that spinal cords 

tended to weigh more in male than female 100-day-old F344 rats but these differences 

did not reach statistical significance.  The MASCIS model recommends the use of 77-

day-old Long-Hooded Evans rats because sex differences in spinal cord size do not occur 

at this age [57].  Sex differences in spinal cord size are determined by age and not the 

weight of the rat [57].   

Our experiments with age matched 100-day-old F344 rats showed that neuron survival, 

gross tissue damage and myelin sparing after contusion injury was similar between both 

sexes.  However, on average, gross tissue and myelinated areas were bigger in males than 

females for all injured spinal cord tissue segments.  Combined, these two results indicate 

that all animals received similar severity contusion injuries (comparable tissue loss) but 

that spinal cords segments at the injury site were bigger in male than female F344 rats.  

Because males had more injured spinal cord tissue and myelin volume, we made the post-

hoc hypothesis that spinal cords from 100-day-old F344 rats were bigger in males than 

females.  We tested this hypothesis by measuring the spinal cord and myelin volume in 

intact spinal cord segments adjacent to the injury site.  Myelin makes up a large portion 

of the spinal cord and if intact segments are bigger in males than females, this difference 

should also be represented in myelin volume [319].  Accordingly, our analysis revealed 

that tissue sections from intact spinal cord segments had larger cross-sectional area in 

males than females.  Consequently, there were sex differences in gross tissue and myelin 

volume in injured and non-injured spinal cord segments. 
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Sex differences in spinal cord sizes may occur depending on species [320], between 

rodent strains [321, 322] and in older rodents [57].  Our experiments suggest spinal cords 

in 100-day-old F344 rats may be bigger in males than females.  Researchers should 

measure the spinal cord sizes from age-matched males and females in the chosen rodent 

species or strain by comparing uninjured spinal cord weight and volume.  Furthermore, 

injured spinal cord tissue areas should be reported instead percent changes in tissue loss.  

This will help SCI researchers understand if spinal cords of male and female rodents 

differ in size and prevent erroneous conclusions regarding effects of therapies in both 

sexes.  

5.3.5  Sex Differences in Neutrophilia May Affect Inflammation after SCI 

As of today, it is not well understood if sex differences in immune responses affect 

inflammation at the injured spinal cord.  Our findings of sex differences in acute blood 

myeloid cell responses are an important indicator that inflammation related experiments 

should include both, males and females [323].  Although more intense blood myeloid cell 

responses did not worsen recovery in males compared to females, different magnitudes of 

acute blood neutrophilia may be an important factor to consider while evaluating 

therapies that modulate inflammation [323].  Importantly, since sex differences in tissue 

sparing may be subtle, especially with mild to moderate injuries, the most specific, 

accurate and sensitive methods are recommended to compare the effect of therapies in 

both sexes after SCI [63, 64, 324, 325].   
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Chapter 6.  Blood Neutrophilia Does Not Affect Recovery After 
Spinal Cord Injury 

6.1  Introduction  

Our previous experiments showed that blood neutrophilia after SCI occurs during the first 

days after injury and is more intense in males than females.  A time-specific therapy that 

prevents blood neutrophilia, without severe immunosuppression, would elucidate the role 

of acute blood leukocytosis on injured spinal cord tissue repair.  Nitrogen mustards, like 

cyclophosphamide (CYP), cause transient dose-dependent apoptosis of circulating blood 

leukocytes and reduced granulopoiesis then a rebound of bone-marrow hematopoiesis 

afterward [233, 234].  A single dose of CYP, given two days before injury, prevents 

blood neutrophil responses, lessens blood neutrophilia at the injury site and improves 

locomotor recovery [164, 193, 195, 196, 240, 241, 326].  Feringa et al., reported that 

CYP therapy improved spinal cord regeneration after spinal cord transection [197].  

Although most studies have focused on depleting blood neutrophil and monocyte 

responses, less is known about the effect of higher blood myeloid counts and whether 

immunosuppressive therapy after SCI affects males and females differently.   

In this study, we prevented acute blood myelocytosis with one dose of CYP, given two 

days before SCI, in age-matched 100-day-old F344 rats.  Compared to vehicle (VEH, 

distilled water), CYP treatment reduced the duration and intensity of blood neutrophil 

responses and significantly decreased blood monocytes after SCI.  However, our 

experiments indicated that blood neutrophilia and higher blood monocyte counts after 

SCI did not have a negative effect on locomotor recovery, tissue sparing or neuronal 
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survival in either male or female rats.  Instead, males recovered hind-limb function earlier 

than females but sex differences disappeared in long term recovery, regardless of 

treatment.  Sex differences occurred in response to CYP treatment for SCI.  CYP therapy 

prevented acute blood neutrophilia more effectively in spinal cord injured females 

compared to males.  Our study demonstrates that higher numbers of blood neutrophils 

and monocytes during the first week after SCI neither harmed nor improved functional 

recovery.  Since we assimilated blood leukocyte responses in males and females, our 

study shows that sex differences in blood myeloid cell responses are not the cause for sex 

differences in functional recovery after SCI.   

6.2  Results  

6.2.1  Cyclophosphamide Reduces Blood Leukocyte Counts after SCI 

We did a pilot study to assess the safety of cyclophosphamide (CYP) treatment in spinal 

cord injured F344 rats.  3 groups (Male: n=1, Female: n=1, per group) received one 

subcutaneous dose of 80 mg/kg, 40 mg/kg or 20 mg/kg aqueous CYP 2 days before 

injury.  At 2 days before a 12.5 mm T12 contusion, rats received a subcutaneous dose of 

aqueous CYP.  We collected blood with cranial vena cava (CVC) venipunctures before 

dose, and at 1, 2, and 3 days after injury and counted the number of leukocytes per µl of 

blood with linear smears.  Compared to pre-injury, blood leukocyte counts (per µl) 

decreased to 23% (4944 ± 1165 vs 1140 ± 73 leukocytes/µl), 49% (4232 ± 961 vs 2080 ± 

531 leukocytes/µl) and 56% (4999 ± 298 vs 2803 ± 426 leukocytes/µl) at 3 days post 

injury in the 80 mg/kg, 40 mg/kg and 20 mg/kg groups, respectively (Figure 19).  Rats in 

the 80 and 40 mg/kg groups lost skin turgor through dehydration, had large rheum 
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buildup that indicated suffering, were shivering, did not rummage through their cage and 

were euthanized to prevent further suffering.  In contrast, rats in the 20 mg/kg group had 

normal skin turgor, visibly less rheum build up than other groups and moved around their 

cage.  CYP doses above 40 mg/kg were deemed unsafe for spinal cord injured F344 

rats.    

Experiments in Chapter 4 showed that males had more prominent blood neutrophilia and 

more blood monocytes than females during the first week after SCI.  Blood neutrophils 

and monocytes are CD45+CD11b+ bone-marrow derived myeloid leukocytes that fight 

infections and repair injured tissue.  We tested if one dose of cyclophosphamide (CYP) 

prevented acute blood neutrophil cell responses after SCI.  At 2 days before a 12.5 mm 

T12 contusion, male F344 rats received a subcutaneous dose of 25 mg/kg aqueous CYP 

(CYP treated, n = 2) or distilled water (VEH treated, n = 2) at 2 days before injury.  We 

collected blood with CVC venipunctures before dose, at 2, 4 and 6 days after SCI, 

counted the total number of leukocytes per µl of blood with linear smears, used a 

MACSQuant flow cytometer (Miltenyi) to quantify the percent of CD45+CD11b+ blood 

myeloid cells then multiplied the percent of CD45+CD11b+ and total leukocyte numbers 

to obtain the absolute myeloid cell count per µl of blood.  Blood myeloid cell counts 

doubled by 4 days after injury in VEH treated rats but were lower than before injury in 

CYP treated rats (Figure 20).  A 25 mg/kg subcutaneous dose of CYP prevented acute 

myeloid cell responses after SCI but did not deplete these cells from circulation.   
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6.2.2  CYP Reduced Blood Neutrophil and Monocyte Counts in Males after SCI 

6.2.2.1  CYP prevented blood neutrophilia after SCI in male rats 

SCI causes acute blood neutrophilia within hours after injury in rodents and humans.  

[145-147].  We counted the number of SSChiCD45+CD11b+ blood neutrophils in VEH or 

CYP treated spinal cord injured F344 male rats (VEH: n = 8, CYP: n = 8) (Figure 21A).  

As we have shown previously, the number of blood neutrophils changed significantly 

over 14 days after SCI in VEH treated males (F(4,28)= 7.34, p < 0.001, ηp2 = 0.51, Table 

15:C1).  In contrast, CYP treatment in males prevented significant changes in blood 

neutrophils after SCI (F(4,28)= 1.38,  p = 0.27,  ηp2 = 0.17, Table 26:C1).  2-factor-

repeated measures ANOVA indicated that blood neutrophil responses differed between 

spinal cord injured VEH and CYP-treated males (F(4,64)= 2.45, p = 0.056, ηp2 = 0.15, 

Table 26:C4).  Blood neutrophil counts increased in both treatment groups at 1 day after 

injury but more so in VEH treated males.  CYP treatment prevented prolonged blood 

neutrophilia after SCI.  Peak blood neutrophilia occurred in VEH males at 3 days after 

injury but neutrophil counts decreased and were significantly lower in CYP treated males 

(1637 ± 477 vs 830 ± 597 neutrophils/µl,  t(14) = 2.99,  p = 0.01,  d = 1.49).  Blood 

neutrophil counts remained higher in VEH males at 7 days after SCI compared to CYP 

treatment (1267 ± 683 vs 776 ± 332 neutrophils/µl,  t(14) = 1.83,  p = 0.09,  d = 0.91).   

6.2.2.2  CYP reduced blood monocytes after SCI in male rats 

We previously showed that blood monocyte counts increased slightly in males during the 

first week after injury (Chapter 4).   We counted the number of SSCloCD45+CD11b+ 

blood monocytes in VEH or CYP treated spinal cord injured F344 male rats (Figure 
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22A).  Repeated-measures ANOVA detected significant changes in blood monocyte 

counts over 14 days after SCI in VEH (F(4,28)= 4.83,  p = 0.004,  ηp2 = 0.41,  Table 17:B4) 

and CYP treated males (F(4,28)= 12.38,  p < 0.001,  ηp2 = 0.64,  Table 27:C5).  Treatment 

had a significant effect on the number of blood monocytes in spinal cord injured males 

over two weeks after SCI (F(4,56) = 7.34,  p < 0.001,  ηp2 = 0.40, 2-factor-repeated 

measures ANOVA,  Table 27:C7).  Blood monocyte counts were significantly lower in 

CYP than VEH-treated males within 1 day after injury (633 ± 216 vs 395 ± 104 

monocytes/µl,  t(14) = 2.8,  p = 0.001,  d = 1.4,  unpaired T-test).  The number of blood 

monocytes then increased and peaked in VEH-treated males but decreased in CYP treated 

males at 3 days after SCI (742 ± 277 vs 306 ± 73 monocytes/µl,  t(14) = 4.29,  p = 0.001,  

d = 2.15,  unpaired T-test).  Blood monocyte counts decreased at 7 days after injury in 

both treatment groups but remained significantly higher in VEH than CYP treated males 

(547 ± 150 vs 321 ± 49 monocytes/µl,  t(14) = 4.04,  p = 0.001,  d = 2.03,  unpaired T-

test), then treatment differences disappeared by 14 days.   

6.2.2.3  CYP prevented blood neutrophilia after SCI in female rats 

We counted the number of SSChiCD45+CD11b+ blood neutrophils in VEH or CYP 

treated spinal cord injured F344 female rats (VEH: n = 10, CYP: n = 10) (Figure 21B, 

Table 11).  Repeated-measures ANOVA identified significant changes in blood neutrophil 

counts over 14 days after SCI in VEH (F(4,36)= 4.68,  p < 0.01,  ηp2 = 0.34, Table 15:B2) 

and CYP treated females (F(4,36)= 11.32,  p < 0.001,  ηp2 = 0.56, Figure 26:C2).  2-factor-

repeated measures ANOVA indicated that CYP treatment had a significant effect on 

blood neutrophil responses after SCI in female rats (F(4,72) = 5.57, p = 0.001, ηp2 = 0.24, 
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Table 26:C4).  Blood neutrophil counts increased in VEH females but remained stable 

with CYP treatment at 1 day after injury (980 ± 541 vs 352 ± 129 neutrophils/µl,  t(18) = 

3.58,  p = 0.002,  d = 1.6, unpaired T-test).  This trend continued for 3 days (730 ± 281 vs 

383 ± 198 neutrophils/µl,  t(18) = 3.19,  p = 0.005,  d = 1.43,  unpaired T-test).  By 7 days, 

blood neutrophil counts were similar in both female treatment groups, as the number of 

blood neutrophils returned to pre-injury levels.  However, by 14 days after injury, blood 

neutrophil counts were higher in CYP than VEH-treated females (985 ± 355 vs 668 ± 321 

neutrophils/µl,  t(18) = 2.1,  p = 0.05,  d = 0.94).   

6.2.2.4  CYP reduced blood monocytes after SCI in female rats 

We counted the number of blood monocytes in VEH or CYP treated spinal cord injured 

females over 14 days after SCI (Figure 22B).  Repeated-measures ANOVA demonstrated 

that blood monocyte counts changed significantly over 14 days after SCI in VEH (F(4,36)= 

5.17,  p = 0.02,  ηp2 = 0.36, Table 17:B5) and CYP treated females (F(4,36)= 20.31,  p < 

0.001,  ηp2 = 0.69, Table 27:C6).  Treatment had a significant effect on the number of 

blood monocyte counts over 14 days after injury (F(4,72) = 8.57, p < 0.001, ηp2 = 0.32, 2-

factor-repeated measures ANOVA, Table 27:C8).  Post hoc pairwise comparisons with 

unpaired T-tests showed that blood monocyte counts were significantly higher in VEH 

than CYP treated females at 1 day (451 ± 80 vs 263 ± 68 monocytes/µl,  t(18) = 5.61,  p < 

0.001,  d = 2.53), 3 days (530 ± 190 vs 193 ± 50 monocytes/µl,  t(18) = 5.43,  p < 0.001,  d 

= 2.43) and 7 days after injury (413 ± 118 vs 214 ± 51 monocytes/µl,  t(18) = 4.89,  p < 

0.001,  d = 2.19).   

6.2.3   Blood neutrophilia does not affect outcomes after SCI 
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6.2.3.1  Blood neutrophilia has no effect on locomotor recovery in males after SCI.  

We used the BBB locomotor scale to evaluate locomotor recovery weekly for 6 weeks 

after SCI in VEH or CYP treated males and females (VEH: n= 8, CYP: n= 8).  After the 

last BBB score at 6 weeks post-injury, we euthanized and perfused the rats, sectioned the 

injured spinal cords at 1 mm intervals, then measured the area of spinal cord preserved 

after injury, myelin sparing and neuronal survival in sequential tissue sections.  12.5 mm 

contusions led to a distinct injury epicenter with the least area of spared tissue and 

damage that extended for ~9 mm in both VEH and CYP treated male and female rats.  

We used a 2-factor repeated measures ANOVA to assess for significant Treatment 

(between-subjects factor) differences in locomotor recovery for 6 weeks, gross tissue 

loss, myelin sparing and neuron survival throughout the length of the injury site 

(Distance, within-subjects factor).   

CYP and VEH treated males recovered some hind-limb function within 1 week after SCI 

and BBB scores increased thereafter for 6 weeks (Figure 23A).  However, compared to 

VEH, preventing blood neutrophilia and decreasing blood monocyte counts with CYP 

had a minimal effect on walking recovery over 6 weeks in spinal cord injured male rats 

(F(6,84) = 0.01,  p = 1.0,  ηp2 = 0.01, Table 28:C9).  Unexpectedly, even though large 

numbers of blood neutrophils and monocytes infiltrate spinal cord during the first days 

after injury, preventing acute blood myeloid cell responses in spinal cord injured males 

did not have a significant effect on spinal cord tissue damage (F(1,13) = 0.5,  p = 0.49,  ηp2 

= 0.04, Figure 24A, Table 29:C11), myelin sparing ( F(9,134) = 0.27,  p = 0.98,  ηp2 = 0.02, 
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Figure 25A, Table 30:C13) or neuron survival (F(9,135) = 0.5,  p = 0.87,  ηp2 = 0.037, 

Figure 26A, Table 31:C15).   

6.2.3.2  Blood neutrophilia transiently effects walking recovery in females after SCI  

Similar to males, hind-limb function improved in both female treatment groups within 1 

week after injury and BBB scores continued to improve for 6 weeks (Figure 23B).  

Although long-term walking recovery was very similar in both female treatment groups, 

females treated with CYP recovered hind-limb movement earlier than VEH (F(6,108) = 

3.24,  p = 0.006,  ηp2 = 0.15, 2-factor-repeated- measures ANOVA, Table 28:C10).  Post 

hoc pairwise comparisons with unpaired T-tests indicated that, compared to VEH 

treatment, BBB scores in CYP-treated females were significantly higher at 1 week after 

injury (1.8 ± 2.62 vs 4.70 ± 3.34,  t(18) = 2.16,  p = 0.04,  d = 0.97).  However, both 

female treatment groups had very similar BBB scores from 2 to 6 weeks after SCI.   

Since acute blood neutrophilia did not occur in CYP-treated females, we hypothesized 

that tissue sparing would be better in CYP than VEH treated groups.  Unexpectedly, 2-

factor-repeated measures ANOVAs (Effect: Tissue-sparing*Treatment) indicated that 

preventing blood myeloid cell responses in spinal cord injured females had an 

insignificant impact on the amount of gross tissue damage (F(9,162) = 0.73,  p = 0.68,  ηp2 

= 0.039,  Figure 24B,  Table 29:C12), myelin-sparing (F(9,162) = 0.71,  p = 0.7,  ηp2 = 

0.038,  Figure 25B,  Table 30:C14) and neuron survival (F(9,162) = 1.42,  p = 0.18,  ηp2 = 

0.07,  Figure 26B,  Table 31:C16).   
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6.2.4  Males Had Bigger Spinal Cords than Females 

We compared the size of the injury site and adjacent spinal cord segments in CYP treated 

males and females (Table 23).  Similar to results from sex-matched groups in the VEH- 

treated groups (“normal SCI”) (Section 5.2.5), spinal cords were bigger in CYP-treated 

males than females on several measures.  First, 10 mm  of injured spinal cord that span 

the injury site had bigger volume in CYP treated males than females at 6 weeks after SCI 

(27.18 ± 2.12 mm3 vs 24.73 ± 2.51 mm3,  t(16) = 2.2,  p = 0.043,  d = 1.05).  Second, 

injured spinal cords had more myelin volume in CYP males than females (11.56 ± 0.96 

mm3 vs 9.90 ± 1.35 mm3,  t(16) = 2.92,  p < 0.01, d = 1.42).  Third, intact spinal cord 

segments (4 mm) were larger in CYP-treated males than CYP-treated females at the 

cranial (12.47 ± 0.47 vs 13.79 ± 0.62 mm3,  t(16) = 2.77,  p = 0.014,  d = 2.4) and caudal 

segments (17.19 ± 0.69 vs 16.57 ± 0.79 mm3,  t(16) = 3.17,  p = 0.006,  d = .84) from the 

injury site.  CYP-treated males also had more myelin content (volume) than females in 

the cranial (7.69 ± 0.38 vs 6.93 ± 0.38 mm3,  t(16) = 4.22,  p < 0.001,  d = 2.0) and caudal 

(8.09 ± 0.49 vs 7.31 ± 0.40 mm3,  t(16) = 3.72,  p = 0.002,  d = 1.74) intact segments.  

However, in contrast to tissue sparing, there we negligible sex differences in neuron 

survival at the injury site from CYP-treated groups.   

6.2.5  Reducing blood myelocytosis did not prevent sex differences in recovery 

We previously reported that more intense blood neutrophil and monocyte responses in 

males after SCI did not worsen locomotor recovery or tissue sparing compared to females 

(Chapter 5).  The consequences of sex differences in myeloid cell responses on spinal 

cord tissue repair are less understood.  We had hypothesized that making blood 
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neutrophil and monocyte responses similar both sexes would assimilate their locomotor 

recovery and tissue sparing.  Overall, treatment had a significant effect on locomotor 

recovery (F(6,192) = 2.94,  p = 0.009, Effect: Time*Treatment, Table 32:C17).  However, 

treatment differences were only evident during the first week after injury in female but 

not in male rats (Section 4.2.3.1&2).  Unexpectedly, males in both treatment groups had 

higher BBB scores than females during the first weeks after injury but long-term walking 

recovery was similar in both sexes, regardless of treatment (F(6,192) = 14.94,  p < 0.001, 

Effect: Time*Sex, Table 32:C18).  Preventing blood neutrophilia and reducing blood 

monocyte counts in both sexes did not have a significant effect on tissue loss, myelin 

sparing or neuron survival at 6 weeks after SCI [p = N.S., Effect: Tissue-

Sparing*Treatment (Table 33:C19),  Myelin-sparing*Treatment (Table 34:C21), Neuron-

survival*Treatment (Table 35:C23).   

6.3  Discussion 

6.3.1.  Acute blood neutrophilia does not worsen nor benefit recovery after SCI 

Understanding if blood neutrophilia affects tissue repair and functional recovery after 

SCI is important because intact spinal cord tissue has few neutrophils but tissue 

neutrophilia is a prominent feature during the first days after injury [126].  We used a 

time-restricted approach to prevent acute blood neutrophilia after SCI.  Compared to 

vehicle treatment (VEH), one 25 mg/kg dose of CYP, given two days before injury, 

prevented significant changes in blood neutrophilia and reduced blood monocyte counts 

below baseline during the first 7 days after injury in male and female F344 rats.  Blood 

neutrophil and monocyte counts returned near pre-treatment levels by 14 days after 
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injury.  This strategy helped us investigate the effect of blood neutrophilia and monocyte 

responses, because the most extensive migration of these blood myeloid cells to injured 

tissue occurs during the first days after injury [129].    

SCI leads to acute blood neutrophilia [145].  Neutrophils, the first blood leukocytes to 

infiltrate injured spinal cord, secrete proinflammatory cytokines and release granules rich 

in enzymes that catalyze neurotoxic reactive oxygen species, tissue remodeling and 

angiogenesis [128, 164].  Whether blood neutrophils are helpful or harmful for nervous 

tissue repair is still debated.  Katoh et al., showed that spinal cord injured patients with 

more severe neutrophilia were more likely to suffer neurological deterioration during the 

first week after injury [200].  Several studies showed that depleting blood neutrophil and 

monocytes after CNS injury tends to improve neural tissue sparing [164, 191, 327].  

However, others showed that depleting only blood neutrophils reduces recovery after SCI 

[175].   

Neutrophils secrete significant quantities of cytokines and their granules release enzymes 

with high peroxidase and metalloproteinase activity that digest tissue matrix.  Neutrophil 

responses after brain and spinal cord trauma have been classically thought as harmful for 

nervous tissue repair.  We hypothesized that higher numbers of blood neutrophils, in the 

form of blood neutrophilia, would affect neuron survival and tissue sparing after 

SCI.  However, our experiments did not refute the null.  Neuron survival was similar 

whether blood neutrophilia occurred or not.  Likewise, preventing blood neutrophilia had 

minimal impact on tissue sparing.   
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6.3.2  The effect of higher numbers of blood monocytes after SCI 

Blood monocyte derived macrophages phagocytize myelin debris, mainly differentiate 

into M1 phenotype and release significant amounts of proinflammatory cytokines [185, 

305].  It is thought that reactive resident glia “herd” early infiltrated blood macrophages 

into the injury epicenter in an attempt to reduce excess myelin phagocytosis and a 

proinflammatory environment [181, 183].  Hence, we hypothesized that more monocytes 

circulating in blood would correlate with less myelin sparing.  However, our experiments 

showed that higher numbers of blood monocytes had an insignificant effect on myelin 

sparing throughout the injury site.   

Although we did not compare blood derived-macrophage infiltration at the injury site, 

similar myelin sparing in both treatment groups suggests that having more macrophages 

in circulation may not lead to more myelin phagocytosis.  This conclusion is strengthened 

by our previous analysis where spinal-cord-injured male rats had significantly more 

blood monocytes than females but myelin and tissue sparing was similar in both sexes.  

Walker et al., [71] and Luchetti et al., [69] also showed that injured spinal cords in male 

and female rats had similar numbers of macrophages at the lesion epicenter.  Further 

experiments should investigate the mechanisms that prevent excess blood leukocytes 

from infiltration injured spinal cord tissue.    

6.3.3  Control of Neutrophil Migration to the Injured Spinal Cord 

Our findings that significant differences in blood neutrophil and monocytes did not affect 

tissue damage, myelin sparing and neuronal survival suggest that mechanisms exists to 

prevent excess leukocyte migration into the injured spinal cord.  We provide evidence for 
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this hypothesis in two forms.  First, our previous study (Chapter 5) showed that sex 

differences in blood neutrophilia did not correspond to sex differences in neutrophil 

content at the injury site, even though males had twice the number of blood neutrophils 

than females at 3 days after SCI.  Second, males and females had similar tissue sparing 

and neuronal survival regardless of significant differences in the number of blood 

myeloid cells.  Third, even though CYP treatment prevented blood neutrophilia and 

reduced blood monocyte counts over the first week after injury, CYP and vehicle-treated 

rats had almost identical myelin sparing and long-term walking recovery.  Although we 

did not compare neutrophil or macrophage infiltration in both treatment groups, our 

results, and those of others, indicate that blood myeloid cell migration into injured spinal 

cord tissue may be tightly regulated.  Several neutrophil-chemotactic proteins are 

released after SCI and in higher quantities in neutropenic spinal cord injured animals 

[175].  However, less is known about signals that limit neutrophil migration into the 

injured spinal cord.   

Blood neutrophils and macrophages do not remain static in the injured spinal cord.  Live-

imaging experiments have shown showed that blood neutrophils and monocytes migrate 

to injuries, act on injured tissue, then most reverse-migrate to peripheral storage pools 

[328]. Blood neutrophils are found in peripheral areas surrounding the injury epicenter, 

adjacent to areas of neovascularization and veins and venules [156].  As more neutrophils 

infiltrate the injured spinal cord, neutrophil derived granule proteins, like MPO, catalyze 

the production of free oxygen radicals, further depleting oxygen concentration in the 

injured tissue.  Oxygen responsive tissue elements, like HIF-1, down regulate the 
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expression of cell adhesion proteins on adjacent endothelium to prevent further migration 

of neutrophils into injured tissue [329, 330].  Neutrophils are also short lived and undergo 

apoptosis within 48 hours and secrete macrophage chemotactic signals for their removal 

[331-333].  Macrophages phagocytize apoptotic neutrophils at the injury site and through 

contact mediated guidance [334], signal surviving neutrophils to reverse migrate to 

peripheral reservoirs [183].  Only a limited number of neutrophils may remain in injured 

spinal cord, regardless of the magnitude of blood neutrophilia.   

6.3.4  The effect of Immunosuppression after SCI 

Understanding whether acute blood leukocyte responses are harmful or beneficial for SCI 

recovery have important clinical implications because several inexpensive treatments are 

immediately available in clinics to dampen inflammatory immune responses.  However, 

acute immunosuppressive approaches to treat SCI patients are not viewed favorably 

because this patient population is more prone to pneumonia and urinary tract infections 

during the first weeks after injury.  The recommended treatment for SCI, one 30 mg/kg 

bolus dose of methylprednisolone (MP) within 8 hours after injury [335], is no longer 

used widely due to fears that MP-induced immunosuppression may put patients at more 

risk for internal bleeding and infections [336].  Findings from several studies [110, 155, 

163, 193, 195, 304, 337, 338] indicate that profound myeloid-suppression improves 

recovery after SCI but our results suggest that preventing acute blood leukocyte 

responses has no effect on tissue repair or motor function.  Hence, we conclude that 

maintaining blood leukocyte counts at homeostasis for the first week after SCI is 

sufficient for proper recovery after SCI.   
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6.3.5  Sex Differences in Response to Immunosuppressive Therapy after SCI 

Assuming that treatments have similar effects in males and females may be harmful 

[323].  Therapeutic efficiency, especially to treat immune responses, differs between 

males and females [81].  Our experiments showed that CYP therapy prevented blood 

neutrophilia and reduced blood monocytes more efficiently in females than in males.  

Since the number of blood neutrophils still somewhat increased acutely after SCI in CYP 

treated males compared to females, there may be sex differences in the concentration of 

neutrophils in peripheral pools and demargination mechanisms.   

Circulating neutrophils are a minor fraction of neutrophil populations.  The bone marrow, 

lymphatic organs, lungs and superficial capillaries serve as the largest neutrophil 

reservoirs [152].  Compared to females, bone marrow granulopoiesis and neutrophil 

demargination to the blood are more pronounced in males than females after injury [274, 

339].   Males also produce more chemotactic signals that promote blood neutrophilia 

[153, 154, 202].  Our results showed that CYP had stronger effect on blood neutrophilia 

in females, keeping blood neutrophil counts unchanged, but that a mild increase in blood 

neutrophils still occurred in male rats.  These findings suggests that sex differences may 

occur in the mechanism that maintains blood neutrophil homeostasis after SCI and that 

the same dose of CYP therapy was more effective in females than males.   
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7.  Conclusions 

7.1  Sex differences in blood neutrophilia after SCI 

This thesis tackled a longstanding question in spinal cord injury research.  Men 

outnumber women by a ratio of 4:1 and women tend to recover better than men after 

spinal cord trauma but the mechanisms are not well understood [52].  Spinal cord injury 

elicits intense peripheral inflammatory and immune responses, manifested by an initial 

increase in neutrophils (neutrophilia) followed by a delayed and prolonged decline of 

lymphocytes (lymphopenia) [128].  We hypothesized that differences of peripheral blood 

leukocytosis contribute to differences in spinal cord injury and recovery in males and 

females.   

To test this hypothesis, we measured peripheral blood leukocyte responses in male and 

female Fischer 344 (F344) rats after standardized spinal cord contusion, correlated these 

responses with preservation of myelinated tracts, survival of neurons in the spinal cord, 

and locomotor recovery. To measure the leukocyte counts, I developed and worked with 

undergraduate students to validate a “linear smear” method to count total leukocytes per 

µl of blood.  The linear smear is an inexpensive  and accurate method to count blood 

leukocytes on a microscope slide, allowing quantitative differential counts of neutrophils, 

monocytes, B- and T-cells by flow cytometry and blood smear. 

As others have reported, SCI causes acute blood leukocytosis and then leukopenia from 

one to two weeks after injury [128, 145].  Our results showed that blood neutrophilia 

occurs earlier, is more intense, and lasts longer in spinal cord injured male than female 
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F344 rats.  Blood neutrophils infiltrate the injured spinal cord during the first days after 

spinal cord contusion [241].   

We hypothesized that male F344 rats would have greater neutrophil infiltration, less 

neuron survival and myelin sparing, and worse locomotor recovery than females.  Our 

experiments refuted the hypothesis.  First, male F344 rats did not have more 

myeloperoxidase in the injured spinal cord even though peak blood neutrophilia was 3-

fold higher in males compared to females.  Thus, more blood neutrophils in circulation 

did not correlate with more neutrophils at the injury site.  Second, BBB locomotor scores 

initially improved more in F344 males compared to females but did not differ 

significantly beyond 3 weeks after injury.  Third, long-term neuronal survival at the 

injury site was nearly identical in both sexes.  Lastly, gross spinal cord and spared myelin 

volumes were bigger in males than females.  These findings suggest that higher blood 

neutrophilia is associated with less spinal cord damage and better early locomotor 

recovery.   

Our hypothesis predicted that less blood neutrophils would lead to better recovery in both 

males and females after SCI.  We reduced blood neutrophil counts with a dose of 

cyclophosphamide (CYP) two days before injury.  CYP treatment prevented the injury-

induced blood neutrophilia in male and female rats.  However, male F344 rats continued 

to walk better than females even though CYP prevented sex differences in blood 

neutrophilia.  Treated males also had more myelin and spared white matter volume at the 

injury site than treated females.  To our surprise, neuron survival was nearly identical 

after treatment in both sexes.  Thus, both “normal” and CYP treated sex-matched pairs 
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had similar recovery patterns despite significant differences in the magnitude of blood 

neutrophilia.  Our experiments showed that sex differences in blood neutrophil responses 

do not cause sex differences in locomotor recovery or tissue sparing after SCI.   

Gross tissue and myelin volume at the injury site were significantly bigger in males than 

females.  Spinal cord segments distal to the injury site were also bigger in males than 

females in both treatment groups.  Because BBB scores correlate directly with the 

amount of spared myelin, these findings are consistent with the observation that males 

recovered locomotor function earlier and better than females [59].  However, BBB scores 

from both groups converged after 3 weeks [340, 341].  Recent clinical trials have shown 

that more physical activity leads to better functional recovery after SCI [342].  One 

possibility is that female F344 rats are more active but this will need to be confirm in 

future experiments. 

The finding that 100-day-old male F344 rats had bigger spinal cords than females would 

explain why male F344 rats recovered better and earlier than female F344 rats.  The 

original impactor model in Long-Evans hooded rats and Sprague-Dawley rats 

standardized the age of injury to 77±1 day old because this was the age at which spinal 

cord weights of males and females of these two strains were most similar [57].  F344 rats 

are significantly smaller than Long-Evans and Sprague-Dawley rats, particularly the 

females [343].  So that the females would fit in the impactor devices, the F344 model was 

standardized at 100±1 day of age.  Our data suggests that more studies should be done to 

find the age, probably 77 days, that male and female F344 rats would be more similar in 

terms of spinal cord size.   
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Several studies in animal models  have shown no sex differences .  Our current study may 

be the most detailed and careful study of sex differences in a well-standardized rodent 

spinal cord injury.  While one should be cautious generalizing from rodents to human, 

our results rule out neutrophils as one mechanism of sex difference in spinal cord injury. 

7.2  Effects of blood neutrophilia on SCI recovery 
Our results indicate that preventing blood neutrophil responses, by giving 

cyclophosphamide 2 days before injury, did not change locomotor recovery in male or 

female F344 rats.  The experiments, however, yielded several unexpected findings.  First, 

CYP reduced blood neutrophil counts more in females than in males.  Second, greater 

blood neutrophilia was not associated with neurotoxicity.  Third, preventing blood 

neutrophil responses after SCI did not spare myelin or locomotor recovery in males or 

females.  Our results suggest that acute blood neutrophilia is neither damaging nor 

helpful for spinal cord repair because all outcome measures were nearly identical for both 

treatment groups.  

From an evolutionary point of view, in retrospect, it is not surprising that blood 

neutrophilia does not have detrimental effects after SCI.  Neutrophils are the first 

peripheral blood leukocytes to respond to injury.   Our experiments suggest that baseline 

blood neutrophil counts after SCI are sufficient for normal tissue repair and that excess 

blood neutrophilia is neither harmful nor beneficial for recovery.  Animals must have 

evolved mechanisms to limit excessive neutrophil infiltration into the injured spinal cord. 
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8.  Future Directions 

Our experiments provided several experimental opportunities.  We found that F344 male 

rats have 3 times more blood neutrophils than females during the first 3 days after SCI.  

Higher blood leukocyte counts are associated with worse clinical outcomes after SCI 

[200].  In humans, blood neutrophil counts 3 times higher than normal would be alarming 

to doctors.  The few clinical studies published on differences of leukocytosis after SCI 

have been retrospective.  A prospective controlled study of blood leukocytes responses to 

SCI should be done to correlate recovery with leukocytosis in men and women.   

The causes of the differences in SCI-induced blood neutrophilia in male and female F344 

rats are not known.  Several possible explanations should be considered and 

experimentally ruled out or confirmed.  First, the number of blood neutrophils in 

peripheral reservoirs may be higher in male than female F344 rats.  Second, SCI-related 

complications may contribute to greater blood neutrophilia in male rats.  Third, sex 

differences in blood neutrophilia may be a specific for Fischer 344 rats.  Each of these 

will be discussed below.  

The spleen, the largest leukocyte reservoir, is twice as big in male than female F344 rats 

[283].  SCI increases splenic catecholamines thought to kill lymphocytes and contract the 

spleen to expel monocytes into blood [271].  The effects of SCI on splenic neutrophil 

reservoirs need to be  confirmed.  Neutrophil chemotactic factors like IL-8, that recruit 

these cells into circulation, are more pronounced in males than females after ischemic 

injuries [275].  More neutrophils in reservoirs and increased neutrophil-chemotactic 
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signals would explain the higher neutrophil response to SCI in males.  Studying 

lymphatic reservoirs after SCI may show the reasons for sex differences neutrophils and 

monocytes but not lymphocytes.   

SCI researchers have long preferred to use female rodents because males are considered 

harder to care for.  Male rodents need manual bladder expression after SCI compared to 

females.  Spinal cord injured male F344 rats develop hematuria several days after injury.  

Hematuria rarely occurred in our spinal cord injured F344 female cohort.  The causes for 

hematuria and urinary retention may contribute to the greater neutrophilia in male rats at 

3-4 days after injury.   

Our experiments refuted the hypothesis that sex differences in blood neutrophilia worsen 

recovery after SCI in males compared to females.  Having more or less blood neutrophils 

did not alter recovery after SCI.  These findings raise questions about decades of 

published studies reporting that neutrophils contribute to tissue damage.  Depleting blood 

neutrophils after SCI may be either beneficial or detrimental [158].     

Few neutrophils are present in intact spinal cord vasculature [126].  The extent of 

neutrophil infiltration in injured spinal cord is debated.  While implantation of umbilical 

blood mononuclear cells and mesenchymal stem cells helps recovery after SCI [342], to 

our knowledge, no one has transplanted neutrophils into the injured spinal cord.  Such 

transplants would answer several questions.  First, we could label these cells to determine 

if implanted neutrophils remain or exit the spinal cord and which cells react to the 

implanted neutrophils.  Second, does activation play a significant role on neutrophil 
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function in the spinal cord?  Third, the experiment would tell us whether are neutrophils 

neurotoxic and interact with glial cells.  Fourth, is neutrophil implantation a therapeutic 

beneficial option?  Lastly, these experiments may define if microglia or monocyte 

derived macrophages can contain neutrophil activity and protect the injured spinal cord 

[183, 344].   
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Figures and Illustrations 

 

Figure 1.  Cranial vena cava venipuncture   

A  shows how to position a rat for a cranial vena cava (CVC) venipuncture.  The thumb 

and middle finger secure the rats’ right arms behind its back and the index finger presses 

on the scruff of the neck.  B  ** shows the gross anatomy for the target area to insert the 

needle at the cranial vena cava.  C  shows that proper hand placement and needle 

insertion at the thoracic cowlick will permit blood flow to the needle.  
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Figure 2.  Linear smear technique and validation  
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A  shows a linear smear template and pipette position to make a linear smear.  B  shows 

each linear smear is 35mm in length, has 3 continuous arms 5 mm apart and has a well-

defined proximal end.  C  shows linear smears must be  ~1 mm wide.  D  is a 

representative image of a linear smear under UV fluorescence at 100x magnification, 

showing bright Hoechst 33342ᐩ leukocytes.  E-G  Graphs for logistic regression 

comparing leukocyte counts in linear smears to counts in XT 2000iv (N = 9, R = 0.94) 

and Element 5HT (N = 12, R = 0.97) automated hematological analyzers and a 

Cellometer nucleated cell counter (n = 19, R = 0.95)  H  shows that leukocyte counts in 

eight different linear smears had low inter-smear variability, CV(8) = 1.426 %.  

Leukocytes in one linear smear were counted 4 times with low intra-smear variability, 

CV(4) = 0.575%.   
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Figure 3.  Identification of blood leukocytes in a blood smear   

A  shows one drop of blood immediately before smearing along the length of microscope 

slide  B  shows a feather shaped blood smear after Wright Stain  C  shows monocytes 

and macrophages have ellipsoid bean-shaped nuclei, white circular vacuoles and lilac 

blue cytoplasm,  D  lymphocytes have lilac blue cytoplasm, dark purple circular nuclei 

and low cytoplasm to nucleus ratio,  E  neutrophils have poly-segmented nuclei and light 

blue granules.  Scale bar represents 10 µm. 
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Figure 4.  CD11b+ myeloid cells separated into neutrophils and monocytes   

Flow cytometry plot showing a primary gate for CD45+ and CD11b+ double positive 

myeloid cells then secondary gates that isolate CD11b+ neutrophils and monocytes, based 

on high or low side scatter (SSC), respectively. 
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Figure 5.  NeuN and Myelin Basic Protein in injured spinal cords  

Figure shows immunohistochemistry of neuron nuclear protein NeuN (left) and myelin 

basic protein (right).  Neuron and myelin loss was most pronounced at the injury 

epicenter.  Scale bar is 1 mm.  
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Figure 6.  SCI caused blood leukopenia in males and females   

Blood leukocytes were collected through a jugular vein catheter and counted with a linear 

smear.  Graph shows mean (+ SEM, 103 cells/µl) blood leukocyte counts before and at 1, 

3, 7 and 14 days ( d ) after a 12.5mm spinal cord contusion in male and female F344 rats.  

Blood leukocyte counts decreased significantly over 14 days after SCI in both sexes 

(Male,  p < 0.001;  Female,  p < 0.001, repeated-measures ANOVA, Effect: Time.  

However, blood leukopenia progressed similarly in both sexes after SCI (p = N.S., 2-

factor-repeated-measures-ANOVA, Effect: Time*Sex).  ( *** ) indicates (p < 0.001) for 

the number of blood leukocytes from 0d to 14 after SCI using post-hoc paired T-tests.  

Female: n = 10;  Male: n = 10.  
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Figure 7.  Sex differences in acute blood myeloid cell responses after SCI   

Graph shows mean (+ SEM, 103 cells/µl) blood CD11b+ myeloid cell counts before and 

through 14 days ( d ) after spinal cord contusion in male and female rats.  Blood myeloid 

cell counts increased significantly after SCI in both sexes (Male,  p = 0.002,  Female, p = 

0.02, repeated-measures ANOVA,  Effect: Time).  Biological sex had a significant effect 

on blood myeloid cell responses over 14 days after SCI ( p = 0.005,  2-factor-repeated-

measures-ANOVA, Effect: Time*Sex).  ( # ) and ( * ) indicate (p < 0.05) for changes in 

the number of blood myeloid cells between those time-points in males and females, 

respectively (Post hoc Scheffé’s test).  ( † ) indicates significant sex differences (p < 0.05) 

at each time-point (Post hoc unpaired-T-tests).  Female: n = 7;  Male: n = 6. 
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Figure 8.  Sex differences in blood neutrophilia after SCI   

Blood RP1+ neutrophil counts increased significantly after SCI in both sexes (Male,  p = 

0.001;  Females, p = 0.02; repeated-measures ANOVA,  Effect: Time).  Biological sex 

affected the magnitude of blood neutrophilia after SCI (p = 0.07, 2-factor-repeated-

measures-ANOVA, Effect: Time*Sex).  ( # ) and ( * ) indicate (p < 0.05) for changes in 

the number of blood neutrophils between those time-points in males and females, 

respectively (Post hoc Scheffé’s test).  ( † ) indicates significant sex differences (p < 0.05) 

at each time-point (Post hoc unpaired-T-tests).  Female: n = 7;  Male: n = 6. 
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Figure 9.  Sex differences in blood monocyte responses after SCI 

Graph shows changes in blood monocyte counts (average + SEM, 103 cells/µl) from 

before to 14 days after spinal cord contusion in male and female rats. Blood monocyte 

counts changed over time after injury in both sexes (Males, p = 0.062;  Females, p = 0.04;  

repeated-measures ANOVA,  Effect: Time).  Although blood monocyte counts tended to 

be higher in males than females, there were no significant sex differences in blood 

monocyte responses after spinal cord contusion (p = N.S., 2-factor repeated-measures 

ANOVA, Effect: Time*Sex).  ( * ) indicate (p < 0.05) for changes in the number of blood 

neutrophils between those time-points in male rats (Post hoc Scheffé’s test).  Female: n = 

7;  Male: n = 6. 
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Figure 10.  SCI causes lymphopenia for B-cells not but  T-cells   

Graph shows changes in blood B cell counts (average + SEM, 103 cells/µl) from before 

to 14 days after spinal cord contusion in male and female rats. Blood B cell counts 

decreased significantly over 14 days after injury in both sexes (Males,  p < 0.001; 

Females, p = 0.03;  repeated-measures ANOVA,  Effect: Time).  Blood B cell 

lymphopenia progressed similarly in both sexes after SCI (p = N.S., 2-factor-repeated-

measures-ANOVA, Effect: Time*Sex).  ( # ) and ( * ) indicate (p < 0.05) for changes in 

the number of B-cells between those time-points in males and females, respectively (Post 

hoc Scheffé’s test).  Female: n = 7;  Male: n = 6. 
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Figure 11.  Insignificant changes in blood T cell counts after SCI   

Graph shows changes in blood T cell counts (average + SEM, 103 cells/µl) before and 

over 14 days after spinal cord contusion in male and female rats.  Although the number of 

T cells fluctuated after SCI in males or females, these changes were not statistically 

significant for neither sex (Male, p = N.S.;  Female p = N.S.;  repeated-measures 

ANOVA, Effect: Time).  Changes in blood T cell counts after SCI did not differ 

significantly between male and female rats (p = N.S.,  2-factor repeated-measures 

ANOVA, Effect: Time*Sex).  ( † ) indicates significant sex differences (p < 0.05) in T cell 

counts before spinal cord contusion (Post hoc unpaired T-tests).  Female: n = 7;  Male: n 

= 6. 
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Figure 12.  Sex differences in blood neutrophilia after SCI   

Graph shows mean (+ SEM, 103 cells/µl) blood neutrophil counts before and through 14 

days ( d ) after spinal cord contusion in male and female rats.  Blood was collected with 

jugular venipunctures before and at 1, 3, 7 and 14 days (d) after SCI in 100 ± 3-day-old 

male (n=8) and female (n=10) F344 rats.  Blood neutrophils were identified with flow 

cytometry as CD45+CD11b+SSChigh.  The percent of neutrophils was multiplied by the 

total number of leukocytes counted in linear smears to obtain the absolute counts per µl 

of blood.  SCI caused blood neutrophilia in both sexes (Male, p < 0.001;  Female, p = 

0.004,  repeated-measures ANOVA,  Effect: Time).  The magnitude and duration of peak 

blood neutrophilia differed between males and females after SCI but this effect did not 

reach statistical significance (p = 0.07,  ηp2 = 0.16,  Effect: Time*Sex).  ( * ) indicates 

sex differences (p < 0.05) in blood neutrophilia at 3 days after injury (Post hoc unpaired 

T-tests).   
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Figure 13.  Sex differences in blood monocyte responses after SCI   

Graph shows mean (+ SEM, 103 cells/µl) blood monocytes identified with flow 

cytometry as CD45+CD11b+SSClow.  The percent of monocytes was multiplied by the 

total number of leukocytes counted in linear smears to obtain the absolute counts per µl 

of blood.   Blood monocyte counts increased then decreased over 14 days after SCI in 

both sexes (Male, p < 0.001;  Female,  p < 0.001; repeated-measures ANOVA, Effect: 

Time).  Males had on average, more blood monocytes than females before and after SCI 

(p < 0.001, 2-factor repeated-measures ANOVA, Effect: Sex).  Males had more blood 

monocytes before and 1, 3, 7 and 14 days after SCI (p < 0.05,  post-hoc unpaired T-tests).  

( * ) indicates p < 0.05.  
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Figure 14.  No sex differences in neutrophil infiltration at the injured spinal cord  

A  Representative Western blots of myeloperoxidase (MPO) and Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) content in injured spinal cords from males (M) and 

females (F) at 3 at days after 12.5mm spinal cord contusion.  B  Bar graph shows the 

ratio of MPO / GAPDH in injured spinal cords at 3 days after injury in males and 

females.  (n = 8 per sex).   
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Figure 15. Early sex differences in locomotor recovery at 6 weeks after SCI 

Graph shows the time-course of BBB scores (average + SEM) in 100-day-old spinal cord 

injured male and female F344 rats at 2 days (d) after injury then weekly for 6 weeks.  

BBB scores improved better in males than females, but long-term locomotor recovery 

was similar in both sexes  (p < 0.001, repeated measures ANOVA, Effect: Time*Sex).  ( 

* and *** ) indicate significant differences of (p < 0.01 and p < 0.001) in BBB scores 

between male and female spinal cord injured rats at the respective time-point (Scheffé’s 

post hoc test).   
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Figure 16.  Sex differences in cord area but not tissue sparing after SCI  

Graph shows mean cross-sectional area (+ SEM, mm2) from transverse spinal cord tissue 

sections at 6 week after contusion injury in male and female rats.  There were no sex 

differences in spinal cord tissue sparing at 6 weeks after injury (p = N.S., 2-factor-

repeated-measures-ANOVA,  Effect: Spared-Tissue*Sex).  However, cross-sectional 

spinal cord areas were on, average, bigger in males than females (p < 0.01, 2-factor-

repeated-measures-ANOVA,  Effect: Sex).  (0) represents the injury epicenter.  Cross-

sectional spinal cord areas were recorded 1-millimeter (mm) apart at the rostral and 

caudal directions from the injury epicenter.  Male: n = 7; Female: n = 10.   
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Figure 17.  Sex differences in area but not myelin sparing after SCI 

Graphs shows the cross-sectional area (+ SEM, mm2) of myelin basic protein (MBP) 

signal from transverse spinal cord tissue sections at 6 week after spinal cord contusion in 

male and female rats.  There were no sex differences in myelin sparing at 6 weeks after 

injury (p = N.S., 2-factor-repeated-measures-ANOVA,  Effect: Spared-myelin*Sex).  

However, cross-sectional myelinated areas were on, average, bigger in males than 

females (p < 0.01, 2-factor-repeated-measures-ANOVA,  Effect: Sex).  (0) represents the 

injury epicenter.  Cross-sectional spinal cord areas were recorded 1-millimeter (mm) 

apart at the rostral and caudal directions from the injury epicenter.  Male: n = 7; Female: 

n = 10.     
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Figure 18.  No sex differences in neuron survival after SCI   

Graph shows mean (+ SEM) counts of NeuN+ from transverse spinal cord tissue sections 

at 6 week after contusion injury in male and female rats.  There were no sex differences 

in neuron survival at 6 weeks after injury (p = N.S., 2-factor-repeated-measures-ANOVA,  

Effect: Neuron-Survival*Sex).  Males and females also had similar numbers of surviving 

neurons per tissue section across the injured spinal cord (p = N.S., 2-factor-repeated-

measures-ANOVA,  Effect: Sex).  (0) represents the injury epicenter.  Cross-sectional 

spinal cord areas were recorded  from tissue sections 1-millimeter (mm) apart at the 

rostral and caudal directions from the injury epicenter.  Male: n = 7; Female: n = 10.     
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Figure 19.  CYP dose-dependent reduction in blood leukocytes after SCI   

Graph shows mean (+ SEM, 103 cells/µl) white blood cells (WBCs, leukocytes) in male 

F344 rats before 20 mg/kg, 40 mg/kg or 80 mg/kg subcutaneous cyclophosphamide 

(CYP) treatment (given two days before injury), then at 1, 2 and 3 days after injury.  20 

mg/kg: n = 2;  40 mg/kg: n = 2,  20 mg/kg: n = 2.   
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Figure 20.  CYP prevented blood myeloid cell responses after SCI   

Graph shows the number of CD45+CD11b+ blood myeloid cells (average + SEM, 103 

cells/µl) in male F344 rats before 25 mg/kg subcutaneous cyclophosphamide (CYP) 

treatment (given two days before injury), then at 2, 4 and 6 days after injury.  VEH: n = 

2, CYP: n = 2.   
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Figure 21.  CYP prevented blood neutrophilia in males and females after SCI   

Graphs show mean (+ SEM, 103 cells/µl) blood neutrophil counts before and over 14 

days after SCI.  Blood neutrophils were identified as CD45ᐩCD11bᐩSSChigh with flow 

cytometry and the percent of blood neutrophils was multiplied by the total number of 

blood leukocytes obtained from linear smears.  A  Blood neutrophil responses differed 

significantly after SCI in VEH and CYP treated male rats (p = 0.002,  2-factor-repeated-

measures-ANOVA,  Effect: Male*Time*Treatment).  ( *** ) indicates p < 0.001 using 

post-hoc unpaired T-tests.  Male-VEH: n = 8;  Male-CYP: n = 8.  B  Blood neutrophil 

responses differed significantly in VEH and CYP treated spinal cord injured female rats 

(p = 0.001, 2-factor-repeated-measures-ANOVA,  Effect: Female*Time*Treatment).  ( * ) 

indicates p < 0.05 using post-hoc unpaired T-tests.  Female-VEH: n = 10;  Female-CYP: 

n = 10.   
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Figure 22.  CYP reduced blood monocyte counts after SCI   

Blood monocytes were identified as CD45ᐩCD11bᐩSSClow with flow cytometry and the 

percent of blood monocytes was multiplied by the total number of blood leukocytes 

obtained from linear smears.  Graphs show mean (+ SEM, 103 cells/µl) blood monocyte 

counts before and over 14 days after SCI.  A  Compared to VEH, CYP treatment 

significantly reduced the number of blood monocytes in spinal cord injured in male rats 

(p = 0.002,  2-factor-repeated-measures-ANOVA,  Effect: Male*Time*Treatment).  Male-

VEH: n = 8;  Male-CYP: n = 8.    B  Compared to VEH, CYP treatment significantly 

reduced the number of blood monocytes after SCI in female rats (p < 0.001,  2-factor-

repeated-measures-ANOVA,  Effect: Female*Time*Treatment).  ( *** ) indicates p < 

0.001 using post-hoc unpaired T-tests.  Female-VEH: n = 10;  Female-CYP: n = 10.   
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Figure 23.  Preventing blood myelocytosis did not improve walking recovery   

A  Graph shows mean BBB locomotor scores (+ SEM) from 2 days (d) to 6 weeks after 

SCI in VEH and CYP treated male rats. Compared to VEH, CYP treatment that 

prevented blood neutrophilia and reduced blood monocyte counts had a minimal effect on 

locomotor recovery in spinal-cord-injured males (p = N.S.,  2-factor-repeated-measures-

ANOVA,  Effect: Male*Time*Treatment).  Male-VEH: n = 8; Male-CYP: n = 8.  B  

Graph shows mean BBB locomotor scores (+ SEM) from 2d to 6 weeks after SCI in 

VEH and CYP treated female rats.  Compared to VEH, treatment that prevented blood 

myeloid cell responses had an acute and transient benefit on recovery of hind-limb 

function in female rats but long-term recovery was nearly identical in both female 

treatment groups (p = 0.006,  2-factor-repeated-measures-ANOVA,  Effect: 

Female*Time*Treatment).  Female-VEH: n = 10; Female-CYP: n = 10.  ( * ) indicates p 

< 0.05 using post-hoc unpaired T-tests.  



 

 

111 

 

Figure 24.  Preventing blood myelocytosis did not improve tissue sparing   

Graphs show mean spinal cord cross-sectional area (+ SEM) in transverse tissue sections 

at 6 week after spinal cord contusion in  A  VEH and CYP treated male rats and  B  VEH 

and CYP treated female rats.  Compared to VEH, CYP treatment that prevented acute 

blood neutrophilia and reduced blood monocyte counts after SCI did not have significant 

effect on tissue sparing in neither males nor females (p = N.S., 2-factor-repeated-

measures-ANOVA,  Effect: Cord-Area*Treatment).  (0) represents the injury epicenter 

and cross-sectional spinal cord areas were recorded 1-millimeter (mm) apart at the rostral 

and caudal injured spinal cord segments.  Male-VEH: n = 7; Male-CYP: n = 8; Female-

VEH: n = 10; Female-CYP: n = 10. 

  



 

 

112 

  

Figure 25.  Preventing blood myelocytosis did not improve myelin sparing   

Graphs shows the cross-sectional area of myelin basic protein (MBP) signal in transverse 

spinal cord tissue sections at 6 week after spinal cord contusion in  A  VEH and CYP 

treated male rats   B  VEH and CYP treated female rats.  Compared to VEH, CYP 

treatment that prevented acute blood myeloid cell responses after SCI did not have 

significant effect on myelin sparing in neither males nor females (p = N.S., 2-factor-

repeated-measures-ANOVA,  Effect: Myelin-Area*Treatment).  (0) represents the injury 

epicenter and cross-sectional spinal cord myelinated areas were recorded 1-millimeter 

(mm) apart at the rostral and caudal injured spinal cord segments.  Male-VEH: n = 7; 

Male-CYP: n = 8; Female-VEH: n = 10; Female-CYP: n = 10. 
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Figure 26.  Preventing blood myelocytosis did not improve neuron survival   

Graphs show the number of NeuN+ neurons in transverse spinal cord tissue sections at 6 

weeks after spinal cord contusion in  A  VEH and CYP treated male rats and  B  VEH 

and CYP treated female rats.  Compared to VEH, CYP treatment that prevented acute 

blood neutrophilia and reduced blood monocyte counts did not have a significant effect 

on neuron survival in neither male nor female groups (p = N.S., 2-factor-repeated-

measures-ANOVA,  Effect: Neuron-Counts*Treatment).  (0) represents the injury 

epicenter and neuron counts were recorded 1-millimeter (mm) apart at the rostral and 

caudal injured spinal cord segments.  Male-VEH: n = 7; Male-CYP: n = 8; Female-VEH: 

n = 10; Female-CYP: n = 10. 
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Tables 

                 Table 1 

                                     Leukocytes per µl of blood before and after SCI 

 
 
 
 
 
 
 

 

 

Table 2 

Effect of Time and biological Sex on blood leukocyte counts after SCI assessed with 
Repeated-measures ANOVA (RMANOVA) 

ID  Groups Effect SS   df MS F p ηp
2 

A1 
 

Males Time 
Error 

71693906 
40369991 

4,24 
 

17923477 
1682083 

10.66 
 

< 0.001 0.64 
 

A2 Females Time 
Error 

64343490 
37019761 

4,24 
 

16085872 
1542490 

10.43 
 

< 0.001 0.63 
 

A3 All Time*Sex 
Error 

1424975 
77389753 

4,48 
 

4880832 
2172847 

2.25 0.16 0.16 

A4 All Sex 
Error 

4880832 
26074160 

1,12 
 

356244 
1612287 

20.87 0.93 0.02 

 

                              

Days After       Male        Female 

Injury Mean     SD Mean      SD 

0 8137     703   7558     1178 

1 7211    1162 6361     1156 

3 8083    1679 8210     761 

7 6768    1278 6547     1693 

14 4168    441 4229     1113 
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         Table 3 

          CD11+ per µl of blood before and after SCI 

 
 
 
 
 
 
 

 

 

Table 4 

Results from RMANOVA for the effects of Time after SCI and Biological Sex on the 
number of CD11+ blood myeloid cells 

ID  Groups Effect SS   df MS F p ηp
2 

A5 
 

Males Time 
 

29001089 
28768888 

4,24 
 

7250272 
1198704 

6.05 
 

0.002 0.50 

A6 Females Time 4500512 
7090738 

4,24 
 

1125128 
295447 

3.81 
 

0.02 
 

0.39 

A7 All 
 

Time*Sex 
 

11453377 
11557914 

4,48 
 

1145337 
963159 

11.89 0.005 0.50 

A8 All 
 

Sex 8832536 
35859625 

1,12 
 

2208134 
747076 

2.96 
 

0.03 
 

0.20 

 

  

Days After       Male        Female 

Injury Mean     SD Mean      SD 

0 1513     237   1245     312 

1 3258     635 2299     588 

3 3609     1710 2032     583 

7 2456     873 1885     853 

14 2197     852 2093     485 
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                                 Table 5 

                                     RP1+ cells per µl of blood before and after SCI  

 
 
 
 
 
 
 

 

 
 
 

Table 6  

Effects of Time after SCI and Sex on blood neutrophil  counts assessed with RMANOVA 

ID  Groups Effect SS df MS   F p ηp
2 

A9 
 

Males Time 13630695 
11687247 

4,24 
 

3407674 
486969 

7.0 0.001 0.54 

A10 Females Time 2522130 
3981169 

4,24 630532 
165882 

3.80 0.02 0.39 

A11 All 
 

Time*Sex 
 

3051907 
15668416 

4,48 762977 
326425 

2.34 
 

0.07 
 

0.16 

A12 All 
 

Sex 
 

2818127 
4640586 

1,12 2818127 
386716 

7.29 0.02 0.38 

 
  

Days After       Male        Female 

      Injury Mean     SD Mean      SD 

0  443      162   585        312 

1 1940     588 1341      509 

3 2023     268 1051      366 

7 1342     641  947       606 

14  804      344  689       332 
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                                 Table 7 

          Monocytes per µl of blood before and after SCI 

 
 
 
 
 
 
 
 

 

 

Table 8   

Effects of Time after SCI and Sex on blood monocyte counts assessed with RMANOVA 

ID  Groups Effect      SS   df MS   F    p ηp
2 

A13 
 

Males Time 
Error 

4083358 
9433871 

4,24 1020840 
393078 

2.60 0.06 0.30 

A14 Females Time 
Error 

1146143 
2291781 

4,24 286536 
95491 

3.00 0.04 0.33 

A15 All 
 

Time*Sex 
Error 

1598996 
11725652 

4,48 399749 
244284 

1.64 0.18 0.12 

A16 All 
 

Sex 
Error 

3530018 
4291140 

1,12 3530018 
357595 

9.87 0.009 0.45 

 

  

Days After       Male        Female 

Injury Mean     SD Mean      SD 

0 1070     236   660        267 

1 1318     579 958        235 

3 1585     494 945        287 

7 1115     333 937        469 

14 1393     618 1232      283 
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                                        Table 9 

           B cells per µl of blood before and after SCI 

 
 
 
 
 
 
 

 
 

 

 

Table 10   

Effects of Time after SCI and Sex on blood B cell numbers assessed with RMANOVA 

Test  Measure Effect SS df MS F p ηp
2 

A17 
 

Males Time 12670454 
6992017 

4,24 3167613 
291334 

10.87 0.001 0.64 

A18 Females Time 4376377 
8238707 

4,24 1094094 
343279 

3.19 0.03 0.35 

A19 All 
 

Time*Sex 
 

1170364 
15230724 

4,48 292591 
317307 

0.92 0.46 0.07 

A20 All Sex 1666388 
5862050 

1,12 1666388 
488504 

3.41 0.09 0.22 

 

  

Days After       Male        Female 

Injury Mean     SD Mean      SD 

0 2244     1077   1576       784 

1 889       348 802         766 

3 1132     750 964         429 

7 1555      442 1135       593 

14 429        284 515         181 
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                                      Table 11 

         T cells per µl of blood before and after SCI 

 
 
 
 
 
 
 
 

 

 

Table 12 

Effects of Time after SCI and Sex on blood T cell counts assessed with RMANOVA 

ID  Measure Effect      SS   df MS   F p ηp
2 

A21 
 

Males Time 4447821 
9324063 

4,24 1111955 
388503 

2.86 0.05 0.32 

A22 Females Time 4427456 
20347219 

4,24 1106864 
847801 

1.31 0.30 0.18 

A23 All 
 

Time*Sex 
 

2749907 
6447753 

1,12 2749907 
537313 

5.12 0.04 0.30 

A24 All 
 

Sex 
 

1818601 
29671281 

4,48 454650 
618152 

0.74 0.57 0.06 

 

  

Days after       Male        Female 

Injury Mean     SD Mean      SD 

0 1020      575   1840       1043 

1 854        630 1139       759 

3 1281      653 2147       1191  

7 1883      673 1861       805 

14 1031      446 1429       560 
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Table 13  

Experimental design to treat acute blood leukocyte responses after SCI 

Injury Model     N 

F344 rats 100 ±  3 days old  
12.5mm 10g contusion at T11 with a MASCIS Impactor   36 

Males    16 

Females    20 

Treatment       N 

Subdermal 1mL of distilled water vehicle  2 days before injury 18 

Subdermal 25 mg / kg CYP in distilled water 2 days before injury 18 

Blood collection and leukocyte quantification     

Cranial Vena Cava Venipuncture, 100µl of blood per collection  
Endpoints: before treatment, 1 day (d), 3d, 7d, 14d after injury  
Linear smear to count total leukocytes per µl of blood  
Flow cytometry to differentiate CD45ᐩCD11ᐩ blood myeloid cells  
Blood CD11b+ monocyte and neutrophil differentiation with side scatter  
Outcome Measures      
CD11b high side scatter neutrophil counts   
CD11b low side scatter monocytes counts    
BBB scores at 2d, 1 week (w), 2w, 3w, 4w, 5w, 6w  
Spinal cord sparing area 6 weeks after injury   
Myelin sparing  area 6 weeks after injury   
Neuron survival at the injury site    
Injury site gross spinal cord and myelin volume at week 6  
Intact spinal cord volume 4mm caudally and rostrally from injury site  
Intact myelin volume 4mm caudally and rostrally from injury site  
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                                         Table 14 

      CD11b+ neutrophils per µl of blood before  
      and after SCI in male and female rats 

 
 
 
 
 
 
 
 

 

 

Table 15 

Effects of Time after SCI and Sex on CD11b+ neutrophil counts assessed with RMANOVA 

 

  

       Male        Female 

Days Mean     SD  Mean     SD 

0 511       161    317       142 

1 1319     693  980       541 

3 1637     477  730       281 

7 1267     683  1027     522 

14 756       123  668       321 

ID Group Effect SS   df     MS    F Sig.   ηp
2 

B1 Male Time 6637483 4,28 1659371 7.34 <0.001 0.51 

  Error 6330189  226078    

B2 Female Time 2801859 4,36 700465 4.68 .004 0.34 

  Error 5385459  149596    

B3 All Time*Sex 1934660 4,64 483665 2.64 .04 0.14 

  Error 11715648  183057    
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                                   Table 16 

                CD11b+ monocytes per µl of blood before 
                                       and after SCI 

 
 
 
 
 
 
 
 

 

 

Table 17 

RMANOVA results for the effects of Time after SCI and biological Sex on CD11b+ blood 
monocyte counts  

 
  

       Male        Female 

Days Mean     SD  Mean     SD 

0 654       110    514       135 

1 633       216  451       80 

3 742       277  530       190 

7 547       150  413       118 

14 360       67  304       79 

Test Group Effect SS   df     MS    F     Sig.   ηp
2 

B4 Male Time 669258 4,28 167315 5.17   0.002 0.36 

  Error 969024  34608    

B5 Female Time 329995 4,36 82499 4.83   0.004 0.41 

  Error 574292  15953    

B6 All Time*Sex 61431 1,4 15358 0.64   0.64 0.04 

B7 All Sex 465697 1,16 465697 22.71 <0.001 0.59 

  Error 328125      
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                               Table 18 

                                   BBB locomotor scores after SCI 

 
 
 
 
 
 
 
 
 
 

 

 

Table 19   

The effect of biological sex on locomotor recovery after SCI assessed with RMANOVA 

 

  

       Male        Female 

Time Mean     SD   Mean       SD 

2d 0.25      0.46      0.20        0.42 

1w 8.38      2.88    1.80        2.62 

2w 11.75    1.83    10.40      0.70 

3w 12.13    1.64    11.00      0.67 

4w 13.88     1.89    12.10       0.99 

5w 13.38     1.92    12.40       1.51 

6w 14.13     1.36    13.20      1.23 

ID Group Effect      SS      df    MS     F     Sig.   ηp
2 

B9 All Time 2720.98 6 453.50 286.06 <0.001 0.95 

B10  Time*Sex 124.28 6,96 20.71 13.07 <0.001 0.45 

  Error 152.19  1.59    
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Table 20  

RMANOVA results for the effect of biological Sex on tissue sparing 6 weeks after SCI 

 

Table 21  

 The effect of biological sex on myelin sparing 6 weeks after SCI assessed with RMANOVA 

 

Table 22  

RMANOVA results for the effect of biological sex on neuron survival 6 weeks after SCI  

 

  

ID Group Effect    SS df   MS    F     Sig.   ηp
2 

B11 All Area 137.92 9 15.32 96.88 < 0.001 0.87 

B12  Area*Sex 0.26 9,135 0.03 0.18    0.99 0.01 

  Error 21.35  0.16    

ID Group Effect    SS      df   MS    F     Sig.   ηp
2 

B13 All Myelin 41.42 9 4.60 129.16 < 0.001 0.90 

B14  Myelin*Sex 0.08 9,135 0.01 0.25    0.98 0.02 

  Error 4.81  0.04    

ID Group Effect      SS df   MS    F    Sig.   ηp
2 

B15 All Neurons 46931092 9 5214566 126.62 < 0.001 0.89 

B16  Neurons*Sex 263353 9,135 29261 0.71    0.698 0.05 

  Error 5559471  41181    
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                       Table 23   

                         Gross spinal cord volume (mm3) in the injury site  
                         and at intact cranial and caudal segments  

Location  Sex Treatment Volume 

Injury Site Male VEH 28.01 ± 2.46 

Injury Site Male CYP 27.18 ± 2.12 

Injury Site Female VEH 25.57 ± 0.98 

Injury Site Female CYP 24.73 ± 2.51 

Cranial Male VEH 14.47 ± 0.47 

Cranial Male CYP 14.27 ± 0.44 

Cranial Female VEH 13.73 ± 0.45 

Cranial Female CYP 13.79 ± 0.62 

Caudal Male VEH 17.24 ± 0.63 

Caudal Male CYP 17.19 ± 0.69 

Caudal Female VEH 16.54 ± 0.50 

Caudal Female CYP 16.57 ± 0.79 
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                      Table 24   

                        Spinal cord myelin volume (mm3) in the injury site  
                        and at intact cranial and caudal segments   

Location  Sex Treatment Volume 

Injury Site Male VEH 12.03 ± 1.42 

Injury Site Male CYP 11.56 ± 0.96 

Injury Site Female VEH 10.11 ± 0.57 

Injury Site Female CYP   9.90 ± 1.35 

Cranial Male VEH   7.68 ± 0.45 

Cranial Male CYP   7.69 ± 0.38 

Cranial Female VEH   6.95 ± 0.28 

Cranial Female CYP   6.93 ± 0.38 

Caudal Male VEH   8.08 ± 0.39 

Caudal Male CYP   8.09 ± 0.49 

Caudal Female VEH   7.45 ± 0.22 

Caudal Female CYP   7.31 ± 0.40 

 

                    Table 25   

                      Neuron counts at the injured spinal cord  

Location  Sex Treatment Neuron Count 

Injury Site Male VEH 74339 ± 7713 

Injury Site Male CYP 70734 ± 9831 

Injury Site Female VEH 70566 ± 9467 

Injury Site Female CYP 70943 ± 8416 
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Table 26   

Effect of CYP treatment on blood neutrophil responses after SCI assessed with RMANOVA  

 

  

ID Group Effect      SS df   MS    F    Sig.   ηp
2 

C1 CYP Male Time 956009 4,28 239002 1.38    0.27 0.17 

  Error 4837347  172762    

C2 CYP Female Time 4029991 4,36 1007498 11.32 < 0.001 0.56 

  Error 3204229  89006    

C3 VEH and CYP Time 5637526 4 1659371 7.34 < 0.001 0.40 

 Male Time*Tx 1955966 4,56 488992 2.45    0.056 0.15 

  Error 11167535  199420    

C4 VEH and CYP Time 4172214 4 1043053 8.74 < 0.001 0.33 

 Female Time*Tx 2659636 4,72 664909 5.57    0.001 0.24 

  Error 8589688  119301    
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Table 27   

Effect of CYP treatment on blood monocyte responses after SCI assessed with RMANOVA   

 

Table 28 

RMANOVA results for the effect of CYP treatment on gross tissue sparing in both sexes at 
6 weeks after SCI 

 
 

  

ID Group Effect      SS df   MS    F    Sig.   ηp
2 

C5 CYP Male Time 370220 4,28 92555 12.38 < 0.001 0.64 

  Error 209266  7474    

C6 CYP Female Time 355328 4,36 88832 20.31 < 0.001 0.69 

  Error 157440  4373    

 VEH and CYP Time 5637526 4 1659371 7.34 < 0.001 0.40 

C7 Male Time*TX 1955966 4,56 488992 2.45    0.056 0.15 

  Error 11167535  199420    

 VEH and CYP Time 4172214 4 1043053 8.74 < 0.001 0.33 

C8 Female Time*TX 2659636 4,72 664909 5.57    0.001 0.24 

  Error 8589688  119301    

Test Group Effect    SS df   MS    F   Sig.   ηp
2 

C9 VEH and CYP Time 128.39 9 14.27 82.97 < 0.001 0.86 

 Male Time*Tx 0.10 9,117 0.01 0.07 1.000 0.01 

  Error 20.12  0.17    

C10 VEH and CYP Time 177.58 9 19.73 147.45 < 0.001 0.89 

 Female Time*Tx 0.88 9,162 0.10 0.73 0.681 0.04 

  Error 21.68  0.13    
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Table 29   

 The effect of CYP treatment on BBB Scores after SCI assessed with RMANOVA  

 

Table 30.   

RMANOVA results for the effect of CYP treatment on myelin sparing at 6 weeks after SCI  

 

  

ID Group Effect     SS df   MS    F    Sig.   ηp
2 

C11 VEH and CYP Time 2105.55 6 350.93 224.59 < 0.001   0.94 

 Male Time*Tx 8.62 6,84 1.44 0.92    0.485   0.6 

  Error 131.25  1.56    

C12 VEH and CYP Time 3066.39 6 511.06 251.41 < 0.001   0.93 

 Female Time*Tx 39.50 6,108 6.58 3.24 0.006   0.15 

  Error 219.54  2.03    

Test Group Effect SS   df     MS    F Sig.   ηp
2 

C13 VEH and CYP Time 41.32 9 4.59 129.62 < 0.001  

 Male Time*Tx 0.09 9,117 0.01 0.27 0.981  

  Error 4.14  0.04    

C14 VEH and CYP Time 46.29 9 5.14 145.04 < 0.001  

 Female Time*Tx 0.23 9,162 0.03 0.71 0.696  

  Error 5.74  0.04    
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Table 31.   

Effect of CYP treatment on neuron survival at 6 weeks after SCI in both sexes 

 

Table 32.   

Effect of CYP treatment and biological Sex on BBB scores for 6 weeks after SCI 

 

  

ID Group Effect       SS df    MS    F   Sig.   ηp
2 

C15 VEH and CYP Time 43375159 9 4819462 106.02 <0.001 0.89 

 Male Time*Tx 204609 9,117 22734 0.50   0.872 0.04 

  Error 5318619  45458    

C16 VEH and CYP Time 55833829 9 6203759 163.78 <0.001 0.90 

 Female Time*Tx 484086 9,162 53787 1.42   0.183 0.07 

  Error 6136493  37880    

ID Effect       SS df    MS    F     Sig.   ηp
2 

 Time    4910 6 816.9 447.1 < 0.001 0.89 

C17 Time*Tx    32.2 6,192 5.4 2.9    0.009 0.04 

C18 Time*Sex    163.8 6,192 27.3 14.9 < 0.001  

 Time*Tx*Sex    12.46 6,192 2.1 1.1    0.34  

 Error    350.79  1.8    
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Table 33   

Effect of CYP treatment and biological Sex on tissue sparing at 6 weeks after SCI 

 

Table 34.   

Effect of CYP treatment and biological Sex on myelin sparing at 6 weeks after SCI 

 

  

ID Effect       SS df  MS    F     Sig.   ηp
2 

 Area    298.6 9 33.2 221.4 < 0.001 0.87 

C19 Area*Tx    0.27 9,279 0.03 0.2    0.99 0.01 

C20 Area*Sex    0.43 9,279 0.05 0.32    0.97 0.01 

 Area*Tx*Sex    0.44 9,279 0.05 0.33    0.96 0.01 

 Error    41.8  1.8    

ID Effect      SS df MS   F     Sig.   ηp
2 

 Myelin    86.5 9 9.6 271 < 0.001 0.9 

C21 Myelin*Tx    0.06 9,279 0.01 0.19    0.99 0.01 

C22 Myelin*Sex    0.43 9,279 0.05 1.35    0.21 0.04 

 Myelin*Tx*Sex    0.23 9,279 0.03 0.73    0.68 0.02 

 Error    9.9  0.04    
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Table 35.   

Effect of CYP treatment and biological Sex on neuron survival at 6 weeks after SCI 

 

  

ID Effect      SS df MS   F     Sig.  ηp
2 

 Neurons    96986440 9 10776271 262 < 0.001 0.9 

C23 Neurons*Tx    415565 9,279 46174 1.13    0.35 0.04 

C24 Neurons*Sex    399958 9,279 44440 1.08    0.38 0.03 

 Neurons*Tx*Sex    248203 9,279 27578 0.67    0.73 0.02 

 Error    11455113  41058    
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