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ABSTRACT OF THE DISSERTATION 

Maintenance Modeling for Degrading Systems with Individually Repairable 

Components Using Optimization and Reinforcement Learning 

By NOOSHIN YOUSEFI 

Dissertation Director: 

Prof. David W. Coit 

There are many different industrial and manufacturing multi-components systems, 

where each component experiences multiple competing failure processes, such as 

degradation and environmental shock. In this research there are two competing failure 

processes for each component, namely soft failure due to the degradation and hard 

failure due to the random shocks coming to the system. Moreover, each incoming shock 

results in damage on all the degradation paths of all the components. For some multi-

component systems, components can be repaired/replaced individually within the 

system. For such multi-component systems with individually repairable components 

and dependent failure processes, it is not economical to replace the whole system if it 

fails, while in most of the previous studies, the systems are either considered to have 

independent failure processes or packaged and sealed together, and the whole system 

was replaced with a new one when any component fails. For systems functioning for a 

very long time, and each component is repairable within the system, individual 

components have been replaced several times. Therefore, the starting time or age of all 

the components within the system are not the same. In this research work, the 

conditional reliability analysis of such systems is studied considering the initial age of 

each component, at the beginning of the inspection intervals, as a random variable. For 

systems, whose costs due to failure are high, it is prudent to avoid the event of failure, 

i.e., the components should be repaired or replaced before the failure happens. 
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Condition-based maintenance models recommend a policy to initiate repair or 

replacement before the failure occurs by detecting the system degradation status at each 

inspection time interval. Different types of condition-based maintenance models, 

including both static and dynamic models, are formulated and optimized to find the best 

maintenance policy. In some of the proposed models, determination of the optimal 

maintenance thresholds, such as on-condition and opportunistic thresholds for each 

component, along with optimal inspection time for the whole system, work to prevent 

failures and minimize cost. For multi-component systems with repairable components, 

it is also beneficial to have a dynamic maintenance plan based on the current 

degradation level of all the components in the system. In this study, different dynamic 

condition-based maintenance models are proposed using optimization and 

reinforcement learning methods. Moreover, different types of maintenance actions and 

the uncertainty of the maintenance implementation are also considered in the 

formulation of the maintenance models. Using a reinforcement learning approach 

provides a more time-efficient and cost-effective method compared to the traditional 

maintenance optimization solutions, and it can also provide a dynamic maintenance 

policy for each specific degradation state of the system. This can be more useful and 

beneficial compared to the fixed or stationary maintenance plans. The maintenance 

problems are formulated as a Markov decision process and are solved by using a Q-

learning algorithm and deep Q-learning. Overall, the goal of the proposed research is 

to provide practical and effective maintenance models for a multi-component system 

with individually repairable components to avoid the failure and high downtime cost, 

and to minimize the cost.  
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1. Introduction 

Over the last few decades, the maintenance of systems has become more and more 

complex. The maintenance function is defined as a set of activities or tasks used to restore 

an item to a state in which it can perform its designated functions [1]. An effective 

maintenance policy maintains the system by achieving high safety and low cost, both of 

which are critical concerns in many modern industries [2]. Reliability analysis of systems 

plays a critical role in determining proper maintenance. This research focuses on reliability 

analysis and optimal maintenance plan for various types of systems, including repairable 

components subject to multiple dependent competing failure processes of degradation and 

environmental shock process. Previous research studied single-unit systems or systems 

with nonrepairable components under some unreliable assumption of failure processes. To 

be effective in providing a maintenance plan for a specific system, the cause of failures 

should be determined from a technical perspective, and system reliability should be 

analyzed based on the defined failure processes.  

Traditional approaches of reliability analysis are sometimes inappropriate or 

inefficient for some new devices because either they are too reliable to observe failure time 

data in a reasonable time period, or the time period between design and product release is 

too short [3]. If new technologies are to be transitioned from low volume production or 

relatively simple design applications, new and innovative research focusing on system 

reliability issues must be considered [4].  

For complex systems, the reliability analysis can be very complicated and 

challenging due to the different failure processes, environmental factors, etc. 

Environmental factors such as temperature, humidity, wind speed, mechanical shocks, etc., 
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can accelerate the deteriorating process of systems or components. Moreover, aging, 

wearing, corrosion, mechanical fatigue, and other physical changes can occur due to the 

regular operational and environmental exposure [5]. Therefore, all the possible failure 

mechanisms and their effects on systems or components should be identified and analyzed 

thoroughly. Degradation is one of the common failure mechanisms that have been widely 

investigated [6]. For example, deterioration of reinforced concrete has become a serious 

problem worldwide. Rebars and reinforced concrete are the main components of bridges. 

The estimated cost of bridge failures due to the rebars deterioration in the USA exceeds $8 

billion. Figure 1.1 (a) and (b) show the construction of rebars and reinforced concrete in 

bridge construction.  

 
Figure 1.1 Rebars and reinforced concrete in bridge construction 

When rebars, which are located inside the concrete, deteriorate due to the aging and 

environmental factors, they occupy a space equal to 6 times their new condition; therefore, 

it causes the failure of concrete and eventually bridges. Figure 1.2 shows the process of 

bridge failure due to rebar deterioration.  
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Figure 1.2 Bridge failure due to rebar deterioration 

On March 14, 2019, one of the large bridges near CST station in Mumbai, India, 

broke down because of concrete failure. Six people died, and 30 people were seriously 

injured in this accident. On March 15, 2018, a complete collapse of a bridge happened in 

Florida, the USA, and the reason is reported as faulty design and poor equipment quality. 

Six people died, and nine people were injured in this collapse. There are various areas such 

as railroad, aircraft, pipelines, etc., with the same goal of increasing the reliability and 

safety of their system. In this research, the reliability models and maintenance models are 

developed for different types of systems, including different components subject to 

multiple failure processes, which can be beneficial in most of the industries to improve 

their system safety and diminish their total cost. This chapter starts with the problem 

statement that explains the system reliability problems. Then, the motivation of this 

research is stated for many industrial applications. Lastly, the objectives and contributions 

of this research are addressed. 

1.1 Problem Statement 

By increasing the complexity of many industrial and manufacturing systems, the 

importance of reliability and system safety is becoming more critical. The primary step in 

improving the system's reliability is analyzing the systems' failure processes. Failure 
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mechanisms are understood from a physical perspective, and typical degradation measures 

include wear, drug stability, deterioration, degraded light intensity, crack propagation, 

resistance drift, and loss of structural strength [7].  

Degradation is one of the common failure mechanisms that have been widely 

investigated. It can be defined as the aging processes of a system due to cumulated wear, 

tiredness, corrosion, etc. Degradation analysis is an approach to measure and assess system 

reliability. Moreover, environmental or physical shocks can be another critical factor that 

can cause system failure by accelerating the degradation process or causing immediate 

failure. These two common failure processes of degradation and random shocks are used 

in this research as competing failure processes, which can also be dependent. In the 

previous studies, mostly, they are assumed to be independent. In this study, it is assumed 

that each incoming shock can cause immediate failure and accelerate the degradation 

process of all the components, which is more realistic compared to previous studies. 

Moreover, for some cases, there is a mutual dependency between degradation and shock 

process, which is studied in this research, where degradation can increase the shock 

intensity, and each incoming shock can accelerate the degradation process. 

Obtaining a proper maintenance policy can help most industries improve the safety 

and reliability of their systems. For systems whose penalty cost due to downtime is high, 

detecting the component status and facilitating repair/replacement decision-making before 

system failure, leads to low risk of failure, and subsequently, lower maintenance cost.  

Time-based maintenance and condition-based maintenance are two types of 

preventive maintenance which have been received significant attention. There are several 

studies which discuss the effectiveness and provide comparisons of time-based 
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maintenance and condition-based maintenance for different applications [8, 9]. Condition-

based maintenance recommends a maintenance decision such as replacement or repair 

based on the observed condition of the system. For systems with each component 

deteriorating due to degradation and random shocks, monitoring the component status 

assists in providing a maintenance decision making policy. For systems of degrading 

components, providing a condition-based maintenance plan can be a particularly difficult 

problem because of the dependent degradation and dependent failure times. In previous 

research, preventive maintenance and periodic inspection models have been considered; 

however, for systems whose costs due to failure are high, it is prudent to avoid the event 

of failure, i.e., the components or system should be repaired or replaced before the failure 

happens. Providing a preventive maintenance plan is effective to avoid failure and to 

minimize cost, which is studied in this research for different types of systems.  

Analyzing the components of a system is one of the preliminary steps in identifying 

system behavior. Different components configuration within the system can affect the 

system reliability and time of failure. Moreover, systems with repairable components or 

non-repairable ones should be modeled differently, which is considered in this study. For 

multi-component systems with individually repairable dependent components, it is not 

economical to replace the whole system if it fails. However, in the previous studies, the 

repairable systems considered as packaged and sealed together, and there is no model for 

reliability analysis of systems with individually repairable dependent components that are 

degrading and experiencing random shocks. In this study, condition-based maintenance is 

studied for a multi-component system with individually repairable components subject to 

degradation and random shocks.  
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The Dependency of components degradation is another factor which affect the 

system reliability. Due to the similar working environment, the degradation status of 

components in the same system are likely to be probabilistically dependent and correlated. 

Without considering dependent component deterioration, reliability models are not 

sufficient or adequate for some systems and engineering applications. Dependent stochastic 

degradation paths among components represent a challenging issue because it increases the 

complexity of system reliability modeling and calculation. However, it is also more practical 

and realistic. Component degradation paths can be dependent due to different reasons: 

1. Components are in close proximity, so that degradation status of some components 

can directly influence the degradation of other components, and in return, the 

degradation of other components may also affect the original instigating components 

and other components. Therefore, component degradation paths are dependent or 

correlated.  

2. Components exist in a shared environment, and factors like temperature, humidity, 

exposure to contaminants, can affect all the component degradation paths at the same 

time. All components in a system that is randomly exposed to a harsher environment 

may degrade at a higher rate, and clustered together. 

3. Components sharing load likely have dependent degradation paths. A rapid gravity 

filter (RGF) media degrades during the water filtration process. Typically, there are 

multiple RGFs configured in parallel in a water filtering system, and RGFs can be 

activated to simultaneously filter the incoming water. They may not be required to 

operate during non-peak periods, and some of them may operate in cold standby. 

Therefore, the degradation level and the reliability of each RGF depends on incoming 

water situation [10].  
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There are different types of maintenance policies for systems of degrading 

components. However, due to the inherent stochastic degradation behavior, providing a 

dynamic maintenance policy for a system with multiple components is potentially a more 

efficient and cost-effective policy than the previous maintenance plans where the 

inspection time or the maintenance actions are fixed and predefined for each maintenance 

plan. In this research, dynamic maintenance policies are also developed for systems with 

individually repairable components subject to multiple dependent competing failure 

processes.  

1.2 Motivation 

There have been relatively few research studies considering multiple failure 

processes for systems with multiple components. Most of the previous studies, consider 

systems as a single component or as a packaged together in a system without individual 

component repair. Most of the modern products consist of various components that degrade 

differently, so considering all of them as one-unit system which degrades over time is not 

practical. Moreover, considering multi-component systems with components packaged and 

sealed together is not practical and useful for many industrial applications. There are 

different product including various components where each of them can be individually 

maintained within the system. Analyzing the system reliability and providing a 

maintenance policy for systems with individually repairable components, where each 

component degrades over time, is a unique challenge which is studied in this research. In 

this study, to provide a more practical and beneficial maintenance policy for degrading 

system, different types of systems are studied separately. The first type is a system with 

multiple components which each of them degrades individually but it is not practical or 
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beneficial to maintain them individually. Examples of this kind of systems are cellphones, 

or micro-electro-mechanical system (MEMS) which are shown in Figure 1.3(a) and (b) 

that consist of different components which degrade individually but for maintenance 

perspective, they should be packaged together.  

 

 

Figure 1.3(a) Micro-electro-mechanical, (b) Cellphone 

The second type of system consists of different components that degrade 

differently, but they can be maintained individually within the system. A wind turbine is 

an example of a multi-component system that consists of different components with 

different mechanical functions such as blades, brake, gearbox, generator, rotor, shafts, and 

tower, which degrade distinctively. Since each component degrades differently within the 

system, they may have different failure times, which should be considered in a maintenance 

model and system reliability. Figure 1.4 shows the main components of a wind turbine and 

its location within the system.  
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Figure 1.4 Main parts of a wind turbine 

The third type of systems which are studied in this research is a system with 

different components, where they are degrading in a cluster due to the shared environment, 

factors like temperature, humidity, exposure to contaminants, can affect all the component 

degradation paths at the same time. A sliding spool in electrohydraulic servo-valve is used in 

wide range of applications from metal forming and wood processing to aircraft applications. 

Figure 1.5(a) shows the configuration of components in a electrohydraulic servo-valve. A rapid 

gravity filter (RGF) media is another example of system with dependent component, which 

is shown in Figure 1.5 (b) 
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Figure 1.5 (a) Electrohydraulic servo valve, (b) Rapid gravity filter 

Different types of systems have different degradation behavior, which should be 

considered in calculating the system reliability and subsequently obtaining a maintenance 

model. In this study, system reliability is analyzed for different types of systems where in 

each case, each component is subject to dependent competing failure processes of 

degradation and random shocks. Based on the system reliability which can be calculated 

for each specific system, an optimal condition-based maintenance can be provided to avoid 

the system failure and reduce the maintenance cost.  

1.3 Research contributions 

In this research, new models are developed to analyze the reliability of complicated 

multi-component system subject to multiple dependent and competing failure processes 

and subsequently a maintenance model is developed for each system based on the proposed 

reliability model. One of the main contributions is consideration and analysis of a multi-

component system subject to multiple dependent competing failure processes instead of 

single unit system experiencing simple failure process where each component can be 

individually repairable. Different types of systems are studied with various components 

degradation behavior and different maintainability design. New reliability models are 

developed for different degradation behavior and different maintenance design. The other 

critical contribution of this study is considering different condition-based maintenance 

models such as static and dynamic to avoid system failure by suggesting the maintenance 

actions for the system or each individual component. Moreover, different types of 

maintenance actions and their stochastic effects on the components are also considered in 

this research work.  

1.  A reliability model is developed for a multi-component system, where each 
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component degrades separately, and it is subject to random shock arrivals. However, 

the system is packaged and sealed together, and the maintenance actions should be 

implemented on all the components. An optimal maintenance plan is developed to 

find the optimal inspection time for the whole system and the optimal threshold of 

preventive maintenance for all the components simultaneously. There is no model in 

the previous studies that can provide the inspection time and on-condition threshold 

of a multi-component system simultaneously. The previous studies are either 

considered as a single component system or focus on the time-based maintenance and 

condition-based maintenance distinctly. 

2. System reliability is calculated for a system with multiple components, where 

components degrade in a cluster/groups with the same degradation behavior due to 

the shared environment. In this case, the degradation of components in the same 

clusters are dependent. Considering the dependency of components’ degradation, a 

new reliability model is developed and analyzed.  

3. In this research, system reliability is analyzed for a system of multiple components 

where each component can degrade separately and be maintained individually within 

the system. Subsequently an optimal maintenance model is found for such system to 

provide when the whole system should be inspected, and at each inspection interval, 

each component should be maintained to have the minimum cost. In most of the 

previous studies, the whole system is considered as packaged together and there is no 

reliability and maintenance model for systems with individually repairable degrading 

components.  

4. Different types of maintenance policies are developed for a degrading system with 
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individually repairable components. A condition-based maintenance plan and an 

opportunistic maintenance policy are developed for system which can provide some 

maintenance thresholds for each component within the system to implement 

preventive maintenance and subsequently prevent the system failure. 

5. Dynamic maintenance models are developed for multi-component systems with 

individually repairable components. By using the proposed maintenance model, the 

next inspection time for system can be found dynamically at the beginning of the 

inspection that can minimize the total cost and increase the availability of the systems. 

Moreover, a machine learning algorithm called reinforcement learning is used to find 

the optimal maintenance actions dynamically for each component within the system 

based on its degradation level.   

6. Different types of maintenance actions are considered for degrading systems, such as 

perfect maintenance actions and imperfect actions. All the maintenance actions 

cannot be completed as expected, the maintenance actions which cannot improve the 

system or components to the expected level are called imperfect maintenance actions. 

Moreover, some actions, such as replacement need a spare part that should be ordered. 

Spare parts ordering and the uncertainty of the order arrivals are also considered. In 

this study, different types of maintenance actions and their stochastic effects are 

considered for the maintenance modeling of degrading systems.  

Background and literature review 

In this section, the literature is reviewed on reliability analysis of systems with 

single and multiple components subject to different failure processes and the various 

maintenance models for systems.  
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1.4 System reliability analysis  

Significant and meaningful prior research has been performed on reliability 

analysis of systems with degradation, shocks, and independent or dependent failure 

processes. Using a degradation model provides a good understanding of physics-of-failure 

and method to predict the reliability. Therefore, analyzing the reliability by using the 

degradation models has been studied for several years.  

1.4.1 Degradation modeling  

One of the most common failure mode of industrial and manufacturing systems 

result from gradual cumulative deterioration of systems over time which is known as 

degradation [11]. There are two type of degradation: natural and forced degradation [12, 

13], where natural degradation is due to the gradual deterioration of systems over time, and 

forced degradation is external to systems due to the load or stress which gradually 

increases. There are four types of degradation modeling, experienced-based approaches, 

model-based approaches, knowledge-based approaches, and data-driven approaches.  

Experienced-based approaches are the simplest forms which are based on the 

distribution of event records of a population of identical items. The most popular approach 

of experienced-based approaches is the Weibull distribution due to its ability to conduct 

different types of behaviour including infant mortality and wear-out in the bathtub-tube 

curve [14].  In knowledge-based methods there is no degradation model due to the 

difficulty of mathematical models. These approaches are suitable for solving problems 

usually solved by human specialists. Model-based approaches use mathematical and 

statistical model to measure the deterioration of systems. Data-driven approaches are based 

upon statistical and learning techniques which come from the theory of pattern recognition. 
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These range from multivariate statistical methods to black-box methods based on neural 

networks (e.g., probability neural networks, decision trees, multi-layer perceptrons, radial 

basis functions and learning vector quantization, graphical models (e.g., Bayesian 

networks, hidden Markov model), self organising feature maps, filters, autoregressive 

models) [15-17]. 

Research shows that degradation measures often provide more information than 

failure time data to assess and predict the reliability of systems [18, 19]. System 

degradation has a stochastic property which can be modeled in different ways. 

Singpurwalla [20] reviewed the degradation models in a dynamic environment. Meeker 

and Escobar [18] reviewed different degradation modeling and compared them with failure 

time models. Degradation models in reliability analysis can potentially be classified as it 

is shown in Figure 2.1 [15]. 

 

Figure 0.1 Degradation models in reliability analysis 

The difference between normal degradation models and accelerated degradation 

models is, in normal degradation models the reliability is estimated using degradation data 

from normal operating condition, while in the second models the models inferences about 

reliability at normal condition using data obtained at accelerated time. Therefore, to 
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analyze the system degradation, it is practical to use accelerated life models. Accelerated 

degradation models consist of physics-based models and the statistics-based models. 

Nelson [21] extensively describes both the physics-based models and statistics-based 

models. Gorjian et al. [22] reviewed the statistical models with accelerated failure time in 

more detail.  General degradation path model, random process models, time series models, 

stress-strength interference model, and stochastic degradation models are different normal 

degradation models.  

(1) General degradation path: This model is suitable for samples which are tested in a 

homogeneous environment and fit as linear or nonlinear regression models on 

degradation observations. Haghighi et al. [23] reviewed the nonparametric, semi-

parametric, and parametric estimation of survival function using general degradation 

path. Lu and Park [24] studied regression-type method, general degradation path 

models for analyzing linear degradation data from semiconductors. Bagdonavičius et 

al. [25] used general nonparametric, nonlinear path models for degradation process.  

(2) Random process model: In this model, there is no assumption about degradation 

paths, and it is a suitable model for reliability estimation with multiple observation at 

certain time points. The idea of random effect is borrowed from Bayesian linear 

regression. Lu and Meeker [26] studied a random effect model to make inferences 

about failure-time distribution using fatigue degradation data.   

(3) Time series model: This model is appropriate for reliability estimation in a dynamic 

environment where systems have multiple performance measures.  Lu et al [27] 

developed a time series model to predict system reliability considering multiple 

failure modes. The performance measures across time are treated as multivariate time 

https://www.sciencedirect.com/topics/mathematics/bayesian
https://www.sciencedirect.com/topics/mathematics/linear-regression
https://www.sciencedirect.com/topics/mathematics/linear-regression
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series, and mean vector and variance matrix of performance is predicted and used to 

calculate the system reliability.  

(4) Stress-strength interference models: In this model, the stress from applying loads to 

system is considered, and it can be used to develop the reliability which corresponds 

to the possibilities event that strength exceeds stress. An et al. [28] investigated a 

model using discrete random variables as stress and strength.  

(5) Stochastic degradation models: These models have specific physical interpretation 

about the system, and it can accommodate various kinds of uncertainties which may 

occur in interaction of systems with environment. Markov model is usually used for 

discrete degradation states for degradation modeling. However, stochastic models 

with continuous states are more commonly used recently, such as Inverse Gaussian 

processes, Wiener process (also called Brownian motion with drift), the compound 

Poisson process, and the gamma process [29].  

Markov process model has been extended to the semi-Markov process model and 

the hidden Markov model to address more general reliability analysis problems [30]. Li et 

al. [31] used a non-homogeneous Markov process with different condition states to model 

the deterioration of a system. Mishalani and Madanat [32] developed a Markov process 

model, considering material properties, environmental conditions. Kleiner et al. [33] used 

a fuzzy rule-based, non-homogeneous Markov process to model the degradation of buried 

infrastructure assets. Various stochastic models recently attract consideration. Wiener 

process (Brownian motion with drift), gamma process, inverse gaussian process are the 

most commonly used stochastic process models recently.  

Wiener process (Brownian motion with drift) [34] is a stochastic process with 
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independent, real-valued increments and decrements having a normal distribution. Wang 

et al [35] predicted the residual life of a system using an adapted Brownian motion-based 

approach with a drifting parameter, where the drifting parameter is adapted every time a 

new observation ins available. A limitation of this model is that it is not appropriate for 

many applications whose deterioration is monotonic.  

The compound Poisson process [36] is a stochastic process with independent and 

identically distributed jumps which occur as a Poisson process with randomly distributed 

jump sizes. It is suitable for modelling some examples such as damage due to sporadic 

shocks. A gamma process is a stochastic process with independent, non-negative 

increments having a gamma distribution with a constant scale parameter and a shape 

parameter depending on the length of the time interval [37]. In effect, it has an infinite 

number of jumps in finite time intervals, and it is suitable to model gradual damage 

monotonically accumulating over time in a sequence of tiny increments, such as wear, 

fatigue, corrosion, crack growth, erosion, consumption, etc. Brian and Gabraeel [38] 

developed a stochastic model for a multi-component system and estimated the residual 

lifetime of each component based on their degradation model. Chen et al. [39] Used inverse 

Gaussian with random effects to model the system degradation to find the optimal 

maintenance planning. Gao et al [40] developed a reliability model for a multi-phase 

degradation system in a dynamic environment using a Wiener process. Shen et al. [41] 

combined different stochastic processes to model degradation of a system in a dynamic 

environment. 

Gamma process is an appropriate stochastic process to model the degradation path 

of components which their degradation is monotonically increasing. In this research, a 
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gamma process is used to model a component’s degradation path.  

1.4.2 Random shock arrival models 

Shock models have been studied for several years and there have been various 

numbers of research for modeling reliability system situated in random environment by 

considering shock models. The way in which the time between two consecutive shocks, 

the damage caused by a shock, the system failure and the relationships among all these 

elements are modelled these characterize a shock model, while the major types are 

distinguished depending on whether the effect of the shock on the system is independent 

of its arrival time or not [42]. There are four types of shock models with independence 

assumptions, (1) homogeneous Poisson process, where the times between two consecutive 

shocks are independent, identically distributed exponential random variables. (2) non-

homogeneous Poisson process, which has a counting process null at the origin with 

independent increments. (3) non-stationary pure birth process which is a Markov process 

for probability of shock arrivals. (4) renewal process, that is, the times between two 

consecutive shocks are independent and identically distributed random variables.  

The simplest case is homogeneous Poisson process which is used by Esary and 

Marshall [43] for the first time. Further, A-Hameed and Proschan [44] extended the results 

obtained by Esary and Marshall [43] of homogeneous Poisson process for shock modeling. 

Klefsjö [45] studied a non-stationary pure birth process for shock modeling. Nakagawa 

[46] used the renewal process model for shock modeling in  reliability analysis of a single 

unit system.  

Fan et al. [47] developed a shock model when there exists dependence between the 

effect of the shock and its arrival time. Three principal models are considered: extreme 
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shock model, where the system breaks down as soon as the magnitude of an individual 

shock exceeds some given level; cumulative shock model, where the system fails when the 

cumulative shock magnitude exceeds some given level and run shock model, where the 

system works until k consecutive shocks with critical magnitude occur [42]. Anderson [48] 

investigated a model for shock damage using limit theorems considering shock magnitude 

and failure threshold. Further, he developed a new model where the time interval between 

shocks, in the domain of attraction of a stable law-of-order, is less than a certain level or 

relatively stable [49]. Shanthikumar and Sumita [50] analyzed a general shock model 

considering the correlated pair of renewal sequences, where the system fails if any shock 

magnitude exceeds the predefined failure threshold. Their model considers the dependency 

of shock arrivals on the length of the interval since the last shock.  Further, they studied 

the distribution of system failure in general, and shock models associated with correlated 

renewal sequences [51].  

1.4.3 Multiple failure processes models 

For most industrial and mechanical systems, different failure modes are competing 

with each other, which means once one of the failure modes occurs, the product is failed, 

and other failure modes will not happen anymore or will be delayed until a repair action is 

performed. These failure modes are defined as competing failure processes. Failure 

processes are usually classified into the two groups of (i) hard failure, which are caused by 

environment such as shocks, and (ii) group of soft failure, or failure due to the system 

degradation. There is a significant literature already dedicated to reliability analysis for 

systems subject to multiple failure processes.  

Peng et al [52] developed a competing failure process to analyze the system 
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reliability, considering hard failure and soft failure. In their study, each component in the 

system degrades with time, and when a shock arrives, if damage is greater than hard failure 

threshold, catastrophic failure occurs which is called as hard failure. Moreover, if the 

component survives the shock, total degradation containing both pure degradation and 

additional incremental degradation caused by shock damage is greater than a defined soft 

failure threshold level, soft failure occurs. Zuo et al [53] further developed a mixture model 

considering both catastrophic failures and degradation failures to analyze the system 

reliability of continuous state devices, where the degradation process is modeled using 

three different approaches of random process, general path model, and multiple linear 

regression. Lemoine and Wenocur [54] studied a new approach for failure modeling and 

developed a distribution for failure-time considering multiple failure processes of 

degradation and shocks, where system degradation is modeled by random process and the 

occurrences of shocks are modeled by a Poisson process whose rate function is state 

dependent. Their model provides a means of expressing the dynamics implicit in failure 

processes.  

Li and Pham [55] investigated the reliability of a multi-state degraded system 

subject to competing failure processes of random shocks and degradation, where the 

degradation consisting of two independently competing causes. The model can be used not 

only to determine the reliability of the degraded systems in the context of multi-state 

functions, but also to obtain the states of the systems by calculating the system state 

probabilities. Hao and Su [56] developed a new failure model for a system considering 

multiple degradation processes and random shocks, where there is a correlation among 

different degradation processes. Subsequently, the system reliability is analyzed based on 
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their new failure model. Wang et al. [57] analyzed system reliability considering both 

degradation and shock process where the degradation analysis is directed using fuzzy 

degradation data and different states are formed based on the shock damage on degradation 

process.  

Jiang et al [58] studied a system subject to multiple failure processes of soft failure 

and hard failure, where the arrival of each shock impacts both failure processes, and also 

the shock process affects the hard failure threshold level. In this study, the system becomes 

more sensitive to hard failures, when it received more shocks. Two cases of damage from 

shocks are considered in this study. In the first case, the value of hard failure threshold 

reduced after m number of shocks, and in the second case, the hard failure threshold 

decreases to a lower level when the first shock is recorded above a predefined value. Rafiee 

et al [59] developed a new reliability analysis considering two failure processes of 

degradation and random shocks. It is considered that the degradation rate can change when 

the system is vulnerable to fatigue and deteriorates faster due to the shocks have been arrive 

to the system. Different shock patterns which are considered in this study are generalized 

extreme shock model, generalized δ-shock model, generalized m-shock model, and 

generalized run shock model.  

Hao and Yang [60] investigated a new reliability model for a system with multiple 

competing failure processes considering the combination of extended extreme shock model 

and extended δ-shock model for hard failure process, where the hard threshold in the 

extended extreme shock model will be decreased by previous harmful shocks and the 

threshold level in the extended δ-shock model depends on the magnitude of the previous 

harmful shock. Moreover, each harmful shock can accelerate the degradation process by 



   

 

22 

 

 

adding as abrupt increase on degradation path and acceleration on degradation rate. Figure 

2.2 shows the competing failure processes of degradation and shock on system failure. The 

damage caused by shocks on components performance can be any form which is studied 

in the literature.  

 

Figure 0.2 Competing failure processes on system failure [61] 

1.5 Maintenance models 

The maintenance function is defined as a set of activities or tasks used to restore an 

item to a state in which it can perform its designated function [1, 62]. An appropriate 

maintenance policy reduces total system costs, increases reliability and availability of 

systems. Maintenance optimization models focus on finding either the optimal balance 

between costs and benefits of maintenance or the most appropriate time to execute 

maintenance [63]. The development and implementation of maintenance optimization 

started in the early 1960s by researchers like Barlow, Proschan, Jorgenson, McCall, Radner 
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and Hunter [64, 65]. Maintenance optimization is one of the most critical issues in 

production since the failure of a system during actual operation can be a costly and 

dangerous event [63]. 

  Maintenance models can be divided into two basic groups of planned maintenance 

and unplanned maintenance. The unplanned maintenance is for the case that system is 

failed and immediate maintenance actions should be implemented without any before plan. 

On the other hand, in planned maintenance, the maintenance activities are planned well in 

advance to avoid system failure, and subsequently have imposed a penalty cost due to 

downtime of the system. There are three types of planned maintenance such as predictive 

maintenance, preventive maintenance, and corrective maintenance. Predictive maintenance 

involves the prediction of the failure before it occurs, identifying the root cause for those 

failure symptoms and eliminating those causes before they result in extensive damage of 

the equipment. Mobley [66] reviewed the predictive maintenance models for different 

systems.  Figure 2.3 shows the main categories of maintenance plans.  

 

Figure 0.3 Maintenance plans 
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Corrective maintenance can be defined as maintenance implementation to restore 

the full performance of the equipment that is failed.  Sherut and Krajewski [67] evaluated 

different corrective maintenance plans in various production systems using simulation 

models and economic analysis. The simulation model predicts inventory costs and delivery 

performance of a corrective maintenance policy in various production. Badia et al. [68] 

analyzed the optimal inspection policy of a single unit system which involves corrective 

maintenance on the system failure, and having no effect in the unit reliability otherwise.  

Preventive maintenance models provide a maintenance plan for inspections, 

repairs, adjustments, and replacements before failure to minimize the maintenance cost by 

avoiding the system failure.  Barlow and Hunter [69] Studied the optimization of 

preventive maintenance models for different cases. Mahani et al [70] investigated 

maintenance models for energy storage systems considering different system deterioration 

scenarios and market opportunities. Valdez‐Flores and Feldman [71] reviewed some 

optimization of preventive maintenance models for repair, replacement, and inspection of 

systems subject to stochastic deterioration. Wu and Clements-Croome [72] investigated a 

preventive maintenance model by  assuming the quality of a preventive maintenance action 

as a random variable following a probability distribution to consider the uncertainty of 

environments. Duarte et al [73] proposed an algorithm to find the frequency of preventive 

maintenance actions for a system which has linear increasing hazard rate. Based on the 

algorithm, the interval time between the maintenance actions for each component can be 

calculated which minimizes the total costs. Hsu [74] provided a new maintenance policy 

which combines preventive maintenance and replacement policies to minimize the 

replacement on failures. Dehghani et al [75] proposed a preventive maintenance model for 
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a power distribution system to maximize the life-cycle resilience and reliability of the 

system. 

Time-based maintenance and condition-based maintenance are two maintenance 

categories of preventive maintenance policy, which have been received significant 

attention recently. Time-based maintenance, also known as periodic-based maintenance 

[76]. In time-based maintenance the optimal maintenance inspection is provided using the 

failure time analysis. Das and Achraya [77] proposed a preventive maintenance policy for 

a single-unit system considering the system failure time and delay time between fault 

occurrence and component failure. The performance degradation during delay time is also 

considered to develop the preventive maintenance. Castro and Alfa [78] developed a time-

based maintenance policy for a single-unit system using two approaches for replacement. 

In the first approach, the unit is replaced when it reaches a predetermined lifetime, and in 

the second approach, the repair facility is closed when the lifetime of the unit attains a 

predetermined quantity. Nakagawa and Yasui [79] proposed a time-based maintenance 

policy to provide the optimal number of units and replacement times of a multi-component 

system with parallel configuration. It is considered that each component can fail only due 

to the shocks and they can be replaced only at the scheduled inspection time. Wang [80] 

investigated a new preventive maintenance model by using delay-time-based models to 

find the optimal inspection plan of industrial systems, where the delay-time has two stages. 

The first stage is normal working stage, which is from new until the point of an identifiable 

defect, and second stage is failure delay-time stage that is from this point to failure.  

Many firms still apply traditional time-based maintenance strategies, which are 

easy to implement as only the time that a unit is in service has to be recorded. However, 



   

 

26 

 

 

substantial remaining useful life is wasted if the machine is still in reasonable condition 

when preventive maintenance is performed, and a breakdown might still occur if it happens 

to deteriorate faster than expected [81]. There are several studies that discuss the 

effectiveness and comparison of time-based maintenance and condition-based maintenance 

for different applications [82, 83].  

Liu et al [84] studied a condition-based maintenance model for a continuously 

monitored system exposed to multiple sudden failure modes considering the system's 

limiting availability. A stochastic process is used to model the degradation system state. It 

is also considered that multiple sudden failures can occur during a system's degradation. 

The age of the system and the degradation state can change the system failure rate. By 

minimizing the long run cost per unit of time, the optimal threshold is found which 

maximize the system availability. Chen et al [39] obtained an optimal condition-based 

replacement policy where the system degradation is modeled as an inverse Gaussian 

process with random effects. Heterogeneities among a product population is considered in 

the random effect parameter of inverse Gaussian process. The problem is formulated as 

Markov decision process.  

Do et al [85] developed a condition-based maintenance policy for a system with 

two components, where there are two type of dependencies between the components. It is 

assumed that the deterioration speed of each component depends not only on its own 

deterioration level but also on the degradation level of the other. The second dependency 

is economic dependence, which assumed that combining maintenance activities is cheaper 

than performing maintenance on components separately. Grall et al [86] proposed an 

analytical model for condition-based maintenance of a single-unit system, where the 

https://www.sciencedirect.com/topics/engineering/preventive-maintenance
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component degrades continuously. A multi-level control-limit rule is used to implement 

the maintenance policy. By considering the stationary law for the maintained system state, 

the cost model is formulated, and two decision variables of replacement threshold and the 

inspection schedule are found.  

Dieulle et al [87] developed a new probabilistic method based on the semi-

regenerative property of the evolution process to obtain the optimal condition based 

maintenance of a continuously deteriorating system. The degradation of the system is 

modeled using a gamma process, and it is considered as failed, if the degradation level 

exceeds a predefined failure level. Two types of replacement are also considered at each 

inspection time depending on whether the current system state is above a critical threshold 

but not failed or in the failed state. Hong et al [88] studied the  optimal condition-based 

maintenance of a multi-component system with dependent stochastic degradation. The 

degradation of each component is modeled as gamma process and the dependency is 

represented using the copula function. The optimal maintenance policy is found for such 

system considering the environment condition and uncertainty of material properties.  

Abdul-Malak and Kharoufeh [89] obtained an optimal maintenance model for a 

multi-component system using a Markov decision process model, while all components of 

the system experiencing the same environment. The degradation rate of each component is 

affected by the current state of the environment. When the cumulative degradation level of 

each component reaches a failure threshold, it fails. Do et al [90] introduced an adaptive 

condition-based maintenance policy for a deteriorating system considering both perfect 

and imperfect maintenance actions. Both positive and negative impacts of imperfect 

maintenance actions are considered. Where the positive impact of imperfect maintenance 
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is its lower cost than perfect maintenance actions, and its negative impact is the imperfect 

maintenance action restores a system to a state between good-as-new and bad-as-old, and 

it may accelerate the speed of the system׳s deterioration process. The optimal maintenance 

actions are found at each inspection time. Li et al [91] proposed a new maintenance 

grouping strategy for condition-based maintenance policy of a multi-component system 

considering the stochastic and economic dependences between components. Lévy copulas 

are used to model the  stochastic dependencies due to the common environment.  

Opportunistic maintenance policies suggest taking the opportunity to perform 

preventive maintenance on some components, along with replacement of failed 

components, which can lead to a lower total cost. Shafiee et al [92] investigated an optimal 

opportunistic condition-based maintenance policy for a multi-component system subject to 

degradation and random shock process. a multi-bladed offshore wind turbine system is 

analyzed as the case study where each blade is subject to stress corrosion cracking as the 

degradation and environmental shocks. Two types of shocks are considered in this study 

as catastrophic shocks which cause system failure immediately and minor shocks which 

cause instant drops in power output without any system failure. Do et al [85] proposed an 

opportunistic maintenance policy for a two-unit series system where deterioration speed of 

components is dependent on each other.  

Zhang et al [93] used a Markov decision problem to formulate an opportunistic 

maintenance model for a multi-component system due to curse of dimensionality. The 

multi-component system is composed of different single-components, which are mutually 

influened by each other. By minimising the long-run average maintenance cost, the optimal 

opportunistic maintenance policy is obtained. Huynh et al [94] proposed two new 

https://www.sciencedirect.com/topics/social-sciences/copula
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opportunistic predictive maintenance strategies based on the remaining useful lifetime of 

the components and the remaining useful lifetimes of the system and its components. It 

introduced a multi-level decision-making approach that combines maintenance decisions 

an n-component deteriorating system with a k-out-of-n:F structure is studied for the 

proposed maintenance policy. 

Zhu et al. [95] proposed an opportunistic maintenance for systems subject to 

stochastic degradation failures, and dynamically adjusted the inspection interval and 

maintenance thresholds. By minimizing the long-run cost rate considering the costs 

associated with inspection, setup, and maintenance actions, the optimal opportunistic 

threshold is found for the system which is proportional to the preventive maintenance 

threshold.  

Recently, in a few research efforts, dynamic condition-based maintenance models 

are studied for different types of systems, mostly for a single system or multi-component 

systems where components are sealed and packaged together. Wu et al [96] proposed a 

dynamic maintenance model that can sequentially plan the system preventive maintenance 

schedule based on the actual maintenance history and health information. Both preventive 

maintenance and opportunistic maintenance models are integrated into one framework to 

find the next inspection dynamically for a single system. Tang et al [97] developed a 

dynamic maintenance model for a single degrading system using a random-coefficient 

autoregressive model.  

Wang et al [98] proposed a dynamic maintenance scheduling model for a degrading 

system considering harsh external conditions. The degradation of the system is modeled as 

a Markov process based on physical characteristics, with the effects of harsh external 
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conditions represented as probabilistic models. The optimal maintenance strategies are 

obtained by optimizing the proposed model with the cost to go, including system reliability 

cost and maintenance cost. Wu et al [99] proposed a dynamic condition-based maintenance 

model for a degrading single system. An Inverse Gaussian process with stochastic 

parameter is proposed to describe the change of the equipment degradation characteristics 

during operation.  

Yousefi et al [100] developed a dynamic maintenance model using a reinforcement 

learning algorithm to find the maintenance actions for a system with fixed inspection times. 

A multi-component system is considered where each component can be repaired 

individually in the system. The deterioration of components is modeled as a Markov 

decision process and Q-learning algorithm is used to solve it an find the maintenance 

actions dynamically. Zhao et al [101] investigated a dynamic maintenance model to select 

the inspection time dynamically for a single system, using the historical degradation 

condition of the system, and a nonlinear Wiener process as the degradation model.  

Liu et al [102] developed a dynamic inspection maintenance model for a single 

system subject to a continuous degradation process which is modeled as a gamma process. 

In addition to the degradation process, the system is subject to aging, which contributes to 

the increase of failure rate. An additive model is used to describe the effect of the 

degradation process and aging on failure of the system. Omshi et al [103] studied a dynamic 

auto-adoptive condition-based maintenance model to select the next inspection time for a 

single degrading system with unknown deterioration parameters, and Bayes theorem was 

used to update the prior information. They combined the remaining lifetime and a 

preventive maintenance threshold for making decisions about inspection scheduling.   
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1.6 Reliability analysis and maintenance of repairable and non-repairable systems 

A repairable system is a system which after failing of one or more components it 

can be restored to its satisfactory performance by replacing or repairing the system or 

components. However, some systems are non-repairable, which means they cannot be 

repaired if they fail, such as light bulbs or pacemakers, while for repairable systems such 

as computers, air planes, wind turbines, etc., components or system can be repaired or 

replaced. Maintainability of components or systems has a significant impact on system 

availability, and reliability. Table 2.1 can show the difference of repairable and non-

repairable systems.  

Table 0.1 Comparison of repairable and non-repairable systems[104] 

Non-repairable systems Repairable systems 

Discarded upon failure Restored to operating conditions 

Lifetime is random variable described by 

single time-to-failure 

Lifetime is age of system or total time of 

operation 

Group of systems – lifetime assumed 

independent & identically distributed 

(from same population) 

Random variables of interest are times 

between failure and number of failures at 

particular age 

Failure rate is hazard rate of a lifetime 

distribution – a property of time-to-failure 

Failure rate is rate of occurrence of failures 

(ROCOF), a property of a sequence of 

failure times 

Taylor and Ranganathan [105] introduced applications of Markov analysis to 

nonrepairable systems. Different system configuration with non-repairable components are 

considered in this study.  Li et al [106] developed a new reliability model using a discrete 

time semi-Markov chain for a non-repairable system, where each component has multi-

mode failures. Kim and Kim [107] analyzed the reliability of a nonrepairable system using 
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Markov chain, where the system is composed of heterogeneous components. A phase-type 

time-to-failure distribution is used for each component of the system. Mettas and Savva 

[108] used a simulation method to estimate reliability of non-repairable systems, and 

subsequently a software tool is developed that calculates the exact analytical solution for 

the reliability of a non-repairable system. Feng et al [109] studied the reliability of a 

complex non-repairable system with common cause failures using a survival signature-

based simulation method. A double-loop Monte Carlo simulation is used instead of an 

analytical approach to enhance the propagation of the common cause failures. 

Bamrungsetthapong [110] analyzed the reliability of a non-repairable multi-state system 

where the failure rate is modeled using fuzzy Weibull distribution with uncertainty time.  

Repairable systems are those systems that can be restored to fully satisfactory 

performance by a method other than replacement of the entire system [111]. In repairable 

systems, the time between the failures of a system is dependent on the repair strategy 

applied to the system [112]. Shu and Flower [113] investigated the stochastic behavior of 

the reliability of repairable systems. For a perfectly maintained system, the failed system 

or component is replaced by a new one. Lin et al [114] proposed a  non-periodic condition-

based maintenance policy for a deteriorating complex repairable system. Different 

condition variables are considered in the reliability model and subsequently the optimal 

maintenance policy is found by considering different scenarios which can assist in 

evaluating the maintenance cost for each scenario. Imperfect actions are considered in the 

maintenance policy to avoid the system failure.  

Yi et al [115] studied reliability analysis of repairable systems with multiple fault 

modes. Markov process theory is used to model the failure process of the systems. Goal-
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oriented method is combined with Fussell–Vesely method for quantitative reliability 

analysis of a repairable system with multiple fault modes. Rafiee et al [116] proposed a 

condition-based maintenance policy considering imperfect repair for a repairable 

deteriorating system which is subject to s-dependent competing risks of internal 

degradation and external shocks. Stochastic deterioration process is used to model the 

internal degradation  of the system and the external shocks categorized into the two types 

of fatal shocks and non-fatal shocks. Fatal shocks make the system fail immediately while 

non-fatal shocks damage the system by randomly increasing the degradation level. By 

minimizing the expected long-run maintenance cost rate function, the optimal inspection 

time for the system is found.  

Fan et al [117] investigated a condition-based maintenance for a single unit 

repairable system subject to two statistically dependent failure modes which bidirectionally 

affecting each other.  In this model, two failure modes are statistically dependent such that 

the hazard rate of one failure mode depends on the accumulated number of failures of the 

other failure mode. Imperfect maintenance actions are formulated for each failure mode, 

and the age reduction factor for each failure mode due to maintenance has some 

deterministic relation to the degree of resources cooperatively allocated to perform 

maintenance. Le and Tan [118] studied a single unit deteriorating system whose condition 

is inspected periodically. Each degradation level can be represented by a state, making the 

system a multi-state system which is modeled by continuous-time Markov process. A 

condition-based maintenance is proposed by finding the optimal inspection-maintenance 

schemes for such system. 
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1.7 Reinforcement learning algorithms and applications 

Reinforcement learning is one type of machine learning, that trains an agent to 

decide how to perform an action based on the system state and associated rewards. 

Learning is one mechanism that could provide the ability for an agent to increase its 

intelligence while in operation [119]. Despite the supervised learning approaches, in 

reinforcement learning problems, an agent learns from examples provided by a 

knowledgeable external supervisor. By applying the trial-and-error to maximize the 

reward, the agent learns how to make decisions in an uncertain, complex environment. The 

applications of reinforcement learning nowadays are abundant, given the data-centric era 

that is approaching and the number of processes requiring accurate and optimal decision-

making. A significant number of practical applications have been reported on the 

reinforcement learning technique. [100, 120-123]. 

One of the reinforcement learning algorithms is Q-learning, which is the most 

commonly used algorithm. Q-learning does not require any prior knowledge about the 

environment and state transition of the system. By iteratively experiencing trajectory paths 

and their corresponding sets of rewards and states, the agent learns which action should be 

taken at each specific state in order to maximize our expected reward. However, when the 

number of states or actions become very large. Q-learning algorithm would not be as 

efficient as before for two reasons. Firstly, the required memory required to save and 

update the whole table increases as the number of states increases. Secondly, the required 

time to explore all the states and create the Q-table would be unrealistic. Therefore, in this 

study, another algorithm called deep Q learning is used to approximate the Q-value 

function by training a neural network. 
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Q-learning algorithm is originated in the work of [124] and becomes one of the 

most commonly used algorithm to solve various problems in different fields. Zhang et al 

[125] used Q-learning algorithm for a energy-efficient scheduling problem to reduce the 

energy consumption of the processor(s), and to extend the utility time of edge computing 

devices. Shen et al [126] studied a ship stowage planning problem using a Q-learning 

algorithm. They solved several real-world production cases using their proposed model. 

Low et al [127] proposed an improved Q-learning algorithm to solve a path planning 

problem of a mobile robot. Samma et al [128] studied a new optimization method for a 

signal optimization model using a Q-learning algorithm. Mosadegh et al [129] proposed a 

new mathematical model for a stochastic mixed-model sequencing problem using Q-

learning algorithm. Wang [130] investigated a scheduling strategy with adaptive features 

for job shops considering the dynamic and uncertain production environment using A 

weighted Q-learning algorithm. 

Deep reinforcement learning is the combination of reinforcement learning and deep 

learning, which is useful for problems with a large number of states or actions. In this study, 

deep reinforcement learning is used to find the best maintenance policy based on the system 

degradation level. The degradation process of the system is modeled using the gamma 

process, and at each inspection time, the best action can be suggested using the proposed 

maintenance model to minimize the maintenance cost for the duration of the maintenance 

contract.  

Deep Q-learning is an alternative algorithm to solve a problem with huge state and 

action spaces or when the state or action spaces is continuous. Deep Q-learning is a 

combination of Q-learning and deep leaning. In deep Q-learning, the Q-values are 
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approximated by using a neural network. The deep Q learning method tries to recognize 

patterns instead of mapping every state to its best action. Tong et al [131] used a deep Q-

learning algorithm in task scheduling in cloud computing. Tommy et al [132] studied the 

automated vehicles negotiating with other vehicles, typically human driven, in crossings 

with the goal to find a decision algorithm by learning typical behaviors of other vehicles 

using a deep Q-learning algorithm. Mohanty et al [133] used a deep learning algorithm for 

a path planning and obstacle avoidance problem of a wheel mobile robot. Liu et al [134] 

investigated on deep reinforcement learning for lung cancer detection.  

There are two main advantages of reinforcement learning approaches over their 

traditional dynamic programming counterparts to determine a cost-effective maintenance 

plan. The first one is that traditional dynamic programming algorithms like value iteration 

or policy iteration, are model-based methods. These methods know how the environment 

works and so they can predict the next states that they are going to enter or the rewards that 

they are going to receive. Model-based approaches can become impractical in many 

realistic applications [135]. On the contrary, the RL algorithm used in this research work, 

namely Q-learning, is a model-free approach. It does not require knowledge about the 

environment, and therefore, can “learn” an optimal policy by iteratively experiencing 

trajectory paths and their corresponding sets of rewards and states. 

The second, and maybe the most important, advantage has to do with computational 

efficiency. Traditional dynamic programming approaches require full backups in order to 

estimate the Q-values of different state-action pairs. On the contrary, by using Q-learning 

someone is able to estimate these in constant time per iteration. This constitutes a 

meaningful advantage, especially when considering large state and action spaces.  
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It is indeed true that machine learning is not new for maintenance optimization. 

However, in this problem the purpose is to use this specific branch of machine learning, in 

order to efficiently solve a sequential decision-making problem. This is by nature different 

than what most machine learning approaches in the maintenance field have tried in the past, 

like prediction of next failure. In this work, I formulate the maintenance optimization in a 

novel format and attempt to solve it holistically, that is, to derive directly optimal 

maintenance policies, without explicitly assuming failure time knowledge, such as 

assumed distributions. 

Moreover, in most of the previous studies, model-based methods are used to 

establish the maintenance model of systems. In model-based methods, the system behavior 

and its environment are modeled using stated assumptions and parameters. In some other 

studies, machine learning methods such as reinforcement learning are used, and an agent 

learns how to make decisions through sufficient training by trial-and-error steps. There 

have been few research studies using reinforcement learning for maintenance models. 

Tang, et al. [136] applied a reinforcement learning method to select the maintenance 

scheduling of a fighter aircraft. Rocchetta, et al. [137] used reinforcement learning to 

schedule the preventive maintenance actions to maximize the power grid load. Huang et al 

[138] developed a new group maintenance and opportunistic maintenance for a production 

line using deep reinforcement learning. Wang, et al. [139] used reinforcement learning 

method to develop a maintenance model for a flow line system of two series machines an 

intermediate finite buffer in between.Correa-Jullian et al [140] developed a dynamic 

condition-based maintenance model for operation scheduling using reinforcement learning 

for a solar hot water system. In most of the dynamic models in the literature, the system is 
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considered as one unit without considering different components, and the main focus is 

finding the inspection time dynamically, but not the maintenance actions. However, 

Yousefi et al [100] developed a dynamic condition-based maintenance model for a multi-

component system using reinforcement learning to find the maintenance action 

dynamically. They considered different regions based on some predefined thresholds to 

formulate the Markov decision problem.  

Establish baseline models  

In this chapter, some baseline models are initially described for a multi-component 

system subject to degradation and random shock process. Yousefi et al. [141, 142] 

developed a reliability model for systems and subsequently a maintenance model can be 

provided based on the reliability and system configuration of each specific system. The 

initial baseline models are for systems of degrading components which are maintained 

together, and then the models can be extended to the individual component maintenance 

case. 

In this study, it is considered that each component degrades so that irreversible 

damage gradually occurs, and the degradation model is monotonically increasing. In this 

case, it is appropriate to use the gamma process to model the degradation path. A thorough 

review of the gamma process model and its applications can be found in Van Noortwijk 

[143]. For our applications, the gamma process with positive shape parameter is linear in 

t, with shape parameter 𝛼𝑖(𝑡) and scale parameter i  is a continuous time stochastic 

process with the following properties: 

 It starts from 0 at time 0, i.e., 𝑋𝑖(0) = 0  

 𝑋𝑖(𝑡) has independent increment 
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 for 𝑡 > 0 and 𝑠 > 0, ( ) ( ) ( ( ) ( ), )i i iX t X s gamma t s     

In fact, the probability density function of degradation process for each component i, 

 𝑋𝑖(𝑡) − 𝑋𝑖(𝑠) is given by:  

( ) ( ) ( ( ) ( )) 1
exp( )

( ; ( ) ( ), )
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i i i it s t s

i i
i i i

i i
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g x t s

t s
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  

 
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

 
 

 
 (3.0.1) 

 

where ( )i t and i  are the shape parameter and scale parameter for component i. In 

other words, the degradation process of component i between two time intervals t and s, 

follows gamma distribution with shape parameter of ( ) ( )i it s  . The shape parameter of 

gamma process can be in two forms of linear and nonlinear for degradation process. For 

expected linear degradation, the shape parameter is in form of ( ) ( ) ( )i i it s t s     and 

for non-linear degradation it can be expressed as ( ) ( ) ( )b b b b

i i i i it s t s t s          

where b is the power of time interval t. In general, b is very unlikely to be greater than 2 

because the reliability of normal industrial products has no physical reason to degrade so 

quickly except defective goods. Gamma process can be expressed as an incremental 

process which can be shown on Figure 3.1. Due to the stochastic property of the gamma 

process, with the same shape and scale parameter, the degradation paths are different.  
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Figure 0.1 Degradation process modeled by gamma process 

The shape parameter αi controls the rate of jump arrivals (incremental increases in 

degradation) and when αi equals to some specific value, gamma distribution can be a 

special case of another specific distribution like exponential distribution, Erlang 

distribution, etc. Gamma distribution is flexible and an appropriate model for simulations 

of many different processes. The scale parameter βi controls the range of the gamma 

distribution. A gamma distribution with βi = 1 is known as the standard gamma distribution. 

For a gamma process, the shape parameter is a function of the starting and ending time of 

the time period being considered.  

One of the most common failure types is failure due to the degradation of systems 

or components which is called soft failure. At any time, if the cumulative degradation 

process of a system or component is greater than a predefined failure threshold, it is 

detected as failed due to soft failure, and based on the maintenance plan, a maintenance 

action should be implemented.  



   

 

41 

 

 

The second most common failure type is failure due to external shock arrival which 

is called hard failure. Due to the variety of external shocks, some of the research assumes 

that the shock magnitude follows some specific distributions, while others consider only 

normal distributions. Also, shocks arrive at random times and these time intervals could 

have different interarrival times which follow different distributions. Most previous 

research assumes these shocks arrive as a Poisson process, which is the most common 

arrival situation, so the time between shocks is an exponential random variable. The 

probability of m shocks arriving in a time interval τ is presented in the equation below: 

 
( )

( ) ( )
!

me
P N t N t m

m

 




     
(3.0.2) 

The degradation process and shock process are the failure processes which are 

considered for this study. There are different types of dependency between these processes, 

which is considered in the following chapters. 

Some of the assumptions which are considered in all the models of this study are 

as follow: 

 Soft failure occurs for the ith component when the total degradation of that component 

exceeds its critical threshold level Hi
1. Component degradation is accumulated by 

both continuous degradation over time and cumulative incremental damage due to 

random shocks. 

 When the shock size exceeds the hard failure threshold of any component i (Di), hard 

failure occurs of that component. 

 Random shocks arrive as a Poisson process.  
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1.8 System reliability and maintenance modeling for degrading multi-

component systems  

Due to the inevitable deterioration of many components and system, systems may 

fail. To restore a failed system is often time-consuming and costly. Periodic and frequent 

inspection and repair/replacement can reduce the probability of deterioration and failure; 

however, it also incurs potentially excessive maintenance cost [144]. High quality 

operational performance and low maintenance cost can then become two conflicting 

objectives. For systems whose penalty cost due to downtime is high, detecting the 

component status and assisting in repair/replacement decision-making before system 

failure, leads to low risk of failure, and subsequently, lower maintenance cost. For systems 

whose costs associated with failure are high, it is advantageous to repair or replace the 

components or system before the failure occurs.  

The concept of condition monitoring and on-condition thresholds for the 

components is used to evaluate and measure system status, and therefore, increase the 

opportunity to detect the components’ critical and degraded situation and to avoid costly 

failure events. Maintenance optimization is based on reliability modeling of system subject 

to dependent and competing failure processes. The maintenance optimization is 

challenging because of the dependent degradation and dependent failure times among all 

components. For some systems, the cost and consequence of failure are excessive 

compared to comparable preventive repair cost, replacement cost or other kinds of cost. 

Therefore, it is prudent to prevent failure from occurring and replace the equipment at the 

earliest convenience after it has sufficiently aged, rather than allowing to fail and possibly 

cause more severe consequences. Yousefi et al [141] developed a new condition-based 

maintenance model for a multi-component system by formulating the system reliability 
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and optimizing the average maintenance cost rate. 

By providing a new maintenance threshold (on-condition threshold), the 

components or systems which are close to failure can be detected and the corresponding 

maintenance plan can be implemented to avoid the system failure. By maintaining the 

component or system before failure happens, the maintenance cost can be reduced by 

avoiding the penalty cost due to the system downtime. However, finding the optimal on-

condition threshold and inspection interval simultaneously is a challenge which is studied 

in this chapter. Low on-condition thresholds can be inefficient because they waste 

components life, and high on-condition thresholds are risky because the components are 

prone to costly failure.  

In this chapter, an optimization model is developed to determine on-condition 

thresholds and inspection intervals for multi-component systems with each component 

experiencing multiple failure processes. Initially a reliability model is presented for 

systems in which failure processes for each component are dependent and failure times for 

all components are dependent. I introduce a working principle for defining the on-condition 

threshold and system status. A periodic inspection maintenance policy is selected so that 

the decision-making depends on the on-condition thresholds for all components. Finally, a 

maintenance cost rate model is developed.  

A system is considered where each component within the system can fail due to 

two competing dependent failure processes that share the same shock process; soft failure 

process and hard failure process [2], as depicted in Figure 3.2. Each component in the 

system degrades with time, and when a shock arrives, if damage is greater than hard failure 

threshold, catastrophic failure occurs. If the component survives the shock, total 
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degradation containing both pure degradation and additional incremental degradation 

caused by shock damage is greater than a defined soft failure threshold level, soft failure 

occurs. The two failure processes are competing and dependent.   

 

Figure 0.2 Two dependent and competing failure processes for a component (a) soft 

failure process and (b) hard failure process [144] 

Two failure processes for each component are dependent, and failure times for all 

components are also dependent. Component hard failures occur when a shock load exceeds 

thresholds. Figure 10 shows that component i may fail when damage from a shock exceeds 

Di. Wij is the shock size and it is an i.i.d. random variable with some defined distribution 

which is assume in this study as a normal distribution, Wij ~N(μWi, σWi
2), with selected 𝜇𝑤𝑖

 

and 𝜎𝑤𝑖
 such that the probability of having negative Wij is insignificant. This is not a 

restriction for our model and depending on 𝜇𝑤𝑖
 and 𝜎𝑤𝑖

, considering a truncated normal 

distribution is also an effective way to avoid having negative Wij. The probability density 

function of truncated normal distribution is shown in Equation (3.3) 
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(3.0.3) 

The probability that the ith component survives a shock [3] is given by: 
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 for i = 1, 2, …, n, 
(3.0.4) 

 

where Φ(.) is the cdf of a standard normal random variable. 

As shown in Figure 3.2, total degradation of the ith component can be accumulated 

as XSi(t) = Xi(t)+ Si(t), and when XSi(t) > Hi
1, soft failure occurs. Conditioning on the number 

of shocks and using a convolutional integral of XSi(t), the probability that component i does 

not experience soft failure before time t can be obtained as
 
follow: 
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(3.0.5) 

Xi(t) follows a gamma process, so Gi(·) is the cdf for a gamma distribution. It is 

convenient for Yi to be gamma or normal distributed because the sum of m iid gamma 

random variables is also gamma, and the sum of m iid normal random variables is normal. 

In Song et al. [7], the assumption was made that Yi was normally distributed, while in this 

study, it is assumed Yi is gamma distributed, but this is not a restriction. 

1.8.1 Reliability Analysis for Multiple Components System with MDCFP 

Our example system configuration is a series system, in which a component fails 

when either of the two dependent and competing failure modes occurs, and all components 
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in the system behave similarly. Song at al. [7] developed a multi-component system 

reliability model when each component experiencing multiple failure processes due to each 

component degradation and external shock loads. The reliability of this series system can 

be obtained, since the system fails when the first component fails. Later, Yousefi et al [141] 

extended this model by developing a new condition-based maintenance model for a multi-

component system subject to dependent failure processes.  

Figure 3.3 shows a series system with n components. The reliability of this series 

system at time t is the probability that each component survives each of the N(t) shock 

loads (Wij < Di for j =1, 2, …) and the total degradation of each component is less than the 

soft failure threshold level ( XSi(t) < Hi
1 for all i) .             

   

Figure 0.3 Series system example 

In this model, shocks arriving at random time intervals are modeled as a Poisson 

process. When the system receives a shock (at rate λ), all components experience a shock. 

If the component survival probabilities are conditioned on the number of shocks, then the 

failure processes for all components become independent for a fixed number of shocks. 

System reliability function can be derived for the general case for a series system as shown 

in Equations 3.3.6 and 3.3.7. [7]: 
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Using convolution integral, it can be obtained as follow: 
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(3.0.7) 

For the multi-component system considered in this research, the components are 
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packaged and/or sealed together and it is reasonable or necessary to replace the whole 

system before the critical degradation thresholds are reached. The proposed model is useful 

to avoid failure by replacing the system before it fails. On-condition rules provide the 

capability to measure system status and replace the system before failure to avoid system 

downtime. Based on defined rules, the implementation of a lower degradation threshold 

can be useful to avoid failure by providing criteria to detect the degradation status of the 

components.   
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Figure 0.4 Two thresholds divide system status into three regions 

1

iH  is defined as the soft failure threshold for component i and 2

iH is now defined 

as the on-condition threshold for component i, with 2 1

i iH H . At each inspection time, 

component condition is determined for each component by inspection and compare it to a 

threshold. The action taken depends on a selection of condition-based operational status 
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data and the defined maintenance condition rules. In Figure 3.4, a fixed on-condition 

threshold 2

iH for component i (lower bar and dash line in soft failure process) can be 

observed. The rules can be adopted related to this on-condition degradation threshold to 

define the component degradation state.  

At each inspection interval, if no hard failure occurs, and at the same time, total 

degradation of the ith component is less than Hi
2, the on-condition threshold for ith 

component, the component is in the safe region. The safe region is defined as the 

combination of soft failure process and hard failure process both below their respective 

thresholds and this status is defined as event A shown in Table 3.1. If no hard or soft failure 

occurs and total degradation is between Hi
2 and Hi

1 for any component i, this component 

has not failed; however, probabilistically it may fail within a short period. This status can 

be described by the combination of soft failure process area between Hi
2 and Hi

1, and hard 

failure process area below the hard failure threshold, which is defined as event B as 

presented in Table 3.1. If there has been a hard failure or the total degradation of any 

component i is greater than Hi
1 (higher dash line in soft failure process), the system has 

failed. The status can be defined as the union of the soft failure process area above the red 

dashed line, and hard failure process area above black dashed line, and this status is defined 

as event C.  

Table 0.1 Component status defined with two soft failure thresholds and hard failure 
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the system by time t with probability
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(3.0.8) 

Similarly, for event B, component i is still working, but it may probabilistically fail 

within the next inspection interval, the probability of no hard failure considering on m 

shocks is ( )m

i iP W D  and the probability that total degradation is between Hi
1 and Hi

2 is

1

2

1( , ) ( )
i

i
i

H
m

i i Y
H

G H u t f u du  . Combining both soft failure process and hard failure process; 

the probability for event B can obtained. For event C, either soft failure or hard failure 

occurs, the and probability equals to one minus the probability that neither of these two 

failure happens. The policy is summarized in Table 2.
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Specific assumptions used for the reliability and maintenance modeling in this 

study are as follow:  

 The model is for systems that are packaged and sealed together, making it impossible 

or impractical to repair or replace individual components within the system, e.g., 

MEMS. 

 For the maintenance policy, the system is inspected at periodic intervals and no 

continuous monitoring is performed. Replacements are assumed to be instantaneous 

and perfect. 

 At any inspection time, if the degradation of any component i is lower than its own 

on-condition threshold Hi
2, component i is in the safety level; hence, the system is 

within the high safety level area if all the components are in their own safety level 

areas. It should be noted that each component has its own unique on-condition 

threshold which can be distinctly different from other components.  

 Upon an inspection, if the degradation of any component i is between its own failure 

threshold Hi
1 and its on-condition threshold Hi

2, it has not failed but it can be 

anticipated to fail, and for a series system, failure of any component causes system 

failure. Therefore, it is advantageous to replace the system to avoid downtime when 

any (or possibly more than one) component i exceeds Hi
2 for an increasing 

degradation path.  

 If the system fails, that is, the total degradation of any component i is higher than its 

own Hi
1 before the specified inspection interval, it is not immediately detected and 

not replaced until the next inspection. There is penalty cost per time associated with 

the failure of system during downtime, e.g., cost associated with loss of production, 
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opportunity costs, etc. 

Given this reliability model for systems with each component experiencing multiple 

failure processes due to simultaneous exposure to degradation and shock loads, O can 

define a maintenance cost optimization objective function. The system is inspected 

periodically, and the condition of each component is observed and compared to a threshold. 

Upon an inspection, the system is replaced with a new one, when it is observed that a hard 

failure has occurred or total degradation is greater than the on-condition threshold for any 

component i.  

The expected number of inspections NI, for a vector on-condition thresholds H2 = 

( 2 2 2

1 2, ,..., nH H H ) is given by, 

2 2
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Where the probability that at least the degradation of one component is above its 

own on-condition threshold by time t can be calculated. 
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System downtime is the time duration between the time a failure occurs and the 

next time an inspection is performed, and a failure detected, which is shown on Figure 3.5. 

 

Figure 0.5 System downtime under periodic inspection maintenance policy 

Conditioning on the event that there is a failure at time t between the (k-1)th and kth 

inspection [(k-1)τ, kτ] with probability  
2 2

( ) (( 1) )T TF k F k  H H
, and defining the failure 

time as t, the system downtime is kτ - t. The expected value of system downtime or the 
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expected time from a system failure to the next inspection when the failure is detected, can 

then be determined as 
1
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
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H . Summing over the probability that failure can 

occur in any inspection interval, the expected system downtime can be estimated as shown 

in Equations 3.3.11 and 3.3.12.: 
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(3.0.12) 

The expected time between two replacements or expected cycle length is  
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(3.0.13) 

1.8.2 Condition-Based Maintenance Modeling and Optimization 

With the on-condition rules stated in last section, a condition-based maintenance 

policy can be defined for the system with multiple components each exposed to two 

competing dependent failure processes. Condition-based maintenance offers the promise 

of enhancing the effectiveness of maintenance programs. For some cases, the penalty cost 

due to downtime is relatively higher than the comparable corrective maintenance costs, so 

it is cost-effective to replace the whole system before the wear volumes of components 

reach their failure thresholds, However, there are some other cases that replacing the 

system upon failure is more beneficial because you obtain maximum system life and 

downtime costs are small. In this study, if the optimal on-condition threshold is the same 

as failure threshold, i.e., Hi
2 = Hi

1, it is the case that the implementing preventive 

maintenance before failure is not necessary or even beneficial. 
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On-condition degradation threshold can achieve our goal of replacing the system 

before failure by providing the criteria to detect the degradation of component beyond the 

on-condition threshold. If the on-condition threshold is too low and far away from the 

nominal threshold level, then it is beneficial to replace the whole system more frequently, 

and it results in extra cost due to the waste of system life. Alternatively, if the threshold is 

too high, then the system may fail before the next inspection leading to potentially 

expensive downtime cost. Therefore, on-condition degradation thresholds for all 

components and an inspection interval for the whole system are chosen to be decision 

variables in this maintenance optimization problem.  

To evaluate the performance of the condition-based maintenance policy, an average 

long-run maintenance cost rate model is used, in which the periodic inspection interval  

for the whole system and on-condition thresholds 2

iH  for all components are the decision 

variables. At time , and subsequent inspection intervals of time the entire assembled 

system is inspected. If the system is still operating satisfactorily with no component wear 

volume above the on-condition threshold, nothing is done. If degradation thresholds for all 

component are below the fixed critical degradation thresholds 1

iH  but some are above the 

on-condition threshold 2

iH , the whole system is replaced preventively. If there is a hard 

failure or at least one component’s wear volume is above the critical degradation threshold 

1

iH  prior to inspection, then the system is not replaced with a new one correctively until 

the next inspection. The average long-run maintenance cost per unit time can be evaluated 

by:  
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Expected maintenance cost between two replacements

Expected time between two replacements
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(3.0.14) 

      

Where TC is the total maintenance cost of a renewal cycle, and K is the length of 

a cycle that takes a value of a multiple of  [36]. The expected total maintenance cost is 

given as:  

[ ] [ ] [ ]I I RE TC C E N C E C     (3.0.15) 

Where CI is the cost of each inspection. CR is the replacement cost, Cρ is the penalty 

cost incurred during down time, and  is the time interval for periodic inspection. Based on 

Equation (3.9) to (3.11), the average long-run maintenance cost rate is given as 
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(3.0.16) 

For our maintenance optimization problem, if there are n components in a series 

system, there are n+1 decision variables; namely n on-condition thresholds for all 

components and the periodic inspection interval for the whole system. Our objective is to 

minimize maintenance cost rate, and constraints are that on-condition thresholds for all 

components should be less than or equal to their critical failure thresholds, and inspection 

interval should be a positive value. Therefore, our maintenance optimization problem can 

be formed as Equation 3.3.17: 
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(3.0.17) 
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Yousefi et al [141] proposed a new condition-based maintenance model by solving 

the maintenance optimization problem which is shown in (3.17), and finding the optimal 

on-condition maintenance threshold for each component a long with optimal inspection 

time of the whole system.  

It is a difficult non-linear optimization problem but with continuous decision 

variables and a convex feasible region. For constrained nonlinear optimization problems, 

there are many available algorithms to obtain optimal solutions. Interior point methods 

have proved to be very successful in solving many nonlinear problems in different research 

problems [145-150].The Interior point method consists of a self-concordant barrier 

function used to encode the convex set. It reaches an optimal solution by traversing the 

interior of the feasible region using one of two main types of steps at each iteration [151]. 

The algorithm first attempts to take a direct step within the feasible region to solve the 

Karush Kuhn Tucker (KKT) equations for the approximate problem by a linear 

approximation, which is also called a Newton step. By solving the KKT equations, the 

direct step and the solution for the next iteration is found. If it cannot take a direct step, it 

attempts a conjugate gradient step, and minimizes a quadratic approximation to the 

approximate problem in a trust region, subject to linearized constraints. It does not take a 

direct step is when the problem is not locally convex near the current iteration. At each 

iteration, the algorithm decreases a merit function, and a new solution point is reached after 

taking the step and start a new iteration. It continues until stopping criterion is met. In this 

study, to solve the optimization problem, an interior point method is used (as implemented 

as the fmincon algorithm in the MATLAB optimization toolbox). Fmincon in Matlab is 

easy to use, robust and has wide variety of options. The built-in parallel computing support 

http://en.wikipedia.org/wiki/Self-concordant
http://en.wikipedia.org/wiki/Barrier_function
http://en.wikipedia.org/wiki/Barrier_function
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Feasible_region
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in fmincon accelerates the estimation of gradients. There have been some studies show the 

preference of using fmincon in solving nonlinear optimization problems.  

1.8.3 Numerical example for condition-based maintenance of multi-component 

system 

I consider some numerical examples; the first one is a series system with four 

components where component 1 and 2 have the same parameters and component 3 and 4 

are also the same. The second one is for a system with four different components, and the 

third one is a series system with four identical components with replacement cost 

dependent of number of aged and failed component. The parameters for reliability analysis 

of these examples are provided in Table 3.2. Yij follows gamma distributions and Wij 

follows normal distributions in both examples. For the first example, it is assumed that 

those parameters of component 1 and 2 are the same, and parameters of component 3 and 

4 are the same. This is a conceptual example to demonstrate the reliability function and 

maintenance models. However, although the example is conceptual, Hi
1 and Di are 

estimated based on documented degradation trends [152]. In this part, maintenance 

optimizations are performed for both series system and all the individual components 

making up the system separately, and the results are discussed.  

Table 0.2 Parameter values for multi-component system reliability analysis for the first 
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example 

Parameter component 1 & 2 component 3 & 4 Sources 

1

iH  0.00125 μm3 0.00127 μm3 
Tanner and 

Dugger [152] 

Di 1.5 Gpa 1.4 Gpa 
Tanner and 

Dugger [152] 

i  0.7 0.8 Assumption 

βi 0.3 0.3 Assumption 

λ 2.5×10-5 2.5×10-5 Assumption 

Yij 
Yij ~gamma(𝛼𝑌𝑖

, 𝛽𝑌𝑖
) 

𝛼𝑌𝑖
= 0.4, 𝛽𝑌𝑖

= 1 

Yij ~gamma(𝛼𝑌𝑖
, 𝛽𝑌𝑖

) 

𝛼𝑌𝑖
= 0.5, 𝛽𝑌𝑖

= 1 
Assumption 

Wij 
Wij ~N(μWi,σWi

2) 

μWi =1.2 GPa, σWi =0.2 GPa 

Wij ~N(μWi,σWi
2) 

μWi =1.22 GPa, σWi =0.18 GPa 
Assumption 

First, the maintenance policy for the whole series system is considered with four 

components and a predetermined inspection interval, i.e., the whole system is inspected at 

one interval of  and replace the system when the wear volume is above 2

iH  for any 

component. For some systems, there is a fixed or known inspection interval that is imposed 

by the application, the decision-maker or availability of the system for inspection. The 

system can only be inspected at those fixed intervals, which be far from optimal. Therefore, 

to compare these cases with proposed model, two fixed values are selected as possible 

inspection intervals and the optimal on-condition thresholds and cost rate functions are 

found for these cases.  

The first case has a very long inspection interval of 120 hours, choosing CI=$1, 

Cρ=$20000 and CR=$100, and the minimum average long-run maintenance cost rate for 

system is $3.054×102 and on-condition degradation threshold are 
*=

*=0.0001556, 


*=

*=0.0001370. Moreover, by considering a shorter fixed inspection interval of 

24 hours, the minimum average long-run maintenance cost rate for system reduces to 
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$2.2796×102 and on-condition degradation threshold are 
*=

*=0.0004637, 


*=

*=0.0004204. When the system is inspected more frequently, there are higher 

on-condition degradation thresholds, i.e., closer to the failure threshold. Since the system 

status is detected more often, it can be replaced preventively, so on-condition degradation 

thresholds is closer to failure thresholds.  

The contribution of this paper is to now simultaneously determine the optimal on 

condition thresholds and inspection interval. The minimum average long run maintenance 

cost rate for the system is $1.9023×102 found after 22 steps of iteration. The inspection 

interval is *=44.7129 hours, and on-condition degradation thresholds are 


*=

*=0.0003055 and 
*=

*=0.0002728. Figure 5 illustrates the iteration 

process of decision variables: inspection interval, on-condition degradation threshold for 

component 1 and 2, and on-condition degradation threshold for component 3 and 4. From 

Iteration 10 on Figure 3.6 and 3.7 the optimal values do not change; however, the algorithm 

continued to confirm that there is no additional improvement and the optimal solutions are 

converged.  
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Figure 0.6 Iteration process for on-condition threshold for all components 

  
Figure 0.7 Iteration process for inspection interval *,  

        

To show the preference of the proposed model, the optimal maintenance cost rate 

of this example is compared to optimal cost rate values for different maintenance policies 

such as time-based maintenance and replace-on-failure maintenance. In fact, both these 

policies are special cases of our proposed model. For replace-on-failure model, failure is 

detected by inspection, and if failures are not detected promptly, there is costly downtime. 
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Therefore, replace-on-failure still requires inspections, but by setting Hi
2 = Hi

1 for all i, the 

lowest cost replace-on-failure policy is found by solving an optimization problem where 

CR() is the objective function with Hi
2 = Hi

1, and all the costs are the same. The optimal 

inspection interval is found as *=9.43 and minimum average long run maintenance cost 

rate is $3.271×102. In the case, the inspection interval is small, because the only way to 

avoid costly downtime is to inspect frequently; while, when there are on-condition 

thresholds for each component to avoid failure and downtime, the minimum average long 

run maintenance cost rate for the system is $1.902×102 which shows the proposed method 

can provide a beneficial maintenance policy for cases with high downtime costs by 

replacing the system before failure and avoiding system downtime. 

Similarly, time-based preventive maintenance is investigated by setting Hi
2 = 0 for 

all i, so, the whole system will be replaced on the first inspection. The optimal inspection 

interval for this case is *=52.45 with the minimum average long run maintenance cost rate 

of $2.427×102 which shows this policy is costly compared to our proposed model. 

To further evaluate the results, an inspection and maintenance policy is also 

considered for the individual components. That is, four components are considered as 

individual systems, and inspect individual four components at their own inspection 

intervals. Since component 1 and 2 share the same parameters, the maintenance 

optimization for them are the same, and the minimum average long-run maintenance cost 

rate for component 1 and 2 as $1.367×102 after 20 steps of iteration, with a solution of the 

periodic inspection interval *=65.044 hours, and on-condition degradation threshold for 

components 
*=

*=0.0002465. Figures 3.8 and 3.9 illustrate the iteration process of 

two decision variables, inspection interval and on-condition degradation threshold, for 
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component 1 and 2. 

 

Figure 0.8 Iteration process for on-condition threshold for component 1 and 2 

 

Figure 0.9 Iteration process for inspection interval * 

Similarly, individual component 3 or component 4 are inspected at their own 

inspection intervals. The minimum average long-run maintenance cost rate for component 

3 and 4 is $1.762×102 after 13 steps of iteration, with the periodic inspection interval 

*=71.55 hours, and on-condition degradation threshold for components 
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
*=

*=0.0002169. Figure 3.10 and 3.11 illustrate the iteration process of two decision 

variables: inspection interval and on-condition degradation threshold for component 3 and 

4.  

 

Figure 0.10 Iteration process for on-condition threshold for component 3 and 4 

 

Figure 0.11 Iteration process for inspection interval * 

I can observe that inspection intervals for either component 1 and 2 or component 

3 and 4 are greater than the inspection interval for the series system, which means there is 
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a need to compromise to inspect the system more frequently if there are more components 

in the system. Since time to failure for all components are different, and series system 

reliability is less than individual component reliability given any fixed time, the system 

should be inspected more often to increase probability of avoiding failure and relative high 

downtime cost.  

The second example is a series system with four different components. Table 3 

presents the parameters of each component. Given the same cost CI=$1, Cρ=$20000 and 

CR=$100, the minimum average long-run maintenance cost rate is found for the system as 

$1.8356×102, which is obtained at periodic inspection interval *=49.86 hours, and on-

condition degradation threshold for components are 
*=0.0002904, 

*=0.0002656, 


*=0.0007362, 

*=0.0012359. As the results illustrate, component 4 has the highest 

optimal on-condition threshold that is very close to its failure threshold. This is mainly 

because the degradation rate and shock load damage for component 4 is lower than other 

components which means its reliability is higher compared to all other three components. 

Accordingly, its optimal on-condition threshold is higher.  

1.9 Multi-component systems with dependent degrading components 

Reliability describes the ability of a system to function for a specified period of 

time, and provides strategic information for determining effective maintenance activities, 

spares provisioning, warranties, etc. Reliability has a key role in achieving and maintaining 

the cost-effectiveness of systems. Significant prior research has been performed 

considering the reliability for systems with degradation, random shocks, independent or 

dependent failure processes, etc. The available models usually pertain to a single 

component or simple system, with either independent or dependent component failure 
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times. The problem has also been studied with dependent shock damage for specific failure 

processes and other dependent patterns. Dependent degradation paths among multiple 

components in a system, especially models based on the stochastic degradation, have not 

been considered sufficiently in reliability modeling for systems subject to dependent 

competing failure processes. However, for certain classes of systems and applications, the 

component degradation paths can be considered as clusters with similar degradation 

patterns. Yousefi et al [142] studied the system reliability of multi-component systems, 

considering the degradation path of some components are dependent within the system.  

The rapidly increasing application of many new technologies and systems demand 

high reliability because failures, leading to even small functional errors, can result in 

unaffordable consequences and effects. For example, approximately 20% of stents 

implanted in human bodies eventually deteriorate and fail [153]. Different stents within the 

same body share a similar working environment, i.e., same heart rate, blood flow velocity, 

rate of physical activities, etc., and the degradation status of stents in the same human body 

are likely to be probabilistically dependent and statistically correlated. Without considering 

dependent component deterioration, reliability models are not sufficient or adequate for 

some systems and engineering applications.  

Dependent stochastic degradation paths among components represent a challenging 

issue because it increases the complexity of system reliability modeling and calculation. 

However, it is also realistic for some problems that have not been sufficiently addressed or 

which can be divided into two (or more) clusters, as in Figure 3.12. Mathematically, if two 

or more component degradation paths are dependent, the covariance of degradation is 

positive for some time t. Within a complex systems, there can be several groups or clusters 
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of components with similar behavior. 

 

Figure 0.12 Two clusters of degradation paths for seven identical components in a system 

It is assumed that each component can fail due to two competing dependent failure 

processes that share the same system shock process. There is a soft failure process and hard 

failure process. When a shock arrives, if the shock magnitude is greater than the hard failure 

threshold Di, catastrophic failure occurs immediately. If the component survives the shock, 

and total degradation containing both pure degradation and cumulative shock damage is 

greater than a soft failure threshold level Hi, then soft failure occurs. The failure processes 

are competing and dependent, and all components in the system behave similarly. Random 

shocks arriving to the system occur as a Poisson process with rate λ. When the system is 

shocked at rate λ, all components experience a shock. The model can be readily generally 

to any other shock arrival model. The probability that the ith component survives a shock 

can be obtained using Equation (3.1.4).  

For each component, the gamma process is used to model stochastic degradation 

path.  

Xi(t2) − Xi(t1) ~  2 1; ( ) ( ), ( )i i iGa X v t v t i is the incremental degradation from t1 to t2 for 

component i. Yousefi et al [142] defined the scale parameter in the gamma process for 

component i as: 
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0, 1, 1 2, 2 ,( )  i i i k i ki             

q is defined as a random clustering variable affecting all components in cluster q 

(q,i 0). The common item q is not specific to any particular component, and it causes 

the scale parameter i for all components in cluster q to be probabilistically dependent, 

leading to the dependence among the degradation paths Xi(t) of components in cluster q. If 

the scale parameter ifor component i contains the item q, i.e., q,i 0, then component 

i belongs in cluster q. The magnitude of q,i determines how much the component i 

degradation can be affected by the common factor in cluster q. For example, if θq is 

relatively high, then all ( )i with 
, 0q i   are also likely to be high due to the dependence 

in degradation paths. Therefore, the probability density function of the degradation process 

for each component is given by: 

 

2 1

2 1

( ) ( ) 1

2 1 ( ) ( )

2 1

exp( / ( ))
( ) ( ), (; ))

( ) (
(

) ( )

i i

i i

v t v t

i i v t v t

i i

g
x x i

v t vx t i
v t v t i


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

 




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 
 

(3.0.18) 

 ; ( ), ( )i iGa x v t i  is a gamma cdf for component i from time 0 to t with shape 

parameter ( )iv t , scale parameter ( )i , and (0) 0iv  . Considering that ( )i is random, 

 ; ( ), ( )i iGa x v t i  is a gamma cdf, conditional on ( )i . Empirical studies [154] often show 

the deterioration at time t is proportional to a power law, or vi(t) = cit
bi. As examples, (1) 

degradation of concrete due to corrosion has been observed to be linear (bi = 1); (2) sulphate 

attack parabolic (bi = 2); (3) diffusion-controlled ageing (bi = 0.5), and other cases [143].  
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Figure 0.13 Degradation paths of four components 

Figure 3.13 (a), (b), (c) and (d) show simulated degradation paths of four 

components in a system where degradation of each component is modeled as a gamma 

process. Each figure represents a different simulation of the four same components. 

Component 1 and 2 degrade similarly as a cluster and component 3 and 4 belong to another 

cluster. Notice in the figure that components 1 and 2 (and 3 and 4) tend to degrade together 

as partners. Occasionally the degradation of components 1 and 2 is similar to components 

3 and 4 (Figure 3.13(b) and 313(d)), and in other instances, they are degrading at a higher 

rate (Figure 3.13(a)), but in all cases, 1 and 2 tend to be together, as well as 3 and 4. This 

is indicative of clusters of component degradation. 

The total degradation of the ith component can be accumulated as XSi(t) = Xi(t) + 

(a) (b) 

(c) (d) 
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Si(t), and when XSi(t) > Hi, a soft failure occurs. Xi(t) is the pure degradation of component 

i and Si(t) is the summation of all the shock damages to the degradation path by time t. 

When there is no shock consideration in the system Si(t)=0. Conditioning on the number 

of shocks and using a convolutional integral of XSi(t), the probability that component i does 

not experience soft failure by time t , conditional on (i), is as follow:  

 
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0
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(3.0.19) 

A system reliability model can be developed for a system with clusters of dependent 

component degradation paths, with or without a system shock process. In this section, 

components experience no shock processes, i.e., only soft failure occurs to components, 

while in Section 5, components are subject to both hard and soft failure processes. That is, 

a component can fail either due to soft failure or due to hard failure, whichever happens 

first. 

1.9.1 System reliability of dependent component degradation paths without 

shocks 

The reliability for a series system at time t, without system shocks, is the probability 

that the total degradation of each component is less than the soft failure threshold (XSi(t) < 

Hi
 ), 

    1 1 1 2 2 2( ) ( ; ( ), (1)) ( ; ( ), (2)) ... ( ; ( ), ( ))n n nR t P X t v t H X t v t H X t v t n H          

(3.0.20) 

In the new model, degradation paths among components can be dependent. By 

defining 0, 1, 1 2, 2 ,( )  i i i k i ki            , with the common items θq as random 
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variables, dependency among component degradation paths within a cluster can be 

achieved. For example, considering θq a as random variable for cluster q, if θq, for a 

particular system is relatively high, then all ( )i with 
, 0q i   are also likely to be high due 

to the dependence in degradation paths. System reliability is then given by Equation (3.21) 




1 1 0,1 1,1 1 ,1 1 2 2 0,2 1,2 1 ,2 2

0, 1, 1 ,

( ) ( ; ( ), ... ) ( ; ( ), ... )

                ... ( ; ( ), ... )

k k k k

n n n n k n k n

R t P X t v t H X t v t H

X t v t H

         

    

             

       

(3.0.21) 

As θq varies, the component degradation paths vary accordingly. q,i is a 

transmission parameter that determines whether component i is in cluster q, and the relative 

degree of dependency if 
, 0q i  . As an example, with k = 2, and conditioning on θ1 and 

θ2: 


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(3.0.22)   

Equation (3.22) can then be extended for any k > 2. However, most systems have 

two or less clusters in practice. With k = 2, the system reliability is given as: 

     
1 2

1 2

1 0, 1, 1 2, 2 1 2 1 2

1

( ) ( ; ( ), ) .
n

i i ii

i

iR t P X t v t H f f d d 

 

        


      
(3.0.23) 

The components are now conditionally independent, and the gamma distribution 

for each component degradation results in: 
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(3.0.24) 
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(3.0.25) 

where   1, a z

x

a x z e dz



    ,     1

0

,0 a za F a z e dz



     , and ( )iv t is a non-
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decreasing, right-continuous function for t > 0. Therefore, Equation 3.3.26 can be 

derived. 
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(3.0.26) 

Equation (3.26) is the general reliability model for systems with dependent 

component stochastic degradation processes without a shock process and k = 2. As an 

example, replacing vi(t) with cit
bi and with bi = 0.5. 
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(3.0.27) 

Figure 3.14 shows a parallel system composed of n components. The reliability of 

the parallel system at time t is the probability that at least one component degradation is 

less than the threshold level (XSi(t)<Hi).  

 
Figure 0.14 Parallel system example 

Following a similar model development process, the system reliability for a parallel 

system is given by the following equations, still considering two clusters in the system, i.e., 

k = 2: 
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(3.0.30) 

Figure 3.15 depicts a series-parallel system with s subsystems arranged in parallel. 

Similar to the model in Song et al [155], Sl is defined the set of components in subsystem 

l with no component being used in more than one subsystem (Sl ∩ Sk =  for all l, k), and 

each subsystem has ml components with ml = | Sl |. 

 
Figure 0.15 Series-parallel system example 

The reliability of a series-parallel system at time t is the probability that at least one 

component within each subsystem has the total degradation less than the threshold level 

(XSi(t) < Hi). The system fails when all components for at least one parallel subsystem 

experience soft failure. System reliability for a series-parallel system is given by the 

following equation for the case of k = 2 
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1.9.2 System reliability of dependent component degradation paths with shock 

process  

For a system with n components where each component is subjected to degradation 

process and random shocks, a component fails when either of the two dependent and 

competing failure modes occurs. The models in Section 3 pertain to systems with 

components experiencing pure degradation only. In this section, the system under study is 

exposed to shocks, and all components are impacted accordingly.  

The reliability of a series system at time t is the probability that each component 

survives each of the N(t) shock loads (Wij < Di for j=1, 2, …) and the total degradation of 

each component is less than the soft failure threshold level (XSi(t) < Hi
 ) . System reliability 

can be expressed as: 
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Conditioning on the number of shocks, the system reliability is as follow 

 

 

( )

11 1 12 1 1 ( ) 1 1 1 1 1

0 1

( )

21 2 22 2 2 ( ) 2 2 2 2 2

1

1 2

( ) , ,..., , ( ; ( ), 1 )

                    , ,..., ( ; ( ), 2 ) ...

              

,

      ,

N t

N t j

m j

N t

N t j

j

n n n n

R t P W D W D W D X t v t Y H

W D W D W D X t v t Y H

W D W D







 



 
      

 

 
     

 







 



 
( )

( )

1

,..., , ( ; ( ), ) | ( ) ( ( ) ).
N t

nN t n n n nj n

j

W D X t v t n Y H N t m P N t m


  
    

  

 

 



   

 

73 

 

 

  (3.0.35) 

Separating the hard failure process and soft failure process, Equation (3.35) can be 

then re-written as: 
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Considering 0, 1, 1 2, 2 ,( )  i i i k i ki            , and setting k = 2 as an example, 

i.e., two clusters in the system, and conditioning on θ1 and θ2, results in: 
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(3.0.38) 

The shock damages affecting the soft failure process Yij are i.i.d. random variables. 

Conditioning on the sum of Yij and using the convolutional integral for the sum of Yij, 

produces Equation 3.3.39: 
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Considering the gamma distribution for each component degradation from 0 to t 

results in: 
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(3.0.42) 

 

As an example, replace vi(t) with cit
bi where bi =0.5: 
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The reliability of the parallel system at time t is the probability that at least one 

component of this system survives each of the N(t) shock loads (Wij < Di for j=1, 2, …), 
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and the total degradation of that same component is less than the threshold level (XSi(t) < 

Hi). The system fails when all components experience either soft failure or catastrophic 

failure. Consider k = 2, i.e., two clusters in the system, 
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As an example, consider vi(t) = cit
bi, and replace vi(t) with cit

bi , and bi = 0.5: 
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(3.0.46) 

The reliability of a series-parallel system at time t is the probability that at least one 

component within each subsystem survives each of the N(t) shock loads (Wij < Di for j= 1, 

2, …), and the total degradation is less than the threshold level (XSi(t) < Hi) for that same 

component. The system fails when all components for at least one parallel subsystem 

experience either hard or soft failure. Consider k = 2: 
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(3.0.48) 

As an example for a series-parallel system, consider vi(t) = cit
bi, and replace vi(t) with cit

bi 

, and bi = 0.5. 
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(3.0.49) 

Yousefi et al [142] developed a new reliability model for different system 

configurations, considering the dependency of components’ degradation paths. To obtain 

explicit reliability predictions, it is necessary to know or estimate the parameters in the 

reliability equations. Appendix A shows the proposed method to estimate parameters for 

the reliability models.  

1.9.3 Numerical example for systems with clusters of dependent degrading 

components 

Some different examples are considered in this section to demonstrate the reliability 

of the proposed model. For the examples, it is assumed that Wij and Yij follow normal 

distributions, and Xi(t) follows gamma processes with parameters vi(t) = cit
bi . Firstly, it is 



   

 

77 

 

 

assumed that there is just one cluster and three different components which are 

configurated as series and parallel. The scale parameter for component i is 

  0, 1, 1i ii     . Then, a second realistic example of a spool system is solved to 

demonstrate the new model.  

Example 1: The first example is a conceptual system with three components and 

one cluster. Table 3.3 shows the parameters for reliability analysis. System reliability is 

complex and difficult to solve analytically. Integration with Monte Carlo simulation with 

105 replications is used to calculate the system reliability for different scenarios. 

Table 0.3 Parameters value for system reliability 

Parameters values 

Component 1 Component 2 Component 3 

iH  10 mm 12 mm 15 mm 

iD  5 mm 10 mm 8 mm 

  43 10  

ijW  2(1.2,0.2 )ijW Normal  
2(1,0.3 )ijW Normal  

2(1.5,0.2 )ijW Normal  

ijY  2(0.5,0.1 )ijY Normal  
2(0.4,0.15 )ijY Normal  

2(0.3,0.1 )ijY Normal  

0,i  0.5 0.2 0.1 

1,i  2 0.5 1 

ic  0.2 0.3 0.5 

ib  0.5 0.5 0.5 

Figure 3.16 shows the reliability of series and parallel configuration for three 

component considering different distribution for 1 . Three different distribution of 

Uniform(0,2), Normal(2,0.1) and Weibull(1, 1.5) are consider for 1  which demonstrate 

that the proposed method is appropriate for any distribution for 1 . As shown in Figure 

3.16, the system reliability for series configuration is lower than parallel one.  
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Figure 0.16 System reliability for series and parallel configuration considering different 

distribution for θ1 

To better understand the effect of the parameters on system reliability, sensitivity 

analyses are conducted on 
1,i , and two parameters of gamma shape parameter vi(t) = cit

bi, 

i.e, ci, bi. For this example, it is assumed that 1 ~ Uniform(0,2), and system configuration 

is series. Figure 3.17 shows the effect of 1,i on system reliability while the other parameters 

are fixed. The expected degradation for time t for component i is [ ( )] ( )ib

i iE X t c t i  , so 

by increasing 1,i the scale parameters increases which makes component i in the system 

degrade faster. Therefore, the system has a higher probability of failure for the same time 

duration; so, by increasing 1,i , the system reliability decreases. Figure 3.18 shows how 

system reliability changes according to different bi values. By increasing bi the degradation 

rate increases, and each component degrades faster, so the system reliability decreases.  
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Figure 0.17. System reliability sensitivity analysis on parameter 1,i  

 
Figure 0.18 System reliability sensitivity analysis on parameter bi 

When ci increases, the expected degradation for time t increases and the system has 

higher probability to fail for the same time; consequently, the system reliability decreases, 

as shown in Figure 3.19.  
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Figure 0.19 System reliability sensitivity analysis on parameter ci 

Example 2: the second example is a real case study of a sliding spool in 

electrohydraulic servo-valve which is used in a wide range of applications from metal 

forming and wood processing to aircraft applications. The valve control hydraulic oil flow 

and pressure by spool sliding in the sleeve. The two competing failure processes for this 

example are wear and contamination lock caused by oil pollution. The sudden appearance 

of pollutants in the hydraulic oil is considered as random shock, and deterioration of 

components within the servo-valve are considered as the degradation process. 

The spool, sleeve, spring and spool rod as the main four components of the system 

which are configurated as series in the system. It is assumed that there are two different 

clusters (k=2) for these four components. For components who belongs to the same cluster, 

the degradation paths are dependent, and they degrade similarly. The parameters for this 

system are estimated by domain experts [156, 157] and some assumptions are made in this 

research study. Table 3.4 show the parameter values for reliability analysis. It is considered 

that spool and sleeve belong to cluster 2 and spool rod and spring belong to cluster 1. So, 
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the scale parameter for each component is   0, 1, 1 2, 2i i ii        where θ1 and θ2 have 

different uniform distribution. 

Table 0.4 Parameters value for system with four components and two clusters 

Parameters Spool  Sleeve Spring Spool Rod 

iH  5 mm 6 mm 4 mm 4.5 mm 

iD  7.5 mm 7 mm 5 mm 5.5 mm 

  52.5 10  

ijW  2(1.2,0.2 )ijW Normal  
2(1,0.3 )ijW Normal  

2(0.7,0.2 )ijW Normal  
2(0.8,0.1 )ijW Normal  

ijY  2(0.5,0.1 )ijY Normal  
2(0.4,0.15 )ijY Normal  

2(0.25,0.1 )ijY Normal  
2(0.2,0.1 )ijY Normal  

0,i  0 0 0 0 

1,i  0 0 2 2.5 

2,i  1.8 1.6 0 0 

ic  0.2 0.3 0.3 0.2 

ib  0.5 0.5 0.5 0.5 

1  1 ~ (0,2)Uniform   

2   1 ~ (0,8)Uniform   

The spool and sleeve are physically touching the hydraulic oil and share the same 

operational conditions, so that they can belong to the same cluster. Based on the 

assumptions in Table 3.4, the spool and sleeve belong to cluster 2 and consequently their 

scale parameters are changing based on cluster 2 (i.e., 2 ) and degrading as a group. The 

spring and spool rod are also degrading in a similar way. In each trial the degradation of 

each component is different, but the main similarity is spool and sleeve are degrading 

similarly and are considered as a cluster.  

1.9.4 Model validation for reliability analysis of system with degradation 

dependency  

Figures 3.20 and 3.21 show the difference of the proposed method for calculating 

the system reliability considering dependency of components and the system reliability 
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using previous methods without clustering. In Figure 3.20, for calculating the system 

reliability considering clustering, it is assumed that 1 ~ Weibull(1,1.5) and 2 ~ 

Weibull(1,2). Alternatively to calculate the system reliability without clustering, the 

expected value of the Weibull distribution are considered for 1 , 2 , i.e., 

1 1 (1 1/1.5) 0.9027      and 1 1 (1 1/ 2) 0.8862     . For Figure 3.21, it is 

assumed that 1 ~ Normal(2,0.5) and 2 ~ Normal(4,2), and for system reliability without 

clustering, 1 2  and 2 4  .  

 
Figure 0.20 Comparison of system reliability when θ1 and θ2 follow Weibull distributions 

– Example 2 
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Figure 0.21 Comparison of system reliability when θ1 and θ2 follow normal distributions 

– Example 2 

It can be concluded from Figures 3.20 and 3.21 that the system reliability for 

systems without clustering considerations have a higher decreasing rate (smaller variance 

of failure times), i.e., the probability density function of failure time has less variability. 

When components are degrading in clusters, the probability density function of system 

failure has more variability which cause the system reliability to decrease more gradually 

in time. Moreover, the system reliability considering clustering is lower than system 

reliability of previous systems for earlier time which is a very important information for 

system maintenance decisions. Therefore, for a system which has some components 

degrading in the same cluster due to the share environment or in close physical proximity, 

system reliability behaves differently, and it should be considered for any maintenance 

decision. 

Static maintenance planning models 

Many systems fail due to degradation and exposure to random shocks 

simultaneously. Moreover, each component is subject to two dependent competing failure 
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processes of soft failure and hard failure. When each shock arrives, it can damage all the 

components in the system. As a result, all component degradation paths are dependent due 

to the shared shock exposure. Soft failure occurs when the cumulative degradation of each 

component reaches a predefined failure threshold, and hard failure occurs when the 

magnitude of each shock exceeds a predefined threshold. Yousefi et al [141, 142, 158, 159] 

developed reliability models and proposed some maintenance policies for multi-

component systems where components are packaged and sealed together for maintenance 

perspective.  However, there are some multi-component systems where each component 

can be maintained individually within the system.  

For multi-component systems with individually repairable components, it is not 

economical to replace the whole system if it fails. For a multi-component system, where 

each component degrades by time, the failure time of components are different, and they 

may fail in different times. So, it is more beneficial to replace/repair each failed component 

individually within the system. Finding the optimal maintenance policy for systems with 

individually repairable components, subject to degradation and random shock arrival, is a 

unique challenge which is studied in this research work. Yousefi et al. [160] proposed a 

condition-based maintenance model for a multi-component system with individually 

repairable components by formulating a new reliability model and optimizing the 

maintenance cost rate.  

A replaceable component can be restored to its initial satisfactory performance by 

replacing the component upon failure with a new one (or a replacement or restoration that 

is good-as-new). For such a component operating for a very long time (much greater than 

the expected failure time), the component will have been replaced several or many times, 
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and the expected frequency of failure or replacements can reach a steady state behavior 

after some time. In steady-state, the expected number of failures within some time interval 

becomes stationary (independent of the underlying failure time distribution or degradation 

process). This is known as Drenick’s theorem [161]. 

Shu and Flower [113] investigated the stochastic behavior of the reliability of 

repairable systems, for a perfectly maintained system when the failed system or component 

is replaced by a new one. It is therefore applicable to use the Drenick’s theorem [161], 

which states that if a population of parts is put into service at time t = 0 and the population 

is perfectly maintained, as time goes on, at each socket (i.e., replaceable unit), there 

develops an unending sequence of failures which constitutes a random process or a renewal 

process  [162]  . A renewal process is a counting process for which the inter-arrival times are 

independent and identically distributed with an arbitrary distribution [163] . In a renewal 

process, the components or systems are renewed in a sequence, and it is assumed in the 

process that each renewal restarts the counting process as new [164]. Thus, it can be stated 

that after a very long time (𝑡 → ∞) the rate of failures and replacement rate reach the steady 

state behavior. Jiang et al. [162] studied the steady state reliability of repairable one-unit 

system subjected to system modifications, while Utkin and Gurv [165] proved the limit 

theorems related to stationary possibility distribution functions for a repairable one-unit 

system. 

It is assumed that all the components are new at the beginning of system life and 

all of them are inspected at the end of each time interval, and the failed components are 

only detected by inspection.  For series systems when a component fails within the system, 

the whole system fails but the failed one can only be detected at the inspection interval. 
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For systems with continuous monitoring the failed components are detected immediately 

while in periodic inspection, the failed components can be detected just at the inspection 

times. The component which has already failed in an interval is replaced by a new one at 

the beginning of the next time interval, while the remaining operating components continue 

to work properly in the next time interval, and continue to degrade. In fact, the replacement 

of the failed component is only done after each inspection. 

Drenick’s theorem can be extended to consider degradation processes. By 

simulating a multi-repairable component (in MATLAB), recording the initial degradation 

of component at the beginning of previous inspection interval and calculated the average 

of them, it can be observed, that after a very long time, the average of initial degradation 

no longer changes, and it is stationary. Figure 30 and 31 show the result of a 105 simulation 

runs which indicates that after the 200th inspection interval, the average of initial 

degradation reaches the steady state. Indeed, this average does not change in the next 

inspection intervals. Figure 30 shows simulated results for a multi-repairable component 

system subject to only internal degradation, and Figure 4.1 is for a system when the 

components fail due to internal degradation and external random shocks. It can be observed 

that the initial degradation level of any component at the beginning of the inspection 

intervals oscillates in response to replacements, until steady state in reached. 
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Figure 0.1 Average of initial degradation for all the previous inspections for different 

number of inspections for a system fails due to internal degradation 

 
Figure 0.2 Average of initial degradation for all the previous inspections for different 

number of inspections for a system fails due to internal degradation and external shock 

arrivals 

Figures  4.1 and 4.2  show how each component reaches a steady state behavior by 

replacing them in in the interval where it failed. In Figure 4.3, at any inspection, if a 

component is detected as aged or failed, it is replaced by a new one at the beginning of the 

next inspection interval. Therefore, after a very long time each component reaches a steady 

state behavior and the ages of the components is random and independent from each other. 

In the far right in Figure 4.3, there have now been many intervals and many component 
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replacements. Ui is defined as a random variable representing the initial age of component 

i at the beginning of an inspection interval once the system enters into the steady state 

region. 

 

Figure 0.3 Component replacement and reaching steady state 

Figure 4.4 shows an example of three components in a system subject to 

degradation. Each component is replaced when its degradation reaches its own failure 

threshold. It shows that the initial degradation is Ui for each component i at the beginning 

of inspection interval at steady state. In the first interval Ui is 0 for all components, but 

when the system reaches steady-state, Ui are random and independent. Yousefi and Coit 

[160, 166, 167] developed a reliability model for systems with individually repairable 

components considering the initial degradation level of each component at steady state.  

If initial degradation Ui is simulated, the observed form of its distribution can be 

obtained as shown in Figure 4.4. In the first interval, all components are new, so Ui is 0, 

but in subsequent intervals, Ui is larger and has more variability as the components age, 

until replacements begin. At that point, the average degradation will decrease and then 

fluctuate as the second and third replacements take place (as in Figure 4.1), until eventually, 

it enters steady-state. As previously observed in Figure 4.1, the average degradation 

becomes constant in steady-state, as predicted by Drenick’s Theorem. 
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Figure 0.4 Degradation of three components in a system over time 

Figure 4.5 shows a simulation of distribution of initial degradation at the beginning 

of inspection interval for a component which is degrading as a gamma process with shape 

parameter linear with time and constant scale parameter, and experiencing no shock arrival; 

therefore, the final distribution may change for a component experiences external shock 

arrival. 

 

Figure 0.5 Simulated distribution of initial degradation 

Until steady state behavior is reached, the initial degradation is a function of time, 
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so it can be concluded that, as t  , it can be considered as a random variable of U , 

lim ( )
t

U t U


 .  

Finding the initial degradation distribution at steady state is very crucial issue for 

calculating the conditional reliability function of the system. In this research work, the 

probability density function of initial degradation at steady state is found empirically based 

on numerous simulations of a multi-component system with individually repairable 

components (in MATLAB). For each simulation replication, the initial degradation of each 

component is found once the it is observed in steady state. After many successive 

replacements, and using the result of all replications, a supposition can be made for 

distribution of the initial degradation based on the observed trends in the data and 

associated histogram plots.  

To determine the intital degradation probability density funcion, extensive 

simulation runs and testing was performed with and without a shock process on individual 

component to observe these distributions empirically. Figure 4.6(a) to (d) shows some 

sample histogram plots of initial degradation for different systems without shock arrivals. 

Based on the simulation results, an accurate approximate distribution for initial degradation 

can be found. It is proposed that when there are no shocks arrivals to the system, the initial 

degradation at steady state, Ui follows a uniform distribution 
2~ (0, )i iU ifo m HUn r . To test 

this hypothesis, numerous simulations (105) were run with different model parameters and 

a chi-squared test, as a goodness-of-fit test, is applied to investitgate whether the 

assumption that Ui follows a uniform distribution between 0 and 𝐻𝑖
2, can be rejected. 
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Figure 0.6 Histogram plots for initial degradation at steady state without shock arrival 

Table 6 shows the result of chi-squared test for the four different systems shown in 

Figure 6(a) - (d). As it is shown on Table 6 using significance level of 0.05 (α=0.05) it can 

be concluded that there is no significant evidence to reject the null hypothesis for these 

four cases, i.e., the uniform distribution assumption cannot be rejected. In this research 

study, by changing the parameter values of 𝐻𝑖
2, 𝛼𝑖, 𝛽𝑖, numerous replications of simulation 

(105) are run for 1000 cases, data is collected and histogram plots and chi-squared tests are 

applied for these 1000 cases. Only for 3 cases out of 1000 was the uniform distribution null 

hypothesis rejected, Table 4.1 shows some of the examples. Therefore, it can be concluded 

that the distribution of initial degradation of component i degrading as gamma process 

(a) (b) 

(c) (d) 
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without shock arrivals can be approximated as uniform distribution between 0 and 𝐻𝑖
2. 

Table 0.1 Result of chi-squared tests 

Scenario 

number 

Parameter values Squared error Test Statistic p-value 

1 2 35,  0.4,  1.1H      0.000039 39.0 0.472 

2 2 30,  0.5,  1.2H      0.000038 37.7 0.527 

3 2 25,  0.5,  1.2H      0.000052 46.9 0.337 

4 2 20,  0.2,  1H     .0 0.000027 27.2 0.750 

5 2 10,  0.1,  1.2H      0.000055 50.2 0.289 

6 2 10,  0.6,  1.1H      0.000024 22.6 0.801 

7 2 15,  0.5,  1.4H      0.000037 33.1 0.558 

8 2 15,  0.1,  0.9H      0.000045 40.3 0.446 

9 2 20,  0.3,  1.5H      0.000041 38.1 0.493 

10 2 20,  0.6,  1H      0.000029 27.1 0.763 

In order to not rely on only simulation, a close approximation of distribution of 

initial degradation at steady state is derived. It is assumed that a is the probability of failure 

in a random state. Therefore, based on Figure 4.7 which shows different scenarios based 

on the last failure , equations 4.1 – 4.3 can be obtained. 
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Figure 0.7 Different scenario based on the last failure 
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(4.1) 

Therefore, by using the calculated a , the probability of ( )Uf u  is found by 

considering all the scenarios.  
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(4.3) 

For a system experiencing shocks arriving as a homogeneous Poisson distribution 
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with arrival rate of , each shock arrival causes some damage adding to the component 

degradation. The same simulation process is performed for a multi-component system with 

individually repairable components experiencing degradation and random shock arrival. 

Histogram plots are initially used resulting from the simulation to approximate the 

distribution of initial degradation for a multi-component system, when each component 

also is experiencing damage from shocks. Figure 4.6 (a) and (b) show the histogram plot 

of initial degradation for two different cases. The distribution of initial degradation is 

observed to increase linearly until the on-condition limit. The rate of increase is observed 

to relate to the shock arrival rate and shock damage distribution parameters. 

By fitting a linear line to the histogram plots and considering that the area is 1, 

approximate distributions for initial distribution at steady state can be estimated. To test if 

the initial degradation is a linear relationship, chi-squared goodness-of-fit tests are used to 

test this hypothesis. By changing parameter values such as 2 , , , ,
ii i i YH     , and running 

numerous replications of simulation for 100 cases, based on significance level of 0.05 

(α=0.05), the null hypothesis is rejected for 10% of them. So, there is an approximate linear 

distribution for initial degradation for multi-component system experiencing degradation 

and shock process. 
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Figure 0.8 Histogram plot for initial degradation at steady state with shock arrival 

The two important factors that have impacts on the slope of this fitted line are  

and μY, where  is the parameter of Poisson distribution. the shock arrival rate. To show 

the effects of different parameters of  and μY on the slope of initial degradation 

distribution, the corresponding linear slope is calculated for different parameters of  and 

μY and it is shown on Figures 4.9 and 4.10. 

As  increases, the shocks arriving to the system increase, and there are more 

shocks in the system before component failure. μY represents the mean shock damage, and 

as μY increases the shock damage on the component total degradation increases. Therefore, 

the effects of these two main factors were studied by using simulation on the slope of the 

probability density function of initial degradation at steady state. When  has a small value, 

the shocks arrival rate is small, subsequently the arrival time between shocks is 

probabilistically a large number. For this case, the initial degradation distribution is similar 

as the system not experiencing external shocks. In addition, when 𝜇𝑌 = 0 or approaches 0, 

the damage caused by shocks is minimal; so, it is equivalent to the case where there are no 

shocks in the system, and it can be concluded that Ui can be approximated by a uniform 

distribution (slope is zero). As it is shown in Figures 4.9 and 4.10, increasing the shock 

(a) (b) 
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arrival rate and expected value of shock damage, cause increases on the slope of a linearly 

increasing probability density function bounded by 0 and 𝐻𝑖
2. 

 

Figure 0.9 fU(u) slope vs. shock damage on total degradation 

 

Figure 0.10 fU(u) slope vs. shock arrival rate for fixed μY 
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4.1 On-condition maintenance for multi-component systems with individually 

repairable components 

In this section, a condition-based maintenance model was developed for a multi-

repairable component system where each component can fail due to degradation or external 

shock, and it can be replaced individually. Therefore, the system includes components of 

various ages simultaneously. The components can be replaced individually within the 

system and they are configured as series; So, failure of each component causes a system 

failure. Two failure modes are considered for each component, degradation failure and 

failure due to shocks. The series system fails when the first component experiences either 

of these two dependent and competing failure modes. Yousefi et al [160] proposed a new 

condition-based maintenance model for a multi-component system with individually 

repairable components by finding the optimal on-condition maintenance threshold for each 

components along with inspection time.  

The conditional component reliability function for soft failure at time t, given 

successive replacements and starting from the beginning of the interval at steady state, is 

the probability that the total degradation of each component is less than the failure 

threshold. The total degradation for each component by time t, after the previous 

inspection, can be separated into pure degradation, 𝑋𝑖(𝑡), additional incremental 

degradation caused by shock damage (𝑆𝑖(𝑡) = ∑ 𝑌𝑖𝑗
𝑁(𝑡)
𝑗=1 ), and the initial degradation at 

steady state, 𝑈𝑖. The total degradation of the 
thi component at time t after the previous 

inspection can therefore be accumulated as 𝑋𝑆𝑖
(𝑡) = 𝑋𝑖(𝑡) + 𝑆𝑖(𝑡) + 𝑈𝑖, and when 

𝑋𝑆𝑖
(𝑡) > 𝐻𝑖

1, component soft failure occurs. 𝐻𝑖
1 is the failure threshold for component i 

and Ui is the initial degradation at the beginning of the interval once the system is in steady-
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state.  

Ui  must be between 0 and 𝐻𝑖
1 or 𝐻𝑖

2  depending on the maintenance policy, because 

if it exceeds the threshold in one interval, it is replaced with a new one prior to the 

beginning of the next interval. Equation (3.2.4) shows the conditional probability that the 

thi component has not experienced soft failure by time t starting from the beginning of an 

inspection interval at steady state. 

 

 

(4.4) 

It is assumed that the components degrade as a gamma process, and the shock 

damages follow a normal distribution 2  ( , )
i iij Y YY Normal    where 

ijY  is an . .i i d random 

variable for the 
thj shock damage on component i . The shock magnitude is an . .i i d random 

variable that can have any distribution; so, in this study, it is assumed that it follows a 

normal distribution 2( , )
i iij W WW N   , where 

ijW  is the 
thj  shock magnitude for 

component i. Any other distribution could be used without loss of generality. The 

probability that the ith component survives a shock can be calculated using Equation (3.1.4). 

where Φ(.) is the cdf of a standard normal random variable. 

By using the approximating of component initial degradation distribution, the 

conditional probability of surviving from soft failure by time t starting from the beginning 

of inspection interval at steady state can be calculated easily as follow: 
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 is the cumulative distribution function of a gamma 

distribution with parameter  and βi. )(yf m

Y


 is the probability density function of 

cumulative shock damage from m shocks, which in this study, follows normal distributions 

whose parameter are mean = μY × m and variance = σY
2 × m, μY and σY

2 are the parameters 

of normal distribution while m is the number of shock. ( )
iUf u  is the probability density 

function of initial degradation for component i. Shocks are arriving at random time interval 

as homogeneous Poisson distribution with rate of . 

If the reliability functions are considered starting at the beginning of an inspection 

interval, conditioned on the number of shocks, then the failure processes for all components 

become conditional independent for a fixed number of shocks. Therefore, the probability 

that the series system with n components survives until time t from the beginning of 

inspection interval at steady state can be calculated as follow: 
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(4.6) 

For parallel system, the system survives by time t from the beginning of inspection 

interval at steady state if at least one of the components survives by time t, so the system 

reliability by time t (Rp(t)) for parallel system can be calculated as follow: 
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(4.7) 

For system with individual repairable components, it is beneficial to replace the 

failed component rather than replacing the whole system. Moreover, when the cost of 

failure is excessive compared to preventive replacement cost, it is prudent to prevent failure 

from occurring and replace the component before failure occurs. In this research study, I 

consider a system with individually repairable components where each component can be 

replaced individually; in fact, it is not necessary to replace the whole system when one 

component fails or before it reaches the critical degradation threshold. The on-condition 

threshold 2

iH can be useful to avoid failure by detecting the degradation level of component 

i.  

Figure 4.11 shows the degradation of component i, where 1

iH  is the failure threshold, 
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and 2

iH  is the on-condition threshold. The maintenance policy used in this study is as 

follow: 

1. The system is inspected at a periodic time interval, that is an inspection interval, and 

no continuous monitoring is performed.  

2. At the beginning of each inspection interval the degradation of all the components are 

detected. If the degradation level of each component i is lower than 2

iH , the component 

is in the safe mode and nothing is done. However, if the degradation level is between 

its on-condition threshold 2

iH  and failure threshold 1

iH the component is replaced with 

a new one immediately. The replacements are assumed to be instantaneous and perfect. 

Other components are not affected. 

3. If the total degradation of any component is higher than 1

iH  at the beginning of the 

inspection interval, the component is detected as failed one and replaced. There is a 

penalty cost for the system for the downtime duration in the previous interval.  

 

Figure 0.11 Two thresholds divide system into three regions and corresponding 

maintenance policy 

Based on the on-condition maintenance policy of a series system, at each inspection 
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time, if the degradation of all n components are lower than their on-condition thresholds,

2

iH , they are in the high safety level area, and nothing is done. Moreover, if the degradation 

of any component is between 2

iH  and 1

iH , the component is not failed, but it is prone to 

high failure risk; and therefore, it should be replaced with a new one preventively. If one 

component fails, that is, the total degradation of that component is higher than 1

iH  before 

the specified inspection interval or any shock magnitude in the interval is greater than hard 

failure threshold, it is not immediately detected and not replaced until the next inspection. 

There is penalty cost per time associated with downtime, e.g., cost associated with loss of 

production, opportunity costs, etc.  

Upon the on-condition preventive maintenance model, if   is the inspection 

interval, the probability that there is no replacement (PNRi) from beginning of inspection 

interval at steady state by time   for component i can be calculated by using equation (4.8) 
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(4.8) 

It is assumed that all the components are inspected at each inspection time, and the 

aged component whose degradation level is above its own on-condition threshold are 

replaced preventively. The on-condition rules provide valuable information about the 

system status. Detecting all the component degradation levels at each inspection interval 

lead us to avoid the system failure by replacing the sufficiently aged components at the 

earliest convenience. The action taken at each inspection interval depends on all the 

component degradation levels and failure status for each component at that inspection time. 

At the time of inspection  , no action is performed if the shock magnitude levels for all 

components are lower than their hard failure thresholds iD , and at the same time, the total 
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degradation level of all components are less than their on-condition thresholds 2

iH . Thus, 

it can be concluded that the component is in the safe region at this time. So, the probability 

that component i is in a safe mode at time  for a system in steady state, can be derived 

using Equation (4.8). 

Moreover, at each time inspection  , if no hard failure occurs and total degradation 

for component i is between its on-condition threshold 2

iH and failure threshold 1

iH , this 

component is more likely to fail soon. Although it has not failed yet and can still function 

properly, since it may probabilistically fail within a short period, replacement of this 

component should be performed. This region can be called aged region.  

For calculating the conditional probability of being in aged region for any 

component i, it should be considered the fact that component i has not been failed due to 

hard failure for all the shocks received by the system by time t. Therefore it can be 

calculated as follow:   
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                                                                                                                        (4.9) 

If at inspection time  , there has been a hard failure or the total degradation of any 

component i is greater than its failure threshold 
1

iH (soft failure), the system detected as 

failed one and the failed components should be replaced. In this situation there is a penalty 

cost for the downtime. The probability of this situation can be derived from Equation (59).  
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(4.10) 

4.1.1 On-condition maintenance modeling of systems with individually 

repairable components 

On-condition thresholds provide objective criteria to detect the component 

degradation status. By using the on-condition threshold and failure threshold and 

comparing the component degradation level with these two thresholds, the maintenance 

action can be determined. The penalty cost due to downtime is higher than the associated 

preventive maintenance cost. Therefore, it is cost efficient to replace the component before 

failure occurs. If the on-condition threshold is too low, the component will be replaced too 

frequently which leads to short component life; alternatively, if the on-condition is too 

high, the component may fail before the next inspection which causes more cost due to 

system downtime. Thus, determining the optimal on-condition threshold for each 

component and inspection interval is a challenge.  

To evaluate the performance of the maintenance policy, the steady state cost rate is 

derived. Consider the inspection cost is IC , the cost of replacement for each component 

is RC , and C
 is the penalty cost per unit down time. The system cost rate is given by: 
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(4.11) 

[ ]E   is the expected downtime. The system downtime is the time duration between 

the time of failure t  within the interval, and the next inspection time  , which is t   in 



   

 

105 

 

 

each inspection interval. Therefore, the expected downtime can be calculated as follow: 

10
[ ] ( ) ( )

H U
TE t f t dt



 


   (4.12) 

1( ; )Tf t H u is the probability density function of residual failure time at time t  

during the time interval  , given that the system has initial degradation iU  at the beginning 

of the interval. ( )
H UTf t


can be calculated using Equation (4.13).  
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(4.13) 

To calculate the probability of having k components with degradation level above 

their on-condition threshold, two different cases are studied. Case 1 is when all the 

components within the system are identical and Case 2 is a system with different 

components. 

Case 1: If all the components are identical, the probability of having k components 

with condition above their own on-condition threshold (H2) can be calculated as follow: 

( ) (1 ( ))n k k

k NR NR

n
P P P

k
  

  
 

 
(4.14 a) 

Where ( )NRP   is the probability that there are no replacements by time at steady 

state, which can be calculated by using Equation (4.8) , with ( ) ( )
iNR NRP P i    

Case 2: If some or all the components within the system are different. The calculation of 

Pk is more complex for this case. Define S(k) as a set of all n-dimension vectors x=(x1, x2, 

…, xn), whose values sum to k with xi{0, 1}, where xi is 1 if component i has degradation 

level greater than its own on-condition threshold. Therefore, Pk for Case 2 can be computed 
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considering a multinomial distribution, as: 
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Therefore, the maintenance cost rate is indicated in Equation 4.15: 
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(4.15) 

To find the optimal inspection interval and on-condition thresholds, a maintenance 

optimization model can be modeled and solved. The objective function is the maintenance 

cost rate. There are n+1 the decision variables, which are n on-condition thresholds for all 

components and one inspection interval τ. The constraints are that the on-condition 

threshold for all components should be greater than zero and less than their failure 

threshold. 

The optimization problem can be formulated as Equation 4.16: 

min  2 2 2

1 2( , , ,... )nCR H H H  (4.16) 

Subject to: 2 10 i iH H           for i=1, 2, ,…, n 

0   

Using Equation (4.15) as the objective function of the optimization problem, the 

problem is a non-linear optimization problem with continuous decision variables and a 

convex feasible region. Among all the algorithms to solve this optimization problem and 

find the optimal decision variables, the interior point method is used in this research.  

Interior point methods have proved to be very successful in solving many nonlinear 

problems [145-147].The interior point method consists of the iterative solution in the 

primal and dual variables of the Karush-Kuhn-Tucker first order optimality conditions. At 
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each iteration, a descent direction is defined by solving a linear system. In a second stage, 

the linear system is perturbed to defect the descent direction and obtain a feasible direction. 

A line search is then performed to get a new interior point and ensure global convergence 

[168]. 

There have been some studies that show the preference of using fmincon, as a built-

in algorithm in MATLAB to solve nonlinear optimization problems [168-170]. In this study, 

the interior point method used to solve the optimization problem shown in Equation (4.14) 

in MATLAB, using fmincon algorithm in the optimization toolbox. 

4.1.2 Numerical study for on-condition maintenance model of systems with 

individually repairable components 

The first example is a series system with five identical components. In this example, 

Wij and Yij follow normal distributions. 2(1.2,0.2 )ijW Normal and 2(0.3,0.1 )ijY Normal

, 
52.5 10   , the soft failure threshold is 1

iH =10, and hard failure threshold is Di=5. A 

gamma process is used to model the degradation process of all the components with ( )i t 

0.5t and i =1.1. Assuming inspection cost 5IC  , downtime cost 1000C  , and 

replacement cost for each component is 10RC  , After 22 iteration steps the algorithm 

converged and the optimal inspection interval is obtained as * 4.25   and 2* 7.61iH i  , 

with the minimum cost rate of $ 6.63×102. Figure 4.12 (a), (b) and 4.13 show the iteration 

process for the optimization problem. 
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Figure 0.12 (a) Iteration process for inspection interval the first example (b) Iteration 

process for on-condition threshold for the first example 

 
Figure 0.13 Iteration process maintenance cost rate for the first example 

The second example is a sliding spool system, which is used in different 

applications such as electrohydraulic servo-valves. The valve controls hydraulic oil flows 

by the spool sliding in the sleeve [171]. As illustrated in Figure 4.14, a sliding spool is 

composed of a spool and a sleeve, where the spool slides in the sleeve to control hydraulic 

oil flows[171]. The spool is stuck in the sleeve and they work together, so they can be 

considered as two components configurated as series in a system. Based on the information 

in [172] the main cause of components failure is sliding valves because of deterioration of 

system fluid. Moreover, based on a survey by Sasak and Yamamote [172] one of the causes 

(a) (b) 

https://www.sciencedirect.com/science/article/pii/S0951832016301740#fig0001
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of failure is a sudden appearance of pollutant in the hydraulic oil. The oil pollution can 

bring some contamination lock to the system, and also some debris adds to the degradation 

of components. Therefore, in this study, two dependent competing failure processes are 

considered. The sudden contamination lock caused by oil pollution is the random shock to 

the system and internal deterioration of spool and sleeve is the component degradation. 

The degradation of spool and sleeve are considered as gamma processes.  

 

Figure 0.14 Illustration to a sliding spool: (a) Closed position; (b) Open position[173] 

Table 4.2 contains the parameters value for reliability analysis of this system. Using 

Table 4.2 information about component degradation, the maintenance model proposed in 

this study is used to find the best inspection time   and on-condition threshold 
2

iH for 

spool and sleeve as two components configurated as a series system. Assuming inspection 

cost is 5IC  , downtime cost is 700C  , fixed setup cost for replacement is 15sC  , and 

replacement cost for each component is replacement cost 30RC  , the optimization 

problem to minimize the maintenance cost rate for the system can be solved.  

To find the optimal inspection interval and on-condition threshold for the spool and 

sleeve, Equation (4.15) is used as the objective function, and Equation (4.14b) is used to 

calculate the probability of having k components above their on-condition threshold at each 

inspection time After 30 iterations, the optimality criteria are met and the optimal 

inspection interval and on-condition threshold for each component is obtained. Figure 4.15, 
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4.16, and 4.17 show the iteration process of the interior point method for this non-linear 

optimization problem. The minimum cost rate for this system is $ 22.49 10 , the optimal 

inspection interval obtained as * 1.37   units of time, the on-condition threshold for spool 

is 2*

1 4.01H  and the on-condition threshold for sleeve is 2*

2 3.32H  . 

Table 0.2 Parameter values for a sliding spool system reliability analysis 

Parameters values sources 

Spool Sleeve 

1

iH  5 mm 6 mm Fan et al [157] 

iD  7.5 mm 7 mm Fan et al [157] 

 52.5 10  
52.5 10  

Fan et al [157] 

ijW  (1,0.2)ijW Normal  (1.5,0.3)ijW Normal  Fan et al [157] 

ijY  2(0.5,0.1 )ijY Normal  
2(0.55,0.15 )ijY Normal  Haiyang, et al [156] 

i  0.5 0.2 assumption 

i  1.2 1.6 assumption 
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Figure 0.15 Iteration process for inspection interval 

 

Figure 0.16 Iteration process for On-condition thresholds for spool and sleeve 
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Figure 0.17 Iteration process for maintenance cost rate 

For Example 3, some of the parameters of Table 7 are varied, and the maintenance 

optimization problem solved to find the optimal decision variables, inspection interval for 

system and on-condition thresholds for spool and sleeve using the new parameters. For this 

numerical example, there is a higher shock rate coming to the system by using shock arrival 

rate of 43 10    and it is also considered that each incoming shock has more damage on 

one of the components. For this purpose, new parameters are used for the normal 

distribution for shock damage on the spool, 2(0.9,0.15 )ijY Normal  mm, and there are the 

same costs as the previous example, i.e., inspection cost 5IC  , downtime cost is 700C 

, fixed setup cost for replacement is 15sC   and replacement cost for each component is 

replacement cost 30RC  . By using the interior point method to solve this minimization 

problem, after 33 iteration steps, the optimal decision variables are obtained. Figure 4.18, 

4.19, and 4.20 show the iteration steps for these three decision variables, inspection 
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interval, and on-condition threshold for spool and sleeve. The minimum cost rate for new 

system found as $
23.58 10  which was obtained at inspection interval * 0.97  , and on-

condition threshold for spool 2*

1 4.12H  and for sleeve 2*

2 3.98H  . 

By increasing the shock damage and shock arrival rate in Example 3, the reliability 

of system decreases. In fact, at any fixed time the system reliability in Example 3 is lower 

than the second example system reliability. Therefore, the system should be inspected more 

often to increase the probability of avoiding failure by detecting the components status 

more frequently. As a result, the optimal inspection interval for the third example is less 

than the second example. Although the inspection interval for Example 3 is less than the 

second example, on-condition thresholds for both components in the third example are 

higher than the second one. Hence, it can be concluded that there is a trade-off between on-

condition threshold and inspection interval. When the system is inspected more often, the 

opportunity for detecting the status of components are higher and there is typically higher 

on-condition thresholds. Conversely, if the system is inspected less often, a lower on-

condition threshold prevents the system from failure. 
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Figure 0.18 Iteration process for inspection interval 

 

Figure 0.19 Iteration process for on-condition thresholds 
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Figure 0.20 Iteration process for maintenance cost rate 

Comparing the increased rate of on-condition thresholds for both components, it 

can be concluded that on-condition thresholds for the sleeve increased more than on-

condition threshold for spool. Each arrival shock has a damage on the total component 

degradation, so the higher shock damage makes the component more prone to failure. 

Higher shock damage on the spool makes it fail sooner than sleeve. Therefore, its on-

condition threshold increased less than the sleeve from the first example. In other words, 

during each interval, the spool reaches the failure threshold faster than before, but the 

sleeve has the almost the same degradation rate as before, so on-condition threshold the 

spool increased less.  

4.1.3 Model validation for on-condition maintenance model of systems with 

individually repairable components 

To illustrate the preference of the proposed method, the optimal cost of the 

numerical example of Table 4.2 is compared to cost rate of previous models such as time-
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based maintenance, replace-on-failure maintenance and preventive maintenance for a 

system with non-repairable components. 

For replace-on-failure model, at any inspection time, if any component is failed it 

is replaced with a new one; in fact, the whole system is inspected at each inspection interval 

and only the failed components should be replaced, so 2 1

i iH H  for each component i. By 

setting 2 1

i iH H  in Equation (4.15) the optimal inspection interval is found as τ*=0.95 and 

the minimum maintenance cost rate is CR*=3.71×102.  For time-based maintenance model, 

the components will be replaced on the first inspection and there is no preventive threshold. 

So, by setting  2 0iH  , and solving the optimization problem, the optimal inspection 

interval for this case is τ*=5.23  with cost rate of CR*=3.03×102. For preventive 

maintenance for a system with non-repairable components, the optimal inspection and 

maintenance cost rate is found as τ*=  2.78, CR*=3.12×102, and on-condition threshold for 

spool 2*

1 3.04H  and for sleeve 2*

2 2.14H  . Therefore, comparing all the cost rates, it 

can be concluded that the propsoed method provide a more cost-effective maintenance 

polciy for systems with individually repairable components. Table 4.3 shows the result of 

comparision.  

Table 0.3 Comparison of results 

Maintenance policy Cost rate *  2*

1H  
2*

2H  

The proposed maintenance policy  2.49 ×102 1.37 4.01 3.32 

Time-based maintenance (
2, 0H  )  3.14 ×102 5.23 0 0 

replace-on-failure maintenance (
1 2, H H  ) 4.01 ×102 0.95 5 6 

Preventive maintenance for nonrepairable 

components  

3.78 ×102 2.78 3.07 2.15 
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4.2 Opportunistic maintenance model for a system with individually repairable 

components 

In the previous section, an on-condition maintenance policy is modeled for a system 

with repairable components. For On-condition maintenance, it is assumed that, at any 

inspection time, if the degradation level of any component is above the on-condition 

threshold, it should be preventively replaced before failure occurs. In this section, an 

opportunistic maintenance policy is modeled and suggested for a multi-component system 

with individually repairable components. In the proposed model, it is suggested to inspect 

the system at periodic times and determine the condition of each component at each 

inspection time, three maintenance thresholds are defined for each component to help 

detection of the components condition by comparing their cumulative degradation with 

their own thresholds, failure threshold, on-condition threshold and opportunistic threshold.  

For systems with high penalty cost due to downtime, it would be beneficial to 

replace the aged enough components with a new one to avoid the system failure and 

minimize costs. Using a suitable on-condition threshold for each component can help the 

maintenance team to detect the condition of components which are close to failure and 

replace them preventively. At any inspection time, if the degradation level of any 

component is above the on-condition threshold, it should be preventively replaced before 

failure occurs. Whenever a component fails, or its degradation level exceeds its on-

condition threshold, the maintenance team should be sent to the field to implement the 

required maintenance actions. So, there is an opportunity for other components to be 

preventively replaced if it is necessary. In this section, opportunistic threshold is suggested 

for each component. Therefore, at any inspection time if the maintenance team are in the 

field to replace a component they should take the opportunity to preventively replace other 
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components whose cumulative degradation is above their opportunistic threshold.  

Each maintenance action due to failure, on-condition preventively replacement and 

opportunistic preventively replacement have different associated cost, so a maintenance 

cost rate is developed for a multi-component system with individually repairable 

components degrading by time and experiencing external shocks. By minimizing the 

maintenance cost rate, an optimal periodic inspection interval for system and optimal on-

condition threshold and opportunistic threshold for all components are found 

simultaneously.  

In this section, an opportunistic condition-based maintenance policy is considered 

for a system of multi-component, when each component is degrading by time and receives 

some damages from external shock arrivals. It is also considered that each component in 

the system can be repaired/replaced individually. Since each component replaced within 

the system, at each inspection time the initial ages of the components are different. Some 

multi-components systems are functioning for a very long time and have a very high 

downtime cost; so, implementing an appropriate maintenance policy for such system can 

reduce the total cost and provide a more reliable system. Figure 44 shows how the proposed 

maintenance policy works. There are three thresholds for maintenance policy for any 

component i, failure threshold (Hi
1), on-condition threshold (Hi

2) and opportunistic 

threshold (Hi
3). Using on-condition threshold (Hi

2) as a preventive maintenance would 

reduce the downtime cost by replacing the component before failure. Moreover, whenever 

a component should be replaced due to failure or on-condition maintenance rule, the 

maintenance team is sent to the filed to implement the required maintenance action; so, 

there is an opportunity to simultaneously perform preventive maintenance on other 
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components whose degradation level is greater than their opportunistic threshold (H3). For 

this paper, some specific assumptions are considered for the maintenance policy which are 

as follow: 

1. At each inspection time, the condition of all the components in the system are 

determined. So, the system is inspected periodically and there is no continuous 

monitoring.  

2. There is a failure threshold (Hi
1) for any component i in the system, whenever the 

component’s total degradation reaches the failure threshold (Hi
1), component i fails 

due to the soft failure.  

3. Each incoming shock j can cause failure of component i, if its magnitude (Wij) is 

greater than a predefined threshold for component i (Di); in fact, component i fails 

due to hard failure.  

4. Each component i has an on-condition threshold (Hi
2) and at any inspection time, if 

the total degradation of each component is greater than its own on-condition threshold 

(Hi
2), but less than failure threshold (Hi

1), component i is still working but it may fail 

soon, so it is detected as aged component and should be replaced with a new one.  

5. There is one more threshold for each component i as an opportunistic threshold (Hi
3). 

At any inspection time, if the maintenance team should go to the field to replace any 

component, they can take advantage of preventively replace other component i which 

has the total degradation level above its opportunistic threshold (Hi
3). 

6. The cost of replacement is different for failure replacement, and preventively 

replacement due to on-condition and opportunistic maintenance rule.  

7. If the system fails within the interval, it is not immediately detected and not replaced 
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until next inspection. But there is a penalty cost due to loss of production for the 

downtime duration.  

 

Figure 0.21 Opportunistic maintenance policy 

Figure 4.21 shows a system of two components which degrading over time, and the 

maintenance policy for these two components. Table 4.4 shows the three regions based on 

comparison of total degradation of each component i with its own three thresholds, failure 

threshold (Hi
1), on-condition threshold (Hi

2) and opportunistic threshold (Hi
3). 

Table 0.4 Region description for each component 

region Description for any component i 

1 If the total degradation of component i, 
iSX is less than its own opportunistic 

threshold Hi
3, the probability of being in region 1 can be calculated by equation 

(6), P1-i 

2 If the total degradation of component i, 
iSX is greater than its own opportunistic 

threshold Hi
3 and less than its own on-condition threshold (Hi

2), the probability 

of being in region 2 can be calculated by equation (7), P2-i 
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3 If the total degradation of component i, 
iSX is greater than its own on-condition 

threshold Hi
2 and less than its own failure threshold (Hi

1), the probability of 

being in region 3 can be calculated by equation (8), P3-i 

failure If the total degradation of component i, 
iSX is greater than its failure threshold 

Hi
1 or any shock magnitude for component i is greater than its own hard failure 

threshold, Wij<Di , the probability of being in failure region can be calculated by 

equation (9), P4-i 

Table 4.5 illustrates the maintenance action at each inspection time in Figure 4.21. 

When both components are in their region 1 nothing should be done. When one of them 

should be replaced due to failure or being above the on-condition threshold, the other 

component should be replaced if it is in region 2. The same maintenance rules will be 

applied for any number of components in the system. 

Table 0.5 Maintenance action for different scenarios at each inspection time 

Inspection Region for 

Component 1 

Region for 

Component 2 

 Maintenance action 

T1 1 1 Nothing 

T2 3 2 Replace component 1 and 

preventively replace component 2 

T3 2 1 Nothing 

T4 failure 1 Replace component 1 and nothing 

should be done on component 2 

T5 1 2 Nothing 

T6 3 3 Replace component 1 and 

component 2 

To calculate system reliability, the probability of being in any region should be 

calculated for any component i. Based on table 1, each component i is in region 1 if the 

total degradation of component i, 
iSX is less than its own opportunistic threshold Hi

3 , so 

the probability that component i is in region 1 can be calculated using Equation (4.17).  
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(4.17) 

Each component i is in region 2, if the total degradation of component i, 
iSX is 

greater than its own opportunistic threshold Hi
3 and less than its own on-condition threshold 

(Hi
2) 
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 Probability of being in region 3 for each component i can be calculated as follow: 
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                                                                                                                                  (4.19) 

 Probability of failure due to soft failure or hard failure by time t, or being in failure 

region can be calculated using Equation (4.18). 
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(4.20) 

  Equation (4.17) to (4.20) show the probability that component i is in different 

regions. However, there is a penalty cost for any duration in an interval when the system 

is down. So, the probability of failure should be calculated for a system of multi-

component. In this study, it is considered that the components are configurated as series in 

the system. Figure 4.22 shows a series system of n components. 

 

Figure 0.22 Series system of n components 

In a series system, the system fails if any component in the system fails. So, the 

probability of system failure can be calculated using Equation (4.19) 
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(4.21) 

Subsequently the expected of system downtime can be determined as

0

( ) ( ; )Tt dF t



 
1

H - u .  Where (τ-t) is the duration where system is down in an interval of 

[0, τ] and ( ; )TdF t 1
H - u  is the density function of time when system fails.   

To evaluate the performance of the proposed maintenance policy, a cost rate 

function is indicated in Equation 4.22.  
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(4.22) 

Where CI is the cost of inspection, Cp is the cost associated to downtime, CF is the 

replacement cost for a failed component, Co is the replacement cost for any component 

which is in the opportunity region and should be preventively replaced, and CR is the 

replacement cost due to on-condition preventively maintenance. It is considered that 

system has n identical components, then the probabilities in Equation (4.22) can be 

calculated as follow, where P1-i , P2-i, , P3-i  are the probability that component i is in region 

1, 2 and 3 using equation (4.17), (4.18) and (4.19). 

 
0

[ ] ( ) ( ; )TE t dF t



  
1

H - u where ( ; )TF t 1
H - u  can be calculated using equation 

(4.21) 

 Probability of any failure is calculated using equation (4.20) 

 Probability of any component is in region 3 can be calculated using equation 

(4.19) (P3-i) 

 Probability of having k components above their opportunistic threshold H3 can be 

calculated as follow: 
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To find the optimal inspection interval for system and optimal on-condition 

threshold and opportunistic threshold a maintenance optimization can be modeled and 

solved, where the maintenance cost rate of Equation (4.22) is the objective function. The 

on-condition threshold should be less than failure threshold and opportunistic threshold is 

less than on-condition threshold.  
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(4.23) 

To solve the optimization problem fmincon algorithm in MATLAB toolbox is used. 

Fmincon in MATLAB is easy to use, robust and has wide variety of options. The built-in 

parallel computing support in fmincon accelerates the estimation of gradients. The optimal 

results are compared to the result of simulation optimization, to confirm the accuracy of 

interior point in fmincon.  

4.2.1 Numerical study for the proposed opportunistic maintenance model 

A conceptual numerical example is used to show the preference of proposed 

maintenance policy. It is considered that there are 4 identical components which are 

configurated as series system. The parameter values for reliability analysis are provided in 

Table 4.6. It is assumed that Yij follows a normal distribution of ( , )
i iij Y YY Normal  :  and 

it is the same for all components, and Wij is also follows a normal distribution of 

( , )
i iij w wW Normal  : , and it is assumed that the initial degradation Ui follows a truncated 

exponential distribution as Equation (4.14). Although the example is conceptual, H1 and D 

are estimated based on documented degradation trends [152] 
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(4.24) 

It is assumed that the inspection cost is $2, the downtime cost is $1000, the 

opportunistic replacement is $50, replacement due to failure is $400, and replacement due 

to on-condition maintenance is $200. 
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Table 0.6 Parameter values for reliability analysis 

Parameter value Sources 
1H  0.00125 μm3 Tanner and Dugger 

[152] 

Di 1.5 Gpa Tanner and Dugger 

[152] 

i  0.7 Assumption 

βi 0.3 Assumption 

λ 2.5×10-5 Assumption 

θ 0.9 Assumption 

Yij 2(0.4,0.12 )ijY Normal:  Assumption 

Wij 2(1.1,0.1 )ijW Normal:  Assumption 

The contribution of this paper is to find the inspection interval, on-condition 

threshold and opportunistic threshold for all the component simultaneously. By using 

simulation optimization for cost function in Equation (4.23), after 24 iteration steps, the 

optimal inspection interval is found as 
*  60.5, and on-condition threshold is 

2*H 

0.00095 and 
3*H  0.00055, and the minimum cost rate is 21.245 10 . Figure 4.23, 4.24, and 

4.25 show the optimization process for maintenance thresholds, inspection interval and 

cost rate.  
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Figure 0.23 Iteration process for maintenance thresholds 

 

Figure 0.24 Iteration process for Inspection interval 
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Figure 0.25 Iteration step for maintenance cost rate 

4.2.2 Model validation for the proposed opportunistic maintenance model 

To show the preference of the proposed maintenance model for saving cost and 

have a more cost-effective maintenance plan, I compare the cost rate of the proposed model 

and different maintenance policies such as replace-on-failure and preventively replacement 

on on-condition threshold but no opportunistic threshold. Table 4.7 shows this comparison. 

If there is no opportunistic maintenance policy for the system, and each component is 

replaced when its degradation is above on-condition threshold; in fact, the opportunistic 

threshold in this problem is exactly the same as the on-condition threshold for all the 

components (
3 2H H ) the optimal cost rate is found as 

21.975 10  with optimal 

inspection interval of 
*  45.5. For replace-on-failure maintenance policy, the component 

is replaced if it is detected as failed in any inspection time; in fact, on-condition threshold 

and opportunistic threshold are the same as failure threshold (
1 2 3H H H  ). By solving 

the optimization problem for replace-on-failure policy the cost rate is found as 4.263 ×102 
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and the optimal inspection interval is 
*  10.3  

Table 0.7 Result comparison 

Maintenance policy Cost rate  *   
2*H   

3*H   

The proposed maintenance policy 

(
2 3, ,  H H )  

1.245 ×102 60.5 0.00095 0.00055 

No opportunistic maintenance  

(
2 3, H H  )  

1.975 ×102 45.5 0.00086 0.00086 

replace-on-failure maintenance  

(
1 2 3, H H H   ) 

4.263 ×102 10.3 0.00125 0.00125 

As it is shown in Table 4.7, the maintenance cost rate is very high for replace-on-

failure and the proposed model provides a more cost-effective maintenance policy for 

systems that their components can be individually replaced.  

Dynamic maintenance planning models using optimization and neural 

networks  

Most of the previous maintenance models are static and they do not consider 

dynamic information about the degradation status of components. In static maintenance 

models, the optimal inspection interval or maintenance thresholds are found for a specific 

system and will not change based on the degradation level of components, while in 

dynamic maintenance models the maintenance operations are redefined at each decision 

time. Developing a dynamic maintenance model for systems can be more cost-effective 

and efficient compared to previous static maintenance models. Under the dynamic 

maintenance policies, the maintenance manager can easily and quickly change the 

maintenance schedule at any moment according to the condition of the system. In this 

research paper, our models can be extended for dynamic maintenance plans where the 

inspection interval or the maintenance actions can eb dynamically determined based on the 
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current degradation information of the components within the system to minimize the 

maintenance cost. Bouvard et al [174] proposed a condition-based dynamic maintenance 

model for a system of multiple components, based on the components states and detected 

failures.  The new maintenance plan is found based on the updated reliability characteristic 

of each components. Horenbeek and Pintelon [175] developed a dynamic predictive 

maintenance model for a multi-component system, based on the predicted remaining useful 

life of the system. The maintenance schedule is updated when new information on the 

degradation and remaining useful life of component become available. Developing a 

maintenance policy for a multi-component system with individually repairable component 

is a unique challenged which is studied in my research work. Yousefi and Coit [166, 167] 

proposed dynamic maintenance models for a multi-component system with individually 

repairable components.  

1.10 Dynamic inspection planning for systems with individually repairable 

components 

In a multi-component system with individually repairable components, whenever 

each component experiences soft or hard failure, it is considered as failed and it should be 

replaced with a new one, but other components continue functioning until they fail. It is 

assumed that each failed component is detected just by inspection. Since the failed 

component is replaced instead of the whole system, the age of components at each 

inspection time is different from others. In the proposed maintenance policy, the inspection 

interval should be found dynamically based on the initial age of all the components. For a 

system with multi-components that degrading differently, a preventive maintenance model 

should be found considering the age of all the components at the beginning of each interval. 

Figure 5.1 shows the maintenance model for a multi-component system where each 
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component can be replaced individually at the beginning of each inspection interval, the 

ages of components are different from each other and subsequently the length of next 

inspection interval would be different based on the initial age of all the components. To 

calculate the system reliability for a future inspection interval, random values ui are 

assumed as the initial age of each component i at the beginning of interval. 

 
Figure 0.1 Dynamic inspection planning considering random initial age for each 

component 

The following equation shows the probability of having no failure for component i 

in a series system from the beginning of an interval up to time t. 
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(0.1) 

For a series configuration, the system fails if any component fails; hence, the system 

reliability can be calculated using Equation (5.2), and for parallel configuration, the system 
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fails if all the components are failed, so the system reliability should be calculated using 

Equation (5.3) 
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As it is demonstrated in Yousefi et al [166, 167], the inspection interval can be find 

dynamically at the begging of each inspection time using the reliability models of series 

and parallel systems. 

In this section, I propose a dynamically changing inspection planning as the 

preventive maintenance for series and parallel systems. It is assumed that the whole system 

and all the components are inspected at any inspection time, and each failed component 

can be detected only by inspection and is replaced at the beginning of the next inspection 

individually, while all other components continue functioning. So, there is a penalty cost 

for as the production loss for the duration in any interval that the system is down. Following 

that, the next inspection interval should be calculated based on the initial age of all the 

components. To find the optimal inspection interval for the next inspection Cost rate 

function should be calculated and optimized dynamically. 

(1 ( ; )) [ ]
( ; )

I RC C R C E
CR

 




  


u
u  

(0.4) 

Where CI is the inspection cost, CR is the cost of replacement, C is the downtime 

cost and  is the inspection time. E[] is the expected of downtime which is
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[ ] ( ) ( )

H UTE t f t dt


 


  , where ( )
H uTf t


is the probability density function of failure time 

that system fails at time t during the time interval  starting from random value as initial 

degradation u. it is calculated by taking derivative of CDF of system failure time
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u
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According to the system configuration, Equation (5.2) for series and Equation (5.3) 

for parallel, should be substituted in Equation (5.4) to calculate the system cost rate 

function. To find the next optimal inspection interval, an optimization problem should be 

solved dynamically based on the initial age of all the components, where cost rate function 

in Equation (5.4) is the objective function of the optimization problem. Therefore, the next 

optimal inspection interval is obtaining dynamically based on initial random values as age 

of all the components. 

Two conceptual examples are considered to demonstrate the proposed reliability 

and maintenance model. The first example is a series system with three different 

components degrading with different rates. The second example is a parallel system with 

two components. Each component experiences two competing failure processes, soft and 

hard failure. Table 5.1 shows the parameter assumptions for these examples. It is assumed 

that the inspection cost is $5, replacement cost is $10, and downtime cost is $80. The cost 

rate function is calculated, and the optimization problem solved several times based on 

different combination of initial ages for series and parallel systems. 

Table 0.1 Parameter Values for example 

Parameter component 1 component 2 component 3 

H 20 mm 30 mm 35 mm 

Di 7 5 6 

αi 3 2 1 
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βi 1 0.6 0.3 

λ 2.5×10-3 

Yij 
Yij~N(μYi,σYi

2) 

μYi =2,σYi =0.5 

Yij ~N(μYi,σYi
2) 

μYi =2.5,σYi =0.2  

Yij ~N(μYi,σYi
2) 

μYi =3,σYi =0.1  

Wij 

Wij ~N(μWi,σWi
2) 

μWi =1.5, σWi 

=0.4 

Wij ~N(μWi,σWi
2) 

μWi =2, σWi =0.3  

Wij ~N(μWi,σWi
2) 

μWi =1.2, σWi =0.15  

Figure 5.2 shows the cost rate function of three different combinations of components’ 

initial age for the series example. 

 

Figure 0.2 Cost rate for different combination of components’ initial age 

Table 5.2 and 5.3 show the optimal inspection interval for different combinations 

of initial ages for the series and parallel system. 

As it is shown in Table 5.2. When all the three components are close to their failure 

threshold, the optimal inspection is very low, while when the initial ages are zero for all 

the components the optimal inspection is found as τ* =3.3. Moreover, it can be concluded 

that since component one degrades faster than other components, it has the higher impact 
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on optimal inspection interval.  

Comparing scenario 12 and 13, it can be concluded, that since the variance 

of component 3 is higher than component 2, it is dominant on determining optimal 

inspection interval. Scenarios 18-21 show than when one component or all the three 

components are close to their failure threshold the optimal inspection should be 

very low to replace them before failure.  

Table 0.2 Optimal inspection interval for series system 

Scenarios 

number  

Component 1 

(u1) 

Component 2 

(u2) 

Component 3 

(u3) 

Optimal inspection 

interval (τ*) 

1 0 0 0 3.30 

2 5 0 0 2.61 

3 0 0 5 3.09 

4 0 5 0 3.15 

5 5 5 0 2.41 

6 0 5 5 2.97 

7 5 0 5 2.30 

8 5 5 5 2.06 

9 10 5 5 1.56 

10 5 5 10 1.87 

11 5 10 5 1.94 

12 0 15 25 1.45 

13 0 20 20 1.58 

14 10 0 20 1.34 

15 10 15 0 1.41 

16 10 10 10 1.04 

17 10 15 20 0.72 

18 0 0 32 0.14 

19 0 28 0 0.15 

20 18 0 0 0.14 

21 18 28 32 0.14 

Table 5.3 shows the different optimal inspection interval for parallel example. From 

Table 5.2 and 5.3 it can be concluded that when the initial degradation of all the 

components are high, the system will be failed very soon, and it should be inspected again 

in a very short inspection interval; in fact, τ* is very small. 
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Table 0.3 Optimal inspection interval for parallel system 

Scenario 

number 

Component 1 

(u1) 

Component 2 

(u2) 

Optimal inspection 

interval (τ*) 

1 0 0 5.23 

2 5 0 5.12 

3 0 5 4.05 

4 5 5 3.78 

5 0 10 3.52 

6 10 0 4.97 

7 10 10 2.84 

8 15 20 1.52 

9 18 0 4.63 

10 0 28 3.21 

11 10 28 1.25 

12 18 28 0.15 

 

Figure 5.3 also shows the result of Table 5.3 in a 3D plot. It is obvious that when 

the initial age of one of the components is zero, the optimal inspection is long. Moreover, 

when both components are close to their failure threshold, the optimal inspection is very 

short. 
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Figure 0.3 Combination of random age and inspection interval for parallel system 

1.11 Dynamic thresholds and inspection times for repairable multi-component 

systems 

For multi-component systems with individually repairable components, each 

component can be replaced individually within the system, and there is no requirement to 

replace the whole system upon failure of any components. At each inspection time, by 

replacing each failed or aged component, the age or the degradation level of components 

within the system are different; in other words, each component has its own age at the 

beginning of each inspection interval, and the system has a mix of different component 

ages. To provide an appropriate maintenance policy for such system, the initial age of all 

the components at the beginning of each inspection time should be considered as one of 

the critical factors in the proposed maintenance model of this study. For example, if all 

components are like new, with minimal observed degradation, then the time to the next 

inspection can be relatively long.  

For a multi-component system with repairable components, since each component 

degrades separately within the system, the initial ages of the components are different and 
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change at each inspection interval. Therefore, it is beneficial to have a dynamic 

maintenance plan based on the current degradation level of all the components in the 

system. A system of components with higher age, and thus, probabilistically higher 

degradation has a higher potential for failure, and it should be inspected soon, while if the 

ages and degradation levels of all components are low, they will likely fail in a longer time, 

and the inspection can be delayed. Moreover, the maintenance threshold suggests if the 

component should be preventively replaced or not, which can be dependent on the age of 

components at the beginning of the inspection, as well. Furthermore, there is an inherent 

trade-off and relationship between inspection time and maintenance threshold. If you 

inspect frequently, the maintenance thresholds can be set much closer to the failure 

threshold, compared to longer inspection times.  

Therefore, the inspection times and maintenance thresholds should be determined 

at the beginning of each inspection time for all the components considering their 

degradation levels at the previous inspection. In the proposed maintenance model, the 

inspection time and maintenance thresholds are found dynamically to minimize cost rate. 

Yousefi and Coit [176] developed a dynamic condition-based maintenance model for a 

multi-component system with individually repairable components that experience 

degradation and shock processes. Maintenance thresholds for each component are found 

to suggest maintenance actions for each component at each inspection time, and the next 

optimal inspection time is found for the whole system dynamically based on the age of all 

the components at the current inspection time.  

Since the failed component is replaced instead of the whole system, the age of 

components at each inspection time are different from the others. In this study, random 
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variable Ui is defined as the initial age of component i at the beginning of each inspection 

interval. If the degradation is observed, and therefore known, it is expressed as ui. 

The reliability assumptions for this research work can be summarized as follow: 

(1) There is no continuous monitoring for the system, and the failed or aged 

components can be detected only at any inspection time.  

(2) At any inspection time, if the total degradation of component i exceeds its failure 

thresholds Hi
1, it is detected as failed.  

(3) When the shock magnitude exceeds the hard failure threshold of any component i 

(Di), hard failure occurs of that component, but it is not detected until the next 

inspection.  

(4) If the system fails before the specified inspection interval, it is not immediately 

detected and not replaced until the next inspection. There is a penalty cost 

associated with the time that the system is down, e.g., cost associated with loss of 

production, opportunity costs, etc. 

The conditional reliability of component i at the beginning of an inspection interval 

can be calculated as in Equation 5.5, based on the observed degradation at the beginning 

of the interval. 
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If it is assumed that the components are configurated as a series system, the 

conditional system reliability, for a multi-component series system with individually 

repairable components, at the beginning of an inspection interval, can be calculated as 

follow. 
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(0.6) 

Where  is the cumulative distribution function of a gamma 

distribution with parameter  and βi and iu is the observed degradation level of 

component i at the beginning of inspection interval. ( )
i

m

Yf y  is the probability density 

function of m shock damages, which in this study, follows normal distributions whose 

parameter are a mean of m μY  and variance of m σY
2, μY and σY

2 are the parameters of normal 

distribution while m is the number of shocks. Shocks are arriving at random time interval 

as homogeneous Poisson distribution with rate of . 

For systems with high failure costs, it is advantageous to repair or replace the 

components before the failure occurs. To prevent system failure, it is often preferable to 

replace the components which are aged enough rather than allowing them to fail and paying 

the high penalty cost. In some CBM models, for each component i, there is a preventive 

maintenance threshold (Hi
2) which is lower than the soft failure threshold (Hi

1) and 

determines if component i is aged enough to be replaced. The implementation of a lower 

degradation threshold can be useful to avoid failure by providing criteria to detect the 

degradation status of the components. It is assumed the failure threshold is a known fixed 

value, but alternatively, the preventive maintenance threshold is a decision variable and is 

defined as part of maintenance planning. In this research, the preventive maintenance 

threshold can be adjusted dynamically.  
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At each inspection time, I determine the conditions of each component by 

inspection and compare it to the maintenance thresholds, and subsequently a maintenance 

action can be implemented based on the comparison of thresholds and degradation level. 

If the degradation of any component i is lower than its preventive threshold Hi
2, component 

i is in the safety level and there is no maintenance action needed, so it can continue 

functioning. If the degradation of component i is between preventive threshold Hi
2 and 

failure threshold Hi
1, component i is detected as an aged component and should be 

preventively replaced with a new one. At any inspection time, if the degradation level of 

component i is greater than its failure threshold Hi
1, or any arrived shock has a magnitude 

greater than hard failure threshold Di, the component is failed and should be replaced with 

a new one and a penalty cost due to system shutdown is incurred. In the previous studies, 

a fixed preventive maintenance threshold is determined for the each component and at each 

inspection time, the degradation level of that component is compared to the fixed threshold 

[141]. However, while having a fixed threshold for the entire maintenance contract is 

logical and practical, there are economic advantages to revising the threshold dynamically 

based on the observed component degradation at the previous inspection.  

To minimize costs, the thresholds can be dynamically found based on the age or 

degradation of components. Moreover, with the same reason, the inspection time should 

not be fixed for the whole time, and it should also be determined dynamically based on the 

condition of all the components. Finding the next optimal inspection time and the 

preventive maintenance threshold for all the components simultaneously is a unique 

problem which is addressed in this study. Consider the example shown in Figure 5.4 which 

demonstrates the proposed dynamic maintenance model. The next inspection time and 
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maintenance thresholds are determined dynamically based on the age of all the components 

in the system. The black circles show the initial age of components at the beginning of the 

inspection interval. As it is shown on Figure 5.4, due to the degradation and repairing 

components individually, the components’ initial ages are different at each inspection time. 

 

Figure 0.4 Dynamic thresholds and inspection time 

Based on the CBM maintenance rules and Equation (5.6), if  is the inspection 

interval, the probability that there is no replacement (PNRi), either preventive or corrective, 

by time  for component i given m shocks can be calculated by using Equation (5.7) 

 
2

2

0
( ; , ) ( ) ; , ( )

i i

i i

H u
m m

NR i W i i i i i YP u m F D G H u y f y dy   


     (0.7) 

At each time inspection  , if no hard failure occurs and total degradation for 

component i is between its preventive maintenance threshold 2

iH and failure threshold 1

iH

, this component is more likely to fail soon. Although it has not failed yet and can still 

function properly, since it may probabilistically fail within a short period, replacement of 

this component should be performed. This region can be called aged region, and the 

probability that the component is in this region can be calculated using Equation (5.8). 



   

 

143 

 

 

    
1

2 1

0

-
1 2

0

( ; , ) ( ) ( ) | ( )

( ) ; , ; , ( )

i

i

i i

m
m

aged i i i i i i ij i

j

H u
m m

W i i i i i i i i i Y

P u m P W D P H X u Y H N m

F D G H u y G H u y f y dy

  

    



 

 
       

 

     





 

(0.8) 

If at inspection time  , there has been a hard failure or the total degradation of any 

component i is greater than its failure threshold 
1

iH (soft failure), the system detected as 

failed one and the failed components are replaced. In this situation there is a penalty cost 

for the downtime. The probability of this situation can be derived from Equation (5.9).  
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(0.9) 

To evaluate the performance of the maintenance policy, the cost rate for each 

inspection interval is derived. Consider the inspection cost is IC , the cost of replacement 

for each component is RC , and C
 is the penalty cost per unit down time. SC is the setup 

cost for maintenance implementation. The system cost rate is given by: 
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E[] is the expected downtime. The system downtime is the time duration between 

the random time of failure T, if there is a failure within the interval, and the next inspection 

time  . Consider 0 < T < , if a failure occurs, the downtime is T   in each inspection 

interval. Therefore, the expected downtime can be calculated as follow: 
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1( ; )Tf t H u  is the probability density function and 1( ; )TF t H u  is the cumulative 

distribution function of residual failure time, given observed degradation 
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1 2( , ,..., )nu u uu  at the beginning of the interval. u is the vector of component 

degradation of all the components at the beginning of the interval, and H1 = (H1
1, H2

1, …). 

Therefore, H1 - u represents a vector of component degradations until a failure occurs.

1( ; )Tf t H u can be calculated using Equation (5.12).  
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To calculate the probability of having k components with degradation level above 

their preventive maintenance threshold, define S(k) as a set of all n-dimension vectors x = 

(x1, x2, …, xn), whose values sum to k with xi{0, 1}, where xi is 1 if component i has 

degradation level greater than its own preventive maintenance threshold Hi
2. For example, 

in n = 3, then S(1) = {(1,0,0), (0,1,0), (0,0,1)}, S(2) = {(1,1,0), (0,1,1), (1,0,1)} and S(3) = 

{(1,1,1)}. Pk can be computed by conditioning on N(t) and considering a multinomial 

distribution, as: 

1

0 ( ) 1

1

exp( )( )
(1 ( ; , )) ( ; , )

!

( ) ; , {0,1}

i i

i i

mn
x x

k NR i NR i

m S k i

n

i i

i

t t
P P u m P u m

m

S k x k x

 
 




  




 

 
   
 

  



x

x

 (0.13) 

Therefore, the maintenance cost, given vector u, can be calculated as follow: 
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The inspection time  and the preventive maintenance threshold 
2

iH  for all the 

components are the decision variables and their optimal values should be found 

dynamically following each inspection by solving an optimization problem considering the 

initial age of all the components 1 2( , ,..., )nu u uu observed during the previous 

inspection. By solving the following optimization problem, the optimal inspection time and 

thresholds are found sequentially for each successive inspection.  

min  2 2 2

1 2( , , ,..., ; )nCR H H H u  (0.15) 

Subject 

to: 

2 10 i iH H           for i=1, 2, …, n 

0   

Using Equation (5.14) as the objective function of maintenance problem in 

Equation (5.15), results in a non-linear optimization problem with continuous decision 

variables that should be solved dynamically following each inspection to determine the 

optimal plan for the next interval. There are different algorithms that can be applied for 

solving non-linear optimization problems; however, solving a difficult nonlinear 

optimization problem to find the decision variable is not practical for the maintenance team 

in the field to derive the optimal maintenance policy. Therefore, it is desirable to have a 

time efficient method to find the next inspection time and maintenance thresholds for all 

the components to minimize maintenance cost rate.  

For each multi-component system experiencing internal degradation and external 

shocks, the maintenance optimization problem can be solved multiple times considering 

different initial ages of the components to find the optimal inspection interval and 

preventive maintenance threshold. The initial age of components is the main factor for 

finding the next inspection time and maintenance thresholds. 

Different scenarios can be simulated for the initial degradation of components in 
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the system and the optimization problem can be solved for all the scenarios to find the 

optimal maintenance decisions. However, there are an infinite number of scenarios for the 

initial age of components. Therefore, by training a neural network model on a given data 

set, the maintenance decisions for any combination of components’ initial age at the 

beginning of the next inspection time can be predicted. By solving the maintenance 

problem for different scenarios of initial age of components and finding the inspection 

interval and maintenance thresholds, a maintenance dataset is generated, and by training a 

neural network, a model is trained to predict the next inspection time and maintenance 

thresholds of all the components based on the initial age of components as the inputs. In 

this way, the dynamic maintenance plan can be updated for each successive interval 

without actually solving the nonlinear optimization problem in a repetitive fashion. 

1.11.1 Neural Network for Maintenance Problem 

A neural network is a network of connected neurons in different layers. At each 

neuron, the inputs of the model are combined with weights, and then the sum of all the 

input-weight products is passed through an activation function to transition to the next 

layer. At the end of this process, the last hidden layer is linked to an output layer to provide 

the output or prediction. One of the main strengths of machine learning algorithms is their 

ability to learn and improve every time in predicting an output.  

1 1 2 2( ... )p poutput f z z z b        (0.16) 

Equation (5.17) shows the calculation of output of each layer when there are p 

inputs into the model. b is the bias and f(·) is the activation function, which is used to 

convert the inputs into a predictable form of output. To evaluate the output of a neural 

network a cost function is calculated to measure how accurate the prediction is. One of the 
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commonly used cost functions is a mean squared error which is calculated as follow: 
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ˆ( )
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e e

e

MSE o o
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   
(0.17) 

Where N is the number of samples, and oe is the actual value of which is the 

inspection interval and 𝑜̂𝑒 is the predicted value or the predicted next inspection interval in 

our problem. By calculating the cost function, the weights and biases of the network can 

be optimized. Stochastic gradient descent (SGD) is an effective optimization algorithm to 

minimize the cost function by changing the weights and biases. 

Multiple-output neural networks are models which are able to predict multiple 

outputs simultaneously. The outputs can be dependent on multiple inputs with different 

weight combinations, and the convergence strategy is to calculate the weights and biases 

to minimize the average deviation between predict and observed outputs [177]. Multiple-

output neural network utilizes multiple inputs to predict multiple outputs whereas a neural 

network considers a single output. Figure 5.5 shows the architecture of a multiple-output 

neural network. More information and mathematical details of training multiple-output 

neural network models are given in [178-181]. 
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Figure 0.5 Multiple-output neural network neural network [182] 

A multiple-output neural network model is considered in this study, which consists 

of three layers: input, output, and one hidden layer. The input layer consists of input nodes, 

representing the observed degradation measures. The outputs of the input nodes are 

normalized and transferred to the hidden layer in which they are processed through a 

transfer function. The minimum Mean Squared Error (MSE) method is used as the 

optimization criterion to train the weights of the network, and the proposed neural network 

is trained until MSE between the predicted and the actual values becomes minimal and 

remains unchanged.  

In this study, there are n input variables for the initial degradation levels of n 

components in the system and n + 1 outputs for the inspection interval and the preventive 

maintenance thresholds for each component. Therefore, for any series system experiencing 

degradation and external shocks processes, the system reliability can be calculated using 

Equation (5.6) and the maintenance cost rate can be derived using Equation (5.14) which 

considers the maintenance cost for inspection, replacement, setups and penalty cost of 
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system failure. By using the optimization problem that is formulated in Equation (5.15), 

the optimal inspection interval and preventive maintenance thresholds can be calculated 

using any nonlinear optimization algorithm. The interior point method is used in this 

research work. Interior point methods have proved to be very successful in solving many 

nonlinear problems [145-147].  

Different scenarios are simulated for the initial degradation of components in the 

system and the optimization problem is solved for all the scenarios to find the optimal 

inspection interval and preventive maintenance thresholds for all the components. 

However, there are an infinite number of scenarios for the initial age of components. 

Therefore, by training a machine learning model as a black box on the given dataset, the 

maintenance decision can be predicted for any combination of components’ initial age at 

the beginning of the inspection time. By using the simulated scenarios as input variables 

and their corresponding optimal values as the output variables, a multiple-output neural 

network is trained. The trained network can be provided to the maintenance team to select 

the optimal maintenance decisions dynamically by giving the initial degradation level of 

components as inputs, instead of solving an optimization problem. To evaluate the 

performance of the network, the dataset is split into 70% for training and 30% for testing, 

and the overall performances of both training and testing sets were evaluated by MSE, and 

the R2coefficient is also used to determine how well the trained model can predict the target 

values.  

1.11.2 Numerical results for dynamic maintenance thresholds and inspection times 

The numerical example which is considered in this study is a sliding spool system, 

which is used in different applications such as electrohydraulic servo-valves. The sliding 

spool system has two components of a spool and sleeve with the reliability parameters 
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shown in Table 5.4. It is also assumed that inspection cost is 5IC  , the downtime cost is 

700C  , the fixed setup cost for replacement is 15sC  , and replacement cost for each 

component is replacement cost 30RC  . To find the optimal inspection interval and 

preventive maintenance thresholds for spool and sleeve, the optimization problem 

formulated as Equation (5.14) and (5.15) was solved dynamically given the age of these 

two components. Since the components within the system are not identical, Equation (5.14) 

is used for calculating the probability of k replacements. By simulating the initial age of 

components, the optimization problem can be solved for different scenarios. 

Table 0.4 Parameter values for a sliding spool system reliability analysis 

Parameters values sources 

Spool Sleeve 

1

iH  5 mm 6 mm Fan et al [157] 

Di 7.5 mm 7 mm Fan et al [157] 

λ 52.5 10  
52.5 10  

Fan et al [157] 

ijW  (1,0.2)ijW Normal  (1.5,0.3)ijW Normal  Fan et al [157] 

ijY  2(0.5,0.1 )ijY Normal  
2(0.55,0.15 )ijY Normal  Haiyang, et al [156] 

i  0.5 0.2 assumption 

i  1.2 1.6 assumption 

Table 5.5 shows some examples of finding the next optimal inspection interval and 

preventive maintenance thresholds for components by solving the optimization problem 

based on the initial age of components.  

As it is shown in Table 5.5, when both components are new such as Scenario 

numbers 1 and 2, the optimal next inspection interval is longer than scenario number 20, 

which both components are close to their failure thresholds. Moreover, since the system 

configuration is series, failure of one component in the system causes the whole system 
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failure, so when one component is close to its failure threshold, the next inspection interval 

is very short, and it means that the system should be inspected frequently to avoid the 

penalty cost of failure. In Scenarios 9, 10 and 11, one component is almost new, and another 

component is close to its failure threshold, so the system should be inspected in a short 

time.  

The optimal preventive maintenance thresholds assist the maintenance team to 

detect if the component is sufficiently aged to be economically replaced, and subsequently, 

the replacement can be done to avoid a costly failure. Therefore, for such scenarios with 

one new component and one aged component at the beginning of inspection time, the next 

inspection is relatively short. Based on the optimal preventive maintenance threshold, the 

new component will not be detected as aged one and there is no replacement required for 

new components. In fact, using the optimal inspection time and preventive maintenance 

threshold, there will be very little waste in the useful life of components that are new. 

Solving a non-linear optimization problem dynamically is a not time-efficient or 

practical method for maintenance team to find the next maintenance decision variables. To 

provide a fast method to find the next inspection time and preventive maintenance 

threshold without actually solving the problem, a neural network can be trained and 

provided which uses the initial degradation levels of components as the input variables and 

predicts the next maintenance decision variable which are the next inspection time and 

preventive maintenance thresholds for all the components. 

Table 0.5 Optimal maintenance decisions for different scenarios 

Scenario 

number 

Degradation 

of spool (u1) 

Degradation 

of sleeve 

(u2) 

Next 

inspection 

interval (τ) 

Next 

threshold for 

Next 

threshold for 
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spool (
2

1H ) sleeve (
2

2H ) 

1 0 0 4.32 3.22 3.60 

2 0.12 0.09 4.13 3.26 3.65 

3 0.81 1.15 4.11 3.29 3.74 

4 1.21 2.03 4.07 3.31 3.76 

5 1.75 2.28 4.09 3.34 3.79 

6 1.98 0.14 4.06 3.35 3.69 

7 1.62 1.47 4.17 3.33 3.72 

8 0.15 3.30 3.87 4.02 3.97 

9 0.06 4.02 2.18 4.54 5.11 

10 0.17 5.13 1.01 4.15 5.31 

11 4.46 0.18 0.97 4.78 3.77 

12 3.21 0.02 3.44 4.01 5.57 

13 0.18 4.11 2.27 4.03 5.12 

14 2.18 2.64 3.96 3.41 3.86 

15 2.22 3.41 2.47 3.48 5.01 

16 2.87 1.14 3.98 3.37 4.99 

17 3.60 4.26 1.46 4.08 5.09 

18 4.01 1.12 1.54 4.66 4.87 

19 2.11 5.07 1.03 3.39 5.44 

20 4.51 5.53 0.69 4.87 5.97 

In this study, by simulating different scenarios for the initial age of two components 

of the spool and sleeve and solving the optimization problem which is formulated in 

Equation (5.14) and (5.15), the next maintenance decision variables are defined for 1000 

different cases. By using 70% of this dataset, a multiple-output neural network is trained 

and tested its accuracy on 30% to evaluate the performance of the model. The coefficient 

of determination (R2) indicates the percentage of the response variable variation that is 

explained by the trained model. R2 is also known as “the goodness of fit” which can have 
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a value between 0 and 1. A value of R2 =1 indicates a perfect fit, and is thus a highly reliable 

model for future prediction, while a value of 0 represents a poor model for prediction. As 

it is shown in Figure 5.6, 5.7 and 5.8, the determination coefficient (R2) for inspection and 

thresholds for spool and sleeve for both training set and testing set is high numbers (close 

to 1) which indicate that how well the trained model can predict the target values.  

  

Figure 0.6 Predicted inspection vs actual inspection for (a): training (b) testing set 

  

Figure 0.7 Predicted threshold for spool vs actual threshold for spool for (a): training (b) 

testing set 

(a) (b) 

(a) 
(b) 
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Figure 0.8 Predicted threshold for sleeve vs actual threshold for sleeve for (a): training 

(b) testing set 

To find the best number of neurons in the hidden layers, a sensitivity analysis is 

done between number of neurons in the hidden layer and two performance measure of 

MSEo and aRMSE for training and testing sets. Equation (5.18) and (5.19) are used to 

calculate the overall MSEo and aRMSE. Where N is the number of samples, d is the number 

of output variables, o is the actual value and 𝑜̂ is the predicted value.  

( ) ( ) 2

1 1

1
ˆ( )

d N
l l

o e e

e l

MSE o o
N 

    
(0.18) 

( ) ( ) 2

1

1 1

ˆ( )
1 1

N
l l

e ed d
l

e e

o o

aRMSE RMSE
d d N



 



 


   

(0.19) 

Figure 5.9 and 5.10 show the effect of the number of neurons on neural network 

performance for training and testing sets. By increasing the number of neurons in the 

hidden layer, the neural network becomes more complex and the errors (both MSEo and 

aRMSE) for training set decrease. However, for the testing process, the errors decrease 

with increasing number of neurons until optimal numbers are obtained, and after that they 

increase again due to overfitting on the training set. As shown in Figure 5.9, the best 

number of neurons for the hidden layer is 6 neurons which has the MSEo of 0.225 for 

testing and 0.201 for training set along with aRMSE = 0.301 for the testing set and 0.2645 

(a) 
(b) 
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for training set.  

 
Figure 0.9 The effect of number of neurons on neural network performance for MSE 

 

Figure 0.10 The effect of number of neurons ion neural network performance for aRMSE 

The proposed maintenance model provides a neural network model as a decision-

making tool for the maintenance team to find the next inspection time and the maintenance 

thresholds for replacing the components. The degradation paths of the components in the 
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sliding spool system is simulated using the parameters in Table 5.4, and the trained neural 

network is used to show how the proposed model can suggest the maintenance decisions 

dynamically. The degradation simulation starts with a new system where the degradation 

level of both components is zero. The first step using the proposed model is feeding the 

initial degradation of spool and sleeve (0,0) to the trained neural network as the input and 

finding the next inspection time and maintenance thresholds. At the next inspection time, 

the degradation level of both components is computed using the parameters in Table 5.4 

and are fed into the neural network to find the next maintenance decisions, and the process 

continues in the same way.  

Figures 5.11 and 5.12 show two different simulations of the system with two 

components degrading based on the parameter of Table 5.4. In the first step, both 

components are new, and their initial degradation level is zero, and based on this 

information and using the neural network, the next inspection time and the maintenance 

thresholds are computed. In the next step, both components are degrading, and the new 

initial degradation levels are fed into the neural network, and the next maintenance 

decisions are computed. In Figure 5.11, in the third step, component 1 has a degradation 

level greater than the maintenance threshold, which is found using the neural network in 

the previous step. Therefore, it should be replaced by a new one, and its initial degradation 

level is zero. Since the degradation process is stochastic, as each simulation, the 

components degrade differently. Figures 5.11 and 5.12 show how the degradation path of 

components are different in different simulation runs. The stochastic nature of the gamma 

process is shown in different degradation levels of the same system through various 

simulation runs.  
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Figure 0.11 The proposed dynamic maintenance model for degradation simulation (a) 
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Figure 0.12 The proposed dynamic maintenance model for degradation simulation (b) 

Figure 5.13 also shows the degradation path and implementation of the proposed 

dynamic maintenance model for the numerical example of the sliding spool system for 

simulation (a). The dash lines in Figure 5.13 show the maintenance thresholds for two 

components, and the circles show the initial degradation level of the components.  
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Figure 0.13 The proposed dynamic maintenance on the numerical example 

Dynamic maintenance models using reinforcement learning 

The goal of maintenance management is to reduce the overall maintenance cost and 

increase the availability and/or reliability of systems. Over the last few decades the 

maintenance of systems has become more complex and more critical, as maintenance costs 

have become a large portion of lifecycle cost. For some multi-component systems, each 

component can be repaired or replaced individually within the system, and there is no 

assumption that the system is packaged and sealed together for maintenance purposes. For 

such systems, it is often more cost effective to monitor the degradation of each component 

individually within the system and to implement the maintenance actions selectively based 

on its degradation level. Therefore, at any inspection interval the components which are 

more prone to failure should be repaired or replaced and the other components continue 

functioning. The problem is complicated when the degradation paths are dependent, even 

when they have different respective ages. Yousefi et al [100] investigated a new dynamic 

maintenance model for a system with individually repairable components to find the best 

maintenance action based on the system degradation stage.  
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In this Section, a dynamic maintenance policy is proposed for multi-component 

systems with individually repairable components. Each component of the system 

experiences two competing failure processes of degradation and shock arrival. Soft failure 

occurs when the cumulative degradation for a component is greater than a pre-defined 

failure threshold, and hard failure occurs when the magnitude of any shock is greater than 

a pre-defined hard failure threshold.  

There has been a significant amount of research on maintenance optimization of 

complex systems which are mostly model-based methods. However, one of the main 

drawbacks of the model-based methods are the limitations associated with parameters and 

modeling assumptions. In this section, I propose a dynamic maintenance policy for a multi-

component system with individually repairable components at each inspection time using 

the model-free method of reinforcement learning. Reinforcement learning is one type of 

machine learning that trains an agent to decide how to perform an action based on the 

system state and associated rewards. By applying the trial-and-error to maximize the 

reward, the agent learns how to make decisions in an uncertain, complex environment. 

Therefore, at any inspection interval, the trained agent can choose the best maintenance 

action from a set of actions based on the current age and state of the components which 

minimize the cost.  

1.12 Dynamic maintenance for multi-component systems with finite degradation 

states 

Degradation models can provide the relationship between product degradation and a 

corresponding failure time distribution. Therefore, using a proper degradation model can 

provide for a more precise estimation of the failure time distribution, system reliability, 

and the appropriate maintenance policy. Finding the degradation behavior of components 
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and systems is a critical main step in determining a suitable maintenance plan. In this 

section, a multi-component system is considered where each component degrades 

monotonically over time. The gamma process is selected as the stochastic process to model 

the degradation of each component in the system.  

The probability density function of degradation process for each component i,

   i iX t X s  can be calculated using Equation (5.1). It is also assumed that random shock 

arrivals occur as a homogeneous Poisson process with rate  . Therefore, the probability 

of m shocks arriving to the system by time t can be calculated using Equation (5.2). Each 

incoming shock has a damage on all components within the system; and the damage is as 

an additional abrupt jump 
ijY  on the cumulative degradation path of each component i. The 

cumulative degradation of each component i is the summation of pure degradation by time 

t, and the cumulative damages caused by shocks by time t (
1

( )i ij

j

S t Y




 ) where ijY  is an 

i.i.d random variable for the jth shock damage on component i. The total degradation can 

be accumulated as  ( ) ( ) ( )
iS i iX t X t S t  . It is also assumed that each component may fail 

due to a hard failure, which occurs when any shock magnitude is greater than a predefined 

hard failure threshold. ijW is a i.i.d random variable for the 
thj shock magnitude for 

component i. The probability that the jth component dow not cause a hard failure can be 

calculated using Equation (5.3). 

Using MDP to formulate the degradation state of systems in a maintenance problem 

and using a reinforcement learning algorithm,can be used to dynamically optimize 

maintenance planning of systems degrading over time and experiencing random shock 

arrivals. Reinforcement learning is a set of algorithms which are based on rewarding the 
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desirable behaviors. The agent and environment are the two main components of 

reinforcement learning methods. The procedure of reinforcement learning starts by the 

environment detecting the system state and sending it to the agent, and based on the 

knowledge which is taken by the agent, it takes an action. Subsequently, based on the action 

chosen by the agent, the environment calculates the reward and the next state, and the agent 

updates the knowledge with the information returned by the environment and evaluates the 

last action. This procedure continues iteratively in a loop until the environment reaches a 

terminal state. The whole process is modeled as a MDP which can formulate a problem of 

learning from interactions to achieve a goal, and can describe a stochastic dynamic system. 

Figure 6.1 illustrates the process of reinforcement learning. 

 

Figure 0.1 Reinforcement learning process with agent and environment [183] 

For systems degrading and experiencing random shock arrivals, finding a proper 

maintenance policy has been a sophisticated issue which has been studied for several years. 

MDP can be used to model the degradation of such systems, and by using the reinforcement 

learning algorithm, an agent can be trained to provide an action, such as a particular 

maintenance action for components of systems. The agent is trained by using the 

interactions of environment and actions, which can be the degradation states and the 

available maintenance actions. At each time step which can be the inspection time, the 
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agent detects the current degradation state of the system and chooses a maintenance action 

based on the system degradation knowledge. Each maintenance action is evaluated by its 

associated cost which can be considered as negative reward, and subsequently, based on 

the action taken by the agent, the system goes to the next state. The process continues until 

the end of the maintenance time contract or planning period.  

MDP for reinforcement learning problem has the following components: 

 The system has state space of S, and at each time step t, the state is 𝑠𝑡 ∈ 𝑆. 

 A(S) is the set of possible actions, and the action at time t is 𝑎 ∈ 𝐴(𝑆𝑡). 

 𝑃𝑠𝑠′
𝑎 = 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎) is the transition probability of being in state 𝑠′ at time t+1, if the 

system was in state s at time t, and the agent chooses the action 𝑎.  

 tr  is the reward at time t. 

 ( , )t s a is the probability that action a is selected at time t given state s.  

The agent policy ( , )t s a  is the mapping from distinguished states of the 

environment to actions to be taken when in those states at each time step. The agent policy 

is the probability distribution over actions given states, and it must be true that 

( , ) 1t

a

s a  . In other words, it is the likelihood of every action, when an agent is in a 

particular state. In reinforcement learning methods, Rt is the cumulative future reward 

which is returned to the agent at time t. The future cumulative discounted reward is used 

to assign greater weights to rewards occurring sooner. A discount factor γ ∈(0,1) is defined 

for calculating Rt, which serves to emphasize the imminent rewards rather than the future 

rewards. So, the equation for future cumulative discounted reward can be calculated as 

shown in Equation 6.1, where tr  is the reward at t. 
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Where T is the time horizon over which the maintenance policy is determined.  

To learn the optimal policy, the value of taking action a at any state s should be 

defined. The action value function is the expected value of taking an action in a state 

following a certain policy and can be calculated as indicated in Equation 6.2: 

  1

0

( , ) | , | ,
T

k

t t t t k t t

k

Q s a E R S s A a E r S s A a     



 
      

 
  

(0.2) 

The goal of reinforcement learning using MDP is to obtain the maximum expected 

cumulative reward. Using Bellman equations is one of the traditional methods to solve the 

MDP problems. In this section, the Bellman equation is briefly explained, which is 

necessary to understand the reinforcement learning algorithms. 

The following equations present transition probabilities and expected cumulative 

reward.  

' 1( | , )a

ss t t tP P S s S s A a
     (0.3) 

1 1[ | , , ]a

ss t t t tE r S s S s A a  
      (0.4) 

Equation (6.3) is the transition probability, which is the probability of arriving at 

state s at time t +1, if the process starts at state s at time t and take the action a. Equation 

(6.4) is the expected cumulative reward if the process starts at state s, take the action a, and 

move into state s . 

The first step in deriving the Bellman equations is defining the state value function, 

which is described as the expected return continueing from state s following policy  . 
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The expectation can be written explicitly by summing over all possible actions and 

all possible returned states.  

 1 | ( , ) a a

t t t ss ss

a s

E r S s s a P   


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As it was proved in [184], by using Equations (6.2)-(6.7), the Bellman equation for 

the action value function can be derived as follow. 
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(0.8) 

𝑎′ is the next action and 𝑠′ is the next state. Using the Bellman equations, the value 

of states can be derived as values of other states. In fact, the value of current state st, can 

be calculated knowing the value of 𝑠′. The goal of reinforcement learning is to find the 

optimal policy, which tells us the best action at each state to maximize the reward. By using 

the Bellman equations and dynamic programming, the optimal policy can be calculated. 

The Bellman equations help explain how the reinforcement algorithm works. In this 

section, one of the most common reinforcement learning algorithms called Q-learning is 

applied to solve the MDP. 
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1.12.1 Markov decision process for maintenance policy 

In condition-based maintenance, the deterioration level of the system or 

components are used to make the decision for maintenance actions. For systems 

deteriorating in time, it is a more cost-effective plan to dynamically implement the 

maintenance action based on its deterioration level. For our model, a multi-component 

system is considered where each component degrades over time within the system, and can 

be maintained individually. For each component i, the degradation is classified into 

multiple stages based on predetermined thresholds. Figure 6.2 shows the different stages 

for each component i, used in our model. When the component is new, and its degradation 

level is zero ( ( ) 0iX t  ), it is in stage 0. Stage 4 or failure stage is when the degradation 

level of the component is above the failure threshold 1

iH .  When the component 

degradation level is between 2

iH and 3

iH , it is in stage 2, and when it is between 2

iH  and 

1

iH  , it is in stage 3.  

Since the components are degrading over time, at each time step (inspection time), 

if the component is not maintained, it can transition from stage j to stage j+1 (or higher) or 

stay in the same stage j, but it is impossible to go back to the previous stages. Therefore, 

the state of the system at time t, is St= (t, s1t, s2t, …, snt), where sit is the degradation stage 

of component i at time t, {0,1,2,3,4}its  . 
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Figure 0.2 Different stages for each component 

MDP can be defined as a tuple of ( , , , , )S A P C  , where S is the state, which is the 

combination of degradation level of all the components in the system St= (t, s1t,s2t, …, snt). A 

is the action set, which is defined by selecting an available maintenance action for each 

component. P is the transition probability of going to the next states, and C is the cost function.  

The actions for reinforcement learning which are considered in this section are (1) do 

nothing, (2) minimal repair, (3) replace a component. Therefore, at any state j any of these 

actions can be chosen for any component i. If “do nothing” is selected for any component i 

which is in stage j, it can stay in state j or can go to any of the next stages with different 

transition probabilities. If I consider “minimal repair” action for any component i at state j, 

then the next state should be j-1 with probability of one. If “replace” is considered for 

component i at state j, it transitions to stage 0 with probability of one, which is “as good as 

new”. Hence, at each inspection, the action set for a system with n components has 3n actions, 

which includes any of three actions, i.e., “do nothing, minimal repair, replace”, for all n 

components.  

It should be noted that at each inspection time, the state information is known for the 
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problem and the terminal state is the end of the planning time horizon for providing the 

maintenance policy. In fact, if it is desirable to provide a maintenance policy for T units of 

time and our inspection duration is τ, then there are T
      inspections in our state matrix, 

so t for the degradation state is between 0 and   (0 t   ). The agent’s learning 

performance is significantly improved when time-awareness of the agent is introduced, by 

specifically incorporating a time-related space component [185, 186]  

Figure 6.3 shows a Markov process for a system with one component from any time τ 

to τ+1, and three actions of {“do nothing: 0”, “repair: 1”, “replace: 2”}. Green arrows show 

the transition when “do nothing” action is selected at any state. Blue arrows show the 

transition between states when the action is “repair” and orange arrows show the “replace” 

transitions. The Markov chain has five states, and each of them represents the degradation 

stage of the component. For example, state 0 is the stage that the component is new and then 

with some probabilities it can transit to the next state (state 1, 2, 3, or failure), but it cannot 

stay in state 0. Therefore, in the next inspection time, it can move to any other states, and due 

to the chosen action, it can move to any of five states. For instance, 0

12P represents the 

probability that the component transitions to state 2 if action 0 is selected. 1

10P show the 

probability that component goes back to state 0 upon repair or replacement action.  
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Figure 0.3 MDP for a single system 

Figure 6.4 shows some example connections for a Markov process for a system 

with 2 components, each with 5 stages. As it is shown, if the current state is (1,1) which 

means both components are in their first degradation stage (stage1), then different actions 

make it transition to another state with a different cost (reward). If the first component is 

replaced but not the second component, it goes to (0,2), or (0,1), or if both components are 

replaced, St+1 is (0,0), and so on.  

It is considered that each time step is an inspection time, and there is a defined time 

horizon for maintenance decision-making, such as the duration for a maintenance or 

another convenient planning period. The combination of all component degradation at time 

t is the current state, and actions of “do nothing, minimal repair, replace” for each 

component within the system are the action set, which has 3n possible system actions. 
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Figure 0.4 Markov process of a system with 2 components 

Table 6.1 shows the action numbers for all the combination of actions for all the 

components. Each action has a fixed cost such as 0 for “do nothing”, 𝐶𝑚 for “minimal 

repair” and 𝐶𝑅 for “replace” in addition to a penalty cost of downtime if the system is down 

between two inspection time 𝐶𝜌. 

Table 0.1 Action set for a system with 2 components 

Component 1 Component 2 Action number 

Nothing Nothing 0 

Nothing Minimal repair 1 

Nothing Replace 2 

Minimal repair Nothing 3 

Minimal repair Minimal repair 4 

Minimal repair Replace 5 

Replace Nothing 6 

Replace Minimal repair 7 

Replace Replace 8 

It the “do nothing” action is selected at any stage j for component i, it may stay in 

the same stage j or may go to any of the next stages with a probability. Because of 

increasing deterioration, it is assumed that the degradation level of the component cannot 

stay in stage 0. The following equations show the probability of component i, which is in 

stage 0 transitioning to any of stage 1, 2, 3, 4. In order to find the probability of being in 

stage 1, 2 or 3, the component should not experience any hard failure. In the case that hard 
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failure occurs on any component, it transitions directly to the stage of failure. Equation 

(6.9), (6.10) and (6.11) indicate the probability that component i has not experienced any 

hard failure from the beginning of the inspection until the next inspection time and the 

degradation transitions to stage 1, 2 and 3. Respectively, Equation (6.9) shows the 

probability when  degradation level of component i in next inspection is less than 3

iH . 
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Where ( )
i

m

Yf y   is pdf of the sum of m independent and identically distributed 

(i.i.d.) Yi, and 0( ; , )iG x t   is the cumulative distribution function of ( )iX t . Equations 

(6.10)-(6.11) show the probability when degradation level of component i in next 

inspection is between 3

iH and 2

iH , and when degradation level of component i in next 

inspection is between 2

iH and 1

iH . 
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The probability of being in stage 3 can be calculated as follow, which is  
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When the component i fails due to hard failure or its total degradation exceed failure 
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threshold 1

iH , it will be in stage 4 or failure stage with the following probability.  
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For calculating the transition probability from stage 1 to 2, 3 and 4 a random 

variable Ui1 is needed as the initial degradation of the component’s degradation in stage 1, 

which is between 0 and 3

iH  , and follows uniform distribution between 0 and 3

iH . It is also 

assumed that if any component i is in stage 0j  , it can stay in the same stage j in the next 

time step with probability of j jP  . In the same way, the transition probabilities can be 

calculated from stage 2 to 3 or 4, or staying in stage 2 considering Ui2 as the initial 

degradation of component in stage 2.  All the transition probabilities for stage 3 also can 

be calculated in the same way using Ui3 as the initial degradation of components in stage 

3. Table 6.2 shows all the transition probabilities. Where ( )
iUf u is the probability density 

function of initial random degradation for component i which follows uniform distribution 

between the corresponding thresholds for each specific degradation stage.  

The presence of shocks creates some form of dependency. However, to compute 

transition probabilities, it is assumed that component transitions are independent. 

Therefore, the total probability that the system transits from any state to other states can be 

calculated by multiplying the transition probability of each component within the system. 

For example for a system with two components, if component 1 is in stage 2 at time t and 

component 2 is in stage 3 at time t, the state for whole system is (2,3,t) and the probability 

that the next state will be (3,3,t+1) can be calculated using the transition probabilities of 
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these two components,
1 1,2 3 2,3 3( (3,3, 1) | (2,3, ))t tP S t S t P P       . 
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Table 0.2 Transition probabilities for all the states 

Transition Probability 
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Finally, the cost function/reward function can be calculated using the associated 

cost for each action on the components, and the penalty cost for system downtime. In 

this study, the reward function rt is defined as negative value of total cost ( t tr C  ). 

At each inspection time t, each action tA a , is the combination of maintenance actions 

of all the components 0 1( , ,..., )t d d dnA a     , and has a specific cost associated with 

actions for all the components. . In the tuple of maintenance actions 

0 1( , ,..., )d d dna    , each  d i for component i, is a binary variable for actions of {“do 

nothing: 0i ”, “repair: 1i ”, “replace: 2i ”}, where 0 1 2 1i i i     . So, for each 

component i, the total cost can be calculated as follow: 

 1 2

1

n

t m i R i

i

C C C C  


    
(0.22) 

mC is the cost for minimal repair, RC is the replacement cost and C
is the 

penalty cost for downtime.  is a binary variable indicating the failure states. If the 

system fails, a penalty cost of C
 should be added to the cost function. For each 

maintenance problem, failure states should be defined based on the system 

configuration and the system structure function. For a series system, if any component 

fails within the system, the system fails. Therefore, the failure states are defined as all 

states that any component fails i.e., it is in stage 4 (failure stage). For a parallel system, 

the system fails if all the components are failed, so there is just one failure state. 

Therefore, for each specific system configuration, the failure states are defined in 

advance.  

The goal of using reinforcement learning and MDP for a maintenance problem 

is providing the best maintenance policy, which has the minimum total cost. The 

optimal maintenance policy is determined by finding the best Q-value for each state of 
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the system, which suggests what maintenance actions should be implemented for each 

degradation state at each inspection time. There are different algorithms to solve the 

MDP, while a particularly effective one is Q-learning, which is explained in the next 

subsection. 

1.12.2 Dynamic programming for reinforcement learning 

Dynamic programming is an algorithm used to solve complex problems. The 

problem is solved in distinct stages using recursive functions. The solution of each stage 

or sub-problem is stored and reused to find the overall optimal solution of the problem. 

In this section, dynamic programming is used to find the best policy of Markov decision 

processes in reinforcement learning.  The Bellman equation decomposes the overall 

optimal value into the optimal policy of each step and optimal value of remaining steps. 

The value function can be used to restore and retrieve the solution of each sub-problem.  

Q-learning is a well-known algorithm, as a method of dynamic programming, 

to solve the reinforcement learning problems, which is proposed by Watkins [187]. In 

the Q-learning method, the agent takes one action at any particular state and evaluates 

its consequences, and by trying actions in all the possible states it learns what are the 

best actions which have the best long run rewards. Q-learning is an off-policy learning 

algorithm which has the following rule for updating the Q-values. 

 ( , ) ( , ) max ( , ) ( , )aQ s a Q s a r Q s a Q s a       (0.23) 

Where   is the learning rate which can have a value between 0 and 1, where 0 

means the algorithm is never updated and  =1 means the learning occurs quickly, and 

γ is the discount factor which can have a value between 0 and 1. 

The procedural form of the Q-learning algorithm is presented as Table 6.3. 

Q(s,a) gives the value of an action a in state s at time t. rt is the reward at time t for 

moving from state s to 𝑠′ for action a. An episode of the algorithm ends when s is the 
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terminal state. A terminal state can be defined several ways, such as the time that 

required to provide a maintenance policy.  

Table 0.3 Q-learning algorithm 

Algorithm 1: Q-learning  [187] 

Initialize Q(s,a) arbitrarily 

Repeat (for each episode): 

Initialize s 

Repeat (for each step of episode): 

Choose a from s using policy derived from Q (e.g., 𝜀 greedy) 

                        Take action a, observe r, 𝑠′ 

 ( , ) ( , ) max ( , ) ( , )aQ s a Q s a r Q s a Q s a       

                          𝑠 ← 𝑠′   

               Until s is terminal 

When Q-learning is performed, a matrix with states, and actions is created 

which is defined as a Q-table. After each episode, the Q-value which is stored in each 

cell of the Q-table is updated. There are two ways to select the actions at each step, the 

agent can use the value of the Q-table as a reference and selects the best action which 

has the maximum value, which is called exploiting, or it can selects an action randomly 

which can let the agent explore and discover new states, where this is called exploring.  

To have a balance between exploration and exploitation, a parameter 𝜀 is used to 

balance how often the agent uses exploring vs. exploiting. After a numerous number of 

episodes, the optimal Q-table is found which represents the recommended actions for 

each state which results in the best long run reward. Figure 6.5 shows the flowchart of 

algorithm for updating Q-table for each episode.  

For a maintenance problem, using the Q-learning method provides an algorithm 

to find the best agent policy for implementing maintenance actions based on the system 

degradation states which has the minimum cost. At each episode, the value of 

maintenance actions for all the specific degradation states are calculated and the episode 

terminated when it reaches the terminal states. The terminal state is the degradation 
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state for the time that is the end of our proposed maintenance policy.  

 

 

Figure 0.5 Updating algorithm for each episode 

1.12.3 Numerical example for a dynamic maintenance plan using reinforcement 

learning 

Three different system configurations of series, parallel, and combination of 

series-parallel are used to demonstrate the proposed method. In the series system with 

n components, if any component i fails, the whole system is failed; while in the parallel 

system, all n components must fail to make the system fail. Therefore, these three 

examples are used to demonstrate the proposed method. Each system with three 

components is considered where each component degrades over time and can be 

replaced/repaired individually within the system. It is also considered that there is a 

fixed inspection interval of 2 time units (e.g., months, weeks, …), and the objective is 

to find the optimal maintenance actions for a time horizon of 50 time units. Table 6.4 
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shows the parameters which are considered for the proposed model, where cost of 

minimal repair 𝐶𝑚 is $100, cost of replacement 𝐶𝑅 is $300 and penalty cost for system 

downtime is 𝐶𝜌=1000. The discount factor is 0.9  , learning rate is 1   and 0.02   

Table 0.4 Example system parameters 

Parameters Component 1 Component 2 Component 3 
1

iH  17 20 26 

2

iH  10 15 18 

3

iH  5 6 7 

Di 40 42 35 

αi 0.6 0.2 0.2 

β 1.2 1.4 1 

λ0 2.5×10-5 

Wij 
2(10,5 )ijW N  2(14,3 )ijW N  2(12,2 )ijW N  

Yij 
2(0.5,0.1 )ijY N  2(0.55,0.1 )ijY N  2(0.6,0.1 )ijY N  

Figure 6.6 shows the degradation behavior of each of the components within 

the system, and the dash lines shows their failure threshold. As shown in Figure 6.6, 

component 1 degrades faster compared to component 2 and 3, and since its failure 

threshold is lower than others the probability that it fails is higher than the other 

components.  
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Figure 0.6 Degradation of components of a system 

There are three actions which are “do nothing, minimal repair, and replace” and 

the cost of each action at each state is determined. The transition probability of moving 

from each state s to 's  can be calculated using the equations in Table 6.4. Using 

reinforcement learning, the agent is trained with interaction with the environment, and 

the final Q-table is determined. Using the final optimal Q-table the maintenance team 

can select the best action for each level of system degradation.  

The three examples for three different configurations are studied for this system 

with three components. The first configuration is when all the three components are 

configured as series. The second configuration is when they are configured as parallel 

and the third configuration is when component 2 and 3 are in parallel, and they are in 

series with component 1 which is shown in Figure 6.7.  
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Figure 0.7 Third configuration which is studied in this study 

Based on the action set for the proposed method, all the action scenarios and 

their corresponding numbers can be determined. The action set has three maintenance 

actions for each component {doing nothing: 0, minimal repair: 1, replace: 2}. For a 

system with three components there are 27 maintenance actions which are shown on 

Table 6.5. 

Using the proposed method, the optimal maintenance action is found for each 

state for each component. The best maintenance actions for different scenarios are 

shown on Tables 6.6, 6.7, and 6.8 to illustrate the performance of the Q-learning method 

in obtaining dynamic maintenance policies for different configurations. The action sets 

for all three components can be found in Table 6.5. 

Table 0.5 Action sets 

Action 

number  

Action 

scenario 

Component1 Component 2 Component 3 

1 (0,0,0) Nothing Nothing Nothing 

2 (0,0,1) Nothing Nothing Minimal repair 

3 (0,0,2) Nothing Nothing Replace 

4 (0,1,0) Nothing Minimal repair Nothing 

5 (0,1,1) Nothing Minimal repair Minimal repair 

6 (0,1,2) Nothing Minimal repair Replace 

7 (0,2,0) Nothing Replace Nothing 

8 (0,2,1) Nothing Replace Minimal repair 

9 (0,2,2) Nothing Replace Replace 

10 (1,0,0) Minimal repair Nothing Nothing 

11 (1,0,1) Minimal repair Nothing Minimal repair 

12 (1,0,2) Minimal repair Nothing Replace 

13 (1,1,0) Minimal repair Minimal repair Nothing 

14 (1,1,1) Minimal repair Minimal repair Minimal repair 

15 (1,1,2) Minimal repair Minimal repair Replace 
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16 (1,2,0) Minimal repair Replace Nothing 

17 (1,2,1) Minimal repair Replace Minimal repair 

18 (1,2,2) Minimal repair Replace Replace 

19 (2,0,0) Replace Nothing Nothing 

20 (2,0,1) Replace Nothing Minimal repair 

21 (2,0,2) Replace Nothing Replace 

22 (2,1,0) Replace Minimal repair Nothing 

23 (2,1,1) Replace Minimal repair Minimal repair 

24 (2,1,2) Replace Minimal repair Replace 

25 (2,2,0) Replace Replace Nothing 

26 (2,2,1) Replace Replace Minimal repair 

27 (2,2,2) Replace Replace Replace 

Table 6.6 shows the optimal maintenance action for different system states, 

which represent a combination of component degradation, for a series system. The 

optimal action numbers can be described using Table 6.5. The column of state numbers 

in Table 6.6 shows the combination of degradation stages for all the components in the 

system. For example, (2,3,1) indicates that component 1 is in degradation stage 2, 

component 2 is in degradation stage 3, and component 3 is in stage1.  Using the 

proposed method, it is found that the best maintenance action for this state is action 

number 1 which is described in Table 6.5 and suggests “do nothing” for all the 

components.  

Table 0.6 Optimal maintenance actions for different scenario of series system 

Scenario 

number 

State number Optimal action 

number 

Scenario 

number 

State number Optimal action 

number 

1 (1,1,1) 1 (0,0,0) 8 (2,2,2) 14 (1,1,1) 

2 (2,3,1) 25 (2,2,0) 9 (1,1,2) 2 (0,0,1) 

3 (3,2,1) 22 (2,1,0) 10 (1,2,3) 6 (0,1,2) 

4 (3,1,1) 19 (2,0,0) 11 (2,1,2) 11 (1,0,1) 

5 (1,3,3) 9 (0,2,2) 12 (3,3,1) 25 (2,2,0) 

6 (2,2,3) 17 (2,1,2) 13 (3,2,2) 23 (2,1,1) 

7 (3,3,3) 18 (2,2,2) 14 (1,3,1) 7 (0,2,0) 

In a series system, if any component fails the whole system fails, so there are 
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different failure states, but in all of them, at least one of the components is in its failure 

stage. As it is shown in Table 6.6, based on the degradation stage of all the components, 

the best maintenance action that should be implemented on each component is found. 

Table 6.6 shows different possible component combinations, such as state (1,1,1) where 

all the components are in their first stage, the optimal maintenance action is “do 

nothing” for all of them. For some cases, when any component is close to failure or in 

stage 3, such as (3,1,1) the component which is close to failure should be replaced while 

other maintenance action should be implemented on other components based on their 

degradation stages.  

Two cases of (2,3,1) and (3,2,1) seem similar, while the maintenance actions 

are different. For both cases, nothing should be done for the component which is in 

stage 1 and replace it when it is in stage 3; however, when component 1 is in stage 2, 

the optimal maintenance action is found as “replace” while when component 2 is in 

stage 2 the optimal maintenance action is “repair”. It can be interpreted that since 

component 1 degrades faster and may have a lower failure threshold, it would have 

higher failure probability, so the optimal maintenance action is found as “replace” to 

prevent the system failure.  

In scenarios 6 (2,2,3) and 13 (3,2,2), the system state also seems similar. In both 

of them, the component which is in stage 3 and it is close to failure state should be 

replaced. Component 2, which is in stage 2 in both scenarios, should be repaired. The 

difference of the optimal maintenance action with these two scenarios is that when 

component 1 is in stage 2, it should be replaced while component 3, which is also in 

stage 2, should be repaired. The difference between relative degradation rate of 

component 1 and component 3 makes this difference in optimal maintenance of these 

two scenarios.  
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Table 6.7 shows the optimal maintenance policy for different states of a system 

with parallel configuration. In a parallel system, the system fails if all the components 

fail, so the only failure state is when all the components are in their failure stages. 

Table 0.7 Optimal maintenance actions for different scenario of parallel system 

Scenario 

number 

State number Optimal action 

number 

Scenario 

number 

State number Optimal action 

number 

1 (1,1,1) 1 (0,0,0) 8 (2,2,2) 1 (0,0,0) 

2 (2,3,1) 4 (0,1,0) 9 (1,1,2) 1 (0,0,0) 

3 (3,2,1) 10 (1,0,0) 10 (1,2,3) 2 (0,0,1) 

4 (3,1,1) 10 (1,0,0) 11 (2,1,2) 10 (1,0,0) 

5 (1,3,3) 5 (0,1,1) 12 (3,3,1) 13 (1,1,0) 

6 (2,2,3) 11 (1,0,1) 13 (3,2,2) 19 (2,0,0) 

7 (3,3,3) 14 (1,1,1) 14 (1,3,1) 4 (0,1,0) 

As it is shown in Table 6.7, for cases that any component is in stage 3, which is 

close to failure, the optimal maintenance action is “repair”, and there are very few 

“replace” actions in the optimal Q-table. For series system the optimal maintenance 

action for state (3,3,3) is to replace all the components while for this state in the parallel 

system, the optimal maintenance actions are found as “repair, repair, and repair”. 

Moreover, the optimal maintenance actions for two cases of (3,2,1) and (3,1,1) are the 

same, and the reason is, since the system fails if all the components fail, as long as one 

of the component is relatively new and in its first stage, it is better to not replace the 

other components, even if they are in their stage 3 which is close to failure. In this way, 

the maintenance cost is reduced by preventing unnecessary replace or repair cost.  

In this example, since the system is configured as parallel it is very robust to 

failure, and compared to the previous example, which is a series system, action 2 which 

is replacement is rarely suggested for this system states. Among all the scenarios shown 
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in Table 6.7, replacement is only suggested for Scenario 13 (3,2,2) where component 1 

is in stage 3 and the rest are in their stage 2. Since component 1 degrades faster and it 

has a higher probability of failure it is suggested to be replaced, and nothing should be 

done for the rest. Comparing Scenario 13 (3,2,2) with the similar Scenario 4 (3,1,1), 

although component 1 is in its third stage in both of them the optimal maintenance 

action for this component is different. In scenario 13, it is suggested to be replaced 

while in scenario 4, it should be repaired. The reason for this difference can be 

explained by considering the degradation stages of other components. In Scenario 4, 

although component 1 is very close to its failure, component 2 and 3 are still far from 

their failure stages and their degradation rate are slower than component 1, and since 

they are configured as parallel, failure of component 1 may not cause any failure. While 

in Scenario 13, all the components are close to their failure, so it is suggested to replace 

component 1 and do nothing on other components.  

Table 6.8 shows the optimal policy for the third configuration which is shown in 

Figure 6.7. In this configuration, the system fails if component 1 fails or component 2 and 

3 fail together. In other words, if component 2 or 3 fails but the other components work, 

the system works.  

Table 0.8 Optimal maintenance actions for different scenario of series-parallel system 

Scenario 

number 

State 

number 

Optimal action 

number 

Scenario 

number 

State number Optimal action 

number 

1 (1,1,1) 1 (0,0,0) 8 (2,2,2) 10 (1,0,0) 

2 (2,3,1) 19 (2,0,0) 9 (1,1,2) 1 (0,0,0) 

3 (3,2,1) 19 (2,0,0) 10 (1,2,3) 5 (0,1,1) 

4 (3,1,1) 19 (2,0,0) 11 (2,1,2) 4 (1,0,1) 

5 (1,3,3) 5 (0,1,1) 12 (3,3,1) 19 (2,0,0) 

6 (2,2,3) 4 (1,0,1) 13 (3,2,2) 20 (2,0,1) 

7 (3,3,3) 23 (2,1,1) 14 (1,3,1) 4 (0,1,0) 
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As it is shown in Table 6.8, three states of (2,3,1), (3,2,1), (3,1,1) and (3,3,1) 

have the same optimal policy, where component 1 should be replaced if it is in stage 2 

or 3 because of its relatively larger degradation behavior, and since component 2 and 3 

are configured as parallel, there should not be any maintenance actions implemented 

on component 2 and 3, as long as one of them is in its first stage. For state (3,3,3) the 

optimal maintenance policy is found as “replace, repair, and do nothing” while for a 

series system, it is “replace, replace, replace” and for the parallel system, it is “repair, 

repair, repair”. The reason is, failure of component 1 causes the system failure, so it 

should be replaced, while the parallel configuration of component 2 and 3 makes the 

system more robust to failure and the optimal maintenance action is found as “repair” 

for both of them. 

Comparing scenario 13 in the three examples of series, parallel and series-

parallel, it illustrates the different optimal maintenance policies of the same state but 

different system configuration. The optimal action for a series system for this state is 

number 23 (2,1,1) while for a parallel system is 19 (2,0,0) and for a series-parallel 

system is 20 (2,0,1). Since the failure of the system is different based on its 

configuration, the optimal maintenance is different. In a series system it is suggested to 

replace component 1 and repair the other components, while in a parallel system, the 

only maintenance action is replacing component 1. In the series-parallel system, failure 

of component 1 causes the system failure, so it is suggested to replace this component, 

but component 2 and 3 are configured as parallel, so it is suggested to repair only 

component 3. Another interesting point about repairing component 3, not component 

2, while both of them are in stage 2. Comparing the degradation speed and failure 

threshold of components 2 and 3, it can be concluded that component 3 degrades at a 

slower rate, and its failure time is longer than component 2, so by repairing component 
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3 instead of component 2, the system may fail in a longer time. 

To show how the optimal maintenance policy can be different based on the 

maintenance cost, the proposed method is applied for the same series system with three 

components using parameters in Table 6.4, but the maintenance costs are now different. 

In the previous example, the minimal repair cost is  𝐶𝑚 = $100, the cost of replacement 

𝐶𝑅 is $300, and the penalty cost for system downtime is 𝐶𝜌=1000. By changing the 

minimal repair cost and making it $300, there will be the same repair and replacement 

cost. Table 6.9 shows the difference in optimal maintenance policy of different 

scenarios for the previous example and this example. 

Table 0.9 Different maintenance policy for examples with different maintenance cost 

State number Optimal action number 

For system with different 

cost (𝐶𝑚 = $100, 𝐶𝑅 = 

$300) 

Optimal action number 

for system with same maintenance 

cost (𝐶𝑚 = $300, 𝐶𝑅 = $300) 

(1,1,1) 1 (0,0,0) 1 (0,0,0) 

(2,2,2) 14 (1,1,1) 27 (2,2,2) 

(1,2,3) 6 (0,1,2) 25 (2,2,0) 

(3,2,2) 23 (2,1,1)  19 (2,0,0) 

(1,3,3) 9 (0,2,2) 9 (0,2,2) 

(2,2,3) 17 (2,1,2)  27 (2,2,2) 

(1,1,2) 2 (0,0,1)  27 (2,2,2) 

As it is shown in Table 6.9, in the optimal maintenance policies of the different 

scenarios for the same system, there is no minimal repair (maintenance action 1). With 

the same maintenance cost, all the repair actions are changed to replacement. By 

replacing the component instead of repairing, it returns to the new stage, with the same 

cost.   

To show how the proposed method can provide a maintenance action 

dynamically based on the degradation state of the systems, different scenarios, shown 
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in Figure 6.8, that shows the different maintenance actions based on the optimal Q-table 

for a series-parallel system. The configuration of the series-parallel system is shown on 

Figure 6.8 with the parameters of Table 6.4. Seven different possible scenarios are 

shown for a series-parallel system for different degradation of components. Based on 

the optimal Q-table, the best maintenance action can be chosen for each scenario. In the 

series-parallel system, component 1 is series with two components of two and three, 

which are configured as parallel. Failure of component 1 causes the whole system to 

fail, while components 2 and 3 must fail at the same time to make the system fail. Figure 

6.8 shows how the degradation of components are different, and for each degradation 

state, the optimal maintenance policy is different.  

For example, in Scenario 1, in time step 1, all the components are new, and in 

the next time step all of them degrade and transition to their first stages. The optimal 

maintenance action at time step 2 based on the optimal Q-table is (0,0,0) which 

indicates to do nothing for all the components. In the next time step, component 1 and 

2 stays in the same stage while component 3 degrades faster and transitions to its stage 

3. The suggested maintenance action for this state is (0,0,1), which is repairing only 

component 3. In time step 4, components 1 and 2 go to stage 2, and component 3 stays 

in its stage 2, which has been after repairing. Subsequently, the optimal maintenance 

action is (1,1,0), which is repairing only component 1.  

In scenario 6, all the components are new at time step 1. Component 1 degrades 

faster and transitions to its stage 2, while component 2 and 3 are in their stage 1, the 

optimal action is found as (1,0,0) which is repairing only component 1. In the next step 

component 1 stays in the stage 1 and component 2 transit to its stage 2, while component 

3 degrades faster and transitions to its stage 3. The optimal maintenance action for this 

time step is (0,1,1) which is repairing both component 2 and 3. In time step 4, 
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component 1 goes to stage 2, component 2 and 3 stays in the stages which they have 

been after repairing, so the optimal action is (1,0,0) which indicates repairing of 

component 1. 

 

Figure 0.8 Different optimal maintenance policy based on different scenarios 

All other scenarios can be described in the same way. Generally, Figure 6.8 

shows how the maintenance actions differ based on the degradation behavior of all the 

components in the system. The numbers of maintenance actions can be described using 

Table 6.5. 

The number of episodes can influence the performance of reinforcement 

learning algorithms.  Finding the best number of episodes is a challenge in 

reinforcement learning algorithms which can be investigated by trying different 

numbers of episodes and observing its performance for each scenario. Figure 6.9 shows 

the running experience for different numbers of episodes for the series system, and 

Figure 6.10 shows the procedure for the different number of episodes for the series-

parallel system. The horizontal axis on both plots shows the different percentiles of the 

total number of episodes, and the average total reward for each batch of episodes is 

shown on the vertical axis. As it is shown on both Figure 6.9 and 6.10, the well-suited 
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number of episodes for this study is 107 because it has the best performance compared 

to other number of episodes. Moreover, comparing the result of 106 and 107, it can be 

concluded that the difference is negligible and increasing the numbers of episodes after 

107 is an inefficient use of computational time and resources.  

 
Figure 0.9 Convergence check for the required number of episodes for the series 

system 



 

 

192 

 

 
Figure 0.10 Convergence check for the required number of episodes for the series-

parallel system 

1.13 Dynamic maintenance for a multi-component system with an infinite 

degradation state 

Reinforcement learning is one type of machine learning technique that trains an 

agent to decide how to perform an action based on the system state and associated 

rewards. By applying trial-and-error to maximize the reward, the agent learns how to 

make decisions in an uncertain, complex environment [100]. Therefore, at any 

inspection interval, the trained agent can choose the best maintenance action from a set 

of available actions based on the system status to minimize the cost. However, when 

the number of the system states or the actions increases, reinforcement learning may 

not be able to capture the best pattern. Hence, a combination of reinforcement learning 

and deep learning called deep reinforcement learning is used to train the model 

accurately. Yousefi et al [188] developed a dynamic condition-based maintenance 

model for a multi-component system considering infinite numbers of degradation 

states. Yousefi et al [188] used a deep Q-learning algorithm to solve the MDP 
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maintenance problem to make the maintenance decisions dynamically, based on the 

degradation level of all the components in the system.  

Deep reinforcement learning is the combination of reinforcement learning and 

deep learning, which is useful for problems with a large number of states or actions. In 

this study, deep reinforcement learning is used to find the best maintenance policy 

based on the system degradation level. The degradation process of the system is 

modeled using the gamma process, and at each inspection time, the best action can be 

suggested using the proposed maintenance model to minimize the maintenance cost for 

the duration of the maintenance contract.  

Degradation is a major reason of failure for most of the industrial, 

manufacturing and technical systems. Due to difficulty of collecting failure information 

of systems, degradation modelling techniques have been widely used in the fields of 

reliability analysis and maintenance modeling. Using a proper degradation model is the 

main step in formulating the maintenance problem. In this study, it is assumed that for 

each component i, the degradation process between two time intervals t and s, follows 

gamma distribution with shape parameter of ( ) ( )i it s  and scale parameter of βi. It 

is also assumed that random shock occurs as a homogeneous Poisson process with rate 

 . Each shock has results in damage on the degradation path of the components, which 

is an additional incremental damage on the system’s degradation path. If total 

degradation, containing both pure degradation and the sum of additional incremental 

shock damage, is greater than a defined soft failure threshold level, then soft failure 

occurs. The damage from shocks is considered as an additional abrupt jump 
ijY  on the 

cumulative degradation path of the component i. For any component i, the cumulative 

degradation is the summation of pure degradation by time t, and the cumulative 
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damages caused by shocks by time t (
1

( )i ij

j

t Y




 ) where 
ijY  is an i.i.d random 

variable for the the  jth shock damage on ith component. The total degradation can be 

accumulated as  ( ) ( ) ( )
iS i iX t X t t  . 

1.13.1 Deep Q-learning algorithm 

Q-learning is a powerful algorithm that creates an exact matrix for states and 

actions including Q-values in each cell, and the best action can be selected by referring 

to this optimal matrix. Q-learning algorithms are very effective when the number of 

actions and states is small. As the number of states and actions increases, Q-learning 

loses its feasibility and efficiency. An alternative approach for systems with a large 

number of states and actions is using an approximation for the Q-values. Deep Q-

learning is an alternative algorithm to solve a problem with huge state and action spaces 

or when the state or action spaces is continuous. Deep Q-learning is a combination of 

Q-learning and deep learning. In deep Q-learning, the Q-values are approximated by 

using a neural network. The deep Q learning method tries to recognize patterns instead 

of mapping every state to its best action. The difference between the Q-learning and 

deep Q learning can be illustrated in Figure 6.11.  
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Figure 0.11 Q-learning VS deep Q-learning 

The input for the neural network is the state, and the outputs which are the Q-

values for all possible actions. The maximum value of the outputs is the next action. 

The main key points of deep Q-learning are as follows: 

 All the past experiences are stored in a memory buffer. 

 A batch sample of previous experiences is fed into the neural network. 

 The next action can be determined by selecting the maximum output of the 

neural network 

 The network is trained by using a loss function, which is the mean squared error 

of the predicted Q-value and the target Q-value. It is shown in Equation (6.24) 

2

-value -value(predicted -target )Q QLoss   (0.24) 

The predicted Q-value is the maximum output of the neural network and target 

Q-value can be estimated as in Equation 6.25.: 

-value 1target max ( , )Q t aR Q s a 
    (0.25) 
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Where 1tR  is the immediate reward, and max ( , )a Q s a
   represents the 

maximum output of the neural network for Q-values. The neural network can be 

updated through backpropagation. Figure 6.12 shows the process of training.  

 

Figure 0.12 Training process in deep Q-learning 

Therefore, the Q-value is updated according to its self-consistent equation, 

where the Q-value is regressed toward the target value, which depends on itself. 

However, since the target value changes automatically as the network parameters are 

updated in each iteration, it is not stable. Since both the target value and the predicted 

value are calculated by the same neural network, this learning process becomes unstable 

due to dynamical changes in the target, and in the worst case, the Q function diverges 

[184].  

In deep Q-learning algorithm, it is suggested to have a separate network as a 

target network in deep Q-learning methods. The main training neural network ( Q  

network) is used to update the parameters of the network, and the target network ( Q  

network) can be used to calculate the target value which is the same as the original 

training network, but all the parameters are frozen and fixed. After some specific 

iterations z (parameter of update frequency), the parameters of the first network can be 

copied to the target network. The goal of this process is to fix the Q-value targets 
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temporarily, so there is a stable target. Figure 6.13 shows two networks of the deep Q-

learning algorithm. 

 

Figure 0.13 Two network of deep Q-learning algorithm 

The approximation function for Q-value in a deep Q learning network is denoted 

as ( , ; )Q s a  , where   represents the trainable parameters of the main network and 

is the parameters for the target network. These parameters are updated according to the 

gradient method, as shown in Equation 6.26. Table 6.10 shows the algorithm of deep 

Q-learning. 

( ( , ; ) target ) ( , ; )Q valueQ s a Q s a         (0.26) 

  

Table 0.10 Deep Q learning algorithm with two networks 

Algorithm 2: Deep Q-learning 

Initialize the memory for buffer 

Initialize the original training network with random parameters   

Initialize the target network with random parameters     

For episode 1 to N: 

      Initialize s 

      For t =1 to T:   
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    Action, a = 
random action         with  probability

arg max ( , ; )    otherwise  
a

Q s a









  

    Take action a, observe R, 𝒔′  

    Set 𝒔′ = 𝒔 

    Store the experience (s, a, R, 𝒔′) in the memory 

    Sample random mini batch of experiences (s, a, R, 𝒔′) from memory 

             Estimate the target y for the experiences 

    
-1                               if terminated

max ( , ; )    otherwise  
a

y
r Q s a 




     

 

             Perform an optimization algorithm on 
2( ( , ; ))y Q s a   with respect to   

             Every z step reset     

     End for 

End for 

1.13.2 Dynamic Maintenance model for a system with an infinite number of 

degradation states 

For most industrial systems, having an appropriate decision-making tool can 

lead to a substantial amount of savings. A dynamic maintenance plan as a decision-

making tool for the maintenance team can suggest different actions based on the 

degradation level of the system and prevent failure or unnecessary maintenance action, 

which wastes the useful life of the components. Using artificial intelligence for 

maintenance can help industries to have a more efficient and cost-effective plan for 

their systems rather than using a fixed maintenance plan for the whole period of the 

maintenance contract. Having appropriate dynamic maintenance can suggest the best 

maintenance action for the system dynamically based on the system status.  

Yousefi et al [188] proposed a dynamic maintenance plan for the degrading 

multi-component systems using a deep reinforcement learning method. By formulating 

the degradation process of the system as an MDP and using deep reinforcement 

learning, an agent can be trained to provide a particular maintenance action for each 

component within the system based on the current deterioration status of the system. 

The agent is trained by using the interactions of environment and actions, which can be 
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the degradation states and the available maintenance actions. The system should be 

inspected periodically, and at each inspection time, the agent detects the current 

degradation state of each component and chooses a maintenance action based on the 

degradation knowledge. Each maintenance action is evaluated by its associated cost, 

which can be considered as a negative reward, and subsequently, based on the action 

taken by the agent, the current state goes to the next state. The process continues until 

the end of the maintenance time contract or planning period.  

It should be noted that at each inspection time, the state information is known 

for the problem and the terminal state is the end of the planning time horizon for 

providing the maintenance policy. In fact, if it is required to provide a maintenance 

policy for T units of time and our inspection duration is τ, then there are T
      

inspections in our state matrix, so t for the degradation state is between 0 and   (

0 t   ). The agent’s learning performance is significantly improved when time-

awareness of the agent is introduced, by specifically incorporating a time-related space 

component [189, 190] . 

The goal of using deep reinforcement learning for maintenance problems is 

finding the best maintenance action at each inspection time, based on the degradation 

level of all the components that minimizes the expected maintenance cost. By using 

deep Q learning, the outputs of the neural network are the value of taking the 

maintenance actions which are obtained for the current degradation level. Since the goal 

of the proposed problem is minimizing the cost, the Rt  can be interpreted as the cost 

function which is the negative value of the reward ( Ct tR   ).  

The first step for modeling a maintenance reinforcement learning problem is 

formulating an MDP which can be defined as a tuple of ( , , , )S A R  , where S is the state, 

which is the combination of degradation levels of all the components in the system, St= 
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(s1t,s2t, …, snt). A is the action set, which is defined by selecting an available 

maintenance action for each component. R is the reward/cost function and γ is the 

discount factor which has a value between 0 and 1. 

In this study, it is assumed that the system is degrading based on the gamma 

process, which is a stochastic process with the monotonic increasing property. In the 

previous study, Yousefi et al. [100] formulated the states of MDP problem such that the 

degradation of systems is divided into different regions based on some predetermined 

thresholds. However, defining some thresholds for degradation is not a realistic 

assumption and approach for the systems which are degrading over time. Moreover, 

specifying the region thresholds is a big challenge, which needs some professional 

knowledge about system degradation. In this study, these assumptions are relaxed, and 

there are no predefined thresholds for determining the states of the MDP problem. It is 

assumed that at each inspection time, the combination of the degradation level of all 

the components can be considered as the system states of the MDP. In this case, there 

will be an infinite number of states, and it is necessary to use deep reinforcement 

learning to solve the problem. At the beginning, for each component, the degradation 

level is 0, which indicates the component is new and based on the selected maintenance 

action and its effect on the degradation level, its next state can be calculated. 

In this study, it is assumed that each component fails due to soft failure or hard 

failure. If the total degradation level of the component i is greater than a failure 

threshold (Hi), the component is failed, and it should be replaced. The probability that 

the component is failed (PFi) in an interval   can be calculated as follow: 

 
0

0 0

( ) 1 ( ( ) ( )) | ( ) ( ( ) )

exp( )( )
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(0.27) 
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Where ( )m

Yf y   is pdf of the sum of m independent and identically distributed 

(i.i.d) Yi, and ( ; , )i iG x t   is the cumulative distribution function of ( )iX t , and 
it

x is 

the current degradation level of component i at the beginning of the inspection interval. 

In this study, 5 different maintenance actions are considered for each 

component. Table 6.11 shows the description of each action in this study. The last 

column of Table 6.11 shows what is the next state of each component based on each 

action. 

Table 0.11 The maintenance actions 

Action  Description Description of action Effects 
Effects on the degradation 

level (Xt) 

0 Do nothing 
The system degrades more based on 

the gamma process 

Based on Equation (9) 

1 
Imperfect 

repair 

The system is repaired but the repair 

was not perfect 

Based on Equation (10)  

and 2 0.6   

2 repair The system is repaired 
Based on Equation (10)  

and 2 0.5   

3 
Imperfect 

replacement 

The system becomes very close to 

new, but the degradation level is not 

zero 

Based on Equation (10)  

and 2 0.3   

4 Replacement 
The system is as good as new and the 

degradation level goes to zero. 
1 0tX    

If action 0 is selected at any point for component i, it may fail with a probability 

of having degradation level greater than its failure threshold or hard failure. If it does 

not fail, it degrades more, and the next state can be calculated, but if it fails, it should 

be replaced with a new one and the next state should be 0. Therefore, for action 0, the 

next state for component i can be calculated as follow: 

( ) ( ) 1

1

exp( )
+ ( )    with probability  1 ( )

( ( ))

0                                                              with probability  ( )

i i

i

i i

i

i

i i t
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(0.28) 

Moreover, if action 1, 2, or 3 is selected the next state can be calculated as follow 



 

 

202 

 

where the coefficient 
k  is corresponding to the degradation improvement based on 

action k. 

 
( ) ( ) 1

1

exp( )
+ ( )     with probability  1 ( )

( ( ))

0                                                                        with probability  ( )
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                                                                                                                         (0.29) 

At each time, the state of each component is determined and the next state can 

be calculated based on different actions. Each action has a fixed cost for all the 

components, such as 0 for action 0 which indicates “do nothing”, 
1mc  for action 1 

(imperfect repair), 
2mc  for action 2 (repair), 

1Rc for action 3 (imperfect replacement) 

and 
2Rc for action 4 (replacement). In addition, there is a penalty cost of downtime if 

the system fails 𝐶𝜌.  This penalty cost is used to describe the loss production of the 

system when it is down and failed. 

At each inspection time t, each action tA a , is the combination of maintenance 

actions of all the components n, 0 1( , ,..., )t d d dnA a     , and there is a specific cost 

associated with each action in this tuple. In the tuple of maintenance actions 

0 1( , ,..., )d d dna    , each  d i for component i, is a binary variable for actions of {“do 

nothing: 0i ”, “imperfect repair: 1i ”, “repair: 2i ”, “imperfect replacement: 3i ”, 

“replacement: 4i ”}, where 0 1 2 3 4 1i i i i i         . So, the total cost can be 

calculated as follow: 

 1 1 2 2 1 3 2 4

1

n

t m i m i R i R i

i

C C C C C C    


      
(0.30) 

  is a binary variable indicating the system failure. If the system fails, a penalty 
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cost of C
 is added to the cost function. For each maintenance problem, failure states 

should be defined based on the system configuration and the system structure function. 

For a series system, if any component fails within the system, the system fails. So, at 

each time, the degradation level of all the components should be compared to their own 

failure threshold, and if any component i, has a degradation level greater than the failure 

threshold Hi , the system is detected as failure, 1   and the penalty cost is considered 

in the cost function. For a parallel system, the system fails if all the components are 

failed. Therefore, at each time, if the degradation level of all the components are greater 

than their failure threshold the system is failed and 1  . 

Since there is an infinite number of states for the MDP problem, a deep Q 

learning algorithm can be used as it is described in the previous subsection. By using 

the deep Q learning algorithm, a neural network is trained and used as a decision-

making tool for the maintenance team to predict what is the best action based on the 

current state of the system. At the time of prediction, the current state should be given 

to the network as input and the output of the network is the Q values for all the actions 

and the maximum of Q values should be selected as the best maintenance action to be 

implemented.  

1.13.3 Numerical example for dynamic maintenance using deep Q-learning 

To present the performance of the proposed dynamic maintenance model, a 

degrading multi-component system is considered in this section. Each component in 

the system is subject to degradation and shocks. It is assumed that there is a fixed 

inspection interval of 2 time units (e.g., months, weeks, …), and the objective is to find 

the optimal dynamic maintenance actions for a time horizon of 50 time units. Table 

6.12 shows the parameter for failure processes of the system. 
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Table 0.12 System parameters for dynamic maintenance using deep Q-learning 

Parameters Component 1 Component 2 Component 3 

iH  30 33 26 

αi 0.3 0.2 0.6 

βi 1.2 1.1 1.1 

λ0 2.5×10-5 

Yij 
2(0.5,0.1 )ijY N  2(0.55,0.1 )ijY N  2(0.6,0.1 )ijY N  

Figure 6.14 shows the degradation behavior of each component within the 

system, and the dash lines show their failure thresholds. As it is shown in Figure 6.14, 

component 3 degrades faster compared to component 1 and 2, and since its failure 

threshold is lower than others the probability that it fails is higher than the other 

components. In fact, component 3 is more prone to failure than other components.  

 
Figure 0.14 Degradation of components of a system 

At each inspection time, a maintenance action should be selected from Table 

6.13. Each maintenance action has a cost which should be calculated based on the 
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parameters in Table 28. The discount factor is 0.9  , learning rate is 1   and 

0.01  .The neural networks (main and target) have a total of 2 hidden layers. The 

hidden units in each layer are 128. The target update frequency is every 5,000 episodes 

(z=5000). 

Table 0.13 Cost of maintenance actions 

Imperfect 

repair 

(
1mc ) 

Repair 

(
2mc ) 

imperfect replacement 

(
1Rc ) 

Replacement 

(
2Rc ) 

Downtime 

cost 

(C
) 

40 100 200 300 1000 

Using the proposed method, the optimal maintenance action is found for each 

state of each component. It is assumed that there are three components in the system, 

and for each component there are 5 actions. Therefore, the action at each time step is a 

combination of actions for each component. 1 2 3( , , )ta a a a . For example, action 

(1,2,4) indicates that action 1 (‘imperfect repair”) should be implemented on component 

1, action 2 (“repair”) on component 2 and for component 3, action 4 (“replacement”) 

should be implemented. Table 6.14 shows some of the actions and the action 

combination scenarios. In total there are 53 =125 number of actions for this paper, where 

each action indicates a combination of actions for components in the system. 



 

 

206 

 

Table 0.14 Action set for dynamic maintenance problem using deep Q-learning 

Action 

scenario 

Component1 Component 2 Component 3 

(0,0,0) Nothing Nothing Nothing 

(0,0,1) Nothing Nothing Imperfect repair 

(0,0,2) Nothing Nothing Repair 

(0,0,3) Nothing Nothing Imperfect replacement 

(0,0,4) Nothing Nothing Replacement 

(0,1,0) Nothing Imperfect repair Nothing 

(0,2,0) Nothing Repair Nothing 

(0,3,0) Nothing Imperfect replacement Nothing 

… … 

(2,3,4) Repair Imperfect replacement Replacement 

(3,3,4) Imperfect replacement Imperfect replacement Replacement 

(4,1,2) Replacement Imperfect repair Repair 

(1,4,2) Imperfect repair Replacement Repair 

(4,4,3) Replacement Replacement Imperfect replacement 

(4,4,4) Replacement Replacement Replacement 

By using a deep Q learning algorithm, a neural network is trained on the past 

experiences and can provide the best action for each state of the system. The input of 

the neural network can be a combination of all the component’s degradation levels and 

the output is the best action which is a combination of actions for all the components. 

This neural network can be a dynamic decision-making tool for the maintenance team 

to find what is the best maintenance action at each state.  

In this study, two system configurations of series and parallel are considered 

and the best maintenance actions for different states of both configurations are 

computed using the proposed maintenance model. For a series system, if any 

component fails in the system, the whole system is failed, but in the parallel system all 

the components must fail to make the whole system fail. 
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Table 6.15 shows how the proposed model provides the best actions for the 

components of a series system based on the degradation of all the components. Some 

different combinations of the degradation level of components are simulated and given 

to the proposed model as inputs and the best maintenance actions for all the components 

are shown for each state.  

Table 0.15 Optimal maintenance actions for different scenario of a series system 

Scenario 

number 

Degradation 

state 

Action description 

Component 1 Component 2 Component 3 

1 (1,1,1) Nothing Nothing Nothing 

2 (5,5,10) Nothing Nothing Imperfect repair 

3 (0,10,0) Nothing Nothing Nothing 

4 (0,20,0) Nothing Nothing Nothing 

5 (20,0,0) Repair Nothing Nothing 

6 (0,0,20) Nothing Nothing Replace 

7 (28,10,10) Replace Nothing Imperfect repair 

8 (10,28,10) Nothing Imperfect replace Imperfect repair 

9 (15,15,15) Imperfect repair Nothing Repair 

10 (20,20,15) Repair Nothing Repair 

11 (25,25,10) Replace Repair Imperfect repair 

12 (23,27,25) Replace Imperfect replace Replace 

13 (25,30,30) Replace Replace Replace 

As it is shown in Table 6.15, based on the degradation stage of all the 

components, the best maintenance action that should be implemented on each 

component is found. For Scenario 1, which shows all the components are new, the best 

action for all of them is “do nothing”. For Scenario 2, all the components are degraded, 

but component 1 and 2 are still not degraded enough, so the best action for them is “do 

nothing”, however component 3 needs action 1 “imperfect repair” because it is 

degraded more and its probability of failure is more than other components.  

By comparing Scenario 4, 5, and 6, it can be concluded that the degradation rate 
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and the failure threshold have an impact on the optimal maintenance actions.  In 

Scenario 4, the system state is (0,20,0), which indicates, the first and third components 

are new, but component 2 has degradation level 20. However, the best action is found 

(0,0,0), which means “do nothing” on all the components. Although the degradation 

level of component 2 is high but based on the degradation parameter of Table 6.12 and 

Figure 6.14, it can be concluded that component 2 has a very slow degradation speed, 

and since its failure threshold is 33, it is far from failure, and no maintenance action is 

required to implement. However, in scenario 5, the state is (20,0,0), which indicates 

components 2 and 3 are new, but component 1 is degraded and has a degradation level 

of 20. Based on the output of the neural network, the best action is (2,0,0) which 

suggests, “do nothing” for components 2 and 3, and “repair” should be implemented on 

component 1. In Scenario 6, the state is (0,0,20), components 1 and 2 are new, and 

component 3 has a degradation level of 20. The best action is “do nothing” for 

component 1 and 2, and “replace” for component 3. Although the degradation level of 

the most degraded component in Scenario 4, 5 and 6 are the same and equal to 20, the 

optimal action for different components with the same degradation level is totally 

different. The reason for this difference in optimal action is the difference in 

degradation rate and failure thresholds of the different components, which is taken into 

account in the proposed maintenance model.  

Moreover, Scenario 12 and 13 also show how the low degradation rate of 

component 2 influences the best maintenance action for this component. In Scenario 

13, all the components are very close to their failure thresholds, and the best 

maintenance action is “replace” them. In Scenario 12, all the components are degraded, 

but their degradation level is a little bit better than their degradation level in Scenario 

13. The best action for components 1 and 3 is “replace”, which is the same as Scenario 
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13. However, for component 2, the best action changes from “replace” to “imperfect 

replace”, which can be interpreted based on the degradation rate and failure probability 

of component 2 compared to other components.  

Table 6.16 shows how the proposed model provides the best actions for the 

components of a parallel system based on the degradation of all the components. The 

degradation parameters of the components are the same as the series system, which is 

shown in Table 6.12. To show that the proposed maintenance model is appropriate for 

different system configuration, and how it is different based on the system 

configuration, the same scenarios as the series system are given into the neural network 

for parallel systems.  

Table 0.16 Optimal maintenance actions for different scenario of a parallel system 

Scenario 

number 

Degradation 

state 

Action description 

Component 1 Component 2 Component 3 

1 (1,1,1) Nothing Nothing Nothing 

2 (5,5,10) Nothing Nothing Nothing 

3 (0,10,0) Nothing Nothing Nothing 

4 (0,20,0) Nothing Nothing Nothing 

5 (20,0,0) Nothing Nothing Nothing 

6 (0,0,20) Nothing Nothing Nothing 

7 (28,10,10) Imperfect repair Nothing Nothing 

8 (10,28,10) Nothing Imperfect repair Nothing 

9 (15,15,15) Nothing Nothing Nothing 

10 (20,20,15) Nothing Imperfect repair Nothing 

11 (25,25,10) Nothing Imperfect repair Nothing 

12 (23,27,25) Imperfect repair Imperfect repair Imperfect repair 

13 (25,30,30) Imperfect repair Imperfect repair Imperfect repair 

In a parallel system, the system fails if all the components fail, and if one 

component is new in the system, the whole system can work no matter if the other 
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components are new or degraded. As it is shown in Table 6.16, when at least one 

component is new in the combination of components degradation, the best actions for 

most of them are “do nothing”. Moreover, there are no “replace” actions in the system. 

Since the cost of different actions are different, and the lowest maintenance cost is for 

“imperfect repair”, most of the time, the best action is suggested as “nothing” or 

“imperfect repair”. Moreover, based on all the optimal actions for different scenarios 

in Table 6.16, it can be concluded that the agent tried to implement the maintenance 

action somehow that it keeps one of the components new and far from its failure. In 

fact, the proposed method provides an intelligent decision-making tool, which can 

suggest the best maintenance action based on the degradation of components and their 

effect on the system failure. In different system configurations, the system fails in 

different ways, and the proposed method can find the optimal actions on all the 

components to avoid the system failure and increase the useful life of the system.  

By comparing Tables 6.15 and 6.16, it can be concluded that since component 

2 has the lowest degradation rate, it fails in a longer time than other components, and 

in a series system, most of the time, there is no need to implement any action on 

component 2. However, in a parallel system, it is suggested to implement an action on 

components 2, instead of other components when all of them are degraded. The reason 

is, the costs of maintenance actions for all the components are the same, so the agent 

tried to implement the action on a component that has the slowest degradation rate and 

fails in a longer time. It is more illustrated in Scenario 10 of both Tables 6.15 and 6.16. 

In Scenario 10, the combination of components degradation is (20,20,15), and for a 

series system, the best action is (2,0,2), which indicates, components 1 and 3 need a 

repair action, but no maintenance action is needed for component 2. However, for a 

parallel system, the best action for the same system state (20,20,15), is (0,1,0), which 
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is doing nothing on components 1 and 3 and implementing “imperfect repair” on 

component 2.  

Comparing Scenarios 11 and 13 in Table 6.16, component 1 has the same 

degradation level of 25 in both scenarios. However, the best action for component 1 is 

different. In Scenario 11, the best action is “nothing” while in Scenario 13 it is 

“imperfect repair”. Therefore, it can be deduced that the best action for each component 

depends on the degradation level of other components and the system configuration. In 

Scenario 13, component 2 and 3 are more degraded than Scenario 11, so the probability 

of system failure is different, and the actions for component 1 with the same degradation 

level is different. 

In Scenario 13 (25,30,30), all the components are degraded and close to their 

failure threshold. For the series system, all of them need a replacement to prevent 

system failure. However, for the parallel system, the best action for all of them is 

“imperfect repair”. Since the system failure happens when all the components fail, it is 

not beneficial to implement a replacement on a component even if it is close to its failure 

threshold. 

The number of neurons in each layer of the neural network can influence the 

performance of the agent. To find the best number of neurons in each layer of the main 

and target network, the average maintenance cost (reward) for different numbers of 

neurons is calculated using the proposed model. Figure 6.17 shows the best number of 

neurons for each layer of the neural network is 128 neurons, because it provides a better 

performance compare to models with other number of neurons.  
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Figure 0.15 Average reward for different number of neurons 

If the networks have 256 neurons, the results will be similar to 128, so between 

these two models, the simplest one should be selected. Moreover, the network with 128 

neurons is more stable than 256 neurons, and the reason might be due to the overfitting 

of the network.  

To find the effect of the update frequency of the target network, the average 

reward (cost) is calculated for different values of parameter z, after running for 105 

number of episodes. Figure 6.16 shows the effect of z (update frequency for target 

network). As it is shown in Figure 6.16, the average reward does not converge when 

the update frequency of the target network is z=1 or z=10, and it does not progress well. 

However, for large enough update parameter such as z=1000 or z=5000 the deep Q 

network converges after 105 number of episodes.  
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Figure 0.16 Effect of update frequency of target network 

1.14 Dynamic Maintenance Policy for Multi-State Production Systems  

In production systems, maintenance activity is very important for sustaining the 

normal work and efficient operation of production machines [191]. Having an 

appropriate maintenance model can reduce the overall maintenance cost and increase 

the availability and reliability of production systems. By restoring the system to a better 

functioning state, maintenance activities can prevent the system failure and improve the 

production process. However, implementing the maintenance actions frequently reduce 

the productivity of a production system. Therefore, production and maintenance plans 

are often suboptimal with respect to the objective of minimizing the combined 

maintenance and production cost [192]. Providing a maintenance policy that has a 

balance between the frequency of maintenance actions and the production state of the 

machine is the goal of many recent researches. At any time, that maintenance actions 

should be implemented, spare parts are needed for some actions, and the maintenance 

activities will be delayed if there are not enough spare parts available. Delay in 
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maintenance may cause sudden failure due to the system deterioration and 

consequently, an expensive penalty cost due to loss of production. On the other hand, 

holding too many spare parts has inventory costs. Also, spare parts may become useless 

due to chemical interaction with the environment and on-shelf deterioration during 

long-term storage.  

In this study, a dynamic condition-based maintenance model is proposed for a 

degrading production system considering the spare parts and their stochastic arrival 

times. At each inspection time, the degradation state of the system is determined, and 

maintenance actions should be selected based on the current state. The degradation state 

contains the estimated machine age, the virtual age, and the state of spare parts. It is 

assumed that the machine state can be estimated by quality information or other 

measurable indicators. There may be some error during the estimation process, which 

makes the obtained machine state possibly inaccurate. To compensate for the possible 

error, the virtual machine age is simultaneously considered as part of the maintenance 

decision and production cost calculation. Different maintenance actions that are 

considered in this study are replacement and some imperfect repairs. Spare parts 

ordering and the uncertainty of the order arrivals are also considered in this study. 

Yousefi et al [193] developed a dynamic maintenance problem of a production 

system considering different maintenance actions, spares part ordering, delay in spare 

parts arrival and uncertainty of maintenance implementation. They formulated the 

problem as a time-discrete Markov decision process, and it is solved by using the Q-

learning algorithm. Using an artificial intelligent method for maintenance problems, a 

more time-efficient and cost-efficient decision-making tool is developed compared to 

traditional optimization solutions. Having a dynamic maintenance model reduces the 
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maintenance costs by removing some unnecessary maintenance implementations and 

using the effective useful life of a system.  

1.14.1 Production System description and maintenance model 

In this study, a degrading multi-state production system is considered, and a 

dynamic maintenance policy is proposed to make a decision on spare parts ordering and 

maintenance action based on the current state of the system. The problem is formulated 

as a Markov decision process (MDP), and it is solved by using a reinforcement learning 

algorithm. In using reinforcement learning for maintenance MDP problems, the agent 

is trained by using the interactions with the environment and actions, which can be the 

degradation states and the available maintenance actions. At each time step which can 

be the inspection time, the agent detects the current degradation state of the system and 

chooses a maintenance action based on the system degradation knowledge. Each 

maintenance action is evaluated by its associated cost which can be considered as 

negative reward, and subsequently, based on the action taken by the agent the system 

goes to the next state. The process continues until the end of the maintenance time 

contract.  

MDP can be defined as a tuple of ( , , , , )S A P C  , where S is the state of the 

system. A is the action set, which is defined by selecting an available maintenance 

action and spare part ordering. P is the transition probability of going to the next states, 

and C is the cost function which is the negative value of system reward (C = -r). It 

should be noted that at each inspection time, the state information is known for the 

problem and the terminal state is the failure state of the system. 

(1) System states 

In this study, the machine state can be estimated at discrete time epochs based 

on some inspections and analysis of quality information or other measurable indicators. 
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The estimated machine states are classified into N levels, denoted by 0, 1, …, N - 1. 

The state ‘0’ means the new or as-new state, and the state ‘N - 1’ means failure. The 

other states are intermediate conditions, at which the machine is deteriorated, but still 

operates with increasing production cost, and with larger probability to fail. In this 

study, if the machine state is found to be at state  (0 1)i i N    at a time epoch, the state 

 ( 1)j i j N    can be reached at the next time epoch with known transition probability

ijp . In fact, the transition probability is zero between two states i and j when j i , 

which means that the machine cannot improve on its own, and any state j can be reached 

from any state i where i j . In this study, for simplicity, the word ‘machine state’ 

refers to ‘estimated machine state’ in the remainder of this paper. The machine virtual 

age is also used to consider the possible error of state estimation. 

The system state is denoted by ( , , , )S t i o , which contains the machine 

virtual age t , the machine state i, and the spare part state o and  τ, which is the inspection 

time step . The machine’s virtual age t  is described by discrete numbers in the range 

max[0, ]T . maxT  is set as the maximum value of the machine’s virtual age. When maxT  is 

reached, a replacement is required, similar to a system failure (being at the state 1N  ). 

The possible value of machine state i  could be a state from {0,1,..., -1}N . The spare part 

state o may be 0, 1, or 2. ‘0’ represents that the action ‘ordering’ has not been selected. 

‘1’ indicates that the spare part is ordered but has not arrived yet. ‘2’ represents the 

situation where the ordered spare part has arrived.  

It should be noted that at each inspection time, the state information is used for 

the problem formulation and the terminal state is the end of the planning time horizon. 

In fact, if it is required to provide a maintenance policy for TMain units of time and our 

inspection duration is l, then there are MainT
l      inspections in our state matrix, so   
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is between 0 and   (0 )   . 

The virtual age of the machine is a positive function of its real age. It is assumed 

that a maintenance activity can restore the machine, and subsequently, it reduces the 

failure intensity or machine virtual age [194, 195]. In this paper, different levels of 

imperfect maintenance can result in different reductions of the virtual age. Because the 

virtual age can also reflect the machine situation depending on past maintenance, it is a 

part of the proposed policy to compensate for possible errors during the system state 

estimation. 

(2)  Maintenance actions  

At the beginning of each time epoch, a decision about the maintenance actions 

are made based on the current system state. The optional action a  is chosen from five 

possible actions,  0,1,2,3,4 , which successively represent “no action”, “maintenance 

level 1”, “maintenance level 2”, “replacement”, and “ordering”. When “no action” is 

selected, there are no maintenance activities carried out and the system continues 

degrading. Then, at the next time epoch, the system state possibly changes to a more 

degraded state. The actions “maintenance level 1” and “maintenance level2” both 

represent implementing an imperfect maintenance action immediately which takes one 

time unit. The imperfect maintenance actions reduce the virtual age at different degrees, 

and simultaneously improve the machine state, or make it remain at the current state 

with known probability. “maintenance level 1” and “maintenance level 2” can improve 

the machine state and virtual age. For example, when the machine is in state i, with 

virtual age of t, by implementing the “maintenance level 1”, it transitions to state 1j  

(where 10 j i  ), with probability of 
1

1

ijp  and its virtual age becomes 1t  (where 

10 1  ). Similarly, the machine state and virtual age would be respectively changed 
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to be 2j  (with probability
2

2

ijp ) and 2t  after performing a ‘maintenance level 2’ (

20 j i  , 20 1  ). It is assumed that 1  is larger than 2  because implementing 

“maintenance level 2” can improve the virtual age more than “maintenance level 1”  

When action 0 (“no action”) is selected, the system goes to the next state with 

some known probability. The action 4 (“ordering”) is to order spare parts immediately. 

It is assumed that only one spare part is ordered each time, and the lead time follows a 

known geometric distribution with parameter s . As soon as the ordered spare part 

arrives, the action “replacement” is selected, and the perfect maintenance action is 

implemented immediately. It is assumed that the time duration of the replacement 

follows a known geometric distribution, and its success rate during a time unit is r . 

(3) System’s cost function 

The cost function/reward function can be calculated using the associated cost 

for each action on the components, and all the other costs in the system such as penalty 

cost of failure, shortage cost, production cost and spare part ordering cost. In this paper, 

the reward function r is defined as negative value of total cost ( r C  ). The considered 

system cost includes the maintenance cost, the production cost, the shortage cost, and 

the spare parts ordering cost. It is assumed that implementing imperfect maintenance 

takes one time unit and the costs are 1pmc  and 2pmc  for “maintenance level 1” and 

“maintenance level 2”. The cost of implementing “replacement” is cmc , but it may also 

be larger than cmc  due to it’s the success rate r  of replacement action.  

It is assumed that the production cost depends on the system state and the virtual 

age. To consider the effect of both system state and virtual age, Equation (6.31) is used 

for production cost, ( , )P t ic , where i  represents the system state and virtual age is t . 
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Using Equation (6.31), the higher increase in machine state and virtual age can result 

in a more expensive production cost. This implies the requirement of the proposed 

policy to keep the two factors at a low level.  However, any other type of model or 

different value set can be considered to estimate the effect of system state and virtual 

age.   

 ( , ) max 0.6( 2),0.6P t ic i t   (0.31) 

When the machine undergoes maintenance or arrives at the failure state, a 

shortage cost rc  is incurred during that time unit. Implementing imperfect maintenance 

(“maintenance level 1” and “maintenance level 1”) takes only one time unit, but 

because of the success rate of replacement r , a delay may occur for implementing the 

replacement, so it may have more than one shortage cost rc . The cost of ordering a 

spare part per time is sc . Therefore, sc  is considered as soon as the action ‘ordering’ is 

selected. Moreover, when the system is failed, it cannot perform its function and there 

is a penalty cost due to failure fc  which is similar to shortage cost, but larger than 

shortage cost. However, by defining the penalty cost fc , the loss of production and 

penalty cost are different for implementing maintenance versus for system failure.  

At any inspection time ( ), based on the current state of the system ( , , , )S t i o

, the machine state is the ( , , )S t i o  and the expected cost from the current time epoch 

is denoted by ( , , )C t i o . At any inspection time ( ), when system state is ( , ,0)S t i  for 

any max0 ,0 1t T i N     , the action “replacement” cannot be selected, because there are 

no spare parts available (o = 0). When the current state is ( , ,1)S t i , the spare part is 

ordered but has not yet arrived, so the only action that can be selected is “no action,” 
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and wait until it arrives. Therefore the cost for current state based on the possible actions 

are as follow: 

Table 0.17 Cost function based on current state and possible actions 

Current state Action Associated Cost  

Any state other than failure states, 

where there is no spare part available 

max

( , ,0)

(0 ,0 1)

S t i

t T i N    
 

0a   ( , ,0) ( , )pC t i C t i  (0.32) 

1a   1( , ,0) pm rC t i C C   (0.33) 

2a   2( , ,0) pm rC t i C C   (0.34) 

4a   ( , ,0) ( , )p sC t i C t i C   (0.35) 

Any state other than failure states, 

where spare part is ordered but has 

not arrived 

max

( , ,1)

(0 ,0 1)

S t i

t T i N    
 

0a   ( , ,1) ( , )pC t i C t i  (0.36) 

Any states, where spare part has 

arrived 

( , , 2)S t i  

3a   ( , ,2) cm rC t i C C   (0.37) 

For failure state, where there is no 

spare part available 

max

max

( , 1,0) ( , ,0)
 or 

(0 ) (0 1)

S t N S T i

t T i N



    
 

4a   
( , 1,0) f sC t N C C    

max max( , ,0) ( , )p sC T i C T i C   

(0.38) 

 

(0.39) 

For failure state, where spare part is 

ordered but has not arrived 

max

max

( , 1,1) ( , ,1)
 or 

(0 ) (0 1)

S t N S T i

t T i N



    
 

0a   
( , 1,1) fC t N C   

max max( , ,1) ( , )P sC T i C T i C   

(0.40) 

 

(0.41) 

Equation (6.40) and (16.41), are associated with failure cost, however, when 

system is in state N - 1 it cannot perform its designated function due to the failure, so 

there is a penalty cost of  
fC for Equation (6.40), but when the system is in a state with 

virtual age of Tmax, it can be considered as a failure and it should be replaced, but it can 

still work with a large amount of production cost. Therefore, in Equation (6.41) there 

is no 
fC . 
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(4) Transition probability 

In this study, there is a degrading multi-component system. At each inspection 

time, the current degradation state of the system is detected, and an appropriate 

maintenance action is selected. Based on the selected maintenance action, the system 

state transitions to the other state. If at any inspection time, action 0 (“no action”) is 

selected, the state transitions to any of the next states based on a known probability 

matrix  , where each Pij in matrix , describes the transition probability from state i 

to j. and the virtual age changes from t to t +1. 

When action 1 “maintenance level 1” or 2 “maintenance level 2” is selected the 

state i transits to state j with corresponding probability matrices of 
1  and 

2 . For 

example, when the machine is in state i, with virtual age of t, by implementing the 

“maintenance level 1”, it transitions to state 1j  (where 10 j i  ), with probability of 

1

1

ijp  and its virtual age becomes 1t and it would be changed to be 2j  (with probability

2

2

ijp ) and 2t  after performing a ‘maintenance level 2’. To reduce the complexity of 

the mathematical analysis, the virtual age is adjusted to be integer-valued after 

imperfect maintenance by using a rounding-off method. Figure 6.17 shows a part of 

Markov decision process for actions 0, 1 and 2 for some of the machine states. At any 

time epoch, at any state, if “no action” is selected it transitions to any of the next states 

with a known probability, and if any of the imperfect maintenance actions 

(“maintenance level 1” and “maintenance level 2”) are selected, the system state 

transitions to any of the previous states with a probability for that action.  
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Figure 0.17 Markov decision process for different actions 

The action “ordering” is to order spare parts immediately. It is assumed that 

only one spare part is ordered each time, and the lead time follows a known geometric 

distribution with parameter s . This means that, until the beginning of the next unit 

time, the arrival rate of ordered spare part is s . As soon as the ordered spare part 

arrives, the action “replacement” is selected, and the perfect maintenance action is 

implemented immediately. It is assumed that the time duration of the replacement 

follows a known geometric distribution, and its success rate during a time unit is r . 

This means that after one time unit the machine state and virtual age are changed to be 

initial values (i.e., the as-new state) with successful rate r , or remain unchanged with 

unsuccessful rate (1 )r . Therefore, for any system state with no spare part available, 

if action 4 “ordering” is selected, the state changes as follows: 

( 1, , 2)     with probability  
( , ,0)

( 1, ,1)      with probability  (1- )  

s ij

s ij

S t j p
S t i

S t j p





 
 

 
 

(0.42) 

When the current state is ( , ,1)S t i , the spare part is ordered but has not been 

arrived, so the only action can be selected is “no action” and wait until it arrives. The 

next state can be calculated as in Equation 6.43: 



 

 

223 

 

( 1, , 2)     with probability  
( , ,1)

( 1, ,1)      with probability  (1- )  

s ij

s ij

S t j p
S t i

S t j p





 
 

 
 

(0.43) 

Moreover, since it is assumed that replacement has a success rate r , after 

selecting action 3 “replacement”, the next state can be calculated as shown in Equation 

6.44: 

(0,0,0)         with probability  
( , ,2)

( , ,2)          with probability  (1- ) 

r

r

S
S t i

S t i






 


 
(0.44) 

For a maintenance problem, using the Q-learning method provides an algorithm 

to find the best agent policy for implementing maintenance actions based on the system 

states which has the minimum cost. At each episode, the value of maintenance actions 

for all the specific degradation states are calculated and the episode terminates when it 

reaches the terminal states.  The terminal state is the state for the time that is the end of 

our proposed maintenance policy.  

In the Q-learning method, the agent takes one action at any particular state and 

evaluates its consequences, and by trying actions in all the possible states it learns what 

is the best action which has the best long run rewards. In Q-learning the value function 

is updated based on the Bellman equation which is shown in Equation (6.23). Q(s,a) is 

the expected value of taking action a in state s. Where   is the learning rate which can 

have a value between 0 and 1, where 0 means the algorithm is never updated and  = 

1 means the learning occurs quickly. r is the reward (-cost) at time t for moving from 

state s to 𝑠′ for action a. γ is the discount factor which can have a value between 0 and 

1, it is used to balance immediate and future reward. max ( , )a Q s a  represents the 

maximum expected future reward. In this study, Q(s,a) is the expected value of taking 

a maintenance action a, in system state s. The system state is ( , , , )S t i o , which 

contains the machine virtual age t , the machine state i, and the spare part state o and τ, 
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which is the inspection time step. r is the immediate cost of taking a maintenance action, 

which can be calculated using Equations (6.32) - (6.41) in Table 6.17. 

1.14.2 Numerical example of a production system 

To demonstrate the performance of the proposed maintenance policy in this 

study, a conceptual production system is considered which has multiple degradation 

states.  It is assumed that the system has 6 different degradation states, where state 0 

indicates the system is new and state 5 is the failure state. The considered maximum 

value of machine’s virtual age is assumed to be 10 time-units ( max 10T  ). The system is 

inspected periodically at every one time unit. The maintenance contract duration (TMain) 

is assumed to be 25 time-units. The success rate of the replacement during a time unit 

is =0.9r  and the arrival rate of the ordered spare part during a time unit is =0.6s . 

The reducing degree of the machine virtual age after completing a maintenance level 1  

1=0.6 , and for maintenance level 2 is 2 =0.4 .  The cost of production is calculated as 

 ( , ) max 0.6( 2),0.6P t ic i t  , and the other cost parameters are shown on Table 6.18. 

Table 0.18 Maintenance cost parameters 

Shortage 

cost 

Ordering 

cost 

Cost of 

maintenance 

level 1 

Cost of 

maintenance 

level 2 

Cost of 

replacement 

Penalty cost for 

failure 

=4rc  =1sc  1=1pmc  
2 =3pmc  =5cmc  =8fc  

The transition probability matrices for different maintenance actions are shown 

in Table 6.19. The element ( 1, 1)P i j   in Matrix P describes the value of 
ijp , i.e.,

 

the transition probability from the machine state
 

i  to state j . Similarly, the element 

1( 1, 1)P i j  and 
2 ( 1, 1)P i j   in Matrix 

1P  and 
2P describe the values of 1

ijp  and 
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2

ijp  which is the probability of transiting from state i to j after implementing 

maintenance level 1 and maintenance level 2.  

Table 0.19 Transition matrices for maintenance actions 

Maintenance action Transition probabilities 

No action      

0.2  0.35   0.23  0.15  0.06   0.01

    0   0.2    0.36  0.3   0.12   0.02

    0     0     0.18   0.5   0.26  0.06

    0     0      0     0.14  0.66    0.2

    0     0      0        0     0.1     0.

 

=

9

  

P      

0     0      0        0      0         1

 
 
 
 
 
 
 
 
 

 

Maintenance level 1     1

   

1 0 0 0 0 0

0.33 0.67 0 0 0 0

0.05 0.2 0.75 0 0 0

0 0.

0

=

05 0.10 0.85 0 0

0 0 0 0.5 .95 0

P

 
 
 
 
 
 
  

 

Maintenance level 2    
2

1 0 0 0 0 0

0.53 0.47 0 0 0 0

0.10 0.35 0.55 0 0 0

0 0.15 0.20 0.65 0 0

0 0 0.10 0.15 0.75 0

=P

 
 
 
 
 
 
  

 

The number of episodes can influence the performance of reinforcement 

learning algorithms.  Finding the best number of episodes is a challenge in 

reinforcement learning algorithms which can be investigated by trying different 

numbers of episodes and observing its performance for each scenario. Figure 6.18 

shows the average obtained rewards for different numbers of episodes for the 

conceptual production system. The horizontal axis on this plot is the different 

percentiles of the total number of episodes, and the average total reward for each batch 

of episodes is shown on the vertical axis. As it is shown on Figure 6.18, the well-suited 
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number of episodes for this study is 105 because it has the best performance compared 

to other numbers of episodes. Moreover, comparing the result of 104 and 105, it can be 

concluded that difference is negligible and increasing the number of episodes after 105 

is an inefficient use of computational time and resources. 

 

Figure 0.18 Convergence check for the required number of episodes for the system 

Using the proposed method, the optimal maintenance action is found for each 

state of the system. The best maintenance actions for different scenarios are shown in 

Table 6.20 to illustrate the performance of the Q-learning method in obtaining dynamic 

maintenance policies. Each state in Table 6.20 is a combination of virtual age t, machine 

state i, and the spare part status o, ( , , )S t i o  at each inspection time. Replacement (action 

3) is the only action for all states where spare parts arrived ( , , 2)S t i . Doing nothing 

(action 0) is the only action which can be selected for states such as ( , ,1)S t i  that spare 

part is ordered but it has not arrived yet. For other states, the optimal action is found 

using Q table.  
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Table 0.20 Optimal maintenance actions for different scenario 

Scenario 

number 

System state  Optimal 

action 

number 

Scenario 

number 

System 

state 

Optimal 

action 

number 

1 (0,0,0) 0 8 (7,2,2) 3 

2 (1,1,0) 0 9 (7,4,0) 2 

3 (2,2,0) 1 10 (7,3,0) 4 

4 (3,1,0) 0 11 (8,2,0) 4 

5 (5,0,0) 1 12 (9,3,0) 2 

6 (5,5,0) 4 13 (9,4,0) 2 

7 (5,4,0) 2 14 (10,2,0) 4 

As it is shown in Table 6.20, for states close to failure states, the best action is 

action 2 “maintenance level 2” which is restoring the system to a better state with higher 

probability than action 1 ‘maintenance level 1 ”, Scenario number 7, 9,12, and 13 are 

examples of these states close to failure states. For states which are very close to the 

new state, the best action is action 0, “do nothing”. In fact, it suggests not to implement 

any action when the system is new and time to failure is long. When the system is 

degraded enough, but it still has time to fail, the best action is ordering a spare part 

(action 4), such as scenario number 10 and 11, where the virtual age of the system is 

high, but it is not very close to failure, so it is a good time to order a spare part and 

avoid wasting time for waiting for spare parts delivery.  

In Scenario number 5, although the machine state is 0, which is a new state, the 

virtual age is 5, and the best maintenance action is action 1 “maintenance level 1”. The 

reason can be the production cost. As the virtual age of the system increases, the 

production system cannot perform as well as a new system, and there is a production 

cost associated with the virtual age and machine state. Therefore, although the system 
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will not fail soon, it is suggested to repair the system to reduce the virtual age and avoid 

paying more production costs.  

To show how the proposed method can provide a maintenance action 

dynamically based on the degradation states of the system, different scenarios are 

shown in Figure 6.19. It shows the different maintenance actions based on the optimal 

Q-table for the production system. Seven different scenarios are shown in Figure 6.19. 

Based on the optimal Q-table the best action for each state is shown on the right of each 

state.  

 

Figure 0.19 Different optimal maintenance policy for different scenarios 

As it is shown when the system is almost new, such as states with low virtual 

age and low machine state numbers, the best action is doing nothing. As the system 

degrades and it transits to a higher machine state, the best action changes to repair and 

to order the spare part. For example, for Scenario 2, at the first time step the virtual age 

and machine state of the system increased by one unit, and the best action is “do 

nothing”, and then it transits to state (2,3,0) which indicates the machine state is close 

to failure, but the virtual age is still low. However, the best action for this state based 

on the optimal Q-table is action 4, which is ordering a spare part. Since there is an 

uncertainty in order arrival, in the next state, the spare part has not arrived, and the 
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system state is (3,3,1); the only action that can be done is waiting for the arrival and 

“do nothing’. Moreover, in Scenario 1, everything is the same as Scenario 2, except 

after the spare part is ordered, in the next state is (3,5,2), which indicates the spare part 

has arrived, and the machine state is in the machine state 5 which is the failure state, 

and since the spare part inventory is not considered the only action is replacement, 

action 3, which is the replacement, but since the system is failed there is a penalty cost 

incurred. 

A sensitivity analysis is done on the reduction parameter of the machine virtual 

age after completing imperfect maintenance. The parameter of maintenance level 2 2  

is changed from 0.1 to 0.75 in increments of 0.05, and for each value of 2 , the 

parameter of maintenance level 1 1  is set as 2( +0.2) . The other system parameters 

as the same as the basic system parameter settings. For each set of 1 2( , )  , the average 

cost is calculated using the Q -learning algorithm and it is shown in Figure 6.20.  

 
Figure 0.20 Maintenance cost rate sensitivity analysis on 1 2( , )   

As it is shown in Figure 6.20, when the reduction parameters for “ maintenance 

level 1 ” and “maintenance level 2” increase, the average cost increases. In fact, by 
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increasing the reduction parameters, these maintenance repairs are not effective and are 

not able to improve the virtual age and machine state very much, due to the systems 

cost, especially production cost, the average maintenance cost also increases.  

1.14.3 Model validation for dynamic maintenance of a production system 

To demonstrate the advantages of the proposed method, the maintenance cost 

of this numerical example is compared with traditional methods in the literature such 

as replace-on-failure maintenance and on-condition maintenance. For replace-on-

failure, each component is replaced only if the system is detected as failed, and there is 

no maintenance action before failure. For on-condition maintenance models, different 

thresholds are considered at each state and by comparing the virtual age and these 

thresholds at each machine state, a maintenance activity is selected. To compare the 

maintenance cost of the proposed method and the traditional maintenance models, the 

same parameters are considered. By running a simulation model for 105 replication 

runs, the maintenance cost of replace-on-failure and on-condition maintenance are 

found and shown in Table 6.21. As it is shown on Table 6.21 the maintenance cost for 

the proposed model is lower than the traditional methods.  

Table 0.21 Comparison of the proposed method and the traditional methods 

Model Proposed method On-condition maintenance Replace-on-failure 

Average cost of 

the system 

1.85 4.57 7.34 

Model validation  

The current research intends to develop new reliability and condition-based 

maintenance models for multi-component systems with individually repairable 

components subject to dependent competing failure processes. However, the preference 

for the proposed maintenance models should be presented by comparing the results to 

models that are already existing. Model validation is one of the crucial steps to present 
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the preference of the newly proposed models. In this study, the proposed maintenance 

policies are compared to the existing maintenance models, such as time-based 

maintenance and replace-on-failure maintenance. In replace-on-failure models, failure 

is detected by inspection, and if failures are not detected promptly, there is costly 

downtime. In time-based maintenance models, the maintenance actions are 

implemented at some specified inspection times, and there are no other maintenance 

thresholds or conditions for implementing the maintenance actions. By setting some 

model parameters, or using the simulation, the total maintenance cost of the time-based 

maintenance and replace-on-failure models are computed. The preference of the 

proposed models is shown by comparing the total maintenance cost of the proposed 

maintenance models and two models of time-based maintenance and replace-on-failure. 

It can be concluded that the maintenance models considering the degradation level of 

the components in the system can provide a more cost-effective maintenance plan.  

For the proposed dynamic maintenance models, the maintenance costs of the 

proposed models are compared to the simulation results of the static maintenance 

models, such as replace-on-failure and on-condition maintenance model. The proposed 

dynamic maintenance models suggest a maintenance action or the next inspection time 

considering the degradation level of all the components within the system. Therefore, 

it can be concluded that by using the proposed dynamic maintenance models, the 

maintenance actions are only implemented when they are necessary, and it would help 

to avoid the unnecessary actions that may waste the useful life of the components. 

Conclusions 

This research develops a reliability model for multi-component systems with 

individually repairable components where each component is subject to two failure 

processes of degradation and random shock arrival. For systems functioning for a very 
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long time, each component is repaired/replaced several times, so their age is different 

at each inspection time. Considering the initial degradation of each component, the 

conditional probability of failure and conditional system reliability can be calculated 

using the proposed method in this study. Condition-based maintenance models are one 

of the ways to increase the reliability and availability of the systems and minimize the 

total cost by preventing the event of failure. For systems with a high downtime cost, 

the system failure can be prevented, by replacing or repairing the components which 

are prone to failure. In this study, different condition-based maintenance models are 

studied for such systems.  

The proposed static maintenance models provide some maintenance thresholds 

for each component to be maintained before a failure occurs. Low maintenance 

thresholds can be inefficient because they waste component's life, and high thresholds 

are risky because the components are prone to costly failure. Therefore, new 

optimization models are formulated and solved to find the optimal maintenance 

thresholds and inspection times simultaneously.  

In this research work, by considering the initial age of all the components, 

dynamic maintenance policies are developed and solved to suggest maintenance actions 

and inspection intervals based on the current information of components degradation. 

Two different solution methods are used for the dynamic maintenance models such as 

optimization and reinforcement learning.  

In the first dynamic models, the optimal decision variables such as maintenance 

thresholds and inspection intervals are found by solving an optimization method. At the 

beginning of each inspection, the next inspection time and preventive maintenance 

thresholds are found dynamically based on the initial age of the components. A neural 

network model is also proposed as an alternative to solving the optimization problem 
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at each inspection. In the second dynamic models, the problem is formulated as a 

Markov decision process model and reinforcement learning algorithms are used to solve 

the dynamic maintenance problem to find the optimal maintenance actions for each 

degradation state of the system. Therefore, using the proposed models, a decision-

making tool can be provided to the maintenance team to find the best maintenance 

action based on the degradation of the components.  

1.15 Research Extensions  

Towards this idea of never-ending research, it would be interesting to present 

some potential research extensions of the current work. The first research extension can 

be related to the shock models. There are different types of environmental shock in real 

life, which can be fatal or non-fatal and can have different effects on the degradation 

path of the systems or components. Moreover, the environment is often actually 

changing dynamically; thus, the shock process should be modeled differently to 

consider the uncertainty of the environments and its effect on the system's degradation 

path. Conducting some research studies on different shock models and formulating the 

system reliability and maintenance models based on the new shock models can provide 

a more realistic maintenance problem.  

The second research extension can be related to reinforcement learning 

algorithms. In this study, the main focus is using Q-learning, and its neural network-

based versions. However, it is imperative that other RL techniques are also examined 

and compared with the ones already implemented. There is recently increasing attention 

to actor-critic methods in RL, such as Deep Deterministic Policy Gradient (DDPG). 

Actor-critic methods can simultaneously estimate value functions (critic) and update 

the policy distribution (actor) accordingly. Moreover, Monte Carlo Tree Search 

(MCTS) is also one of the algorithms that are studied recently for game-based 
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reinforcement learning problems. The basic idea of MCTS is to build a tree on all the 

possible scenarios of the simulation but explore only those that are the most promising 

ones.  

The last research extension refers to the inventory level of spare parts. Excessive 

inventory results in a high holding cost for the spares, while insufficient inventory 

causes inadequate preventive maintenance. Considering the inventory control of spare 

parts in the dynamic condition-based maintenance models would lead to a more realistic 

maintenance problem. The number of spare parts can be one part of the system state in 

the reinforcement learning problem. The dynamic maintenance action at each 

inspection time will be made based on the inventory cost and the available number of 

spare parts until the end of the maintenance contract.  Furthermore, the other constraints 

of available resources such as personnel and materials or special maintenance 

requirements, such as space limits and conflict between maintenance actions, can be 

considered in future studies for proposing an appropriate maintenance policy.  

The ultimate goal of this research is to provide an appropriate maintenance model 

for systems with different repairable components subject to aging and degradation and 

environmental shocks. Using the proposed maintenance models in this study, the 

maintenance team can have a decision-making tool for implementing the maintenance 

actions on each component. Having an appropriate maintenance model can prevent the 

system failure and its huge cost and can increase the reliability and availability of 

systems.  

Appendix A 

Parameter estimation for systems considering clusters of dependent degrading 

components 

To obtain explicit reliability predictions, it is necessary to know or estimate the 

parameters in the reliability equations. In this section, a method is proposed to estimate 
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parameters for the reliability models given available data. This model is based on 

degradation data, and not failure data, and therefore numerous data records can be 

collected on a component prior to failure. There are different ways to estimate the 

parameters required for this model, including probability plotting, least square methods, 

rank methods for censored data, maximum likelihood estimation (MLE), Bayesian 

parameter estimation methods, etc. Some parameters in the model might be already 

available, e.g., the coefficients ci and bi in vi(t) = cit
bi that can be obtained from material 

properties or related studies. 

If shocks are present, the increment of degradation in a time interval is equal to pure 

degradation plus cumulative damage contribution from shocks. To demonstrate, I 

develop the MLE for the special case when the shock damage is normally distributed 

and the pure degradation for a time interval is distributed as a gamma distribution. 

Considering a case with one cluster (k = 1), the shape parameter for the gamma 

distribution is the difference of vi(t) = cit
bi for two time points, and the scale parameter 

iis a function of a single random variable . In this example, it is assumed that Wij 

follows a normal distribution Wij ~N(μWi, σWi
2), Yij follows a normal distribution Yij 

~N(μYi, σYi
2), and 0,i = 0. 

Consider data collected from multiple systems, l = 1, 2, …, L, of the same type 

with components i = 1, 2, …, n, and one cluster, k = 1. For each system l, data is 

collected at periods  = 1, 2, … Tl. To determine the distribution of , it is necessary 

to obtain specific estimates of  for each individual system l included in the data set, 

or 1,l . If 1,l  are all approximately the same, then there is not meaningful dependence 

among components within a system, and the degradation paths are not clustered. 

Define 
, ,i l  as the increment in the pure degradation, and 

, , ,( )i l i lS t 
 as the sum 
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of shock damages for the ith component in the lth system during the th data collection 

period,  

, , , , , , , , 1 1,( ) ( ) ( ; , , , ).i l i l i l i l i l i i i lX t X t Ga x c b        

2

, , , , , , 1 , , , , 1 , , , , 1( ) ( ) ( ;( .) ,( ) )
i ii l i l i l i l i l i l Y i l i l YS t S t N x m m m m            

where 
, , , , 1i l i lm m    is the number of shocks observed between the  and -1th 

observation periods. 

Data is collected from L units of systems with n different components. 

Degradation and failure data are collected at Tl different time periods for each system 

l. The data collection periods can be of any duration, but to estimate all model 

parameters, it is necessary to collect data often to provide a diverse and plentiful data 

set. Two types of data are collected including data for a system with pure degradation 

and data for a system subject to both degradation and the shock process. If there are no 

shocks, then the following estimates can be simplified. 

The following data is available: 

1) For any failure, it is known specifically if it is a hard or soft failure, and the total 

number of shocks the component was exposed to until failure. The total 

degradation is known at failure whether it is a hard or soft failure. If the system 

is repaired and returned to operation, it is considered as a new system. 

2) Degradation data is collected at Tl different time intervals prior to a failure. For 

all components, total degradation is recorded at each time, and total number of 

shocks and shocks since last data record are is known and recorded. It is not 

known how much of the total degradation is due to the pure degradation and 

how much is due to the cumulative shock damages. 
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Likelihood function for hard failure 

Considering systems subject to both degradation and shock process, there are 

three types of data that can be used: (i) the recorded time and shocks until hard failure, 

(ii) the recorded time and shocks until soft failure, (iii) and the recorded time and shocks 

for degradation data prior to any failure. Define sets H, S, P for (i, l,) belonging to the 

three types of data. The parameters for each component can be solved separately. The 

likelihood and log-likelihood function are given by, 

For i = 1, …, n,  

, , , , , ,1

, ,

( , , ) ( , , ) ( , , )

, , , , , ,

( , , ) ( , , ) ( , , )

( , ; ) ( ) (1 ( )) ( ) ( )

( , ; ) ( 1) ln( ( )) ln(1 ( )) ln(

.
i l i l i l

i i i i i i

l

i i i i i

m m m

i W W i l W i W i W i W i

i l H i l S i l T P

i W W i l i l W i W i i l W

i l H i l H i l S

L m F D F D F D F D

l m m F D F D m F
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

 

  
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 

 



  

  

 

    

  

  

, ,

( , , )

.

( ))

ln( ( ))
i

l

i

i l W i

i l T P

D

m F D

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where H = set of data for hard failure, S = set of data for soft failure, and P = set 

of data prior to failure. FWi() can be any parametric distribution but Wij is often assumed 

to be normally distributed. 

Likelihood function for soft failure/component degradation 

1) Likelihood function without shocks 

For observed incremental degradation i,l, = xi,l,xi,l,for time 

ti,l,toti,l,with no shocks, the likelihood function is the product of the conditional 

probability density functions of 
, , , , , , , , 1( ) ( )i l i l i l i l i lX t X t      . Considering k = 1, 1 is 

defined as a random variable with a distribution, so the plan is to obtain specific 

estimates of 1 for each individual system l, 1,l . The distribution of 1can then be 

inferred based on estimated 1,l . The 1,l  for each system are then analyzed to 

determine an appropriate distribution (e.g., normal, gamma) and distribution 
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parameters. It can be very beneficial is a distributional assumption can be made, e.g., 

normal. If k = 2, then estimates are needed for
1,l  and 

2,l , which would require more 

data. 

With i,l, = xi,l,xi,l,, the probability density function (pdf) is then given as: 

, , 1, 1,( ) ( ; , , , )
i l i l i i i lf gamma c b                             

The likelihood function is given by: 

,1, 1, , , , , , , 1, 1,

1 1 1

.( , , , ; , ) ( ; , , , )
l

i l

TL n

i i i l i l i l i l i i i l

l i

L c b t f c b  



     

  

  

Occasionally, bi and ci (and sometimes even 
0,i and 

1,i ) can be estimated 

based on previous engineering studies or physical properties. In this case, the likelihood 

function reduces to: 

,1, 1, , , , , , , 1, 1,

1 1 1

( , ; , ) ( ; , , ., )
l

i l

TL n

i l i l i l i l i i i l

l i

L t f c b  



     

  

  

2) Likelihood function with shocks 

For observed incremental degradation i,l, = xi,l,xi,l,for time 

ti,l,toti,l,with mi,l,mi,l,shocks, the likelihood function is the product of the 

conditional probability density functions of 
, , , , , , , , 1( ) ( )i l i l i l i l i lX t X t      .  

With i,l, = xi,l,xi,l,, the probability density function (pdf) can be derived 

as: 
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The likelihood function is given by: 
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If bi and ci can be estimated by other sources, the likelihood function reduces 

to: 
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Estimation of all parameters can require significant data, and this does represent 

a limitation of the model. However, if the clustering is actually present, then it is 

necessary to collect the requisite data to provide the most appropriate models.  
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